
 Eindhoven University of Technology

MASTER

Realisation of the Area Segmentation Processor for ESPRIT project #2017 : TRIOS

de Winne, P.T.M.

Award date:
1993

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0f863557-3205-4bd3-b1ad-81146af65ba1

EINDHOVEN UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

Measurement and Control Section

REALISAnON OF THE

AREA SEGMENTATION PROCESSOR
FOR ESPRIT PROJECT #2017: TRIOS

by P.T.M. de Winne

M.Sc. Thesis/Report on Practical training period

carried out from september 1992 to june 1993
commissioned by prof.dr.ir. A.C.P.M. Backx
under supervision of ir. R. van Vliet of the TUE

and ing. A.lM. van Lier of Philips CFT

date: 7 june 1993

The Departrnent of Electrical Engineering of the Eindhoven University of

Technology accepts no responsibility for the contents of M.Sc. Theses or reports on

practical training periods.

Realisation of the

Area Segmentation Processor

for
Esprit Project #2017: TRIDS

1:\:::::\\< \<::::::1

F// ://:::/:1

p.

I•

author :

id. nr. :

institute :

department :

professor:

coach:

P.T.M. de Winne

318778

University of Technology Eindhoven

Infonnation Engineering

prof.dr.ir A.C.P.M. Backx

ir. R. van Vliet
tlij

company:

department :

coach:

Nederlandse Philips Bedrijven B.V.

CFf-ISP-IMI

ing. A.J.M. van Lier

period : september 1992 - june 1993

Nederlandse Philips Bedrijven B.V.
Centre Far manufacturing Technolagy

Summary

Philips CFf (Centre For manufacturing Technology) is partner in tbe ESPRIT project

#2017: TRIOS, for tbe development of an in-line inspection system. Tbe inspection system

checks PCBs, which are suitable for surface mounted devices, after solder paste has been

laid on the PCB. Tbe purpose of tbe system is to decide wetber or not tbe solder paste is

on the right position and has tbe right volume.

A laser scanner extracts height and intensity infonnation from a PCB by means of a laser

beam. Tbis infonnation is sent to a data processing unit. Tbe data processing unit

calculates the position and the height of tbe solder paste and checks tbat tbose values are

between certain bounds. The results are given to tbe host which controls tbe whole system.

Tbe Area Segmentation Processor (ASP) segments tbe image information. Tbis to

distribute the data over tbe calculation processors and to reduce tbe data for tbe calculation

processors. Tbe areas of interest (AOIs), which have to be segmented, are specified in the

CAD-data. The ASP composes tbe stored AOIs into images (called screens), which have

a suitable format for tbe calculation processors and sends tbese screens to tbe calculation

processors.

The controller of tbe ASP converts tbe specification of the areas of interest into addresses

on which the data is stored in tbe circular buffer. Infonnation witbin an AOI is placed on

a unique address in tbe circular buffer. Information outside an AOI is placed on address

zero. After tbe AOIs are stored, tbe AOIs are composed to one or more screens by the

screen handIer. The screens are sent to tbe calculation processors. Tbe composition of tbe

AOIs is calculated by software.

Tbe hardware of the Area Segmentation Processor is improved and implemented in the

system. Software is written and tested so that 5122 images are received and sent. The

segmentation software is partIy written. Tbe processor, a RISC processor, can be

programmed in assembly or in C. Using local variables instead of global variables will

save processor time.

Summary 2

Nederlandse Philips Bedrijven B.V.
eentre For manufacturing Technology

Preface

This report is written by Peter de Winne. student infonnation engineering (ITE) at the

University of Technology Eindhoven (TUE), as graduation report. The graduation was

carried out at Philips Centre For manufacturing Technology (CFT), seetion Industrial

Signal Processing (lSP), group Industrial Measurement and Inspection (IMI).

The section Industrial Signal Processing provides support for the application of electronic

technologies in production processes and products. The main activity areas are Industrial

Measurement and Inspection with the emphasis on Machine Vision and Motion Control

Technology. The object of the group Industrial Measurement and Inspection is to provide

in solving automatic optical inspection problems in production and develop methods, tools

and modules for applications in this field.

My graduation assignment was to realize a processor board (the area segmentation

processor) that segments areas of an image and pIaces these areas into screens. Therefor

the schemes of the hardware are checked, the hardware is build, tested and improved

where necessary and the software is written.

I want to thank ir. N.O.M. Kouwenberg who gave me the opportunity to fulfil my

graduation assignment at Philips CFT. I want to say special thanks to ing. A.J.M. van Lier

who gave me the graduation assignment and did the coaching of my work at Philips CFT

and ir. R. van Vliet who did the coaching at the TUE. Further I want to thank ir. F.O.M.

Smeets, ing. J.F.J. Hendriks, ir. L.H.D. Oeraats, ing. M.F.W. Pechler and H.M. van Meurs

for their support during my graduation period.

Preface 3

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Content

Summary " " 2

Preface 3

List of figures

List of tables

6

7

1 Introduction . 8

2 In-line PCB inspection system 10

2.1 Global explanation of the system 10

2.2 Data processing system 11

3 Hardware of the Area Segmentation Processor 13

3.1 Controller. .. 14
3.2 VME-bus interface 14

3.3 Image handier .. 15

3.4 Screen handier 16

3.5 Circular buffer 17

4 Software for the Area Segmentation Processor 19

4.1 Manage Aüls .. 20

4.1.1 Compute Lines 20
4.1.2 Combine AOIs In Screens .. 22

4.1.3 Send Ids And Positions .. 23

4.1.4 Control Screen Retrieval .. 23

4.2 Manage Unit Address Buffer 24

4.3 Manage Unit Buffer 25

5 Implementation of the hardware .. 27

5.1 VME-interface. 27

5.2 Controller , 29

5.3 Image handier .. 30

5.4 Screen handier 31

5.5 Circular buffer 32
5.6 Picture bus interface 33

Conrent 4

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

6 Implementation of the software 34

6.1 Software 5l2x512 images 0 • • • • • • • •• 34

6.2 Segmentation software ... 0 ••••••• 0 • • • • • • • • • • • • • • • • • •• 35

6.3 Programming in C .. 37

Project status and conclusions 40

Abbreviations .. 41

Literature 0 ••••••••••••••••••••••••••• , 42

Appendix A Tbe processor CY7C611 43

A.I Registers .. 44

A.l.I Working registers 0 0 ••••••• 0 • 0 • • • • • • • • • • • • •• 44

A.I.2 Special purpose registers . " 45

A.2 Pipeline .. 47

A.3 Delayed control transfer 49

A.4 Data types .. 50

A.5 Instructions 51

A.6 Traps 52

Appendix B Schemes Area Segmentation Processor .. 54

B.I Controller 55

B.2 EPLD interrupt handler 0 • • • • • • • • •• 56

B.3 Image handier 0...................................... 57

BA Screen handier 0 • • • • • • • • • •• 58

B.5 EPLD screen handier 0 •• 0 • •• 59

B.6 EPLD divider 0 • • • • •• 60

B.7 Circular buffer .. 61

B.8 Picture bus interface 0 •• 62

B.9 VME-interface .. 63

B.1O VME-interface handier 0 • • • • •• 64

B.11 Communication buffer , 69

Appendix C Program 512x512 image. .. 73

Appendix D Program address generation 0 ••••••• 0 • • • • •• 84

Appendix E Assembly listings fill_ua_buffer 91

Eo 1 Origina! version 91

E.2 Improved version 0 • • • • • • • • •• 92

Content 5

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

List of figures

Figure 2.1
Figure 2.2

Figure 3.1
Figure 3.2

AOI

Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6
Figure 3.7

Figure 3.8
Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 5.1
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure A.1
Figure A.2

Figure A.3
Figure A.4

Figure A.5
Figure A.6
Figure A.7
Figure A.8

Figure A.9

List offigures

Diagram in-line inspection system .. 10
Diagram of the data processing system 11

Example of image to screen transformation 13

(A) DefinWon of an AOI, (B) Relation between pixel, unit and

13

Block diagram of the Area Segmentation Processor 14

Unique identifier pixel and unit 15

Address generationfor writing units 16
Address generation for reading units .. 16
Principle of circular buffer .. 17

Functional diagram of circular buffer 18

Functional diagram of the Area Segmentation Processor. 19

Functional diagram of manage aois 20

Addresses for the units in an AOI .. 21

Examples of places for the switch bit. 21

Example of a screen map with the addresses 22

Functional diagram of control_screenJetrieval 24

Functional diagram of manage_unit_address_buffer 25

Functional diagram of manage_unit_buffer 26

Example of a 2 times stretched clock .. 30

Sequence of 512x512 program 35

Sequence of receiving the image .. 35

Sequence of sending the screen .. 35

Sequence of the address generation .. 37

Listing fill ua buffer .. 38

Listing fill_ua_buffer improved .. 39

(A) Window stack (B) Window overlap 45

Processor State Register (PSR) .. 45

Window Invalid Mask (WIM) 46
Trap Base Register (TBR) 46
Processor instruction pipeline 47

Pipeline with all single-cycle instructions , 48.
Pipeline with a LOAD instruction 48

Delay instruction 49

Instructionformat .. 51

6

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

List of tables

Table 5.1

Table 5.2

Table 5.3

Table A.1

Table A.2

Table A.3

Table A.4

List of tables

Functions of VME-interface with offset address 28

Function selection with base addresses 30

Line buffer selection with data bit 0 31

Differences between RISC and CISC " 43

lnternally generated opcodes 49

Valid data bus for bytes and half words " 50

Trap levels .. 53

7

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

1 Introduction

In the production of PCBs much has changed during tbe last years. Tbe sizes of resistors,

capacitors, integrated circuits etc. are getting smaller and smaller. Tbey are placed on tbe

print by machines and nowadays tbe production of a PCB is checked after every process

phase to maintain quality. For tbis last step Philips CFf (Centre For manufacturing

Technology) is partner in tbe ESPRIT project #2017: TRIOS. Within this project Philips

CFf is developing an in-line PCB inspection system. Tbe PCBs are suitable for surface

mounted devices (SMD) technology. Tbe inspection system will check tbe PCBs after tbe

solder paste (= a composure of solder tin and solder flux) has been laid on tbe solder

pads. The purpose of the system is to decide wetber or not tbe solder paste on tbe PCB

is on tbe right position and has tbe right volume. When for instance tbe solder paste isn't

at tbe right position it can cause short circuits or when tbe volume is too less tbe SMD

will not be connected properly.

As a part of tbe inspection system tbe Area Segmentation Processor (ASP) segments tbe

data information from a PCB. This segmentation is necessary for tbe distribution of tbe

data over tbe calculation processors and to reduce tbe data of a PCB so that only

interested areas are checked.

The hardware of tbe Area Segmentation Processor is designed by F.G.M. Smeets who

graduated in august 1992 on tbis design ([SME]l). I continued tbe work witb tbe Area

Segmentation Processor. My graduation assignrnent was:

- build and test tbe hardware of the ASP,

- develop tbe software and

- integrate tbe ASP in the inspection system.

The assignment was carried out by:

- studying the inspection system,

- studying the functions and tbe schemes of tbe ASP,

- studying tbe processor of the ASP,

- making worst case calculations of tbe timing of tbe different components,

- connecting and testing the ASP part by part,

- integrate the ASP in tbe system and writing software for receiving small images

so tbat no segmentation has to he done and

- writing the segmentation software after studying tbe system development

schemes.

1 Reference to literature list at page 42.

Introduction 8

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

The results at the end of the graduation period are that the Area Segmentation Processor

has been built and tested. It has been implemented in the system and for small images

where no segmentation is necessary the software is written and tested. The segmentation

software is written but not tested.

This report describes the realisation of the Area Segmentation Processor. Chapter 2 gives

the different functions of the inspection system. In chapter 3 the hardware of the ASP is

split into functional blocks. An outline of the software is given in chapter 4. Changes in

the hardware are given in chapter 5 and the implementation of the software is given in

chapter 6.

Introduction 9

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

2 In-Hne PCB inspection system

The PCB inspection system must he suitable to inspect PCBs afier the solder paste has

been laid on the PCB. Tbe volume and position of the solder paste must be between

certain bounds. PCB sizes are up to 50x30 cm and the inspection time for the largest PCB

is maximal 50 seconds. The inspection has to be done with a resolution of 25).lm. With

these demands the system is designed. In the first paragraph the design of the inspection

system is split into blocks. The function of each block is explained there. In the second

paragraph the data processing system, which is a block of the inspection system, is further

split into functional blocks and these blocks are explained.

2.1 Global explanation of the system

A global diagram of the in-line inspection system is given in figure 2.1. The Hnes

represent data flows and the dotted Hnes represent control flows.

USER INTERFACE

FILESYSTEM

....

....
".

" .

.'

:.. - ~

HOST

.. '

'. '.

....

..........

DATA PROCESSING
SYSTEM

LASER SCANNER
..'::j, TRANSPORT SYSTEM

PCB

Figure 2.1

<E-- > DATA

<>CONTROL

Diagram in-line inspection system

The function of each block is:

- host. The host controls the entire system.

- laser scanner. The laser scanner extracts image infonnation from the PCB by means of

a laser beam. The reflected light is translated into two data streams: height and

intensity data. Tbe height data is used for the volume measurement and the

intensity data for the position measurement. These two streams are sent to the data

processing system.

In-line PCB inspection system 10

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

- data processing system. The data processing system selects the solder pad information

from the data streams and calculates the posïtïon and volume of the solder paste.

The solder pads are found using data fiom the host (whïch gets it from the file

system), called CAD-data. What these data are wïll be explained later. The results

of the calculations are sent to the host.

- user interface. The user interface handles the communication between an operator and

the host computer. It is necessary to give information about the status of the

running process to the operator or to give commands to the host about starting the

inspection of a new PCB. The data stream fiom the user interface to the host

represents new CAD-data, which is necessary when inspection of a new PCB

starts.

- file system. The file system is used to store data about the status of the process and to
store CAD-data.

- transport system. The transport system brings PCBs to the laser scanner. After ïnspection

of the PCB, it sorts the PCBs into approved and disapproved ones. The sorting

is controlled by the host which gets the information fiom the data processing
system.

2.2 Data processing system

A diagram of the data processing system is given in figure 2.2. The function of each block

is:

- image acquisition & filtering. The image acquisition & filtering block has a pre

processing function. The laser data are sent to this block. The data are sent

through a look up table for conversion of the height and intensity data. This can

be used to obtain better contrast. The other function of this block is to put the

images on the data bus with the right control signals.

CAD DATA
FROM HOST

CAD DATA
FROMHOST

RESULT
TOHOST

11 n
AREA

SBIPBUFFER SBIP-=:; SEGMENTATION~ ~ ~
PROCESSOR

(l ..N) (l ..N)

IMAGE

~
ACQUISITION

&
R FILTERING

FIDUCIAL
MEASUREMENT

CADDATA ~ UNIT

FROMHOST

DATA
LASER
SCANNE

Figure 2.2 Diagram of the data processing system

ln-line PCB inspection system 11

Nederlandse Pbilips Bedrijven B.V.
Centre For manufacturing Technology

- area segmentation processor (ASP). The function of tbe area segmentation processor is

to buffer the data received from tbe acquisition and filtering block, distribute tbe

data over tbe SBIPs and reduce tbe data send to tbe SBIPs. The distribution is

done by combining Areas of Interest (AOIs). The AOIs are specified in tbe CAD­

data and is received from tbe host. The combined AOIs (called screens) are sent

to tbe SBIPs in a suitable format (512 x 512 pixels). The host controls to which

SBIP the screen is sent. The laser scanner doesn't have to be stopped witb tbe

buffer and distribution function of the ASP.

- SBIP buffer (1..N). The SBIP buffer is used to store a screen so that the SBIP can he

active continuously. In this way the memory of tbe ASP can be small.

- SBIP (1 ..N). The SBIP does tbe volume and the position calculations of tbe solder paste.

These calculations are done by software algorithms and are therefor relatively

slow. To compensate tbis, a number of SBIPs work in parallel. The host controls

the assignment of screens to the SBIPs. The results of the calculations in tbe

SBIPs are sent to the host.

- fiducial measurement unit (FMU). The position accuracy of the PCB in the laser scanner

is limited. A small displacement can lead to a deviation which amounts to several

pixels. The second problem is that the PCB isn't always perfectly flat. This gives

a deviation that varies with the position on the print. The fiducial measurement

unit, locates fiducials (characteristic shapes, for example corners in a copper track)

using the CAD-data received from the host (originating from the file system) and

calculates tbe displacement between the expected positions and tbe measured. The

displacement vectors are sent to one of the SBIPs.

In-line PCB inspection system 12

Nederlandse Philips Bedrijven B.V.
eentre For manufacturing Technology

3 Hardware of the Area Segmentation Processor

As written in tbe previous chapter the ASP receives an image fiom tbe acquisition board

and CAD-data from tbe host. It segments the specified AOIs and composes them into new

screens so that only interested areas are sent to tbe SBIPs. Combining the AüIs into

screens is done by software. Tbe function of the ASP depicted in figure 3.1.

IMAGE

I::::::::::::::::":~::,,,::::::::::::d

!,:,:::::::,::}}::::::::,::::,,::,:I

CAD DATA

ASP

SCREEN

Figure 3.1 Example of image to screen transformation

In order 10 reduce tbe work for the ASP processor an image is divided into units. A unit

is a square which contains 16, 64,256 or 1024 pixels, depending on tbe chosen unit size1

(4, 8, 16 or 32). The reason for this is to give tbe processor more time for otber

calculations. When a unit has to be saved, tbe processor must change tbe stored

information only once per four (eight, sixteen or tbirty two) lines. Tbe relation between

pixels, units and AOI can be seen in figure 3.2(B). In tbis figure tbe definition of an AOI

is also given.

UNITSIZE
<I------l>

I-UNIT'--+'H-J-+--

Figure 3.2

x [v

<lr-------:-:---·~I ~NGrn
<J----l>
WIDTH

(A) (8) PIXEL

(A) Definition of an AOl, (B) Relation between pixel, unit and AOI

Tbe hardware of tbe ASP is split into blocks. Tbis is given in figure 3.3. Receiving and

segmenting is done by the PI-bus interface and tbe image handier. After storing the AüIs

into a circular buffer a screen is composed by tbe screen handier and sent to an SBIP by

the PI-bus interface. A further explanation of the function of each block is given in the

next paragraphs.

1 It is an agreement tbat the length of a unit is called unit size.

Hardware of the Area Segmentation Processor 13

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

SCREEN

~ VME-BUS
CONTROLLERINTERFACE

IMAGE
::==~

SCREEN
HANDLER HANDLER

~ PI-BUS
;:::=- ~ CIRCULAR ~ ~ PI-BUS

~om=; INTERFACE BUFFER INTERFACE

I > CONTROL AA%%%\\%~ DATA

IMAGE

HOST

Figure 3.3 Block diagram of the Area Segmentation Processor

3.1 Controller

The controller controls the segmentation of the images and the composition of the screens.

The processor used is a RISC processor. More about this processor in appendix A. The

control block contains two RAMs, one for the program and one for the CAD-data. These

RAMs are initially filled via the VME-bus interface. The tasks of the controller are:

- controlling the image handier

- controlling the circular buffer

- controlling the screen handier

- communication with the host (via the VME-bus interface)

- calculating the composition of a screen.

3.2 VME-bus interface

The functions of the VME-bus interface are:

- downloading the program

- downloading the CAD-data

- interrupt handling between the ASP and host

- transferring CAD-data from host to ASP

- transferring screen composition infonnation from ASP to host.

During the downloading process, the processor is switched off and the VME-bus interface

controls the data- and address bus of the ASP. Nonnally the processor can't be switched

off very easily so when more CAD-data is needed from the host, the host puts this

Hardware of the Area Segmentation Processor 14

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

infonnation in a specific memory, the communication buffer. When sending CAD-data,

the processor reads the communication buffer and puts the data in the RAM.

The communication buffer is also used when the screen composition is sent to the host.

The screen composition data is data which specifies in which screen an AOI is placed and

where in that screen the AOI is placed. Asking more CAD-data or signalling that

composition data is ready in the communication buffer is done on interrupt basis.

3.3 Image handIer

The segmentation takes place in the image handier. From the CAD-data the image handier

knows which units have to he saved. Therefor it is necessary to give a unique identifier

to every incoming pixel. This is done by a line counter and a column counter. The values

of column counter and Hne counter can be seen as a coordinate. Dividing the counter

values by the unit size will give the unique identity of the units. This can also be seen in

figure 3.4.

023

f----t---+-t--+--+-t---1----j,.:""';;:;;;""::::::t-.~~ P IXEL 3,0 'N UNIT 0.2
:~~:~tij:

Figure 3.4 Unique identifier pixel and unit

The positions of the AüIs are known from the CAD-data. The processor has to conven

this information to the current scan Hne. This is done by coupHng an address to each unit

and placing it into a Hne buffer. This address denotes the start address of each unit in the

circular buffer (most significant part). If a unit doesn't have to he stored the stan address

will he set to a dummy value of zero. The least significant part of the address in the

circular buffer is fonned by the least significant bits of the Hne counter and column

counter. The principle is shown in figure 3.5.

The Hne buffer is filled by the processor. Because the pixels arrive continuously two Hne

buffers are used, one for filling the circular buffer and one is filled by the processor. The

two Hne buffers swap their function when "unit size" Hnes are received.

Hardware of the Area Segmentation Processor 15

Nederlandse Philips Bedrijven B.V.
Centre For manujacturing Technology

L1NE MOD
COUNTER unit size

===:: MOD
unit size - ~-

COLUMN --" DIV ~
,.------"

COUNTER unit size I=-

L1NE CIRCULAR
BUFFER BUFFER

- lr -
Figure 3.5 Address generation jor writing units

3.4 Screen handIer

After storage in the circular buffer a screen is sent 10 an SBIP. Tbe screen handier

composes a screen. A Hne counter and a column counter are used for identification of a

pixel in the screen (same principle as image handier). Tbe address for the circular buffer

is now generated by a two dimensional Look Up Table (LUT). Here it is chosen for two

dimensions because the LUT needs only 16 k addresses (512*512 pixels / minimal unit).

When using a LUT in the image handIer, the LUT should have more then 15 million

addresses. The advantage of a LUT is that only once per screen the LUT has to be filled.

The address generation of the screen handier is given in figure 3.6. Tbe other function of

the screen handier is to generate the screen control signals.

lINE MOD
COUNTER r--

unit size

--==:: MOD
unit size

~ ~

COLUMN -----" DIV
~

~
COUNTER unit size ~

DIV '----
unit size

LUT CIRCULAR
BUFFER

-- Ir ---Figure 3.6 Address generation jor reading units

Hardware oj the Area Segmentation Processor 16

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

3.5 Circular buffer

The cireular buffer is used as storage for the AOIs of an image. The cireular buffer

contains 256k x 16 bits, so one screen fits into the memory. Eaeh ineoming AOI is stored

in the buffer until it has to be sent as a part of a screen. The memory is eireular and

divided into eight bloeks. The eight bloeks are related to the hardware eomponents. The

RAMs are 32k x 16 bits separated 1/0 (two separated data busses per RAM). The

advantage is that when writing one bloek the other bloeks ean be read. The principle of

the cireular buffer is given in figure 3.7.

eURRENT
WRrrE BLoeK

eURRENT
READ BLOCK

Figure 3.7 Principle of circular buffer

The bloeks are random aeeess which gives the opportunity to read and write in eight

bloeks randomly. In this way the screen eomposition doesn't depend on the sequenee of
the AOIs in the image.

The addresses are generated by the image handier and the screen handieT. The number of

bits of the addresses generated by the handiers is sueh that one RAM bloek ean be

addressed. Two crossbars lead the address to the correct RAM bloek. The controller

configures the crossbars and sets the write and read bloek selection. A funetional diagram

of the cireular buffer is given in figure 3.8.

Hardware of the Area Segmentation Processor 17

Nederlandse Philips Bedrijven B.V.
eentre For manufacturing Technology

~ -_ ----_ -- --. -- ---- -- - -_. -.---- - _ --- ---- ----'" -. _ ----- -- ..- -_ .. -.- ----.- _.- _. "1
FRdM Pl·BUS INTERFACE TO Pl·BUS INTERFAC

lDlA

LA LD

~ITEBLOCK
SELECT

1FROM
!IMAGE
iHANDLERi

iFROM

XBAR 2 ~EAD BLoeK

, L'====:t ...J I SELECT

1__-

!SCREEN
:HANDlEA

Figure 3.8 Functional diagram of circular buffer

Hardware of the Area Segmentation Processor 18

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

4 Software for the Area Segmentation Processor

In the previous chapter the hardware of the area segmentation processor was explained.

This chapter gives an outline of the software. This is done by schemes made with Promod.

Promod is a highly automated system engineering environment to deve10p a detailed

specification for systems. The solid lines in the schemes represent data flows. the dotted

lines represent control flows, the circ1es represent functions. two parallellines with data

flows to or from it. represent data stores and the lines with control flows to/from it

represent state machines (see figure 4.2). The functions in the schemes are implemented

in hardware or in software.

A functional diagram of the ASP in Promod is given in figure 4.1. The Promod diagrams

in tbis chapter are explained so far that the function of the software is evident. For more

information see the report by P. Boots ([BOO]).

........ screen_sync
" :,.

send_ \ outpuCswitch_
nexC \ conCdata
line \ ..--~--

end_6t.::.s.ç!een

_-----..., aoUds_andJlositions

,:-----::>I~~t;'::.=:;~"_..ady

······ ~~~~~~excscreen

'::~~~::-,/// ...//..>....

send_sec
oCaois .'

'« _.. _-----L _

îmagelync

.~-_...::.:..-..... '::-

Figure 4.1 Functional diagram of the Area Segmentation Processor

The data flow image_data and the control flow image_sync come from the image

acquisition and filter block (see figure 2.2). Screen_data and screen_sync go to one of the

SBIPs (see figure 2.2). The other flows are to or from the host. A further explanation of

the functions and flows is given in the following paragraphs.

Software for the Area Segmentation Processor 19

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

4.1 Manage AOIs

The function manage_aois has several tasks. These are:

- calculating the screen composition, i.e. how and in which screen the AOIs are

placed,

- calculating the Hne buffer content,

- calculating the screen content, which is stored in screen_uniCaddresses,

- asking the host for more AOIs,

- signalling when a screen is ready,

- signalling when the last screen is sent and

- signalling in which screen the Aal is placed and its position in the screen.

Synchronising the screen calculations is done with send_nexcscreen. The relation between

the tasks of manage_aois is given in figure 4.2.

! image_

\ sync

i

send_
seeL,.. ·····
oC
aois

aoUds_and
positions

finaUines

end_oC .. '
screen ...-

........
image_../
sync../

1'Jase
: screen_

~.: sent

A
inexe
j screen_

../ 'eady

screen_unie
addresses

Figure 4.2 Functional diagram of manage_aois

All the functions in manage_aois are implemented in software.

4.1.1 Compute Lines

The function compute_Hnes is responsible for segmenting the image. It computes the

addresses on which the units ofthe AaIs are stored. The addresses are stored, Hne by Hne,

in image_unicaddresses. These Hnes are later placed in the Hne buffer. A unit of an Aal

gets a unique address within a block of the circular buffer. A unit which doesn't have to

he saved receives address zero. The addresses for the units within an AOI are given in the

order they arrive. Units which lay in two or more AaIs (overlap of AOIs or doubles) get

only one number. When the list of AOIs becomes to short a signal send_secoCaois is

sent to the host. An example of the address assignment is given in figure 4.3.

Software for the Area Segmentation Processor 20

Nederlandse Philips Bedrijven B.V.
Centre For manujacturing Technology

image

5 6 7/

12 13 14

1920 21 22 23

128 29 30 31 32

37 38 39

4445 46

1 2 3 4

8 9 10 11

15 16 17 18

24 25 2627

3334 3536

40 41 4243

unit with unique address

rest of the addresses are zero

Figure 4.3 Addresses jor the units in an AOJ

Calculating a Hne for image_unicaddresses is done by checking for every unit in the

image if that unit is in an AOI. The list of AOIs is sorted to shorten this searching. It is

first sorted on increasing y-coordinate because the image anives row by row (the y). AOIs

with the same y-coordinate are then sorted on x-coordinate because the units in one line

arrive with increasing x-coordinate.

The store image_unicaddresses is stored in a RAM on the ASP. Every line needs

maximal 3000 half words (16 bits) of the RAM. Calculating and storing the whole image

(maximal 5000 lines) in advance would cost too much RAM. Therefor only a few Hnes

are calculated in advance.

As written in paragraph 3.5 the circular buffer consists of eight blocks. Switching or

reconfiguring these blocks is activated by setting bit 11 of the unit address. Setting this

bit is done by compute_Hnes. Switching can only be done when there is enough time to

reconfigure the blocks. So the switch bit may only he set:

- at the end of a line or

- at the last unit of an AOI in a Hne or

- between two AOIs when the time between them is enough.

Hereby it is assumed that the time between the end of the image Hne and the start of the

next Hne is enough to reconfigure. This is also depicted in figure 4.4.

image

s

s = switch bit set
g

______ AOI

--- l':

-- i1'i
enough time--I-

to--I---

--'- reconfi ure

Figure 4.4 Examples ojplaces jor the switch bit

Sojtware jor the Area Segmentation Processor 21

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

4.1.2 Combine AOIs In Screens

The function combine_aois_in_screens combines the received AOIs into one or more

screens. AD example has already been given in figure 3.1 where tbe function of tbe ASP

is depicted. This combining of AOIs results in four data flows:

- screen_maps. Each screen map is a two dimensional array holding addresses from tbe

units of tbe AOIs in tbe screen. This screen map can later be placed in tbe LUT.

The screen map of figure 4.3 is given in figure 4.5.

screen

1 2 3 4 5 6 7 21 22 23

8 9 10 11 12 13 14 30 31 32

15 16 17 18 19 20 21 37 38 39

24 25 26 27 28 29 3044 45 46

ro~u ~ \40 41 42 43

~AOIS
Figure 4.5 Example of a screen map with the addresses

- outpucswitch_conCdata. The circular buffer is divided into eight blocks. Therefor it is

necessary to reconfigure tbe crossbar switch. In tbe screen map, bit 11 of a

uniCaddress, activates tbis switching. In outpuCswitch_conCdata is specified to

which block of tbe circular buffer must be switched.

- aoUds_aod_positions. Where the AüIs are placed in the screen depends on the filling

algorithm. Because of tbe calculations, tbe SBIP must know which AOI is in

which screen aod on which position in tbe screen. This information is held in

aoi_ids_aod_positions.

- finaUines. In order to signal the SBIP tbat tbe next screen cao be sent, tbe finaClines

of each screen i.e. the image line number tbat contains tbe last pixels of tbe

screen, must be known.

In compute_lines tbe switch bit could only be set when there is enough time. Here it must

be possible to set tbe switch bit of every unit address, because the filling algorithm

decides where tbe AOI is placed. Thus it is possible tbat one AüI is stored in block 0 of

the circular buffer and that tbe AOI which lays next to it in tbe screen is stored in block

1. Tbe hardware is made so tbat tbe sending of a screen stops if tbe switch bit is detected.

Tbe crossbar cao tben be reconfigured by tbe software aod tbe software restarts tbe

sending.

Combine_aois_in_screens searches a way to fill tbe screens witb AOIs. This filling has

conflicting demaods:

- The screen must be filled as much as possibie because tbe unused units take time when

a screen is sent to the SBIP.

Software for the Area Segmentation Processor 22

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

- Tbe calculation time and algorithm length increase a lot when a high filling grade is

wanted. Anotber aspect here is that when the "best" fitting is found units are kept

for a long time in the circular buffer. Tbe circular buffer on the ASP is limited

so it is desirabIe that the units are sent away as soon as possible.

- Tbe traffic on the VME-bus must be limited because this will delay tbe otber VME

traffic.

With these demands tbe function combine_aois_in_screen can be located and performed

in tbree different ways:

- An off line process on the host. Tbe host calculates the filling of tbe screens and tbe

unit addresses for the line buffers and LUT. Advantage of this is that there is

enough calculation time to find the "best" fitting and this has to be done only

once. Disadvantage is that a mass store is needed and tbat the down loading gives

an enormous VME traffic. Remember that an image can have 5000 lines with

3000 units in it. This means tbat in this case 15 mega addresses must be down

loaded plus 1.5 mega addresses for tbe screens, assuming tbat 10 % of the image

are AOIs and that the screens are full.

- An off line process on the host for the filling of the screens and the address calculation

on the ASP. The advantage is that there is enough calculation time and tbe filling

calculation has to be done only once. Tbe address calculation must be repeated
for every image. Tbe only data that must he down loaded are the AOIs and the

positions in a screen.

- Everything on the ASP. Disadvantage is that the search algorithm can't be complex

because of time and algorithm length. Advantage is that only the AOIs must be

down loaded to the ASP and the positions must be loaded to the host.

Testing must decide what the best option is but so far it seems that tbe second option is
the best.

4.1.3 Send Ids And Positions

The function send_ids_and_positions signals to the SBIPs which AûIs are in the screen

that is sent to that SBIP and the positions of the AOIs within the screen. Tbe sending is

activated with send_nexcscreen. This routine runs on the host if the combining algorithm

runs on the host.

4.1.4 Control Screen Retrieval

The function control_screen_retrieval waits until the received image line is greater than

the next final line in final_lines and then signals nexl_screen_ready and fiUs the store

screen_unicaddresses (the LUT) with information from screen_maps. These actions may

be started only if manage_unicbuffer is not sending a (part of a) screen (seen by

Software for the Area Segmentation Processor 23

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Combine_aois_in_screens calculates screen maps which are stored in memory. Parts of

these maps are later stored into the LUT if that part of the LUT is free. One screen map

takes 16 k half words. Tbe memory on the ASP is not so big, so only a part of the screen

map can be stored here. A functional diagram of controCscreen_retrievai is given in figure

4.6.

currenUine

iend_oC
iscreen
~

: image_ ~Iasc
i sync i screen_

'*' ! sent
k.

.........

screen_
maps

screen_
unit_
addresses

Figure 4.6 Functional diagram of control_screenJetrieval

Tbe function incccurrenUine updates the store currencline every time image_sync is

activated. CurrenUine keeps the number of scanned Hnes of the image. When

currencHnes is greater then final_Hnes, compare signaIs greatecor_equal what results in

an active nexcscreen_ready. When the last element of final_lines is used

no_more_screen_maps is activated. With this signal lascscreen_send is activated after

end_oCscreen returns. Fill_screen_unicaddress_buffer takes a part of the screen_map and

places it ioto the screen_unicaddresses.

4.2 Manage Unit Address Buffer

Manage_unicaddress_buffer gets one Hne of the image_unicaddresses, transmits

unicaddress one by one and asks for the next line at manage_aois when a Hne is sent.

Tbis is done under control of the image_sync signal. A functional diagram of

manage_unicaddress_buffer is given in figure 4.7.

One Hne of image_unicaddresses is stored ioto one of the two Hne buffers

"unicaddress_buffecl" or "unicaddress_buffec2" by "fill_ua_buffer". If a new Hne is

wanted the signal send_nexUine is sent to manage_aois. Send_nexUine is activated after

every 4, 8, 16 or 32 lines of the image depending of the chosen unit size. Tbe

"empty-ua_buffer" functions empties the store.

Software for the Area Segmentation Processor 24

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

image_uni,-addresses

send next line
Ä -

unit_address_
buffer_1

uni,-address_
buller_2 t

: image_sync

Figure 4.7
uni,-address

Functional diagram of manage_unit_address_buffer

The stores are RAMs (the Hne buffer in figure 3.5) of which each can hold one image

Hne. The empty function is implemented in the hardware. Counters generate an address

for reading the RAMs. The fIlHng function is implemented in software. The fill function

copies one Hne of unicaddresses to the RAM. Multiplexers control which buffer is fIlled

and which buffer is emptied. The signal send_nexcline is implemented as an interrupt to

the processor on the ASP.

4.3 Manage Unit Buffer

Manage_unit_buffer stores the pixels from image_data at addresses specified by

unicaddress of manage_unicaddress_buffer at a rate controlled by image_sync. The other

function of manage_unicbuffer is sending screens under control of the screen map in

screen_unicaddresses. The sending starts afterthe signal send_nexcscreen. When a screen

is sent, manage_aois is signalled by end_oCscreen. The functional diagram of

manage_unicbuffer is given in figure 4.8.

Keep in mind here figure 3.8. The stores unicblock_O to unicblock_7 in figure 4.8 are

RAMO to RAM7 in figure 3.8. The functions direcCto_currenCwrite_block an

colleccfrom3urrencread_b1ock are performed by the two crossbars (xbars).

Generate_pixe1_in_unicaddress_input and -output are two counters which generate an

address used to write or read the pixel within a unit. Decode_image_unicaddress receives

the unicaddress and signaIs by reconCinpuccode_encountered (an interrupt to the

processor) if the reconfigure code (bit 11 of the address) has encountered.

Decode_screen_code_address does the same but then for screen_unicaddresses.

Software for the Area Segmentation Processor 25

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

+
recon'-\
output_~de_

encounte~...

".

new_
read_block_

.......~~!~cted

~

end_of_

~~~~~....::;:.-..
.'

'i{ ~ (:.~: >
screen_sync

1-
send_ ;'
next_ i ...­
scree?: v

image_sync ...,

unit_address

'*'

Figure 4.8 Functional diagram of manage_unit_buffer

Seleccnew_write_block is implemented in software. As soon as a block is full or almost

full a new write block must be selected. Seleccnew_write_block is activated by

reconCinpuccode_encountered. Seleccnew_read_block does the same, but here the data

to which block must be switched comes from outpuCswitch_conCdata. The selected read

and write block are stored in currencblocks. This store is a hardware store, which enables

read en write signals for the appropriate block and a variabIe for the program.

Software for the Area Segmentation Processor 26



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

5 Implementation of the hardware

The work during my graduation period was the realisation of the Area Segmentation

Processor. First the timing conditions (set up time, hold time, delay time) were theoretical

checked with worst case calculations. Secondly the hardware was measured. This to check

the wire wrap connections. Where necessary improvements were made.

For testing the ASP several programs are wrinen. The programs which run on the ERM

system (the host), are written in C. The programs which run on the ASP, are wrinen in

assembly or in C.

In the following paragraphs several parts of the hardware are discussed. Changes and

additions in the design which are mentioned in the following paragraphs are made by the

author of this report. Further outlines about the programs for testing the hardware are

given. In appendix B the schemes of the area segmentation processor are given.

5.1 VME-interface

The different cards in the system (host, acquisition card, ASP, SBIPs) communicate via

a VME-bus. The image and screen data are sent via two picture busses. VME (= Versa

Module Eurocard) uses a protocol for data transfer and interrupt handling (see [VMS]).

For correct handling of the protocol a special prototype board (see [VMP]), was used.

Data send to the ASP appears on the prototype board. Placing the data on the correct

address is done by the VME-interface (scheme in appendix B.9). Getting data from the

correct address on the ASP, starting an interrupt action to the host and starting the

acknowledge of an interrupt is also done by the VME-interface. The hardware of the

interrupt handling is depicted in appendix B.l (upper right and lower right in the scheme).

Testing and improving the VME-interface had to be done first because downloading

programs to the ASP can only be done when this part works.

The circuit of the VME-interface was built first with discrete components and was

asynchronously clocked. It was very difficult to add new functions and very difficult to

get the correct functionality. For these reasons aredesign has been made. The circuit is

implemented in an Erasable ProgramabIe Logic Device (EPLD). The design has been

made, simulated and programmed with MAX+plus.

Some functions are added to the new design. The several functions are reached by a card

address plus an offset address. The different functions with the offset address are given
in table 5.1.

lmplementation of the hardware 27



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Table 5.1 Functions of VME-interface with offset address

I Function I offset address I
disable CPU 2

enable CPU 4

read/write counter RAMs 6

read/write counter communication buffer 8

read/write communication buffer JO

read/write bit 15..0 program RAM 12

read/write bit 15..0 CAD RAM 14

read/write bit 31..16 program RAM 16

read/write bit 31..16 CAD RAM 18

write bus allocation register 20

The address range for the host to access the ASP is only 2 k big. This is not enough to

map the whole memory of the ASP within the address range of the host. Therefor a

counter is used which generates the address on the ASP during downloading. These

counters have to be filled with the start address.

The ASP has a 32 bit data bus. The ERM system has only a 16 bit data bus. Downloading

data is done by fiTSt downloading the lower 16 bit word and than the higher 16 bits. After

this second action the data is written in the RAM and the counter is incremented. Reading

is done by fiTSt reading the lower 16 bits and than reading the higher 16 bits.

Testing the VME-interface is done by writing (downloading) data to the RAMs on the

ASP, reading back and comparing the written and read data. With these tests also the read

and write signals for the RAMs are verified.

The circuit for the interrupt from the ASP to the host and from the host to the ASP was

originally not designed. This part is necessary, for several signals (send_secoCaois,

lascscreen_send, nexcscreen_ready and send_nexCscreen in figure 4.1) and therefor

added.

The communication buffer is used for sending information between the host and the ASP

at the time the ASP is running. After power up the data is downloaded to the ASP and

the communication buffer isn't used then. The processor must be disabled at that time.

When the processor is started the processor can't be disabled because after enabling, the

processor won't continue were it was stopped. To send information to the ASP, if the

Implementation of the hardware 28



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

processor runs, the communication buffer is used. The communication buffer is tested by

means of writing data into it and reading back. This writing and reading is done by the

host and the ASP.

5.2 Controller

A SPARC RISC processor CY7C611 controls the ASP. This processor works with a dock

frequency of 25 MHz. More infonnation about the processor, especially for programming

the processor in assembly, is given in appendix A.

When downloading data to the ASP or reading data from the ASP to the host, the

processor must be switched off (disabled). All output drivers are then in high impedance

state (tri-state). Therefor it is necessary to connect pull up or pull down resistors at all

outputs of the processor which are used in other parts of the circuit.

Two RAMs are connected to the processor. One to store the program and one to store the

CAD-data. After downloading, the processor is started by the reset circuit. To test the

communication between processor and RAM a program can wrile a certain data pattem

into the RAMs (except the part where the program is stored). The host can read and

evaluate the data.

To give infonnation about the status of the program there is a circuit which communicates

with a tenninal (RS232). When a program is running it can be useful to know in which

function the program is and what the values of certain variables are. The conversion from

parallel to serial, visa versa, is done by a DUART. The timing of the selection, write and

read signals for the DUART are improved because they did not fulfil the specifications.

An other problem which showed up when working with the DUART was that the RAMs

are not byte accessible. The program RAM is only 32 bit accessible and the CAD RAM

is 16 bit accessible. The standard function "printf' in C, which prints text on the tenninal,

writes bytes to the RAM to store temporary infonnation. Writing one byte in the program

RAM overwrites also three other bytes (the ones with the same address except the two

least significant bits). Routines which use byte or half word variables can thus not be used

on the ASP. New routines are written to solve this problem because it is not possibIe to

make the RAMs byte accessibl~.

Not all the components are fast enough for the used dock frequency. Therefor there is a

circuit that can stretch the dock. In figure 5.1 an example of the stretched dock is given

with the dock 2 times stretched. Bit 23 of the address bus enables the stretch circuit. The

number of stretch cycles is the value of the difference: 8 - the value of bit 22..20.

lmplementation of the hardware 29



Nederlandse Philips Bedrijven B.V.
eentre For manufaeturing Teehnology

clock __

stretched
clock 2 stretches

Example of a 2 times stretehed doekFigure 5.1

The different components are selected with bit 19..16. In table 5.2 the different functions

are given with tbe base addresses.

Table 5.2 Funetion seleetion with base addresses

I function I base address bit 23..0 I1 funct.ion I base address bit 23..0 I
program RAM OxOOOOOO enable continue screen OxOSOOO2

CAD RAM OxOlOOOO line buffer Ox090002

DUART Ox920003 unit sire/mode OxOaOOO3

crossbar 1 Oxf30002 interrupt host OxSbOOO3

crossbar 2 Oxf40002 communication buffer OxfcOO02

LUT OxOSOOO2 line buffer selection OxOdOOO3

LUT selection Ox060003 data circular buffer OxSeOOO2

enable send screen Ox070002 address circular buffer OxSfOOO2

In the previous chapter a number of control signals are given.

ReconCinpuccode_encountered, reconCoutpuccode_encountered, end_oCscreen,

nexUine and the signals from the host are implemented as interrupts to the processor. The

interrupt handler converts an interrupt into an interrupt address. This handIer is

implemented in an EPLD. After power up all flip flops in the EPLD should be zero.

Measuring leamed that this was not so. Therefor a reset signal is connected to the flip

flops in the EPLD so that after the power supply is stabie the flip flops are reset.

5.3 Image handIer

Multiplexers decide to which line buffer tbe processor can write and which line buffer is

read by the counters. The position of the multiplexer depends on a flip flop. In the

original design the processor was not able to control that flip flop. After power up the

value of the flip flop is random 0 or 1, so which line buffer is selected for the processor

is unpredictable. It is necessary to control the flip flop because the line buffer which is

connected to the counters, must be switched to the RAM block in the circular buffer by

lmplementation of the hardware 30



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

the crossbars. Therefor a circuit is added which enables the processor to set the selection

of the flip flop depending on data bit 0 (base address line buffer selection). In table 5.3

is the selection given with data bit O.

Table 5.3 Line buffer selection with data bit 0

I data bit 0 I processor to: [ counter to: I
0 line buffer A line buffer B

1 line buffer B line buffer A

The line buffers are tested by writing data in the line buffers ood then reading the data

back. Reading back can not be done directly because the outputs of the line buffers are

not connected to the data bus of the processor. This is solved by adding drivers between

the address lines of RAM blockO ood the processor data bus. The processor addresses the

driver (the offset of the address is lead to the line buffer) ood reads the data of the line

buffer through the crossbars (when configured in the right way).

The RAMs of the line buffers have only a chip select input ood a combined read/write

input. When reading or when writing while the write pulse is not active the output drivers

are active (00 other RAM is not possible as separate 1/0 is needed). The combination of

bit II of the line buffers is the reconCinpuccode_encountered signal from figure 4.8.

When one of the bit II is set, the processor is interrupted. The addresses of the processor

are always lead to one of the line buffers. Therefor it is possible that 00 address of the

processor is an address of which bit II is set. This will interrupt the processor but the

processor may only be interrupted when the counter reaches such 00 address. Components

are added 10 the scheme so that only 00 interrupt occurs from the line buffer that is

connected to the counters ood only after the data is valid.

5.4 Screen handier

Testing the LUT is done in the same way as testing the line buffers. Data is written in it
and then read back through the address driver of RAM blockO of the circular buffer (this

is the reason why they are placed after the crossbars).

Reading the LUT back works only when the screen dock runs because a latch between

the LUT ood the crossbars is docked by the screen dock. The screen dock (defines the

pixel rate) is a dock which is controlled by screen handier. When the crossbar must be

reconfigured this dock is stopped by bit 11 of the LUT (reconCoutpuccode_encountered

in figure 4.8). After power up when the LUT isn't initialised, the dock can be stopped

Implementation of the hardware 31



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

when an address appears where bit 11 is one. To solve this problem two things are

changed:

- first: bit 11 may only interrupt the processor and stop the clock when the counters are

connected to the LUT

- second: the EPLD screen handIer is changed so that there is a possibility to start the

clock.

This second improvement is necessary because the clock can still be stopped when bit 11

of address 0 of the LUT (0 is start value of the counters) is 1.

When the clock is stopped by bit 11 the processor can restart the screen sending if it

writes to address "enable continue screen" in table 5.2. This is not useful when the screen

clock is stopped after power up. Therefor data bit 0 is used now when writing to "enable

continue screen":

data bit 0 = 0: continue sending

data bit 0 = 1: enable only the clock

5.5 Circular buffer

The circuit that generates a write pulse for the RAM blocks was not designed. This had

to be done first. Further the timing of the write pulse for the crossbar is improved.

As written in the two previous paragraphs there is an address driver which can read the

addresses of RAM blockO. The processor can 't read (in the first design) the data that is

written in the circular buffer. This makes it very difficuIt to test if there is an error made

when writing the data or when reading the data. To solve this problem a second driver is

added which connects the output data bus (screen data bus) to the processor data bus. To

read the data a number of actions has to be done. For example reading the data in the first

block sequentially the following action must he done:

- the RAM block must he selected

- the Hne buffer must he filled

- the crossbars must he configured in the right way.

The line buffer has 11 data Hnes connected to the crossbar. A RAM block of the circular

buffer has 15 address Hnes. Normally 4 address lines (when the unit size is 4) come from

the counter which generate the addresses within a unit. Now these address Hnes must he

set by the crossbars. This is possible because the crossbar can set every output in different

mode: flow through (used normally), pipeline, fixed output levels (0 or 1). With the Hne

buffer outputs connected to the first 11 outputs of the crossbar and the following 4 outputs

set to zero the first part of the RAM block can he read. Reconfiguring the 4 output makes

it possible to read the other parts of the RAM bloek.

lmplementation of the hardware 32



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

5.6 Picture bus interface

In the first design there was only one input channel on which the image data is received

from the acquisition board and one output channel on which the screen data is sent to the

SBIPs. In the system there are two channels and every card is made so that the host

decides on which channel each card receives data and on which channel it may send data.

To fulfil this option the picture bus interface is extended with components and the VME­

interface handIer is extended with an address that writes data in the bus allocation register.

This bus allocation register selects the read and write channel.

lmplementation of the hardware 33



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

6 Implementation of the software

In this chapter some remarks on tbe implementation of tbe software are given. A program

which receives and sends images of 512x512 pixels is used for testing the ASP hardware

in the system. In tbe first paragraph an outHne and remarks are given about this program.

Tbe second paragraph gives some points for tbe implementation of the segmentation

software. Tbis software is not completely built because tbere was not enough time to do

this. Tbe reason herefor was tbat tbe improvement and implementation of tbe hardware

took more time tban was expected. The tbird paragraph shows how C programs can he

improved so tbat less time is needed for execution.

6.1 Software 512x512 images

The first major software tbat is wrinen, except tbe small test programs, is for receiving

512x512 images. These images are just as big as tbe screen which is sent by tbe ASP to

tbe SBIPs. The tasks of tbe ASP are:

- receiving tbe image from the acquisition board,

- storing tbe image in the circular buffer and

- sending tbe screen to a SBlP.

Here tbe image doesn 't have to be segmented and the CAD-data don 't have to be

downloaded.

Tbe purpose of this program is to integrate the ASP into tbe system and test tbe hardware

of the data path (tbe data patb from tbe PB-bus interface to the circular buffer and from

the circular buffer to the PB-bus interface). The data written in the circular buffer can be

tested witb tbe metbod explained in paragraph 5.5. The addresses lead to the circular

buffer are tested in an earlier phase.

The program is mostly written in C. Only tbe trap tabIe, the processor initialisation routine

and the routines which communicate witb the terminal for debug information, are written

in assembly. The sequence of tbe program is given in figure 6.1.

Tbe Hne buffers and tbe LUT are cleared so that no interrupts occur (tbis is also protected

by hardware except for address 0). After the interrupt level is set an interrupt can occur

which was pending from before tbe Hne buffer and LllT were cleared.

The program sequence when receiving an image is given in figure 6.2. After "unit size"

Hnes are received, an interrupt occurs. The interrupt routine tbat is started tben, selects a

new write and read block if necessary, configures tbe crossbars so tbat tbe other Hne

Implementation of the software 34



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

initialisatiOll :

clear:

set:

initialisation:

receive:

test:

send:

processor

DUART (tenninal)

crossbars

line buffers

look up table

comrnunication buffer

unit size

interrupt level

variables

image

image data

screen

Figure 6.1 Sequence of 512x512 program

buffer is connected to the RAM block and fiUs the just used line buffer. Selecting a new

read block is necessary because the write and read block may not be the same when

writing to that bloek.

Figure 6.2

Figure 6.3

fill \he line buffers

select \he first write block

configure \he crossbars

wait until image is received

Sequence of receiving the image

fill \he LUT

for i = 0 .. 7 do

select read block i

configure \he crossbars

start sending the block

wait until block is sent

Sequence of sending the screen

The program sequence of sending an image is given in figure 6.3. The listing of the

program is given in appendix C. The program given here receives the whole image and

then starts sending the screen. Of course this program can be improved. For example

sending a block can start after the block has been received and the host can be signalied

to start sending an other image. This is not done because it is not necessary for testing and

it makes the software more difficult.

6.2 Segmentation software

In chapter 4 an outline of the segmentation software for the Area Segmentation Processor

is given. The combining algorithm and the address calculation can run on the host or on

the ASP. We choose to run the combining algorithm on the host and the address

calculation on the ASP because this has the most advantages (much calculation time

Implementation of the software 35



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

available on tbe host, it is done only onee and it gives a low VME-traffie). In this

situation tbe specifieations of the AOIs (x, y, 1ength and widtb) and tbe position within

tbe screen (screen number, x and y) must be downloaded.

The eombining a1gorithm runs only one time for every PCB type and ean be run in

advanee. Therefor tbe time needed for the calculation ean be large. The limit for tbe

algorithm is the time that AOIs are kept in tbe cireu1ar buffer. The eireular buffer ean hold

only one screen. Beeause the addresses for the units of an AOI (in eompute_lines figure

4.2) are given the way they arrive, the AüIs in one bloek must be sent away before this

bloek is seleeted again as write bloek. This to prevent a large adminstration for the

addresses which may not be used for writing new AOIs in that bloek.

The first implementation of the combine algorithm (eombine_aois_in_sereens in figure

4.2) is a simple one. The AOIs are plaeed in the screen in the way tbey arrive (and are

sorted). When an AüI doesn't fit at the end of the row, it is plaeed on tbe next row below

the largest AüI of tbe "fuil" row. When tbe AüI doesn't fit into tbe screen, beeause it is

almost "full" , the AüI is plaeed in the next screen and the "fuil" screen is not filled

further. This algorithm doesn't fill the screen optimal (fill grade between 40 and 60%),

but this is enough for the first tests.

Combine_aois_in_sereens runs partly on tbe host (the eombining) and partly on tbe ASP

(the address generation). The address generation must know of every unit which address

it has been given in compute_lines. This can be done by storing the addresses given to the

units of the first column of eaeh AüI. With these addresses the rest of the addresses in

the AüI ean be ealeulated. The problem hereby is that the length of the AOIs are

different. To store eaeh first column, dynamie memory ailoeation is neeessary. The

standard routine herefor is available but a diffieult memory administration will be

neeessary. This adminstration must register for whieh AOI memory is a1loeated and where

this is allocated. Using a simple allocation and free routine will result in a memory of

which small parts are oeeupied and smal1 parts are free. The seeond possibility is to

recalculate the addresses given to the units. This means that eompute_lines is done twice.

The tbird possibility's implementation is given in appendix D. Here the address generation

of the line buffers and the LUT are combined. Compute_lines eomputes the Hne buffers

one by one. At the same time lines of the screen map are ealeulated. When an address is

given to a unit of an AüI in the line buffer, this address is also placed in the screen map.

The calculations here use the minimum unit size (4). When ail AüI are for example a

multiple of 8, it is useful to use a unit size of 8.

The memory on the ASP is limited. CAD-data, image Hnes and screen Hnes are stored in

the CAD RAM. This means that only a limited number of AOIs and Hnes can he stored.

This Hmitation restriets the combining a1gorithm. If an address of a unit has to be placed

on a screen Hne which isn't used so far and all the memory for the screen lines is used,

lmplementation of the software 36



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

the oldest screen Hne is placed in the LUT. After that addresses can't be placed on that

line any more. This restriction is no problem for the first implementation of the combine

algorithm.

Figure 6.4

for y = 0 to PCB length

for x =0 to PCB width

for every AOI so that AüLy <= y < AüI.y+AüI.length

if (x,y) in AOI

place address in image line (also handle the switch bit)

if screen lines all occupied

copy line to LUT

place the address in the screen line

Sequence of the address generation

The sequence of the address calculation is given in figure 6.4. The inner loop "for every

Aal ...." is necessary because AaIs can overlap or he double. This loop is not necessary

if only the line buffers are calculated because a unit which is member of two or more

AOIs, gets only one address. This loop is only necessary for placing more than one

address in tbe screen map. This loop is restricted to tbe AaIs which have units on the

current image Hne (the y variabie of tbe loop).

6.3 Programming in C

The biggest part of the program for the ASP can be written in C. Programming in C is

of course easier tben in assembly. When a program takes too much time, improvements

can be made before tbe program has to be written in assembly (and hope tbat it is fast

enough in assembly). In this paragraph tbe implementation of the fill_ua_buffecl of

figure 4.7 is given as an example for improvements. This routine copies a Hne of

image_unicaddresses into the Hne buffer. The listing of this function is given in figure

6.5. The assembly listing is given in appendix E.!. The 4*i is necessary so tbat the

addresses written on, are word aHgned (tbe processor has a 32 bit data bus; see appendix

A.4).

Several parts of tbis routine can be improved, which results in a lot of time saving. This

improvements costs a few variables (read: working registers of the processor). In this

function tbis is no problem hecause there are not many variables. If a function has more

variables than working registers, variables are stored on the stack in tbe memory.

Variables stored on the stack cost of course more time too access than variables in

working registers.

The first improvement is using a local variabie instead of tbe global variabie

currencimage_line. Currencimage_Hne is the index to the oldest, in advance, calculated

lmplementation of the software 37



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

#define LINE_LENGTII 3000

#define BUFFER_SIZE 4

#define LINE_BUFFER_BASE_ADDRESS Ox09OOO2

extern int current_image_line;

extern int image_unit_addresses[BUFFER_SIZE][LINE_LENGTH];

int i;

short *linebuffer;

linebuffer = LINE_BUFFER_BASE_ADDRESS;

for( i = 0; i < LINE_LENGTII; i++ )

*(linebuffer + 4*i)= image_unit_addresses[currenUmage_lineJ[i);

Figure 6.5
}

Listing filt_ua_buffer

Hne buffer. This global variabIe is stored in the memory and it takes two instruetions (3

cloek eycles1
) to load the value in a register. When this variabIe is given as a parameter

to the funetion, the variabIe doesn't have to be loaded in tbe funetion (only onee when

ealling).

The seeond improvement is not to use tbe two dimensional array image_unicaddresses

but only a one dimensional array. Aeeessing an element in the two dimensional array is

done by ealeulation of the address: "image_line + 12000*eurrenUmage_line+(i«2)" «<
means shift 1eft) and then perform an aetion to that address. Tbe array is an integer array

so 12000 eomes from 3000 elements * 4 bytes. The variabIe i is shifted to align on

integers. This ealeulation of the array element address eontains a multiplieation. Tbe

multiplication is earried out by the standard funetion "mul", which uses many cloek

eycles. When the funetion filCua_buffer reeeives an address of the first element of the one

dimensional array. the muItiplieation, the load of image_unicaddresses and the load of

eurrenUmage_unit_addresses, are not neeessary. Only the offset ealculation with i and

the load of the element stay.

The third improvement ean be done with the expression "4*i". If the multiplieation is

earried out by a shift 1eft operation (which is possible beeause 4 is a power of 2) the result

is the same but there is only one cloek eycle needed.

The fonb improvement is also with the "4*i" statement. This is already improved to

"*(linebuffer + (i«2) ) = ...", but the ealeulation of the pointer address still needs 2

instruetions (shift left and add). If the Hne buffer address is ineremented by 4 in a separate

statement every eycle of the loop and the "4*i" is removed, tbe offset ealeulation eosts

only one instruction. When these improvements are earried out, it results in a program

1 Some instruetions need more cloek eyeles per instruetion (see appendix A.2).

lmplementation of the software 38



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

which is given in figure 6.6. The assembly listing is given in appendix E.2.

#define LINE_LENGTH 3000

#define BUFFER_SIZE 4

#define LINE_BUFFER_BASE_ADDRESS Ox090002

extern int current_image_line;

extern int image_unit_addresses[BUFFER_SIZE][LINE_LENGTH];

void fillO

(

full_ua_buffer(&(image_unit_addresses [current_image_line][0]»;

}

void fill_ua_buffer ( image_I)

int image_l[LINE_LENGTH];

(

int i;

short *linebuffer;

linebuffer =LINE_BUFFER_BASE_ADDRESS;

for( i = 0; i < LINE_LENGTH; i++ )

(

*(linebuffer) =image_l[i];

linebuffer += 4;

Figure 6.6
)

Listing fill_ua_buffer improved

The loop of the first implementation costs 20 instructions (24 clock cycles) and the last

implementation needs 7 instructions (10 clock cycles). The time needed by the function

_mul which is called twice is not taken into account. So using local variabie instead of

global variables can have great influence on the processing time.

Jmplementation of the software 39



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Project status and conclusions

The hardware of the Area Segmentation Processor was built and tested. The hardware was

changed on several places: a complete new design was made for the VME-interface, the

communication with the terminal was improved, the signalling of the reconflgure bits of

the image handIer and the screen handIer were improved, a write pulse for the circular

buffer was made and the PB-bus interface was extended so that it has the same functions

as the other cards.

The ASP was integrated in the in-line PCB inspection system. Herefor a program was

designed, which receives and sends 512x512 images.

Parts of the segmentation software were built. This is not flnished because there was not

enough time. The improvement of the hardware cost more time then was expected. The

combining algorithm of the segmentation software can best be run on the host because

there is enough time and it has only be done only once. The address generation for the

screen maps can best he done on the ASP because this gives the lowest VME-traffic. In

the flrst implementation the address generation for the line buffers and the screen maps

is combined into one function.

Use of global variables delays C programs. especially when used in a loop. Replacing

them by local variables can decrease the execution time of a function.

Project status and conclusions 40



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Abbreviations

AOI

ASP

CAD

CFf

CISC

CPU

DUART

EPLD

ERM

ESPRIT

FMU

IMI

ISP

ITE

LUT

PCB

RISC

SBIP

SMD

SPARC

TRIaS
TUE

VME

Abbreviations

Area Of Interest

Area Segmentation Processor

Computer Aided Design

Centre For manufacturing Technology

Complex Instruction Set Computer

Central Processing Unit

DUal Asynchronous Receiver Transmitter

Erasable Programmabie Logic Device

Embedded Real-time Monitor

European Strategie Programme for Research and development in

Information Technology

Fiducial Measurement Unit

Industrial Measurement and Inspection

Industrial Signal Processing

Information Engineering

Look Up Table

Printed Circuit Board

Reduced Instruction Set Computer

Single Board Image Processor

Surface Mounted Device technology

Scalabie Processor ARChitecture

TRiangulation based Inspection Optical System

University of Technology Eindhoven

Versa Module Eurocard

41



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing TechnoLogy

Literature

[BOO] Boots P.; 3D data processing for PCB inspection; TRIOS TBl; Eindhoven 13

march 1992

[CMO] CMOS - BiCMOS Data Book; Cypress Semiconductor; Sonetech Nederland bv,

Gulberg, 5674 TE Nuenen; March 1, 1991

[ERM] Embedded Real_Time Monitor System PG4100; Philips Export BV, Eindhoven,

the Netherlands; 1990;

[FAS] Fast TfL Logic Series; Philips Data Handbook, Integrated Circuits 15 (ICI5);

July 1990

[Lee] Leeuwen Frank van; Development ofthe CAD Data Correction & Expansion Unit

for Esprit Project #2017; Philips CFf Technology; Eindhoven september 1990

[LSl] LSI Logic; Digital Signal Processing (DSP) Data book; June 1990

[MIC] Micro processors, micro controllers and peripherals; Philips Data Handbook,

Integrated Circuits 14N (ICI4N); september 1985

[SAC] SPARCVlEW and utilities; Assembly reference manual; C reference manual;

Aame Computer Corporation, 5301 Commerce Avenue, suite 4, Moorpark Ca.

USA; 1989 1990

[SME] Smeets F.G.M.; Hardware development of the Area Segmentation Processor for

Esprit Project #2017: TRIOS; Philips CFT Technology; Eindhoven june 1992

[SPA] SPARC RISC User's Guide; Cypress Semiconductor Corporation, ROSS

Technology, Inc.; Second Edition, February 1990

[VMP] VMEbus Prototyping Board PG2750/PG2751 Users manual; Philips Export B.V.;

1987

[VMS] VME bus specification manual, revision B; Philips Export bv; Eindhoven, the

Netherlands; 1983

Literature 42



Nederlandse Philips Bedrijven B.V.
Centre For manujacturing Technology

Appendix A The processor CY7C611

The processor used on the ASP is the SPARC RISC processor CY7C611 integer unit. The

processor is a reduced version (fewer address Hnes and fewer control signals) of the

CY7C601 integer unit. The processor can he used in combination with cache memory,

cache memory controller/memory management unit and floating point unit. On the ASP

only the reduced processor and cache memory is used.

The processor is designed according to the Scalabie Processor ARChitecture (SPARC).

SPARC is an architecturally driven standard with binary compatibility of software between

processor versions.

The processor is a Reduced Instruction Set Computer (RISC). Most of the instructions are

carried out with an execution rate of one clock cycle. The goal of a RISC is to obtain a

maximal data processing performance through an intelligently selected set of instructions.

A RISC differs from a CISC (Complex Instruction Set Computer). A short overview of

the three mayor differences are given in table A. I.

Table A.I Differences between R/SC and C/SC

I I RIse I erse I
model lood/store memory/register

source/destination non destructive accumulator/register file

instruction triadic register file

instruction length normalized variabie

A RISC has a LaAD/STORE model. The only two instructions that can access the main

memory are LaAD and STORE. All the other instructions act upon intemal registers and

not upon the main memory. A CISC can carry out an operation on operands directly from

the main memory. This means that for example an ADD instruction, using an operand

from the main memory, is delayed until the content of the address is loaded into the

processor. The time slot on the data bus hetween the LaAD an the ADD when the address

is on the bus. cannot be filled.

A RISC uses a non destructive triadic register file. This means that three registers are used

for an instruction and that the input registers remain unchanged after the result is written

into the output register. On the other hand the CISC fundamental model uses a

accumulator/register model where the accumulator is used as a input and output register

Appendix A The processor CY7C6// 43



Nederlandse Philips Bedrijven B.V.
Centre For manujacturing Technology

thereby destroying the original contents.

The third major difference is that a RISC has a normalized instruction length. Therefor

no contextual fields in the instruction are necessary which greatly simplifies the addressing

modes. The CISC instruction length depends on the addressing mode. An ADD instruction

with the accumulator and a register wW have a shorter instruction than an ADD

instruction which uses the accumulator and an address in the main memory.

In the following paragraphs headlines of the CY7C611 are explained. These headlines are

important to know when programming the processor (especially when the processor is

programmed in assembly).

A.I Registers

The processor has 136 working registers and six special purpose registers. In the next two

paragraphs these registers are explained.

A.l.l Working registers

A number of 8 registers out of the 136 working registers are so called global registers,

which can always be accessed. The other 124 He in a circular stack. The stack is divided

into 8 windows. A window consists of 24 registers. The registers in a windoware divided

into three groups: 8 "in". 8 "Iocal" and 8 "out" registers. All 24 registers can be read and

written the same way. The only difference in the names is the fact that the "in"-registers

of window i are the same registers as the "out"s of window i+1. The "out"s of window

i are the same as the "in"s ofwindow i-I. The local registers don't overlap. The principle

of the circular stack is drawn in figure A.l(A).

At any given moment a program can address 32 registers: 8 global registers and 24

registers of the current window (pointed by the current window pointer: CWP). The

current window pointer can be changed in three ways (see also figure A.l(B»:

SAVE instruction: The CWP is decremented by one

RESTORE instruction: The CWP is incremented by one

write to the window pointer field in the PSR register: Any change

The special way of the working registers organisation can be efficiently used in a

program. When a program runs it can use the "in" and "local" registers for variables and

temporary results. When that program caUs a function it can put the outgoing parameters

in the out registers. When the first action of the called function is a SAVE instruction the

incoming parameters are stored ioto the in-registers. The locals are free to be used by the

Appendix A The processor CY7C611 44



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

outs

Save.
~ Restore

Cu"enl Wind ow CWP)

~~{{{{&::??::r

..
r16
r15

r8

IjI::::{{:~~::}}l

(8)

ins

Previou. Window (CWP+l)
r31

(A)
(A) Window stack (B) Window overlap

124
123.. Iocal•

W:o wind ow r16
I ~ Ins r15
L ;: Loesis oulS
0= Outs r8

CIJnen, 'Mlldow poinlSf

Figure A.I

called function. Passing parameters back cao be done by putting the parameters in the in­

registers followed by aRESTORE instruction.

A.1.2 Special purpose registers

The Processor Status Register (PSR), drawn in figure A.2, contains bits for

enabling/disabling, flags, interrupt level, processor mode and the current window pointer
(CWP).

Trap Enabel (ET)-----,
Previous Supervisor Mode (PS)-----­

Supervisor Mode (S) ---,
Enable Floating-Point Unit -

Enable Coprocessor--

Implementation Version
Number Number

Integer
Condition

Codes
(Ilages) Reseved

Processor
Interru pt

Level
(PIL)

Cu rrent
Window
Pointer
(CWP)

5 I
o

I 1 I 1 I 1 I
8 7 6 5 4

4I 1 I 1 I
14131211

64 II

24 .

"1 ----;-;(NC7:)----,--:::(Z;:-)----,-~(v=)----rl-(~c:cc)~·· I
23 22 21 20

Negative Zero Overflow Carry

4I
2827

4
31

Figure A.2 Processor State Register (PSR)

The processor cao operate in two different modes: supervisor mode aod user mode. For

example access to the special purpose registers is only allowed in supervisor mode. Two

bits in the PSR, Supervisor mode bit (S) and Previous Supervisor mode bit (PS), indicate

the mode. The Supervisor mode bit contains the current mode of the processor, the PS the

mode before the last recent trap. A trap (hardware/software interrupt) always sets the

processor in supervisor mode. The PS bit is set according to the previous mode. When

Appendix A The processor CY7C611 45



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

retuming from a trap the mode can be restored.

As for the interrupt procedure, the level of the incoming interrupt must he higher than the

level specified in the Processor Interrupt Level bits (when the inteffilpt is enabled). The

Current Window pointer points to the current window in the register staek. The bits,

except for the implementation number and version number, can be changed in the

supervisor mode.

The content of the Window Invalid Mask register (figure A.3) determines which

window(s) will eause generation of a trap when pointed 10 by the CWP as the result of

a SAVE, RESTüRE or REIT (RETurn from Trap) instruction. Each bit in WIM

corresponds to a window. If this bit is 1 the window corresponding to that bit is marked

as invalid and will cause a trap when that window is pointed to as a result of one of the

three instructions. The bits corresponding to a window can be changed by an instruction

in the supervisor mode.

76543210
..... Future Ex ansion tor additional Windows

31

Wind ow 0
Window 1

Window
Window 3
etc.

Figure A.3 Window Invalid Mask (WIM)

The Trap Base Register (figure AA) consists of two parts. The Trap Base Address

contains the trap table address. The trap table contains jump instructions to the

corresponding trap routines. The Trap Type is the offset in the trap table and is filled by

the hardware just hefore the trap is taken. The trap base address can he changed by an

instruction in the supervisor mode.

Trap Base Address (TBA) Trap Type (11) '0' '0' '0' '0'

L~ 20~_~ ----,- 8__---JI~
31 12 4 3 2 1 0

Figure AA Trap Base Register (TBR)

The Y-register can be used in both modes. The Y-register is used by the multi step

instruction to create 64 bits products. The bits in the Y-register have the same function

as in a work.ing register.

Two registers, which can't he reached directly, are the Program Counter (PC) an the next

Program Counter (nPC). The PC contains the address currently heing executed and the

nPC holds the address of the next instruction to be executed. The nPC is necessary to

Appendix A The processor CY7C611 46



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

implement delayed control transfers. This will be further explained in A.3.

Some of the working registers have a special function which is used by the instructions.

For example global register 0 is a read only register and cootains value zero. The value

zero is the mostly used constant in a program and easily available now. Data written to

this register is lost.

When a CALL instruction is executed the address of the CALL instruction (the return

address) is placed in "out" register 7 of the calling procedure window. By means of a

SAVE instruction in the called function the return address is available in in-register 7.

Local register I and 2 of the trap windoware used to save the PC and the nPC at the time

a trap is accepted. These two register can he used to return to the address before the trap

was taken.

A.2 Pipeline

The SPARC RISC processor has a mean execution rate approaching one instruction per

clock cycle. To achieve this the processor has a four stage instruction pipeline that pennits

parallel execution of multiple instructions. The processor pipeline can be seen in figure

A.5.

b b d e
u u e x w

Ins truction f f c e r
from Memory f f 0 c i

e e d u t
r •• ~ ••••••• 0." •• _" •• o. r e t e

e

Figure A.S

Internally Generated Opcode (lap)

Processor instruction pipeline

The instruction execution is broken ioto four pipeline stages:

1. Fetch: The processor outputs the instruction address to fetch the instruction.

2. Decode: The instruction is read and decoded. The processor reads the operands from

the register file and computes the next instruction address.

3. Execute: The processor exeeutes the instruction and saves the result in temporary

registers. Pending traps are prioritized and taken during this stage.

4. Write: If no trap is encountered the processor writes the result into the destination

register.

In figure A.6 an example is displayed of an instruction pipeline.

Appendix A The processor CY7C611 47



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Pipeline with all single-cycle instructions

A<24:0>

0<31 :0>

Figure A.6

..j...."~••1111!1....I:!
Decode . : Inst 1 ! Inst 2 ! Inst 3 ~ Inst 4 !

Write ~ . : 1 Inst 1 j Inst 2 : Inst 3 : Inst 4

ClK JLIl

The instructions in figure A.6 are called single-cycle instructions hecause they access the

buses only once. Using this type of instruction yields an execution rate of one instruction

per c10ck cyc1e. Instructions that require extra cyc1es automatica11y insert Inter cyc1e

OPcodes (lOP) into the decode stage as they move into the execution stage. For example

a LOAD instruction needs an IOP because the LOAD address must he placed on the

address bus and the data must be transferred on the data bus. The instruction pipeline of

the LOAD instruction in displayed in figure A.7. The multi cycle instructions which

generate IOPs are listed in table A.2.

~'IJ"._~jl~ll~l._~i\.,!~1
Decode . load ! iop1 1 Inst 1 : Inst 2 ! Inst 3 Inst 4

Î:~:~~:~!~~:::i!l!i!lii!I:I:!:H:!!!!::j:il:::!::::::ij:::::i::ii::::j:!:!:il:iiii!.~i~illll:!:I!i§~;~i·iii:l:!B~~ii~lill:!~~tiig!i:r!I!lê~~:::!!:
Write . load . iop1 i Inst 1 Inst 2

ClK

A<24:0>

0<31 :0>

Figure A.7 Pipeline with a WAD instruction

At the moment an IOP is inserted the next instruction is already in the fetch stage. To

keep the fetched instruction the buffers before the decoder in figure A.5 are used to store

this instruction.

Appendix A The processor CY7C611 48



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Table A.2 Internally generated opcodes

Insln1etion Number of Intemal Opcodes

Single loads I

Double loads 2

Single stores 2

Double stores 3

Atomie lood-store 3

Jurnp 1

Return from trap 1

A.3 Delayed control transfer

Nonnally the instruction following a control transfer (jump or branch) is the target

instruction (the instruction jumped to). In a pipeline model this means that the instruction

following the control transfer, which is a1ready fetched, has to be ignored. This is a waste

of time. To avoid this the processor delays the execution of the target instruction until the

instruction following the control transfer instruction is executed. The instruction in this

delay slot is called a delay instruction. An example of tbe instructions flow is given in

figure A.S. In this figure tbe contents of tbe PC and nPC are given. The nPC is necessary

to contain the address of tbe next instruction. At the moment the branch instruction is

decoded the delay instruction is fetched. The result of tbe decode is placed in the nPC at

the moment the contents of tbe nPC is copied to the PC.

PC nPC Instruetion

8 12 Non-eontrol transfer

12 16 Control transfer (target =40)

16 40 Non-eontrol transfer (delay instruetion)

(transfer eontrol to 40)

40 44 .... (target instruetion)

Figure A.S Delay instruction

Appendix A The processor CY7C611 49



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

A.4 Data types

The CY7C611 supports ten data types:

(unsigned) byte 8 bits,

(unsigned) half word 16 bits,

(unsigned) word 32 bits,

tagged data 30 bits + 2 tag bits,

double word 64 bits,

single precision floating point 32 bits and
double precision floating point 64 bits.

Tagged data is a special data type for languages as LISP, Smalltalk and Prolog.

When reading/writing data from/to the memory the address must be aligned with the data

type. This means that half words can only be read/written from/to an address which is

divisible by 2 (words only when the address is divisible by 4).

Because the processor works with a 32 bits data bus not all data bits will be used with a
data type smaller then 32 bits. The bits valid for bytes and half words with a certain

address are displayed in table A.3.

Table A.3 Valid data bus for bytes and half words
BYTES

address data bus bits valid

N 31 .. 24

N + 1 23 .. 16

N+ 2 15 .. S

N +3 7..0

HALFWORDS

y

I address I data bus bits valid I
N 31 .. 16

N+ 2 15 .. 0

1'1 IS OIVIS1l>le Ol 4.

Appendix A The processor CY7C611 50



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

A.S Instructions

The processor has three basic instruction fonnats and three subfonnats. These fonnats are

drawn in figure A.9.

CALL
FORMAT 1 ~pcod~ 30-bit dis placement I

31 30 0

SETHI
IOPCOd~ Destination I opcod. I 22·bit displacement I

3130 25 22 0

FORMAT 2
BRAI'lCH

IOpcod~ a I tesl condilion I opcode I 22·blt displacemenl I

313029 25 22 0

o

5

5

13·bils Immediate

alternate spacs

f1oalingpoinl/co·proc opcode

1419

19

opcode

opcode

opcode

FLOATING POINT/COPROCESSOR OPERATIONS

3130 25

Jnstruction format

FORMAT 3

Figure A.9

The first fonnat is for the CALL instruction (seen by the two most significant bits). The

30-bit displacement contains the offset from the current position (in the program counter)

to the called function (in words). To reach the called function the 30 bit displacement is

shifted two bits to the left to make a 32 bit address and thereby word aligned and then

added to the program counter to fonn the actual call address.

In the SETHI fonnat the 22 bit are placed immediate into the 22 most significant bits of

the destination register.

The BRANCH fonnat contains a test condition which indicates which flag(s) in the

processor state register has(ve) to be tested. The 22 bits displacement is shifted two bits,

subsequently sign extended for the direction and then added to the program counter as

soon as the branch is made.

The fonnat for the other integer instructions depends on bit 13. If this bit is zero source

1 and source 2 are the addresses for the input registers. The operation is specified in the

right opcode (bit 24.. 19) and the result is placed in the register specified by the address

in destination. If bit 13 is 'one' only one input register is used and the second input is a

13 bit constant.

The fonnat for the floating point/coprocessor instructions always uses two input registers
and a destination register.

Appendix A The processor CY7C611 51



Nederlandse Philips Bedrijven B.V.
Centre For manujacturing Technology

A.6 Traps

The traps on the CY7C611 can occur as synchronous and asynchronous traps (also called

extemal interrupts). The synchronous traps are divided into hardware traps and software

traps. The hardware traps occur when an instruction during the execution goes wrong or

is not allowed. The software traps are caused by certain instructions in the program.

When a trap occurs the following actions take place:

- further traps are disabled

- the S bit of the PSR is copied to the PS bit

- the CWP is decremented

- the PC and nPC are saved into local register 1 and 2 of the trap window

- the trap type is stored in the TBR register

- if the trap is not a reset the TBR is copied into the PC and TBR + 4 into nPC

else the PC is filled with zero and nPC with 4

In the trap table four 32-bit words are reserved for every trap. The instructions in the trap

table are a jump or branch to the trap routine.

To return nonnally, the routine must end with the instructions JMPL (JuMP and Link) and

RETT (RETurn from Trap). The actions of JMPL are:

- the PC is copied into the destination register

- the nPC is copied into the PC

- the sum of the contents of the two source registers (take here local register 1 and

global register 0) is placed into nPC

The actions done by RETf are:

- the CWP is incremented and temporary saved

- the traps are enabled

- the nPC is copied into the PC

- the sum of the contents of the two source registers (take here local register 2 and

global 0) is placed into the nPC

- the CWP is filled with the temporary result

- the PS bit is copied into the S bit

The synchronous hardware traps and the interrupt have a priority level. The levels are

given in table AA. The interrupt priority level in the processor state register only specifies

the minimum level of the interrupts. When a trap occurs and the traps are disabled, the

processor enters the ERROR mode and stops executing. Interrupts are ignored when traps

are disabled.

Appendix A The processor CY7C611 52



Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Table AA Trap levels

Trap Priority Trap type Synchronous or

asynchronous

reset 1 (highest) - Async.

instruction access 2 1 Sync.

illegal instruction 3 2 Sync.

privileged instruction 4 3 Sync.

floating -point disabled 5 4 Sync.

coprocessor disabled 6 36 Sync.

windowoverflow 7 5 Sync.

window underflow 8 6 Sync.

memory address not aligned 9 7 Sync.

floating-point exception 10 8 Sync.

coprocessor exception 11 40 Sync.

dala access exception 12 9 Sync.

tag overflow 13 10 Sync.

trap instructions 14 128..255 Sync.

interrupt level 15 .. 1 15..29 31..17 Async.

Appendix A The processor CY7C611 53



Nederlandse Philips Bedrijven B.V.
eentre For manufacturing Technology

Appendix B Schemes Area Segmentation Processor

8.1 Controller

8.2 EPLD interrupt handIer

8.3 Image handier

8.4 Screen handier

8.5 EPLD screen handier

8.6 EPLD divider

8.7 Circular buffer

8.8 Picture bus interface

8.9 VME-interface

8.10 VME-interface handier

8.11 Communication buffer

Appendix B Schemes Area Segmentation Processor 54





v..';.:

~
""------1 a Por--

<I----------cx::(F-

OUTPUT _ enffn

INTACK

CLK

RE5ETN

~.

IHPUT
- ,cc

HOT

I AH02

1 }-
~

ou 1
I--~I- -+-_H-I0 T:x~/-,Q:.;:.l_---t.

,CVH AH02

....---,'-----..;(.....-_..1-r_j--__---'-I.;;.CL;;;.R;.;.2~..
O~ ~ l

....".g.,.,... HOT
I-- oP RHa 1- +-_--1 )>o--"/:....,::Q.:3:...._.

v..C.!:

74378 74148

IQ11.........<
KH ~ ou HOT
Dl al 1"

OUTPUT IRLO
IQ2 -
IQ3

02 02 29 KOH 0-
03 3~ 0--

HOT
a3 CSH OUTPUT _

IQ4 IRL1
04 04 4 'l AOH -

IQS
05 05 sa A1H HOT

- 06 06 -- ~ 6H A2H
OUTPUT~ IRL2

CioK L...-.<: 7 :ol
v-

aKK O~~ r--< Kr.
OUTPUT I!!:) IRL3

KHCOOKR l
'\7- CHO

CRO

HOT

AH02

1... ' _C~y~R_H__---i~~
• \.'-_...JI----1I------'/:...C;:;.L=R-=l~H

ou 1
Q"'ltir / Q2

I-- 0 at------+--L;)()-..:...=-~.

T!-__,L----1C'-----J-r--+- ..:../_C_L_R.;;.3-+_
O~;kR ~ HOT

I-- 0 a1-------+---1 ::>o.......:-/...::Q:..:4'--~.

IHPUT

_ IHPUT

~IHPUT

INT1

INT2

INT4

INT3

~ AH~2

""-__--.lL.-----l(.....~_.rr_--+- .:.../..:;.C;;;;,LR:.:..:,.4-1-.

O~;kR HOT
_ 0 a1- --\_-1 ;:.o_...;/;...Q:"S_-I

INTS ~IHPUT

AH02

'1\. ICLRS

OUTPUT == ICLRS

74138
-< YOH

ICLRS -<
Y1H A

Y2H B
ICLR4

Y3H C
ICLR3

Y4H Cl -/CLR2
Y5H C2AH

ICLR1
Y6R c2BH

-0 Y7H

3; 8 DECODER

,,7-
CHO

.'L~

INTERRUPT HANDLER
PHILIPS - CFT
P.T.M. de WINNE

UftD>A 1.0 olA> A"~DIO<~" EPMS016-1
'A'~ 11:00a 1-11-1993 ... ~~, 2 u 10







I..ce dry02B CC9

I..ce dry01S HCLK

lace dry.' 9 /L.WE

lacr drv02? /CS_EN

I..ce dry01 B /CS_SENO

lage dryCD23

Jscr; dry<D§

I..ce dry020

EOS

~IN~UT

......--.INPUT

--="INPUï

INPUT-
~I""'PUT
~

r------'\.INPUT
~

......--.IN"U'T

~ INI'UT

IN'-U'T
Q ......

L.DB ~ ......
o 0 -

"'~..., ' .... 'T T
L.OO -c L..O ....

LL01
.... 0 .... 0 ......

LD2
..

:~
~...... {)o-0

LD3
c -t>

n4
0 00

I!: OE TL.OS ... 0'"
L.OB

0 0<1'-

r------""\.tNil=I"UT LO?
Ot- - OU"''''U''rl---

~ .... ~

~IN_UT

~
ON~ eCUï

~INF»UT

OIVIOE~

''''ITr4.21
CNV"

UNIT[:4.. :zJ ..ET....

/~II!:T c .........u ......,~ C:L..~N

r- CC. CL..'" Ol

U"/ON COUNTE'"
N T ANQ:I

IN"U'T

----J '\ OUTPUTi

.... T ~/
~

IN,-oUT
~~c

~

0 ......
~IN.UT LOO .....,...
~ 0 ....

~Q
OUTP'UT,-------
~

....-INil=I"U'T ./----- ~~co,..~ 0 ......

0"''' >---
......... c:-..~ -0

~
...... -(>...--INPUï ./

T
0 ......

NO"~ - ........ OUT"UTi
0 -vcc J ~

./'"'

0 ...... I '11 TE ...........
N T 0

o~
,......------.,INil»U'T .~
~ ~ OUTil=I"UT\-

T
0 ......

.... T

L- ; ....... ~ ....... OUTP'UT'-
0

r--- (> -t>
0 ......

T.--- ........
f----CO Cl

T "7-
0 .... 0

UNIT2

UNIT3

UNIT4

LL.UT11

L.DO

LD1

L.02

L.D3

L.D4

L.DS

L.DB

L.O?

L.OB

I..ce drvO 1 B

TI TL.. I!:
SCREEN DRIVER

F'HILlF'S CFT
OI!t:!IIIQNE"

F.G.M. S,.,.-,eets

o
!IItZE

OA"TE
2:SBo

1.00

4- 1 B-1 99.3

A

10



1

_IKPOTUNIT2
UNIT3 rN~'llT

4COUNT
-IN'p'llT TUNIT4 ~ LOK
~ '00

Ar B gA -UNIT2
C -gB

UNIT3
0 gc -

- CIK go -
- OKOP COOT -

SETK

-<l CLRK

CLlC 4

COOKTER
AK02- EXP OR2

~'-/ J "" OOTPOT CP BURST/ - -4COUNT
L......c LOK

UNIT4
A

-B gA -
- C gB -
_ 0

gc -
- CIK go -

- OK OP COOT -
/SET _IKPOT

SETK-- -<l CLRK
IKPOTCC9

- '00
CLIt 4

COOKTER

., ... ~
DIVIDER

.~~C~". PHILIPS - CFT
,~'""~ .. F.G.M. Smeets
' ... D IOCU" EPMS032-1 '"~DOK 1.001 'D A
",a 2:11D 10-26-1992 •"0.·' 6

v,
10

. U .. uV

ON
'.OUK. :I

OFF



o

-k IC
~2G

O"""'.."F"',~....,-.-.--'

us.

E
eRo

~"1"11"1~1800;C~l 6 lA2 1Y2 ... 4 0
seR3 B 1AJ lY) D

; c~ 1 i~~ ii~ 9 J

SCR6 .:.5 2A2 2Y2 D

seR 1 ~~~ ~i~ D

1111~~I~u~5i4il~1
seR8 2 lAl 1Yl !!'18~~Di81~~~: 4 1A2 lY2: ;1
;~~ B î~~ ~i~ 9 D
SCR • 2Al 2Yl :>1

SCR14 15 ~~~ ~~~ 5 0
seR .:. 2A4 2Y4 0

:eR0 ..••• &U50B~ ~~H'
@L:2E!~E>-~[~ I 6

~[jL;Bjj~>------'î<j
74F32

~8

DO
~

01
:> 4
o

18

1

18

2"1
2"2
2'l3
2'l'

2"1
2"2
2"3
2'<4

1"1
1"2
1'<3
1'<4

1'<1
1'<2
1'<3
1'<4

q.~'

1I52
2 lAl

11<2

d i~~

U51
2 lAl

6 î:~
lA4

- 2Al
J.. 2A2

5 2AJ
- 2A4

2"1
2"2
2"3
2A4

--4c IC
~2C.................----'

XB8
XB
XB
XBl
XB
XBl
xe

XB
XB
)(B

xeo
XB

XB

~32

..l. ~ IC

U50A ~ 2G

lSSL"~0!il!§E]S]s[3e~B!:.::::::>-_![12g. L.,.'"....,.-'''';~,...,..-~_.J
~ ~~II

OE4­
OE •
OS •
OE ...

~
Oe ­
OE ...
CE •

'rO 15
n
~; i
"4
"5
"6
'r7

Cl
C2"
G2B

U713

1 "
B
e

vee

IN SNS~
laNS~ U072E U074" '4Fl~8

15NsrT--"'~"'f1 0 1 U072F uOHB

20NS~' & 3 131 12 4 ~~~~~U~7:1~4]~III~
25NS 74F04 2 74F04 &. 6 1 A YO iS WEwe::
30NS 74F08 B Yl

~~=: & 14F08 C i~ :~2:
45NS~ 4 U71S1- 6 "4 we: •
SONS~ 3 5 L...........f" cl Y5 _ ~:

:JuA-.Lu: 00 ~ ~ J P Q ~ g~; i~ W"

[jw::::~eIX:>......-------------------~:...-~Lex.: r ~J. '4F138

vce~ K ZQ~
I Tg 14F112

'------'

2,

r;:::i .....~TL"'K..........I.L 74F37S

U71~

~ g~ g~
o 03 03

04 Q4
05 QS
06 06

rr=ic~~LK
I.L '4F3 IS

LO 3

LO
LD
LDI

LOS

L

s e
seR L C
LU •.

IM I imaqe (ctata.
SCR :. ecreen (clata)

LA:. latched. adelre.. (proce••or)
LO t latched. data (proce••or)

XA:. x-bar A
XB:. x-bar B

cc
M Le

La
.. .;,

RECADR[0 •• 6J
Cl la •• 7J
g~ [g: ::1 Z[48 •• 63J I-

viA
•

oIA
'lloo·...ll".. ----- ""

g~ [~~::m Z[32 •• 47J ",,"i'"IloI..'''~IIIi'.IloI< ,

YA" ~ '0
g~ i~~:: ~~J Z[16 •• 31J I-lloIlov....,oIIIliIn-olliI-------------------"!"'--------------------------~ ..
OI[42 •• 52J Z(0 •• 15J

Lo.~ 'v-,u

U102

HsWE
r-t'§' OE

'---i--i"-A- BNKLO:I
~ BDC'rcl
~ eLK

l~=:::;==l RECADR (0 •• 6]
Cl 10 •• 7 J

l~~§§§~§~OI(0 •• 4J vA'" ~,g~ lîà : ~ ~ 0 J Z ( 48 •• 63 J t:V:A:~":':?:::..:~:::::-----------'"
OI(21..31J Z(32 •• 47J ..

rA"< '0

g~m::m ZI16 •• 31J """VlilloA""'oIoIlo-oIoIl""-",
OI(42 •• 52J Z[0 •• 15J

... loOU ru-.u

IM LC
IM-CC
LBA
LBB

: imaqe line counter
: imaqe column counter
z line buffer A
: line buffer B

: .creen line counter
: .creen column counter

: look. up table

~I'-leB""'-1=-:!.4 ....._~-'l18

?4F04

87 SCRO
SC

s
sc
seR

49 seR
SC

47 seR
sc

R
sc
S R

seR

seR
s
seR
sc

sc
sc

6S seRO
s R
s

CR
S
sc
s

58 se
seR
sc

C
S

49 SCR
seR
sc
S R

87 SCRO
sc2 OIO 000

DIJ ooJ

OI6 006
OI1 007
018 008
OI9 009
0110 0010
OIll 0011
OI12 0012
DIl J 0013
OI140014
OI15 0015

24 OI16 0016
01110011
01180018
01190019
OI200020
01210021

31 g~~~ ~~~
OI24 0024

U7 0

Aa
"1

78 ~~
A4

32 ~~

33 ~~
"9
"la
"11
"12
"13

OI250025
OI26 0026

<10 g~~~ ~~~
42 g~~g ~~~ -1

OIJ10031

e"Mu22-~S

M
M
M

M

1M
I
I

M
1M
IM
r

MI
1M

IMO
1M

M
M

1M

IM
I

M
M

1MO
M

M
1M4

XI<
X"
X"

Xl<48 10
XA4 79
X"
XI<
XI<

"X"
X"
"

I'-"=~ ....._~-"!uoln"XA62 ~I 14F04

csU >"-"--
WK 21.~
OE ~

SCR
sc
sc

6S seRD
s
s
seR

CR
sc
seR

5 s R
sc

R
S R

CR
seR
seR
sc

CR

seR
sc
seR

9 SCR
S

4 seR
seR

87 SCRO
sc

01250025
01260026

40 g~~~ g~~~

42 ~~~~ g~~~
OI310031

e"M1822- 5

24 OI16 0016
OI11 0011
OI18 0018
OI190019
01200020
OI21 0021
OI22 0022
OI23002J
01240024

OIO 000
011 001
OI2 002
OI3 003
OI4 004
015 DOS
016 006
OI7 007
OI8 008
OI9 009

01120012
oI1J 001J
OI14 0014
01150015

5

M
M

IM
1M
I
1M,.,

1M
M

I

1MO

IM

M

X"

XA
X"

M
M
M

X"....
IMO

M

X"
"X

X"
X"

s
sc
sc
seR
s
sc
s

87 SCRO
sc

0116 0016 ~16~5Ss~eaR~ogtOI11 0011 ~~R

~ii; ~i: 5

OI20 0020 af"OI21 0021 s
OI22 0022 8;C
OI23 0023
OI24 0024

011 001

g~~ ~~ SCR
014 004 SCR

015 005 ~e '"'
016 006 '"'
0I7 007 '"'

OI8 D0811eg~~o ~~ sc
01110011 s

g~~~ gg~~ S R
01140014 5 R
01150015 SCR

OI25 0025
OI26 0026

40 g~~~ ~~~

42 g~~~ g~~~ 4
OIJ10031

e"M182~- 5

IMO 24
I
I
1M

M

M
L 4

1M
rM
IM

1M
M
M

1M

I
1M
1M

M
M
M

1M
1M
1M
1M

XI<
XI<

XI<

KA 6 la
XI< 79

XI<
XI<

XI<

XI<

IMO
M

seR
s
s R

seR
seR
seR
sc

SCR

4 seR
seR

65 seRa
seR
sc
s
sc
seR
s R

8 seR
sc
sc
seR
sc

49 seR
s

47 05 R
S

87 seRO
sc

esu 6

WE 2 ..-.=r;'"

OE ~

OI25 0025
01260026

o g~~~ ~g~~
42 g~~g gg~~

OIJ10031

CYM1822-25

24 01160016
OI11 0011
OI18 0018
OI19 0019
OI20 0020
01210021

31 ~~~~ ~~~~
01240024

3

U707

"0
"1

78 ~~
"4

32 :~
"7
"8
"9
"la
"11

54 ~i~

la
79

M
M

1M
1M
I

M
1M

I
IM
IM

X"
X"
"

IMO
M

""0X"
X"
X"
X"
X"X"
"X"

X

~D8
I"X"'''=1''-4 ...._~-''l18

?4F04

seR

e
SCR
sc

seR
sc
sc

49 seR
seR

47 seR
sc

sc
sc
sc

65 SCRO
seR
s R
seR
s R
s
ScR
seR
sc

87 seRO
sc
s
sc
seR

01160016
OI11 0011
01180018
OI19 0019
01200020
OI21 0021
01220022
01230023
01240024

2 OIO DOO
DIl 001
OI2 DO~
OI3 D03
OI4 004
DIS 005
016 006
OI1 001
OI8 008
019 009

OI12 0012
OI13 0013
OI14 D014
01150015

OI25 0025
OI26 0026

40 g~~~ ~g~~

42 g~~g ~~~
OI31 0031

CYM1822-25

9
M

1M
1M
1M
1M
1M

M
I

M
M

1M
1M

M

IMO 24
I
IM
L

M
M

rM
1M
IM

1M
1M

1M

seR
SCR4

seR

seR
seR
sc
seR

sc
seR
s

65 seRO
sc
seR
seR
sc

e
sc

58 seR
CR

s
sc
SCR

49 seR
SeR

47 SCR
sc

87 seRQ
seR.2 OIO 000

DIS OOS

9 ~~~ ~~
018 008
DI9 D09
OI10 0010
OI110011
01120012
OI130013
01140014
OI1S 001S

24 OI160016
OI11 0011
01180018
OI19 0019
OI20 0020
OI21 0021
OI22 0022
OI230023
OI24 0024
OI250025
OI260026

40 gi~~ gg~~

42 g~~~ g~~~
01310031

CYM18",2-2S

M

M

M

IMO

1M
M

IM
M

rM
M

1M
M

1M
M

1MO
1M

M

M
1M

XB
B

XB

XB32 10
XB 79

XB

s
seR

seR

sc
seR

CR
seR

seR
seR
seR

65 seRO
sc
seR
seR
seR

CR
sc

8 sc
e

seR
s R
seR

49 sc
sc

47 sc
sc

87 seRO
seR

2 OIO DOO
DIl DOl
OI2 002
OI3 003
OI4 004
DIS DOS

018 008
019 009

01110011
0112 0012
01130013
OI14 0014
OI15oo1S

OI160016
OI11 0011
OI18 0018
OI190019
01200020
0121 0021

31 ~~~~ ~~~
0124 0024
OI25 0025
OI26 0026

10 g~~~ ~~~~

42 ~~~~ ~~~
OI31 0031

e"M1822-25

[]704

"0
..1

79 ~~
A4

32 ~~
"7
"8
"9
"la
"11
"12
"13

I
IM

1M
1M
1M

TM

1M
M

1M
1M

KB
XB

M
1M9
IM
IM

IMO 24
H
1M
rM
1M,.,

M
IM
I,

XB1.6 10
KB 7'

xe
xe
KB
XB

leB
xe
XB

IMO
M

M
1M

I'-"'KB....3.>!O ...._~-"lU~72e XB46 W- leB 62 ~
I 14F04 I 74F04 14F04

U705 U106
AO XB4 10 AO
Al ~ 9 Al

6~ ~±::::~~~w~:-:;~:3~: 8 g ~ ~~ Ei 7 B ~~ ~~ 2 ,

X A6 ~ 3 A6

3 ~~ XB 33 ~~
A9 A9

:i~ xe ~î~
54 ~~; XB 5 ~~~

IMO
M

o •
~

SCR

seR
seR

seR
seR
seR

sc
seR
seR
seR

65 SCRO
S
seR
seR
sc
sc
s R

58 seR
sc

esu

WE~"
OE

24 01160016
OI11 0017
OI18 0018
OI190019
01200020
OI21 0021
01220022
01230023
01240024
01250025
01260026
012"7 0021
0:r28 0028

42 g~~~ g~;~
01310031

CYM1822 25

lO U70'

19 ~~

18 :~
".

3 ::

3 :~
"9
"la
"11

5 :i;
010 000
011 DOl
012 002
013 003
014 004
DIS 005
016 D06
DI7 D01
DI8 D08
Dl9 009

D112 0012
DI13D013
DI14 0014
DI15D01S

1M
M
M

1M
M

1M
M

1M
M
M

1M
M
M

1M

X
XB
XB

XB
XB
X

IMO
I

I
IM

M
1M

M

1MO

M

,XBO
X

B
XB
XB
XB

I
PHILIPS CFT F.C~M. Smeet. , P~T.M~ de WINNE I
Titl_
AREA SEGMENTATION PROCESSOR- CIRCULAR BUFFER
sizelooeument NWl\ber !REV I
A2 1 CIRC. BUF~SCH I ,

e: Ma 27 1993She. 70 '4





I

SLV· J 3

VCC ..l. R11 11 11 2 & SDTACK· J2

1111 RS
U902 U903 '14LSO J

~ 2 PO 1. 3S 2
,; P-O CRO SEL SOTACK- .." Pl 22::: .."

"
P2 TOE TOE· J4

-=::I .1 P3
15- .." P' LO CNT INI LO CNT !~ .

-=::I St pS INC CNT INI 4" INe eN TNI
~ P5 OE CNT INI OE NT IN .

p7
37

BA15 3 LO CNT COMM
d LO eN COMM-

A 00 INC CNT COMbI IN eNT eOM
BAl 01 :7
BAl 02 5 LD COHM BUF < LO COMM nUF'"

RA 1
_. 03 suos* J

0 SUOS OE COHM BUF OE COMM BUF·
04 SLOS'" J. sLos CE COMM BUF - eE COMM UF-

kt OS BAS'" J2 BAS -
< :.05 SR \ol· J SR/W RAM SELECT R.... SELECT

BA .. J ~ 07 SA .4 J WRITE RAM :3 WRITE ï:tAM'"r 1 REM R.... 2 READ AM-
e 11 41
""~~l 1 SA' OE DATA OE DATA-

SA3 OE ADlSRESS OE ODRESS*13 sA2 OE AoR COMM 38 OE AOR COMM*vce 1
U901 ~ sAl 18

~ PO P-o 19
LO LO OATA L LO OA A

JMPl 34 OE LO DATA OE LO A'1'1\·

1 r---t Pl S S J S'tSCLK DE HI DATA OE H DATA·
P2

~[ P3 BAR LO 1S BAR 011 P4 J( I[)1 ]- ~ l'S e3
i~5"~~:L_1.

~
P5 22"..-

R20-23P7 4k7
BAMS 3 00BAM 5 01 -BAM 7
BAM2 Q O~

B "
03

BAM • 04
OS

~
05
07

BAM .. J

.t;-1< e
r4F:::'Z1

" .. 'J

SO .. 'J
vee

U913
s02 3 00 OA 16 1'2
so Dl OB 1 A
so 02 oe 4 A

SO 6 03 00 1 A

7 TC
~1 eEP cc

2 eET
INC C~T ":'". I CP

eNT l'Nl-
~

PE
SR

~ MR...
r---rt UlO

eN IN - OE

""56'

U914
S05 3 00 OA 16 A6
SO 01 OB "S08 5 02 oe 14 A

03 00 A

7 TC
~-4<

eEP cc
eET
CP

~
PE
SR

---rt ""'-UlO
OE
74F569

U91.5
1"S010 3 00 OA AlO

S "SO 01 oa A02 oeSO 6 03 00 13 "
7 TC

~eEP cc
'----'1< eET

CP

~
PE
SR
M"-ulo
OE

""56'

U.' 5
S01.4 3 00 OA 16 AH
SO Dl OB A

02 oe l03 00
7 TC

CEP cc
~ eET

CP

~
PE
SR
MR...

---rt ulO
OE
7,..S6.

Ug17

IRAM SELECT > 2 lAl lYl 8 A 5
• 16 A11'2 1Y2 AlA3 lY3

lA' lY, Al
11 2Al 2Yl • A

2A2 2Y2 A
15 21'3 2Y3 5 1'2

2A4 2Y4 A

le QmL.....l..l( 3k32e vee
".,24.

2
U918

18 J[JlAl lYl AD R6-'1

11'2 lY2 A 4k7. • lA3 lY3 J
1,.. lY4 SIZ J

L-....H- 2Al 2Yl SI.ZE J
21'2 2Y2 J- ....l..L
2A3 2Y3

)[~
WE" J

2A4 2Y4 f-''- RI-1O
1,

le 2k2

~ 2e

.1. 1...~44 .1.

.. J

SO ..
U90S

SOO 2 Dl 01 19 no
SO 3 1 0
SU 02 02 0
so 03 03 1 [}

04 04 04 0
so 05 OS
SO • 06 06 3
so 07 07 008 OB

La DAT 11 CLK
0 o T . oe

,. .. ~ "
U·06

SOB 2 Dl Ol 1. 08
SO 0

0 02 02
So 5 03 03

6 0
SO 04 04 U
SO 7 OS OS 0
SD 06 0" 007 07

DB OB

~ eLK
~ oe

'U~ '.

U·07
soo 2 Al al 18 Dl"
so ()

S A2 B2
SD A3 B3 0A4 B4
S AS "S 01'6 "6SU 1'7 "7

0
so AB "B

U

~
e
DIR

""2'~

U908
S08 2 Al al B 024
SO 1'2 B2 0
so A3 "3

0
SO A4 a4SO AS BS 0
so A5 "6 0
SO 8 1'7 B7 1
S AI BB

f--l1!c e
vee DIR

l4F24"

SO .. J

0 .. J

DO
, ugn. ,. soo

0 3 Dl 01 lB so
0 02 02 so
03 03 03 S:>
0 04 04 s:1
0 OS OS So
0 • 06 06 3 SO07 07 SDB OB

e J 11 eLK
DATA· oe

"F~ ,.

U.l0
08 2 01 01

,. S08
0 SO
0 02 02 SO

S 03 03 1 SO04 04
OS OS S

0 7 14 so
0 06 06 so07 07

DB OB

~ eLK
oe
,..~ ,.
"."016 2 01 Ol l' Soo

0 02 02 S

0 03 03 ")04 04 S
0 05 OS • S
0 06 06 SD07 07 SOB OB

4 eLK
H "T oe

"F""

U·"
02' 2 01 01 1 S08
0 02 02 so
0 • 03 03 so
0 04 04 0
0 oS 05 S:l
0 05 06 S
0 • 07 07 13 SD
0 DI Ol 5

~ eLK
oe

. ~

U904A

... IJ

0 DRESS-
A J

U91.
AO 2 Al "1

18 soo
Al so1'2 B2 SO
A A3 B3 soA4 a4A AS BS

00
A, SO
A • 1'6 B6 SO
A 1'7 97 SAI aB I

~ e

IOIR
'4F24S-

_\1'20
"8 2 Al Bl

,. S08
A 3 1'2 B2 1 50
A A3 B3 50

" " 15 SO
A 6 A4 "4 so
A 1 AS BS 3 SO
A 1'6 B6 SO
A 1'7 B7 soAB BI i

L!t- e Ivee OIR I

, '''2'S-

PHILIPS CFT FeC.". sm..e. ~ P.T.M. d. NINNE I

Titl.
AREA SEGMENTATION PROCESSOR - VME-BU8 INTERF
Slz.0ocum.nt Nurnber REV +

A2 VME_INT.SCH
o ee: Ar' 21 1 3 S •• 9 0 1,;,



in

Iyrne int 1 Q22

LO_LO_OA

OE....OATAn

o E.....AD D R Er== """'......--1
o E....LO_OA F~=,.,..,=-"-'- ..:z=;;;;..-l
o E....H I_DAT'F'-::.:..:............""""...:iiil:.=......~

o oe inverted

en coltec~or

Z4F38/Z4LS03

OUï.-U'T'c=> TOEn

~
c=>
~

c=>
~

~

~

~

===>
~

c=>
c=>
c=>
c=>
c=>

OU'T"UT~

OUT_UT~

I
o~ oeo:-
oe oef-
O? 0"""-
0 .. otOl!:'"
c ..... el

oc,......L.. 0-1""' ....

i 02 o",! .SUOSN o ......,..a....-I!:NNI
INI="U"'T' I 0:J

I Yos t
03 : SL-OSN W"'''l!:'''1 IINI='U~

I I oy 00

j

~
0" 0'"

1
9

.....
5N oe:t....AY_W,,",ITe:

I Ne:-'U'T ! Qote
i o~ '" ,S,./WN

I=IUL-S 1
II

I
oe

=+=
re.....

I
,

I
o?

i II 0 .. 0";"'-

I Ol<'" ..I , I VME....::lEC
ou""u"~O"< I

I
I ,-O_L..O-OATA J

I
I I I OU"'''Uï'

OCTAI- 0-""'''- I O~C ...T .....N

I
I I o u,...u.,., I o~oc~e:'Ss ....

I

i I
OU"'''UT

!
OE...:-O-OA"T'A,N j.. ,,0<
OE...!""II_O...,...N

OU"'''UT
,N!=l'U'" I I i

I
OUïC'U"T'

I

I

L...O_CNT_ININ

OU "T'CI'U'T
OATA-ENN INC-CN"'_I NI

I
OU"OU"T'

I
W"'''T'I!:N OE....CNT.-ININ

OEL.A......._w ... 'TI!: L.O-CNT_CO""'"""""'1
o u,.., U"T'I

I
OUT~Uï

'_sAr ..... 1 .,
CIl'UI-se: INC-CNT-CO~M!

I OUTfi=-UT

i LSA,( ..... 1) O~O""'-CO~"""'I""
I C:::U.,.IT_UT

; 74374 I S",/WN CE...CO ..... M_e!lU,.-,...

I""""~UT I
, , SA1 I OUT·UT

0' Q' oe.....c_u""",, OE-COMI'\A-SU~'"

INI'U"T' I , SA2 i OUT·UT
02 Q l...o.....c::o""", ....._ElU rrNil

IN"UT I I LSA3 I OUT_UT

I I
03 Q """'M-s~~I!:C"T1

INPUT LSA4 CUT_UT, "'.. Q 'IN"'IT~"'.""'Ni

743Z4 VME 87RL
C RD_S E Lil ~!.!''''::!!:..~u~.,.!- .r;o~,.L..;:::...''--'=o~,~I ..:,s;:'-:v;-;'''-::-=-==::....:.~..~o~.,.;:;...:c;;....J------------------------------------- .so!..!u"-.:!:.,.~..~u~.,.~~ SDïAC K Iv~ e :,-," '@29

SUDSn ~N~UT I I

SLOSn=:::::>

9ASo ===>
SR/Wo ===>

SYSCLK

vm in- 1 SA1

SA2

vm ia SA3

0 SA4

Ivm.. ia,!: 1 gl?34

VM E -I NTERFACE::

9:000 1-21-1993

A



51

Vn=O

50

501

502

Write-Cycle

1
SRlWn

Read-Cycle

51 56

52 DATA_ENn
57 DATA_ENn

WRITEn SDTACK

53
DATA_ENn

WRITEn
DELAY_WRITE

54 1,1,1

5a PULSE

5S SDTACK
PULSE

1,1,1
~-------------~- ---------~---- >



%************************************************************ SDTACK DFF(ACK,elk,VCC,VCC);

* DESIGN OF CONTROLLER TO INTERFACE TO THE VME *
* * TABLE

* Vers ion 1.1 * %present present next next %

* Date 09/04/93 * % state input state outputs %

* By P.T.M. DE WINNE / F.G.M. SMEETS * ss,SLVn,SUDSn,SLDSn,BASn,SR/Wn => ss,DEN,WRN,DWR,PUL,ACK;
************************************************************% %--------------------------------------------------------------%

%POWER UP%
TITLE "vme_ctrl" i si, x, x, x, x, x => sO, 1, 1, 0, 0, 0;
SUBDESIGN vrne etrl %WAIT STATE FOR NEXT CYCLE%
( sO, 1, x, x, x, x => sO, 1, 1, 0, 0, 0;

SLVn INPUT; sO, 0, 1, x, x, x => sO, 1, 1, 0, 0, 0;
SUDSn INPUT; sO, 0, x, 1, x, x => sO, 1, 1, 0, 0, 0;
SLDSn INPUT; sO, 0, x, x, 1, x => sO, 1, 1, 0, 0, 0;
BASn INPUT; sO, 0, 0, 0, 0, x => sOl, 1, 1, 0, 0, 0;
SR/Wn INPUT; % WAlT FOR VALID SR/W-SIGNAL%
CLK INPUT; sOl, x, x, x, x, x => s02, 1, 1, 0, 0, 0;
SDTACK OUTPUT; s02, 0, 0, 0, 0, ° => sl, 0, 1, 0, 0, 0;
DATA ENn OUTPUT; s02, 0, 0, 0, 0, 1 => s6, 0, 1, 0, 0, 0;
WRITEn OUTPUT;
DELAY WRITE OUTPUT; %WRITE-CYCLE%
PULSE OUTPUT; sl, x, x, x, x, x => s2, 0, 0, 0, 0, 0;

s2, x, x, x, x, x => s3, 0, 0, 1, 0, 0;
s3, x, x, x, x, x => s4, 0, 1, 0, 0, 0;

VARIABLE s4, x, x, x, x, x => sS, 1, 1, 0, 1, 1;
ss : MACHINE WITH STATES sS, x, 0, x, x, x => sS, 1, 1, 0, 1, 1;

(si,sO,sOl,s02,sl,s2,s3,s4,s5,s6,s61,s62,s7,s8); sS, x, x, 0, x, X => sS, 1, 1, 0, 1, 1;
DEN: NODE; sS, x, x, x, 0, x => sS, 1, 1, 0, 1, 1;
WRN: NODE; sS, x, 1, 1, 1, x => sO, 1, 1, 0, 0, 0;
DWR: NODE;
PUL: NODE; %READ-CYCLE%
ACK: NODE; s6, x, x, x, x, x => s61, 0, 1, 0, 0, 0;

s61, x, x, x, x, x => s62, 0, 1, 0, 0, 0;
BEGIN s62, x, x, x, x, X => s7, 0, 1, 0, 0, 1;

DEFAULTS s7, x, 0, x, x, x => s7, 0, 1, 0, 0, 1;
DEN VCC; s7, x, x, 0, x, x => s7, 0, 1, 0, 0, 1;
WRN VCC; s7, x, x, x, 0, x => s7, 0, 1, 0, 0, 1;
DWR GND; s7, x, 1, 1, 1, x => s8, 1, 1, 0, 1, 0;
PUL GND; s8, x, x, x, x, x => sO, 1, 1, 0, 0, 0;
ACK GND;

END DEFAULTS; END TABLE;
END;

ss.elk elk;
DATA_ENn DFF(DEN,elk,VCC,VCC);
WRITEn DFF(WRN,elk,VCC,VCC);
DELAY_WRITE DFF(DWR,elk,VCC,VCC);
PULSE DFF(PUL,elk,VCC,VCC);



%*************************************************************

* *
* DECODER FOR VME-SIGNALS *
* *
* Vers ion 1.1 *
* Date 21/01/1993 *
* By P.T.M. DE WINNE / F.G.M. SHEETS *
* *

LD COMM BUFn
RAM SELECT
WRITE RAMn
READ RAM
BAR LD
RESET_OE_CPUn
SET OE CPUn

OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;

**************************************************************%
BEGIN

TITLE "signa1 decoder";

DESIGN IS "vme_dec";

IF ( LSA[4 .. 1]==EN_CPU ) THEN
SET_OE CPUn = WRITEn;

END IF;

IF ( LSA[4 .. 1]==DIS_CPU ) THEN
RESET_OE_CPUn = WRITEn;

END IF;

IF ( LSA[4 .. 1]==CNT_INI AND SR/Wn==O
LD CNT INln WRITEn;
INC_CNT_INI DELAY_WRITE;

END IF;

) THEN

VCC;
VCC;
GND;
VCC;
VCC;
VCC;
VCC;
VCC;
GND;
VCC;
VCC;
GND;
VCC;
VCC;
VCC;
VCC;
GND;
VCC;
GND;

GND;

DEFAULTS
RESET OE CPUn
SET OE CPUn
LD LO DATA
OE DATAn
OE ADDRESSn
OE LO DATAn
OE Hl DATAn
LD_CNT_INln
INC CNT INI
OE CNT INln
LD CNT COMMn
INC CNT COMM
OE ADR COMMn
CE COMM BUFn
OE COMM BUFn
LD COMM BUFn
RAM SELECT
WRITE RAMn
READ RAM
BAR LD

END DEFAULTS;

B"OOOl";
B"0010";
B"OOll";
B"0100" ;
B"0101";
B"0110" ;
B"Olll";
B"1000" ;
B"1001";
B"1010";

INPUT;
INPUT;
INPUT;
INPUT;
INPUT;
INPUT;
INPUT;
OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;
OUTPUT;

DATA ENn
WRITEn
DELAY WRITE
PULSE
LSA[4 .. 1]
SR/Wn
OE CPUn
LD LO DATA
OE DATAn
OE ADDRESSn
OE LO DATAn
OE Hl DATAn
LD CNT INln
INC CNT INI
OE CNT INln
LD CNT COMMn
INC CNT COMM
OE ADR COMMn
CE COMM BUFn
OE COMM BUFn

SUBDESIGN vme dec
(

CONSTANT DIS CPU
CONSTANT EN CPU
CONSTANT CNT INI
CONSTANT CNT COMM
CONSTANT COMM BUF
CONSTANT LO PRG
CONSTANT LO CAD
CONSTANT HI_PRG
CONSTANT Hl CAD
CONSTANT BAR



IF ( LSA[4 .. 1]==CNT_INI AND sR/Wn==l AND OE CPUn==l ) THEN
OE_CNT_INIn DATA_ENn;
OE_ADDRESSn DATA_ENn;

END IF;

IF ( LSA[4 .. 1]==CNT_COMM AND SR/Wn==O ) THEN
LD_CNT_COMMn WRITEn;
INC_CNT_COMM DELAY_WRITE;

END IF;

IF ( LSA[4 .. 1]==CNT_COMM AND SR/Wn==l ) THEN
OE_AD~COMMn DATA_ENn;

END IF;

IF ( LSA[4 .. 1]==COMM_BUF AND SR/Wn==O ) THEN
CE_COMM_BUFn = DATA_ENn;
LD_COMM_BUFn = WRITEn;
INC_CNT_COMM = PULSE;

END IF;

IF ( LSA[4 .. 1]==COMM_BUF AND SR/Wn==l ) THEN
CE_COMM_BUFn DATA_ENn;
OE_COMM_BUFn DATA_ENn;
INC_CNT_COMM PULSE;

END IF;

IF ( LSA[4 .. 1]==LO_PRG AND SR/Wn==O ) THEN
LD LO DATA DELAY_WRITE;

END IF;

IF ( LSA[4 .. 1]==LO_PRG AND SR/Wn==l AND OE_CPUn==l ) THEN
RAM_SELECT GND;
READ_RAM VCC;
OE_CNT_INIn DATA_ENn;
OE_LO_DATAn = DATA_ENn;

END IF;

IF ( LSA[4 .. 1]==LO_CAD AND SR/Wn==O ) THEN
LD_LO_DATA DELAY_WRITE;

END IF;

IF ( LSA[4 .. 1]==LO_CAD AND SR/Wn==l AND OE CPUn==l ) THEN
RAM_SELECT VCC;
READ_RAM VCC;
OE_CNT_INIn DATA_ENn;
OE_LO_DATAn DATA_ENn;

END IF;

IF ( LSA[4 .. 1]==HI_PRG AND SR/Wn==O AND OE CPUn==l ) THEN
RAM_SELECT = GND;
OE_DATAn = DATA_ENn;
OE_CNT_INIn DATA_ENn;
WRITE_RAMn = WRITEn;
INC_CNT INI PULSE;

END IF;

IF ( LSA[4 .. 1]==HI_PRG AND SR/Wn==l AND OE CPUn==l ) THEN
RAM_SELECT GND;
READ_ RAM = VCC;
OE_CNT_INIn DATA_ENn;
OE_HI_DATAn DATA_ENn;
INC_CNT_INI PULSE;

END IF;

IF ( LSA[4 .. 1]==HI_CAD AND SR/Wn==O AND OE_CPUn==l ) THEN
RAM_SELECT VCC;
OE_DATAn DATA_ENn;
OE_CNT_INIn DATA_ENn;
WRITE_RAMn WRITEn;
INC_CNT_INI PULSE;

END IF;

IF ( LSA[4 .. 1]==HI_CAD AND SR/Wn==l AND OE CPUn==l ) THEN
RAM_SELECT = VCC;
READ_RAM VCC;
OE_CNT_INIn DATA_ENn;
OE_HI_DATAn DATA_ENn;
INC_CNT_INI PULSE;

END IF;

IF ( LSA[4 .. 1]==BAR AND SR/Wn==O ) THEN
BAR_LD DELAY_WRITE;

END IF;

END;



:'/\ .: ..
-~

'(. •• :'::.1

~jD {} .. _.::- ( .;~ ,...
vee

;\: O ••• :: I'; ,1

~:ll 0.: ~n ~Q6 .. " ..
SD A "A - " r:~Tn SDO 1-6 IICOL fOOR 00 LAO 1 ct

'" :>1 1\0
,s ......

" ,,,. - ',~:-J'T 1 SDl
T/O~L /Ol~

.:J: Li\l ;tl
Ç.~2 "2

.\1
.::; t~ C OC --- C~T;- SD~ -g

!/02L ;C2R :)2 Lh.?: Q3 "J /\,2
:.iD 0 CD ':N 3 ~D) -" I/OJL I03R 9 ,:;3 IJ..:! Q< !)< A3

RCO~
SDIf .'0 !/04L _/04R

Q :J'; L/\"ï . ~

05 DS ;\4

~
ENp 5!J'" !/OSL :;05R. ", .iJ:::- L,",j .;,

06 Ol. ""ENT
sn ;, ~

!/06L :/06R Ob LAb ~1 07 07 .'\ó

CLK 5:..)1 .'> J !/O/L :/07R 32 _8. Li\1 co.; 09 DS l\,f

~
LOAO eNTO <2 !~A2

.,
CLR

c~":Tl
AOL AOR

" . '~A3
CLK sc!..:'::: {Cd

AlL A1R OC ~UL- '.]<t14F163 C~T2 A2L A2R
.;(] _.A4

Ct.:T3 A3L A3R
q -,;\S '."FS7<

CNT4 10 ML A4R 39 ~A"
U1I02 CNT_ ASL ASR 3 . A' U1112

SD< •. OA 11 CNT04 CNj 12 A6L A6R 36 ~AB LAS 19 01 Dl AS
SO a oa eNT eNT A7L A7R '_A LAS 1 02 02 AS
SOb l~ eNT eNT .4 4 ',.Al" LA10 , ALO
SD C OC ::. 1 C:NT c:-:'!' 15 ASL ASR _3 ~A - LA 1. 03 03 5 AllD 00 ASL A9R 04 04

:"tca f-=-2.- eNT .,
A10L A10R .; 4 :'A. - LA 05 05 "12

Pi: LA1J 14 1\13E.NP 1 :a::r. i:ER 47 LA.!. 4 06 06 1\14ENT

~ p...L- LA ~ 12 0 7 07 ,\1:;2 CLK DEL OE.R OS DOq

f------1"
LOAD .-----+ .BLiit. ~~ ~CLR CLK
F".~

--!.. BUSY'L BUSY'R f-"-2- OC p.....L-
eY'7C132-35 74FS74 .. - J4

ul103 U1 07 U1 13
SOS A OA 14 CNTB SOS 16 IlaOL I/OOR 25 :'08 LOO 19 01 Dl DO
S09 CNT SO 1 LO LD 0_
SD a oa 12 eNT SO la I/01L I/OlR 27 LD_, LD 17 02 02 4 02
S C- c OC

~
so 1 I/02L r/o2R

~D .... : LO 1 03 03 5 D0 00 I/03L I/aJR 04 04
RCO !/a4L I/04R 9 05 05

Dl SOl 3 LO LD DENP I/OSL ::::/OSFl 31 0 06 DO
c)t>ENT SO I/a6L .:r/06Fl 1'2' La , LD 07 07 0INC C~T ':'OMM CLK I/o1L I/01R OS OS

NT ~OMM·

~
LOAD CN'TO 6 42 LA2 11CLR AOL AOR CLK CL .;,

C.T AlL A1R LA OC LWE'" J4HFH3 ".NT A2L A2R _9 LA 14F574
eNT., ,0 A3L A3R LA
C:-JT ,1 A4L A4R LA Ull14
eNT ASL ASR LAB LOS lS DSA.L A6R - 01 Dlc. : J A7L A7R 02 02
.~ :4 ASL ASR ~ ~ L 03 03 n

eNT ~.:. A9L A9R 3 LAl ... LU '" 04 04 Dl ...
c:-.zT AlOL A10R 44 :"A~ LD -, 05 05 0

LOl3 06 06 0
C CC~_"1 BUF" 1

EL W. 47 LD 0 7 07 D14
OE caXM SUF'" OEL OER J.-.ll- LD OS OS D

C >IM a > .a.&.t. ~pr CLK~-1. BUS~L BUSYR oe
C'i C".,,-.~ 74F574

U1108
U1104 LD 2 lAl 1'i1 19 00

SOO 2 Al 31 lS CNTO LO 1A2 1'i2 D
SD ... A2 a2 C7 C:-JT LO 1A3 l'i3 " . D
5:>2 < A3 a3 16 C:-:T LU lA4 1'i4 :'2 O'
SD ,

A4 34 eNT LD 2A1 2'i1 04
SU4 6 A5 as 14 CNT LD U 2A2 2'i2 7 0
SD, A6 a6 C~T LO 2A3 2'i3 0
SO A7 a7 eNT L 2A4 2'i4 3 D
so AS as eNT

Pi19 1G
D AD CO G 2G

r-----'- DIR
74F244

HF2<S
U1109

u' 05 LOS 2 lAl 1'i1 lS OS
SOS Al al lS CN'T8 1A2 1'i2 0
so A2 a2 ' 7 eNT L 1A3 l'i3 14 Dl
SDl A3 a3 eNT LD 1A4 1'i4 D11

SD A4 a4 :s: LO 2A1 2'i1 D
S A5 BS L 2A2 2'i2 0
sn A6 a6 LO 17 2A3 2'i3

3 0A7 B7 :ft 2A4 2'i4SD AS as

~f..l2<
1G

G 2G
~ OIR 74F244

.1- F'" ~ .
u018e

~:O
cs. B F' J4

I
LR . 'J

14F32

U0180
12 SC K JU Isl13

LWE- 04

74F32

Ti1:.1&
AREA SECMENTATION PROCESSOR - COMM BUFFER

Sloe/Document N'umber
A2 CO~ BUF.~CH

Di,ce: \'-('>brll<IC ?''Ï l'J9:~ Sh~e't:



TOP VIEW
BOARD 1
ASP

I
0

0

U125
00

:0

~ ,Ps}21
2681AC28 0

0

Pl

If E~~p7 I l!:!:!)

22No(Jt
~ mUF}

U126 U127 :~~-23 ti 470uF
70A-5250 701.-5250 • tC:I- D3

, ·i···· I ~ "OuF :r U903 0: ~2N~12

""" "" """"" " : r MC1488

E~g?Olp ~?s~nf ~g}, "E·P~;;6·:·" C3: h U:;L2: r MCJ,489

[ U1106
~ ~h;'0 si f-~-~-;--40'-9'='""1 [_CY_7_Cl_3_2 -' _

roo VME PR.OTOTYPE BOARD
00

0
0 0
0
0
0 0
0
0
0 0
0 RlS
0
0 oe='-
0
0
0 0

00
00
00 0
00
00
00 0
00
00

~
0

10= Jl
0 E~i;f Sir ~gf210
0
0 1 8
00

00
0

r ~À~131f ~~~~4:1[ :~2;is04If ?hb05 lf ~il?ï o~ :~il?ï oW ~À10pc=..!!

roo
00
00

f U909 Ir U910 If U911
If

U912 I~ ~À~l~ I~ ~À~12'
00
00 74f574 '4F5'4 ? 4f574 74r574
00 r;-:-;00
00 ·..
00

[ If UZ06 If U~?7 If U~OS If If ~~~o I ·..
00 U905 U919 ·..
00 '4f574 74F245 ·..

0
74 74 'ir 5 74 45 ·..

0 ·..
: J2 ·..

f If I~ lf lf ~~;'7 I[~~;.S IQ]]
·..

0 U913 U914 U915 U916 ·..
0 74F569 "74FS69 74FS§9 74f5;9 ·..
0 ·..
0 ·..

00 R6-7 ·..
0

OJXCO r. Ir Ir Ir l~ Ir 11••••••••• 4k7 ·..
0 ·..
0 Re-1O ·..

=..!! (e ••••• " •• ·..2k2 ·..
""0 1 6 ·..

tmrnJf If If Ir IE: I
la ••• " •••• ·..

00 US22 US23 ·..
0 Hn§4 14f5§4 ·..
0 II •••••••• ·..
0 ·..
: J3 ·..

f If 1r.~i1?:~I~ Ri1t 5 lf~~t 41r :1
la ••• " •••• ·..

0 U902 U901 ·..
0 ·..
0 74fS~1. Hn~l la •• " ••••• ·..

I0 J7 JHPl ·..
0 :.;-;c=..!! 8::::::::::1 't2'J I I I I I I

PHILIP5 eFT F_G~M~ Sm••e. , P.T.M. d. wrN~ I
Tit.l_ I

~REA SECMENTATION PAQCESSOR - 90~RD 1

SiZ.'j'Docunwnt. Nutnbe[' I'REV i
~2 BOARD1.SCH I

Data; M8 27 l-993 Sheet:. :. 0 :4



TOP VIEW
BOARD 2
ASP

J4

Ul04
CY"7C1.S7

Ul02
C:Y"7C15"7

Ul0<;
CY7C1S-7

U702
L642"70

U701
L642"7D

,!:::;-;:::;:;::::;-;:=;.....---...,,-----.--·----'1 ~ HZiä 3
1f HZJs 1

1f Hg7*~*0!'

f HZi\51~ HZis 4 1f HZh 2 lf Hg?~ g~0?

~ ~~0~

r W~rJ

o.
J6

-- ... I •...

~~~
......

o •..
o.·0•···

~~~
····..··..• 00......

~~~
............
•••• 0 •......
J5

~'~~~
E::!I. U U U
JMP2 8 8 8

110
418

--

- ~~~......
• 00
•• 0

~~~
.00
•• 0
.0 •
• 00
.0.
00 •
• 0.. .

00

~~~

PHILIPS C~T F.G.M. Sm.eta & P.T.Me d. WINNE

Tlt.l.,.
AREA sEGMENTATION PROCESSOR - BOARD 2

sizeloocum.nt:. Nu.mb.r IREV
1\2 I BOAR.D2. SCH I

Dat.e: M.... 27 : 99 Sheet ::.) of 1.;

BOTTOM VIEW
CONNECTOR J4

BOTTOM VIEW
CONNECTOR J7

BOTTOM VIEW
CONNECTOR J4
CONNECTOR J7
ASP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26
27

28

29

30

31

32

c
5 V

5 V

029

026

023

020

017

D14

011

08

05
02

SIZEJ

SIZE(

A21

A18

AlS

A12

A9

A6

A3

AO
WRT

LWE*

WIQ

CS_Dl1AF\T-

RCO

GNO

GNO

B
5 V

5 V

030

027

024

021

018

015

012

09

06
D3

DO
FCLKl

A22

A19

A16

A13

AlO
A7

A4

Al
WE*
TOE*

RESE'I

GND

GNO

A
5 V

5 V

031

028

025

022

019

016

013

010

07
04

Dl

SCLKl

A23

A20

A17

A14

All

A8

A5

A2

RD
LRD*

NULL

OCLK

GNO

GNO

20 ChlCtrlInN 1

19 Ch2CtrlInN 2

18 ChlHiInN 3
17 Ch2HiInN 4
16 ChlInInN 5
15 Ch2InINN 6
14 CtlN 7

13 Ct2CN Ct2N 8
12 In2N HI1N 9
11 InlN Hi2N 10

PHILIP5 CFT F.G.M.. Sm.eta & P.T.H. d. WINNE: i
Tl~1. '

AREA SEGMENTATION PROCESSOR - CONNECTOR J4 l
S1z_IDOcum.nt:. Number IRE.V'
1.2 I CON J4. 'HT I i

Dat.· Feb ar 1 19 JShe.t ::.4 ot ~4

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Appendix C Program 512x512 image

Appendix C Program 512x512 image 73

/-***/

fdefine LASER
I if LASER

finclude "e:\peter\ermsw\sc\inc\asp.h c"
lelse

finclude "\sc\inc\asplh_c"
fendif

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

file
language:
designer:
date
routines:

tes512.e
C

P.T.M. de Winne
24/02/93
main ()
void set_interrupt_Ievel (int)

sets the interrupt level in PSR register
void ask_unitsize_mode ()

asks user the unitsize and working mode
trap hardw_ trap ()

handles hardware trap
void init_xbar()

Sets the buswidth of the two crossbars.
void screen ()

sends an screen of 512*512 pixels

*/

*/
*/
*/
*/

*/

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

init_xbar 0;
clear_line_buffers();
clear_l ut 0 ;
clear_comm_buf();
ask_unitsize_mode();

set_interrupt_level (0);
enable_screen(l);

Ic image filled - 0;
lc-scree~ :; 0;
lc_image_read = 0;

print ("Processor State Register %x. \r\n", REGISTER_PSR);
print ("The unitsize is %d and the mode is %d.\r\n", unitsize, mode);
print ("The image line counter is %d\r\n/

The screen line counter is %d.\r\n\n", lc_image_read, Ic_screen);

image 0 ;
screen 0 ;

print ("\r\nThe program is finished!\r\n");
delay(2);

void ma in 0
(

int i, j;

.num mode_t {normal, windowed};

.num to_lut_t (counters, risc);

.num to_lineb_t {A, Bl;

init_processor();
init_io 0 ;
eLS 0 ;
print ("TEST OF THE AREA SEGMENTATION PROeESSOR\r\n\n");

/* global variables */
int unitsize; /* eontains the unit size */
int unitsize_p; /* eontains the unit si ze exponent

example: unitsize~8 ~=> unitsize p-3*/
int mode; /* eontains the working mode (normal or windowed) */
int read_block; /* eontains the eurrent read bloek */
int write_block; /* eontains the eurrent write bloek */
int rw_block; /* eontains (write_bloek«11) + (read_bloek«8) */

int line_buffer; /* eontains the seleeted line buffer to RISC */

int lc_image_filled; /* line counter image */
int Ic_screen; /* line counter screen */

int lc_image_read;

eLS 0 ;
print ("Receiving an image\r\n\n");
lb_select (A);
fill_lbO;
lb_select (B);

f111 lbO;
set write block(O);
config_xb~r_write(l-line_buffer);
print ("The current write block is: %d.\r\n", write_block);
print ("The selected linebuffer for the processor is: ");
putch(line_buffer + 'A');
print (".\r\nThe lc_image_read is %d.\r\n", lc_image_read);
print ("The lc_image_filled is %d. \r\n", lc_image_filled);
print ("\r\nReady to recieve an image\r\n");
whil. (lc_image_read < (LINES_PER_lMAGE/unitsize)

(
setXy (0,10) ;
DELEOL();

*/

{
int j;

exit 0;
)

void image ()
/* function: recieves an image of 512*512 pixels

pre
post

512
512

fdefine LINE LENGTH
fdefine LINES_PER_lMAGE

pre
post

print ("The line counter image read is: ,!;d.",lc_image_read);
)

print("\r\n\nThe line counter read is ,!;d. \r\nThe image is read!. \r\n",
lc image_read);

print ("Image read!\r\n");

1* end of image *1

void screen 0
1* funetion: sends an screen of 512*512 pixels

pre
post

*1
(

int i, j, lines_pb, lines_send;

eLS 0;
print.("Sending a sereen\r\n\n");
fill_1ut O;
print ("Look up table is fil1ed\r\n");
lines_send ~ 0;
lines_pb ~ LINES_PER_IMAGE/(unitsize*8);
i = 0;
do

(

set read_block(i);
config_xbar_read();
if (i =- 7)

send_burst(lines_pb, 1);
.1••

send_burst(lines_pb, 0);
j-O;
lines_send = 1ines_send + lines_pb;
whil. (lc screen < lines_send

(

j++;

)

print ("Block ,!;d is send. Waited ,!;d clockcycles. \r\n", i, j);
11"+;
}

whil. (i < 8);

1* end of screen *1

void ask_unitsize_mode ()
1* funetion: Asks the user on the terminal whieh unitsize must be

used and in whieh mode must be used.
<none>
unitsize is one of {4,8,16,32} A unitsize_p - {2, 3, 4, 5} •

unitsize = 2exp{unitsize_p} A mode is normal or windowed'

unitsize-l+{mode«5} is plaees into register U308
*1

(

int keyb;
char *unitsize_regi

do
{

print ("\n\rGive the new unit size 4, 8, 16, 32 (end with <rt»: "I;
keyb - 4 I*get_dee{} *1;
}

whil. (! ((keyb -= 4) 11 (keyb == 8) I I (keyb == 16) 11 (keyb 32»);
unitsize = keyb;
for (unitsize_p - 0; keyb > 1; keyb = keyb » 1)

unitsize_p ++;

print ("\r\nGive the new mode (NORMAL = n, WINDOW - w): "I;
do

{
keyb = 'w' I*geteh () *1;

I
whil.(!((keyb--'n') 11 (keyb=='W) 11 (keyb=='w') 11 (keyb=='W') I);
put ch (keyb) ;
print ("\r\nn);
if ((keyb =='n') 11 (keyb 'W»

mode normal;
.1••

mode = windowedi
unitsize_reg = UNIT_SIZE REGISTER;
*unitsize_reg = mode*32 + unitsize-1;
) 1* end of ask_unitsize_mode *1

void delay (int del)
{

int i;
fort ;de1 >~ 0; de1--)

{

for (i=O; i < 1000000; i++);
)

1* end of delay *1

trap hardw_trap 0
1* funetion: handles a hardware trap

pre
post

*1
{

int numb;
int psri

psr = REGISTER_PSR;
if ((numb !~ 3) I1 ((numb-=3) && ((psr&Ox40) !- 0)))

{ 1* 3 - privileged instruetion *1
print ("\r\nHardware trap %d occurred at pc: %x , npc: %x. \r\nn,numb,/

REGISTER_L1, REGISTER_L2);
whil. (1) ();

int read_control(int offset)
[
.bort *read ctrl;

}

el.. 1* switch to supervisor mode 'I
REGISTER_PSR = psrlOx40;

I' end of hardw_trap 'I

void pa use ()
(

prlnt("Press a key to continue!");
getch () ;
pri nt (" \r\n") ;
}

xbar = CROSSI BASE + OxlOO;
'xbar ~ Ox700;
xbar G CROSS2_BASE + OxlOO;
'xbar ~ Ox700;
read_block = 7;
write_block = 0;
rw_block = Ox700;
) I' end of init_xbar 'I

*1
'I
*1
*1
'I
*1
*1
'I
'I
*1
'I
'I
*1
'I
*1
*1
'I
'I
'I

4096
16384

512
2048

512
32768

imag_rou. c
e
P.T.M. de Winne
25102193
void clear_line_buffersl)

clears linebuffer A and B
void config_xbar_writelint lb

conneets the image counters and linebuffer lb to
the current write block by switching the crossbars

void lb_selectl int)
The path for the Rlse is opened to linebuffer lb

trap lb11 I)
handles interrupt 1

trap next_lb ()
handles interrupt 4

void set_write_blocklint bloek)
fills write_block with the value of block
and fi11s U7ll

file
language:
designer:
date
routines:

LINEB MAX
LINEB_MAX_4
LINE LENGTH
LINE LENGTH 4- -
LINES_PER_IMAGE
MAX BLOCK

I***~*** ***********************/

1*
I'
1*
1*
I'
I'
1*
1*
I'
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*

• defi ne
'define
'define
'define
'define
'define

1*** ***********************/

'define LASER
Bfdef LASER

'include "e:\peter\errnsw\sc\inc\asp.h_c"
'else

'include "\sc\inc\asp.h_c"
'endif

Sets the buswidth of the two crossbars.
<none>
buswidth of crossbar A is 1 ' buswidth of crossbar A is 1 '

read block=7 ' write block = 0 A U7ll is loaded with 7 A

rw block K Ox700 -

*1
[

.hort 'xbar

void init_xbar()
I' function:

pre
post

pre
post

read_ctrl = CS_CTRL+offset;
return *read_ctrli

void set interrupt level (int level)
1* function: Sets the interrupt level of the SPARe RIse processor. An

interrupt greater then level can interrupt the processor
when the traps are enabled.

level = 0 •• 15 A processor mode is supervisor
Processor interrupt level = level

'I
{

int psr;
psr REGISTER_PSR;
psr = psr&OxfffffOff;
psr - psr I (level«8J ;
REGISTER PSR = psr;
) 1* e~d of set_interrupt_level 'I

fdefine IM CC FIRST 0
'define IM_LC_FIRST 5
'define LBA_FIRST 10
'define LBBJIRST 21

extern int unitsize;
extern int unitsize p;
extern int write_bl~ck;

extern int read_block;
extern int rw_block;
extern int line_buffer;
extern int lc_irnage_read;
extern int lc_irnage_filled;

< unit);

function:
pre
post

Clears linebuffer A and 1inebuffer B.
<none>
Linebuffer A and Bare filled with zeros. RISC

is connected to 1inebuffer B; counters to linebuffer A.

xbar out
i++;
)

whil.. (

xbar out + 4;

*/
{

int i;
short *lineb;

rw = rw_bloek;
if (lb ~= A)

rw
.ls.

*/
{

int i, unit, rWi
short *xbar_out;

rw = rw_bloek;
rw = rw + IM_LC_fIRST;
i ~ 0;
do (/* connect the image 1ine counter LSB*/

·xbar out = rw + i;

lb

fills the line buffer
unitsize A lc_image_filled are vallid

1 c_image_fi11 ed lc_image_filled + 1 A linebuffer is filled

i 2·unit - 4;
do /* connect the linebuffer MSB */

*xbar_out = rW + ii
xbar_out xbar_out + 4;
1++;
)

while (i < 11);

) /* end of config_xbar read */

{

*lb j;
j++ ;
i = i + unitslze;
lb = lb + unitsize;
)

whil. (i < LINE_LENGTH);

*/
{

char *lbs;

lb = LINE_BUffER BASE;
i=O;
max_bloek = MAX_BLOCK/(unitsize*unitsize);
j = (le_image_filled*LINE_LENGTH/unitsize)%max_bloek;
do

*/
{

short *lb;
int i, j, max_bloek;

rw = rw + LBB_fIRST;

void lb_seleet(int lb)
/* function: The path for the RISC is opened to linebuffer lb

pre lb one of { A, BI
post RISC is connected to linebuffer lb A line buffer

void fill_IbO
/* function:

pre
post

+ 4)

+ 4)

< unit);

lineb - LINE BUffER_BASE;
lb select (A) ;

for (i = 0; i < LINEB_MAX_4;
* (lineb+i) = 0;

lb_seleet (B);
for (i = 0; i < LINEB_MAX 4;

* (lineb+i) - 0;

unit = unitsize_p;
rw = rw_bloek;
rw = rw + IM_CC_fIRST;
i ~ 0;
do { /* connect the image column counter LSB*/

~xbar_out ~ rw + i;
xbar_out ~ xbar_out + 4;
i++;
)

whil. (

void eonfig_xbar_write(int lb)
/* function: connects the image counters and linebuffer lb to the current

write block by switching the crossbars
pre unitsize_p = {2, 3, 4, 5J A write_block = {O, 1, 2, 3, 4, 5, 6, 71

A 1b = {A, BI
post image counter and linebuffer lb are connected to write block

/* ca1cu1ate the address of the first output line */
/* remind addressline 0,1 are not used 50 factor 64 is used instead of

16*/
if (write_bloek >~ 4)

xbar out CROSSl BASE + 64* (write_bloek-4) ;
.ls.

xbar out CROSS2_BASE + 64*write_bloek;

*/
{

.hort "'xbar;

void set write_block(int block)
/* funetion: fills write_bloek with the value of bloek and fills V711

pre block = (0, •• ,7)
post write_bloek = bloek ~ V711 is filled with write b10ek

and read_block

Ic image_read++;
if ((Ic_image read % (LINES_PER_lMAGE/(unitsize*8))) == 0)

1
set_write_block«write_block+l)&Ox7);
set_read_block«read_block+l)&Ox7);
I ;

config xbar write(line buffer);
line_b~ffer-- 1 - line=buffer;
filllb();

16384
65536

512
512

32768

/* file scre rouwe */
/* language: C */
/* designer: P.T.M. de Winne */
/* date 25/02/93 */
/* routines: void clear_lut () */
/* clears the look up table */
/* void config_xbar_read () */
/* conneets the screen counters and the LVT to the */
/* current read block by switch the crossbars */'
/* void enable_screen () */
/* restart sending a screen (burst) after 11 ut11 */
/* interrupt */
/* trap end_of_burst () */
/* handles interrupt 3 */
/* void fill 1 ut () */
/* fi11s the look up table */

/**/

Idefine LUT_MAX
'define LUT_MAX 4
'define LINE_LENGTH
'define LINES_PER_SCREEN
Idefine MAX BLOCK

/* trap 11ut11 () */
/* handles interrupt 2 */
/* void path_to_lut (int) */
/* Connects the counters or the RISC to the look */
/* up tabie. The counters are reset. */
/* void send_burst (int units, int last) */
/* sends a burst with units*unitsize lines and */
/* reset scr_pie when last = 1 */
/* void send_screen () */
/* sends a screen */
/* void set_read_block (int block) */
/* fills read block with the value of block */
/* and fills V711 */
/**/

'define LASER
'ifdef LASER

linclude "e:\peter\ermsw\sc\inc\asp.h_c"
'else

'include "\sc\inc\asp.h_c"
lendi f

(line buffer bit 11)interrupt service routine for lb11
not used

interrupt service routine after the line buffers swapped
their function

line_buffer is one of (O, 1)
line_buffer is swapped ~ xbar is reprogrammed ~ linebuffer

is filled

pre
post

*/
{

*/
{

print ("\r\n interrupt line buffer 11. \r\n") ;
}

Ibs = LINE_BUFFER_SEL;
*lbs = lb;
line_buffer - lb;
}

trap lbll ()
/* function:

pre
post

trap next lb ()
/* funetion:

enum to lut_t (counters, risc);

write block - block;

xbar = CROSSI BASE + OxlOO;
rw_block = (write_block«lll + (read_block«8);
·xbar ~ rw_bloek;

/* end of set_write_block */

Idefine SCR_CC_FIRST
'define SCR LC FIRST
Idefine LLUT FIRST

32
37
42

extern int unitsize;
extern int unitsize-p:

*;
{

int i, unit, rw;
ahort *xbar_out;

.~.rn int read_bloek;
~ern int write_bloek;
~ern int rw_bloek;
.xtern int le screen;

1 ut = LUT BASE;
path_to_lut (risc);
for (i = 0; i < LUT_MAX 4; i=i+4)

"(lut+i) =0;
;* end of clear_lut *;

o

restart sending a screen (burst) after interrupt llutll or
starts only the screen clock

data = { 0, I}
sending a screen (burst) is restarted if data
only the clock is enabled if data = 1

Fills the look up table
<none>
look up table is filled A counters are connected to lut

pre
post

en = ENABLE_SCREEN_BASE;
*en = data;

;* end of enable_screen *;

*;
(

le_sereen = le_sereen + LINES_PER_SCREEN/(unitsize"S);
) ;* end of end of burst *;

*;
{

char *en;

i = 0;
do { ;* conneet the screen line counter LSS*;

*xbar_out = rw + i;
xbar_out xbar_out + 4;
i++;
}

vhdl. (i < unit)
rw = rw_bloek;
rw = rw + LLUT_FIRST;
i = (unit«l) - 4;
do (;* conneet the LUT MSS *;

*xbar_out = rw + i;
xbar out xbar_out + 4;
i++;
)

vhdl. (i < 11);
} ;* end of config_xbar read *;

void enable_sereen(data)
int data;

;* function:

*;
1
int i,j, max bloek;
ahort "lut;

void fill_lut ()
;* function:

pre
post

trap end_of_burst (l
;* interrupt service routine after end of burst occured

function:
pre
post

clears the look up table
<none>
The lut is filled with zeros.

The RISC is connected to the lut.

pre
post

*;
(

ahort *lut;
int i;

unit = unitsize_p;
rw = rw_bloek;
rw = rw + SCR_CC_FIRST;
i = 0;
do ;* conneet the screen column counter LSS*;

*xbar out = rw + ii
xbar out = xbar out + 4;
i++;
)

vhdl. (i < unit);
rw rw_bloek;
rw = rw + SCR_LC_FIRST;

void elear_lut()
;* function:

pre
post

void eonfi9_xbar_read()
;* function: conneets the screen counters and the LUT to the current

read block by switch the crossbars
unitsize_p = (2, 3, 4, 5) A read_block = {O,l,2,3,4,5,6,7}
screen counter and LUT are eonnected to the read block

;* calculate the address of the first output line *;
;* remind addressline 0,1 are not used so factor 64 is used instead of

16*;
if (read_bloek < 4)

xbar out = CROSS2 BASE + (read_bloek«6l;
.la.

xbar out CROSSl BASE + (read_bloek-4l«6l;

*/

{

.hort *send_ser;

lines ~ lines + 256;
*send_burst = lines;

/* end of send_burst */

path_to_lut (counters); /* reset counters */
send_ser - SEND_SCREEN_BASE;
*send_ser = 384;

/* end of send_screen */

lut ~ LUT_BASE;
i-O;
max bloek MAX_BLOCK/(unitsize*unitsize);
j-O;
do

{

*lut = j;
j++ ;
if (j >- max_bloek) j=O;
i - i + unitsize;
lut - lut + unitsize;
)

while (i < LUT_MAX_4);
pat h_to_l ut (counters) ;

) /* end of fill lut */

void send_sereen(
/* function:

pre
post

)

sends a screen
<none>
a screen is send

read bloek = bloek;

*/

{

.hort *xbar;

A U7ll is filled with write block
A rw block is filled

pre
post

void set_read_bloek(int bloek)
/* function: fills read_block with the value of block and fills U7ll

and rw block
block = (0, .• ,7)
read_block = block

and read block

*/
{

print ("\r\ninterrupt llut ll.\r\n");
) /* end of llutll */

function: not used
pre
post

trap llutll()
/* interrupt service routine form llutll (latched look up table bit ll)

pre
post

void path to lut(int select)
/* function: Connects the counters or the RISC to the look up tabie.

The counters are reset.
select is one of (counters, risc)
The lut is connected to select. The counters are reset.

xbar - CROSS2_BASE + OxlOO; /* write to buswith address */
rw_bloek - (write_bloek«ll) + (read_bloek«8);
*xbar = rw_bloek;
) /* end of set_read block */

*/
{

char *lut;

lut = TO_LUT_BASE;
*lut :IE' select;

/* end of path_to_lut */

void send_burst (int lines, int last)
/* function: sends a buist with lines*unitsize lines and

reset scr_pie when last = 1
pre lines (1, •• , l28) A last = (0, I)
post units*unitsize lines are send

*/

{

.hort *send_burst;

send burst = SEND SCREEN_BASE;
if (last == 1)

!! !

tdefine LASER
Hfdef LASER

tinclude "e:\peter\ermsw\sc\inc\asp.h c·
telse

'include "\sc\inc\asp.h_c"
fendif !! !

.tabsize 8

.seg text

init2.a
assembly
P. de Winne
24/02/93
_init_processor (initialisation of the SPARe RIse processor)
_exit (leaves the program)

file
lanuage
designed:
date
routine :

!! !
!tinclude c:\sc\inc\asp.h
tinclude e:\peter\ermsw\sc\inc\asp.h

'1
'1
'1
'1
'1
'1
'1
'1
'1

comm_rou. c
C

P.T.M. de Winne
251021'J3
trap host_int IJ

handles interrupt 5
void clear_comm_buflJ

clears the communication buffer

file
language:
designer:
date
routines:

I'
I'
/.
I'
I'
I'
I'
I'
I'

'1
{

print ("\r\nlnterrupt from the host recieved\r\n");
}

commb - eOMM_BUFF BASE;
for(i=O; i < COMM_MAX_4; i- i+4)

• (commb+i) a 0;

'1
!
int i;
short *commb;

void clear_comm buf(}
I' function: clears the communication buffer

pre <none>
post the communi ca ti on buffer (UII06, UIIO?) is filled with zeros

init window invalid mask
save the return address
init processor state register
put back the return address
init y register

init trap base register
init the stack pointer

Processor Interrupt Level = 15, stack pointer loaded.

void init_processor ()
function: initialises the processor
pre: processor mode is supervisor
post: WIM-register = 0, Y-register = 0, TBA-register = 0

current window - 7, co-processor disabled, floating
point processor disabled, mode = supervisor, traps

enabled,

.global init_processor

.extrn stack
init_processor:

wr \gO, \gO, \wim
mov \07, \g7
wr \gO, Ox400fe7, \psr
mOv \g7, \07

wr \gO, \gO, \y
sethi \hi (_TRAP_BASE), \10
or \10, \lo(_TRAP BASE), \10
wr \10, \gO, \tbr
sethi \hi(stack), \06
or \06, \lo(stack), \06
retl
nop

! end of init_processor

2048
8192

handles the interrput from the host.

tdefine eOMM MAX
tdefine eOMM MAX

trap host int ()
I' function:

pre
post

!! !

void exit ()
function: leaves the program
pre: <none>
post: program counter = 0

.global exit
_exit:

jmpl %gO, %gO, %gO
nop

! end of exit

.end

!!! !
file trap_jum.a
language: assembly

designer: P de Winne
date 24/02/93

trap jumps

!!! !
.extrn
.extrn
.extrn
.extrn
• extrn
.extrn
.extrn

main
_hardw_trap
lbll
llutll

_end_of_burst
next lb

_host_int

.seg trap

!!!!!!!!!!!!! !

code for reset (should be placed at trapbase)

reset jmp:
nop
nop
ba main
nop

code for instruction access (should be placed at trapbase + OxlO)

instr_acc_jmp:
sethi %hi(hardw_trap), %10
or %10, %10 (_hardw_trap) , %10
jmpl %10, %gO, %gO
mov 1, %13

code for illegal instruction (should be placed at trapbase + Ox20)

i11 lnstr_jmp:
sethi %hi(hardw_trap), %10
or %10, %lo(_hardw_trap), %10
jmpl %10, %gO, %gO
mov 2, %13

code for privileged instruction (should be placed at trapbase + Ox30)

prev instr_jmp:
sethi %hi (hardw trap), %10
or %10, %lo(_hardw_trap), %10
jmpl %10, %gO, %gO
mov 3, %13

code for floating point disaoled (should Oe placed at trapoase + Ox40)

float dis jmp:
sethi %hi (hardw_trap), %10
or %10, %10 (_hardw_trap) , %10
jmpl %10, %gO, %gO
mov 4, %13

!!!!!!!!!!!! !
!!!!!!!! l!!!!!

sethi %hi (_hardw_trap), %10
or %10, %10 (_hardw_trap), %10
jmpl %10, %gO, %gO
mov 10, %13

.org Ox110

jump for interrupt 1: lb11 (should be placed at trapoase + Ox110)

jump for interrupt 2: lutll (should Oe placed at trapoase + Ox120)

jump for interrupt 3: end of burst (should Oe placed at trapbase +

jump for interrupt 4: next lb (should be placed at trapbase + Ox140)

code for windowoverflow (should Oe placed at trapoase + OxSO)

win_over_jmp:
sethi %hi (_hardw trap), %10
or %10, %10 (_hardw_trap) , %10
jmpl %10, %gO, %gO
mov 5, %13

code for window underflow (should Oe placed at trapoase + Ox60)

win_under jmp:
sethi %hi (hardw_trap), %10
or %10, %lol_hardw_trap), %10
jmpl %10, %gO, %gO
mov 6, %13

code for address not aligned (should Oe placed at trapoase + Ox70)

addr not jmp:
sethi %hi (hardw_trap), %10
or %10, %10 (_hardw_trap) , %10
jmpl %10, %gO, %gO
mov 7, %13

code for floating point execption (should be placed at trapbase + OxaO)

float_e_jmp:
sethi %hi (hardw trap), %10
or %10, %10 (_hardw_trap), %10
jmpl %10, %gO, %gO
mov a, %13

interl:
sethi
or
jmpl
nop

inter2:
sethi
or
jmpl
nop

Ox130)

inter3:
sethi
or
jmpl
nop

i nter4:
sethi
or
jmpl
nop

%hi (lb11) , %10
%10, %10Clb11), %10
%10, %gO, %gO

%hi (11ut11) , %10
%10, %1ol_11ut11), %10
%10, %gO, %gO

%hi (_end_of_burst), %10
%10, %lol_end_of_burst), %10
%10, %gO, %gO

%hi (_next_lb), %10
%10, %10 (_next_lb), %10
%10, %gO, %gO

code for data access exeption (should be placed at trapoase + Ox90)
jump for interrupt 5: host int (should be placed at trapoase + OxlSO)

data_a_jmp:
sethi
or
jmpl
mov

%hil_hardw_trap), %10
%10, %lol_hardw_trap),
%10, %gO, %gO
9, %13

%10

interS:
sethi
or
jmpl
nop

.end

%hi (_host_int), %10
%10, %10 (_host int), %10
%10, %gO, %gO

code for data tag overflow (should be placed at trapbase + OxaO)

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Appendix D Program address generation

Appendix D Program address generation 84

Copyright N.V. PHILIPS' Gloeilampenfabriek 1987
All rights are reserved. Reproduction in whole or in part is
prohibited without the written consent of the copyright owner.

Nederlandse Philips Bedrijven B.V.
CFT Centre For manufacturing Technology

CAM-Centre MMSP Dept.
Eindhoven - The Netherlands

;,

,;

Acronym
Name of the module
Product/Project

Group number
Creation date
Hodification date
Document language
Program language
Status
Name author

lMAGSCR2.C
lMAGSCR2. C

Area Segmentation Processor LINE BUFFER AND LUT
content calculation

1993-03-25

010 (English)
C
Preliminary
P.T.H. de WINNE

, Therefor some linebuffers and a part of the LUT is calculated and kept in
, arrays in the memory. When an interrupt NEXT_LB or END_aF_BURST occurs a
, linebuffer or a part of the LUT is copied to the appropriate RAM. These
, copy routines are in the program interchanged by print routines to files.

, The calculation of the linebuffers and LUT is done in 8compute8, printing
, linebuffers is done by 8show lines 8 and printing the LUT is done by
"" "out_screen"'.

,;
;,

------------------------ Include Specification ------------------------
,;
tinclude <d:\mscS\include\stdio.h>
finclude <d:\mscS\include\stdlib.h>
finclude <d:\mscS\tmp\xlD32p2s.c> ;, The file with the array of aois ,;
;,

------------------------ Define Specification ------------------------­
,;
fdefine BUF NUM 5 ;, the number of linebuffers stored into memory';
tdefine SCR BUF 32 ;, the number of screen lines stored into memory';
fdefine SCR-WIDTH 126 ;, the screen width the minimum unitsize of 4 is used ,;
;,

------------------- Gloabal variabie Specification ---------------------

;,
, This program is a test program for routines which can be used on the
, Area Segmentation Processor (ASP). The ASP segments images with control of
, CAD data, stores the AaIs (Area af Interest specified in the CAD data) in a
, circular buffer and composes these stored AaIs into screens which are send
, away.

, An image is divided into units. A unit is a square of 4x4 (8x8, l6x16 or
, 32x32) pixels. The size of a unit is specified by the unitsize (4, 8, 16 or
, 32).

, Writing the AaIs into the circular buffer is controlled by the image
, handier. Every unit in the image gets an address. When the unit is in an
, Aal it is an unique address else it becomes address zero (the dummy
, address). The addresses of one line are placed into a linebuffer. A counter
, counts the units. The value of the counter is used as an address for the
, linebuffer. The data of the linebuffer is than the address for the unit in
, the circular buffer.

, The AaIs are composed the screens. Sending a screen is controlled by the
, screen handier. The screen handier contains a look up table in which the
, address of the units are placed.

, Calcu1ating the content of a screen is done on the host computer (not on
, the ASP). The information is send to the ASP as CAD data. The ASP
, calculates with this information the content of the linebuffer and the look
, up tabie.

, The calculation of the 1inebuffer and the look up tab1e is time consuming.

,;
int *lines[BUF_NUM];
int ::'nl;
int outl;
int *scr_fill[SCR_WIDTH];
int used[SCR_BUF];
int screen [SCR_BUF] [SCR_WIDTH);
int Ic_image;
int Ic_out;
int address;
int screen_nr;
int Ic_screen;
int blocK;
int last_blocK;
int last_pos;
int last_val;
int switch_buf[32];
int switch_index;
;,--------------------- Explanation of the global variables

, The calculated line buffers are stored into the elements of "lines 8• The
, elements of "lines 8 are here dynamically allocated as arrays of length 128.
, "in1" is an index to the first free array in 8lines 8 and 80utl" is an index
, to the first array to be printed.

, The routine compute calculate as long there is space in "lines 8, then
, show lines outputs 1inebuffers 50 that one linebuffer is left in 8Iines".
, This-is necessary because the circular buffer is divided into 8 eight
, blocks. switching a block is done a the end of a line. When compute

* experience that the units of one line doesn't fit into the block, bit 11 of
* the last unit in the previous linebuffer is set to generate an interrupt
* (lbll) to the processor. It must be possib1e to sec the interrupt bit so
* one linebuffer must stay in "lines" except for the last of course.

* The variabie that counts the lines of an image is "Ic_image". This variable
* counts the computed linebuffers placed in "lines", not the number of
* linebuffer put in the RAM. Because the routine compute is left the variable
* "address" (that kept the next unique address for a unit) is also global.
* The current block in whi ch the uni ts are placed is kept in "bI ock". The
* value of the block number (0 •. 7) is p1aced into bit 12, 13 and 14. This is
* to the simplify the calculation. The "Ic_out" is used in show_lines. It
* counts the lines which are printed. Because the routine show_lines is left
* this variabie must be global.

.. The l1nes for the LUT are stored into "screen"~ "screen" must be seen as an
* array of which the element also consists of an array (the x direct ion) •
* Here it can contain 32 lines of the LUT. Because placing the addresses in
.. "screen" is not done sequential in y direction the arrays in "screen"
* doesn't have to be sequential. At most 32 elements of "fill_scr" point to
.. an array of "screen". An element in rrused" keeps the screen line numbers.
* When the array in "screen" is not used the element contains -1. An element
* in "screen" contains all address (bit 10 .. 0), an interrupt bit (bit 11) to
* interrupt the processor when a block has to be switched and the block
* number in which the units is p1aced (bit 14 •. 12).

* The variable "Ic_screen" counts the lines of the LUT which are printed.
* "screen_nr" counts the number of screens. Both variables are used in
.. out_screen.

* The lines for the LUT are printed in fill_lut_line. There by it is
* necessary to set the interrupt bit and calculate a list which contains the
* order in which the block has to be switched. This switch list for one line
* is kept in "switch_buf" with the index pointing to the next free position
* "switch_index". The "switch_buf" is printed when the next linebuffer
* arrives and is therefor kept global. The variabie "last_block" keeps the
* block number of the previous pixel (s). "last pos" and "last val" contain
* the position and value where the interrupt bit must be set ~hen the block
* changes.

*;

;*
-------------------- Forward Procedure Declaration --------------------

*;
void compute(FILE * , FILE * , int, int, int):
void show lines(FILE * , int, int):
void out_line(FILE * , int):
void out_screen (FILE * , FILE *, int, int):
void fill_lut_zero(FILE *):
void fill_lut line(FILE * , FILE * , int):

;*
-------------------------- The main function ----------------------------

*;
mai n ()

(

int i, j, k:
FILE *fpolb, *fposcr, *fposw:
int unitsize, units_per_line, lines_per_image, units_per_block;

unitsize = 4;
units_per_line = 1200/unitsize: ;* 12000 pixels per line *;
lines_per_image 2000/unitsize: ;* 20000 lines per image *;
units_per_block (un.igned)32768/(unitsize*unitsize);

;* 32768 halfwords (2bytes) per block; unitsize-4 *;
inl = 0:
outl = 0:
address = 1:
lc_image = 0:
lc_out = 0:
screen or = 1;
lc screen = 127:
block = a:
switch_index = 1;
switch_buf[O) = 0:
last_block = 0:
last_pos ~ 1;

for(k = 0: k < SCR_BUF: k++)
used[k] = -1:

;*
------------------------ Structure definions --------------------------

for (i~O; i < SCR_BUF ; i++)
for(j = 0; j < S12/unitsize

screen[i) [jJ = a:
j++)

*;
.truct aoi- type {

int ix, ;* x-coord aoi in the image, *;
iy, ;* y-coord aoi in the image, *;
w, ;* width aoi, *;
1, ;* length aoi, *;
snr, ;* screen number, *;
sx, ;* x-coord in the screen, *;
SYi ;* y-coord in the screen *;

) :

for(i = a: i < BUF_NUM; i++)
lines[i) = calloc(units_per_line, .izeof(int));

fpolb = fopen("d:\\temp\\lb.txt", "w"); ;* file pointer output line buffer
*;

if (fpolb == NULL)
(

printf("Can't open line buffer file.\r\n OO
);

exit (0);

if ((Ic_image < lowest->iy) 11 (ic_image> (lowest->iy + lowest->l-l»
/* start up or end*/

{ /* send a linebuffer with zeros when the first aoi starts later or
when the highest aoi is past */

lowest - (.truct aoi_type *ICAD_DATA; /*start at beginning of the cad data*/
wbil. ((outll-inl) I1 (lc_image--O)) /*run when there is place in buffer*/

{

/* search lowest */
for (; (Ic_image> (lowest->iy+lowest->l-l» && \

(lowest < &CAD_DATA[CAD_LENGTH]); lowest++);

lowest;
/* search in all aoi between [Iowest •• highest> if */

/* the coordinate is in a aoi */
(Ic_image >- loop->iy) && (Ic_image < (loop->iy+loop->l» && \

(x >- loop->ix) && (x < (loop->ix+loop->w»)
/* place number */

if (address -- units_per_block)
{ /* bloek is full !!! */
if (inl -- 0) prev - BUF_NUH - 1;/* take previous Iinebuffer */
.1•• prev - inl - 1;

* lowest->iy && Ic_image < lowest->iy + lowest->l) 11 lowest is the first 11
* lowest is the last. When one of the two last state the "iines[Ic_image]" is
* filled with zero's. When the first state "highest" is searched as the first
* aoi so that lc image < highest->iy. For every x on the y line "Ic image",
* every aoi betw~en [Iowest .• highest> is tested. If the coordinat~ is in an

aoi the
* address of "address" is assigned to the correct position in the line buffer
* and to the correct position in scr fill. Problems are:
* - the block is full and the line i~ not finished. Search in the previous
* line buffer the last not zero address and set the interrupt bit. Renumber
* the current line buffer so that the new block starts at address 1 an do the
* same for the scr_fili.
* - the position in which the address must be places in scr_fill is not free.
* Print the oldest line in scr_fill and assign the emptied line to
* the needed line of scr_fill.

*/
{

.truct aoi_type *lowest, *highest, *loop, *100p2;
int 1, X, kt 1, m, n, prev, placed;

highest++);

x < units_per_line; x++)
/* for every x on y line "lc_image" */

placed - 0;
for (x-O ;

{

loop
do

(

if

for (i-O i < units_per_line; i++)
lines[inl] [i] - 0;

)

.ls.
{

/* search highest */
for (highest - lowest+l; (Ic_image >- highest->iy) && \

(highest < &(CAD_DATA[CAD_LENGTH+l]»

compute(fposcr, fposw, unitsize, units per line, units_per_block);
wbil.(Ic image < lines_per_image) - -

(

show_lines(fpolb, lines per image, units_per_line);
compute(fposcr, fposw, unitsize, units_per_line, units_per_block);
)

fposer = fopen("d:\\ternp\\scr.txt ", IIW'I);

if (fposcr == NULL)
(

printf("Can't open screen file.\r\n");
exit (0) ;

} ;

fposw - fopen("d:\\temp\\switch.txt", Ow");
if (fposw =- NULL)

(

printf("Can't open switch file.\r\n");
exit(O);
);

fclose(fpolb);
fclose (fposcr);
fclose(fposw);

} ;

exit(O);
)

show lines(fpolb,lines per image,units per line);/*print the last linebufs*/
out_~creen(fposcr, fpo~w, 1, unitsize);/*print the last content of the LUT*/
if (switch index =- 1) /* complete the switch list */

fprintf(fposw, "td, \r\n",switch_buf[O]);
.1••

I
for (j - 0; j < unitsize; j++)

for (k - 0; k < switch index; k++)
fprintf{fposw, "td,", switch_buf[k));

fprintf(fposw, "\r\n");
)

for(i - 0; i < BUF NUM; i++)
free(lines[i));

void compute(fpout, fpouts, unitsize, unit~_per_line, units_per_block)
FILE *fpout, *fpouts;
int unitsize, units_per_line, units_per_block;

/*
* "compute" calculates the line buffer content and the LUT content. The
* results are placed into "lines" and "scr fill". The function runs until all
* the elements of "lines" are filled. When-the routine is entered with a
* Ic_image it places "lowest" to the aoi in CAD_DATA 50 that (Ic_image >-

< loop->ix) I I \
(highest-l)->w»)
on the ix

)

.1•• if ((loop->iy == (highest-l)->iy) && ((x
{ X >= «highest-l)->ix +
on the iy eoordinate then

loop->ix or when x is to the right of the last aoi on that line. */
break;

loop++;
)

whil. (loop < highest);
if (placed)

{

address++ ;
placed = 0;
1

.1••
lines[inl] [xl 0;

then

I
.1••

{ /* a free buffer found */
used[m]=loop->sy+lc_image-loop->iy;
scr_fill[used[m] J = screen[m];
)

) ;
scr_fill! loop->sy+lc_image-loop->iy J [loop->sx+x-loop->ix] =\

address+block;

/* The aoi list is sorted first
eoordinate.

So when the loop->iy lies on the same height as the one before highest the
ix eoordinate of the one bet ween them lies bet ween the x of those two. It
is not neeessary to continue searehing when x (the x eoordinate) is smaller

address = 1; /* reset address */
bloek (block+OxlOOO) & Ox7000; /*inerement bloek number mod

for (1=0; 1 < x; 1++)
/* renumber the plaeed units in lines[inl] and in ser_fill*/

if (lines[inl] [1) != 0)
(/* there is something to renumber */
lines[inl] [1) = address; /* renumber the linebuffer */
for (100p2 = lowest; 100p2 < highest; 100p2++)

(

if ((l >= 100p2->ix) && (1 < (100p2->ix + 100p2->w» &&\

(Ic_image >= 100p2->iy) && (Ic_image < (100p2->iy + \
100p2->1»)

/* renumber ser_fill */
scr fill[100p2->sy + (Ic_image - 100p2->iy)]\

[100p2->sx + 1 - 100p2->ix] = address + block;
.1•• if «(100p2->iy -= (highest-l)->iy) && «1<100p2->ix)\

/* seareh last unit in previous array or first element
for the interrupt bit*/

for (k=units_per_line-l; (lines[prev] [kl == 0) && (k!=O); k--);
lines[prev] [k]=lines[prevl [k]+2048;/*set bitll the interrupt

11 (1 >= «highest-l) ->ix + (highest-l) ->w)))

ix eoordinate of the one bet ween them lies between the ix of those two. It
is not neeessary to continue searehing when I (the x eoordinate) is smaller

bit*/

8*/

)

/* The aoi list is sorted first on the iy eoordinate then on the ix
eoordinate.

So when the 100p2->iy lies on the same height as the one before highest the

then 100p2->ix or when I is to the right of the last aoi on that line. */
break;

)

address++ ;
} ;

I;

lines[inl] [x] = address; /* plaee the address */
placed = 1;
if (scr_fill[loop->sy+lc_image-loop->iy] == NULL)

{ /* a buffer must be reserved */
for(m=O; (m<SCR_BUF) && (used[ml l= -1) ;m++);/*seareh a

buffer*/
if (m == SCR_BUF)

{ /* all buffer used */
out_screen (fpout, fpouts, 0, unitsize);
fort n = 0; (n < SCR_BUF) && (used[n) != Ic screen); n++);

/* seareh whieh array of screen was used */
used[n] = loop->sy+le_image-loop->iy;
scr_fillfloop->sy+lc_image-loop->iy] scr fill[lc_screen];
ser_fill[lc_screen] = NULL;

)

inl (inl+l) 'BUF NUM;
lc_image++;
I

void show lines(fpo, lpi, upl)
FILE *fpo;
int lpi, upl; /* lines per image, units per line */

/*
* "show lines" outputs linebuffers from "lines" so that on line is left
* exeept when the is nothing to eompute.

*/
{

whil. («outl+ll'BUF_NUMI != inl)
out line (fpo , upl);

if (Ic_image == lpi)
(/* print the last two lines */
out_line(fpo, upl);
o~t_line(fpo, upl);

fill lut_zero(fpout);
el••

fill_lut_line(fpout, fpout2, unitsize);
fprintf (fpout, "\r\n");
)

) ;

void fill lut_zero(fpout)
FILE • fpout;

;*
* The line "lc_screen" in the LUT is filled with zeros.

*;
{

int i;

};

void out_line(fpo, upl
FILE • fpo;
int upl; ;* units per line .;

;*
* "out line" prints one line of the array "lines".

.;
{

int i;

fprintf(fpo, "line %4d: ",lc_out);
for (i~lOO; i< 260 ;*upl*;; i++)

fprintf(fpo,"%4d", lines(outl] [ij);
fprintf(fpo, "\n");
1c_out++;
outl- (outl+l)%BUF_NUM;
)

fprintf (fpout, "line %3d: ",
for (i = 0; i < SCR_WIDTH

fprintf (fpout, "0");

lc_screen);
i++)

(scr_fill[lc_screenj =- NULL) && !last) I I
(1c screen < 127) && last))

vold out_screen (fpout, fpout2, last, unitsize)
FILE 'fpout, 'fpout2;
int last, unitsize;

;*
* out_screen outputs one or more lines until one line is cleared in "screen"
* when "last" is zero. When "last" is not zero all lines are printed (the
* rest of the actual screen and the next screen when there is one).

*;
{

whil.

[

Ic screen++;
if ((lc_screen >= SCR_WIDTH) && !last)

(

lc_screen = 0;
fprintf(fpout, "\r\nScreen %d.\r\n", screen_nr);
screen_nr++;
} ;

if (scr_tiU [lc screen] ! = NULL)
fill_lut line(fpout, fpout2, unitsize);

.1••
fill_lut_zero(fpout);

fprintf(fpout, "\r\n");
I

if (last && (scr_fil! [Ol !~ NULL))
(

fprintf(fpout, "\r\nScreen %d.\r\n",. screen_nr);
screen_nr++;
for (lc_screen = 0; lc_screen < SCR_WIDTH; lc_screen++)

(

if (scr_fill[lc_screenj == NULL)

) ;

void fill_lut_line(fpout, fpouts , us)
FILE 'fpout, *fpouts;
int us; ;* uni tsi ze *;

;*
* The line "lc screen" of the LUT is filled with "scr fill[lc screen]".
* The array sc; fill[lc screen] is also cleared. The -;witch list is
* calculated and the switCh bit is set when necessary. The switch bit is set
* when the block number of the actual unit is different than that of the
* "last_block". The interrupt bit is then set on position "last_pos". Because
* the LUT is write only the value of that last position is kept in
* "last val". The switch list "switch buf" is initially filled with zero on
* the first posieion which means that- the first block for the units is the
* zero block. When in the same line one or more block switches occur the new
* block number are put in the switch array. When the next line is entered the
* switch array is printed unitsize times and the new block number is put in
* the array. The array is also printed unitsize times when there is only one
* element in the array but the block changes when the next lines comes.

*;
{

int i, j, k;

fprintf (fpout, "line %3d; ", lc_screen);
for (i = 0; i < SCR_WIDTH ; i++)

(

if (scr fUl [lc screen) (ij != 0)
{ ;* -;;heck for block difference *;
fprintf (fpout, "%4d", ;* ((scr_ fill [lc_ screen] [i] &Ox7000) »12) +' a' , */\

scr_fill[lc_screen] (i)&Oxfff);
if (« (scr fUl[lc_screen] [i]&Ox7000)>>12) != last_block) I1 \

switch_index>l)) && (lc_screen !~ (last_pos&OxffBO»>7))
{

fprintf(fpouts, "llutll bit is set. Position lc_screen %d, x %d,\

alue %d.\r\n", (last_pos&OxffBO) »7, last_pos&Ox7f, last_val);
for (j = 0; j < us; jH)

for (k = 0; k < switch_index; k++)
fprintf (fpouts, "%d, ", swi tch_buf [kJ);

fprintf(fpouts, "\r\n");
switch_buf[OJ = «(scr_fill[lc_screen) [i)&Ox7000»>12);
switch_index = 1;
last_block = switch_buf[Ol;

I
.1•• if («(scr_fill[lc_screen] [i)&Ox7000)>>12) != last_bloek) && \

(ic_screen -= (last_pos&OxffBO) »7))
{

fprintf (fpouts, "llutll bit is set. Position Ic_screen %d, x %d, \

value %d.\r\n", (last_pos&OxffBO»>7, last_pos&Ox7f, last_val);
swi tch_buf [sw i tch_index 1 = «scr_ f111 [l c_ screen J [i 1&Ox7000) »12) ;
last_block = switch_buf[switch_index);
switch_index++;
) ;

last pos = lc screen*SCR WIDTH+i;
last=val = SC~_fill[lc_s~reen) [i)&Oxfff;
scr_fill [lc screen] [i J = 0;
}

.1••
fprintf (fpout," 0");

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing TechnoLogy

Appendix E Asserrlbly listings fiU_ua_buffer

E.! Original version

lLinef Source Line Flame Computer Corp. Sparc-C Compiler Version 3.6.11 May 24 09:00:17 1993

TITLE
NAME

C:\SC\SRC\C\fill.c
fill

l""" 1 fdefine LINE LENGTH 3000
l""" 2 fdefine BUFFER_SIZE 4
!""" 3 fdefine LINE BUFFER BASE ADDRESS Ox090002
! ••• 4 extern int current_image_line;
!""" 5 extern int image_unit_addresses[BUFFER_SIZE) [LINE_LENGTH);
!*** 6
l""" 7 void fill_ua_buffer ()
! * ** 8 (
!*lt_ 9 int i;
_fill_ua_buffer:
00000000 9DE3BFFO save %06, -16, %06
!""" 10 short "linebuffer;
!*** 11
!**. 12 linebuffer ~ LINE_BUFFER_BASE_ADDRESS;
00000004 37000240 sethi %hi (589826) , %13
00000008 B616E002 or %i3, 2, %i3
OOOOOOOC B210001B mov %i3, %il
!*** 13 fort i 0; i < LINE_LENGTH; i++
00000010 BOI02000 mov 0, %iO
00000014 80A62BB8 cmp %iO, 3000
00000018 36800000 bge,a IB3
0000001C 01000000 nop
!*** 14 "(linebuffer + 4"i)= image_unit addresses[current image 1 i ne I [i J ;

00000020 B6102004 mov 4, %i3
IBl :

00000024
00000028
0000002C
00000030
00000034
00000038
0000003C
00000040
00000044
00000048
0000004C
00000050
00000054
00000058
0000005c
00000060
! *,., * 15
00000064

00000068
0000006C
00000070

84100018
40000000
8210001B
B6100001
B4064018
37000000
B616EOOO
lFOOOOOO
D003EOOO
40000000
92102EEO
88100008
8606COIC
892E2002
F606COIC
F6368000

I
B0062001

80A62888
26800000
86102004

mov
caii
mov
mov
add
sethi
or
sethi
ld
cali
mov
mov
add
sl1
ld
sth

inc
182:

cmp
bl,a
mov

%iO, %g2
mul

%i3, %gl
%gl, %i3
%il, %13, %i2
%hi (_image_unit_addresses), %i3
%i3, %10 (_image_unit_addresses) , %i3
%hi (current_image_line), %07
%07, %10 (_current_image_line) , %00

mul
12000, %01
%00, %i4
%i3, %i4, %13
%iO, 2, %i4
%i3, %i4, %i3
%i3, %i2, %gO

1, %i 0

%iO, 3000
181
4, %i3

00000074
00000078

8iC7E008
81E80000

IB3 :
ret
restore %gO, %gO, %gO

fill ua buffer Local Symbols

Name

1..
1 inebuffer

Class

reg
reg

Type

int
* short

Size Offset Location

iO
il

Appendix E AssembLy Listings jiLL_ua_buffer 91

Nederlandse Philips Bedrijven B.V.
Centre For manujacturing Technology

E.2 Improved version

!Linef Source Line Flame Computer Corp. Sparc-C Compiler Version 3.6.11 May 24 10:05:23 1993

TITLE
NAME

C:\SC\SRC\C\fil12.c
fi112

!*k* 1
!*** 2
!*** 3
!Jr** 4
!*** 5
!*** 6
!*** 7
1*** 8
!*** 9
00000000
00000004
00000008
OOOOOOOC
00000010
00000014
00000018
0000001C
00000020
00000024
!*-.lr* 10

fdefine L1NE LENGTH 3000
*define 8UFFER S1ZE 4
fdefine L1NE 8UFFER_8ASE_ADDRESS Ox090002
extern int current image_line;
extern int image_unit_addresses[8UFFER_S1ZE] [L1NE_LENGTHI;

void fi 11 ()
(

fu11_ua_buffer(&(image_unit_addresses[current_image_linel [0));
9DE38FFO save %06, -16, %06
31000000 sethi %hi (_image_unit_addresses), %iO
80162000 or %iO, %10 (_image_unit_addresses) , %iO
lFOOOOOO sethi %hi (_current_image_line), %07
D003EOOO ld %07, %lo(_current_image 1ine), %00
40000000 cal1 mul
92102EEO mov 12000, %01
82100008 mov %00, %i1
40000000 ca11 fu11 ua buffer
90060008 add %iO, %00, %00

)

1, %11

%il, 2, %i5

%06, -16, %06

~ image_1 Ii);
%i0, %i5, %i4
%i4, %12, %gO

4;
%i2, 4, %i2

inc

save

~ L1NE 8UFFER_8ASE_ADDRESS;
sethi %hi (589826), %i4
or %i4, 2, %i4
mov %i4, %i2

0; i < L1NE_LENGTH; i++
cmp %11, 3000
bge,a 183
nop

I
82066001

sl1
181 :

* (linebuffer)
F806001D ld
F8368000 sth

linebuffer +~

8406A004 add
)

linebuffer
39000240
88172002
8410001C

for (i
80A66888
36800000
01000000

(

882E6002

! * .. * 21
00000050
00000054
!*** 22
00000058
!*** 23
!*** 24
0000005C

!*** 11
!*** 12 void fi11_ua_buffer (image_I)
00000028 81C7E008 ret
0000002C 81E80000 restore %gO, %gO, %gO
!*** 13 int image l[L1NE_LENGTHI;
!*** 14 {
_fi11_ua_buffer:
00000030 9DE38FFO
!*** 15 int i;
!*** 16 short *linebuffer;
! *** 17
!*** 18
00000034
00000038
0000003C
!*** 19
00000040
00000044
00000048
! * * * 20
0000004c

182 :
00000060
00000064
00000068

0000006C
00000070

80A66888
26800000
882E6002

81C7E008
81E80000

cmp
bl,a
s11

183 :
ret
restore

%11, 3000
181
%il, 2, %i5

%gO, %gO, %gO

fi11 ua buffer Local Symbols

Name C1ass Type Size Offset Locat ion

image l. reg 'int/array 3000 iO
i. reg int i 1
linebuffer reg 'short i2

Appendix E Assembly listings fill_ua_buffer 92

Annelies Meerbach
Anne-Marie v. Helvoort
Yvonne v. Bokhoven
Leni v.d. Zanden
Marja de Mol
joke Verhoef
Majoke Velberg
Mariet van Rixtel
Els Gerritsen
Joyce Bagchus
Peter v.d. Yen
Piet de Greef
Tiny Verhoeven
Tiny Bijl
Linda Balvers
Lia de Jong
Rian v. Gaaien
Dorct Pellegrino
Tanja de Haan
Linda v. Loon
Yvonne Broers
Paul v. Eck
Piet BeH
Jan Bel1
John Snoeijs
Louise Schavet
Cliff Hasham
Albert Nelisscn
Niels Olthuis
Arthur Thepass
eH.j.D. v. Rijsewijk
A.F. Chamboné
ing. Alex Wijffcls
dr.ir. T. Kwaaitaal
dr.ir. E. Wezenbeek
Ton v.d. Boom

Yucai & Ge
Prof. e Mulders
Dhr. e Huber
Alberto Martis
Arendsz, A.
dr.ir. B. den Srinker
Peter Janssen
Roy Simon
Rudolph
Alex Ri1cy
julio de In Court
Margarita
Bode
Dhr. H. v.d. Heiden
Centrale Stud. Administratie

EH 1.10
EH 1.07
EH 1.09
EH 1.06
EH 1.26
EMV - EL 1.15
EEG 1.13
EEG 2.06
EH 2.28
EH 2.06
EH 2.06
EH 1.26
EH 6.35
EH 8.34
EH 9.34
EH 7.33
EH 10.28
EH 12.28
BG 2.14

EH 3.05
EH 1,21
EH loge

HC 0.08
CTD - RF HC -1.11
CTD - RF hg -1.11
WFW 2.136
Magazijn elektro EH 0.01
Magazijn elektro EH 0.0"1
E - EB EH 10.-15
E - EB EH 10.0S
EH 2.27
lPL - TNO Kamer 53
Vakgroep Regeltechniek, Gebou w Elektrotechniek,
Kamer 12.05, TU Delft, Postbus 5031, 2600 GA Delft
Hageheldlaan 62, 5641 GP Eindhoven
Herman Gorterlaan 319, 5644 SN Eindhoven
Sleedoorn 9, 5666 AT Geldrop
Prof. v.d. Grintenlaan 32,5652 NB Eindhoven
Mathildelaan 75, 5611, BE Eindhoven (PTH-cr)
ESP - EH 5.27
Furkabaan 26, 3524 2J Utrecht
Voltairestraat 60, 3076 TP Rotterdam (broer)
Centiaanstraat 592, 7322 CL Apeldoorn

BOK Pav. F.OS

Annelies Meerbach
Anne-Marie v. Helvoort
Yvonne v. Bokhoven
Leni v.d. Zanden
Marja de Mol
Joke Verhod
Majokc Velberg
Mariet van Rixtel
Els Gerritsen
Joyce Bagchlls
Peter v.d. Ven
Piet de Grecf
Tiny Verhoeven
Tiny Bijl
Linda Balvers
Lia de Jong
Rian v. Gaaien
Doret Pellegrino
Tanja de Haan
Linda v. Loon
Yvonne Broers
Paul v. Eck
Piet Bell
Jan Bell
John Snoeijs
Louise Scha vet
Cliff Hasham
Albert Nelisscn
Niels Olthllis
Arthur Thepass
C.H.J.D. v. Rijsewijk
A.F. Chamboné
ing. Alcx Wijffels
dr.ir. T. Kwaaitaal
dr.ir. f:. Wezenbeek
Ton v.d. Boom

Yucai & Cc
I)rof. C Mulders
Dhr. C. Huber
Alberto Martis
Arendsz, A.
dr.ir. B. den Brinker
Peter Janssen
Roy Simon
Rudolph
Alex Rilcy
Julio de la Court
Margarita
Bode
Dhr. H. v.d. Heiden
C:entra1l' Stud. Administratie

EH 1.10
EH 1.07
EH 1.09
EH 1.06
EH 1.26
EMV - EL 1.15
EEG 1.13
EEG 2.06
EH 2.28
EH 2.06
EH 2.06
EH 1.26
EH 6.35
EH 8.34
EH 9.34
EH 7.33
EH 10.28
EH 12.28
BG 2.14

EH 3.05
EH 1,21
EH loge

HG 0.08
CTD - RF HG -1.11
CTD - RF hg -} .11
WFW 2.136
Magazijn elektro EH 0.01
Magazijn elektro EH 0.01
E - EB EH 10.15
E - EB EH 10.08
EH 2.27
IPL - TNO Kamer 53
Vakgroep Regeltechniek, Geboll w Elektrotechniek,
Kamer 12.05, TU Delft, Postbus 5031, 2600 GA Delft
Hageheldlaan 62, 5641 GP Eindhoven
Herman Gorterlaan 319,5644 SN Eindhoven
Sleedoorn 9, 5666 AT Geldrop
Prof. v.d. Grintenlaan 32, 5652 NB Eindhoven
Mathildelaan 75, 5611, BE Eindhoven (PTH-er)
ESP - EH 5.27
Furkabaan 26, 3524 ZJ Utrecht
Voltairestraat 60, 3076 TP Rotterdam (broer)
Gentiaanstraat 592, 7322 CL Apeldoorn

BOK Pav. F.05

	Realisation of the area segmentation processor for esprit project #2017:TRIOS

	Untitled
	Summary

	Preface

	Content

	List of figures

	List of tables

	1. Introduction
	2. In-line PCB inspection system

	3. Hardware of the area segmentation processor

	4. Software for the area segmentation processor
	5. Implementation of the hardware

	6. Implementation of the software
	Project status and conclusions

	Abbreviations

	Literature

	Appendices

