EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Realisation of the Area Segmentation Processor for ESPRIT project #2017 : TRIOS

de Winne, P.T.M.

Award date:
1993

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0f863557-3205-4bd3-b1ad-81146af65ba1

EINDHOVEN UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING
Measurement and Control Section

REALISATION OF THE
AREA SEGMENTATION PROCESSOR
FOR ESPRIT PROJECT #2017: TRIOS

by P.T.M. de Winne

M.Sc. Thesis/Report on Practical training period
carried out from september 1992 to june 1993
commissioned by prof.dr.ir. A.C.P.M. Backx
under supervision of ir. R. van Vliet of the TUE
and ing. A.J.M. van Lier of Philips CFT

date: 7 june 1993

The Department of Electrical Engineering of the Eindhoven University of
Technology accepts no responsibility for the contents of M.Sc. Theses or reports on
practical training periods.

Realisation of the

Area Segmentation Processor

for
Esprit Project #2017: TRIOS

author : P.T.M. de Winne
id. nr. : 318778
institute : University of Technology Eindhoven
department : Information Engineering 4 5
professor : prof.dr.ir A.C.P.M. Backx tu J
coach : ir. R. van Vliet
company : Nederlandse Philips Bedrijven B.V.

department : CFT-ISP-IMI
coach : ing. AJJ.M. van Lier %

period : september 1992 - june 1993

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Summary

Philips CFT (Centre For manufacturing Technology) is partner in the ESPRIT project
#2017: TRIOS, for the development of an in-line inspection system. The inspection system
checks PCBs, which are suitable for surface mounted devices, after solder paste has been
laid on the PCB. The purpose of the system is to decide wether or not the solder paste is
on the right position and has the right volume.

A laser scanner extracts height and intensity information from a PCB by means of a laser
beam. This information is sent to a data processing unit. The data processing unit
calculates the position and the height of the solder paste and checks that those values are
between certain bounds. The results are given to the host which controls the whole system.

The Area Segmentation Processor (ASP) segments the image information. This to
distribute the data over the calculation processors and to reduce the data for the calculation
processors. The areas of interest (AOIs), which have to be segmented, are specified in the
CAD-data. The ASP composes the stored AOIs into images (called screens), which have
a suitable format for the calculation processors and sends these screens to the calculation
processors.

The controller of the ASP converts the specification of the areas of interest into addresses
on which the data is stored in the circular buffer. Information within an AOI is placed on
a unique address in the circular buffer. Information outside an AOI is placed on address
zero. After the AOIs are stored, the AOIs are composed to one or more screens by the
screen handler. The screens are sent to the calculation processors. The composition of the
AOIs is calculated by software.

The hardware of the Area Segmentation Processor is improved and implemented in the
system. Software is written and tested so that 512* images are received and sent. The
segmentation software is partly written. The processor, a RISC processor, can be
programmed in assembly or in C. Using local variables instead of global variables will
save processor time.

Summary 2

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Preface

This report is written by Peter de Winne, student information engineering (ITE) at the
University of Technology Eindhoven (TUE), as graduation report. The graduation was
carried out at Philips Centre For manufacturing Technology (CFT), section Industrial
Signal Processing (ISP), group Industrial Measurement and Inspection (IMI).

The section Industrial Signal Processing provides support for the application of electronic
technologies in production processes and products. The main activity areas are Industrial
Measurement and Inspection with the emphasis on Machine Vision and Motion Control
Technology. The object of the group Industrial Measurement and Inspection is to provide
in solving automatic optical inspection problems in production and develop methods, tools
and modules for applications in this field.

My graduation assignment was to realize a processor board (the area segmentation
processor) that segments areas of an image and places these areas into screens. Therefor
the schemes of the hardware are checked, the hardware is build, tested and improved
where necessary and the software is written.

I want to thank ir. N.G.M. Kouwenberg who gave me the opportunity to fulfil my
graduation assignment at Philips CFT. I want to say special thanks to ing. A.J.M. van Lier
who gave me the graduation assignment and did the coaching of my work at Philips CFT
and ir. R. van Vliet who did the coaching at the TUE. Further I want to thank ir. F.G.M.
Smeets, ing. J.F.J. Hendriks, ir. L.H.D. Geraats, ing. M.F.W. Pechler and H.M. van Meurs
for their support during my graduation period.

Preface 3

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Content
SUMMATY e e e e 2
Preface e 3
Listof figures 6
Listof tables i i e 7
1 INtroductiont e e 8
2 In-line PCB inspection Systemc.vtureneeennn.. 10
2.1 Global explanation of the system 10
2.2 Data processing SyStemttt 11
3 Hardware of the Area Segmentation Processor 13
3.1 Controller 14
32 VME-bus interface i, 14
33 Image handler 15
34 Screenhandler i e e 16
35 Circularbuffer 17
4 Sofiware for the Area Segmentation Processor 19
4.1 Manage AOIS e e 20
4.1.1 ComputeLines, 20
412 Combine AOIsIn Screens 22
4.13 SendIds And Positions 23
414 Control Screen Retrieval 23
42 Manage Unit Address Buffer 24
43 Manage Unit Buffer 25
5 Implementation of the hardware 27
5.1 VME-interface e 27
5.2 Controller e 29
5.3 Image handler 30
5.4 Screenhandler e e 31
5.5 Circularbuffer i 32
5.6 Picture businterface 33
Content 4

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

6 Implementation of the software 34
6.1 Software 512x512imagest 34

6.2 Segmentation software i 35

6.3 Programming inC i 37
Project status and conclusions, 40
Abbreviations e e e e 41
Literature e e 42
Appendix A The processor CY7CO11 it 43
AT RegiSerS i e e e 44

A.l.1 Working registerscoiiirnnn..n 44

A.1.2 Special purpose registers 45

A2Pipeline e 47

A3 Delayed control transfer, 49

A4 Data tYPeS . . ittt e e e e 50
ASIDSIMUCHONSttt ittt et ettt e e 51

A TraDS . . e e e e e 52
Appendix B Schemes Area Segmentation Processor 54
Bl Controller e 55
B2EPLDinterrupt handlerttt 56
B3Image handler it 57

B4 Screenhandler 58
BSEPLD screen handler oveon.. 59
BO6EPLD divider e 60
B.7Circular buffer 61

B8 Picture businterface o 62

BO VME-interfacettt 63

B.10 VME-interface handler 64

B.11 Communication buffer 69
Appendix C Program 512x5121mageot it ittt 73
Appendix D Program address generationo, 84
Appendix E Assembly listings fill_ ua buffer 91
E.1 Original versionttt 91

E2 Improved version ittt 92

Content 5

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

List of figures

Figure 2.1 Diagram in-line inspection system e .. 10
Figure 2.2 Diagram of the data processing system 11
Figure 3.1 Example of image to screen transformation 13
Figure 3.2 (A) Definition of an AOI, (B} Relation between pixel, unit and

AOL e e 13
Figure 3.3 Block diagram of the Area Segmentation Processor 14
Figure 3.4 Unique identifier pixel and unit 15
Figure 3.5 Address generation for writing units 16
Figure 3.6 Address generation for reading units 16
Figure 3.7 Principle of circular buffer 0 0. 17
Figure 3.8 Functional diagram of circular buffer 18
Figure 4.1 Functional diagram of the Area Segmentation Processor 19
Figure 4.2 Functional diagram of manage_aois 20
Figure 4.3 Addresses for the units inan AOI 21
Figure 4.4 Examples of places for the switch bit 21
Figure 4.5 Example of a screen map with the addresses 22
Figure 4.6 Functional diagram of control_screen_retrieval 24
Figure 4.7 Functional diagram of manage unit_address _buffer 25
Figure 4.8 Functional diagram of manage_unit buffer 26
Figure 5.1 Example of a 2 times stretched clock 30
Figure 6.1 Sequence of 512x512 program 35
Figure 6.2 Sequence of receiving the image 35
Figure 6.3 Sequence of sending the screent 35
Figure 6.4 Sequence of the address generation 37
Figure 6.5 Listing fill ua buffer 38
Figure 6.6 Listing fill ua buffer improved 39
Figure A.1 (A) Window stack (B) Window overlap 45
Figure A.2 Processor State Register (PSR) 45
Figure A.3 Window Invalid Mask (WIM)} e, 46
Figure A4 Trap Base Register (TBR) 46
Figure A.5 Processor instruction pipeline 47
Figure A.6 Pipeline with all single-cycle instructions 48
Figure A7 Pipeline with a LOAD instructioncooooo... 48
Figure A8 Delay instruction 49
Figure A.9 Instruction format e 51
List of figures 6

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

List of tables

Table 5.1
Table 5.2
Table 5.3
Table A.1
Table A.2
Table A.3
Table A4

Functions of VME-interface with offset address 28
Function selection with base addresses 30
Line buffer selection with databit0 31
Differences between RISC and CISC 43
Internally generated opcodes 49
Valid data bus for bytes and half words 50
Trap levels i i 53

List of tables

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

1 Introduction

In the production of PCBs much has changed during the last years. The sizes of resistors,
capacitors, integrated circuits etc. are getting smaller and smaller. They are placed on the
print by machines and nowadays the production of a PCB is checked after every process
phase to maintain quality. For this last step Philips CFT (Centre For manufacturing
Technology) is partner in the ESPRIT project #2017: TRIOS. Within this project Philips
CFT is developing an in-line PCB inspection system. The PCBs are suitable for surface
mounted devices (SMD) technology. The inspection system will check the PCBs after the
solder paste (= a composure of solder tin and solder flux) has been laid on the solder
pads. The purpose of the system is to decide wether or not the solder paste on the PCB
is on the right position and has the right volume. When for instance the solder paste isn’t
at the right position it can cause short circuits or when the volume is too less the SMD
will not be connected properly.

As a part of the inspection system the Area Segmentation Processor (ASP) segments the
data information from a PCB. This segmentation is necessary for the distribution of the
data over the calculation processors and to reduce the data of a PCB so that only
interested areas are checked.

The hardware of the Area Segmentation Processor is designed by F.G.M. Smeets who
graduated in august 1992 on this design ([SME]"). I continued the work with the Area
Segmentation Processor. My graduation assignment was:

- build and test the hardware of the ASP,

- develop the software and

- integrate the ASP in the inspection system.

The assignment was carried out by:

- studying the inspection system,

- studying the functions and the schemes of the ASP,

- studying the processor of the ASP,

- making worst case calculations of the timing of the different components,

- connecting and testing the ASP part by part,

- integrate the ASP in the system and writing software for receiving small images
so that no segmentation has to be done and

- writing the segmentation software after studying the system development
schemes.

! Reference to literature list at page 42.

Introduction 8

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

The results at the end of the graduation period are that the Area Segmentation Processor
has been built and tested. It has been implemented in the system and for small images
where no segmentation is necessary the software is written and tested. The segmentation
software is written but not tested.

This report describes the realisation of the Area Segmentation Processor. Chapter 2 gives
the different functions of the inspection system. In chapter 3 the hardware of the ASP is
split into functional blocks. An outline of the software is given in chapter 4. Changes in
the hardware are given in chapter 5 and the implementation of the software is given in
chapter 6.

Introduction 9

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

2 In-line PCB inspection system

The PCB inspection system must be suitable to inspect PCBs after the solder paste has
been laid on the PCB. The volume and position of the solder paste must be between
certain bounds. PCB sizes are up to 50x30 cm and the inspection time for the largest PCB
is maximal 50 seconds. The inspection has to be done with a resolution of 25 pm. With
these demands the system is designed. In the first paragraph the design of the inspection
system is split into blocks. The function of each block is explained there. In the second
paragraph the data processing system, which is a block of the inspection system, is further
split into functional blocks and these blocks are explained.

2.1 Global explanation of the system

A global diagram of the in-line inspection system is given in figure 2.1. The lines
represent data flows and the dotted lines represent control flows.

DATA PROCESSING
SYSTEM USER INTERFACE
FILE SYSTEM
LASERSCANNER [€ S\ TRANSPC:;(RJ3 SYSTEM
< > DATA
D > CONTROL
Figure 2.1 Diagram in-line inspection system

The function of each block is:

- host. The host controls the entire system.

- laser scanner. The laser scanner extracts image information from the PCB by means of
a laser beam. The reflected light is translated into two data streams: height and
intensity data. The height data is used for the volume measurement and the
intensity data for the position measurement. These two streams are sent to the data
processing system.

In-line PCB inspection system 10

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

- data processing system. The data processing system selects the solder pad information

from the data streams and calculates the position and volume of the solder paste.
The solder pads are found using data from the host (which gets it from the file
system), called CAD-data. What these data are will be explained later. The results
of the calculations are sent to the host.

- user interface. The user interface handles the communication between an operator and

the host computer. It is necessary to give information about the status of the
running process to the operator or to give commands to the host about starting the
inspection of a new PCB. The data stream from the user interface to the host
represents new CAD-data, which is necessary when inspection of a new PCB
starts.

- file system. The file system is used to store data about the status of the process and to

store CAD-data.

- transport system. The transport system brings PCBs to the laser scanner. After inspection

2.2

of the PCB, it sorts the PCBs into approved and disapproved ones. The sorting
is controlled by the host which gets the information from the data processing
system.

Data processing system

A diagram of the data processing system is given in figure 2.2. The function of each block

18:

- image acquisition & filtering. The image acquisition & filtering block has a pre

processing function. The laser data are sent to this block. The data are sent
through a look up table for conversion of the height and intensity data. This can
be used to obtain better contrast. The other function of this block is to put the
images on the data bus with the right control signals.

CAD DATA CAD DATA
FROM HOST FROM HOST
AREA
SEGMENTATION SB'PP%FFEH 5 ?Bm’ RESULT
PROCESSOR (1-N) (1-N) TO HOST
IMAGE
DATA |
LaseR == ACQUISTION
SCANNER FILTERING
FIDUCIAL
> MEASUREMENT
CADDATA — UNIT
FROM HOST

Figure 2.2 Diagram of the data processing system

In-line PCB inspection system 11

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

- area segmentation processor (ASP). The function of the area segmentation processor is
to buffer the data received from the acquisition and filtering block, distribute the
data over the SBIPs and reduce the data send to the SBIPs. The distribution is
done by combining Areas of Interest (AOIls). The AOIs are specified in the CAD-
data and is received from the host. The combined AOIs (called screens) are sent
to the SBIPs in a suitable format (512 x 512 pixels). The host controls to which
SBIP the screen is sent. The laser scanner doesn’t have to be stopped with the
buffer and distribution function of the ASP.

- SBIP buffer (1..N). The SBIP buffer is used to store a screen so that the SBIP can be
active continuously. In this way the memory of the ASP can be small.

- SBIP (1..N). The SBIP does the volume and the position calculations of the solder paste.
These calculations are done by software algorithms and are therefor relatively
slow. To compensate this, a number of SBIPs work in parallel. The host controls
the assignment of screens to the SBIPs. The results of the calculations in the
SBIPs are sent to the host.

- fiducial measurement unit (FMU). The position accuracy of the PCB in the laser scanner
is limited. A small displacement can lead to a deviation which amounts to several
pixels. The second problem is that the PCB isn’t always perfectly flat. This gives
a deviation that varies with the position on the print. The fiducial measurement
unit, locates fiducials (characteristic shapes, for example comers in a copper track)
using the CAD-data received from the host (originating from the file system) and
calculates the displacement between the expected positions and the measured. The
displacement vectors are sent to one of the SBIPs.

{n-line PCB inspection system 12

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

3 Hardware of the Area Segmentation Processor

As written in the previous chapter the ASP receives an image from the acquisition board
and CAD-data from the host. It segments the specified AOIs and composes them into new
screens so that only interested areas are sent to the SBIPs. Combining the AOIs into
screens is done by software. The function of the ASP depicted in figure 3.1.

IMAGE CAD DATA SCREEN

Figure 3.1 Example of image to screen transformation

In order to reduce the work for the ASP processor an image is divided into units. A unit
is a square which contains 16, 64, 256 or 1024 pixels, depending on the chosen unit size'
(4, 8, 16 or 32). The reason for this is to give the processor more time for other
calculations. When a unit has to be saved, the processor must change the stored
information only once per four (eight, sixteen or thirty two) lines. The relation between
pixels, units and AOI can be seen in figure 3.2(B). In this figure the definition of an AOI
is also given.

2 UNIT SIZE
Y I
X ; —UNIT
< £ |
A:OI LENGTH T
l ' \
WIDTH
(A) (B) PIXEL

Figure 3.2 (A) Definition of an AOI, (B) Relation between pixel, unit and AOI

The hardware of the ASP is split into blocks. This is given in figure 3.3. Receiving and
segmenting is done by the PI-bus interface and the image handler. After storing the AOIs
into a circular buffer a screen is composed by the screen handler and sent to an SBIP by
the PI-bus interface. A further explanation of the function of each block is given in the
next paragraphs.

"It is an agreement that the length of a unit is called unit size.

Hardware of the Area Segmentation Processor 13

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

HosT{——| VME-BUS l‘———'s CONTROLLER

INTERFACE v
SCREEN

IMAGE Lj
HANDLER I HANDLER

|

— raus CIRCULAR PI-BUS
MAGE INTERFACE BUFFER INTERFACE SCREEN
C————) CcoNTROL NS paTa
Figure 3.3 Block diagram of the Area Segmentation Processor

3.1 Controller

The controller controls the segmentation of the images and the composition of the screens.
The processor used is a RISC processor. More about this processor in appendix A. The
control block contains two RAMSs, one for the program and one for the CAD-data. These
RAMs are initially filled via the VME-bus interface. The tasks of the controller are:

- controlling the image handler

- controlling the circular buffer

- controlling the screen handler

- communication with the host (via the VME-bus interface)

- calculating the composition of a screen.

3.2 VME-bus interface

The functions of the VME-bus interface are:
- downloading the program
- downloading the CAD-data
- interrupt handling between the ASP and host
- transferring CAD-data from host to ASP
- transferring screen composition information from ASP to host.

During the downloading process, the processor is switched off and the VME-bus interface
controls the data- and address bus of the ASP. Nomally the processor can’t be switched
off very easily so when more CAD-data is needed from the host, the host puts this

Hardware of the Area Segmentation Processor 14

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

information in a specific memory, the communication buffer. When sending CAD-data,
the processor reads the communication buffer and puts the data in the RAM.

The communication buffer is also used when the screen composition is sent to the host.
The screen composition data is data which specifies in which screen an AOI is placed and
where in that screen the AOI is placed. Asking more CAD-data or signalling that
composition data is ready in the communication buffer is done on interrupt basis.

3.3 Image handler

The segmentation takes place in the image handler. From the CAD-data the image handler
knows which units have to be saved. Therefor it is necessary to give a unique identifier
to every incoming pixel. This is done by a line counter and a column counter. The values
of column counter and line counter can be seen as a coordinate. Dividing the counter
values by the unit size will give the unique identity of the units. This can also be seen in
figure 3.4.

[o] 1 2 3 0 1 2 3 [o] MOD unit size
[} v [} 0 1 1 1 1 2 DIV unit size

PIXEL 3,0 IN UNIT 0,2

(= -
- O O o o
b W N = O

Figure 3.4 Unique identifier pixel and unit

The positions of the AQIs are known from the CAD-data. The processor has to convert
this information to the current scan line. This is done by coupling an address to each unit
and placing it into a line buffer. This address denotes the start address of each unit in the
circular buffer (most significant part). If a unit doesn’t have to be stored the start address
will be set to a dummy value of zero. The least significant part of the address in the
circular buffer is formed by the least significant bits of the line counter and column
counter. The principle is shown in figure 3.5.

The line buffer is filled by the processor. Because the pixels arrive continuously two line
buffers are used, one for filling the circular buffer and one is filled by the processor. The
two line buffers swap their function when "unit size" lines are received.

Hardware of the Area Segmentation Processor 15

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

LINE N MOD
COUNTER 7| unit size
N MOD
unit size
COLUMN Dlv . LN
COUNTER "I unitsize i =
LINE CIRCULAR
BUFFER BUFFER

Figure 3.5 Address generation for writing units
3.4 Screen handler

After storage in the circular buffer a screen is sent to an SBIP. The screen handler
composes a screen. A line counter and a column counter are used for identification of a
pixel in the screen (same principle as image handler). The address for the circular buffer
is now generated by a two dimensional Look Up Table (LUT). Here it is chosen for two
dimensions because the LUT needs only 16 k addresses (512*512 pixels / minimal unit).
When using a LUT in the image handler, the LUT should have more then 15 million
addresses. The advantage of a LUT is that only once per screen the LUT has to be filled.
The address generation of the screen handler is given in figure 3.6. The other function of
the screen handler is to generate the screen control signals.

LINE N MOD
COUNTER | unitsize
MOD
unit size

\
1

COLUMN |__ DIV RESEN
COUNTER l_ "l unit size u) "

DIV L

unit size

LuT CIRCULAR
BUFFER

\f/\a

Figure 3.6 Address generation for reading units

Hardware of the Area Segmentation Processor 16

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

3.5 Circular buffer

The circular buffer is used as storage for the AOIs of an image. The circular buffer
contains 256k x 16 bits, so one screen fits into the memory. Each incoming AOI is stored
in the buffer until it has to be sent as a part of a screen. The memory is circular and
divided into eight blocks. The eight blocks are related to the hardware components. The
RAMs are 32k x 16 bits separated I/O (two separated data busses per RAM). The
advantage is that when writing one block the other blocks can be read. The principle of
the circular buffer is given in figure 3.7.

CURRENT
WRITE BLOCK

CURRENT
READ BLOCK

Figure 3.7 Principle of circular buffer

The blocks are random access which gives the opportunity to read and write in eight
blocks randomly. In this way the screen composition doesn’t depend on the sequence of
the AOIs in the image.

The addresses are generated by the image handler and the screen handler. The number of
bits of the addresses generated by the handlers is such that one RAM block can be
addressed. Two crossbars lead the address to the correct RAM block. The controller
configures the crossbars and sets the write and read block selection. A functional diagram
of the circular buffer is given in figure 3.8.

Hardware of the Area Segmentation Processor 17

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

IMAGE
HANDLER

HANDLER

| —
FROM
SCREEN

=

XBAR 1

XBAR 2

Figure 3.8

Functional diagram of circular buffer

i

WRITE BLOCK

SELECT
LA Lo

READ BLOCK
SELECT

T3 |

———

Hardware of the Area Segmentation Processor

18

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

4 Software for the Area Segmentation Processor

In the previous chapter the hardware of the area segmentation processor was explained.
This chapter gives an outline of the software. This is done by schemes made with Promod.
Promod is a highly automated system engineering environment to develop a detailed
specification for systems. The solid lines in the schemes represent data flows, the dotted
lines represent control flows, the circles represent functions, two parallel lines with data
flows to or from it, represent data stores and the lines with control flows to/from it

represent state machines (see figure 4.2). The functions in the schemes are implemented
in hardware or in software.

A functional diagram of the ASP in Promod is given in figure 4.1. The Promod diagrams

in this chapter are explained so far that the function of the software is evident. For more
information see the report by P. Boots ({BOO]).

aoi_ids_and_positions
-- > last_screen_sent

s paxt_screen_teady

manage_

send_set_ aois j e . P
of acis . N T
Ko \, send. L output_switch_ Sg':;’;—slsl::*
. - i r?ext conf_data
image_unit_ iline =
addresses
image_(,éync / manage_
! 3 UL screen_data
S address_ butfer
buffer e..._SCreen_sync
- image_data T
Figure 4.1 Functional diagram of the Area Segmentation Processor

The data flow image_data and the control flow image_sync come from the image
acquisition and filter block (see figure 2.2). Screen_data and screen_sync go to one of the
SBIPs (see figure 2.2). The other flows are to or from the host. A further explanation of
the functions and flows is given in the following paragraphs.

Software for the Area Segmentation Processor 19

Nederlandse Philips Bedrijven B.V,
Centre For manufacturing Technology

4.1 Manage AOIs

The function manage_aois has several tasks. These are:

- calculating the screen composition, i.e. how and in which screen the AOIs are

placed,

calculating the line buffer content,
calculating the screen content, which is stored in screen_unit_addresses,
asking the host for more AOIs,
signalling when a screen is ready,
signalling when the last screen is sent and

- signalling in which screen the AOI is placed and its position in the screen.
Synchronising the screen calculations is done with send_next_screen. The relation between
the tasks of manage_aois is given in figure 4.2.

; image_
i sync

élast_

i screen_
i sent

combine_
aois_in_
screens

isend_ “isend_ screen_maps

inext_ next_
screen line o A
aoi_ids_and 25;‘;“
ositions H _
P { ready
final_lines ;
set anp::e— output_ /send_ids_ ~—/ control_
of switch_ and_ | screen_
aols conf_ positions end_of_ L retrieval
data screen.",.-- . screen_unit_
]) aoi_ids_and_ " image_ . addresses
image_unit_addresses positions sync,f"'
Figure 4.2 Functional diagram of manage_aois

All the functions in manage_aois are implemented in software.
4.1.1 Compute Lines

The function compute_lines is responsible for segmenting the image. It computes the
addresses on which the units of the AOIs are stored. The addresses are stored, line by line,
in image_unit_addresses. These lines are later placed in the line buffer. A unit of an AOI
gets a unique address within a block of the circular buffer. A unit which doesn’t have to
be saved receives address zero. The addresses for the units within an AOI are given in the
order they arrive. Units which lay in two or more AOIs (overlap of AOIs or doubles) get
only one number. When the list of AQIs becomes to short a signal send_set_of_aois is
sent to the host. An example of the address assignment is given in figure 4.3.

Software for the Area Segmentation Processor 20

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

image

ag AOils 1]2]3la
567// 89|01
12] 13 14, 15/16] 17/ 18

19] 20] 21] 22 23] 242526%

8| 20| 30] 31 32 33]34] 38| 36
37| 38| 39 40[41] 42 43|
44]45(46

unit with unique address
rest of the addresses are zero

Figure 4.3 Addresses for the units in an AOI

Calculating a line for image_unit_addresses is done by checking for every unit in the
image if that unit is in an AOI. The list of AOISs is sorted to shorten this searching. It is
first sorted on increasing y-coordinate because the image arrives row by row (the y). AOIs
with the same y-coordinate are then sorted on x-coordinate because the units in one line
arrive with increasing x-coordinate.

The store image_unit_addresses is stored in a RAM on the ASP. Every line needs
maximal 3000 half words (16 bits) of the RAM. Calculating and storing the whole image
(maximal 5000 lines) in advance would cost too much RAM. Therefor only a few lines
are calculated in advance.

As written in paragraph 3.5 the circular buffer consists of eight blocks. Switching or
reconfiguring these blocks is activated by setting bit 11 of the unit address. Setting this
bit is done by compute_lines. Switching can only be done when there is enough time to
reconfigure the blocks. So the switch bit may only be set:

- at the end of a line or

- at the last unit of an AOI in a line or

- between two AQIs when the time between them is enough.
Hereby it is assumed that the time between the end of the image line and the start of the
next line is enough to reconfigure. This is also depicted in figure 4.4.

image

AOI

_—

enough time
to
reconfigure

s = switch bit set

Figure 4.4 Examples of places for the switch bit

Software for the Area Segmentation Processor 21

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

4.1.2 Combine AOIs In Screens

The function combine_aois_in_screens combines the received AOIs into one or more

screens. An example has already been given in figure 3.1 where the function of the ASP

is depicted. This combining of AOIs results in four data flows:

- screen_maps. Each screen map is a two dimensional array holding addresses from the
units of the AOIs in the screen. This screen map can later be placed in the LUT.
The screen map of figure 4.3 is given in figure 4.5.

112i3]4]5]6|7]21]22)23
8[(9]10]11]12]13)14}30|31[32
1516|117/ 18] 19) 20| 21] 37(38] 39,
26| 26)27| 28| 29| 30] 44/45] 46

24
33| 34| 35|36
40[41/42/43 \

AQls

screen

Figure 4.5 Example of a screen map with the addresses

- output_switch_conf_data. The circular buffer is divided into eight blocks. Therefor it is
necessary to reconfigure the crossbar switch. In the screen map, bit 11 of a
unit_address, activates this switching. In output_switch_conf_data is specified to
which block of the circular buffer must be switched.

- aoi_ids_and_positions. Where the AOIs are placed in the screen depends on the filling
algorithm. Because of the calculations, the SBIP must know which AOI is in
which screen and on which position in the screen. This information is held in
aoi_ids_and_positions.

- final_lines. In order to signal the SBIP that the next screen can be sent, the final_lines
of each screen i.e. the image line number that contains the last pixels of the
screen, must be known.

In compute_lines the switch bit could only be set when there is enough time. Here it must
be possible to set the switch bit of every unit address, because the filling algorithm
decides where the AOI is placed. Thus it is possible that one AOI is stored in block 0 of
the circular buffer and that the AOI which lays next to it in the screen is stored in block
1. The hardware is made so that the sending of a screen stops if the switch bit is detected.
The crossbar can then be reconfigured by the software and the software restarts the
sending.

Combine_aois_in_screens searches a way to fill the screens with AOIs. This filling has

conflicting demands:

- The screen must be filled as much as possible because the unused units take time when
a screen is sent to the SBIP.

Software for the Area Segmentation Processor 22

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

- The calculation time and algorithm length increase a lot when a high filling grade is
wanted. Another aspect here is that when the "best” fitting is found units are kept
for a long time in the circular buffer. The circular buffer on the ASP is limited
so it is desirable that the units are sent away as soon as possible.

- The traffic on the VME-bus must be limited because this will delay the other VME
traffic.

With these demands the function combine_aois_in_screen can be located and performed

in three different ways:

- An off line process on the host. The host calculates the filling of the screens and the
unit addresses for the line buffers and LUT. Advantage of this is that there is
enough calculation time to find the "best" fitting and this has to be done only
once. Disadvantage is that a mass store is needed and that the down loading gives
an enormous VME traffic. Remember that an image can have 5000 lines with
3000 units in it. This means that in this case 15 mega addresses must be down
loaded plus 1.5 mega addresses for the screens, assuming that 10 % of the image
are AOIs and that the screens are full.

- An off line process on the host for the filling of the screens and the address calculation
on the ASP. The advantage is that there is enough calculation time and the filling
calculation has to be done only once. The address calculation must be repeated
for every image. The only data that must be down loaded are the AOIs and the
positions in a screen.

- Everything on the ASP. Disadvantage is that the search algorithm can’t be complex
because of time and algorithm length. Advantage is that only the AOIs must be
down loaded to the ASP and the positions must be loaded to the host.

Testing must decide what the best option is but so far it seems that the second option is
the best.

4.1.3 Send Ids And Positions

The function send_ids_and_positions signals to the SBIPs which AOIs are in the screen
that is sent to that SBIP and the positions of the AOIs within the screen. The sending is
activated with send_next_screen. This routine runs on the host if the combining algorithm
runs on the host.

4.14 Control Screen Retrieval

The function control_screen_retrieval waits until the received image line is greater than
the next final line in final_lines and then signals next_screen_ready and fills the store
screen_unit_addresses (the LUT) with information from screen_maps. These actions may
be started only if manage unit_buffer is not sending a (part of a) screen (seen by

Software for the Area Segmentation Processor 23

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

end_of_screen).

Combine_aois_in_screens calculates screen maps which are stored in memory. Parts of
these maps are later stored into the LUT if that part of the LUT is free. One screen map
takes 16 k half words. The memory on the ASP is not so big, so only a part of the screen
map can be stored here. A functional diagram of control_screen_retrieval is given in figure
4.6.

iend_of_ image_ 'g*|aSl_ screen
iscreen i sync screen_ maps _
v v : sent
next_ N A
screen_ % greater__
ready<g. -~ " no_more_ . Of_equal il
‘screen_ =

screen_unit
address
buffer

maps..
" compare

screen_
unit_
addresses

current_line

Figure 4.6 Functional diagram of control_screen_retrieval

The function incr_current_line updates the store current_line every time image_sync is
activated. Current_line keeps the number of scanned lines of the image. When
current_lines is greater then final_lines, compare signals greater_or_equal what results in
an active next_screen_ready. When the last element of final_lines is used
no_more_screen_maps is activated. With this signal last_screen_send is activated after
end_of_screen retumns. Fill_screen_unit_address_buffer takes a part of the screen_map and
places it into the screen_unit_addresses.

4.2 Manage Unit Address Buffer

Manage_unit_address_buffer gets one line of the image_unit_addresses, transmits
unit_address one by one and asks for the next line at manage_aois when a line is sent.
This is done under control of the image_sync signal. A functional diagram of
manage_unit_address_buffer is given in figure 4.7.

One line of image_unit_addresses is stored into one of the two line buffers
"unit_address_buffer_1" or "unit_address_buffer_2" by "fill_ua_buffer". If a new line is
wanted the signal send_next_line is sent to manage_aois. Send_next_line is activated after
every 4, 8, 16 or 32 lines of the image depending of the chosen unit size. The
"empty_ua_buffer" functions empties the store.

Software for the Area Segmentation Processor 24

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

image_unit_addresses

fill_va_

buffer

send_next_line
A
unit_address_ unit_address_ _A__—
buffer_1 buffer_2 i
image_sync
empty_ua_
buffer

unit_address
Figure 4.7 Functional diagram of manage_unit_address_buffer

The stores are RAMs (the line buffer in figure 3.5) of which each can hold one image
line. The empty function is implemented in the hardware. Counters generate an address
for reading the RAMs. The filling function is implemented in software. The fill function
copies one line of unit_addresses to the RAM. Multiplexers control which buffer is filled
and which buffer is emptied. The signal send_next_line is implemented as an interrupt to
the processor on the ASP.

4.3 Manage Unit Buffer

Manage_unit_buffer stores the pixels from image_data at addresses specified by
unit_address of manage_unit_address_buffer at a rate controlled by image_sync. The other
function of manage_unit_buffer is sending screens under control of the screen map in
screen_unit_addresses. The sending starts after the signal send_next_screen. When a screen
is sent, manage_aois is signalled by end_of_screen. The functional diagram of
manage_unit_buffer is given in figure 4.8.

Keep in mind here figure 3.8. The stores unit_block_0 to unit_block_7 in figure 4.8 are
RAMO to RAM7 in figure 3.8, The functions direct_to_current_write_block an
collect_from_current_read_block are performed by the two crossbars (xbars).
Generate_pixel_in_unit_address_input and -output are two counters which generate an
address used to write or read the pixel within a unit. Decode_image_unit_address receives
the unit_address and signals by reconf_input_code_encountered (an interrupt to the
processor) if the reconfigure code (bit 11 of the address) has encountered.
Decode_screen_code_address does the same but then for screen_unit_addresses.

Software for the Area Segmentation Processor 25

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

new

output_switch_conf_data

w. new_
image_sync ---.._ write_block read_block_

. se|ecle‘c_i__._ selected

unit_address _ i_A__

: recont_’ .
regonf_ output_code_ screen_unit_
_ifiput_code_ current_blocks encountered address
_ \ encountered -

units_block_0

to_current_ ! l

input_address .
put write_ / ! \

units_block_7

generate)
pixel_in_
end_of_

config_ config_
address data_ data_
input output

screen .

address

output_address

generate
pixel_in_

: e .
send_ ; e screén_data
image_data next_ ; R A — >
screen’ v screen_sync

Figure 4.8 Functional diagram of manage_unit_buffer

Select_new_write_block is implemented in software. As soon as a block is full or almost
full a new write block must be selected. Select_new_write_block is activated by
reconf_input_code_encountered. Select_new_read_block does the same, but here the data
to which block must be switched comes from output_switch_conf_data. The selected read
and write block are stored in current_blocks, This store is a hardware store, which enables
read en write signals for the appropriate block and a variable for the program.

Software for the Area Segmentation Processor 26

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

S Implementation of the hardware

The work during my graduation period was the realisation of the Area Segmentation
Processor. First the timing conditions (set up time, hold time, delay time) were theoretical
checked with worst case calculations. Secondly the hardware was measured. This to check
the wire wrap connections. Where necessary improvements were made.

For testing the ASP several programs are written. The programs which run on the ERM
system (the host), are written in C. The programs which run on the ASP, are written in
assembly or in C.

In the following paragraphs several parts of the hardware are discussed. Changes and
additions in the design which are mentioned in the following paragraphs are made by the
author of this report. Further outlines about the programs for testing the hardware are
given. In appendix B the schemes of the area segmentation processor are given.

5.1 VME-interface

The different cards in the system (host, acquisition card, ASP, SBIPs) communicate via
a VME-bus. The image and screen data are sent via two picture busses. VME (= Versa
Module Eurocard) uses a protocol for data transfer and interrupt handling (see [VMS]).
For correct handling of the protocol a special prototype board (see [VMP]), was used.
Data send to the ASP appears on the prototype board. Placing the data on the correct
address is done by the VME-interface (scheme in appendix B.9). Getting data from the
correct address on the ASP, starting an interrupt action to the host and starting the
acknowledge of an interrupt is also done by the VME-interface. The hardware of the
interrupt handling is depicted in appendix B.1 (upper right and lower right in the scheme).
Testing and improving the VME-interface had to be done first because downloading
programs to the ASP can only be done when this part works.

The circuit of the VME-interface was built first with discrete components and was
asynchronously clocked. It was very difficult to add new functions and very difficult to
get the correct functionality. For these reasons a redesign has been made. The circuit is
implemented in an Erasable Programable Logic Device (EPLD). The design has been
made, simulated and programmed with MAX+plus.

Some functions are added to the new design. The several functions are reached by a card
address plus an offset address. The different functions with the offset address are given
in table 5.1.

Implementation of the hardware 27

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Table 5.1 Functions of VME-interface with offset address

Function offset address
disable CPU 2
enable CPU 4
read/write counter RAMs 6
read/write counter communication buffer 8
read/write communication buffer 10
read/write bit 15..0 program RAM 12
read/write bit 15..0 CAD RAM 14
read/write bit 31..16 program RAM 16
read/write bit 31..16 CAD RAM 18
write bus allocation register 20

The address range for the host to access the ASP is only 2 k big. This is not enough to
map the whole memory of the ASP within the address range of the host. Therefor a
counter is used which generates the address on the ASP during downloading. These
counters have to be filled with the start address.

The ASP has a 32 bit data bus. The ERM system has only a 16 bit data bus. Downloading
data is done by first downloading the lower 16 bit word and than the higher 16 bits. After
this second action the data is written in the RAM and the counter is incremented. Reading
is done by first reading the lower 16 bits and than reading the higher 16 bits.

Testing the VME-interface is done by writing (downloading) data to the RAMs on the
ASP, reading back and comparing the written and read data. With these tests also the read
and write signals for the RAMs are verified.

The circuit for the interrupt from the ASP to the host and from the host to the ASP was
originally not designed. This part is necessary, for several signals (send_set_of_aois,
last_screen_send, next_screen_ready and send_next_screen in figure 4.1) and therefor
added. :

The communication buffer is used for sending information between the host and the ASP
at the time the ASP is running. After power up the data is downloaded to the ASP and
the communication buffer isn’t used then. The processor must be disabled at that time.
When the processor is started the processor can’t be disabled because after enabling, the
processor won't continue were it was stopped. To send information to the ASP, if the

Implementation of the hardware 28

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

processor runs, the communication buffer is used. The communication buffer is tested by
means of writing data into it and reading back. This writing and reading is done by the
host and the ASP.

5.2 Controller

A SPARC RISC processor CY7C611 controls the ASP. This processor works with a clock
frequency of 25 MHz. More information about the processor, especially for programming
the processor in assembly, is given in appendix A.

When downloading data to the ASP or reading data from the ASP to the host, the
processor must be switched off (disabled). All output drivers are then in high impedance
state (tri-state). Therefor it is necessary to connect pull up or pull down resistors at all
outputs of the processor which are used in other parts of the circuit.

Two RAMs are connected to the processor. One to store the program and one to store the
CAD-data. After downloading, the processor is started by the reset circuit. To test the
communication between processor and RAM a program can write a certain data pattern
into the RAMs (except the part where the program is stored). The host can read and
evaluate the data.

To give information about the status of the program there is a circuit which communicates
with a terminal (RS232). When a program is running it can be useful to know in which
function the program is and what the values of certain variables are. The conversion from
parallel to serial, visa versa, is done by a DUART. The timing of the selection, write and
read signals for the DUART are improved because they did not fulfil the specifications.

An other problem which showed up when working with the DUART was that the RAMs
are not byte accessible. The program RAM is only 32 bit accessible and the CAD RAM
is 16 bit accessible. The standard function "printf" in C, which prints text on the terminal,
writes bytes t0 the RAM to store temporary information. Writing one byte in the program
RAM overwrites also three other bytes (the ones with the same address except the two
least significant bits). Routines which use byte or half word variables can thus not be used
on the ASP. New routines are written to solve this problem because it is not possible to
make the RAMs byte accessible.

Not all the components are fast enough for the used clock frequency. Therefor there is a
circuit that can stretch the clock. In figure 5.1 an example of the stretched clock is given
with the clock 2 times stretched. Bit 23 of the address bus enables the stretch circuit. The
number of stretch cycles is the value of the difference: 8 - the value of bit 22..20.

Implementation of the hardware 29

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

clock | | [
stretched 111 [

clock 2 stretches
Figure 5.1 Example of a 2 times stretched clock

The different components are selected with bit 19..16. In table 5.2 the different functions
are given with the base addresses.

Table 5.2 Function selection with base addresses

I function | base address bit 23..0 | function base address bit 23..0

program RAM 0x000000 enable continue screen 0x080002

CAD RAM 0x010000 line buffer 0x090002

DUART 0x920003 unit size/mode 0x0a0003

crossbar 1 0xf30002 interrupt host 0x8b0003

crossbar 2 0xf40002 communication buffer 0xfc0002

LUT 0x050002 line buffer selection 0x0d0003

LUT selection 0x060003 data circular buffer 0x8e0002

enable send screen 0x070002 address circular buffer 0x8f0002

In the previous chapter a number of control signals are given.
Reconf_input_code_encountered, reconf_output_code_encountered, end_of_screen,
next_line and the signals from the host are implemented as interrupts to the processor. The
interrupt handler converts an interrupt into an interrupt address. This handler is
implemented in an EPLD. After power up all flip flops in the EPLD should be zero.
Measuring leamed that this was not so. Therefor a reset signal is connected to the flip
flops in the EPLD so that after the power supply is stable the flip flops are reset.

5.3 Image handler

Multiplexers decide to which line buffer the processor can write and which line buffer is
read by the counters. The position of the multiplexer depends on a flip flop. In the
original design the processor was not able to control that flip flop. After power up the
value of the flip flop is random 0 or 1, so which line buffer is selected for the processor
is unpredictable. It is necessary to control the flip flop because the line buffer which is
connected to the counters, must be switched to the RAM block in the circular buffer by

Implementation of the hardware 30

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

the crossbars. Therefor a circuit is added which enables the processor to set the selection
of the flip flop depending on data bit O (base address line buffer selection). In table 5.3
is the selection given with data bit 0.

Table 5.3 Line buffer selection with data bit 0

data bit 0 processor to: counter to:
0 line buffer A line buffer B
1 line buffer B line buffer A ||

The line buffers are tested by writing data in the line buffers and then reading the data
back. Reading back can not be done directly because the outputs of the line buffers are
not connected to the data bus of the processor. This is solved by adding drivers between
the address lines of RAM block(and the processor data bus. The processor addresses the
driver (the offset of the address is lead to the line buffer) and reads the data of the line
buffer through the crossbars (when configured in the right way).

The RAMs of the line buffers have only a chip select input and a combined read/write
input. When reading or when writing while the write pulse is not active the output drivers
are active (an other RAM is not possible as separate I/O is needed). The combination of
bit 11 of the line buffers is the reconf_input_code_encountered signal from figure 4.8.
When one of the bit 11 is set, the processor is interrupted. The addresses of the processor
are always lead to one of the line buffers. Therefor it is possible that an address of the
processor is an address of which bit 11 is set. This will interrupt the processor but the
processor may only be interrupted when the counter reaches such an address. Components
are added to the scheme so that only an interrupt occurs from the line buffer that is
connected to the counters and only after the data is valid.

5.4 Screen handler

Testing the LUT is done in the same way as testing the line buffers. Data is written in it
and then read back through the address driver of RAM blockO0 of the circular buffer (this
is the reason why they are placed after the crossbars).

Reading the LUT back works only when the screen clock runs because a latch between
the LUT and the crossbars is clocked by the screen clock. The screen clock (defines the
pixel rate) is a clock which is controlled by screen handler. When the crossbar must be
reconfigured this clock is stopped by bit 11 of the LUT (reconf_output_code_encountered
in figure 4.8). After power up when the LUT isn’t initialised, the clock can be stopped

Implementation of the hardware 31

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

when an address appears where bit 11 is one. To solve this problem two things are

changed:

- first: bit 11 may only interrupt the processor and stop the clock when the counters are
connected to the LUT

- second: the EPLD screen handler is changed so that there is a possibility to start the
clock.

This second improvement is necessary because the clock can still be stopped when bit 11

of address O of the LUT (0 is start value of the counters) is 1.

When the clock is stopped by bit 11 the processor can restart the screen sending if it
writes to address "enable continue screen” in table 5.2. This is not useful when the screen
clock is stopped after power up. Therefor data bit 0 is used now when writing to "enable
continue screen':

data bit O = 0: continue sending

data bit O = 1: enable only the clock

5.5 Circular buffer

The circuit that generates a write pulse for the RAM blocks was not designed. This had
to be done first. Further the timing of the write pulse for the crossbar is improved.

As written in the two previous paragraphs there is an address driver which can read the
addresses of RAM blockQ. The processor can't read (in the first design) the data that is
written in the circular buffer. This makes it very difficult to test if there is an error made
when writing the data or when reading the data. To solve this problem a second driver is
added which connects the output data bus (screen data bus) to the processor data bus. To
read the data a number of actions has to be done. For example reading the data in the first
block sequentially the following action must be done:

- the RAM block must be selected

- the line buffer must be filled

- the crossbars must be configured in the right way.
The line buffer has 11 data lines connected to the crossbar. A RAM block of the circular
buffer has 15 address lines. Normally 4 address lines (when the unit size is 4) come from
the counter which generate the addresses within a unit. Now these address lines must be
set by the crossbars. This is possible because the crossbar can set every output in different
mode: flow through (used normally), pipeline, fixed output levels (0 or 1). With the line
buffer outputs connected to the first 11 outputs of the crossbar and the following 4 outputs
set to zero the first part of the RAM block can be read. Reconfiguring the 4 output makes
it possible to read the other parts of the RAM block.

Implementation of the hardware 32

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

5.6 Picture bus interface

In the first design there was only one input channel on which the image data is received
from the acquisition board and one output channel on which the screen data is sent to the
SBIPs. In the system there are two channels and every card is made so that the host
decides on which channel each card receives data and on which channel it may send data.
To fulfil this option the picture bus interface is extended with components and the VME-
interface handler is extended with an address that writes data in the bus allocation register.
This bus allocation register selects the read and write channel.

Implementation of the hardware 33

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

6 Implementation of the software

In this chapter some remarks on the implementation of the software are given. A program
which receives and sends images of 512x512 pixels is used for testing the ASP hardware
in the system. In the first paragraph an outline and remarks are given about this program.
The second paragraph gives some points for the implementation of the segmentation
software. This software is not completely built because there was not enough time to do
this. The reason herefor was that the improvement and implementation of the hardware
took more time than was expected. The third paragraph shows how C programs can be
improved so that less time is needed for execution.

6.1 Software 512x512 images

The first major software that is written, except the small test programs, is for receiving
512x512 images. These images are just as big as the screen which is sent by the ASP to
the SBIPs. The tasks of the ASP are:

- receiving the image from the acquisition board,

- storing the image in the circular buffer and

- sending the screen to a SBIP.
Here the image doesn’t have to be segmented and the CAD-data don’t have to be
downloaded.

The purpose of this program is to integrate the ASP into the system and test the hardware
of the data path (the data path from the PB-bus interface to the circular buffer and from
the circular buffer to the PB-bus interface). The data written in the circular buffer can be
tested with the method explained in paragraph 5.5. The addresses lead to the circular
buffer are tested in an earlier phase.

The program is mostly written in C. Only the trap table, the processor initialisation routine
and the routines which communicate with the terminal for debug information, are written
in assembly. The sequence of the program is given in figure 6.1.

The line buffers and the LUT are cleared so that no interrupts occur (this is also protected
by hardware except for address 0). After the interrupt level is set an interrupt can occur
which was pending from before the line buffer and LUT were cleared.

The program sequence when receiving an image is given in figure 6.2. After "unit size"
lines are received, an interrupt occurs. The interrupt routine that is started then, selects a
new write and read block if necessary, configures the crossbars so that the other line

Implementation of the software 34

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

initialisation: processor
DUART (terminal)
crossbars

clear: line buffers
look up table

communication buffer
set: unit size

interrupt level

initialisation: variables
receive: image

test: image data
send: screen

Figure 6.1 Sequence of 512x512 program

buffer is connected to the RAM block and fills the just used line buffer. Selecting a new
read block is necessary because the write and read block may not be the same when
writing to that block.

fill the line buffers

select the first write block
configure the crossbars
wait until image is received

Figure 6.2 Sequence of receiving the image

fill the LUT

fori=0. 7do
select read block i
configure the crossbars
start sending the block
wait until block is sent

Figure 6.3 Sequence of sending the screen

The program sequence of sending an image is given in figure 6.3. The listing of the
program is given in appendix C. The program given here receives the whole image and
then starts sending the screen. Of course this program can be improved. For example
sending a block can start after the block has been received and the host can be signalled
to start sending an other image. This is not done because it is not necessary for testing and
it makes the software more difficult.

6.2 Segmentation software

In chapter 4 an outline of the segmentation software for the Area Segmentation Processor
is given. The combining algorithm and the address calculation can run on the host or on
the ASP. We choose to run the combining algorithm on the host and the address
calculation on the ASP because this has the most advantages (much calculation time

Implementation of the software 35

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

available on the host, it is done only once and it gives a low VME-traffic). In this
situation the specifications of the AOIs (x, y, length and width) and the position within
the screen (screen number, x and y) must be downloaded.

The combining algorithm runs only one time for every PCB type and can be mun in
advance. Therefor the time needed for the calculation can be large. The limit for the
algorithm is the time that AQIs are kept in the circular buffer. The circular buffer can hold
only one screen. Because the addresses for the units of an AOI (in compute_lines figure
4.2) are given the way they arrive, the AOIs in one block must be sent away before this
block is selected again as write block. This to prevent a large adminstration for the
addresses which may not be used for writing new AOIs in that block.

The first implementation of the combine algorithm (combine_aois_in_screens in figure
4.2) is a simple one. The AQIs are placed in the screen in the way they arrive (and are
sorted). When an AOI doesn’t fit at the end of the row, it is placed on the next row below
the largest AOI of the "full" row. When the AOI doesn’t fit into the screen, because it is
almost "full”, the AOI is placed in the next screen and the "full" screen is not filled
further. This algorithm doesn’t fill the screen optimal (fill grade between 40 and 60%),
but this is enough for the first tests.

Combine_aois_in_screens runs partly on the host (the combining) and partly on the ASP
(the address generation). The address generation must know of every unit which address
it has been given in compute_lines. This can be done by storing the addresses given to the
units of the first column of each AOIL With these addresses the rest of the addresses in
the AOI can be calculated. The problem hereby is that the length of the AOIs are
different. To store each first column, dynamic memory allocation is necessary. The
standard routine herefor is available but a difficult memory administration will be
necessary. This adminstration must register for which AOI memory is allocated and where
this is allocated. Using a simple allocation and free routine will result in a memory of
which small parts are occupied and small parts are free. The second possibility is to
recalculate the addresses given to the units. This means that compute_lines is done twice.
The third possibility’s implementation is given in appendix D. Here the address generation
of the line buffers and the LUT are combined. Compute_lines computes the line buffers
one by one. At the same time lines of the screen map are calculated. When an address is
given to a unit of an AQI in the line buffer, this address is also placed in the screen map.
The calculations here use the minimum unit size (4). When all AQI are for example a
multiple of 8, it is useful to use a unit size of 8.

The memory on the ASP is limited. CAD-data, image lines and screen lines are stored in
the CAD RAM. This means that only a limited number of AOIs and lines can be stored.
This limitation restricts the combining algorithm. If an address of a unit has to be placed
on a screen line which isn’t used so far and all the memory for the screen lines is used,

Implementation of the software 36

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

the oldest screen line is placed in the LUT. After that addresses can’t be placed on that

line any more. This restriction is no problem for the first implementation of the combine
algorithm.

fory = 0 to PCB length
for x = 0 to PCB width
for every AOI so that AOLy <=y < AOLy+AOQl length
if (x,y) in AOI
place address in image line (also handle the switch bit)
if screen lines all occupied
copy line to LUT

place the address in the screen line

Figure 6.4 Sequence of the address generation

The sequence of the address calculation is given in figure 6.4. The inner loop "for every
AOI" is necessary because AQOIs can overlap or be double. This loop is not necessary
if only the line buffers are calculated because a unit which is member of two or more
AOIs, gets only one address. This loop is only necessary for placing more than one
address in the screen map. This loop is restricted to the AOIs which have units on the
current image line (the y variable of the loop).

6.3 Programming in C

The biggest part of the program for the ASP can be written in C. Programming in C is
of course easier then in assembly. When a program takes too much time, improvements
can be made before the program has to be written in assembly (and hope that it is fast
enough in assembly). In this paragraph the implementation of the fill_ua_buffer_1 of
figure 4.7 is given as an example for improvements. This routine copies a line of
image_unit_addresses into the line buffer. The listing of this function is given in figure
6.5. The assembly listing is given in appendix E.1. The 4*i is necessary so that the
addresses written on, are word aligned (the processor has a 32 bit data bus; see appendix
A4).

Several parts of this routine can be improved, which results in a lot of time saving. This
improvements costs a few variables (read: working registers of the processor). In this
function this is no problem because there are not many variables. If a function has more
variables than working registers, variables are stored on the stack in the memory.
Variables stored on the stack cost of course more time too access than variables in
working registers.

The first improvement is using a local variable instead of the global variable
current_image_line. Current_image_line is the index to the oldest, in advance, calculated

Implementation of the software 37

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

#define LINE_LENGTH 3000

#define BUFFER_SIZE 4

#define LINE_BUFFER_BASE_ADDRESS 0x(090002

extemn int current_image_line;

extem int image_unit_addresses{BUFFER_SIZE}{LINE_LENGTH];

void fill_ua_buffer ()
{

int i;
short *linebuffer;

linebuffer = LINE_BUFFER_BASE_ADDRESS;
for(1=0; i< LINE_LENGTH; i++)
*(linebuffer + 4*i)= image_unit_addresses[current_image_line]]il;
]
Figure 6.5 Listing fill ua buffer

line buffer. This global variable is stored in the memory and it takes two instructions (3
clock cycles') to load the value in a register. When this variable is given as a parameter
to the function, the variable doesn’t have to be loaded in the function (only once when
calling).

The second improvement is not to use the two dimensional array image_unit_addresses
but only a one dimensional array. Accessing an element in the two dimensional array is
done by calculation of the address: "image_line + 12000*current_image_line+(i<<2)" (<<
means shift left) and then perform an action to that address. The array is an integer array
so 12000 comes from 3000 elements * 4 bytes. The variable i is shifted to align on
integers. This calculation of the array element address contains a multiplication. The
multiplication is carried out by the standard function "mul”, which uses many clock
cycles. When the function fill_ua_buffer receives an address of the first element of the one
dimensional array, the multiplication, the load of image_unit_addresses and the load of
current_image_unit_addresses, are not necessary. Only the offset calculation with i and
the load of the element stay.

The third improvement can be done with the expression "4*i". If the multiplication is
carried out by a shift left operation (which is possible because 4 is a power of 2) the result
is the same but there is only one clock cycle needed.

The forth improvement is also with the "4*i" statement. This is already improved to
“*(linebuffer + (i<<2)) = ...", but the calculation of the pointer address still needs 2
instructions (shift left and add). If the line buffer address is incremented by 4 in a separate
statement every cycle of the loop and the "4*i" is removed, the offset calculation costs
only one instruction. When these improvements are carried out, it results in a program

! Some instructions need more clock cycles per instruction (see appendix A.2).

Implementation of the software 38

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

which is given in figure 6.6. The assembly listing is given in appendix E.2.

#define LINE_LENGTH 3000

#define BUFFER_SIZE 4

#define LINE_BUFFER_BASE_ADDRESS 0x090002

extern int current_image_line;

extern int image_unit_addresses{f BUFFER_SIZE][LINE_LENGTH];

void fill()

{
full_uva_buffer(&(image_unit_addresses[current_image_line][0]));

}

void fill_ua_buffer (image_1)
int image_l[LINE_LENGTH];
{
int i;
short *linebuffer;

linebuffer = LINE_BUFFER_BASE_ADDRESS;
for(i=0; i < LINE_LENGTH; i++)

{

*(linebuffer) = image_1[il;

linebuffer += 4;

]
}

Figure 6.6 Listing fill_ua_buffer improved

The loop of the first implementation costs 20 instructions (24 clock cycles) and the last
implementation needs 7 instructions (10 clock cycles). The time needed by the function
__mul which is called twice is not taken into account. So using local variable instead of
global variables can have great influence on the processing time.

Implementation of the software 39

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Project status and conclusions

The hardware of the Area Segmentation Processor was built and tested. The hardware was
changed on several places: a complete new design was made for the VME-interface, the
communication with the terminal was improved, the signalling of the reconfigure bits of
the image handler and the screen handler were improved, a write pulse for the circular
buffer was made and the PB-bus interface was extended so that it has the same functions
as the other cards.

The ASP was integrated in the in-line PCB inspection system. Herefor a program was
designed, which receives and sends 512x512 images.

Parts of the segmentation software were built. This is not finished because there was not
enough time. The improvement of the hardware cost more time then was expected. The
combining algorithm of the segmentation software can best be run on the host because
there is enough time and it has only be done only once. The address generation for the
screen maps can best be done on the ASP because this gives the lowest VME-traffic. In
the first implementation the address generation for the line buffers and the screen maps
is combined into one function.

Use of global variables delays C programs, especially when used in a loop. Replacing
them by local variables can decrease the execution time of a function.

Project status and conclusions 40

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Abbreviations
AOI Area Of Interest
ASP Area Segmentation Processor
CAD Computer Aided Design
CFT Centre For manufacturing Technology
CISC Complex Instruction Set Computer
CPU Central Processing Unit
DUART DUal Asynchronous Receiver Transmitter
EPLD Erasable Programmable Logic Device
ERM Embedded Real-time Monitor
ESPRIT European Strategic Programme for Research and development in

Information Technology

FMU Fiducial Measurement Unit

IMI Industrial Measurement and Inspection
ISP Industrial Signal Processing

ITE Information Engineering

LUT Look Up Table

PCB Printed Circuit Board

RISC Reduced Instruction Set Computer
SBIP Single Board Image Processor

SMD Surface Mounted Device technology
SPARC Scalable Processor ARChitecture
TRIOS TRiangulation based Inspection Optical System
TUE University of Technology Eindhoven
VME Versa Module Eurocard

Abbreviations 41

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Techrology

Literature

[BOO] Boots P.; 3D data processing for PCB inspection; TRIOS TB1; Eindhoven 13
march 1992

[CMO] CMOS - BiCMOS Data Book; Cypress Semiconductor; Sonetech Nederland by,
Gulberg, 5674 TE Nuenen; March 1, 1991

[ERM] Embedded Real_Time Monitor System PG4100; Philips Export BV, Eindhoven,
the Netherlands; 1990;

[FAS] Fast TTL Logic Series; Philips Data Handbook, Integrated Circuits 15 (IC15);
July 1990

[Lee] Leeuwen Frank van; Development of the CAD Data Correction & Expansion Unit
for Esprit Project #2017; Philips CFT Technology; Eindhoven september 1990

[LSI] LSI Logic; Digital Signal Processing (DSP) Data book; June 1990

[MIC] Micro processors, micro controllers and peripherals; Philips Data Handbook,
Integrated Circuits 14N (IC14N); september 1985

[SAC] SPARCVIEW and utilities; Assembly reference manual; C reference manual;
Flame Computer Corporation, 5301 Commerce Avenue, suite 4, Moorpark Ca.
USA; 1989 1990

[SME] Smeets F.G.M.; Hardware development of the Area Segmentation Processor for
Esprit Project #2017: TRIOS; Philips CFT Technology; Eindhoven june 1992

[SPA] SPARC RISC User’'s Guide; Cypress Semiconductor Corporation, ROSS
Technology, Inc.; Second Edition, February 1990

[VMP] VMEbus Prototyping Board PG2750/PG2751 Users manual; Philips Export B.V.;
1987 .

[VMS] VME bus specification manual, revision B; Philips Export bv; Eindhoven, the
Netherlands; 1983

Literature 42

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Appendix A The processor CY7C611

The processor used on the ASP is the SPARC RISC processor CY7C611 integer unit. The
processor is a reduced version (fewer address lines and fewer control signals) of the
CY7C601 integer unit. The processor can be used in combination with cache memory,
cache memory controller/memory management unit and floating point unit. On the ASP
only the reduced processor and cache memory is used.

The processor is designed according to the Scalable Processor ARChitecture (SPARC).
SPARC is an architecturally driven standard with binary compatibility of software between
processor versions.

The processor is a Reduced Instruction Set Computer (RISC). Most of the instructions are
carried out with an execution rate of one clock cycle. The goal of a RISC is to obtain a
maximal data processing performance through an intelligently selected set of instructions.
A RISC differs from a CISC (Complex Instruction Set Computer). A short overview of
the three mayor differences are given in table A.1.

Table A.1 Differences between RISC and CISC

RISC CISC
model load/store memory/register
source/destination non destructive accumulator/register file
instruction triadic register file
instruction length nomnalized variable

A RISC has a LOAD/STORE model. The only two instructions that can access the main
memory are LOAD and STORE. All the other instructions act upon intemal registers and
not upon the main memory. A CISC can carry out an operation on operands directly from
the main memory. This means that for example an ADD instruction, using an operand
from the main memory, is delayed until the content of the address is loaded into the
processor. The time slot on the data bus between the LOAD an the ADD when the address
is on the bus, cannot be filled.

A RISC uses a non destructive triadic register file. This means that three registers are used
for an instruction and that the input registers remain unchanged after the result is written
into the output register. On the other hand the CISC fundamental model uses a
accumulator/register model where the accumulator is used as a input and output register

Appendix A The processor CY7C611 43

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

thereby destroying the original contents.

The third major difference is that a RISC has a normalized instruction length. Therefor
no contextual fields in the instruction are necessary which greatly simplifies the addressing
modes. The CISC instruction length depends on the addressing mode. An ADD instruction
with the accumulator and a register will have a shorter instruction than an ADD
instruction which uses the accumulator and an address in the main memory.

In the following paragraphs headlines of the CY7C611 are explained. These headlines are
important to know when programming the processor (especially when the processor is
programmed in assembly).

A.1 Registers

The processor has 136 working registers and six special purpose registers. In the next two
paragraphs these registers are explained.

A.1.1 Working registers

A number of 8 registers out of the 136 working registers are so called global registers,
which can always be accessed. The other 124 lie in a circular stack. The stack is divided
into 8 windows. A window consists of 24 registers. The registers in a window are divided
into three groups: 8 "in", 8 "local" and 8 "out" registers. All 24 registers can be read and
written the same way. The only difference in the names is the fact that the "in"-registers
of window i are the same registers as the "out"s of window i+1. The "out"s of window
i are the same as the "in"s of window i-1. The local registers don’t overlap. The principle
of the circular stack is drawn in figure A.1(A).

At any given moment a program can address 32 registers: 8 global registers and 24
registers of the current window (pointed by the current window pointer: CWP). The
current window pointer can be changed in three ways (see also figure A.1(B)):

SAVE instruction; The CWP is decremented by one

RESTORE instruction: The CWP is incremented by one

write to the window pointer field in the PSR register: Any change

The special way of the working registers organisation can be efficiently used in a
program. When a program runs it can use the "in" and "local" registers for variables and
temporary results. When that program calls a function it can put the outgoing parameters
in the out registers. When the first action of the called function is a SAVE instruction the
incoming parameters are stored into the in-registers. The locals are free to be used by the

Appendix A The processor CY7C611 44

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Previous Window (CWP+1)
'%’ Save

ins
2 e ¥
locals

116 Cusrent Window (CWP)
31

w = window
I=1ing

L =Locals
0 = Quts

Next Window (CWP-1)

ns

locals

outs

Curren! mndow pointer

(A) (B)

Figure A.1 (A) Window stack (B) Window overlap

called function. Passing parameters back can be done by putting the parameters in the in-
registers followed by a RESTORE instruction.

A.1.2 Special purpose registers

The Processor Status Register (PSR), drawn in figure A.2, contains bits for

enabling/disabling, flags, interrupt level, processor mode and the current window pointer
(CWP).

Trap Enabel (ET)
Previous Supervisor Mode (PS)————
Supervisor Mode (S)
Enable Floating-Point Unit

Enable Coprocessor —
Integer Processor Current
Condition interrupt Window
Implementation Version Codes lLevel Pointer
Number Number (flages) Reseved (PIL) (CWP)
[a1 4 | 4] 6 [1 1] 4 EEERER 5 |
31 2827 24" 14131211 87 6 5 4 0

LN T @ v [(©) |
23 22 21 20
Negative Zero Overflow Carry

Figure A.2 Processor State Register (PSR)

The processor can operate in two different modes: supervisor mode and user mode. For
example access to the special purpose registers is only allowed in supervisor mode. Two
bits in the PSR, Supervisor mode bit (S) and Previous Supervisor mode bit (PS), indicate
the mode. The Supervisor mode bit contains the current mode of the processor, the PS the
mode before the last recent trap. A trap (hardware/software interrupt) always sets the
processor in supervisor mode. The PS bit is set according to the previous mode. When

Appendix A The processor CY7C611 45

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

returning from a trap the mode can be restored. N

As for the interrupt procedure, the level of the incoming interrupt must be higher than the
level specified in the Processor Interrupt Level bits (when the interrupt is enabled). The
Current Window pointer points to the current window in the register stack. The bits,
except for the implementation number and version number, can be changed in the
supervisor mode.

The content of the Window Invalid Mask register (figure A.3) determines which
window(s) will cause generation of a trap when pointed to by the CWP as the result of
a SAVE, RESTORE or RETT (RETum from Trap) instruction. Each bit in WIM
corresponds to a window. If this bit is 1 the window corresponding to that bit is marked
as invalid and will cause a trap when that window is pointed to as a result of one of the
three instructions. The bits corresponding to a window can be changed by an instruction
in the supervisor mode.

Window 0
Window 1
Window
Window 3
etc. |
L Future Expansion for additional Windows T LTI
31 76543210

Figure A.3 Window Invalid Mask (WIM)

The Trap Base Register (figure A.4) consists of two parts. The Trap Base Address
contains the trap table address. The trap table contains jump instructions to the
corresponding trap routines. The Trap Type is the offset in the trap table and is filled by
the hardware just before the trap is taken. The trap base address can be changed by an
instruction in the supervisor mode.

Trap Base Address {TBA) Trap Type (1) ‘0o 0 0

L 2 1 8 KIEREREY

31 12 4 3 2 10

Figure A4 Trap Base Register (TBR)

The Y-register can be used in both modes. The Y-register is used by the multi step
instruction to create 64 bits products. The bits in the Y-register have the same function
as in a working register.

Two registers, which can’t be reached directly, are the Program Counter (PC) an the next
Program Counter (nPC). The PC contains the address currently being executed and the
nPC holds the address of the next instruction to be executed. The nPC is necessary to

Appendix A The processor CY7C611 46

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

implement delayed control transfers. This will be further explained in A.3.

Some of the working registers have a special function which is used by the instructions.
For example global register O is a read only register and contains value zero. The value
zero is the mostly used constant in a program and easily available now. Data written to
this register is lost.

When a CALL instruction is executed the address of the CALL instruction (the return
address) is placed in "out" register 7 of the calling procedure window. By means of a
SAVE instruction in the called function the retumn address is available in in-register 7.
Local register 1 and 2 of the trap window are used to save the PC and the nPC at the time

a trap is accepted. These two register can be used to return to the address before the trap
was taken.

A.2 Pipeline

The SPARC RISC processor has a mean execution rate approaching one instruction per
clock cycle. To achieve this the processor has a four stage instruction pipeline that permits

parallel execution of multiple instructions. The processor pipeline can be seen in figure
AS.

— >

Instruction >
from Memory

I

T D

DT
\ 4

D= T
\ 4

caocooca
h 4

D=COOXOD
Y

Internally Generated Opcode (10OP)
Figure A.5 Processor instruction pipeline

The instruction execution is broken into four pipeline stages:

1. Fetch: The processor outputs the instruction address to fetch the instruction.

2. Decode: The instruction is read and decoded. The processor reads the operands from
the register file and computes the next instruction address.

3. Execute: The processor executes the instruction and saves the result in temporary
registers. Pending traps are prioritized and taken during this stage.

4. Write: If no trap is encountered the processor writes the result into the destination
register.

In figure A.6 an example is displayed of an instruction pipeline.

Appendix A The processor CY7C611 47

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Decode

Write

CLK
A<24:0>

D<31:0>

Figure A.6 Pipeline with all single-cycle instructions

The instructions in figure A.6 are called single-cycle instructions because they access the
buses only once. Using this type of instruction yields an execution rate of one instruction
per clock cycle. Instructions that require extra cycles automatically insert Inter cycle
OPcodes (IOP) into the decode stage as they move into the execution stage. For example
a LOAD instruction needs an IOP because the LOAD address must be placed on the
address bus and the data must be transferred on the data bus. The instruction pipeline of
the LOAD instruction in displayed in figure A.7. The multi cycle instructions which
generate IOPs are listed in table A.2.

Decode

Write
CLK
A<24:0>

D<31:0> D ins} “‘0‘ In t 1 N“. st 2 ““’ Data ““ lnst SXXXXXX XXXXE(j

Figure A.7 Pipeline with a LOAD instruction

At the moment an IOP is inserted the next instruction is already in the fetch stage. To
keep the fetched instruction the buffers before the decoder in figure A.5 are used to store
this instruction.

Appendix A The processor CY7C611 48

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Table A.2 Internally generated opcodes

Instruction l Number of Intemal Opcodes

Single loads 1
Double loads 2
Single stores 2
Double stores 3
Atomic load-store 3
Jump 1
Retumn from trap 1

A.3 Delayed control transfer

Normally the instruction following a control transfer (jump or branch) is the target
instruction (the instruction jumped to). In a pipeline model this means that the instruction
following the control transfer, which is already fetched, has to be ignored. This is a waste
of time. To avoid this the processor delays the execution of the target instruction until the
instruction following the control transfer instruction is executed. The instruction in this
delay slot is called a delay instruction. An example of the instructions flow is given in
figure A.8. In this figure the contents of the PC and nPC are given. The nPC is necessary
to contain the address of the next instruction. At the moment the branch instruction is
decoded the delay instruction is fetched. The result of the decode is placed in the nPC at
the moment the contents of the nPC is copied to the PC.

PC nPC Instruction
8 12 Non-control transfer
12 16 Control transfer (target = 40)
16 40 Non-control transfer (delay instruction)

(transfer control to 40)

40 44 ... (target instruction)

Figure A8 Delay instruction

Appendix A The processor CY7C611 49

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

A.4 Data types

The CY7C611 supports ten data types:

(unsigned) byte
(unsigned) half word
(unsigned) word

tagged data

double word

8 bits,
16 bits,
32 bits,

30 bits + 2 tag bits,

64 bits,

single precision floating point 32 bits and
double precision floating point 64 bits.

Tagged data is a special data type for languages as LISP, Smalltalk and Prolog.

When reading/writing data from/to the memory the address must be aligned with the data
type. This means that half words can only be read/written from/to an address which is
divisible by 2 (words only when the address is divisible by 4).

Because the processor works with a 32 bits data bus not all data bits will be used with a
data type smaller then 32 bits. The bits valid for bytes and half words with a certain
address are displayed in table A.3.

Table A.3

Valid data bus for bytes and half words

BYTES

address | data bus bits valid

N 31..24
N+1 23.16
N+2 15..8
N+3 7.0

HALF WORDS

address | data bus bits valid

_
N 31..16
N+2 15..0

N1s divisible by 4.

Appendix A The processor CY7C611

50

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

A.S Instructions

The processor has three basic instruction formats and three subformats. These formats are
drawn in figure A9,

CALL
FORMAT { reotd 30-bit displacement |
3130 0
- SETHI
[opcode{ Destination | opcode | 22-bit displacement |
3130 25 22 0
FORMAT 2
BRANCH
[opcod4 a |lest condition | opcode] 22-bit displacement |
| 313029 25 22 0
~ OTHER INTEGER INSTRUCTIONS
pcod Destination apcade source 1 0" alternate space | saufce 2
peod Destination opcode soutce 1 1 13-bits immediate
FORMAT 3 3130 25 19 1413 5 0
FLOATING POINT/COPROCESSOR OPERATIONS
[opcod4 Destination I opcode I source 1 | floatingpoint/co-proc opcode | source 2 |
3130 25 19 14 5 0

Figure A.9 Instruction format

The first format is for the CALL instruction (seen by the two most significant bits). The
30-bit displacement contains the offset from the current position (in the program counter)
to the called function (in words). To reach the called function the 30 bit displacement is
shifted two bits to the left to make a 32 bit address and thereby word aligned and then
added to the program counter to form the actual call address.

In the SETHI format the 22 bit are placed immediate into the 22 most significant bits of
the destination register.

The BRANCH format contains a test condition which indicates which flag(s) in the
processor state register has(ve) to be tested. The 22 bits displacement is shifted two bits,
subsequently sign extended for the direction and then added to the program counter as
soon as the branch is made.

The format for the other integer instructions depends on bit 13. If this bit is zero source
1 and source 2 are the addresses for the input registers. The operation is specified in the
right opcode (bit 24..19) and the result is placed in the register specified by the address
in destination. If bit 13 is "one’ only one input register is used and the second input is a
13 bit constant.

The format for the floating point/coprocessor instructions always uses two input registers
and a destination register.

Appendix A The processor CY7C611 51

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

A.6 Traps

The traps on the CY7C611 can occur as synchronous and asynchronous traps (also called
external interrupts). The synchronous traps are divided into hardware traps and sofiware
traps. The hardware traps occur when an instruction during the execution goes wrong or
is not allowed. The software traps are caused by certain instructions in the program.

When a trap occurs the following actions take place:
- further traps are disabled
- the S bit of the PSR is copied to the PS bit
- the CWP is decremented
- the PC and nPC are saved into local register 1 and 2 of the trap window
- the trap type is stored in the TBR register
- if the trap is not a reset the TBR is copied into the PC and TBR + 4 into nPC
else the PC is filled with zero and nPC with 4

In the trap table four 32-bit words are reserved for every trap. The instructions in the trap
table are a jump or branch to the trap routine.

To return normally, the routine must end with the instructions JMPL (JuMP and Link) and
RETT (RETum from Trap). The actions of JMPL are:
- the PC is copied into the destination register
- the nPC is copied into the PC
- the sum of the contents of the two source registers (take here local register 1 and
global register 0) is placed into nPC
The actions done by RETT are:
- the CWP is incremented and temporary saved
- the traps are enabled
- the nPC is copied into the PC
- the sum of the contents of the two source registers (take here local register 2 and
global 0) is placed into the nPC
- the CWP is filled with the temporary result
- the PS bit is copied into the S bit
The synchronous hardware traps and the interrupt have a priority level. The levels are
given in table A.4. The interrupt priority level in the processor state register only specifies
the minimum level of the interrupts. When a trap occurs and the traps are disabled, the
processor enters the ERROR mode and stops executing. Interrupts are ignored when traps
are disabled.

Appendix A The processor CY7C611 52

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Table A4 Trap levels

Trap Priority Trap type Synchronous or

asynchronous
reset 1 (highest) - Async.
instruction access 2 1 Sync.
illegal instruction 3 2 Sync.
privileged instruction 4 3 Sync.
floating-point disabled 5 4 Sync.
coprocessor disabled 6 36 Sync.
window overflow 7 5 Sync.
window underflow 8 6 Sync.
memory address not aligned 9 7 Sync.
floating-point exception 10 8 Sync.
coprocessor exception 11 40 Sync.
data access exception 12 9 Sync.
tag overflow 13 10 Sync.
trap instructions 14 128..255 Sync.
interrupt level 15 .. 1 15.29 31.17 Async.

Appendix A The processor CY7C611

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Appendix B Schemes Area Segmentation Processor

B.1 Controller

B.2 EPLD interrupt handler

B.3 Image handler

B.4 Screen handler

B.5 EPLD screen handler

B.6 EPLD divider

B.7 Circular buffer

B.8 Picture bus interface

B.9 VME-interface

B.10 VME-interface handler

*

B.11 Communication buffer

Appendix B Schemes Area Segmentation Processor

54

Y129
vy I Uo22A
vee RESETN 3 SEIRI] 5 3 3 5
101 , INTACK rilum-
A3 (531 A[0..23 FP p—rl — SLRS
.o P 3
EIzElf i1 a1 (A“lo”;‘ FHolo B 4 AR — INE3 INT4 fosT ::i"gx_g) D 74aro8
Y 5 Y RL 1t L [
> SIZE(0..1] LEEXC o—rof (FTRET—{ IRL2 INT3 ERD-SE BURS R Q p—— —CIRCK= (JTAZ07 > vee
— L IRLD TLUTLL TiE T4 (LAS* (J1A18) 5
[N P SN L 5) D{0..31) Feel0-2ad 4 == zRLo rnT1 Lol:l HOLK v
¢ | vcco—e——d MDS FINS1 |— TNT SAND Q s UL09A ° U111
$— MHOLDA FINS2 b—— EPM5016 -1 CLK 2 Q
 S— g"gga FPSYN le 2 e 2y S vee -=-=b
+——(BH FLUSH |—— Dr—
TOE* (J4& d ToE vi0s Q R e D ? oSsC MAZ
L—d Mexc ook — CEXT 78ET4 S Rp—- Y ° —
———— RESET INULL TeETd = (S:LK e
——d ERROR LDSTO |—— RESET* .
— ﬁ‘é INTACK REXT/CEXT UO14A UO13A i2 D
WaT IRL[O--3) peLx 3 1 N 2 uoizc —3q =
CLK 2 4 1S, k] TIET4
TYTCEIT
74F32 74F02 vee s8¢
vee SC | 74F02 T)
T UL0 €A pALLL] {EODST (SIBI0T »
L_ZLc R) D_s_umz'_\ scLi Jis 5 4 U112) (LLDS* (JIAIT) >
b € s N crr p—- "
3herx Q g Lgao <
) Wi 74F02 K
< ol 5 rwaT € LK Qo ENT |+ -ovece
TaETa uoiic - c ENP
s — 3 ¢ 121 reo]
yle7 ECLK] 10 2] —3351 QD o
a[p1 pi)l_3 LwEe d 1=y $ uviioa 1319 ¢ (22g 1
— 74Filz —t3|oe = BR8N 5 93298
5ip2 9z |—f LRD 74F02 QA A zaz0 74F112
RD~ 7
N\ _SIZEL 12 pa gi X CSEZET V013D qF163 vee
oY) SLzEIN 1
- a6 131 pa S8 i N
o4 T3~ rAl6~
SCIRZ (5 _L Cex
E 4 TIESTS 4 P
3 U
; y H13 f [r 5
E d ﬁ L 2 494 g |g d 1 8%
'5 4 ! E g é% E ﬁ % e
E ¢ ES: 1 43
\, N AN E 4 3
TERY 7 — 4 - S N 4 V) L/
< N
L < p, < Di0..31Y7 >
V. p
E w (g TEID. 231 >
q 5 N TPI0 151>
d g hE 4 —
4 H EE ac
3 P 4 g5
102 U104 1
N A D Uil3 U,
h—= i Do 29 [\ 2 8o b0 |-:0— D9 h_A 20 a1 LA0 A N o 5 6 o ep , k22 vizs
= A2 o3 53 /] N—A Al p1 25— N2 2] p2 Q2 LAl N—o p1 Q1 = A1 Bl LY
hN—= a2 D 5 A A2 D2 [-1% 24—/ A D3 Q3 LAZ N_D2 pz a2 Y. 7182 B2 91p1 Txpa 21
Ny b3 S35 \\—A A3 b3 23/ N_A D: a4 Y N5 D3 Q3 s A3 B3 8152
A Ad D4 5= N Aq D4 23] X s LA D bs Qi £5 A4 B4 D3 2
2 as DS D N2 AS DS DS R~ - A/ N\—s D5 QS == =3 AS BS D3 Txom
A N D6 5 N—= x5 A6 D6 28] A b7 a7 LAE N D 7] 0S Q¢ 5 r =] A6 B6 ps opo |20
N—ALD H b D - 24 A7 D7 2 N2 pe Q8 N2 18s Sa =D 5 Ay Bl pe |
N as £+ A N—= g D8 25— 11 os Qs A8 Bs 08 el
N_ AL N—= A D9 L2 cLK 11 cs
R— 31A1) b1 511 R—4 2] a10 1o 21 i cLx oo I\ Az a0
N3 Al2 D12 /] N—ald A1z D1z 517 TIESTA ™ Etda \ 5{a1 TR pl
3 r 5 A D12 2 TIFST =
Al3 D13 213 NA 6] a13 D13 | D13 K TIFZ4S \ = Az
D4 D1a /] U114 RESET
224 weo D1S < 2 % h__a o 2 4 Uls
wEl weo- | [SHWEQ P38 N o1 Q1 2 N o1 o1 a1 1 /] w2
<35 cLock . : A10 Dz Q2] _— D2 Q2 b 51/ RD
: : (omo 550 = 2 S B2 g2 B HE—Y 2] o2
OE D4 q = N_D A Y D MR
TYIC157 SYTCISY N_ AT DS gs i ALz /] N_D D4 Q4 1A4 1ys (A& D3/
N2 D6 Q6 i /] N_D bs Qs 2A1 2Y1 2 231 .4
V103 ul0s N D7 Q7 i LA NS ps Qs 2 282 2x2 22
h__Az Y 016 A _ A2 o6 N_A De a2 ’ Q- D7 Q7 2R3 2y3 28/
N—= A0 Dg /] N—% a0 Do D16 /] D8 Q8 2A4 2¥4 4| x2
N— Al o 315 N2 AL p1 fdi—23 1A dlbcrx 11
— A3 o3 013/ A A2 D2 D 3 oc cLx 16
L) % [b3 5 h—= 21 A3 py 223 - 1J oc ze 22| axon
A s D4 B N—= A4 D4 220 /] TAES T4 K1 XE] TIFZ3S nnr 2 27 RXDB
N A6 EH / N2 e be 527 uis 1p2
3 o6 2
{10 e e 321/ N 3 D7 23 2. 2051 Q122 LALS /4 OSC 3° 4 MHZ TEETRCS
N Ag os Y N 23 A8 D8 - N 2{pz Q2 Ty
N__A Alo D10 D A N AL2 AS D9 A N—x D3 Q3 L /1 Ul27A
= Mo || N gl 1 R 21 81 el
D DS LA
= N B R ms R 1 &= 5t S E T
22 oo D18 FaE—s) i b14 /1 N BZ3 oa g; T—TR5TA vozoc frryy
D15 WE1= 53] weo D1s < 1 vee U127 +l2v
5 giécx WEL §g° 1lherk LRD* 8 D3 VEE U127 -12V
FEPSL OE1 $EpcLock I oc 1s 74F32
ST cs 15= 7aF 32
TYTCISY cYTETST IFST7a vozom s ;1
uo14B - s ;o
6 4 LRD* /| 2 0
1<, I T 7ara2 OTZER
3 1
74F32 m£1ns
uo14c N N N <
.) - 3 —C5 > bes
1|, g 4 d vece
p 2 uizo Y R15
74F32 : %}:%}; H A Y0 b S, RAM« /1 1 (ER7W=_ {01 >
U01SA vo1sC N_cals [312 Y1 Pi3-cs.puarT» A uo19A ak3
b
Y it CS.XBARLT 3
. " . vee ia B cs.xsans~ A cs.INT HosT=* Ee 73 >—{WId TS
13 B HT 5] 1 ¥s pil E3.LUT 7]
N_LATIT o] 52, 2P g Cs.T6 TOTe 74F32
7aF10 [34 ¢z b CS.SEND SCR® /] Y
74F10 74F10 c2B_ 17 [CDTT. ./ {LBO0. .07 91) >
UDJ.SB3 U014D U016B U017A 74F138
3 LAL7 uizl
a8 = 11 1< A aisl 1 . . COMPONENT NUMBERS U118 AND U119 ARE
S 3 BI5 sd)< 5 AT AN LAate 1A Yo p S BN SR OPTIONAL FOR LATCHING DATA-BUS D16-D31
N—CALB T B Y1l p- = .UN‘r)" TaET WITH 74FS74 LATCHES
74F10 74F 32 74F10 3 < Y2 p Cs . IALEE PHILI
- .L Y3 b C Lég:ﬂﬂgs i “A H PS CFT F.G.M. Smeets & P.T.M. de WINNE
7aF260 LAy AN Lalo| e o, Y3 SRS K — e
T—id c2n ve b3 I OATA CBF AREA SEGMENTATION PROCESSOR - CONTROLLER
rc Gc2B Y7 B = B/ Size|Document Number REV
TAFTIE A2 CONTROL.SCH
Datws: May 27 1993|sheet l_ot if

INT1

INT2

INT3

INT4

INTS

OQUTPUT

fT—> enffn
vee
ore
Q ? L] NOT
< o<
c
NOT
INTACK T vee— o
CLK EI:EUT AND2
RESETN [E v
vee
vee vee
J — I 74378 74148
NOT ——O RN p——0 0l Nor
LA D: /Q1 I /Q1 b1 o ﬁ d1v ,[: 2UTPUT 4 TRLO
Exggé" D> ;gi p2 Q2 — 23 EON O—
NOT
D3 Q3 Q38 GSN O ODTPUT
CLRN AND2 ;Q; ve ot s rom >0 2T T IRL1
] T—G_‘ /CLR1 e bs Qs dss ALN - NOT
orr o —{bs Qst— —d s A2u o 00Te0T T IRL2
FRY /Q2 LK S RE]
[Exnpur >D ¢ D& b HEX DFP BIR QUTPUT IRL3
e ENCODER
CLRN AND2
) Y—C!_ /CLR2 c¥D
GHD
brrpm' sor ro3
INPOT ° ¢ Q .
O~ D>
CLRN AND2
?——-G_' /CLR3
L
orr 2 - / 4
S Q
INPOT
O vrr D>
CLRN AND2
— 74138
J /CLR4 —
prr NOT Y1N A
PR /95 Y2¥ B
o B Y3 c
Y4N 61
RN
= AnD2 YSN G2 AN Dy
/CLRS Y6N G2BN o
YTN
3:8 DRCODER
A4
GHD
ourPUT

{T— /CLRS

TR INTERRUPT HANDLER

R PHILIPS - CFT

PERTTER P . T.M. de WINNE

Sl Zh D IEPLD EPMSOIG"I NHNUMBER l.ool’ﬂ.‘gﬁ
PRTY T 11:00a 1-11-1993] °°°" T
TURDBU ON SECURITT OFF

UNTTZZ

—TIE> UNTT3>
UNTTA®
M TC[0 -3l >
vee u >
UD36A 19 202 / iM cCl0..%
v03TA 0 CET 1/00 N
T LT r 2 =2 — Se" 1702 u3io uo31A () use —
IM Tt TaF04 +—Lid o I/03 ‘A 5 . 1 ™ - A0 A TBB[0.. 101 >
WIN LIE 74F08 3 1/04 = % 1A 1Y | | I 3 MAOA Nz =1 A0 DOO AL
WIN PIE #q PE I/05 (/TS —— 2A 2Y o 8 NHA =% Al DOl Y3
#q cs I/06 fawy +3 3A 3Y [——mw A A 5 A2 D02 RS /]
s MR I/07 [~ =24 4A QqY = Jeros e = A3 DO3
39575 Tc pis N\ Bt BReter: 2418 [\MA T as
N M oo 51 5p U0 318 NMAE AE
TIFSTS N === =] 28 — A <] RS
id w/e \a emas: in 8 L& max N =1 s Dbro |19
T U303 5| NMA : T3
p—=d G 1.:1 T v A 1] - - N&AL0 A9 DIl
R CETI/O0 < —=q A/B Al0 DI2
0: NoRMAL MODE | L T7AFI5T 184 cEp I/01 /] —d ¢ 74r0e \HALL 81 A11 pI3
) {(zm cLK p 1/02 TIEIST uo3ic 13
'd oE I/03 o : +2 WE/CE
3 pe Q4= Tz U3l 8 |8 MY S
5 IM CCE A LA 2 4 MAs V 1 CYTCi71IA-25
cs 1/06 tri—t—cer— | £2 1A 1Y /]
sq 4R T/07 [ia i 2h 2Y A A 74r08 3y
Sh= s L Ta] 32 T NMaA 2 3 A4 A
u/b TC = an ay N 3¢ a0 oo 2 /4
J3ESTH N v cCs 3 NMAZ =2 Al Dol LBA
N\ 2 e 18 N £4-| A2 poz [B
N o< = 28 Ny A3 003
N 1o cs 5 NMA o
ccs NHA
CET I/00 S — - A6
+—28d cep3/01 < /] —d A/B N A7 19 LD
Tipce 1/02 < Y i ¢ N As pro 33 L0
4{: OE I/O3 = A9 DIl S
J 1/04 % 74F137 Nao o] alo b1z (LI LBE
3 e /03 u3i2 A1l DI3 L N
cs 1/06 —
2 b 1707 20 210 2 1a 1x|$H2 /] 33 WE/oE
1 se his LAls — 2A 2¥ R — b= cE
us/b_TC LALD T ah N wali 7 CYTCLTIA~25
vee TIFSTS L
A M cc10 3 u3is
Uo33a u3lgsa Uo7 N S=IT 18 ha 7 A N
. S i 2e A0 DOO
% s vy WEA N\ EETTI] 28 #
1 Qr— 1x WEB™ M ccilf 1 15] 22 A Z] A1 Dol A /)
21 CLK 2A 2Y 24 28 N A2 D02 FyF—ronyT
I — 3a 3y - A3 D03
74F02 o 3 e R A 1%3 A/B N 2 e
—ld R Q ; h \~ As
18 As
TIETE 128 L TIEISY N 1 A3 1o 108
—r!-‘ aB A8 DIO 55\
S0 2 —= 48 N A9 DI fpp—pBy
—3H sns 1N HALD - Alo pI2 3
—= 1ons i /B Al1l prafp—2 o N
—3{ 15ns —129 13| —
¢] zons TIFTET 13 WE/0E
— 25NS - p—=a20 CE
T0A-5250 CYTCITIA-25
4 Z
U313 u03za u3ig
S M cc2 2 4 2 NMBO o 17 _rBag A
cc 1A 1Y {1 A0 DOOD
N S5] 2n 2 8 |3 Map N H a1 o021 e g
== =H 33 Y e Az D02 L —
I ' 3.0 AA ax 1] /] Jaros N A3 po3 [2] B3 ¥
LA2 2| .p) et
% 3 uoaza MB 3
srx 5] 28 4 NME s
L/ Th s e 8 | mey KNMB 5 A8 prolle LD
4 MB i8 LD
% \ﬂ%\—o as bIyfd 3
4 A/B Al0 DI LD
ﬁ A 74F08 NHMBLT INEErSE Los N
TAIFTSY uo3zc 131 75 /08
U3lse & L= 23 cE
N M CC6 2 4 MB4 y CYICITiA-25
74F04 74F32 N Moo 3n 3 T
N M co 03 3 MB A 74F08 U320 }
N M cC 3 N 2 MBO 90 ooo 1Y 4
X 3 ™ Al Do1 BB A R31
L. 18 A2 DoO2 L.
fana —=] 28 4 A3 Dpo3 1 3k3
Y iT]3e tqa A4
= i) 48 N As
1= NHB As
=g A/® NHE Az 19 LD4
G N As pro (12 IO
TIEIST NEE L A DIirteio
NMBIT 3 EBT N
u3Ls All pI3 N
I\ cc 2l 1a 1v 4 MBA8 /] 13| GE/0E
< UNIT][D..4] N cT 2] oa 2y MBY A 'ﬁ‘ﬁ
b = N N CTiz T 5 o510 CE
3A 3y
> N\ TE o NEEErr— TIETTTA-25
— » vee | Lazo 3] 1n o SEYIY
LOT0. .51 LATT MB 7 _rnne A
oo u3os 2 uwrro y309 . LA — : 28 B A9 poeo Y
LD L) 3 B2 roa1l
S T oo cT b w303 z = NF & 0s b
L) < D3 @3 1702 cf 194 s I LB _SELECT A/B] Tas °°
D3 1lps o4 [-0 OSX 1703 OE bk 21 cLx »ﬁc \MB £ as
13138 o [Izumi A P 0: RISC TO BUF A KB n
5 &% MODE,] 1792 o bl - 2] cc To BUF B L TTEETSY MB Ag
p: 74r02 Ty e N 19 rp R33
1/06 cs piid R e . A8 DIO D
[BELE 3ok 711707 MR £20 1: RISC TO BUF B M 9 by D N 3k
g MR BT TAETT cc To BUF A NMBID A DIl ME TSI
15d e o2 PH N2 & Alo bI2 TN
TIFITE — All DI3]
TAFSTS 3w
-— WE/OE
Uo34a i &
212 AT — L TR
TaE 32 EET—1 /
IM_LC : image line councer
IM_CC : image celwmn counter
LA : latched address (processer) PHILIPS CFT F.G.M. Smeecs & P.T.M. de WINNE
LD ¢ lactched data (proceaasor) Ticle
MA : multiplexer A AREA SEGMENTATION PROCESSOR — IMAGE HANDLER
MB : miltiplexer B Size[Document Number REV
LBA : line buffer A A2 IMAGE . SCH
: line buffer B Date: May 27, 1993|Sheet 3 of 14

(LDI0..71 5

[(LLUT1

SCR _LCCIG. .41 >

uais
Imp2 SR cco 2 R / SCR LLef®..97 >
—ih e b1 Q1 <
————o4 3 — == D2 Q2 o
— 5l2 —S5—Ss p3 Q3 2
o 1 /. SR<Ss D4 Q4 =2
74r08 2 WAY JUMPER [—SERYE ps a2 z
som pic 123 TR TC T35 S5 c
BURST_PIE |2 SCR_BIE SR _LCe 21 ps Qs |22-SC
- 75 E~
SCRTLIE SCR 1 [ONIT3T >— 1q
s ilibcrk
EN_SCR_CLK |—5- —=d oc
EN_cB_cc TITETE
Eop £ {END OF BURST > [CRITI7 > vale
SCR_1c3 2 9 scr ric3
SCRL.C4 —T1 % B hEscrires —
TOTa 2152 93 LUTS
/ /TOTL =153 &4 LLUTT A
(LUTS z
18 (L1013 T 2: S8
LLUT11 L D6 Q
—=2 (SCR PT 2{p7 Q7
/ 7=\ i_—Es R_LIE pe Q8
vee uao2 o . vaos V041A uai2 i 13 b erx
? —3Hd cer /00 SR _Led/] e 1A 1y 3 M Nir A0 poo LU0 b oc
'd cEP I/01 %5 = 2a 2y & Al DOl LU /|
SR LCT A N——Scrcc T N2 S LUTE JIESTE
+pce 1/02 =24 N—=ERS5i—3H 3a 3Y o y NG az poz [3 —]
OE Is03 SR < aA ay A3 DO3
SCR_DRY 1704 SR L/ J 74r08 [\ A4 . g o b & S .
ErM5032-1 pe 1/0s S SER =55 A 18 vo41m N AS | L 2{p1 Q1 LLUTS ’
cs I/06 e o 2B 51 A6 == D2 Q2 A
vee TG SCR LTI (Tx T 4 M7 [/t 3 LLU /]
S MR I/07 ’ 191 3m . n A7 / D3 Q3
a8 & NS a8 oo pa 04 U
8 M A3 oL 3 bs Qs LLU A
f@é”" 74F08 o A0 DIt ioi\ il os g8 LLUTLO vo3lsc
5 ;
M2 F] A1l DI 51 En? [/ TorIY oe ez OTiT
TIFTST uo4lc N 5 1N V 8
A13 DpI3 11
& cLK
uo 350 uo3ac 5 e RNl scr ccs 209 2 M4 A 19 & 2 13 we q oc 74F08
1 | o = SR cer 1 5] i} 1Yl wE A OE TIFSTA
e 1 i N 2n 2y CE1
Fo4 10 = N ScEces I 2h % S HE A 74F08 SE2 L
— T p
74F32] /" . —| 4A Ay S CYTCI62A-25
—— LA 3
(o o VTRT 2a U413
5 =\ VIx? IO %8 M0 A0 Doo L7 LUTS A
14 u/5 T pii- d L 13] 48 N Al DOl g /]
TIFETI - N A2 Doz To /|
1% x/B A3 po3 2K
G M A4
_ vaoa M Al
v042D 22 cer 1700 2558 / TIFTST N 5] A
1 “tq CEPI/01 |5 —<¢ U420 U041D z a7
& 1 —pCcP 1/02 < /] or 1 o N a8
OE 1/0 < e A 1Y A9 "
102 /1 CRLC! 1 1147 NHID 0 LD
TaFos 3 1/04 == N s < 122 2Y 14 & = NMIT Al0 DIO +—5E—
PE 1/05 < /] N < +H 32 3Y [y y A All pI1 3523
£2d cs 1/06 < CR L aa 4y [—aros Ny Al2 DI2 | 55—FB5—)
MR I/O7 CR col 7/ N i \2 Al3 p1a ==Ll N
s L z] 18 Uo42A 164
u/b TC Lral 5 28 . WE
as OE
TAE3TS 1ALz T3]3 g |3 ms =
CE2
T A/B 74F08 CYTEIEZA~25
2 scr ccs /
g SET 1480 SCR cc? JAE157 uo428 U414
9 ; 7 ruT A
ce 1/02 —— A0 DOO
Lid ce 1703 |—— SeR L6 U431 M1 P 4 & p=u2 M a1 opo1 31
- 1/04 —— \u BEE W R £ 1A 1Y Eie] - Nt A2 DO2 T T
zq Bt I/05 5 N o1 L M3 7 7aFo8 A3 po3 -
5q cs 1706~ 4 3a 3y 2 & A4
dmr 1/07 22— vcco PY NP YTy L —— N as
2d sr_ A6
uwo Tc pi2- Kersxs 1B tﬁ% 2] A7
28 As
L TAEETS VTATS 01 38 :74 as .
aB Al0 DIO LD
vo3ac us06a N All pI1l FR Ty
s IE A/B N A12 pI2 N
10 o |—=- c Al3 DI3 N
1 cLK L ey 154 we
20 33d ot
74F02 —d r o p-t E CE1
TAETE CE2
1 TYicieza-2s
V407
—3 sus N |2
— 10NS
—2] 15ns
<] 2ons
—T1] 25ns
TOA=52%0
EEZ—I5 /
EEIo—IIT /
vee
U033D ? u406B 1: RISC TO LUT
U03SE 0 ©: cC To LUT
CS.TO TUT E‘ 137 hiz »—hfi gLK
(LWE- > 7aF04 2],
74F02 =g Qb2
DU TIF TR

SCR_LC : acreen line counter
SCR_CC : screen column counter PHILIPS CFT F.GC.M. Smests & P.T.M. da WINNE
LA : latched addresas (proceasor) Title
Lo 1 latched dats (processor) AREA SEGMENTATION PROCESSOR - SCREEN HANDLER
M : maltiplexer Sizs|{Document Number EEV
LUT : look up table A2 SCREEN. SCH

Date: May 27, 1993|{Sheet 4 of 14

(=12 4
CmGr
rv
- d @ =
= - P

oo oyeuT)

SYTEYT— FoB

becarvas]

SUTEYH) SCR_LIE g drv@@20

DI TPLIT
U gursT-PiEher grvos |

SUTEUT SCR_PIE lser arveza |

S9TEUTT =N_cP_cC

Lot 1]
D

A4

aoND

LD1 :INFUT
‘-Dz :INPUT
‘_D3 :leUT
LD4 :lNPUT
LDS :INPUT
‘_De :\N’UT
INPOT
Lo8s | m— o
Lps -
D
=i,]
BCOLINT
—J Lo~
LDO | veo
-~ o
LD1 e
- - PN
LD2 °
< L
LD3 >
o —
LDa - - S
LDS - +_
| LS a —
UNITZ2 e = - —
UNITS L LAV ~J o~
UNIT4 et rra 27 DIVIDE — e~we
LN UNITLs. . 2] |ETN
smeT c—_auns‘r—l_—o cumn -
ccs | eLw
UR/ON COUNTER
LT R ANO:‘
cce L = ‘% :}_f
NOT veo
HCLK e 450; T
orrdy
SCS_EN r INPUT '_/5 >
vee orr ore b
Ooma o o e
NOT
R p——) >— > > I —o< -
(=30] DP’A
¢ LY
vee I) O r
DPPA L)
o
UL LI B w— NB‘-’* P>
S e °Trh NeT
LT N
(=] (=] %
o >
DP‘PA Clm S

QuTEuT— L\ _scr_c

TITLE

SCREEN DRIVER

COMPANY

PHILIPS

— CFT

DESIONEM

F.G.M. Srmeets

=ZzE o —| NUMBER
1

1.00 | =
H

DAaTE

2:58p 4—16—1993

=

INPOT

UNIT2 D v —
UNIT3 ([0 iyer—— vee ACOUNT
UNIT4 O e T e¢—dzox
A
UNIT2 : :::
UNIT3
1] Q¢ pb—
—cin Qo }—
—_ DNUP couT
SETW
~ -l CLRN
CLK 4
COUNTER
Awn2 EXP OR2
LCOUNT —1_/.—\ Do) > S YUYy CP_BURST
g Lox
UNIT4 .
— B8 QA }—
—_ C QB
—f D QC [
cIN Qb }—
-l DNDOP couT
/SET M}x:é’gr o SETN
] CLRN
cCc9 m’fé’é” CLK 4
COUNTER

TR DIVIDER

CORERTY PHILIPS - CFT

PEEREER R .G.M. Smeets

SIZE D IEPLD EPM5032—1 NUMBER l.OOIREv A
PRTE 5 .11p 10-26-1992 Z“” 6 O 10
TURBO ON ECURITY OFF

vee us) us3
U711 v712 v713 XBO 2

CR0 2 DO
- , 1A1 1Yl = 1Al 1yl
H b1 orl$—2{p1 o:p % Ha Ay 1A2 1y2 N (SER + 1Az 1x2 01N
] H b2 02— D2 oz |— s o 1A3 1Y3 25 = 1A3 1¥3 D
ERTY—=1] D3 Q3 Fr D3 Q3 |rg c <5 1A4 1yq |2 . e T3 1A4 1Y |22 D
FSrs—i5{ P34 Q4 12" i{oa o4 = e 2A1 2Y1 23— == 3 2AL 2v1)
FSiT—Tr{ DS QoS HE—3{ 05 Q5 [=% s = e 2A2 2Y2 |— 2 e = 2az 2v2
D6 Q6 D6 Q6 = = s1 = 4o 2R3 2¥3 2 s S 2a3 2¥3 |— D
° o 5716 G2A { = 2aq 2va 2> 27 2A4 2v4
2oLk 2Pk N 5 628 i ;
G s IN oS — UQ72E U074A TIFLIE } —id 28 | 3
TIFST8 TIFSTS ToNs = yyplo 1 uo748 —=
ZoN8 [t 3 1y hi2 ur1i4 TAFZA4 TAFZ44
25Ns —S—II 8 -8 jl A vo pii IwEDS
Uo71A 3I0NS B ¥1 pri—IWEIT usg us4
[CE-XBRRLI= > 5 uo3rp 3sns [10= Saroe c xz2p WEZT > %8 Hiar ava | 55—2%— | SER 1Al 1v) D
21 40NS |2 u71s Y3 p$—{WE 3= [1A2 1y2 S E < 1A2 1¥2 2
[BULSES R 4SNS —— 4 . 2 [WEd= £ 1A3 1v3 2 25 1a3 1y3 210 N
Jara2 SONS 3 S H s1 Y5 prg—{WES™ e 1A4 1va |2 2 fariaw 1A4 1lvs D
TaF08 =FATIOR00 J p Q =q G2A Y6 p—a—fWEE™ [2A1 2Y1 =5 s 2a1 2Y1 2L
vor1e > e R c28 Y7 p——wETTS X2 2A2 2v2 2 = 2A2 2y2 2133
4 L— EE X ip crx TIETYE 23 2Y3 2 = 2a3 2Y3 N
S, 2 € =] s r 2R4 2vs % 2R84 2Ya
21 veco K L G—% e . \
[CE.xBRRZ=] 74F112 [XB{0..131 > ‘ 1 16 [STRTO- - T5T Dl —1d 1s GIo--I51>
7ar 32 1 0A] 2¢ usos | q 2¢
U701 z 4 TIF23
[CS ADDRESS CB* > [CS DATA CB* >
ot ac 3 (e S ADDRESS CB~ >l e
2 2]
2 Le —8] oE RS- >
+2] BNKLDI
sbapcrer 74F32 7aF32
74r08 cLK I_m
[EATZ--8] REGADR[O. . 6]
{E510--71 €I (0..7]
IM Ccc0.- DI[0..4]
M IS0 il DIIS.19] 2(48..63) Ll bteselild
LBAID. .10 DI[10..20] INLT TS w LA : latched ad
b 2 dress (processor)
m T I DIf{21..31] Z2{32..47) N\ LDt latched data (processor)
SCE _TCEI0- 1] DI[32..36) 2[16..31) fibldfandld .
SCR_LIEID Ao DI(37.141) A LD 14 : N XBixRira
[CZOTT8--101 5 DI(42..52] z[0..15) \ P x~har
L64270-30 IM 3 image (data)
SCR : screen (dacta)
ur02
WE IM_LC : image line counter
- OE IM_cC : image column counter
BNKLD I tBA t line buffer A
'_‘.'31" BDCYC1 BB 3 line pbuffer B
cLx SCR_LC screen line counter
SCR_CC screen col counter
..6 _ umn
lg!i:t[;sl?l‘i;? 1 LUT : look up table
DI(Q..4] B4, 651
DI(5..9] 2(48..63)
DI(10..20]) \
DI(21..31] z(32..47)
DI(32..36) 2[16..31)
DI37..41]
DI{42..52}1 z[0..15]
. TEAZT0-30
/
pomen{ XETT. . T77 > é
v072D uo72¢C u0728 uo72A U073D y073c uo738 UD73A
xB14 The 4 ' [6 4 »
TaF04
K\ 0 N NxB4s 10 0 oL AD 1 A hxa \xa4g 1
N + N N AL csu N2a 73 A1 csupSE N Al csupfe T AL csu Hoe | N\SAis 3] A1 csupfe
i1l a 22 A2 23{ a A2
N 3 N Nxs NXa3—7 2 NxA Nxa 2 N2 21
N - N s 1] A3 < WEI™ | T3] A3 WE P st iall Ny A3 WE N\ 7 A3 WE ARSI A3 WwE SWET*]
A4 OE A4 CE3" | A4 OE p < OE4* | A4 OE - A4 OE A4 OE D COE 7" |
N < X As AS XA AS XA As \XA AS \XA As
N XB22 Y [\XB A6 NXAE 321 a6 NXAZ2 32 a6 NXAJE 321 a6 NXAZT 321 A6
\ X5, a7 N\xB A7 [\XR A7 [\ A7 A7 XA a7
N XB NXB N XA = NXAS NXA
A8 A8 a8 A8 A8 A8
N8ty =8 As N3 A3 \FATT A3 N 3 a9 \ A9 N as
N N alo0 N alo N Alo N Alo0 N alo o a10
N i ;'xa % Al% \;xa All \ Vi Ai.l N Ai.; N + All 3 A};
224 Al Al2 A2 A Al2 A
NXB13 NXB2I 337 A13 \XB a13 N2ALS 541503 & A3 N\ 244 A13 NXREL Al3
X MO 21p10 DoO A% b0 poo G55SR M0 21510 oo |31-3E I~ M0 2! bro poo & ~ M0 2. p10 Doo |27 M9 %1010 Doo serd
iy : DIl DOl fauiy DI1 DOl = < DI1 DOl = 1 DI1 DOl SR 2 DI1 DOl For DIl DOl EE—EERS\)
¥ v DI2 DO2 e DIZ DOZ = > DI2 DO2 R\ = DI2 DO2 = > DI2 DO2 o DI2 DboO2 SERT N
x : DI3 DO3 = B DI3 DO3 & X DI3 DO3 SR DI3 DO3 SR : DI3 DO3 x> DI3 DO3 bxi+2Eai~
2 > DIA DO4 s DI4 DO4 SR DI4 DO4 = DI4 DO4 FRE\ = DI4 DOa ¥ DI4 DO4 |= =
< DIS DOS ~J =+ DIS DOS DIS DOS CREN DI5 DOS |E¢—=g = DIS DOS [-5% X DIS DOS EREN
: DI6 DOE 5 DI6 DO6 s z DIE DO6 = DI6& 006 S DI6 DOG DI6 DO6 R
o —- DI?7 DO? J Vi pI? DO7 THE DI7 DO7 o\ 017 DO7 ERE = pI7 DO? = DI?7 DO? -
] = #{ D18 pos —~ =5 DI8 DOB L5 DI8 DO8 = DI8 DOS |—g—2=ho] X DI8 DOSB x DIB DO8 EEEN
5 < 2 D DO9 N T DI DO T DI9 DO9 SRIN . DI9 DO9 28) DI9 DO9Y & DI9 DO9 e\
D110 DO10 = ; DI1D DO10 DI10 DOLO TN X DI10 DO10 M DI10 DO10O R - DI10 DO10 “""—sc'i"‘io\ DI10 DO1D X 2 DI10 DO10 F~r—=ERTN
DI11 DO11 X DI1) DO11 DI1l DO1l = ai DI11 DO11 5 DI11 DO11 SRt % DI11 DO11 “""'SE‘!""Q DI1ll DO1L . DI11 DO11 {(~r5—2ERTn]
Sia] D112 DO12 [yT—<FRrT™ B DIl2 DOl12 = = DI12 DO12 [¥—FERTH e DIl2 DO12 = T x5 DI12 DO12 | R =T DI12 DO12 S ERL = DI12 DO12 |—y% T DI12 DO12 2T N
x DI13 DO13 |[wp—ESBs B DI13 DO13 25 DI13 DO13 =R e DI13 DO13 X x DI13 DO13 S Y DI13 D013 2Eh DI13 DO13 : DI13 DO13 tmrp—2xisn]
, DI14 DO14 [y—SEnts x DI14 DO14 (z3—oc DI14 DO14 f—p—Z&R G DI14 DO14 = i DI14 DO14 [zx—3&8 < DI14 DO14 [rg—3 x DI14 DO14 =5 X DI14 DO14 bzrg—oFhy
DI1SDO1S = DI1S DO1S DI1S DO1S J V- DI1S DO1S = <3] pI15 DO1S DI15 DO1S =\ DI1S DO15 DI1S DO1S --%
M0 23! b116DOLE M0 241 b116DO1E SR (M0 23 prispols S VE +{ pr1s pois [g3—3SRY 53 p116 DO16 [E3—Seni 358 pris ois |3—SSRE M0 24 o116 DOLE M0 23! pris pois [3SSRI
z DI1? DO1? 2i <2 pT17 DO17 SEe— fo DI17 DO1? ~J = DI17DOL7 fzi—3¥a a—%34 DI17 DO17 SR DI17 DO17 |[gw—2Ei] x #{ 0T17 DO17 X DI1? DO1? S&-\
e DIl8 DO18 —— DI18 DO18 = K DI18 DO18 CRITN [+ DI18 DO18 |-g&—==m: K DI18 DO18 = DI18 DO18 ECRY = DIle DO18 = DI18 DO18 E5——2ER%\]
= DI19 DO19 = DI19 DO19 |Z3—2xma] DI19 DO19 fori—s== i OI19 DO19 2y —F&n > DI19 DOL9 bg—=End~\] DI19DO19 = N = DI19 DO19 [~>% ST DI19 DO19 H—2ERT]
: DI20 DO20 x DI20 DO20 - o DIZ20 D020 = ¥ DI20 DO20 SERs 25+ D120 DO20 SEE DI20 0020 [E§—SEn=—] o DI20 DO20 L DI20D DOZ0 SR\
+ DI21 DO21 = DI21 DO21 N e DI21 DO21 = e DI21 0021 E5—icns & DI21 DO21 SR DI21 DO21 2EREN b DIZ21 DO21 = DI21 DOZ1 N
2 D122 DO22 e =91 p122 DO22 < LHg DI22 DO22 = [DI22 DO22 |27 —2CRT = > D122 DO22 SR : DI22 DO22 SR = ${ p122 po22 o DI22 DO22 RN
X DI23 DO23 DI23 DO23 = 0I23DO23 g [D123 DO23 SR o DI23 DO23 amy x DI23 D023 REN DI23DO23 = DI23 DO23 N
3 DI24 DO24 = 3—ww- DI24 DO24 N 3 DI24 DO24 o U DI24 DO24 L8 i DI24 DO24 :@r\ DI24 DO24 "‘“_sg-%r\ Xl DI24 DO24 = DI24 DO24 e
2 DI2S DO2S < x DI25 DO2S [BE—2% DI2S DO25 & Gi DI25 DO25 Fg§—2Enen T DI25 DO25 ¥ —SERTON DI2S DO25 2 = DI2S DO25 o DI25 D025 FE{—2ERTIN
> DI26 DO26 =R X DI26 DO26 > DI26 DO26 < U Tait—57] DI26 DO26 =R % 3] D126 DO25 < DI26 DO28§ S0 , DI26 DO26 x DI26 DO26 ST
i D127 D027 |= =5 +{ D127 D027 2{ p127 D027 - [tai3—35] D127 D027 |- = < 51 p127 DO27 == 25- DI27 DO27 2 3—SEEeA] M4 221 p127 0027 x DI27 DO27 3
= - DIz8 DO28 =T ST577] DI28 Do28 T 537 DI268 po28 =T U ~s515—41] D128 Doz28 = T DI28 DO28 R 3 DI28 DO28 = . i DI28 DO28 T DI28 DO28 R
o345 D129 D029 <R = -+ DI29 D029 3{ D129 D029 [< S 51r—7+5] D129 0o2s o =—35F x 34 p129 DOZ25 | - 35 DI25 0025 55 SERIRY 513+ DI29 DO29 1735 DI29 DO29 [e—25q
X %1 D130 DO30 = X 4{ D130 D030 | z ${ p130 DO30 = o £{ prao poag =a X DI30 DO30 = DI30 D030 |3g—Senia] < 0I30 DO30 Sy=—+%{ DI30 DO30 =R
DI31 DO31l S DI31DO3l DI3lDOMN / DI31 DO31 < DI31 DO31 DI31 D031 |== SN 0I31DO31 DI31 DO3l SR
CYM1822-25 TYMIB22-25 CYM1822-25 CYM1822-25 CYM1822-25 CTYM1B22-25 TYM1822-25 CYMIB22-25
N,
\ \ \ 2 p. p. P

PHILIPS CFT F.G.M. Smeets & P.T.M. de WINNE

Title
m AREA SEGMENTATION PROCESSOR- CIRCULAR BUFFER
! Size|Document Number REV
AZ CIRC_BUF.SCH

Date: May 27, 1993]|Sheet 7 af 34

(IM{0.. 157>

. Usol usog p uB1E
hl HiDac (20 vno) H H 19 zm H
HiDac AQ0 YAD b D1 Q1 }=3—= by DagNO
<h Dat Al ya1p H p2 gz =3l /] N HiDat)
R AL AZ YAZ b HiZ 2 D3 Q3 =it AZ YAZ D s
5 e A3 YA3 pii D4 Q4= 2 A3 YA3 D Dachs N
Y ax BO YBO p—= = T D5 Q5 |==) B0 YBO Cag nipat
& pat 3 81 vB1 b 2 s D6 Q6 |—= / Bl vBl p—<—=p Do EN
SRt Toas B2 yB2 b—p—1it < D7 Q7 |== B2 YB2 &2 RacNe N
83 YB3 p—2— D8 Q8 [—== B3 YB3 b =h At N
id oea 1lscrLx OEA
[ChRI _RlDacnlB-.77 > M‘ujc OEB r—‘c oc OEB 2 hiieinlledell W TR HIBatNI0- T >
ERIT TS
[ERZE _Fi0acNI0 71> 74Lszd TAESTa =L\ Janseq SRR A A Gy TR S I PR A
oh2 HiDackD usys aio Us07 uslo ve1s
5 as 21 a0 vao b SCRY Ho1r ar Ho1 a1 A0 YAD Ch2 Hibatho /]
= 2at AL YAL D 5 SERs o2 o2 2ipbz Q2 Al YAl Spefapacls
= pak 22 XA2 Dy o {03 Q2 D3 Q3 A2 YA2 Pbyz—SB =i
Ch at A H SCR Q Q4 A3 YA3 . Da
S 22z B0 YBO p—2—% seq DS QS 21 D5 Q5 B0 YBO = D 4
B B Bl ¥YB1 p- x NS D6 Q6 D6 Q6 Bl YBl = D8t
S D2t B2 YB2 p H N b7 a7 2107 a7 B2 YB2 p < Dat
B3 vB3 L pe Qe pe Qs B3 v83 p < Dachi_/
oEA 1l ek 1l
ch2 1oLk OEA
niznn [154 OEB o g i o TSt Hi2 154 S
74T 524 TAFST4 TAEST4 4L5Z40
uso2 usps usiy
o . . .
ShiInpathg A0 YAD nd n H o2 o i3IS AO0 YAO b Chi
. -y b = ch
bt A i Bl R & T AT
Ch n > = M b
Shy—inpat 5] a3 w3 pl X L pa Qs [+E+H A3 YA3 R
o=t =| B0 ¥BO P o D D5 os | E3—= B0 YBO Pp——Fg
SE—Yopat Bl 2l p 2 o s Q8 3—+3 81 yB1 b S
< npat 83 83 p o o Ds ge A2 IMLZ Y B3 ¥a3p2=<
B3 p
11
hl Inx l—_r#c OEA cLK
[EEI _InDatN[0- 7T > < Nl OEB ¢ SEa Nl R AR L U T FROAENTO- 7T >
TIC524 IFSTE TILSZT b
Che InDatN[D. ol (Ch2 InDatNIB: 7L >
. . _ _us2o usos us11 usisg]
ch a 9 2 o~
SRE—$apaty 2{ a0 xro b n NEER Hor o1 Hpo1 a1 A0 YAO D Shi—gopacie 1
= Al YAl D T +{ D2 Q2 T
st = NSERID Q Dz Q2 Al YAL P < 5
SRS—FoBatH A2 ¥AZ P o N =4 b3 Q3 D3 Q3 A2 YA2 R
= ADatN A3 YA3 D A NSCRI2 D4 Q4 D4 Q4 A3 YAl D=5 = N A
npats — B0 YBO p- o N DS Q5 bs Qs B0 YBO br < noat
SPg—snbach Bl YB1 p— a N D6 Q6 D6 Q6 Bl YB1 p—»—gSps—nzatis
& YT B2 YB2 P o NS p? Q7 D7 Q7 B2 Y82 p =p<ioga
B3 YB3 p CR D8 Qs | D8 Qs B3 YB3 b ch ach
chz TnIom L:’%ql OEA 1ls crx 1lhcix OEA
OEB :——‘c oc -L—-—‘c oc OEB
TILSZA TIESTR TIESTR TILSZ
uso3 usos usoy ue12 usLs
chl _PisN 2 2 1 S Iy
AO0 YAD D1 Q1 TN PIE > TSCR EIE 2lp1 a1 2{p1 Q13 21 Ao yac chi cieN [CL BIEND
s Al YAl 2 D2 Q2 |- IM LIE o LSCR _LIE S D2 Q2 2| 02 Q2 Al YAL b Spl Lash CYELYEN
SpeifseN Az Yaz b Hpa 3= WIN PIES> —4 b3 a3 D3 Q3 34— AZ YA2 b Shl clkN L_CLOCKN 5
SR v A3 YA3 b3 Dd Q4 WIN _LIE> -4 D4 Q4 D& Q4 | —y=- A3 YA3 b2 R
+| BO ¥BO p— —*21ps Qs p=2— —%&ips as DS Q@S5 |i=2— B0 YBO P Spg-plel EN
—33{ 81 ¥81 b3 —3{ps Q& - —4{ ps os D6 QE - 81 YBl p—5—spLLaol €3 _LIEN
-.b- BZ YB2 p—j— —5{ 07 Q1+ —321p7 a7 D7 Q7 [<i— 2182 vB2 hz _ClkN TZ_CTOCKN
—44J 83 B3 p—— —31ps Q8 f|2e- —2]ps qs D8 Q8 i —2d] 83 yB3 p—2-
3
chl CtelInN ﬂ oEA 1bcrk 115 crx 1lbcux SelN —Id oea r—‘
SEB e oc s e oc LesN 134 oes
TEL524 FaFS74 FArST4 ~Tar 574 IL52
us23
7 PIEN Chz Pien A0 yao bl
B
ot N Al E
e WETEN S Chg_WhioN A3 YAl B
< E ChZ CIkN P
€2 T N BO YBO p- M LK >
—%] 81 YRl b+ ScR_cLE>
—3] 82 B2 p—5-
bli 3 va3 p—2-
enz_cecizny [T 9EA
oeB <BUs SCR cix} 18] vao a0 £ha CLKN
TXESZT —Hd AL AL
—32d xAz Az
a3 M F _ch2 cakn
Chl CtrlInN 13
~—=d vB1 Bl -
us2sa us26A —3q ¥B2 B2 |5
—34 ve3 B3
1 le 3 Ch2 CtxlInN 1 CtiIN
BEIE—157 NP TEINNER 74F04 - | SEA Prs—(Eien
Y us22
- 2{ 51 o1 big Chl HiInN
D D2 Q2 pi
N—507
N—5D 02 a8 Ch2 HiInN
N30 b
= b
D D=
N D12
G
{bap id
__sD
N D
NS5 .
N—SD
O In
3D T
IM_PIE : image picture enable N__S - Se2N
IM_LIE : image line enable N\, 5D
IM_CLK : image pixel clock us23A é% HAeld o2
WIN PIE : window picture enable [CRESET~ [JIBYL7) > ? 3 Q RB800
WINTLIE 1 window line enable cLx RERRBRRAR 9e4k7
IM_H image height (data) o c
IM I image intenaity {(data) vee R Q Qo
_ TIETE "
pe.] :+ image (data) 9
SCR_PIE 1 scresn picture enable T PHILIPS CFT F.G.M. SMEETS & P.T.M de WINNE
S3CR_LIE : acresen line enable
. 1 Title
SCR_H : acresn height {daca) AREA SEGMENTATION PROCESSOR - PI-BUS INTERF.
SCR_I : screen intensity (data) v SizeiDocument Number REV
SCR 1 acreen (data) A2 PIC_INT.SCH
Date: tebruary 19, 1393|Shaec 8 of 14

US04A

.
3
- P (SDTACK* {J2) > ATC. . {J3) —
veceo Rl n
U903 74L503 Eol0.. 151 (o2 > vee
-1 234 crRo_ssL sDTACK |2 i ug13 Az A
+ [\.SD 24 po QA 5
— TOE \SD D1 g8 |er—4e—
- NSD D2 Qc o
- LD_CNT_INI \SD D3 QD =
- INCTCNTTINI j TC P
OE “CNT_INI 3q cEp cc pif-
=q ceT
A LD_CNT_COMM TNE TNT “NL_D epce
A INC_CNT_COMM 0D CNT = ne ES‘E
& s LD_COMM_BUF
& GDS* (0% 3d sups OE_COMM_BUF 5| U/D
LDS* (J7) 3= SLDsS CE_COMM_BUF [GE CcNT TxNIc > OE
AS ius 3q BAs TAF563
R/~ (J2] SR/W RAM_SELECT
[BAfIT 33T (I3} > Afl. .47 (J WRITE_RAM
READ RAM
! usla
sSA4 OE_DATA 5D 21 po oa |82
SA3 OE_ADDRESS b) = \ D1 QB pr—2
vee SA2 OE_RDR_cOMM \SD D2 ac A
S SAl 18 N D3 QD |53 4
LD_LO_DATA |33 , TC p
QOE_LO DATAD [OE " LO DATA® > . § CEP CC P
R ISR 5 ' 23 5 syscrx OE “HI DATA b - 1 ceT
1 o— .5 —$pce
2(s— BAR_LD |-~ BAR_TD PE
o— c3 VME_CIRL g SR
22zp EPM5064 -1 MR_
u/b
R20-23 T o
ak7
M TAFS69
M
M
M us1s
. b g Do Qoa el
KNE515 DY QB Y
N\SDe D2 ac Y
D D3 QD
TC b
J 1zd cEP cc piio
= TIFEIY 39 cET
T cp
d pE
SR
d M
u/b
d oE
“TAF583
u9le
Nspis 3o o Ala A
\SDI5 b1 o ATS
D2 -
D3 QD 5o
; TC brg—
<BI0 311 °4) SO0 151 (52 IS 15
5T N\ <SBI T 1571 N\ —g3q s copl
(SBTO. - T5T [I77 Sea G0, . 311 (741> T
v990s vsgo -y
, o " . d
NS0 2lb1 a1 D9] NG b1 o1 |23 /) d
R = D2 Q2 = / N5 D2 Q2 = u/D
NS5 D3 Q3 =3 N D3 Q3 =) OE
N\ D4 Q4 22— N D4 Q4 2 —2FSE
N DS Q5 |g—22— D DS QS 22— 4FS69
N2 D6 Q6 t:s + ps s 22— -
N 07 Q7 27— " D7 Q7 2 , 222 A
oe a8 pe Q8 |22 [RAM_SELECT 1Al 1Y1 Swn
1a2 1¥2
T5 1O DATR tlbcrx NS M BLY) 1lhcrx 1A3 1¥3 Y
DATA~ q oc TO DATAS —d oc 1as 1Ya A5
21 2v1
TAFSTA TAESTS $A 2vz []
223 2¥3
s _ usos e [v9lQ s 2he S q
35 Hor o1 55— NG Hor o1 55— R11
o p2 Q2 2r5 o D2 Q2 >t d 1c a3
30 o3 @3 Y NS 03 Q3 D 13§ 2¢ k3L e
N Bs 95 215 & b3 85 D32 TIFZAA
NoD D& Q& 21 D D6 Q6 D3 /1 U1
N : B? o7 : . D7 Q7 > 5 A0 A R6=7
pe Qs D pe Qe 1Al 1Y1 A P
a2 1¥2
1l bcrk Aibcrx [EERD _FAR® 1a3 1¥3 } T3>
+—d oc oc 1A4 1Y4 1 SIZEQ (J4) >
231 2y1 SIZELl (J4) >
TAESTE TIESTY I+ ; LT]
y907 us1l [WRITE RANR= (5] 233 2%3 WE* (Jd) >
\.sp 2[a1 p1 |28 D16/ N.D 201 o1 A2 SDO /] — 2A4 2ve |—— RE~10
NSD 2] Az 82) NE bz o2 15 +id 1c 2k2
NG A3 B3 = = D3 Q3 == L1 2¢
e As Ba R N\D D4 Q4 2 j
N3 AS B5 551 t: T DS @5 = . TaF244
o A6 BE 2551 N5 Dé Q6 =3
3D A7 87 ¥—35%] NE 07 Q7 /]
Ae BS pe Qe [—=
20 & 11h crx <FBIO-IB51 137] \
p
DIR [OE_HY DATA® q oc
TIFZA5 TIFSTE
usos v932 U919
sD 2 8 A ND24 2 08 A hao 2 _‘_ﬂ 8
S0 A1 Bl il N D1 Q1 /] N Al 81
20— A2 B2 25 N2 D2 Q2 2 NS AZ B2}
5D A3 B3 55T \G D3 Q3 - e A3 B3}
N3 A4 B4 g2 [\ D4 Q4 /] N4 A4 B4
22 AS BS 25+ NS D5 QS 2 NS As BS
N o as 88 / R 2 5106 as / N A6 BE
N 81a7 87 531 N D7 Q7 2=~ NS A7 BT}
AP B8 = = D8 Q8 < = A8 B8
19 |11 19
G cLK 4 c
vceco DIR L oc — DIR
TIFZ4S TIFSTE
U920
[\A Z{ a1 B1 |28 —
NS 2 A2 B2 = j
A = A3 B3
N A - A4 B4 =
% AS BS 51
NS A6 Bs 5
N A7 B7 3% e PHILIPS CFT F.G.M. Smeets & P.T.M. de WINNE
AB BE
Title
S AREA SEGMENTATION PROCESSOR — VME-BUS INTERF
vceo- 7DIR Size|Document Numbex REV
a£29 Az VME_INT.SCH :
Date: Apri) 27, 1393|Sheet 9 of 14

Zas7a VME_CTRL
[an) inT1 & CRD-SELN NTIT 45 o a1 :VN sorTacH SUTEYTTT SDTACK Viaal Nt
vrme_ ittt 1@ SUDSAH :/‘NBUT D=2 [~} SuUDSN DATALENNTT——M————
INPUT ¥ -os to De inverted
vme _1t1®9 | SLDSN o3 o T SLDSN W TEN
vma .t SASN L ImEUT Da o ;BASN SELAY_wWmITE oy coen collector
S <1 sr wn —— e ! o - e uLSE gote 74F38/74LS03
: -1 o= Qe ‘——‘ Sl
- o7 [s
—t oa o 1
—q oeN f VME_DEC
P ol a| LOLLa_daTa SUTEUT— LO_LO_DATERMme_int1@18
OCTAL D—rm i QE_DAaTAN :::::: OE_DATAN jvrmeint1 @41
- H oOE_ADDRESS OCE ADDRERSYe 11 @27
| QL'_Q—DA‘FANE* SUTPUTT OE_LO_DA Orme N1l DAl
. s?{‘ i OE_HI_DATAN | SUTBYIT OE_HI_DATA e _int1 @4
2 2 < SYSCLK : v LDO_SNToININ SUTEIT LD_CNTLUNIOrma _int1@®16
DATALENN NG NToIN OUT’UE INC_CNT_I o_ir 1 & S
W TEN OE_NTUNIN °U""LT|:> OQOE_CNT_INjpme int1 D28
DELAY_WRITE LOSNT_COMM 2UTPLT LD_CNT_CQvven int1 & 37
ouLseE INCLSNTESDMM OHTPUT: INC_CNT_CRNM i1 D24
Sare 11 CsaC4..13 o aor_Camm SUTELSTTT OF ADR_CQuivining1 @ 38
; zaz7a L smAWN CE_ COMM_BUPN SUTEOT— CLCOMM_
sA1 [— R - o1 a1. LSAD ce_ceuN ouomu_aur--[y S OE_COMM_B ihferi D40
saz ; ineuT . oo =SA2 CO-COMM_BURN SHTELITS | D _COMM_BYFarint1 @17
sA3 h LNEAT ! o o LSAS ~AM. S ELECT 2T RAM_SELEG Frelintl @ 1 =
sSaAa 'N’U?gll Da Qe LSA% WrRTE_rAM N SuUTPOT— WRITE_ _RAMomM e inT1 @
| — os os— mEADRA QUIRUT— READ_RAMIvrme _int1 @20
i — o= onr— [am_ L0 2uUTEUT— BAR_LD ain @ 1
— oa on— SET_OE_CPUN pielilfe T ouTEUT,
1 e -3 oen Jﬂ!hé_"—_—‘: TOERN m imt1
‘_%—‘ [4 -] > 1
OCTAL D=
v =i, | }
aNnd I
|

[T

) VME —INTERFACE

L COMPANY

=

PSS — CF

DES OGNER

F.C.V. Smeerts

S5 ZE

PNV BTSN

| 1.00

oaTE

i 8:000

1—21—-1993

S1 (: DATA_ENn

v

DATA_ENn
S2 WRITEn

V

n
W

DATA_ENn
WRITEn
DELAY_WRITE

v

S4 C DATA_ENn

S

SDTACK
S5 (PULSE

Read-Cycle i

S6 [DATA_ENn)
y
DATA_ENn
S7 [: SDTACK :)

SASn
SUDSn
SLDSn

S8 (: PULSE

N

{

(3228323222232t ts st st st b s bt st s ss

*
*
*
*
*
*

DESIGN OF CONTROLLER TO INTERFACE TO THE VME

Version : 1.1
Date : 09/04/93
By : P.T.M. DE WINNE / F.G.M. SMEETS

KA KKK KA A A A A KA KA AR AR AR A AA A AR A AR KT R A A A KA A ARR AR I ALk kKK

TITLE "vme_ctrl"™;
SUBDESIGN vme_ctrl

(

SLVn INPUT;
sUDSn : INPUT;
SLDSn : INPUT;
BASn : INPUT;
SR/Wn : INPUT;
CLK : INPUT;
SDTACK : OUTPUT;
DATA_ENn OUTPUT;
WRITEn OUTPUT;
DELAY WRITE OUTPUT;
PULSE OUTPUT;
)
VARIABLE
ss : MACHINE WITH STATES
(si,s0,s01,s02,sl1,s2,s3,s4,55,s6,561,562,57,s8);
DEN: NODE;
WRN: NODE;
DWR: NODE;
PUL: NODE;
ACK: NODE;
BEGIN
DEFAULTS
DEN = VCC;
WRN = VCC;
DWR = GND;
PUL = GND;
ACK = GND;

END DEFAULTS;

ss.clk = clk;
DATA_ENn = DFF (DEN, clk, VCC, VCC) ;
WRITEn = DFF (WRN, clk, VCC, VCC) ;

DELAY WRITE = DFF(DWR,clk,VCC,VCC);
PULSE = DFF (PUL, clk,VCC,VCC) ;

*
*
*
*
*
%

SDTACK

TABLE

$present present

% state input

= DFF (ACK, clk, VCC, VCC) ;

ss,SLVn, SUDSn, SLDSn, BASn, SR/Wn

%

next
state outputs

next

ss, DEN, WRN, DWR, PUL, ACK;

]

$POWER UP%
si, X, X, X,
$WAIT STATE FOR NEXT CYCLE%
s0, 1, X, x,
s0, 0, 1, X,
s0, o, X, 1,
s0, o, X, X,
s0, 0, 0, 0,
% WAIT FOR VALID SR/W—SIGNAL%
s01, x, X, X,
s02, O, Q, o,
s02, O, o, 0,
$WRITE—CYCLE%
s1, X, X, X,
s2, X, X, X,
s3, X, X, X,
s4, X, X, X,
s5, X, o, X,
s5, X, X, 0,
s5, X, X, X
s5, X, 1, 1,
$READ-CYCLE$%
s6, X, X, X,
s6l, x, X, X,
s62, x, X, X,
s7, X, o, X,
s7, X, X, o,
s7, X, X, X,
s7, X, 1, 1,
s8, X, X, X,
END TABLE;

END;

X,

X,
o,
0,

X
X,
X,
X,
X,
0,

X,

= o X KX K KX »

X oK oK KK X KX

B X XXX K XX

s0,

s0,
s0,
s0,
s0,
s01,

s02,
sl,
s6,

s2,
s3,
sd,
s5,
s5,
s5,
s5,
s0,

sé6l,
s62,
s7,
s?,
s7,
s7,
s8,
s0,

~ ~ 0~

PRPRPPEPRPRPOOO
~ ~ =~

~

~ ~ 0~

~

~

-

P POOOCOOo
~

~

~ ~ ~

~

PP R PR P OO
<~ <~

~

-~ ~ 0~

~

-

BRPpRPRRR
<

~

~ o~ 0~

~

oo olNoNolNaol el
~ =~ 0~

~

~ 0~ 0~

~

~

-

O O0OO0OO0O0O0OO0O0

~

-~ ~

~

oOrFEFEPPRPOOO
~ ~ 0~ 0~

~ 0~ 0~

~

~

-

OPrPOO0CO0OO0OO0OO0
~

~

o
~

[l eNolelN o]
P

o
~

~e v wa

PR

~

~

OO RFHEPPFPFRKROO
~

o

G AR AR A A KA A A AR A A AR IR KA A A AR A AN AR A A A AR AR AR A A AR ARk A AT A Ak dkk 1D COMM BUFn : QUTPUT;

* * RAM SELECT : OUTPUT,;
* DECODER FOR VME-SIGNALS * WRITE_RAMn : OUTPUT;
* * READ_RAM : OUTPUT;

* Version : 1.1 * BAR LD : OUTPUT,

* Date : 21/01/1993 * RESET_OE_CPUn : OUTPUT;

* By : P.T.M. DE WINNE / F.G.M. SMEETS * SET_OE_CPUn : OUTPUT;

* *

**%)

BEGIN

TITLE "signal decoder”;

DEFAULTS

CONSTANT DIS_CPU = B"0001"; RESET_OE_CPUn = VCC;

CONSTANT EN_CPU = B"0010"; SET OE CPUn = VCC;

CONSTANT CNT_INI = B"0011"; LD_LO _DATA = GND;

CONSTANT CNT_COMM = B"0100"; OE_DATAn = VCC;

CONSTANT COMM BUF = B"0101"; OE_ADDRESSn = VCC;

CONSTANT LO_PRG = B"0110"; OE_LO_DATAn = VCC;

CONSTANT LO_CAD = B"0111"; OE_HI_DATAn = VCC;

CONSTANT HI_PRG = B"1000"; LD_CNT_INIn = VCC;

CONSTANT HI_CAD = B"1001"; INC_CNT_INI = GND;

CONSTANT BAR = B"1010"; OE_CNT_INIn = VCC;

LD_CNT_COMMn = VCC;

DESIGN IS "vme_dec"; INC_CNT _COMM = GND;

OE_ADR_COMMn = VCC;

SUBDESIGN vme_dec CE_COMM BUFn = VCC;

(OE_COMM_BUFn = VCC;
DATA_ENn : INPUT; LD_COMM BUFn = VCC;
WRITEn : INPUT; RAM SELECT = GND;
DELAY_ WRITE : INPUT; WRITE_RAMn = VCC;
PULSE : INPUT; READ RAM = GND;
LSA[4..1] : INPUT; BAR_ID = GND;
SR/Wn :+ INPUT; END DEFAULTS;

OE_CPUn : INPUT;

LD_LO DATA : OUTPUT; IF (LSA[4..1]==DIS_CPU)} THEN
OE_DATAn : OUTPUT; RESET_QE_CPUn = WRITEn;
OE_ADDRESSn : OUTPUT; END IF;

OE_LO_DATAn : OUTPUT;

OE_HI DATAn : OUTPUT; IF (LSA[4..1)==EN_CPU) THEN
LD_CNT_INIn : OUTPUT; SET_OE CPUn = WRITEn;

INC CNT_INI : OUTPUT; END IF;

OE_CNT_INIn : OUTPUT;

LD_CNT_ COMMn : OUTPUT; IF (LSA[4..1]==CNT_INI AND SR/Wn==0) THEN
INC_CNT_COMM : OUTPUT; LD_CNT INIn = WRITEn;
OE_ADR_COMMn : OUTPUT; INC_CNT_INI = DELAY WRITE;
CE_COMM_ BUFn : OUTPUT; END IF;

OE_COMM_BUFn : OUTPUT;

IF (LSA[4..1)==CNT_INI AND SR/Wn==1 AND OE CPUn==1) THEN
= DATA_ENn;
= DATA_ENn;

OE_CNT_INIn
OE_ADDRESSn
END IF;

IF (LSA[4..1]==CNT_COMM AND SR/Wn==0) THEN

LD_CNT_COMMn
INC_CNT_COMM
END IF;

IF (LsA{4..1l]=

OE_ADR_COMMn
END IF;

IF (LSA[4..1l]=

CE_COMM_BUFn

LD_COMM_BUFn

INC_CNT_COMM
END IF;

= WRITEn;
= DELAY_WRITE;

=CNT_COMM AND SR/Wn==1) THEN
= DATA ENn;

=COMM_BUF AND SR/Wn==0) THEN
= DATA ENn;

= WRITEn;

= PULSE;

IF (LSA[4..1]==COMM BUF AND SR/Wn==1) THEN

CE_COMM_BUFn

OE_COMM_BUFn

INC_CNT_COMM
END IF;

IF (LSA[4..1]=

LD_LO_DATA
END IF;

IF (LSA[4..1]==LO_PRG AND SR/Wn==1 AND OE_CPUn==1) THEN

RAM_SELECT
READ_RAM

= DATA_ENn;
= DATA_ENn;
= PULSE;

=LO_PRG AND SR/Wn==0) THEN
DELAY_WRITE;

GND;
vee;

OE_CNT_INIn = DATA_ENn;

OE_LO_DATAn =

END IF;

DATA_ENn;

IF (LSA[4..1)==LO_CAD AND SR/Wn==0) THEN

1LD_LO_DATA =
END IF;

IF (LSA[4..1]==LO CAD AND SR/Wn==1 AND OE CPUn==1) THEN

RAM_SELECT

READ RAM

OE_CNT_INIn

OE_LO_DATAn
END TIF;

DELAY_WRITE;

vee;
vee;
DATA_ENn;
DATA_ENn;

IF { LSA[4..1)==HI_PRG AND SR/Wn==0 AND OE_CPUn==
RAM SELECT = GND;
OE DATAn = DATA_ENn;
OE_CNT_INIn = DATA_ENn;
WRITE_RAMn = WRITEn;
INC_CNT_INI = PULSE;
END IF;

IF (LsSA([4..1)==HI_PRG AND SR/Wn==1 AND OE_CPUn==1
RAM SELECT = GND;
READ_RAM = VCC;
OE_CNT INIn = DATA ENn;
OE_HI DATAn = DATA ENn;
INC_CNT_INI = PULSE;
END IF;

IF (LSA[4..1)==HI_CAD AND SR/Wn==0 AND OE CPUn==1
RAM SELECT = VCC;
OE_DATAn = DATA_ENn;
OE_CNT_INIn = DATA ENn;
WRITE RAMn = WRITEn;
INC_CNT_INI = PULSE;
END IF;

IF (LSA[4..1]==HI_CAD AND SR/Wn==1 AND OE_CPUn==
RAM_SELECT = VCC;
READ_RAM vee;
OE_CNT_INIn = DATA_ENn;
OE_HI_DATAn = DATA_ENn;
INC_CNT_INI = PULSE;
END IF;

IF (LSA[4..1)==BAR AND SR/Wn==0) THEN
BAR_LD = DELAY_WRITE;
END IF;

END;

) THEN

) THEN

) THEN

) THEN

<ZAje-. o
<= 4 h
| By I -)
N N
vCeo
5
N\ A0
N N AL
N Ny
-]
- LA
= E
] LAb
23 LAT
N 21 aor AoR 52 SCTRI T3
TXT oA
R SR
: o A3L A3R (=22
u1102 N ! ﬁgk :;:
D4 3 rg 2 2
t od 2~ oatti-CRT \ ASL AGR [LA Q1 D1 A%/
22 B Q8 [s—iT N A7L ATR P LB Q2 D2 2
Ny Hec QPS5 N 2] asL ASR LALD Q3 D3 ALD
D QD pRiE St 2| asL agR |23 LA o1 Da ALl
RCO =2 ct A1 aloL alor [N\ LB 12 Als /]
o 1 4 e P
5] ENT L CEr fER T A : 7] AL
> S £ = Q D7
S SLK oEL OER [&3 t““ 2_12i 58 o8 2 AlS /
= cir 2| pzifn, _R/HR 38 crxd-ii
TIFTET BUSYL BUSYR (2 oc p——I
c¥IC132-35 7aFs74 <TI0 31 (5aY]
3
U1103 Y1107 U1113
D 4 _cn LD 2 D
2 A QA s 52 £ 1/00L 1/00R LD / \LD 2{ o1 p1 |2 DO
N He o85Sy N 51 I/01L 1/C1m £+ L2y N 21Q2 b2 [—3 D
N c ac D 2 1/02L I/02R =D /] (LD Q3 D3I | E
D QD psi- D 3 1703L I/03R =D L2 Q4 Da 53]
5 RCO -2 D I/04L I/04R meR¥ 12 Qs os 25 /)
] ene 55 £34{ 1/05L I/0SR |32 /] e Qs Dé 3
34 ENT 5% I/06L I/06R s T Q7 D? =
Zhcik D I/07L T/07R |22 s LD 2] s pe D
— 24 Loao S T0 s 42 LA
CLR oL AOR 2 11 v
\ £ a : cLK DCLE_(231]
TIFIE N 2 5| ML MRS D o > Ee—0]
N 7] A3 AR A TAFS T
— 24 aar AR e 1
N— =3 AsL AsR L u1214 i v
\ =21 AsL A6R 25— LD 3101 p1}—3 D
N1 =2 A7L a7R L (\ID Q2 D2 53
h— 231 asr ABR LALT /] NID Q3 b3l 210/
N—= 121 oL A9R e) LD L Q4 D4 2
= AlOL AlOR = N2 Qs Ds D1 /]
fCE _cous BOES L= CEr 51 [NLD 3 o5 D
|coesEE e =] SE¢ CER |-= N\ 718 Se D15 /]
(LD CC¥H BOF < >— 2| n/Wy, _a/ER LS N
—2| BUSYL BUSYR j-= -
2 oc p——ro
TYTCISZ=3S TIFSTE
u1104 {_" , raiios to b0
00 P 18 ento D 1ar 1yl pi3-0D
L a1 312 \L i e D)
N AL 31 e N 1Az 1y2 /]
t 5 A2 B2 I eETe] N 1A3 1y3 ===
- SXI LD 1A 1yq [(=£D
NSD] e A N 2A1 2Y1 SENY
N | A6 B6 2 LD 3 [Ee B34 2
o A7 87 |=2 SNTE /] L el 0T /]
\SD 2| Ae pe |2 SNIT / 2a4 2¥a
A < = 19 —!O 16
[CE_ADR _coMM=> —dc -129 2¢
TAFTY 74FZ44
U1105 D g e
\sps 2,7 a1 |28 cnTs A £D H i 2v1 B35
1T T
NS03 Ao SlrEToNTs NIEID A2 Y2 515
NS5i0 3 e e CNTID/ NID A3 1x3
A3 BarE s 1a4 1Y4 =g ﬂ
3 A% 34 N 2a1 z2y1 DRe:
\ AS B NS 2a2 2v2[— /]
2 =28 281 Q£ 2a3 2y3[3D
2 a8 Ba 2L 2A4 2¥4 E
1o J»—.—%ﬂ 16
L‘;—‘Q gIR —2d 26
_ TIFZ4S TR
vo1sc
2
8
114
TRD=~ 27
74F32
uo18D
11 IS‘ SCLKY {J4)]
13 TWE~ (Ca)]
7aF32

PHILIPS CFT F.G.M. Smeets & P.T.M. de WINNE

Title
AREA SEGMENTATION PROCESSOR - COMM BUFFER
Size{Document Number
AZ COMM _BUF . 5CH
Date: rebruacy 24, 1393|Shmet A=Y

o VME PROTOTYPE BOARD
l° i l | |]
°R15 ZZND
Lo
° Ul2e Ul27 e o arour bl
e oven Yz L7
G 1 = 3503 o127
10020” U90ﬂ UOl? M T
74 74 74 EPMS0 64
MCl4a89
J1 5 g
PH%?S]FQQ;? yoz1ly yi22 |} Ul2 U125 %
U12 2681AC28 o
oS Pl
WWNP
U1108]) 01109 Saeisd® p Sreds?
oo ,J 74F244 ” J4F3Z44
= ULl13]p Ull14f, Uyl104]; U1105|p U110f U110R U110
}, U909 ﬂ, J U911 l, U912]FUllll |3 Ulll2
T74F 574 74F 574 T4FS74 T4FES574 T4ES574

245574

P U905 ” U906

245514

245245 745248, J4F245, 24F 245

P uso7 J U908 P U919 ” U920

U913

UR%3 It U244 b U35 b U324 b U347 b U248

ek

R N DU | O sl

1 6
]
T b U822 | U823 |p I |
70502 |F 0901 |FUs26|f0825|F0824]f i
248521 J4F 521 74832 74F 04 J74F 14

Bezte
2x2

i [

l_:Hooseooooﬁl Ol oo | i 1) I 1 {
oooooooooo 123 | 1 I L 1

2aes
—] =
— J4q

TOP VIEW
BOARD 1
ASP

PHILIPS CFT F.G.M. Smests & P.T.M. de WINNE
Title

AREA SEGMENTATION PROCESSOR - BOARD 1
Size|Document Number REV
A2 BOARD1.SCH

{
I
1

Datg: May 27, 1993[5heec 2 ot

14

TOP VIEW
BOARD 2
ASP

14
[~ | 0733 751 Uo7% 0316 | 0)f G302 | Geos
J14F138 J4E 378 J4FQ8 SY2CTL J4r137 T4FS79 tJ4 O 7
U410110 oa-5250
7
g % e e e e e v e eem]
1314113 ((|,U318 ”, 3 2&, U304 | 3
cYI¢171 74F157 JA4F579 7
l: uo3 }, U03 U307|; U301
U U U U701 U702 14FQ8 JArQs JAF1%7 2AF137
8 8 8 L64270 L64270 P U319 Ib lBP UO3 U3O ?
(0] (0] 0 CYTCITL I4F387, 24FQ2 JAF74, 3
2315116 0320 |f U3L4]p U03% U03
R | CYJC171 J4F157 74504 JAF32
[8J [8J; IBJ‘ g%g} ” Hf;svsb 74533-918 [UO
82194189 |pU7ilel Hg:’ Eo/F T Udis |fudiz | U408} U402
5 2 4 9 4 - . - o - . JAF314 CYTIC162 JAE157 JAFS79
123 o o o h ik 3f 3] I : }l HE‘%%G I’ 274(:1:.1323 ” 741-“%579”, 74F45793
=l- K 3
JmpP2 U U L U 9 b H}.fls’g;-? b E{'_Clﬁ Ib HFlS"O b 7455794
1313810 : Al) T10
4 11181 'E] :E :E] :E] P 93&4 P 7459?? I’ nxﬂs:;Lvl[l 74;15995 M
S P dp 4 q4p c1l
|| {1 Q— "L
gigied ([l = H
73179199 [|UF L Jaod Do N
3310117 FO128)F U10% U107 3 =)
¢ : L S T4F74 T4F 74 74F379 (PX) Ul O l
Sioiis : U011f U013 U1i3 : [F]
84184181 ; IV P oIo% §Iizf o114 | |
5410417 1 I 4F L {f Lzarza Jl aries 14£374 o |lofe
SR L 38 138 |98 3838 38 3 MEREA MOTHS RERER 2|
] " N o ||o|o
uituiiu Ul21{, Uul20 2 fele
silsils; P o1t} L Sast Bag0 u103| uvioz 3|
DRI (L LU Soiy oaiT] | o e i
g;;ﬁ;ngow?omvc 7 7 7 A 24 : ::
- p 7452;% P 53525) P]} SZéE;E 65 | \ \ E EE
pUS3 |p US2 | UOLH U014 | yigg| wioal 3
600000000 o cxY7¢157 cY7c157 ° 2;2:
e - ssissiiiss o p UL |p U01H Uol

PHILIPS CFT F.G.M. Smeeta & P.T.M. de WINNE

Title
AREA SEGMENTATION PROCESSOR - BOARD 2

Size{Document Number REV
A2 BOARD2.SCH

Date: May 27, .993|Sheet 13 of 14

©®Jdo b WNPK

BOTTOM VIEW
CONNECTOR J4

C B A
5 Vv 5V 5 v
5 Vv 5 v 5 v
D29 D30 D31
D26 D27 D28
D23 D24 D25
D20 D21 D22
D17 D18 D19
D14 D15 D16
D11 D12 D13
D8 D9 D10
D5 D6 D7
D2 D3 D4
SIZE]L DO D1
SIZE FCLK1 SCLK1
A21 A22 A23
AlS8 Al9 A20
AlS5 Alé6 Al7
Al2 Al3 Al4
AS Al0 All
A6 A7 A8
A3 A4 AS
AQ Al A2
WRT WE* RD
LWE * TOE™* LRD*
WIQ RESET NULL
cs_puamT=~ cs_comBUF 4 DCLK
RCO INT_MOST ACK_HOST
GND GND GND
GND GND GND

20
19
18
17
16
15
14
13
12
11

BOTTOM VIEW
CONNECTOR J7

ChlCtrlInN

Ch2CtrlInN

ChlHiInN

Ch2HiInN

ChlInInN

Ch2InINN

CtlwN

Ct2CN

Ct2N

In2N

HI1N

InlN

Hi2N

W o Jdo b WN K

H

(@]

BOTTOM VIEW
CONNECTOR J4
CONNECTOR J7

ASP

PHILIPS CFT F.G.M. Smeets & P.T.M. de WINNE

Title

AREA SEGMENTATION PROCESSOR - CONNECTOR J4

Size|Document Number
| ¥ CON_J4 . SHT

REV

Date: raebyruary 10, 1293|Sheet

ot

14

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Appendix C Program 512x512 image

Appendix C Program 512x512 image

73

JAIRI A AR AR KIS RN AR AT IR A AT RS IR A ERT AR I AT AR AR A AR RIS H A IR AR AR AR R AR)

VA
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
VA
/*
/*
/*

file

: tesSl2.c

language: C
designer: P.T.M. de Winne

date

: 24/02/93

routines: main ()

vold set_interrupt level (int)

sets the Interrupt level in PSR register
void ask_unitsize_mode ()

asks user the unitsize and working mode
trap hardw trap ()

handles hardware trap
void Init_xbar()

Sets the buswidth of the twc crossbars.
void screen({)

sends an screen of 512*512 pixels

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

SAEEE A RA AR AR AR AR RSN A N RAFIT RN T I IR AR A IR AR AAL AR A AR BRI AR A AR I AR AR R RN

#define LASER

$if LASER
#include "e:\peter\ermsw\sc\inclasp.h_c"
telse
#include "\sc\inc\asp:h_c"
4endif
#define LINE_LENGTH 512
#define LINES_PER_IMAGE 512

/* global variables

int
int

int
int
int
int
int
int
int
int

unitsize; /*
unitsize p; /*
mode; Vdd
read_block; /*

write_block; /*
rw_block; /*
line buffer; /*

lc_image filled;

lc_screen; /*
lc_image_read;

*/
contains the unit size */
contalns the unit size exponent
example: unlitsize=8 ==> unitsize p=3*/

contains the working mode (normal or windowed) */
contalns the current read block */
contains the current write block */
contalns (write_block<<ll) + (read block<<8) */
contains the selected line buffer to RISC */

/* line counter image */
line counter screen */

enum mode_t {normal, windowed};
enum to_lut_t {counters, risc};
enum to_lineb_t {A, B}:

void main ()

{
int i,73;

init_processor():

init_io();
CLS () :

print ("TEST OF THE AREA SEGMENTATION PROCESSOR\r\n\n");

init_xbar();
clear_line_ buffers():
clear_lut ();
clear_comm buf(};
ask_unitsize mode(};

set_interrupt_level (0);
enable_screen(1);

lc_image filled = 0;
lc_screen = 0;
lc_image_read = 0;

print ("Processor State Register %x.\r\n", REGISTER PSR);
print ("The unitsize is %d and the mode is %d.\r\n", unitsize, mode);
print ("The image line counter is sd\r\n/

The screen line counter is %d.\r\n\n", lc_image_read, lc_screen);

image () :
screen();

print ("\r\nThe program is finished!\r\n");
delay(2);

exit();
}

void image ()
/* function: recieves an image of 512*512 pixels

pre :
post s

*/

{

int j;

CLS{};

print ("Receiving an image\r\n\n“);

1b_select (A);

£111_1b{() ¢

1b_select (B);

£111 1b();

set_write block(0);

config_xbar write(l-line_buffer);

print (“The current write block is: %d.\r\n", write_block);
print {"The selected linebuffer for the processor is: ");
putch{line buffer + "A’};

print (".\r\nThe lc_image_read is %d.\r\n", lc_image_read);
print ("The lc_image_filled is %d.\r\n", lc_image filled);
print ("\r\nReady to recleve an image\r\n");

while (lc_image_read < (LINES_PER_IMAGE/unitsize))

{
setXy (0,10);
DELEOL() 7

}

print (“\r\n\nThe line counter read is %d. \r\nThe image is read!'.

print ("The line counter image read is: %d.”,lc_image_read);

lc_image_read);
print {("Image read!\r\n"};

}

/* end of image */

void screen ()

/t

*/
{

functlon: sends an screen of 512*512 plxels
pre :
post M

int i, J, lines_pb, lines_send;

CLS ()7

print ("Sending a screen\r\n\n"):;
f111_lut ();

print (YLook up table is filled\r\n");
lines_send = 0;

lines_pb = LINES_PER_IMAGE/ (unitsize*8});

i =

do

0;

{
set_read_block (i)
config_xbar_read():
if (i ==17)

send burst{ lines_pb, 1);
else

send_burst(lines pb, 0 };
3=0;
lines_send = lines send + lines_pb;
while (lc_screen < lines_send)

{

JH+;

}
print ("Block %d is send. Waited %d clockcycles.\r\n*,1i,j};
1++;

}

while (i < 8);

}

/* end of screen */

void ask_unitsize_mode ()

/t

*/

function: Asks the user on the terminal which unltsize must be
used and in which mode must be used.

pre ¢ <none>

post : unitsize 1s one of (4,8,16,32) » unitsize p = (2, 3, 4, 5) *
~ mode is normal or windowed *

unitsize = 2exp(unitsize p)

unitsize-1+(mode<<5) is places into register U308

\r\n",

{

int keyb;

char

do

*unitsize_reg;

{

print {("\n\rGive the new unit size 4, 8, 16, 32 (end with <rt>): ");

keyb = 4 /*get_dec()*/;
}

while (!{ (keyb == 4) ||

(keyb == 8} ||

unitsize = keyb;

for

(unitsize p = 0; keyb > 1; keyb = keyb >> 1)

unitsize_p ++;

print ("\r\nGive the new mode (NORMAL = n, WINDOW = w):

do

{

keyb = 'w' /*getch()*/;

while(! (

}

(keyb=="n"} || (keyb=='N") || (keyb=='w’)

putch (keyb) ;
print {(*\r\n"};

if ¢

(keyb =="n’}) [| (keyb == 'N"))

mode = normal;

else

mode = windowed;
unitsize_reg = UNIT_SIZE REGISTER;
*unitsize_reg = mode*32 + unitsize-1;
} /* end of _ask_unitsize_mode */

vold delay (int del)

{
int
for (

b/

trap har
/*

*/
{
int
int

psr
if {

i;
;del >= 0; del--)
{
for (i=0; 1 < 1000000; i++);

}
end of delay */

dw_trap{)
function: handles a hardware trap
pre :
post H

numb;
psr;

= REGISTER_PSR;

(humb != 3) || ((numb==3) && ((psr&0x40)
{ /* 3 = privileged instruction */
print (*\r\nHardware trap %d occurred at pc: %x ,

(keyb == 16)

Il (key

")

== 32)));

(keyb=="W"})};

1= 0)))

npc:

$x.\r\n", numb, /

REGISTER_Ll, REGISTER_L2);

while (1) {};

}

else /* switch to supervisor mode */
REGISTER_PSR = psr|0x40;
} /* end of hardw trap */

void init_xbar({)

/* function: Sets the buswidth of the two crossbars.
pre . <none>
post : buswidth of crossbar A is 1 * buswidth of crossbar A is 1
read block=7 * write_block = 0 * U711 is loaded with 7 *
rw_block = 0x700
*/
{
short *xbar

xbar = CROSS1_BASE + 0x100;
*xbar = 0x700;

xbar = CROSS2_BASE + 0x100;
*xbar = 0x700;

read block = 7;

write_block = 0;

rw_block = 0x700;

} /* end of inlt_xbar */

void pause()

int

{

print ("Press a key to continue!");
getch{() ;

print ("\r\n");

}

read_control (int offset)

{
short *read_ctrl;

read_ctrl = CS_CTRL+offset;
return *read_ctrl;

i

void set_interrupt_level (iat level)

/* function: Sets the Interrupt level of the SPARC RISC processcr. An
interrupt greater then level can interrupt the processor
when the traps are enabled.

pre : level = 0..,15 * processor mode 1s supervisor
post : Processor interrupt level = level

*/

{

int psr;

psr = REGISTER_PSR;

psr = psr&OxfffffoOff;

psr = psr|(level<<8};

REGISTER_PSR = psr;

} /* end of set_interrupt_level */

A

/**tt***t**i’ttt**tﬁ*ﬁlt*********tt*t**t**t!’***i’**f**i’!’!’**t*k*ttit*t*tﬁ*tt**t*/

/* file : imag rou.c

/* language: C

/* designer: P.T.M. de Winne

/* date : 25/02/93

/* routlnes; vold clear line_buffers()

/* clears linebuffer A and B

/* void conflg xbar write(int 1b)

/* connects the image counters and linebuffer 1b to
/* the current write block by switching the crossbars
/* vold lb select(int)

/* The path for the RISC is opened to linebuffer 1lb
/* trap 1bll ()

/4 handles interrupt 1

/* trap next_1lb ()

/* handles interrupt 4

/* vold set_write block(int block)

/* fills write block with the value of block

/* and fills U711

/t

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
4
*/
*/
*/
*/
*/
*/

/******i’*t#****ﬁffﬁ'****!’!’*ttttt***********it*it*i**i’i’i’i’*tttlt****titt*******t/

tdefine LASER
#ifdef LASER
#include "e:\peter\ermsw\sc\inclasp.h_c"

#else
#include “"\sc\inclasp.h_c"

#endif

#define LINEB MAX 4096
#define LINEB_MAX_4 16384
tdefine LINE_LENGTH 512
tdefine LINE_LENGTH_4 2048
tdefine LINES_PER_IMAGE 512
#define MAX_BLOCK 32768
#define IM CC_FIRST 0
#deflne IM_LC_FIRST 5
#define LBA_FIRST 10
t#define LBB_FIRST 21

enum line_t {A, B};

extern int unltsize;

extern int unitsize_p;
extern int write_block;
extern int read_block;
extern int rw_block;
extern int line_buffer;
extern int lc_image_read;
extern int lc_image fllled;

void clear_line_buffers ()

/* function:; Clears linebuffer A and linebuffer B.

pre : <none>
post : Linebuffer A and B are filled with zeros. RISC
1s connected to linebuffer B; counters to linebuffer A.
*/
{
int i;

short *lineb;

lineb = LINE BUFFER_BASE;

1b_select (A);

for (1 = 0; 1 < LINEB MAX_ 4; 1 =1+ 4
*{lineb+i) = 0;

1b_select (B);

for (1 = 0; 1 < LINEB MAX 4; i =1 + 4
*{lineb+l} = Oy

}

void config_xbar_write(int 1b)

/* function: connects the image counters and linebuffer 1b to the current
write block by switching the crossbars

pre : unitsize p = (2, 3, 4, 5} * write block = (0,1,2,3,4,5,6,7}
A 1b = (A, B}
post : image counter and linebuffer lb are connected to write_block

*/

{

int i, unit, rw;
short *xbar out;

/* calculate the address of the first output line */
/* remind addressline 0,1 are not used so factor 64 is used instead of

16*/

if (write_block >= 4)

Xbar_out = CROSS1 BASE + 64*(write_block-4};
alse

xbar_out = CROSS2_BASE + 64*write_block;

unit = unitslze p;
rw = rw_block;
rw = rw + IM_CC_FIRST;
i = 0;
do | /* connect the image column counter LSB*/
*xbar_out = rw + i;
xbar out = xbar_out + 4;
1++;
}
while {(1 < unit);

rw = rw_block;

rw = rw + IM_LC FIRST;

i = 07

do /* connect the image line counter LSB*/
*xbar_out = rw + i;

xbar out = xbar_out + 4;
i++;
)

while (i < unit });

rw = rw_block;
if (1b == A}

rw = rw + LBA_FIRST;
else

rw = rw + LBB_FIRST;

i = 2*unit - 4;
do { /* connect the linebuffer MSB */
*xbar_out = rw + 1;
xbar_out = xbar out + 4;
1++;
}
while (i < 11);
} /* end of conflg xbar_read */

void fill_1b()

/* function: fills the line buffer

pre ! unltsize * lc_image filled are vallid

post : lc Image filled = lc image filled + 1 * linebuffer is filled
*/
{
short *1b;

int i, j, max_block;

lb = LINE_BUFFER_BASE;
1=0;
max_block = MAX_BLOCK/(unitsize*unitsize);
j = (lc_image_filled*LINE LENGTH/unitsize)%max_block;
do

{

*1b = j;

J++:

i =1 + unitsize;

1b = 1b + unitsize;

}
while (i < LINE_LENGTH);

lc_image_filled = lc_image_ filled + 1;
}

void 1b_select (int 1lb}

/* function: The path for the RISC is opened to llinebuffer lb

pre : 1b one of (A, B}

post : RISC 1s connected to linebuffer lb ~ line buffer
*/
{
char *1bs;

1b

1lbs = LINE BUFFER SEL; JRERK AR AAAA AR A AR AR A A AR AR AR AR AR AR KRR R KA I KA AR KA KAk Ak A b sk sk sk ok kb kot ko f

1bs = 1b; / file ; scre_rou.c L4
line_buffer = 1lb; /* language: C */
} /* designer: P,T.M. de Winne */
/* date : 25/02/93 74
trap 1bll {} - /* routines: void clear_lut() */
/* function: Interrupt service routine for 1bll (line buffer bit 11) /* clears the look up table */
pre : not used /* vold conflg xbar read() */
post M Vad connects the screen counters and the LUT to the */
/ / current read block by switch the crossbars [ad
{ /* void enable_screen() x/
print ("\r\n interrupt line buffer 11.\r\n"); /* restart sending a screen (burst) after llutll */
} /* interrupt */
/* trap end_of burst () */
trap next_lb{) /* handles interrupt 3 */
/* function: interrupt service routine after the line buffers swapped /* void fi111 lut({() */
their function /* fills the look up table */
pre : line buffer 1s one of (0, 1)
post : line_buffer is swapped ~ xbar 1s reprogrammed ~ linebuffer /* trap 1lutll () */
is filled Ve handles interrupt 2 */
/ / void path to_lut(int) */
{ /* Connects the counters or the RISC to the look */
/* up table. The counters are reset. */
lc_image_read++; /* vold send burst (Int units, 1nt last) */
if { (lc_image read % (LINES_PER_IMAGE/(unitsize*8))) == 0) /* sends a burst with units*unitsize lines and */
{ /* reset scr_ple when last = 1 */
set_write_block ({write_block+1)40x7); /* void send_screen() *x/
set_read_block { (read_block+1) &0x7); /* sends a screen */
I /* void set_read block (int block) *x/
config_xbar_write(line_buffer); /* fills read block with the value of block x/
line_buffer = 1 - line_buffer; /* and fills U711 */
fill lb(); /tttttt*t**t**t#tt##ttttttttt**i’tﬂttttttt*ttt***t****t*ttt**************ttti—*/
#define LASER
} /* end of next_lb */ ¢ifdef LASER
#include "e:\peter\ermsw\sc\inc\asp.h_c"
void set write_block (iant block) #else
/* function: fills write block with the value of block and fills U711 #include "\sc\inc\asp.h_c"
pre : block = (0, .. ,7) #endif
post : write block = block * U711 is filled with write block
and read_block #define LUT_MAX 16384
*/ #define LUT MAX_4 65536
{ ¢define LINE_LENGTH 512
short *xbar; tdefine LINES_PER_SCREEN 512
#define MAX BLOCK 32768
write_block = block; -
#define SCR_CC_FIRST 32
xbar = CROSS1_BASE + 0x100; #define SCR_LC_FIRST 37
rw_block = (write_block<<ll) + (read_block<<8); #define LLUT_FIRST 42
*xbar = rw_block;
} /* end of set_write block */ enum to_lut_t {counters, risc};

extern int unitsize;
extern int unitsize_p;

extern int read_block;
extern int write block;
extern int rw_block;
extern int lc_screen;

do { /* connect the screen line counter LSB*/
*xbar_out = rw + i;
xbar_out = xbar_out + 4;
1++;
}
while (1 < unit) ;
rw = rw_block;
rw = rw + LLUT_FIRST;

void clear lut()
/* function: clears the look up table

pre : <none>
post : The lut 1is filled with zeros. 1 = (unite<<ly - 4;
The RISC 1s connected to the lut. do { /* connect the LUT MSB */
*/ *xbar_out = rw + i;
{ xbar out = xbar_out + 4;
short *lut; i++;
int i; }
while (i < 11});
lut = LUT_BASE; } /* end of config xbar read */
path_to_lut (risc);
for (i = 0; { < LUT_MAX_4; i=1+4) void enable_screen(data)
*(lut+il) = 0; int data;
} /* end of clear_lut */ /* function: restart sending a screen (burst) after interrupt llutll or
starts only the screen clock
void config _xbar_read() pre : data = { 0, 1}
/* functlon: connects the screen counters and the LUT to the current post : sending a screen (burst) 1s restarted if data = 0
read block by switch the crossbars only the clock 1s enabled if data = 1
pre : unitsize p = {2, 3, 4, 5} ~ read block = (0,1,2,3,4,5,6,7} */
post : screen counter and LUT are connected to the read block {
*/ char *en;

{
int i, unit, rw;
short *xbar_out;

en = ENABLE_SCREEN_BASE;
*en = data;
} /* end of enable_screen */

/* calculate the address of the flrst output line */

/* remind addressline 0,1 are not used so factor 64 is used instead of trap end_of burst ()
16*/ /* interrupt service routine after end of burst occured
if (read_block < 4) function:
xbar_out = CROSS2_BASE + (read_block<<6); pre :
else post :
xbar out = CROSS1 _BASE + ((read block-4)<<§); */

{
lc_screen = lc_screen + LINES_PER_SCREEN/ (unitsize*8);

unit = unitsize_p;
} /* end of end of burst */

w = rw_block;
rw = rw + SCR_CC_FIRST;

i =0; void fill 1lut ()
do /* connect the screen column counter LSB*/ /* function: Fills the look up table
{ pre : <none>
*xbar out = rw + i; post : look up table is filled * counters are connected to lut
xbar_out = xbar_out + 4; */
i++; {
} int 1,3, max_block;

while (i < unit); short *lut;

w = rw_block;
Iw = rw + SCR_LC _FIRST; path_to_lut (risc);

lines = lines + 256;

lut = LUT_BASE;
*send_burst = lines;

i=0;
max block = MAXEBLOCK/(unitsize*unitsize): } /* end of send burst */
3=07
do void send_screen()
{ /* function: sends a screen
*lut = j; pre : <none>
J++; post : a screen 1ls send

*/
{
short *send_scr;

if (3 >= max_block) j=0;
i =1 + unitsize;
lut = lut + unitsize;

}
path_to_lut (counters); /* reset counters */

while (i < LUT_MAX_4);
path_to_lut {counters); send_scr = SEND_SCREEN_BASE;
*send_scr = 384;

} /* end of f1l11 lut */ } /* end of send screen */

void set_read_block (int block)
/* function: fills read block with the value of block and fills U711

trap 1llutll ()
and rw_block

/* Interrupt service routine form llutll (latched look up table bit 11)

pre : block = (0, .. ,7)
function: not used post : read block = block ~ U711 is filled with write_block
bre : and read block ~ rw_block 1s filled
post H */

{

*/
short *xbar;

{
print ("\r\ninterrupt llut 11l.\r\n");

} /* end of 1llutll */ read_block = block;

xbar = CROSS2_BASE + 0x100; /* write to buswith address */
rw_block = (write_block<<ll) + (read block<<8);

*xbar = rw_block;

} /* end of set_read block */

void path_to_lut (int select)
/* function: Connects the counters or the RISC to the look up table.
The counters are reset.

pre : select is one of (counters, riscj

post : The lut iIs connected to select. The counters are reset.
/
{
char *lut;

lut = TO_LUT_BASE;
*lut = select;
} /* end of path to_lut */

void send_burst (int lines, int last)
/* function: sends a burst with lines*unitsize lines and
reset scr pile when last =1

pre : lines = (1, .. , 128} *~ last = (0, 1)
post : units*unitsize lines are send

*/

{

short *send_burst;

send_burst = SEND_SCREEN_BASE;
if (last == 1)

JARAREAA A AR SRS SR GAA AR AR I AT TR AR A I IR AT E IR R IR I AR AR AR AT AR AA AR AR IR AR A AR R AR A AN)

/* file : comm_rou.c

/* language: C

/* desligner: P.T.M. de Winne

Vad date : 25/02/53

/* routines: trap host_int ()

/* handles interrupt 5

/* volid clear comm buf ()

/* clears the communication buffer
/ﬁ

*/
*/
*/
*/
*/
*/
*/
*/
*/

JERRARA A A RE AR ERRIEA KR T AR AR AR R S A AR RR R AR ISR ARSI S SRR AR AR AR AR A AR AR RS R ARk)

#define LASER
#ifdef LASER
#include "e:\peter\ermsw\sc\inc\asp.h_c"
felse
#include "\sc\inc\asp.h_c"
fendlf

#define COMM_MAX 2048
#define COMM_MAX 4 8192

trap host_1int)
/* function: handles the interrput from the host.
pre :
post :
*/
{
print ("\r\nInterrupt from the host recieved\r\n");

}

void clear comm_buf ()
/* functilon: clears the communicatlion buffer

pre : <none>
post : the communication buffer (U1106, Ul1107) 1s filled with zeros
*/
{
int 1i;

shoxrt *commb;

commb = COMM_BUFF_BASE;

for(i=0; 1 < COMM_MAX_4; 1= 1+4)
* {commb+l) = 0;

}

! file : init2.a

! lanuage : assembly

! designed: P. de Winne

! date : 24/02/93

! routine : _init_processor (initialisation of the SPARC RISC processor)

! _exit (leaves the program)

'#include c:\sc\lnc\asp.h
#include e:\peter\ermsw\sc\inc\asp.h

.tabsize 8
.seg text

LRSS U A I T O T O O T O O O U O N O O O N U T O O A NN O BN O |

1
! vold init processor ()

! function: initialises the processor

! pre: processor mode ls supervisor

! post: WIM-register = 0, Y-register = 0, TBA-register = 0
! current window = 7, co-processor disabled, floating
! point processor disabled, mode = supervisor, traps
enabled,
! Processor Interrupt Level = 15, stack polnter loaded.
1

.global _init_processor

.extrn __stack

_init_processor:

wr %g0, %g0, %wim ! init window invalid mask
mov %07, %g7 ! save the return address

wr %g0, 0x400fe7, $psr ! init processor state register
mov %g7, %o7 ! put back the return address
wr $g0, %90, %y t init y regilster

sethi $hl (_TRAP_BASE), %10

or %10, %lo(_TRAP_BASE), %10

wr %10, %g0, %tbr { init trap base reglster
sethl 8hi(_ stack), %06 ! init the stack pointer

or %06, %lo(_ stack), %06

retl

nop

! end of _init_processor

LSS0 T O O O O O O O N O N O O N O N R NS O O O A O NN BN

1

! vold exit ()

! function: leaves the program
! pre: <none>

! post: program counter = 0

.global _exit
_exit:

jmpl $g0, %g0, %g0 N N N N N N RSN NN

nop ! file : trap_jum.a
! end of _exlt ! language: assembly

.end ! designer: P de Winne
! date T 24/02/93

! trap Jjumps
1
13

.extrn _main

.extrn _hardw_trap
.extrn _1bll

.extrn _llutll
.extrn _end_of burst
.extrn _next_lb
.extrn _host_int

.seqg trap

IS EEEEEENNEEE

! code for reset (should be placed at trapbase}

reset_Jjmp:
nop
nop
ba _main
nop
!
! code for instruction access (should be placed at trapbase + 0x10)
1
instr_acc_jmp:
sethi $hi (_hardw_trap), %10

or $10, $%lo(_hardw_trap), %10
Jmpl %10, %g0, %g0
mov 1, %13

code for 1llegal instruction (should be placed at trapbase + 0x20)

!

1

!

ill_instr_jmp:
sethi $hl (_hardw_trap}, %10

or %10, %lo{(_hardw_trap), %10
jmpl %10, %90, %g0
mov 2, %13

1
! code for privileged instruction (should be placed at trapbase + 0x30)
1
prev_instr_ jmp:
sethi $hi(_hardw_trap), %10
or %10, %lo(_hardw_trap), %10
Jmpl $10, %g0, %g0
mov 3, %13

t code for floating point disabled (should be placed at trapbase + 0x40)
t

float_dis_jmp:

sethi $hi(hardw_trap), %10

or %10, %lo(_hardw_trap), %10
jmpl %10, %g0, %g0

mov 4, %13

ISR ERENEEERN

! code for window overflow ({should be placed at trapbase + 0x50)
1

win_over_jmp:

sethi %hi (_hardw trap}, %10

or %10, %lo(_hardw_trap), %10
jmpl %10, %g0, %g0

mov 5, %13

'
! code for window underflow (should be placed at trapbase + 0x60)

4

win_under_jmp:

sethi $hi (_hardw_trap), %10

or %10, %lo(_hardw_trap), %10
jmpl %10, %g0, %g0

mov 6, %13

1
i code for address not aligned (should be placed at trapbase + 0x70)
1

addr_not_jmp:

sethi $hi (_hardw_trap}, %10

or %10, %lo(_hardw_trap), %10
jmpl %10, %g0, %g0

mov 7, %13

¥
! code for floating point execption (should be placed at trapbase + 0x80)
1

float_e_3jmp:

sethi %hi (_hardw_trap), %10

or %10, %lo(_hardw_trap), %10
jmpl $10, %00, %g0

mov 8, %13

]
! code for data access exeption (should be placed at trapbase + 0x90)
]

data_a_imp:

sethi %$hi (_hardw_trap), %10

or %10, %lo(_hardw_trap), $10
jmpl %10, %g0, %g0

mov 9, %13

1
! code for data taqg overflow (should be placed at trapbase + 0xa0)
i

tag_over_ jmp:

set
or

3mp
mov

hi

1

.org 0x110

1
i
i

interl:

i
1
1

set
or

Imp
nop

inter2:

set
or

jmp
nop

0x130)

1

inter3:
sethi

]
1
1

or

Jump

hi

1

Jump

hi

1

Jump

jmpl

nop

inter4:

1
!
t

set
or

jmp
nop

interS:

set
or

Jump

hi

1

Jump

hi

jmpl

nop

.end

%hi (_hardw_trap), %10

%10, %lo(_hardw_trap), %10
%10, %g0, %g0

10, %13

for interrupt l: 1lbll (should be placed at trapbase + 0x110)

%$hi(_lbll), %10
%10, %lo(_lbll), %10
$10, %90, %g0

for interrupt 2: lutll (should be placed at trapbase + 0x120)

$hi (_1lutll), %10
$10, %lo{(_1lutll), %10
$10, %90, %q0

for interrupt 3: end_of burst (should be placed at trapbase +

$hi (_end_of burst), %10
%10, %lo(_end_of_ burst}, %10
%10, %90, %g0

for interrupt 4: next_lb (should be placed at trapbase + 0x140)

%$hi (_next_1ib), %10
$10, %lo(_next_lb), %10
$10, %g0, %40

for interrupt 5: host_int (should be placed at trapbase + 0x150)

%hi(_host_int), %10
%10, %lo(_host_int), %10
%10, %g0, %g0

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Appendix D Program address generation

Appendix D Program address generation

84

L A T T T T N N O

*

~N

~N
»

P S N T N YR U U U L N T U TR RN IR T T YL R N S N N N

Acronym s IMAGSCRZ.C
Name of the module : IMAGSCRZ2.C
bProduét /Project H Area Segmentation Processor LINE BUFFER AND LUT

content calculation

Group number H

Creation date H 1993-03-25
Modification date H R
Document language M 010 (English)
Program language : c

Status H Preliminary
Name author : P.T.M. de WINNE

Nederlandse Philips Bedrijven B.V.
CFT Centre For manufacturing Technology
CAM-Centre _ MMSP Dept.
Eindhoven - The Netherlands

Copyright N.V. PHILIPS’ Gloeilampenfabriek 1987
All rights are reserved. Reproduction in whole or in part 1is
prohibited without the written consent of the copyright owner.

This program is a test program for routines which can be used on the

Area Segmentation Processor (ASP). The ASP segments images with control of
CAD data, stores the AOIs (Area Of Interest specified in the CAD data) in a
circular buffer and composes these stored AOIs into screens which are send
away.

An 1mage is divided into units. A unit is a square of 4x4 (8x8, 16x16 or
32x32) pixels. The size of a unit 1s specified by the unitsize (4, 8, 16 or
32).

Writing the AOIs into the clrcular buffer is controlled by the image
handler. Every unit 1in the 1image gets an address. When the unit is in an
AOQI 1t 1s an unique address else It becomes address zero (the dummy
address). The addresses of one line are placed into a linebuffer., A counter
counts the units. The value of the counter 1s used as an address for the
linebuffer. The data of the linebuffer is than the address for the unit in
the circular buffer.

The AOIs are composed the screens. Sending a screen is controlled by the
screen handler. The screen handler contalins a look up table 1in which the
address of the units are placed.

Calculating the content of a screen is done on the host computer (not on
the ASP). The Information 1s send to the ASP as CAD data., The ASP
calculates with this informatlon the content of the linebuffer and the look
up table.

The calculation of the linebuffer and the look up table is time consuming.

* Therefor some linebuffers and a part of the LUT 1s calculated and kept 1in
* arrays in the memory. When an interrupt NEXT LB or END_OF BURST occurs a
* linebuffer or a part of the LUT is copled to the appropriate RAM. These
* copy routines are 1n the program interchanged by print routines to files.
*
* The calculation of the linebuffers and LUT is done in "compute™, printing
* linebuffers is done by "show_lines" and printing the LUT is done by
* "out_screen”.
*/
/t
* Include Specification
*/
#include <d:\msc5\include\stdio.h>
#include <d:\msc5\include\stdlib.h>
#include <d:\msc5\tmp\x1032p2s.c> /* The rille with the array of aois */
/t
* Define Speciflication
*/
#define BUF_NUM 5 /* the number of linebuffers stored into memory */
#define SCR_BUF 32 /* the number of screen lines stored into memory */
$¢define SCR_WIDTH 128 /* the screen width the minimum unitsize of 4 1s used */
/n
* Gloabal variable Specification
*/
int *lines[BUF_NUM];
int inl;
int outl;
int *scr fill[SCR_WIDTH];
int used[SCR_BUF];
int screen[SCR_BUF] [SCR_WIDTH];
int lc_image;
iant lc_out;
int address;
int screen_nr;
int lc_screen;
int block;
int last_block;
int last_pos;
int last_val;
int switch buf{32);
int switch_index;
/* Explanation of the global variables
*
* The calculated line buffers are stored into the elements of "lines". The
* elements of "lines" are here dynamically allocated as arrays of length 128.
*# "inl"” 1s an Index to the first free array in "lines" and "outl" 1s an index
* to the flrst array to be printed.
*
* The routine compute calculate as long there 1is space 1n "lines™, then
* show_lines outputs linebuffers so that one linebuffer is left 1n "lines"”.
* This 1s necessary because the clrcular buffer 1s divided into § elght
*

blocks. Switching a block 1s done a the end of a line. When compute

+ experience that the units of one line doesn’t fit into the block, bit 11 of /*
* the last unlt in the previous linebuffer is set to generate an lnterrupt * Forward Procedure Declaration
* (1bl1) to the processor. It must be possible to set the Interrupt bit so */
*# one linebuffer must stay in "lines" except for the last of course. void compute(FILE * , FILE * , iat, int, int);
* void show lines(FILE * , inmt, int };
*# The varlable that counts the lines of an image 1s "lc_image". Thls variable void out_line(FILE * , imt };
* counts the computed linebuffers placed in "lines", not the number of void out_screen(FILE * , FILE *, int, int);
* linebuffer put 1n the RAM, Because the routine compute 1s left the variable void fill_lut_zero(FILE * };
* "address" (that kept the next unique address for a unit) 1s also global. void fill lut_line(FILE * , FILE * , iat);
* The current block 1n which the units are placed Is kept In "block". The
* yalue of the block number (0..7) is placed into bit 12, 13 and 14. This 1s /*
* to the simpllfy the calculation., The "Ic out” is used in show llnes. It * The main function
* counts the lines which are printed. Because the routine show_lines is left */
* this variable must be global. main ()
* {
* The lines for the LUT are stored into "screen". "screen” must be seen as an int i, j, k:
* array of which the element also consists of an array (the x direction). FILE *fpolb, *fposcr, *fposw;
* Here It can contain 32 lines of the LUT. Because placing the addresses 1n int unitsize, units_per line, lines_per_ image, units_per_ block;
¥ nscreen" 1s not done sequentlal in y direction the arrays in "screen”
doesn’t have to be sequential. At most 32 elements of "fill scr” point to unitsize = 4;
* an array of "screen"™. An element In "used" keeps the screen line numbers. units_per line = 1200/unitsize; /* 12000 pixels per lline */
* When the array in "screen® is not used the element contains -l1. An element lines_per_image = 2000/unitsize; /* 20000 lines per image */
* In "screen" contains an address (bit 10..0), an interrupt bit (bit 11) to units_per_block = (unsigned}32768/(unitsize*unitsize);
* interrupt the processor when a block has to be switched and the block /* 32768 halfwords (2bytes) per block; unitsize=4 */
* number 1in which the units 1s placed (bit 14..12). inl = 0;
* outl = 0;
* The variable "lc_screen” counts the lines of the LUT which are printed. address = 1;
* "screen_nr” counts the number of screens. Both variables are used in lc_image = 0;
* out_screen. lc_out = 0;
* screen_nr = 1;
* The lines for the LUT are printed in fill lut_line. There by it is lc_screen = 127;
*+ necessary to set the interrupt bit and calculate a list which contains the block = 0;
* order in which the block has to be switched. Thls switch list for one line switch_index = 1;
* is kept In "switch buf" with the Index pointing to the next free position switch buf[0]) = 0;
*# “"switch_index". The "switch buf" is printed when the next llinebuffer last_block = 07
* arrives and 1s therefor kept global. The varlable "last block"™ keeps the last_pos = 1;
* block number of the previous pixel(s). "last_pos" and "last _val” contain
* the position and value where the Interrupt bit must be set when the block for{ k = 0; k < SCR_BUF; k++)
* changes. used[k] = -1;
*/
for (1=0; 1 < SCR_BUF ; i++)
/* for(j = 0; 3 < 512/unitsize ; J++)
* Structure definions screen[1] [j) = 0;
*/
struct aol_type { for(i = 0; 1 < BUF_NUM; i++)
int ix, /* x~coord aol 1in the 1mage, */ lines(1l] = calloc(units_per line, sizeof(int));
iy, /* y-coord aol 1n the image, */
w, /* width aol, */ fpolb = fopen(“d:\\temp\\1lb.txt", "w"); /#* file polnter output line buffer
1, /* length aol, */ */
snr, /* screen number, */ if (fpolb == NULL)
sx, /* x-coord in the screen, */ {
sY; /* y-coord in the screen */ printf("Can’t open line buffer file.\r\n"};

Vi exit(0);

i

fposcr = fopen(“"d:\\temp\\scr.txt", “w"});
if (fposcr == NULL)
{
printf("Can’t open screen file.\r\n");
exit (0);
I

fposw = fopen{"d:\\temp\\switch.txt", “w");
if (fposw == NULL
{
printf(“Can’t open switch file.\r\n");
exit (0);
yi

compute (fposcr, fposw, unitsize, units_per_line, units_per block);
while(lc_image < lines_per_ image)
{
show_lines(fpolb, lines_per_image, units_per line);
compute (fposcr, fposw, unitsize, units_per_line, units_per_block);
1

show_lines(fpolb, lines_per_image,units_per_line);/*print the last linebufs*/
out_screen(fposcr, fposw, 1, unitsize);/#print the last content of the LUT*/
if (switch_index == 1) /* complete the switch list */

fprintf (fposw, "%d, \r\n",switch_buf{0});
else

{

for (jJ = 0; 3J < unitsize; J++)

for { k = 0; k < switch_index; k++ }
fprintf (fposw, "%d, ", switch_buf(k]);
fprintf (fposw, “\r\n");
}

fclose(fpolb);
fclose(fposcr);
fclose (fposw) ;

for(i = 0; 1 < BUF_NUM; i++4)
free(lines(i}):

exit (0);
}

void compute{fpout, fpouts, unitsize, unitg_per_line, units_per_block)
FILE *fpout, *fpouts;
int unitsize, units_per line, units_per block;

"compute” calculates the line buffer content and the LUT content. The
results are placed into "lines™ and "scr_fill". The function runs until all
the elements of "llnes” are fllled. When the routine 1s entered with a
lc_image 1t places "lowest" to the aol in CAD DATA so that (lc_image >=

EEE T S -

lowest->1y && lc_image < lowest->1y + lowest->1) []| lowest Is the first []
lowest is the last. When one of the two last state the "lines[lc image]" is
filled with zero's. When the first state "highest” 1ls searched as the first
aol so that 1lc_image < highest->1y. For every x on the y line "lc_image",
every aol between [lowest .. highest> is tested. If the coordinate is in an

* % % ¥ %

aol the

address of "address" 1s asslgned to the correct position in the line buffer
and to the correct position in scr_fill. Problems are:
- the block 1s full and the line is not finished, Search in the previous

the current line buffer so that the new block starts at address 1 an do the
same for the scr_rill.

- the position in which the address must be places in scr_f1ill is not free.
Print the oldest line In scr fill and assign the emptied line to

the needed line of scr_fill,

[
*
*
*
*# line buffer the last not zero address and set the lInterrupt bit. Renumber
*
*
*
*
*

*/

{
struct aoi_type *lowest, *highest, *loop, *loop2;
int i, x, k, 1, m, n, prev, placed;

lowest = (struect aol_type *)CAD_DATA; /#*start at beginning of the cad data*/
while ((outl!=inl) || (lc_image==0)) /*run when there 1s place in buffer*/
{
/* search lowest */
for (; (lc_image > (lowest->iy+lowest->1~-1)) && \
(lowest < &CAD_DATA[CAD_LENGTH}); lowest++);

if ((lc_image < lowest->ly) || (lc_image > (lowest->ily + lowest->1-1)))
/* start up or end*/
{ /* send a linebuffer with zeros when the first aol starts later or
when the highest aol 1s past */
for (1=0 ; i < units_per_line; i++)
lines([inl][i] = O;
}
else
{
/* search highest */
for (highest = lowest+l; (lc_image >= highest->iy) && \
(highest < & (CAD_DATA[CAD_LENGTH+1])) 7 highest++);

placed = 0;
h

for (x=0 X < units_per line; x++)
{ /* for every x on y line "lc_image" */
loop = lowest;
do /* search Iin all aol between [lowest..highest> 1f */
{ /* the coordinate 1s in a aol */

if ((lc_image >= loop->iy) && (lc_image < (loop->iy+loop->1)) && \
{x >= loop->ix) && (x < (loop->ix+loop->w}))
{ /* place number */
if (address == units_per_ block)
{ /* block Is full !!! */
if (inl == 0) prev = BUF_NUM - 1;/* take previous linebuffer */
elge prev = inl - 1;

/* search last unit 1n previous array or first element
for the interrupt bit*/
for (k=units_per line-1l;(lines([prev](k] == 0) && (k!=0); k--);
lines [prev] {(k)=lines[prev) [k}+2048;/*set bitll the interrupt
bit*/
address = 1; /* reset address */
block = (block+0x1000) & 0x7000; /*increment block number mod
8*/
for (1=0; 1 < x; 1++)
/* renumber the placed units in lines{inl] and in scr fill*/
if (lines[inl] {1} !'= 0)
{ /* there 1s something to renumber */
lines(inl])[1} = address; /* renumber the linebuffer */
for (loop2 = lowest; loop2 < highest; loop2++)
(
if { (1 >= loop2->ix) && (1l < (loop2->ix + loop2->w)) &&\
(lc_image >= loop2->iy) && (lc_image < (loop2->iy + \
loop2->1})}) 1}
/* renumber scr_fill */
scr_fill[loop2->sy + (lc_image ~ loop2->iy) I\
[loop2->sx + 1 - loop2->ix | = address + block;
else if ((loop2->iy == (highest-1)->iy) && ((l<loop2->ix)\

It (1 >= ((highest-1)->ix + (hlghest-1)->w) })
}
/* The aol list 1s sorted first on the 1y coordinate then on the ix

coordinate.
So when the loop2->ly lles on the same helght as the one before highest the

ix coordinate of the one between them lies between the 1x of those two. It
1s not necessary to continue searching when 1 (the x coordinate) is smaller

then loop2->ix or when 1 is to the right of the last aol on that line. */
break;
}
address++;
bi
Vi

lines(inl) (x} = address; /* place the address */
placed = 1;
if (scr_fill[loop->sy+lc_image-loop~>iy] == NULL})
{ /* a buffer must be reserved */
for (m=0; (m<SCR_BUF) && (used[m] != -1) ;m++);/*search a
buffer*/
if (m == SCR_BUF)
{ /* all buffer used */
out_screen(fpout, fpouts, 0, unitsize);

for(n = 0; (n < SCR_BUF) && (used[n]) != lc_screen); nt+);

/* search which array of screen was used */
used[n] = loop->sy+lc_image-locop->iy;
scr_fill[loop->sy+lc_image-loop->1iy] = scr_fill[lc_screen);

scr_fill[lc_screen] = NULL;

¥
else
{ /* a free buffer found */
used[m]=loop->sy+lc_image~loop->iy;
scr_fill{ used[m]] = screenm];
}
b
scr_fill[loop->sytlc_image-loop->iy][loop->sx+x-lcop~>ix] =\
address+block;
}
else if ((loop->ly == (highest-1)->iy) && { (x < loop->ix} (I \
{ x >= ((highest-1)}->ix + (highest-1)}->w}}))
/* The aol list 1s sorted first on the 1y coordlinate then on the ix
coordinate.
So when the loop->1ly lles on the same height as the one before highest the
ix coordinate of the one between them lies between the x of those two. It
is not necessary to continue searching when x (the x coordinate) 1s smaller

then loop->1x or when x 1s to the right of the last aoi on that llne. */
break;
loop++;
}
while (loop < highest);
if (placed)
{
address++;
placed = 07
}
else
lines[inl] [x] = 0;
}
1
inl = (inl+1) $BUF_NUM;
lc_image++;
}
1

void show_lines (fpo, 1lpl, upl)
FILE *fpo;
int 1pil, upl; /* lines per image, units per line */
/*
* "show_lines" outputs linebuffers from "lines" so that on line is left
* except when the 1s nothing to compute,
*/
{

while (({outl+l)%BUF_NUM) != {nl)
out_line(fpo , upl);

if (lc_image == 1lpi }
{ /* print the last two lines */
out_line(fpo, upl});
out_line(fpo, upl);

}

void out_line(fpo, upl

FILE *fpo;

iant upl; /* units per line */
/t

* "out_line" prints one line of the array "lines".
*/

{

int i;

fprintf (fpo, "line %4d: “,lc_out);

for (1=100; 1< 260 /*upl*/; i++)
fprint f(fpo, *%$4d", lines[outl][i]);

fprintf (fpo, "\n");

lc_out++;

outl= {(outl+l)%BUF_NUM;

}

void out_screen(fpout, fpout2, last, unitsize)
FILE *fpout, *fpout2;
int last, unitsize;
/t
* out_screen outputs one or more lines untll one line 1s cleared In "screen”
* when "last" is zero, When "last" is not zero all lines are printed (the
* rest of the actual screen and the next screen when there is one),.
*/
{
while { { (scr_fill[lc_screen] == NULL) && tlast) ||
((lc_screen < 127} && last))
{
lc_screen++;
if ((lc_screen >= SCR_WIDTH) && !last)
{
lc_screen = 07
fprintf (fpout, "\r\nScreen %d.\r\n", screen_nr);
screen nr++;
Vi

if (scr_fill[lc_screen] != NULL)
fi11_lut_line(fpout, fpout2, unitslze);
else

fill_Jut_zero(fpout);
fprintf (fpout, "\r\n");
}

if (last && (scr_fill[0] != NULL))
{
fprintf (fpout, "“\r\nScreen %d.\r\n", screen_nr);
screen_nr++;
for (lc_screen = 0; lc_screen < SCR_WIDTH; lc_screen++)
{
if (scr_fill[lc_screen) == NULL)

fill _lut_zero(fpout);
else

fill lut_line{fpout, fpout2, unitsize);
fprintf (fpout, “\r\n");

void fill lut_zero(fpout)
FILE *fpout;

/ﬂ-

* The line "lc_screen” in the LUT 1s filled with zeros.
*/

{

int i;

fprintf (fpout, "line %3d: ", lc_screen);

for (i = 0; 1 < SCR_WIDTH ; 1++)
fprintf (fpout, “0");

1

void fill lut_line(fpout, fpouts , us)
FILE *fpout, *fpouts;
int us; /* unitsize */

The line "lc_screen" of the LUT is filled with "scr_rill[lc screen]".

The array scr_fill[lc screen] is also cleared. The switch list 1s
calculated and the switch bit is set when necessary. The switch bit 1s set
when the block number of the actual unit 1s different than that of the
“last_block"™. The Interrupt bit 1s then set on poslition "last pos". Because
the LUT 1s write only the value of that last position 1s kept in
"last_val". The switch 1list "switch buf"™ is initially filled with zero on
the first position which means that the first block for the units is the
zero block. When 1In the same line one or more block switches occur the new
block number are put 1n the switch array. When the next line 1s entered the
switch array is printed unitsize times and the new block number 1s put in
the array. The array 1s also printed unitsize times when there 1s only one
element in the array but the block changes when the next lines comes,

D N N T L T TN N VU S

»
~N

{
int i, 3, k;

fprintf (fpout, "line %3d: *, lc_screen};
for (1 = 0; 1 < SCR_WIDTH ; i++)
{
if (scr_fill[lc_screen][l] != 0)
{ /* check for block difference */
fprintf (fpout, "%4d", /*((scr_fill[lc screen][1]&0x7000)>>12)+%a’,*/N\
scr_fill[lc_screen) [1]&0xXfff);
if (((({(scr_fill[lc_screen) [1]640x7000)>>12) != last_block) ([\
switch _index>1)) && (lc_screen != (last _poss&OxffB80)>>7) }

{
fprintf (fpouts, "llutll bit is set. Position lc_screen %d, x #%d,\

alue %d.\r\n", (last_pos&0xff80)>>7, last_pos&0x7f, last_val};
for (J = 0; 3 < us; J++)
for (k = 0; k < switch_index; k++)
fprintf (fpouts, “%d, ", switch_buflk]j;
fprintf (fpouts, "\r\n");
switch_Ruf[0] = {(scr_fill[lc_screen) [1]&0x7000)}>>12);
switch_index = 1;
last_block = switch_buf[0];
1
elsa if ((((scr_flll[lc_screen}{i1])&0%7000)>>12) != last_block) && \
{lc_screen == (last_pos&0xff80)>>7))
{
fprintf (fpouts, "llutll bit is set. Position lc_screen %d, x %d, \
value %d.\r\n", (last_pos&0xff80}>>7, last_pos&0x7f, last_val};
switch buf[switch_index] = ((scr fill[lc_screen][1]&0x7000)>>12);
last_block = switch_buf(switch_index];
switch_index++;
V7

last_pos = lc_screen*SCR_WIDTH+i;
last_val = scr_fill[lc_screen] [i]&0xfff;
scr_fill[lc_screen]{i] = 0;
}

else
feprintf (fpout, " o"):

}

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

Appendix E Assembly listings fill ua_buffer

E.1 Original version

'Line¢ Source Line Flame Computer Corp. Sparc-C Compiler Version 3.6.11 May 24 09:00:17 1993

TITLE C:\SC\SRC\C\fill.c
NAME f£il11

t**x* 1 #define LINE LENGTH 3000
t*** 2 #define BUFFER_SIZE 4
t*** 3 #define LINE_BUFFER_BASE_ADDRESS 0x090002
t*** 4 extern int current_image line;
t*** 5 extern int image_unit_ addresses[BUFFER_SIZE} [LINE_LENGTH] ;
!*** 6
t*** 7 yoid fill_ua_buffer {)
tx*x%x g {
txxx g int &;
_fill_va_buffer:
00000000 9DE3BFFO save %06, -16, %06
txxx 10 short *linebuffer;
!ﬁﬂt 11
trxx 12 linebuffer = LINE BUFFER_BASE ADDRESS;
00000004 37000240 sethi thi (589826), %13
00000008 BE16ECO2 or %13, 2, %i3
0000000C B210001B mov %13, %11
t**xx 13 for(i = 0y 1 < LINE_LENGTH; i++
00000010 B0102000 mov 0, %i0
00000014 80OAG2BB8 cmp %10, 3000
00000018 36800000 bge, a IB3
0000001C 01000000 nop
trex 14 *(linebuffer + 4*i)= image unit_addresses[current_image_line]{i];
00000020 B6102004 mov 4, %13
IB1:
00000024 84100018 mov %i0, 3g2
00000028 40000000 call __mul
0000002C 8210001B mov %13, %gl
00000030 B6100001 mov %ql, %13
00000034 B406401B add $il1, %13, %i2
00000038 37000000 sethi $hi (_image_unit_addresses), %i3
0000003C B616EOOO or $i3, %lo(_image_unit_addresses), %i3
00000040 1F000000 sethi %hi (_current_image_line), %07
00000044 DOO3EOCO 1d %07, %lo(_current_image_line), %00
00000048 40000000 call _mul
0000004C 92102EEO mov 12000, %ol
00000050 B8100008 mov %00, %i4
00000054 B606COLC add %13, %i4, %i3
00000058 B92E2002 sll %i0, 2, %14
0000005C F606CO1C ld %13, %14, %i3
00000060 F63680C0 sth %13, %i2, g0
thxt 15 }
00000064 B0062001 inc 1, %10
IB2:
00000068 B80A62BB8 cmp %10, 3000
0000006C 26800000 bl,a IBl
00000070 B6102004 mov 4, %13
IB3:
00000074 81C7E0Q08 ret
00000078 81E80000 restore %g0, %g0, %g0

_fill _va_buffer Local Symbols

Name Class Type Size offset Location
S Y] int io
linebuffer reg *short i1

Appendix E Assembly listings fill_ua_buffer 91

Nederlandse Philips Bedrijven B.V.
Centre For manufacturing Technology

E.2 Improved version

'Line# Source Line Flame Computer Corp. Sparc-C Compiler Version 3.6.11 May 24 10:05:23 1993
TITLE C:\SC\SRC\C\fill2.c
NAME fill2
t**x 1 j#define LINE_LENGTH
t*** 2 4define BUFFER_SIZE
t**x 3 gdefine LINE_BUFFER_BASE_ADDRESS 0x090002
tx*x 4 extern int current_image_line;
t***x 5 extern int image_unit_addresses[BUFFER_SIZE) [LINE_LENGTH];
!ttt 6
tex*x 7 yoid fi11()
1xxx g {
texx 9 full_ua_buffer(&(image_unit_addresses{current_image_line) {0}));
00000000 9DE3BFFO save %06, -16, %06
00000004 31000000 sethi %$hi (_image_unit_addresses), %10
00000008 B0162000 or $i0, %lo(_image_unit_addresses), %10
£000000C 1F000000 sethl $hi (_current_image_line), %07
00000010 DOO3E00O 1d $07, %lo(_current_image_line), %c0
00000014 40000000 call __mul
00000018 92102EEQ mov 12000, %ol
0000001C B2100008 mov %00, %il
00000020 40000000 call _full va_buffer
00000024 90060008 add $10, %00, %00
t*4d%x 10 1
Thx%]_]_
t*»x 12 void fill ua_buffer (image_ 1l)}
00000028 81C7E008 ret
0000002C B81EB0000 restore %g0, %g0, %g0
t*** 13 int image 1[LINE_LENGTH];
txkx 14 {
_fi111 va_buffer:
00000030 9DE3BFFQ save %06, -16, %06
txx* 15 int i;
1xwx 16 short *linebuffer;
!'kt 17
{**x 18 linebuffer = LINE_BUFFER_BASE_ADDRESS;
00000034 39000240 sethi $hi (589826), %i4
00000038 B8172002 or %14, 2, %i4
0000003C B410001C mov $i4, %12
txxx 19 for{ i = 0; 1 < LINE_LENGTH; i++)
00000040 BOAGEBBS cmp $il, 3000
00000044 36800000 bge, a IB3
00000048 01000000 nop
trxx 20 {
0000004C BB2E6002 sll $i1, 2, %15
IBl:
trkx 2] *(linebuffer) = image_l[i];
00000050 F806001D 1d $i0, %i35, %14
00000054 F8368000 sth $i4, %i2, %90
Lexx 22 linebuffer += 4;
00000058 B406A004 add %i2, 4, si2
txxx 23 }
!itt 24 ,
0000005C B2066001 inc 1, %i1
IB2:
00000060 BOA66BBS cmp %11, 3000
00000064 26800000 bl,a 1Bl
00000068 BB2E6002 sll $i1, 2, %i5
IB3:
0000006C 81C7E008 ret
00000070 81E80000 restore %g0, %g0, %g0
_fill ua_buffer Local Symbols
Name Class Type Size Offset Location
image 1. reg *int/array 3000 i0
S of Yo int il
linebuffer reg *short i2

Appendix E Assembly listings fill_ua_buffer

92

Annclies Meerbach

Anne-Marie v. Helvoort

Yvonne v. Bokhoven
Leni v.d. Zanden
Marja de Mol
Joke Verhoef
Majoke Velberg
Mariet van Rixtel
Els Gerritsen
Joyce Bagchus
Peter v.d. Ven
Piet de Greef
Tiny Verhoeven
Tiny Bijl

Linda Balvers

Lia de Jong

Rian v. Gaalen
Doret Pellegrino
Tanja de Haan
Linda v. Loon
Yvonne Broers
Paul v. Eek

Piet Bell

Jan Bell

fohn Snocijs
Louise Schavet
Cliff Hasham
Albert Nelissen
Niels Olthuis
Arthur Thepass
C.H.J.D. v. Rijsewijk
A.F. Chambon¢
ing. Alex Wijffels
dr.ir. T. Kwaaitaal
dr.ir. E. Wezenbeek
Ton v.d. Boom

Yucai & Ge

Prof. C. Mulders
Dhr. C. Huber
Alberto Martis
Arendsz, A.

dr.ir. B. den Brinker
Peter Janssen

Roy Simon
Rudolph

Alex Riley

Julio de la Court
Margarita

Bode

Dhr. H. v.d. Heiden

Centrale Stud. Administratic

EH 1.10
EH 1.07
EH 1.09
EH 1.06
EH 1.26
EMV - EL 1.15
EEG 1.13
EEG 2.06
EH 228
EH 2.06
EH 2.06
EH 1.26
EH 6.35
EH 8.34
EH 9.34
EH 7.33
EH 1028
EH 12.28
BG 214

EH 3.05
EH 1,21
EH loge

HG 0.08

CTD - RF HG -1.11

CTD - RF hg -1.11

WFW 2.136

Magazijn elektro EH (.01

Magazijn elcktro EH 0.01

E-EB EH 10.15

E-EB EH 10.08

EH 2.27

IPL - TNO Kamer 53

Vakgroep Regeltechnick, Gebouw Elektrotechnick,
Kamer 12.05, TU Delft, Postbus 5031, 2600 GA Delft
Hageheldlaan 62, 5641 GP Eindhoven
Herman Gorterlaan 319, 5644 SN Eindhoven
Sleedoorn 9, 5666 AT Geldrop

Prof. v.d. Grintenlaan 32, 5652 NB Eindhoven
Mathildelaan 75, 5611, BE Eindhoven (PTH-cr)
ESP - EH 5.27

Furkabaan 26, 3524 Z| Utrecht

Voltairestraat 60, 3076 TP Rotterdam (broer)
Gentiaanstraat 592, 7322 CL Apeldoorn

BDK Pav. F.05

Annelies Meerbach
Anne-Marie v. Helvoort
Yvonne v. Bokhoven
Leni v.d. Zanden
Marja de Mol

Joke Verhoef
Majoke Velberg
Mariet van Rixtel
Els Gerritsen

Joyee Bagchus
Peter v.d. Ven

Piet de Greef

Tiny Verhoeven
Tiny Bijl

Linda Balvers

Lia de Jong

Rian v. Gaalen
Doret Pellegrino
Tanja de Haan
Linda v. Loon
Yvonne Broers
Paul v. Eck

Piet Bell

Jan Bell

John Snoeijs

LLouise Schavet
Cliff Hasham
Albert Nelissen
Niels Olthuis
Arthur Thepass
C.H.J.D. v. Rijsewijk
A.F. Chamboné
ing. Alex Wijffels
dr.ir. T. Kwaaitaal
drir. i Wezenbeek
Ton v.d. Boom

Yucai & Ce

Prof. C. Mulders
Dhr. C. Huber
Alberto Martis
Arendsz, A.

dr.ir. B. den Brinker
Peter Janssen

Roy Simon
Rudolph

Alex Riley

Julio de Ta Court
Margarita

Bode

Dhr. H. v.d. Heiden

Centrale Stud. Administratic

EH 1.10
EH 1.07
EH 1.09
EH 1.06
EH 1.26
EMV - EL 1.15
EEG 113
EEG 2.06
EH 2.28
EH 2.06
EH 2.06
EH 1.26
EH 6.35
EH 8.34
EH 9.34
EH 7.33
EH 10.28
EH 12.28
BGC 214

EH 3.05
EH 1,21
EH loge

n

HG 0.08

CTD - RF HG -1.11

CTD - RF hg -1.11

WFW 2.136

Magazijn elektro EH 0.01

Magazijn elektro EH 0.01

E - EB EH 10.15

E - EB EH 10.08

EH 2.27

IPL - TNO Kamer 53

Vakgroep Regeltechniek, Gebouw Elektrotechnick,
Kamer 12.05, TU Delft, Tostbus 5031, 2600 GA Delft
Hageheldlaan 62, 5641 GP Eindhoven
Herman Gorterlaan 319, 5644 SN Eindhoven
Sleedoorn 9, 5666 AT Geldrop

Prof. v.d. Grintenlaan 32, 5652 NB Eindhoven
Mathildelaan 75, 5611, BE Eindhoven (PTH-er)
ESP - EH 5.27

Furkabaan 26, 3524 Z] Utrecht

Voltairestraat 60, 3076 TP Rotterdam (broer)
Gentiaanstraat 592, 7322 CL Apcldoom

BDK Pav. F.05

	Realisation of the area segmentation processor for esprit project #2017:TRIOS

	Untitled
	Summary

	Preface

	Content

	List of figures

	List of tables

	1. Introduction
	2. In-line PCB inspection system

	3. Hardware of the area segmentation processor

	4. Software for the area segmentation processor
	5. Implementation of the hardware

	6. Implementation of the software
	Project status and conclusions

	Abbreviations

	Literature

	Appendices

