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Abstract 
Wall and fluid behaviour in arteries are investigated in order to obtain information 

about the genesis of atherosclerosis, an arterial disease. The carotid artery bifurcation is 
often involved in the atherosclerotic process, leading to cerebral vascular disease. 
Reuderink (1991) developed a numerical method for simulation of the flow through and 
the deformation of a distensible model of the carotid artery bifurcation. This numerical 
method has to be validated experimentally. 

To make this validation in the future possible an experimental method for the 
measurement of the deformation of a simplified model is presented here. A straight, 
distensible tube is used to model the communis, the main branch of the carotid artery 
bifurcation. The instationary flow through the communis is modelled by a harmonical 
varying flow. The deformation of the tube is determined via optical registration of the 
movement of markers on the outside of the tube wall. Radial and axial expansion, 
translation and rotation of the tube are measured, along with flow parameters like the 
transmural pressure, the axial velocity profile and the flow. The Reynolds number is set to 
vary harmonically between 200 and 800 and the Womersley parameter is 4.9. These 
parameters are in the same range as in the physiological situation. 

The measured radial expansion varies harmonical between 6% and 14%, while no 
axial expansion is found. Also a small rotation of the tube occurs (about 1") which varies 
harmonica1 with an amplitude of 1' and the tube is translated lateral during the deformati- 
on. The flow and the transmural pressure occur as standing waveforms. 

The measured axial velocity profile is compared to two theoretical profiles. First an 
analytical profile is determined from Womersley's rigid tube theory. Secondly, the 
measured wall movement is taken into account in a numerical model. The axial velocity 
profile determined from this numerical model seems to be an improvement over the 
analytical profile. This numerical profile and matching wall shear rate show better 
agreement with the experimentally determined profile and wall shear rate. 
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List of used symbols 
cross-sectional area 
Moens-Korteweg wave velocity 
complex functions, in the amplitude of the pressure 
modulus of elasticity 
constant number (e  = 2.718281828) 
radial unit vector 
unit vector in x direction 
unit vector in y direction 
axial unit vector 

source term ( AT) = --- ap(x) 1 pv  aZ 
wall thickness 
imaginary number 
Besselfunction of the f i s t  kind of order O 
Besselfunction of the first kind of order 1 
propagation coefficient 
characteristic length 
tube length 
entrance length 
spatial discretization 
time discretization 
order 
local pressure 
instationary part of the pressure 
stationary part of the pressure 
amplitude of the instationary part of the pressure 
flow 
experimental flow 
ingoing flow 
mean of the flow 
model flow 
outgoing flow 
storage flow 
first harmonic of the flow 
inner radius 
amplitude inner radius 
inner radius in reference state 
real part of a complex number 
Reynolds number 
radial coordinate 
radial position in reference state 
time 
cyclus time 
translation vector 
radial fluid velocity 

e 



x 
Y 

w 
B 

lateral translation 
axial translation 
perpendicular translation 
characteristic velocity 
velocity 
velocities 
axial velocity 
stationary part of the radial velocity 
amplitude of the instationary part of the radial velocity 
mean axial velocity 
dimensionless axial velocity (@ = w/V) 
position vector 
position vector in reference state 
dimensionless transformation coordinate (= r/RJ 
axial coordinate 
axial position in reference state 

Womersley parameter 
reflection coefficient 
discretization 
error through projection 
error 
dynamic viscosity 
wave length 
radial expansion 
axial expansion 
kinematic viscosity 
dimensionless transformation coordinate (4 = r/R(t)) 
constant number (n s 3.141592654) 
specific gravity 
standard deviation 
dimensionless time (-c = t/T) 
circumferential coordinate 
phase inner radius movement 
rotation angle 
circumferential position in reference state 

) diffusion term ( ~ ( z )  = - V I '  

R2(z)  
angular frequency 
gradient 
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1 Introduction 
Atherosclerosis is an arterial disease which may lead to narrowing (stenosis) of the 

artery. Stenoses are preferably found in arterial bends and bifurcations. The carotid artery 
bifurcation is often involved in the atherosclerotic process, leading to cerebral vascular 
disease. In figure 1.1 the mean geometry of the carotid artery bifurcation is given. The 
geometry parameters are obtained from Bharadvaj (1982). 

external 

\ \\---..-....._.bulbus 
C O ~ U n i S  

figure 1 .l: sketch of the human carotid bifurcation. 

The carotid artery bifurcation consists of a main branch (the communis) which 
divides into two branches. The internal carotid artery passes blood through to the brain, 
the external carotid artery provides the face with blood. A stenosis is most likely to occur 
in the bulbus. In this section secundairy flow occurs and locally the blood velocity can be 
low. Even backflow can occur in this section. 

The University of Limburg and the Eindhoven University of Technology cooporate 
in the "Atherosclerose"-project. Main goal of this project is early detection and better 
diagnostic treatment of atherosclerosis. To achieve this, better Insight in the genesis of a 
stenosis and in the flow in the carotid artery bifurcation is needed, along with the study of 
the movement of the arterial wall. 

Reuderink (1991) developed a numerical method for simulation of the flow through 
and the deformation of a distensible model of the carotid artery bifurcation. He solved the 
equations for fluid flow and wall movement in an uncoupled way. This method has to be 
validated experimentally. Part of this validation is the measurement of the time-dependent 
deformation of a distensible model of the carotid artery bifurcation. 

To make this measurement in the future possible an experimental method for 
measurement of the deformation of a simplified model (a unifoml distensible, straight tu5e 
with an isotropic, linearly elastic wall) is presented here. This method is based upon 
optical registration of the movement of markers, which are placed on the outside of the 
wall of the tube. The movement of the markers due to an instationary flow through the 
tube is analysed with image processing techniques and from this movement the deformati- 
on of the tube is calculated. This deformation is coupled to flow parameters like the 
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transmural pressure, flow and velocity. In chapter 2 the experimental setup and the method 
for the deformation measurement is presented. 

For the prediction of the fluid velocity both an analytical and a numerical model 
are used. Womersley (1957) presented an analytical model for the prediction of the 
velocity field in a straight, rigid tube due to a harmonically varying pressure gradient. 
Dutta and Tarbell (1989) took the wall motion into account by a different treatment of the 
boundary conditions. In this way a numerical approach has to be used. In chapter 2 both 
the analytical model based on Womersley’s theory and the numerical model based on 
Dutta and Tarbell’s theory are explained. 

In chapter 3 the results, both from the experiments and from the theoretical models, 
are presented. These results are discussed and compared with each other in chapter 4. In 
this chapter the physiological application of the results is also given. Finally, in chapter 5 
the conclusions together with suggestions for future work are given. 



2 Material and methods 
2.1 Physiological flow in the human communis 

The oscillatory flow of an incompressible fluid in general can be characterized by 
two dimensionless parameters, the Womersley parameter a = R d F  and the 
Reynolds number Re = LV/v , where R is the tube inner radius, o de angular frequency, 
v the kinematic viscosity, L a characteristic length (= the tube inner diameter) and V a 
characteristic velocity (= the mean axial fluid velocity) (Paterson (1983)). The Womersley 
parameter gives the ratio between the instationary and the viscous forces in the flow 
equations and the Reynolds number gives the ratio between the stationary and the viscous 
forces. The inner radius of the communis is 3.1 mm (all physiological parameters are 
taken from Balsubramanian (1979)). Blood is assumed to behave like an incompressible 
Newtonian fluid. For the kinematic viscosity of blood is v = 3.5-10-6 m2/s assumed, while 
the specific gravity p of blood amounts to 1.06-103 kg/m3. During one hartcylce the 
Reynolds number in the communis varies between 175 and 650. With a frequency of 1 Hz 
the Womersley parameter will be equal to 4.2. 

The arkrial wall is anisotropic and behaves viscoelastic. The thickness of the wall 
of the communis is 0.4 mm. The length of the communis equals about 15 cm. The specific 
gravity of the wall amounts to 1.05.103 kg/m3. E,  the modulus of elasticity, equals 
4.5.105 N/m2, the wave velocity c = 5.0 m/s (experimentally determined (Pedley (1980)) 
and the wave length h = 5.0 m. During one hartcycle the communis expands 10% radially. 

2.2 The experimental model 

2.2.1 The experimental setup 
In this study the geometry of the carotid artery bifurcation has been greatly 

simplified to the geometry of a distensible, straight tube. The physiological situation has to 
be taken into account for the scaling of the experimental model. 

Fluid velocity inside the tube is measured using laser Doppler anemometry (LDA). 
This implies that the material from which the tube is manufactured, has to be transparent. 

The tube is made of two compo- 
nent silicon rubber Sylgard 184 (Dow Cor- 

been made. The accuracy of the dimensi- 

same as the accuracy of the dimensions of 
the mould. This way the tube has a length 
of 510.00 f 0.01 mm, an inner radius of 
9.00 f 0.01 mm and a wall thickness of 
1.00 i 0.01 mm (Rutten (1993)). In figure 
2.1 the tube is sketched. 

The index of refraction of the tube 
is 1.4110 f 0.0002. Through tne tube a 
solution of 30% CaCI, in water flows. The 
index of refraction of the solution has to 
be matched to the index of refraction of the tube, so there will be no refraction of the 

’ laserbeam at the tube wall. This can be done with a maximal deviation of 0.2%. The index 
of refraction of the solution can be controlled by adjusting the concentration of the 

6 mm ning). In a mould a distensible tube has 

ons of the tube are assumed to be the _-- 

I ,  w 
-_ 

mm 

____________-______--------- 
,am 

610 mn 

figure 2.1: the tube. 



solution, The dynamic viscosity 17 of the solution is (3.10 f 0.02).10-3 kg/ms and the 
specific gravity p ammounts to 1262 f 15 kg/m3. For the detection of the velocity with 
LDA seeding (0.5 cc OM fluid) is added to the solution. 

The tube is stretched in a rectangular perspex reservoir which is filled with the 
same solution as is used inside the tube. The axial pre-strain of the tube is 10%. This way 
the inner radius will become 8.73 f 0.01 mm. The effective free moving length of the 
tube becomes 500.00 f 0.5 mm (the accuracy is based on the dimensions of the reservoir). 
The modulus of elasticity E of the tube wall is experimentally found to be (0.99 f 
0.03).106 N/m2 (Appendix B). The specific gravity of the wall is 1050 f 5 kg/m3 (specifi- 
cations Bow Corning for Sylgard 184 at 25" c). 

An instationary, harmonically varying flow is created through the tube. The flow 
parameters are set to the same range of those in the physiological situation. The angular 
frequency is set to 0.786 f 0.001 rads. This way the Womersley parameter is 4.9 f 0.1. 
The Reynolds number varies harmonically between 200 (I 23) and 800 (I 29). The 
Moens-Korteweg wave velocity is determined from 

c = pg 
where h is the wall thickness. In the experiments the Moens-Korteweg wave velocity 
becomes 6.7 f 0.3 m/s and the wave length becomes 54 i 2 m. In table 1 the comparison 

Table 1 : scaling experimental model to physiological situation. 
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The tube is installed in a closed flowcircuit which is sketched in figure 2.2. 
cathetertip manometer. 

...._. reservoir 
... 

variable flowresistance .. '... .. 
.'. 

stationary pump 

j ìg  2.2: the flowcircuit. 

A stationary pump leads the fluid from a reservoir to the distensible tube via a rigid 
entrance tube with a length of 3.75 m. For the development of the axial velocity profile in 
a cylindrical tube a minimal entrance length Le is needed (Vossers (1986)). When a 
stationary plane velocity profde enters the tube, the entrance length is given by 

Le = 0.056xRex2R (2.2) 

This way, for Re = 800, the minimal entrance length becomes 0.8 m. The assumption that 
the instationary axial velocity profile will be fully developed is a safe one, because the 
minimal entrance length for an instationary flow is generally shorter than the minimal 
entrance length for a stationary flow. 

The stationary flow is set to a constant amount so that the Reynolds number for 
this stationary flow is 500. For the characteristic velocity the mean axial velocity Fö is 
taken. This follows from 

- Q  w = -  
nnR2 

(2.3) 

with Q the flow. 
Between the stationary pump and the entrance tube an instationary pump is 

installed. This pump generates an instationary flow which varies sinusoidally. This 
instationary flow is superposed to the stationaq flow. The total Reynolds number varies 
harmonically between 200 and 800 with the total instationary flow remaining positive. 

The tni.msmural pressure across the tube can be set with a variable flowresistance at 
the distal end of the tube. This way a radial expansion of 10% can be obtained. The radial 
expansion in the experimentai modei is in the same r a a g  the radial expmsion in the 
communis. 

2.2.2 Measurement of fluid behaviour 

positions: 
The following flow quantities are experimentally determined on three axial 



- the local velocity profile, 
- the local transmural pressure, 
- the flow proximally and distally from the distensible tube. 
The local velocity is measured with laser Doppler anemometry (LDA). With LDA a 
laserbeam is scattered by moving particles inside the fluid and this causes a Doppler shift 
for the frequency of the light of the laserbeam. From this Doppler shift the local fluid 
velocity can be determined. The velocity is measured with an accuracy of 3 mm/s. 

From the local velocity profile the local flow and the wall shear rate are determi- 
ned. The local flow is obtained by integrating the profile over the tube cross-section. The 
wall shear rate is approximated by calculating the finite difference quotient of the velocity 
profile near the wail. 

The local pressure inside the tube is determined with a cathetertip manometer 
(Millar) which can be placed at an arbitrary position. The local pressure is determined 
with regard to the pressure when there is no flow (in this situation the pressure inside the 
tube will be equal to the pressure outside the tube). This way the cathetertip manometer 
measures the transmural pressure. The accuracy for pressure measurement is 0.1 Wa. 

The flow is determined at two positions with two electro-magnetic flowmeters 
(Scalar Medical). The f i s t  one is positioned at approximately 5 m proximally from the 
distensible tube, the second one approximately 20 cm distally from the tube. The accuracy 
for flow measurement is 20 mymin. 

2.2.3 Measurement of wall behaviour 
A set of twenty markers (inkspots with a diameter of approximately 1 mm) are 

placed on the upperside of a segment of the tube on the outside wall. These twenty 
markers are placed on four virtual lines with a length of 32 mm parallel to the tube axis. 
Together with four calibration markers, which are placed in a square on fixed distances 
(35 mm) beside the tube, this segment with markers is filmed with a camera which is 
placed 400 mm above the tube. A second camera films a timer which is triggered by the 
LDA measurement unit. This timer takes care of the synchronisation between the 
deformation measurement and the LDA velocity measurement. The image of the second 
camera is mixed together with the image of the tube. In figure 2.3 the tube together with 
the calibration markers and the total camera image are sketched. 



camere 

dlbrcitlon mmor 
marken 35 mm i ;  

tlmer dlbnilon mukor 

j?g 2 3  a: tube with the calibration markers. f i g  2.3 b: video image. 

The used axisframe is sketched in figure 2.4. 

which is represented by the vector xo = roer + z O z  , 
from the reference state when there is no flow through 
the tube, to a deformated state can be divided into the figure 2.4: misframe. 
following linear transformations. First the tube expands 
radially and axially. This expansion is given by 

The transformation of a point on -+ the 4 tube wall, -t O'':..;]D ---_-- 

-- 

with Ar and AZ the expansion in radial r and axial z direction, respectively. Secondly, the 
tube rotates along the tube axis with rotation angle +rot . Next the vector becomes 
translated in the image-plane, prescribed by the translation vector f = u! < + u,< + uz < 
where u,, u, and u, are the lateral, perpendicular (to the image plane) and axial translation 
of the tube. Finally, the vector is projected on the image plane, which is spanned by < 
en 3 . The position of a vector on the tube wall in the deformated state can be given by 

In the reference state the circumferential position of each marker is determined. 
When the tube undergoes a deformation caused by m instationary flow through the tube, 
the markers will move correspondingly. Under the assumption that the radial expansion is 
independent of the circumÎerentid position ('is means that the tcbe mgst be circumfe- 
rentially homogeneous), the rotation, radial and axial expansion and lateral and axial 
translation of a segment of the tube can be determined as function of the time. This is 
done using the following procedure. 

The movement of the markers during one flowcycle is filmed and recorded on 
videotape. From the videoimages the position of each marker is obtained with the TIM[ 
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image processing software (Difa). From the movement of the whole set of markers with 
respect of the reference (no flow) state, which is recorded and analysed too, a radial and 
axial expansion is determined for each marker. The markers are placed on four virtual 
lines parallel to the tube axis  (see figure 2.3 b). Without accounting for rotation of the 
tube along its axis the radial expansion seemed to depend on the circumferential position 
of the marker (Appendix A). Markers on a line which was nearer to the right-hand side of 
the tube (when viewed in the flow direction) seemed to expand more than markers on 
other lines. With the above mentioned assumption that the tube was circumferentially 
homogeneous, this marker motion can only be described with a combined radial expansion 
and rotation of the segment. 

From the movement of the coordinates of the markers radial and axid eiparisioii 
are determined for each marker. The expansion is determined from the two dimensional 
Green-Lagrange strain field, which is determined with software from C. Oomens. The 
lateral and axial translation (these follow from the centre point movement of the markers) 
for the whole segment are determined too. Then the residu of the radial expansion of each 
marker is determined. The coordinates of each marker are adapted for a value of the 
rotation angle of the whole segment and again expansion and translation are determined. 
The value of the rotation angle for which a minimal residu is calculated, is iteratively 
determined. The matching values for radial and axial expansion and lateral and axial 
translation are now the true values for the deformation of the segment. The mean value of 
the standard deviation for the radial and axial expansion is 0.007. This is deducted from 
the minimal residu. The mean standard deviation for the translation, laterally and axially, 
is 0.04 mm. This follows from the standard deviation for the determination of the 
coordinates of the markers, which equals to 0.2 pixel. The maximal error in the rotation 
angle is 0.3" (based on the accuracy for the determination of the coordinates of a marker). 
This is quit big, but rotation correction is, as proved in Appendix A, relevant. 

2.2.4 Experimental protocol 
Wall and fluid behaviour are 

investigated at three segments (125 
mm apart) of the tube which are 
referred to as segment 000, 125 and 
250. For these segments the restrain- 
ted ends of the tube (where the tube 
is attached to the reservoir) have no 
effect on the expansion anymore 
(see Appendix B). The position of 
each segment is sketched in figure 
2.5. 

The following protocol is 
used for flow - deformation measu- 
rement at each segment. First the 

glas glas .. 

sqpmnto00 wnm>t126 s o g m n t m  

resewow 
rubber 

situation with no flow though the 
tube is filmed. The coordinates of 
the markers define the reference figure 2.5: segments for deformation detection. 
state of the tube for the deformation 
measurement. At the same time the outer diameter is measured using the laser. The laser 
is traversed until the beam just strikes the outer wall om the upperside of the tube. Traver- 



sing in vertical direction to the other outer wall yields the outer diameter. Then the 
instationaq flow through the tube is generated and the motion of the markers is recorded 
during a few cycles. One cycle is used to determine the deformation parameters. During 
this cycle 25 images are processed, leading to radial and axial expansion, rotation and 
lateral and axial translation. From the radial expansion the local inner radius is calculated, 
with the assumption that the tube material is incompressible. 

After the deformation measurement the fluid behaviour is determined (Rutten 
(1993)). The flows proximally and distally from the tube are measured. At every segment 
fluid velocity and transmural pressure are determined. 

As already mentioned, the velocity is measured using LDA. Fluid velocities are 
measured at 62 sample points in the cross-section (see figure 2.6). 

I 

figure 2.6: positions velocity sample points in cross-section. (from Rutten 
(1993)) 

All measurements of the parameters related to the fluid behaviour are carried out during 
25 cycles and these are averaged. 

2.3 The analytical model 
In the experimental setup a variable resistance is placed at the distal end of the 

distensible tube for controlling the pressure inside the tube. This resistance is a sudden 
cross-section narrowing. A pressure wave through the tube is reflected at this resistance 
with a reflection coefficient r s 1. The local pressure inside the tube can be observed as a 
superposition of an incident and a reflected wave on a stationary value: 

with k the propagation coefficient (s 0.1 m-') and I the tube length. For convenience we 
will take the phase of po equal to zero, so that po is synonymous to the pressure amplitude 
of the instationary component at the entrance z = O. The expansion of the Instationary part 
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of the local pressure becomes 

(ikZ)2 
2! 

p(z) = %(poe'"' [i + { 1 - ikl + - + 0 ( k 3 ) )  + ikz( -1 + r{ 1 - ikl + û ( k 2 ) ) )  + 

(ikz)2 
2! 

+ - ( i  + r {i + o@))) + 0(z3k3)1) 

and the axial component of the pressure gradient becomes 

- a? = %(poeimr [ik ( -1  + T' (1 - ikl + 
aZ 

+ (ik)2z { i  + r (1 + û ( k ) ) }  + 

(2.7) 

In the case of a wave with a long wavelength and a reflectioncoefficient approximately 1, 
(2.7) and (2.8) become 

p(z)  = %({Cl + C2(kz)}eim? (2.9) 

(2.10) 

with C, and C, complex functions. The wave character inside the tube can be described by 
a standing waveform. 

Now we analyse the local fluid behaviour. Generally, the flow of an incompressible 
fluid is prescibed by the Navier-Stokes equation and the equation of continuity: 

1 E + (VfV)S= --VP + VV2T 
at P 

(2.11) 

V.$= o (2.12) 

with v' the fluid velocity and t the the.  For an axi-symmetric geometry cylindrical 
coordinates can be used. If the tube diameter is much smaller than the tube length, the 
radial velocity component u will be zero and the axial velocity w will be fully developed 
( (<V)P = O in (2.11)). The equation of motion becomes 

(2.13 

with r and z the radial and axial coordinate. 
Womersley (1957) solved the equation of motion (2.13) for a rigid tube with a 

harmonical pressure gradient as in (2.10). He used the transformation y = r/Ro and by 
substitution of a harmonical solution w = w,(r)eim' for the axial velocity he found the 
following partial differential equation: 
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(2.14) 

For a rigid tube a homogeneous Dirichlet boundary condition (no slip) has to be used: 
wl(l) = o (2.15) 

Tiíis yields the following analytical solution of the axial velocity profile: 

Jo(ai ” y )  

ZOP Jo( a i 3 9  
] e  “9 C w(y,t) = %(--{ 1 - (2.16) 

with J, the Besselfunction of the first kind of order O. 
This solution is used as a first estimate for the local axial velocity profile at 

position O00 in the distensible tube. Womersley used the pressure gradient as input 
parameter for his model. With the used experimental setup it is not possible to measure 
the axial pressure gradient. The cathetertip manometer has an accuracy of 0.1 kPa. With a 
tube length of 500 mm only pressure gradients with values higher than 0.2 Waim can be 
significantely determined. Instead of the gradient the mean and first harmonic of both the 
local flow and the inner radius are used as input parameters. From the inner radius the 
cross-sectional area is obtained. The local flow is obtained with by integrating the 
experimentally determined (discrete) velocity profile with the use of the trapezium-rule 
over the cross-section. 

(Poiseuiie) profile can be obtained by 
With the cross-sectional area and the mean of the flow the quasi-stationary 

tV,(y,t) = 2-(1 Qnleatl - y)2 
A (t) 

velocity 

(2.17) 

With (2.16) and the use of the cross-sectional area and the first harmonic of the 
flow Q, the first harmonic of the axial velocity profile can be obtained by 

i J,( ai3I2y) 

1 -  
a i  3/2J,(ai 3D) 

(2.18) 

with Jl the Besselfunction of the first kind of order 1. Because of the linearity the total 
axial velocity profie predicted by WomersEey’s thesiy is the summation of (2.17) md 

The profile is axi-symmetric. The variable y is multiplied with the experimentally 
(2.18). 

determined inner radius, which is time-dependent, to account for the wall motion. 

15 



2.4 The numerical model 
Dutta and Tarbell (1989) presented a different procedure for the solution of the 

axial component of the Navier-Stokes equation. They took into account the wall motion 
directly in the radial coordinate transformation c(t) = r/R(t) . With this transformation 
the axial component of the Navier-Stokes equation becomes (see Appendix C) 

aw g a w a R  u a w  c a w a R  aw --- + -- + w[---- + -1 = 
at - R  a t  at R a t  R af aZ aZ 

1 a2w + v{ - -  + -- + - +-[-(-y + i ap 
P az RZ a y  CRZ a t  a z 2  a t  ~2 aZ 

4 ~ Y R ,  zw 4 aH aw i a2 4 a~ a Z w  4 3~ + -(---y + -(---)(---) + -(---)) 
R az2  a y  R aZ a t  R aZ R az a5az R az 

- 

i aw a Z w  aw 25 aR (2.19) -- - -  - 

- -- 

After estimating the value of all terms and taking only the relevant terms into account, 
(2-19) becomes (see also Appendix C) after some rewriting 

Symmetry and no slip conditions are taken into account by homogeneous Neumann and 
Djnchlet boundary conditions: 

dw - = o  , t = o  
a t  (2.21) 

For the partial differential equation (PDV) no analytical solution is possible. This 
equation can be rewritten as a convection-diffusion equation, in which we scale the 
velocity with the mean velocity and the time with the period time. The dimensionless 
velocity is given by ~, the dimensionless time by 't. We obtain the following equation: 

(2.22) 

In the coefficients are the experimentally determined mean and first hamionic of the inner 
radius substituted, so x and \Y are determined. The PDV was multiplied with 4 to 
eliminate the discontinuity for 4 = O. This equation is discretized using a Crank-Nicolson 
finite CWferential scheme (Fletcher (1991)): 
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The lower index (m) represents the spatial discretization, the upper index (n) represents the 
time discretization. This discretization scheme has a second order accuracy in space and 
time. The Neumann boundary condition is discretized with a forward Euler scheme, which 
makes the accuracy of the discretization method linear in space and second order in time 
discretization. 

The velocity is solved with a set of 
matrices for the coefficients of (2.23) 
accounting for the boundary conditions. 
The starting velocity profile is the scaled 
starting velocity profile which is found 
with the analytical model and further the 
next eigth cycles are calculated, so the 
start-effects are damped. There are 11 
equidistant space nodes (for half of the 
cross-section) and 200 time nodes per 
cycle. The velocity is made dimensionfull 
again with the mean velocity. Because the 
velocity profile is axi-symmetric, the profi- 
le is mirrored. 

The pressure gradient (source term 
f in (2.22)) is unknown. First we start 
calculating the velocity profile with the 
pressure gradient which is found from the 
analytical model. The adjustment of the 
pressure gradient per time node is perfor- 
med iteratively based on the ratio between 
the experimentally determined flow and 
the flow determined from the numerical 
velocity profile (QaJQmodel; see figure 2.7). 
This adjusting procedure is carried out 
until the model flow deviates maximally 
0.5% of the experimental Bow. 

deviation > 0.5% 
exU 

figure 2.7: adjusting of the pressure gradient 
in order to achieve aflow equal to the expe- 
rimental flow. 

This procedure provides an axial velocity profile with the same flow as the 
experimental flow. This way the numerical model has the same experimental input 
parameters as the analytical model (the flow and the inner wall movement). From the 
numerical and analytical profiles the wall shear rate can be approximated by the finite 
difference quotient of the axial velocity at the wall. For this the velocity at the node 
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nearest to the wall is divided by the spatial discretization distance (because the velocity at 
the wall is zero). These two values for the wall shear rate are compared with the experi- 
mental approximation of the wall shear rate. 



3 Results 
3.1 The experiments 

3.1.1 Tube deformation 
For the instationary flow with a = 4.9 f 0.1 and Re varying harmonically between 

200 (I 23) and 800 (i 29) the deformation of the distensible tube is determined. The 
parameters that characterize this deformation are A, (the radial expansion, this is the ratio 
between the outer radius during the expansion and the outer radius in the reference state 
when there is no flow through the tube), the rotation angle 9, in degrees and the 
lateral (ul) and axial (u,) translation in mm. These parameters are determined during one 
flowcycle for the three segments (000, 125 and 250) of the tube. The results are given in 
figure 3.1 a to d. 

-000 -4- 125 ++250 
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figure 3.1 a: the radial outer expansion against the dimensionless 
time, determined for the three segments of the tube. (T = 0.007. 
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$gure 3.1 b: rotation angle (in degrees) against the 
time, determined for the three segments of the tube. 
error is 0.3". 
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jìgure 3.1 c: lateral translation (in mm) against the dimensionless 
time, determined for the three segments of the tube. CY = 0.04 mm. 
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figure 3.1 d: axial translation (in mm) against the dimensionless 
time, determined for the three segments of the tube. CT = 0.04 mm. 

A positive rotation angle means a rotation counter-clockwise when viewed in the flow di- 
rection. A positive lateral translation (u1 > O) means that the segment moves to the left- 
hand side when viewed in the flow direction. A positive axial translation (u, > O) means 
that the segment moves in the flow direction. With these results the axial expansion is not 
given because this remained at a value of 1 during the whole flowcycle. 

From figure 3.1 a to d it can be concluded that the tube undergoes the following 
deformation during one flowcycle: 
- a radial expansion over the whole length of the tube, which varies essentially harmonical 
between Ar = 1.14 and Ar = 1.06 with a mean value of 1.10. Between the three segments 
are no phase differences, so the tube maintains its cylinderical shape. 
- a small rotation of the tube (about i"), which varies slightly with an amplitude of 1". 
The value of the rotation angle for the middle segment (125) is slightly bigger than for the 
two segments closer to the restraints. This middle segment can move more freely than the 
other two segments. 
- a lateral translation of the tube, which varies essentially harmonical. The tube moves 
from the right-hand side (ul 6 O), when the tube is maximally expanded, to the left-hand 
side (ul > O). For the middle segment the translation has a different value for the offset 
than for the two other segmemts. The amplitude of the translation is for all t hee  segments 
similar. 
- there is no axial translation during the expansion oi  the tube. The tiibewdl does undergcr 
an axial translation when the tube is expanded from the reference (no flow) state to the 
stationary state, when only the stationary pump is active. In this state a stationary flow 
with Re = 500 is generated. During this stationary deformation the segments of the tube 
are being translated. The outside segments move to the middle of the tube. 
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From figure 3.1 a the movement of the inner radius can be obtained. For this is 
assumed that the material from which the tube is manufactured (silicon rubber) is 
incompressible. The results are given in figure 3.2. , 
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ia40 
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0.00 0.28 0.4Q Q.60 0.80 1.00 

figure 3.2: inner radius (in mm) against the dimensionless time, 
determined for the three segments of the tube. (T = 0.08 mm. 

3.1.2 The transmural pressure 
The tube undergoes the deformation as described above as a result of the harmoni- 

cally varying transmural pressure. This pressure is measured with a cathetertip manometer, 
which is positioned in the middle of each segment. The value of the transmural pressure 
inside each segment during one flowcycle is sketched in figure 3.3. 
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figure 3.3: transmural pressure (in kPa) inside each 
segment against the dimensionless time. 
(jï-om Rutten (1993)) 

From figure 3.3, together with figure 3.1 a, it can be concluded that there is no phase 
difference between the inner wall movement and the transmural pressure. There are also 
no phase differences between the transmural pressures inside the three segments, which 
ïliustrates the standing wave character pointed out in equations (2.7) and (2.9). 

3.1.3 The velocity field 
The velocity at each segment is measured along the x- and y-axis (in horizontal 

and vertical plane). The velocity profiles as measured along the x-axis are shown in figure 
3.4 a to c. 

I I I I I I c- I 

O 0.2 0.4 0.6 0.8 1 1.2 

t i r  
figure 3.4 a: velociìy profile measured along the x-axis at segment 000. Accuracy is 3 
mmis. @om Rutten (1993)) 
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Near the wall the ammount of seeding (particles in the fluid which cause the scattering of 
the laser light and therefore responsible for the velocity signal) is less than near the tube 
axis, due to lower fluid velocities. This causes noise on the velocity signal near the wall. 
Comparison of these figures with each other yields the conclusion that the instationary part 
of the profile decreases in the flow direction. The velocity profiles are also measured 
along the y-axis. These profiles are not symmetric (Ruttea (1993)). 

The velocity profile measured along the x-axis is used for the calculation of the 
local flow. This is done by integrating the velocity profile over the cross-section with the 
use of the trapezium-rule. For all three segments the I S C ~  flow is determined. In figure 
3.5 these are given, together with the flow measured proximally and distally from the tube 
during the velocity measurement at segment Ooi). 
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figure 35: calculated flow (in mllmin) for all three segments, against 
the dimensionless time. Also the measured flow proximally and distally 
porn the tube are given. @om Rutten (1993)) 

A decrease of the amplitude and a phase shift of the flow in the flow direction is found. 
The velocity profile measured along the x-axis at segment O00 (figure 3.4 a) is 

used for comparison with the analytically and numerically predicted velocity profiles. An 
approximation of the wall shear rate is also obtained from this velocity profile. For this 
the finite difference quotient is calculated. The difference between two velocity samples 
near the wall is determined and this is divided by the spatial discretization &stance at the 
wall (= 0.2 mrn, see figure 2.6). Difficulty here is to determine whether both samples were 
taken inside the fluid and thus valid samples, or inside the tube wall. For this the 
following criterion is used: if the velocity, taken from the sample nearest to the wall is 
larger than O m/s, then the sample is taken inside the fluid-the following wall shear rate, 
determined at the right-hand side (when viewed in the flow direction) of the velocity 
profile measured along the x-axis at segment 000, is obtained. 
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figure 3.6: wall shear rate against the dimensionless 
time, determined from velocity profiles measured along 
the x-axis at segment O00 of the tube, with the criterion 
w > O mls. 

This wall shear rate shows some large peaks. Probably some samples are stili taken inside 
the tube wall and not inside the fluid. If the criterion is raised to 0.002 m/s the following 
wall shear rate is determined. 

60 I 

01 I 
O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

trr 
figure 3.7: wall shear rate against the dimensionless 
time, determined Jrom velocis, profiles measured along 
flie x-axis ai segment OQO of the tuk ,  witli the criterion 
w > 0.002 mis. 

The wall shear rate shows less noise. The wall shear rate in figure 3.7 is determined on 
the right-hand side of the tube. The same is done for the wall shear rate on the left-hand 
side. This way a wall shear rate with a similar course is found, which is not shown. 
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From figure 3.8 it seems that the numerical model leads to a better description of the 
velocity field than the analytical model. This improvement is going to be quantified in 
paragraph 4.3. 

For both theoretical velocity profiles an axial pressure gradient is used. These 
gradients are given in figure 3.9 a and b. 
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jìgure 3-9 a: the axial pressure gradient, 
used in the analytical model, against the 
dimensionless time. dimensionless time. 

Jigure 3.9 b: the axial pressure gradient, 
used in the numerical model, against the 

From figure 3.9 a and b it can be concluded that the axial pressure gradients, used in both 
models, produce different values for the instationary component (the phase and the 
amplitude are different). The stationary component (the offset) of the gradients though, 
leading to the stationary part of the velocity profile, is in both cases almost the same. With 
the used experimental setup it was not possible to measure the axial pressure gradient. 
Rutten used a finite element method with moving walls to prescribe the velocity field 
inside the tube. The pressure gradient is also determined. This gradient oscillates between 
+ 40 Pa/m and -65 Pa/m. The minimal value is reached at fl = 0.53 and the maximal 
value at t/T = 1.0. This also suggests that the numerical model is an improvement to the 
analytical model. 

velocity profiles an approxima- 
tion for the wall shear rate is 
determined by calculating the 
finite difference quotient. In 
figure 3.10 the two wall shear 
rates are given together with 
the experimentally determined 
wall shear rate as it is also 
shown in figure 3.7. The two 
theoretical profiles are axi- 
symmetric, so it is trivial to 
give two gradients for each 

From the two axial 6o ... auaiyticai - - - numericaï - experimentai 

v 

b 

O 
O 0.1 0.2 03 0.4 0.5 0.6 0.1 0.8 0.9 1 

profile (one at the left-hand 
side of the tube, one at the 

_m 
Y1 right-hand side). For the expe- 

rimental profile fie 
the right-hand side of the tube 
is presented. 

ned from the numerical profile, 
shows a better agreement with the experimentally determined gradient than the gradient 

figure 3.10: wall shear rate against the dimensionless 
time, determinedfrom the two theoretical and the expe- 
rimental axial velocity projiles for segment O00 of the 

The gradient, determi- tube. 
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which is determined from the analytical profile. The mean value (offset) is in both cases 
almost the same, but the phase and the amplitude of the velocity gradient determined from 
the analytical profile do not agree with the experimentally determined gradient. 
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4 Discussion 
4.1 Tube deformation 

4.1.1 Modeling assumptions 
For the experimental setup some modeling assumptions were made. In this 

paragraph the validity of these assumptions is being investigated. 
The material from which the tube is manufactured, is assumed to be isotropic, 

linearly elastic and the tube is thought to be homogeneous. Dynamic and static experi- 
ments with the tube have shown that the material behaves viscoelastic (Appendix B). The 
viscous part is not really neglible because it can amount to 20% of the elastic part, but in 
this part of the investigation the viscous damping of the wall is not taken into account. 

The human arterial wall is anisotropic, inhomogeneous and behaves non-linearly 
viscoelastic. The fluid used in the model behaves like an incompressible Newtonian fluid, 
which is a simplification of the behaviour of blood too. This way conclusions, drawn from 
the experiments at the model, may not be coupled directly to the in-vivo situation. 

Radial homogeneity is a requirement for the rotation detection in the deformation, 
because the radial expansion is thought to be circumferentially equal. This may lead to a 
contradiction, because rotation of the tube can occw if the tube is radial inhomogeneous. 
No attention is paid to this case, because it is not certain where the rotation of the tube 
finds its origin. Rotation can also occur when the tube is stretched with a small torsion. 
The rotation is small, although significant. 

14 camera 
4.1.2 The deformation 

The deformation of the tube is characterized 
by five parameters: the radial and axial expansion, 
the rotation angle and the lateral and axial translati- 
on. These parameters are determined from the mo- 
vement of twenty markers on the tube wall. These 
markers are filmed with a camera which is place 
above the tube. Each marker is projected on the 
image-plane (see figure 4.1). By this projection an 
error in the determination of the true distance (= 

. .  . .  . .  . .  Rcos4) between the projection of the marker and 
< ='= 3r the tube axis occurs. This error is called E in figure 

4.1 and for a marker with 9 = 45" (Rcos9 = 0.707 
mm) E = 0.018 mm. The error in the true distance 
is maximally 2.5%. 

expansion, rotation and translation are determined. on the imge-planea 
For the expansion the two dimensional strain field 
is determined. For each marker individually a 
Green-lagrange strain in radial and axid directioiì is detemined, leading to z udue for 
the radial and axial expansion. The expansion of the segment follows, after rotation- 
correction, from the mean value. This provides a standard deviation too. Inner radius 
movement is determined from the radial expansion with the assumption that the material 
from which the tube is manufactured is incompressible. This assumption is valid for 
silicon rubber. 

E Rcos co 

From the n ~ ~ e m e n t  of the markers the jìgure 4.1: projection of a marker 



The lateral and axial translation are determined from the centre point movement of 

The three segments of the tube (125 mm apart) move radially in phase. This way 
the markers. 

the tube maintains its cylindrical shape (figure 3.2). 

4.2 Pressure and Bow 
The radial expansion of the tube is imposed by the transmural pressure. For the 

experimentally used angular frequency the tube is considered to behave linearly elastic. In 
this case the transmural pressure and the inner radius movement are in phase, which is 
also found experimentally. 

Between the three segments the transmural pressure is in phase and there is KB 
decrease in amplitude (figure 3.3). The local flow, determined from the measured velocity 
profiles shows a phase shift and an amplitude decrease in the flow direction (figure 3.5). 
This can be explained from the wave theory. At the distal end of the tube a variable 
resistance is placed in the flowcircuit for controlling the transmural pressure and, coupled 
with this pressure, the inner radius movement. This resistance is a sudden cross-section 
narrowing. In case a tube is completely closed distally, the reflection coefficient F would 
be 1. For a cross-section narrowing from 18 mm to 2 mm, we may assume that F = 1. For 
both the flow and the pressure standing waves arise inside the tube (as already mentioned 
in paragraph 2.3, equations (2.6) to (2.10)). At the resistance the flow will be in a node of 
the wave, while the pressure will be in an antinode. 

The three sample points are 125 mm apart. With the tube proportions in respect to 
the wave length these three sample points are assumed to almost coincide near the node 
(antinode) of the flow wave (pressure wave). Thus the amplitude of the flow will decrease 
approximately linear with the distance between the sample points. However, the pressure 
measured at all three points has the same amplitude at all three points and no phase 
differences will occur. 

With this behaviour in mind a storage model for the flow, which represents the 
capacitive nature of the tube, is introduced (Appendix D). With this model the flow at an 
arbitrary position in the tube can be determined without using the velocity profile. 

For the local flow the assumption was made that the flow varies harmonical. The 
flow is established by a stationary and an instationary pump. The sta~onary pump 
produces a stationary flow. The instationary flow, produced by the instationary pump, is 
not quite sinus-shaped, but during the rise and fall of the flow a perturbation occurs (see 
figure 3.3, due to backlash in the instationary pump. In both theoretical models, which are 
used to predict the velocity profile, only the offset and the first harmonic of the local flow 
are taken into account. Higher harmonics are being neglected, although Fast Fourier 
Transformation of the flow signal shows that the second harmonic has an amplitude of 
10% of the amplitude of the first harmonic, The fifth and ninth harmonic each have an 
amplitude of 3% of the amplitude of the first harmonic. Other harmonics have amplitudes 
smaller thw 1% of the amplitude of the first harmonic. 

4.3 The velocity field 
In front of the tube a rigid entrance tube of 3.75 m is installed to achieve a fully 

developed velocity profile at the entrance of the distensible tube. In the horizontale plane a 
symmetric profile is found (figure 3.4 a to c), but in the verticale plane the profile seemed 
to be asymmetric. The symmetry did not improve by installing a longer entrance tube. A 
possible explanation for this asymmetry can be found in the orientation of the flowcircuit 



with respect of the earth’s rotation, but no effort is made to improve the symmetry of the 
velocity profile by other orientation of the flowcircuit. 

From figure 3.4 a to c it can be concluded that the instationary behaviour of the 
velocity profiles decreases in the flow direction (also illustrated by figure 3.5). The 
explanation of this behaviour is based on the same arguments that explained the flow 
behaviour: near the resistance at the distal end of the tube the flow and so the axial 
velocity decrease almost linear with space due to the standing waveform. At the resistance 
behind the tube a node for the velocity wave occurs. 

Two theoretical models are used to predict the velocity profile at segment 000. 
First Womersley’s theory for the velocity in rigid tubes is applied. Secondly wall motion 
is taken into account more directly by different treatment of the boundary conditions. This 
model is derived from Dutta and Tarbell’s theory. 

In Womersley’s model the convective term in the Navier-Stokes equation is 
neglected. This is allowed for a rigid tube with tube length much longer than the diameter. 
For distensible tubes a different criterion holds (van de Vosse (1983)): 

- 
W 1-1 a 1 
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(4.1) 

With 
derivative of the axial velocity component to z the criterion 

w = 0.0852 m/s and c = 6.7 m/s (4.1) is valid. To neglect the second order 
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must be valid (van de Vosse (1983)). For R = 9 mm and o = 0.786 raas  this criterion is 
valid too. This way (2.13) describes the axial velocity field. 

Actually, Womersley’s model should only be applied for the flow in rigid tubes. In 
our experiments though a distensible tube is used with diameter variations of more than 
14% occuring. Womersley’s theory can not be applied at all means. Womersley also did 
provide an extension to his theory by introducing wall motion. The boundary conditions 
(wall motion) are linearized and for a harmonically varying pressure gradient an analytical 
solution for the flow equation is given, leading to an axial velocity profile. This extension 
was elaborated for the flow in the distensible tube, but the result did not differ much from 
the results already obtained from the rigid tube theory. The only real deviation was that 
the velocity at y = 1 (r = R) is not O m/s. Of course the no slip condition has to be met, 
so this phenomenon is explained with the arising longitudinal wall motion. The tube is 
longitudinally restrained inside a perspex reservoir (see figure 2.5). This way the extension 
to the rigid tube theory, as mentioned above, can not be applied to the experimental 
situation either. 

The second model, based on Dutta and Tarbell’s theory9 took the wall motion 
directly into account in the boundary conditions. The axial velocity profile is determined 
from the numericaiiy solved flow equation. A Cramk-Nicolsm finite difference scheme is 
used to discretize the flow equation. Both Neumann and Dirichlet boundary conditions are 
used. The Neumann condition is discretized by a forward Euler scheme. The accuracy of 
the numerical equation is therefore linear in space and second order in time discretization. 

The theoretically predicted velocity profiles have to be compared with the 
experimentally determined profile. An error definition is used to quantify the differences 
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between two velocity profiles (Rutten (1993)). 
The error definition is based on flow rate difference: 

(4.3) 

with V, and V, the velocities that are to be compared, Q the flow (the integrated velocity 
profile) and R the momentary tube inner radius. 

The positions of the sample points for the velocity measmemerib do riot eohcide 
with the nodal points where the velocity in the theoretical models are calculated. They 
also are time dependent. For the comparison between theoretical and experimental profiles 
this problem is overcome by fitting the experimental data with orthogonal Legendre 
polynomials of order 6. The profiles were assumed to be symmetric, so the order had to 
be even. Also the error between the curvefit and the measured velocity profile had to be 
minimal. This was achieved for polynomials of order 6. This minimal error, determined 
with (4.3), amounted to 0.04. 

The error definition is used here to compare the two theoretical velocity profiles 
with the experimentally determined profile. The results are given in figure 4.2. 
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figure 4.2: error (se = eps) for the analytically and 
numerically determined profiles against the dimensi- 
onless time. 

The mean error for the analytically determined profile amounts to 0.13 with a maximum 
of 0.34. The mean error for the numerically determined profile amounts to 0.09 with a 
maximum of 0.21. Both curves show peaks at t/T s 0.15 and 0.65. These peaks are caused 
Dy the aiready memtiisried pertwbations h the flow, dire to backlsish in the instationary 
P-P- 

Both models seem to fail in describing the flow very well. With this error 
definition though, it seems that the numerical model is an improvement over Womersley’s 
rigid tube theory. 

From the velocity profiles an approximation for the wall shear rate is determined 

33 



by calculating the difference quotient at the wall. The reliability of this wall shear rate is 
coupled to the spatial discretization. The theoretical wall shear rates are determined from 
the difference between the velocities at two nodes 1 mm apart. Spatial discretization was 
chosen with CPU time in mind. Smaller discretization implies longer calculation time for 
the velocity profde. 

The experimental wall shear rate is calculated with 0.2 mm spatial discretization 
and so the accuracy is in order 5 times better than the theoretical wall shear rates. But 
with the calculation of the experimental wall shear rate another problem arises. Apart from 
the noise on the wall shear rate due to noise ora the velocity signal, another noise source 
exists in the uncertainty that both velocity samples are taken inside the fluid and not inside 
the wall. This uncertainty is illustrated by figure 3.6 and figure 3.7. This phenomenon 
introduces peaks on the wall shear rate. These peaks are eliminated by using a criterion 
for the minimal value of the velocity. This way an uncertainty is introduced though, 
because it is unclear whether the wall shear rate is calculated from the velocities nearest to 
the wall. 

When the two theoretical wall shear rates are compared to the experimentally 
determined value, an improvement in the determination of the wall shear rate with the 
numerical model in comparison with the wall shear rate following from Womersley's rigid 
tube theory is found. 

4.4 Physiological application 
As already mentioned, the experimental model is a great simplification of the in- 

vivo situation. Therefore the results and conclusions drawn from the experiments may not 
be coupled directly to the flow in the human communis. Only qualitatively these results 
may be used for interpretation of the in-vivo flow. 

Velocity measurement in human arteries is based on an ultrasound principle. This 
method provides the velocity on the axis accurately, but flow near the wall can not be 
detected well. 

The numerical model is also applied to determine the axial velocity profile from 
the velocity value on the tube axis. Instead of adjusting the pressure gradient by the flow 
ratio, the gradient is adjusted by the ratio between the velocities (experimental and 
numerical) on the axis. With the used procedure (see paragraph 2.4 and figure 2.7) this 
does not succeed. Between the velocity on the tube axis and the pressure gradient a phase 
difference of -90" exists (equation (2.16)), while the phase difference between the flow 
and the pressure gradient equals -71" (from equation (2.18) together with (2.16)). 
Apparently, the adjusting parameter (the pressure gradient) may not be completely out of 
phase with the output parameter (flow and velocity on the tube axis, respectively) for the 
procedure to succeed. Perhaps a different adjusting procedure will lead to a succesful 
application of the numerical model. 
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5 Conclusions 
In this study an experimental method for measuring the deformation of a straight, 

distensible tube is presented. An instationary, harmonical flow through the tube is created, 
leading to a harmonical varying transmural pressure. This pressure causes radial expansi- 
on, rotation and translation of the tube. 

Inside the tube a standing wave form for the pressure and the flow is created. 
Because the tube length is much smaller than the wave length, the pressure inside the tube 
is the same at all positions, while for the flow the amplitude decreases in the flow 
direction and a phase shift occurs. For the pressure wave thïs means that the positions are 
near the antinode of the wave, for the flow they are near the node. 

FOP the prediction of the fluid velocity two models are used. First Womersley's 
rigid tube theory does not describe the axial velocity profile very well. The mean error, 
based on an integral criterion, seems to be 0.13 with a maximal value of 0.34. A second 
model takes the wall motion directly into account in the boundary conditions. With this 
model a mean error of 0.09 with a maximal value of 0.21 is found. This still is relatively 
high, but the model seems to be an improvement on Womersley's theory. 

This can also be concluded from the wall shear rate, which is determined with both 
models. The wall shear rate leading from the second model seems to follow the experi- 
mentally determined wall shear rate better than the one leading from Womersley's model. 

5.1 Continuation 
In this study the deformation of and the flow through a straight, distensible tube is 

investigated within the "Atherosclerose"-project. The conclusions drawn from this study 
may not be applied directly to the flow in the human carotid bifurcation. In order to do 
this, experiments with a model of the bifurcation have to be executed. The experimental 
method used in this stadium is only usable for the deformation detection of a cylindrical 
segment, but the method can be adjusted for other geometries. 

Also a more realistic flow has to be applied through the model to account for the 
flow through the human carotid bifurcation. Blood and human arterial wall can be 
modelled by using another fluid and material for the tube. The choice of these is compli- 
cated by the velocity measurement. In the experiments the velocity measurement is based 
on LDA, which means that the tube has to be transparant and the refraction index of the 
fluid has to be matched with the refraction index of the tube material. So either the same 
material and fluid have to be used (or material which is comparable) or a different 
velocity measurement method, like ultrasound, has to be used. The deformation detection 
does not impose conditions on the fluid and tube material. 

Thusfar the rotation is determined from a minimal residu method in the radial 
expansion. However, the rotation can be determined experimentally using two cameras 
which film the tube segments in two orthogonal views. Also the translation of the whole 
tube can be determined this way. 

35 



References 
Balasubramanian, K. 
An experimental investigation of steady flow at an arterial bifurcation 
thesis, Georgia Institute of Technology, Atlanta, 1979 

Bharadvaj, B.K., Mabon, R.F. Giddens, D.P. 
Steady flow in the human carotid bifurcation. Part 1: flow visualization 
Journal of Biomechanics, Volume 15, p 349-362, 1982 

Dutta, A., Tarbell, J.Ma 
Numerical simulation of sinusoidal flow in a straight elastic tube: effects of phase 
angles 
Biorheology, Volume 26, p 1-22, 1989 

Fletcher, C.A.J. 
Computational techniques for fluid dynamics. 
Volume 1: Fundamental and general techniques 
Second edition, p 299-3 16, Springer-Verlag, Berlin, 1991 

Paterson, A.R. 
A first course in fluid dynamics 
First edition, p 127-138, Cambridge University Press, Cambridge, 1983 

Pedley, T.J. 
The fluid dynamics of large blood vessels 
Cambridge University Press, Cambridge, 1980 

Reuderink, P.J. 
Analysis of the flow in a 3D distensible model of the carotid artery bifurcation 
Ph.D-thesis, Eindhoven 1991 

Rutten, M.C.M. 
Experimental and numerical analysis of instationary flow through a straight 
distensible tube 
Master-thesis, WFW 93-066, Eindhoven 1993 

van de Vosse, F.N. 
Gedrag van stromingen veroorzaakt door een harmonische drukgradiënt in starre en 
elastische buizen 
report Eindhoven University of Technology WFW9 p 12-13, 1983 

Vossers, G. 
Fysische transportverschijnselen voor W 
Syllabus Eindhoven University of Technology, p 99-101, Eindhoven, 1986 



[ 111 Womersley, J.R. 
An elastic tube theory of pulse transmission and oscillatory flow in mammalian 
arteries 
Technical report WADC-TR 56-614, Wright Air Development Centre, 1957 



Appendix A: Detection of the tube rotattion 
The radial expansion of a segment is measured from the movement of twenty 

markers. These are placed on the outside wall of the tube on four parallel virtual lines 
(five markers per line). These lines have a length of 32 mm and are parallel to the tube 
axis. Expansion is determined from the two dimensional strain field. This strain field is 
calculated from the movement of each marker with regard to the surrounding markers after 
the translation of the whole segment is calculated. The calculated radial expansion at 
segment 250, given in figure A.l, is the expansion from the central marker of each line, 
with line 1 corresponding to the line closest to the right side of the tube, when viewed in 
the flow direction. The other line numbers (2, 3 and 4) are arranged with Increasing 
angular difference to line 1. 

1.18 I 1 

1.04 ' I I I I I 

0.00 0.20 0.40 0.60 0.80 1 .o0 

flgure A.]: radial expansion of each line of segment 250 before 
rotation correction, against the dimensionless time. 

Because the radial expansion of the tube seems to depend on the circumferential 
position of a marker, as shown in figure A.l, the following consideration of the movement 
of the segment is made. When the tube is considered to be circumferentially homogene- 
ous, the radial expansion of a marker on each line has to be equal. Therefore an extra 
movement of markers together with the radial expansion and translation occups. 

This extra movement is a. rigid rotation of the segment. During the maximum in 
the radial expansion the segment is rotated to the left side of the tube. This way the 
amplitude of the movement of a marker as projected on the image plme, closer to the Ieft 
side is bigger than the amplitude of the movement of other markers. This results in a 
bigger value for the radial expansion. 

After the circumferential position of each marker in the reference state is detemi- 
ned, the total movement of the cluster of markers is corrected for this rotation. This is 
done in an iterative way, with minimal residu for the radial expansion. From this residu 
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the standard deviation is calculated. 
In figure A.2 the radial expansion of segment 250 for the central marker of each 

line is given again, but now after rotation correction. This way the radial expansion of 
each markers does not differ systematically. 
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figure A.2: radial expansion of each line of segment 250 after 
rotation correction, against the dimensionless time. 

In figure A.3 the rotation angle is given. 

39 



Y 

S 8  

figure A.3: 

2=oo I 
I 

0.00 ' 
0.00 0.20 0.40 0.60 0.80 1.00 

t/T 

rotation angle (in deg) against the dimensionless 
determined at segment 250. 

time, 

40 



Appendix B: Results of the deformation measurement 
First static deformation of the tube is measured. This is done by setting the 

stationary pump at different values. The instationary pump is switched off. The radial 
expansion is determined from the movement of the markers. Also the radial expansion is 
determined from the direct measured outer radius. This is done by traversing the laser 
from the upperside of the tube to the lowerside and measuring the outer diameter. In 
figure B.1.a the radial expansion is given. The optical measured expansion is indicated 
with t, the direct measured expansion is indicated with 1. Deformation is measured at 
segment 000 (O), 125 (1) and 250 (2). 
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figure B .I .a: radial expansion against the transmural pressure (in 
kPa), determined from two methods. 

In the following figures the rotation and translation are given. 
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figure B.1 .b: rotation angle (in deg) against the transmural pressure 
(in kPa) * 
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figure B.1 .c: lateral translation (in mm) against the transmural 
pressure (in kPa). 
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figure B.1.d: a i a l  translation (in mm) against the transmural 
pressure (in kPa) . 

From the radial expansion the modulus of elasticity is calculated with the assumption that 
the tube material is incompressible. In figure B.2.a this is done from the static measured 
expansion. In figure B.2.b this is done from the dynamic measured expansion as it was 
given in figure 3.1.a. The static determined modulus is not a constant value, but increases 
with increasing transmural pressure. This static determined modulus is about 20% higher 
than the dynamic determined modulus. The mean value of the dynamic detennined modu- 
lus is 0.99-106 N/m2. The standard deviation is 0.03-106 N/m2. 

In figure B.3.a and b the distensibility of the tube is given. They are determined 
from the cross-section - transmural pressure relation. For this relation a second order 
polynomial is taken. The distensibility is in both cases (static and dynamic) not a constant 
value. 
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flgure P3.2.a: modulus of elasticity (in Nlmm2) against the trans- 
mural pressure (in kPa). This is determined jï-om the static 
experiments. 

+ o 0 0  * 125 0 250 

figure B.2.b: modulus of elasticity (in N l m d )  against the trans- 
mural pressure (in kPa). This is determined fiom the dynamic 
experiments. 
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fisure B.3.a: distensibility D (in 
AfPa-') against the transmural pressure (in P a ) .  This is deter- 
mined from the static experiments. 
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figure B.3.b: distensibility D (in 
MPa-') against the transmural pressure (in kPa). This is deter- 
mined from the dynamic experiments. 
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The effect of the restainted ends to the radial expansion is also investigated with a 
static experiment. The outer diameter at 13 axial sample positions near the restainted end 
where the flow enters the tube is determined as function of the transmural pressure. The 
sample positions are at 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 9.5, 11.5, 13.5, 15.5, 17.5, 19.5 and 21.5 
mm of the restainted end. The outer diameter is measured with the laser. The results are 
given in figure B.4 where for 8 values of the transmural pressure the outer diameter at 
these sample points is given. The sample positions are identified with the distance of each 
position to segment 000. Therefore the sample position at 2.5 rnm of the restrainted end 
becomes sample point -104 and the position at 21.5 mm becoms point -85. 

Relative coordinate (mm), oegin: position O00 
figure B.4: outer diameter (in mm) of the tube against the axial 
position, at 8 diflerent values for the transmural pressure (in kPa). 

From this it can be concluded, that the tube expands almost cylindrical when measured 
11.5 mm from the resúainted end; at sample points further than 11.5 mm from these ends 
the effect of the restainted ends can be ignored. 
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Appendix C: Radial coordinate transformation of the 
axial component of the Navier-Stokes equation 

The axial component of the Navier-Stokes equation is 

r 
R(t,z) 

Wall movement is taken into account by the radial coordinate transformation 4 = - 
which means we have to transform (C.1) from the w(r,t,z) domain to the w(c,t,z) domain. 
We do this by invoking the relations 

, 

The indices show which variables are held at a constant value during the partial derivative. 
Since 4 = c(r,t,z) 

Combining (C.4) to ((2.3) yields 

or 

Comparing (C.6) to (C.2) leads to the following equations: 



Now 

or 

Also, 

or 

With the already mentioned radial transformation we can derive 
1 

P - 

= --(-), 4 aR 
R at 

= --(-)f 4 
R aZ 

(C. 10) 

(C. 11) 

(C. 12) 

(C. 13) 

(C. 14) 

(C. 15) 

(C.16) 

(C. 17) 

(C. 18) 
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These equations are substituted in equations (C.7) to (C.13). The resulting terms are 
substituted in the axial component of the Navier-Stokes equation (C.1). This results in the 
following equation, where all indices are dropped: 

aw 4 a w a R  u a w  taWaR aw 
at - R  a4 at R a t  R aE; aZ aZ - --- + -- + w[---- + -1 = 

(c.209 

This equation is equal to (2.19). 
Now an order estimation for this equation is executed. There are 4 terms (expressi- 

ons between brackets are counted as 1 term) on the left-hand side (1.h.s.) of equation 
(C.20) and 8 terms on the right-hand side (r.hese). For each parameter the following values 
are used in the estimations: 
w : mean axial velocity (= 0.085 m/s) 
t : l/angular frequency (= 0.786 s) 
4 : the maximal value (1). 
u : the mean wall velocity (= 2.10-4 m/s) 
R : the mean inner radius (= 9.8 mm) 
z : the tube length (= 0.5 m) 
p : the specific gravity of the fluid (= 1262 kg/m3) 
p : the mean transmural pressure (= 11 kPa) 
v : the kinematic viscosity of the fluid (= 2 . 5 ~ 1 0 ~ ~  m2/s) 
For each term the following order estimation is found: 
l.h.S., term 1 0.108 r.h.S., term 1 : -17 
l.h.S., term 2 : -0.108 r.h.S., term 2 : 0.002 
l.h.S., term 3 : 0.002 r.h.S., term 3 0.002 
l.h.S., term 4 : O r.h.s., term 4 : 8.5.10-7 
If the tube maintains cylindrical during the deformation (R is independent from the axial 
coordinate z), the terms 5, 6, 7 and 8 on the right hand side are zero. 
On the 1.h.s. terms 3 and 4 are neglected over terms 1 and 2 and on the r.h.s. terms 4, 5, 
6, 7 and 8 are neglected over terms 1, 2 and 3. This leads, after some rewriting, to the 
following equation: 

This equation is equal to (2.20). 
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Appendix D: Storage model for the flow 
If the transmural pressure in a straight, linearly elastic tube occurs as a standing 

waveform with a wave length much longer than the tube length, the radial expansion at 
axial positions on the wall near each other will be identical. This way the tube will 
maintain its cylindrical shape. If the tube expands radially, fluid will be stored and this 
will be released again when the tube s h r i n k s  down. This way the local flow does not 
depend on the flow at the entrance alone, but also on the wall movement. 

For an infinitesimal smal  segment of the tube (figure Dol)  the following model for 
the flow will be determined. 

jigure D.1: storage model for the $ow. 

For the outgoing flow holds: 

with for the storage flow for an infinitesimal small segment 

Qstorage = ~(R,)2aiR,d.~ 

with R, the tube inner radius in the reference state and u(RJ the radial fluid velocity at r 
= R,. In case of small deformations of the tube wall this radial fluid velocity can be 
approximated by thé velocity of the wall movement dRldt. This way the flow at an axial 
position z becomes 

dR 
dl 

&(z) = Qin - 2.T&Roz- 

The wall movement becomes, after linearization 

R = R, + ~ C O S ( C O ~  + @J 

and (D.3) becomes 
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Q(z) = Qin + ~ T C R J & O Z S ~ ~ ( C O ~  + 9,) 

This way the flow at an arbitrary axial position in the tube can be calculated. This is done 
for the local flow at segments 125 and 250. For the ingoing flow the local flow at segment 
O00 is used. Both flows are compared to the flows which are determined by integrating the 
axial velocity profile over the cross-section. The results are given in the following figure. 

-model ... measured 
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figure D.2a: the experimental determined pow and 
the pow calculated j?om the storage model against 
the dimensionless time at segment 125. 

, , -?del ..: m e a s y d  , , I , , 

trE 

figure D2bs the experimental delermined flow and 
the pow calculated from the storage model against 
the dimensionless time at segment 250. 

These figures illustrate the validation of the storage model for the flow. 
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