EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Parallel implementations of adaptive filters

Heerkens, J.T.I.

Award date:
1994

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c85bdb24-b399-4e1e-9e0f-b6986747f5d9

775

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Circuit Design Group (EEB)

Parallel Implementations
of
Adaptive Filters

Master Thesis of:
J.T.I. Heerkens

Master Thesis Report
Supervision: Prof. Dr. Ir. W.M.G. van Bokhoven
Dr. Ir. P.C.W. Sommen

Eindhoven, august 1993

The Department of Electrical Engineering of Eindhoven University of Technology does not
accept any responsibility regarding the contents of student project and graduation reports.

Summary

In this thesis parallel implementations are investigated for a number of adaptive filters.
By implementing the calculations parallel, faster calculation times can be achieved.
However the main disadvantage of parallel implementations is that more hardware is
needed.

The first algorithm that is investigated is the Least Mean Squares (LMS) algorithm.
Because this algorithm is not suited to be implemented parallel, two algorithms have
been developed. The first algorithm is the Delayed LMS (DLMS) algorithm. This
algorithm has almost the same properties as the LMS algorithm, but introduces a small
amount of processing delay. The second algorithm is the LMS with Delayed Weights
(LMSDW). This algorithm has for a large adaptive constant «, a worse final
misadjustment than the LMS algorithm. The advantage of this filter is that it does not
introduce any processing delay.

Secondly, three types of the Recursive Least Squares (RLS) algorithm are investigated.
These are: the Fast RLS (FRLS) or Fast Kalman implementation, the Givens based
triangular systolic array, and the Least Squares Lattice (LSL) implementation. All these
algorithms minimize the same squared error, but do this with different algorithms.

The third algorithm that is investigated is the Frequency Domain Adaptive Filter
(FDAF) algorithm. Because this filter is not suited to be implemented parallel, a new
algorithm is developed. First the Discrete Fourier Transformation (DFT) is changed to
the Sliding window DFT (SDFT) and secondly the same technique, to overcome the
summation problem, as in the DLMS algorithm is used. The new algorithm Delayed
FDAF (DFDAF) is then investigated and implemented parallel.

Contents

Introduction i e e e 3
Adaptive filters e e e e 4
2.1 Implementations i e S
2.2 Characterizing quantities ottt i e 6
23 Signal types e e e e e 6
Least Mean Squares Algorithm 8
3.1 Delayed LMS algorithm it 9
3.2 LMS with Delayed Weights 11
33 Experiments e e e e 13
34 Conclusions i e e 16
Recursive Least Squares Algorithm 17
4.1 The Fast Kalman Algorithm 17
4.2 Givens rotation based RLS using triangular systolic array 19
4.3 Least Squares Lattice00ttt 20
4.4 EXperimentst e 22
4.5 Conclusions it e 23
Frequency Domain Adaptive Filters 24
5.1 Sliding window DFT it 25
5.2 Delayed Sliding Window FDAF i 28
53 Experimentst e e e, 30
5.4 Conclusions e e 33
Conclusions and recommendationsottt 34
Literatureo e e 36
Appendix A: The Fast Recursive Least Square algorithm 38
Appendix B: Givens based triangular systolic array 42
Appendix C: LSL algorithm and systolic array implementation 45

Introduction

In many applications where filters are used, the external characteristics, such as echo
path or transmission line characteristics, vary in time. If these characteristics change,
also the optimal filter characteristics change. To overcome the problem of calculating
the optimal filter every sample, adaptive filters are developed.

Adaptive filters can be applied to many different situations such as:

- Echo cancelation (e.g. acoustic echo’s in a room),

- Noise cancelation (e.g. cancelling noise from the pilot’s speech signal in the
cockpit of an aircraft),

- Adaptive arrays (e.g. adaptive null steering),

- Signal correction (e.g. linear equalizer),

- Signal prediction (e.g. Linear Predictive Coding (LPC) of speech).

The behaviour of the adaptive filter depends on the update algorithm and the statistical
properties of the input signal. If simple update algorithms are used (such as LMS) the
behaviour of the filter is largely influenced by the statistical properties of the input
signal. To overcome this problem more complex algorithms are developed. The
disadvantage of these more complex algorithms is that the computational costs are
higher.

When creating adaptive filters with a large number of coefficients the calculation time
needed for the update algorithm can become toolarge in order to meet the required
sample(rate. One of the solutions to this problem is block processing. Block processing
reduces the computational costs of the algorithm, so that less multiplications are
necessary to calculate the filter weights and output signal.

In this report it is investigated if it is possible to do the necessary calculation parallel.
Doing the calculation parallel does not decrease the number of needed multiplications.
But, by doing multiplications parallel, it reduces the time needed to calculate the
algorithm. To do as much as possible calculations parallel, it can be necessary to change
the algorithm. If the algorithm is changed also the convergence properties of the
adaptive filter change and have to be investigated.

Adaptive filters

In this report the signal estimator is used to describe and test the different types of
adaptive filters. A short description of an example of such a system, namely an echo
canceller, is given in figure 1. There are two different elements: the echo path (not part
of the filter) and the adaptive filter. It is assumed that the echo path can be modelled
with a Finite Impulse Response (FIR) filter. The adaptive filter consists of a filter part
and an update part. The filter part is a FIR filter. The update part changes the filter
weights each step towards the optimal filter response.

elk]

|
|
|
|
|
|
|
|
|
%K) |
l

Figure 1: Signal estimator

The signals in figure 1 have the following meaning. Signal x is the input signal (e.g.
acoustic signal of the speaker of a telephone) which through the (unknown) echo path H
forms the error signal e. Signal e together with signal s (e.g. the speech of the user of
the telephone) form the measurable signal & With these signals the adaptive filter
makes an estimation € of the echo signal e. When this estimation is calculated, the filter
output r = €-€ can be calculated. Notice that ideally € = e, and thus r = s, which implies
that the echo is completely cancelled.

In this report the following notations will be used:

x[k] input signal at time k

x'[k] = (x[k]), x[k-1], ..., x[k-N+1]) vector with last N samples

w;[k] i" weight coefficient of the adaptive filter at time k

wik] = (wo[k], wy[K], ..., wn,[k]) vector with all weight coefficients
€[k] estimated error signal

€[k] combination of desired signal s[k] and error signal e[k]

e[k] error signal

s|k] desired signal

r[k] filter output (ideally r[k] = s[k])

-4-

21

Implementations

To implement adaptive filters there are basicly two possibilities. First adaptive filters
can be implemented directly into hardware (VLSI structure). Because of the expensive
design process this implementation is best suited, when a large number of filters have to
be made. The second way to implement adaptive filters is to use Digital Signal
Processors (DSP). DSP’s are processors especially designed for the use in signal
processing. Because the DSP’s have to be programmed, DSP based systems form also a
good platform to develop and test algorithm’s, with low cost, because changes can be
easily made by changing the program.

Because developing hardware (VLSI) is very expensive, it is desirable to have as much
as possible redundancy in the design. This can be achieved if the implementations of all
filter coefficients (or groups of successive coefficients) are equal so that only one filter
coefficient (or one group of filter coefficients), and the interconnections between the
coefficients (or groups of coefficients), have to be designed. A well known solution fore
this is the systolic array. A systolic array consists of a number of Processing Entities
(PE’s) which are interconnected in a chain. Each PE only communicates with it
preceding and succeeding PE. Therefore also the interconnections are very regular.
Although not all filters can be implemented as systolic arrays, it is desirable to
implement the filter with as much redundancy as possible.

When implementing a filter on DSP’s, it is important that the work load can be equally
divided over the processors. Furthermore the efficiency loss due to communication
between the DSP’s has to be minimized. If the algorithm is implemented as a systolic
array this can be achieved by letting each processor do the calculations of a number of
successive coefficients (PE’s). In this way the communication between the processors is
also minimized. In figure 2 a systolic array and an equivalent multiprocessor
implementation is shown. Each processor does the calculations of two PE’s.

BN T I
PE,| |PE,| |PE,| |PE,| |PE,| |PE

]
AN VRN /N /

\ / \ / \ /
] S
DSP, DSP, DSP,

— —

Figure 2: Systolic array and multiprocessor implementation

-5.

2.2

23

Characterizing quantities

To compare the different filtertypes and implementations, a number of quantities will be
investigated. These quantities can be divided into two categories: filter behaviour and
computational complexity.

The filter behaviour is described by two quantities: J[eo] and vy. J[>] is the final

misadjustment defined as: J[o] = %‘;ﬂ and v, (Rate of Convergence) is the
number of samples necessary to decrease the initial misadjustment with 20 dB. This

implies that a small J[oc] results in an accurate filterresponse while a small v, gives a
fast adaptation of the filter.

The computational complexity of a filter can be described with many quantities. The
first important quantity is the complexity order of the algorithm (denoted as C). This
quantity gives the order of the number of muitiplication needed to calculate one output
sample. (Notice that parallel implementation of an algorithm does not change the order
of the algorithm.) The second quantity is the processing delay (denoted as L). The
processing delay of a filter gives the number of samples the output signal is delayed.
Another important quantity is the minimum time that is needed between every sample to
calculate the filterresponse. This quantity is denoted as AT and is expressed in the
number of needed multiplication.

Signal types

To be able to compare the different filters and implementations, 4 types of signals will
be used in the experiments which will be applied to the adaptive filters. These 4 signals
are: White Noise, MA(1) (Moving Average), AR(1) (Auto Regressive) and a "stationary
female unvoiced signal" (created in a synthetic way and denoted as Speech).
Furthermore the powers of the signals are the same. In the next definitions of the used
signal models n[k] is a white noise signal with E{n’[k]}=1/3 and the Eigenvalue Ratio
of the MA(1) and AR(1) signal equals 100. The E.R. of the SP signal equals 4,08. In
figure 3 the power spectra of the signals are given.

White Noise signal model
x[k] = n[k]

Moving Average signal model of order 1
x[k] = 0,7740n[k] + 0,6332n[k-1]

Auto Regressive signal model of order 1
x[k] = 0,5750n[k] + 0,8182x[k-1]

Female unvoiced stationary signal model
x[k] = n[k] + 0,3190°x[k-1] - 0,02510-x[k-2] + 0,0271 x[k-3]
+ 0,0046 x[k-4] - 0,0012x[k-5] + 0,0001 x[k-6]

P(f) ->

fo>

Figure 3: Spectra of different signals

Least Mean Squares Algorithm

One of the simplest update algorithms is the Least Mean Squares (LMS) algorithm.
The LMS algorithm is popular because its simplicity of its computational complexity
and the relative ease with which it can be analyzed. The LMS update algorithm is based
on the steepest descent method, which is described by the following update expression:

wlk+1] = w[k] j/2~(1-E{ﬂk] 1[k]}

Because the calculating of E{x[k]1[k]} costs many computations, a common used
method is to use the following approximation:

wlk+1] = w[k] + 2-ax[k]1[k]

Besides the filter coefficients, the estimated signal €[k] and the filter output r[k] have
also to be calculated. This is done with the following expressions:

é[k] = x"[k] w[k]
r[k] = &[k] - &[k]

An outline of a filter using the LMS algorithm for the update of 4 coefficients is given
in figure 4. In figure 5 the update part of the filter is given. Notice that r[k] is
multiplied with 2o before it is used in the update part.

x[k] = xk1] - x2] g Xk
"z (Cn "z |

|

+
2a /tfk]
. ©

k]

elk]

Figure 4: LMS adaptive filter

3.1

w,[K]

Figure 5: LMS update part

From literature (see Haykin[1]) it follows that, for white noise, the convergence
properties of the LMS algorithm are given by the following equations:

aNof
Joeo] = ————
1 - aNo’
-2 1.15
V,, = ~

©log(1 - 400.) aac’

Because of the simplicity of the LMS algorithm the computational costs are very low.
Furthermore because r[k] has to be known to calculate the next filter coefficients, the
processing delay is O.

Liys=0

The problem with the implementation of the LMS algorithm is the summation used in
calculating é[k]. If N is very large, the calculation time of this summation cannot be
neglected in respect to the time needed for one multiplication. To overcome this
problem, adapted LMS algorithms are investigated.

Delayed LMS algorithm

A possible solution of the summation problem is proposed by Meyer et.al.[2] and is
generally referred to as the Delayed LMS (DLMS) algorithm. In the DLMS algorithm
the calculation of the summation is delayed, so there is more time to calculate the signal
€[k]. Because of this delay in the calculation of r[k], it is necessary to approximate
E{x[k]r[k]} by a delayed version of x[k]1[k] (x[k-D]1[k-D]). By doing this the
behaviour of the algorithm changes. The result of this change is that the output and the
update of the weights of the filter is delayed (with D samples). The new DLMS
algorithm is described by the following formulas:

-9.

é[k-D] = x"[k-D]-w[k-D]
r[k-D] = &[k-D] - é[k-D]
wlk+1] = wik] + 2-0x[k-D]1[k-D]

An outline of a filter using the DLMS algorithm for the update of 4 coefficients is
given in figure 6. The update part is the same as in the LMS implementation (see
figure 5).

w, [k

Figure 6: Delayed LMS filter

Because of the changes in the algorithm in respect to the LMS algorithm, different
convergence properties apply for white noise (see Long et.al.[3]):

aNo’
J[ed] =
1 - a(N+2D)o’
v, = 2 ~ 11 (alid after k>D)

Vog(1 - 4002) oo
Looking at these quantities it can be seen that if 2D<N the response of the Delayed
LMS algorithm is almost equal to the response of the LMS algorithm. If N is large this
can be achieved with an addition tree which delays the subresults. In figure 7 the
outline of an addition tree is given. In this example a binary addition tree to add 8
signals is used as proposed by Long et.al.[3]. The delay introduced by this binary
addition tree is “log(N). And if N is large it follows that 2:D = 2?log(N)<N.

-10 -

3.2

sk s K151k s K s (] K] 5,1k 5, 1K

8 [k s, [K] 5 [K] 8,[K] s, k] 5, [K] s, [i] 5, [K]

L]
|]

Addition Tree

} g s k-3]

Figure 7: Addition tree

In this addition tree the time to add M signals can be up to the time for one
multiplication. Although in the above example 2 signals are added at each addition, it is
often possible to add more than 2 signals in this time. If it is possible to add M signals
in this time, the introduced delay by the addition tree is Mlog(N). To keep the delay as
small as possible M has to be chosen as large as possible.

When implementing the filter parallel it is seen that all multiplications in the
convolution part of the filter and the multiplication of 2a1[k] can be done parallel.
Furthermore all multiplications in the update parts can be done parallel. Because the
update parts need the signal 2a-t[k] the multiplications in the update parts can not be
calculated at the same time as 2o t[k]. This results in the following quantities:

Lyys=D = Mlog(N)
ATpims =2

Comparing these quantities with the LMS algorithm it can be seen that the same
number of multiplications is needed but that, because most of them can be done
parallel, the calculation time becomes very small and independent of the number of
coefficients. A disadvantage of the DLMS algorithm is that it introduces a processing
delay which grows logarithmical with the number of coefficients.

LMS with Delayed Weights

Another possible solution of the summation problem is proposed by Chester et.al.[4]
and is referred to as LMS with Delayed Weights (LMSDW). In this solution it is
supposed that the weights vary very slowly in time, so over a small number of samples
the weights can be treated as constants. By doing so the convolution of x'[k]w[k] can
be implemented as in figure 8. By implementing the convolution in this way no
summation problem exists any more.

-11 -

Figure 8: Filter convolution part

Because the weights are not constant in time this results in the following formulas
describing the LMSDW algorithm:

N-1

e[k] = Y xfk-i]wjk-i]

rlk] = é[k] - é[k]
wik+1] = wik] + 20]k]r{k]
An outline of a filter using the LMSDW algorithm for the update of 4 coefficients is

given in figure 9. The update part is the same as in the LMS implementation (see
figure 5).

x[k] g Xk J;.']j xk-2] =,LE_X['Q]
x[K] x[K] X[K]

vy

Ml 8
)

rS

Figure 9: LMS with Delayed Weights filter

-12 -

33

Because of the changes in the algorithni in respect to the LMS algorithm, different final
misadjustment and rate of convergence apply for white noise:

aNo,f
J[oo] = —2_
1 - 3aNo,
_ -2 1.15
v = -

Plog(1 - 4a02) ad’
Looking at these quantities it can be seen that the final misadjustment of the LMSDW
filter is always worse in respect to the LMS algorithm. But for small a the difference
between this filter and the LMS filter becomes smaller.

An efficient systolic array implementation of the LMS with delayed weight coefficients
algorithm is proposed by Chester et.al.[4]. An outline of this implementation is given in
figure 9. The implementation exists of N Processing Entities (PE’s). Each PE does the
calculations necessary for one weight coefficient. Because all PE’s are equal, it is very
easy to make a filter with more coefficients just by adding PE’s at the end of the array.

When implementing the filter parallel it is seen that all multiplications in the
convolution part can be done parallel. Furthermore all multiplications in the update parts
can be done parallel. Because the update parts need the signal 2at[k] the
multiplications in the update parts can not be calculated at the same time as 2a-tfk].
And because the calulation of 2a-t[k] must be done after the calculation of the
convolution part, these multiplications can not be done parallel. This results in the
following quantities:

CLMSDW = 2N+1
LLMSDW =0
AT, LMSDW = 3

The advantage of this implementation is that it has a very fast calculation time which is
independent of the number of coefficients and there is no processing delay. The
disadvantage is that the final misadjustment, for large «, is worse than that of the LMS
algorithm.

Experiments

In the first experiment the final misadjustment of the DLMS algorithm is investigated
with respect to the processing delay of the filter. This is done for white noise
(03 = 1/3) and a filter length N=1024. The processing delay of the filter has a

maximum of L < Zlog(N) = 10. In the experiment the echopath is an exponentially
decaying impulse response of length N with a factor of 0.75. The results of this

experiment can be found in figure 10. As expected the final misadjustment does not
differ much if 2D<N.

-13 -

Latency ->
Figure 10: Final misadjustment of DLMS

In the second experiment the final misadjustments of a LMS, a DLMS and a LMSDW
filter are investigated for different a. All filters have 1024 coefficients and for the
DLMS filter L=10. Furthermore white noise is used as described in §2.3. The result can
be found in figure 11. The DLMS algorithm has, as can be seen, almost the same final
misadjustment as the LMS algorithm. The LMSDW algorithm has, however, a worse
final misadjustment especially for large a.

/,7 (u)>

Figure 11: Final misadjustment for different a

- 14 -

In the last experiment a LMS, a DLMS and a LMSDW filter are tested with the four
types of signals described in §2.3. All filters are of length N=1024 and a=0.0001. The
Delayed LMS filter has a processing delay of L = 2log(N) = 10. The results of the filter
responses can be found in figure 12. The filter response of the DLMS algorithm is, as
can be seen, almost equal to the response of the LMS algorithm. The LMSDW
algorithm has the same initial convergence speed, bud has a worse final misadjustment
than the LMS algorithm. Notice that the statistical properties of the signal does
influence the convergence properties of the filters.

A
T oL \LMSDLMSLMSDW
X
L0k
-20 —i
0 5 10
b: MA(1) X104
20 .. 20 -
10 .. 10 I VO P U PUT —~
A A
~) 0 —_?: 1) ESSSEUI OO O _
X x L
N T) SOOI fon. ~ B 11) EES LMSDW_
LMS,DLM$ MS.DLM$
20 ' 20 . LMSDLMS
0 5 10 0 5 10
c: AR(1) x104 d: Speech x104

Figure 12: Experiment with different filters and signals

-15 -

34

Conclusions

In this chapter two adapted LMS algorithms are investigated. To compare the different
algorithms, the most important characteristics of the 3 algorithms are given in table 1.
As can be seen all algorithms need the same number of multiplications but, because
some multiplications can be done parallel in the adapted LMS algorithms, the
calculation times become smaller. Furthermore all Rates of Convergences are equal.

Table 1: Summary of LMS, DLMS and LMSDW characteristics

Filter Type | J[0] Vao C L | AT
LMS oNG; -2 5N+l | 0 | 2N QNo parallel
1 - aNG2 Viog(1 - 4ao?) calculations used)
oNG; -2
DLMS o _ —|2N+1 |D |2
1 - a(N+2D)a2 | "log(l - 4ao;)
aNo’ -2
LMSDW _ —|2N+1 [0 |3
1 - 3aNo’ Ylog(1 - 4ao;)

The first algorithm, DLMS, has almost the same behaviour as the LMS algorithm for
2D<N, which can be achieved for large N and an addition tree. Because most
multiplications can be done parallel the calculation time becomes very small (AT s =
2 multiplications). The disadvantage of this algorithm is that, because of the delay in the
calculation of the estimated signal €[k], there is a processing delay.

The second algorithm, LMSDW, has for large & a worse behaviour than the LMS
algorithm. Only for small a the behaviour is almost the same as the behaviour of the
LMS algorithm. The advantage of this algorithm is the pipelined implementation and a
very small calculation time (AT},ow= 3 multiplications). Furthermore this
implementation does not introduce any processing delay.

- 16 -

4.1

Recursive Least Squares Algofithm

The RLS algorithm is an algorithm from which the convergence properties are
independent of the input signal statistical properties. This is done by minimizing the
exponential weighted sum of squared errors usualy defined as

k
e[k] = =y*(e[i]-wT[k}x[i])’. This can be achieved by multiplying the update part of
i=0

the LMS algorithm with the inverse autocorrelation matrix R;l- By doing so the

convergence properties of the algorithm becomes independent of the statistical
properties of the signal. This results in the following update formula:

wlk+1] = wlk] + 2aR; ' [K]x[k]r[k]

If the inverse autocorrelation matrix is calculated in the normal way this leads to an
algorithm with complexity O(N®). If the matrix inversion lemma is used the order

becomes O(N). It is however not necessary to calculate R '[k] because only the filter

output has to be explicitly known, and therefore RLS algorithms with O(N) are possible
(see §4.1, §4.2 and §4.3).

In this chapter three different types of implementations of the RLS algorithm are given.
Because all implementations minimize the same squared error, the final misadjustment
and convergence properties are the same and are not investigated here (see Haykin[7]).
The RLS algorithm (with a=1/2) results in the following misadjustment and final
misadjustment (see Bellanger[6]).

— k-N
J[k]|b~ =N - L: : i::tw whith y = weight factor
Jfeg] = N2V
1+

The Fast Kalman Algorithm

One well known group of implementations is the fast Kalman algorithms. The Kalman
algorithms (also known as Fast RLS) makes use of the fact that the input data vector is
a shifted version of the previous input data vector with one new sample. By doing this,
it is possible to reduce the complexity of the algorithm from O(N?) to O(N).

The FRLS algorithm exists of 4 separate filters, labelled 1 trough 4, which share a
common set of inputs. Filters 1 and 2 perform forward and backward linear prediction
on the input data. Filter 3 calculates the gain factor of the RLS algorithm using the
forward and backward linear prediction of filters 1 and 2. Filter 4 is the adaptive filter
which uses the gain factor of filter 3 to calculate the filter response. An outline of the
FRLS filter is given in figure 13. In appendix A a more extensive explanation of the 4
filters is given.

-17 -

X[K]

Forward Gain Backward|
Prediction— calculator ~— Prediction

gIK] = Rk]-xIK]

Filter

‘ update
k] - (]

Figure 13: Fast RLS implementation

One of the problems of the FRLS algorithm is, that it can become numerical unstable.
Because of this it is necessary to use safeguards to stabilize the algorithm. The problem
of stabilizing the FRLS algorithm can be solved in different ways and is well described
in literature (see e.g. Botto et.al.[5]).

The FRLS algorithm used is described by Bellanger{6]. The order of the update
algorithm is C = 8N and together with the time needed to calculate the filter response
this results in C = 10N+6. Although faster FRLS algorithms are known C = 7N, this al-
gorithm is used because its numerical stability is better.

When implementing this filter parallel it can be seen that forward and backward
prediction error subfilters can be calculated parallel. This can be done in
AT = 2 + Mlog(N). The calculation of these two subfilters and the other two subfilters
(the gain calculator AT = 5 + M/N and the filter update AT = 1 + Mlog(N)) can not be
done parallel. (These calculation times are discussed in appendix A). This results in the
following quantities:

CFRLS= 10N+6
Ligis=0
ATms = 8 + N/M + 2Mog(N) = 8 + 1,5N

Although the calculation time (AT) is very fast and there is no processing delay, the

implementation has a very complex structure. Furthermore the Kalman filters suffer
from numerical instability problems.

- 18 -

4.2

Givens rotation based RLS using tl;iangular systolic array

Due to their superior numerical stability and accuracy, RLS algorithms based on Givens
rotations have received much attention recently. It has been shown that these Givens
rotation based algorithms can be implemented using a triangular systolic array (See
Haykin[7], McWhirther[8], Ling[9] and Yang et.al.[10]). This implementation does not
impose any restrictions on the input data structure.

In figure 14a an implementation of a filter with 4 coefficients is given. The working of
the filter is extensively explained in appendix B.

LK] kR ka8 . Kk k] X2 xk3d] 6K

Figure 14: Triangular Systolic Array implementation

Because the implementation is a feed forward systolic array, it is possible to delay
intermediate results. In figure 15 the 8 stages of calculating one sample are shown. PE
number 1 starts the calculation. If PE 1 is ready the PE’s with the number 2 starts and
so on. When delaying intermediate results this has to be done between successive
numbered PE’s. The possible places for delays are given with dashed lines. In figure
14b an example with one delay is given.

- 19 -

4.3

1 x[k] xk-1] xk2] xk-3] 8K

Figure 15: Possible delay positions

By delaying the calculation between O and 2N samples the calculation time (AT)
becomes smaller. This results in a processing delay (L). Notice that if L=N or L=2N the
calculation time is independent from the number of filter coefficients but, for large
filters, the processing delay can become very large.

This results in the following quantities:

Crsa = N>+ ON
0sL, <2N

6= A OsLy <N
AT, =1 &
8= A NsLy <2N
L+1
This implementation looks promising, but the number of multiplications becomes very
large for large filters. If a filter has 1024 coefficients 1.057.792 multiplications are

necessary every sample. Because of the large number of multiplications needed this
implementation is not investigated further.

Least Squares Lattice

In the implementation of the Givens algorithm using a triangular systolic array (§4.2),
the property that the input data is a combination of a shifted version of the previous
input data and a new sample is not used. By exploiting this property it is possible to
develop a Least Squares Lattice (LSL) with a complexity of O(N)(see Ling[9]{11] and
Yang et.al.[10]). The LSL exists of N equal stages, and is therefore easy to develop.
The advantage of this LSL algorithm over the FRLS algorithms is that the LSL
algorithm has better numerical properties.

-20 -

The LSL implementation used here is described by Ling[9][11]. It consists of N lattice
stages. Each lattice stage does the calculation of one coefficient, so to extend the filter
with one coefficient, only one PE has to be added at the end of the filter. The F and B
elements calculate the forward and backward reflection coefficient used by the lattice.
The E element calculates the weight vectors. A more extensive explanation of the lattice
stages and needed calculations is given in appendix C. In figure 16 an outline of a LSL
filter with two coefficients is given.

o] I ;I
NG
(% n
X
x[] 8, (K]
X
| P
xba [K]
€]

@

Figure 16: LSL implementation

One of the advantages of this implementation is that, because the implementation is a
feed forward systolic array, it is possible to delay the calculations for 1 to N samples
without influencing the filter properties. By doing this all lattice sections directly after a
delay element can be calculated parallel, all lattice stages after these stages can be
calculated parallel and so on. (Each stage can be calculated in AT = 4, see appendix C).
This results in the following quantities:

CLSL = 22N
OsLig <N
AT,g = AN/L+1)

Although the complexity of this algorithm is high (C = 22N) the calculation time is
very small (especially if a large processing delay is possible). Furthermore the
implementation is highly regular and therefore easy to implement.

-21 -

44

Experiments

In this paragraph experiments are done with the FRLS and LSL implementations. No
experiments are done with the triangular systolic array implementation because this
implementation is not suited to be implemented in hardware when a large number of
coefficients are needed.

In the experiments the filterlength is N=1024 and a window with y=0.999 is used. The
echopath is an exponentially decaying filter with N coefficients. Furthermore the
inputsignals are White Noise, MA(1), AR(1) and a stationary female unvoiced signals
(see §2.3). The results of these experiments are given in figure 17a-d.

/l’(] [l(}l ->

a: White Noise b: MA(1)

1og (31))->

c: AR(1) d: Speech
Figure 17: Experiment with FRLS and LSL implementations

Although it was expected that both algorithms had the same response, the FRLS
algorithm has, in the beginning, a better response than the LSL algorithm. Notice that
the signals are not completely decorrelated in the beginning (especially for the AR(1)

signal). This is because the inverse autocorrelation matrix R “'[k] is not jet converted

and thus is not jet equal to R™'. An other important observation is that the FRLS

algorithm is not stable in the experiment with the AR(1) signal. Although the algorithm
stabilizes itself within a few samples, it is a large disadvantage of this implementation.

-22.

4.5

Conclusions

In this chapter 3 types of implementations of the RLS algorithm are investigated. All
implementations realize the same RLS algorithm. The difference between the
implementations is that the algorithm is calculated in different ways, and because of
this, have different numerical properties. To compare the different algorithms, the most
important characteristics are given in table 2.

Table 2: Summary of different RLS implementations

Implementation o L AT
FRLS 10N+6 0 8 + NM + 2Mog(N)
s8+ 1,5NN
Givens rotation base RLS N’+9N 0sLsN 6N/(L+1)
using triangular systolic array N=<L <2N 8N/(L+1)
LSL 22N 0<LsN 4N/(L+1)
with M 1s the number of additions possible per multiplication

First the Fast RLS algorithm is investigated. This algorithm has only a fast calculation
time if N/M is small. The advantage is that the algorithm has no processing delay. The
disadvantage of this implementation is that it has numerical problems and that the
implementation is very complex.

The second type of implementations (the Givens rotation based algorithm using a
triangular systolic array) has good numerical properties and is easily implemented in a
triangular systolic array. Furthermore it is possible to become fast calculation times by
delaying the calculations. The disadvantage of this implementation is that for a large
number of filter coefficients, the number of PE’s becomes very large. So this parallel
implementation is not suited for large filters.

The last type of implementation is the Least Squares Lattice. This implementation is
numerical stable and is easily implemented in hardware with a linear systolic array.
Also fast calculation times are possible by delaying the calculations. This delaying of
the calculations introduces a processing delay equal to the delay in the calculations.

.23 .

Frequency Domain Adaptive Filters

An often used way to decorrelate a signal is to normalise its spectrum. This is possible
because the autocorrelationfunction and the power density function form a Fourier

transformation pair. To normalise the spectrum a Discrete Fourier Transformation is
needed.

Applying this decorrelation to LMS, results in a FDAF filter. In figure 18 an outline of
a FDAF filter with 4 coefficients is given. In figure 19 a FDAF update part is given.
Notice that the normalisation of the spectrum is done by dividing the update coefficient
by the average power of the signal in this frequency band. (See Haykin[7] and
Bellanger[6]). For this filter the following formulas apply:

&k) = XTRIwlk) = L XT[K]-W 4]
k] = efk] - é[k]
Wlk+1]=W (k] +2aP "X Tkr{k]

P = 1 E{XkIXT[k]}
with X[k] = Fx[k]

WIK] = Fwlk]
x[K] 1 Xk o xk® . Xk3)
[z 12 [z]

| DFT]

XJK] -1 XK 1 XK x;k]'
w;nq ud Jklx b X §lkl

l

+

2a/N AJ_é-[k]
‘ +

] U elk]

Figure 18: Frequency Domain Adaptive Filter

- 24 -

5.1

2ar(k]

Figure 19: FDAF update part

When implementing the FDAF filter parallel there are two problems: the DFT and the
addition tree. As will be shown in the next paragraph it is possible to calculate the DFT

with O(N) multiplications. The problem of the addition tree is the same as in the LMS
filter.

Sliding window DFT

When implementing the FDAF algorithm parallel the problem exists of implementing
the DFT. Although very fast DFT’s are available it is also possible (if a sliding window
is used) to use an adapted DFT. To adapt the DFT we write the calculation of the DFT
as follows :

N-1 2% Ly

Yo T k-]

X|[K]

2

N i
=xk] + Ve 7 afk-i] - x[k-N]

_}..Zn.
e Tl-X,[k—l] + x[k] - x[k-N]

Looking at this formula it can be seen that it is numerical unstable because of the (in
time) growing numerical error. This can be solved by applying a window before the
DFT. The used window is an exponentially decreasing window of length N. This leads
to the following formulas:

-25 .

window = vy¥ O0sk<N withOD<y <1
0 else

N-1 . 27
—jo T 4

')
SDFT : X[K] = Yoyie ¥ axfk-i]
i=0
i 2n 4
=ye F X[k-1] + x[k] - yValk-N]
This results in the following numerical error :

E[k] = (1+d)y €[k-1] + d + yMd with d = machine accuracy
~ (L+d)y E[k-1] + 2d

2d 1
=E[0] = —— =y < _—

1-y(d+1) 1+d

The numerical error becomes larger if y becomes larger. Because of this we have to
choose y as small as possible. On the other hand, if we choose y « 1 the window will
have a negative effect on the decorrelation of the signal. To study the influence of y on
the resulting frequency response we calculate the height of the first side-lob and the
3 dB bandwidth (see figures 21). Comparing these results with the quantities of DFT
(side-lob = -13.28 dB and 3 dB bandwidth = 0.81/N, see figure ?) it is seen that if y >
1-10™* the influence of the exponential exponent y of the window can be neglected.

4 6=

Figure 20: Frequency response of a DFT

-26 -

6 . ' ' Sid?lob : :
8 b i i
T _10 T U SO ST SOOI APDUPPES PRSI SUTPI .. -
(/8]
O 1 P SOF FU U VU SO SO SO OPSPTUT SO SUPSPE ST AP
-14] i i] i n 1
108 107 10 103 10+ 103 102 10! 100
1-gamma
2 BandWidth
1.8 b ereeereemiire e e e -
tr
/
7 N SN U N A A S S 1
0.5 i] _ L i i i \
108 107 106 105 104 103 10-2 10! 109
1-gamma

Figure 21: Bandwidth and hight of first side-lob

The advantage of this way of calculation is easily seen in figure 22. Aside of the low
computational complexity, it is also very easy to implement the algorithm parallel. The
calculations of all frequency bins can be done parallel. Notice that this implementation
is not possible when block processing is used.

.27 -

5.2

x[k]

X, [K]

v

Figure 22: DFT with sliding window implementation

When calculating the SDFT in this way the computational costs are 4N+1 (a complex
multiplication exists of 4 real multiplications). If the input signal x[k] is a real signal
X[k] = Xy, '[k]. This reduces the computational costs of the SDFT to 2N+1.

Delayed Sliding Window FDAF

When implementing the FDAF algorithm with the sliding window DFT discussed in
paragraph 5.1, the same summation problem exists as with the LMS algorithm. The
solution of rewriting the convolution as was done in the LMSDW algorithm is not
possible because there is no time delayed signal. The other solution, a delayed addition
tree as in the DLMS algorithm, is possible. In figure 23 an outline of a Delayed Sliding
Window FDAF (DFDAF) with 4 coefficients is given. The update part is the same as in
the FDAF implementation (see figure 19).

- 28 -

Addition tree

)\é[k-m
2a/N)
+ -D

¥ r[k-D] u lz_l ‘e'Tk]
Figure 23: Delayed sliding window FDAF

In this implementation the average signal powers of the frequency bins are calculated
with the following formula:

X[k |?
N

P[k+1] = BPJK] + (1-B) with 0<p <1

When assuming that the average signal powers are perfectly estimated and D is the
delay introduced by the addition tree, this leads to the following final misadjustment
and rate of convergence:

J[oo] = T_OLN__.
- o(N+2D)
Vo = 2 (valid after k>D)

Vog(1 - 4a)

As can be seen these quantities are independent of the input signal statistical properties.
Furthermore the influence of the introduced delay is the same as for the DLMS
algorithm. Therefore the delay has to be kept as small as possible, which is discussed in
paragraph 3.1.

The filter part can be implemented parallel the same way as the DLMS algorithm (see
paragraph 3.1). The SDFT part can be implemented parallel as in discussed paragraph
5.1. This results in the following quantities:

Coroar = 6,5'N+1
Lpepar = D

As can be seen the calculation time is independent of the number of coefficients.

.29 .

53

Experiments

In the first experiment a FDAF filter with FFT and with a SDFT (as described in §5.1)
are compared. The filters have a length of N = 1024, a = 0.0001 and y = 0.9999. These
two filters are tested with the 4 signals described in §2.3. The results of this experiment
are given in figure 24. As can be seen, the filter response of the FDAF with the SDFT
implementation has the same response as the FDAF with the FFT implementation.

/:/(J[k]b

c: AR(1) x104

d: Speech x104
Figure 24: Experiment with FDAF with DFT and SDFT

In the second experiment the final misadjustment of the DFDAF algorithm is
investigated with respect to the processing delay of the filter. This is done for white
noise and a filter length of N=1024. The processing delay of the filter has a maximum
of L < *log(N)=10. In the experiment the echopath is an exponentially decaying impulse
response of length N with a factor of 0.75. The results of this experiment can be found

in figure 25. From this it follows that the final misadjustment of DFDAF filter does not
change noticeably if 2D<N.

-30 -

AR

Latency ->

Figure 25: Final misadjustment of DFDAF

In the third experiment, the final misadjustment of a FDAF and a DFDAF is
investigated for different a. Both filters have 1024 coefficients and for the DFDAF filter

L=10. Furthermore white noise (Oi = 1/3) is used. The result can be found in figure 26.

As can be seen the DFDAF (with 2D<N) and the FDAF implementations have the same
final misadjustment.

a-> x104
Figure 26: Final misadjustment for different o

-31 -

In the last experiment a FDAF and a DFDATF filter are tested with the four types of
signals described in §2.3. All filters are of length N=1024 and «=0.0001. The DFDAF

filter has a processing delay of L = Zlog(N) = 10. The results of the filter responses can

be found in figure 27. As can be seen the filter response of the DFDAF algorithm is
almost equal to the FDAF algorithm response.

/eg(31x))->

log(1K]->

/oy (31KI)->

c: AR(1) x104

d: Speech x104
Figure 27: Experiment with different filters and signals

-32-

54

Conclusions

This chapter first gives an implementation of a DFT with a sliding window. This
implementation reduces the order of the DFT calculation from O(N*log(N)) for FFT to
O(N) for SDFT. The other advantage of this implementation is that it can easily be
implemented on parallel hardware. The disadvantage of this implementation is that it
can only be applied to DFT’s with a sliding window.

Secondly a new type of filter is introduced, called Delayed Frequency Domain Adaptive
Filer (DFDAF). This new type of filter makes use of a delayed addition tree which
introduces a processing delay. The advantage of this implementation is that its
calculation time becomes small and independent of the number of coefficients (AT = 6).
Finally the most important characteristics of the FDAF and DFDAF algorithms are
given in table 3.

Table 3: Summary of FDAF and DFDAF characteristics

Filter Type | J[o0} Uag C L | AT
FDAF 6,5N+1 [0 | 6,5:N+1 (No
oN -2 ,
_ _ parallel calculations
DFDAF oaN -2 6,5N+1 |D |6

1 - a(N+2D) Ylog(1-4a)

.33 .

Conclusions and recommendations

Looking at the LMS algorithm it is seen that it is not suited to be implemented parallel.
To overcome the problems, two LMS like algorithms are developed. Both algorithms
are suited to be implemented parallel. The first algorithm, Delayed LMS (DLMS), has
almost the same behaviour as the LMS algorithm, but introduces a small amount of
processing delay. The second algorithm, LMS with Delayed Weights (LMSDW), has,
for large a, a worse final misadjustment, but has no processing delay. Because of the
parallel implementations, both algorithms can be calculated in a small constant time
(time needed for 2-3 multiplications) independent of the number of filter coefficients.

Three different implementations of the RLS algorithm are investigated. The first
algorithm, called the Fast RLS (FRLS) or Fast Kalman algorithm, has numerical
instability problems. Although a speedup in the calculationtime can be achieved by
performing the calculations parallel, this algorithm is not very well suited to be
implemented parallel. The second algorithm, a Givens rotation based triangular systolic
array, can easily be implemented parallel, but because of the needed number of
multiplications this algorithm is not suited for large filters. When implementing the last
algorithm parallel, the Least Squares Lattice (LSL), fast calculations times can be
achieved. By introducing some processing delay, the calculation time can be made very
small (down to the time needed for 4 multiplications).

When implementing the FDAF algorithm, two problems exist: the Discrete Fourier
Transformation (DFT) and the summation tree. The summation problem can be solved
in the same way as was done by the DLMS algorithm. To overcome the DFT problem a
Sliding window DFT (SDFT) is used. Although the Fourier transformation properties
changes when using a window, the window can be chosen in such a way that the
properties only degenerate very little. By using these solutions a new algorithm,
Delayed FDAF (DFDAF), is developed. The DFDAF algorithm has almost the same
behaviour as the FDAF algorithm, but introduces a small amount of processing delay.
Because of the parallel implementation, the DFDAF algorithm can be calculated in a
small constant time (time needed for 6 multiplications) independent of the number of
filter coefficients.

When looking at the parallel implementations of the adaptive filters it is seen that there
is no general solution of how to implement an algorithm parallel, so all algorithms have
to be investigated separately. Nevertheless some general observations can be made. A
reduction in calculation time by doing calculations parallel, results in more hardware. It

is also possible, in some cases, to introduce some processing delay to decrease the
calculation time (e.g. DLMS, DFDAF, LSL).

It is further seen that in some cases the algorithm must be changed to get an algorithm
which is suited to be implemented parallel. Because of these changes the properties of
the algorithm change, but these changes can be made small for most implementations
(e.g. DLMS, DFDAF). Other algorithms have already implementations which are suited
to be implemented parallel (e.g. RLS). The properties of these algorithms do not change
therefore.

-34 -

Finally some recommendations for further research are given. First the influence of the
statistical properties of the input signal of the LMSDW algorithm still has to be
investigated. When looking at the research being done at this moment, only research is
done on the LMS and RLS algorithms. In this thesis also FDAF algorithms are
investigated. Further research areas are therefore other algorithms. Especially the
frequency domain algorithms using block processing are an interesting field of further
research because knowledge of the algorithms already exists on this university.

=35 .-

Literature

[1] Adaptive Flliter Theory.
Prentice-Hall International Editions,
pp. w.m.e., 1991,
S. Haykin.

[2] A modular pipelined implementation of a delayed LMS transversal adaptive filter.
IEEE Circuits and Systems,
Vol. 3, pp. 1943-1946, 1992,
M.D. Meyer and D.P. Agrawal.

[3] The LMS algorithm with Delayed Coefficient Adaption
IEEE Transactions on ASSP,
Vol. 37, No. 9, pp. 1397-1405, 1989,
G. Long, F. Ling and J.G. Proakis.

[4] A fully systolic adaptive filter implementation.
IEEE International Conference on ASSP 1991,
ICASSP 1991, pp. 2109-2112, 1991,

D.B. Chester, R. Young and M. Petrowski.

[5] Stabilizing the Fast Kalman algorithms.
IEEE Transactions on ASSP,
Vol. 37, No. 9, pp. 1342-1348, 1989,
J.L. Botto and G.V. Moustakides.

[6] Adaptive Digital Filters and Signal Analysis.
Marcel Dekker Inc.
pp- 208-209, 1987,
M.C. Bellanger.

[7] Adaptive Filter Theory.
Prentice-Hall International Editions,
pp. 538-544, 1991,
S. Haykin.

[8] Algorithmic engineering: A worked example.
Signal Processing VI: Theories and Applications,
pp. 5-12, 1992,
J.G. McWhirter and I.LK. Proudler.

[9] Givens rotation based Least Squares Lattice and related algorithms.
IEEE Transactions on Signal Processing,
Vol. 39, No. 7, july 1991, pp. 1541-1551, 1991,
F. Ling.

[10] Rotation based RLS algorithms: Unified derivations, numerical properties and

- 36 -

[11]

parallel implementations.
IEEE Transactions on Signal Processing,
Vol. 40, No. 5, pp. 1151-1166, 1992,
B. Yang and F. Béhme.

Effective LSL algorithms based on Givens rotation with systolic array
implementation.

IEEE International Conference on ASSP 1989,

ICASSP 1989, pp. 1290-1293, 1989,

F. Ling.

.37 -

Appendix A: The Fast Recursive Least Square algorithm

In this appendix a Fast RLS algorithm, as given by Bellanger (see [6]), of C = 8N is
described. As described in §4.1, the FRLS algorithm can be divided in 4 subfilters (see
figure 13). In this appendix first the 4 subfilters are discussed separately and finally the
total filter is discussed.

The forward linear prediction filter (labeiled 1) calculates the forward linear prediction
and the forward prediction error energy. An outline of the filter with 2 coefficients is
given in figure 28. The update part is given in figure 29. The filter is described by the
following formula’s:

eav[k] = x[k] - x"[k-1]-a[k-1]
a[k] = a[k-1] + eav[k]-g[k-1]
epsa[k] = x[k] - x"[k-1]-a[K]
ealk] = y-ea[k-1] + eav[k]-epsa[k]

with:

eav[k] the forward prediction error

a[k] the forward prediction coefficients
epsa[k] the new forward prediction error
ea[k] the prediction error energy

When implementing this filter parallel this leads to the following quantaties:
C = 3N+2

L=0
AT = 2 + Mog(N) (Mlog(N) is the time needed by the summation part)

ealk)

Figure 28: Forward prediction filter Figure 29: Update part

-38 -

The backward linear prediction filter (labelled 2) calculates the backward linear
prediction and the backward prediction error. An outline of the filter with 2 coefficients
is given in figure 30. The update part is given in figure ?. The filter is described by the
following formula’s:

eab[k] = x[k-N] - x"[k]blk-1]
blk] = b[k-1] + eab[k]g[k]

with:

eab[k] the backward prediction error
blk] the backward prediction coefficients

When implementing this filter parallel this leads to the following quantaties:
C=2N

L=0
AT = 1 + Mog(N) (Mlog(N) is the time needed by the summation part)

Figure 30: Backward prediction filter Figure 31: Update part

Filter 3 calculates the gain gIk]=R;1[k]z[k]- This is done by using the
forward/backward prediction coefficients and the forward/backward prediction errors
calculated by the forward and backward prediction filters (see Bellanger [6]). To
calculate a new gain vector, a gain vector with N+1 taps is calculated and then
transformed back to a gain vector of N taps. As can be seen in figure 32 the
implementation of this subfilter does not have a FIR structure.

Looking at the implementation it can be seen that for the calculation of gl, it is
necessary to calculate gl ;. Because of this a new addition problem arises because if
large filters are used, the time needed by the additions to calculate gly cannot be
neglected any more. If it is possible to add M signals in the time of one multiplication,
the time needed to calculate the N* signal takes N/M times the time needed for one
multiplication. The filter is described by the following formula’s:

-39 _

gl, = epsa[k]/eak]
Vi=o,1,....N-1: gl = gl - gloafk] ‘
Viou.nat 8lk] = (glablk-1] + gl) / (1 - eab[k]gly)

with:
gl the (temporary) gain vector (N+1 taps)
g[k] the gain vector (N taps)
gl; and g[k] the i element of the vector

When implementing this filter parallel this leads to the following quantaties:

C = 3N+3

L=0

AT =5 + M/N (M/N is the time needed by the summation part)
epsafk] bkl e o[k]‘ bl ad | | Bk alk
ealk]

4

J eablk]
+ %}@* + -
1/x

g ; g %J[kl

Figure 32: Subfilter calculating gain vector

The last subfilter is the part which adapts the filter weights based on the gain vector
glk], calculated by the gain subfilter (labelled 3). Furthermore the filter calculates the
estimated signal €[k] and the filter output r[k]. This subfilter strongly resembles a LMS
filter with the difference that the new update coefficients are calculated with the gain
vector (glk] -_-Rx"[k] -ﬁk]) instead of just the input signal vector x[k]. An outline of this
subfilter with 4 coefficients is given in figure 34. The update part is given in figure ?.
The filter is described by the following formula’s:

- 40 -

wlk] = w[k-1] + glk-1]1{k-1]
€[k] = x"[k] w[k-1]
rk] = &[k] - &[K]

with:
wlk] the vector of filter coefficients

€[k] the estimated signal
1[k] the filter output

When implementing this filter parallel this leads to the following quantaties:
C=2N

L=0
AT =1 + Mog(N) (Mog(N) is the time needed by the summation part)

x o AN kel <)
Z——1Z] 127
9, M o4 9JKl
x> X Q AL oM
) T & o @% o M
| v] . .
Iy
T N Y
Figure 33: Signal estimator Figure 34: Update part

To make the FRLS filter, the 4 subfilters have to be interconnected as shown in figure
13. The problem of this algorithm is that 5 times N signals have to be added, and
because N can become very large, the time needed for the additions cannot be neglected
any more. To minimize the time needed by the additions 4 summations can be done
with addition trees (the summations in filters 1,2 and 4). Looking at the addition
problem in the gain filter (filter 3) it is seen that the use of an addition tree is not
possible. Therefore the calculation time of the parallel implemented FRLS filter
becomes AT = 8 + N/M + 2Mlog(N), which largely depends on the factor N/M.

-41 -

Appendix B: Givens based triangular systolic array

In this appendix a Givens based triangular systolic array, as given by Haykin (see [7]),
is described. Because only the posteriori estimation error r{k] has to be known, it is not
necessary to calculate the weight vector wlk]. The posteriori estimation error r[k] can
also be calculated by multiplying the priori estimation error afk] with the conversion
factor 9[k] (r[k] = a[k]d[k]).

To see how the algorithm works the following formula’s apply:

. VY R[k-1]
oA = (0] = (" "o
XT[k]
i [k] \/Y_'P[k‘l]
oA Tz = Pl = T
é[k]
N-1
VoI = I ikl
i=0
(1 0 .. 0 0 ..
01 ... 0
o il
JK =10 0 o ¢, 0 o 57| with Yi * Ya
00 . 01.0 s, = Qi
Yii
00 -5, 0 c,

with:

Q[k] unitary matrix (k*k)

Alk] = diag(¥, ¥*% ..., ¥, 1)
(1] x[2] x[3] ... x[k]
Xkl = |0 x[1] x2]) .. xfk-1] a (k*N) matrix

L 0 0 0 .. x[k-N+1]

R[k] is the (N*N) upper triangle matrix used by QR-decomposition (notice that
R[k] is not equal to the autocorrolation matrix).

T[k] = Jn.[k]In,[k]"... Jo[k] a (k*k) matrix consisting of k Givens rotations

JIk] a (k*k) Givens rotation

£Tk] = (K], t[k-1}, ..., 0])

p[k] a (N*1) matrix

vik] a ((k-N)*1) matrix

- 42 -

9[k] the conversion factor between priori and the posteriori estimation errors
y;; element on i column, j* row in matrix on which the Givens rotation works

Because only the conversion factor and the priori estimation error have to be calculated
it is not necessary to calculate v[k]. Also only the first N rows and columns of the
matrix R[k] have to be calculated. This prevents that the matrixes and vectors from keep
on growing. A possible implementation of this algorithm is given in figure 35.

K] efkl

R[k-1] = R[K]

pik-1
plk

(K] afk]

rlk]
Figure 35: Possible RLS implementation

The implementation that is given by Haykin (see [7]) is a rewritten version of the above
algorithm so that there are no square roots (which need a large calculation time)
necessary and the last multiplication is not necessary any more. This results in the
implementation given in figure 14. Comparing this implementation with the im-
plementation of figure 35 it can be seen that the Processing Elements (PE’s) labelled d
and r calculate the matrix R[k] and that the PE’s labelled u calculate the vector p[k].

The PE’s labelled d are called the angle computers and calculate the Givens rotations of
the matrix. An outline of an angle computer is given in figure 36. Each of these PE’s
does the following calculations:

d[k] = y*d[k-1] + 8,,[K]-| x;,[k] | *
s[k] = o,,[k]{z[k]/d[k])

z[k] = x;,[K]

Soulk] = 8,,[k]¥*(d[k-1)/d[k])

_43 -

ﬂ x,[K
]

ZK)
X Y
1 ———Hsrk]
+ z
2 Sufk!

Figure 36: Angle computer

The PE’s labelled r and u are rotators and apply the Givens rotation to the matrix and
the vector. An outline of a rotator is given in figure 37. Each of these PE’s does the
following calculations:

Xoulk] = X,[K] - 2[k]7[k-1]
ilk] = rfk-1] + s[k] %, [K]

z[K]
skl

K-

A d &'Ik]

Figure 37: Rotator

- 44 -

Appendix C: LSL algorithm and systolic array implementation

In this appendix a Least Square Lattice is described. The implementation of the LSL
filter is given in figure 16 and is proposed by Ling (see Ling[9]). The F and B elements
calculate the reflection coefficients (rfi[k] and rb;[k]) used by the lattice. The E element
calculates the weights (re[k]). Notice that the weight coefficients are not equal to the
weight coefficients in the FRLS algorithms because the estimated signal €[k] is
calculated by xb"[k]re[k] in the LSL algorithms and by x'[k]-w[k] in the FRLS
algorithm. The calculations done by the 3 different elements are described by the
following formula’s:

The F-element calculates the forward reflection coefficient. An outline of this element is
given in figure ?. This is done by the following formula’s:

dbj[k] = y-db[k-1] + 8,[k]| xb;[k] | 2
cb,[k] = y«db,[k-1]/db.[K]

sb;[k] = &;[k]xb;[k]/db,[k]

rf[k] = cbj[k-1]f[k-1] + sb,[k-1]xf[k]

Parallel implementation of this element results in the following quantaties:

C=9
L=0
AT =4

Figure 38: F-element

-45 -

The B-element calculates the backward reflection coefficient. An outline of this element
is given in figure ?. This is done by the following formula’s:

df[k] = ydf[k-1] + 8[k-1]- | xE[K] |2
cf[k] = ydf [k-1)/df[K]

k] = &[k-1] xE[k]/df[k]

tb,[k] = cf[k]tb[k-1] + sf[k]xb,[k-1]

Parallel implementation of this element results in the following quantaties:

C=9
L=0
AT =4

Figure 39: B-element

The E-element calculates the filter weights. An outline of this element is given in
figure ?. This is done by the following formula’s:

re k] = cb[k]re[k-1] + sb,[k]xe[k]

Parallel implementation of this element results in the following quantaties:

C=2
L=0
AT =1

- 46 -

Figure 40: E-element

	Voorblad
	Summary
	Contents
	1 Introduction
	2 Adaptive filters
	3 Least mean squares algorithm
	4 Recursive least squares algorithm
	5 Frequency domain adaptive filters
	6 Conclusions and recommendations
	Literature
	Appendix A
	Appendix B
	Appendix C

