
 Eindhoven University of Technology

MASTER

Structured design of an FDDI protocol handler

Simons, P.W.

Award date:
1995

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/04b14704-3887-4b0f-98da-9b5cccc3dc10

Structured Design of an FOOl
Protocol Handler

P.W. Simons

Department of Electrical Engineering
Digital Systems Group

Eindhoven University of Technology

Eindhoven, August 1991

Master's Thesis

Supervisor and Coach: Prof. Jr. M.P.J. Stevens

The department of Electrical Engineering of the Eindhoven University of Technology does not accept any responsibility
regarding the contents of student project- and graduation reports.

Abstract
For high speed LANs several standards are defined. One of these is the Fiber Distributed Data Interface
(FOOl). This operates at a data rate of 100 Mbps via a fiber.

The standard is defined by the ANSI X3T9.5 group, and is described in four standards: Physical Media
Dependent (PMO), PHYsical layer protocol (PHy), Media Access Control (MAC) and Station
Management (SMT). This standard only supported packet switching, with a timed token ring protocol
and several error detecting and correcting mechanisms.

Later the need for circuit switching was recognized and an additional standard is developed: Hybrid Ring
Control (HRC). With this extension both circuit and packet switching will be possible. Further
development Includes lowering the installing costs Oow cost fiber and twisted pair for transmission to
the end user), and increasing the speed.

For the basic FOOl protocol a protocol handler has to be designed. This takes a long time, so only a
part will be designed, and the rest will be left to other people.

The ANSI standards on FOOl allow for different implementations. The description given is functional,
giving services between two entities. The internal behaviour is shortly described, with a state machine,
or a block diagram.

To model the protocol the method as described in "Strategies for real-time system specification" by O.J.
Hatley and I.A. Pirbhai Is used. This is supported via the program PROMOO, and with this program the
FOOl protocol is modelled, emphasizing on the Media Access Control entity. After this step, data and
control flow diagrams are available, with process specifications. The model is constructed via
discussions about the functional division, and the communications between the processes. Because no
valid standard on the Station Management was available, this entity is only slightly watched at.

The diagrams and specifications allow for implementation in hardware. For this purpose the program
lDaSS (Interactive Design and Simulation System) is used, developed at the Eindhoven University of
Technology by Ir. A.C. Verschueren.

The encode and decode functions of the Physical layer protocol are described in lDaSS, as well as the
way to obtain data from a user and construct frames of it. Therefore a memory management system and
a frame check sequence generator, working with four bits parallel, are developed. While designing, minor
changes had to be made to the model, because of the different point of view to the system.

In the report of Mr. P.W.A.J.M. Nas more designs can be found, that have been developed independently
from the designs described in this report.

From these facts it appears that the requirements model is satisfying in the total design trajectory.

According to people in the industry, FOOl has many possible applications, but is not useful In many
cases, because most users do not need all possibilities offered by packet switched FOOl.

With the development of FOOl, more general services become available (especially circuit switching).
Combined with lower prices, this makes FOOl more useful for more and more users. Therefore It may
be recommendable to continue the development of the protocol handler, or at least to keep an eye on
the subject.

Note: The design process has initially been carried out by two persons (the writer of this report and Mr.
P.W.A.J.M. Nas). This ended up in two reports (with the same name) that are written for the greater part
in cooperation. This means that a great deal of the chapters in this report can also be found in the other
one. Only the parts describing the step to hardware contain several different items.

Acknowledgements

I wish to acknowledge the following companies and persons for the information I and my companion
received about their FDDI products or involvements:

AMP Inc., Jack Himes
CHeSS, Dhr. van Teijlingen
CMC
CMC Ltd., David Griffiths
Digital Technology Inc.
Digital Technology
Digital Equipment Corp.
Digital Equipment B.V.
Fibercom
IBM, Dr. Richard O. LaMaire
Millegan, Gene
Network Systems Corporation
Plessey Semiconductors Ltd.
PTT Telecom, Hans Herlaar
Siemens Nederland N.V.
Sun Microsystems Inc.
Sun Microsystems Nederland B.V.
Vitel Communicatie B.V., A Sterk

Harrisburg
Soest
Santa Barbara
Hounslow
Dayton
Berks
Maynard
Utrecht
Roanoke
Armonk
Oklahoma City
Minneapolis
Swindon
Den Haag
Den Haag
Mountain View
Amersfoort
Gouda

USA
Netherlands
USA
England
USA
England
USA
Netherlands
USA
USA
USA
USA
England
Netherlands
Netherlands
USA
Netherlands
Netherlands

I specialy want to acknowledge Mr. Albert Sterk of Vitel Communicatie B.V. for his invitation of me and
my companion to discuss FDDI. I thank Advanced Micro Devices and CMC for their generosity of
sending useful databooks.

I am pleased to acknowledge Professor Ir. M.P.J. Stevens for his advice and his support.

Also I would like to thank Mr. Peter Nas for being my companion and for his helpful and pleasant
cooperation.

Finally I want to thank Miss Rian van Gaalen for her patience with me and my companion, her advice
and her willingness to assist us with many different problems.

iii

Contents

1. Introduction .

2. What is FOOl? 3
2.1 Possible use of FOOl .. 3
2.2 Definitions .. 3
2.3 Specifications of FOOl .. 4
2.4 Operation of FOOl .• 6
2.5 Error recovery In FOOl 8
2.6 Concentrators In FOOl .. 9
2.7 FOOl-II•................. 13
2.8 Operation of FOOl-II 15
2.9 Error recovery In FOOl-II 16
2.10 Extension to the PMo 16

3. Error detection 19
3.1 Link Error Monitor (LEM) .. 19
3.2 Frame Check Sequence (FCS) .. 20

4. FOOl developments. .. 23
4.1 Managing an FOOl network .. 24
4.2 Media connection developments 25
4.3 FOOl enhancements 26

5. Functional specifications 29
5.1 Functions of PMo .. 29
5.2 Functions of PHY 29
5.3 Functions of MAC 29
5.4 Functions of SMT 29
5.5 Services from PMo to PHY 29
5.6 Services from PHY to MAC 30
5.7 Services from MAC to LLC 32
5.8 Services from PMo to SMT 34
5.9 Services from PHY to SMT 34
5.10 Services from MAC to SMT 36
5.11 Symbols .. 40
5.12 Line-states 40
5.13 Coding .. 42
5.14 PoU types 42

6. Formal description method 47
6.1 The requirements model 47
6.2 The architecture Model 49

7. Requirements model of FOOl .. 53
7.1 Formats used In the PROMOD SA report .. 53
7.2 Context of FOOl 53
7.3 Subdividing FOOl 54
7.4 Interface to the user 54
7.5 Interface to the ring. .. 54
7.6 Interface to the operator 55
7.7 Further evolution .. 55
7.8 Development of PMo 55

v

Contents

7.9 Development of PHY .. 55
7.10 Development of SMT .. 55
7.11 Development of MAC. • .. 55
7.12 Experiences 56
7.13 Further development. .. 56

8. Functional blocks of PHY 59
8.1 Encode function . 59
8.2 Transmit function 59
8.3 Receive function .. 59
8.4 Elasticity Buffer function 60
8.5 Decode function 60
8.6 Line-State Detection function .. 60
8.7 Local Clock 61
8.8 Smoothing function .. 61
8.9 Repeat filter 62

9. Design issues of MAC .. 63
9.1 Timers 63
9.2 Counters .. 65
9.3 Operation on the ring 65
9.4 Monitoring of the ring 67
9.5 MAC structure .. 69
9.6 Receiver state machine 70
9.7 Transmitter state machine 71

10. Implementation example of PHY 73
10.1 Propagation delay and station latency 73
10.2 PHY functional blocks .. 74
10.3 Model of the Encoder jDecoder 77
10.4 Operation modes 84

11. Implementation example of MAC .. 87
11.1 Block diagram of MAC .. 87
11.2 Overview other resources 91
11.3 Ring operational 94

12. Architecture of FDDI 101
12.1 Constraints of IDaSS .. 101
12.2 Physical Interfaces .. 101
12.3 Architecture of PMD and SMT 106
12.4 Partial architecture of PHY .. 107
12.5 Partial architecture of MAC 109
12.6 Partial architecture of process userdata .. 109
12.7 Partial architecture of process-store (part of process userdata) 110
12.8 Architecture of write symbol (part of store) -' .. 113
12.9 Architecture of write-frame (part of store) .. 114
12.10 Architecture of write request (part of store) 115
12.11 State machines used for process store .. 116
12.12 Architecture of block add controls .. 118
12.13 State machine used for process add controls .. 118
12.14 Architecture of FCS (part of process- userdata) .. 119
12.15 Further development of process userdata. .. 122
12.16 Note to the design process .. ~.................................... 122

vi

13. Conclusions and recommendations 123

Appendix A: MAC receiver state machine .. 125

Appendix B: MAC transmitter state machine. .. 127

Appendix C: Abbreviations for MAC. .. 129

Appendix D: Files made with PROMOD .. 131

Appendix E: Data types and literals used with PROMOD .. 133

Appendix F: PROMOD SA analysis report 135

Appendix G: Graphic representation of control spec check_on_vlolations 209

Appendix H: Files made with IDaSS .. 211

Appendix I: IDaSS description of decoder 213

Appendix J: IDaSS description of encoder .. 217

Appendix K: IDaSS description of read_control 219

Appendix L: IDaSS description of add_controls_contr .. 223

Appendix M: IDaSS description of store_address_contr 225

Appendix N: IDaSS description of addU. .. 229

Appendix 0: IDaSS description of MA_contr 231

Appendix P: IDaSS description of mux 233

Appendix Q: IDaSS description of add_4_or_12 " 235

Appendix R: IDaSS description of generate_controls 237

Appendix S: IDaSS description of FCS 239

Appendix T: IDaSS description of fdb operators .. 241

Literature 245

Index. .. 249

vii

List of figures
figure 2.1, Relation between the ISO/OSI model and FOOl [35] 4
figure 2.2, Format of a data frame [30] 5
figure 2.3, A possible ring configuration for FOOl 7
figure 2.4, FOOl ring with some cable breaks .. 8
figure 2.5, Dual Attachment Station (OAS) 9
figure 2.6, Dual Attachment Concentrator (OAC) .. 10
figure 2.7, Single Attachment Concentrator (SAC) .. 10
figure 2.8. Single Attachment Station (SAS) 10
figure 2.9, FOOl dual ring of trees 11
figure 2.10, Relation between the ISO/OSI model and FOOl-II .. 13
figure 2.11, Structure of the cycle in FOOl-II .. 14
figure 3.1, An example Implementation of a FCS circuit 21
figure 4.1, Structure of FOOl standards 28
figure 5.1, Schematic of the services between PMO and MAC .. 30
figure 5.2, Schematic of the services between PHY and MAC .. 31
figure 5.3, Schematic of the services from MAC to LLC .. 32
figure 5.4, Schematic of the services from PMO to SMT 34
figure 5.5, Schematic of the services between PHY and SMT 35
figure 5.6, Schematic from the services from MAC to SMT 36
figure 5.7, The token format 42
figure 5.8. The frame format 43
figure 5.9, 16- and 48-bit address formats 44
figure 6.1. General example of a Data Context Diagram 47
figure 6.2. Numbering methods , 48
figure 6.3. Example of a Control Context Diagram 48
figure 6.4, Use of stores and interface to CSPECs 49
figure 6.5, Architecture model components 49
figure 6.6, Architecture template 50
figure 6.7, Architecture module symbol 50
figure 6.8, Information flow vector symbol 51
figure 6.9, Information flow channel symbols 51
figure 8.1 J Possible implementation of the PHY with the interconnection of the blocks 59
figure 9.1, Relation between the different processes In the MAC 68
figure 9.2. Basic structure of MAC " 69
figure 10.1, Transmitter - receiver entities .. 73
figure 10.2, State machine of the Repeat Filter. .. 76
figure 10.3. Model of the Encoder/Decoder 78
figure 10.4, Through Mode 84
figure 10.5, Loopback Mode 84
figure 10.6, Short Loopback Mode. .. 85
figure 10.7, Repeat Mode 85
figure 11.1, Functional model of the MAC. .. 87
figure 11.2, MAC State Machine Register .. 91
figure 11.3, Mode Register 92
figure 11.4, Control Field .. 95
figure 12.1, MA UNITOATA.lndication physical Interface 102
figure 12.2, MA-UNITOATA.lndication timing diagram. .. 102
figure 12.3, MA-UNITOATA STATUS.indication physical interface 102
figure 12.4, MA-UNITOATA-STATUS.indication timing diagram. .. 103
figure 12.5. MA-UNITOATAJequest and MA TOKEN.request physical interface 104
figure 12.6. MA-UNITOATA.request and MA-TOKEN.request timing diagram. 104
figure 12.7, PHlndlcation and PH Invalid physical interface. .. 105
figure 12.8. PH=Request physical interface. .. 105

ix

List of figures

figure 12.9. Physical interface between store and add_controls .. 106
figure 12.10, Physical interface from store to monitor. .. 106
figure 12.11. Design chart of PHY 107
figure 12.12, Design chart of decode .. 108
figure 12.13. Design chart of encode .. 108
figure 12.14, Design chart of process userdata 109
figure 12.15. Structure of the memorYmanager for LLC data 110
figure 12.16. Design chart of store .. ·112
figure 12.17, Design chart of MA 113
figure 12.18, Design chart of write symbol .. 114
figure 12.19, Design chart of write-frame .. 115
figure 12.20, Design chart of write-request .. 115
figure 12.21, Design chart of add controls .. 118
figure 12.22, General circuit of a teed back shift register .. 120
figure 12.23. Design chart of FCS 122

x

List of tables
table 3.1: 4B/5B encoding scheme [9. 3] .. 19
table 5.1: PDU types corresponding with the control bits [4] .. 43
table 10.1: Control Register and Pointer Bit assignments 83
table 10.2: CRo (Force Line States) 83
table 10.3: CR, (Loopback Mode) 83
table 10.4: Pointer Register (CR Pointer) 83
table 11.1: MAC operational modes .. 92
table 11.2: Address mode detection .. 93

xi

1. Introduction
From history, demands for faster and faster communication channels have come up. This is because
of the more intensive use of databases, and distributed processing.

To satisfy these Increasing demands, several high speed networks are defined, such as ethernet, and
IEEE 802 networks. There are different configurations of networks like star and ring. Also the speeds are
various, from 1 Mbps to several 10s of Mbps.

Because of the relative poor accessability of the file servers, a high speed network had to be developed.
This resulted in FOOl: The Fiber Distributed Data Interface. It was first developed as a back-end network,
to connect large computers with disk and tape controllers. Later FOOl turned out to be satisfying for
other kinds of use and the FOOl now also is used for backbone and front-end network.

Since the protocol Is rather complicated (frame check sequences must be made, frames must be
constructed), and has to be executed real time at high speed (the bit rate on the fiber is 125 Mbps), a
satisfying software Implementation Is very hard to achieve. It can though better (and cheaper ?) be
implemented in hardware.

To design this complicated hardware, a structured design method is required, which supports modular
design, so that several people can work at the total project, while they have nothing to do with each
other but on the boundaries.

Note: The design process has initially been carried out by two persons (the writer of this report and Mr.
P.W.A.J.M. Nas). This ended up in two reports (with the same name) that are written for the greater part
in cooperation. This means that a great deal of the chapters in this report can also be found in the other
one. Only the parts describing the step to hardware contain several different items.

1

2. What is FOOl?

FOOl stands for Fiber Oistrlbuted Oata Interface, and it defines the physical layer and the lower part of
the data link layer of the ISO/OSI model, and further a station management section which operates in
both parts of the ISO/OSI model. The physical layer is divided Into two parts namely the Physical
Medium Oependent layer (PMO) and the Physical Layer Protocol (PHY). The lower part of the Oata Link
Layer (OLL) is called Media Access Control (MAC). The Station Management section Is referenced as
SMT. The data speed of FOOl is 100 Mbps, though because of errors [9] and delays, this speed will not
be reached. Further more FOOl uses a timed token ring protocol: The station that captures the token
is allowed to transmit during a predefined time and other stations are not allowed. .

2.1 Possible use of FOOl

FOOl can be used for different purposes [10, 11,21]:

- Back-end: This Is what FOOl originally was designed for. The request for high speed connections came
up with distributed computing and requests for faster data access. Large computers are
connected with each other, and with disk and tape controllers. Since FOOl has a large
bandwidth and a good fault tolerancy, this kind of use can be easily satisfied, and since there
is only a small number of nodes in back-end applications, much of this bandwidth Is used for
data transport.

- Backbone: Various LANS are connected with each other and to mainframes and file servers, via FOOl.
Oifferent methods of connecting are possible like bridges, routers and gateways. Also long
distances can be spanned, since the maximum distance between nodes Is 2 km and the total
ring size can be as long as 100 km. This allows the network to span a large company or
university campus. An example is given In [34], where the FOOl technology is scanned for the
usability for connection of ethernets.

- Front-end: Work stations and PCs are connected to the ring. Big jobs can be transported to
mainframes (if connected), all stations can access common databases or programs on file
servers. Since there Is a large bandwidth available, many nodes can be connected (which
caused trouble with other kinds of LANs, since their performance decreased heaVily through the
large number of nodes), and large databases can be accessed. It Is expected that this kind of
use of FOOl will be the most common In the future.

2.2 Definitions

T Neg: Negotiated Token Rotation Time
- The time that a stations wants to be half of the maximum response time, and Is put on claim

frames (varies per station).
TIRT: Target Token Rotation Time

The time that is wanted by some station to be available for synchronous bandwidth In one block
(the same for each station).

T Opr: Operational Token Rotation Time
- The minimum time that is negotiated between all stations to be available for synchronous

transmissions
TRT: Token Rotation Timer

Timer which controls the passed time since the last time the token was captured or passed.
When TRT elapses one time before the token has returned, the token is late, and TRT is
reloaded with TIRT.

3

2. What Is FOOl?

THT: Token Holding Timer
Timer which Is loaded with the remainder of TRT when the token Is captured, only when the
token is not late (during this time asynchronous transmission Is allowed).

2.3 Specifications of FOOl

More detailed information can be found In [12, 27, 3D).

The ANSI X3T9 group has defined four documents for FOOl, one for each part of the total definition:
PMO for the physical medium dependent layer, PHY for the physical layer protocol, MAC for the medium
access control and SMT for the station management. These documents are ented on the ISO/OSI model
(Open Systems Interconnection from the International Standardization Organization), see figure 2.1. The
Logical Link Control (LLC) is not part of FOOl.

OSI model

Data link
layer

physical
layer

LLC I

MAC I

PHY I ~
PMD I

figure 2.1, Relation between the ISO/OSI model and FOOl [35]

Further there are two kinds of stations possible: OAS (Dual Attachment Station) and SAS (Single
Attachment Station).

The main connection is made by a dual counter rotating ring. As long as no errors occur, both rings can
be used for data transport, though only OASs can attach to the secondary ring. All OASs are connected
to both rings. Further a concentrator is defined through which SASs can be connected to the ring.

Physical Medium Dependent layer (PMDl

For the links multi mode fibers are used, and transmission goes with 1300 nm light. The fiber links may
not exceed the length of 2 km, and the attenuation of the cable may not be more than 2.5 dB/km. In
this way the links can be operated at with relative cheap material (LEOs and receiving diodes), and still
have an acceptable rise time at the fiber exit of maximum 5 ns. The transmitted power has to be at least
-20 dBm and at most -14 dBm. The Input sensitivity of the receiver should be more than -31 dBm, and
less than -14 dBm (35).

The Bit Error Rate (BER) of a link at minimum received power should be less than 2.5 10.10 and less than
10.12 when the received power is 2 dB above the minimum, resulting in an overall BER of 10.9• With the
above specifications these requirements can be satisfied.

4

2.3 Specifications of FOOl

Also a duplex connector Is defined, for use at the station bulkheads. This connector may have as much
attenuation that the overall attenuation Is not more than 11 dB.

Further an optical bypass switch Is defined, by which the rings can be maintained while a station Is
powered off or misbehaving. This bypass may not exceed an attenuation of 2.5 dB.

Physical layer protocol (PHY)

The PHY defines a full duplex physical connection to the optical hardware. This means that it Is possible
to transmit and receive at the same time.

The PHY defines further the encoding of the data bits. This is an 4B/5B encoding and it Is used for some
error detection. From the 32 possibilities, 8 are not allowed, and 8 are used for extra symbols, while the
other 16 are codes for the incoming data symbols. Further the NRZI scheme Is used (Non-Return-to­
Zero-Invert-on-ones). In this encoding no more than three zeros may follow each other, which is
necessary for clock recovery.

The clocking is done locally. Each station has its own transmission clock, so slight differences in timing
between the different stations will occur. That is why local clock recovery must take place, and an
elasticity buffer has to be used to adjust for the differences.

A smoother is defined for maintaining the inter frame gap on about 12 preamble symbols.

Another entity defined for the PHY is that It provides line states to the adjacent stations.

Media Access Controller (MAC)

The MAC controls the data flow, and provides a connection point for devices that want to use the ring.

There are two kinds of traffic defined:
- synchronous traffic: This uses guaranteed bandwidth and response time, the allocation of the

bandwidth Is done by the SMT at initialization of the ring.
- asynchronous traffic: This is used for less predictable traffic, and only the bandwidth that Is not used

for synchronous traffic can be used for this. It may cause a long response time. For this traffic
a priority level can be used.

The FOOl uses a timed token protocol which means that the token must be back at the same station
In a certain amount of time (a function of the Token Rotation Time TRT).

The data Is divided in pieces and transmitted in data frames (see figure 2.2).

I PA I SD I Fe I DA I SA I INFO I pes I ED I FS I
figure 2.2, Format of a data frame [30]

5

2. What is FOOl?

The meaning of the different parts is as follows:
- PA: Preamble, different number of Idle symbols
- SO: Starting delimiter, uniquely decodable sequence of a J and a K symbol (each a sequence of fIVe

bits on the ring)
- FC: Frame Control, defines the type of the frame (2 symbols)
- OA: Destination Address, 16 or 48 bits (also addressing a group of stations Is possible)
- SA: Source Address, 16 or 48 bits (the frame is stripped from the ring when a station sees that the SA

Is his own address)
- INFO: Contains the data, length ranges from 256 to 9000 symbols
- FCS: Frame Check Sequence, 32 bit Cyclic Redundancy Check (CRC)
- ED: Ending delimiter (1 symbol)
- FS: Frame Status, these are the EAC symbols (Error, Address recognized, data Copied), each has the

value S or R

Other frame types defined by ANSI are:
- Media Access Control (MAC) frames (15):

- 1 beacon frame
- 1 claim frame
- 1 Next Station Addressing (NSA) frame
- 12 reserved frame

- Station Management (SMT) frames (15)
- Logical Link Control (LLC) frames (32):

- 1 synchronous frame
- 8 asynchronous frames
- 23 reserved frames

- Implementer frames (32):
- 8 synchronous frames
- 8 asynchronous frames
- 16 reserved frames

- 32 additional reserved frames

Station Management (SMT)

The station management Is a defined part of FOOl, In contrary with many other network definitions. This
has the advantage that all Implementations of FOOl can communicate with each other.

The SMT takes care of fault recovery, connection management, frame handling, synchronous bandwidth
management, statistics gathering and communication with other SMTs via SMT frames. This is all done
to maintain the operability of the ring.

The SMT uses an N-Iayer protocol which means that it covers more than one layer (layer 1 and 2). This
may not interfere with other-layer protocols, which Is achieved through the use of different types of
frames: SMT and LLC frames.

2.4 Operation of FOOl

More information about the operation can be found In [10, 22, 27, 32].

Before the ring can be used, the characteristics must be determined through an initialization. First a
beacon process is performed. This is done to determine the configuration of the ring, and to check the
correct operation of the links between two stations. Each station sends It own beacon (with addressing

6

2.4 Operation of FOOl

information) repeatedly until another beacon is received. Then the incoming beacons are echoed
(probably read to obtain a ring configuration) until the beaconing station receives its own beacon.

Then a bidding process is performed. This is to determine the Target Token Rotation Time (ITRT) of the
total ring, and is done via claim frames containing aT_Neg (negotiation time). On basis of this all station
managements can determine how many bandwidth they can use. The lowest T Neg Is used for the
nRT. This is done because the station bidding that time, needs this low response time. The response
time Is in this protocol always shorter than 2*nRT. After the bidding process, the winning station (With
the lowest T Neg) has to send a token on the ring. When this reaches a station this retransmits the
token and it-knows that the ring is operating. The next time the token arrives at the station, it can
capture the token and start transmitting. When the token comes back at the originating station, then the
ring Is totally Initialized, and operational. All stations have copied the lowest T Neg in the TTRT register
(Target Token Rotation Time). -

A station is only allowed to transmit, when it has captured the token. When the token arrives early
(TRT <TTRT), both synchronous and asynchronous frames may be transmitted, else (TRT>nRT) only
synchronous frames may be transmitted. Each time the token arrives, THT (Token Holding Timer) Is
determined by TTRT-TRT when the token is not late (earlier than 1*nRT). During THT the asynchronous
frames may be transmitted.

If synchronous frames are available for transmission, then they have priority above asynchronous frames,
and whether or not there are asynchronous frames to be transmitted while the token Is early,
synchronous frames will then be transmitted. Within the asynchronous frames are 8 priority levels
available.

When asynchronous frames have been transmitted and the THT has elapsed then there Is still bandwidth
available for synchronous transmission. This can be done during a predetermined (at initialization) period
of time. This time is a part of the TTRT, and the sum of the synchronous transmission bandwidth of all
stations is TTRT. This protocol assures that the maximum response time will be 2*TTRT.

SAS SAS SAS SAS

concentrator

figure 2.3, A possible ring configuration for FOOl

7

2. What Is FOOl?

In figure 2.3 an FOOl ring Is drawn. An FOOl ring consists of two counter rotating rings, which can be
connected to OASs. Via a concentrator, the cheaper SASs can be connected (there are also single
attachment concentrators, but these are not drawn in figure 2.3). Connections to another network can
be made via a bridge.

Data can be transmitted over both rings, but the secondary ring is meant for backup, and error
tolerancy. Each ring can have 100 Mbps. so when no errors occur, the total bit rate can be 200 Mbps.

2.5 Error recovery in FOOl

More Information can be found in [9, 10, 12, 16,23].

When 2*TTRT has elapsed, the station determines it as an error, and starts transmitting claim-token
frames to try to regain the token on the ring. When no response comes to this process, the station starts
transmitting beacon frames containing his address Information. When a station receives a beacon frame,
he starts transmitting that frame, in stead of his own. When one station does not receive anything. he
knows that his neighbour Is bad functioning or not connected anymore (due to cable break), and starts
reconfiguration.

SAS SAS SAS SAS

0-..
is:

U2
CD

figure 2.4, FOOl ring with some cable breaks

In case of a cable break, the ring has to be reconfigured (see figure 2.4). When a cable in the dual ring
breaks, then the secondary ring is put in action (like Is shown for the OAS station). When a cable breaks
In the connection to a SAS, then the concentrator bypasses this station. When a station shows bad
behaviour, then this error can be modelled as a cable break, but If it is a OAS station, then this station
can bypass Itself. and go of the ring in this way, stili leaving a dual ring to tolerate errors in the cables
somewhere else. With this bypassing, an Internal loopback Is made from transmitter to receiver, so the
station can check itself on existing errors. If this bypassing Is not possible (when the station does not
know that it is erroneous), the error will be treated like a cable break.

8

2.6 Concentrators in FOOl

2.6 Concentrators in FOOl

For more information see [17,18].

A concentrator Is a device that provides connection points for other devices in the form of a physical
tree topology. The concentrator maps the logical token ring into a hierarchical physical tree. It is an
active device, in its simplest form it Is a mUlti-port physical layer repeater. It is called active for,the
concentrator decodes, re-times and sometimes modifies the repeated data stream.

The concentrator, CON, Is an opto-electronic device that requires a power source. It implements the
PHY as found in all FOOl stations, inclUding data re-timing, elasticity buffers and error detection.
Additionally the CON Includes most of the SMT protocols for auto-initialization, auto-configuration and
fault Isolation within an FOOl LAN.

The concentrator serves three major goals:
- allows more flexible application of FOOl to the structured cable plants.
- an Important tool to maintain a large LAN.
- the concentrator isolates the FOOl ring from station failures and end user behaviour, it improves the

reliability.

There are three basic behaviours within FOOl:

- The Oual Attachment behaviour forms the physical loop of the Oual Ring. The basic Oual Attachment
Station (OAS) requires two attachment points, designated as connector type A en B. A OAS has two
PMOs, see figure 2.5, one connected to the primary input (PI) and secondary output (SO), and another
connected to the PO and SI. A OAS has at least one MAC and one SMT entity. There is an optional MAC
that allows the OAS to support the 200 Mb/s rate. When a network is working properly the A (say PO,SI)
of one station is connected with the B (say SO,PI) of its neighbour. The result is a physical loop of
Physical Connections that may provide two separate, counter rotating token paths.

PO A SI so B PI

[" ... ····BYPASS····· .,,
,

figure 2.5, Dual Attachment Station (DAS)

- The CON behaviour forms a tree by concentrating the Inputs of ·connector type Ms· from mUltiple
attachments. Stations connected to the concentrator forms a single token path for this station. The basic
concentrator is a stand alone device and cannot be connected to other concentrators. There are two
types of concentrators, the Oual Attachment (OAC), see figure 2.6, and the Single Attachment (SAC),
see figure 2.7. The OAC has two PMOs and PHYs to attach to the dual ring and mUltiple PMO and PHY
for interconnecting other stations. It has at least one MAC and one SMT entity. There is an optional MAC
to support two active rings. In this case, a OAC can selectively attach stations to either ring. A SAC has

9

2. What is FDDI?

one PMD, one PHY one MAC and one SMT entity and multiple PMD and PHY for Interconnecting other
stations.

figure 2.6, Dual Attachment Concentrator (DAC)

figure 2.7, Single Attachment Concentrator (SAC)

- The Single Attach behaviour, this is the simplest behaviour. The topology impact of the Single
Attachment Station (SAS), see figure 2.8, Is summed up by "Presence" and "Absence". A SAS has one
PMD, one PHY, one MAC and one SMT entity. The SAS occupies the leaf positions in the tree. It is
designated by the connector type S and is intended to provide attachment to a single token ring. SAS
attaches to the dual ring through concentrators (either SAC or DAC).

figure 2.8, Single Attachment Station (SAS)

10

2.6 Concentrators in FDDI

A branching tree is formed using variations of the basic concentrator, that includes A,B or S type
connectors. Connections of type Sand M are primary used in pairs such that a Physical Connection
would have one endpoint of each type.

Dual Rings comprise DASs configured In a physical loop, Trees comprise Concentrators and their
attachments. The combination of the Dual Rings and the Trees result from the combination of the
Concentrator with the Dual Attachment behaviour. The Dual Attachment Concentrator (DAC) Includes
an A and B connector and may be a member of the dual ring. The DAC may also extend the Tree as
shown in figure 2.9. FDDI also specifies a Single Attachment Concentrator (SAC) which Includes an S
connector to allow its connection to other CONs In the Tree.

Tree

figure 2.9, FOOl dual ring of trees

The actual usage of a DAS and SAS Is not limited to the basic behaviour just described. For Instance:
a DAS may be placed in a Tree and act as a SAS. Otherwise a SAS may be placed directly In a Dual
Ring. But note that they are not Interchangeable. For instance placing a SAS in the Dual Ring prevents
formation of a physical loop, a basic behaviour of the Dual Ring.

Link types and topologies

There are three types of ports on a physical connection defined In FDDI: Peer, master and slave.
Peer-to-peer connections are used to form a dual counter-rotating ring between DAS and DAC.
Master-slave connections are used to connect DAC and SAC (both master) to SAS (slave). In an FDOI
network DAS, SAS, DAC and SAC can be Interconnected in peer-to-peer and master-slave modes to
form a dual ring of trees. Peer-to-peer connections (DAS and DAC) form a counter-rotating ring at the
top of the hierarchy. Master-slave connections (DAC, SAC and SAS) form a tree, as seen in figure 2.9.

The functional model of a concentrator

The concentrator and the DAS employ fundamentally different methods of controlling the network
topology. One difference is the method of bypassing a connection and an adjacent station. The DAS
involves "wrapping" and optionally the use of "optical bypass relays·. When one cable is used to connect
two OASs, they form a single token ring, this Is a simple connectivity. In this situation, just one logical

11

2. What Is FOOl?

ring existing, the Dual Ring Is said to be "wrapped". If two logical rings exist, the Dual Ring is said to be
"unwrapped".

Every DAS contains two PHY entities (PEs). Imagine a ring with for instance four DASs. If a cable were
removed, the DASs adjacent to the missing cable internally reconfigure to exclude the related PEs and
form a single ring. Internal path switches are used. A DAS also encloses an optical bypass relay, this
to allow a station to bypass itself (and maintain the physical loop) in the case of a power failure.

Optical bypass techniques provide that a limited number of stations may be bypassed. This number
depends on several issues like distance between adjacent stations and the number of stations. These
techniques are useful in small networks (a computer room for instance).

The method of controlling topology in a CON is fundamentally different. The "bypass facilities" are moved
from the individual stations into the CON. And the Internal path switches are replaced by the CONs path
switch. In this situation the optical bypass relays do not enhance the operation of the network and thus
are not used. While the CON must be powered up, any number of the stations may be disconnected

. without affecting the remainder. The latter can be very useful In some situations.

Conceptually the CON is composed of a PHY element taken from each of the DASs. So the DASs
become SASs. The CON is the result of rearranging the components such that same number of optical
transceivers and cables are required In either topology to support the same four users.

Functionally the CON is composed of many PHY elements and a path switch. The CON reconfigures
the token path as a service for attachments. The main advantage of the CON Is that the control of the
topology is removed from the station and is centrally located in the CON. As a result the CON fits easily
in the ·star wiring" scheme.

With a CON the function of a station can be separated into two basic categories: "End Stations· for end­
users of the LAN and "Network Devices" for prOViders of LAN services. The CON is a network device
and the SAS is the End Station. The CON becomes the major interest of the network manager
(administrator) and the SAS eliminates the role of the end users in determining the network topology,
this Is an important simplification.

FOOl installation with respect to reliabilitv

The CON allows more flexible application of FOOl to cable plants that are designed to meet emerging
standards for building wiring such as being developed by EIA TR 48.1 [19]. The CON eliminates the
need to restrict cable lengths or cable plant insertion loss for optical bypass operation.

The CON decouples the network managers from the daily activities of end users and repair personnel.
The CON helps to organize the wiring and provides ring-map Information that closely matches the
structure of the building. The usage of a CON In the equipment room increases the resolution of the fault
isolation protocols to the granularity of the building equipment room structure. This reduces the Mean
Time To Repair.

The CON makes it easier to implement a reliable FOOl Ring. The reliability will always Improve If CONs
are used to attach End Stations. The reliability of the Dual Ring may be degraded by dual attached end
stations, unless special care Is taken In the design of those stations.

For some specific configurations equations for the total failure rate [19] can be derived. Some of the
issues that must be considered are difficult to control in a multi-vendor environment, especially for user
End Stations. In general there is not a standard formula to determine the total failure rate.

12

2.7 FOOl-II

2.7 FOOl-II

More information can be found in [15,20,26,32].

Even when the standard for FOOl was not fully completed, ANSI started with the development of another
FOOl standard, to satisfy the requests for voice communication. This Is called the FOOl-II standard, and
Is described In the HRC (Hybrid Ring Control) document of ANSI.

The standard for FOOl-II is also ented on the ISO/OSI model as shown in figure 2.10. The I-MAC
(Isochronous MAC) Is connected to a circuit switch multiplexer, and the MAC Is connected to the Logical
Link Control (LLC) which is not a part of FOOL

OSI model

Data link

I I-MA~ I
LLC Ilayer

P-MAC I

I HRC (for FDDI-n only) I~
physical I PHY Ilayer

I PMD I
figure 2.10, Relation between the ISO/OSI model and FOOl-II

The PMO is for FOOl-II the same as for FOOl-I. PHY has one extra symbol to decode and has better
smoothing requirements. The MAC part is extended with an I-MAC (for isochronous data) and the HRC.
The original MAC Is now called P-MAC (for packet data).

The station management Is extended with some functions special for FOOl-II:
- Hybrid mode with Initialization and recovery procedures.
- Management of HRC objects: HMUX, IMAC.
- Resource allocation, for requesting and assigning bandwidth.

FOOl-II is upward compatible with FOOl-I, so all stations supporting FOOl-I, can be connected to an
FOOl-II ring. However, the total ring can then only operate in the FOOl-I mode.

FOOl-II supports for a network of up to 500 stations, over geographical distances of up to 100 km. The
hybrid (FOOl-II) mode of operation, supports both packet and circuit switching.

There are two kinds of stations: Monitor stations and not-monitor stations. Only a monitor station can
become a Cycle Master (CM). This Is the station that initiates the hybrid mode of operation, and
maintains It.

For voice transmission, a 64 kbps channel is enough, which means that every 125 ~s one byte must
be transmitted. Therefore the ring is divided In sections (cycles) returning each 125 ~s. This Is a kind
of formatting of the ring, and Is done by the cycle master. Only one cycle master is allowed on the ring.
This cycle master has a latency buffer to make sure that a cycle starts always at a whole number of
125 ~s.

13

2. What Is FOOl?

For the data In the cycle Is 98.304 Mbps available. This Is divided over 96 Cyclic Groups (CGs). Each
CG Is divided In 16 timeslots, and each timeslot consists of 8 bits. This fully uses this bandwidth: 8 * 16
* 96 * 8000 = 98.304 Mbps

The bytes of one timeslot combined make a Wide Band Channel (WBC) of 6.144 Mbps. When several
bytes of one timeslot are combined, it Is possible to make sub-WBC connections. Through bit
Interleaving it Is even possible to make sub 64 kbps channels. It is also possible to obtain larger
bandwidths than what the WBC supplies, through the combination of several WBCs. .

The structure of the cycle is shown in figure 2.11.

bO .. b7

figure 2.11, Structure of the cycle In FOOl-II

Beside the CGs, there are three more parts in the cycle:
- Preamble (PA) to adjust the clocking differences between the different stations. Also in FOOl-II, each

station has clock recovery from the incoming bitstream, and an own transmit clock.
- Cycle Header (CH), that carries the programming template. This defines the use (circuit or packet data)

of the timeslots in each CG. Timeslot lin every CG has the same function, and when of all Cgs
one timeslot Is combined, a Wide Band Channel is made of 6.144 Mbps. The CH consists of:
- Starting Delimiter (SO), built up from two symbols (J and K) which are uniquely determinable,

anywhere in a cycle.
- Two control symbols C1 and C2. Possible values are S or R. C1 is for synchronization control.

If C1 = S then synchronization Is established, and a SO appearing in the middle of a
cycle Is seen as an error. When C1 =R the cycle may be interrupted. When a
synchronization error occurs a slave station puts this control to R. A slave station may
never put this control to S.
C2 Is for sequence establishment. If the cycle sequence Is established the cycle master
puts this control to S, else to R. If a slave station determines an error, then he puts this
control to R. A slave station may never put this control to S.

- Cycle Sequence (CS). This is a modulo 192 number ranging from 64 to 255 to indicate
whether the cycles are stnl in order. Lower numbers than 64 indicate a stations monitor
rank (then C1 =C2=R must be true). The value 0 indicates a monitor with rank NULL.
This cannot win a monitor contention process, but still can initiate it.

- Sixteen place programming template. These Indicate wether a timeslot Is allocated to circuit
(S) or packet (R) data. If a place is not occupied with S or Rthen that place is filled with
T.

14

2.7 FOOl-II

- Isochronous Maintenance Channel (IMG). This is dedicated for maintenance purposes, and
recommended use is a voice channel (there Is 64 kbps available).

- Dedicated Packet data Group (OPG), that assures that there Is some packet sWitching available, even
when all timeslots are allocated for circuit data. This OPG can be used to request for circuit
bandwidth, releasing bandwidth etc. This group is spread over the cycle. OPG I comes
Immediate before CG 8*1 (0~b;11).

These three groups consume the last remaining 1.696 Mbps bandwidth that was not defined yet: .

PA: 20b
CH: SD: 8b

C1: 4b
C2: 4b
CS: 8b
PO to P1S: 16*4b = 64b
IMC: 8b

DPG: 12*8 = 96b

212b

8000 * 212 = 1.696 Mbps

FOOl-II also provides for OASs and SASs, and station bypassing (optionally, only for OASs). The timing
Is as in FOOl-I point to point, with clock recovery for the receiver, and an own transmit clock In each
station.

Packet data can be transmitted over all wacs that are not allocated for circuit data. That means that
all wacs, that are not allocated for isochronous (circuit switched) data, are linked together for packet
data (else the response time for packet data would be much to low).

For the circuit sWitching at least one Channel Allocator (CA) is needed In the system. This processes
the requests for isochronous bandwidth, so it tells stations requesting for a circuit which timeslot and
CG they can use (for lower bandwidths also which bit of the timeslot). The CM can act as a channel
allocator.

Packet data is transmitted in frames Oust like In FOOl-I). The Isochronous data Is transmitted through
byte interleaving (and bit interleaving for sub 64 kbps channels).

2.8 Operation of FOOl-II

Most of the information contained in this chapter comes from [20]. Further It Is mentioned in [26] and
[32].

Ring initialization

The ring Initialization starts as with FOOl-I. When the ring Is initialized for FOOI-i, this mode Is used for
a bidding process, to select a Cycle Master (CM). All monitor stations have a rank. Each capable station
has an address, and the highest address (detected with the bidding) will be the cycle master (possibly
stand-by cycle masters are selected for fast recovery when a cycle master fails).

15

2. What is FOOl?

The station management defines the maximum Isochronous bandwidth, and tells that to the CM. This
is determined by calculating the minimum packet bandwidth needed to satisfy the demands for response
time (TTRT) for all synchronous applications of the system.

To switch from FOOl-I to hybrid (FOOl-II) mode, the CM must capture the token (then all transmissions
of other stations have passed). The CM then starts transmitting cycles, with in the cycle header only
allocations for packet switched data channels. The token is released In the first cycle, and is placed in
the DPG. Each station recognizes the cycle header, and switches to hybrid mode. When the first valid
cycle has returned to the CM, the ring Is fUlly operating in hybrid mode.

Packet switching

Packet switching goes the same as In FOOl-I mode. The nRT Is as short as possible (this was already
determined during FOOl-I setup). For the packet switching all available wecs are combined to get the
highest throughput for the packet switching. The symbols which were transmitted behind one another,
now have to be interleaved because of the cycle assignment.

Circuit switching

A CA is given the responsibility or more circuit wecs. When the CM receives a wec request from a CA,
he must capture the token (else packets can be lost since a packet channel is converted Into a circuit
channel). After that the new programming template is send to all stations. Only when the CM receives
the template back correctly, he releases the token again. Then the identity of the wec is send to the
CA, and the CA informs all stations on the ring about the availability of the new bandwidth.

When a station needs a circuit, It requests (via an SMT protocol) bandwidth from a CA (possibly it must
check several CAs). The CA confirms the request and gives the Identity of the channel to the requesting
station. The originating station calls the terminating station via the packet data channel.

After that full duplex communication can be performed, with each station replacing the data received
by Its own data.

When the communication is done, the channel is released by the originating station, via an SMT
protocol to the CA.

2.9 Error recovery in FOOl-II

If an error occurs while In hybrid mode, the ring will try to recover that error In hybrid mode. If that Is
not possible, the ring will switch back to basic mode and start the basic recovery procedure. When that
Is achieved, an attempt can be made to switch back In hybrid mode. To detect errors, the same coding
mechanisms are used as In basic mode.

2.10 Extension to the PMO

At first ANSI had defined a PMD which allowed for a distance between stations of maximum 2 km. This
was for some purposes too short, and an extra definition for the PMD layer was developed.

This was called the SMF-PMD (Single Mode Fiber Physical Media Dependent), and may replace the
original PMD. This uses laser diodes and single mode fiber for the transmission of the signal.

16

2.10 Extensions to the PMD

The SMF-PMD allows for a 60 km distance between two stations In stead of the previous 2 km, but it
demands for an adjustment at the transmitter and the receiver side, since the received power will be
much higher than with multi mode fiber. This will come out a little more expensive than with the normal
PMD.

The communication with normal PMD stations can be maintained with the new standard by inserting an
attenuator between the SMF-PMD transmitter, and the normal PMD receiver, while communication the
other way will be normally possible. .

17

3. Error detection
In a transmission system always occur errors, so error recovery is necessary. This can only be done
when the error can be detected. For this purpose several mechanisms are employed.

One mechanism Is the 46/56 encoding. The used encoding is stated In table 3.1.

table 3.1: 48/58 encoding scheme [9,3]

Code-bits aymbol semantics

DeIa aymbols

11110
01001
10100
10101
01010
01011
01110
01111
10010
10011
10110
10111
11010
11011
11100
11101

o
1
2
3
4
5
8
7
8
9
A
B
C
o
E
F

ooסס

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
lOll
1100
1101
1110
1111

Une-stale aymbols

ooסס0

11111
00100

Q

I
H

Quiet
Idle
Halt

Delim~elS and control

11000
10001
01101
00111
11001

Invalid codes

oo1סס

00010
00011
00101
00110
01000
01100
ooסס1

J
K
T
R
S

VH
VH
V
V
V
VH
V
VH

first 01 eequentlal SO pair
second 01 eequentlal SO pair
termlnallon 01 dala stream
Reset
Set

Palleme marked wIIh V are Invalid
Pallems marked with VH are invalid, but
are trealed like Halt when they are recelwld

This encoding provides extra symbols. and Is used to check the received data on transmission errors.
Some of the symbols are not allowed fY or VH) and others are used for line states and special tasks so
they cannot show up in a normal data block. unless an exceptional situation occurs.

3.1 Link Error Monitor (LEM)

To control the link status while that link Is on~line. a Link Error Monitor (LEM) can be used [23]. This
monitors the error rate of the connection between two stations and controls whether or not it exceeds
a certain threshold level. If It does. the LEM will inform the SMT that can reconfigure the ring.

When the ring is reconfigured. the MAC can check the behaviour of the link with a Link Confidence Test
(LCT). This tests the link between two stations while there Is no other traffic on that link. This Is possible

19

3. Error detection

because with the reconfiguration, the excluded link (dual directed), is looped back. For this LCT at least
one MAC Is necessary.

The LEM works with several fault domains [23):
- Optical link (PMD-PMD)
- Optical link and transmit and receive PHY function (PHY/PMD-PMD/PHy)
- Optical link, PHY, and transmitting MAC function (MAC/PHY/PMD-PMD/PHy)
- Internal noise on either side of the link.

Errors appearing from the optical link come from attenuation and dispersion, duty cycle distortion, Jitter
(data dependent, and random), and inter channel crosstalk. Further errors can occur due to internal
station (electrical) noise.

The only information the LEM needs Is that delivered by the PHY to the SMT (this costs nothing extra).
When the LEM detects a degraded link, It Is presented to the user who can take action. For this purpose,
an administration must be kept of the history of the link and its behaviour. When the link is isolated, It
can be repaired, and after that It should be tested by a LCT. When everything is working correctly, the
link can be put back in action.

The LEM must be able to execute several functions:
- Detection of changes in the Link Error Rate (LER) link by link.
- Administration of the total occurrence of errors since the link was set up.
- Setting the link error threshold by the administration at which an alarm will be given.
- Detection and removal of links that show bad behaviour.
- Setting the link error threshold by the administration at which the link will be automatically removed.
- Possibility to reintroduction of a link, after a successful LCT.
- Detection of topology oscillations Qink removal and insertions).

3.2 Frame Check Sequence (FCS)

The FCS field is used to detect erroneous data bits within the frame as well as erroneous addition or
deletion of bits to the frame. It is accounted for each frame, and put behind the data. The fields covered
by this FCS are FC, DA, SA, INFO and FCS. This allows the receiver to detect many errors, that could
not be detected with the 48/58 encoding (data to data transfer). This FCS Is accounted with a
polynomial, that Is also used in IEEE 802 LANs and In Autodin II networks.

Definitions and a short explanation on the use of the generated polynomial code.

F() . .Ie·l .)c·2 k-3X = ak.1x + ak.2" + ak-a>' +... + a1x + eo
F(x) represents k bits of the frame to be covered by the FCS. The first bit of the frame is
represented by ak.1x

k.1 (ak.1 .. 0).
L(x) =)(Jl + ~ + >fB + ... + Y! + x + 1

L(x) represents a 31 degree polynomial with all coefficients equal to one.
G(x) =)(J2+'JI!8+'JI!3+'JI!2+XI8+XI2+Xl1 +x10+>C'+x7+~+x"+Y!+x+ 1

G(x) represents the actual generator polynomial
C(x) =)(Jl+~+'JI!8+'JI!5+y!4+XI8+Xl15+ X14+XI2+X11 +x10+>C'+>C'+~+x"+)(J +x+ 1

C(x) represents a unique polynomial remainder produced by the receiver upon reception of an
error-free sequence, I.e. C(x) =)(J2*L(x)/G(x)

R(x) The remainder polynomial that Is of degree less than 32
P(x) The remainder polynomial on the receive checking side that is of degree less than 32
Q(x) The greatest multiple of G(x) in)(J2*F(x)+X<*L(x)

20

3.2 Frame Check Sequence (FCS)

a*(x) =)(l2*a(x)

M(x) The sequence that Is transmitted
M*(x) The sequence that is received

FCS generation

FCS = L(x) + R(x) I.e. the one's complement of R(x)

[)(l2*F(x) + x"*L(x))jG(x) = a(x) + R(x)jG(x)

then M(x) =)(l2*F(x) + FCS

FCS checking

The process of checking involves dividing the received sequence M*(x) by G(x) and testing the
remainder. Because possible leading zeros does not yield a unique remainder, direct division Is not
possible. Thus a term L(x) is prepended to M*(x) before it is divided.

)(l2*[M*(x) + xk*L(x))jG(x) = a*(x) + P(x)jG(x)

In the absence of errors, the unique remainder Is the remainder of the division

P(x)jG(x) =)(J2*L(x)jG(x) = C(x)

So if errors occur P(x)jG(x) ¢ C(x)

An example implementation of the above FCS circuit is shown In figure 3.1.

figure 3.1, An example implementation of a FCS circuit

21

4. FOOl developments
Unlike most new technologies FOOl seems to fulfil an immediate need of many users. Mostly a lag
between the introduction and the acceptance of a new technology occurs because most users do not
have an immediate need for It. New technologies of any kind are automatically suspected until they have
proven their usefulness in the real world. One may discuss wether or not FOOl fulfils an immediate need
of (how?) many users. But FOOl has garnered an enormous amount of acceptance at the user level (the
most important level), and ANSI has not even finalized the complete standard yet.

One can distinguish three different phases of the FOOl usage territory, see chapter 2.1 :
- Back-end: high speed point-to-point network, mainframes, file servers
- Backbone: networks, LANs
- Front-end: desktop. workstations

As the different FOOl usages grow, alternative physical media approaches that facilitate connection of
FOOl to the desktop are getting careful consideration. Because lowering the cost of installing FOOl and
providing alternate cable plan compatibility is the key to widespread applications. Users will benefit as
more and more of the network power offered by FOOl becomes available to the current applications and
a host of new applications.

Built-in management protocols and services designed into FOOl's station management (SMT) portion
provide the highest level of network manageability of any LAN developed as a standard. With the ability
to remotely configure FOOl stations, setting their operating parameters and policies regardless of
equipment vendor, FOOl advances true multivendor network management. Users are ensured that all
vendors must implement interoperable management for FOOl, as specified In the standard. This
Increases the users confidence that multi vendor equipment may be reliably Integrated Into their
heterogenous networks, so that investments keep their value.

These two issues, lowering the costs and the growth in the confidence that the Investments keep their
value, predict a great future for a wide spread FOOl.

Many users first installing FOOl networks as backbones. interconnecting their lower-speed LAN
subnetworks with bridges and routers to form global area networks. Most common first-generation
networks, whether Ethernet or Token Ring, are increasingly star wired with either twisted pair, coax or
fiber-optic cables to concentrators installed in wiring closets for erasure of management and control.
Coupling these concentrated networks with FOOl lets users take some advantage of FOOl's speed and
potential while preserving the Investment they already made in their first-generation network.

More and more of today's local computer networks experience performance bottlenecks that occur
much closer to the user, in many cases the problem is right at the desktop or server. Bringing FOOl as
close as possible to these systems can provide network performance levels sufficiently higher than that
achieved when FOOl is used only as a backbone. The growth of this problem Is one of the factors that
determine the success of FOOl. Only If one does really need the FOOl potentials one will consider to
invest in FOOl.

As with all new technologies, cost remains higher than first-generation networks, but the increased
volume, as manufacturers begin shipping more and more units, is already reducing costs and is sure
to continue bringing them down.

Despite Its inherent reliability, FOOl has some shortcomings that may hamper users and its deployment.

- FOOl's speed poses diagnostic and management challenges. With an FOOl ring running close to its
100 Mbps throughput, FOOl network analyzers have to be able to capture far more packets than
with Ethernet or Token Ring, and they have to be able to do It much faster. Only few analyzers
are able to capture all data In real time at such speeds.

23

4. FOOl developments

- FOOl may be too robust for Its own good. An FOOl network can recover from a noisy line condition
or a lost token with only a few microseconds of downtime. Users may not even noticel
Unfortunately if no one notices the ring going temporarily down, then no one knows a problem
even existed until It is too late. When the users notice a problem on the FOOl, It Is usually
catastrophic.

- If any node on the FOOl ring goes bad, Its downstream neighbour will automatically remove It from the
network without notification, regardless of Its function. Users accessing a critical host acros~ an
FOOl ring could suddenly find themselves with no link to the mainframe, if the mainframe-to­
FOOl connection begins to have problems.

4.1 Managing an FOOl network

FOOl applications are far more complex than with other LAN topologies. Since It was Initially deployed
as a back-end technology. Managing an FOOl network not only means managing the backbone, but also
keeping an eye on the other subnetworks. however, SMT, the network management portion of FOOl, is
not compatible with any other industry-standard network management protocols, such as the Simple
Network Management Protocol (SNMP) or OSl's Common Management Information Protocol (CMIP).
Network managers need to be able to access both SMT and SNMP data to simultaneously manage their
FOOl backbone and their Ethernet and Token Ring subnetworks, ideally all from a single screen.

SMT seems to pose as many problems as It solves, if only because the controversy surrounding Its
Implementation is delaying the standard's finalization. The central Issue is a portion ofthe SMT document
called Parameter Management Frame (PMF), that Is currently optional, but that many FOOl vendors
would like to see made mandatory (except the ones that already have a streamlined implementation).
While PMF adds performance tuning capabilities and Is necessary to access large chunks of the FOOl
Management Information Base (MIB).

SMT Is not compatible with SNMP, the most popular network management protocol at this moment.
While SMT provides detailed information about what is going on the FOOl ring, It does not cross network
boundaries, like bridges or routers, It can not provide Information about subnets. While SNMP allows
users to manage an entire inter-network, It does not provide detailed management Information for each
FOOl node. With an SMT-to-SNMP proxy agent In the FOOl concentrator, all the stations on the FOOl
ring could communicate their management information via SNMP to the network management console.

Dual-homing

One special network architecture is the dual homing architecture [37]. This architecture dictates that only
concentrators should be connected to the dual ring and that all other devices should be attached to the
concentrators. Essential devices like bridges or other cascade concentrators that need redundant links
are connected to two separate concentrators.

Dual homing Is preferable mainly from a management standpoint. Having to manage a single type of
device, rather than several devices, streamlines network monitoring which Is an Important simplification
with large networks. One of the primary advantages of having only concentrators connected directly to
the dual ring is that It allows managers to define local rings. Network managers can section off the
nodes attached to a single concentrator into a local ring that does not communicate with the primary
ring.

With this local ring, managers can then repair faulty nodes without bringing the entire network down.
This local ring also offer some performance benefits (large file transfers on one local ring instead of the

24

4.1 Managing an FOOl network

primary ring). And It also could be used to Isolate a group of users with stringent security requirements
from the rest of the LAN.

4.2 Media connection developments

FOOl Is, by nature, fiber optic. Although lower-speed networks like Ethernet can be supported with
820 nm, the high data rates supported by FOOl require 1300 nm optics. Using this 1300 nm optics
Increases operating distance at FOOl speeds by minimizing signal dispersion caused by the fiber-optic
cable's inherent group delay characteristics (which Is near1y constant at 1300 nm while 820 nm Is
excessively variable). The use of multimode fiber (62.5/125 micron) and LEOs limits operating distance
compared by singlemode fiber and lasers, but makes FOOl less expensive.
There are two major developments on this territory, one is the extending (altering) of the operating
distance and the other is the decreasing of the connection costs.

Extending the operating distance

The 2 km operating distance specified by the original multimode PMO satisfies the connection
requirements of many FOOl stations but is not sufficient for widely distributed systems. Another FOOl
PMO standard (SMF-PMO), see chapter 2.10 and figure 4.1, extends FOOl's geographic reach, specifying
how two FOOl stations can be separated by 60 km of cable without the use of an amplifier (or repeater).
This standard works with lasers and slnglemode fiber (0.5 micron) to minimize dispersion and Increase
operating distance.

The multimode and singlemode transceiver operate using the same 1300 nm wavelength light and thus
can be mixed In the same network since they maintain optical compatibility.

Prior to the availability of FOOl concentrators the only FOOl connection alternative was to attach systems
directly to the dual-ring trunk. Now that concentrators are available and near1yall users want to star their
networks, alternative PMO specifications supporting reduced-dlstance horizontal connections between
the wiring closet and end-stations are being investigated.

While the two existing PMO specifications are applicable for concentrator ports, surveys have Indicated
that more than 95% of the end-stations star wired to concentrators are less than 100 meters from the
wiring closet. Because this Is only 5% of the 2 km distance specified by the original multimode PMO,
and because the media of choice for star-wired LAN installations Is either twisted pair (coax) or fiber,
opportunities exist for developing other FOOl PMOs.

Coaxial cable was eliminated as a potential media because it did not provide a good fit with the current
standard. This Is primarily because the connection management relies on a series of bit level signalling
handshakes. This was specified with the assumption of the existence of a full duplex link. Coaxial cable
Is a simplex media and it would be a costly solution to double up the cabling requirement. If a single
cable was to be used the electronics required to implement duplex signalling would also be to costly.

Two recently formed X3T9.5 working groups will devote their efforts to developing alternative PMO
specifications for horizontal distribution of FOOl LANs. Because a great number of users' bUildings and
campuses Is already wired with twisted-pair cabling, one group Is exploring running FOOl over shielded
or unshielded twisted-pair cabling for horizontal connections. The other group is determining how the
cost of multimode fiber-optic PMO components (the optical transmitters and receivers, cables and
connectors) can be reduced for horizontal connections.

25

4. FOOl developments

Low-cost fiber PMO

The low-cost fiber group Is working to develop a low-cost fiber PMO (LCF-PMO) with relaxed
specifications for the optical transceivers and connectors to lower their manufacturing costs while
maintaining optical compatibility. Maintaining optical compatibility means that the 1300 nm will continue
to be used, even though power, receiver sensitivity and duplex connector specifications may change.
This approach ensures flexibility, allowing systems with various PMOs to be connected, and the lowest
total system cost.

Since the horizontal cabling from a wiring closet to most users' desks Is substantially less than FOOl's
original 2 km specifications, shortening the distance requirement should make It easier for manufacturers
to reduce the costs of optical components. The FOOl PMO standard does not specify operating distance
directly in meters of optical cable. Rather a loss budget describing the signal energy in decibels available
between the optical transmitter output and the optical receiver Input Is specified. This loss budget can
partially be consumed by all elements intervening in the cable plant connection between two active FOOl
station Interfaces.

Currently the multimode PMO specifies a link budget of 11 dB while link budgets of about 7 dB are being
considered for the LCF-PMO, this should result in reliable operation at distances of at least 500 meters
(2 km with the 11 dB link budget).

Twisted-pair PMO

The twisted-pair group Is still unclear about which twisted-pair cable will be used. Unfortunately, nearly
all installed twisted-pair cable plants are unshielded and there are many versions with many different
specifications. Besides, operating unshielded twisted-pair at 125 MHz is substantially more difficult and
therefore more costly than operating on shielded twisted-pair. So the unshielded twisted-pair (UTP)
alternative Is not as obvious as it may seem, looking at the already Installed cable length.

Although some are advocating twisted pair as a lower cost alternative to fiber, this cost advantage is
most likely achieved only on specific types of shielded twisted pair. However, many user sites require
installation of new cable plants before they can support operation on (a specific) shielded twisted-pair.
But, when users commit to the expense of a new cable plant, they almost always install a combination
of fiber and UTP.

Although it is possible to support both shielded and UTP cable with one PMO Interface, this solution
costs will most likely be higher than a shielded-only solution. Clear statements of objectives, direction
and decisions on the tough Issues are required quickly for the twisted-pair/PMO development effort to
be successful.

4.3 FOOl enhancements

Widening FOOl

Other alternate media work Is helping to extend FOOl's geographic reach. Telephone companies will
soon be offering synchronous optical network services. An ANSI group Is working on a physical layer
mapping, see figure 4.1, to allow Sonet (Synchronous Optical NETwork) to carry full-bandwidth FOOl
traffic and make an enterprise "LAN" possible that connects many users across cities or In different cities.

26

4.3 FOOl enhancements

BrQadening FOOl

FOOI·II, see chapter 2.7, builds Qn the basic services Qf FOOl tQ prQvide a mechanism fQr suppQrting
bQth asynchrQnQus packet data and ISQchrQnQus circuit switched data Qn the same LAN. FOOl-II
Qperates with the same PMO layer as specified fQr FOOl. Requiring Qnly relatively minQr enhancements
tQ the MAC and PHY layers Qf FOOl. Its additiQnal functlQns are defined in the hybrid ring cQntrQI (HRC)
dQcument, see figure 4.1.

FOOl fQIIQw-Qn

AnQther FOOl enhancement Is called FOOl fQIIQw-Qn (FFOL), which will Include services Qperatlng at
speeds ranging frQm 600 megabits per secQnd tQ mQre than 1 gigabit per secQnd. FFOL will prQvide
cQnnectlQns tQ an array Qf wide area netwQrk (WAN) services, including the synchrQnQus Qptical
netwQrk.

Requirements fQr the next generatlQn FOOl, a prQpQsal:

- The ability tQ prQvlde a backbQne fQr mUltiple FOOl netwQrks.
- Efficient intercQnnectiQns tQ WANs such as BrQadband ISDN (BISON).
- SUPPQrt fQr integrated services, including data, graphics, videQ and audlQ.
- An initial data rate Qf less than 1.25 Gbitjsec (easy mapping Qn existing carriers).
- Data rates matched tQ the SynchrQnQus Digital Hierarchy.
- Duplex links fQr reliability.
- The ability tQ utilize existing FOOl cable plant, where practical.
- The ability tQ Qperate Qver leased-line pUblic netwQrk links, such as SQnet.
- SUPPQrt fQr bQth singlemode and multimode fiber.
- Access and reCQvery prQtQcQI relatively insensitive tQ netwQrk size.

FFOL is part Qf a larger, multistage standards effQrt tQ increase functiQnality Qf FOOl. The first part will
map FOOl QntQ the synchrQnQus Qptical netwQrk fQr cQnnecting Widely dispersed rings. An interface tQ
SQnet will give FOOl users the ability tQ rQute traffic Qver IQcal exchange and IQng-distance carrier
netwQrks tQ CQnnect FOOl netwQrks. AnQther stage, FOOl-II, will add circuit-switched vQlce, and high­
quality audiQ and videQ cQmmunlcatiQns, as discussed eariier.

Once FFOL standards are in place, new equipment will be pQsltiQned tQ take advantage Qf the
standard's features. EXisting FOOl systems can make the transitiQn tQ FFOL with the additiQn Qf
hardware and sQftware module enhancements.

An FFOL standard prQpQsal shQuld SUPPQrt ring and tree physical network tQpQIQgies. It shQuld prQvide
specific management mechanisms fQr netwQrk cQmpQnents, Including cQnnectiQns, statlQns and prQtQcQI
entities, while prQviding fault iSQlatiQn, repQrting and recovery mechanisms. It shQuld alSQ prQvide access
tQ circuit-switched services, as well as asynchrQnQus and asynchrQnQus-transfer-mode (ATM) like packet
services.

The fQIIQwing setQf FFOL standards prQjects have been propQsed [36}:

- Physical layer medium dependent standard (PMO) specifies the private Qptical fiber links and related
optical cQmpQnents. It WQuid include single- and multimode fiber with a signalling rate capable
Qf data speeds in the 600 Mbitjsec tQ more than 1 Gblt/sec range.

27

4. FOOl developments

CS·MUX LLC
CIrcuit Swltd11"11 ~~nkMulllplexer(a)

+
FOOl

I·MAC MAC I~
COMPONENTS

Iaochronoua MAC~ _
Media Acceaa I~

,.
Control,.

• SMT

H·MUX HybItd Mulllplell8l',.
SllIIIon

DII%II Ulk HRC ~"IICon~ '"'
Management

Layer

PhysIcal
PHY PhysJcaJ Laywr ProloooI

I~
Layer '~

,.
..,..

....
To: SPM SMF·PMD PMD

SONET~~ SONET Physical Single Mode ~ Physical Layer, ~
STS-3c

Layer Mapping 4- F1ber·PMD Medlum
~ Dependent ,.

figure 4.1, Structure of FOOl standards

- Physical layer protocol standard specifies the encode/decode clocking and data framing over the PMD
and Sonet links. This standard would be scalable from the STS-3 (155.5 Mbit/sec) to STS-48
(2.4Gbitjsec) data rates in the digital signalling hierarchy.

- Service multiplexer standard specifies access to the medium, addressing, data checking and packet
generation and reception for circuit-switched service.

• Station management standard provides control for the physical layer. PMD, service multiplexer,
asynchronous media access control, and isochronous media access control standards. It also
specifies the station configurations, topology configuration and the control required for proper
operation of stations as a member of the FFOL network. Station management also provides the
interface to the FFOL network management agent.

28

5. Functional specifications
This chapter contains a combination of outlines of ANSI documents on the PMD [2], the PHY [3], the
MAC [4], and the SMT [5].

The PMD document defines the lower half of the Physical layer in the 150/051 model.
The PHY document defines the upper half of the Physical layer in the 150/051 model.
The MAC document defines the lower half of the Data Link Layer in the 150/051 model. The upper half
may have a null function.
The SMT document defines a Station Management, which is available to all PMD, PHYand MAC across
ISO/051 boundaries.

5.1 Functions of PMD

PMD has to execute the following functions:
- Transfer electrical signals to light and light to electrical signals.
- Detect wether the incoming light power is above or below the detection threshold.
- Optionally perform a bypass function.

5.2 Functions of PHY

PHY has to execute the following functions:
- Clock synchronization with the upstream code-bit data stream.
- Decoding of the incoming bitstream for use by higher layers
- Encoding and decoding between data and control indicator symbols, and code-bits, medium

conditioning and initializing.
- Synchronization of incoming and outgoing code-bit clocks.
- Delineation of octet boundaries for transmission to or from higher layers.
- Information to be transmitted Is encoded by the PHY into a grouped transmission code.

5.3 Functions of MAC

MAC has to execute the folloWing functions:
- Construct frames from LLC data, SMT data and MAC data.
- Detect that a token is captured.
- Transmit the frames in correct order.
- Receive frames.
- Reconstruct the data from the frames.
- Direct the data to the right entity.

5.4 Functions of SMT

SMT must monitor the entire station, supply timing values to the MAC, negotiate about bandwidth
sharing keep the addressing up to date and execute other management functions.

29

5. Functional specifications

5.5 Services from PMD to PHV

The services from PMD to PHY allow the PHY to exchange a NRZI code-bit stream with peer PHY
entities. The schematic is given in figure 5.1.

IPHY IPM..UNITDATA.nlque&t PM..UNITDATAJndIcadca PM...SIGNAL.lndicatioa

~
"'I:t

~~I~ ~ l L

i ~ ~!.I , r g a
I PM..UNImATA.nlque&t PM..UNITDATA.iDdicadca PM...SIONAL.iDdicatioa I
·PMD

figure 5.1, Schematic of the services between PMD and MAC

PM UNITDATA.request:
- Defines transfer of NRZI data from PHY to PMD.
- PM Request is a continuous NRZI code.
- PHY continuously generates the current polarity.
- Receipt causes PMD to convert the electrical NRZI code-bit sequence Into the optical equivalent,

responding to the level of PM Request. This may only be done after receipt of a
SM_PM_CONTROL.request, with Control_Action set to Transmit_Enable.

PM UNITDATA.lndication:
- Defines transfer of NRZI data from PMD to PHY.
- PM Indication is a continuous NRZI code.
- PM=lndlcation is continuously sampled by the clock recovery and receive function of the PHY.

PM SIGNAL.lndication:
- Indicates from PMD to PHY whether the received optical signal is above (Signal Detect= on) or below

(Signal Detect=off) the detection threshold of PMD. -
- The primitive is generated on a change of the status.
- Effect:

- Off: PHY enters Quiet Line-state.
- On: PHY enables detection of other line-states.

5.6 Services from PHV to MAC

When no MAC is Inserted In a station (pure repeater), then the interface is PHY-to-PHY.
Services are synchronous: One indication causes exactly one request. The schematic is given in
figure 5.2.

PH UNITDATA.request:
- Defines data transfer from MAC to PHY.
- Each PH_Request stands for one: J. K, T. R, S. n, H and optionally Q or V (n = 0 .. F).

30

5.6 Services from PHY to MAC

MAC
PlfJNVAUD.IadIaodoltIJ'lLUNJ1DAT~ PJLUNrIDATA.iDdicoIIca PlLUNJ1DATA..STA'n1SJDdicIIIcIIl

i, iJ to

J'
~ ;i to

I
F

f »
IPlLUNJ1DAT~ PJLUNrIDATA..1DdicaIIm PlLVNnDATA..,STA'n1S.iDdIcodaD PlUNVA1JD.llldlcadcm1

PHY

figure 5.2, Schematic of the services between PHY and MAC

• Generated by MAC when PHY has given an indication (according to [4] it is generated whenever MAC
has a symbol to transmit; after that MAC has to wait for an indication).

- PHY encodes the received symbol and transmits it.
- When ready for another request, PHY sends a PH_UNITDATA_STATUS.indication.
- Q, H and V are never generated by MAC except when:

- The repeating function Is located in the physical layer: H can be generated by MAC.
- The repeat filter function is placed after the PH_UNITDATArequest interface.

PH UNITDATAindication:
- Defines transfer of data from PHY to MAC.
- Each PH Indication stands for one: J, K, T, R, S, n, H and optionally a or V (n = 0 .. F).
- MAC processes the received symbol and generates a PH UNITDATArequest (with an output).
- a, V indication is not required when the repeat- filter function Is located before the

PH UNITDATAindication interface.

PH UNITDATA STATUS.lndication:
- Signifies the transmission completion status.
- Responds to every PH UNITDATA.request. and synchronizes the MAC data with the rate of the

medium (when transmission status is received by MAC, it indicates that the PHY can receive
another). -

- On receipt MAC is allowed to generate another request.
- PHY provides synchronous service: PH UNITDATA STATUS.indication requires an Immediate

PH_UNITDATArequest. - -

PH INVALID. indication:
- pRy tells MAC that the symbol stream Is invalid.
- The primitive Is generated on:

- Q. H, Master. Noise LIne-state detection
- Input error conditions detected by PHY, If not reported as Input violation M symbols In

PH UNITDATAindication.
- Receipt causes the MAC receiver to signal FO Error, or FR received if ED is already received, to the

MAC transmitter and enter the state RO. Depending onthe originating state. Frame Ct, Error Ct
and Lost Ct are incremented as needed. - -
FO_Erroror FR_Received causes the MAC transmitter to enter state TO.

31

5. Functional specifications

5.7 Services from MAC to LLC

The services from MAC to Logical Link Control (LLC) allow the local LLC to exchange LLC SDUs with
peer LLC entities. The schematic is given in figure 5.3.

IILC
MA...TOItEN......-1MA...llNITDAT","-1IIl MA...llNITDAT~ MA...UNrI'DATA.,.STA'J1lS hMIle.....

'" '"

~llNITDATA.nqaoot MA...VNlTDAT4 "'dIeM.... MA_VNlTDATA..STATtIS ...Ie.....
MA...TOKEN.....-,

MAC

figure 5.3, Schematic of the services from MAC to LLC

MA UNITDATA.request:
- Defines transfer of one or more SDUs from a local LLC to a single peer LLC, or mUltiple in case of

group addresses.
- Data transferred over the primitive:

FC_value(1), destination_address(1), M_SDU(1), requested_service_class(1), stream(1)

FC value(n), destination address(n), M SDU(n), requested service class(n), stream(n)
token class - - --

- Each set (1 to n) forms one frame and is referred to as a subrequest:
* FC value supplies the frame control field.
* destination address may be an Individual or group address. From this parameter the DA field

should be created. Address length is determined by the L bit in FC value.
* M SOU is the data to be transmitted by the MAC. MAC can determine thelength of the SOU

- from the SOU.
* requested service class is associated with each M SOU. It can be synchronous or

asynchronous. If asynchronous, then the requested token class and a priority level can
optionally be specified. - -

* stream: If Set then at least one other frame is following, If Reset then the last frame of this
request has passed.

* token class specifies the class of token that MAC has to issue on completion of the
transmission (at the end of the request), If no other request is pending that can be
honoured.
On synchronous service request the captured token has to be reissued.
On asynchronous service request the requested token can be restricted or
nonrestricted. When no SDUs were specified, MAC has to Issue the requested
token class Immediately.

The frames have to be transmitted in the order presented, regardless of the associated service
class. A frame cannot be transmitted when TRT Is expired Oate Ct'-'O) or because of the
requested service class and the current value of THT. In this casetransmission Is terminated
and a token Is Issued according to token class.
Subsequently a MA UNITDATA STATUS.Tndlcation Is Issued to LLC.
If transmission_status Is successful, then MAC may start transmitting the remaining frames on
the next opportunity, or MAC may require relssuance of a new MA UNITDATA.request.

- Generated by LLC whenever there is data to be transmitted or a token to-be issued.
- On receipt MAC adds all MAC specific fields dependent on the media access method, and passes the

frame through to lower entities.

32

5.7 Services from MAC to LLC

- This primitive Is the normal way to request the transfer of data. Token capture is implicit to this
primitive, and therefore there is no need for a MA_TOKEN.request primitive to be issued in
conjunction with It.

MA UNITDATA.lndication:
- Defines transfer of data from MAC to the local LLC.
- Data transferred over the primitive:

* FC value: value of the FC field in the frame.
* deStination address: Individual or group address specified by the DA field.
*·source address: Individual address specified by the SA field.
* M SDU: MAC SDU received by the local MAC entity.
* reception status: Indicates success or failure of the incomIng frame. It consists of two

elements:
1. Frame validity: FR GOOD, FR BAD. With FR BAD the reason has to be reported:
- Invalid FCS. The calculated FCS does not mateh the received FCS.
- Length error. Frame has an Invalid data length.
- Internal error. An Internal error has occurred preventing MAC from transferring a frame

to LLC while A and C are set.
2. Frame status: Received EAC and optionally other indicator values.

- Generated by MAC to indicate the arrival of a LLC frame addressed to this station.
- Effect of receipt is free implementable.

MA UNITDATA STATUS.lndication:
• Provides an appropriate response to MA UNiTDATArequest, indicating success or failure of the

request.
- Data transferred over the primitive:

* number of SDUs: Reports the number of M SDUs transmitted on a given access opportunity
as result of this request. -

* transmission status: Used to pass information back to the requesting LLC. It Indicates the
success or failure of the previous associated MA UNITDATArequest. If this specified
more than one M SDU, transmission status may apply to all of the SDUs transmitted,
Indicating if air were acknowledged. In this case the resolution of the
transmission status is implementer defined.

* provided service class: Specifies the service class that was prOVided for the transfer.
- Generated by MAC in resPonse to a MA UNITDATArequest.
- Effect of receipt is free implementable. -
- If there are multiple outstanding requests, additional information may be reqUired for correct

association. This may be implied by servicing the requests in a FIFO manner. Possibly MAC
maintains multiple queues for different class of service, servicing each queue In a FIFO manner.

- It is assumed that if a MAC sets the A and C IndicatOr, the frame Is delivered or an internal error is
reported to the correspondIng LLC.

MA TOKEN.request:
- LeC requests the capture of the next token.
- requested_toke_class may be restricted or nonrestricted. Optionally a priority level may be specified.
- Generated by LLC when data of a time critical nature Is to be transmitted.
- On receipt, MAC captures the next usable token of type requested token class. MAC enters state T2

and transmits I symbols until a MA UNITDATA.request is recelved,-or TRT expires. In the latter
case, MAC Issues another token of the same token class as was captured.

- This primitive allows for longer preambles than usual and therefore should not be used for data transfer
which is not time critical.

33

5. Functional specifications

5.8 Services from PMD to SMT

Services from PMD to SMT allow the local SMT to control the operation of the PMD. When PHY services
are requested, they are overruled by SMT requests. The schematic is given in figure 5.4.

PMD SMT
CoolroI..Action

~CONI'ROL.request S~CONI'ROL.request

ControLAetlOll
S~YPASS.RlCJIH!8l SMJ'M...)3YPASS.request

SlpaI J'leted(stalUIl)
SM_PM..SIONAL.iDdicatiOD SMJ'M_SlONAL.indicatim

figure 5.4, Schematic of the services from PMD to SMT

SM PM CONTROL.request:
- SMT forces the PMD transmit function to place a logic ·0" optical signal on the medium.
- Control Action can be Transmit Enable or Transmit Disable.
- Generated by SMT whenever it wants to enable or disable the PMD optical transmitter.
- On receipt of Transmit Disable, PMD transmits a logic "a" optical signal (no light). This takes

precedence over PM UNITDATA.request.
On receipt of Transmit_Enable, PMD transmits the optical signal requested by
PM_UNITDATA.request.

SM PM BYPASS.request:
- Generated by SMT to PMD, Indicating that It wants to join or leave the FOOl network.
- Control Action can be Insert or Delnsert.
- Receipfof Insert causes PMD to activate the optical switch, such that the MIC (Media Interface

Connector)inbound signal Is directed to the optical receiver, and the output of the optical
transmitter is directed to the MIC output.
Receipt of Deinsert causes PMD to deactivate the optical switch, such that the MIC inbound
signal is directed to the MIC output, and the output of the optical transmitter Is directed to the
input of the optical receiver. This last state Is called the bypassed mode.
Optical bypass switches are optional, so this primitive is not required for stations which
do not employ optical bypass switches.

SM PM SIGNALindlcation:
- PMD indicates to SMT via Signal_Detect whether the Inbound optical signal level is above (status= on)

or below (status =off) the detection threshold.
- Generated by PMD to indicate the status of Signal Detect.
- SMT determines status, and takes the actions speCified by the SMT state machines.

5.9 Services from PHY to SMT

Services from PHY to SMT allow the local SMT entity to control the operation of PHY. When MAC
services are requested to the PHY, they are executed first (except with SM PH L1NE-STATE.request
commands). The schematic is given in figure 5.5. - -

34

5.9 Services from PHY to SMT

PHY SMT
J..ine.stat.e_aetioD.

SM....PH.J.,JNE-TATE.req1lC8t SM....PHJ,.INB-STATE.request
IIlabISJeport

SM..PlLSTA1US.lndkation SMYH..STA1USJDdicaticm

Control..Acticm

SMJIl.CONTROL.request RequeswCStatus SM..PlLCONTR01..requelt

figure 5.5, Schematic of the services between PHY and SMT

SM PH L1NE-STATE.request:
- SMT requests PHY to send a stream of symbols (to PMD):

- TRANSMIT QUIET: PHY must send Q symbols to PMD continuously (no transitions on the
medium. this is the initial state of PMD).
For a proper effect on the optical signal, SMT must Issue an appropriate
SM PM CONTROL.request to PMD.

- TRANSMIT HALT: PHY must send a continuous stream of H symbols to PMD.
- TRANSMIT-IDLE: PHY must send a continuous stream of I symbols to PMD.
- TRANSMIT-MASTER: PHY must send an alternating stream of Hand Q symbols to PMD.
- TRANSMIT-PDR: PHY must send the symbol stream presented by MAC on the

PH UNITDATA.request interface to PMD.
- The primitive is generated on station insertion and removal.
- Receipt causes PHY to send a continuous stream of symbols of the type specified by Line-

state action.
- The commands take precedence over MAC-to-PHY commands.

SM PH STATUS.indication:
- pRy Informs SMT about the line-state activity status changes.
- Status report can be:

: QUIET LINE-STATE RECEIVED: Quiet Line-state entered.
- HALT LINE-STATE RECEIVED: Halt Line-state entered.
- MASTER LINE-STATE RECEIVED: Master Line-state entered.
- IDLE L1N-E-STATE RECEIVED: Idle Line-state entered.
- ACTIVE LINE-STATE RECEIVED: Active Line-state entered.
- NOISE liNE-STATE RECEIVED: Noise Line-state entered.
- L1NE-STATE_UNKNOWN: A line-state Isexited and the entry conditions to another line-state

are not yet satisfied. Indication of the last known line-state must be included.
- The primitives are generated on entrance of the state.
o Receipt causes SMT to take the actions specified by the SMT state machines.

SM PH CONTROL.request:
- SMT controls the operation of PHY.

35

5. Functional specifications

- Generated by SMT for the PHY to take action specified by Control_Action:
- Reset:

* PHY resets the transmit mode to TRANSMIT QUIET.
* PHY resets the elasticity buffer function. -
* PHY resets the line-state to LINE STATE UNKNOWN.
* PHY resets the line-state counters. -
* PHY resets the smoothing function.
* PHY resets the repeat filter function.
* PHY possibly executes extra functions.

- Present Status: PHY presents the status to SMT via Requested Status.
- Request Loopback: PHY enters the loopback mode (looping-back as close to PMD as

possible). to test the local station; symbols on PH UNITDATA.request are directly
passed through to PH UNITDATA.indication. Symbols may be changed by the repeat
filter function. -
PHY also presents continuous NRZI code-bits to PM UNITDATA.request, such that no
light Is emitted. -

- Cancel_Loopback: PHY leaves the loopback mode.

5.10 Services from MAC to SMT

The services from MAC to SMT are used by SMT to monitor and control the operation of MAC. The
schematic can be found in figure 5.6.

MAC SMT
I"d8lcrlplion

SM_MA_INmALlZE_PROTOCOLrequest SM_MA....INITIAUZE,..PROTOCOLr*luest
ltalus

SM_MA_INIT1AUZE_PROTOCOLconfirm SM_MA_INITIALIZE...PROTOCOLconfirm
controLaOllon. beacon _lnlormallon

SM.-MA.,.CONTROLrequeat reqU8St8CLcondltion
SM_MA....CONTROLreq~

requ8lted_status

status_report
SM_MA.,.STATUSJndlcatlon SM.-MA....STATUS.lnclcation

see d8lcrlption
SM.-MA.,.UNITDATA.requeat SM_MA....UNITDATA.request

see description

SM.-MA....UNITDATA.lndleation SMJtA...UNITDATA.lndlcation
see d81atpllon

SM_MA.,.UNITDATA.,.STATUS.lndlcation SMJtA...UNITDATA.,.STATUSJndIcIlIon
requeatecLtok8l\..c:IasI

st.CMA...TOKEN.request SM_MA...TOKENnquest

figure 5.6, Schematic from the services from MAC to SMT

36

5.10 Services from MAC to SMT

SM MA INITIALIZE PROTOCOL.request:
- Used by SMT to reset MAC and optionally to change operational parameters of MAC. The change is

not necessary when the MAC is operational on the ring.
- Data transferred over the primitive:

* individual MAC address: (16 bit): 16 bit address for MAC to use as Its individual address.
* IndividuarMAC-address: (48 bit): 48 bit address for MAC to use as Its individual address;

both a 16-and a 48 bit address can be supplied.
* group MAC addresses: Addresses that MAC must use as a group address.
* T Min-value: Specifies the minimum TIRT supported.
* T-MaX value: Specifies the maximum TIRT.
* TV>< vaiue: Specifies the value of TV)(to be used.
* T_ReCLvalue: Specifies the requested TIRT for asynchronous traffic.
* T Neg value: Specifies the negotiated TIRT for asynchronous traffic.
* T-Pri value: Specifies a set of priority token rotation time thresholds.
* Indicate for own frame: MAC must also receive and indicate to SMT, frames that it has

transmitted-itself.
* indicate for rev only good frame: Value MAC uses to decide between:

1.-Generating MA_UNITDATA.indication and SM_MA_UNITDATA.lndication only on
good frames.

2. Generating these primitives on all frames.
Every parameter is optional. If some parameter is omitted, MAC must use the current value
(most recently provided, else the default).

- Generated by SMT when it requires MAC to reconfigure.
- On receipt MAC must reconfigure as denoted by the parameters. After completion, MAC must generate

a SM MA INITIALIZE PROTOCOL.confirm.- - -
SM MA INITIALIZE PROTOCOL.confirm:
- Statuslndicates to-SMT the success or failure of the SM MA INITIALIZE PROTOCOL.request.
• Generated by MAC on completion of the request. - - -
• Receipt signifies to SMT that the desired reconfiguration has been accomplished.

SM MA CONTROL.request:
- Used by SMT to control operation of MAC.
- Data transferred over the primitive:

* control action: Includes one of Reset, Beacon, Present Status, Reset Counters,
Interrupt Upon Conditions or Send Bad FCS. - -

* beacon information: Contains the DA field-andthe information field for the beacon frame, if
Beacon is specified by control action.

* requested status: Includes current values of all counters, timers, R Flag, the current Receiver
state and the current Transmitter state. -

* requested condition: Includes at least one of capture of token, receipt of frame or
passing of token. - - - -

- Generated by SMT to Cause MAC to take the action specified by control action.
- Receipt causes MAC to take the following actions: -

1. control action Is Reset or Beacon:
- MAC generates a MAC reset.
- MAC receiver enters state RO.
• MAC transmitter enters state TO.

2. control_action is Beacon (actions are taken after 1. Is executed):
MAC transmitter enters state T5. Beacon frames must be constructed using
beacon Information.

3. control action is Present Status:
MAC presents the status via requested_status.

37

5. Functional specifications

4. control action Is Reset Counters:
MAC resets all cOUnters.

5. control action is Interrupt Upon Condition:
MAC signals SMT when any of the requested conditions is detected.

6. control action Is Send Bad FCS: -
MAC sends a bad FCS with a specific frame.

SM MA STATUS.lndicatlon:
- Informs SMT about errors and significant status changes.
• Status report specifies appropriate states (p20 [4]).
- Generated by MAC when any of the conditions occur.
- Receipt causes SMT to generate a SM_MA_UNITDATArequest.

SM MA UNITDATArequest:
- Defines the transfer of SMT SDUs from SMT to MAC. The same format as for PDUs Is used.
- Data transferred over the primitive:

FC_value(1), destination_address(1). M_SDU(1), requested_service_class(1), stream(1)

'"
FC value(n), destination address(n). M SDU(n). requested service class(n), stream(n)
token class - - --

- Each set (1-to n) forms one frame and is referred to as a subrequest
* FC value supplies the frame control field.
* deStination address may be an individual or group address. From this parameter the DA field

should be created. Address length Is determined by the L bit in FC value.
* M SDU is the data to be transmitted by the MAC. MAC can determine thelength of the SDU

- from the SDU.
* requested service class is associated with each M SDU. It can be synchronous.

asynchronous or immediate. If asynchronous, thenthe requested token class and a
priority level can optionally be specified. If Immediate. the frame has-to be send
immediately. without waiting for a token.

* stream: If set then at least one other frame Is following. If reset then the last frame of this
request has passed.

* token class specifies the class of token that MAC has to Issue on completion of the
transmission (at the end of the request). Jf no other request is pending that can be
honoured.
On synchronous service request the captured token class has to be reissued.
On asynchronous service request token class can benone. restricted or nonrestricted.
When no SDUs were specified. MAC has to issue the requested token class
immediately. - -

The frames have to be transmitted in the order presented. regardless of the associated service
class. A frame cannot be transmitted when TRT is expired Oate Ct"O) or because of the
requested service class and the current value of THT. In this casetransmission Is terminated
and a token is Issued according to token class.
Subsequently a SM MA UNITDATA STATUS,indicatlon Is Issued to SMT.
If transmission status Issuccessful. 'then MAC may start transmitting the remaining frames on
the next opportunity, or MAC may require reissuance of a new SM MA UNITDATArequest.

- Generated by SMT when there is data to be transferred to peer SMTs or atoken to be issued.
- Receipt causes MAC to append all MAC specific fields and fields that are unique to the media access

method. and pass the constructed frame through to the lower entitles.
- Capture of a token Is Implicit In this primitive, and therefore there Is no need for generation of a

SM_MA_TOKEN.request.

38

5.10 Services from MAC to SMT

SM MA UNITDATA.lndication:
- Defines the transfer of data from MAC to SMT (or SMTs In case of group addresses). It Is able to

report any SMT or MAC frame addressed to this station.
- Data transferred over the primitive:

* FC value: value of the FC field in the frame.
* deStination address: Individual or group address specified by the DA field.
* source address: Individual address specified by the SA field.
* M SDU: MAC SDU received by the local MAC entity.
* reception status: Indicates success or failure of the Incoming frame. It consists of two

elements:
1. Frame validity: FR GOOD. FR BAD. With FR BAD the reason has to be reported:
- Invalid FCS. The calculated FCS does not mateh the received FCS.
- Length error. Frame had an Invalid datalength.
- Internal error. An internal error has occurred preventing MAC from transferring a frame

to SMT while A and C are set.
2. Frame status: Received EAC and optionally other indicator values.

- Generated by MAC to indicate the arrival of a MAC or SMT frame addressed to this station. If Initialized.
this primitive is also generated on receipt of MAC's own frames. allowing examination of
elements of reception status for a frame that has circulated around the ring.

- Receipt causes SMT to generate a SM_MA_UNITDATA_STATUS.indication.

SM MA UNITDATA STATUS.indication:
- provides an appropriate response to SM_MA_UNITDATA.request. indicating success or failure of the

request.
- Data transferred over the primitive:

* number of SDUs: Reports the number of M SDUs transmitted on a given access opportunity
as result of this request. -

* transmission status: Used to pass information back to the requesting SMT. It indicates the
success or failure of the previous associated SM MA UNITDATA.request. If this
specified more than one M SDU. transmission status may apply to all of the SDUs
transmitted, indicating if airwere acknowledged. In this case the resolution of the
transmission status is implementer defined.

* prOVided service class: Specifies the service class that was prOVided for the transfer.
- Generated by MAC in response to a SM MA UNITDATA.request.
- Receipt indicates to SMT the success or-failure of the request.
- If there are multiple outstanding requests, additional Information may be required for correct

association. This may be implied by servicing the requests in a FIFO manner. Possibly MAC
maintains multiple queues for different class of service, servicing each queue In a FIFO manner.

- It is assumed that if a MAC sets the A and C indicator, the frame is delivered or an internal error is
reported to the corresponding SMT.

SM MA TOKEN.request:
- SMT requests the capture of the next token.
- requested token class may be restricted or nonrestricted. The priority level may optionally be

. specified. -
- Generated by SMT when data of a time critical nature Is to be transmitted.
- On receipt, MAC captures the next usable token of type requested token class. MAC enters T2 and

transmits I symbols until a SM_MA_UNITDATA.request is received, or TRT expires. In the latter
case, MAC Issues another token of the same token_class that has been captured.

- This primitive allows for longer preambles than usual and therefore should not be used for data transfer
which Is not time critical.

39

5. Functional specifications

5.11 Symbols

There are several kinds of symbols that can occur on the medium: Line-state symbols, control symbols,
data symbols and violation symbols.

Line-state symbols

On detection of a line-state symbol (0, H, I), the current data transmission process Is preempted and
abnormally terminated.
- 0: No transitions on the medium.
- H: Indicates control sequences or removal of violation symbols with a minimum DC component.
- I: Indicates a normal condition of the line between transmissions (contains pattern for clock recovery).

Control symbols

- SO: Consists of a JK sequence. SO delineates the starting boundary of a data transmission sequence.
It may occur when the line-state is IlS. Further it may succeed or preempt a previous
transmission. SO can be detected independent of any previous established symbol boundary.

- ED: Consists of aT. ED terminates all normal data transmissions, and may be followed by one or
more control indicator symbols. ED and the control indicators~ form a sequence of an
even number of symbols. When no control indicators are transmitted, the ED sequence consists
of a TT pair. ED cannot be detected Independent of previously established symbol boundaries.

- Control indicators: Consist of Set (S) or Reset (R) symbols, and appear directly behind the ED. They
specify logical conditions from a data transmission sequence, and may be altered by repeating
stations, without them changing the normal data. ED and control indicators must form an even
number of symbols. If that is not so, an extra T symbol must be added behind the last control
indicator.

pata symbols

A data symbol is built from a quartet of bits denoted by 0 .. F. A data symbol can be followed by any
data symbol. The PHY does not interpret the symbols.

Violation symbol

Indicates a condition on the medium that cannot be modeled by any other line-state. V symbols may
not be transmitted onto the medium.

5.12 Line-states

PHY reports the line-state to SMT via SM PH STATUS.indicatlon on a SM PH CONTROL.request. PHY
must report a PH INVALlD.lndication to-MAC when OlS, MlS, HlS or N'Ls is received. The line-state
can be determined by SMT at any time. On unknown line-state, lSU (Line-State Unknown) must be
reported to SMT along with the most recently known line-state. The line-state is unknown when the
current line-state is not valid anymore, and the criteria for entering another line-state have not been met
at the time.

40

5.12 Line-states

Quiet Line-state (QLS)•

PHY sends continuously Q symbols. This state is used as part of the physical connection establishment
process, and can Indicate the absence of a physical connection.
QLS is entered on loss of Signal Detect(on) from PMD or after having received 16 or 17 consecutive
Q symbols with Signal Detect(ori).
QLS Is left on reception of another symbol than Q with Signal_Detect(on).

Master Line-state (MLS)=
PHY sends an alternating stream of Hand Q symbols. This state is used as part of the physical
connection establishment process.
MLS is entered on reception of 8 or 9 consecutive HQ (or QH) symbol pairs with Signal Detect(on).
MLS Is left on reception of any symbol pair other than HQ (or QH), or loss of Signal_Detect(on).

Halt Line-state (HLS)•

PHY sends continuously H symbols. This state Is used as part of the physical connection establishment
process.
HLS is entered on the reception of 16 or 17 consecutive H symbols with Signal Detect(on).
HLS Is left on reception of another symbol than H, or loss of Signal_Detect(on)~

Idle Line-state (ILS)=
PHY sends continuously I symbols. This state Is used to establish and maintain clock synchronization.
It is used as part of the physical connection establishment process, and between MAC frames.
ILS Is entered on reception of 4 or 5 consecutive I symbols with Signal Detect(on) (Oock Detect
asserted if Implemented). --
The number of symbols mentioned may be increased with at most 11 bits, when the Elasticity
Buffer Is placed before the Line-state Detection function; it removes the maximum number of bits
(11).
ILS is left on reception of another than I, or loss of Signal Detect(on) (Clock Detect deasserted if
implemented). --

Active.Line-state (ALS)

When PHY transmits MAC frames to the physical link, it indicates that a physical connection In this
station Is enabled (MAC frame sequences send or repeated by this station with TRANSMIT PDR
enabled). ALS indicates that symbol stream on the physical link Is a MAC sequence, and that the
neighbouring PHY has enabled the physical connection.
ALS is entered on reception of a JK sequence independent of previously established code-bit
boundaries, with Signal_detect(on) (Clock_Detect asserted if implemented).
ALS Is left on reception of any other symbol than I, n, R, S or T (n = 0 .. F), or on loss of
Signal_Detect(on) (or Clock-Detect deasserted if Implemented), or on entrance of ILS.

Nolse_Line-state (NLS)

PHY may not transmit any symbol that can cause the neighbouring PHY to detect a NLS. NLS indicates
that the Incoming line Is noisy. When NLS persists, this line Is faulty.

41

5. Functional specifications

NLS Is entered on reception of 16 or 17 potential noise events, without satisfying the criteria for entrance
of another Line-state. A noise event can be:
- Decoding a a, H, J, K, or V symbol (or a symbol pair containing one of these symbols) with

Signal detect(on).
- An elasticity buffer error with Signal Detect(on).
- Decoding a mixed control and data-symbol pair with Signal Detect(on).
- Decoding a n, R, S or T symbol (or a symbol pair COntaining one of these symbols) with

Signal Detect(on) (Clock Detect asserted If implemented) while the last known or current Une­
state is not ILS or ALS. -

- If Clock Detect is implemented: Decoding an I, n, R, S or T symbol (or a symbol pair containing one
07 these symbols or JK) with Signal Detect(on) but Clock Detect deasserted.

The count of the noise events must be reset to zero when the criteria for entering or continuing another
line-state are satisfied.
NLS Is left on satisfaction of a criterium to enter another state. When the criteria for NLS and another
state occur simultaneously, the other line state takes precedence.

5.13 Coding

Encoding and decoding of the symbols is done In two stages. One is to convert the symbols from the
MAC to a NRZ code and vice versa. The other Is to convert the NRZ code to a NRZI code and vice
versa.

The sequence of the codes transmitted on the medium Is determined by the MAC. Via the symbols. the
MAC and the PHY exchange information:
- Line-state symbols.
- Control symbols.
- Data symbols, which are exchanged in groups of four bits (data-quartet).

A code-bit symbol consists of five code-bits. The assignment of the codes is already presented In
table 3.1.

5.14 PDU types

There are two Protocol Data Units (PDUs), tokens and frames. The token format is shown in figure 5.7,
and the frame format in figure 5.8.

_P_A---,--_SD_-,--F_C_I ED
figure 5.7, The token format

The token is used to obtain the right to transmit. Tokens must be recognized when received with a PA
of zero or more I symbols, Independent of preViously established symbol boundaries. When a token is
received, and cannot be repeated (due to ring timing or latency constraints), the receiving station must
Issue a new token.

The frame is used for transmitting MAC and LLC messages to other st8tlon(s). The information field may
be empty. MAC controls the maximum frame length as required by the physical layer. For counting the
frame length, all fields are used, inclUding 4 symbols of the PA. PHY requires a maximum frame length
of 9000 symbols.

42

SDPA

5.14 PDU types

FC I DA I SA [INFo I pes I ED] PS I
--------'----

figure 5.8, The frame format

PA: Preamble
Transmitted by the originator as a minimum of 16 I symbols. The length may be altered by the
SUbsequent repeating stations. A MAC Is not required to be capable to copy frames with a PA shorter
than 12 symbols. If it cannot repeat such a frame, then it Is not allowed to repeat any part of this frame.

SD: Starting Delimiter
Consists of a JK symbol sequence. This sequence is uniquely decodable, independent of previously
established symbol boundaries.

FC: Frame Control
Frame control Is built up from several parts: CLFF ZZZZ

C: Class bit, 0 indicates an asynchronous frame, 1 indicates a synchronous frame.
L: Address Length bit: 0 indicates a 16-bit address, 1 indicates a 48-bit address. This counts for

both the SA and the DA field.
FF ZZZZ: Indicate some kind of frame and extra information understood by the receiving

station(s), See table 5.1.

table 5.1: PDU types corresponding with the control bits [4]

CLFF ZZZ2to ZZZ2 POUtype
oxoo 0000 void fTame
1000 0000 non ra1~cted token
1100 0000 ra1~cted token
0l.00 0001 1111 SMTfTame
lLOO 0001 1111 MACfTame
CLOl 1000 rlll LLC frame
Cll0 1000 r111MId lor implementer
CLll mTMId lor luIure Ilandardlzatlon

J(• don't care
r •MId lor luture Implementations, must now be 0

Addresses
Each frame contains these two fields, In the order DA, SA. Addresses may be 16 or 48 bits, and each
station must be capable to decode 16-bit addresses. When a station can only decode 16-bit addresses,
it still must be able to operate In a ring where also 48-bit addresses are used. This station must be
capable to:
- Repeat frames with 48-bit addresses.
- Recognize the 48-bit broadcast address (all ones).
- React correctly to claim frames with 48-bit addresses.
- React correctly to beacon frames with 48-bit addresses.

A station using 48-blt addresses must have a minimum 16-bIt address capability:
- It has a fully functional 16-bit address.
- It must be able to recognize the 16-bit broadcast address (all ones).

The two address field formats are shown in figure 5.9.

43

5. Functional specifications

I I/O I UjL I 46 bits

I I/O I 15 bits I

48 bit address

16 bit address
figure 5.9, 16- and 48-bit address formats

Both kinds addresses have an I/G control bit. This stands for Individual or Group.
Only the 48-bit addresses have a U/L control bit. This stands for Universal or Local.

IjG=O Indicates an Individual address, I/G=1 indicates a group address.
Individual addresses identify one station on the ring (the address Is unique in the scope of the
administration), while a group address is used to address a frame to multiple stations. The group
address may be associated to zero, one or more stations. A group address Is associated with a group
of logically related stations (by convention).

The broadcast address consists of all ones, and must be recognized by all stations on the ring.

The null address consists of all zeros, and is not allowed to be recognized by any station as its own
address.

The U/L bit is used to Indicate the kind of address administration. There are two kinds of administration:
By a local authority (U/L=1) or by a universal authority (U/L=O). With universal addressing the
addresses are distinct from all other addresses on global scope. The procedure for this kind of
administration is not specified.

DA: Destination Address
DA Identifies the stations to which a frame is sent.

SA: Source Address
SA identifies the originating station of the frame. It has the same format and length as the DA field. riG
must be O.

INFO: Information field
This contains zero or more data symbol pairs whose meaning is determined by the FC field, and
interpreted by the destination entity. The length is limited by the requirement of the PHY that the frames
may not be longer than 9000 symbols.

The LLC data passed through to MAC is assumed to be an ordered sequence of octets (8 bits). MAC
divides these into symbol pairs with the most significant symbol to be transmitted first. This order has
to be preserved through all the entities.

FCS: Frame Check Sequence
Used to detect erroneous data bits within the frame and erroneous deletion and addition of bits to the
frame. The fields covered by FCS are FC, DA, SA, INFO and FCS. For more Information see chapter 3.2.

ED: Ending delimiter
The ED combined with the FS field must always form a balanced symbol sequence (Le. contain an even
number of symbols). It Indicates the end of the token or frame.
There are two kinds of EDs: Token EDs and frame EDs. The token ED consists of two T symbols. The
frame ED consists of one T symbol.

44

5.14 PDU types

FS: Frame Status
FS consists of an arbitrary number of control indicator symbols (R and S) following the ending delimiter
of the frame. It ends when another symbol than S or R Is received. A trailing T symbol, if present is
repeated as part of the frame. The three first control Indicators stand for the E (error detected) A
(address recognized) and C (frame copied) indicators. The meaning of optionally following control
indicators is implementer defined, but must be repeated by all stations.

E indicator
Transmitted by the originator as R. When some station on the ring detects an error with E=R, than an
error Is counted, and the E Indicator Is put to S. When the E indicator was already S, then no error Is
counted, but E still remains S.

A Indicator
Transmitted by the originator as R. When some station recognizes DA as Its own Individual or group
address, it sets A to S. otherwise the repeating station copies the indicator as received.

C Indicator
Transmitted by the originator as R. When some station recognizes DA as its own individual or group
address and It copies the frame (into its receive buffer). then it sets the C Indicator to S. otherwise the
repeating station copies the Indicator as received.

Frames

Void frame (OxOO 0000)
This is logically not a frame, and the contents must be ignored. Fields In a void frame have no meaning,
except that TVX must be reset, and a void frame must be stripped when SA= MA.

MAC supervisory frames (1 LOa 0010: beacon, 1LOa 0011: claim)
In these frames the length of INFO Is at least four octets, of which the first four have the following
meaning:
• claim frame: The bid for the nRT represented as the twos complement of desired nRT in octets.
• beacon frame: The first octet is the beacon type, and the next three octets are reserved for future

assignment. Beacon type a means "unsuccessful claim". The other beacon types are not
assigned yet.

The claim frame is transmitted during error recovery, to determine the station that must initialize the ring
and generate the token. It must be interpreted independent of DA (DA=SA). When bad ring operation
Is determined by a station, this station enters the claim token state. It sends claim frames and inspects
the SAs of the received frames. When SA=MA, It has claimed the token, and generates a new token.

The beacon frame Is transmitted to indicate the need for corrective action. It must be interpreted
independent of DA (DA=O or a value supplied by SMT). It is sent as a result of a major ring failure, and
is useful to detect the fault.

SMT next station addressing frame (OLOO 1111)
The C indicator may only be set by the next addressed station on the ring. This station Is distinguished
from the others, by a reset A Indicator.
The use of this frame is specified in the SMT standard.

Asynchronous LLC frame (OL01 rPPP)
Used for asynchronous transmission. PPP indicates the priority of the frame (111 Is the highest, 000 the
lowest).

45

5. Functional specifications

Synchronous LLC frame (1 L01 rPPP)
Used for synchronous transmission.

Implementer frame (CL10 rxxx)
Implementer defined frame, xxx is implementer defined.

Note: The r is for future Implementations, and must now be O.

46

6. Formal description method
To make a proper design, It Is important to describe the design in a formal manner, that can be
explained in only one way. To be able to do this. certain methods can be used. One of them is
described in [1].

The method consists of two parts. a requirements model and an architecture model. The requirements
model describes what has to be designed (It contains demands and constraints). the architecture model
describes how the requirements can be met. The design is made with many Iterations vertically (within
one model). and horizontally (between the two models).

6.1 The requirements model

The requirements model consists of the following parts:
- Data Context Diagram (DCD)
- Data Flow Diagrams (DFDs)
- Process Specifications (PSPECs)
- Control Context Diagram (CCD)
• Control Flow Diagrams (CFDs)
- Control Specifications (CSPECs)
• Stores
- Requirements dictionary
- Timing specifications

The DCD shows the flow of data between the system to be designed and the outer wor1d (the context).
The data flows are represented by solid arrows. Some of the context parts may not be attached to the
system. These parts are not used to obtain data from, but to obtain control information. The parts are
shown anyhow to remind that they are present, see figure 6.1.

outer 3

~s EJ
figure 6.1, General example of a Data Context Diagram

The system used in the DCD, is put in the first DFD which is numbered as DFD o. DFD 0 consists of one
process numbered 1. This process consists of several subprocesses, that all have an Individual number.
They are referred to with the parent process number followed by a dot and the own process number.
The SUbprocesses are placed in a DFD numbered with the parent process number. Each time that an
Iteration Is executed. the design comes to a higher level starting with level number 1 for DFD 0, and level
number n+1 when a process named in this level has n dots in its number, see figure 6.2.

The decomposition of a process Into smaller processes Is done when It makes sense; a primitive
process is not decomposed any more. The primitive processes are described by the PSPECs (one for

47

6. Formal description method

each primitive process).

--=*~ DFDI

~~

figure 6.2, Numbering methods

levell

level 2

level 3

The control part is built up In a similar way as the process part. Starting with the CCD, the context of
the control signals is defined. The control flows are represented by a dotted line. The same blocks and
processes are used in the CCD as in the DCD, and the context blocks which are not connected, are still
drawn to remind their presence, see figure 6.3.

figure 6.3, Example of a Control Context Diagram

The CFD contains the same processes as the DFD. The control flows can flow between processes, and
from and to a bar, see figure 6.4.

This bar indicates a connection to the CSPEC that corresponds to this level. In a CFD, only one CSPEC
may appear. All bars in a certain diagram refer to the same CSPEC. The CSPECs are optional; they need
not to be inserted when no process activators are required.

There are two kinds of stores, data and control stores. These can be used to save data and control flows
that may be needed in a later timeslot. Data and control stores may be combined. A store is represented
by two lines with the name of the store In between, see figure 6.4.

The requirements dictionary contains all data and control flows along with their definitions. It describes
the functions of the data and control flows.

48

6.1 The requirements model

figure 6.4, Use of stores and interface to CSPECs

The last part of the requirements model are the time specifications. Because time Is needed in all levels
of the design, these are globally available, else there would be to many extra flows in the diagrams,
which would make them unreadable. The model itself includes the assumption that it is Infinitely fast with
respect to the internal data and control flows. Time specifications are only needed for communication
with the outer world.

6.2 The architecture Model

The architecture model components are:
- Architecture Context Diagram (ACD)
• Architecture Flow Diagram (AFD)
- Architecture Module Specification (AMS)
- Architecture Interconnect Diagrams (AIDs)
- Architecture Interconnect Specifications (AISs)
- Architectl,lre Dictionary

The relations between these components is shown in figure 6.5.

ARCHITECTURE
CONTEXT
DIAGRAM.,.

.J. ..L
AR.CHITBC"l'UJUI 14- r+ .AJt.CHI'TBC'l'

nFLOVV INTERCONNECT
DIAGRAM DIAGRAM

..
ARCHI"I'I!IC'I'UR ARCHI"I'I!IC'I'UR
MODULE INTERCONNECT
SPECIFICATION SPECIFICATION

.
I ARCHITECTURE DICTIONARY I
figure 6.5, Architecture model components

49

6. Formal description method

The architecture model assigns the processes of the requirements model to physical modules that
constitute the system and establishes the relationships between them.
The definition of the physical modules adds four more perspectives to the two addressed by the
requirements model (functional and control processing). These are input processing, output processing,
user interface processing and maintenance or self-test processing, as shown In figure 6.6.

User Interface Processing

I IProcess Model

Input Output
Pfo(Mc;ing I ~1IodII I Proceaing

Requirements template

Maimnance, Sdf·Test, IDd
Redundancy~

Processing

figure 6.6, Architecture template

The input and output processing blocks represent the additional processing needed for each architecture
module to communicate with the other modules and to transform the information to and from a usable
internal format.

The user Interface block Is a special case of the Input and output processing blocks. This block Is
separated because there are many special considerations (e.g. human factors) that affect the user
Interface.

The maintenance and self-test block represents modules required to perform self-monitoring, redundancy
management and data collection for maintenance purposes.
The architecture model is a hierarchical layering of modules that are defined by successive application
of the architecture template to each of the blocks in the model.

There are three more symbols that will be used In an architecture model, these are:
- Architectural modules or the physical processes, see figure 6.7. The mapping between the architecture

modules and the bubbles in the requirements model can be one-te-one or one-to-many in either
direction.

Module x

figure 6.7, Architecture module symbol

50

6.2 The architecture model

- Information flow vector, see figure 6.8. This represents the information flow between any two modules,
this may be either single elements or grouping of elements, and may contain data flows, control
flows, or both.

Control flow vector
...~

Data flow vector
-------1~

figure 6.8, Information flow vector symbol

- Information flow channel, see figure 6.9. This is the physical means by which information flows from
one architecture module to another, it represents the physical communication path. There may
be different types of channels, an electrical bus, a mechanical link and an optical link.

Electrical bus

Mechanical link.
I I I I I I I

Optical link.
o-o--ס--ס----0

figure 6.9, Information flow channel symbols

The architecture context diagram (ACD) establishes the information boundary between the system being
Implemented and the environment in which the system has to operate. The ACD is the highest level
diagram. The elements that make up the ACD are: one architecture module, representing the system;
terminators that represent entitles in the environment the system communicates with; and information
flow vectors that represent the communications that take place between the system and those entities.

The information flow itself and the Information channels can be shown on the same diagram, or on two
separate diagrams, depending on the complexity of the system.

The architecture flow diagram (AFD) is a network representation of a system's physical configuration;
it documents the information flow between all the architecture modules. The AFD also represents the
allocation of processes and flows from the data and control flow diagrams into architecture modules.

The AFD is decomposed to show the next level of system architecture definitions. For instance the Input
Processing of a high level AFD will be decomposed to a lower level Input and output processing, a user
interface and maintenance processing (and a lower level functional and control processing).

The architectural template Is used as an allocation guide at each level of the system definition. But recall
there Is no requirement that every level of the system have modules in every of the four blocks of the
template.

The architecture interconnect diagram (AID) Is a representation ofthe communication channels that exist
between the architecture modules. An AID always corresponds to an AFD. The AID shows the same
architecture modules as its AFD, but it also shows redundant units If they exist.

51

6. Formal description method

The components of an AID are architecture modules and communication channels, both may Include
redundancy.

An architecture module specification (AMS) is written for every module in the architecture model to state
the allocation of data flow, control flow, and processing performed by that module. The AMS can be
written in different ways, but it always includes at least the requirements model components to show
their allocation. The components include DFDs, CFDs, PSPECs and CSPECs.

An AMS consists of three parts:
- A brief narrative specification of what the model is required to do,
- A listing of any architectural requirements for the system,
- A statement of the allocation of the requirements model components to the architecture module.

The purpose of an AMS is to clearly, unambiguously, and completely state the design allocation of the
requirements model to architecture modules.

The architecture interconnect specification (AIS) establishes the characteristics of the communication
channels on which information travels between architectural modules. It describes the transformation
medium as well as the information formats. An AIS Is written for every communication channel on an
AID. but they may be simplified.

The requirements model timing specification must be allocated to architecture modules, information flow
vectors, and information flow channels in the same way as other requirements components are
allocated. But the timing specifications play an Important role in selecting the implementation technology.
They are the determining factor in the tradeoff between different hardware technologies and between
hardware and software. Only after these tradeoffs have been made, the requirements model timing
specifications are allocated to the reSUlting architecture components.

Allocation of the timing requirements to the architecture model results In specific timing constraints on
the internal architecture modules.

The architecture dictionary consists of a listing of all the data and control elements that flow between
the architecture modules as well as between architecture modules and external entities. The architecture
dictionary is an enhancement of the requirements dictionary. The additions are the names of the
architecture modules between which the Information flows, and the names of the these communication
channels.

52

7. Requirements model of FDDI
To model the behaviour and requirements of the FOOl, the method described in chapter 6 Is used. This
Is done with the aid of PROMOO, a program that supports this method. This program checks for
Inconsistencies, and can generate a report that contains descriptions of the processes and data and
control flows. For the diagrams and precise description of processes and flows the reader Is referred
to appendix F.

Several files are made with PROMOO, these are described In appendix O.

7.1 Formats used in the PROMOD SA report

Each flow Is described in the following way:

*
flow type
(-
flow diagram names, in flow names
) - - -
flow_description

*
= data_type

Flow_type (controlflow or dataflow) indicates to what category the flow belongs to.

The names between braces refer to the flow diagrams (flow diagram names), or the single flow this flow
is a part of. - -

Behind the closing brace, a short description Is given of this flow.

Behind the equal sign, the type of the flow Is given, using the following format:

type1 + type2
a { type} b
[type1 I type2]
"literal"

: type1 combined with type2
: combination of at least a times and at most b times type
: type1 or type2
: literal

In the Minispecs and Controlspecs the question mark (?) is used to Indicate the NOT function ("=?"
means "not equal to").

The data types and literals used are listed in appendix E.

7.2 Context of FOOl

First the context of the FOOl Is determined. The model described here, Is one of a single attached
station. This can easily be extended to a dual attached station, by extending the SMT part and doubling
the FOOl model described here.

On one side there Is the fiber ring that transports the data as light, and contains the other connections
to the ring. Each connection can be modelled Identical to the model described here.

53

7. Requirements model of FOOl

On the other side there is the user, that supplies and receives the data that is transmitted over the ring.
The user Is a generality for the LLC. that can serve many physical users and applications.

Aside from the FOOl there Is an operator part. This can be a part of the LLC. It provides direct access
to the FOOl, what can be useful to change parameters etc.

7.3 Subdividing FOOl

To subdivide FOOl Into subprocesses, it Is logical to choose the division made by the ANSI committee,
that defined a PMO, a PHY. a MAC and a SMT. In this way it is easy to divide the work on the total
system.

The functions of each part are described In chapter 5. The relation between the primitives and the data
and control flows can be easily seen (a primitive can be represented by some data or control flows).

7.4 Interface to the user

As said before, the data flows are related one to one to the primitives defined in chapter 5. When a byte
Is transferred, it must be In the order Most Significant Nibble, Least Significant Nibble.

MA UNITOATA.request is built with the following flows:
- userdata out (data), containing FC value(i), destination address(i) and M SOU(!)
- requested service class(i) (control) - -
- stream(i) (Control)-
- token_class (control)

MA UNITOATA.indication is built with the following flows:
- userdata In (data), containing FC value, destination address, source address and M SOU
- reception_status (control) - - - -

MA UNITOATA STATUS.indication is built with the following flows:
- number of SDUs (control)
- MA transmission status (control)
- proVided_service=class (control)

MA TOKEN.request consists of one flow:
- token_request (control), containing the request itself and requested_token_class

7.5 Interface to the ring

The interface to the ring consists of two data flows: fiber_In, containing the signal that is received by this
station, and fiber_out, containing the signal that is transmitted by this station.

The interface Is made of fiber and the connectors (MICs) that should be used are described In the
standard of the PMO [2].

54

7.6 Interface to the operator

7.6 Interface to the operator

The interface to the operator Is not yet exactly defined. This is because the standard of SMT, that was
available, was an old version and the draft version that selVes as basis for new SMT standards was not
available.

The Interface Is represented by two data flows (oper data in and oper data out) and two control flows
(oper_controUn and oper_control_out). Each flow may represent a group of other flows. .

7.7 Further evolution

The further evolution of the process subdivision is done by discussions (this is possible because the
model Is built with two persons) and trial and error. This may seem unstructured, but It reflects the
growing insight in the operation of the system.

During the evolution, some functions appear to be necessary in several processes, which in tum give
rise to some new processes, consisting of a combination of some other processes, or a part of a single
process.

7.8 Development of PMD

The PMD mainly consists of a detector and amplifier for the Incoming signal and a transmitter (LED) and
driver for the outgoing signal. Additionally a bypass can be included, which is an optical switch.

These parts can be directly Implemented in hardware and need no further subdivision.

7.9 Development of PHY

The PHY has no more to do than decoding and encoding of data streams, and synchronize the
incoming data to the internal clock. These functions can be executed by encode, decode, and
synchronize. Synchronize needs the clock the incoming data bits are transmitted with, so an extra
process, recover_clock, Is added.

All these processes can be directly implemented in hardware, so they need no further subdivision.

7.10 Development of SMT

The SMT has many tasks to fulfil, like ring statistics obselVation and timing definition. This makes the
SMT a very complex and interesting entity. Because the standard that was available was a draft standard
that was not fully completed, the SMT part was not further developed.

7.11 Development of MAC

The MAC also has many tasks to fulfil. It must process the userdata to frames, capture tokens, transmit
frames as long as allowed, gather ring statistics, receive frames and present frames to the user. It also
must receive frames from the SMT, and must be able to generate frames by itself, and transmit them
when allowed.

55

7. Requirements model of FOOl

Therefore the MAC is a very interesting entity with many parallellisms and communicating processes.
This becomes clear when the ring operation Is observed: A frame that Is transmitted can return before
the token Is released. It may also happen that requests occur while transmitting and/or receiving other
frames, that possibly must be transferred to the LLC.

To generate frames and process the userdata to frames, process_userdata Is defined. This process
receives the data from the LLC, SMT and MAC, and adds the control signals like start delimiter, end
delimiter, frame check sequence and frame status. It stores the frames until the transmission Is allowed
and It Indicates the number of SDUs transmitted of one request on one token capture. Each process
Is rather complicated but hard to be subdivided.

Since the outgoing frames may be frames generated by this station, but also frames transmitted by other
stations and repeated by this station, the process transmit frames Is needed. This is a kind of multiplexer
that switches between repeated and new frames. This Is an easy process that needs no further
subdivision.

Receive frames is the process that decodes the frame control and the source and destination addresses,
determines the destination of the incoming frames, strips frames, checks the frames on errors and
adjusts the frame status.

These functions are executed by the following processes: check on function, forward frames (includes
frame stripping), check on violations and process FS. Each process can be subdivided Into some other
processes, that can bedirectly implemented in hardware. To improve the understanding of the state
machine in check_on_violations, a graphical representation Is Inserted In appendix G.

Process frames adjusts the data in such a way that the LLC can read It. This means that the FC. DA,
SA and info fields are placed behind one another, and transferred to the LLC.

The monitor takes care of counting events, capturing tokens, Issuing tokens, allowing to transmit frames
(via timing) and handle SMT and MAC frames. This also Is a rather complicated process, that Is already
subdivided in some other processes. Several of these processes (token management, timing and
frame_handler) should be subdivided themselves. -

7.12 Experiences

During the development of the model, a step back had to be made several times. This was to combine
some processes, or to place a function in another process.

In this way diagrams have been made that contain as many processes as can be overseen by a human
being.

7.13 Further development

As can be seen from the depth of the subdivision, the process MAC has been developed the most. This
Is done because this is the most Important part of the system (it is the connection from the user to the
communication system). Apart from the monitor. all processes are subdivided as far as necessary. These
processes can be implemented in hardware.

The same counts for the interfaces, of which the hardware definitions must be developed.

56

7.13 Further development

More work is to be done to the SMT, that has to be fully subdivided into subprocesses, and the monitor
of which several subprocess must be further subdivided.

When a dual attachment station Is to be modelled, It can use a great deal of the currently defined
processes. Only the MAC has to be extended with a process that can switch the output to the other than
the default PHY entity. This Is also true for dual attachment concentrators.

For concentrators in general. the SMT will have to be extended from the SMT that should work with-the
single attachment station. Especially more bypasses will have to be used, since each output must be
able to be bypassed.

57

8. Functional blocks of PHY
In [3] the PHY Is subdivided in several functional blocks. This chapter gives an outline to get more
Insight in the operation of the PHY; it Is not used in the design given later In this report.

The proposition made by ANSI about the Implementation of the PHY and the Interconnection between
the several blocks Is shown In figure 8.1.

PH..UNrrDATA.request

NRZ

PIl.UNrrDATA.indieation PIl.INVALID.iDdieation

PM-UNrrDATA.request PM_UNITDATA.indication PM-SIGNALJndicatiOD

figure 8.1, Possible implementation of the PHY with the Interconnection of the blocks

8.1 Encode function

The encode function of the PHY takes care of the proper encoding of the symbols commanded by SMT
or presented by PH UNITDATA.request Into NRZ symbols. The code group is presented serially to the
transmit function asa continuous stream of NRZ code-bits. This is done by a local fixed frequency
oscillator. The encode function is put In the different transmit modes by SMT via SM PH L1NE­
STATE.request. Only In the TRANSMIT PDR mode, the encode function encodes symbols presented on
the PH_UNITDATA.request. -

8.2 Transmit function

This function converts the NRZ code-bits into equivalent NRZI code-bits, and presents them to the PMD.

8.3 Receive function

This function converts the NRZI code-bits received from the PMD into equivalent NRZ code-bits, and
presents them to other functions In the PHY.

It also must derive a 125 MHz clock from the incoming pulse stream. This Is called the Receiver
Recovery Clock (RCRCLK) and Is used for synchronizing the incoming code-bit cell boundaries during
ILS and ALS. It can optionally be used to synchronize detection of the HLS and MLS (this may be done
with another synchronization technique).

59

8. Functional blocks of PHY

Optionally a Clock Detect signal may be provided, to Indicate that RCRCLK Is locked in frequency and
phase. Then this signal will be used by the line-state detection function.

8.4 Elasticity Buffer function

The clock tolerance of the transmit and the receive clock Is 0.005%. This insures a maximum frequency
difference between the two clocks of 0.01 % which equals the length of 4.5 code-bits.

The possible deficiency must be compensated by an Elasticity Buffer (EB). For proper operation of the
EB, the MAC that originates a frame, must insert at least 16 I symbols before each frame. The EBs In
the subsequent repeating stations may change the length of the I pattern (in this way compensating for
differences between the transmit and receive clocks).

The EB works like a FIFO with two clocks: One to clock data into the buffer (RCRCLK) and one to clock
data from the buffer to the PMD (the local clock). For correct operation the EB must allow for an
elasticity of at .least 4.5 bits. The EB will first be filled halfway, before the data can be clocked out.

The implementation of the EB on another place than proposed in figure 8.1, is allowed when several
rules (p23 [3]) are followed.

8.5 Decode function

The Decode Function (DF) receives a NRZ bit stream from the EB, synchronized to the local clock. DF
establishes symbol boundaries and maintains synchronization to the local symbol clock. It decodes the
NRZ pulses to a continuous symbol stream for presentation to the MAC.

Optionally and mostly required by the MAC, the PHY supplies a clock signal to the MAC, for strobing
the data from PHY to MAC, and running MAC logic. This clock may have to be continuous, and
uninterrupted. Mostly the DF has the ability to insert a 0, 1, 2, 3 or 4 code-bit delay (0 to 9 code-bit delay
in byte wide implementations) into the serial pUlse stream, to obtain synchronization to the symbol clock
(this is especially needed at the start of a new frame). The combined effect of EB and this insertion must
satisfy the rules of the EB (p23 [3]).

8.6 Line-State Detection function

The Line-state Detection Function (LDF) determines the state of the Incoming physical link. Source for
this determination is PM_SIGNALIndicatlon, and If implemented signals from the receive function and
the EB can be used.

The MAC is Informed about invalid signals via PH INVAUD.lndication, and the SMT Is Informed about
changes in the line-state via SM_PH_STATUS.indlCation.

The Initial line-state Is LSU or NLS. The Initial Line-state Detection Interval (ILDI) starts on
Signal_Detect(on) and a PM_Indication data stream, which meets the criteria for entering or maintaining
HLS, MLS, ILS or ALS. It lasts until the line-state reported to the SMT correctly indicates the state of the
received data stream.

The ILDI may not last longer than the maximum PHY acquisition time (AT Max, default 100 I1s). The
maximum signal acquisition time (A_Max, time until some signal is detected) used by MAC and SMT
equals the sum of AT_Max and AS_Max (maximum PMD acquisition time).The state can be temporarily

60

8.6 Line-State Detection function

lost or changed. Loss results from Internal PHY conditions, and changes result from conditions external
to the PHY.

Change of line-state or loss of the current line-state may last no longer than the maximum line-state
change time (LS_Max, default 15 I1S). During this time LSU or NLS must be reported.

Detection of ILS, ALS and optionally HLS and MLS requires RCRCLK synchronization.

8.7 Local Clock

Demands for the local clock:
- Base frequency of 125 MHz ±0.005%
- Phase jitter above 20 kHz < 8° (0.14 rad)
- Harmonic contents above 125.02 MHz < -20 dB
- Nominal code-bit cell time = 8.0 ns
- Nominal symbol time = 40 ns

8.8 Smoothing function

The Smoothing Function (SF) absorbs surplus symbols from longer preambles and redistributes them
into shorter preambles. In this way the variance in length of the preambles is reduced.

FOOl design constraints:
- EB is not required to recenter on preambles shorter than 4 symbols.
- MAC Is not required to repeat frames with preambles shorter than 2 symbols.
- MAC is not required to copy frames with preambles shorter than 12 symbols.

The SF must be able to Insert additional preamble symbols when the preamble is shorter than 14
symbols (gaining these back from preambles longer than 14 symbols). The smoothing capacity centred
on 14 symbols (Hi_Max) Is at least 2 symbols.

When MAC requires 11 or 12 preamble symbols, SF must be able to insert additional preamble symbols
into preambles shorter than 12 symbols (gaining these back from preambles longer than 12 symbols).
This extra smoothing capacity centred on 12 symbols (Lo_Max) has to be at least 2 symbols.

The Hi Max capacity must be located behind the EB In the repeater path. If a MAC Is located in the
repeater path, Hi_Max B..!:!Q Lo_Max must be located between EB and MAC.

SF must be capable of reclaiming space from stripped or optionally other partial frames by deleting
symbols or replacing them by I symbols. provided that a format error is not lost. The format error is not
lost when one of the following statements Is true:
- The format error Is counted in PHY and reported to SMT.
- The format error Is correctly propagated to the next MAC or repeat filter.
After a token or partial frame, SF may delete excess symbols from preambles longer than 4 symbols.

SF must be able to maintain Its counters and to adjust smoother extension and preamble length in bits,
symbols or bytes. The EB quantum may therefore be not larger than the maximum permitted smoother
quantum (one byte).

61

8. Functional blocks of PHY

8.9 Repeat filter

The Repeat Filter (RF) is needed for stations where the data must be repeated without the intervenience
of a MAC. It must then be placed somewhere after the LDF in the repeat path.

The RF prevents the propagation of code violations and invalid line-states, from the Incoming to the
outgoing link! while lost frames are propagated to be counted by the next MAC in the line. Also w.hen
a MAC is included In the repeat ring, the RF may be Included.

62

9. Design issues of MAC
For the design of the MAC, several items are defined, like timers and state machines. These are formally
described in [4], of which this is an outline.

9.1 Timers

Each station has to maintain three timers to regulate the operation on the ring. Each timer Is local, and
the contents may be different for each station, provided that ring limits are not violated. Reset means
that a timer must be reset to its Initial value, and restarted. Disable and enable mean stopping and
starting of the timer.

Timing values are expressed as the unsigned twos complements of the target or remaining time in
octets. This Is not needed for implementation, except where these values appear In PDUs on the ring.
Timers are assumed to count upward expiring on overflow (X> Y: X elapses sooner than Y). This also
is not needed for Implementation (depending on the time representation).

Definitions

o Max = Maximum ring latency. The maximum time that some SO may use to travel around the ring.
- Default value is 1.617 ms. This Is built upon basis of the default maximum ring length (200 km

dual ring, contributing 1.017 ms, 5085 ns/km) and the default number of physical connections
(1000, contributing 600 ns, 15 symbols per connection). Other values may be used when other
defaults are used for the number of stations or the length of the total ring.

M Max = Maximum number of MACs. This may be additionally limited by the value of 0 Max (two
- PHYs with one MAC: class A station). ­

Default value is 1000.

I_Max = Maximum station physical insertion time. Time contributed by the physical layers.
Value Is 25.0 ms.

A_Max = Maximum signal acquisition time. Sum of the maximum allowed clock and DC balance signal
acquisition time contributed by the attached PHYs.
Value is 1.0 ms.

Token_Time = Token length. Time required to transmit a token (6 symbols) and its preamble (16
symbols). Capture and retransmission is assumed to last a few symbols and not contributing
to MAC timing.
Value is 0.88 j.Ls.

L_Max = Maximum transmitter frame setup time. Time permitted for a station to transmit a frame and
subsequent frames, after capture of a token.
Value Is 0.0035 ms.
L Max defines the maximum length of the preamble. If L Max Is exceeded, then the station
must send a void frame, to allow the other stations to reset TVX.

F_Max = Maximum frame time. Time required to transmit a frame (9,000 symbols) and Its preamble (16
symbols).
Value Is 0.361 ms.

Claim_FR = Claim frame length. Time required to transmit a claim frame and Its preamble (16 symbols).
Minimum length is assumed to use 48-bit addresses.
Value Is 2.56 j.Ls.

63

9. Design Issues of MAC

S Min = Minimum safety timing allowance. Time needed to recover from random noise on the ring.
- Consists minimally of one frame of maximum length (F_Max), which may be permuted by noise,

plus the required L_Max.

Abbreviations used In this chapter can be found In appendix C.

Token Holding Timer CTHD

THT holds the time, during which a station Is allowed to transmit asynchronous frames. A new
transmission may be initiated when THT has not expired, and Is less than T_PRI associated with the
frame. THT Is initialized with the current value of TRT, when the token is captured.

Valid-Transmission Timer (TV)()

TV)(Is used to recover from transient ring error situations. The default value for TV)(Is at least 62,500
symbols (2.50 ms). The timeout value Is determined like:
TV)(> max(D Max. F Max) + Token Time + F Max + S Min- - - - -
Possibly a time of 2.62144 ms (65,536) can be used, since this time can be implemented with a 16-blt
register, clocked by the symbol clock.

Token Rotation Timer CTRT)

TRT is used to control the ring scheduling during normal operation, and to detect and recover from
serious ring error situations. It is initialized with different values during different phases of ring operation.
When TRT expires, TRT is reinitialized to T_Opr and late_Ct is incremented.

T Opr is the operative timeout value of TRT. It Is negotiated between the stations to a value between
T-Min and T Max during ring Initialization, and is controlled by the transmitter state machine of the MAC.
To negotiate10r the lowest value of T Opr, each station uses T Req between T Max and T Min, so that
the lowest T Req becomes T Opr. The maximum time between two token passings can be 2*T Opr.
If a station requires a guaranteed response time, it should set its T_Req to half of this time. -

T Min is the minimum value for T Opr for which a station can operate correctly on the ring. If T Req
is-smaller, this station cannot operate correctly. The default value of T_Min may not be greaterthan
100,000 symbol times (4.0 ms) guaranteeing a response time of 8.0 ms.

T_Max is the maximum value for T_Opr, and has to be several times the maximum ring Initialization time
to permit stable ring recovery.

T Max > K * T Init
T=Max > M * T-=,React + N * T_Resp

(defaUlt K=4)
(defaUlt M=2, N=6)

T Max must be at least 4,125,000 symbols (165 ms). This can be implemented by a 22-bit counter,
aifowlng for 4,194,304 symbols (167,77216 ms), when clocked by the symbol clock.
The time spend in states TO, T4 and T5 depends directly on the choice of the T Max parameter,
so T_Max should not be set to the maximum value mentioned here. -

T_Init = T_React + T_Resp < 40.58 ms

T_Init is measured from the time the ring is free of spurious noise. In absence of noise:

64

9.1 Timers

T React < I Max + 0 Max + A Max + TVX- - -< 30.24 ms
T_Resp < «3 * D_Max) + (2 * M_Max * Clalm_FR) + S_Min)

< 10.34 ms

(TV)(Is the actual value used for TVX)

9.2 Counters

Counters are used to count the number of events, creating an error when they exceed a certain
threshold.

Late counter (Late Ct)-
Counts the number of TRT expirations since MAC was reset, or some token was received. Late_Ct is
set to one on initialization or reset of the station, and is incremented every time TRT expires. When the
ring is operational (Ring Operational), Late Ct is cleared to zero every time a valid token has arrived,
and Late_Ct is incremented each time TRTexpires.

Frame Ct-
This counts the number of all frames received.

Error Ct-
Counts the number of erroneous frames detected by this stations, and not by a previous station.

Lost Ct=
Counts the number of instances in which MAC is receiving a frame or token, and an error occurs so that
the credibility of PDU reception is doubted. In this case MAC strips the frame from the ring replacing
it with I symbols. Subsequent stations do not increment their Lost Ct, since they recognize the frame
as stripped via the I symbols. -

9.3 Operation on the ring

The data is transmitted into frames. The right to transmit a frame on the ring can be obtained by
capturing a token.

Frame transmission

Upon a request for SOU transmission, MAC constructs the PDU by placing the SOU In the INFO field
of the frame. Upon reception and capture of an appropriate token, MAC starts transmitting the frames
according to the token holding rules. During this transmission, the FCS Is generated, and appended at
the end of the frame.

65

9. Design Issues of MAC

Token transmission

After transmission is completed, the station Immediately transmits a new token. Optionally the station
may hold the token until one or more frames have returned. Then the station must check If MA is
returned in SA, Indicated by M Flag. Until it has not been returned the station must send I symbols. As
soon as FC, DA an SA are received, the station must transmit a token. This last method should not be
used with normal data transport, since this decreases the performance dramatically. It may be used for
various SMT functions.

Frame stripping

Each station has to strip Its own frame from the ring. As soon as a station recognizes SA as MA, It
transmits I symbols on the ring. The remnants of the frame (PA, SO, FC, DA, SA) stay on the ring since
the recognition is not possible until SA is received (and repeated). This causes not any trouble since the
other stations recognize the frame as stripped because of the I symbols after SA and the missing ED.
Remnants are 'removed from the ring as soon as they reach a transmitting station.

Ring scheduling

There are two classes of service, synchronous and asynchronous. The synchronous class Is used for
traffic that needs a guaranteed bandwidth and response time. the asynchronous class for traffic that
does not need that, but can accept dynamic bandwidth sharing.

Synchronous bandwidth Is preallocated (via SMT), and asynchronous bandwidth Is Instantaneously
allocated from the remaining bandwidth of the ring.

In the MAC the TRT is used to maintain the ring scheduling. The nRT Is negotiated during a claim token
bidding process. The MAC receiver saves the most recently received nRT (T Bid Rc) and passes the
final negotiated nRT (T Neg) to the MAC transmitter, where It becomes the operational nRT (T Opr)
upon successful ring initialization. -

TRT must be reset each time an early token arrives. When an early token arrives (TRT has not reached
nRT already), the bandwidth may be used for synchronous as well as for asynchronous traffic. When
a late token arrives (TRT has exceeded nRT once), only synchronous transmissions are allowed.

There are different methods to limit the bandwidth used for both kinds of transmissions. However, no
station is allowed to hold the token longer than nRT. This guarantees an average TRT of nRT and a
maximum TRT of 2*nRT.

Synchronous transmission

The bandwidth that each station may use for synchronous transmission, is expressed as a percentage
of nRT. The allocation Is established by the SMT, via SMT PDUs. Initially the allocation Is zero for each
station, and to change this allocation, every station uses the SMT protocol.

At ring initialization, the station may remember its allocation, provided that there has not been a change
In nRT, or a major ring reconfiguration (no beacon frames have been transmitted or received). The total
synchronous bandwidth is expressed as:

66

9.3 Operation on the ring

It is not required for Interoperability that a station can support synchronous transmission.

Asynchronous transmission

Asynchronous transmission Is allocated by two kinds of mechanisms:
- Non restricted token: Bandwidth Is usable for all users.
- Restricted token: Bandwidth Is usable for specific users.

Ring operation starts In nonrestricted mode. Then the stations may establish the threshold values
(T Pri(n) for each priority level n. Since the lowest priority may only be used when there Is much
bandwidth left the threshold values must be lower (twos complement!) with decreasing n. When multiple
priority levels are not implemented, all T Pri(n) must be nRT.

On reception of an early token, the contents of the TRT must be copied to the THT, and TRT must be
reset. The difference between the current THT value and nRT Is the time that asynchronous frames may
be transmitted. An asynchronous frame of priority n may only be transmitted when THT Is lower then
T_Pri(n). THT is enabled during asynchronous transmission.

Restricted token mode is entered when some station needs almost all of the asynchronous bandwidth
(data burst). The management of the extended communication, Is the responsibility of higher level
protocols.

Initiation of the restricted token mode is done by the requesting station. It captures a non restricted
token, sends Initial dialogue frames and finally transmits a restricted token. The destination stations enter
restricted token mode upon receipt of the initial dialogue frames, and exchange restricted tokens during
the dialogue. The restricted token mode is terminated, when the terminating station transmits its final
dialogue frames (after capture of the restricted token), followed by a non restricted token.

In restricted token mode, only the destination stations use the asynchronous bandwidth. Other protocols
(even SMT protocols) are not allowed to use this bandwidth. The synchronous transmission can proceed
normally.

There is no need for use of THT in restricted token mode, though the stations may not intrude on the
synchronous bandwidth. The THT is not needed because the restricted token mode supports fair access,
since each station can initiate a dialogue.

To ensure fairness (to the excluded stations) SMT must negotiate and monitor a maximum restricted
token mode time. If this time is exceeded, SMT must abort the extended dialogue via the SMT protocol
and interface.

Restricted token mode Is an option, and not required for interoperability. The Ignoring of THT Is also
optional, and not required.

9.4 Monitoring of the ring

All MACs together fulfil the monitoring function on the ring. This means that each MAC continuously
checks the ring on invalid conditions requiring reinitialization. These conditions can be the absence of
any activity on the ring, or Incorrect activity. Inactivity is usually detected by expiration of TVX, while
Incorrect activity Is detected via the Late Ct or SMT processes. The relation between the different
processes is shown in figure 9.1. -

67

9. Design issues of MAC

figure 9.1, Relation between the different processes In the MAC

Claim token process

When a station detects a condition that requires the ring to reinitialize, it must start a claim token
process. This means that one or more stations bid for the right to initialize the ring, by transmitting claim
frames. It also looks for incoming claim frames. When the received bid is higher (shorter time) the station
yields, when the received bid Is lower (longer time) the station continues bidding its own value. Conflicts
are solved as followed:
- The lowest TTRT-bid has precedence (highest bid value) .
• In case of equal bid values: The bid with the longest address has precedence (FC.L= 1 > FC.L=O)
• In case of equal bid values and equal FC.L: The bid with the highest address has precedence (the

highest SA value).

When a station receives its own claim frames back, it has won the bid, and all other stations have
yielded. The winning station starts the initialization process.

The claim token process is timed by TRT, set to a large value (T Max). This ensures stable ring recovery.
The TRT will be set to this value, when the station enters the-claim token process (not on receipt of
individual claim or beacon frames), and may not be reset when the station has left the claim token
process until the ring is operational.

If TRT expires while the station is in the claim token process, the process has failed. Possibly external
intervention may be required, and the station must start the beacon process.

If TRT expires after the station has left the claim token process, and Is waiting for some other station to
initialize the ring, it reenters the claim token process.

Initialization process

Each station contains the boolean Ring_Operational, which Indicates the current status of the ring. It is
cleared when a station detects a claim or beacon process on the ring, and when it receives a MAC reset
request from SMT. When Ring Operational is cleared, all currently serviced
(SMJMA_UNITDATA.requests and (SMJMA_TOKEN.requests are aborted, no token is Issued, and an
abnormal confirm is returned to the requester.

Initialization starts on successful completion of the claim token process by a station. First it sets T Opr
to T_Neg, and it resets TRT. At last it Issues an initial non restricted token. This is done to align the frRT
values and TRTs over the ring. Since Ring_Operational is clear in each station, none may capture the

68

9.4 Monitoring of the ring

Initial token. Upon receipt and repeating of the Initial token, each station copies T_Opr to T_Neg, resets
TRT, sets Late_Ct to one and sets Ring_Operational.

On the second token rotation, each station accumulates the current synchronous bandwidth utilization,
while inhibiting asynchronous transmission, and allowing synchronous transmission. On the third rotation
asynchronous transmissions are allowed.

Beacon process

When a fail ofthe claim token process Is detected, or upon request of SMT, the detecting station Initiates
a beacon process. In this case the ring may have physical damage and may have to be reconfigured
(see SMT connection management (5)). To restore the logical ring, some external Intervention must be
invoked. The purpose of the beacon process is to signal to all remaining stations, that a logical ring
break has occurred, and to provide diagnostics or other assistance to the restoration process (via SMT).

When a station enters the beacon process, it starts transmitting beacon frames until a beacon from an
upstream station Is received; then it yields. When a station receives Its own beacon frames, it assumes
that the logical ring Is restored, and Initiates the claim token process.

A station resets TRT on entering the beacon process, and not on receipt of individual claim or beacon
frames. When TRT expires after the station has left the beacon process, it enters the claim token
process.

9.5 MAC structure

The MAC is built up from two asynchronous cooperating state machines, the transmitter and the
receiver, combined with other logic and memories. This is shown in figure 9.2.

from lLC and other MAC functions to lLC and other MAC functions

PH_UNITDATA.request PH_UNITDATA.indication

figure 9.2, Basic structure of MAC

The transmitter and receiver are described as state machines. They are separated because of the
functions that must be performed parallelly and asynchronously. The state machines are synchronous
to the symbol clock which means that if an action takes more than one symbol time, this must be
achieved via several states. Actions described as part of a state occur each time the state is entered,
actions described as part of a transition, are associated with that transition.

69

9. Design issues of MAC

Each state machine must act as follows:
1. Evaluate all conditions within the current state.
2. If the conditions for a state transition are satisfied then:

- Perform the transition actions In the current state.
- Enter the new state.
- Perform the entry actions for the new state.
- If an immediate transition from the new state is possible, then repeat the sequence starting

with 1.
3. If the conditions for In-state actions are satisfied, then execute the specified actions.

PH UNITDATA.indication Is the major trigger event for the receiver. The receiver must perform Its
processing sequence, using PH UNITDATA.indlcation as parameter for condition evaluation. When the
sequence is completed, the symbOl and associated event signals must be forwarded to the transmitter.

The receipt of a symbol and associated event signals is the major trigger event for the transmitter. For
each input symbol, the transmitter must generate a corresponding output symbol. In repeat state the
output symbol will be the same as the input symbol, else the input symbol is discarded and a new
output symbol is generated.

The contents of specific fields in received and transmitted frames are only known to MAC during the
lifetime of the frames. All values that must be remembered, must be saved in MAC variables.

9.6 Receiver state machine

The functions of the receiver are:
- Receive and validate Information from the ring.
- Select the portions that are relevant to its station.
- Scan PH Indication for valid frames (FR) and tokens (TK).
- Pass each frame with a matching DA to the appropriate entity (LLC, MAC, SMT).
- Process the MAC frames after validation.
- Maintain TVX to detect ring failures.
- Generate appropriate signals for the transmitter.
- Save the current values of T_Bid_Rc, T_Neg, A_Flag, C_Flag and E_Flag.
- Maintain Frame_Ct, Error_Ct and Lost_Ct.

Several criteria are defined for frame validity checking, See [4] p40.

For this state machine 6 states are defined numbered RO to RS. The meaning of the states is as follows:
RO: listen
Rl: Await SO (await starting delimiter)
R2: RC_FR_CTRL (receive frame control field)

R3: RC FR BODY (receive frame body)
R4: RC-FR-STATUS (receive frame status)
RS: CHECK TK (check token)

The description of the states and transitions between them is given in detail In [4] (p41-44).

The state diagram of the state machine is given in appendix A.

70

9.7 Transmitter state machine

9.7 Transmitter state machine

The functions of the transmitter are:
- Repeat information from other stations on the ring.
- Cooperate with other stations to coordinate priorities for use of the ring.
- Operate on the symbol stream from the PHY, and produce a symbol stream to the PHY.
- Repeat the received frames until It needs and receives a usable token.
- Transmit Its own data followed by the token, and restart repeating.
- Transmit claim frames when required to recover the ring.
- Maintain the current T_Opr and TRT to ensure correct ring scheduling.

The operation is synchronized by the signals generated by the receiver, and Is also using A Flag, C Flag
and E_Flag saved by the receiver. - -

For this state machine 6 states are defined TO to T5. The meaning of the states Is as follows:
TO: TX IDLE (transmitter idle)
T1: REPEAT
T2: TX DATA (transmit data)
T3: ISSUE TK (Issue token)
T4: CLAIM-TK (claim token)
T5: TX_BEACON (transmit beacon)

The description of the states and transitions between them Is given In detail in [4] (p45-50).

The state diagram of the state machine Is given in appendix B.

71

10. Implementation example of PHV
To learn something from other designs, the design of AMD's ENDEC has been watched at. This is not
used for the design developed later in this report but only added for extra Information and insight.

The Physical Layer Protocol (PHY) simultaneously receives and transmits data. The transmitter accepts
symbols from the MAC, converts these five-bit code groups and transmits the encoded serial data
stream to the PMD. The receiver receives the encoded serial data stream from the PMD, establishes
symbol boundaries and forwards the decoded symbols to the MAC. Additional symbols (Quiet, Idle ~nd
Halt) are interpreted by PHY and used to support SMT functions. Since FDDI clocking Is polnt-to-point
with each station transmitting on Its own fixed frequency clock, an elasticity buffer at each stations PHY
Is used to compensate for frequency differences between the receive and transmit clocks.

10.1 Propagation delay and station latency

An elasticity buffer and a clock recovery take part of each station. A two stage synchronization both at
the bit level as well as at the symbol level, is necessary to regenerate symbols in the receiver. Thus the
channel propagation time and the station latency are random variables. Two point-to-point stations can

BMT

PMD

figure 10.1, Transmitter - receiver entitles

be modelled as a transmitter-receiver pair, figure 10.1, each pair consisting of nine entities contributing
each to the path delay. Theses entities are: Source, Encoder and Shifter in B; Elasticity buffer, Framer,
Decoder, Detector and Sink in A. Fiber connects B with A and introduces a Gaussian distributed delay
varying from 0 to 8 ns. Station latency is the time that data stays In a station, this is an important
parameter, the expected latency average Is 19 bits (0.152 liS), [24].

73

10. Implementation example of PHY

10.2 PHY functional blocks

The main issues of the PHY sublayer are [6]:
- Coding
- Clocking requirements
- Alignment
- Buffering of received data
- Preservation of sufficient preamble
- Filtering spurious symbols
- Station management and diagnostics

4B/56 encoding

For proper data recovery the encoding must ensure that the average OC on the waveform does not
deviate from the midpoint of a large extent. The correction of the distortion due to Inter symbol
interference is. accomplished by means of equalization, implemented by a high-pass filter, which
eliminates the OC component. Hence as long as the OC fluctuation is minimized by means of proper
choice of encoding, it is possible to recover the data with a high degree of accuracy. There are various
means of data encoding (Manchester codes, H063 in telephone trunk lines, 463T In ISON) with each
its own features. For the FOOl required reliability, the 46/56 coding was chosen. The average OC of the
transmitted data varies within 10% of the centre point. Hence distortion Introduced by AC coupling In
the receiver is minimized to that extent. The FOOl codes can be found in table 3.1.

Encoding must include clock information in the transmitted data to maintain synchronization with the
receiver clock recovery circuit. The clock can only be recovered If there Is a suitable number of
transitions in the transmitted data. With the 46/56 encoding, this number of transitions Is not yet
guaranteed. For this purpose another encoding step must take place to guarantee that there are
sufficient transitions.

In FOOl Non-Return-to-Zero (NRZ) data is converted to Non-Return-to-Zero-Invert-on-ones (NRZI) data
after 46/56 encoding. In NRZI data, a transition Is present for every logic one, these transitions provide
the clocking Information for the recovery circuit. FOOl uses run-length limited 46/56 codes, which has
at most three consecutive zeros in the serial transmitted stream (run-length limited to three).

The Quiet (five zeros) and Halt (one transition in five bits) symbols violate the run length rule (see
table 3.1). If the Quiet and Halt symbols are alternately present, there is only one transition for every 10
bits. These conditions can be handled If the design of the recovery circuit can handle 9 missing
transitions for every 10 bits. Of course there is no need for a clock recovery function for a Quiet symbol
stream, there is no information present.

Transmit Clock

The data rate on the transmission medium is 125 Megabits per second. FOOl specifications require the
clock be accurate in frequency to within 50 parts per million (0.005%). This tight tolerance Is imposed
to keep the depth of the elasticity buffer within reasonable limits to compensate for frequency differences
between the recovered clock and the local clock. If the tolerance on the bit clock is 0.005% the minimum
elasticity at the receiver Is plus or minus 4.5 bits at the receiver, for a maximum frame length of 4500
bytes.

FOOl also specifies limits on the spectral purity of the clock and the order of suppression of sidebands.
these are needed to minimize jitter at the transmitter output: maximum duty cycle distortion of 0.2 ns

74

10.2 PHY functional blocks

and a peak to peak random noise of 0.12 at a bit error rate of 2.5*10.1°. The bit clock can be derived
from an internal multiplying Phase-locked-loop (Pll).

Receive Clock Recovery

The receive clock Is recovered from the received data using a Receive Pll (RPll). Two kinds of clock
recovery mechanisms are used: Phase-locked-loop and Surface Acoustic Wave (SAW) filters.

The RPll must be able to recover the clock Information from the received data even when It Is jittered
up to 3 ns on any bit transition. For a bit cell duration of 8 ns, this works out to 1 ns eye opening, the
peak to peak jitter permissible is 3 ns (at a bit error rate of 2.5*10·1~.The maximum acquisition time on
the Pll Is 100 I1s. The worst case, 9 missing transitions for every 10 bits, is the alternating Quiet Halt
symbol stream.

The RPll also needs to handle noisy Inputs, such as arise when the Input to the optical receiver Is either
a stream of Quiet symbols or the result of a broken optical link. Under such circumstances, the ring
status indicator from the optical receiver can flag active for up to 300 microseconds. At such times, it
is vital that the RPll does not deviate from the expected frequency ranges of the input. In those cases
the internal clock can be used for short periods (128 byte periods).

Bvte Alignment

Byte alignment (the PHY standard does allow a symbol alignment) is required in the receiver to properly
decode received information. When the transceiver is powered up, It sends connection management
handshake symbols on the medium. One. of the Quiet, Halt, Master or Idle state symbols Is selected
depending on the node state. For each connection management symbol to be decoded, the alignment
of symbols can start with any bit in the symbol. Since the transceiver performs byte alignment on the
received data, it can arbitrarily choose the alignment and still decode the Information.

The correct receipt of data frames requires proper alignment of the received Information. The start of
every frame consists of a J and K symbol, the SO. The transceiver recognizes this starting delimiter and
realigns Itself. It is possible in this realignment process to generate a fragment byte that precedes the
JK symbols owing to the new alignment being anywhere from 0 to 9 bits (due to encoding of 8 bits In
10 by 4B/5B) skewed from the previous alignment. If aligned exactly to the previous data, no fragment
byte Is generated. The FOOl standard allows the fragment byte to contain fragment bits, with the
remainder being a few bits of JK. It could therefore potentially be a garbage byte, an Idle byte or it can
be completely deleted.

Elasticity Buffer

As FOOl calls for an asynchronous clocking scheme each node must have Its own Independent clock.
Once the data has been recovered by the RPLL, the data must be synchronized to the local clock for
the node. An elasticity buffer is needed for the temporary storage of the received data to accommodate
to the maximum 0.01 % frequency difference. It also permits the deletion or addition of Idle symbols
during the preamble. The required elasticity is ±4.5 bits.

When the transceiver Is powered up, either Quiet, Halt or Master line state symbols are received. In
these cases the buffer will be enabled and get Into overflow, or underflow, after 4500 bytes If the clock
difference is a maximum of 0.01 %. In such case the elasticity buffer flags overflow, or underflow, for one
byte and resumes reading the line state symbols. In case of an overflow one byte gets deleted, In case

75

10. Implementation example of PHY

of underflow one byte of Violation gets inserted. Overflow or underflow is indicated to the rest of the
node by means of the Violation symbols, It may be an EB_error.

Smoother

A smoother function is present to ensure that the MAC receives at least 6 bytes of preamble (Idle
symbols) before a frame. When the transceiver receives data from a faster station it uses the elasticity
buffer to adjust the frequency by deleting a byte as described above. If the next node is also slower, it
may also delete a byte of Idle. Over several nodes, preambles that were 8 bytes in number at the
originating node may become 5 or less bytes at slower nodes. Since a minimum of 6 bytes of preamble
is required to adequately copy addressed frames at the node, the smoother compensates for such
preambles by adding additional bytes of preamble.

Any non Idle symbols during the Interframe gap are Included In the symbol count for the smoother. It
I.s possible that noise could be Introduced in the middle of an Idle stream. Since the repeat filter converts
non Idle symbols Into Idle symbols (in the Force Idle state), it introduces no error for the purpose of
counting the symbols.

Line State Overflow/Underflow (OVUF)
Whenever the Elasticity Buffer overflows or underflows, OVUF line state Is reported. Whenever OVUF is
active, the receive bus (output of the decoder) outputs Violation symbols.

Repeat Filter

The purpose of the repeat filter is to limit the propagation of spurious symbols in the ring. This avoids
additional DC imbalance In the ring beyond the 10%. The type of spurious symbol could be a Halt,
Quiet, Violation, isolated J or K, or any other unused combination in the encoder truth table (see
table 3.1). A byte with parity error could also fall into this class. Whenever one of this set of symbols is
sensed in the middle of the frame, four Halt symbols are transmitted before a stream of Idle symbols.
This is done to allow the MAC entity in the next node downstream to increment its lost count. The Halt
symbols are inserted to distinguish this stream from a stripped frame.

This repeat filter can be modelled by a state machine [6], see figure 10.2. After the station is configured
properly this state machine is enabled, If it Is not enabled the symbols are transmitted without being
filtered.

((Q+H+V+J+IQ+PB.PARCON).JICP

lE.<Pa.+PARCONJ THROUGH MODE.... .-,--- am-ed vpae_)

1UPPIlR.<Pa.+PARCONJ

lE.<Pa.+PARCONJ

~,..
~ ,.

FORCE IDLE
~

PORCEHALT
(If !Ill« -bled) (JI...-am-~

ItlPPJ!R.<Pa.+

figure 10.2, State machine of the Repeat Filter

76

10.2 PHY functional blocks

There are three states: the Through mode, the Force Halt mode and the Force Idle mode.

Abbreviations:

PE:
PARCON:
Q,H,V:
JK:
IUPPER:
JKP:
.,+:

Parity Error
Parity error Convert
Quiet, Halt, Violation symbol
Starting delimiter
Idle as upper nibble
JK previously
Logical operators

Through mode
This state Is entered after reset. if a spuri0us symbol Is seen (in the upper or lower nibble) a transition
to state Force Halt takes place. A transition to the other state takes place when an Idle symbol Is seen
in the upper nibble. A parity error is ignored If the correct bit Is set (PARCON).

Force Halt mode
In this state, 4 Halt symbols are sent. The second pair of Halt symbols is sent only if there Is not an Idle
symbol In the upper nibble, or a JK symbol without parity error is not present at the encoder input. Parity
errors can be Ignored if the PARCON bit Is not set.

Force Idle
Idles are transmitted whenever an Idle symbol Is present in the upper nibble. It Is also sent after 4 Halt
symbols during the presence of a spurious symbol. This conversion does not take place before the first
occurrence of JK. The transition to the Through mode takes place after the next JK without parity error.
Depending on the PARCON bit, parity errors can be Ignored.

10.3 Model of the EncoderjDecoder

The block diagram of the Encoder/Decoder as shown in figure 10.3, Is AMD's solution as part of their
total solution: the SUPERNET Chip-set [6]. This Encoder/Decoder Implements the PHY sUblayer.

Signals

When a signal name is underlined, this denotes the inverted signal.

R-BUS
Ro-7

RCL
RCU
RP

TA-BUS
TAo-a
TACL
TACU
TAP

Receive Bus
Receive Control Lower
Receive Control Upper
Receive Bus Parity

Transmit Bus A
Transmit Bus A Control Lower
Transmit Bus A Control Upper
Transmit Bus A Parity

77

10. Implementation example of PHY

TA-BUS II II TB-BUS

~
NPN

BUODE
rWl. ciD. SI,01
READY
CARPET
'TEST

mET
8..
LOOP

4 J

• !

. ;

t--J....----+t PARERR

BU&I~

Unit,
Une'"
Deooder&
TImer

t.__._.... ····_··__······.·._-_··_..--·--i
i
!
!
i

,
. '-----.-.-------'1 i;:._ _-~ - _ _._.:._ ._ _._ _ _..:....._._ _._ _._J

R-8US

figure 10.3, Model of the Encoder/Decoder

TB-BUS
TBo-S

TBCl
TBCU
TBP

Transmit Bus B
Transmit Bus B Control lower
Transmit Bus B Control Upper
Transmit Bus B Parity

UlC
C/rl.
.QS!
Q..S
NP0-2
PARERR
RI'tJ..
S0-2
BMODE
BClKIN
BClKOUT
NClKOUT
CARDET
TX,TY
CRX,CRX
RlTX, RlTY
EBClK,EBClK

Use local Clock
Command/Data
Chip Select
Data Strobe
Node Processor Bus
Parity Error
Readl'tJ..rite
Line Status
Bus Mode
Byte Clock
Byte Clock
Nibble Clock
Carrier Detect
Transmit +, Transmit-
Clock Receive +, Clock Receive-
Receive loop Transmit + , Receive loop Transmit­
ECl Byteclock+, Byteclock-

78

SERDAT,SERDAT
XTAL,.XTAl..:z
CTX,CTX

PIN description

Serial Data+, Serial Data­
Crystal 1 and 2
Clock Test +, Clock Test-

10.3 Model of the EncoderjDecoder

Description of the different signals of figure 10.3. Each signal will be described In a short functional way.

Ro-7

Receive Bus
The R-bus output sends Information being decoded from the serial receive Input to
either the MAC-Device or another EncoderjDecoder in the station.

RCL
Receive Control Lower
RCL Is used to Identify the type of information on the lower nibble (Ro-J of the R-bus.
If RCL is high then the lower nibble is a control character, If RCL is low then the lower
nibble contains data.

RCU
Receive Control Upper
RCU is used to Identify the type of information on the upper nibble (R4-7) of the R-bus.
If RCU is high then the upper nibble is a control character, if RCU is low then the upper
nibble contains data.

RP
Receive Bus Parity
The RP signal ensures odd parity on the R-bus. If the number of "ones· is odd, then the
RP will be "zero".

TAo-s
Transmit Bus A
This is one of the two Input buses used to accept data and control Information from
either the MAC-Device or the other EncoderjDecoder (if one exists) at the station.

TACL
Transmit Bus A Control Lower
TACL is used to Identify the type of Information on the upper nibble
(T~) of the TA-bus. If TACL is high then the lower nibble is a control character, If TACL Is low
then the lower nibble contains data.

TACU
Transmit Bus A Control Upper
TACU is used to identify the type of information on the upper nibble
(TA4•7) of the TA-bus. If TACU is high then the upper nibble is a control character, If TACU Is low
then the upper nibble contains data.

TAP
Transmit Bus A Parity
The TAP signal ensures odd parity on the TA-bus. If the number of "ones" Is odd. then
the TAP will be "zero". Data with a parity error will be processed by the repeat filter state
machine.

79

10. Implementation example of PHY

TBo-a
Transmit Bus B
This Is the other of the two Input buses used to accept data and control information
from either the MAC-Device or the other EncoderjDecoder (if one exists) at the station.

TBCL
Transmit Bus B Control Lower
TBCL Is used to Identify the type of information on the (lower) nibble
(TBa-o) of the TA-bus. If TBCL is high then the nibble is a control character, if TBCL is low then
the nibble contains data.

TBCU
Transmit Bus B Control Upper
TBCU Is used to identify the type of information on the (upper) nibble (TB4-7) of the TA­
bus. If TBCU Is high then the nibble Is a control character, if TBCU is low then the
nibble contains data.

TBP
Transmit Bus B Parity
The TBP signal ensures odd parity on the TB-bus. If the number of "ones· is odd, then
the TAP will be "zero". Data with a parity error will be processed by the repeat filter state
machine.

CRX,CRX
Clock Receive +, Clock Receive-
The bit rate clock derived from the received serial data (RX, RY or RLTX, RLTV) is sent
to the EncoderjDecoder from the receive PLL using CRX and CRX.

EBCLK,EBCLK
ECL Byteclock+, Byteclock-
The crystal oscillator on the EncoderjDecoder generates the byte rate (12.5 MHz)
frequency reference. This signal is synchronous to BCLKOUT.

LOOP
This signal Is active when the EncoderjDecoder is In loopback mode. When active, It
causes the RLTX, RLTV outputs to be looped back through the RLTX, RLTV inputs of
the data separator (see chapter 10.4).

RLTX, RLTV
Receive Loop Transmit+, Receive Loop Transmit-
RLTX, RLTV are an alternate set of serial outputs used to loop back through the data
separator. The contain the same data as TX, TV except when in loop back mode.

SERDAT,SERDAT
Serial Data +, Serial Data-
SERDAT, SERDAT are NRZI data coming from the data separator.

Use Local Clock
The~ signal Is active whenever CARDET goes Inactive, or when in Quiet Line State
(QLS). UCL is also controlled by the noise timer inside the EncoderjDecoder. The noise
timer forces ULC to be active for a period of 128 BCLK cycles after NLS has been
active for at least one byte clock. After 128 BCLK cycles the noise timer releases ULC
for the next 128 BCLK cycles. This may be repeated if NLS is still active.

80

10.3 Model of the EncoderjDecoder

CjQ
CommandjQma
When high, data on the NP~2 Is written Into the three bit pointer register. When low,
data on the NP~2 Is written Into one of the control registers or read from one of the
controljstatus registers inside, as pointed to by the pointer register.

Chip Select
When low, this Indicates that the NP has selected the EncoderjDecoder to read or write
one of Its registers. It should stay low until the READY signal goes low (in asynchronous
mode).

Data Strobe
DS is used for defining the presence of data on NP~2' Q.S. is low when data to be written
Is valid or when the NP is ready to read. It should stay low until the READY signal goes
low.

NP~2
Node Processor Bus
Data from the node processor.

PARERR
Parity Error
PARERR indicates that there Is a parity error on data which Is coming in from the
selected transmit bus.

READY
The READY signal Is a handshake signal for use with an asynchronous NP. When the
BMODE is high, as In case of an asynchronous NP, READY is also high and is typically
not used in the system. When BMODE is low, the NP runs asynchronous to BCLKIN
and the EncoderjDecoder indicates that data being acted upon by bringing READY low.
During a write operation, READY goes low after data from the NP is clocked into the
EncoderjDecoder. In case of a read operation, READY goes low after the
EncoderjDecoder supplies valid data on the NP~2' Typically the EncoderjDecodertakes
between two and three BCLKIN cycles to force READY low as long as DS and CSI stay
low.

RESET
This hardware reset initializes the internal logic.

RIYY..
ReadlYY..rite
When RIYY.. Is high, the NP reads data. When low, the NP writes data Into one of the
control or pointer registers.

Line Status
These signals indicate the line states of the medium, see chapter 3 for the different
codes.

81

10. Implementation example of PHY

BMODE
Bus Mode
This signal is high when the EncoderjDecoder works in synchronous mode, low when
in asynchronous mode.

BCLKIN
Byte Clock
This Is the main clock that runs the EncoderjDecoder. It must be driven from Its own
BCLKOUT or from that of another nearby EncoderjDecoder. The transmit PLL uses
BCLKIN as a reference to generate the transmit bit clock (this bit clock is 10 times the
frequency of BCLKIN).

BCLKOUT
Byte Clock
BCLKOUT Is derived from an internal oscillator which uses an external crystal. This Is
the main clock running the station. If there are two EncoderjDecoder devices In one
station, as In a DAS, only one clock source may be used.

NCLKOUT
Nibble Clock
This signal is derived from the internal PLL and is twice the frequency of BCLKIN.

CARDET
Carrier Detect
This signal is received from the optical receiver. When high, It indicates the presence
of data In the fiber. When low, It is used to force a Quiet Line State (QLS). CARDET is
ignored in the loopback mode.

TX,TY
Transmit +, Transmit-
These signals provide a differential ECL NRZI output from the Encoder jDecoder. These
signals drive the optical transmitter.

XTAL"XTA~
Crystal 1 and 2

CTX,CTX
Clock Test+, Clock Test-

Description of the registers

The EncoderjDecoder has to operate in different modes depending on the state the station or ring is
in. For network management reasons these different states must be known and controlled, therefore this
EncoderjDecoder needs a set of registers.

Assignments to the four Control Registers and the Pointer Register (all three bits wide) are shown in
table 10.1. The Encoder jDecoder can be programmed with these registers.

- CRo programs the EncoderjDecoder to transmit data or line states, as described In table 10.2.

- CR, selects either the TA-Bus or the TB-Bus inputs. This Is accomplished by setting the TMUXSEL bit.
CR, also forces the EncoderjDecoder into one of the operational modes described In table 10.3.

82

10.3 Model of the Encoder/Decoder
table 10.1: Control Register and Pointer Bit assignments

Register Bit 2 Bit 1

CRo C2 Cl
CR, TMUXSEL LPBKl
CR2 RESET EVEN/ODD
CRa EXTEN2 EXTENl
CRP01NTER REGSEL2 REGSELl

table 10.2: CRo (Force Line States)

C2 Cl CO Function

0 0 0 Force Ouiet
0 0 1 Force Master
0 1 0 Force Halt
0 1 1 Force Idle
1 0 0 Enable Repeat Filter
1 0 1 Force JKILS
1 1 0 Force 10
1 1 1 Unfiltered Encode

Bit 0 (LSB)

CO
LPBKO
PARCON
SMRESET
REGSELO

Description

o Bytes forced
OH Bytes forced
H Bytes forced
I Bytes forced
Repeat Filter enabled
JK followed by Idles
10 Bytes forced
Input bits to encoder without filtering.

table 10.3: CRt (Loopback Mode)

LPBK, LPBKo Function

0 0 Through (figure 10.4)
0 1 Loopback (figure 10.5)
1 0 Short Loopback (figure 10.6)
1 1 Repeat (figure 10.7)

- CR2 contains the RESET, EVEN/ODD and PARCON bits. When PARCON is set to "one", this enables
the conversion of parity by the repeat filter state machine.

- CRa Is used to reset the smoother (SMRESEn, and can be used to read the state of the smoother
through EXTEN2 and EXTEN1. When the EXTEN2 bit is set to "one", the smoother Is extended
by two bits. When EXTENl is set to "one", by one byte.

table 10.4: Pointer Register (CR Pointer)

REGSEL2 REGSELl REGSELO ENABLE

0 0 0 CRo
0 0 1 CR,
0 1 0 CR2

0 1 1 Status
1 0 0 CRa

83

10. Implementation example of PHY

- CRP01NlER selects one of the control registers as shown in table 10.4. It can also select the line status
of the decoded data as indicated by the S0-2 lines.

Loading and reading the control registers is done by using the CjQ. DS. CSI. RIY:J.. and NP0-2 signals.

10.4 Operation modes

As shown in figure 10.3, the EncoderjDecoder has a three input receiver and transmitter multiplexer
(MUX). The transmit buses originate at either the MAC or the adjacent EncoderjDecoder output. This
allows the needed flexibility to the EncoderjDecoder to work under a variety of configurations (four
different operation modes).

In a DAS one or two MAC devices are present and two EncoderjDecoders. Each MAC output connects
to one of the two Inputs in each EncoderjDecoder. This mode is called the Through Mode, as shown
in figure 10.4.

MAC- R

~
DATA

+~
DEVICE RECEIVER SEPARATOR

TB ><
~

TRANSMITTER
TA

RX,RY

TX,TY

figure 10.4, Through Mode

Through Mode is the normal operating mode with data passed directly between the MAC-Device and
the media.

The input at the transmit mUltiplexer that comes from the Encoderjdecoder receiver is useful in
situations where the EncoderjDecoder can be used as the repeater. It is also useful during initial
connection management sequence when the R-bus output is internally connected back to the transmit
inputs.

The loopback mode (figure 10.5) can be used to test the total path until (but excluding) fiber.

-
MAC- R i In

ATA >/DEVICE :RECEIVER
lssPARATO

~

-

-
TB

i .RANSMITTEE
TA -

RX,RY

RL'1'X,
RLTY

TX,TY
(QQiet. sellt:)

figure 10.5, Loopback Mode

84

10.4 Operation modes

The Inputs from the transmit bus are useful for short loopbacks where the MAC is looped back at the
input stage of the Encoder/Decoder for diagnostic purposes.

MAC- R ~ DATA
DEVICE ~ ~ RECEIVER SEPARATOR~-

TB =<
~ ~ TRANSMITTER

TA

RX,RY

TX,TY
(Quiet Bent)

figure 10.6, Short Loopback Mode

The Short Loopback Mode will be used with the MAC externalloopback mode (see figure 10.6).

If one of the physical links fails, either MAC has the option of going through the other link during station
reconfiguration. In this mode one Encoder/Decoder will be in Short Loopback Mode and one in Repeat
Mode. see figure 10.7. More precisely: Encoder/Decoder A will have its control registers to CRe=100
and CRI = 11, i.e. MAC accepts RA-bus. And Encoder/Decoder S will have Its registers to CRe= 100 and
CRI = 10, i.e. MAC accepts RS-bus (see table 10.2 and table 10.3).

MAC- R

~
(- DATA +-DEVICE ~ RECEIVER

~EPARATOR

TB ~ >4

I i'------ ~ TRANSMITTER
TA

RX,RY

TX,TY

figure 10.7, Repeat Mode

85

11. Implementation example of MAC
To learn something from other designs. the design of AMD's FORMAC has been watched at. This is not
used for the design developed later in this report but only added for extra Information and insight.

STATUS SUS

•
BUS
INTERFACE RA-BUS
LOGIC 11 AND

HPWR HPRJ) PARITY
BUS 15 BUS , 12

RB-SUS
I'Ll BUS AND11

• PARITY

RECEIVE
STATE
MACSINE

TRANSMIT
STATB

YT-BUS MACHINE ,
AND T 80B FC3
PARITY MmlBIIAD BUS X-BUS

PL3 BUS , ,
AND
PARITY

figure 11.1, Functional model of the MAC

In figure 11.1, a functional model of AMD's FORMAC is drawn. This is their MAC Implementation and
takes part of the SUPERNET chipset [6].

11.1 Block diagram of MAC

The functional blocks as shown in figure 11.1 will be described In a global overview. It may be noticed
that this MAC (FORMAC), In practice, will operate In conjunction with a datapath controller, a RAM buffer
controller and the PHY as shown in figure 10.3.

External Buses

Seven buses are used to Interface the MAC with Its surrounding hardware. The NP-bus permits
asynchronous and synchronous communication with the NP. The YR-bus Is the output for frames
received from the media and the YT-bus is the Input for data to be transmitted on the media.

The RA-, RB- and X-buses interface with the PHY, the physical layer. Data received from the media is
input via the selected R-bus. A MUX at the MAC input permits selection of the active R input bus. Data
is sent to the media over the X-bus.

87

11. Implementation example of MAC

Finally an instruction bus (INST) Is used to select between the different read and write operations on the
MAC registers.

MUX1
This MUX at the Input of the MAC is used to select the input for the receiver logic. Under normal
operation the MUX selects one of the R-buses (RA or RS). In case neither R-bus will be used for input,
occurring when the MAC is programmed for internal loopback, the MAC X-bus is used as the input
(instead of an R-bus). This is useful for "In-circuit" testing of the MAC and associated hardware before
the station is placed on the ring. When Internal loopback mode is selected, data on the R-buses is
ignored.

Pipeline 1 (PL1)
This pipeline captures received data and brings it onto the PL1-bus. This latching allows appropriate
setup time for decoding the frame control and address field on incoming frames.

Parity Alter
The parity alter logic changes the parity system used by the MAC. Odd parity Is normally used on the
selected R-bus (and RCU and RCL Inputs, see figure 10.3). This parity system is altered to reflect odd
parity on only the R-bus information, by setting input parity based on the state of the RCU and RCL
signals. Thus, bad parity received on the RP Input will yield bad parity output from this logic.

Receive Frame Logic
This block of logic consists of three basic elements:
- A decoder to interpret the frame control and other special symbols In incoming frames.
- Frame validity logic checks each frame against FOOl frame criteria.
- The receive state machine.
It provides many of the global signals used by other blocks through the station.

Receive Frame Body Logic
This logic sets the flags required for address detection and token reclaiming. The addresses and
requested token time associated with this MAC are stored In registers within this MAC. An ALU compares
these values with the address and T-bid Rc fields of received frames. A state machine within the block
selects the proper address comparison~The receive frame body logic uses the input from the receive
frame logic block to determine the type of address being received (I.e. long, short, individual or group).
The flags that are set by this block are used by the transmit state machine and the symbol generator.
The flags are also input to the V-bUS handshake block (for data path purposes).

The timer block contains the timers required for the timed token protocol of FOOl. Three timers are
contained within this block.

- Valid Transmission Timer (TVX)
This a-bit TVX counts the time between valid frame transmissions on the ring. This is
done by checking the EOs of the frames. If the time exceeds the value loaded In TVX,
the ring recovery will be Initiated through the claim process. The TVX timer Is loaded
with the default value every time a valid frame of unrestricted token is received by the
MAC. The timer Is also loaded each time the mode register is programmed to exit the
initialization mode.

- Token Rotation Timer (TRT)
The TRT is used to Implement the timed token access protocol. The TRT timer counts
the time between receipt of tokens. If TRT exceeds 2 times the operative token rotation

88

11.1 Block diagram of MAC

time (2*TOPR) for the network, recovery action Is required. When the ring Is operational,
TOPR will be the time negotiated through the claim process and stored in TNEG. During
ring initialization and recovery, TOPR Is equal to the default value TMAX.

Negotiated Token Rotation Time (TNEG)
This 21-bit register stores the lowest 21 bits of the bid field of a received Higher Claim
or My Claim frame. When the ring becomes operational, this register represents the
winning value of the claim process. The upper 16 bits (of TRT) can be read directly with
the right Instruction, the lower 5 bits can be read with a different instruction. Another
Instruction is used to load the entire 21-bit TRT register, filling the upper 16 bits with the
value stored in TMAX and writing "zeros· in the other fIVe bits.

Timer Rotation Maximum (TMAX)
TMAX (16 bits) specifies the default token rotation time to be used during ring
initialization and recovery. It is also used to hold a default TRT (TMAX) during the claim
token process, every time the MAc Is programmed to exit the Initialization mode the
TRT is loaded with TMAX.

- Token Holding Timer (THT)
This timer controls the length of time that the node can hold a token for the purpose
of transmitting A-frames (Asynchronous). Functionally THT is a down counter. THT is
loaded when the MAC captures a token. The value loaded is the difference between the
time the MAC expected to capture a token (TOPR) and the actual time It took for the
token to circulate the ring. If this difference Is greater than the value loaded into TPRI
(I.e. the token was received sooner than expected), the MAC can transmit
asynchronously. The MAC can continue to transmit A-frames until the THT falls below
the TPRI value. Both, THT and TPRI, are 21-bit counters.

Asynchronous Priority Register (TPRI)
This register Is used to control the priority of asynchronous messages. The value of
TRPI is compared with TRT or THT. If the TRT value is greater than TPRI, a token can
be captured for transmission of any pending A-frames. If THT is greater than TPRI,
SUbsequent A-frames are transmitted.

Bus Interface Logic
This block contains the logic necessary to interface the MAC with the Node Processor (NP).

Instruction Decode
This logic decodes the instruction bus. The decoded outputs are used internally as pointers and control
signals.

Status/Mode/Interrupts
This block is comprised of the status, mode, and interface logic. The status logic allows for error
reporting to the NP. This Information can be read directly or by using Interrupts. The mode register
allows the NP to control the mode of the MAC.

Frame Status
This block is used to map the frame status (FS) of a received frame and other pertinent Information Into
an (8-blt) register. The Rand S symbols (see table 3.1) received after the ED of the frame are decoded
as a zero and an one, respectively. The contents of the frame status register Is appended to the receive
frame.

89

11. Implementation example of MAC

Frame Status Register (FRSTAT)
Frame status is generated and appended to the end of all frames when they are
transmitted on the YR-bus.

MUX2
MUX2 is used to append the frame status byte to the frame being sent to the Y-bus. The MUX will output
data from the PL1-bus, while received FC and INFO data is contained internally. After the last byte of
information has passed through the MUX, it will switch to select the receive frame status register..

Pipeline2
This pipeline latches the received frame information being sent to the Y-bus. This ensures sufficient setup
time for a datapath Interface.

Confirmation Status
This block Is used to confirm the status of the frames originating at the station associated with the MAC.

Transmit State Machine
This block implements the transmit state machine outlined in the FOOl MAC specification.

Pipeline3
This pipeline latches frames before they are transmitted to the MAC internal transmit path. This allows
adequate setup time for the frame check sequence logic.

Frame Check Sequence (FCS)
This logic checks the FCS of the received frames, and generates the FCS for the transmitted frames.
A MUX steers either the PL1- (internal receive) or the PL3- (Internal transmit) bus into the CRC logic. The
MUX normally selects the PLl-bus when the MAC Is in the repeat or Idle mode. When the MAC enters
on of the transmit states, PL3 is selected. The CRC Is calculated using a 32-bit Autodin II polynomial as
specified in the FOOl standard, for more Information see chapter 3.2.

MUX4
MUX4 selects on of the different sources to be output on the X-bus. These sources are the output of the
symbol filter, the FCS logic and the PL3-bus.

Symbol Filter
The symbol filter logic alters the E ,A and C Indicators on the repeated frames as specified by the
FOOl standard. - - -

Symbol Generator State Machine
This logic generates the command symbols required for transmission on the media. These Include Idle
symbols for preamble, as well as the set/reset and Ending delimiter symbols appended to the frames.
This logic is also used to generate the tokens when they are issued.

MUXS
MUX5 selects between the Internal transmit and repeat paths and the symbol generator output for
transmission onto the X-bus.

Pipeline4
This pipeline ensures PHY setup time.

90

11.2 Overview other resources

11.2 Overview other resources

State Machine Register
This register contains the states as described in the FOOl MAC specifications (see figure 11.2).

1;~l*[t:tltttJm:m::t:f:f:::i:U::::::::fm:::::m::;::n::::::f:f:t:::::::(:::f:tr::::fflfffHt:::ffnf::::M:::f::tJ@il

1'----+--+-t--+--+--+-+--+--+-----l-+--+---+-+-TJleceivez State 5

l--+--+-+-+--+--+-t--+--+-+-+--+--+--+ ""eivez State •
'---+--+--+-+--+--+-----If--+--+---+-+--+-__+_ ""eivez State]

l--+--+-+-+--+--+-1-+--+---+-+--+- Raceivez State 2

'---+--+--+-+--+--+-----If--+--+--+-j- Raceivu State 1

'---+--+--+-+--+--+-----l-+--+__+_ ""eiver State 0

'---+--+--1-+--+--+-t--+--+- ft_tter State 5

'-----+--+------l-+--+---+-+--_t_ Tr...-ittu State.
'---+---+--+-----l-+--+-__+_ T1:_ttez State 3

'---+--+---t-+--+--+- Tr_ttc State 2

'---+--+---+-----1f--+__ TUlu,lIlittez S....te 1

'"-+---+----+- 'ftWC/THBCl
'----+-__+_ Load nrr
~ t- Load TIrr

'- LoacI TVX

figure 11.2, MAC State Machine Register

Address Register
This address register stores the node's 48-bit address, 16-bit Individual and 16-bit group address, and
the station T_request time value. These registers are organized in a 8-by-6-bit structure.

MAC Information Register (MIR)
This is a read only register. This register is used to store the first four bytes of the information field of
received MAC frames. This register Is also used to store the first four information bytes in loopback
mode.

Status Register (STAT)
STAT is used to report an error and status to the NP. Individual bits can be used to generate Interrupts
to the NP.

Interrupt Mask Register (IMSK)
This 13 bit register is used to control maskable Interrupts. This register can be accessed using the NP­
bus.

Mode Register
On reset, this register Is Initialized so that all bits are active low (except one). The Node Processor (NP)
can access the mode register with the correct Instructions. The mode register contains the operational
modes of the MAC (see figure 11.3).

MMODEo-2
The three mode bits control the operational mode of the MAC. The assignment is as Indicated In
table 11.1.

91

11. Implementation example of MAC

'-------+----+-t-+--+-----j-+---+----t-t---t------j------ MMODE2
MMODE 1
MMODE O

'--+---+---+------1,----+---+----+-----j-t---- MUSESA

'---+---+----+-1---+----+----+------1,------- MDELDAT

'--+--+---+-----1f----+---+------t----- MDISRCV

'--+--+---+-+---+---+---- MADET1

'--+--+---+-+---+----- MADETa
'--+---+---+------1~--- MNFCS

'--+--+--+---- RESERVED
'---+----+------ MSELRA

'-------1----- MDSCRY

RESERVED

figure 11.3, Mode Register

table 11.1: MAC operational modes

MMODE2 MMODE1

o 0
o 0
o 1
o 1
1 0
1 0
1 1
1 1

MMODEo Description

o Initialize
1 Reserved
o Reserved
1 On-Line
o Internal Loopback 1
1 Internal Loopback 2
o External Loopback 1
1 External Loopback 2

Initialize. Initialize is the reset mode of the MAC, this mode is used to read and write many of
the internal registers.

On-line. On-line mode places the MAC in the operational FDDI mode.

Internal Loopback 1. Internal Loopback 1 places the MAC In Internal loopback mode. The
internal transmit bus Is connected to the Internal receive path. R-bus inputs are Ignored.

Internal Loopback 2. Internal Loopback 2 operates exactly like Internalloopback 1, except with
the receiver operation: Data received In loopback mode will be output on the YR-bus.

External Loopback 1. External Loopback 1 places the MAC In external loopback mode, this
mode will be used with the loopback mode of the PHY.

External Loopback 2. External Loopback 2 is analogous to the internal loopback 2.

92

11.2 Overview other resources

Loopback

The loopback mode Is useful for "in-circuit" testing of the MAC and associated node hardware before
insertion In the ring. There are four loopback operations possible:
- If Internal loopback Is selected, the MAC X-bus is connected internally to the R-bus input. Data on the

RA- and RS-buses Is Ignored.
- If loopback 1 Is selected, the data received will not be output on the YR-bus. The shared YT/VR-bus

can be used for transmit only. When In loopback, the first four bytes following the SA field ·are
stored In the MIA. This allows limited loopback testing without additional hardware.

- If loopback 2 Is selected, the MAC writes the entire received frame to the YR-bus. This data can be
read by dedicated hardware. Of course the hardware needed, depends on wether or not a full­
duplex system is used.

- If external loopback Is selected, the loopback connection is established outside. the MAC.

The Internal timers are held during loopback mode. This prevents the MAC from entering the recovery
state due to a time-out. While In loopback mode, the transmit immediate option should be used to allow
the MAC transmitter to enter the transmit data without capturing a token. This is normally used by station
management when ring operation is off.

MUSESA (Mode to Use Short Address)
This mode bit is used in the token claiming procedure. This bit is set to ·one" if the addresses
transmitted In the node's claim frames are 16 bits long. It is important that this bit, the address length
bit In the FC fields of the claim and beacon frames stored and the actual address lengths used In the
claim and beacon frames, are all consistent. If not, the node will not strip its frames from the ring. This
means, a frame could circulate around the ring until another node captures the token and starts
transmitting. This could cause the destination node to receive the same frame many times. Further the
claim process may never finish, because the node will not recognize its own claim.

MDELADET (Mode Delayed Address Detection)
This mode selects the delayed address detection. If set, external DA detection is accepted until the ED
is received. If reset, and DA does not match, the frame is flushed from memory.

MDISRCV (Mode to Disable Receive)
If set the MAC will not receive frames on the YR-bus. The C Indicators associated with address
recognized valid frames will be repeated as received when the receiver Is disabled.

MADET0-1 (Mode Address Detect)
The MADET bits reflect the address type of the frame received on the YR-bus, see table 11.2. This mode
will be used for flushing purposes.

table 11.2: Address mode detection

~ADETl MADETo Description

0 0 DA = MA
0 1 DA = MA or SA = MA
1 0 Promiscuous
1 1 Reserved

93

11. Implementation example of MAC

DA = MA (Destination Address equals My node Address). This is the normal setting. The
MAC indicates that the destination address of the received frame does not match the
corresponding node address (MA, My node Address) In the MAC. So other functional blocks
(data path and ram buffer controller) should not copy the frame.

DA = MA or SA = MA. In this mode the MAC will also Inhibit the flush signal for frames it
transmitted (SA in the frame matches the node address).

Promiscuous. In this mode the MAC indicates that there is an address mismatch. The frame
being received is not addressed to this MAC and is not generated by this MAC.

MNFCS (Mode No Frame Check Sequence)
This bit is used to suppress the generation of CRC on transmitted frames. if set, the MAC generates an
ED and FS field immediately after the final byte from the YT-bus is transmitted. This may be useful for
loopback testing purposes. Note that the CRC logic will always check the received frame, whether
MNFCS is set or not.

MSELRA (Mode to Select RA)
This bit controls the MUX input to the MAC at the interface with the PHY, either the RA- or RB-bus Is
selected.

MDSCRY (Disable Carry)
This bit is used for internal timer testing. Setting this bit effectively breaks the TRT and THT timers into
segments to facilitate testing. These timers are separated into one S-bit (most significant bits) and four
4-bit segments that clock Independently.

11.3 Ring operational

When the hardware has been initialized and the Claim and Beacon frames have been setup In a buffer
memory, the station is prepared to begin the Claim Token process with the other stations. To begin this
process, the MAC must be placed into the on-line mode (see figure 11.3). This Is accomplished by
setting the mode bits, MMODEo-2'

The Claim Token Process completes when one station receives its own Claim Frame again. Within each
station, the boolean variable Ring_Operational Indicates the current operating status. This
Ring_Operational is cleared whenever the station indicates or detects the Claim or Beacon processes
on the ring, and when it receives a MAC_Reset request from SMT.

Ring initialization begins when one station successfully completes the Claim Token process, this station
proceeds to initialize the ring. First, it sets the operative TTRT value (f Opr) to the negotiated TTRT value
(f_Neg), what will be the same as its requested TTRT value (f_Reqrsince this station won the bidding
process. Then it resets its Token Rotation Timer. Finally it Issues an Initial non-restricted Token.

The purpose of this initial rotation of the Token is to align both the TTRT values and the TRT timers In
all stations. Since Ring Operational is clear, no station will capture the initial Token or transmit frames.
In each station upon receipt (and repeating) of the Initial Token, T Opr shall be set to T Neg, TRT shall
be reset, Late_Ct shall be set to ·one", and Ring_Operational shaii be set. -

94

11.3 Ring operational

Frame Transmission

Transmit Queue
The transmit queue for either A-frames or S-frames contains three basic components:
- Transmit Frame Descriptor
- Transmit Frame Data field
- Transmit Pointer Field.

Transmit Frame Descriptor
The 32-bit transmit frame descriptor Is subdivided Into a 16-bit control field and a 16-bit frame length
field. The control field is organized as shown In figure 11.4.

'---+-+---t---t--+--+--+---+-------- MORE

1

o
RPXM ,

RPXM.

XDONB

o
o
OON'T CARE

figure 11.4, Control Field

Explanation of the control bits:
- Bit 31, MORE indicates wether or not this is the last frame in the queue.
- Bit 29 and 30 is a fixed pattern.
- Bit 27 and 28, RPXMG-l' specify the byte boundary of the first byte of the frame. In some cases, when

a header is added to a frame, it becomes necessary to transmit the frame starting on a byte
boundary which Is not aligned with the 32-bit long word boundary. These bits are used to
specify the byte alignment.

- Bit 26, XDONE, this bit is used to limit the number of S-frames transmitted per Token. It is up to the
programmer of the node to limit the number of S-frames by setting this bit. A useful limit could
be:

Number of frames In chain =
Allocated Sync bandwidth (ns)
#Bytes In frame * 80 ns

The last frame in the chain must have the XDONE= 1. Chains of frames may be created with
XDONE = 1 every N frames. Once the transmit sequence starts, all frames up to the frame with
the XDONE = 1 will be transmitted, followed by a release of the Token. Since the system knows
the chain is not complete, transmission automatically continues with the next frame in the
sequence when the Token is recaptured. This process is automatically repeated until a frame
with the right MORE bit is encountered.
For A-frames, the XDONE bit is not normally used.

- Bit 24 and 25 Is a fixed pattern.
- Bit 16-23 are "don't cares·.

95

11. Implementation example of MAC

Chaining Multiple Frames
Frames in the transmit chain begin with a 32-bit descriptor, followed by the actual frame data,
followed by a 32-bit frame pointer to the next frame. The MORE bit must be set In all frames
except the last. The XDONE bit should be used to control S-frame transmission. The queued
S/A-frame chain will be sent on capture of the next Token.

Length Field
This field contains the number of bytes in the data field of the frame (FC, DA, SA and INF9).

Transmit Frame Data Field
The data field for any transmit frame must Include the Frame Control (FC), Destination Address (DA) ,
Source Address (SA) and Information (INFO). The Start of Frame Sequence (SFS), consisting of the
Preamble and Start Delimiter, the Frame Check Sequence, and the End of Frame Sequence (EFS),
consisting of the End Delimiter and Frame Status are generated by the MAC. When first Initializing the
transmit queue, a stand-alone transmit frame pointer which contains the 16-bit address of the first frame
to be transmitted must be created. The address of the Initial transmit frame pointer must be loaded Into
a ram buffer.

Transmit Frame Pointer Field
The last field immediately following the data field, is the transmit frame pointer. When chaining frames,
this field contains the address of the next frame to be transmitted.

Frame Reception

Data is received as frames and placed in prepared locations of a buffer memory. These locations are
organized as a logical FIFO.

Operational Modes
There are three basic operation modes of the MAC:
- Initialization mode
- On-line mode
- Loopback mode

Initialization mode
On a software reset, this mode is automatically entered (MMODEo-2=000). In this mode, the receive and
transmit state machines are locked in the reset condition. The network datapath is locked in a "blind
repeat" configuration, see figure 10.7. The MAC address registers can only be written and read proper
in this mode.

Although the timer default values can be written In any mode. changing these parameters while on-lIne
may lead to non-deterministic behaviour. The timers can be loaded at any time, and network events can
occur asynchronously to the loading of the registers (the user cannot determine whether the timer Is
operating with the new or old default time).

During Initialization mode, no receiver protocol Is executed. When the MAC is In this mode. certain ring
events such as claim or beacon frames may be missed. Thus a MAC leaving the Initialization mode, may
not be operating with other than the current ring parameters such as the negotiated token rotation time
for the ring. The Claim/Listen and Listen/Beacon Instructions do not operate In this mode.

Even though the transmit state machine will not process the information, the internal timers (TRT and
THT) continue to operate. This permits rough timer checkout before going on-line. On reset, TVX Is
loaded with Its terminal count value. This timer, during non-initialization operations, will expire In 255

96

11.3 Ring operational

clock cycles. Status Is set accordingly. TVX will stop once expired until It Is reloaded. TRT and THT are
cleared on reset. They expire In 221 BCLK cycles. THT will stop when the terminal count Is reached. TRT
will reload with the current TMAX value and resume counting.

All counters resume sequencing when reloaded. Reloading can be forced with some specific
Instructions. These Instructions can be used with the timer expiration bits in the status register to verify
timer operation against "soft" timers during power on confidence testing of the node hardware. It should
also be noticed that the timers are loaded with their default values when the Mode Register MMOOE bits
are programmed to exit the initialization mode.

On.line mode
When the on-line mode Is entered, the MAC performs the operational sequence required for the FOOl.
The MAC exits this mode if the MMOOE bits are changed or a reset takes place.

Receiver
When on-line the MAC continuously processes the incoming symbol stream of the FOOl receiver
state machines. The fundamental actions are frame reception arid frame repetition control. The
receiver performs also some special functions like outputs for ring statistics, external addressing
and providing of general status information.

Frame Reception
Frame reception refers to placing network data on the VR-bus and setting the control signals
accordingly. There are four basic actions that can occur when the head of a frame is received
from the R-bus:
- Normal frame reception
- Flushed frame. There are two criteria for flushing a frame:

- At the end of a properly formed frame when the address match criteria have not been
met. The address match criteria includes the internal and external address
match decisions and the states in the mode register. If no valid address match
occurs by the fifth byte of the frame following the SA, this will be indicated. This
same indication will occur during repetition of a lost (symbol after the SO Is a
non-data or non-EO symbol) or stripped (partially repeated, before the EO is
repeated idles are transmitted) frame.

- If the frame ends on an uneven byte boundary.
• Non-reception. In this case the "datavalid" and "receive" Indication, and the VR-bus never go

active. To activate these signals the receiver state machine must be In SO awaiting
state. A SO followed by two data symbols must be received (Fe). If FC Indicates a claim
or token, frame reception will not occur. If all criteria heave been met, the state of the
transmitter must be considered. The transmitter must be In the Idle or repeat status for
frame reception. The only exception is when the FULL strap option is tied high. Finally,
reception will not occur if the mode register is programmed to disable receive.

- Frame abort. This occurs when there Is an external Indication to abort the frame or there Is a
missframe Indication. The abort action also occurs if the MAC enters a non-repeat, non­
Idle transmit state during frame reception or the disable receive mode register setting
is programmed while frame reception Is taking place.

Frame Repetition
Frames received on the selected R-bus are repeated on the X-bus. Normally the entire frame
is repeated, with the FS modified according to the FOOl specifications. The MAC transmitter can
leave the repeat mode for several reasons. The frame received at that time will be stripped.
Those reasons could be:
- If the MAC detects a MA=SA, this is the mechanism to remove a frame from the ring.
- Encountering of a lost frame. The byte containing the offensive symbol as well as all

subsequent bytes are removed.

97

11. Implementation example of MAC

- Token capture. The MAC decides to capture a token, this means received tokens will be
stripped (only the SO of the token Is repeated).

Frame status Indicators are repeated, stripped or modified. The MAC will repeat an Infinite
number of symbols following the frame (provided they are properly formed). The first control
symbol encountered must be a "T" In the most significant nibble of the R-bus. This signifies the
termination of a frame. if the first control character In the least significant nibble is a "T", the
frame has an uneven number of symbol pairs. The octet containing the "T" is repeated, and all
subsequent indicators are stripped. In a properly formed frame, the symbol after the "T" Is the
error indicator. This should be an ·S" or "R" symbol, if not an ·S" symbol Is assumed (the ·S· will
be recovered), and the MAC will assume that the FS reception is complete.

Aside from the ·S" Indicator no other Indicator will be recovered. If a byte of FS Is received with
a non ·S" or "R" symbol In the most significant or a non ·S", "R" or "T" In the least significant
nibble, FS processing Is completed. That byte and subsequent bytes of status are stripped.

Frames are not repeated when the MAC transmitter Is In the transmit data, Issue token or
beacon states.

Special Function Operation
The MAC processes some additional status information, like the reception of a valid SO,
detection of SA= MA. control bits reception and the reception of the first non-status byte. And
there Is a possibility to allow the user to supplement the MAC's Internal address detect logic with
additional hardware.

Transmitter
The MAC transmitter controls the timing of node transmission. The transmitter reacts to timer
expiration and received MAC frames to queue the claim and beacon frames. The transmitter
controls the node's data flow by Indicating a token capture. The transmitter makes capture and
pass decisions based upon the state of "media" request Inputs (i.e. synchronous, asynchronous,
etc) and token control register when a token Is received.

The MAC allows asynchronous or synchronous transmission, depending on the request and
timer values. Only one type of transmission is allowed at a given time. When both asynchronous
and synchronous frames may be sent, the synchronous request will take precedence. When
synchronous frames are allowed, the THT Is held. This prevents S-frames transmission In
allocated A-frame bandwidth. The MAC transmitter enters the transmit idle state when reset.

Frame Transmission
If the MAC gets a request to send an A- or S-frame, there will be a delay, due to the required
token capture time, between request and acknowledgement. If the media Is available the MAC
waits for the signal that indicates that the frame on YT Is ready. Before this frame Is transmitted,
the MAC ensures that there are at least 8 bytes of preamble transmitted.

The MAC will encapsulate all bytes Input on the YT-bus. An SO Is output on the X-bus
Immediately prior to transmission of the first YT byte. The FCS, If there Is no Indication In the
mode register that indicates otherwise, Is appended after the last byte given on YT. After the
FCS field, a "T" and "R" symbol are output on the most and least significant nibble of the X-bus,
respectively. This Is the frame's ED and error status indicator. This Is followed by two more ·Rs·
for the A_- and C_-indicators.

If a transmit abort occurs, the next byte on the X-bus will be an idle. The MAC transmit state
machine will be set to idle state.

98

11.3 Ring operational

Recovery Operation
The MAC can go In recovery based upon frames received, Instructions from the NP and timer
expiration. There are two recovery states specified in FOOl, the claim and beacon state. Claim
Is used to negotiate the operative time for token rotation and determine which node will Issue
the token. Beacon is used to guarantee ring Integrity by verifying the path of the ring.

Claim and beacon state can be entered at any given time. Once these states are entered, the
MAC must respond by placing the corresponding claim or beacon frames on the X-bus. The
MAC signals the claim or beacon state so that the proper frame can be queued for transmission.

The MAC can go from claim to beacon state and visa versa. If the MAC exits the claim or
beacon state It will go to idle state.

99

12. Architecture of FOOl

The description of the processes, given In appendix F, will now be mapped into hardware. This is done
with the Interactive Design and Simulation System (I OaSS), developed at Eindhoven University of
Technology by Ir. A.C. Verschueren. With 10aSS it is possible to design a system in hierarchies, and
simulate new components as soon as they are Inserted.

The files containing the designs described in this chapter can be found In appendix H.

The implementation examples of PHY and MAC as given in chapters 10 and 11 are given only for extra
information; the design described here is started up from the requirements model as found In the
PROMOD report (appendix F).

12.1 Constraints of IDaSS

State machine controllers cannot read the contents of a bus or the output of a RAM. This means that
in some cases these contents must be read into a register, which takes an extra clock cycle.

The clock cycles are not available, so sWitching the clock on and off for some blocks Is not directly
possible. When using state machine controllers for this purpose, a great deal of the flexibility and
simplicity of 10aSS is lost.

In stead of using a switched clock (which Is a bad habit anyway), the signals that are using a clock
frequency are replaced by a register whose contents tell the state machine controller that during the next
clock a pulse must be assumed. This does not delay the behaviour of the design more than to place
the right contents in the register. Most of the time the loading can be done In a previous clock cycle
preserving any delay. This construction is especially used for the strobe signals in the interfaces between
MAC and LLC.

12.2 Physical interfaces

The FOOl has to communicate with the outside world (LLC) , via an electrical interface on the top side,
and a light interface on the bottom side. The data that has to be transmitted, dictate the buses and
control signals that have to be present.

Further several interfaces are needed for inside communication.

Control signals are defined as active-low. This Is commonly used because of testing purposes. The data
signals are defined in normal logic: 1 Is high and 0 Is low.

Physical Interface from MAC to LLC

The physical Interface to the LLC consists of two data buses, one from MAC to LLC, and one from LLC
to MAC, each combined with control symbols.

The MA UNITOATA.indication flow transmits its data over a four-bit data bus, combined with a strobe
and an active signal (see figure 12.1). Strobe Indicates that the data on the data bus is valid. Active
indicates that the value on the data bus that is presented, Is a symbol of one of the FC, OA, SA or
M_SOU fields. As soon as active Is deactivated two more strobes are generated, to present the
MA transmission status (bit 0: frame good, frame bad; when frame bad: bit 1: invalid FCS;
bit 2: length_error; bit 3: internal_error):- and the receiVed EAC symbols (bit0 to bit 2: E, A, C). -

101

12. Architecture of FOOl

.-
:>data.Jn I

I

atrobe_~ t>

lIdIY8jl t>

figure 12.1, MA_UNITDATA.indication physical Interface

The OA and SA fields are always of equal length, but can be four or twelve symbols each. The LLC must
obtain this Information from the two FC symbols. that are presented before any address symbol.

The timing diagram is given In figure 12.2.

~ FC, OA, SA, M_SOU : valid, EAC

data_in

strobe_in

active_in

figure 12.2, MA_UNITDATA.indication timing diagram

The MA UNITOATA STATUS.indication flow transmits its data over a data bus, and several control
signals (See figure 12.3).

-----1>

-------il>

a~ l>

noLack I>

encLack I>
figure 12.3, MA_UNITDATA_STATUS.indlcation physical Interface

Strobe indicates that the data on the data bus and provided service class (PSC) Is valid, representing
respectively the number of SOUs (part of one request) that Istransmitted on one token capture and the
provided service class. These data are connected to the first request that has not yet had a status
indication. -

Because It Is possible that several requests are serviced on one token capture, it may happen that
another nr of SDUs and PSC is given before all already transmitted frames are acknowledged or not
acknowledged.

102

12.2 Physical interfaces

Ack and not ack indicate mutual exclusively wether a transmitted frame Is acknowledged by the receiver
or not (based upon the A and C symbols at the end of the returning frame). Ack and not ack may not
be active at the same time. Acknowledging (or not) is done in the order the frames are received (which
is the same as the order they were transmitted and received from the LLC).

When an end ack comes up. It indicates that no more frames from the last token capture can be
expected. This signal Is required to make It possible to the LLC to detect lost frames. and can be
obtained from token_detect. because no data appears behind a token.

When a request cannot be handled entirely (because of lack of transmission time for a certain frame),
nr of SOUs Is less than the number of SOUs In the request. The rest of the request is discarded and
It is left to the LLC to generate another request containing the discarded frames.

The timing diagram Is given In figure 12.4.

xxxxx

xxxxx
~-~~~~~~-----'-~~-

XXXX: : XXXX

".

data_In

strobe_In

psc

ack

noLack

end_acl<

:m_SDLi acknowledgements

figure 12.4, MA_UNITDATA_STATUS.lndication timing diagram

The MA UNITDATA.indication and MA UNITDATA STATUS.lndication primitives can both make use of
the same data bus and strobe. This Is because when these are used for the status indication, the token
is captured (which implies that there Is no more data to come). When a frame has returned before the
token is released. it will not be transferred to the LLC (because It is Its own frame).

Both primitives can be distinguished via the active signal indicating that a frame Is transferred to the LLC.
After it is not active anymore the next two symbols are part of this transfer. When another symbol Is
transferred while active is not active. It represents a nr_of_SDUs.

This means that at most 15 frames may be part of one request. If nr of SDUs = O. It Indicates that a
token is captured and immediately another token Is issued. - -

Physical interface from LLC to MAC

MA_UNITDATA.request and MA_TOKEN.request. both use the same four-bit data bus. This is possible
because both primitives are generated by the same entity (LLC). guaranteeing mutual exclusiveness.
Additional there are some control signals (see figure 12.5).

The MA_TOKEN.request primitive is constructed with data and request. When request Is active. this
means that the data on the data bus Is valid. and that a token must be captured of the
requested_service_class with optionally given priority_level (RSC(PL)).

103

12. Architecture of FOOl

,4 :>dat.lt..out I
I

l1JObe_oul ~

lIClIve_oul ~

alJ88m ~

request ~

fun <I

figure 12.5, MA_UNITDATA.request and MA_TOKEN.request physical interface

The MA_UNITOATA. request primitive Is constructed with data, strobe, active and stream.

Strobe indicates that the data on the data bus Is valid. When active and stream are both active, the
symbols transmitted over the data bus represent FC, OA and M_SOU.

The OA field can be four or twelve symbols long. The LLC must provide this information in the two FC
symbols, which are presented before any address symbol.

When stream is active and active not, the data represents the requested service class combined with
a priority level (bit 0 indicates Restricted (0) or Unrestricted (1), in case of Restricted bit 1 to bit 3
indicate the priority level). When both stream and active are not active, each strobe indicates that a
token must be captured. Along with this strobe a token class is transmitted over the data bus. This
token class indicates the type of token that must be issued after all possible frames are transmitted, or
Immediately, If no frames were specified. It Is Indicated by bit 0: Restricted 0 and unrestricted 1.

The timing diagram is given in figure 12.6.

FC, OA, tJLSOU

data_out

strobe_out

active_out

stream

request

RSC(P~)..) token_class
h7.:"""------,,=r1

figure 12.6, MA_UNITDATA.request and MA_TOKEN.request timing diagram

104

12.2 Physical interfaces

Physical interface from PHY to MAC

The interface from PHY to MAC consists of many signals. This is done to ease the detection of symbols
at the higher levels, see figure 12.7.

PH_Invalid •

J •

K •
T •
R •
S •

I •
4(..

PH_Indication -----t7'---.,.

data •

figure 12.7, PH_Indication and PH_Invalid physical interface

The PH Indication primitive is built up from the following signals: J, K, T, R, S and I, indicating the
symbol with the same name, and PH Indication and data, indicating the normal data symbols O..F.
PH_Indication is only valid when data is active.

The PH Invalid primitive is mapped directly on one signal. PH Invalid is activated on a deactivation of
Signalj5etect, on overflow or underflow of the elasticity buffer-(part of PHY) and on detection of other
symbols than can be represented by the interface of the PH_Indication primitive.

Only one of PH_Invalid, J, K, T, R, S, I and data may be active at one moment.

Physical interface from MAC to PHY

This Interface consists also of many signals. This Is because it eases the generation of these signals at
the higher levels, see figure 12.8.

.lola •

Kout •

Tout •

Rout •

Sout •

lout •
4(..

PH_Request ----'17'---....,.

dataout •

figure 12.8, PH_Request physical Interface

105

12. Architecture of FOOl

The PH Request primitive is built with Jout, Kout, Tout, Rout, Sout and lout. Indicating the J. K, T. R,
S and I-symbols to be sent. and PH Request and dataout. Indicating the normal data symbols O..F.
PH_Request is only valid when dataoUt is active.

Only one of Jout. Kout, Tout, Rout. Souto lout and dataout may be active at one moment.

Physical interface between store and add=controls

This Interface Is needed to transport the data supplied by LLC to add controls. Add controls uses only
the control signals of the Interface. other blocks use the data signalS. see figure 12-:-9.

symbols

strobing_symbols

'----------,>
--------1~

request_data <]f------

figure 12.9, Physical interface between store and add_controls

On activation of request data by add controls, strobing symbols is activated. and data is put on
symbols. This continues until the frameIs entirely sent over.

Symbols and strobing_symbols construct the data flow framed_data.

Physical interface between store and monitor

This interface is constructing the control flow frame_class, requesting for an opportunity to transmit. see
figure 12.10.

type L..--_----,:>
fUype_valld-------I[>

figure 12.10, Physical interface from store to monitor

As soon as a request from LLC has entirely been read, the requested service class of the first frame Is
put on type and ft_type_valid Is activated. When more frames are in this request, ft_type_valid is kept
activated. When the last frame In this request Is being serviced. ft_type_valid is deactivated.

12.3 Architecture of PMD and SMT

The PMO and SMT are not designed In IOaSS. This is because PMO consists mainly of analogue
components, like amplifiers. and SMT Is not described in a requirements model because the right
standard was not available.

106

12.4 Partial architecture of PHY

12.4 Partial architecture of PHY

Since the MAC needs some signals of the PHY, It is necessary that the PHY can supply these signals.
Because it is rather easy to describe the encode and decode parts of the PHY, these are already
described. This simplifies the generation of the signals.

The parallel to serial and serial to parallel (and synchronize and recover clock) processes work at a
clock rate or, 25 MHz, while theencode, decode and MAC processes all work at a clock rate of 25 MHz.
When these two clocks are Implemented in one IOaSS design, all registers in MAC and encode and
decode, must be controlled by a state machine controller, that divides the clock in fIVe and gives
commands to the registers at the right moment.

Since the main design is the MAC, It is better to put the processes that need a clock rate of 125 MHz
in another design that can be simulated separately, and connected in a later phase of the design. Since
the incoming bltstream may arrive at a different clock speed, it may be necessary to take another
simulator for this part, while it is very difficult (impossible) to model clock differences of less than 0.01 %
in IOaSS.

The signals needed by the MAC come directly from the encoder and the decoder. This means that there
Is no immediate need to describe the other processes of the PHY.

In the design chart, see figure 12.11, no more blocks are drawn than encode and decode with the
superconnectors connecting the design to a higher level. This means that there Is not yet an interface
defined between the PHY and the PMO. However that is not necessary for simulation of the MAC.

SlsrnaIJ.t.ct

PH_Invalid
'---lllI S i srnalJle t.o t J Ilf-------'

L--=-- ----jllIOFJlF X1lIt-----....
l'1lIt-------'

d.ood. Illllt--------IIU

S 1IIt-----...,
lII--lllIsW"loo 1-1 n I 1llJ------,

'-- --J PH_lndloatlonllf-----,

data

Jout""-"-­

Ho.. t 1llJ-----'

1'o.. t 1IIt-------'
onoodo Iloutlllt---------~

Sout 1IIt-----------------'===
sw..100 I.J>" t 1II---lllIswMltoI.J>" t 10.. t 1IIt------------..,LJ

PH-ft......t~=========Iir-~==;
••taout

figure 12.11, Design chart of PHV

107

12. Architecture of FOOl

To simulate the MAC, symbol out and symbol In are connected, though this is only useful for checking
on the correct operation of MAC on returning-frames and not for checking on the behaviour on other
frames. Therefore two or more FOOl designs should be linked together via symbol in and symbol out.
This Implies that symbol in and symbol out must be taken to a higher level. Because IOaSS is-only
working on one central clock, it is not useful to check the synchronize and recover_clock processes of
the PHY.

The dummy design Is needed because of the way IOaSS can model a multiplexer. As soon as the design
decoder is designed at a lower level, this dummy design may be omitted.The process decode is mapped
to a design decoder combined with a design dummy, see figure 12.12.

d.ecod..Z'

PHJn"aUci .1 __----'

KIII------11
r ~---_,~=======:
RII-----...,

s :=:====:::::::
1-----...,

PH_lnolicaUcnllll---...,
oIa'alll---...,

figure 12.12, Design chart of decode

Oesign decoder contains no more than a functional description of the behaviour (with If..then..else
constructions) .

The other blocks (with one connector) are superconnectors, connecting this design to a higher level
design.

The process encode Is mapped to hardware in the same way as the process decode, see figure 12.13.
Encoder consists of only a functional description. When encoder is designed at a lower level, the design
dummy may be omitted.

lout

Rout

Sout

Tout

Jout

JCout

Sout.
lout.

PH..,Jtequest

dataout

dUMMY' Jout

JCout
Tout.
Rout m------a

encoci..zo
syMhol_out

L...----aPH..,Jteques t

dataout

figure 12.13, Design chart of encode

108

12.4 Partial architecture of PHY

The IDaSS descriptions of operators encoder and decoder can be respectively found in appendices J
and I.

12.5 Partial architecture of MAC

The MAC consists of five processes, of which process userdata Is partially designed In IDaSS. This
process with revelve frames and monitor are the most important of MAC. A design of process
receive_frames Is given In 7.

In chapter 9 two state machines are given. These will be part of the process monitor, and so are not
used in process_userdata and receive_frames.

12.6 Partial architecture of process_userdata

As found with the requirements model, the MAC consists of several processes. These can be ented on
design blocks accompanied by state machine controllers. The design Is shown in figure 12.14.

stroohin9'_out_i
storoe

stroeaM_i
stro-SYM

cti ...e_out_i
ull_o

data_out_i

s troohi n9'_ou t_
LLC_data

stroeaM_i

acti ...e~out_i
z ull_o

___~_ro_a_M_e t_y_p_e__11 ne)(t-J'e ques t I

figure 12.14, Design chart of process_userdata

The following registers are used for generating control signals:

done (initially 1, inactive): Activated when a frame has entirely been sent.
frame_type (two bits, initially 01): Can be one of:

00 token
10 claim
11 beacon
01 other type

next_request (initially 0, active): When active, a request may-be initiated and nr_SDUs may be sent;
when Inactive, no frames may be transmitted. This is to make it possible for LLC to detect of
which request a frame Is lost.

nr_SDUs_vaiid (initially 1, inactive): Activated when the data of one request are transmitted, so that
nr_SDUs can be read. This number may be directed to another entity than LLC, so LLC must
always use the last value that appeared on the bus.

ready (initially 1, inactive): When activated, the request has entirely been sent, or the last frame of this
opportunity has been sent.

start_transmission (initially 1, inactive): active when a request to transmit can be honoured; it is read
at the end of the transmission of a frame.

109

12. Architecture of FDDI

The process store is made with the blocks store and read_control. Read_control Is a state machine, that
cannot be placed in the block store, since It makes use of register values that are found in the block
add_controls (IDaSS description of read_control can be found In appendix 1<).

The process add controls is made with the blocks add controls, add controls contr and FCS.
Add controls contr is a state machine that cannot be placed-in the block add contrOis, since it makes
use of registervalues in the block process userdata and the block store, and controls some parts in the
block FCS (IDaSS description of add_coriirols_contr can be found in appendix L). .

Done is an Indication that the current frame Is entirely sent (including control symbols), and a new frame
can be requested for. Ready is an indication that the last frame of this opportunity is sent (end of
request, end of time).

Nr SDUs is a block that contains the number of frames of one request that is sent. When nr SDUs valid
Is active, the value of nr_SDUs can be read by other blocks; it stays active during severalcycleS.

FCS Is the block that generates the frame check sequence.

LLC data is a block that is only inserted for testing purposes. As soon as the testing Is done, it can be
plac8d in a higher level of the total system.

Start transmission and frame type are blocks that should be placed In a block monitor, that is not
designed yet (monitor generates these control signals). Next request is a block that should be placed
in the block indicate, that is also not designed yet. -

12.7 Partial architecture of process store (part of process_userdata)

Store is the process that reads the data supplied by the LLC, and remembers it until an opportunity is
offered to send data. By then it must release the data, and erase it from the memory. To be able to do
this, a large memory is required, to store the data Itself, and several other memories are required to be
able to find back the frames and requests.

This asks for a levelled design, and a levelled addressing. The idea for the addressing Is shown in
figure 12.15.

ft_start

end address

.-...... store_address
~---t=1

memory

110

figure 12.15, Structure of the memory manager for LLC data

12.7 Partial architecture of process store

To store in the memory only store address and memory are needed, the other blocks are required for
finding the right data back. -

Rt start
Ft-start

= Request table start address
= Frame table start address

Parallel to the two tables. two other tables are used:
Rt type = Request table token class (class of token that has to be issued when the request .has

- been serviced)
Ft_type Frame table requested service class (class of service that Is requested for this

frame: asynchrono-us with priority or synchronous)

Initial state:
begin = 0
end = 0
rt start[O] = 0
ft-address = 0
ft- start[O] = 0
stOre address = 0

Storing LLC data in memory

To store data In memory, store address Is Incremented modulo the length of the memory every time
a symbol is written. When an entire frame is written to memory, the contents of store address are written
to ft start[ft address + 1] (the requested service class is written to ft type[ft address)), and ft address
is incremented modulo the length of ft- start (ft address+ 1 Is also-calculated modulo the length of
ft_start). - -

This is repeated for every frame in one request.

When all frames of a request are written In this way, the contents of ft address are written to
rt start[end+1] (the token class is written to rt type[end)) and end Is incremented modulo the length
ofrt_start (end + 1 Is also Calculated modulo the length of rt_start).

This incrementing is done only when it does not make end equal to begin. because begin = end
indicates that there are no requests in memory. By then the incrementing is postponed until a request
is entirely read from memory, and begin is incremented.

In this way requests can be written to memory. as long as none of the tables and the memory is filled
up.

In case an error on the controls from LLC or a fill-up occurs. the request Is erased from the memory by
firstly loading ft_address with rt_start[end] (address that ft_address had when the request started), and
after this loading store address with ft start[ft address] (address that store address had when the
request started). - - - -

Reading the frames from memory

To read the frames from the memory again. ft addr r is loaded from rt start[begin] and ft end Is loaded
from rt start[begin + 1]. Thereafter read address Is-loaded from ft start[ft addr r] and end address is
loadedfrom ft_start [ft_addr_r+ 1], so the begin address and the end address:; 1 of the first frame is

111

12. Architecture of FOOl

known. When the contents of ft type are not needed anymore, ft addr r is incremented and If
ft_addr_r '" ft_end another requestto transmit can be prepared.

By incrementing read_address the frame can be read from the memory, which is done until
read address = end address. When this happens and another frame can be transmitted (it is available
In thiS request, and tilning allows it), end address is loaded with ft start[ft addr r+ 1] (read address is
already loaded with the right value via the increments). - - - -

When no frames mayor can be transmitted anymore, begin is incremented, so the rest of the request
Is discarded.

Each of the three addressing levels Is Implemented as a circular buffer, that behaves like a bounded
FIFO. In IOaSS the depth of the memories is limited to 2048 addresses, so memory has got that size.
For simulation and evaluation purposes this satisfies, but in the eventual Implementation this memory
must have a size of about:

{depth of rt start} * {mean number of frames per request} *
{mean number of symbols per frame}

The depth of ft_start must then be about:

{depth of rt_start} * {mean number of frames per request}

In the simulation the following figures are taken:

depth of rt start
depth of ft-start
depth of m-emory

=8
= 32 (mean number of frames per request = 4)
= 2048 (should be larger In the eventual Implementation)

The eventually used figures will depend on the use of the system.

Implementation in lDaSS

The first level of design is shown in figure 12.16.

Inp-Aon.1 Isto~__••~ss-pontPI

tt_••_.s
ttJO•

....1••JO••ue.t

tull-p ••t.":ut~••
newJ

l·tPOblng-P~t_\JJItPoblng-P~tl

.t~••_1 J1 .t~••

I a.ctl".-p~t_1 Jj;...ti".-P~t
figure 12.16, Design chart of store

112

12.7 Partial architecture of process store

The second level of design Is the design of several blocks, that will be described later.

In figure 12.16 the three addressing levels are found: Write_request, write_frame and write_symbol. Each
block is a design, and will be described later.

Store address contr Is a state machine that controls (using nr done) the storing of the frames In the
memory (IOaS'S description of store address contr can be found In appendix M). It controls all tl:lree
addressing levels and so cannot be placed In-a lower level design.

S Land addr I scan for the length of the address of the Incoming frames (IOaSS description of addr I
can be foundln appendix N). -

MA and MA contr supply the address of the station, that must be available, according to the reqUired
length (IOaSS description of MA contr can be found in appendix 0). It Is a simple block as can be seen
In figure 12.17, consisting of and addressing register (MA address), and a memory containing the
address (MA_mem). -

IMA-AddKO•••rr:..:_::_clJE
figure 12.17, Design chart of MA

Full is a block that indicates that there Is no more space to store a request, a frame or a symbol. The
request that Is currently sent, Is erased from the memory. When only the request table is full, the last
request is not erased. The latter case can be distinguished from the others, because full is activated after
both stream and active_out are deactivated by the LLC.

The registers stream, active out, strobing out and data out are fed via superconnectors by LLC data.
These registers are needed fOr IOaSS, since state machines In IOaSS cannot read the contents ofa bus.

12.8 Architecture of write_symbol (part of store)

Write_symbol is the third addressing level, that contains the memory that must remember the SOUs
supplied by the LLC, accompanied by the address supplied by MA (in the field of SA), See figure 12.18.

The following register Is used for generating a control signal:

strobing symbols (Initially 1, Inactive): Activated on request data (from add controls), and frame type
~ other_type, along with enabling the tri-state outpli' symbols_d. - -

The memory has two addressable write ports, and one addressable trl-state read port. The write ports
are used to get the data from LLC and MA In the memory, and the write port Is used to read the data
from the memory. It is made tri state to easily add other data (like the FCS) to the data read from the
memory. When reading from the memory, strobing symbols indicates that the data Is valid.

Store address is the register that contains the address that data from the LLC must be written to. It has
an Input, that is fed via a mux. The mux (IOaSS description in appendix P) switches between a restore
address (store_res, when something has gone wrong and the request must be erased), and a continue
address (MA_address, to continue addressing after the address fields are placed in the memory). The

113

12. Architecture of FDDI

MA~ MA.
MeMOry

figure 12.18, Design chart of write_symbol

output is also used by the second level addressing, to remember the end of the frames.

Destination Address (DA, from LLC) and source address of this station (MA) can be written
simultaneously, making addressing easy, and saving some time. It is done by using two write ports that
can be independently addressed. To make the simultaneous addressing possible the operator
add 4 or 12 (IDaSS description in appendix Q) is inserted, that outputs the address MA must be written
to. When the addresses are entirely written, the output of add 4 or 12 Is loaded in store address to
place the rest of the Incoming data from the LLC behind the address fields. -

Read address points at the symbol of the frame that is output to symbols d. End address points at the
place-behind the last symbol of that frame. As long as read address does not reach end address, this
process continues. When at the end of a frame, read address already points at the first symbol of the
next frame In the same request, so only end address has to be updated. When a new request Is
beginning to be serviced, both registers must be loaded, since it may be possible that some frames of
the previous request have not been sent.

12.9 Architecture of write frame (part of store)

Write_frame is the second level of addressing. It will contain the start address of each frame in memory,
and the type of that frame. Therefore two memories are used, see figure 12.19.

The following register is used for generating a control signal:

ft_type_valid (initially 1, inactive): activated to Indicate a request to transmit. Only activated when a
request from LLC has entirely been loaded.

Ft type is used to store the type of the frame, and to generate the request with. Monitor bases its
decision about sending or not on this type.

Ft_start contains the start addresses of the frames In the memory.

When accepting frames from LLC, the start address of the next frame is stored on address
ft address+1, while the type of the frame is stored at ft address. For restoring the store address, the- --

114

12.9 Architecture of write frame

Inew.J't,..-r f't.-.nd

figure 12.19, Design chart of write_frame

address at ft address is used.

To read the information, the end address of the frame Is read from ft addr r+ 1, while the begin address
is read from ft addr r. The type at place ft addr r is used for generating the request for transmitting this- - - -
frame.

12.10 Architecture of write_request (part of store)

The following states are used by state machine read_control:

begin = end (initial state): Indicates that no requests from LLC are entirely loaded In the memory.
begin ~ end: Indicates that at least one request is entirely loaded in the memory.

Write request is the first level of addressing. It will contain the start address of each request In ft start,
and the token class that must be issued after that request. Therefore two memories are used, see
figure 12.20. -

• t_add~ess_a £t_add~ess_d'

I~H'------,E·"'t..J'es_a £ t..J'es_dr:!·~----------1a-~----,

~t ta~t

neN...J"t_'~I -a. ...J
£t_add~_

figure 12.20, Design chart of writeJequest

115

12. Architecture of FOOl

Rt type actually Is part of the monitor, but since the addressing is the same as that for rt start, it is
placed In this block. -

When a request has ended, ft_address Is stored at address end + 1, while the token_class is stored at
address end. Hereafter end is incremented. When something has gone wrong, so that a request must
be erased, the restore ft_address is ready at ft_res, at address end.

Extract takes bot 0 for token class from the data bus.

To start sending a request, the addresses in the second stage have to be updated. They are given via
new ft and ft addr, at address begin + 1 and begin. The token class required by the monitor appears at
class d. When the entire request Is serviced, or the time to send Is over, begin is Incremented, but not
sooner than that the current frame has been entirely sent.

12.11 State machines used for process store

State machine read control (IOaSS description In appendix K)

Used to read data from memory to add_controls.

1. wait until request
Waiting until a request has fully been entered in memory (this is detected when begin ~ end).
When that happens, ft_addr and ft_end can be loaded from rt_start (they are valid now).

2. request ready
There isa complete request.
Since ft addr r is read, read address and store address can be read from ft start (they are
valid now), and a request totransmit may be giVen via frame class (ft type valid). because
ft_type is valid. - --

3. request to send
The requeSt to transmit Is given, ft start is loaded Into read address and ft type is read by the
monitor. - --

This means that the contents in the memories pointed at by ft addr r are not needed anymore,
so ft_addr_r can be incremented. When there are no more frames Tn this request (detected by
ft_addr_r = ft_end-1) ft_type_valid must be deactivated.

4. walt for request data
Themonitor handles the request, and tries to capture a token. When this happens, it indicates
that the transmission may start, and add controls starts the transmission. When add controls
needs the data In memory, It activates re-quest data. -
Now begin may be incremented since the rt type Is read by the monitor at token capture, but
this may be done only one time per requesCso It is done at the end of the transmission of the
request.

5. produce frame
The tri-state output of memory (symbol) Is enabled and the data Is sent to the bus until
read_address = end_address-1. When this occurs there are two possibilities:

116

12.11 State machines used for process store

a. There is another frame In this request (ft addr p ft end) and transmission is allowed
(start transmission = 0): --
The last symbol is written to the bus: After that symbols_dis made tri-state again. the
new value for end address Is loaded (read address is already correct via the reading
of the previous frame). -
There must be waited until the frame has entirely been sent.

b. There Is no other frame to be sent, or no time Is left.
Then begin may be incremented, the last symbol Is sent after which symbols d Is made
tri-state again. - .
There must be waited until the request (frame) has entirely been sent.

6. hold until frame done
There must be waited until the frame has entirely been sent.
When that Is done, the request for another frame Is approved by the monitor via
start transmission. This means that ft type Is not needed anymore and another frame can be
requested for (by Incrementing ft addr r) if there Is any, or else ft type valid can be
deactivated. The latter case causes Start transmission to deactivate, but does nOt interfere with
the frame currently sent, since this transmission is already Initiated.

7. hold until request done
To make sure thatno new request is initiated while the current is still running (causing another
request to be sent, while the current request is not fully acknowledged), there must be waited
until this request is ready.

State machine store address contr (I0aSS description in appendix M)-
Used to store data from LLC In memory.

1. wait and addressing till data
In this state there is space available to store at least one request address, one frame address
and one symbol. When data Is supplied by LLC, It is stored in memory until the address fields
are stored (the length is determined from the frame control).

2. addressing data
The data after the address fields is stored in memory.
When no more data for this frame comes through, the requested service class reception Is
initiated. - -

3. next frame
When a new frame comes up, the reception Is Initiated, and state wait and addressing till data
Is entered, else token class Is read and state wait and addressing till data Is entered If In
either case the available space Is entirely used, the state-wait until free -space is entered and
full Is Indicated to the LLC. - - -

4. wait until free space
This-state-Is kept until in all three addressing stages is at least one place available. When that
happens the state loose_request Is entered, to erase the latest request in memory.

5. loose request
Ft address restore is initiated.

6. restore frame address
Store addressrestore is Initiated.

117

12. Architecture of FOOl

7. wait until end request
There is waiteduntil the current request has ended. This is needed because it may happen that
LLC does not react to the signal full.

The construction to loose the request takes three states. and so needs three clock cycles. This means
that if an error occurs. the recovery time is at least three clock cycles.

12.12 Architecture of block add controls

Add_controls add the control symbols to the frame to make it complete. It Is shown In figure 12.21.

Izoe'lUest_data I

loounte.. 1
figure 12.21, Design chart of add_controls

Register used for generating a control signal:

request data (initially 1, Inactive): Indicates that the preamble and start delimiter have been sent, and
data from store is required.

Generate controls is an operator that supplies the symbols that are used to complete the frame (IOaSS
description in appendix R).

Counter is used to count the length of the preamble and the number of R symbols in the frame status.

12.13 State machine used for process add_controls

State machine add=control§".contr (IOaSS description in appendix U

1. wait
Waiting until start_transmission Is activated. If so the preamble Is Initiated.

2. PA
Makes the entire preamble of 16 I symbols. and thereafter initiates the J symbol of the start
delimiter and Initiates request_data for store.

3. J
Initiates the K symbol of the start delimiter.

118

12.13 State machine used for process add controls

4. K
Waits until strobing symbols is inactive. and dependent on frame type enters state add 2 T
(frame type = token) initiating a T symbol. or add FCS (else) initiating the transmission 01 the
frame check sequence. -

5. add 2 T
Initiates the second T symbol and enters state wait.

6. add FCS
Finishes adding the frame check sequence, and enters state ED initiating a T symbol and
resetting the FCS block.

7. ED
Adds three R symbols for the frame status. and enters state walt.

12.14 Architecture of FCS (part of process_userdata)

FCS is placed outside block add controls that takes care of adding the frame check sequence because
it is a directly controlled by state machine add_controls_contr.

In process userdata all data handling is based on the four bit symbol. The circuit to determine the frame
check sequence, given in the MAC standard [4] and shown in figure 3.1. is based on a one bit input.

Two options are open to solve this problem. One Is to serialize the symbols to bits. This requires a four
times faster clock along with the normal clock. and logic to execute the conversion to and from serial
bits. This may have the disadvantage of unsynchronized clocks, and trouble to have the frame check
sequence in time to be put immediately behind the data.

Another possibility Is to design another circuit that accepts four bit input. This has the advantage of
having no trouble with synchronisation of two clocks and the two data streams.

Since IDaSS does not support mUltiple clocks in one design. and because of the disadvantages of the
first method, the second option Is chosen.

First is determined under what condition It is possible to use this second option.

119

12. Architecture of FOOl

figure 12.22, General circuit of 8 feed back shift register

11 ... Ij

Theorem: Given a circuit of a feedback shift register. like in figure 12.22. with I, to IJknown. the value
of ~ at time t can be expressed as a function of Xi.J• ><..., till ><"oJ and I, till IJat time t-j.

Note: All additions are done modulo 2.

Proof:
~[t]

~[t-1]
X,[t-i]

Xi[t]
Xi[t]

= ~.,[t-1] + a~k.,[t-1]

= ~., [t-2] + a~k.' [t-2]
= ~.,[t-I-1] + a~k.1[t-I-1]

= ~.2[t-2] + ai.,Xk., [t-2] + a~., [t-1]
= ~.3[t-3] + aio~k.,[t-3] + a'.'><"o,[t-2] + a~.,[t-1]

In general:
~[t] = X1.J[t-j] + I;!;~o ai.mXk.,[t-1-m]

Xk., [t-q] = ><".'-j+q

Giving:

When ak., ... ak.)+, " 0, this formula Is not valid, but still the value of a certain cell can be expressed as
a function of the values of the other cells and some Inputs at some previous time.

= ><".p-, [t-1] + ak..)<..., [t-1]
= Xkop-, [t-2] + ak..)<..., [t-2]
= ><"op-, [t-3] + ak..)<..., [t-3]

Xk., [t-2] = Xk.2 [t-3] + ak.,><"., [t-3]
><..., [t-1] = ><"-3[t-3] + ak.~k.' [t-3] + ak.,Xk.2 [t-3] + ak.,><..., [t-3]

As can be seen from these formulas:
><".p[t] = F(><...,[t-j] •...• Xk.J[t-j]. ><".p-,. I, •...• Ij)

120

12.14 Architecture of FCS

Consequence:
Xt[t] can be calculated from values stored at time t-J, and so can be calculated In one cycle. This means
that the circuit In figure 12.22 can be parallelized to j bits. The polynomial used in FOOl Is:

G(x) =
>f2 + 'Jf6 + y.,23 + >f2 + x,e + X'2 + x" + x,o + -y.8 + x7 + >!' + >t + y.,2 + x + 1

Implemented In a feedback register a3, till ~7 are equal to zero, and no special tricks have to be used.

In this case the following feedbacks must me used:
>f2 = 'Jf6 + y..23 + >f2 + x,e + X'2 + x" + x,o + -y.8 + x7 + >!' + >t + y.,2 + x + 1
ra = y..27 + y.,24 + y.,23 + X'7 + X'3 + X'2 + x" + ~ + -y.8 + -y.8 + >!' + ~ + y.,2 + x
~ = x29 + x2e + y.,24 + x,a + X'4 + X'3 + X'2 + x'o + ~ + x7 + -y.8 + >t + ~ + y.,2
>f!l = x29 + 'Jf6 + x2e + x,g + Xlii + X'4 + X'3 + x" + x'o + -y.8 + x7 + >!' + >t + ~

When ak_, till ak_j +, would not be equal to zero, the previous method would result In terms of grade 32
or higher (>f2, ra, etc) on the right side of the equal sign. These can be replaced by their equals as
accounted with the previous method.

Example with grade 3:
G(x) = ~ + x + 1
This means in the circuit: ~ = x + 1

To parallelize this to three bits, the following feedbacks must be constructed:
~ = x + 1
>t=y.,2+x
>!'=~+y.,2

x3 already exists at the left side of the equality signs so an extra conversion Is used:
>!' = (x + 1) + y.,2 = y.,2 + x + 1

Note: The constraint to the parallelization is the number of bits that can be parallelized: That must be
a divider of the grade of the generator polynomial.

Implementation in lOaSS

Since the context of FCS is using four bit wide symbols, the circuit is designed in four bits. It is shown
in figure 12.23.

It consists of 8 four bit registers (FCSO to FCS7), that are fed back via operators (fbdO to fdb7). These
operators connect the outshifting values (>f2 to >f!l) and the outputs of the previous register in the right
way to the Inputs of the register It is connected to (IOaSS description of the operators can be found in
appendix T).

The registers are controlled via a control connector that Is connected to strobing symbols In the block
process userdata\store\wrlte symbols and a register reset. The former Is used tobe able to start soon
enough with the frame checksequence generation (all registers are set to load). The latter Is used to
reset the registers to F again when the frame check sequence has been read out. Reset Is controlled
by add_controls_contr.

121

12. Architecture of FOOl

I·t..-Sy"'t I rICS_&dd..eSslnlf I IFCS_outa

11'l)"et I ~fdl'e.s
1.,15 ;\14 FCS 1.,13 ,.,12 I. I J.

FC£_o~t&:l
.,1 1.,16 1.,19

.----- ,....-----< - .----- .----- .-----
Ir "] tcs~ ll-CS~• tCS~. tcst ~CS3. c~CS'. ll-cs, ~... Is

",el'lf: c •

~ ~ ~ ~ ~ ~ ~ ~
i'd}'"1 i'd}'6 i'd}'5 i'd}'4 i'd}'3 i'd}'2 i'd}'J. i'd}'9

tl b rl JD J f: II b ~ f: ~ JD rl JD II li
1 T I

ISy",},oIsj

figure 12.23, Design chart of FCS

FCS is an operator that addresses the outputs of the registers when the frame check sequence has been
made, to direct it behind the data (IOaSS description in appendix S). It is steered by register
FCS_addressing, that is controlled by add_controls_contr.

12.15 Further development of process_userdata

Not all processes of process userdata have been implemented yet. Compose and indicate are not
watched at and store must be-extended with the possibility of accepting data from SMT and MAC.

12.16 Note to the design process

As said before, the design process has been started from the requirements model. While designing,
some descriptions In the requirements model appeared to be inefficiently implementable. To make the
design efficient anyway, the requirements model has been adapted. These were only minor changes,
that did not change the essence of the model.

122

13. Conclusions and recommendations
FOOl can be used for different purposes, like back-end. backbone and front-end networks. For all these
purposes enough bandwidth Is available, since the defined bandwidth of FOOl Is 100 Mbps.

Normal FOOl cannot be used for circuit switched services. so another standard is defined called FOOl-II.
This allows for suitable-bandwidth circuit switching. combined with packet switching. Because FOOl-II
merges the data and voice (video) services. It has a major power to become a great success.

Fiber offers a high security degree. but the operation of FOOl on It, makes FOOl likely to be used only
for private owned networks.

FOOl is a perfect solution for LAN sites. but for long distance data transfer (possibly Interconnecting
FOOl networks) OaOB networks (B_ISON) are more likely to be used.

The FOOl follow-on needs efficient connections to future WANs, guaranteeing an effective use of FOOl
networks. With the development of FOOl follow-on one has to keep In mind that the offered basic
bandwidth has to meet the American, European and Japanese long distance standards (this will
probably be about 600 Mbps).

At this moment FOOl networks are mainly used as a backbone to interconnect LANs. However there are
a more and more networks that are used to interconnect supercomputers, so called back-end (for
Instance with NASA, Freedom and USA Oefence), for which FOOl initially was developed.

Though many other LANs are reaching their boundaries, the step to FOOl Is still too expensive, as well
In the economical as in the technical sense. These costs can be decreased via decreasing material costs
and "economies of scale".

Many LAN solutions can be found in usage of bridges and routers between the different domains like
IBM 3090, VAX and HP. Only 10% of the users wishes a connection with another domain than his own.
To them FOOl will possibly offer an economical acceptable solution.

On the International LAN markets there are some saturation developments. There are to many suppliers
and distributors on a to slowly growing market. This results in minor Investments in new products, that
in turn slows down the market growth. As a result many suppliers and distributors cooperate or merge
into new companies.

A major problem at this moment is to create services (demands) that really need the FOOl bandwidth
and equipment that can handle this bandwidth, this has to be accomplished to make FOOl a great
success.

All FOOl standards are defined in agreement with the ISO/OSI definitions, and cover the physical layer
and the lower part of the link layer protocol. A station management Is defined through both layers. This
makes FOOl a useful standard, it allows different suppliers to produce FOOl products that can easily
cooperate with other parts of the FOOl network. This eventually creates a competitive market. decreasing
the.price.

I am convinced that FOOl Is already a success, on the other hand I also believe that the need for FOOl
Is not yet optimal.

In the ANSI documents, a basis is given for Implementing the entities. The actual Implementation
however is stili free except for the external behaviour of the entitles.

With the method described In [1], a requirements model has been developed using PROMOO (a
program that supports the method). The accent has been laid on the MAC entity because that seemed

123

13. Conclusions and recommendations

to be the most interesting part besides the SMT. Discussions about specifications of processes appeared
to be very useful to obtain a good model. The SMT entity is only slightly viewed at, because no up to
date standard was available.

Going out from the requirements model, some processes have been designed using IOaSS. This resulted
In encode and decode IOaSS descriptions, and the possibility to receive frames from the LLC and
construct frames from It.

Because of the other point of view that Is used to design hardware, the requirements model had to be
adapted at some points. These were only minor changes, that did not change the essence of the model,
so working via the requirements model is very satisfying.

In this report a major Introduction has been given. This Is done because the Internal operation of FOOl
Is not very much known about In the Netherlands at this time.

With use of this introduction and more literature (especially a standard on the SMT), parts of the
requirements model can be further developed to the level that a design Is easily obtained.

The MAC has been modeled the most extensively, but especially the process monitor will have to be
watched at more closely. Further SMT has to be developed from scratch.

The designs that are ready so far, will have to be extended. PHY must be finished by adding the parts
that operate on a higher rate clock. Process userdata has to be extended with indication to LLC about
transmission status, and possibility to compose MAC frames. Also the store must be extended to receive
frames also trom other sources than LLC.

In [7] the design of process receive frames (in MAC) Is watched at. So for other designs in this area the
reader is referred to that report. -

Though still a lot of work has to be done, it may be useful to continue with the design of an FOOl
protocol handler, or at least keep an eye on the SUbject, since FOOl is still developing rapidly to more
applications, and high speed data transfer is required in the near future.

124

Appendix A: MAC receiver state machine [4]
Rl:AWArr SO

PH Indlcatlonm
RESET lVX; ENABLE lVX

r.AA~ R.....'
(lOBI

SETT_Neg • T_Max

PH Invalid
(lOb)

R5: CHECK T1<

MAC_t
(5Oal (518)

PH Indlcatlonm

SETT_Neg • T_Max SIGNAL FR_Strip

PIo! 1"""11.1
(5Ob) (51 b)

PH Indlcatlontnoll.Tl
SIGNAL FO_Error; INC Lost_a SIGNAL FO_Error; INC Lost_a

(51 c)
After EDITTl

R2: RC FR C1'f!l TK_ReceI""c,-llCllons 6

(25)
Aft"r FCr and FCR .. TokAn

MA~ Reset
(2Oa)

PH Indlcallon(Jl
(12)

SETT_Neg • T_Max SIGNAL RC_start; CLEAR A,C,E,N,H,L,Mflags

PH Invalid
(2Ob) (218)

PH Indlcationm or !before K & PH Indicallon(not Kl
SIGNAL FO_Error; INC Lost_a SIGNAL FR_Strip

(21 b)
After K & PH Indication/not I nl
SIGNAL FO_Error; INC Lost_a

R3: RC FR BODY
DA Actions 1
SA-Actions 2
CT-Actions 3

(23)
Aft"r Fer & FCr .. Tnk.."

IF FOR • Nelli Station Addressing
THEN SET N_Flag

MAC Reset
(308j (318)

PH Indlcatlonm
SETT_Neg • T_Max SIGNAL FR_Strip

PH Invalid
(3Ob) (31 b)

PH Indlcatlon/noll,T,nl
SIGNAL FO_Error; INC losl_a SIGNAL FO_Error; INC Lost_a

R4: RC FR STAniS
Ar A Ions 15

PH Indlcatlonffi
(34)

ED_Actions 4

MAC Reset
(418)

After FSr & FCr • CI!lim & A Flea & M Raa
SET T_Neg • T_Bid_Rc; SIGNAL My_CI!lIm; CLEAR R_FI!lll

SETT_Neg • T_Max

(41 b)
After FSr & FCr • Claim & H FIB!!

MAC Reset SET T_Neg • T_Bid_Rc: SIGNAL Higher_CIalm; CLEAR Rfl!lll
SETT_Neg • T_Max

(408)

(41 c)
After FSr & FCr • Cl!lIm & L Flag

PH Invalid SIGNAL Lower_CI!lIm; CLEAR Rfl!lll
NAL FR_Recelved; IF E_FI!lll & (40b)

Er .. S THEN INC Error_a
(41d)

After FSr & FOr • Beaoon & M Flllll
SET T_Neg. T_Max; SIGNAL My_B!lacon; CLEAR R_F1!lll

(41 e)
After FSr & FCr • B!lacon & not 1M Raa or E Flaal

SETT_Neg .. T_Max; SIGNAL Olher_Beacon; CLEAR Rflag

(411)
ELSE After FSr

SIGNAL FR_Received; IF Eflag & Er .. S THEN INC Error_a

(00)

SIG

RO:USTEN
DISAB lVX

(01)

Vertical staffs indicate states. horizontal shafts Indicate transitions. Above the shaft the conditions are
given for which the transitions are made. below the shafts the actions are given which have to be
performed during the transition.

125

Appendix A: MAC receiver state machine

1. DA Actions:
After DAr

IF FCr ~ Void
THEN IF Lr = 0 & DAr Is contained in the set of Short Addresses or

Lr = 1 & DAr Is contained in the set of Long-Addresses
THEN SET A_Flag; copy frame -

2. SA Actions:
After SAr

IF (Lr = 0 & SAr = MSA & MSA > 0) or
(Lr = 1 & SAr = MLA & MLA > 0)
THEN SET M Flag; SIGNAL FR Strip
ELSE IF Lr =0& SAr > MSA &-MLA = 0 or

LR = 1 & SAr > MLA
THEN SET H Flag
ELSE IF SAr -; 0

THEN SET L_Flag

3. CT Actions:
After 4 Info Octets

IF FCr =-Claim
THEN IF T Bid Rc ~ T Req

THEN-CLEARM Flag;
IF T Bid Rc > T Req

THEN IF L Flag
T-HEN SET H Flag; CLEAR L Flag

ELSE IF H Flag - -
THEN SET L_Flag; CLEAR H_Flag

IF L Flag
THEN SIGNAL FR_Strip

4. ED Actions:
INC Frame Ct;
IF Valid_Dcita_Length & (Valid_FCS_Rc or (FCr = Void or Implementer))

THEN RESET TVX;
IF A Flag & Valid Copy

THEN SET C Flag
ELSE SET E Flag; -

CLEAR A_Flag, H_Flag, M_Flag, L_Flag

5. Ar Actions:
After Ar

IF Ar = R
THEN CLEAR N_Flag

6. TK Received Actions:
IF-Token Class = Restricted

THEN-IF not R Flag
THEN SET R Flag; Notify SMT

ELSE RESET TVX; CLEAR R Flag
SIGNAL TK Received -

126

Appendix B: MAC transmitter state machine [4]
TO:TX IDLE Tl: REPEAT

FS Actions 2
T4:CLAIM TK

TBldTxaT
R(l Rh..,

(14)
Reeoverv Aeouired 8

(01) AecoIIery_Actlons 9

a.tore FOx & FCr a Token & Usable 3
(108)

TK Received
(lOb)

Pass.-Actlona 4

FR Strlo or FO Enor
(lOC)

Reset Aeouired 8
(lOcI)

Aesel_Actlona 7
12:TX DATA

FA Received
(108)

IF Asynch_Request
THEN ENABLE THT
ELSE DISABLE THT

(02)
TK Received &Usable 3

(24)
Aeeovery Required 8

Capture_Actions 5 AecoIIery_Actions 9

Reset Aeoulred 6
«(20)Reset_Actions 7 J

(22)
Another Frame 1

13: ISSUE TK

ELSE After FSx (no more framesl
(23)

(03)
TK Received ¬ Usable 3

(34)
Recovery Aeoulred 8

Pass_Actions 4 Recovery_Actions 9

Reset Aeoulred 6
(3011)

Mv Claim
Reset_Actions 7 SET T_Opr = T_Neg; RESET TAT + T_Cpr; ClEAR l.aIe_Ct

After EDIl1l
(30b)

(04)
Reeoverv Aeoulred 8
Recovery_Actions 9

Reset ReQuired 6
RESET TAT • T_Opr

15: TX BEACON

(00)
Reset Reaulred 6

I
Aeset_Actions 7

MAC Reset or Other Beacon
(50)

TAT Exolres
RESET TAT • T_Opr SET Beacon_Type • Unsueeessful_Claim, DA • NULL

(OS)
SM MA CONTAOLreauestlBeaeonl

(54)
My Beacon

RESET TAT • T_Opr RESET TAT • T_Opr

(43)

(40)

(45)

Vertical staffs indicate states, horizontal shafts Indicate transitions. Above the shaft the conditions are
given for which the transitions are made, below the shafts the actions are given which have to be
performed during the transition.

127

Appendix B: MAC transmitter state machine

1. Another Frame:
After FSx & Late Ct = 0 & (Synch Request or

(Asynch_Request & Requestec(TK_Class = R_Flag &
(Ignore_THT or THT < T_Pri(Request_Priority))))

2. FS Actions:
Before Ex

IF E Flag THEN SET Ex = S ELSE SET Ex = Er
Before Ax

IF A Flag THEN SET Ax = S ELSE SET Ax = Ar
Before ex

IF C_Flag & not N_Flag THEN SET ex = S ELSE SET ex = Cr

3. Usable Token:
Ring Operational & (Synch Request or

(Asynch Request & Late Ct = 0 & Requested TK Class = R Flag &
(Ignore THT or THT < T-Pri(Request Priority)))) - -.... - -

4. Pass Actions:
IF Ring Operational

THEN IF Late Ct = 0
THEN RESET TRT = T Opr
ELSE CLEAR Late Ct -

ELSE SET T Opr = T Neg; RESET TRT = T Opr;
SET Late_Ct = "'1; SET Ring_Operational

5. Capture Actions:
DISABLE THT;
IF Late Ct = 0

THEN SET THT = TRT; RESET TRT = T Opr
ELSE SET THT = expired; CLEAR Late_Ct

6. Reset Required:
MAC=Reset or Higher_Claim or Other_Beacon

7. Reset Actions:
SET f Opr = T Max;
IF Ring Operational or Late Ct = 0

THEN RESET TRT = T apr; SET Late Ct = 1;
CLEAR Ring_Operational -

8. Recovery Required:
TV>< Expires or (TRT Expires & Late Ct > 0) or
(Ring Operational &T Opr < T Req) or
Lower_Claim or My_Beacon -

9. Recovery Actions:
T_Opr =-T_Max; RESET TRT = T_Opr; CLEAR Ring_Operational

10. TRT Actions:
In a,T states: IF TRT expires

THEN INC Late_Ct; RESET TRT = T_Opr

128

Appendix C: Abbreviations for MAC [4]
Error Ct
Frame Ct
Late Ci
Lost-Ct
A Flag
C-Flag
E-Flag
H-Flag
L-Flag
MFlag
N-Flag
R-Flag
A-Max
O-Max
F-Max
I-Max
LMax
MMax
S-Min
T-Bid Rc
T-Bld-Tx
T-Init­
T-Max
T-Min
T-Neg
T-Opr
T-Prl
T-Pri(n)
T-React
T-Req
T-Resp
TFiT
TRT
nRT
TVX

Count of reportable frame errors
Count of all frames received
Count of TRT expirations
Count of POUs detected as lost
Indicates destination address match in last received frame
Indicates successful copying of last received frame
Indicates error detected In last received frame
Indicates Higher Source Address received
Indicates Lower Source Address received
Indicates My Source Address received
Indicates next station addressing
Indicates the token class of the last valid token received was restricted
Maximum signal acquisition time
Maximum ring latency time
Maximum frame time
Maximum station physical insertion time
Maximum transmitter frame set-up time
Maximum number of MAC entities
Minimum safety timing allowance
Bidding nRT received by this station in claim frames
Bidding nRT transmitted in this station's claim frames
Ring initialization time
Maximum nRT to be supported by this station
Minimum nRT to be supported by this station
Negotiated nRT during claim process (in receiver)
Operative nRT for this station (in transmitter)
Set of n priority token rotation time thresholds
Element n of set T Pri
Worst case time to-react to a station insertion or removal
Requested nRT for this station's synchronous traffic
Worst case time to recover a token
Token holding Timer
Token Rotation Timer
Target Token Rotation Time
Valid-Transmission Timer

129

Appendix D: Files made with PROMOD

Disk labelled PROMOD 1

\FDDI.PRD : Main file used by PROMOD, containing all descriptions of dataflow diagrams,
controlflow diagrams, minispecs, controlspecs and data definitions.
This file can be used Immediately by PROMOD, without any other files.

Disk labelled PROMOD 2

\FDDI.SA : Analysis report, made by PROMOD, containing descriptions of minispecs,
controlspecs and data definitions. This file can be printed via a normal
ASCII text editor or via the type command In DOS. Note: This file
contains no flow diagrams.

\PLOTS*.PCF : Plotfiles in HPGL format, containing controlflow diagrams.

\PLOTS*.PDF : Plotfiles In HPGL format, containing dataflow diagrams.

\LP.EXE

\PETER.LP

\PLOT.BAT

: Plotter program, that can be used for plotting the HPGL files produced with PROMOD.

: Settings for LP.EXE, that make sure that the plot files can be plotted in a correct way.

: Batch file starting up LP.EXE with the settings In PETER.LP

The plotfiles can be produced by PROMOD, by choosing the Data Flow Diagram (DFD) or Control Flow
Diagram (CFD) when In the SA-DEFINE menu, followed by the name of the diagram. Choose the
ordered options OUTPUT, PLOT, AS for plotting the diagram to a HPGL-file.

When ready with plotting, it Is possible to plot another diagram, by pressing twice the F1 function button
and entering the name of a diagram (followed by OUTPUT, PLOT, AS).

When in stead of the dataflow diagram, the control flow diagram (or vice versa) must be plotted, press
as much F1 until the SA-DEFINE menu is reached and choose the other of DFD or CFD options.

131

Appendix E: Data types and literals used with
PROMOD

Literals used in the report

The literals are values that certain signals can take. The following are defined; the meaning of them is
clear in the context they are used In.

0,1,2,3,4,5,6, 7,8,9,A,B,C, D, E, F, H, I,J,K,Q. R.S,T,V
acknowledge
Asynchronous
beacon
claim
clock
do bypass
do-not bypass
error in FCS
error-in-length
False -
fr good
Group
Implementer
Individual
integer
internal error
LLC -
light
Local
long
MAC
me
norequest
not acknowledge
not-specified
other
other_type
repeat
request
Restricted
send
short
SMT
Synchronous
token
True
Universal
Unrestricted
void

133

Appendix E: Data types and literals used with PROMOD

Data types used in the descriptions

With the data descriptions the following data types are used:

bit
long address
short address
bits 8
symbols 4 bit
symbol --
S or R
frame status
priority level
time -

134

= ("0"1"1"]
= 48 { bit} 48
= 16 { bit} 16
= 8 { bit} 8
= ["O"I"1"1"2"1"3"1"4"I"S"I"6"1"7"1"8"I"g"I"A"I"S"'''C"I''D"I"E"I"F"]
= [symbols_4_bits I"I"I"J"I"K"I"R"I"S"I''T"I''Q"I''H'' I"V"]
= ["S"I"R"]
= 3 { S or R } 3
= "integer"-
= "integer"

Appendix F: PROMOD SA analysis report

* Pro Mod *
* ** SA REPORT *
* ** PROJECT: fddi *

135

**
* ProMod V1.7 15-JUL-1991 12:37 -CONT 1 *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

1
2
3
4
5
6
6
6
7
8
9
9
9

10
11
11
11
11
11
11
12
13
13
13
13
14
15
16
16
17
17
18
19
19
19
20
21
22
22
23
24
24
24
25
26
26
26
27
28
28
28
29

..

1)

FDDI.of

....................

context

process userdata ••••••••••••••
transmit frames •..•••••••••
receive frames ••
process-frames.
monitor~.....•.

serial_to-parallel ••
synchronize ••••.
recover clock•.••••••••

PHY •••••••••••••••

MAC ••••••••••••••••

SYSTEM HIERARCHy •••••••••••••••••••••.•••••••
PROBLEM DESCRIPTION
FD context of FDDI .••••••

MSP FDDI ••
FD FDDI •••

MSP PMD..••••••••••
MSP PHY.
MSP MAC.
MSP SMT ••

FD PMD •••••••••
MSP electric to optic •..••••••••••••••
MSP optic to-electric ••
MSP optical_bypass •••••••••••••••••••

FD
MSP decode ••••••••••
MSP
MSP
MSP
MSP encode.~ •••••••
MSP parallel to serial .•

FD
MSP
MSP
MSP
MSP
MSP

FD process userdata ••
MSP store~ ••••
MSP indicate ••••••••••••
MSP add controls ••
MSP compose •••.•••••••••

FD receive frames.
MSP forward frames •••••••••••••••••••••
MSP process FS •••••
MSP check on function .•••••••••••••••
MSP check-on-violations. ••••••• • •••••

FD forward-frames •••••••••••••••••••••
MSP switch••
MSP buffer.

FD process FS... • ••••••••••••
MSP get EAC •••••••••
!1~l? InClJc~ ~~~•••••••••••••••••••••••••••••••

CS process FS (Sheet 1)
FD check on-function ••

MSP check on FC ••
MSP check-on-DA•••••••
MSP check-on SA.

FD check on vIolations ••
MSP convert to control ••
MSP check on FCS ••••••••
MSP check-on-Iength •••••
CS check on violations (Sheet

136

**
* ProMod V1.7 lS-JUL-1991 12:37 -CONT 2 *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

token management •.
timing ...
lost ct .•••••••
frame ct .
error-ct•....••

monitor .FD
MSP
MSP
MSP
MSP
MSP
MSP frame handler .•

DATA DICTIONARy ..•..•
ERROR/WARNING STATISTICS

31
32
32
32
33
33
33
34
70

137

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 1 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

SYSTEM HIERARCHY

o context of FOOl
1 FOOl

1.1 PMO
1.1.1 electric to optic
1.1.2 optic to-electric
1.1.3 optical bypass

1.2 PHY
1.2.1 decode
1.2.2 serial to parallel
1.2.3 synchronize
1.2.4 recover clock
1.2.5 encode
1.2.6 parallel_to_serial

1.3 MAC
1.3.1 process_userdata

1.3.1.1 store
1.3.1.2 indicate
1.3.1.3 add controls
1.3.1.4 compose

1.3.2 transmit frames
1.3.3 receive frames

1.3.3.1 forward frames
1 • 3 • 3 •1. 1 switch
1.3.3.1.2 buffer

1.3.3.2 process FS
1.3.3.2.1 get-EAC
1.3.3.2.2 make EAC

1.3.3.3 check on-function
1.3.3.3.1 check on FC
1.3.3.3.2 check-on-OA
1.3.3.3.3 check-on-SA

1.3.3.4 check on violations
1.3.3.4.1 convert to control
1.3.3.4.2 check on FCS
1.3.3.4.3 check-on-length

1.3.4 process frames -
1. 3.5 monitor-

1.3.5.1 token management
1.3.5.2 timing
1. 3 • 5 • 3 lost ct
1. 3 • 5 • 4 frame ct
1.3.5.5 error-ct
1.3.5.6 frame-handler

1.4 SMT

138

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 2 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

PROBLEM DESCRIPTION context of FDDI

- FDDI must transport data with 100 Mbps.

- FDDI must operate on a fiber optic ring, with a timed
token protocol. This means that the token must pass a
certain station within a predefined amount of time.

- To prevent cable breaks to interrupt the proper working
of the system, the ring is made dual and counter
rotating. This opens the possibility of reconfiguration
on a cable break.

- FDDI must accept data on >userdata_out (during >stream)
and divide it into frames

- When there is a frame to be sent, a token must be
captured, that satifies >token class

- To be able to discover the beginning and ending of a
frame, and for some other (error) controls, the data
presented to fiber out is encoded by a 4B/5B encoding
scheme. -

- When a token is captured, frames may be transmitted to
<fiber_out as long as token timing allows

- When a request is serviced number of SDUs and
provided service class is generated~ and on return of
the frames MA_transmission_status is generated

- When >token request is received, a token must be captured
while there is not yet any data to be sent

- FDDI accepts frames coming in on >fiber in

- When a frame is received that comes from another station,
and is directed to this station FDDI checks it on errors
and presents it to <userdata in allong with
<reception_status -

- Because the FDDI must serve several types of users, the
ring operation must be adaptive in timing.

- FDDI must accept commands presented on >oper control out
and >oper_data_out, and react accordingly on -
<oper_control_in and <oper_data_in

139

**
* ProMod V1.7 lS-JUL-1991 12:37 -PAGE 3 *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

FO 0 context of FOOl

user

userda14_ln- ~------::.:::.==- operator

rlftG

"\

\ \
\ \
\ \
\ \

\ \
\ \
I I
I \

\ '-,---------------,
\ "',oper_control_ln '.

',--------------, \
oper_control_out \ ~

operator

140

**
* ProMod V1.7 lS-JUL-1991 12:37 -PAGE 4 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1 FDDI

take >userdata out, divide it in pieces and send it to a
fiber ring «fiber_out).

- the protocol used wil be a timed token protocol.
- take >fiber in, make user data and send it to

<userdata In.
- the system-will be synchronous to a system clock

141

**
* ProMod Vl.7 15-JUL-1991 12:37 -PAGE 5 *
* LieNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

FO 1 FOOl
counters

oper_control_ln

'---------'-------~

......--.........- ...---....------••----... IlIT.............., ..
" " " control_

" ",I_G ...--......--__......... \out
\ ", \

" SMT ',I\ " -, \
\', (Onllol_ \ \

" ', In , \
\.", ..." -------,

' ...

................_---------

, tot:en_

J request
I

I

",, I
, I
I \
I I
I I
\ PH_I n \
, .llId I

o
I

S I O"D ,_ i ..--------- ;'

Do'"'':- ///......
• 1 ----,..,,-'

• toteR_

I class,,
I
I
\

" '"

PH_Irani
mission

status

\ requested_ : streem
Iservlce_ I
I I,c I !ISS ,
I I" \" \

'........ '-
........ "

..........._-------
............................_-------,~

1'001

142

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 6 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.1 PMD

- transfer from light to bits (>fiber_in to <PM_Indication)
and vice versa (>PM_Request to <fiber_out)

- detect whether incoming light on >fiber_in is under/above
threshold and indicate by <Signal Detect

- on >bypass: bypass from >fiber in to <fiber out and from
>PM_Request to <PM Indication-

MSP 1.2 PHY

- recover clock from >PM rndication
- synchronize the incoming bits (>PM Indication) with the system

clock
- decode >PM Indication to <PH Indication
- encode >PH-Request to <PM Request
- proceed only on >Signal_Detect

MSP 1.3 MAC

- on <userdata out: - store the incoming data and process
to frames until ? >stream

- wait for an appropriate token based
on >requested service class

- on token capture: send-frames as long
as is allowed to <PH Request

- on end of transmission, generate
<number of SDUs indicating the
number of frames of each request
(>stream) that is transmitted, and
generate <provided service class
indicating the type of token that
was captured

- when frames are returned on
PH_Indication: indicate by
<MA transmission status based on
internal checks and
>PH transmission status

- on >token_request: capture a token of-the requested type
and hold as long as allowed

- on >PH Indication: - check for the destination and source
- depending on destination and source

transfer the frames to >PH Request
and/or >userdata in or strIp the
frame; -
if transfered to >userdata in :

generate <reception status,
indicating the frame was
received intact

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 7 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.4 SMT

- manages the entire station

144

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 8 - *
* LieNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

FD 1.1 PMD

PMD

~ 51gn81_

/ Detect
I

I
I

I
I

I
I

I

/

lIJP'"

PMO

145

**
* ProMod Vl. 7 15-JUL-1991 12 :.37 -PAGE 9 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.1.1 electric_to_optic

- convert the electrical signal on >PM_Request to an
optical signal on <optic out

- convert the optical signal on >optic_in to an electrical
signal on <PM Indication

- when the optical power on >optic in is above the
detection threshold: generate <Signal_Detect

MSP 1.1.3·optical_bypass

- initially: link >fiber in to <optic_in, link >optic_out to
<fiber out -

- on >bypass: link >fiber in to <fiber_out, link >optic_out
to <optic_in

146

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 10 *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

FD 1.2 PHY

PM_Reque5l
Pt.c

Indlcat

ion

PHY

~
I
\
\
\

\~

~-----------I ,...... \

"< \, ,, ,
Of_IS- ' \

\\ \
, I
\ I

\ \
\ I
\ I
\ I....' ..,\ \ i

,\ I
I \ I

,.CO'" I \ /
ed_c I t; I l /

I; "I I I
I I I

!,/ I'
I / /
I I I
I I /

'\ I /' I

V/ "",/

r"
Signal_ :
Detect ,

PHY

PH_lnval id+
I
I
I
I
I
I
I
I••

~
'J

PH_trens

misslon_

status

147

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 11 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.2.1 decode

- decodes >symbol in synchronous to the system clock and
presents the symbols to <PH Indication

- on >OF UF or absence of >Signal Detect no function is
executed -

MSP 1.2.2 serial_to-parallel

- as long as no symbol boundaries are found: read
>sync bits and generate <symbol in every bit time

- when sYmbol booundaries are found: read >sync bits and
generate <symbol in every five bit times -

- obtain the symbol-boundaries by searching for a
"J""K" sequence every bit time, each time that "J""K" is

found,
it introduces a new symbol boundary

- on >OF UF or absence of >Signal_Detect: perform no
functIons

MSP 1.2.3 synchronize

- the incoming bit stream from >PM_Indication synchronized to
>recovered clk is to be adjusted so that it is synchronized
to system clock. It is sent to <sync bits

- in case of an error: generate <OF UF -

MSP 1.2.4 recover clock

- recover the clock with which the incoming bits on
>PM Indication were sent, and send it to <recovered clk

MSP 1.2.5 encode

- encodes the incoming symbols from >PH_Request synchronous
to system clock and presents the coded symbols to
<symbol_out

MSP 1.2.6 parallel_to_serial

- Read >symbol out and generate the seperate bits to
<PM_Request-

148

**
* ProMod V1.7 lS-JUL-1991 12:37 -PAGE 12 *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

FD 1.3 MAC

PH_

Indlcat

100

MAC

receptJO

"_status

/
I
I
I
I
I
I
I

..............-\. status_

\ 'odlutor
\,

MAC

-......... PH_trans
.............. , misslo"_

\ status
I

\

I,
I
I,
I
I
I
I
I

\
\,

\

"',"
------------------_.

reedy

I reQueS1ed_ I stream ",numbe r - 11 "'A_trans I to"en_ I tot en_ .. prov Ided_

\ servICE-_ I ,/ Of_SOUS/ ml&SIOn_ : <: I ass I request , servlce_I

~ C 12155 I, status f I ,
c I ass

1 /~ // f I iI I I
I

f' "
I I I

I : / / I I I
I I I I
I I I " S"'T _ I I I
I I I "

I I I
I

" " contraI_ I I I

\ !! / I I I
I I

I out
'\.

I I , SIIT_
\ " ;' I I ,
\ I , , \ I , control_
\ I I ,

frame_c lass
, I I ,

\ I I , , \ I ,
,,'" i n, I I I

-------------------" \
, I /\ , I , ,-' \ I "\ I I / ,,' I I ,

"""I \ /, ,," " ""
,

,/
",,,---------------_._-------......

fr ame_1 ype--_._----------------------

149

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 13 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.3.1 process_userdata

- read >userdata out, insert >MA and store
- read >requested service class and store, count number of

SDUs received - -
- if >frame type =1 "other type": make the requested type of

frame - -
- on >start transmission: copy the correct frame to

<frames out adding PA, SD, FCS, ED and EAC depending on
>frame type

on end of >start transmission: finish sending, generate
<ready -

- when no more frames left to be sent: generate <ready
- when stopped with sending while >frame type = "other type":

generate <number of SDUs and <MA transmission status
based on >ack

MSP 1.3.2 transmit frames

- >send repeat =
"send": copy >frames out to <PH Request
"repeat": copy >checked_symbols_in to <PH_Request

MSP 1.3.3 receive frames

initially: >PH Indication is connected to
<checked_symbols_in

- check on volations from >PH_Indication, generating
<SD Detect, <ED Detect, <status indicator

- check on FC, check for token from >PH Indication
in case of token: generate <token detect
else : generate <frame-detect, <frame type

- check on (from >PH Indication) - -
DA = MA --> connect >PH Indication to <data in

«checked_sYmbols_in is already-connected)
SA = MA --> disconnect >PH_Indication from outputs
else --> «checked_symbols_in is already connected to

>PH Indication)
- check on frame status from >PH Indication

MSP 1.3.4 process_frames

- combine data with FC, DA and SA and send it to <userdata in
- generate <reception status from >status indicator and

internal events -

150

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 14 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.3.5 monitor

- manage the token
- manage counters

control timing
handle MAC and SMT frames

151

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 15 *
* LieNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

FD 1.3.1 proeess_userdata

process_userdata

-~._---.._----...-...........
........ ect..~

~'"

"'.
...... ,.... toten_detec t

........_---------------_.

.. IolA_trons
, mission,
\ _status
\

next_request "

,-----------------------------_.........'

\st ream,,,
I
I

r eques ted

_ser vice

_c I ass

~

1\ \',
1 \ ""1\ \ \
I \ \ \
J I ,,\

" \ \,. \ \

J I \ \
/: \ \ read, toten_t,pe
" \" ,-,."

S12llrt_transmlsslon / J-.............. \ "-, >- ...----
•

--------,------- J~.... '~c' ,_"/ \.............................. ",
request \ .~~~~~~~~-~~~ 0 ~~~~~
.dltl \ ------:::.__:........ """,\ ,." --------..=: compose

------- , " 4--....,~ /' .
\ I

"\/
\

I

I
I
I

I:
• frame_type

process_userdata

152

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 16 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.3.1.1 store

- on >userdata out:
#SDUr := 0
if >stream

repeat
take >userdata_out, insert >MA, store in memory
take >requested service class and store
(when not enough space:-do not store)
#SDUr := #SDUr + 1

until ? >stream
store #SDUr

- if frames in memory: generate <frame class based on
stored requested service class, but-only when the
corresponding request has fully been loaded

- on >request data and (>frame type = "other type") :
#SDUs := 0- - -
get #SDUr
repeat

send frame to >framed data
#SDUr := #SDUr - 1
#SDUs := #SDUs + 1

until #SDUr = 0 or ? >start transmission
store #SDUs
if #SDUr = 0: generate <ready
if ? >start transmission : delete rest of frames of same

request
- on >next_request : if some request is sent:

generate <number of SDUs = #SDUs

MSP 1.3.1.2 indicate

- initially: next_request outstanding

- on >number of SDUs : store >number of SDUs in #SDUa
- on >ack : #SDUa := #SDUa - 1

if (>AR = S) and (>CR = S):
generate <MA transmission status =

"acknowledge" -
else :

generate <MA transmission status =
"not_acknowledge" -

- on >token detect :
if #SDUa-=? 0: generate

MA transmission status = end_acknowledge;
#SDUa := 0

- on #SDUa = 0 generate <next_request

153

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 17 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.3.1.3 add controls

- on >start transmission
- put PA-* 16 I symbols *
- put SD; generate <request_data
- put >framed data
- if >frame type =7 token:

- add FCS
- add "T" symbol
- add three "R" symbols

else:
- add two "T" symbols

- send to <frames out

MSP 1.3.1~4 compose

- >frame type =
"beacon" --> make [beacon FC] + [DA = 0] + [>MA]
"claim" --> make [claim FC] + [DA = >MA] + [>MA] + [time]
"token" --> make [token FC = >token type]

- on >ready and >request data: send frame to
<framed data

154

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 18 *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

FD 1.3.3 receive frames

chect.ed_

8)'mbO I &_

In

receive_frames

----.....................
"':llIo.

'

d••lln
at! on

~
...............

" act,
\
\
\

\ ,
" PH_Invalid.....

......_----- receive_frames

155

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 19 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.3.3.1 forward frames

- on >SD Detect : start copying >PH Indication to
<checked symbols in

- on >source = "me"-: stop copying
- on >status indicator : start sending "I" symbols to

<checked symbols in with delay of one symbol
- on >ED_Detect while copying, copy >FS to

<checked symbols in
- after >FS-is receIved: start copying >PH_Indication to

<checked symbols in
- on >status indicator send "T" symbols to

<checked_symbols_in

- on >destination = "me": copy >PH_Indication to <data in
(from FC to but not including FCS)

- on >ED_Detect, while copying: generate <copied

MSP 1.3.3.2 process_FS

- on >ED Detect: take frame status from >PH Indication and
remember

- on >length error or >FCS_error or >invalid_symbols:
generate <E = "s"

- on >destination = "me": generate <A = "s"
- on >copied: generate <C = "s"
- when frame status is completely received: generate <FS

MSP 1.3.3.3 check on function

all parts are taken from >PH Indication

- on SD Detect
check for FC, if token:

else
generate <token detect
generate <frame-detect

- when no token is detected
take DA, if DA = >MA: generate <destination = "me",

generate <DA
else: generate <destination = "other"

- when DA is taken
take SA, if SA = >MA: generate <source = "me"

else: generate <source = "other"
if >destination = "me" : generate <SA

156

**
* ProMod V1.7 lS-JUL-1991 12:37 -PAGE 20 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.3.3.4 check on violations

- search for a start delimiter on >PH_Indication, and
generate <so Detect

- search for an-end delimiter on >PH Indication, and
generate <ED Detect -

during a frame (>frame detect): check on the frame check
sequence until >ED Detect and generate <FCS error as
needed - -

- on >ED Detect: check on the length of the frame
(>frame detect) or token (>token detect) and generate
<length-error as needed -

- on detection of invalid symbols in a frame or token on
>PH_Invalid, generate <invalid_symbols

157

**
* ProMod Vl.7 15-JUL-1991 12:37 -PAGE 21 - *
* LieNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

FD 1.3.3.1 forward frames

cheCl:.ed_

symbo I s_ i

n

PH_I nd I ca tiD n

158

, .oure.,
\

\:\

st. tUG_

I nd I coto

forward_frames

• d.lt In
I
: at I on
I
I
I
I
I:,,

I
.../--

**
* ProMod Vl.7 15-JUL-1991 12:37 -PAGE 22 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.3.3.1.1 switch

- initially: copy >PH_Indication to <checked_symbols_in

- on >source = me: start sending "I" symbols to
<checked symbols in

on >SD Detect :-start copying >PH Indication to
<checked symbols in -

- on >ED Detect :-if copying: copy >FS to
<checked symbols in;
start copying >PH Indication to
<checked symbols In

- on >status indicator start sending "I" symbols to
<checked symbols in with delay
of one sYmbol -

MSP 1.3.3.1.2 buffer

- initially: no actions to <data in

on >destination = "me": after >source: start copying
>PH Indication to <data in

- on >ED Detect : if-copying: generate <copied,
stop copying

159

**
* ProMod Vl. 7 15-JUL-1991 12 :37 -PAGE 23 *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

FD 1.3.3.2 process_FS

PH_

Indleal

Ion

EA-AA.CA

cop I ed

.,., -----------------_
, ,," ...,
\Eo_Oetect /",,,, ,- ..----------_...... ' ,

\ ", """
\ ,/! (----.......,'\ \,

\ , I '" \

'\ gOI I EA-AA_~A E.A.~ \\\

0"-,,,1 1\ ~\ \~\
.1 I " : , "I \ , I ,

... I \ I • ,

.......----........ \ I : :
\ \ , I
\ " ,, E) I I

", ",-' j i
'... I I

---- ' IA / ,

~:/')C~
,,'----,

dest In

at ion

ttl!lltut

lndlcato

160

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 24 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.3.3.2.1 get_EAC

- on >ED Detect: take next three symbols from >PH Indication
and generate <ER, <AR, <CR corresponding to these symbols

- generate <got

MSP 1.3.3.2.2 make EAC

- on >got: - take >E, >A, >C and send the corresponding
symbols to <FS

CS 1.3.3.2 process_FS (Sheet 1)

- if and >AR and
else

- on >ER AR CR:
- generate <E =

"5"

"5"

(if >ER = "5" : "S"
if >status indicator = "FCS error" or

"length-error" or
"invalid symbols"

else "R") -
= (if >AR = "5" : "5"

if >destination = "me"
else "R")

= (if >CR = "5" : "5"
if >copied : "5"
else "R")

>CR generate <ack = "acknowledge"
: generate <ack = "not_acknowledge"

<A

<C

161

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 25 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

FD 1.3.3.3 check on function

PH_
Indleat OA

Ion

Fe

toktn_
de tee t

\
\
\,
I•

of
Ir__

detect

--..._-,...._----------_..-...-
\

\
\
\
\
\

\
\
\

\
\
\,,

"''''.-

de9t i n

a t Ion

----".... source

162

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 26 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.3.3.3.1 check on FC

on >SD Detect:
take FC from >PH Indication
generate <FC
if FC=1000 0000 b: generate <token detect="Unrestricted"
else
if FC=1100 0000 b: generate <token detect="Restricted"
else
generate <no token
if FC=OxOO 0000 b: generate <frame detect="void"
else
if FC=OxOO xxxx b: generate <frame detect="SMT"
else .-
if FC=lxOO 0010 b: generate <frame detect="beacon"
else -
if FC=lxOO 0011 b: generate <frame detect="claim"
else -
if FC=xx01 Oxxx b: generate <frame detect="LLC"
else -
if FC=xx10 Oxxx b: generate

<frame_detect=" Implementer"
else
skip.

MSP 1.3.3.3.2 check on DA

on >no token: if >L="long" take long DA from >PH Indication
else take short DA from >PH Indication
generate <DA_taken

if DA=<MA: generate <DA
generate <destination="me"

else generate <destination="other"

MSP 1.3.3.3.3 check on SA

on >DA taken: if >L = "long" take long SA from
>PH Indication

else take short SA from >PH Indication
if SA = >MA: generate <SA

generate <source = "me"
else generate <source = "other"

163

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 27 *
* LieNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

FD 1.3.3.4 check on violations

PH_

I nd I cat

Ion

csymbol s
~I"------------------_."------

,."--------

PH_Invalid

status
Ind i cato

----------------------------~------------~------------~
,1
/I

, I
, I

, I
/ I,,,,

/
//

.,/'

f
I
I

/,
/

/
,/

/
/

164

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 28 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.3.3.4.1 convert to control

- generate <csymbols corresponding to >PH Indication

MSP 1.3.3.4.2 check on FCS

- on >SD Detect
delay-of one

- on >ED Detect

- on >token
- on >stop

: start making FCS from >PH_Indication, with
symbol

- stop making FCS, and compare the result
with a reference value

- on error: generate <FCS error
detect stop making FCS

stop making FCS

is even *
from >PH Indication

if count =? 4 :
generate <length_error

else : skip
if count = even :

generate <length_error
else

* checks whether the length of the frame
- on >SD Detect start counting symbols

(starting with zero)
stop counting- on >stop

- on >ED Detect
if >token detect

165

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 29 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

CS 1.3.3.4 check on violations (Sheet 1)

Initial state: generate_I

generate I:
on >csymbols = "J"

: goto state J received

J received:
- on >csymbols = "K"

goto state in FC
; generate <SD Detect

on >csymbols =?-"K"
goto state generate I

; generate <invalid symbols, <stop
- on >PH Invalid -

goto state generate I
; generate <invalid_sYmbols, <stop

in FC:
- on >csymbols = "J"

goto state J received
- on >token detect and >csymbols = "O" .. "F"

goto state expect 2 T
; generate <stop --

- on >frame_detect and >csymbols = "O" .. "F"
goto state in frame

- on >csymbols = "O" .. "F"
goto state in FC

- on >csymbols =? "O" .. "F", "J"
goto state generate I
generate <invalid sYmbols, <stop

- on >PH Invalid -
goto state generate I

; generate <invalid_symbols, <stop

expect 2 T:
- on >csYmb0ls = "T"

goto state expect 1 T
- on >csymbols =? liT" - ­

goto state generate I
; generate <token lost

- on >PH Invalid -
goto state generate I

; generate <invalid_sYmbols

expect 1 T:
- on >csYmbols = "T"

goto state generate I
generate <ED Detect­

- on >csymbols =?-"T"

166

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 30 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

: goto state generate I
; generate <length_error

- on >PH Invalid
gote state generate I

; generate <invalid_symbols

in frame:
- on >csYmbols = "O" •. "F"

goto state in frame
- on >csYmbols = "J"

goto state J received
- on >csYmbols = "I"

goto state generate I
; generate <stop, <strip

- on >csYmbols = "T"
goto state expect E

; generate <ED Detect
- on >csymbols =?-"O" •• "F", "I", "J", "T"

goto state generate I
; generate <invalid_sYmbols, <stop

- on >PH Invalid
gote state generate I
generate <invalid sYmbols, <stop

expect_E
on >csYmbols = S or >csYmbols = "R"

goto state generate I
; generate <strip -

- on cSYmbols =? "R", "S"
goto state generate I

; generate <invalid symbols
- on >PH Invalid -

: gote state generate I
; generate <invalid_symbols, <stop

167

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 31 *
* LieNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

FD 1.3.5 monitor

SMT _

Information_

In

counters

mon I tor

frame_

detect

er for

lengthi """'......_-...
\
\

\
\
\

\
\
\

\
\
\
\

PH_I "valid

control_

out

SML

..............
.......... SMT.

contro I_

••
,;

/

tok:6n_

detect

send

repel!:lt

toten_
t I ass

star t

transmission ,

y

, ,,-\ tot:en_,
".,

request /\,
\ I,

i
I

\
, prlorll,
I

I I I----\ \ I
I , I /.." ,,", \ I ,/, I I
\ , I I Sync,. / I, \ I I I, \ I 1/1 , ,, \ I , f

frame_ \ , f , ,; , f

\ \ f f ,; , I
C I as 5

, I , ,; I f
\ I , , ,; I I, , I , I ~ As,nc / f

"
' / /" I

/ I, I

'_----J" I
I
I

r ..~t_TRT /

"I..........._---,'
I

/

tokon.t ,PO "

"II
I

"J.

mon I tor

168

**
* ProMod Vl.7 15-JUL-1991 12:37 -PAGE 32 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.3.5.1 token_management

- on >token class :
- wait for >token detect
- if >token class-= "Not specified" :

capt token := >token detect. type
else : - -

capt token := >token class
- generate <provided_service_class = >token~detect.type

<token captured
<token=type = >token_detect.type

- repeat
- on frame class = "Synchronous":

if >Sync : generate <start transmission
<send repeat = "send"

- on >frame class = "Asynchronous":
- generate <priority

- if >Async : generate <start transmission
<send_repeat = "send"

until ? >Sync
- on >token request:

- wait for >token detect
- on >token detect: generate <reset TRT

MSP 1.3.5.2 timing

*SHT = Synchronous Holding Time

*- on >token captured :
- if late ct =? 0 : copy TRT to THT
- reset TRT to >T opr, late ct to 1, SHT to >T_sync

- repeat -
- if THT =? 0:

- generate <Sync
- if THT <T Pri(>priority): generate <Async

else : -
- if SHT =? 0 : generate <Sync

until SHT = 0 or late ct = 0
- on >reset_TRT : reset-TRT to T_opr, late ct to 1
- on TRT expiring: late ct := late ct - 1
- on TRT = 0 and late ct = 0 : generate <timed token lost
- on late ct = 0 : set THT = 0, SHT = 0

MSP 1.3.5.3 lost ct

- on >timed token lost or >token lost or >invalid symbols
increment counter - -

- generate continuously <nr lost = counter

169

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 33 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

MSP 1.3.5.4 frame ct

- on >frame detect : increment counter
- generate continuously <nr frames = counter

MSP 1.3.5.5 error ct

- on >FCS error or >length error increment counter
- generate continuously <nr errors = counter

MSP 1.3.5.6 frame handler

construct MAC and SMT frames from >SMT information out
and>SMT control out and direct to <super frame out

- receive frames from >super frame in and direct to
SMT information in and SMT control out

- generate <frame type based on SMT control out

**
* ProMod Vl.7 IS-JUL-1991 12:37 -PAGE 34 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

DATA DICTIONARY

A

*controlflow
(
process FS, in E A C
) -
indicates the received address detect status bit

*
= ["S"

I "R"]

ack

*control flow
(
MAC, process_userdata, receive frames, process_FS
)
indicates that a frame is acknowledged by another station

*
= AR

+ CR

AR

*control flow
(
in ER AR CR
)
indicates the received address detect status bit

*
= ["S"

I "R"]

171

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 35 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

Async

*control flow
(
monitor
)
indicates that an asynchronous frame may be sent

*
= ["True"

I "False"]

bypass

*controlflow
(
FOOl, PMO
)
tells PMO to bypass

*
= ["do bypass"

I "do=not_bypass"]

C

*control flow
(
process FS, in E A C
) -
indicates the new made frame_copied status bit

*
= ["5"

I "R"]

172

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 36 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

*dataflow
(
MAC, receive frames, forward frames
) -
symbols copied from symbols in and checked

*
= symbol

copied

*control flow
(
receive frames, forward_frames, process_FS
) -
indicates that the frame is entirely copied to frames in

*
= ["True"

I "False"]

counters

*dataflow
(
FOOl, MAC, monitor
)
consists of several counter values

*
= nr frames

+ nr-lost
+ nr errors

173

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 37 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

CR

*controlflow
(
in ER AR CR
)
indicates the received frame_copied status bit

*
= ["s"

I "R"]

csymbols

*controlflow
(
check on violations
)
contains the symbols which are to be checked. This is
only created to be able to use the symbols coming on
>symbols_in in the state machine

*
= symbol

DA

*dataflow
(

MAC, receive frames, check-on_function
) -
destination address supplied by user

*
= [long address

I short address]

174

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 38 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

data in

*dataflow
(
MAC, receive frames, forward frames
) -
framed pieces for construction of userdata in, followed by
received EAC symbols

*

DA taken

*control flow
(
check on function
)
indicates that the destination address is taken from
>symbols_in

*
= ["True"

I "False"]

destination

*control flow
(
receive_frames, forward_frames, process_FS,
check on function
)
indicates that a frame is addressed to this station (me)
or another (other)

*
= ["me"

I "other"]

175

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 39 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

E

*control flow
(
process FS, in E A C
) -
indicates the new made error status bit

*
= ["S"

I "R"]

ED Detect

*control flow
(
receive_frames, forward_frames, process_FS,
check on violations
)
generated each time an ED is detected after a SD Detect

*
= ["True"

I "False"]

ER

*
control flow
(
in ER AR CR
)
indicates the received error status bit

*
= ["S"

I "R"]

176

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 40 - *
* LicNo. 21470 ** PROJECT:fddi Analysis Report (RA&D) *
**

ER AR CR

*controlflow, store
(
process FS
) -
contains the received error, address_detect, frame_copied
status bits

*
= ER

+AR
+ CR

E A C

*controlflow, store
(
process FS
) -
contains the new made error, address_detect, frame_copied
status bits

*
= E

+ A
+ C

FC

*dataflow
(
MAC, receive frames, check-on function
) - -
frame control derived from user FC

*
= bits 8

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 41 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

FCS error

*control flow
(
monitor, in status indicator
)
indicates that an error has occurred while checking the
frame check sequence. This can be an invalid sYmbol or a
violence of the FCS

*
= ["True"

I "False"]

fiber in

*dataflow
(
context of FOOl, FOOl, PMO
) --
light, representing bits, to PMO

*
= "light"

fiber out

*data flow
(
context of FOOl, FOOl, PMO
) --
ligth, representing bits, from PMO

*
= "light"

178

**
* ProMod Vl.7 15-JUL-1991 12:37 -PAGE 42 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

framed data

*dataflow
(
process userdata
) -
data assembled with basic controls (FC, DA, SA)

*

frames out

*dataflow
(
MAC, process userdata
) -
framed userdata out

*
= symbol

frame class

*control flow
(
MAC, process userdata, monitor
) -
indicates the class of frame that is next to be sent

*
= ["Synchronous"

I "Asynchronous"]
+ (priority_level)

179

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 43 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

frame detect

*controlflow
(
MAC, receive frames, monitor, check on function,
check on violations - -
)
indicates the type of frame that is received at the time

*
= ["void"

I "LLC"
I "mac"
I "SMT"
I "implementer"]

frame_type

*control flow
(
MAC, process userdata, monitor
) -
indicates one of the following frame types to be sent:
claim (time), beacon, token, other

*
= ["claim"

I "beacon"
I "token"
I "other_type"]

+ (time)

FS

*dataflow
(
receive frames, forward_frames, process_FS
) -
group of received FS and adjusted_FS

*
= 3 { S or R } 3

180

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 44 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

got

*control flow
(
process FS
) -
indicates that the received EAC symbols are taken

*
= ["True"

I "False"]

invalid_symbols

*control flow
(
monitor, in status indicator
)
indicates that invalid symbols are found

*
= ["True"

I "False"]

I G

*control flow
(
FOOl, MAC, receive frames, check on function
) -
indicates an individual or group address of the frame

*
= ["Individual"

I "Group"]

181

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 45 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

L

*control flow
(
check on function
)
indicates the address length used in the frame

*
= ["short"

I "long"]

length_error

*control flow
(
monitor, in status indicator
)
indicates that the received frame is to long (no end
delimiter received at the boundary), or ends at an ineven
symbol boundary

*
= ["True"

I "False"]

MA

*dataflow
(
FOOl, MAC, process userdata, receive frames,
check on function - -
)
some source address of MAC (many are possible)

*
= [long address

I short address]

182

**
* ProMod Vl.7 15-JUL-1991 12:37 -PAGE 46 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

MA transmission status

*
control flow
(
context_of_FOOl, FOOl, MAC, process_userdata
)
copies the acknowledges of each returned frame, indicating
that a frame is received or not. The order of the
acknowledges is the same as the order in which the frames
were presented

*
= ["acknowledge"

I "not_acknowledge"]

next_request

*control flow
(
process userdata
) -
indicates that the current MA UNlTOATA STATUS. indication
is ready, and a new one can be generated

*
= ["True"

I "False"]

no token

*
control flow
(
check on function
)
indicates that the frame that is received now is no token

*
= ["True"

I "False"]

183

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 47 - *
* LicNo. 21470 ** PROJECT:fddi Analysis Report (RA&D) *
**

nr errors

*dataflow
(
in counters
)
indicates the number of errors counted

*
= "integer"

nr frames

*dataflow
(
in counters
)
indicates the number of frames received

*
= "integer"

nr lost

*dataflow
(
in counters
)
indicates the number of token and frames lost during
receiption

*
= "integer"

184

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 48 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

number of SOus

*control flow
(
context_of_FOOl, FOOl, MAC, process_userdata
)
indicates the number of SOUs of one request that were
transmitted

*
= "integer"

OF UF

*control flow
(
PHY
)
indicates the elasticity buffer overflow or underflow

*
= ["True"

I "False"]

oper_control_in

*controlflow
(
context of FOOl, FOOl
) --
flow by which the operator can observe the operation of
the FOOl

*
= unspecified_group

185

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 49 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

oper_control_out

*control flow
(
context of FOOl, FOOl
) --
flow by which the operator can observe the operation of
the FOOl

*
= unspecified_group

*dataflow
(
context of_FOOl, FOOl
)
flow by which the operator can observe the current
settings of the FOOl

*
= unspecified_group

oper_data_out

*dataflow
(
context of FOOl, FOOl
) --
flow by which the operator can supply settings to the
FOOl

*
= unspecified_group

186

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 50 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

*dataflow
(
PMO
)
light received by the PMO, coming from the bypass

*
= "light"

*dataflow
(
PMO
)
light generated in PMO, directed to the bypass

*
= "light"

PH Indication

*dataflow
(
FOOl, PHY, MAC, receive frames, froward frames,
process FS, check on function, check-on-violations
) - - - -
data, constructing frames, from PHY to MAC

*
= sYmbol

187

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 51 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

PH Invalid

*control flow
(
FOOl, PHY, MAC, receive frames, monitor,
check on violations -
)
indicates that the current frame received is faulty

*
= ["True"

I "False"]

*dataflow
(
FOOl, PHY, MAC
)
data, constructing frames, from MAC to PHY

*
= symbol

PH transmission status

*controlflow
(
FOOl, PHY, MAC
)
indicates that the previous symbol is processed, and the
next can be transmitted

*
= ["True"

I "False"]

188

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 52 - *
* LicNo. 21470 ** PROJECT:fddi Analysis Report (RA&O) *
**

PM Indication

*dataflow
(
FOOl, PHY, PMO
)
data, constructing symbols, from PMO to PHY

*
= bit

*dataflow
(
FOOl, PMO, PHY
)
data, constructing symbols, from PHY to PMO

*
= bit

priority

*control flow
(
monitor
)
indicates the priority of the next frame to be send,
extracted from frame class

*
= priority_level

189

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 53 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

*control flow
(
context of FOOl, FOOl, MAC, monitor
) --
indicates the service class that was used for the
currently indicated request (restricted or unrestricted)

*
= ["Restricted"

I "Unrestricted"]

ready

*control flow
(
MAC, process userdata
) -

indicates that there are no more frames to be sent at the
time

*
= ["True"

I "False"]

received FS

*dataflow
(

MAC, receive frames, process FS
) - -
gives the frame status as received with the frame by this
station

*
= 3 { S or R } 3

190

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 54 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

reception_status

*control flow
(
context of FOOl, FOOl, MAC
) --
indicates to LLC the status of reception of the frame
just send

*
= [" fr good"

I "error in FCS"
I "error-in-length"
I "internal-error"]

+ frame status

recovered clk

*control flow
(
PHY
)
clock obtained from incoming data

*
= "clock"

requested_service class

*control flow
(
context of FOOl, FOOl, MAC, process_userdata
) --
indicates the service class that is required for this
frame (restricted or unrestricted)

*
= ["Restricted"

I "Unrestricted"]

191

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 55 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

*control flow
(
process userdata
) -

*
== [request

I norequest]

reset TRT

*control flow
(
monitor
)
indicates that a token has passed, but not captured, and
tells that TRT has to be reset

*
== "pulse"

SA

*dataflow
(

MAC, receive frames, check on function
) - - -
source address of the frame

*
== [long address

I short address]

192

**
* ProMod Vl.7 15-JUL-1991 12:37 -PAGE 56 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

SD Detect

*controlflow
(
receive_frames, forward_frames, check_on_function,
check on violations
)
generated each time a SD is detected

*
= "pulse"

send_repeat

*controlflow
(
MAC, monitor
)
tells wether frames out or checked_symbols_in are to be
transmitted

*
= ["send"

I "repeat"]

Signal_Detect

*control flow
(
FDDl, PMD, PHY
)
indicates that the ligth power level is above threshold

*
= ["T"

I "F"]

193

**
* ProMod Vl.7 15-JUL-1991 12:37 -PAGE 57 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

SMT control in

*
control flow
(
FOOl, MAC, monitor
)
contains the control flows of MAC to SMT

*

= unspecified_group

SMT control out

*
controlflow
(
FOOl, MAC, monitor
)
contains the control flows of SMT to MAC

*

= unspecified_group

SMT_information in

*dataflow
(
FOOl, MAC, monitor
)
contains the data flows of MAC to SMT

*

= unspecified group

194

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 58 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

SMT information out

*dataflow
(
FOOl, MAC, monitor
)
contains the data flows of SMT to MAC

*
= unspecified_group

source

*control flow
(
receive frames, forward_frames, check_on_function
) -
indicates that a frame comes from this station (me) or
another (other)

*
= ["me"

I "other"]

start transmission

*control flow
(
MAC, process userdata, monitor
) -
indicates that the transmission can start

*
= ["True"

I "False"]

195

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 59 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

status indicator

*control flow
(
MAC, receive frames, forward frames, process FS,
check on violations - -
)
indicates that a frame is bad or that idles have to be
sent. It consists of several components.

*
= FCS error

+ length error
+ token.lost
+ invalId symbols
+ strip -

stop

*control flow
(
check on violations
) --
indicates the FCS check and the length check to stop

*
= ["True"

I "False"]

stream

*
control flow
(
context of FOOl, FOOl, MAC, process_userdata
) --
indicates that another frame is following this frame

*
= ["True"

I "False"]

196

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 60 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

strip

*control flow
(
in status indicator
)
indicates that such a situation is found that the rest of
the frame may be stripped

*
= ["TrUe"

I "False"]

super_frame_in

*dataflow
(
MAC, monitor
)
contains frames to MAC and SMT (SMT information is extracted)

*

super_frame_out

*dataflow
(
MAC, process userdata, monitor
) -
contains frames from MAC and SMT (SMT information is
supplied by SMT)

*

197

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 61 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

symbol in

*dataflow
(
PHY
)
symbols constructed from the incoming bits. In case the
boundaries have not yet been determined, symbol in changes
every bit time, else every five bit times -

*
= symbol

*dataflow
(
PHY
)
symbols to be serialized. Changes every five bit times

*
= symbol

Sync

*
control flow
(
monitor
)
indicates that a synchronous frame may be sent

*
= ["True"

I "False"]

198

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 62 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

*dataflow
(
PHY
)
data bits synchronized to the local clock

*
= bit

timed token lost

*controlflow
(
monitor
)
indicates that the token has not arrived within 2 T_opr

*
= "pulse"

time info

*dataflow
(
FOOl, MAC, monitor
)
contains information about the timing parameters, the
station is using; T sync = x% of T_opr

* -

= T_sync
+ T opr
+ T-Pri

199

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 63 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

token_captured

*control flow
(
monitor
)
indicates that a tokenis detected, and captured. TRT must
be copied into THT; TRT must be reset to T opr, SHT must
be reset to T_sync (Synchronous Holding Time)

*
== "pulse"

token class

*control flow
(
context of FOOl, FOOl, MAC, monitor
) --
indicates the type of token that has to be issued after
the corresponding request has been served; in case of N
the captured token must be reissued

*
== ["Restricted"

I "Unrestricted"
I "Not_specified"]

token detect

*control flow
(
MAC, receive frames, monitor, check on function,
check on violations - -
) -
indicates that some token is detected

*
== ["Restricted"

I "Unrestricted"]

200

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 64 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

token lost

*control flow
(
monitor, in status indicator
)
indicates that a token is lost

*
= "pulse"

token_request

*control flow
(
context of FOOl, FOOl, MAC, monitor
) --
indicates that a token must be captured and hold and the
type requested

*
= ("Restricted"

I "Unrestricted"]
+ (priority_level)

*control flow
(
MAC, process userdata, monitor
) -
indicates the type of token that is to be sent

*
= ("Restricted"

I "Unrestricted"]

201

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 65 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

*dataflow
(
in time info
)
gives the operational target token rotation time to be
used by MAC (determined via claim process)

*
= time

T Pri

*
dataflow
(
in time info
)
contains the thresshold value for each priority

*
= T PriO

+ T-Pri1
+ T-Pri2
+ T-Pri3
+ T-Pri4
+ T-Pri5
+ T-Pri6
+ T-Pri7

T PriO

*dataflow
(
in T Pri
)
contains the threshold value for level 0

*
= time

202

**
* ProMod V1.7 1S-JUL-1991 12:37 -PAGE 66 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

T Pri1

*dataflow
(
in T Pri
)
contains the threshold value for level 1

*

= time

T Pri2

*dataflow
(
in T Pri
)
contains the threshold value for level 1

*
= time

T Pri3

*dataflow
(
in T Pri
)
contains the threshold value for level 3

*
= time

203

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 67 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

T Pri4

*dataflow
(
in T Pri
)
contains the threshold value for level 4

*
= time

T Pri5

*dataflow
(
in T Pri
)
contains the threshold value for level 5

*
= time

T Pri6

*dataflow
(
in T Pri
)
contains the threshold value for level 6

*
= time

204

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 68 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

T Pri7

*dataflow
(
in T Pri
)
contains the threshold value for level 7

*
= time

T_sync

*dataflow
(
in time info
)
gives the allowed synchronous transmission time determined
by SMT

*
= time

userdata in

*dataflow
(
context of_FOOl, FOOl, MAC
)
data from MAC to LLC

*

205

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 69 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&O) *
**

userdata out

*dataflow
(
context of_FOOl, FOOl, MAC, process_userdata
) -
data from LLC to MAC, contains FC, OA and SOU

*

U L

*control flow
(
FOOl, MAC, receive frames, check on function) - - -
indicates a universal or local administration of the
address

*
= ["Universal"

I "Local"]

206

**
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 70 - *
* LicNo. 21470 *
* PROJECT:fddi Analysis Report (RA&D) *
**

ERROR/WARNING STATISTICS
========================
severe errors
errors detected

o
o

system model may be transformed

207

Appendix G: Graphic representation of control spec
check on violations
This graphic representation of the control spec is included to improve the insight in the operation of the
control spec. The textual specification can be found on p29 of the PROMOD SA analysis report In
appendix F.

Most arrows have an expression that must be satisfied to take the arrow to another state. If not It means
that the arrow must be taken when none of the expressions on the other arrows are satisfied. The> sign
Indicates an incoming flow that Is tested. Symbols names on with the arrows mean that these symbols
occur on the flow > csymbols.

With most arrows an action is given via a generation of an outgoing flow. This is indicated by the < sign.

O..F

209

Appendix H: Files made with IDaSS
The diskette labelled with IDaSS contains the following files made with IDaSS:

\IDASS\PHY.DES
\IDASS\PROCUSER.DES

\HEX\MA.HEX

\HEX\TESTING.HEX

\HEX\

Design of process PHY
Design of process process_userdata

File that process userdata\store\MA writes data to and reads data
from (required forstart-up) .
File that process userdata\LLC data\testing writes data to and reads
data from (required for start-up)

MA BASE: Base contents of MA (needed for restoring)
ONE SHRT: Test pattern for one frame per request with short address
(for process userdata\LLC data)
TWO SHRT:Test pattern fortwo frames per request with short address
(for process_userdata\LLC_data)

When a file Is loaded in a memory, it must always be saved to the file < memory name> .hex before
saving the total design after a simulation cycle. This is because the memories aresaved to the latest
access file, destroying the contents in the latest used file.

211

Appendix I: IDaSS description of decoder

This text is taken from a system document generated by IDaSS.

Text for function 'decode' of 'PHY\decode\decoder':
----------------------v----------------------
PH_Indication := (
(symbol = llllOb)
ifl: OOOOb
if0:

«symbol = OlOOlb)
ifl: OOOlb
if0:

«symbol = lOlOOb)
ifl: OOlOb
if0:

«symbol = lOlOlb)
ifl: OOllb
if0:

«symbol = OlOlOb)
ifl: OlOOb
if0:

«symbol = OlOllb)
ifl: OlOlb
if0:

«symbol = OlllOb
ifl: OllOb
if0:

«symbol = Ollllb)
ifl: Olllb
if0:

«symbol = lOOlOb)
ifl: lOOOb
if0:

«symbol = lOOllb)
ifl: lOOlb
if0:

«symbol = lOllOb)
ifl: lOlOb
if0:

«symbol = lOlllb)
ifl: lOllb
if0:

«symbol = llOlOb)
ifl: llOOb
if0:

«symbol = llOllb)
ifl: llOlb
if0:

«symbol = lllOOb)
ifl: lllOb
if0:

213

Appendix I: IDaSS description of decoder

({symbol = 11101b)
ifl: llllb
if0: dummy

))))))))))))))))
) .
data .- {.-
(symbol = 11110b)
ifl: Ob
if0:

{ (symbol = 01001b)
ifl: Ob
if0:

{ (symbol = 10100b)
ifl: Ob
if0:

{ (symbol = 10101b)
ifl: Ob
if0:

{ (symbol = 01010b)
ifl: Ob
if0:

{ (symbol = 01011b)
ifl: Ob
if0:

{{symbol = 01110b
ifl: Ob
if0:

{ (symbol = 01111b)
ifl: Ob
if0:

{ (symbol = 10010b)
ifl: Ob
if0:

{ (symbol = 10011b)
ifl: Ob
if0:

{ (symbol = 10110b)
ifl: Ob
if0:

{ (symbol = 10111b)
ifl: Ob
if0:

{ (symbol = 11010b)
ifl: Ob
if0:

{(symbol = 11011b)
ifl: Ob
if0:

{ (symbol = 11100b)
ifl: Ob
if0:

{ (symbol = 11101b)

214

ifl: Ob
if0: «dummy) from: 0 to: 0)

))))))))))))))))
) .
J := (
(sYmbol = 11000b)
ifl: Ob
if0: «dummy) from: 0 to: 0)

) .
K := (
(symbol = 10001b)
ifl: Ob
if0: «dummy) from: 0 to: 0)

) .
T := (
(symbol = OllOlb)
ifl: Ob
if0: «dummy) from: 0 to: 0)

) .
R := (
(symbol = OOlllb)
ifl: Ob
if0: «dummy) from: 0 to: 0)

) .
S := (
(symbol = 11001b)
ifl: Ob
if0: «dummy) from: 0 to: 0)

) .
I := (
(symbol = lllllb)
ifl: Ob
if0: «dummy) from: 0 to: 0)

) .
PH Invalid := (
(SIgnal Detect \I «OF_UF) not»
ifl: Ob
if0:

«symbol = OOOOOb)
ifl: Ob
if0:

«sYmbol = OOlOOb)
ifl: Ob
if0:

«symbol = OOOOlb)
ifl: Ob

215

Appendix I: IDaSS description of decoder

if0:
«symbol = OOOlOb)
ifl: Ob
if0:

«symbol = OOOllb)
ifl: Ob
if0:

«sYmbol = OOlOlb)
ifl: Ob
if0:

«sYmbol = OOllOb)
ifl: Ob
if0:

«sYmbol = OlOOOb)
ifl: Ob
if0:

«sYmbol = OllOOb)
ifl: Ob
if0:

«symbol = 10000b)
ifl: Ob
if0: «dummy) from: 0 to: 0)

))))))))))
)
______________________ A _

End of function descriptions.

216

Appendix J: IDaSS description of encoder
This text is taken from a system document generated by IDaSS.

Text for function 'encode' of 'PHY\encode\encoder':
----------------------v----------------------
symbolout .- (.-
(Jout = Ob)
ifl: llOOOb
if0:

((Kout = Ob)
ifl: lOOOlb
if0:

((Tout = Ob)
ifl: OllOlb
if0:

((Rout = Ob)
ifl: OOlllb
if0:

((Sout = Ob)
ifl: llOOlb
if0:

((dataout = Ob)
if0: dummy
ifl:
((PH_Request = OOOOb)
ifl: llllOb
if0:

((PH_Request = OOOlb)
ifl: OlOOlb
if0:

((PH_Request = OOlOb)
ifl: lOlOOb
if0:

((PH_Request = OOllb)
ifl: lOlOlb
if0:

((PH_Request = OlOOb)
ifl: OlOlOb
if0:

((PH_Request = OlOlb)
ifl: OlOllb
if0:

((PH_Request = OllOb)
ifl: OlllOb
if0:

((PH Request = Olllb)
ifl: Ollllb
if0:

((PH_Request = lOOOb)
ifl: lOOlOb
if0:

((PH Request = lOOlb)
ifl: lOOllb
if0:

217

Appendix J: IDaSS description of encoder

«PH Request = 1010b)
if1: 10110b
if0:

«PH Request = 1011b)
if1: 10111b
if0:

«PH Request = 1100b)
if1: 11010b
if0:

«PH Request = 1101b)
if1: 11011b
if0:

«PH Request = 1110b)
if1: 11100b
if0:

«PH_Request = 1111b)
if1: 11101b
if0: dummy "this option never exists, only added because

it is required for IDaSS"
))))))))))))))))
»»)
)
______________________ A _

End of function descriptions.

218

state)

Appendix K: IDaSS description of read_control
This text Is taken from a system document generated by IDaSS.

Text for state number 1 (reset
'process_userdata\read_control':
----------------------v----------------------
wait until request:
[store\write_request\begin =.store\write_request\end
11 «
10 store\write frame\ft addr r load;

store\write-frame\ft-end load;
ready setto: 1; -
-> request_ready

]
______________________ A _

Text for state number 2 of 'process_userdata\read_control':
----------------------v----------------------
request ready:
store\write frame\ft type valid setto: 0;
store\write-symbol\read address load;
store\write-symbol\end address load;
->request_to_send -______________________ A _

Text for state number 3 of 'process_userdata\read_control':
----------------------v----------------------
request to send:
[temp end-:= (store\write frame\ft end -1 from: 0 to: 4).
store\write frame\ft addr-r = temp end

11 store\write frame\ft type valid setto: 1;
]; - --
nr SDUs setto: 0;
store\write frame\ft addr r inc;
-> wait_for=request_data -______________________ A _

Text for state number 4 of 'process_userdata\read_control':
----------------------v----------------------
wait for request data:
[add-controls\request data
11 « -
10 nr SDUs inc;

store\write symbol\strobing symbols setto: 0;
-> produce_frame -

]______________________ A _

of

219

Appendix K: IDaSS description of read control

Text for state number 5 of 'process_userdata\read_control':
----------------------v----------------------
produce frame:
store\write symbol\read address inc;
store\write-symbol\memory enable: symbols d;
[temp end:= (store\write symbol\end address - 1 from: 0 to:
10). - --
store\write symbol\read address = temp end

10 "already strobing via-strobing sYmbols"
«

11 store\write symbol\strobing symbols setto: 1;
[(start transmission=o) /\ -
(store\write frame\ft addr r -=
store\write-frame\ft-end)-

11 "another frame" -
store\write symbol\read address inc;
store\write-symbol\end address load;
-> hold untIl frame done

10 "end request or end-of time"
store\write frame\ft type valid setto: 1;
store\write-request\begin-inc;
[frame type-= 01b
11 nr SDUs valid setto: 0
] ;
-> hOld_until_request_done

]
]
______________________ A _

Text for state number 6 of 'process_userdata\read_control':
----------------------v----------------------
hold until frame done:
[done
11 «
10 [temp end := (store\write frame\ft end -1 from: 0 to: 4).

store\write frame\ft addr-r = temp end
11 store\write frame\ft type valid setto: 1;
]; - --
store\write frame\ft addr r inc;
done setto:-1; --
-> wait_for_request_data

]
______________________ A _

220

Text for state number 7 of 'process_userdata\read_control':
----------------------v----------------------
hold until request done:
[done - -
11 «
10 done setto: 1;

ready setto: 0;
nr SDUs valid setto: 1;
->-wait-until request- -

]

----------------------~----------------------

End of state descriptions.

221

Appendix L: IDaSS description of add_controls_contr

This text is taken from a system document generated by IOaSS.

Text for state number 1 (reset
'process_userdata\add_controls_contr':
----------------------v----------------------
wait:
[start transmission
10 add=controls\generate_controls I;

add controls\counter dec;
-> FA

11 «
]______________________ A _

state) of

Text for state number 2 of 'process_userdata\add_controls_contr':
----------------------v----------------------
PA:
[add controls\counter = 0
11 add controls\generate controls J;

add=controls\request_data setto: 0;
-> J

10 add controls\counter dec;
add=controls\generate_controls I;
«

]______________________ A _

Text for state number 3 of 'process_userdata\add_controls_contr':
----------------------v----------------------
J:
add controls\generate controls K;
add=controls\request_data setto:1;
-> K______________________ A _

Text for state number 4 of 'process_userdata\add_controls_contr':
----------------------v----------------------
K:
[store\write symbol\strobing symbols
10 add controls\generate controls data;

"make FCS" -
«

11 [frame type -= OOb
·11 add-controls\generate controls data;

FCS\FCS addressing inc;
FCS\FCS-enable;
-> add FCS

10 add controls\generate controls T;
-> add 2 T -

]
]______________________ A _

223

Appendix L: IDaSS description of add controls contr

Text for state number 5 of 'process_userdata\add_controls_contr':
----------------------v----------------------
add 2 T:
add-controls\generate controls T;
done setto: 0; -
-> wait
______________________ A _

Text for state number 6 of 'process_userdata\add_controls_contr':
----------------------v----------------------
add FCS:
[FCS\FCS addressing = 0
10 FCS\FCS addressing inc;

add controls\generate controls data;
FCS\FCS enable; -
«

11 add~controls\generate_controls T;
add controls\counter setto: 2;
FCS\reset setto:O;

-> ED
]
______________________ A _

Text for state number 7 of 'process_userdata\add_controls_contr':
----------------------v----------------------
ED:
add controls\generate controls R;
[add controls\counter-= 0
11 done setto: 0;

-> wait
10 add_controls\counter dec;

«
]
______________________ A _

End of state descriptions.

224

Appendix M: IDaSS
store address contr

description of

This text is taken from a system document generated by IDaSS.

Text for state number 1 (reset
'process_userdata\store\store_address_contr':
----------------------v----------------------
wait and addressing till data:
"space is available" -
[(active out\/stream\/strobing out)
11 [(nr done=O) -

11 write_symbol\mux continue;
«

10 "Fe or DA lost"
-> loose_request

state) of

]
10 [«S_L /\ (nr_done=5» \I «S_L not) /\ (nr_done=13»)

11 write symbol\store address loadinc;
write=symbol\memory write: data_out_d;
write_symbol\memory write: MA_d;
[temp store addr := (write symbol\store address + 1 +
«S L) - - -
ifI: (4 width: 11)
if0: 12) from: 0 to: 10).

write symbol\read address = _temp_store_addr
10 -> addressing data
11 full setto: 0;

-> wait_until_free_space
]

10 write symbol\store address inc;
nr done inc; -
wrIte symbol\memory write: data_out_d;
[(nr done>=2)
11 write symbol\memory write: MA_d;

MA\MA=address inc
10
] ;
[temp store:=(write symbol\store address + 1 +
- - «S L) - -

ifI: (4 width: 11)
if0: 12

) from: 0 to: 10).
write symbol\read address = temp store

10 « - - --
11 full setto: 0;

-> wait_until_free_space
]

]
]

----------------------~----------------------

225

Appendix M: IDaSS description of store address contr

Text for state number
'process_userdata\store\store_address_contr':
----------------------v----------------------
addressing data:
[(active out\jstream\jstrobing out)
10 write-symbol\store address Inc;

write-symbol\memory write: data out d;
[temp store addr := (write symbol\store address

to: 10). - - - -
write symbol\read address = _temp_store_addr

10 « - -
11 full setto: 0;

-> wait_until_free_space

2 0 f

+ 1 from: 0

4.

]
11 [(stream\jstrobing_out) "active_out not"

10 "end of data, following RSC(PL)"
write_frame\ft_type write: data_out_d;
write_frame\ft_start write: store_addr_d;
write frame\ft address inc;
nr done reset;-"for next frame, this one is ok"
[_temp_ft_addr := (write_frame\ft_address + 2) from: 0 to:

write frame\ft addr r = temp ft addr
10 -> next frame - - --
11 full setto: 0;

-> wait_until_free_space
]

11 "RSC(PL) not found"
-> loose_request

]
]
______________________ A _

226

Text for state number
'process_userdata\store\store_address_contr':
----------------------v----------------------
next frame:
[(active out\jstream\jstrobing out)
10 "new frame" -

write symbol\store address inc;
nr done inc; -
wrIte symbol\memory write: data out d;
[temp store addr := (write symbol\store address

to: 10). - - - -
write symbol\read address = temp store addr

10 -> wait and addressing till data -
11 full setto:-O; --

-> wait_until_free_space

3 0 f

+ 1 from: 0

]
11 [«active out not)\j(stream not)\jstrobing out)

10 "end request, following token class" -
write request\rt type write: data out d; "token class"
write-request\rt-start write: ft address d;
write-request\end inc; - -
[temp end := (write request\end + 2) from: 0 to: 2.
write-request\begin-= temp end

10 -> wait and addressing till data
11 full setto:-O; --

-> wait_until_free_space
]

11 "token class not found"
-> loose_request

]
]
______________________ A _

Text for state number 4 of
'process_userdata\store\store_address_contr':
----------------------v----------------------
wait until free space:
[temp end-:= (write request\end+1) from: 0 to: 2.
=temp=ft_addr := (write_frame\ft_address+1) from: 0 to:4.
(write_request\begin = _temp_end)
\j(write_frame\ft_addr_r = _temp_ft_addr)
\j(write_symbol\read_address = write_symbol\store_address)

11« "no free space"
10 full setto: 1;

-> loose_request
]
______________________ A _

227

Appendix M: IDaSS description of store address contr

Text for state number
'process_userdata\store\store_address_contr':
----------------------v----------------------
loose request:
write-frame\ft address load;
-> restore frame address
______________________ A _

Text for state number
'process_userdata\store\store_address_contr':
----------------------v----------------------
restore frame address:
write sYmbol\mux new;
write-symbol\store address load;
nr done reset; -
->-wait_until_end_request
______________________ A _

Text for state number
'process_userdata\store\store_address_contr':
----------------------v----------------------
wait_until_end_request:
[(active out/\stream)
11 -> walt and addressing till data
10 « - - --
]
______________________ A _

End of state descriptions.

228

5

6

7

o f

o f

o f

Appendix N: IDaSS description of addr_1
This text is taken from a system document generated by IDaSS.

Text for state number
'process_userdata\store\addr_l':

1 (reset state) of

----------------------v----------------------
waiting:

[(active out\/stream\/strobing out)
11 « "no symbol found" -
10 [(data out from:2 to: 2)

11 S L setto: 1 "short address"
10 S=L setto: ° "long address"

] ;
->listening_frame

]______________________ A _

Text for state number 2 of 'process_userdata\store\addr_l':
----------------------v----------------------
listening_frame:

[(active out\/stream\/strobing out)
10« - -
11 -> waiting
]
______________________ A _

End of state descriptions.

229

Appendix 0: IDaSS description of MA_contr
This text is taken from a system document generated by IDaSS.

Text for state number 1 (reset
'process_userdata\store\MA_contr':
----------------------y----------------------
wait for frame:
[S L
I1-"short"

MA\MA address setto: 12
10 "long"
] :
-> wait for end of frame
______________________ A _

state) of

Text for state number 2 of 'process_userdata\store\MA_contr':
----------------------y----------------------
wait for end of frame:
[(nr- done=O)
11 MA\MA address setto: 0:

-> walt for frame
10 « -
]

----------------------~----------------------

End of state descriptions.

231

Appendix P: IDaSS description of mux
This text is taken from a system document generated by lDaSS.

Text for function 'continue' of
'process_userdata\store\write_symbol\mux':
----------------------v----------------------
mux := II
----------------------~----------------------

Text for function 'new' of
'process_userdata\store\write_symbol\mux':
----------------------v----------------------
mux := I2
----------------------~----------------------

End of function descriptions.

233

Appendix Q: IDaSS description of add_4_or_12
-.niStext is taken from a system document generated by IOaSS.

T ext for fun c t ion 'c 0 n v e r t' 0 f
'process_userdata\store\write_symbol\add_4_or_12':
----------------------v----------------------
MA address :=
«5" L)
ifI: store address + 4
if0: store-address + 12

)
______________________ A _

End of function descriptions.

235

Appendix R: IDaSS description of generate_controls

This text is taken from a system document generated by IDaSS.

Text for function data of
'process_userdata\add_controls\generate_controls':
----------------------v----------------------
I:=l. J:=l. K:=l. T:=l. R:=l. 8:=1. data:=O
______________________ A _

Text for function I
'process_userdata\add_controls\generate_controls':
----------------------v----------------------
I:=O. J:=l. K:=l. T:=l. R:=l. 8:=1. data:=l
______________________ A _

Text for function J
'process_userdata\add_controls\generate_controls':
----------------------v----------------------
I:=l. J:=O. K:=l. T:=l. R:=l. 8:=1. data:=l
______________________ A _

Text for function K
'process_userdata\add_controls\generate_controls':
----------------------v----------------------
I:=l. J:=l. K:=O. T:=l. R:=l. 8:=1. data:=l
______________________ A _

Text for function R
'process_userdata\add_controls\generate_controls':
----------------------v----------------------
I:=l. J:=l. K:=l. T:=l. R:=O. 8:=1. data:=l______________________ A ~ _

Text for function 8
'process_userdata\add_controls\generate_controls':
----------------------v----------------------
I:=l. J:=l. K:=l. T:=l. R:=l. 8:=0. data:=l
______________________ A _

Text for function T
'process_userdata\add_controls\generate_controls':
----------------------v----------------------
I:=l. J:=l. K:=l. T:=O. R:=l. 8:=1. data:=l_____________~ A _

End of function descriptions.

o f

o f

o f

o f

o f

o f

237

Appendix S: IDaSS description of FCS
This text Is taken from a system document generated by IDaSS.

Text for function 'connect' of 'process userdata\FCS\FCS':
----------------------v----------------------
FCS out :=
«address = 0)
if1: 17
if0:

«address = 1)
if1: 16
If0:

«address = 2)
if1: IS
if0:

«address = 3)
if1: 14
if0:

«address = 4)
if1: 13
if0:

«address = 5)
if1: 12
if0:

«address = 6)
if1: 11
if0:

«address = 7)
if1: 10
if0: 0

»»»»______________________ A _

End of function descriptions.

239

Appendix T: IDaSS description of fdb operators
This text is taken from a system document generated by IDaSS.

Text for function 'extract' of 'process userdata\FCS\fdbO':
----------------------v----------------------

X32 := Fat: O.
X33 := Fat: 1.
X34 := Fat: 2.

-X35 := Fat: 3.

PO := P at: o.
PI .- P at: 1 •.-
P2 := P at: 2.
P3 := P at: 3.

00 := PO >< X32.
01 := PI >< X32 >< X33.
02 := P2 >< X32 >< X33 >< X34.
03 := P3 >< X33 >< X34 >< X35.

° := _03, _02, _01, _00
______________________ A _

End of function descriptions.

===
Text for function 'extract' of 'process_userdata\FCS\fdb1':
----------------------v----------------------

X32 := Fat: o.
X33 := Fat: 1.
X34 : = F at: 2.
X35 := Fat: 3.

PO := P at: o.
PI := P at: 1-
P2 := P at: 2.
P3 := P at: 3.

04 := PO >< X32 >< X34 >< X35.- -X35.OS .- PI >< X32 >< X33 ><.- -06 := P2 >< X33 >< X34.
07 := P3 >< X32 >< X34 >< X35.

° := _07, _06, _0S, _04
______________________ A _

End of function descriptions.

===

241

Appendix T: IDaSS description of fdb operators

Text for function 'extract' of 'process_userdata\FCS\fdb2':
----------------------v----------------------

X32 := Fat: O.
-X33 := Fat: 1.

X34 := Fat: 2.
-X35 := Fat: 3.

PO := P at: O.
P1 := P at: 1-
P2 := P at: 2.- at:P3 := P 3.

08 := PO >< X32 >< X33 >< X35.
09 .- P1 >< X33 >< X34..-
010 .- P2 >< X32 >< X34 >< X35..-
011 := P3 >< X32 >< X33 >< X35.

° := _011, _010, _09, 08
----------------------~----------------------

End of function descriptions.

===
Text for function 'extract' of 'process_userdata\FCS\fdb3':
----------------------v----------------------

X32 := Fat: O.
X33 := Fat: 1­
X34 := Fat: 2.
X35 := Fat: 3.

PO := P at: O.
P1 := P at: 1-
P2 := P at: 2.
P3 := P at: 3.

012 := PO >< X32 >< X33 >< X34.
-013 .- P1 >< X33 >< X34 >< X35 ..-

014 := P2 >< X34 >< X35.-015 := P3 >< X35.-
° := _015, _014, _013, 012
----------------------~----------------------

End of function descriptions.

===

242

Text for function 'extract' of 'process_userdata\FCS\fdb4':
----------------------v----------------------

X32 := Fat: O.
-X33 := Fat: lo

X34 : = F at: 2.
X35 := Fat: 3.

PO := P at: O.
P1 := P at: lo
P2 := P at: 2.
P3 := P at: 3.

016 := PO >< X32.- 017 := P1 >< X33.- 018 := P2 >< X34.- 019 := P3 >< X35.

0:= 019, 018, _017, 016______________________ A _

End of function descriptions.

===
Text for function 'extract' of 'process_userdata\FCS\fdb5':
----------------------v----------------------

X32 := F at: o.-
at:X33 := F lo

PO := P at: o.
P1 := P at: lo
P2 .- P at: 2 ..-- at:P3 := P 3.

020 := PO.
021 := Plo-022 := P2 >< X32.
023 := P3 >< X32 >< X33.

o := _023, _022, _021, 020______________________ A _

End of function descriptions.

===

243

Appendix T: IDaSS description of fdb operators

Text for function 'extract' of 'process userdata\FCS\fdb6':
----------------------v----------------------

X32 := Fat: o.
X33 := Fat: 1.

-X34 := Fat: 2.
-X35 := Fat: 3.

PO := P at: O.
P1 := P at: 1-- at: 2.P2 := P
P3 := P at: 3.

024 := PO >< X33 >< X34.- -025 .- P1 >< X34 >< X35..-- -026 := P2 >< X32 >< X35.
027 := P3 >< X33.

0 := _027, _026, 025, 024-~ A _

End of function descriptions.

===
Text for function 'extract' of 'process_userdata\FCS\fdb7':
----------------------v----------------------

X34 := Fat: 2.
-X35 := Fat: 3.

PO := P at: O.
P1 := P at: 1.- at:P2 := P 2.
P3 .- P at: 3 ..-
028 := PO >< X34.
029 := P1 >< X35.
030 := P2.
031 .- P3..-

0 := _031, _030, _029, 028_______~ A _

End of function descriptions.

244

Literature
1. "Strategies for real-time system specification", O.J. Hatley and I.A. Pirbhai

1988, Dorset House, New York, USA

2. American National Standard for Information systems
Fiber distributed data Interface (FOOl) - token ring physical layer medium dependent (PMO)
ANSI X3.166-1990

3. American National Standard for information systems
Fiber distributed data interface (FOOl) - token ring physical layer protocol (PHY)
ANSI X3.148-1988

4. American National Standard for information systems
Fiber distributed data interface (FOOl) - token ring media access control (MAC)
ANSI X3.139-1987

5. American National Standard for Information systems
Fiber distributed data interface (FOOl) - token ring station management (SMT)
ANSI X3, still under development

6. "The SUPERNET family for FOOl", Technical manual
Advanced Micro Devices, Inc. 901 Thompson Place P.O. Box 3453 Sunnyvale, California 94088­
3453

7. "Structured Design of an FOOl Protocol Handler", P.W.A.J.M. Nas
Digital Systems Group, Eindhoven University of Technology, the Netherlands, Sep, Oct 1991

8. "IOaSS for ULSI", Manual for IOaSS VO.08d, Mini-IOaSS V1.00, Ir. A.C. Verschueren
Digital Systems Group, Eindhoven University of Technology, July 1990

9. "Error characteristics of FOOl", R. Jain
IEEE trans commun, USA, V38, N8, P1244-1252, Aug 90

10. "Communications via FOOl", T. van Gelder (in dutch)
Elektronica, V38, N9, P20-31, 4 May 90

11. 'Working with FOOl: A designer's guide", K. Parker
Electron des (USA), V38, N8, P95-98,100,102,105, 26 April 1990

12. "Fiber optic links hold the keys to the fast LANs of the future", K. Parker, S. Kaufman
Electron des (USA), V37, N25, P46-53 (14 Dec 1989)

13. "Engineering bUilding and campus networks for FOOl", TF. Mcintosh
Proceedings of the SPIE - Int soc opt eng (USA), V1179, P240-251 (1990)
(Fiber networking and telecommunications)

14. "FOOl Interoperability between vendors", AR. Khan
Proceedings of the SPIE - Int soc opt eng (USA), V1179, P266-275 (1990)
(Fiber networking and telecommunications)

245

Literature

15. "FOOl - an overview·, FE. Ross
Standardization: ASC X3T9; IS ISO/IEC JTC1/SC25
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH274S-6), P5-8

1S. "FOOl ring management", KB. Ocheltree
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH274S-S), P18-23

17. "The role of concentrators In FOOl rings·, J. Hutchison
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH274S-6), P24-40

18. "A high performance FOOl network and Its applications", RM. Montalvo and K. Ocheltree.
Proceedings of the International Conference on Public Networks (Networks 90), Birmingham,
UK, June 1990, P135-147.

19. "FOOl MAC services design considerations", JF. Torgerson
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH274S-S), P41-48

20. "FOOl-II: Operation and architectures", M. Teener
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH274S-S), P49-61

21. "Standards for robust second generation LAN management", RB. McClure
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH274S-S),P133-142

22. "Performance analysis of FOOl", R. Sankar
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH274S-6), P328-332

23. "The FOOl link error rate monitor", GW. Kajos, OH. Hunt
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH274S-6), P347-357

24. "Modelling and performance evaluation of FOOl ring", M. Cerqueiro, G. Makhoul, Ruey-Lin Ju, and
K. Jabbour. Oepartment of Electrical and Computer Engineering Syracuse University, 111 Link
Hall. 89CH2785-4

25. "FOOl ICs and components: Reduced costs key FOOl's acceptance", M. Wright
EON (USA), V34, N19, P81-84,8S-91 (14 Sept 89)

2S. "Emerging standards, hardware and software light the way to FOOl", K. Marrin
Comput des (USA), V28, N7, P51-54,5S-57 (1 April 1989)

27. "FOOl - A new high speed LAN with optical fibers·, C. Mittasch (in German)
Nachr tech elektron (East Germany), V39, N3, P96-98, (1989)

28. "FOOl and BWN backbone networks, a performance comparison based on simulation", T. Welzel
The IEEE 8th annual international Phoenix conference on computers communications,
proceedings (IEEE cath no 89CH2713-6)

24S

29. "Optical high speed (100 Mbps) token ring system", K. Ohno, et al
Globecom 88, IEEE global telecommunications conference and exhibition - communications for
the Information age
Conference record (IEEE cath no 88CH2535-3) hollywood (FL) (USA) 28 Nov-1 Oec 88
New York USA IEEE 88, V2, P645-652

30. "FOOl - A sign of things to come In datacommunication", O. van Mierop
Computer communication technologies for the 90s, proceedings of the 9th international
conference, Tel Avtv, Israel 30 Oct-3 Nov 88. p155-161

31. "Fiber optic transceiver for FOOl application", Y. Uda, et al
FOC/LAN '88, proceedings 12th International fiber optics communications and Local Area
Networks expositions, Atlanta, GA, USA, 12-16 Sept 88. P126-130

32. ''The FOOl - A new generation standard for LANs·, TJ. King
Eurocon 88: 8th European conference on electronics
[proceedings on:area communications (cath n088CH2607-Q) Stockholm Sweden 13-17 June 88]
New York USA. IEEE 1988, P239-242

33. "FOOl-II: Integrated services on high speed LANs", P. Food
ISON 88, Proceedings of the international conference, London UK, June 88, P303-312

34. "Extended ethernet connectivity with FOOl technology", O. van Mierop, A. Eldad
Networking technology and architectures, Proceedings of the international conference London
UK, June 88, P127-136

35. "Fibre optic components for the FOOl 100 Mbps LAN", T. King
Proceedings of the SPIE, int soc opt eng (USA) vol 949, P2-13 (1988)

36. "Olstributing FOOl's power", R. Bruce McClure
Special Report: FOOl, Lightwave February 1991, P32,34,36

37. ·Unsnarling FOOl's Kinks", Shyamala Reddy
LAN Magazine, June 1991. P36-39

247

Index
4B/5B encoding ...•.•••.•••.............. 5, 19,74
A Max 63
ACD

Architecture Context Diagram • • • . •. 49, 51
AD

Architecture Dictionary ••••...•....•...•.•••• 49
Address detection ..•.••.....•.....•.•••••.... 88
Administration•••.•.........•...••.••.. 44
AFD

Architecture Flow Diagram•••.. 49, 51
AID

Architecture Interconnect Diagram •....•.... 49, 51
A1S

Architecture Interconnect Specification ...•... 49, 52
Alignment•••.•............•.. 75
ALS ..•.•.••••••••••....••••••••.•••.•••..• 41

Active Une-state•.......•........•..•. 41
AMS -

Architecture Module Specification • • • 49, 52
Architecture

Add controls 118
FDDT 101
MAC•... 109
PHY•..................... 107
PMD 106
Process userdata . • 109
SMT .. -:- 106
Store 110
Write frame 114
Write-request • .. 115
Write-symbol•........ 113

Architecture Dictionary • 52
Architecture Model • 49
Asynchronous 5,7,38,43,45,66,67,89,98
Beacon process .. 6, 69
BER 4

Bit Error Rate • • 4
Bidding process••... 7, 15
Broadcast address .. 44
Bypass • 5, 8, 15
CA 15

Channel Allocator. • 15
CCD 48

Control Context Diagram 47
CFD 48

Control Flow Diagram ..•.••................ 47
CG•......•.....•....••... 14

Cyclic Group •••..................•....... 14
CH ..•...•...........•......•.•....•....... 14

Cycle Header•.. 14
Claim token process•........•....... 68, 89
Claim FR ...•........................••..... 63
Clock-:•...•...... 74

Recovery ..••..........•........ " 5, 15,73-75
Transmission•...•.•. 5, 15

CM•......•.....•.....•......•.. 13,15
Cycle Master 13

CMIP
Common Management Information Protocol 24

CON
Concentrator•..........•..... 8, 9, 12

Concentrator 25
Connector•...••...••........•• 5
Connector type

A .••.........•.•.......... " " 9,11
B •.•...•.••....... ,•.. , ..•... 9,11
M•••..•............ 9,11
S 10,11

Context of FOOl • 53
Control symbols . . • • 14
CRC 6

Cyclic Redundancy Check•••....... 6, 90, 94
CS•.••••..........•..........••. ; 14

Cycle Sequence •.•.•....•.•••••..•....•••. 14
CSPEC 48

ContrOl Specification••.........•.••••.• 47
Controlspec •.. . . . • • • • . . . • • • .. 53

o Max 63
DA 6,44

Destination Address •................... 6, 44, 93
DAC

Dual Attachment Concentrator•••..... 11
DAS •.•••••........•...........•..... 4, 8, 15,84

Dual Attachment Station •. 4, 9
DC imbalance 76
DCD ...•.•................................ 47

Data Context Diagram .•••................•. 47
Decode function • •. 60
OF•..........................••••..... 60

Decode Function•...............•... 60
DFD .•..•..........................•....... 47

Data Flow Diagram • • • .. 47
DLL•..................... 3

Data Unk Layer 3
DPG•.......•...•....•............ 15

Dedicated Packet data Group. • 15
EB 60

Elasticity Buffer 50, 73, 75, 76
ED•.....••.......•......•..... 6, 40, 44

Ending Delimiter 6, 44, 89, 90
Encode function .. 59
Encoder/Decoder . • •. 77
Encoding ...•.•.............................. 5
Error

Detection .. 19
Recovery 8, 16
Tolerancy • .. 8

Error_Ct 65
FMax 63
Fault domains•...........•............. 20
FC ..•................•...........•.... 6,43,97

Frame Control 6, 43
FCS•...•..•.........•....•..... 6, 20, 44

Frame Check Sequence 6, 20, 44, 90, 94, 96
FDDI•....••..............•..•.••.... 3

FIber Distributed Data Interface••.......... 3
Protocol 5
Specifications . . • • .. 4
Use 3

FDDI·II .••...•..........•............•...... 13
Error recovery•.... 16
Operation•........•...... " 15
Standard•.........•........ 13

FFOL
FDDI follow-on •........................... 27

Formal description
Method 47

Frame reception•.......... " 96, 97

249

Index

Frame repetition • • 97
Frame stripping ..•.........•................. 66
Frame transmission 65, 95. 98
Frame Ct 65
Frames

Beacon••................... 45, 94, 98
Claim 45. 93, 94. 98
Data•.•••••..... 5
Implementer ...•.•..................... 6, 46
LLC ...•.............................. 6.45
MAC ..••............•..........•..••. 6,45
SMT ••...••..................•...•.... 6,45
Void 45

FASTAT
Frame Status Register ...•.......•.......... 90

FS 6,45
Frame Status . 6, 45, 89, 97

Group address .. 44
HLS "•............... 41

Halt Une-statll " 41
Horizonial connection . • .. 25
HAC 13

Hybrid Aing Control. 13,27
Hybrid mode 13
I·MAC 13
I Max 63
iLOI 60

Initial Une·state Detection Interval 60
ILS •..........•............................ 41

Idle Une-state 41
IMC .. -:- 15

Isochronous Maintenance Channel 15
IMSK

Interrupt Mask Register 91
Indicator

A••....•........••.•..... 45,90.98
C 45,90,98
E 45,90

Individual address 44
INFO 6,44

Information field . •. 44
Initialization•... 89. 96
Initialization process .. 68
LMax 63
Lite_Ct. .. 65

Late counter. .. 65
Latency buffer 13
LCT •.....•................................ 19

Unk Confidence Test ..•.•.................. 19
LOF 60

Une-state Detection Function 60
LEM••....................... 19

Unk Error Monitor••..... 19
Une·state Detection function•........•. 60
LLC 42

Logical Unk Control•.........•. 4, 13,32
Local administration • • • . . • • • 44
Local clock • •• 61
Loopback • 8, 36, 88, 92, 96
Lost frame • • . . . • • .. 97
Lost Ct 65
LSU-.......................••........•.. 40,61

Une-State Unknown .. 40
MMax 63
MA_TOKEN.request•... 33

250

MA UNITDATA.indlcation ..•.........•.......... 33
MA-UNITDATA.request••... " 32
MA-UNITDATA STATUS.indlcation 33
MAC ~ 3. 5, 13,76

Functions • • . • • • 29
Media Access Control • 3, 87

MIB
Management Information Base • .• 24

MIC
Media Interface Connector .•••...........•... 34

MIA
MAC Information Register. 91

MLS ...•..........••...........••.......... 41
Master Une-state • • • • • • 41

Monitor station. • . . . • • 13
Rank•.•.............•... 15

MITA
Mean Time To Repair. • • • 12

NLS•..............•....•.........•.... 41
Noise Une-state 41

NP -

Node Processor 87, 91
NAZI

Non-Return·to-Zero-Invert-on-ones 74
Null address. • . .. 44
On-line••.......................... 92. 96, 97
Optical bypass .. 11
Order of byte 54
OSI•............ 3,13

Open Systems Interconnection 4
P-MAC ..•.................................. 13
PA••.•.............. 6,14,43

Preamble .. 6. 43
PDU 42

Protocol Data Unit 42
PE 12

PHY Entity . . . • . • . .. 12
PH INVALlD.indication•... 31
PH-UNITDATA.indicatlon•.................. 31
PH-UNITDATA.request• 30
PH-UNITDATA STATUS.lndication 31
PHY :-.........•..•..........•. 3,5. 13. n

Functional blocks .. 74
Functions .. 29
Physical Layer Protocol 3. 9. 73

Physical Connection .. 9
Physical interface

LLC to MAC '" 103
MAC to LLC . • • .. 101
MAC to PHY • .. 105
PHY to MAC•.•.................... " 105
Store and add controls 106
Store and mori'itor•. 106

Physical layer • • .• 3, 29
PLL

Phase Locked Loop •...•................ 75, 80
PM SIGNALlndication••.................. 30
PM-UNITDATA.indication•.........•.....• 30
PM-UNITDATA.request 30
PMD•...... 3,4,13

Extension. .. 16
Functions . • 29
Physical Medium Dependent 25
Physical Medium Dependent layer 3, 9, 73

PMF

Parameter Management Frame 24
Polynomial • . . . • . • • • . . • . .. 20
Programming template 14
PROMOO SA report

Formats•............•...•......•• 53
Propagation delay ...••..•.......•.........•.. 73
Protocol

N-Iayer •••••.•... ,••.•••.........•..• 6
PSPEC •.••.•••.••........•.•..•......•••••• 47

Minispec••..........••••.. 53
Proces Specification . . • . . . • • . • . . . • . • • • • . . . •. 47

QLS•...................•.....•.•..... 41
Quiet Une·sta1e . • . . • • 41

Receive function. • • . . • 59
Receiver • . • . . • • • . •• 70
Reconfiguration......•........••.•............. 8
Recovery••.......•.......• 89
Recovery operation .••........•••............. 99
Repeat fil1er . • 62, 76
Requirements model •......••.........•....... 47

FOOl•............•............ 53
Further development 56
MAC 55
PHY 55
PMO 55
SMT•....... 55

Resource alloca1ion•••..... 13
RF

Repeat Filter•. 62
Ring scheduling .. 66
S Min 64
SA 6,44

Source Address 6, 44
SAC

Single Attachment Concentrator 11
SAS•......•..................... 4,8.15

Single Attachmen1 Station•........... 4, 10
SAW

Surface Acoustic Wave .. 75
SO•................ 6. 14,40,43,75,97

Starting Deliml1er•.......... 6. 43. 97
SOU 65
Services

MAC to LLC . • • .. 32
MAC to SMT 36
PHY to MAC. .• 30
PHY to SMT .. 34
PMO 10 PHY .. 29

SF•.......••......................... 61
Smo01hing Function•............ 61

SM_MA_CONTROL.reques1 37
SM MA INITIALIZE PROTOCOL.confirm• 37
SM-MA-INITIALiZE-PROTOCOL.request . . . • 37
SM-MA-STATUS.lndication •..................•. 38
SM-MA-TOKEN.request 39
SM-MA-UNITOATA.indication•..........•. 39
SM-MA-UNITOATA.request 38
SM-MA-UNITOATA STATUS.indlcation 39
SM-PH-CONTROLJequest••..............• 35
SM=PH=L1NE.STATE.reques1 35
8M PH STATUS.indica1ion•.••... 35
SM-PM-SYPASS.reques1 .•..................... 34
SM=PM=CONTROL.request•......... 34
SM PM SIGNAL.lndication .. 34
Smoother 5. 76. 83

Smoothing function •..•.•..................•.. 61
SMT •......................•...•••......•. 3,6

Station Management•...... 3.9, 13.23
SNMP

Simple Network Management Protocol . • • •. 24
STAT

Status Register. • • • • . .. 91
State machine

Add con1rols contr•..•••. 118
Read control-.........•...................116
S10re-address con1r ...•••........•....... 117

Station latency •. :-. • . • • • • • . . . • . •. 73
Stripped frame • • . • 97
Switching

Circuit•......•.••.•......• 13, 16
Packe1 • • • • • • 13, 16

Symbols .••........••......•......•........ 40
Control .••.••....•.•........••.•........ 40
Data•••................... 40
Une·state • .. 40
Violation • • • • . • . .. 40

Synchronous 5,7,38,43,46,66,98
T Ini1•........... , 64
T-Max •.................•••....... " 64
T-Min ...••................................ 64
T-Neg•............................. 3.7

- Negotiated Token Rotation Time 3,94
T Opr 3,64

- Operational Token Rotation Time 3,94
T Req 64

- Requested Token Rotation Time 94
THT 4, 7, 64, 96

Token Holding Timer 4, 7, 64. 89
Timers 88

THT 89
TMAX•.........•................ 89
TNEG•........................ 89
TRT 88
TVX 88

Timeslot•...... 14
TMAX

Timer Rotation Maximum • 89
TNEG

Negotiated Token Rotation Time 89
Token•..................... 7

Capture 7, 65, 89, 98
Transmission•..................... 66

Token Time 63
TPRI -

Asynchronous Priority Register • 89
Transmit function ...•.•..................... " 59
TRT .•....•........................•... 3, 64. 96

Token Rotation Timer•....•... 3. 64, 88, 94
nRT•...•...•.........•..... 3,7,37

Target Token Rotation Time '" ..•........... " 3
TVX•. 37, 64, 96

Valid Transmission Timer . . . •• 64. 88
Universal administration • 44
Use of FOOl

Back-end•................ 3. 23
Backbone .•....••.......•............. 3. 23
Front-end .. 3, 23

UTP
Unshielded Twisted·Pair .. 26

Void frame . • 45

251

Index

WBC•............. 14
Wide Band Channel•...........•... 14

252

	Voorblad

	Abstract

	Acknowledgements

	Contents

	List of figures.

	List of tables.

	1. Introduction

	2. What is FDDI?

	3. Error detection.

	4. FDDI developements.

	5. Functional specifications.

	6. Formal description method.

	7. Requirements model of FDDI.

	8. Functional blocks of PHY.

	9. Design issues of MAC.

	10. Implementation example of PHY.
	11. Implementation Example of MAC.

	12. Architecture of FDDI.

	13. Conclusions and recommendations.

	Appendix

	Literature

	Index

