EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Structured design of an FDDI protocol handler

Simons, P.W.

Award date:
1995

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/04b14704-3887-4b0f-98da-9b5cccc3dc10

DL

7075

Structured Design of an FDDI
Protocol Handler

P.W. Simons
Department of Electrical Engineering
Digital Systems Group
Eindhoven University of Technology

Eindhoven, August 1991

Master's Thesis

Supervisor and Coach: Prof. Ir. M.P.J. Stevens

The department of Electrical Engineering of the Eindhoven University of Technology does not accept any responsibility
regarding the contents of student project- and graduation reports.

Abstract

For high speed LANs several standards are defined. One of these is the Fiber Distributed Data Interface
(FDDI). This operates at a data rate of 100 Mbps via a fiber.

The standard is defined by the ANSI X3T9.5 group, and is described in four standards: Physical Media
Dependent (PMD), PHYsical layer protocol (PHY), Media Access Control (MAC) and Station
Management (SMT). This standard only supported packet switching, with a timed token ring protocol
and several error detecting and correcting mechanisms.

Later the need for circuit switching was recognized and an additional standard is developed: Hybrid Ring
Control (HRC). With this extension both circuit and packet switching will be possible. Further
development includes lowering the installing costs (low cost fiber and twisted pair for transmission to
the end user), and increasing the speed.

For the basic FDDI protocol a protocol handler has to be designed. This takes a long time, so only a
part will be designed, and the rest will be left to other people.

The ANSI standards on FDDI allow for different implementations. The description given is functional,
giving services between two entities. The internal behaviour is shortly described, with a state machine,
or a block diagram.

To model the protocol the method as described in "Strategies for real-time system specification” by D.J.
Hatley and I.A. Pirbhai is used. This is supported via the program PROMOD, and with this program the
FDDI protoco! is modelled, emphasizing on the Media Access Control entity. After this step, data and
control flow diagrams are available, with process specifications. The model is constructed via
discussions about the functional division, and the communications between the processes. Because no
valid standard on the Station Management was available, this entity is only slightly watched at.

The diagrams and specifications allow for implementation in hardware. For this purpose the program
IDaSS (Interactive Design and Simulation System) is used, developed at the Eindhoven University of
Technology by Ir. A.C. Verschueren.

The encode and decode functions of the Physical layer protocol are described in 1DaS$, as well as the
way to obtain data from a user and construct frames of it. Therefore a memory management system and
a frame check sequence generator, working with four bits parallel, are developed. While designing, minor
changes had to be made to the model, because of the different point of view to the system.

Inthe report of Mr. P.W.A.J.M. Nas more designs can be found, that have been developed independently
from the designs described in this report.

From these facts it appears that the requirements model is satisfying in the total design trajectory.

According to people in the industry, FDDI has many possible applications, but is not useful in many
cases, because most users do not need all possibilities offered by packet switched FDD!.

With the development of FDDI, more general services become available (especlally circuit switching).
Combined with lower prices, this makes FDDI more useful for more and more users. Therefore it may
be recommendable to continue the development of the protocol handler, or at least to keep an eye on
the subject.

Note: The design process has initially been carried out by two persons (the writer of this report and Mr.
P.W.A.J.M. Nas). This ended up in two reports (with the same name) that are written for the greater part
in cooperation. This means that a great deal of the chapters in this report can also be found in the other
one. Only the parts describing the step to hardware contain several different items.

Acknowledgements

| wish to acknowledge the following companies and persons for the information | and my companion
received about their FDDI products or involvements:

AMP Inc., Jack Himes Harrisburg USA
CHeSS, Dhr. van Teijlingen Soest Netherlands
CMC Santa Barbara USA

CMC Ltd., David Griffiths Hounslow England
Digital Technology Inc. Dayton USA

Digital Technology Berks England
Digital Equipment Corp. Maynard USA

Digital Equipment B.V. Utrecht Netherlands
Fibercom Roanoke USA

IBM, Dr. Richard O. LaMaire Armonk USA
Millegan, Gene Oklahoma City USA
Network Systems Corporation Minneapolis USA
Plessey Semiconductors Ltd. Swindon England
PTT Telecom, Hans Herlaar Den Haag Netherlands
Siemens Nederland N.V. Den Haag Netherlands
Sun Microsystems Inc. Mountaln View USA

Sun Microsystems Nederland B.V. Amersfoort Netherlands
Vitel Communicatie B.V., A Sterk Gouda Netherlands

| specialy want to acknowledge Mr. Albert Sterk of Vitel Communicatie B.V. for his invitation of me and
my companion to discuss FDDI. | thank Advanced Micro Devices and CMC for their generosity of
sending useful databooks.

| am pleased to acknowledge Professor Ir. M.P.J. Stevens for hls advice and his support.

Also | would like to thank Mr. Peter Nas for being my companion and for his helpful and pleasant
cooperation.

Finally | want to thank Miss Rian van Gaalen for her patience with me and my companlon, her advice
and her willingness to assist us with many different problems.

Contents

8 I e Yo [T () o T 1
2. What 18 FD DI ? et e e e 3
21 PossibleuUse Of FDDI it e e e e 3
b T 1131 140 - 3
23 Specifications of FDDIt i ittt e 4
240peration of FDDI i i i i e e e . 6
25 Erorrecovery in FDDI i i i e e e 8
2.6 Concentrators IN FDD] ittt ittt ettt i 9
0 T | 13
280peration of FDDI-Nl i e e e, 15
29 Errorrecovery INFDDI-Il i i i et e 16
210 Extensiontothe PMD i i i ity 16
L TR = (o e (=1 C=Yox (o 19
3. LinkErrorMonitor (LEM) i e e 19
3.2 Frame Check Sequence (FCS)ttt it it ittt i i 20
4 FDDI developmentso vttt it e e e e 23
41 Managingan FDDInetworko i i e 24
4.2 Media connection developments i i 25
4.3 FDDI enhanCementsitinivn ittt oncnnnneeeennnneenens 26
5. Functional specificationst e 29
B FUNCHiONs Of PMD i it i i e et e e 29
5.2 Functions of PHY i it ittt et e e 29
5.3 FUNctions Of MAC i e et e 29
BAAFUNCHioNs Of SMT i i e et e 29
5.5 Services from PMD to PHY it i i i e 29
5.6 Services from PHY toMAC i i i e e 30
57 Services from MAC tO LLC it i ittt i tiinanns 32
5.8 Services from PMD 10 SMT it it e e et 34
5.9 Services from PHY 10 SMT i i ittt e et 34
5.10 Services from MAC to SMT i i i i it e et e 36
L3R B T3 121« o - 40
B 2 Line-Stales e e e e e e e e e e 40
L3 < 7o Yo 13T [42
LT B 3N o 1 8 Y o =T 42
6. Formal description method i i i it i e 47
6.1 The requirements modeli ittt e inann 47
6.2 The architecture Model ittt 49
7. Requirements model of FDDI i e 53
7.1 Formats used inthe PROMOD SA report0ttt innnnnenn. 53
72Context Of FDDI e e e 53
7.3 Subdividing FDDI e e e 54
74 Interface tothe User i e e e e 54
75Interfacetothering e 54
76 Interface toO the Operator i ititiii ittt e et 55
7.7 Further eVolUtion i e e e 55
7.8 Development Of PMD e 55

Contents

79 Development of PHY e e 55
7.10 Development of SMT i e e 55
741 Development of MAC i e 55
7 A2 EXPOIIENCES . . o ittt ittt e e e e e e 56
7.13 Further development i i i e e 56
8. Functional blocks of PHY i i i ittt e e 59
8.1 Encode fuNCHiON i et e e - 59
8.2 Transmit fUNCHON i it i et e i et 59
83 Recelve fUNCHON i ittt it it 59
8.4 Elasticity Buffer function i i e 60
85Decodefunctiont e e e e e 60
8.6 Line-State Detection function i 60
B.7hocal CloCKt i e ettt 61
8.8 Smoothing fuNCtion it ettt 61
BORepeat filter i it e e 62
9. Designissues Of MAC ittt i ittt i ttan e nianansenn 63
L2 T T I 0.4 7= e 63
Lo 0o T o1 (- - PP 65
93 0perationontheringttt ittt ittt 65
94 Monitoringofthering i 67
O MAC SITUCIUNE i ittt ittt ittt ettt aanen e enneneenannaanens 69
9.6 Receiver statemachine ittt 70
9.7 Transmitter state machine ittt 71
10. Implementation example of PHY i e e 73
10.1 Propagation delay and stationlatency 73
10.2 PHY functional blocks i e e e e 74
10.3 Model of the Encoder/Decoderc.cuiiniinnneeennnnnenns 77
10.4 Operation MOdest ittt ittt et e 84
11. Implementation example of MAC i e e 87
11.1 Block diagram of MAC e e 87
11.2 Overview Other FeSOUMCESt i ittt ettt et i et e e e ieeee e o1
11.3Ringoperationalt e e e e 94
12. Architecture Of FDDI i i i i e e e e e e 101
12.1 Constraints of IDaSS e e e e 101
12.2 Physical interfaces e 101
12.3 Architecture of PMD and SMT i e 106
12.4 Partial architecture of PHY i i it 107
12.5 Partial architecture of MAC i e . 109
12.6 Partial architecture of process userdata 109
12.7 Partial architecture of process store (part of process_userdata) 110
12.8 Architecture of write_symbol (partofstore) 113
12.9 Architecture of write frame (partofstore) 114
12.10 Architecture of write_request (partof store) 115
12.11 State machines used forprocessstore 116
12.12 Architecture of blockadd_controls oLl 118
12.13 State machine used for process add controls 118
12.14 Architecture of FCS (part of process userdata) 119
12.15 Further development of process userdata 122
12.16 Note to the design Process ittt i, 122

Vi

13. Conclusions and recommendationsottt it e eanens 123

Appendix A: MAC receiver state machine i il 125
Appendix B: MAC transmitter statemachineo i i 127
Appendix C: Abbreviations for MAC e 129
Appendix D: Files made With PROMOD i it 131
Appendix E: Data types and literals used Wth PROMOD 133
Appendix F: PROMOD SA analysis reportottt iiiinnnnneenennn 135
Appendix G: Graphic representation of control spec check_on violations 209
Appendix H: Files made wWith IDaSS it it it aan 21
Appendix I: IDaSS description of decoderc.. it 213
Appendix J: IDaSS description of encoder i e e 217
Appendix K: IDaSS description of read_control oo, 219
Appendix L: 1DaSS description of add_controls contr., 223
Appendix M: IDaS$S description of store_address contr, 225
Appendix N: IDaSS descriptionofaddr | e 229
Appendix O: IDaSS descriptionof MA contr il 231
Appendix P: IDaSS description of MUX e 233
Appendix Q: IDaSS descriptionofadd 4 or 12 i, 235
Appendix R: IDaSS description of generate controls, 237
Appendix S: IDaSS description of FCS e 239
Appendix T: IDaSS description of fdboperatorsc. i, 241
) (=T 2= 1 £ = 245
INdEX . . e e e e e 249

vii

List of figures

figure 2.1, Relation between the 1ISO/OSI model and FDDI [35] 4
figure 2.2, Formatof adataframe [30] i i 5
figure 2.3, A possible ring configurationfor FDDI i, 7
figure 2.4, FDDI ring with some cablebreaks i, 8
figure 2.5, Dual Attachment Station (DAS)ot 9
figure 2.6, Dual Attachment Concentrator (DAC) i, 10
figure 2.7, Single Attachment Concentrator (SAC) i, 10
figure 2.8, Single Attachment Station (SAS) i 10
figure 2.9, FDDI dual ring of trees ittt ittt et e e 11
figure 2.10, Relation between the ISO/OSI modeland FDDI-!lol ontt. 13
figure 2.11, Structure of the cycle in FDDI-Ilo i 14
figure 3.1, An example implementationof a FCS circuit 21
figure 4.1, Structure of FDDI standards ittt i 28
figure 5.1, Schematic of the services between PMDand MAC cono... 30
figure 5.2, Schematic of the services between PHY and MAC ottt 31
figure 5.3, Schematic of the servicesfromMACtoLLC it 32
figure 5.4, Schematic of the services fromPMDto SMT 34
figure 5.5, Schematic of the services between PHY and SMT 35
figure 5.6, Schematic from the services from MACto SMT o ittt 36
figure 5.7, Thetokenformat i i i it erannss 42
figure 5.8, The frameformatc.. . it 43
figure 5.9, 16- and 48-bit addressformats i i e 44
figure 6.1, General example of a Data Context Diagramo, 47
figure 6.2, Numbering methods i it e 48
figure 6.3, Example of a Control Context Diagramo iiiiiinnnen... 48
figure 6.4, Use of stores and interfaceto CSPECs i, 49
figure 6.5, Architecture model components ittt 49
figure 6.6, Architecture template i e it e e 50
figure 6.7, Architecture module symbol i e e 50
figure 6.8, Information flow vector symbol e, 51
figure 6.9, Information flow channel symbols 51
figure 8.1, Possible implementation of the PHY with the interconnection of the blocks 59
figure 9.1, Relation between the different processes inthe MAC 68
figure 9.2, Basic structure of MAC i i e e e e 69
figure 10.1, Transmitter - receiverentities i e 73
figure 10.2, State machine of the Repeat Filter o.... 76
figure 10.3, Model of the Encoder/Decoderttt iiiinnnnnnnn 78
figure 10.4, Through Mode i i i i i i ettt i it e e e 84
figure 10.5, Loopback Mode i e 84
figure 10.6, Short Loopback Mode i e e 85
figure 10.7, Repeat MOde ittt i et ettt et e, 85
figure 11.1, Functional model of the MAC i i 87
figure 11.2, MAC State Machine Register ittt]|
figure 1.3, Mode Registert it i i e i e e 92
figure 11.4, Control Field i i e e e e 95
figure 12.1, MA_UNITDATA.indication physical interfface 102
figure 12.2, MA UNITDATA.indication timing diagram, 102
figure 12.3, MA UNITDATA_STATUS.indication physical interfface 102
figure 12.4, MA~ _UNITDATA _: _STATUS.indication timing diagram 103
figure 12.5, MA UNITDATAT request and MA_TOKEN.request physical interfface 104
figure 12.6, MA” _UNITDATA.request and MA _ _TOKEN.request timingdiagram 104
figure 12.7, PH Indlcatlon and PH_Invalid physncal interface 105
figure 12.8, PH | _Request physical IMEEIACE -« o v v e et e e e e e 105

List of figures

figure 12.9, Physical interface between store and add controls 106
figure 12.10, Physical interface from storetomonitor oo oL 106
figure 12.11, Designchart of PHY i e i e 107
figure 12.12, Design chartofdecode i i 108
figure 12.13, Designchartofencode it 108
figure 12.14, Design chart of process userdata L 109
figure 12.15, Structure of the memory managerforLLCdata 110
figure 12.16, Design chart of store i i e e 112
figure 1217, Designchart of MA e 113
figure 12.18, Design chartof write symbol il 114
figure 12.19, Design chart of write frame Ll 115
figure 12.20, Design chart of write_request i 115
figure 12.21, Designchartofadd_controls i il 118
figure 12.22, General circuit of a feed back shiftregister, 120
figure 12.23, Design chart of FCS i i i i it e e e 122

List of tables

table 3.1: 4B/5B encodingscheme [9, 3] i i 19
table 5.1: PDU types corresponding withthe control bits [4] 43
table 10.1: Control Register and Pointer Bit assignments, 83
table 10.2: CR, (Force Line States)o 83
table 10.3: CR, (Loopback Mode)ttt 83
table 10.4: Pointer Register (CRPointer)t vttt 83
table 11.1: MAC operational modesc.c.ouiiiiiiiinnniinn e eeranaennnes .92
table 11.2: Address mode detectiont i e e s 93

Xi

1. Introduction

From history, demands for faster and faster communication channels have come up. This is because
of the more intensive use of databases, and distributed processing.

To satisfy these increasing demands, several high speed networks are defined, such as ethernet, and
|EEE 802 networks. There are different configurations of networks like star and ring. Also the speeds are
various, from 1 Mbps to several 10s of Mbps.

Because of the relative poor accessability of the file servers, a high speed network had to be developed.
This resulted in FDDI: The Fiber Distributed Data Interface. It was first developed as a back-end network,
to connect large computers with disk and tape controllers. Later FDDI turned out to be satisfying for
other kinds of use and the FDDI now also is used for backbone and front-end network.

Since the protocol is rather complicated (frame check sequences must be made, frames must be
constructed), and has to be executed real time at high speed (the bit rate on the fiber is 125 Mbps), a
satisfying software implementation Is very hard to achieve. It can though better (and cheaper ?) be
implemented in hardware.

To design this complicated hardware, a structured design method is required, which supports modular
design, so that several people can work at the total project, while they have nothing to do with each
other but on the boundaries.

Note: The design process has initially been carried out by two persons (the writer of this report and Mr.
P.W.A.J.M. Nas). This ended up in two reports (with the same name) that are written for the greater part
in cooperation. This means that a great deal of the chapters in this report can also be found in the other
one. Only the parts describing the step to hardware contain several different items.

2. What is FDDI?

FDDI stands for Fiber Distributed Data Interface, and it defines the physical layer and the lower part of
the data link layer of the ISO/OSI model, and further a station management section which operates in
both parts of the ISO/OSI model. The physical layer is divided into two parts namely the Physical
Medium Dependent layer (PMD) and the Physical Layer Protocol (PHY). The lower part of the Data Link
Layer (DLL) is called Media Access Control (MAC). The Station Management section Is referenced as
SMT. The data speed of FDDI is 100 Mbps, though because of errors [8] and delays, this speed will not
be reached. Further more FDDI uses a timed token ring protocol: The statlon that captures the token
is allowed to transmit during & predefined time and other statlons are not allowed.)

2.1 Possible use of FDDI
FDDI can be used for different purposes [10, 11, 21}:

- Back-end: This Is what FDDI originally was designed for. The request for high speed connections came
up with distributed computing and requests for faster data access. Large computers are
connected with each other, and with disk and tape controllers. Since FDDI has a large
bandwidth and a good fault tolerancy, this kind of use can be easily satisfied, and since there
is only a small number of nodes in back-end applications, much of this bandwidth Is used for
data transport.

- Backbone: Various LANS are connected with each other and to mainframes and file servers, via FDDI.
Different methods of connecting are possible like bridges, routers and gateways. Also long
distances can be spanned, since the maximum distance between nodes is 2 km and the total
ring size can be as long as 100 km. This allows the network to span a large company or
university campus. An example is given In [34], where the FDDI technology is scanned for the
usability for connection of ethernets.

- Front-end: Work stations and PCs are connected to the ring. Big jobs can be transported to
mainframes (if connected), all stations can access common databases or programs on file
servers. Since there Is a large bandwidth available, many nodes can be connected (which
caused trouble with other kinds of LANS, since their performance decreased heavily through the
large number of nodes), and large databases can be accessed. It is expected that this kind of
use of FDDI will be the most common In the future.

2.2 Definitions

T_Neg: Negotiated Token Rotatlon Time
The time that a stations wants to be half of the maximum response time, and is put on claim
frames (varies per station).

TTRT: Target Token Rotation Time
The time that is wanted by some station to be available for synchronous bandwidth in one block
(the same for each station).

T_Opr: Operational Token Rotation Time
The minimum time that is negotiated between all stations to be available for synchronous
transmissions

TRT: Token Rotation Timer
Timer which controls the passed time since the last time the token was captured or passed.
When TRT elapses one time before the token has returned, the token is late, and TRT is
reloaded with TTRT.

2. What is FDDI?

THT: Token Holding Timer
Timer which is loaded with the remainder of TRT when the token is captured, only when the
token is not late (during this time asynchronous transmission is allowed).

2.3 Specifications of FDDI

More detailed information can be found In [12, 27, 30].

The ANSI X3T9 group has defined four documents for FDDI, one for each part of the total definition:
PMD for the physical medium dependent layer, PHY for the physical layer protocol, MAC for the medium
access control and SMT for the station management. These documents are ented on the ISO /0S| model
(Open Systems Interconnection from the International Standardization Organization), see figure 2.1. The
Logical Link Control (LLC) is not part of FDDI.

OSI model
Data link LLC
layer

MAC

2

physical PHY 5
layer

PMD

figure 2.1, Relation between the ISO/0OSI model and FDDI [35]

Further there are two kinds of stations possible: DAS (Dual Attachment Station) and SAS (Single
Attachment Station).

The main connection is made by a dual counter rotating ring. As long as no errors occur, both rings can
be used for data transport, though only DASs can attach to the secondary ring. All DASs are connected
to both rings. Further a concentrator is defined through which SASs can be connected to the ring.

Physical Medium Dependent layer (PMD

For the links multi mode fibers are used, and transmission goes with 1300 nm light. The fiber links may
not exceed the length of 2 km, and the attenuation of the cable may not be more than 2.5 dB/km. In
this way the links can be operated at with relative cheap material (LEDs and receiving diodes), and still
have an acceptable rise time at the fiber exit of maximum 5 ns. The transmitted power has to be at least
-20 dBm and at most -14 dBm. The input sensitivity of the receiver should be more than -31 dBm, and
less than -14 dBm [35].

The Bit Error Rate (BER) of a link at minimum received power should be less than 2.5 107" and less than
102 when the received power is 2 dB above the minimum, resulting in an overall BER of 10°. With the
above specifications these requirements can be satisfied.

2.3 Specifications of FDDI

Also a duplex connector Is defined, for use at the station bulkheads. This connector may have as much
attenuation that the overall attenuation is not more than 11 dB.

Further an optical bypass switch is defined, by which the rings can be maintalned while a station Is
powered off or misbehaving. This bypass may not exceed an attenuation of 2.5 dB.

Physical layer protocol (PHY)

The PHY defines a fult duplex physical connection to the optical hardware. This means that It Is possible
to transmit and receive at the same time.

The PHY defines further the encoding of the data blits. This is an 4B /5B encoding and it Is used for some
error detection. From the 32 possibilities, 8 are not allowed, and 8 are used for extra symbols, while the
other 16 are codes for the incoming data symbols. Further the NRZI scheme Is used (Non-Return-to-
Zero-Invert-on-ones). In this encoding no more than three zeros may follow each other, which is
necessary for clock recovery.

The clocking is done locally. Each station has its own transmission clock, so slight differences in timing
between the different stations will occur. That is why local clock recovery must take place, and an
elasticity buffer has to be used to adjust for the differences.

A smoother is defined for maintaining the inter frame gap on about 12 preamble symbols.

Anocther entity defined for the PHY is that It provides line states to the adjacent stations.

Media Access Controller (MAC)
The MAC controls the data flow, and provides a connection point for devices that want to use the ring.

There are two kinds of traffic defined:

- synchronous traffic: This uses guaranteed bandwidth and response time, the allocation of the
bandwidth is done by the SMT at initialization of the ring.

- asynchronous traffic: This is used for less predictable traffic, and only the bandwidth that is not used
for synchronous traffic can be used for this. It may cause a long response time. For this traffic
a priority level can be used.

The FDDI uses a timed token protocol which means that the token must be back at the same station
In a certain amount of time (a function of the Token Rotation Time TRT).

The data is divided In pieces and transmitted in data frames (see figure 2.2).

PA | SD | FC | DA | SA | INFO | FCS | ED| FS

figure 2.2, Format of a data frame [30]

2. What is FDDI?

The meaning of the different parts is as follows:

- PA: Preamble, different number of Idle symbols

- SD: Starting delimiter, uniquely decodable sequence of a J and a K symbol (each a sequence of five
bits on the ring)

- FC: Frame Control, defines the type of the frame (2 symbols)

- DA: Destination Address, 16 or 48 bits (also addressing a group of stations s possible)

- SA: Source Address, 16 or 48 bits (the frame is stripped from the ring when a station sees that the SA
is his own address) .

- INFO: Contains the data, length ranges from 256 to 9000 symbols

- FCS: Frame Check Sequence, 32 bit Cyclic Redundancy Check (CRC)

- ED: Ending delimiter (1 symbol)

- FS: Frame Status, these are the EAC symbols (Error, Address recognized, data Copled), each has the
value S or R

Other frame types defined by ANSI are:
- Media Access Control (MAC) frames (15):
- 1 beacon frame
- 1 claim frame
- 1 Next Station Addressing (NSA) frame
- 12 reserved frame
- Station Management (SMT) frames (15)
- Logical Link Control (LLC) frames (32):
- 1 synchronous frame
- 8 asynchronous frames
- 28 reserved frames
- Implementer frames (32):
- 8 synchronous frames
- 8 asynchronous frames
- 16 reserved frames
- 32 additional reserved frames

Station Management (SMT)

The station management is a defined part of FDD!, in contrary with many other network definitions. This
has the advantage that all Implementations of FDDI can communicate with each other.

The SMT takes care of fault recovery, connection management, frame handling, synchronous bandwidth
management, statistics gathering and communication with other SMTs via SMT frames. This is all done
to maintain the operability of the ring.

The SMT uses an N-layer protocol which means that it covers more than one layer (layer 1 and 2). This

may not interfere with other-layer protocols, which is achieved through the use of different types of
frames: SMT and LLC frames.

2.4 Operation of FDDI

More information about the operation can be found In [10, 22, 27, 32].

Before the ring can be used, the characteristics must be determined through an initialization. First a
beacon process is performed. This is done to determine the configuration of the ring, and to check the
correct operation of the links between two stations. Each station sends It own beacon (with addressing

2.4 Operation of FDDI

information) repeatedly until another beacon Is received. Then the incoming beacons are echoed
(probably read to obtain a ring configuration) until the beaconing station receives its own beacon.

Then a bidding process is performed. This is to determine the Target Token Rotation Time (TTRT) of the
total ring, and is done via claim frames containing a T_Neg (negotiation time). On basis of this all station
managements can determine how many bandwidth they can use. The lowest T_Neg is used for the
TTRT. This is done because the station bidding that time, needs this low response time. The response
time Is in this protoco! always shorter than 2*TTRT. After the bidding process, the winning station (with
the lowest T_Neg) has to send a token on the ring. When this reaches a station this retransmits the
token and it knows that the ring is operating. The next time the token arrives at the station, it can
capture the token and start transmitting. When the token comes back at the originating station, then the
ring s totally initialized, and operational. All stations have copied the lowest T_Neg in the TTRT register
(Target Token Rotation Time).

A station is only allowed to transmit, when it has captured the token. When the token arrives early
(TRT <TTRT), both synchronous and asynchronous frames may be transmitted, else (TRT>TTRT) only
synchronous frames may be transmitted. Each time the token arrives, THT (Token Holding Timer) is
determined by TTRT-TRT when the token Is not late (earlier than 1*TTRT). During THT the asynchronous
frames may be transmitted.

If synchronous frames are available for transmission, then they have priority above asynchronous frames,
and whether or not there are asynchronous frames to be transmitted while the token Is early,
synchronous frames will then be transmitted. Within the asynchronous frames are 8 priority levels
available.

When asynchronous frames have been transmitted and the THT has elapsed then there is still bandwidth
avallable for synchronous transmission. This can be done during a predetermined (at initialization) period
of time. This time is a part of the TTRT, and the sum of the synchronous transmission bandwidth of all
stations is TTRT. This protocol assures that the maximum response time will be 2*TTRT.

SAS] [SAS] [sAS|[sAS

unillunilBss)
AN
1 > f !!I' l||_H_
4 concentrator

1
[1 <

/1
J

-

I
L}

pe |l &
2|[F 3 £
(o]

Q ®

figure 2.3, A possible ring configuration for FDDI

2. What is FDDI?

In figure 2.3 an FDDI ring Is drawn. An FDDI ring consists of two counter rotating rings, which can be
connected to DASs. Via a concentrator, the cheaper SASs can be connected (there are also single
attachment concentrators, but these are not drawn in figure 2.3). Connections to another network can
be made via a bridge.

Data can be transmitted over both rings, but the secondary ring is meant for backup, and error
tolerancy. Each ring can have 100 Mbps, so when no errors occur, the total bit rate can be 200 Mbps.

2.5 Error recovery in FDDI
More information can be found in [9, 10, 12, 16, 23].

When 2*TTRT has elapsed, the station determines it as an error, and starts transmitting claim-token
frames to try to regain the token on the ring. When no response comes to this process, the station starts
transmitting beacon frames containing his address information. When a station receives a beacon frame,
he starts transmitting that frame, in stead of his own. When one station does not receive anything, he
knows that his neighbour is bad functioning or not connected anymore (due to cable break), and starts
reconfiguration.

SAS| [SAS| |SAS|[SAS
L rm
< \[]
rH G 5

4+ concentrator

] - I

I |

a

] \\\516

figure 2.4, FDDI ring with some cable breaks

DAS
abpuq

In case of a cable break, the ring has to be reconfigured (see figure 2.4). When a cable in the dual ring
breaks, then the secondary ring is put in action (like is shown for the DAS station). When a cable breaks
in the connection to a SAS, then the concentrator bypasses this station. When a station shows bad
behaviour, then this error can be modelled as a cable break, but if it is a DAS station, then this station
can bypass Itself, and go of the ring in this way, still leaving a dual ring to tolerate errors in the cables
somewhere else. With this bypassing, an internal loopback is made from transmitter to receiver, so the
station can check itself on existing errors. If this bypassing Is not possible (when the station does not
know that it is erroneous), the error will be treated like a cable break.

2.6 Concentrators in FDDI

2.6 Concentrators in FDDI

For more information see [17,18].

A concentrator Is a device that provides connection points for other devices in the form of a physical
tree topology. The concentrator maps the logical token ring into a hierarchical physical tree. It is an
active device, in its simplest form it Is a multi-port physical layer repeater. It is called active for the
concentrator decodes, re-times and sometimes modifies the repeated data stream.

The concentrator, CON, Is an opto-electronic device that requires a power source. It implements the
PHY as found in all FDDI stations, including data re-timing, elasticity buffers and error detection.
Additionally the CON Includes most of the SMT protocols for auto-initializatlon, auto-configuration and
fault Isolation within an FDDI LAN.

The concentrator serves three major goals:

- allows more flexible application of FDDI to the structured cable plants.

- an important tool to maintaln a large LAN.

- the concentrator isolates the FDDI ring from station failures and end user behaviour, it improves the
reliability.

There are three basic behaviours within FDDI:

- The Dual Attachment behaviour forms the physical loop of the Dual Ring. The basic Dual Attachment
Station (DAS) requires two attachment points, designated as connector type A en B. A DAS has two
PMDs, see figure 2.5, one connected to the primary input (Pl) and secondary output (SO), and another
connected to the PO and Sli. A DAS has at least one MAC and one SMT entity. There is an optional MAC
that allows the DAS to support the 200 Mb/s rate. When a network is working properly the A (say PO,SI)
of one station is connected with the B (say SO,PI) of its neighbour. The result is a physical loop of
Physical Connections that may provide two separate, counter rotating token paths.

figure 2.5, Dual Attachment Station (DAS)

- The CON behaviour forms a tree by concentrating the inputs of “connector type Ms" from multiple
attachments. Stations connected to the concentrator forms a single token path for this station. The basic
concentrator is a stand alone device and cannot be connected to other concentrators. There are two
types of concentrators, the Dual Attachment (DAC), see figure 2.6, and the Single Attachment (SAC),
see figure 2.7. The DAC has two PMDs and PHYs to attach to the dual ring and multiple PMD and PHY
for interconnecting other stations. It has at least one MAC and one SMT entity. There is an optional MAC
to support two active rings. In this case, a DAC can selectively attach stations to either ring. A SAC has

2. What is FDDI?

one PMD, one PHY one MAC and one SMT entity and multiple PMD and PHY for Interconnecting other
stations.

PO A sl so[B|ei
Pl [5d
:MAG

[MAC SMT

[PHY | [PHY] [PHY] [PHY]
r 3 o F 3 .
M - M w M L 4 M -

figure 2.6, Dual Attachment Concentrator (DAC)

S

figure 2.7, Single Attachment Concentrator (SAC)

- The Single Attach behaviour, this is the simplest behaviour. The topology impact of the Single
Attachment Station (SAS), see figure 2.8, is summed up by "Presence” and “Absence”. A SAS has one
PMD, one PHY, one MAC and one SMT entity. The SAS occupies the leaf positions in the tree. It is
designated by the connector type S and is intended to provide attachment to a single token ring. SAS
attaches to the dual ring through concentrators (either SAC or DAC).

5]
- PHY

—MAC

figure 2.8, Single Attachment Station (SAS)

=0

10

2.6 Concentrators in FDDI

A branching tree Is formed using variations of the basic concentrator, that includes A,B or S type
connectors. Connections of type S and M are primary used in pairs such that a Physlcal Connection
would have one endpoint of each type.

Dual Rings comprise DASs configured in a physical loop, Trees comprise Concentrators and thelr
attachments. The combination of the Dual Rings and the Trees result from the combination of the
Concentrator with the Dual Attachment behaviour. The Dual Attachment Concentrator (DAC) Includes
an A and B connector and may be a member of the dual ring. The DAC may also extend the Tree as
shown in figure 2.9. FDDI also specifies a Single Attachment Concentrator (SAC) which Includes an S
connector to allow its connection to other CONs In the Tree.

SAs| [sAs| [sAs|[sAS
m m
AL A\

I sac || [sas

SAS| [sAS|[sAS — =+
] | 3 11
[ualilas] Tree
Tree
Lo Lod 1] o | DAS
1 bac L DAC }
1, I ! ! | 1 H 2
]
B
DAS

tigure 2.9, FDDI dual ring of trees

The actual usage of a DAS and SAS is not limited to the basic behaviour just described. For Instance:
a DAS may be placed in a Tree and act as a SAS. Otherwise a SAS may be placed directly In a Dual
Ring. But note that they are not interchangeable. For instance placing a SAS in the Dual Ring prevents
formation of a physical loop, a basic behaviour of the Dual Ring.

Link types and topologies

There are three types of ports on a physical connection defined in FDDI: Peer, master and slave.
Peer-to-peer connections are used to form a dual counter-rotating ring between DAS and DAC.
Master-slave connections are used to connect DAC and SAC (both master) to SAS (slave). In an FDDI
network DAS, SAS, DAC and SAC can be Interconnected in peer-to-peer and master-slave modes to
form a dual ring of trees. Peer-to-peer connections (DAS and DAC) form a counter-rotating ring at the
top of the hierarchy. Master-slave connections (DAC, SAC and SAS) form a tree, as seen in figure 2.9.

The functional model of a concentrator

The concentrator and the DAS employ fundamentally different methods of controlling the network
topology. One difference is the method of bypassing a connection and an adjacent station. The DAS
involves "wrapping" and optionally the use of “optical bypass relays”. When one cable is used to connect
two DASs, they form a single token ring, this is a simple connectivity. In this situation, just one logical

1

2. What is FDDI?

ring existing, the Dual Ring is said to be “wrapped". If two logical rings exist, the Dual Ring is said to be
“unwrapped".

Every DAS contains two PHY entities (PEs). Imagine a ring with for instance four DASs. If a cable were
removed, the DASs adjacent to the missing cable internally reconfigure to exclude the related PEs and
form a single ring. Internal path switches are used. A DAS also encloses an optical bypass relay, this
to allow a station to bypass itself (and maintain the physical loop) in the case of a power failure.

Optical bypass techniques provide that a limited number of stations may be bypassed. This number
depends on several issues like distance between adjacent stations and the number of stations. These
techniques are useful in small networks (a computer room for instance).

The method of controlling topology in a CON is fundamentaily different. The "bypass facilities” are moved

from the individual stations into the CON. And the internal path switches are replaced by the CONs path

switch. In this situation the optical bypass relays do not enhance the operation of the network and thus

are not used. While the CON must be powered up, any number of the stations may be disconnected
- without affecting the remainder. The latter can be very useful in some situations.

Conceptually the CON is composed of a PHY element taken from each of the DASs. So the DASs
become SASs. The CON is the result of rearranging the components such that same number of optical
transceivers and cables are required in either topology to support the same four users.

Functionally the CON is composed of many PHY elements and a path switch. The CON reconfigures
the token path as a service for attachments. The main advantage of the CON is that the control of the
topology is removed from the station and is centrally located in the CON. As a result the CON fits easlly
in the “star wiring" scheme.

With a CON the function of a station can be separated into two basic categories: "End Stations” for end-
users of the LAN and "Network Devices" for providers of LAN services. The CON is a network device
and the SAS is the End Station. The CON becomes the major interest of the network manager
(administrator) and the SAS eliminates the role of the end users in determining the network topology,
this Is an important simplification.

EDDI installation with respect to reliabitity

The CON allows more flexible application of FDDI to cable plants that are designed to meet emerging
standards for building wiring such as being developed by EIA TR 48.1 [19]. The CON eliminates the
need to restrict cable lengths or cable plant insertion loss for optical bypass operation.

The CON decouples the network managers from the daily activities of end users and repair personnel.
The CON helps to organize the wiring and provides ring-map information that closely matches the
structure of the building. The usage of a CON in the equipment room increases the resolution of the fault
isolation protocols to the granularity of the building equipment room structure. This reduces the Mean
Time To Repair.

The CON makes it easier to implement a reliable FDD! Ring. The reliability will always improve if CONs
are used to attach End Stations. The reliability of the Dual Ring may be degraded by dual attached end
stations, unless special care Is taken in the design of those stations.

For some specific configurations equations for the total failure rate [19] can be derived. Some of the
issues that must be considered are difficult to control in a multi-vendor environment, especially for user
End Stations. In general there is not a standard formula to determine the total failure rate.

12

2.7 FDDI-II

2.7 FDDI-II

More information can be found in [15, 20, 26, 32].

Even when the standard for FDDI was not fully completed, ANSI started with the development of another
FDDI standard, to satisfy the requests for voice communication. This Is called the FDDI-Il standard, and
is described In the HRC (Hybrid Ring Control) document of ANSI.

The standard for FDDI-Il is also ented on the 1ISO/OSI model as shown in figure 2.10. The I-MAC

(Isochronous MAC) Is connected to a circuit switch multiplexer, and the MAC Is connected to the Loglcal
Link Control (LLC) which is not a part of FDDI.

OSI model

B | uc_|

I-MACs P-MAC

L HRC (for FDDI-II only) [

INS

physical L PHY |

layer
I |

figure 2.10, Relation between the 1SO/0SI model and FDDI-!I

The PMD is for FDDI-ll the same as for FDDI-I. PHY has one extra symbol to decode and has better
smoothing requirements. The MAC part is extended with an I-MAC (for isochronous data) and the HRC.
The original MAC Is now called P-MAC (for packet data).

The station management is extended with some functions special for FDDI-II:
- Hybrid mode with Initialization and recovery procedures.

- Management of HRC objects: HMUX, IMAC.

- Resource allocation, for requesting and assigning bandwidth.

FDDI-ll is upward compatible with FDDI-l, so all stations supporting FDDI-, can be connected to an
FDDI- ring. However, the total ring can then only operate in the FDDI-I mode.

FDDI-Il supports for a network of up to 500 stations, over geographical distances of up to 100 km. The
hybrid (FDDI-Il) mode of operation, supports both packet and circuit switching.

There are two kinds of stations: Monitor stations and not-monitor stations. Only a monitor station can
become a Cycle Master (CM). This is the station that initiates the hybrid mode of operation, and
maintains it.

For voice transmission, a 64 kbps channel is enough, which means that every 125 ps one byte must
be transmitted. Therefore the ring is divided In sections (cycles) returning each 125 ps. This Is a kind
of formatting of the ring, and Is done by the cycle master. Only one cycle master is allowed on the ring.
This cycle master has a latency buffer to make sure that a cycle starts always at a whole number of
125 ps.

13

2. What Is FDDI?

For the data In the cycle Is 98.304 Mbps available. This is divided over 96 Cyclic Groups (CGs). Each
CG Is divided in 16 timeslots, and each timeslot consists of 8 bits. This fully uses this bandwidth: 8 * 16
* 96 * 8000 = 98.304 Mbps

The bytes of one timeslot combined make a Wide Band Channel (WBC) of 6.144 Mbps. When several
bytes of one timeslot are combined, it is possible to make sub-WBC connections. Through bit
interleaving it Is even possible to make sub 64 kbps channels. It is also possible to obtain Iarger
bandwidths than what the WBC supplies, through the combination of several WBCs.

The structure of the cycle is shown in figure 2.11.

PA | CH DPGO|CGO|..|CG7| DPG1|..| DPG11| CG88|..| CG95

SD|C1/ C2 |CS|PO|..|P15|IMC CHO| ..|CH15

b0 | ..| b7 b0 | ..| b7

figure 2.11, Structure of the cycle in FDDI-II

Beside the CGs, there are three more parts in the cycle:

- Preamble (PA) to adjust the clocking differences between the different stations. Also in FDDI-II, each
station has clock recovery from the incoming bitstream, and an own transmit clock.

- Cycle Header (CH), that carries the programming template. This defines the use (circuit or packet data)
of the timeslots in each CG. Timeslot | in every CG has the same function, and when of all Cgs
one timeslot is combined, a Wide Band Channel is made of 6.144 Mbps. The CH consists of:
- Starting Delimiter (SD), built up from two symbols (J and K) which are uniquely determinable,

anywhere in a cycle.

- Two control symbols C1 and C2. Possible values are S or R. C1 is for synchronization control.
If C1=S then synchronization is established, and a SD appearing in the middle of a
cycle is seen as an error. When C1=R the cycle may be interrupted. When a
synchronization error occurs a slave station puts this control to R. A slave station may
never put this control to S.

C2 Is for sequence establishment. If the cycle sequence Is established the cycle master
puts this control to S, else to R. If a slave station determines an error, then he puts this
control to R. A slave station may never put this control to S.

- Cycle Sequence (CS). This is a modulo 192 number ranging from 64 to 255 to indicate
whether the cycles are still in order. Lower numbers than 64 indicate a stations monitor
rank (then C1=C2=R must be true). The value 0 indicates a monitor with rank NULL.
This cannot win a monitor contention process, but still can initiate it.

- Sixteen place programming template. These Indicate wether a timeslot is allocated to circuit
(S) or packet (R) data. If a place is not occuplied with S or R then that place is filled with
T.

14

2.7 FDDI-II

- Isochronous Maintenance Channel (IMC). This is dedicated for maintenance purposes, and
recommended use is a voice channel (there Is 64 kbps avallable).

- Dedicated Packet data Group (DPG), that assures that there is some packet switching available, even
when all timeslots are allocated for circuit data. This DPG can be used to request for circuit
bandwidth, releasing bandwidth etc. This group is spread over the cycle. DPG | comes
immediate before CG 8*i (0si<11).

These three groups consume the last remaining 1.696 Mbps bandwidth that was not defined yet: -

PA: 20b
CH: SD: 8b
Cl: 4b

c2: 4b

CS: 8b

PO to P15: 16*4b = 64Db
IMC: 8b
DPG: 12*8 = 96b
212b

8000 * 212 = 1.696 Mbps

FDDI-l also provides for DASs and SASs, and station bypassing (optionally, only for DASs). The timing
is as in FDDI-I point to point, with clock recovery for the receiver, and an own transmit clock in each
station.

Packet data can be transmitted over all WBCs that are not allocated for circuit data. That means that
all WBCs, that are not allocated for isochronous (circuit switched) data, are linked together for packet
data (else the response time for packet data would be much to low).

For the circuit switching at least one Channel Allocator (CA) is needed in the system. This processes
the requests for isochronous bandwidth, so it tells stations requesting for a circuit which timeslot and
CG they can use (for lower bandwidths also which bit of the timeslot). The CM can act as a channel
allocator.

Packet data Is transmitted in frames (just like in FDDI-I). The isochronous data is transmitted through
byte interleaving (and bit interleaving for sub 64 kbps channels).

2.8 Operation of FDDI-II

Most of the information contained in this chapter comes from [20]. Further it is mentioned in [26] and
[32].

Ring initialization

The ring initialization starts as with FDDI-l. When the ring is initialized for FDDI-I, this mode is used for
a bidding process, to select a Cycle Master (CM). All monitor stations have a rank. Each capable station
has an address, and the highest address (detected with the bidding) will be the cycle master (possibly
stand-by cycle masters are selected for fast recovery when a cycle master fails).

15

2. What is FDDI?

The station management defines the maximum isochronous bandwidth, and tells that to the CM. This
is determined by calculating the minimum packet bandwidth needed to satisfy the demands for response
time (TTRT) for all synchronous applications of the system.

To switch from FDDI- to hybrid (FDDI-I) mode, the CM must capture the token (then all transmissions
of other stations have passed). The CM then starts transmitting cycles, with in the cycle header only
allocations for packet switched data channels. The token is released in the first cycle, and is placed in
the DPG. Each station recognizes the cycle header, and switches to hybrid mode. When the first valid
cycle has returned to the CM, the ring is fully operating in hybrid mode.

Packet switching

Packet switching goes the same as in FDDI-| mode. The TTRT is as short as possible (this was already
determined during FDDI-l setup). For the packet switching all available WBCs are combined to get the
highest throughput for the packet switching. The symbols which were transmitted behind one another,
now have to be interleaved because of the cycle assignment.

Circuit switching

A CA is given the responsibility or more circuit WBCs. When the CM receives a WBC request from a CA,
he must capture the token (else packets can be lost since a packet channel is converted Into a circuit
channel). After that the new programming template is send to all stations. Only when the CM receives
the template back correctly, he releases the token again. Then the identity of the WBC is send to the
CA, and the CA informs all stations on the ring about the avaitability of the new bandwidth.

When a station needs a circuit, it requests (via an SMT protocol) bandwidth from a CA (possibly it must
check several CAs). The CA confirms the request and gives the identity of the channel to the requesting
station. The originating station calls the terminating station via the packet data channel.

Atfter that full duplex communication can be performed, with each station replacing the data received
by its own data.

When the communication is done, the channel is released by the originating station, via an SMT
protocol to the CA.

2.9 Error recovery in FDDI-II

If an error occurs while in hybrid mode, the ring will try to recover that error in hybrid mode. If that is
not possible, the ring will switch back to basic mode and start the basic recovery procedure. When that
Is achleved, an attempt can be made to switch back in hybrid mode. To detect errors, the same coding
mechanisms are used as in basic mode.

2.10 Extension to the PMD

At first ANSI had defined a PMD which allowed for a distance between stations of maximum 2 km. This
was for some purposes too short, and an extra definition for the PMD layer was developed.

This was called the SMF-PMD (Single Mode Fiber Physical Media Dependent), and may replace the
original PMD. This uses laser diodes and single mode fiber for the transmission of the signal.

16

2.10 Extensions to the PMD

The SMF-PMD allows for a 60 km distance between two stations in stead of the previous 2 km, but it
demands for an adjustment at the transmitter and the receiver side, since the received power will be
much higher than with muiti mode fiber. This will come out a little more expensive than with the normal
PMD.

The communication with normal PMD stations can be maintained with the new standard by inserting an
attenuator between the SMF-PMD transmitter, and the normal PMD receiver, while communication the
other way will be normally possible. '

17

3. Error detection

In a transmission system always occur errors, so efror recovery is necessary. This can only be done
when the error can be detected. For this purpose several mechanisms are employed.

One mechanism is the 4B/5B encoding. The used encoding Is stated in table 3.1.

table 3.1: 4B/5B encoding scheme [9, 3]

Code-blis symbol semantics

Data symbols

1110 0 0000
01001 1 0001
10100 2 0010
10101 3 0011
01010 4 0100
0101 5 o101
01110 8 o110
[ARRA] 7 o111
10010 8 1000
10011] 1001
10110 A 1010
10111 8 1011
11010 [¢] 1100
11011 D 1101
11100 E 1110
11101 F 11
Line-state symbols

00000 Q Quiet
ARRRR 1 Idle
00100 H Hatt

Delimiters and controt

11000 J first of sequentlal SD pair

10001 K second of sequentlal SD pair

01101 T termination of data stream

00111 R Reset

11001 S Set

Invalld codes

00001 VH Patiems marked with V are invalid
00010 VH Patterns marked with VH are imvalid, but
00011 v are treated like Halt when they are recelved
00101 \'

00110 v

01000 VH

01100 \'

10000 VH

This encoding provides extra symbols, and is used to check the received data on transmission errors.
Some of the symbols are not allowed (V or VH) and others are used for line states and special tasks so
they cannot show up in a normal data block, unless an exceptional situation occurs.

3.1 Link Error Monitor (LEM)

To control the link status while that link is on-line, a Link Error Monitor (LEM) can be used [23]. This
monitors the error rate of the connection between two stations and controls whether or not it exceeds
a certain threshold level. If it does, the LEM will inform the SMT that can reconfigure the ring.

When the ring is reconfigured, the MAC can check the behaviour of the link with a Link Confidence Test
(LCT). This tests the link between two stations while there is no other traffic on that link. This is possible

19

3. Error detection

because with the reconfiguration, the excluded link (dual directed), is looped back. For this LCT at least
one MAC is necessary.

The LEM works with several fault domains [23]:

- Optical link (PMD-PMD)

- Optical link and transmit and receive PHY function (PHY/PMD-PMD/PHY)

- Optical link, PHY, and transmitting MAC function (MAC/PHY/PMD-PMD/PHY)
- Internal noise on either side of the link.

Errors appearing from the optical link come from attenuation and dispersion, duty cycle distortion, jitter
(data dependent, and random), and inter channel crosstalk. Further errors can occur due to internal
station (electrical) noise.

The only information the LEM needs Is that delivered by the PHY to the SMT (this costs nothing extra).
When the LEM detects a degraded link, It is presented to the user who can take action. For this purpose,
an administration must be kept of the history of the link and its behaviour. When the link is isolated, it
can be repaired, and after that it should be tested by a LCT. When everything is working correctly, the
link can be put back in action.

The LEM must be able to execute several functions:

- Detection of changes in the Link Error Rate (LER) link by link.

- Administration of the total occurrence of errors since the link was set up.

- Setting the link error threshold by the administration at which an alarm will be given.

- Detection and removal of links that show bad behaviour.

- Setting the link error threshold by the administration at which the link will be automatically removed.
- Possibility to reintroduction of a link, after a successful LCT.

- Detection of topology oscillations (link removal and insertions).

3.2 Frame Check Sequence (FCS)

The FCS field is used to detect erroneous data bits within the frame as well as erroneous addition or
deletion of bits to the frame. It is accounted for each frame, and put behind the data. The fields covered
by this FCS are FC, DA, SA, INFO and FCS. This allows the receiver to detect many errors, that could
not be detected with the 4B/5B encoding (data to data transfer). This FCS is accounted with a
polynomial, that Is also used in IEEE 802 LANs and in Autodin Il networks.

Definitions and a short explanation on the use of the generated polynomial code.

Fix) = a. X" +aX?+axX°+.. +ax+a,
F(x) represents k bits of the frame to be covered by the FCS. The first bit of the frame is
represented by a, ,x*' (a,, * 0).

LX) =x + X +x®+ ..+ X+ x +1
L(x) represents a 31 degree polynomial with all coefficients equal to one.

G(X) = XE+X+ 32+ 32 +xP+ X2+ X" + X0+ 2+ X+ X+ + X +1
G(x) represents the actual generator polynomial

C(x) = X +xP+ 3+ xP + 324+ X B+ x P+ X4+ X2+ X T+ X3+ 2+ 3+ + 37+ X + 1
C(x) represents a unique polynomial remainder produced by the receiver upon reception of an
error-free sequence, i.e. C(x) = x**L(x)/G(x)

R(x) The remainder polynomial that is of degree less than 32

P(x) The remainder polynomial on the receive checking side that is of degree less than 32

Q(x) The greatest multiple of G(x) in X***F(x) +x"*L(x)

20

3.2 Frame Check Sequence (FCS)

Q'(x) = x**Q(x)
M(x) The sequence that Is transmitted
M’(x) The sequence that is received

ECS generation

FCS = L(x) + R(x) i.e. the one’s complement of R(x)
P*F() + x*L(%)]/G(0) = Q(X) + R(X)/G(X)

then M(x) = x***F(x) + FCS

ECS checking

The process of checking involves dividing the received sequence M'(x) by G(x) and testing the
remainder. Because possible leading 2eros does not yield a unique remainder, direct division is not
possible. Thus a term L(x) is prepended to M"(x) before it is divided.
X2*[M'(x) + X"*L(x)]/G(x) = Q'(X) + P(x)/G(x)
In the absence of errors, the unique remainder is the remainder of the division

P()/G(x) = x**L(x)/G(x) = C(x)
So if errors occur P(x)/G(x) » C(x)

An example implementation of the above FCS circuit is shown In figure 3.1.

figure 3.1, An example implementation of a FCS circulit

21

4. FDDI developments

Unlike most new technologles FDDI seems to fulfil an immediate need of many users. Mostly a lag
between the introduction and the acceptance of a new technology occurs because most users do not
have an immedilate need for it. New technologies of any kind are automatically suspected until they have
proven their usefulness in the real world. One may discuss wether or not FDDI fulfils an immediate need
of (how?) many users. But FDDI has garnered an enormous amount of acceptance at the user level (the
most important level), and ANS! has not even finalized the complete standard yet.

One can distinguish three different phases of the FDDI usage territory, see chapter 2.1:
- Back-end: high speed point-to-point network, mainframes, file servers

- Backbone: networks, LANs

- Front-end: desktop, workstations

As the different FDDI usages grow, alternative physical media approaches that facilitate connection of
FDDI to the desktop are getting careful consideration. Because lowering the cost of installing FDDI and
providing alternate cable plan compatibility is the key to widespread applications. Users will benefit as
more and more of the network power offered by FDDI becomes available to the current applications and
a host of new applications.

Built-in management protocols and services designed into FDDI’s station management (SMT) portion
provide the highest level of network manageability of any LAN developed as a standard. With the ability
to remotely configure FDDI stations, setting their operating parameters and policies regardless of
equipment vendor, FDDI advances true multivendor network management. Users are ensured that all
vendors must implement interoperable management for FDDI, as specified In the standard. This
Increases the users confidence that muiti vendor equipment may be rellably Integrated into thelr
heterogenous networks, so that investments keep their value.

These two issues, lowering the costs and the growth in the confidence that the Investments keep their
value, predict a great future for a wide spread FDDI.

Many users first installing FDDI networks as backbones, interconnecting their lower-speed LAN
subnetworks with bridges and routers to form global area networks. Most common first-generation
networks, whether Ethernet or Token Ring, are increasingly star wired with either twisted pair, coax or
fiber-optic cables to concentrators installed in wiring closets for erasure of management and control.
Coupling these concentrated networks with FDDI lets users take some advantage of FDDI’s speed and
potential while preserving the investment they already made in their first-generation network.

More and more of today’s local computer networks experience performance bottlenecks that occur
much closer to the user, in many cases the problem is right at the desktop or server. Bringing FDDI as
close as possible to these systems can provide network performance levels sufficiently higher than that
achleved when FDDI is used only as a backbone. The growth of this problem is one of the factors that
determine the success of FDDI. Only if one does really need the FDDI potentials one will consider to
invest in FDDI.

As with all new technologies, cost remains higher than first-generation networks, but the increased
volume, as manufacturers begin shipping more and more units, is aiready reducing costs and is sure
to continue bringing them down.

Despite its inherent reliability, FDDI has some shortcomings that may hamper users and its deployment.

- FDDF's speed poses diagnostic and management challenges. With an FDDI ring running close to its
100 Mbps throughput, FDDI network analyzers have to be able to capture far more packets than
with Ethernet or Token Ring, and they have to be able to do it much faster. Only few analyzers
are able to capture all data in real time at such speeds.

23

4. FDDI developments

- FDD! may be too robust for its own good. An FDDI network can recover from a noisy line condition
or a lost token with only a few microseconds of downtime. Users may not even notice!
Unfortunately if no one notices the ring going temporarily down, then no one knows a problem
even existed until it is too late. When the users notice a problem on the FDD], it is usually
catastrophic.

- If any node on the FDDI ring goes bad, its downstream neighbour will automatically remove it from the
network without notification, regardless of its function. Users accessing a critical host across an
FDDI ring could suddenly find themselves with no link to the mainframe, if the mainframe-to-
FDDI connection begins to have problems.

4.1 Managing an FDDI network

FDDI applications are far more complex than with other LAN topologies. Since it was initially deployed
as a back-end technology. Managing an FDDI network not only means managing the backbone, but also
keeping an eye on the other subnetworks. however, SMT, the network management portion of FDDI, is
not compatible with any other industry-standard network management protocols, such as the Simple
Network Management Protocol (SNMP) or OSI's Common Management Information Protocol (CMIP).
Network managers need to be able to access both SMT and SNMP data to simultaneously manage their
FDDI backbone and their Ethernet and Token Ring subnetworks, ideally all from a single screen.

SMT seems to pose as many problems as it solves, if only because the controversy surrounding its
implementation is delaying the standard’s finalization. The central issue is a portion of the SMT document
called Parameter Management Frame (PMF), that Is currently optional, but that many FDDI vendors
would like to see made mandatory (except the ones that already have a streamlined implementation).
While PMF adds performance tuning capabilities and is necessary to access large chunks of the FDDI
Management Information Base (MIB).

SMT is not compatible with SNMP, the most popular network management protocol at this moment.
While SMT provides detailed information about what is going on the FDDI ring, it does not cross network
boundaries, like bridges or routers, it can not provide information about subnets. While SNMP aliows
users to manage an entire inter-network, it does not provide detailed management information for each
FDDI node. With an SMT-to-SNMP proxy agent in the FDDI concentrator, all the stations on the FDDI
ring could communicate their management information via SNMP to the network management console.

Dual-homing

One special network architecture is the dual homing architecture [37]. This architecture dictates that only
concentrators should be connected to the dual ring and that all other devices should be attached to the
concentrators. Essential devices like bridges or other cascade concentrators that need redundant links
are connected to two separate concentrators.

Dual homing is preferable mainly from a management standpoint. Having to manage a single type of
device, rather than several devices, streamlines network monitoring which Is an important simplification
with large networks. One of the primary advantages of having only concentrators connected directly to
the dual ring is that it allows managers to define local rings. Network managers can section off the
nodes attached to a single concentrator into a local ring that does not communicate with the primary
ring.

With this local ring, managers can then repair faulty nodes without bringing the entire network down.
This local ring also offer some performance benefits (large file transfers on one local ring instead of the

24

4.1 Managing an FDDI network

primary ring). And It also could be used to Isolate a group of users with stringent security requirements
from the rest of the LAN.

4.2 Media connection developments

FDDI is, by nature, fiber optic. Although lower-speed networks llke Ethernet can be supported with
820 nm, the high data rates supported by FDDI require 1300 nm optics. Using this 1300 nm optlcs
increases operating distance at FDDI speeds by minimizing signal dispersion caused by the fiber-optic
cable's inherent group delay characteristics (which Is nearly constant at 1300 nm while 820 nm Is
excessively variable). The use of multimode fiber (62.5/125 micron) and LEDs limits operating distance
compared by singlemode fiber and lasers, but makes FDDI less expensive.

There are two major developments on this territory, one is the extending (altering) of the operating
distance and the other is the decreasing of the connection costs.

Extending the operating distance

The 2 km operating distance specified by the original multimode PMD satisfies the connection
requirements of many FDDI stations but is not sufficient for widely distributed systems. Another FDDI
PMD standard (SMF-PMD), see chapter 2.10 and figure 4.1, extends FDDI's geographic reach, specifying
how two FDDI stations can be separated by 60 km of cable without the use of an amplifier (or repeater).
This standard works with lasers and singlemode fiber (0.5 micron) to minimize dispersion and increase
operating distance.

The multimode and singlemode transceiver operate using the same 1300 nm wavelength light and thus
can be mixed in the same network since they maintain optical compatibility.

Prior to the avallability of FDDI concentrators the only FDDI connection alternative was to attach systems
directly to the dual-ring trunk. Now that concentrators are available and nearly all users want to star thelr
networks, alternative PMD specifications supporting reduced-distance horizontal connectlons between
the wiring closet and end-stations are being investigated.

While the two existing PMD specifications are applicable for concentrator ports, surveys have Indicated
that more than 95% of the end-stations star wired to concentrators are less than 100 meters from the
wiring closet. Because this is only 5% of the 2 km distance specified by the origlnal multimode PMD,
and because the media of choice for star-wired LAN installations Is either twisted pair (coax) or fiber,
opportunities exist for developing other FDDI PMDs.

Coaxial cable was eliminated as a potential media because it did not provide a good fit with the current
standard. This Is primarily because the connection management relles on a series of bit level signalling
handshakes. This was specified with the assumption of the existence of a full duplex link. Coaxial cable
is a simplex media and it would be a costly solution to double up the cabling requirement. If a single
cable was to be used the electronics required to implement duplex signalling would also be to costly.

Two recently formed X3T9.5 working groups will devote their efforts to developing alternative PMD
specifications for horizontal distribution of FDDI LANs. Because a great number of users’ bulldings and
campuses is already wired with twisted-pair cabling, one group Is exploring running FDDI over shielded
or unshielded twisted-pair cabling for horizontal connections. The other group is determining how the
cost of multimode fiber-optic PMD components (the optical transmitters and receivers, cables and
connectors) can be reduced for horizontal connections.

25

4. FDDI developments

Low-cost fiber PMD

The low-cost fiber group Is working to develop a low-cost fiber PMD (LCF-PMD) with relaxed
specifications for the optical transceivers and connectors to lower their manufacturing costs while
maintaining optical compatibility. Maintaining optical compatibility means that the 1300 nm will continue
to be used, even though power, receiver sensitivity and duplex connector specifications may change.
This approach ensures flexibility, allowing systems with various PMDs to be connected, and the lowest
total system cost. ‘

Since the horizontal cabling from a wirlng closet to most users’ desks is substantlally less than FDDI's
original 2 km specifications, shortening the distance requirement should make it easier for manufacturers
to reduce the costs of optical components. The FDDI PMD standard does not specify operating distance
directly in meters of optical cable. Rather a loss budget describing the signal energy in decibels available
between the optical transmitter output and the optical receiver input Is specified. This loss budget can
partially be consumed by all elements intervening in the cable plant connection between two active FDDI
station interfaces.

Currently the multimode PMD specifies a link budget of 11 dB while [ink budgets of about 7 dB are being
considered for the LCF-PMD, thls should result in reliable operation at distances of at least 500 meters
(2 km with the 11 dB link budget).

Twisted-pair PMD

The twisted-pair group is still unclear about which twisted-palr cable will be used. Unfortunately, nearly
all installed twisted-palr cable plants are unshielded and there are many versions with many different
specifications. Besldes, operating unshielded twisted-pair at 125 MHz is substantlally more difficuit and
therefore more costly than operating on shielded twisted-pair. So the unshielded twisted-pair (UTP)
alternative Is not as obvious as it may seem, looking at the already installed cable length.

Although some are advocating twisted pair as a lower cost alternative to fiber, this cost advantage is
most likely achieved only on specific types of shielded twisted pair. However, many user sites require
installation of new cable plants before they can support operation on (a specific) shielded twisted-pair.
But, when users commiit to the expense of a new cable plant, they almost always install a combination
of fiber and UTP.

Although it is possible to support both shielded and UTP cable with one PMD Iinterface, this solution
costs will most likely be higher than a shielded-only solution. Clear statements of objectives, direction
and decisions on the tough Issues are required quickly for the twisted-palr/PMD development effort to
be successful.

4.3 FDDI enhancements

Widening FDDI

Other alternate media work Is helping to extend FDDI's geographic reach. Telephone companies will
soon be offering synchronous optical network.services. An ANSI group Is working on a physical layer
mapping, see figure 4.1, to allow Sonet (Synchronous Optical NETwork) to carry full-bandwidth FDDI
traffic and make an enterprise "LAN" possible that connects many users across cities or in different cities.

26

4.3 FDDI enhancements

r ning FDDI

FDDI-Il, see chapter 2.7, builds on the basic services of FDDI to provide a mechanism for supporting
both asynchronous packet data and isochronous circuit switched data on the same LAN. FDDI-l
operates with the same PMD layer as specified for FDDI. Requiring only relatively minor enhancements
to the MAC and PHY layers of FDDI. Its additional functlons are defined in the hybrid ring control (HRC)
document, see figure 4.1.

EDDI follow-on

Another FDDI enhancement is called FDDI follow-on (FFOL), which will include services operating at
speeds ranging from 600 megabits per second to more than 1 gigabit per second. FFOL will provide
connections to an array of wide area network (WAN) services, including the synchronous optical
network.

Requlrements for the next generation FDDI, a proposal:

- The ability to provide a backbone for multiple FDDI networks.

- Efficient interconnections to WANs such as Broadband ISDN (BISDN).

- Support for integrated services, including data, graphics, video and audio.

- An inltial data rate of less than 1.25 Gbit/sec (easy mapping on existing carriers).
- Data rates matched to the Synchronous Digital Hierarchy.

- Duplex links for reliability.

- The ability to utilize existing FDDI cable plant, where practical.

- The ability to operate over leased-line public network links, such as Sonet.

- Support for both singlemode and multimode fiber.

- Access and recovery protocol relatively insensitive to network size.

FFOL is part of a larger, multistage standards effort to increase functionality of FDDI. The first part will
map FDDI onto the synchronous optical network for connecting widely dispersed rings. An interface to
Sonet wlll give FDDI users the abllity to route traffic over local exchange and long-distance carrier
networks to connect FDDI networks. Another stage, FDDI-II, will add circuit-switched voice, and high-
quality audio and video communications, as discussed earlier.

Once FFOL standards are in place, new equipment will be positioned to take advantage of the
standard’'s features. Existing FDDI systems can make the transition to FFOL with the addition of
hardware and software module enhancements.

An FFOL standard proposal should support ring and tree physical network topologies. It should provide
specific management mechanisms for network components, Including connections, statlons and protocol
entities, while providing fault isolation, reporting and recovery mechanisms. it should also provide access
to circuit-switched services, as well as asynchronous and asynchronous-transfer-mode (ATM) like packet
services.

The following set .of FFOL standards projects have been proposed [36]:
- Physical layer medium dependent standard (PMD) specifies the private optical fiber links and related

optical components. it would include single- and multimode fiber with a signalling rate capable
of data speeds in the 600 Mbit/sec to more than 1 Gbit/sec range.

27

4. FDDI developments

LLC
g oo
F
FDDI e ey
COMPONENTS M.dclznktr?“
‘__ —’
L 3 L 2 SMT
H-MUX Hybrid Multiplexsr
Management
e HRC {ortored com.T
~
Py PHY Physical Layer Protocot J{—b
*
v v -
sgﬁi-:r SPM SMF-PMD PhPMaIDLuy
ar,
RE e mom | R G TR S

- Physical layer protocol standard specifies the encode/decode clocking and data framing over the PMD
and Sonet links. This standard would be scalable from the STS-3 (155.5 Mbit/sec) to STS-48

figure 4.1, Structure of FDDI standards

(2.4Gbit/sec) data rates in the digital signalling hierarchy.

- Service multiplexer standard specifies access to the medium, addressing, data checking and packet

generation and reception for circuit-switched service.

- Station management standard provides control for the physical layer, PMD, service multiplexer,
asynchronous media access control, and isochronous media access control standards. It also
specifies the station configurations, topology configuration and the control required for proper
operation of stations as a member of the FFOL network. Station management also provides the

interface to the FFOL network management agent.

28

5. Functional specifications

This chapter contains a combination of outlines of ANSI documents on the PMD [2], the PHY [3], the
MAC [4], and the SMT [5].

The PMD document defines the lower half of the Physical layer in the ISO/OSI model.

The PHY document defines the upper half of the Physical layer in the ISO/OS! model.

The MAC document defines the lower half of the Data Link Layer in the ISO/OS| model. The upper half
may have a null function.

The SMT document defines a Station Management, which is available to all PMD, PHY and MAC across
ISO/OSI boundaries.

5.1 Functions of PMD

PMD has to execute the following functions:

- Transfer electrical signals to light and light to electrical signals.

- Detect wether the incoming light power is above or below the detection threshold.
- Optionally perform a bypass function.

5.2 Functions of PHY

PHY has to execute the following functions:

- Clock synchronization with the upstream code-bit data stream.

- Decoding of the incoming bitstream for use by higher layers

- Encoding and decoding between data and control indicator symbols, and code-bits, medium
conditioning and initializing.

- Synchronization of incoming and outgoing code-bit clocks.

- Delineation of octet boundaries for transmission to or from higher layers.

- Information to be transmitted Is encoded by the PHY into a grouped transmission code.

5.3 Functions of MAC

MAC has to execute the following functions:

- Construct frames from LLC data, SMT data and MAC data.
- Detect that a token is captured.

- Transmit the frames in correct order.

- Receive frames.

- Reconstruct the data from the frames.

- Direct the data to the right entity.

5.4 Functions of SMT

SMT must monitor the entire station, supply timing values to the MAC, negotiate about bandwidth
sharing keep the addressing up to date and execute other management functions.

29

5. Functional specifications

5.5 Services from PMD to PHY

The services from PMD to PHY allow the PHY to exchange a NRZI code-bit stream with peer PHY
entities. The schematic is given In figure 5.1.

PHY
PM_UNITDATA request PM_UNITDATA indication PM_SIGNAL indication ‘
o]
v @
|z 'z E‘
; E g
i : 8
PM_UNITDATA request PM_UNITDATA indication PM_SIGNAL indication ‘
'PMD

figure 5.1, Schematic of the services between PMD and MAC

PM_UNITDATA.request:

- Defines transfer of NRZI data from PHY to PMD.

- PM_Request is a continuous NRZI code.

- PHY continuously generates the current polarity.

- Receipt causes PMD to convert the electrical NRZI code-bit sequence into the optical equivalent,
responding to the level of PM_Request. This may only be done after receipt of a
SM_PM_CONTROL.request, with Control_Action set to Transmit_Enable.

PM_UNITDATA.indication:

- Defines transfer of NRZI data from PMD to PHY.

- PM_Indication is a continuous NRZI code.

- PM_Indication is continuously sampled by the clock recovery and receive function of the PHY.

PM_SIGNAL.indication:

- Indicates from PMD to PHY whether the received optical signal is above (Signal_Detect=on) or below
(Signal_Detect=off) the detection threshold of PMD.

- The primitive is generated on a change of the status.

- Effect:
- Off: PHY enters Quiet_Line-state.
- On: PHY enables detection of other line-states.

5.6 Services from PHY to MAC

When no MAC is inserted in a station (pure repeater), then the interface is PHY-to-PHY.
Services are synchronous: One indication causes exactly one request. The schematic is given in
figure 5.2.

PH_UNITDATA.request:
- Defines data transfer from MAC to PHY.
- Each PH_Request stands for one : J, K, T, R, S, n, H and optionally QorV (n = 0 .. F).

30

5.6 Services from PHY to MAC

HE_,IU?TIC'DATA.W PH_UNITDATA indication PH_UNITDATA_STATUS.indication PH_INVALID indication ’
l E : :

l’!LUNI'lDATA.nqm PH_UNITDATA. indication PH_UNITDATA_STATUS.indication PH_INVALID indication

figure 5.2, Schematic of the services between PHY and MAC

- Generated by MAC when PHY has given an indication (according to [4] it is generated whenever MAC
has a symbol to transmit; after that MAC has to wait for an indication).

- PHY encodes the received symbol and transmits it.

- When ready for another request, PHY sends a PH_UNITDATA_STATUS.indication.

- Q, Hand V are never generated by MAC except when:
- The repeating function iIs located in the physical layer: H can be generated by MAC.
- The repeat filter function is placed after the PH_UNITDATA.request interface.

PH_UNITDATA.indication:

- Defines transfer of data from PHY to MAC.

- Each PH_Indication stands for one : J, K, T, R, S, n, H and optionally QorV (n = 0 .. F).

- MAC processes the received symbol and generates a PH_UNITDATA.request (with an output).

-Q, V indication is not required when the repeat filter function Is located before the
PH_UNITDATA.indication interface.

PH_UNITDATA_STATUS.indication:

- Signifies the transmission completion status.

- Responds to every PH_UNITDATA.request, and synchronizes the MAC data with the rate of the
medium (when transmission_status is received by MAC, it indicates that the PHY can receive
another).

- On receipt MAC is allowed to generate another request.

- PHY provides synchronous service: PH_UNITDATA_STATUS.indication requires an immediate
PH_UNITDATA request.

PH_INVALID.indication:

- PHY tells MAC that the symbol stream Is invalid.

- The primitive is generated on:

- Q, H, Master, Noise_Line-state detection
- Input error conditions detected by PHY, if not reported as input violation (V) symbols in
PH_UNITDATA.indication.

- Receipt causes the MAC receiver to signal FO_Error, or FR_received if ED is already recelved, to the
MAC transmitter and enter the state R0. Depending on the originating state, Frame_Ct, Error_Ct
and Lost_Ct are incremented as needed.

FO_Error or FR_Received causes the MAC transmitter to enter state TO.

31

5. Functional specifications

5.7 Services from MAC to LLC

The services from MAC to Logical Link Control (LLC) allow the local LLC to exchange LLC SDUs with
peer LLC entities. The schematic is given in figure 5.3.

LLC
MA_UNTTDATArequest MA_UNITDATA.indicstion MA_UNTTDATA_STATUSindication MA_TOKEN.request

ITA_UNHDATM MA_UNITDATAIndication MA_UNITDATA_STATUS.indication MA_TOKEN.roquest
MAC

figure 5.3, Schematic of the services from MAC to LLC

MA_UNITDATA request:

- Defines transfer of one or more SDUs from a local LLC to a single peer LLC, or multiple in case of
group addresses.

- Data transferred over the primitive:
FC_value(1), destination_address(1), M_SDU(1), requested_service_class(1), stream(1)

FC_value(n), destination_address(n), M_SDU(n), requested_service_class(n), stream (n)

token_class
- Each set (1 to n) forms one frame and is referred to as a subrequest:

* FC_value supplies the frame control field.

* destination_address may be an individual or group address. From this parameter the DA field
should be created. Address length is determined by the L bit in FC_value.

* M_SDU is the data to be transmitted by the MAC. MAC can determine the length of the SDU
from the SDU.

* requested_service_class is associated with each M_SDU. It can be synchronous or
asynchronous. If asynchronous, then the requested token_class and a priority level can

optionally be specified.

* stream: If Set then at least one other frame is following, if Reset then the last frame of this
request has passed.

* token_class specifies the class of token that MAC has to issue on completion of the
transmission (at the end of the request), if no other request is pending that can be
honoured.

On synchronous service request the captured token has to be reissued.

On asynchronous service request the requested token can be restricted or
nonrestricted. When no SDUs were specified, MAC has to issue the requested
token_class immediately.

The frames have to be transmitted in the order presented, regardless of the associated service

class. A frame cannot be transmitted when TRT is expired (late_Ct=+0) or because of the

requested_service_class and the current value of THT. In this case transmission is terminated
and a token Is issued according to token_class.

Subsequently a MA_UNITDATA_STATUS. indication Is issued to LLC.

if transmission_: status Is successful, then MAC may start transmitting the remaining frames on

the next opportunlty, or MAC may require reissuance of a new MA_UNITDATA.request.

- Generated by LLC whenever there Is data to be transmitted or a token to be issued.
- On receipt MAC adds all MAC specific fields dependent on the media access method, and passes the
- frame through to lower entities.

32

5.7 Services from MAC to LLC

- This primitive Is the normal way to request the transfer of data. Token capture is implicit to this
primitive, and therefore there is no need for a MA_TOKEN.request primitive to be issued in
conjunction with it.

MA_UNITDATA.indication:
- Defines transfer of data from MAC to the local LLC.
- Data transferred over the primitive:
* FC_value: value of the FC field in the frame.
* destination_address: Individual or group address specified by the DA field.
*source_: address: Individual address specified by the SA field.
*M SDU MAC SDU received by the local MAC entity.
* receptlon status: Indicates success or failure of the incoming frame. It consists of two
elements:
1. Frame validity: FR_GOOD, FR_BAD. With FR_BAD the reason has to be reported:
- Invalid FCS. The calculated FCS does not match the received FCS.
- Length error. Frame has an Invalid data length.
- Internal error. An Internal error has occurred preventing MAC from transferring a frame
to LLC while A and C are set.
2. Frame status: Received EAC and optionally other indicator values.
- Generated by MAC to indicate the arrival of a LLC frame addressed to this station.
- Effect of receipt is free implementable.

MA_UNITDATA_STATUS.Indication:

- Provides an appropriate response to MA_UNITDATA request, indicating success or failure of the
request.

- Data transferred over the primitive:

* number_of_SDUs: Reports the number of M_SDUs transmitted on a given access opportunity
as result of this request.

* transmission_status: Used to pass information back to the requesting LLC. It Indicates the
success or failure of the previous associated MA_UNITDATA.request. If this specified
more than one M_SDU, transmission_status may apply to all of the SDUs transmitted,
indicating if all were acknowledged. In this case the resolution of the
transmission_status is implementer defined.

* provided_service_ class: Specifies the service class that was provided for the transfer.

- Generated by MAC in response to a MA_UNITDATA.request.

- Effect of receipt is free implementable.

- If there are multiple outstanding requests, additional information may be required for correct
association. This may be implied by servicing the requests in a FIFO manner. Possibly MAC
maintains multiple queues for different class_of_service, servicing each queue In a FIFO manner.

- It is assumed that if a MAC sets the A and C indicator, the frame Is delivered or an internal error is
reported to the corresponding LLC.

MA_TOKEN.request:

- LLC requests the capture of the next token.

- requested_toke_class may be restricted or nonrestricted. Optionally a priority level may be specified.

- Generated by LLC when data of a time critical nature is to be transmitted.

- On recelpt, MAC captures the next usable token of type requested_token_class. MAC enters state T2
and transmits | symbols until a MA_UNITDATA request is received, or TRT expires. In the latter
case, MAC Issues another token of the same token _class as was captured.

- This primitive allows for longer preambles than usual and therefore should not be used for data transfer
which is not time critical.

33

5. Functional specifications

5.8 Services from PMD to SMT

Services from PMD to SMT allow the local SMT to control the operation of the PMD. When PHY services
are requested, they are overruled by SMT requests. The schematic is given in figure 5.4.

PMD SMT

Control_Action
SM_PM_CONTROL request i SM_PM_CONTROL request

Control_Action
SM_PM_BYPASS .request [—-=suuillf SM_PM_BYPASS request

Signal_Detect(status)
SM_PM_SIGNAL .indication s SM_PM_SIGNAL.indication

figure 5.4, Schematic of the services from PMD to SMT

SM_PM_CONTROL request:

- SMT forces the PMD transmit function to place a logic "0" optical signal on the medium.

- Control_Action can be Transmit_Enable or Transmit_Disable.

- Generated by SMT whenever it wants to enable or disable the PMD optical transmitter.

- On receipt of Transmit_Disable, PMD transmits a logic "0" optical signal (no light). This takes
precedence over PM_UNITDATA request.
On receipt of Transmit Enable, PMD transmits the optical signal requested by
PM_UNITDATA request.

SM_PM_BYPASS.request:

- Generated by SMT to PMD, Indicating that It wants to join or leave the FDDI network.

- Control_Action can be Insert or Delnsert.

- Receipt of Insert causes PMD to activate the optical switch, such that the MIC (Media Interface
Connector)inbound signal Is directed to the optical receiver, and the output of the optical
transmitter is directed to the MIC output.

Receipt of Deinsert causes PMD to deactivate the optical switch, such that the MIC inbound
signal is directed to the MIC output, and the output of the optical transmitter is directed to the
input of the optical recelver. This last state is called the bypassed mode.

Optical bypass switches are optional, so this primitive is not required for stations which
do not employ optical bypass switches.

SM_PM_SIGNAL.indication:

- PMD indicates to SMT via Signal_Detect whether the inbound optical signal level is above (status=on)
or below (status=off) the detection threshold.

- Generated by PMD to indicate the status of Signal Detect.

- SMT determines status, and takes the actions specified by the SMT state machines.

5.9 Services from PHY to SMT

Services from PHY to SMT allow the local SMT entity to control the operation of PHY. When MAC
services are requested to the PHY, they are executed first (except with SM_PH_LINE-STATE.request
commands). The schematic is given in figure 5.5.

34

5.9 Services from PHY to SMT

PHY SMT
Line-state_action
SM_PH_LINE-STATE request [~ e——S\{_PH_LINE-STATE.request
status_report
SM_PH_STATUS.indication el SM_PH_STATUS indication
Control_Action
st ——
SM_PH_CONTROL request Requested_Status | SM_PH_CONTROL.request

figure 5.5, Schematic of the services between PHY and SMT

SM_PH_LINE-STATE.request:
- SMT requests PHY to send a stream of symbols (to PMD):
- TRANSMIT_QUIET: PHY must send Q symbols to PMD continuously (no transitions on the
medium, this is the initial state of PMD).
For a proper effect on the optical signal, SMT must Issue an appropriate
SM_PM_CONTROL.request to PMD.
- TRANSMIT HALT: PHY must send a continuous stream of H symboils to PMD.
- TRANSMIT IDLE: PHY must send a continuous stream of | symbols to PMD.
- TRANSMIT MASTER: PHY must send an alternating stream of H and Q symbols to PMD.
- TRANSMIT PDR: PHY must send the symbol stream presented by MAC on the
PH UNITDATA recuest interface to PMD.
- The primitive is generated on station insertion and removal.
- Receipt causes PHY to send a continuous stream of symbols of the type specified by Line-
state_action.
- The commands take precedence over MAC-to-PHY commands.

SM_PH_STATUS.indication:
- PHY informs SMT about the line-state activity status changes.
- Status_report can be:
- QUIET_LINE-STATE_RECEIVED: Quiet_Line-state entered.
- HALT _ LINE- STATE _ RECEIVED: Halt | Line-state entered.
- MASTER LINE-STATE _RECEIVED: Master Line-state entered.
- IDLE_| LINE- STATE _| RECEIVED: Idle_Line- state entered.
- ACTIVE _LINE- STATE RECEIVED: Actlve Line-state entered.
- NOISE _| LINE-STATE ‘RECEIVED: Noise_| Line-state entered.
- LINE-STATE UNKNOWN A line-state is exited and the entry conditions to another line-state
are not yet satisfied. Indication of the last known line-state must be included.
- The primitives are generated on entrance of the state.
- Receipt causes SMT to take the actions specified by the SMT state machines.

SM_PH_CONTROL.request:
- SMT controls the operation of PHY.

35

5. Functional specifications

- Generated by SMT for the PHY to take action specified by Control_Action:

- Reset:

* PHY resets the transmit mode to TRANSMIT_QUIET.

* PHY resets the elasticity buffer function.

* PHY resets the line-state to LINE_STATE_UNKNOWN.

* PHY resets the line-state counters.

* PHY resets the smoothing function.

* PHY resets the repeat filter function.

* PHY possibly executes extra functions.
- Present_Status: PHY presents the status to SMT via Requested Status.

- Request__Loopback: PHY enters the loopback mode (looping back as close to PMD as
possible), to test the local station; symbols on PH_UNITDATA.request are directly
passed through to PH_UNITDATA.indication. Symbols may be changed by the repeat
filter function.

PHY also presents continuous NRZI code-bits to PM_UNITDATA.request, such that no
light is emitted.

- Cancel_Loopback: PHY leaves the loopback mode.

5.10 Services from MAC to SMT

The services from MAC to SMT are used by SMT to monitor and control the operation of MAC. The

schematic can be found in figure 5.6.

MAC
—&
SM_MA_INITIALIZE_PROTOCOL request,
status
SM_MA_INITIAUZE_PROTOCOL confirm m—
control_action, beacon _information
e
requestad_condition
SM_MA_CONTROL request requested_status
——— .
status_report
SM_MA_STATUS. Indication R
see description
SM_MA_UNITDATA.request — ———— |
see description
SM_MA_UNITDATA.indication i
866 description
SM_MA_UNITDATA_STATUS. indication
requested_token_ciass

SM_MA_TOKEN.request

SMT

SM_MA_INITIALIZE_PROTOCOL.request

SM_MA_INITIALIZE_PROTOCOL.confirm

SM_MA_CONTROL.requsst

SM_MA_STATUS.indicatlon

SM_MA_UNITDATA.request

SM_MA_UNITDATA.indication

SM_MA_UNITDATA_STATUS.indlcation

SM_MA_TOKEN.request

figure 5.6, Schematic from the services from MAC to SMT

36

5.10 Services from MAC to SMT

SM_MA_INITIALIZE_PROTOCOL.request:
- Used by SMT to reset MAC and optionally to change operational parameters of MAC. The change is
not necessary when the MAC is operational on the ring.
- Data transferred over the primitive:
* individual_MAC_address: (16 bit): 16 bit address for MAC to use as Its individual address.
* Indrvldual MAC address: (48 bit): 48 bit address for MAC to use as Its individual address;
both a 16 and a 48 bit address can be supplied.
* group_MAC_addresses: Addresses that MAC must use as a group address.
*T_Min value Specifies the minimum TTRT supported.
* T_Max_value: Specifies the maximum TTRT.
* TVX_value: Specifies the value of TVX to be used.
*T Req_value Specifies the requested TTRT for asynchronous traffic.
* T_Neg_value: Specifies the negotiated TTRT for asynchronous traffic.
* T_Pri_value: Specifies a set of priority token rotation time thresholds.
* indicate_for_own_frame: MAC must also receive and indicate to SMT, frames that it has
transmitted itself.
* indicate_for_rcv_only_good_frame: Value MAC uses to decide between:
1. Generating MA UNITDATA.indication and SM_MA_UNITDATA.indication only on
good frames.
2. Generating these primitives on all frames.
Every parameter is optional. If some parameter is omitted, MAC must use the current value
(most recently provided, else the default).
- Generated by SMT when it requires MAC to reconfigure.
- On receipt MAC must reconfigure as denoted by the parameters. After completion, MAC must generate
a SM_MA_INITIALIZE_PROTOCOL.confirm.

SM_MA_INITIALIZE_PROTOCOL.confirm:

- Status indicates to SMT the success or failure of the SM_MA_INITIALIZE_PROTOCOL.request.
- Generated by MAC on completion of the request.

- Recelpt signifies to SMT that the desired reconfiguration has been accomplished.

SM_MA_CONTROL.request:
- Used by SMT to control operation of MAC.
- Data transferred over the primitive:
* control_action: Includes one of Reset, Beacon, Present_Status, Reset_Counters,
Interrupt Upon_Conditions or Send_Bad_FCS.
* beacon_| information: Contains the DA field and the information field for the beacon frame, if
Beacon is specified by control_action.
* requested_status: Includes current values of all counters, timers, R_Flag, the current Receiver
state and the current Transmitter state.
* requested_condition: Includes at least one of capture_of token, receipt of frame or
passing_of_token.
- Generated by SMT to cause MAC to take the action specified by control_action.
- Receipt causes MAC to take the following actions:
1. control_action is Reset or Beacon:
- MAC generates a MAC reset.
- MAC receiver enters state RO.
- MAC transmitter enters state TQ.
2. control_action is Beacon (actions are taken after 1. is executed):
MAC transmitter enters state T5. Beacon frames must be constructed using
beacon_information.
3. control_action is Present_Status:
MAC presents the status via requested_status.

37

5. Functional specifications

4. control_action Is Reset_Counters:

MAC resets all counters.
5. control_action is Interrupt_Upon_Condition:

MAC signals SMT when any of the requested_conditions is detected.
6. control_action is Send_Bad_FCS:

MAC sends a bad FCS with a specific frame.

SM_MA_STATUS.indication:

- Informs SMT about errors and significant status changes.

- Status_report specifies appropriate states (p20 [4]).

- Generated by MAC when any of the conditions occur.

- Receipt causes SMT to generate a SM_MA_UNITDATA request.

SM_MA UNITDATA.request:
- Defines the transfer of SMT SDUs from SMT to MAC. The same format as for PDUs is used.
- Data transferred over the primitive:

FC_value(1), destination_address(1), M_SDU(1), requested_service_class(1), stream(1)

FC_value(n), destination_address(n), M_SDU(n), requested_service_class(n), stream(n)
token_class

- Each set (1 to n) forms one frame and is referred to as a subrequest

* FC_value supplies the frame control field.

* destination_address may be an individual or group address. From this parameter the DA field
should be created. Address length Is determined by the L bit in FC_value.

* M_SDU is the data to be transmitted by the MAC. MAC can determine the length of the SDU
from the SDU.

* requested_service_class is associated with each M_SDU. It can be synchronous,
asynchronous or immediate. If asynchronous, then the requested_token_class and a
priority level can optionally be specified. If immediate, the frame has to be send
immediately, without waiting for a token.

* stream: If set then at least one other frame is following, If reset then the last frame of this
request has passed.

* token_class specifies the class of token that MAC has to issue on completion of the
transmission (at the end of the request), if no other request is pending that can be
honoured.

On synchronous service request the captured token_class has to be reissued.

On asynchronous service request token_class can be none, restricted or nonrestricted.
When no SDUs were specified, MAC has to issue the requested token_class
immediately.

The frames have to be transmitted in the order presented, regardless of the associated service

class. A frame cannot be transmitted when TRT is expired (late_Ct#0) or because of the

requested_service_class and the current value of THT. In this case “transmission s terminated
and a token is Issued according to token_class.

Subsequently a SM_MA_UNITDATA STATUS indication Is issued to SMT.

If transmission status Is successful, then MAC may start transmitting the remaining frames on

the next opportunity, or MAC may require reissuance of a new SM_MA_UNITDATA request.

- Generated by SMT when there is data to be transferred to peer SMTs or a token to be Issued.
- Receipt causes MAC to append all MAC specific fields and fields that are unique to the media access

method, and pass the constructed frame through to the lower entities.

- Capture of a token Is Implicit In this primitive, and therefore there is no need for generation of a

SM_MA_TOKEN.request.

38

5.10 Services from MAC to SMT

SM_MA_UNITDATA.Indication:

- Defines the transfer of data from MAC to SMT (or SMTs in case of group addresses). It is able to
report any SMT or MAC frame addressed to this station.

- Data transferred over the primitive:

* FC_value: value of the FC field in the frame.

* destination_address: Individual or group address specified by the DA field.

* source_address: Individual address specified by the SA field.

* M_SDU: MAC SDU received by the local MAC entity. '

* reception_status: Indicates success or failure of the incoming frame. It consists of two
elements:
1. Frame validity: FR_GOOD, FR_BAD. With FR_BAD the reason has to be reported:
- Invalid FCS. The calculated FCS does not match the received FCS.
- Length error. Frame had an invalid datalength.
- Internal error. An internal error has occurred preventing MAC from transferring a frame

to SMT while A and C are set.

2. Frame status: Received EAC and optionally other indicator values.

- Generated by MAC to indicate the arrival of a MAC or SMT frame addressed to this station. If initialized,
this primitive is also generated on receipt of MAC’s own frames, allowing examination of
elements of reception_status for a frame that has circulated around the ring.

- Receipt causes SMT to generate a SM_MA_UNITDATA_STATUS.indication.

SM_MA_UNITDATA_STATUS.indication:

- Provides an appropriate response to SM_MA_UNITDATA.request, indicating success or failure of the
request.

- Data transferred over the primitive:

* number_of_SDUs: Reports the number of M_SDUs transmitted on a given access opportunity
as result of this request.

* transmission_status: Used to pass information back to the requesting SMT. It indicates the
success or failure of the previous associated SM_MA_UNITDATA.request. If this
specified more than one M_SDU, transmission_status may apply to all of the SDUs
transmitted, indicating if all were acknowledged. In this case the resolution of the
transmission_status is implementer defined.

* provided_service_ class: Specifies the service class that was provided for the transfer.

- Generated by MAC in response to a SM_MA_UNITDATA.request.

- Receipt indicates to SMT the success or failure of the request.

- If there are multiple outstanding requests, additional information may be required for correct
association. This may be implied by servicing the requests in a FIFO manner. Possibly MAC
maintains multiple queues for different class_of_service, servicing each queue in a FIFO manner.

- It is assumed that if a MAC sets the A and C indicator, the frame is delivered or an internal error is
reported to the corresponding SMT.

SM_MA_TOKEN.request:

- SMT requests the capture of the next token.

- requested_token_class may be restricted or nonrestricted. The priority level may optionally be
specified.

- Generated by SMT when data of a time critical nature is to be transmitted.

- On receipt, MAC captures the next usable token of type requested_token_class. MAC enters T2 and
transmits | symbols until a SM_MA_UNITDATA.request is received, or TRT expires. In the latter
case, MAC Issues another token of the same token_class that has been captured.

- This primitive allows for longer preambles than usual and therefore should not be used for data transfer
which is not time critical.

39

5. Functional specifications

5.11 Symbols

There are several kinds of symbols that can occur on the medium: Line-state symbols, control symbols,
data symbols and violation symbols.

Line-state symbols

On detection of a line-state symbol (Q, H, 1), the current data transmission process Is preempted and
abnormally terminated.

- Q: No transitions on the medium.

- H: Indicates control sequences or removal of violation symbols with a minimum DC component.

- I: Indicates a normal condition of the line between transmissions (contains pattern for clock recovery).

Control symbols

- SD: Consists of a JK sequence. SD delineates the starting boundary of a data transmission sequence.
It may occur when the line-state is ILS. Further it may succeed or preempt a previous
transmission. SD can be detected independent of any previous established symbol boundary.

- ED: Consists of a T . ED terminates all normal data transmissions, and may be followed by one or
more control indicator symbols. ED and the control indicators always form a sequence of an
even number of symbols. When no control indicators are transmitted, the ED sequence consists
of a TT pair. ED cannot be detected Independent of previously established symbol boundaries.

- Control indicators: Consist of Set (S) or Reset (R) symbols, and appear directly behind the ED. They
specify logical conditions from a data transmission sequence, and may be altered by repeating
stations, without them changing the normal data. ED and control indicators must form an even
number of symbols. If that is not so, an extra T symbol must be added behind the last control
indicator.

ata symbol

A data symbol is built from a quartet of bits denoted by 0 .. F. A data symbol can be followed by any
data symbol. The PHY does not interpret the symbols.

Violation symbol

Indicates a condition on the medium that cannot be modeled by any other line-state. V symbols may
not be transmitted onto the medium.

5.12 Line-states

PHY reports the line-state to SMT via SM_PH_STATUS.indicatlon on a SM_PH_CONTROL.request. PHY
must report a PH_INVALID.Indication to) MAC when QLS, MLS, HLS or NLS is recelved. The line-state
can be determined by SMT at any time. On unknown line-state, LSU (LIne-State Unknown) must be
reported to SMT along with the most recently known line-state. The line-state is unknown when the
current line-state is not valid anymore, and the criteria for entering another line-state have not been met
at the time.

40

5.12 Line-states

Quiet Line-state (QLS)

PHY sends continuously Q symbols. This state is used as part of the physical connection establishment
process, and can indicate the absence of a physical connection.

QLS is entered on loss of Signal_Detect(on) from PMD or after having received 16 or 17 consecutive
Q symbols with Signal_Detect(on).

QLS is left on reception of another symbol than Q with Signal_Detect(on).

Master Line-state (MLS)

PHY sends an alternating stream of H and Q symbols. This state is used as part of the physical
connection establishment process.

MLS is entered on reception of 8 or 9 consecutive HQ (or QH) symbol pairs with Signal_Detect(on).
MLS is left on reception of any symbol pair other than HQ (or QH), or loss of Signal_Detect(on).

Halt Line-state (HL

PHY sends continuously H symbols. This state is used as part of the physical connection establishment
process.

HLS is entered on the reception of 16 or 17 consecutive H symbols with Signal_Detect(on).

HLS is left on reception of another symbol than H, or loss of Signal_Detect(on).

Idle Line-state (ILS)

PHY sends continuously | symbols. This state Is used to establish and maintain clock synchronization.
It is used as part of the physical connection establishment process, and between MAC frames.

ILS Is entered on reception of 4 or 6 consecutive | symbols with Signal_Detect(on) (Clock_Detect
asserted if implemented).

The number of symbols mentioned may be increased with at most 11 bits, when the Elasticity
Buffer is placed before the Line-state Detection function; it removes the maximum number of bits
(11).

ILS is left on reception of another than I, or loss of Signal_Detect(on) (Clock Detect deasserted If
implemented).

Active_Line-state (ALS)

When PHY transmits MAC frames to the physical link, it indicates that a physical connection in this
station is enabled (MAC frame sequences send or repeated by this station with TRANSMIT PDR
enabled). ALS indicates that symbol stream on the physical link Is a MAC sequence, and that the
neighbouring PHY has enabled the physical connection.

ALS is entered on reception of a JK sequence independent of previously established code-bit
boundaries, with Signal_detect(on) (Clock_Detect asserted If implemented).

ALS is left on reception of any other symbol than I, n, R, S or T (n =0 .. F), or on loss of
Signal_Detect(on) (or Clock-Detect deasserted If Implemented), or on entrance of ILS.

Noise Line-state (NLS

PHY may not transmit any symbol that can cause the neighbouring PHY to detect a NLS. NLS indicates
that the incoming line is nolsy. When NLS persists, this line Is faulty.

41

5. Functional specifications

NLS is entered on reception of 16 or 17 potential noise events, without satisfying the criteria for entrance

of another Line-state. A noise event can be:

- Decoding a Q, H, J, K, or V symbol (or a symbol pair containing one of these symbols) with
Signal_detect(on).

- An elasticity buffer error with Signal_Detect(on).

- Decoding a mixed control and data symbol pair with Signal_Detect(on).

-Decoding a n, R, S or T symbol (or a symbol pair containing one of these symbols) with
Signal_Detect(on) (Clock_Detect asserted if implemented) while the last known or current line-
state is not ILS or ALS.

- If Clock_Detect is implemented: Decoding an i, n, R, S or T symbol (or a symbol pair containing one
of these symbols or JK) with Signal_Detect(on) but Clock_Detect deasserted.

The count of the noise events must be reset to zero when the criteria for entering or continuing another

line-state are satisfied.

NLS s left on satisfaction of a criterium to enter another state. When the criteria for NLS and another

state occur simultaneously, the other line state takes precedence.

5.13 Coding

Encoding and decoding of the symbols is done in two stages. One is to convert the symbols from the
MAC to a NRZ code and vice versa. The other Is to convert the NRZ code to a NRZ| code and vice
versa,

The sequence of the codes transmitted on the medium Is determined by the MAC. Via the symbols, the
MAC and the PHY exchange information:

- Line-state symbols.

- Control symbols.

- Data symbols, which are exchanged in groups of four bits (data-quartet).

A code-bit symbol consists of five code-bits. The assignment of the codes is already presented in
table 3.1.

5.14 PDU types

There are two Protocol Data Units (PDUs), tokens and frames. The token format is shown in figure 5.7,
and the frame format in figure 5.8.

PA | SD | FC | ED

figure 5.7, The token format

The token is used to obtain the right to transmit. Tokens must be recognized when received with a PA
of zero or more | symbols, independent of previously established symbol boundaries. When a token is
received, and cannot be repeated (due to ring timing or latency constraints), the receiving station must
issue a new token.

The frame is used for transmitting MAC and LLC messages to other station(s). The information field may
be empty. MAC controls the maximum frame length as required by the physical layer. For counting the
frame length, all fields are used, including 4 symbols of the PA. PHY requires a maximum frame length
of 9000 symbols.

42

5.14 PDU types

PA | SD | FC |DA | SA | INFO | FCS| ED| FS

figure 5.8, The frame format

Fields

PA: Preamble

Transmitted by the originator as a minimum of 16 | symbols. The length may be altered by the
subsequent repeating stations. A MAC is not required to be capable to copy frames with a PA shorter
than 12 symbols. If it cannot repeat such a frame, then it is not allowed to repeat any part of this frame.

SD: Starting Delimiter
Consists of a JK symbo! sequence. This sequence is uniquely decodable, independent of previously
established symbol boundaries.

FC: Frame Control
Frame control is built up from several parts: CLFF ZZZZ
C: Class bit, 0 indicates an asynchronous frame, 1 indicates a synchronous frame.
L: Address Length bit: 0 indicates a 16-bit address, 1 indicates a 48-bit address. This counts for
both the SA and the DA field.
FF 2ZZZ: Indicate some kind of frame and extra information understood by the receiving
station(s), See table 5.1.

table 5.1: PDU types corresponding with the control bits [4]

CLFF 2222 to 2222 PDU type

Ox00 0000 vold frame

1000 0000 non restricted token

1100 0000 restricted token

0L00 0001 11 SMT frame

1L00 0001 1N MAC frame

CLo1 ro00 ni LLC frame

CL10 ro00 ni reserved for implementer

CL11 mr resarved for future standardization
x = don't care

r = reserved for future implementations, must now be 0

Addresses

Each frame contains these two fields, in the order DA, SA. Addresses may be 16 or 48 bits, and each
station must be capable to decode 16-bit addresses. When a station can only decode 16-bit addresses,
it still must be able to operate in a ring where also 48-bit addresses are used. This station must be
capable to:

- Repeat frames with 48-bit addresses.

- Recognize the 48-bit broadcast address (all ones).

- React correctly to claim frames with 48-bit addresses.

- React correctly to beacon frames with 48-bit addresses.

A station using 48-bit addresses must have a minimum 16-bit address capability:
- It has a fully functional 16-bit address.
- It must be able to recognize the 16-bit broadcast address (all ones).

The two address field formats are shown in figure 5.9.

5. Functional specifications

I/G | U/L | 46 bits 48 bit address

I/G | 15 bits 16 bit address
figure 5.9, 16- and 48-bit address formats

Both kinds addresses have an |/G control bit. This stands for Individual or Group.
Only the 48-bit addresses have a U/L control bit. This stands for Universal or Local.

1/G=0 Indicates an Individual address, |/G=1 indicates a group address.

Individual addresses identify one station on the ring (the address is unique in the scope of the
adminlstration), while a group address is used to address a frame to multiple stations. The group
address may be associated to zero, one or more stations. A group address is associated with a group
of logically related stations (by convention).

The broadcast address consists of all ones, and must be recognized by all stations on the ring.

The null address consists of all zeros, and is not allowed to be recognized by any station as its own
address.

The U/L bit is used to indicate the kind of address administration. There are two kinds of administration:
By a local authority (U/L=1) or by a universal authority (U/L=0). With universal addressing the
addresses are distinct from all other addresses on global scope. The procedure for this kind of
administration is not specified.

DA: Destination Address
DA I|dentifies the stations to which a frame is sent.

SA: Source Address
SA identifies the originating station of the frame. It has the same format and length as the DA field. I/G
must be 0.

INFO: Information field

This contains zero or more data symbol pairs whose meaning is determined by the FC field, and
interpreted by the destination entity. The length Is limited by the requirement of the PHY that the frames
may not be longer than 9000 symbols.

The LLC data passed through to MAC is assumed to be an ordered sequence of octets (8 bits). MAC
divides these into symbol pairs with the most significant symbol to be transmitted first. This order has
to be preserved through all the entities.

FCS: Frame Check Sequence
Used to detect erroneous data bits within the frame and erroneous deletion and addition of bits to the
frame. The fields covered by FCS are FC, DA, SA, INFO and FCS. For more information see chapter 3.2.

ED: Ending delimiter

The ED combined with the FS field must always form a balanced symbol sequence (i.e. contain an even
number of symbols). It Indicates the end of the token or frame.

There are two kinds of EDs: Token EDs and frame EDs. The token ED consists of two T symbols. The
frame ED consists of one T symbol.

5.14 PDU types

FS: Frame Status

FS consists of an arbitrary number of control indicator symbols (R and S) following the ending delimiter
of the frame. It ends when another symbol than S or R is received. A trailing T symbol, if present is
repeated as part of the frame. The three first control indicators stand for the E (error detected) A
(address recognized) and C (frame copied) indicators. The meaning of optionally following control
indicators is implementer defined, but must be repeated by all stations.

E indicator .
Transmitted by the originator as R. When some station on the ring detects an error with E=R, than an
error Is counted, and the E indicator Is put to S. When the E indicator was already S, then no error Is
counted, but E still remains S.

A indicator
Transmitted by the originator as R. When some station recognizes DA as its own individual or group
address, it sets A to S, otherwise the repeating station copies the indicator as received.

C indicator

Transmitted by the originator as R. When some station recognizes DA as its own individual or group
address and it copies the frame (into its receive buffer), then it sets the C indicator to S, otherwise the
repeating station copies the indicator as received.

Frames

Void frame (0x00 0000)
This is logically not a frame, and the contents must be ignored. Fields in a void frame have no meaning,
except that TVX must be reset, and a void frame must be stripped when SA=MA.

MAC supervisory frames (1L00 0010: beacon, 1L00 0011: claim)

In these frames the length of INFO is at least four octets, of which the first four have the following

meaning:

- claim frame: The bid for the TTRT represented as the twos complement of desired TTRT in octets.

- beacon frame: The first octet is the beacon type, and the next three octets are reserved for future
assignment. Beacon type 0 means "unsuccessful claim®. The other beacon types are not
assigned yet.

The claim frame is transmitted during error recovery, to determine the station that must initialize the ring
and generate the token. It must be interpreted independent of DA (DA=SA). When bad ring operation
is determined by a station, this station enters the claim token state. It sends claim frames and inspects
the SAs of the received frames. When SA=MA, it has claimed the token, and generates a new token.

The beacon frame is transmitted to indicate the need for corrective action. It must be interpreted
independent of DA (DA=0 or a value supplied by SMT). It is sent as a result of a major ring failure, and
is useful to detect the fault.

SMT next station addressing frame (0L00 1111)

The C indicator may only be set by the next addressed station on the ring. This station Is distinguished
from the others, by a reset A indicator.

The use of this frame is specified in the SMT standard.

Asynchronous LLC frame (0LO1 rPPP)
Used for asynchronous transmission. PPP indicates the priority of the frame (111 Is the highest, 000 the
lowest).

45

5. Functional specifications

Synchronous LLC frame (1LO1 rPPP)
Used for synchronous transmission.

Implementer frame (CL10 noc)
Implementer defined frame, »x is implementer defined.

Note: The r is for future implementations, and must now be 0.

46

6. Formal description method

To make a proper design, it is important to describe the design in a formal manner, that can be
explained in only one way. To be able to do this, certain methods can be used. One of them is
described in [1].

The method consists of two parts, a requirements model and an architecture model. The requirements
model describes what has to be designed (it contains demands and constraints), the architecture model
describes how the requirements can be met. The design is made with many iterations vertically (within
one model), and horizontally (between the two models).

6.1 The requirements model

The requirements model consists of the following parts:
- Data Context Diagram (DCD)

- Data Flow Diagrams (DFDs)

- Process Specifications (PSPECs)

- Control Context Diagram (CCD)

- Control Flow Diagrams (CFDs)

- Control Specifications (CSPECs)

- Stores

- Requirements dictionary

- Timing specifications

The DCD shows the flow of data between the system to be designed and the outer world (the context).
The data flows are represented by solid arrows. Some of the context parts may not be attached to the
system. These parts are not used to obtain data from, but to obtain control information. The parts are
shown anyhow to remind that they are present, see figure 6.1.

outer 1 outer 2

outer 3

outer § outer 4

figure 6.1, General example of a Data Context Diagram

The system used in the DCD, is put in the first DFD which is numbered as DFD 0. DFD 0 consists of one
process numbered 1. This process consists of several subprocesses, that all have an individual number.
They are referred to with the parent process number followed by a dot and the own process number.
The subprocesses are placed in a DFD numbered with the parent process number. Each time that an
lteration Is executed, the design comes to a higher level starting with level number 1 for DFD 0, and level
number n+1 when a process named in this level has n dots in its number, see figure 6.2.

The decomposition of a process into smaller processes is done when it makes sense; a primitive
process is not decomposed any more. The primitive processes are described by the PSPECs (one for

47

6. Formal description method

DFD 0
:}G—p level 1

:t DFD 1 level 2
“e

FD 12 level3
DFD 1.1 /‘\’

figure 6.2, Numbering methods

each primitive process).

The control part is built up in a similar way as the process part. Starting with the CCD, the context of
the control signals is defined. The control flows are represented by a dotted line. The same blocks and
processes are used in the CCD as in the DCD, and the context blocks which are not connected, are still
drawn to remind their presence, see figure 6.3.

outer 1 outer 2

outer 6 outer 3

Pl \\\
{ 3

outer 5 outer 4

figure 6.3, Example of a Control Context Diagram

The CFD contains the same processes as the DFD. The control flows can flow between processes, and
from and to a bar, see figure 6.4.

This bar indicates a connection to the CSPEC that corresponds to this level. In a CFD, only one CSPEC
may appear. All bars in a certain diagram refer to the same CSPEC. The CSPECs are optional; they need
not to be inserted when no process activators are required.

There are two kinds of stores, data and control stores. These can be used to save data and control flows
that may be needed in a later timeslot. Data and control stores may be combined. A store is represented
by two lines with the name of the store in between, see figure 6.4.

The requirements dictionary contains all data and control flows along with their definitions. it describes
the functions of the data and control flows.

48

6.1 The requirements model

figure 6.4, Use of stores and interface to CSPECs

The last part of the requirements model are the time specifications. Because time is needed in all levels
of the design, these are globally available, eise there would be to many extra flows in the diagrams,
which would make them unreadable. The model itself includes the assumption that it is infinitely fast with
respect to the internal data and control flows. Time specifications are only needed for communication
with the outer world.

6.2 The architecture Model

The architecture model components are:

- Architecture Context Diagram (ACD)

- Architecture Flow Diagram (AFD)

- Architecture Module Specification (AMS)

- Architecture Interconnect Diagrams (AIDs)

- Architecture Interconnect Specifications (AlSs)
- Architecture Dictionary

The relations between these components is shown in figure 6.5.

ARCHITECTURE
CONTEXT
DIAGRAM
ARCHITECTURER ~ P ARCHITECTURE
FLOW ‘ INTERCONNECT
DIAGRAM DIAGRAM
¥ T
T L
L -
ARCHITECTUREB ARCHITECTUREB
MODULE INTERCONNECT
SPECIFICATION SPECIFICATION
- -

ARCHITECTURE DICTIONARY

figure 6.5, Architecture model components

49

6. Formal description method

The architecture model assigns the processes of the requirements model to physical modules that
constitute the system and establishes the relationships between them.

The definition of the physical modules adds four more perspectives to the two addressed by the
requirements model (functional and control processing). These are input processing, output processing,
user interface processing and maintenance or self-test processing, as shown in figure 6.6.

User Interface Processing

Process Model

Input Outpqt
Processng | I™ Gontrol Model Procesing
Requirements template

Maintenance, Self-Test, and
Redundancy Management

Processing

figure 6.6, Architecture template

The input and output processing blocks represent the additional processing needed for each architecture
module to communicate with the other modules and to transform the information to and from a usable
internal format.

The user interface block is a special case of the input and output processing blocks. This block is

separated because there are many special considerations {(e.g. human factors) that affect the user
interface.

The maintenance and self-test block represents modules required to perform self-monitoring, redundancy
management and data collection for maintenance purposes.

The architecture model is a hierarchical layering of modules that are defined by successive application
of the architecture template to each of the blocks in the model.

There are three more symbols that will be used in an architecture model, these are:
- Architectural modules or the physical processes, see figure 6.7. The mapping between the architecture

modules and the bubbles in the requirements model can be one-to-one or one-to-many in either
direction.

Module x

figure 6.7, Architecture module symbol

50

6.2 The architecture model

- Information flow vector, see figure 6.8. This represents the information flow between any two modules,
this may be either single elements or grouping of elements, and may contain data flows, control
flows, or both.

Control flow vector

>
4

figure 6.8, Information flow vector symbol

Data flow vector

- Information flow channel, see figure 6.9. This is the physical means by which information flows from
one architecture module to another, it represents the physical communication path. There may
be different types of channels, an electrical bus, a mechanical link and an optical link.

Electrical bus

Mechanical link

|

Optical link
o—0—0—0—0
figure 6.9, Information flow channel symbols

The architecture context diagram (ACD) establishes the information boundary between the system belng
implemented and the environment in which the system has to operate. The ACD is the highest level
diagram. The elements that make up the ACD are: one architecture module, representing the system;
terminators that represent entities in the environment the system communicates with; and information
flow vectors that represent the communications that take place between the system and those entities.

The information flow itself and the information channels can be shown on the same diagram, or on two
separate diagrams, depending on the complexity of the system.

The architecture flow diagram (AFD) is a network representation of a system’s physlical configuration;
it documents the information flow between all the architecture modules. The AFD also represents the
allocation of processes and flows from the data and control flow diagrams into architecture modules.

The AFD is decomposed to show the next level of system architecture definitions. For instance the Input
Processing of a high level AFD will be decomposed to a lower level input and output processing, a user
interface and maintenance processing (and a lower level functional and control processing).

The architectural template is used as an allocation guide at each level of the system definition. But recall
there Is no requirement that every level of the system have modules in every of the four blocks of the
template.

The architecture interconnect diagram (AID) is a representation of the communication channels that exist
between the architecture modules. An AID always corresponds to an AFD. The AID shows the same
architecture modules as its AFD, but it also shows redundant units if they exist.

51

6. Formal description method

The components of an AID are architecture modules and communication channels, both may include
redundancy.

An architecture module specification (AMS) is written for every module in the architecture model to state
the allocation of data flow, control flow, and processing performed by that module. The AMS can be
written in different ways, but it always includes at least the requirements model components to show
their allocation. The components include DFDs, CFDs, PSPECs and CSPECs.

An AMS consists of three parts:

- A brief narrative specification of what the model Is required to do,

- A listing of any architectural requirements for the system,

- A statement of the allocation of the requirements model components to the architecture module.

The purpose of an AMS is to clearly, unambiguously, and completely state the design allocation of the
requirements model to architecture modules.

The architecture interconnect specification (AlS) establishes the characteristics of the communication
channels on which information travels between architectural modules. It describes the transformation
medium as well as the information formats. An AIS is written for every communication channel on an
AID, but they may be simplified.

The requirements model timing specification must be allocated to architecture modules, information flow
vectors, and information flow channels in the same way as other requirements components are
allocated. But the timing specifications play an important role in selecting the implementation technology.
They are the determining factor in the tradeoff between different hardware technologies and between
hardware and software. Only after these tradeoffs have been made, the requirements mode! timing
specifications are allocated to the resulting architecture components.

Allocation of the timing requirements to the architecture model resuits in specific timing constraints on
the internal architecture modules.

The architecture dictionary consists of a listing of all the data and control elements that flow between
the architecture modules as well as between architecture modules and external entities. The architecture
dictionary is an enhancement of the requirements dictionary. The additions are the names of the
architecture modules between which the information flows, and the names of the these communication
channels.

52

7. Requirements model of FDDI

To model the behaviour and requirements of the FDDI, the method described in chapter 6 is used. This
Is done with the aid of PROMOD, a program that supports this method. This program checks for
inconsistencies, and can generate a report that contains descriptions of the processes and data and
control flows. For the diagrams and precise description of processes and flows the reader is referred
to appendix F.

Several files are made with PROMOD, these are described in appendix D.

7.1 Formats used in the PROMOD SA report

Each flow Is described in the following way:

*

flow_type

flow_diagram_names, in flow_names
}Iow__description

= data_type

Flow_type (controlflow or dataflow) indicates to what category the flow belongs to.

The names between braces refer to the flow diagrams (flow_diagram_names), or the single flow this flow
is a part of.

Behind the closing brace, a short description is given of this flow.

Behind the equal sign, the type of the flow Is given, using the following format:

typel + type2 : typet combined with type2

a{type}b : combination of at least a times and at most b times type
[typel | type2] :typel or type2

“literal” : literal

In the Minispecs and Controlspecs the question mark (?) is used to indicate the NOT function ("=?"
means "not equal to").

The data types and literals used are listed in appendix E.

7.2 Context of FDDI

First the context of the FDDI is determined. The model described here, is one of a single attached
station. This can easily be extended to a dual attached station, by extending the SMT part and doubling
the FDD! model described here.

On one side there Is the fiber ring that transports the data as light, and contains the other connections
to the ring. Each connection can be modelied identical to the model described here.

53

7. Requirements model of FDDI

On the other side there is the user, that supplies and receives the data that is transmitted over the ring.
The user is a generality for the LLC, that can serve many physical users and applications.

Aside from the FDDI there is an operator part. This can be a part of the LLC. It provides direct access
to the FDD!, what can be useful to change parameters etc.

7.3 Subdividing FDDI

To subdivide FDDI into subprocesses, it is logical to choose the division made by the ANSI committee,
that defined a PMD, a PHY, a MAC and a SMT. In this way it is easy to divide the work on the total
system.

The functions of each part are described in chapter 5. The relation between the primitives and the data
and control flows can be easily seen (a primitive can be represented by some data or control flows).

7.4 Interface to the user

As said before, the data flows are related one to one to the primitives defined in chapter 5. When a byte
is transferred, it must be in the order Most Significant Nibble, Least Significant Nibble.

MA_UNITDATA.request is built with the following flows:

- userdata_out (data), containing FC_value(i), destination_address(i) and M_SDU(j)
- requested_service_class(i) (control)

- stream(i) (control)

- token_class (control)

MA_UNITDATA.indication is built with the following flows:
- userdata_in (data), containing FC_value, destination_address, source_address and M_SDU
- reception_status (control)

MA_UNITDATA_STATUS.indication is built with the following flows:
- number_of_SDUs (control)

- MA_transmission_status (control)

- provided_service_class (control)

MA_TOKEN.request consists of one flow:
- token_request (control), containing the request itself and requested_token_class

7.5 Interface to the ring

The interface to the ring consists of two data flows: fiber_in, containing the signal that is received by this
station, and fiber_out, containing the signal that is transmitted by this station.

The interface Is made of fiber and the connectors (MICs) that should be used are described in the
standard of the PMD [2].

54

7.6 Interface to the operator

7.6 Interface to the operator

The interface to the operator Is not yet exactly defined. This is because the standard of SMT, that was
avalilable, was an old version and the draft version that serves as basis for new SMT standards was not
available.

The interface Is represented by two data flows (oper_data_in and oper_data_out) and two control flows
(oper_control_In and oper_control_out). Each flow may represent a group of other flows. '

7.7 Further evolution

The further evolution of the process subdivision is done by discussions (this is possible because the
model is built with two persons) and trial and error. This may seem unstructured, but it reflects the
growing insight in the operation of the system.

During the evolution, some functions appear to be necessary in several processes, which in turn give

rise to some new processes, consisting of a combination of some other processes, or a part of a single
process.

7.8 Development of PMD

The PMD mainly consists of a detector and amplifier for the incoming signal and a transmitter (LED) and
driver for the outgoing signal. Additionally a bypass can be included, which is an optical switch.

These parts can be directly implemented in hardware and need no further subdivision.

7.9 Development of PHY

The PHY has no more to do than decoding and encoding of data streams, and synchronize the
incoming data to the internal clock. These functions can be executed by encode, decode, and
synchronize. Synchronize needs the clock the incoming data bits are transmitted with, so an extra
process, recover_clock, Is added.

All these processes can be directly implemented in hardware, so they need no further subdivision.

7.10 Development of SMT

The SMT has many tasks to fulfil, like ring statistics observation and timing definition. This makes the
SMT a very complex and interesting entity. Because the standard that was available was a draft standard
that was not fully completed, the SMT part was not further developed.

7.11 Development of MAC

The MAC also has many tasks to fulfil. it must process the userdata to frames, capture tokens, transmit
frames as long as allowed, gather ring statistics, receive frames and present frames to the user. It also
must receive frames from the SMT, and must be able to generate frames by itself, and transmit them
when allowed.

55

7. Requirements model of FDDI

Therefore the MAC is a very interesting entity with many parallellisms and communicating processes.
This becomes clear when the ring operation Is observed: A frame that Is transmitted can return before
the token Is released. It may also happen that requests occur while transmitting and/or receiving other
frames, that possibly must be transferred to the LLC.

To generate frames and process the userdata to frames, process_userdata is defined. This process
receives the data from the LLC, SMT and MAC, and adds the control signals like start delimiter, end
delimiter, frame check sequence and frame status. It stores the frames until the transmission is allowed
and it indicates the number of SDUs transmitted of one request on one token capture. Each process
is rather complicated but hard to be subdivided.

Since the outgoing frames may be frames generated by this station, but also frames transmitted by other
stations and repeated by this station, the process transmit_frames Is needed. This is a kind of multiplexer
that switches between repeated and new frames. This Is an easy process that needs no further
subdivision.

Receive_frames is the process that decodes the frame control and the source and destination addresses,
determines the destination of the incoming frames, strips frames, checks the frames on errors and
adjusts the frame status.

These functions are executed by the following processes: check_on_function, forward_frames (includes
frame stripping), check_on_violations and process_FS. Each process can be subdivided into some other
processes, that can be directly implemented in hardware. To improve the understanding of the state
machine in check_on_violations, a graphical representation is Inserted in appendix G.

Process_frames adjusts the data in such a way that the LLC can read it. This means that the FC, DA,
SA and info fields are placed behind one another, and transferred to the LLC.

The monitor takes care of counting events, capturing tokens, issuing tokens, allowing to transmit frames
(via timing) and handle SMT and MAC frames. This also is a rather complicated process, that is already
subdivided in some other processes. Several of these processes (token_management, timing and
frame_handler) should be subdivided themselves.

7.12 Experiences

During the development of the model, a step back had to be made several times. This was to combine
some processes, or to place a function in another process.

in this way diagrams have been made that contain as many processes as can be overseen by a human
being.

7.13 Further development

As can be seen from the depth of the subdivision, the process MAC has been developed the most. This
is done because this is the most important part of the system (it is the connection from the user to the
communication system). Apart from the monitor, all processes are subdivided as far as necessary. These

processes can be implemented in hardware.

The same counts for the interfaces, of which the hardware definitions must be developed.

56

7.13 Further development

More work is to be done to the SMT, that has to be fully subdivided into subprocesses, and the monitor
of which several subprocess must be further subdivided.

When a dual attachment station is to be modelled, it can use a great dea! of the currently defined
processes. Only the MAC has to be extended with a process that can switch the output to the other than
the default PHY entity. This Is also true for dual attachment concentrators.

For concentrators in general, the SMT will have to be extended from the SMT that should work with the
single attachment station. Especially more bypasses will have to be used, since each output must be
able to be bypassed.

57

8. Functional blocks of PHY

In [3] the PHY Is subdivided in several functional blocks. This chapter gives an outline to get more
Insight in the operation of the PHY; it is not used in the design given later in this report.

The proposition made by ANSI about the Implementation of the PHY and the Interconnection between
the several blocks Is shown In figure 8.1.

PH_UNITDATA request PH_UNITDATA.indication PH_INVALID.indication
ymbols symbols
REPEAT FILTER SMOOTHER
125 MHz
ENCODE LOCAL CLOCK DECODE LINE-STATE
DETECTION
NRZ
ELASTICITY
NRZ BUFFER

RCRCLK NRZ

TRANSMIT RECEIVE
NRZI NRZI
PM_UNITDATA .request PM_UNITDATA indication PM_SIGNAL.indication

figure 8.1, Possible implementation of the PHY with the interconnection of the blocks

8.1 Encode function

The encode function of the PHY takes care of the proper encoding of the symbols commanded by SMT
or presented by PH_UNITDATA.request Into NRZ symbols. The code group is presented serially to the
transmit function as a continuous stream of NRZ code-bits. This is done by a local fixed frequency
oscillator. The encode function is put in the different transmit modes by SMT via SM_PH_LINE-
STATE.request. Only in the TRANSMIT_PDR mode, the encode function encodes symbols presented on
the PH_UNITDATA. request.

8.2 Transmit function

This function converts the NRZ code-bits into equivalent NRZI code-bits, and presents them to the PMD.

8.3 Receive function

This function converts the NRZI code-bits received from the PMD into equivalent NRZ code-blits, and
presents them to other functions In the PHY.

It also must derive a 125 MHz clock from the incoming pulse stream. This Is called the Receiver
Recovery Clock (RCRCLK) and Is used for synchronizing the incoming code-bit cell boundaries during
ILS and ALS. It can optionally be used to synchronize detection of the HLS and MLS (this may be done
with another synchronization technique).

59

8. Functional blocks of PHY

Optionally a Clock_Detect signal may be provided, to indicate that RCRCLK is locked in frequency and
phase. Then this signal will be used by the line-state detection function.

8.4 Elasticity Buffer function

The clock tolerance of the transmit and the receive clock Is 0.005%. This insures a maximum frequency
difference between the two clocks of 0.01% which equals the length of 4.5 code-bits. .

The possible deficiency must be compensated by an Elasticity Buffer (EB). For proper operation of the
EB, the MAC that originates a frame, must insert at least 16 | symbols before each frame. The EBs in
the subsequent repeating stations may change the length of the | pattern (in this way compensating for
differences between the transmit and receive clocks).

The EB works like a FIFO with two clocks: One to clock data into the buffer (RCRCLK) and one to clock
data from the buffer to the PMD (the local clock). For correct operation the EB must allow for an
elasticity of at least 4.5 bits. The EB will first be filled halfway, before the data can be clocked out.

The implementation of the EB on another place than proposed in figure 8.1, is allowed when several
rules (p23 [3]) are followed.

8.5 Decode function

The Decode Function (DF) receives a NRZ bit stream from the EB, synchronized to the local clock. DF
establishes symbol boundaries and maintains synchronization to the local symbol clock. It decodes the
NRZ pulses to a continuous symbol stream for presentation to the MAC.

Optionally and mostly required by the MAC, the PHY supplies a clock signal to the MAC, for strobing
the data from PHY to MAC, and running MAC logic. This clock may have to be continuous, and
uninterrupted. Mostly the DF has the ability to insert a 0, 1, 2, 3 or 4 code-bit delay (0 to 9 code-bit delay
in byte wide implementations) into the serial pulse stream, to obtain synchronization to the symbol clock
(this is especially needed at the start of a new frame). The combined effect of EB and this insertion must
satisfy the rules of the EB (p23 [3]).

8.6 Line-State Detection function

The Line-state Detection Function (LDF) determines the state of the incoming physical link. Source for
this determination is PM_SIGNAL.indication, and if implemented signals from the receive function and
the EB can be used.

The MAC is informed about invalid signals via PH_INVALID.Indication, and the SMT is informed about
changes in the line-state via SM_PH_STATUS. indication.

The initial line-state is LSU or NLS. The Initial Line-state Detection Interval (ILDI) starts on
Signal_Detect(on) and a PM_Indication data stream, which meets the criteria for entering or maintaining
HLS, MLS, ILS or ALS. It lasts until the line-state reported to the SMT correctly indicates the state of the
received data stream.

The ILDI may not last longer than the maximum PHY acquisition time (AT_Max, default 100 ps). The
maximum signal acquisition time (A_Max, time until some signal is detected) used by MAC and SMT
equals the sum of AT_Max and AS_Max (maximum PMD acquisition time).The state can be temporarily

60

8.6 Line-State Detection function

lost or changed. Loss results from internal PHY conditions, and changes result from conditions external
to the PHY.

Change of line-state or loss of the current line-state may last no longer than the maximum line-state
change time (LS_Max, default 15 us). During this time LSU or NLS must be reported.

Detection of ILS, ALS and optionally HLS and MLS requires RCRCLK synchronization.

8.7 Local Clock

Demands for the local clock:

- Base frequency of 125 MHz +0.005%

- Phase jitter above 20 kHz < 8° (0.14 rad)

- Harmonic contents above 125.02 MHz < -20 dB
- Nominal code-bit cell time = 8.0 ns

- Nominal symbol time = 40 ns

8.8 Smoothing function

The Smoothing Function (SF) absorbs surplus symbols from longer preambles and redistributes them
into shorter preambles. In this way the variance in length of the preambles is reduced.

FDDI design constraints:

- EB is not required to recenter on preambles shorter than 4 symbols.

- MAC is not required to repeat frames with preambles shorter than 2 symbols.
- MAC is not required to copy frames with preambles shorter than 12 symbols.

The SF must be able to insert additional preamble symbols when the preamble is shorter than 14
symbols (gaining these back from preambles longer than 14 symbals). The smoothing capacity centred
on 14 symbols (Hi_Max) is at least 2 symbols.

When MAC requires 11 or 12 preamble symbols, SF must be able to insert additional preamble symbols
into preambles shorter than 12 symbols (gaining these back from preambles longer than 12 symbols).
This extra smoothing capacity centred on 12 symbols (Lo_Max) has to be at least 2 symbols.

The Hi_Max capacity must be located behind the EB in the repeater path. If a MAC is located in the
repeater path, Hi_Max and Lo_Max must be located between EB and MAC.

SF must be capable of reclaiming space from stripped or optionally other partial frames by deleting
symbols or replacing them by | symbols, provided that a format error is not lost. The format error is not
lost when one of the following statements is true:

- The format error is counted in PHY and reported to SMT.

- The format error is correctly propagated to the next MAC or repeat filter.

After a token or partial frame, SF may delete excess symbols from preambles longer than 4 symbols.

SF must be able to maintain its counters and to adjust smoother extension and preamble length in bits,
symbols or bytes. The EB quantum may therefore be not larger than the maximum permitted smoother
quantum (one byte).

61

8. Functional blocks of PHY

8.9 Repeat filter

The Repeat Filter (RF) is needed for stations where the data must be repeated without the intervenience
of a MAC. It must then be placed somewhere after the LDF in the repeat path.

The RF prevents the propagation of code violations and invalid line-states, from the incoming to the
outgoing link, while lost frames are propagated to be counted by the next MAC in the line. Also when
a MAC is included in the repeat ring, the RF may be Included.

62

9. Design issues of MAC

For the design of the MAC, several items are defined, like timers and state machines. These are formally
described in [4], of which this is an outline.

9.1 Timers

Each station has to maintain three timers to regulate the operation on the ring. Each timer is local, and
the contents may be different for each station, provided that ring limits are not violated. Reset means
that a timer must be reset to its initial value, and restarted. Disable and enable mean stopping and
starting of the timer.

Timing values are expressed as the unsigned twos complements of the target or remaining time in
octets. This is not needed for implementation, except where these values appear in PDUs on the ring.
Timers are assumed to count upward expiring on overflow (X>Y: X elapses sooner than Y). This also
is not needed for implementation (depending on the time representation).

Definitions

D_Max = Maximum ring latency. The maximum time that some SD may use to travel around the ring.
Default value is 1.617 ms. This is built upon basis of the default maximum ring length (200 km
dual ring, contributing 1.017 ms, 5085 ns/km) and the default number of physical connections
(1000, contributing 600 ns, 15 symbols per connection). Other values may be used when other
defaults are used for the number of stations or the length of the total ring.

M_Max = Maximum number of MACs. This may be additionally limited by the value of D_Max (two
PHYs with one MAC: class A station).
Default value is 1000.

I_Max = Maximum station physical insertion time. Time contributed by the physical layers.
Value is 25.0 ms.

A_Max = Maximum signal acquisition time. Sum of the maximum allowed clock and DC balance signal
acquisition time contributed by the attached PHYs.
Value is 1.0 ms.

Token_Time = Token length. Time required to transmit a token (6 symbols) and its preamble (16
symbols). Capture and retransmission is assumed to last a few symbols and not contributing
to MAC timing.

Value is 0.88 ps.

L_Max = Maximum transmitter frame setup time. Time permitted for a station to transmit a frame and
subsequent frames, after capture of a token.
Value Is 0.0035 ms.
L_Max defines the maximum iength of the preamble. If L_Max Iis exceeded, then the station
must send a void frame, to aiiow the other stations to reset TVX.

F_Max = Maximum frame time. Time required to transmit a frame (9,000 symbols) and its preamble (16
symbols).
Value is 0.361 ms.

Claim_FR = Claim frame length. Time required to transmit a claim frame and its preamble (16 symbols).
Minimum length is assumed to use 48-bit addresses.
Value is 2.56 ps.

9. Design Issues of MAC

$_Min = Minimum safety timing allowance. Time needed to recover from random noise on the ring.
Consists minimally of one frame of maximum length (F_Max), which may be permuted by noise,
plus the required L_Max.

Abbreviations used in this chapter can be found in appendix C.

Token Holding Timer (TH
THT holds the time, during which a station is allowed to transmit asynchronous frames. A new

transmission may be initiated when THT has not expired, and Is less than T_PRI associated with the
frame. THT Is initialized with the current value of TRT, when the token is captured.

Valid-Transmission Timer (TVX)

TVX is used to recover from transient ring error situations. The default value for TVX is at least 62,500
symbols (2.50 ms). The timeout value is determined like:
TVX > max(D_Max, F_Max) + Token_Time + F_Max + S_Min

Possibly a time of 2.62144 ms (65,536) can be used, since this time can be implemented with a 16-bit
register, clocked by the symbol clock.

Token Rotation Timer (TRT,

TRT is used to control the ring scheduling during normal operation, and to detect and recover from
serious ring error situations. 1t is initialized with different values during different phases of ring operation.
When TRT expires, TRT is reinitialized to T_Opr and Late Ct is incremented.

T_Opr is the operative timeout value of TRT. It Is negotiated between the stations to a value between
T Min and T_Max during ring initialization, and is controlled by the transmitter state machine of the MAC.
To negotiate for the lowest value of T _Opr, each station uses T_Req between T_Max and T_Min, so that
the lowest T_Req becomes T_Opr. The maximum time between two token passings can be 2*T _Opr.
If a station requires a guaranteed response time, it should set its T_Req to half of this time.

T_Min is the minimum value for T_Opr for which a station can operate correctly on the ring. If T_Req
is smaller, this station cannot operate correctly. The default value of T_Min may not be greater “than
100,000 symbol times (4.0 ms) guaranteeing a response time of 8.0 ms.

T_Max is the maximum value for T_Opr, and has to be several times the maximum ring initialization time
to permit stable ring recovery.

T Max > K* T_Init (default K=4)
T Max > M * T React + N * T_Resp (default M=2, N=6)

T_Max must be at least 4,125,000 symbols (165 ms). This can be implemented by a 22-bit counter,
allowing for 4,194,304 symbols (167,77216 ms), when clocked by the symbol clock.

The time spend in states T0, T4 and T5 depends directly on the choice of the T_Max parameter,
so T_Max should not be set to the maximum value mentioned here.

T_Init = T_React + T_Resp < 40.58 ms

T_Init is measured from the time the ring is free of spurious noise. In absence of noise:

64

9.1 Timers

T_React < | Max + D_Max + A_Max + TVX
< 30.24 ms

T Resp < (8 * D_Max) + (2 * M_Max * Claim_FR) + S_Min)
< 10.34 ms

(TVX Is the actual value used for TVX)

9.2 Counters

Counters are used to count the number of events, creating an error when they exceed a certain
threshold.

Late nter (Lat

Counts the number of TRT expirations since MAC was reset, or some token was received. Late_Ct is
set to one on initialization or reset of the station, and is incremented every time TRT expires. When the

ring is operational (Ring_Operational), Late_Ct is cleared to zero every time a valid token has arrived,
and Late_Ct is incremented each time TRT expires.

Frame Ct

This counts the number of all frames received.

Error Ct

Counts the number of erroneous frames detected by this stations, and not by a previous station.

Lost Ct

Counts the number of instances in which MAC is receiving a frame or token, and an error occurs so that
the credibility of PDU reception is doubted. In this case MAC strips the frame from the ring replacing
it with | symbols. Subsequent stations do not increment their Lost_Ct, since they recognize the frame
as stripped via the | symbols.

9.3 Operation on the ring

The data is transmitted into frames. The right to transmit a frame on the ring can be obtained by
capturing a token.

Frame transmission

Upon a request for SDU transmission, MAC constructs the PDU by placing the SDU in the INFO field
of the frame. Upon reception and capture of an appropriate token, MAC starts transmitting the frames
according to the token holding rules. During this transmission, the FCS Is generated, and appended at
the end of the frame.

65

9. Design issues of MAC

Token transmission

After transmisslon is completed, the station immediately transmits a new token. Optionally the station
may hold the token until one or more frames have returned. Then the station must check i MA is
returned in SA, indicated by M_Flag. Until it has not been returned the station must send | symbols. As
soon as FC, DA an SA are received, the station must transmit a token. This last method should not be
used with normal data transport, since this decreases the performance dramatically. It may be used for
various SMT functions. .

Frame stripping

Each station has to strip its own frame from the ring. As soon as a station recognizes SA as MA, it
transmits | symbols on the ring. The remnants of the frame (PA, SD, FC, DA, SA) stay on the ring since
the recognition is not possible until SA is received (and repeated). This causes not any trouble since the
other stations recognize the frame as stripped because of the | symbols after SA and the missing ED.
Remnants are removed from the ring as soon as they reach a transmitting station.

Ring scheduling

There are two classes of service, synchronous and asynchronous. The synchronous class Is used for
traffic that needs a guaranteed bandwidth and response time, the asynchronous class for traffic that
does not need that, but can accept dynamic bandwidth sharing.

Synchronous bandwidth is preallocated (via SMT), and asynchronous bandwidth is instantaneously
allocated from the remaining bandwidth of the ring.

Inthe MAC the TRT is used to maintain the ring scheduling. The TTRT Is negotiated during a claim token
bidding process. The MAC receiver saves the most recently received TTRT (T_Bid_Rc) and passes the
final negotiated TTRT (T_Neg) to the MAC transmitter, where it becomes the operational TTRT (T_Opr)
upon successful ring initialization.

TRT must be reset each time an early token arrives. When an early token arrives (TRT has not reached
TTRT already), the bandwidth may be used for synchronous as well as for asynchronous traffic. When
a late token arrives (TRT has exceeded TTRT once), only synchronous transmissions are allowed.

There are different methods to limit the bandwidth used for both kinds of transmissions. However, no
station is allowed to hold the token longer than TTRT. This guarantees an average TRT of TTRT and a
maximum TRT of 2*TTRT.

Synchronous transmission

The bandwidth that each station may use for synchronous transmission, is expressed as a percentage
of TTRT. The allocation Is established by the SMT, via SMT PDUs. Initially the allocation is zero for each
station, and to change this allocation, every station uses the SMT protocol.

At ring initialization, the station may remember its allocation, provided that there has not been a change
in TTRT, or a major ring reconfiguration (no beacon frames have been transmitted or received). The total
synchronous bandwidth is expressed as:

TTRT - (D_Max + F_Max + Token_time)

66

9.3 Operation on the ring

It is not required for interoperability that a statlon can support synchronous transmission.

Asynchronous transmission

Asynchronous transmission is allocated by two kinds of mechanisms:
- Non restricted token: Bandwidth Is usable for all users.
- Restricted token: Bandwidth is usable for specific users.

Ring operation starts in nonrestricted mode. Then the stations may establish the threshold values
(T_Pri(n) for each priority level n. Since the lowest priority may only be used when there Is much
bandwidth left the threshold values must be lower (twos complement!) with decreasing n. When multiple
priority levels are not implemented, all T_Pri(n) must be TTRT.

On reception of an early token, the contents of the TRT must be copied to the THT, and TRT must be
reset. The difference between the current THT value and TTRT is the time that asynchronous frames may
be transmitted. An asynchronous frame of priority n may only be transmitted when THT is lower then
T_Pri(n). THT is enabled during asynchronous transmission.

Restricted token mode is entered when some station needs almost all of the asynchronous bandwidth
{(data burst). The management of the extended communication, Is the responsibility of higher level
protocols.

Initiation of the restricted token mode is done by the requesting station. It captures a non restricted
token, sends Initial dialogue frames and finally transmits a restricted token. The destination stations enter
restricted token mode upon receipt of the initial dialogue frames, and exchange restricted tokens during
the dialogue. The restricted token mode is terminated, when the terminating statlon transmits its final
dialogue frames (after capture of the restricted token), followed by a non restricted token.

In restricted token mode, only the destination stations use the asynchronous bandwidth. Other protocols
{even SMT protocols) are not allowed to use this bandwidth. The synchronous transmission can proceed
normally.

There is no need for use of THT in restricted token mode, though the stations may not intrude on the
synchronous bandwidth. The THT is not needed because the restricted token mode supports fair access,
since each station can initiate a dialogue.

To ensure fairness (to the excluded stations) SMT must negotiate and monitor a maximum restricted
token mode time. If this time is exceeded, SMT must abort the extended dialogue via the SMT protocol
and interface.

Restricted token mode is an option, and not required for interoperability. The Ignoring of THT Is also
optional, and not required.

9.4 Monitoring of the ring

All MACs together fulfil the monitoring function on the ring. This means that each MAC continuously
checks the ring on invalid conditions requiring reinitialization. These conditions can be the absence of
any activity on the ring, or Incorrect activity. Inactivity is usually detected by expiration of TVX, while
incorrect activity Is detected via the Late Ct or SMT processes. The relation between the different
processes is shown in figure 9.1.

67

9. Design issues of MAC

yielded

figure 9.1, Relation between the different processes in the MAC

Claim token process

When a station detects a condition that requires the ring to reinitialize, it must start a claim token

process. This means that one or more stations bid for the right to initialize the ring, by transmitting claim

frames. It also looks for incoming claim frames. When the received bid is higher (shorter time) the station

yields, when the received bid Is lower (longer time) the station continues bidding its own value. Conflicts

are solved as followed:

- The lowest TTRT-bid has precedence (highest bid value).

- In case of equal bid values: The bid with the longest address has precedence (FC.L=1 > FC.L=0)

- In case of equal bid values and equal FC.L: The bid with the highest address has precedence (the
highest SA value).

When a station receives its own claim frames back, it has won the bid, and all other stations have
yielded. The winning station starts the initialization process.

The claim token process is timed by TRT, set to a large value (T_Max). This ensures stable ring recovery.
The TRT will be set to this value, when the station enters the claim token process (not on receipt of
individual claim or beacon frames), and may not be reset when the station has left the claim token
process until the ring is operational.

If TRT expires while the station is in the claim token process, the process has failed. Possibly external
intervention may be required, and the station must start the beacon process.

If TRT expires after the station has left the claim token process, and Is waiting for some other station to
initialize the ring, it reenters the claim token process.

Initialization process

Each station contains the boolean Ring_Operational, which Indicates the current status of the ring. It is
cleared when a station detects a claim or beacon process on the ring, and when it receives a MAC reset
request from SMT. When Ring Operational is cleared, all currently serviced
(SM_MA_UNITDATA.requests and (SM_)MA_TOKEN.requests are aborted, no token is issued, and an
abnormal confirm is returned to the requester.

Initialization starts on successful completion of the claim token process by a station. First it sets T_Opr
to T_Neg, and it resets TRT. At last it issues an initial non restricted token. This is done to align the TTRT
values and TRTs over the ring. Since Ring_Operational is clear in each station, none may capture the

68

9.4 Monitoring of the ring

initial token. Upon receipt and repeating of the initial token, each station copies T_Opr to T_Neg, resets
TRT, sets Late_Ct to one and sets Ring_Operational.

On the second token rotation, each station accumulates the current synchronous bandwidth utilization,
while inhibiting asynchronous transmission, and allowing synchronous transmission. On the third rotation
asynchronous transmissions are allowed.

Beacon process

When a fail of the claim token process Is detected, or upon request of SMT, the detecting station initiates
a beacon process. In this case the ring may have physical damage and may have to be reconfigured
(see SMT connection management [5]). To restore the logical ring, some external intervention must be
invoked. The purpose of the beacon process is to signal to all remaining stations, that a logical ring
break has occurred, and to provide diagnostics or other assistance to the restoration process (via SMT).

When a station enters the beacon process, it starts transmitting beacon frames until a beacon from an
upstream station is received; then it yields. When a station receives its own beacon frames, it assumes
that the logical ring is restored, and initiates the claim token process.

A station resets TRT on entering the beacon process, and not on receipt of individual claim or beacon

frames. When TRT expires after the station has left the beacon process, it enters the claim token
process.

9.5 MAC structure

The MAC is built up from two asynchronous cooperating state machines, the transmitter and the
receiver, combined with other logic and memories. This is shown in figure 9.2.

from LLC and other MAC functions to LLC and other MAC functions

Il

transSmitter este———receiver

PH_UNITDATA request PH_UNITDATA.indication
figure 9.2, Basic structure of MAC

The transmitter and receiver are described as state machines. They are separated because of the
functions that must be performed parallelly and asynchronously. The state machines are synchronous
to the symbol clock which means that if an action takes more than one symbol time, this must be
achieved via several states. Actions described as part of a state occur each time the state is entered,
actions described as part of a transition, are associated with that transition.

69

9. Design issues of MAC

Each state machine must act as follows:
1. Evaluate all conditions within the current state.
2. If the conditions for a state transition are satisfied then:
- Perform the transition actions in the current state.
- Enter the new state.
- Perform the entry actions for the new state.
- If an immediate transition from the new state is possible, then repeat the sequence starting
with 1. ’
3. If the conditions for in-state actions are satisfied, then execute the specified actions.

PH_UNITDATA.indication Is the major trigger event for the receiver. The receiver must perform its
processing sequence, using PH_UNITDATA.indication as parameter for condition evaluation. When the
sequence is completed, the symbol and associated event signals must be forwarded to the transmitter.

The receipt of a symbol and associated event signals is the major trigger event for the transmitter. For
each input symbol, the transmitter must generate a corresponding output symbol. In repeat state the
output symbol will be the same as the input symbol, else the input symbol is discarded and a new
output symboal is generated.

The contents of specific fields in received and transmitted frames are only known to MAC during the
lifetime of the frames. All values that must be remembered, must be saved in MAC variables.

9.6 Receiver state machine

The functions of the receiver are:

- Receive and validate information from the ring.

- Select the portions that are relevant to its station.

- Scan PH_lIndication for valid frames (FR) and tokens (TK).

- Pass each frame with a matching DA to the appropriate entity (LLC, MAC, SMT).
- Process the MAC frames after validation.

- Maintain TVX to detect ring failures.

- Generate appropriate signals for the transmitter.

- Save the current values of T_Bid_Rc, T_Neg, A Flag, C_Flag and E_Flag.

- Maintain Frame_Ct, Error_Ct and Lost_Ct.

Several criteria are defined for frame validity checking, See [4] p40.

For this state machine 6 states are defined numbered RO to R5. The meaning of the states Is as follows:
RO: listen

R1: Await_SD (await starting delimiter)

R2: RC_FR_CTRL (receive frame control field)

R3: RC_FR_BODY (receive frame body)

R4: RC_FR_STATUS (recelve frame status)

R5: CHECK_TK (check token)

The description of the states and transitions between them is given in detalil in [4] (p41-44).

The state diagram of the state machine is given in appendix A.

70

9.7 Transmitter state machine

9.7 Transmitter state machine

The functions of the transmitter are:

- Repeat information from other stations on the ring.

- Cooperate with other stations to coordinate priorities for use of the ring.

- Operate on the symbol stream from the PHY, and produce a symbol stream to the PHY.
- Repeat the received frames until it needs and receives a usable token.

- Transmit its own data followed by the token, and restart repeating.

- Transmit claim frames when required to recover the ring.

- Maintain the current T_Opr and TRT to ensure correct ring scheduling.

The operation is synchronized by the signals generated by the receliver, and Is also using A_Flag, C_Flag
and E_Flag saved by the receiver.

For this state machine 6 states are defined TO to T5. The meaning of the states Is as follows:
TO: TX_IDLE (transmitter idle)

T1: REPEAT

T2: TX_DATA (transmit data)

T3: ISSUE_TK (issue token)

T4: CLAIM_TK (claim token)

T5: TX_BEACON (transmit beacon)

The description of the states and transitions between them is given in detail in [4] (p45-50).

The state diagram of the state machine is given in appendix B.

71

10. Implementation example of PHY

To learn something from other designs, the design of AMD’s ENDEC has been watched at. This is not
used for the design developed later in this report but only added for extra information and insight.

The Physical Layer Protocol (PHY) simultaneously receives and transmits data. The transmitter accepts
symbols from the MAC, converts these five-bit code groups and transmits the encoded serial data
stream to the PMD. The receiver receives the encoded serial data stream from the PMD, establishes
symbol boundaries and forwards the decoded symbols to the MAC. Additional symbols (Quiet, Idle and
Halt) are interpreted by PHY and used to support SMT functions. Since FDD! clocking is point-to-point
with each station transmitting on its own fixed frequency clock, an elasticity buffer at each stations PHY
is used to compensate for frequency differences between the receive and transmit clocks.

10.1 Propagation delay and station latency

An elasticity buffer and a clock recovery take part of each station. A two stage synchronization both at
the bit level as well as at the symbol level, is necessary to regenerate symbols in the receiver. Thus the
channel propagation time and the station latency are random variables. Two point-to-point stations can

Station A Station B
Sink MAC Source
Sym_sor
SMT
Smoother Encoder
| ooer Hot—f o -
Deooder '.'
am(s)* PHY
Framer Shifer
______________ # Bou sreo
Buf_out
Bulfer
Bulin
1

"l e jml PMD

figure 10.1, Transmitter - receiver entities

be modelled as a transmitter-receiver pair, figure 10.1, each palr consisting of nine entities contributing
each to the path delay. Theses entities are: Source, Encoder and Shifter in B; Elasticity buffer, Framer,
Decoder, Detector and Sink in A. Fiber connects B with A and introduces a Gaussian distributed delay
varying from 0 to 8 ns. Station latency is the time that data stays in a station, this is an important
parameter, the expected latency average is 19 bits (0.152 ps), [24].

73

10. Implementation example of PHY

10.2 PHY functional blocks

The main issues of the PHY sublayer are [6]:
- Coding

- Clocking requirements

- Alignment

- Buffering of received data

- Preservation of sufficient preamble

- Filtering spurious symbols

- Station management and diagnostics

4B /5B encoding

For proper data recovery the encoding must ensure that the average DC on the waveform does not
deviate from the midpoint of a large extent. The correction of the distortion due to inter symbol
interference is. accomplished by means of equalization, implemented by a high-pass filter, which
eliminates the DC component. Hence as long as the DC fluctuation is minimized by means of proper
choice of encoding, it is possible to recover the data with a high degree of accuracy. There are various
means of data encoding (Manchester codes, HDB3 in telephone trunk lines, 4B3T in ISDN) with each
its own features. For the FDDI required reliability, the 4B /5B coding was chosen. The average DC of the
transmitted data varies within 10% of the centre point. Hence distortion introduced by AC coupling in
the receiver is minimized to that extent. The FDDI codes can be found in table 3.1.

Encoding must include clock information in the transmitted data to maintain synchronization with the
receiver clock recovery circuit. The clock can only be recovered if there Is a suitable number of
transitions in the transmitted data. With the 4B/5B encoding, this number of transitions is not yet
guaranteed. For this purpose another encoding step must take place to guarantee that there are
sufficient transitions.

In FDDI Non-Return-to-Zero (NRZ) data is converted to Non-Return-to-Zero-Invert-on-ones (NRZI) data
after 4B/5B encoding. In NRZI data, a transition Is present for every logic one, these transitions provide
the clocking information for the recovery circuit. FDDI uses run-length limited 4B /5B codes, which has
at most three consecutive zeros in the serial transmitted stream (run-length limited to three).

The Quiet (five zeros) and Halt (one transition in five bits) symbols violate the run length rule (see
table 3.1). If the Quiet and Halt symbols are alternately present, there is only one transition for every 10
bits. These conditions can be handled if the design of the recovery circuit can handle 9 missing
transitions for every 10 bits. Of course there is no need for a clock recovery function for a Quiet symbol
stream, there is no information present.

Transmit Clock

The data rate on the transmission medium is 125 Megabits per second. FDDI specifications require the
clock be accurate in frequency to within 50 parts per million (0.005%). This tight tolerance Is imposed
to keep the depth of the elasticity buffer within reasonable limits to compensate for frequency differences
between the recovered clock and the local clock. If the tolerance on the bit clock is 0.005% the minimum
elasticity at the recelver is plus or minus 4.5 bits at the receiver, for a maximum frame length of 4500
bytes.

FDDI also specifies limits on the spectral purity of the clock and the order of suppression of sidebands.
these are needed to minimize jitter at the transmitter output: maximum duty cycle distortion of 0.2 ns

74

10.2 PHY functional blocks

and a peak to peak random noise of 0.12 at a bit error rate of 2.5*10™*°. The bit clock can be derived
from an internal multiplying Phase-Locked-Loop (PLL).

Receive Clock Recovery

The receive clock is recovered from the received data using a Receive PLL (RPLL). Two kinds of clock
recovery mechanisms are used: Phase-Locked-Loop and Surface Acoustic Wave (SAW) filters.

The RPLL must be able to recover the clock Information from the received data even when it Is jittered
up to 3 ns on any blt transition. For a bit cell duration of 8 ns, this works out to 1 ns eye opening, the
peak to peak jitter permissible is 3 ns (at a bit error rate of 2.5*10"'%). The maximum acquilsition time on
the PLL Is 100 ps. The worst case, 9 missing transitions for every 10 bits, is the alternating Qulet Halt
symbol stream.

The RPLL also needs to handle noisy inputs, such as arlse when the Input to the optical receiver is either
a stream of Quiet symbols or the result of a broken optical link. Under such clrcumstances, the ring
status indicator from the optlcal receiver can flag active for up to 300 microseconds. At such times, it
is vital that the RPLL does not deviate from the expected frequency ranges of the input. In those cases
the internal clock can be used for short periods (128 byte periods).

Byte Alignment

Byte alignment (the PHY standard does allow a symbol allgnment) is required in the receiver to properly
decode received information. When the transceiver is powered up, it sends connection management
handshake symbols on the medium. One of the Quiet, Halt, Master or Idle state symbols is selected
depending on the node state. For each connection management symbol to be decoded, the alignment
of symbols can start with any blit in the symbol. Since the transceiver performs byte alignment on the
received data, it can arbitrarily choose the alignment and still decode the Information.

The correct receipt of data frames requires proper alignment of the received information. The start of
every frame consists of a J and K symbol, the SD. The transcelver recognizes this starting delimiter and
realigns ltself. It is possible in this realignment process to generate a fragment byte that precedes the
JK symbols owing to the new allgnment belng anywhere from 0 to 9 bits (due to encoding of 8 bits in
10 by 4B/5B) skewed from the previous alignment. If aligned exactly to the previous data, no fragment
byte Is generated. The FDDI standard allows the fragment byte to contain fragment bits, with the
remainder being a few bits of JK. It could therefore potentially be a garbage byte, an Idle byte or it can
be completely deleted.

Elasticity Buffer

As FDDI calls for an asynchronous clocking scheme each node must have its own independent clock.
Once the data has been recovered by the RPLL, the data must be synchronized to the local clock for
the node. An elasticity buffer is needed for the temporary storage of the received data to accommodate
to the maximum 0.01% frequency difference. It also permits the deletion or addition of idle symbols
during the preamble. The required elasticity is +4.5 bits.

When the transceiver Is powered up, elther Quiet, Halt or Master line state symbols are recelved. In
these cases the buffer will be enabled and get Into overflow, or underflow, after 4500 bytes if the clock
difference is a maximum of 0.01%. in such case the elasticity buffer flags overflow, or underflow, for one
byte and resumes reading the line state symbols. In case of an overflow one byte gets deleted, in case

75

10. Implementation example of PHY

of underflow one byte of Violation gets inserted. Overflow or underflow is indicated to the rest of the
node by means of the Violation symbols, it may be an EB_error.

Smoother

A smoother function is present to ensure that the MAC receives at least 6 bytes of preamble (Idle
symbols) before a frame. When the transceiver receives data from a faster station it uses the elasticity
buffer to adjust the frequency by deleting a byte as described above. If the next node is also slower, it
may also delete a byte of Idle. Over several nodes, preambles that were 8 bytes in number at the
originating node may become 5 or less bytes at slower nodes. Since a minimum of 6 bytes of preamble
is required to adequately copy addressed frames at the node, the smoother compensates for such
preambles by adding additional bytes of preamble.

Any non idle symbols during the interframe gap are Included in the symbol count for the smoother. It
Is possible that noise could be introduced in the middie of an Idle stream. Since the repeat filter converts
non idle symbols into Idle symbols (in the Force !dle state), it introduces no error for the purpose of
counting the symbols.

Line State Overflow/Underflow (OVUF)
Whenever the Elasticity Buffer overflows or underflows, OVUF line state is reported. Whenever OVUF is
active, the receive bus (output of the decoder) outputs Violation symbols.

BRepeat Filter

The purpose of the repeat filter is to limit the propagation of spurious symbols in the ring. This avolds
additional DC imbalance in the ring beyond the 10%. The type of spurious symbol could be a Halt,
Quiet, Violation, isolated J or K, or any other unused combination in the encoder truth table (see
table 3.1). A byte with parity error could also fall into this class. Whenever one of this set of symbols is
sensed in the middle of the frame, four Halt symbols are transmitted before a stream of Idle symbols.
This is done to allow the MAC entity in the next node downstream to increment its lost count. The Halt
symbols are inserted to distinguish this stream from a stripped frame.

This repeat filter can be modelled by a state machine [6], see figure 10.2. After the station is configured
properly this state machine is enabled, if it is not enabled the symbols are transmitted without being
filtered.

((Q+H*V+J+E)+*PEPARCON).JKP
"‘"‘-”4’ ARCOND THROUGH MODE
(Bntered upon rewet)
TUPPER.(PE_+PARCON_)
JE.(PE_+PARCON_)
h 4

FORCE IDLE FORCE HALT

(f repeat filtee enabled) ' (if repoat filker epabled)

TUPPER.(PE_+
PARCON_)+4*H

figure 10.2, State machine of the Repeat Filter

76

10.2 PHY functionai blocks

There are three states: the Through mode, the Force Halt mode and the Force Idle mode.

Abbreviations:

PE: Parity Error

PARCON: Parity error Convert

QH,Vv: Quiet, Halt, Violation symbol
JK: Starting delimiter

IUPPER: Idle as upper nibbie

JKP: JK previously

ot Logical operators

Through mode

This state is entered after reset. If a spurious symbol is seen (in the upper or lower nibble) a transition
to state Force Halt takes place. A transition to the other state takes place when an idle symboil Is seen
in the upper nibble. A parity error is ignored if the correct bit Iis set (PARCON).

Force Halt mode

In this state, 4 Halt symbols are sent. The second pair of Halt symbols is sent only if there Is not an idle
symbol in the upper nibble, or a JK symbol without parity error is not present at the encoder input. Parity
errors can be ignored if the PARCON bit Is not set.

Force Idle

Idles are transmitted whenever an Idle symbol Is present in the upper nibble. It is also sent after 4 Halt
symbols during the presence of a spurious symbol. This conversion does not take place before the first
occurrence of JK. The transition to the Through mode takes place after the next JK without parity error.
Depending on the PARCON bit, parity errors can be ignored.

10.3 Model of the Encoder/Decoder

The block diagram of the Encoder/Decoder as shown in figure 10.3, Is AMD's solution as part of their
total solution: the SUPERNET chip-set [6]. This Encoder/Decoder implements the PHY sublayer.

Signals

When a signal name is underlined, this denotes the inverted signal.
R-BUS

R. Receive Bus

RCL Receive Control Lower

RCU Receive Control Upper

RP Receive Bus Parity

TA-BUS

TA,, Transmit Bus A

TACL Transmit Bus A Control Lower
TACU Transmit Bus A Control Upper
TAP Transmit Bus A Parity

77

10. Implementation example of PHY

NP,
PARERR
R/W
So2
BMODE
BCLKIN
BCLKOUT
NCLKOUT
CARDET
TXTY
CRX,CRX
RLTX, RLTY
EBCLK,EBCLK

*
NR2
CcTX > NP,
1—;—1““" - BMODE_
— RW,c/D, B8
Shift H READY
letor — CARDET
10| — TEST
ool ~ RESET
= o "' X s“
'T » LooP
(]
48/38
10
1
" 3 Fepcat
Ragleler
Y PeRy) PARERR
1
Transmit
: ;ﬁ.crx
BOLK ‘) NCLKOUT
m_x Transmit PLL & . BCLKN
sé:ua
1 TA-BUS ’u 1 | TB-BUS

figure 10.3, Model of the Encoder/Decoder

Transmit Bus B

Transmit Bus B Control Lower
Transmit Bus B Control Upper
Transmit Bus B Parity

Use Local Clock
Command/Data
Chip Select
Data Strobe

Node Processor Bus

Parity Error

Read /Write

Line Status

Bus Mode

Byte Clock

Byte Clock

Nibble Clock

Carrier Detect

Transmit+, Transmit-

Clock Receive +, Clock Receive-
Receive Loop Transmit+, Receive Loop Transmit-
ECL Byteclock+, Byteclock-

78

10.3 Model of the Encoder/Decoder

SERDAT,SERDAT Serial Data+, Serial Data-

XTAL, XTAL, Crystal 1 and 2
CTX.CTX Clock Test+, Clock Test-

PIN description

Description of the different signals of figure 10.3. Each slgnal will be described In a short functional way.

Ror

RCL

RCU

RP

TAos

TACL

TACU

TAP

Receive Bus
The R-bus output sends Information being decoded from the serial receive input to
either the MAC-Device or another Encoder/Decoder in the station.

Receive Control Lower

RCL Is used to Identify the type of information on the lower nibble (R, ,) of the R-bus.
If RCL is high then the lower nibble is a control character, If RCL is low then the lower
nibble contains data.

Receive Control Upper

RCU is used to Identify the type of information on the upper nibble (R,,) of the R-bus.
If RCU is high then the upper nibble is a control character, if RCU is low then the upper
nibble contains data.

Receive Bus Parity
The RP signal ensures odd parity on the R-bus. If the number of "ones" is odd, then the
RP will be "zero".

Transmit Bus A
This is one of the two Input buses used to accept data and control Information from
either the MAC-Device or the other Encoder/Decoder (if one exists) at the station.

Transmit Bus A Control Lower

TACL is used to identify the type of Information on the upper nibble

(TA,,) of the TA-bus. If TACL is high then the lower nibble is a control character, if TACL is low
then the lower nibble contains data.

Transmit Bus A Control Upper

TACU is used to identify the type of information on the upper nibble

(TA,.;) of the TA-bus. If TACU is high then the upper nibble is a control character, if TACU Is low
then the upper nibble contains data.

Transmit Bus A Parity

The TAP signal ensures odd parity on the TA-bus. If the number of "ones" is odd, then
the TAP will be "zero". Data with a parity error will be processed by the repeat filter state
machine.

79

10. Implementation example of PHY

TBge

TBCL

TBCU

Transmit Bus B
This is the other of the two input buses used to accept data and control information
from either the MAC-Device or the other Encoder/Decoder (if one exists) at the station.

Transmit Bus B Control Lower

TBCL is used to Identify the type of information on the (lower) nibble

(TB,,) of the TA-bus. If TBCL is high then the nibble is a control character, if TBCL is low then
the nibble contains data.

Transmit Bus B Control Upper

TBCU is used to identify the type of information on the (upper) nibble (TB,,) of the TA-
bus. If TBCU is high then the nibble is a control character, if TBCU is low then the
nibble contains data.

TBP
Transmit Bus B Parity
The TBP signal ensures odd parity on the TB-bus. If the number of "ones" is odd, then
the TAP will be "zero". Data with a parity error will be processed by the repeat filter state
machine.
CRX,CRX
Clock Receive+, Clock Receive-
The bit rate clock derived from the received serial data (RX, RY or RLTX, RLTY) is sent
to the Encoder/Decoder from the receive PLL using CRX and CRX.
EBCLK,EBCLK
ECL Byteclock+, Byteclock-
The crystal oscillator on the Encoder/Decoder generates the byte rate (12.5 MHz2)
frequency reference. This signal is synchronous to BCLKOUT.
LOOP
This signal Is active when the Encoder/Decoder is in loopback mode. When active, It
causes the RLTX, RLTY outputs to be looped back through the RLTX, RLTY inputs of
the data separator (see chapter 10.4).
RLTX, RLTY
Receive Loop Transmit+, Receive Loop Transmit-
RLTX, RLTY are an alternate set of serial outputs used to loop back through the data
separator. The contain the same data as TX, TY except when in loop back mode.
SERDAT,SERDAT
Serial Data+, Serial Data-
SERDAT, SERDAT are NRZ! data coming from the data separator.
UCL

Use Local Clock

The UCL signal is active whenever CARDET goes inactive, or when in Quiet Line State
(QLS). UCL is also controlled by the noise timer inside the Encoder/Decoder. The noise
timer forces ULC to be active for a period of 128 BCLK cycles after NLS has been
active for at least one byte clock. After 128 BCLK cycles the noise timer releases ULC
for the next 128 BCLK cycles. This may be repeated if NLS is still active.

80

10.3 Model of the Encoder/Decoder

c/B
Command/Data
When high, data on the NP, Is written into the three bit pointer register. When low,
data on the NP, Is written into one of the control registers or read from one of the
control/status registers inside, as pointed to by the pointer register.

Chip Select
When low, this indicates that the NP has selected the Encoder/Decoder to read or write

one of its registers. It should stay low until the READY signal goes low (in asynchronous
mode).

Data Strobe

DS is used for defining the presence of data on NP, ,. DS is low when data to be written
is valid or when the NP is ready to read. It should stay low until the READY signal goes
low.

NP,
Node Processor Bus
Data from the node processor.

PARERR
Parity Error
PARERR indicates that there is a parity error on data which Is coming in from the
selected transmit bus.

READY

The READY signal is a handshake signal for use with an asynchronous NP. When the
BMODE is high, as in case of an asynchronous NP, READY is also high and is typically
not used in the system. When BMODE is low, the NP runs asynchronous to BCLKIN
and the Encoder/Decoder indicates that data being acted upon by bringing READY low.
During a write operation, READY goes low after data from the NP is clocked into the
Encoder/Decoder. In case of a read operation, READY goes low after the
Encoder/Decoder supplies valid data onthe NP, ,. Typically the Encoder/Decodertakes
between two and three BCLKIN cycles to force READY low as long as DS and CSI stay
low.

This hardware reset initializes the internal logic.

Read /Write
When R/W Is high, the NP reads data. When low, the NP writes data into one of the
control or pointer registers.

Line Status

These signals indicate the line states of the medium, see chapter 3 for the different
codes.

81

10. Implementation example of PHY

BMODE
Bus Mode
This signal is high when the Encoder/Decoder works in synchronous mode, low when
in asynchronous mode.

BCLKIN
Byte Clock
This is the main clock that runs the Encoder/Decoder. It must be driven from its own
BCLKOUT or from that of another nearby Encoder/Decoder. The transmit PLL uses
BCLKIN as a reference to generate the transmit bit clock (this bit clock is 10 times the
frequency of BCLKIN).

BCLKOUT
Byte Clock
BCLKOUT is derived from an internal oscillator which uses an external crystal. This is
the main clock running the station. if there are two Encoder/Decoder devices in one
station, as in a DAS, only one clock source may be used.

NCLKOUT
Nibble Clock
This signal is derived from the internal PLL and is twice the frequency of BCLKIN.

CARDET
Carrier Detect
This signal is received from the optical receiver. When high, it indicates the presence
of data in the fiber. When low, it is used to force a Quiet Line State (QLS). CARDET is
ignored in the loopback mode.

Transmit+, Transmit-
These signals provide a differential ECL NRZI output from the Encoder/Decoder. These
signals drive the optical transmitter.

XTAL,, XTAL,
Crystal 1 and 2

CTX,CTX
Clock Test+, Clock Test-

Description of the reqisters
The Encoder/Decoder has to operate in different modes depending on the state the station or ring is

in. For network management reasons these different states must be known and controlled, therefore this
Encoder/Decoder needs a set of registers.

Assignments to the four Contro!l Registers and the Pointer Register (all three bits wide) are shown in
table 10.1. The Encoder/Decoder can be programmed with these registers.

- CR, programs the Encoder/Decoder to transmit data or line states, as described in table 10.2.

- CR, selects either the TA-Bus or the TB-Bus inputs. This is accomplished by setting the TMUXSEL bit.
CR, also forces the Encoder/Decoder into one of the operational modes described in table 10.3.

82

10.3 Model of the Encoder/Decoder

table 10.1: Control Register and Pointer Bit assignments

Register Bit 2 Bit 1 Bit 0 (LSB)
CR, C2 Ci1 Co
CR, TMUXSEL LPBK1 LPBKO
CR, RESET EVEN/ODD PARCON
CR, EXTEN2 EXTEN1 SMRESET
CReonter REGSEL2 REGSEL1 REGSELO
table 10.2: CR, (Force Line States)
C2 C1 Co Function Description
0 0 0 Force Quiet Q Bytes forced
0 0 1 Force Master QH Bytes forced
0 1 0 Force Halt H Bytes forced
0 1 1 Force Idle | Bytes forced
1 0 0 Enable Repeat Filter Repeat Filter enabled
1 0 1 Force JKILS JK followed by Idles
1 1 0 Force IQ IQ Bytes forced
1 1 1 Unfiltered Encode Input bits to encoder without filtering.

table 10.3: CR, (Loopback Mode)

LPBK,

LPBK,

- 0O -0

Function

Through (figure 10.4)
Loopback (figure 10.5)

Short Loopback (figure 10.6)

Repeat (figure 10.7)

- CR, contains the RESET, EVEN/ODD and PARCON bits. When PARCON is set to "one", this enables
the conversion of parity by the repeat filter state machine.

- CR, is used to reset the smoother (SMRESET), and can be used to read the state of the smoother
through EXTEN2 and EXTEN1. When the EXTEN2 bit is set to "one", the smoother is extended
by two bits. When EXTENT1 is set to "one", by one byte.

table 10.4: Pointer Register (CR Pointer)

REGSEL2

- 0000

REGSEL1

O =400

REGSELO ENABLE

O -0 =0

CR,
CR,
CR,
Status
CR,

83

10. Implementation example of PHY

- CRponrer Selects one of the control registers as shown in table 10.4. It can also select the line status
of the decoded data as indicated by the S, lines.

Loading and reading the control registers is done by using the C/D, DS, CSI, R/W and NP, , signals.

10.4 Operation modes

As shown in figure 10.3, the Encoder/Decoder has a three input receiver and transmitter multiplexer
(MUX). The transmit buses originate at either the MAC or the adjacent Encoder/Decoder output. This
allows the needed flexibility to the Encoder/Decoder to work under a variety of configurations (four
different operation modes).

In a DAS one or two MAC devices are present and two Encoder/Decoders. Each MAC output connects
to one of the two inputs in each Encoder/Decoder. This mode is called the Through Mode, as shown
in figure 10.4.

MAC- R DATA
8| o
TA

figure 10.4, Through Mode

Through Mode is the normal operating mode with data passed directly between the MAC-Device and
the media.

The input at the transmit multiplexer that comes from the Encoder/decoder receiver is useful in
situations where the Encoder/Decoder can be used as the repeater. It is also useful during initial
connection management sequence when the R-bus output is internally connected back to the transmit
inputs.

The loopback mode (figure 10.5) can be used to test the total path until (but excluding) fiber.

MAC- R
[——— A
DEVICE g e RECEIVER E;'A OR RX,RY
_’, RLTX,
TB g RLTY
N E PTRANSMITTER .
TA -+ X, TY
{Quist Sent)

figure 10.5, Loopback Mode

84

10.4 Operation modes

The inputs from the transmit bus are useful for short loopbacks where the MAC is looped back at the
input stage of the Encoder/Decoder for diagnostic purposes.

MAC- RI| B DATA
¢ — -
DEVICE E RECEIVER SEPARATOR| | TXsRY
Bl ¢
| TRANSMITTER » Tx,TY
T A E (Qu{.t Bent)

figure 10.6, Short Loopback Mode

The Short Loopback Mode will be used with the MAC external loopback mode (see figure 10.6).

If one of the physical links fails, either MAC has the option of going through the other link during station
reconfiguration. In this mode one Encoder/Decoder will be in Short Loopback Mode and one in Repeat
Mode, see figure 10.7. More precisely: Encoder/Decoder A will have its control registers to CR,=100

and CR, =11, i.e. MAC accepts RA-bus. And Encoder/Decoder B will have Its registers to CR,=100 and
CR,=10, i.e. MAC accepts RB-bus (see table 10.2 and table 10.3).

MAC- R DATA
DEVICE E RECEIVER EPARATOR RX,RY
TB
A TX,TY

TRANSMITTER
TA

A

TMUX

figure 10.7, Repeat Mode

85

11. Implementation example of MAC

To learn something from other designs, the design of AMD’s FORMAC has been watched at. This is not
used for the design developed later in this report but only added for extra information and insight.

T STATUS BUS I NP-BUS lms'r BUS

I L
CONFERM| [BUS INSTRUCTION PARITY

¥r-Bug | | STATUS | | INTERFACE LOGIC ALTER \ RA-BUS
AKND LOGIC S \oRD AXD .
{— PARIT
PARITY 9 9 9 Bus 16 | BUs 9 12 PL 12 ? Mux‘_'_
l <| §L il ngﬂ PLL BUS 1 1l l¢— ; RB-BUS
11 1 AND
—1 . PARITY
9
FRAME TIMERS RECEIVE i", RECEIVE | [RECEIVE
STATUS FRAME DECODE STATE
BODY MACHINE
l—“—’ 11
Y BYMGEN
TRANSMIT N sympoL| [syMeoL BUS
STATE LOGIC FILTER| |GENERATOR|
1
vr-nys| LMACHINE - —
AND Y BUB FC3
Y M4AP4
PARITY | RANDSEARE BUS —p[MUx|BUs 11 JPr |1 Fuox X-BUS

.| PL PL3 BUS 9 [» 4 4 5 |1 AND
'I . 3 PARITY

figure 11.1, Functional model of the MAC

In figure 11.1, a functional model of AMD's FORMAC is drawn. This is their MAC implementation and
takes part of the SUPERNET chipset [6].

11.1 Block diagram of MAC

The functional blocks as shown in figure 11.1 will be described in a global overview. It may be noticed
that this MAC (FORMAC), in practice, will operate in conjunction with a datapath controller, a RAM buffer
controller and the PHY as shown in figure 10.3.

External Buses

Seven buses are used to interface the MAC with its surrounding hardware. The NP-bus permits
asynchronous and synchronous communication with the NP. The YR-bus is the output for frames
received from the media and the YT-bus is the input for data to be transmitted on the media.

The RA-, RB- and X-buses interface with the PHY, the physical layer. Data received from the media is
input via the selected R-bus. A MUX at the MAC input permits selection of the active R input bus. Data
is sent to the media over the X-bus.

87

11. Implementation example of MAC

Finally an instruction bus (INST) Is used to select between the different read and write operations on the
MAC registers.

MUX1

This MUX at the input of the MAC is used to select the input for the receiver logic. Under normal
operation the MUX selects one of the R-buses (RA or RB). In case neither R-bus will be used for input,
occurring when the MAC is programmed for internal loopback, the MAC X-bus is used as the input
(instead of an R-bus). This is useful for "In-circuit" testing of the MAC and associated hardware before
the station is placed on the ring. When Internal loopback mode is selected, data on the R-buses is
ignored.

Pipeline 1 (PL1)
This plpeline captures received data and brings it onto the PL1-bus. This latching allows appropriate
setup time for decoding the frame control and address field on incoming frames.

Parity Alter

The parity alter logic changes the parity system used by the MAC. Odd parity Is normally used on the
selected R-bus (and RCU and RCL inputs, see figure 10.3). This parity system Is altered to reflect odd
parity on only the R-bus information, by setting input parity based on the state of the RCU and RCL
signals. Thus, bad parity received on the RP Input will yield bad parity output from this logic.

Receive Frame Logic

This block of logic consists of three basic elements:

- A decoder to interpret the frame control and other special symbols In incoming frames.
- Frame validity logic checks each frame against FDDI frame criteria.

- The receive state machine.

It provides many of the global signals used by other blocks through the station.

Receive Frame Body Logic

This logic sets the flags required for address detection and token reclaiming. The addresses and
requested token time associated with this MAC are stored In registers within this MAC. An ALU compares
these values with the address and T-bid_Rc fields of received frames. A state machine within the block
selects the proper address comparison. The receive frame body logic uses the input from the receive
frame logic block to determine the type of address being received (l.e. long, short, individual or group).
The flags that are set by this block are used by the transmit state machine and the symbol generator.
The flags are also input to the Y-bus handshake block (for data path purposes).

Timers

The timer block contains the timers required for the timed token protocol of FDDI. Three timers are
contained within this block.

- Valid Transmission Timer {TVX)
This 8-bit TVX counts the time between valld frame transmissions on the ring. This is
done by checking the EDs of the frames. If the time exceeds the value loaded in TVX,
the ring recovery will be Initiated through the claim process. The TVX timer Is loaded
with the default value every time a valid frame of unrestricted token is received by the
MAC. The timer Is also loaded each time the mode register is programmed to exit the
initialization mode.

- Token Rotation Timer (TRT)
The TRT is used to Implement the timed token access protocol. The TRT timer counts
the time between receipt of tokens. If TRT exceeds 2 times the operative token rotation

11.1 Block diagram of MAC

time (2*TOPR,) for the network, recovery action is required. When the ring Is operational,
TOPR will be the time negotiated through the claim process and stored in TNEG. During
ring Initialization and recovery, TOPR Is equal to the default value TMAX.

Negotiated Token Rotation Time (TNEG)

This 21-bit register stores the lowest 21 bits of the bid field of a received Higher Claim
or My Claim frame. When the ring becomes operational, this register represents the
winning value of the claim process. The upper 16 bits (of TRT) can be read directly with
the right instruction, the lower 5 bits can be read with a different instruction. Another
instruction is used to load the entire 21-bit TRT register, filling the upper 16 bits with the
value stored in TMAX and writing “zeros” in the other five bits.

Timer Rotation Maximum (TMAX)

TMAX (16 bits) speclfies the default token rotation time to be used during ring
initialization and recovery. it is also used to hold a default TRT (TMAX) during the claim
token process, every time the MAC Is programmed to exit the Initialization mode the
TRT is loaded with TMAX,

- Token Holding Timer (THT)

This timer controls the length of time that the node can hold a token for the purpose
of transmitting A-frames (Asynchronous). Functionally THT is a down counter. THT is
loaded when the MAC captures a token. The value ioaded is the difference between the
time the MAC expected to capture a token (TOPR) and the actual time it took for the
token to circulate the ring. if this difference is greater than the value loaded into TPRI
(lLe. the token was received sooner than expected), the MAC can transmit
asynchronously. The MAC can continue to transmit A-frames until the THT falls below
the TPRI value. Both, THT and TPRiI, are 21-bit counters.

Asynchronous Priority Register (TPRI)

This register is used to control the priority of asynchronous messages. The value of
TRPI is compared with TRT or THT. If the TRT value is greater than TPRI, a token can
be captured for transmission of any pending A-frames. if THT is greater than TPRI,
subsequent A-frames are transmitted.

Bus Interface Logic
This block contains the logic necessary to interface the MAC with the Node Processor (NP).

Instruction Decode

This logic decodes the instruction bus. The decoded outputs are used internally as pointers and control
signals.

Status/Mode/Interrupts .

This block is comprised of the status, mode, and interface logic. The status logic allows for error
reporting to the NP. This information can be read directly or by using interrupts. The mode register
allows the NP to control the mode of the MAC.

Frame Status
This block is used to map the frame status (FS) of a received frame and other pertinent information into
an (8-bit) register. The R and S symbols (see table 3.1) received after the ED of the frame are decoded

as a zero and an one, respectively. The contents of the frame status register Is appended to the receive
frame.

89

11. Implementation example of MAC

Frame Status Register (FRSTAT)
Frame status is generated and appended to the end of all frames when they are
transmitted on the YR-bus.

MUX2

MUX2 is used to append the frame status byte to the frame being sent to the Y-bus. The MUX will output
data from the PL1-bus, while received FC and INFO data is contained internally. After the last byte of
information has passed through the MUX, it will switch to select the receive frame status register. -

Pipeline2
This pipeline latches the received frame information being sent to the Y-bus. This ensures sufficient setup
time for a datapath Interface.

Confirmation Status
This block Is used to confirm the status of the frames originating at the station assoclated with the MAC.

Transmit State Machine
This block implements the transmit state machine outlined in the FDDI MAC specification.

Pipeline3
This pipeline latches frames before they are transmitted to the MAC internal transmit path. This allows
adequate setup time for the frame check sequence logic.

Frame Check Sequence (FCS)

This logic checks the FCS of the received frames, and generates the FCS for the transmitted frames.
A MUX steers either the PL1- (internal receive) or the PL3- (internal transmit) bus into the CRC logic. The
MUX normally selects the PL1-bus when the MAC is in the repeat or idle mode. When the MAC enters
on of the transmit states, PL3 is selected. The CRC is calculated using a 32-bit Autodin Il polynomial as
specified in the FDDI standard, for more information see chapter 3.2.

MUX4
MUX4 selects on of the different sources to be output on the X-bus. These sources are the output of the
symbol filter, the FCS logic and the PL3-bus.

Symbol Filter
The symboal filter logic alters the E_, A_and C_indicators on the repeated frames as specified by the
FDDI standard.

Symbol Generator State Machine

This logic generates the command symbols required for transmission on the media. These include Idle
symbols for preamble, as well as the set/reset and Ending delimiter symbols appended to the frames.
This logic is also used to generate the tokens when they are issued.

MUXS5
MUXS5 selects between the Internal transmit and repeat paths and the symbol generator output for
transmission onto the X-bus.

Pipeline4
This pipeline ensures PHY setup time.

11.2 Overview other resources

11.2 Overview other resources

State Machine Register
This register contains the states as described in the FDDI MAC specifications (see figure 11.2).

Receiver State §

Receiver State ¢
Receivex State 3

Receive:r Btate 2

Receiver State i

Receiver Btate 0

Tranamitter State S

itter State ¢

Transmitter State 3

itter State 2

T itter State 1

itter State 0
TMAX /TNEG
Load TRT
load THT

— Load TVX

figure 11.2, MAC State Machine Register

Address Register
This address register stores the node’s 48-bit address, 16-bit individual and 16-bit group address, and
the station T_request time value. These registers are organized in a 8-by-6-bit structure.

MAC Information Register (MIR)

This is a read only register. This register is used to store the first four bytes of the information field of
received MAC frames. This register Is also used to store the first four information bytes in loopback
mode.

Status Register (STAT)
STAT is used to report an error and status to the NP. Individual bits can be used to generate interrupts
to the NP.

Interrupt Mask Register (IMSK)
This 13 bit register is used to control maskable interrupts. This register can be accessed using the NP-
bus.

Mode Register

On reset, this register is initialized so that all bits are active low (except one). The Node Processor (NP)
can access the mode register with the correct instructions. The mode register contains the operational
modes of the MAC (see figure 11.3).

MMODE, ,

The three mode bits control the operational mode of the MAC. The assignment is as indicated in
table 11.1.

91

11. Implementation example of MAC

MMODE,
MMODE,

MMODE,
MUSESA
MDELDAT
MDISRCV
MADET
MADET
MNFCS
RESERVED
MSELRA

— MDSCRY
RESERVED

figure 11.3, Mode Register

table 11.1: MAC operational modes

MMODE, MMODE, MMODE, Description

[G G G o = W = I]

Initialize

Reserved

Reserved

On-Line

Internal Loopback 1
Internal Loopback 2
External Loopback 1
External Loopback 2

[O o I o R ST S e B]
O e T Y« R N o R Y o, }

Initialize. Initialize is the reset mode of the MAC, this mode is used to read and write many of
the internal registers.

On-line. On-line mode places the MAC in the operational FDDI mode.

Internal Loopback 1. Internal Loopback 1 places the MAC In internal loopback mode. The
internal transmit bus is connected to the internal receive path. R-bus inputs are ignored.

Internal Loopback 2. Internal Loopback 2 operates exactly like internal loopback 1, except with
the receiver operation: Data received in loopback mode will be output on the YR-bus.

External Loopback 1. External Loopback 1 places the MAC in external loopback mode, this
mode will be used with the loopback mode of the PHY.

External Loopback 2. External Loopback 2 is analogous to the internal loopback 2.

92

11.2 Overview other resources

Loopback

The loopback mode Is useful for *in-circuit" testing of the MAC and assoclated node hardware before

insertion In the ring. There are four loopback operations possible:

- If internal loopback Is selected, the MAC X-bus is connected internally to the R-bus input. Data on the
RA- and RB-buses Is Ignored.

- If loopback 1 Is selected, the data received will not be output on the YR-bus. The shared YT/YR-bus
can be used for transmit only. When In loopback, the first four bytes following the SA field -are
stored In the MIR. This allows limited loopback testing without additional hardware.

- If loopback 2 Is selected, the MAC writes the entire received frame to the YR-bus. This data can be
read by dedicated hardware. Of course the hardware needed, depends on wether or not a full-
duplex system is used.

- If external loopback Is selected, the loopback connection is established outside. the MAC.

The internal timers are held during loopback mode. This prevents the MAC from entering the recovery
state due to a time-out. While in loopback mode, the transmit immediate option should be used to allow
the MAC transmitter to enter the transmit data without capturing a token. This is normally used by station
management when ring operation is off.

MUSESA (Mode to Use Short Address)

This mode bit is used in the token claiming procedure. This bit is set to "one" if the addresses
transmitted In the node’s claim frames are 16 bits long. It is important that this bit, the address length
bit in the FC fields of the claim and beacon frames stored and the actual address lengths used In the
claim and beacon frames, are all consistent. If not, the node will not strip its frames from the ring. This
means, a frame could circulate around the ring until another node captures the token and starts
transmitting. This could cause the destination node to receive the same frame many times. Further the
claim process may never finish, because the node will not recognize its own claim.

MDELADET (Mode Delayed Address Detection)
This mode selects the delayed address detection. If set, external DA detection is accepted until the ED
Is received. If reset, and DA does not match, the frame is flushed from memory.

MDISRCV (Mode to Disable Receive)
If set the MAC will not receive frames on the YR-bus. The C indicators associated with address
recognized valid frames will be repeated as received when the recelver Is disabled.

MADET,, (Mode Address Detect)

The MADET bits reflect the address type of the frame received on the YR-bus, see table 11.2. This mode
will be used for flushing purposes.

table 11.2: Address mode detection

MADET, MADET, Description

0 0 DA = MA

0 1 DA = MAorSA = MA
1 0 Promiscuous

1 1 Reserved

93

11. Implementation example of MAC

DA = MA (Destination Address equals My node Address). This is the normal setting. The
MAC indicates that the destination address of the received frame does not match the
corresponding node address (MA, My node Address) in the MAC. So other functional blocks
(data path and ram buffer controller) should not copy the frame.

DA = MA or SA = MA. In this mode the MAC will also inhibit the flush signal for frames it
transmitted (SA in the frame matches the node address). .

Promiscuous. In this mode the MAC indicates that there is an address mismatch. The frame
being received is not addressed to this MAC and is not generated by this MAC.

MNFCS (Mode No Frame Check Sequence)

This bit is used to suppress the generation of CRC on transmitted frames. If set, the MAC generates an
ED and FS field immediately after the final byte from the YT-bus is transmitted. This may be useful for
loopback testing purposes. Note that the CRC logic will always check the received frame, whether
MNFCS is set or not.

MSELRA (Mode to Select RA)
This bit controls the MUX input to the MAC at the interface with the PHY, either the RA- or RB-bus is
selected.

MDSCRY (Disable Carry)

This bit is used for internal timer testing. Setting this bit effectively breaks the TRT and THT timers into
segments to facilitate testing. These timers are separated into one 5-bit (most significant bits) and four
4-bit segments that clock independently.

11.3 Ring operational

When the hardware has been initialized and the Claim and Beacon frames have been setup in a buffer
memory, the station is prepared to begin the Claim Token process with the other stations. To begin this
process, the MAC must be placed into the on-line mode (see figure 11.3). This is accomplished by
setting the mode bits, MMODE, ,.

The Claim Token Process completes when one station receives its own Claim Frame again. Within each
station, the boolean variable Ring_Operational indicates the current operating status. This
Ring_Operational is cleared whenever the station indicates or detects the Claim or Beacon processes
on the ring, and when it receives a MAC_Reset request from SMT.

Ring initialization begins when one station successfully completes the Claim Token process, this station
proceeds to initialize the ring. First, it sets the operative TTRT value (T_Opr) to the negotiated TTRT value
(T_Neg), what will be the same as its requested TTRT value (T_| Req) since this station won the bidding
process. Then it resets its Token Rotation Timer. Finally it issues an initial non-restricted Token.

The purpose of this initial rotation of the Token is to align both the TTRT values and the TRT timers In
all stations. Since Ring_Operational is clear, no station will capture the initial Token or transmit frames.
In each station upon receipt (and repeating) of the Initial Token, T_Opr shall be set to T_Neg, TRT shall
be reset, Late_Ct shall be set to “one”, and Ring_Operational shall be set.

94

11.3 Ring operational

Frame Transmission

Transmit Queue

The transmit queue for either A-frames or S-frames contains three basic components:
- Transmit Frame Descriptor

- Transmit Frame Data field

- Transmit Pointer Field.

Transmit Frame Descriptor
The 32-bit transmit frame descriptor Is subdivided into a 16-bit control f|eld and a 16-bit frame length
field. The control field is organized as shown in figure 11.4.

MORE

RPXM,
RPIM,

DON'T CARE
tigure 11.4, Control Field

Explanation of the control bits:

- Bit 31, MORE indicates wether or not this is the last frame in the queue.

- Bit 29 and 30 is a fixed pattern.

- Bit 27 and 28, RPXM, ,, specify the byte boundary of the first byte of the frame. In some cases, when
a header is added to a frame, it becomes necessary to transmit the frame starting on a byte
boundary which is not aligned with the 32-bit long word boundary. These bits are used to
specify the byte alignment.

- Bit 26, XDONE, this bit is used to limit the number of S-frames transmitted per Token. It is up to the
programmer of the node to limit the number of S-frames by setting this bit. A useful limit could
be:

. llocated Syn ndwidth (ns

Number of frames in chain = #Bytes In frame * 80 ns
The last frame in the chain must have the XDONE=1. Chains of frames may be created with
XDONE=1 every N frames. Once the transmit sequence starts, all frames up to the frame with
the XDONE =1 will be transmitted, followed by a release of the Token. Since the system knows
the chain is not complete, transmission automatically continues with the next frame in the
sequence when the Token is recaptured. This process is automatically repeated until a frame
with the right MORE bt is encountered.
For A-frames, the XDONE bit is not normally used.

- Bit 24 and 25 Is a fixed pattern.

- Bit 16-23 are "don't cares".

11. Implementation example of MAC

Chaining Multiple Frames

Frames in the transmit chain begin with a 32-bit descriptor, followed by the actual frame data,
followed by a 32-bit frame pointer to the next frame. The MORE bit must be set in all frames
except the last. The XDONE bit should be used to control S-frame transmission. The queued
S/A-frame chain will be sent on capture of the next Token.

Length Field
This field contains the number of bytes in the data field of the frame (FC, DA, SA and INFO).

Transmit Frame Data Field

The data field for any transmit frame must include the Frame Control (FC), Destination Address (DA),
Source Address (SA) and Information (INFO). The Start of Frame Sequence (SFS), consisting of the
Preamble and Start Delimtter, the Frame Check Sequence, and the End of Frame Sequence (EFS),
consisting of the End Delimiter and Frame Status are generated by the MAC. When first initializing the
transmit queue, a stand-alone transmit frame pointer which contains the 16-bit address of the first frame
to be transmitted must be created. The address of the Initial transmit frame pointer must be loaded into
a ram buffer.

Transmit Frame Pointer Field
The last field immediately following the data field, is the transmit frame pointer. When chaining frames,
this field contains the address of the next frame to be transmitted.

Frame Reception

Data is received as frames and placed in prepared locations of a buffer memory. These locations are
organized as a logical FIFO.

Operational Modes

There are three basic operation modes of the MAC:
- Initialization mode

- On-ine mode

- Loopback mode

Initialization mode

On a software reset, this mode is automatically entered (MMODE, ,=000). In this mode, the receive and
transmit state machines are locked in the reset condition. The network datapath is locked in a "blind
repeat" configuration, see figure 10.7. The MAC address registers can only be written and read proper
in this mode.

Although the timer default values can be written in any mode, changing these parameters while on-line
may lead to non-deterministic behaviour. The timers can be loaded at any time, and network events can
occur asynchronously to the loading of the registers (the user cannot determine whether the timer is
operating with the new or old default time).

During initialization mode, no receiver protocol is executed. When the MAC is in this mode, certain ring
events such as claim or beacon frames may be missed. Thus a MAC leaving the initialization mode, may
not be operating with other than the current ring parameters such as the negotiated token rotation time
for the ring. The Claim/Listen and Listen/Beacon instructions do not operate in this mode.

Even though the transmit state machine will not process the information, the internal timers (TRT and
THT) continue to operate. This permits rough timer checkout before going on-line. On reset, TVX is
loaded with its terminal count value. This timer, during non-initialization operations, will expire in 255

96

11.3 Ring operational

clock cycles. Status Is set accordingly. TVX will stop once expired until It is reloaded. TRT and THT are
cleared on reset. They expire in 221 BCLK cycles. THT will stop when the terminal count Is reached. TRT
will reload with the current TMAX value and resume counting.

All counters resume sequencing when reloaded. Reloading can be forced with some specific
Instructions. These instructions can be used with the timer expiration bits in the status register to verify
timer operation against "soft" timers during power on confidence testing of the node hardware. It should
also be noticed that the timers are loaded with their default values when the Mode Register MMODE bits
are programmed to exit the initialization mode.

On-line mode
When the on-line mode is entered, the MAC performs the operational sequence required for the FDDI.
The MAC exits this mode if the MMODE bits are changed or a reset takes place.

Receiver

When on-line the MAC continuously processes the incoming symbol stream of the FDDI receiver
state machines. The fundamental actions are frame reception and frame repetition control. The
receiver performs also some special functions like outputs for ring statistics, external addressing
and providing of general status information.

Frame Reception

Frame reception refers to placing network data on the YR-bus and setting the control signals

accordingly. There are four basic actions that can occur when the head of a frame is received

from the R-bus:

- Normal frame reception

- Flushed frame. There are two criteria for flushing a frame:

- At the end of a properly formed frame when the address match criteria have not been
met. The address match criteria includes the internal and external address
match decisions and the states in the mode register. If no valid address match
occurs by the fifth byte of the frame following the SA, this will be indicated. This
same indication will occur during repetition of a lost (symbol after the SD Is a
non-data or non-ED symbol) or stripped (partially repeated, before the ED is
repeated idles are transmitted) frame,

- If the frame ends on an uneven byte boundary.

- Non-reception. In this case the "datavalid” and "receive” indication, and the YR-bus never go
active. To activate these signals the receiver state machine must be In SD awaiting
state. A SD followed by two data symbols must be received (FC). If FC indicates a claim
or token, frame reception will not occur. If all criteria heave been met, the state of the
transmitter must be considered. The transmitter must be In the Idie or repeat status for
frame reception. The only exception is when the FULL strap option is tied high. Finally,
reception will not occur Iif the mode register is programmed to disable receive.

- Frame abort. This occurs when there Is an external indication to abort the frame or there Is a
missframe indication. The abort action also occurs if the MAC enters a non-repeat, non-
idle transmit state during frame reception or the disable receive mode register setting
is programmed while frame reception is taking place.

Frame Repetition

Frames received on the selected R-bus are repeated on the X-bus. Normally the entire frame

is repeated, with the FS modified according to the FDDI specifications. The MAC transmitter can

leave the repeat mode for several reasons. The frame received at that time will be stripped.

Those reasons could be:

- If the MAC detects a MA=S8A, this is the mechanism to remove a frame from the ring.

- Encountering of a lost frame. The byte containing the offensive symbol as well as all
subsequent bytes are removed.

g7

11. Implementation example of MAC

- Token capture. The MAC decides to capture a token, this means recelved tokens will be
stripped (only the SD of the token Is repeated).

Frame status Indicators are repeated, stripped or modified. The MAC will repeat an infinite
number of symbols following the frame (provided they are properly formed). The first control
symbol encountered must be a “T" in the most significant nibble of the R-bus. This signifies the
termination of a frame. if the first control character in the least significant nibble is a "T", the
frame has an uneven number of symbol pairs. The octet containing the "T" is repeated, and all
subsequent indicators are stripped. In a properly formed frame, the symbol after the “T" is the
error indicator. This should be an *S" or "R" symboal, if not an "S* symbol is assumed (the "S" will
be recovered), and the MAC will assume that the FS reception is complete.

Aside from the "S" indicator no other indicator will be recovered. If a byte of FS Is received with
a non "S" or "R" symbol in the most significant or a non "S", "R or "T" In the least significant
nibble, FS processing is completed. That byte and subsequent bytes of status are stripped.

Frames are not repeated when the MAC transmitter is in the transmit data, issue token or
beacon states.

Special Function Operation

The MAC processes some additional status information, like the reception of a valid SD,
detection of SA=MA, control bits reception and the reception of the first non-status byte. And
there Is a possibility to allow the user to supplement the MAC's internal address detect logic with
additional hardware.

Transmitter

The MAC transmitter controls the timing of node transmission. The transmitter reacts to timer
expiration and received MAC frames to queue the claim and beacon frames. The transmitter
controls the node’s data flow by indicating a token capture. The transmitter makes capture and
pass decisions based upon the state of “media” request inputs (i.e. synchronous, asynchronous,
etc) and token control register when a token is received.

The MAC allows asynchronous or synchronous transmission, depending on the request and
timer values. Only one type of transmission is allowed at a given time. When both asynchronous
and synchronous frames may be sent, the synchronous request will take precedence. When
synchronous frames are allowed, the THT is held. This prevents S-frames transmission in
allocated A-frame bandwidth. The MAC transmitter enters the transmit idle state when reset.

Frame Transmission

If the MAC gets a request to send an A- or S-frame, there will be a delay, due to the required
token capture time, between request and acknowledgement. If the media is available the MAC
waits for the signal that indicates that the frame on YT is ready. Before this frame is transmitted,
the MAC ensures that there are at least 8 bytes of preamble transmitted.

The MAC will encapsulate all bytes input on the YT-bus. An SD is output on the X-bus
immediately prior to transmission of the first YT byte. The FCS, if there is no indication in the
mode register that indicates otherwise, Is appended after the last byte given on YT. After the
FCS field, a "T" and "R" symbol are output on the most and least significant nibble of the X-bus,
respectively. This Is the frame's ED and error status indicator. This is followed by two more "Rs"
for the A_- and C_-indicators.

If a transmit abort occurs, the next byte on the X-bus will be an idle. The MAC transmit state
machine will be set to idle state.

98

11.3 Ring operational

Recovery Operation

The MAC can go In recovery based upon frames received, instructions from the NP and timer
expiration. There are two recovery states specified in FDDI, the claim and beacon state. Claim
Is used to negotiate the operative time for token rotation and determine which node will issue
the token. Beacon is used to guarantee ring integrity by verifying the path of the ring.

Claim and beacon state can be entered at any given time. Once these states are entered, the
MAC must respond by placing the corresponding claim or beacon frames on the X-bus. The
MAC signals the claim or beacon state so that the proper frame can be queued for transmission.

The MAC can go from claim to beacon state and visa versa. If the MAC exits the claim or
beacon state It will go to idle state.

12. Architecture of FDDI

The description of the processes, given in appendix F, will now be mapped into hardware. This is done
with the Interactive Design and Simulation System (IDaSS), developed at Eindhoven University of
Technology by Ir. A.C. Verschueren. With IDaSS it is possible to design a system in hierarchies, and
simulate new components as soon as they are inserted.

The files containing the designs described in this chapter can be found in appendix H.

The implementation examples of PHY and MAC as given in chapters 10 and 11 are given only for extra
information; the design described here is started up from the requirements model as found in the
PROMOD report (appendix F).

12.1 Constraints of IDaSS

State machine controllers cannot read the contents of a bus or the output of a RAM. This means that
in some cases these contents must be read into a register, which takes an extra clock cycle.

The clock cycles are not available, so switching the clock on and off for some blocks Is not directly
possible. When using state machine controllers for this purpose, a great deal of the flexibility and
simplicity of 1DaSS is lost.

In stead of using a switched clock (which is a bad habit anyway), the signals that are using a clock
frequency are replaced by a register whose contents tell the state machine controller that during the next
clock a pulse must be assumed. This does not delay the behaviour of the design more than to place
the right contents in the register. Most of the time the loading can be done in a previous clock cycle
preserving any delay. This construction is especially used for the strobe signals in the interfaces between
MAC and LLC.

12.2 Physical interfaces

The FDDI has to communicate with the outside world (LLC), via an electrical interface on the top side,
and a light interface on the bottom side. The data that has to be transmitted, dictate the buses and
control signals that have to be present.

Further several interfaces are needed for inside communication.

Control signals are defined as active-low. This is commonly used because of testing purposes. The data
signals are defined in normal logic: 1 Is high and 0 is low.

Physical interface from MAC to LLC

The physical interface to the LLC consists of two data buses, one from MAC to LLC, and one from LLC
to MAC, each combined with control symbols.

The MA_UNITDATA.indication flow transmits its data over a four-bit data bus, combined with a strobe
and an active signal (see figure 12.1). Strobe Indicates that the data on the data bus is valid. Active
indicates that the value on the data bus that is presented, is a symbol of one of the FC, DA, SA or
M_SDU fields. As soon as active Is deactivated two more strobes are generated, to present the
MA _transmission_status (bit 0: frame_good, frame_bad; when frame_bad: bit 1: invalid_FCS;
bit 2: length error; bit 3: internal error) and the received EAC symbols (bit 0 to bit 2: E, A, C).

101

12. Architecture of FDDI

4

g >

stobe n ————————>

aciven ——————D
figure 12.1, MA_UNITDATA.indication physical interface

The DA and SA fields are always of equal length, but can be four or twelve symbols each. The LLC must
obtain this information from the two FC symboals, that are presented before any address symbol.

The timing diagram is given In figure 12.2.

| FC, DA, SA, M_SDU | valid, EAC

data_jn _XXXX | X X X X
strobe_in L/ /[S S S
active_in \

figure 12.2, MA_UNITDATA.indication timing diagram

The MA_UNITDATA_STATUS.indication flow transmits its data over a data bus, and several control
signals (see figure 12.3).

4

data_in I:::>

strobe_in —D
PSC T
ack >
notack ————

ond ack —
figure 12.3, MA_UNITDATA_ STATUS.indication physical interface

Strobe indicates that the data on the data bus and provided_service_class (PSC) Is valid, representing
respectively the number of SDUs (part of one request) that is transmitted on one token capture and the
provided_service_class. These data are connected to the first request that has not yet had a status
indication.

Because It Is possible that several requests are serviced on one token capture, it may happen that
another nr_of _SDUs and PSC is given before all already transmitted frames are acknowledged or not
acknowledged.

102

12.2 Physical interfaces

Ack and not_ack indicate mutual exclusively wether a transmitted frame is acknowledged by the receiver
or not (based upon the A and C symbols at the end of the returning frame). Ack and not_ack may not
be active at the same time. Acknowledging (or not) is done in the order the frames are received (which
is the same as the order they were transmitted and received from the LLC).

When an end_ack comes up, it indicates that no more frames from the last token capture can be
expected. This signal Is required to make it possible to the LLC to detect lost frames, and can be
obtained from token_detect, because no data appears behind a token. .

When a request cannot be handied entirely (because of lack of transmission time for a certain frame),
nr_of_SDUs Is less than the number of SDUs In the request. The rest of the request is discarded and
it is left to the LLC to generate another request containing the discarded frames.

The timing diagram is given in figure 12.4.

data_in XXX XXX XXX
strobe_in

psc RO YK XXXXX
ack _/ _/

not_ack

end_ack _/

‘m_spu acknowledgements
figure 12.4, MA_UNITDATA_STATUS.indication timing diagram

The MA_UNITDATA.indication and MA_UNITDATA_STATUS.indication primitives can both make use of
the same data bus and strobe. This is because when these are used for the status indication, the token
is captured (which implies that there is no more data to come). When a frame has returned before the
token is released, it will not be transferred to the LLC (because It is its own frame).

Both primitives can be distinguished via the active signal indicating that a frame is transferred to the LLC.
After it is not active anymore the next two symbois are part of this transfer. When another symbol is
transferred while active is not active, it represents a nr_of_SDUs.

This means that at most 15 frames may be part of one request. If nr_of_SDUs = 0, it indicates that a
token is captured and immediately another token Is issued.

Physical interface from LLC to MAC

MA_UNITDATA.request and MA_TOKEN.request, both use the same four-bit data bus. This is possible
because both primitives are generated by the same entity (LLC), guaranteeing mutual exclusiveness.
Additional there are some control signals (see figure 12.5).

The MA_TOKEN.request primitive is constructed with data and request. When request Is active, this
means that the data on the data bus is valid, and that a token must be captured of the
requested_service_class with optionally given priority_level (RSC(PL)).

103

12. Architecture of FDDI

4
dwaon] >

strobe_owt ———————D
actve_ot ——D
syeoam ——————D
requust ——D
full ¢+
figure 12.5, MA_UNITDATA.request and MA_TOKEN.request physical interface

The MA_UNITDATA request primitive is constructed with data, strobe, active and stream.

Strobe indicates that the data on the data bus is valid. When active and stream are both active, the
symbols transmitted over the data bus represent FC, DA and M_SDU.

The DA field can be four or twelve symbols long. The LLC must provide this information in the two FC
symbols, which are presented before any address symbol.

When stream is active and active not, the data represents the requested_service_class combined with
a priority level (bit 0 indicates Restricted (0) or Unrestricted (1), in case of Restricted bit 1 to bit 3
indicate the priority level). When both stream and active are not active, each strobe indicates that a
token must be captured. Along with this strobe a token_class is transmitted over the data bus. This
token_class indicates the type of token that must be issued after all possible frames are transmitted, or
immediately, if no frames were specified. It Is indicated by bit 0: Restricted 0 and unrestricted 1.

The timing diagram is given in figure 12.6.

FC, DA, M_SDU RSC(PL) FC, DA, M_SDU
dataout XXX X X|[X__X X X X

strobe_out VANV | AN ARV VAN
active_out \
stream \

request

RSC(PL_)__,,? token_class
X X X X0] | XXX X | [XXXX XXX
A Y _/

\/

figure 12.6, MA_UNITDATA.request and MA_TOKEN.request timing diagram

104

12.2 Physlcal interfaces

Physical interface from PHY to MAC

The interface from PHY to MAC consists of many signals. This Is done to ease the detection of symbols
at the higher levels, see figure 12.7.

PH_Ivald ————
J
K
T
R —
s
I
PH
figure 12.7, PH_indication and PH_Invalid physical interface

The PH_Indication primitive is built up from the following signals: J, K, T, R, § and |, indicating the
symbol with the same name, and PH_Indication and data, indicating the normal data symbols O..F.
PH_Indication is only valid when data is active.

The PH_Invalid primitive is mapped directly on one signal. PH_Invalid is activated on a deactivation of
Signal_Detect, on overflow or underflow of the elasticity buffer (part of PHY) and on detection of other
symbols than can be represented by the interface of the PH_Indication primitive.

Only one of PH_Invalid, J, K, T, R, S, | and data may be active at one moment.

Physical interface from MAC to PHY

This interface consists also of many signals. This is because it eases the generation of these signals at
the higher levels, see figure 12.8.

4
PH_Request ———/———»
dataout —}

figure 12.8, PH_Request physical interface

105

12. Architecture of FDDI

The PH_Request primitive is built with Jout, Kout, Tout, Rout, Sout and lout, indicating the J, K, T, R,
S and | symbols to be sent, and PH _Request and dataout, indicating the normal data symbols 0..F.
PH_Request is only valid when dataout is active.

Only one of Jout, Kout, Tout, Rout, Sout, lout and dataout may be active at one moment.

Physical interface between store and add controls

This interface Is needed to transport the data supplied by LLC to add_controls. Add_controls uses only
the control signals of the interface, other blocks use the data signals, see figure 12.9.

symbols I——_>

strobing_symbols b

request_data ¢
tigure 12.9, Physical interface between store and add_controls

On activation of request_data by add_controls, strobing_symbols is activated, and data is put on
symbols. This continues until the frame is entirely sent over.

Symbols and strobing_symbols construct the data flow framed_data.

Physical interface between store and monitor

This interface is constructing the control flow frame_class, requesting for an opportunity to transmit, see
figure 12.10.

wpo >

ft_type_valld_—D

figure 12.10, Physical interface from store to monitor

As soon as a request from LLC has entirely been read, the requested service class of the first frame is
put on type and ft_type_valid is activated. When more frames are in this request, ft_type valid is kept
activated. When the last frame in this request Is being serviced, ft_type_valid is deactivated.

12.3 Architecture of PMD and SMT

The PMD and SMT are not designed in IDaSS. This is because PMD consists mainly of analogue
components, like amplifiers, and SMT Is not described in a requirements model because the right
standard was not available.

106

12.4 Partial architecture of PHY

12.4 Partial architecture of PHY

Since the MAC needs some signals of the PHY, it is necessary that the PHY can supply these signals.
Because it is rather easy to describe the encode and decode parts of the PHY, these are already
described. This simplifies the generation of the signals.

The parallel_to_serial and serial_to_parallel (and synchronize and recover_clock) processes work at a
clock rate of 125 MHz, while the encode, decode and MAC processes all work at a clock rate of 25 MHz.
When these two clocks are implemented in one 1DaSS design, ali registers in MAC and encode and
decode, must be controlled by a state machine controller, that divides the ciock in five and gives
commands to the registers at the right moment.

Since the main design is the MAC, it is better to put the processes that need a clock rate of 125 MHz
in another design that can be simulated separately, and connected in a later phase of the design. Since
the incoming bitstream may arrive at a different clock speed, it may be necessary to take another
simulator for this part, while it is very difficult (impossible) to modei clock differences of less than 0.01%
in IDaSs.

The signals needed by the MAC come directly from the encoder and the decoder. This means that there
is no immediate need to describe the other processes of the PHY.

In the design chart, see figure 12.11, no more blocks are drawn than encode and decode with the
superconnectors connecting the design to a higher level. This means that there is not yet an interface
defined between the PHY and the PMD. However that is not necessary for simulation of the MAC.

Signal_Detect

PH_Invalid
i Signal_Deteot
& OF_UF

deoode

PH_Indioation B
data

J
X g5
T
R
$

Jout B3 3

Kout B

Toutf

encode Rou¢ B

Sout)

nsunbol_out Iout g
PH_Reques t B

dataocut B0

figure 12.11, Design chart of PHY

107

12. Architecture of FDDI

To simulate the MAC, symbol_out and symbol_in are connected, though this is only useful for checking
on the correct operation of MAC on returning frames and not for checking on the behaviour on other
frames. Therefore two or more FDDI designs should be linked together via symbol_in and symbol_out.
This Implies that symbol_in and symbol_out must be taken to a higher level. Because 1DaS$ is only
working on one central clock, it is not useful to check the synchronize and recover_clock processes of
the PHY.

The dummy design Is needed because of the way IDaSS can model a multiplexer. As soon as the design
decoder is designed at a lower level, this dummy design may be omitted.The process decode is mapped
to a design decoder combined with a design dummy, see figure 12.12.

Rldummy PH_Invaliadt

JB
Ml Signal _Deteot) {
o) g} b g
RrRY
N symbol decoder g
1B

PH_Indication g
data B

figure 12.12, Design chart of decode

Design decoder contains no more than a functional description of the behaviour (with if..then..else
constructions).

The other blocks (with one connector) are superconnectors, connecting this design to a higher level
design.

The process encode is mapped to hardware in the same way as the process decode, see figure 12.13.
Encoder consists of only a functional description. When encoder is designed at a lower level, the design

dummy may be omitted.
d !

symbol _out

I

Kout |
UnRI= Jout
Kout Tout |
Tout
- Rout Rout ‘
msunbol_;wgoc.’ Sout
Iout Sout |
PH_Request
dataout [3 Iout |
B PH_Request I
dataout

figure 12.13, Design chart of encode

108

12.4 Partial architecture of PHY

The 1DaS$ descriptions of operators encoder and decoder can be respectively found in appendices J
and .

12.5 Partial architecture of MAC

The MAC consists of five processes, of which process_userdata Is partially designed in IDaSS. This
process with reveive frames and monitor are the most important of MAC. A design of process
receive_frames is given in 7.

In chapter 9 two state machines are given. These will be part of the process monitor, and so are not
used in process_userdata and receive_frames.

12.6 Partial architecture of process_userdata

As found with the requirements model, the MAC consists of several processes. These can be ented on
design blocks accompanied by state machine controllers. The design is shown in figure 12.14.

nr_SDlUs_valid| |[nr_SDUs | {read_control | [ready | |[done | {add_controls_contr

- symbols a a »ﬁ
dat t_iba ta_ 1
ata-ou o £fr_1 £fr_J fr_K £fv_T
strobking_out_i1][strobing_out_i add_controls
LLC_data sto?e r_data »_S fr_R
stream_{i||Istream_i E
“a str_sym

active_out_igd Lo
rhll_pﬁ i

frame__type next_regquest start_transmission

figure 12.14, Design chart of process_userdata

The following registers are used for generating control signals:

done (initialiy 1, inactive): Activated when a frame has entirely been sent.
frame_type (two bits, initially 01): Can be one of:

00 token
10 claim
11 beacon

01 other_type

next_request (initially 0, active): When active, a request may be initiated and nr_SDUs may be sent;
when inactive, no frames may be transmitted. This is to make it possible for LLC to detect of
which request a frame Is lost.

nr_SDUs_valid (initially 1, inactive): Activated when the data of one request are transmitted, so that
nr_SDUs can be read. This number may be directed to another entity than LLC, so LLC must
always use the last value that appeared on the bus.

ready (initially 1, inactive): When activated, the request has entirely been sent, or the last frame of this
opportunity has been sent.

start_transmission (initially 1, inactive): active when a request to transmit can be honoured; it is read
at the end of the transmission of a frame.

109

12. Architecture of FDDI

The process store is made with the blocks store and read_control. Read_control Is a state machine, that
cannot be placed in the block store, since it makes use of register values that are found in the block
add_controls (IDaSS description of read_control can be found in appendix K).

The process add_controls is made with the blocks add_controls, add_controls_contr and FCS.
Add_controls_ contr is a state machine that cannot be placed in the block add controls, since it makes
use of register values in the block process_userdata and the block store, and controls some parts in the
block FCS (IDaS$S description of add_controls_contr can be found in appendix L).

Done is an indication that the current frame is entirely sent (including control symbols), and a new frame
can be requested for. Ready is an indication that the last frame of this opportunity is sent (end of
request, end of time).

Nr_SDUs is a block that contains the number of frames of one request that is sent. When nr_SDUs_valid
Is active, the value of nr_SDUs can be read by other blocks; it stays active during several cycles.

" FCS Is the block that generates the frame check sequence.

LLC data is a block that is only inserted for testing purposes. As soon as the testing Is done, it can be
placed in a higher level of the total system.

Start_transmission and frame_type are blocks that should be placed in a block monitor, that is not
designed yet (monitor generates these control signals). Next_request is a block that should be placed
in the block indicate, that is also not designed yet.

12.7 Partial architecture of process store (part of process_userdata)

Store is the process that reads the data supplied by the LLC, and remembers it until an opportunity is
offered to send data. By then it must release the data, and erase it from the memory. To be able to do
this, a large memory is required, to store the data itself, and several other memories are required to be
able to find back the frames and requests.

This asks for a levelled design, and a levelled addressing. The idea for the addressing is shown in
figure 12.15,

rt_start ft_start memory
begin [?— [Pit_addr rF Y H read_address H
+1 L[+ H
Plend_address
| Wiendh— -eddress
end < e add
~ft_address
LIl P i e Pk store_address [

figure 12.15, Structure of the memory manager for LLC data

110

12.7 Partial architecture of process store

To store in the memory only store_address and memory are needed, the other blocks are required for
finding the right data back.

Rt_start = Request table start address

Ft_start = Frame table start address

Parallel to the two tables, two other tables are used:

Rt_type = Request table token_class (class of token that has to be issued when the request has
been serviced)

Ft_type = Frame table requested_service_class (class of service that Is requested for this

frame: asynchronous with priority or synchronous)

Initial state:

begin =0

end =0
rt_start[0] = 0
ft_address = 0
ft_start[O] =0
store_address = 0

Storing LLC data in memory

To store data in memory, store_address is incremented modulo the length of the memory every time
a symboal is written. When an entire frame is written to memory, the contents of store address are written
to ft_start[ft_address+ 1] (the requested_service_class is written to ft_type[ft address]), and ft_address
is incremented modulo the length of ft_start (ft_address+1 Is also calculated modulo the length of
ft_start).

This is repeated for every frame in one request.

When all frames of a request are written in this way, the contents of ft_address are written to
rt_start[end+1] (the token_class is written to rt_type[end]) and end Is incremented modulo the length
of rt_start (end+1 Is also calculated modulo the length of rt_start).

This incrementing is done only when it does not make end equal to begin, because begin = end
indicates that there are no requests in memory. By then the incrementing is postponed until a request
is entirely read from memory, and begin is incremented.

In this way requests can be written to memory, as long as none of the tables and the memory is filled
up.

In case an error on the controls from LLC or a fill-up occurs, the request is erased from the memory by
firstly loading ft_address with rt_start[end] (address that ft_address had when the request started), and
after this Ioadmg store_address with ft_start[ft_address] “(address that store_address had when the
request started).

Reading the frames from memo
To read the frames from the memory again, ft_addr_r is loaded from rt_start[begin] and ft_end Is loaded

from rt start[begln+1] Thereafter read address is loaded from ft _start[ft_addr_r] and end address is
loaded from ft _start[ft_addr_r+1], so the begin address and the end address + 1 of the first frame is

111

12. Architecture of FDDI

known. When the contents of ft_type are not needed anymore, ft addr_r is incremented and if
ft_addr_r # ft_end another request to transmit can be prepared.

By incrementing read_address the frame can be read from the memory, which is done untii
read_address = end address When this happens and another frame can be transmitted (it is available
in this request, and timing allows it), end _address is loaded with ft_start[ft_addr_r+1] (read_address is
already loaded with the right value via the increments).

When no frames may or can be transmitted anymore, begin is incremented, so the rest of the request
Is discarded.

Each of the three addressing levels Is implemented as a circular buffer, that behaves like a bounded
FIFO. In IDaSS the depth of the memories is limited to 2048 addresses, so memory has got that size.
For simulation and evaluation purposes this satisfies, but in the eventual implementation this memory
must have a size of about:

{depth of rt_start} * {mean number of frames per request} *
{mean number of symbols per frame}

The depth of ft_start must then be about:

{depth of rt_start} * {mean number of frames per request}
In the simulation the following figures are taken:

depth of nt_start

depth of ft start
depth of memory

8
32 (mean number of frames per request = 4)
2048 (should be larger in the eventual implementation)

The eventually used figures will depend on the use of the system.

Implementation in 1DaSS

The first level of design is shown in figure 12.16.

Inr_dono | ’s tore_address_gpontr I
ft_address t_addr_o store_address tore_addr_o sumnbolshi |
ft_re t_res store_xres tore_res
write_request wrl te_frame wri te_symbol

read_add ead_addr str_symb

| full_o || full £¢_add t_addr
| dltl_ﬂl:‘f::-: ._tt ji[d.t._put- w_f ew_tr & Fd:ia_nut

| data_put_1 I Idata_out I
lnublng_put_%woung_nutl I‘}l "

I = tream_1 | s trean | !l‘.‘l‘_l | im_eontri
I active_out_1 “ active_out I

;

figure 12.18, Design chart of store

112

12.7 Partial architecture of process store

The second level of design Is the design of several blocks, that will be described later.

In figure 12.16 the three addressing levels are found: Write_request, write_frame and write_symbol. Each
block is a design, and will be described later.

Store_address_contr is a state machine that controls (using nr_done) the storing of the frames in the
memory (IDaS$ description of store _address_contr can be found in appendix M). It controls all three
addressing levels and so cannot be ‘placed in a lower level design.

S_L and addr_| scan for the length of the address of the incoming frames (IDaSS description of addr_|
can be found in appendix N).

MA and MA_contr supply the address of the station, that must be avallable, according to the required
length (IDaSS description of MA_contr can be found in appendix O). It is a simple block as can be seen
In figure 12.17, consisting of and addressing reglster (MA_address), and a memory contalning the
address (MA_mem).

MA_addres ,;.

figure 12.17, Design chart of MA

Full is a block that indicates that there Is no more space to store a request, a frame or a symbol. The
request that is currently sent, is erased from the memory. When only the request table is full, the last
request is not erased. The latter case can be distinguished from the others, because full is activated after
both stream and active_out are deactivated by the LLC.

The registers stream, active_out, strobing_out and data_out are fed via superconnectors by LLC_data.
These registers are needed for IDaSS, since state machines In 1DaS$S cannot read the contents of a bus.

12.8 Architecture of write_symbol (part of store)

Write_symbol is the third addressing level, that contains the memory that must remember the SDUs
supplied by the LLC, accompanied by the address supplied by MA (in the field of SA), See figure 12.18.

The following register is used for generating a control signal:

strobing_symbols (initially 1, inactive): Activated on request_data (fromadd_controls), and frame_type
= other_type, along with enabling the tri-state output symbols_d.

The memory has two addressable write ports, and one addressable tri-state read port. The write ports
are used to get the data from LLC and MA in the memory, and the write port is used to read the data
from the memory. It is made tri state to easily add other data (like the FCS) to the data read from the
memory. When reading from the memory, strobing symbols indicates that the data is valid.

Store_address Is the register that contains the address that data from the LLC must be written to. It has
an input, that is fed via a mux. The mux (IDaSS description in appendix P) switches between a restore
address (store_res, when something has gone wrong and the request must be erased), and a continue
address (MA_address, to continue addressing after the address fields are placed in the memory). The

113

12. Architecture of FDDI

Istore_.lddp_o l
store_re 12 =
nux store_address

s tore__addresst

add_4_or_12

—1‘ MA_address o
o _a ma_a [z]
a o+,

data_out_a data._out_«.“ Eata_out |

MeMory
g bol tr mnb
read_addr read_address symbols_a suymbols_d | |[SUnbols stir_=
|strobiny_synbols
new_fnr l l end_address

figure 12.18, Design chart of write_symbol

output is also used by the second level addressing, to remember the end of the frames.

Destination Address (DA, from LLC) and source address of this station (MA) can be written
simultaneously, making addressing easy, and saving some time. It is done by using two write ports that
can be independently addressed. To make the simultaneous addressing possible the operator
add_4 or_12 (IDaSS description in appendix Q) is inserted, that outputs the address MA must be written
to. When the addresses are entirely written, the output of add_4_or_12 Is loaded in store_address to
place the rest of the incoming data from the LLC behind the address fields.

Read_address points at the symbol of the frame that is output to symbols_d. End_address points at the
place | behind the last symbol of that frame. As long as read_address does not reach end_address, this
process continues. When at the end of a frame, read address already points at the first symbol of the
next frame In the same request, so only end_address has to be updated. When a new request is
beginning to be serviced, both registers must be loaded, since it may be possible that some frames of
the previous request have not been sent.

12.9 Architecture of write_frame (part of store)

Write_frame is the second level of addressing. It will contain the start address of each frame in memory,
and the type of that frame. Therefore two memories are used, see figure 12.19.

The following register is used for generating a control signal:

ft type valid (initially 1, inactive): activated to indicate a request to transmit. Only activated when a
request from LLC has entirely been loaded.

Ft_type is used to store the type of the frame, and to generate the request with. Monltor bases its
decision about sending or not on this type.

Ft_start contains the start addresses of the frames in the memory.

When accepting frames from LLC, the start address of the next frame is stored on address
ft_address+1, while the type of the frame is stored at ft_address. For restoring the store_address, the

114

12.9 Architecture of write_frame

u O{ls tore_addr_a store_addn_d 82

store_address
£ t_pes t_addressT s tore_res_a store_res_dd
ft_start

1" ew_frame_a new_frame
P ead_addr_a read addr_ o
= Edata_put_,n data_out_d
o ft_tupe
q—ﬁ ﬁ—o
l!‘ t_add t_adde_r mtr-ane_tupe_a £ rane_tupe_da
Ineu_:eﬁ'rrn_.na I lre_tgpe_uaudl

figure 12.19, Design chart of write_frame

address at ft_address is used.
To read the information, the end address of the frame Is read from ft_addr_r+1, while the begin address

is read from ft_addr_r. The type at place ft_addr_r is used for generating the request for transmitting this
frame.

12.10 Architecture of write_request (part of store)
The following states are used by state machine read_control:

begin = end (initial state): Indicates that no requests from LLC are entirely loaded in the memory.
begin ¢ end: Indicates that at least one request is entirely loaded in the memory.

Write_request is the first level of addressing. It will contain the start address of each request in ft_start,
and the token_class that must be issued after that request. Therefore two memories are used, see
figure 12.20.

|If t_address

t_address_a ft_address_d™

t_res_a ft_resg_du t_xes
nrt_stant
= ew_ft_a new_ft_dy Ebeu_tt
£ t_addr_a f£t_addr_dm 1
t_addr
—3
. ata_out_a data_out_d extract?! ata_out
rt_type
class_a olass_

tigure 12.20, Design chart of write_request

115

12. Architecture of FDDI

Rt_type actually is part of the monitor, but since the addressing is the same as that for rt_start, it is
placed in this block.

When a request has ended, ft_address Is stored at address end +1, while the token_class is stored at
address end. Hereafter end is incremented. When something has gone wrong, so that a request must
be erased, the restore ft_address is ready at ft_res, at address end.

Extract takes bot 0 for token_class from the data bus.

To start sending a request, the addresses in the second stage have to be updated. They are given via
new_ft and ft_addr, at address begin+1 and begin. The token class required by the monitor appears at

class d. When the entire request Is serviced, or the time to send is over, begin is incremented, but not
sooner than that the current frame has been entirely sent.

12.11 State machines used for process store

State machine read control (IDaSS description in appendix K)

Used to read data from memory to add_controls.

1. wait_until_request
Waiting until a request has fully been entered in memory (this is detected when begin « end).
When that happens, ft_addr and ft_end can be loaded from rt_start (they are valid now).

2, request_ready
There is a complete request.
Since ft_addr_r is read, read_address and store_address can be read from ft_start (they are
valid now), and a request to transmit may be given via frame_class (ft_type valid), because
ft_type is valid.

3. request_to_send
The request to transmit is given, ft _start is loaded into read_address and ft_type is read by the
monitor.
This means that the contents in the memories pointed at by ft_addr_r are not needed anymore,
so ft_addr_r can be incremented. When there are no more frames in this request (detected by
ft addr r = ft_end-1) ft_type_valid must be deactivated.

4, walt_for_request_data
The monitor handles the request, and tries to capture a token. When this happens, it indicates
that the transmission may start, and add_controls starts the transmission. When add_controls
needs the data in memory, it activates request_data. -
Now begin may be incremented since the rt_type is read by the monitor at token capture, but
this may be done only one time per request, so it is done at the end of the transmission of the
request.

5. produce_frame
The tri-state output of memory (symbol) is enabled and the data is sent to the bus until
read_address = end_address-1. When this occurs there are two possibilities:

116

12.11 State machines used for process store

a. There is another frame in this request (ft_addr » ft_end) and transmission is allowed
(start_transmission = 0):
The last symbol is written to the bus: After that symbols_d is made tri-state again, the
new value for end_address s loaded (read_address is already correct via the reading
of the previous frame).
There must be waited until the frame has entirely been sent.

b. There Is no other frame to be sent, or no time Is left,
Then begin may be incremented, the last symbol Is sent after which symbols_d is made
tri-state again.
There must be waited until the request (frame) has entirely been sent.

hold_until_frame_done

There must be waited untll the frame has entirely been sent.

When that Is done, the request for another frame is approved by the monitor via
start_transmission. This means that ft_type is not needed anymore and another frame can be
requested for (by incrementing ft _addr_r) if there is any, or else ft_type_valid can be
deactivated. The latter case causes start _transmission to deactivate, but does not interfere with
the frame currently sent, since this transmission is already initiated.

hold_until_request_done

To make sure that no new request is initiated while the current is still running (causing another
request to be sent, while the current request is not fully acknowledged), there must be waited
until this request is ready.

State machine store_address_contr (IDaSS description in appendix M)

Used to store data from LLC In memory.

1.

wait_and_addressing_till_data

In this state there is space available to store at least one request address, one frame address
and one symbol. When data is supplied by LLC, it is stored in memory until the address fields
are stored (the length is determined from the frame control).

addressing_data

The data after the address fields is stored in memory.

When no more data for this frame comes through, the requested_service_class reception is
initiated.

next_frame

When a new frame comes up, the reception Is initiated, and state wait_and_addressing_till_data
is entered, else token_class is read and state wait_and addressmg till_data Is entered. If in
either case the available space is entirely used, the state wait_until free _space is entered and
full Is indicated to the LLC.

wait_until_free_space
This state Is kept until in all three addressing stages is at least one place available. When that
happens the state loose_request is entered, to erase the latest request in memory.

loose_request
Ft_address restore is initiated.

restore_frame_address
Store address restore is Initiated.

117

12. Architecture of FDDI

7. wait_until_end_request
There is waited until the current request has ended. This is needed because it may happen that
LLC does not react to the signal full.

The construction to loose the request takes three states, and so needs three clock cycles. This means
that if an error occurs, the recovery time is at least three clock cycles.

12.12 Architecture of block add_controls

Add_controls add the control symbols to the frame to make it complete. It is shown In figure 12.21.

figure 12.21, Design chart of add_controls

Register used for generating a control signal:

request_data (initially 1, inactive): Indicates that the preamble and start delimiter have been sent, and
data from store is required.

Generate_controls is an operator that supplies the symbols that are used to complete the frame (IDaSS
description in appendix R).

Counter is used to count the length of the preamble and the number of R symbols in the frame status.

12.13 State machine used for process add_controls
tate machi ntrols_contr (IDaSS description_in ndix

1. wait
Waiting until start_transmisslon Is activated. If so the preamble is initiated.

2. PA
Makes the entire preamble of 16 | symbols, and thereafter initiates the J symbol of the start
delimiter and initiates request_data for store.

3. J
Initiates the K symbol of the start delimiter.

118

12.13 State machine used for process add_controls

4 K
Waits until strobing_symbols is inactive, and dependent on frame_type enters state add 2 T
(frame_type = token) initiating a T symbol, or add_FCS (else) initiating the transmission of the
frame check sequence.

5. add 2 T
Initiates the second T symbol and enters state wait.

6. add_FCS
Finishes adding the frame check sequence, and enters state ED initiating a T symbol and
resetting the FCS block.

7. ED
Adds three R symbols for the frame status, and enters state wait.

12.14 Architecture of FCS (part of process userdata)

FCS is placed outside block add_controls that takes care of adding the frame check sequence because
it is a directly controlled by state machine add _controls_contr.

In process_userdata all data handling Is based on the four bit symbol. The circuit to determine the frame
check sequence, given in the MAC standard [4] and shown in figure 3.1, is based on a one bit input.

Two options are open to solve this problem. One is to serialize the symbols to bits. This requires a four
times faster clock along with the normal clock, and logic to execute the conversion to and from serial
bits. This may have the disadvantage of unsynchronized clocks, and trouble to have the frame check
sequence in time to be put immediately behind the data.

Another possibility Is to design another circuit that accepts four bit input. This has the advantage of
having no trouble with synchronisation of two clocks and the two data streams.

Since IDaSS does not support multiple clocks in one design, and because of the disadvantages of the
first method, the second option Is chosen.

First is determined under what condition it is possible to use this second option.

119

12. Architecture of FDDI

Xk-1 Xk-2 Xk-3 Xk-4\+/7| Xk-5
ak-1 ak-2 ak-3 ak-4 ak-5
X Xi-1 Xi-2 Xi-3 Xi-a &/~ ™ X0 n..j
ai ai-1 ai-2 ai-3 ai-4 a0

figure 12.22, General circuit of a feed back shift register

Theorem: Given a circuit of a feedback shift register, like in figure 12.22, with I, to |, known, the value
of X, at time t can be expressed as a function of X, X, till X, and I, till I, at time t-].

Note: All additions are done modulo 2.

Proof:

X[= Xalt1] + aXe[t1]

X[t-1] = X, [t-2] + aX,,[t-2]

X[t = X,[t+1] + aX,[t-I-1]

Xi[t] = X2[t-2] + &, X4[t-2] + aX,[t-1]

Xilt] = X.olt-3] + @, 2X4[t-3] + a,X,[t-2] + aX,[t-1]

In general:

Xit] = Xylt] + 0 X [t-1-m]

Xialt-Ql = Xi1y4q givena,, ... 8. = 0, X, =1
Giving:

Xilt] = Xylt-] + Lo 8Ky «mlt]

When a,, ... a,;,, * 0, this formula Is not valid, but still the value of a certain cell can be expressed as
a function of the values of the other cells and some inputs at some previous time.

xl(-p[t] xk-p-1 [t'1] + ak-pxk-1 [t’1]
xk—p[t’ﬂ Xl(-p-1 [t'2] + ak-pxk-1 [t'2]
X,p[t-2] = Xip1[t3] + 8, Xi.4[t-3]

Xia[t-2] = X,,[t-3] + a,.,X,,[t-3]
Xialt-1] = Xi5[t-3] + @, X4[t-3] + 8 X,2[t-3] + a,.X,[t-3]

As can be seen from these formulas:

Xeplt] = FOItd], oo X1, Xepas by s 1)

120

12.14 Archltecture of FCS

Consequence:
X,[t] can be calculated from values stored at time t-}, and so can be calculated In one cycle. This means
that the circuit In figure 12.22 can be parallelized to j bits. The polynomial used in FDDI is:

G =
X2 x4 e x 2 X+ XX+ X+ X XX+ X+

Implemented in a feedback register a, till a,, are equal to zero, and no special tricks have to be used.

In this case the following feedbacks must me used:

X2 =2 X X+ X+ X2+ X+ X+ X+ X + X+ X+ X+ X+ 1
X = A+ P A XT X e X2+ X"+ X+ X+ X+ X+ X+ X+ X
X e X X P X+ XM X X+ X+ X X+ X+ X+
X = X X X+ X+ X+ XX+ X+ X X+ X+

When a,, till a,,,, would not be equal to zero, the previous method would result in terms of grade 32
or higher (x*, x*®, etc) on the right side of the equal sign. These can be replaced by their equals as
accounted with the previous method.

Example with grade 3:
G =x+x+1
This means in the circuit: X* = x + 1

To parallelize this to three bits, the following feedbacks must be constructed:
X =x+1

X' = +x

x°=x+ %

X® already exists at the left side of the equality signs so an extra conversion Is used:
X=x+1)+Xx=x+x+1

Note: The constraint to the parallelization is the number of bits that can be parallelized: That must be
a divider of the grade of the generator polynomial.

Implementation in IDaS$S

Since the context of FCS is using four bit wide symbols, the circuit is designed in four bits. It is shown
in figure 12.23.

It consists of 8 four bit registers (FCS0 to FCS7), that are fed back via operators (fbd0 to fdb7). These
operators connect the outshifting values (x* to x**) and the outputs of the previous register in the right
way to the inputs of the register It is connected to (IDaSS description of the operators can be found in
appendix T).

The registers are controlled via a control connector that is connected to strobing_symbols in the block
process_userdata\store\write_symbols and a register reset. The former Is used to be able to start soon
enough with the frame check sequence generation (all registers are set to load). The latter Is used to
reset the registers to F again when the frame check sequence has been read out. Reset is controlied
by add_controls_contr.

121

12. Architecture of FDDI

Is tr_symb | [IFCS_addressing

15 14 FCS 13 12

S5 cs4 cs3 cs2
£ab5 fabha fab3 £db2
F P F P F P F P

figure 12.23, Design chart of FCS

FCS is an operator that addresses the outputs of the registers when the frame check sequence has been
made, to direct it behind the data (IDaSS description in appendix S). It is steered by register
FCS_addressing, that is controlled by add_controls_contr.

12.15 Further development of process userdata

Not all processes of process_userdata have been implemented yet. Compose and indicate are not
watched at and store must be extended with the possibility of accepting data from SMT and MAC.

12.16 Note to the design process

As said before, the design process has been started from the requirements model. While designing,
some descriptions in the requirements model appeared to be inefficiently implementable. To make the
design efficient anyway, the requirements model has been adapted. These were only minor changes,
that did not change the essence of the model.

122

13. Conclusions and recommendations

FDDI can be used for different purposes, like back-end, backbone and front-end networks. For all these
purposes enough bandwidth Is available, since the defined bandwidth of FDDI Is 100 Mbps.

Normal FDDI cannot be used for circuit switched services, so another standard is defined called FDDI-II.
This allows for suitable-bandwidth circuit switching, combined with packet switching. Because FDDI-I
merges the data and voice (video) services, it has a major power to become a great success.

Fiber offers a high security degree, but the operation of FDDI on it, makes FDDI likely to be used only
for private owned networks.

FDDI is a perfect solution for LAN sites, but for long distance data transfer (possibly Interconnecting
FDDI networks) DQDB networks (B_ISDN) are more likely to be used.

The FDDI follow-on needs efficient connections to future WANs, guaranteelng an effective use of FDDI
networks. With the development of FDDI follow-on one has to keep In mind that the offered basic
bandwidth has to meet the American, European and Japanese long distance standards (thls will
probably be about 600 Mbps).

At this moment FDDI networks are mainly used as a backbone to interconnect LANs. However there are
a more and more networks that are used to interconnect supercomputers, so called back-end (for
Instance with NASA, Freedom and USA Defence), for which FDDI initially was developed.

Though many other LANs are reaching their boundarles, the step to FDDI is still too expensive, as well
in the economical as in the technical sense. These costs can be decreased via decreasing material costs
and “economies of scale”.

Many LAN solutions can be found in usage of bridges and routers between the different domains like
1BM 3090, VAX and HP. Only 10% of the users wishes a connection with another domain than his own.
To them FDDI will possibly offer an economical acceptable solution.

On the international LAN markets there are some saturatlon developments. There are to many suppllers
and distributors on a to slowly growing market. This results in minor Investments in new products, that
in turn slows down the market growth. As a result many suppliers and distrbutors cooperate or merge
into new companies.

A major problem at this moment is to create services (demands) that really need the FDDI bandwidth
and equipment that can handle this bandwidth, this has to be accomplished to make FDDI a great
success.

All FDDI standards are defined in agreement with the ISO/OSI definitions, and cover the physical layer
and the lower part of the link layer protocol. A station management is defined through both layers. This
makes FDDI a useful standard, it allows different suppliers to produce FDDI products that can easily
cooperate with other parts of the FDDI network. This eventually creates a competitive market, decreasing
the .price.

I am convinced that FDDI is already a success, on the other hand | also believe that the need for FDDI
Is not yet optimal.

In the ANSI documents, a basis is given for Implementing the entities. The actual Implementation
however is still free except for the external behaviour of the entitles.

With the method described in [1], a requirements model has been developed using PROMOD (a
program that supports the method). The accent has been laid on the MAC entity because that seemed

123

13. Conclusions and recommendations

to be the most interesting part besides the SMT. Discussions about specifications of processes appeared
to be very useful to obtain a good model. The SMT entity is only slightly viewed at, because no up to
date standard was available.

Going out from the requirements model, some processes have been designed using IDaSS. This resulted
In encode and decode IDaS$ descriptions, and the possibility to receive frames from the LLC and
construct frames from it.

Because of the other point of view that Is used to design hardware, the requirements model had to be
adapted at some points. These were only minor changes, that did not change the essence of the model,
so working via the requirements model is very satlisfying.

In this report a major introduction has been given. This is done because the Internal operation of FDDI
Is not very much known about in the Netherlands at this time.

With use of this introduction and more literature (especially a standard on the SMT), parts of the
requirements model can be further developed to the level that a design Is easily obtained.

The MAC has been modeled the most extensively, but especially the process monitor will have to be
watched at more closely. Further SMT has to be developed from scratch.

The designs that are ready so far, will have to be extended. PHY must be finished by adding the parts
that operate on a higher rate clock. Process_userdata has to be extended with indication to LLC about
transmission_status, and possibility to compose MAC frames. Also the store must be extended to receive
frames also from other sources than LLC.

In [7] the design of process receive_frames (in MAC) is watched at. So for other designs in this area the
reader is referred to that report.

Though still a lot of work has to be done, it may be useful to continue with the design of an FDDI
protocol handler, or at least keep an eye on the subject, since FDDI is still developing rapldly to more
applications, and high speed data transfer is required in the near future.

124

Appendix A: MAC receiver state machine [4]

BO: LISTEN Ri: AWAT SO
DISABLE TVX —_—
PH_indlcation®)

o1 RESET TVX; ENABLE TVX
MAC Beset (108
SET T_Neg = T_Max
PH_invalid (108
RS5: CHECK TK
MAC Reset - PH_indicationf)
SET T_Neg = T_Max ®oe) | & SIGNAL FR_Strip
PH_lnvalid o | @1ty PH_indicationinot LT)
~ SIGNAL FO_Error; INC Lost_Ct ®o SIGNAL FO_Eror; INC Lost_ Ot
1c Afer ED(TT)
R2: AC FR CTAL ®'9 " Received_actions 6
if nd FCR = Token
@ —AferfCrendPCR=Tolen
MAC Reset PH Indication(J) 02
SET T_Neg = T_Max @02) SIGNAL RC_start; GLEAR A.C,EN.A.LM_Fiags
PH Invalid 20b) 4 PH_Indication(l) or (before K & PH_Indication(not K)
SIGNAL FO_Error; ING Lost_Ct (20P) | @18) SIGNAL FR_Stip
1b After K & PH_indication{not |,n)
@15 SIGNAL FO_Error; INC Lost_Ct
R3: RC FR BODY
DA_Actions 1
SA_Actions 2
CT Actions 3
@3 r FCr & FCr =
) IF FCR = Next Station Addressing
THEN SET N_Flag
MAC Reset PH_indication(l)
SETT Neg = T_Max @ce) | @1 SIGNAL FR_Strip
_PH invalid woty | @) PH indication{not 1,T,n)
SIGNAL FO_Error; ING Lost_Ct SIGNAL FO_Error; ING Lost_G1
R4: AC FR STATUS
Ar Actions §
PH_indication(T)
ED_Actions 4 84
©0) MAC Reset (@1a) After FSr & FCr = Claim & A Flag & M Flag
] SET T _Neg = T_Bid_Rc; SIGNAL My_Claim; CLEAR R_Flag
N SET T_Neg = T_Max
a1b After FSr & FCr = Claim & H Flag
MAC Reset acn) (41b) SETT_Neg = T_Bid_Rc; SIGNAL Higher_Ciaim; CLEAR R_Flag
SETT Neg = T_Max {
e After FSr & FCr = Claim & L Fla
__PH invalid o | SIGNAL Lower_Claim; CLEAR R_Fleg
SIGNAL FR_Received; IF E_Fiag & (‘°P)

Er » S THEN INC Ervor_Ct @) After FSr & FCr = Beacon & M Flag

SET T_Neg = T_Max; SIGNAL My_Beacon; CLEAR R_Flag

After FSt & FCr = Beacon & not (M Flag or E Flag

“te) SET T_Neg = T_Max; SIGNAL Other_Beacon; CLEAR R_Fiag
@ ELSE After FSr
SIGNAL FR_Received; IF E_Flag & Er » § THEN ING Eror_Ol

Vertical staffs indicate states, horizontal shafts indicate transitions. Above the shaft the conditions are
given for which the transitions are made, below the shafts the actions are given which have to be
performed during the transition.

125

Appendix A: MAC receiver state machine

1. DA _Actions:
After DAr
IF FCr + Void
THEN IF Lr = 0 & DAr Is contained in the set of Short_Addresses or
Lr = 1 & DAr is contained in the set of Long_Addresses
THEN SET A_Flag; copy frame

2. SA_Actions:
After SAr
IF (Lr = 0 & SAr = MSA & MSA > 0) or
{Lr = 1 & SAr = MLA & MLA > 0)
THEN SET M_Flag; SIGNAL FR_Strip
ELSEIFLr = 0 & SAr > MSA & MLA = 0 or
LR = 1 & SAr > MLA
THEN SET H_Flag
ELSEIF SAr > 0
THEN SET L _Flag

3. CT_Actions:
After 4_Info_Octets
IF FCr = Claim
THEN IF T_Bid_Rc + T_Req
THEN CLEAR M_Flag;
IF T_Bid_Rc > T_Req

THEN IF L_Flag
THEN SET H_Flag; CLEAR L_Flag

ELSE IF H_Flag
THEN SET L_Flag; CLEAR H_Flag

IF L_Flag
THEN SIGNAL FR_Strip
4. ED_Actions:
INC Frame Ct;

IF Valid_Data_Length & (Valid_FCS_Rc or (FCr = Void or Implementer))
THEN RESET TVX;
IF A_Flag & Valid_Copy
THEN SET C_Flag
ELSE SET E_Flag;
CLEAR A_Flag, H_Flag, M_Flag, L Flag

5. Ar_Actions:
After Ar
IFAr=R
THEN CLEAR N_Flag

6. TK_Received_Actions:
IF Token_Class = Restricted
THEN IF not R_Flag
THEN SET R_Flag; Notify SMT
ELSE RESET TVX; CLEAR R_Flag
SIGNAL TK_Received

126

Appendix B: MAC transmitter state machine [4]

TO: TX IDLE T1: REPEAT _T4:CLAM TK
ES Actions 2 1 Bid Tx =T Reg
BC_Star Recovery Required 8
o1 (19 Recovery_Actions §
Before FCx & FCr = Token & Usable 3 (108)
TK Received
Fass_Actions 4 (1o}
FR Strip or FO_Error (10¢)
Reset Required & .
Resel_Actions 7 (tod)
_T2:TX DATA _
FR_Received 106! IF Asynch_Request
(10e) THEN ENABLE THT
ELSE DISABLE THT
TK Received & Usable 3 24 Recovery Required 8
©2) Capture_Actions 5 Recovery_Actions 8
Reset Required 8
Reset Actions 7 (@)
@2 Another Frame 1
T3: ISSUE TK
ELSE After FSx (no more frames
TK_Received & not Usable 3 Recovery Required 8
©3) Pass_Actions 4 il Recovery_Actions 8
Reset Required 8 Claim 43
Reset_Actions 7 (302) SETT_Opr = T_Neg; RESET TRT + T_Opr; CLEAR Late_C1 “3)
After ED(TT) (30b)
04) Recovery Reguired 8
Recovery_Actions 9
Reset Required 6
RESET TRT = T_Opr “a
T5: TX BEACON
Reset Required &
©0) .]
Reset_Actions 7
MAC Reset or Other Beacon) TRT Expites
RESET TRT = T_Opr 0 SET Beacon_Type = Unsuccessful_Claim, DA = NULL “s)
%) SM MA CONTROL.request(Beacon) 4) My Beacon
RESET TRT = T_Opr RESET TRT = T_Opr

Vertical staffs indicate states, horizontal shafts indicate transitions. Above the shaft the conditions are
given for which the transitions are made, below the shafts the actions are given which have to be
performed during the transition.

127

Appendix B: MAC transmitter state machine

1. Another_Frame:
After FSx & Late_Ct = 0 & (Synch_Request or
(Asynch_| Request & Requested_ “TK _ Class = R_Flag &
(lgnore THT or THT < T Pn(Request Priority))))

2. FS_Actions:
Before Ex
IF E_Flag THEN SET Ex = S ELSE SET Ex = Er
Before Ax
IF A_Flag THEN SET Ax = S ELSE SET Ax = Ar
Before Cx
IF C_Flag & not N_Flag THEN SET Cx = S ELSE SET Cx = Cr

3. Usable_Token:
Ring_Operational & (Synch_Request or
(Asynch_Request & Late_Ct = 0 & Requested TK Class = R_Flag &
(lgnore_THT or THT < T _Pri(Request | Priority))))

4. Pass_Actions:
IF Rlng Operational
THEN IF Late Ct = 0
THEN RESET TRT = T Opr
ELSE CLEAR Late_Ct
ELSE SETT_Opr = T_Neg; RESETTRT =T Opr;
SET Late Ct = 1; SET Ring_ Operational

5. Capture_Actions:
DISABLE THT;
IF Late Ct =0
THEN SET THT = TRT; RESETTRT = T _Opr
ELSE SET THT = expired; CLEAR Late Ct

6. Reset_Required:
MAC_Reset or Higher_Claim or Other_Beacon

7. Reset_Actions:
SETT Opr = T_Max;
IF Ring_Operational or Late Ct=0
THENRESETTRT =T Opr SET Late Ct = 1;
CLEAR Ring_Operational

8. Recovery_Required:
TVX Expires or (TRT Expires & Late_Ct > 0) or
(Ring_Operational & T_Opr < T_Req) or
Lower_Claim or My_Beacon

9. Recovery_Actions:
T_Opr = T_Max; RESET TRT = T_Opr; CLEAR Ring_Operational

10. TRT_Actions:
In all states: IF TRT expires
THEN INC Late_Ct; RESET TRT = T_Opr

128

Appendix C: Abbreviations for MAC [4]

Error_Ct
Frame_Ct
Late Ct
Lost_Ct
A_Fiag

LA
zI=z
ZXe

nZ
z'=
R

_]
S5288
5 R |

X O

I—ll—l'—ll—ll—ll—ll—ll—l
v0OZ
=38

-
n
=2

~~~

2

_React
T_Req
T Resp
THT
TRT

TTRT

Count of reportable frame errors

Count of all frames received

Count of TRT expirations

Count of PDUs detected as lost

Indicates destination address match in last received frame
Indicates successful copying of last received frame
Indicates error detected in last received frame
Indicates Higher Source Address received

Indicates Lower Source Address received

Indicates My Source Address received

Indicates next station addressing

Indicates the token_class of the last valid token received was restricted
Maximum signal acquisition time

Maximum ring latency time

Maximum frame time

Maximum station physical insertion time

Maximum transmitter frame set-up time

Maximum number of MAC entities

Minimum safety timing allowance

Bidding TTRT received by this station in claim frames
Bidding TTRT transmitted in this station's claim frames
Ring initialization time

Maximum TTRT to be supported by this station
Minimum TTRT to be supported by this station
Negotiated TTRT during claim process (in receiver)
Operative TTRT for this station (in transmitter)

Set of n priority token rotation time thresholds
Element n of set T_Pri

Worst case time to react to a station insertion or removal
Requested TTRT for this station’s synchronous traffic
Worst case time to recover a token

Token holding Timer

Token Rotation Timer

Target Token Rotation Time

Valid-Transmission Timer

129



Appendix D: Files made with PROMOD

Disk labelled PROMOD 1
\FDDI.PRD : Main file used by PROMOD, containing all descriptions of dataflow diagrams,

controlflow diagrams, minispecs, controlspecs and data definitions.
This file can be used Immediately by PROMOD, without any other files.

Disk labelled PROMOD 2

\FDDI.SA : Analysis report, made by PROMOD, containing descriptions of minispecs,
controlspecs and data definitions. This file can be printed via a normal
ASCII text editor or via the type command in DOS. Note: This file
contains no flow diagrams.

\PLOTS\*.PCF : Plotfiles in HPGL format, contalning controlflow diagrams.

\PLOTS\*.PDF : Plotfiles in HPGL format, containing dataflow dlagrams.

\LP.EXE : Plotter program, that can be used for plotting the HPGL files produced with PROMOD.

\PETER.LP : Settings for LP.EXE, that make sure that the plot files can be plotted in a correct way.

\PLOT.BAT : Batch file starting up LP.EXE with the settings In PETER.LP

The plotfiles can be produced by PROMOD, by choosing the Data Flow Diagram (DFD) or Control Flow

Diagram (CFD) when in the SA-DEFINE menu, followed by the name of the diagram. Choose the

ordered options OUTPUT, PLOT, A5 for plotting the diagram to a HPGLfile.

When ready with plotting, it is possible to plot another diagram, by pressing twice the F1 function button
and entering the name of a diagram (followed by OUTPUT, PLOT, AS).

When in stead of the dataflow diagram, the control flow diagram (or vice versa) must be plotted, press
as much F1 until the SA-DEFINE menu is reached and choose the other of DFD or CFD options.

131



Appendix E: Data types and literals used with
PROMOD

Literals used in the report

The literals are values that certain signals can take. The following are defined; the meaning of them is
clear in the context they are used In.

0,1,2,3,4,5,6,7,89A,B,C,D,E,F,H,1,J,KQR,STV
acknowledge
Asynchronous
beacon

claim

clock
do_bypass
do_not_bypass
error_in_FCS
error_in_length
False

fr_good
Group
Implementer
Individual
integer
internal_error
LLC

light

Local

long

MAC

me

norequest
not_acknowiedge
not_specified
other
other_type
repeat

request
Restricted
send

short

SMT
Synchronous
token

True

Universal
Unrestricted
void

133



Appendix E: Data types and literals used with PROMOD

Data t s used in the descriptions

With the data descriptions the following data types are used:

bit = ["0"["1"]

long_address = 48 { bit } 48

short_address =16 { bit } 16

bits_8 =8{bit}8

symbols_4_bit = [*0"}"1"|"2"{"3"|"4"|"5"|"6"|"7"|"8" | "9"| "A"|"B"|"C"|"D" | "E"| "F"]
symbol = [symbols_4_bits|"I"|"J"|"K"|"R"|"S"|"T"|"Q" | "H"| "V"]

S or R = ["S"|"R"]

frame_status =3{S orR}3

priority level = "integer”

time = "integer”

134



Appendix F: PROMOD SA analysis report

hhkhkkhkhkhkhkkhkhkhkhkhkhhhhhhhkhhkhkhkhkdkdkdhihkdk
ProMod

PROJECT: fddi

* *
* *
* SA - REPORT *
* *
* *
khkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhhhhkkikd

135



khkhkkkkhkhkkkhkkkkhkhkkkhkhkhkkhkhkhkkhkhkdhkhkhkhkhkkhkhkkkhkkhkhkhkhkkhkhkkkkhkkkkkk

* ProMod V1.7 15-JUL-1991 12:37 ~CONT 1l - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *
do gk do kK Kk kg k Kk kkkdkkkkkkkkkkkkkkdkdkkkdkkkkkkdkkkdkkkkdkkkkkkkkikkkkkkkkkk

SYSTEM HIERARCHY .. .ecocecoeccosescoonscocncnsasosscssssssoscsse
PROBLEM DESCRIPTION context _ of ) 8
FD context of 120 55 5 S P
03220 o ) 5 1 N
FD FDDI¢eeeceooesssososcsesossosososssscssossssscssssosssssscsscscsss
MSP PMD. tcocoocoscocosecsscscosssssonsassssonssssososscsscsssscccsscs
MSP PHY . oeeoooeeocococscsscscossssosnscsscssssnssssssssscscscsscsccccscs
MSP MAC. e eeeescscsscssssscsssessosscssosssosscssssssossosscsscsscsss
MSP SMT . eveeesccsssnssescsssassssssscsssscssscssssscsssssssoscs

FD PMDOoooo.ooo..o.o..o..oo..o.............o.ooooo...oooo.o

MSP electric to opticC..cieceeeceeeececececececocececcscnncs
MSP optic_ to €leCtriCiceeecesssccoccccssscccoccccscsossccssnse
MSP optical bypass........................................
FD PHY...cceeeeococeccoaossacsooscssocssssnosssssssssscscssscccssss 10
MSP Q@COAC. cceesosccecssceccsossoscsssscsccsscsscsscssssssscsccsssce 1l
MSP serial_to parallel....c.ccececececscscocscossescssoscses 1l
MSP SYNChYONizZe..ceeeeeceocesossocsoossssocsccosscssossssssssoe 1l
MSP recover ClOCK:.coeceooceconcenosscnsscnnssscsssscosseces 11
MSP ENCOGC.cceessccsocsccccscososoccossosssssssscsccscscccsccssss 11
MSP parallel to serial.....c.ceececececcccccsccocccoseccososss 1l
FD MAC.ceceeoscsoscsoscsosssnssncsssssssncsssssssscssssscssscsse 12
MSP process userdata...cceccececcecccoscscccscssscosscscccssece 13
MSP transmit frames.......cceceeeiecececcececcceccccoccsss 13

WOOUWOJAARATANdWNE

MSP receive frames......ccecececececcccscccsccecccsosososos 13
MSP process framesS...ccceceececscosccoscsscnsscnsscsssessesees 13
MSP monitor...... e
FD process uUserdata..ccccecececosccccscscsccssscssscsscccsssscsssss 15
MSP StOre..cceeeesceeceeccscecccocscoscscccssosccssssccccccssse 16
MSP indicate..ceceeeeeeeeeeesecseasecaossssossssossssssanseaes 16
MSP add controlsS..ccceecerseccesccsecccosccscsssccssssccncaoe 17
MSP COMPOSE.ccccceccsccccossccsccsscscsossossccsssocsssocssssocss 17
FD receive frameS....cccccececceccececccccccossccscccscsssss 18
MSP forward frameS....cceececcecscscscoscscoscccsccccsccccsssncs 19
MSP ProcCess FS.cceetesceccccsrsssccccscscsssscsscsscscccncccccsss 19
MSP check on_function......ceeeeeeeeeeeneceeceeceaceaneass 19
MSP check on violationS...c.ceeeeeeeeceeeccececcscocssceaass 20
FD forward frameS...ccceecececcccccscocsccsosssocososoccsscsscsss 21
MSP SWitCh.iiiveeeeeeosesesosesosocscssssnsnsnsoscssosoccse 22
MSP buffer...ccccceeceecceccecscscsscccsassssososnsssssssscscccse 22
FD ProCess FSiieeeeseececscsccscccsccccssccssscossssssscsscscncsce 23
MSP get EAC...cccceccocccccccscsosscsccoscccssssssssnsncncses 24
MSP MaKe EAC..ccccocecescsscssccocsocsocsosccsssssssscssose 24
CS process FS (Sheet 1).cccceccerccccccocnssssssssscccces 24
FD check on function.....eceeeeceececscscencscsscssscscnces 25
MSP check ON FCuceteeeeseoocoscossoccocccccnscsssacscsscsnes 26
MSP CheCK _ON DA..cvereseesessosessossssossssoscsnnnncncene 26
MSP CheCK ONn SA...iccteececscescccsosccscccossoscscscsosoaseses 26
FD check on violationsS...cccieeescecescosccscscnocosscsccses 27
MSP convert to  CONErOl...eeeeeeeececencossnnnsccssnseanssns 28
MSP check_on FCS.......................................... 28
MSP check on length....................................... 28
CS check on v1olatlons (Sheet 1) .ceeeeececescccccsscsssss 29

136



% o de J de ok g de K g de ok Kde ke k e Kk de e g g e ke de g de g g de e o de de e e de ko de e de de ke ke e de e e K e e ke ke ke de ke ok ek

* ProMod V1.7 15-JUL~1991 12:37 ~CONT 2 - *
* LicNo. 21470 *

* PROJECT: fddi Analysis Report (RA&D) *
dkkkkkhkhkhhhhhhhhhhdkhhhhhhhhhdkhkhhhdkhdhhhkhdkhhkhhhhkhhhhhkhhhddhhkhhhk

FD mMONitOr.c.ciceieeseeeeeececeseccecccccccoccosassssssanses 31
MSP token management....cceoeeeececcccccccccsccccccccocsnes 32
MSP timing..ceeeeeceesorsscscnsseosseascosssnsssossossssceances 32
MSP lost Ct...cceeeeeinncereeccenceccoccscnsncsscccnscnsnes 32
MSP frame_Clt...cccececerncnseccccccocsosossnsossosasasoscses 33
MSP error Ct....ccceteetctencecncscscosssscssccscscccsncnsss . 33
MSP frame _handler......cccceeeeeeeeccceconscsccscaccsecsccosss 33

DATA DICTIONARY.:.ctcoesssessoccccccoccsonnsscssccnsascccssccce 34

ERROR/WARNING STATISTICS .cceceesoosocscocscccscsocscscssnacs 10

137



dkkhkdkhkdkhkdhhdkhhkhhhkhhhkhhhkdhhhdhdhhhhhkhhdkdhhhkhhhkhhkhkhhkhhhkhhhhhkhhkhhhdkhhdd

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 1 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

dkhhkdkhdhhhkdhhdkhhkdkhhkhhhkhhhhhhdhhhdhhkhhdkhhhhhhkhhkhkhhhhhhhkhhdkhhhkhhhkhhdd

SYSTEM_HIERARCHY

0 context of FDDI
1 FDDI
1.1 PMD
1.1.1 electric_to_optic
optic to electric

optical bypass

[}

decode
serial to_ parallel
synchronize
recover_clock
encode
parallel to serial

e o o o o »
MO
e o o o o o e o

[
PWORRRBRERPNRER

5

[}
MWWWLWWWORRRRPWHEFRERRWRERRPWORRPWLWWOUNDWWLWWWEOOOOA_WLUNDEPEPKWND

process_userdata

1.1 store

1.2 indicate

1.3 add_controls

1.4 compose
transmit_frames
receive_frames
1 forward_frames
1.1 switch

.2 buffer

rocess FS

.1 get EAC

.2 make_EAC
heck_on_function
.1 check on_FC

2 check on_ DA

3 check on_ "~ SA
eck on_ violations
1 convert to_control
.2 check . on FCS
4.3 check on length
rocess_frames

(-
PUWRRRPRPW

[}

[
e e o

(e

MRRRERPRRPWW

token_management
timing

lost_ct

frame_ ct
error_ct

frame handler

3.
3.
2
3.
3.
3
3
3.
3.
4
3
3
3
(o]
n
1l
2
3
4
5
6

[}
[ =Y

138



khhhdkdkdkdkdkhkhkhkhhhhhkhhkhhkhdhdhdhhdhdhdhdkhkhhhdhdhdhdhdhdkhhhhhhikkhkdkhhhhhkhkkkkkk

* ProMod V1.7 15-JUL~-1991 12:37 -PAGE 2 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

hhkhkhkhkkhhhkhkhkhkhhhkhkhkhhhhkhkhhhkhkhhhkhhkhkhhkhkhhhkhhhhhhhhhhkhdhhkhdhkhkhkhhkkhkhkkk

PROBLEM_DESCRIPTION context of FDDI
- FDDI must transport data with 100 Mbps.

- FDDI must operate on a fiber optic ring, with a timed
token protocol. This means that the token must pass a
certain station within a predefined amount of time.

- To prevent cable breaks to interrupt the proper working
of the system, the ring is made dual and counter
rotating. This opens the possibility of reconfiguration
on a cable break.

- FDDI must accept data on >userdata_out (during >stream)
and divide it into frames

- When there is a frame to be sent, a token must be
captured, that satifies >token_class

- To be able to discover the beginning and ending of a
frame, and for some other (error) controls, the data
presented to fiber out is encoded by a 4B/5B encoding
scheme.

- When a token is captured, frames may be transmitted to
<fiber out as long as token timing allows

- When a request is serviced number of SDUs and
provided_service_class is generated, and on return of
the frames MA_transmission_status is generated

- When >token request is received, a token must be captured
while there is not yet any data to be sent

- FDDI accepts frames coming in on >fiber in

- When a frame is received that comes from another station,
and is directed to this station FDDI checks it on errors
and presents it to <userdata_in allong with
<reception_status

- Because the FDDI must serve several types of users, the
ring operation must be adaptive in timing.

- FDDI must accept commands presented on >oper control out
and >oper_data_out, and react accordingly on
<oper_control in and <oper_data_ in

139



kkhhhhkhhhhhhhkhkdhhhdhdhhhhhhhhdhhhhhhhhhhhhhhhhkhhhhdhhhhhhhhkhhhhd
* ProMod V1.7

15-JUL-1991 12:37 -PAGE 3 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *
****************************************************************
FD 0 context of FDDI

userdata_outl
fiber_out
ring
user
fiber_in
userdate_in
\__/—
\ oper_data_in operator
oper_data_cut
context_of_FDDI
requested_service_ciass
r”—‘ stream -
/// s -
,//’," token_class
BV o'
::."' token_request ring
user " -
v reception_status

LN

LYY e eecas aumber _of_SOU. .

[ - ———

VN /

LR S MA_t7ansmission_ststus
\
\

provided_service_class

; |
-
e m-—-

oper_controi_in
N

‘*-----—--—-—-—~\

-

3
oper_controt_out ¥

operator

context_of_FDD!

140




R R L L s XXX IR0 222222 22 X222 222 2l sl 2

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 4 - *
* LicNo. 21470 *
* PROJECT: £ddi Analysis Report (RA&D) *

Akkkhkkhkkhkhkhkhhkkhhhkhhkhkkhhhhhhkhhhhhhhhhhhdbhhhhhhhhkhkhhhhhhhrd

MSP 1 FDDI

take >userdata out, divide it in pieces and send it to a
fiber ring (<fiber out).

the protocol used wil be a timed token protocol.

take >fiber in, make user data and send it to
<userdata_in.

the system will be synchronous to a system clock

141



o % J¢ J¢ J¢ g J¢ d de %k Je Je Fe Fe e de e e de Je e e e e e de Je K g Je d J de de de de de de de Je de de g Ko oK Ko Ko Ko e ode de de de de de de de de de ke hk kK

* ProMod V1.7
* LicNo. 21470
*

FD 1 FDDI

userda
ta_out

PH_Request

15-JUL~1991 12:37 =PAGE 5

PROJECT: fddi Analysis Report (RA&D)

counters

userda
ta_in

SMT_information_in

oper_data_out

oper_cata_in

Ind)cat
ion

fiber_in

fiber_out
FDDI
. ' ¢ token_ , token_ receptio number_ MA_trang provided_
|f°°”‘:5’~°°- ! stream ! class ! request A n_status of_sous A mission_ L7 service_
jservice- { H ! 1 /  status 7 class
1ciass ! { \ ¥ / V4 e
-~
\ i \ / ’ - ,
\ | N ’ ’,t’ V4
AN ‘\ S - - P
S \ - Prote P
~. \\ -‘—’ g
~. S, - b —— -
. ————— S
e P o
——— -~
. e e e 0 - . wT_
-~
K . N, control_
/ ~~e \
{ \ NN ~——— \out
[l [} NN G T \
{ \ N BN 1Y
i \ \\ N A 5\
1 PHIn Y \ \\ SMT. AR
‘o ovalie ) \ N control N\
PH_trans N\ \ N in .\
mlssion_ N \\ \\.\ oper_contro!_out
status ~— J—— ——m— o
\\\ ——— -
\\‘
S " oper_cantrot_in
————TT TN AT
~——
u.L s oS ——d
’f
t .
! S g /
SIQRal_ | mememeT - /
J—
Detect , //
/ bypass
'
L
”
-~ P
\\\~-- -—‘——
FDD!

*
*
*

kdkhkhkkhkhkhkkhkhkdhhhhdkdkdkhhhhkhhhkdhdhdddhddededdededdededekdeddodekddedekhhdeddedhdhdkkd

142



hkkkhkhkhhhkhhhkhhhkhhhhhhhhhhkhhhhkhhhhhhhhhhhhkhhhhhhhkhhhhkhhhhhhkdhhkhkkihk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 6 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

hkdkhhkhhhkhhhkhhhhhhkhkhkhhkhhhhkhhkkhhhkhhhhkhhhkhkhhhhkhkhhhkhhkhkhhkkhkhkkkkkkk

MSP 1.1 PMD

- transfer from light to bits (>fiber_in to <PM_Indication)
and vice versa (>PM_Request to <fiber out)

- detect whether incoming light on >fiber in is under/above
threshold and indicate by <Slgnal Detect

- on >bypass: bypass from >fiber in to <fiber out and from
>PM_Request to <PM_Indication

MSP 1.2 PHY

- recover clock from >PM_Indication

- synchronize the incoming bits (>PM Indication) with the system
clock

- decode >PM_Indication to <PH_Indication

- encode >PH Request to <PM Request

- proceed only on >Signal_Detect

MSP 1.3 MAC

- on <userdata out: - store the incoming data and process
to frames until ? >stream
- wait for an appropriate token based
on >requested_service class
- on token capture: send frames as long
as is allowed to <PH Request
- on end of transmission, generate
<number of SDUs indicating the
number of frames of each request
(>stream) that is transmitted, and
generate <provided_service class
indicating the type of token that
was captured
- when frames are returned on
PH_Indication: indicate by
<MA_transmission_status based on
internal checks and
>PH_transmission_status
- on >token_request: capture a token of the requested type
and hold as long as allowed
- on >PH Indication: - check for the destination and source
- depending on destination and source
transfer the frames to >PH Request
and/or >userdata in or strip the
frame;
if transfered to >userdata in :
generate <reception status,
indicating the frame was
received intact

143



kkhkhkhkhkhkhdhhkhhkhkhkhkhhkhkhkhhhhkhkhkhkhkhkhkhkhkhkhhhkhkhkhkhhkhkhkhkhhkhhkhhkkhkhkkhkkhkhhkkkkk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 7 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

kkhkhkhkhkhkhkhkhkhkhhkhhhhhhkhhhhhkhkhhkhhhkhkhkhhkhhkhhkhkhkhkhkkhkhkhkhhkhkhkhkkhkhkhhhkhkhkk

MSP 1.4 SMT

- manages the entire station

144



o &k % 5 K % % K K % K 5k K & K ok 5 ok % % o K K %k o % ok & K gk ok ok ok ok ok k& ok ok ok g ok ok o ek ok e ke ok e e e de e de de e ke e ke ke

* ProMod V1.7

* LicNo. 21470
*

15-JUL-1991

PROJECT: fddi

12:37 ~PAGE 8 -

Analysis Report (RA&D)

*
*
*

khkkkhkhkhhkdkdhhkdkhkhhhkhhkhkhkkkhkhhhkhhkhkhhkhhkkhkkhkkhkhkkhkkhhkhhkhhhhhkhkkhikk

FD 1.1 PMD

PM_Request

electric_
to_optic
A

optic_out

optical
_bypass
.3

fiber _ovt

PMD

electric_

to_optic
A

optical
-bypass
.3

PMD

PM_

Indicat
ton

optlic_to_
electric
.2

optic_in

fiber_in

ﬁ Signai_

J
/ Detect
¢

optic_to_
electric
.2

dypass

145



o % ok g gk e ok kK de kg K g g e K ke de ke ok g e Kk gk g de ok e ok g de e ok g de ke g de K K de de ke e de e e ok ke de K ok ke de ko ok ok ok ok ok

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 9 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

o dc g de g de K g de K g de e K de g ke g g de g d g g de K g d Je de e K de e K Je de ke de de K Je de de ke de de de ek K ke ke ke ke ok ke ok ok k kK k

MSP 1.1.1 electric_to_optic

- convert the electrical signal on >PM_Request to an
optical signal on <optic out

MSP 1.1.2 optic_to_electric

- convert the optical signal on >optic_in to an electrical
signal on <PM Indication

- when the optical power on >optic_in is above the
detection threshold: generate <Signal_ Detect

MSP 1.1.3 -optical_bypass

- initially: link >fiber_in to <optic_in, link >optic out to
<fiber out

- on >bypass: link >fiber in to <fiber out, link >optic_out
to <optic_in

146



khkkkkkkkkhkhkhkkhkhkkhkkkhkhkkhkhkkkhkkhkhkkkhkhkhkkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkkhkkhkhkkkkkkk
* ProMod V1.7 15=-JUL-1991 12:37 -PAGE 10 - *
* LicNo. 21470

*
* PROJECT: fddi Analysis Report (RA&D) *
khkkhkkkkkhkkkhkhkhkhhhkkhkhkhkkkhkhkhkkkhkhkhkhkhhkhkhhkkhkhkkhkhkhkkkkhkhkhkkhkhhkkkhkhkkkkkkik

FD 1.2 PHY
PH_
Indicat
ion
PH_Request
symbol_in
serial_to_
encode paraliel
.S 2
sync_bits
symbol_out synchronize
.3
parallel_
to_seriel
.6
recover
_clock
.4
PM_
PM_Request Indicat
ion
PHY
PH_(nvalid k
PH_trans 4 \
mission_ { \
status i \
\
1
[l
1
[}
[}
\\
N\,
serial_to_
encode
.S

paralle!
.2

\
1
1
i
\ [
\ \
A 1
\ 1
\ H
\

v /
parallel_ ! ! \ ]
to_serial 1 recover ! E //

[ 1 ed_clk \ ] /
. 11 1 H /
] i /

f H /

' ] /

f ] /

i 7 /

[ /

y s /

i/ /
[
i/ /
Nt/
114 P
V.-
,.
Signai_ :
Detect !
PHY

147



dehkdhdehhhkdedhdhhhkhhkhkdehhkhhkhkhkhkhkhhhhkhhhhhhkhdhhhhkhdhhhdhkdhdhhhhhdhhhik

* ProMod V1.7 15-JUL-1991 12:37 ~PAGE 11 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

Je Je g Je Je g d Je de Je e de de de Je kK de Fe de de e e e de de de de e de de o de de de de Je de e Je de ok de de Je de de de de de e hede de e de e de de e de de ek

MSP 1.2.1 decode

- decodes >symbol in synchronous to the system clock and
presents the symbols to <PH_Indication

- on >OF _UF or absence of >Signal_ Detect no function is
executed

MSP 1.2.2 serial to_parallel

- as long as no symbol boundaries are found: read
>sync_bits and generate <symbol_in every bit time

- when symbol booundaries are found: read >sync_bits and
generate <symbol_in every five bit times

- obtain the symbol boundaries by searching for a
WJWUK" sequence every bit time, each time that "J""K" is

found,
it introduces a new symbol boundary

- on >OF_UF or absence of >Signal Detect: perform no
functions

MSP 1.2.3 synchronize

- the incoming bit stream from >PM Indication synchronlzed to
>recovered _clk is to be adjusted so that it is synchronized
to system clock. It is sent to <sync bits

- in case of an error: generate <OF_UF

MSP 1.2.4 recover_clock

- recover the clock with which the incoming bits on
>PM Indication were sent, and send it to <recovered clk

MSP 1.2.5 encode
- encodes the incoming symbols from >PH Request synchronous

to system clock and presents the coded symbols to
<symbol out

MSP 1.2.6 parallel to serial

= Read >symbol out and generate the seperate bits to
<PM_Request

148



hhkkkkhkhkhhhhkhhhkhkhkhhhkhhhkhhhhhhhkhhhkhhhhhhhhhhkkkhhhkkhhkhhhhhhhhhhk
15-JUL-1991 12:37 ~PAGE 12 - *
*

* ProMod V1.7
*

* LicNo. 21470
* PROJECT: fddi Analysis Report (RA&D)
B N Y Y Y R R R X R R AR XXX RSS2 222 2 22 2 2 2 2 20 2 2 2 0 b 2 22

FD 1.3 MAC
userda

ta_in

userdata_out

super_

rocess
frame_tin P

_frames

SMT_
informat ion_

super_1frame_out

SMT_
information_
out

process_
wserdate
A

receive
_fremes
.3

received_

time_info
FS

frames_out

counters

chocked_
symbols_in

PH

transmit
_fr s indicat
> ion
PH_Request MAC
\ requested_ , Stream ’number_ ’MA_lrans f token_ ' token_ provided_
| service_ H . of _SDUs mission_ ! class ! reguest 1ssrvlce_ ,4
Y class H s / status ! H ! ciass s
i 1] /7 4 H i i -
——
1 t yd { ' ' s~
H [ % ! ! } raceptio
H [ y SMT_ t ! ; process n_status
\ H I 4 1 H Y _frames
\ 1 i Vd control_ \ ’ ! 4
[ \ .
v [ / out ' f / SMT.
\ [ /s \\ ) ] ] -
\ [ / \ 7 s
\ [ \ \ § / control_
\ T / freme_class \ \ ) V4 5 J
S, | v ————— A i 7 s7n f
\ I ———— v —— \\ \ ¥ / ’ )
\ i !/ / ,r’ ‘\\ v ] 4 4 [1
(S - A / - H
/ P :
U |
process_ - ~.
et . frame_type - \“\ status_
userdata \ P
——e— \‘lndlcator -~
-~
N token_ type - "--__ frame_detect \ .G
N o ~——— — / -
1 / ~~e— e ——— RS
I ANY =~ - -
R RN start_transmission H Sapmma. = v
i 1\ Seaa ——d H ~ b - UL
ready | '\ e 12 o ! send_ N /, S ——————— receive o
i 1 e
H VN ! repeat “ea . token_detect -frames
] A Sa 1 . ~
AY -~ ~
b\ e i " ~
% S — Bt DHSRISN PR ~ ,
\ ——— ~ ack
\ ~——— i s
\ S——— 1 ~ - 1
\ SRS N \
=3 PULan v
\ - . '
N, \
N\, N A
. N \
~. S,
S —— AN
.- N
]
\
——— PH_trans 1
~ [
S~ mission_ '
\ \
\Eretus PH_Invelid 1}
[} i
MAC \ ]

149



khkhkhhkhhhkhkdkhhkhkdhdhhddhdddodddkdddddodddodeddedededddodededddedddedddedddddhkdkdhkkhkk

* ProMod V1.7 15-JUL-1991 12:37 =PAGE 13 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

ok d ek d ke Kk de K ke dede kK ke ke de Kk ke de ke g de dededede g de de de ke g de de ke ode od de de ke de de e ke ke de e de ke ke ek ok ke kk ok kk

MSP 1.3.1 process_userdata

- read >userdata_out, insert >MA and store

- read >requested_service class and store, count number of
SDUs received

- if >frame type =? "other type": make the requested type of
frame :

- on >start_transmission: copy the correct frame to
<frames out adding PA, SD, FCS, ED and EAC depending on
>frame type

- on end of >start_transmission: finish sending, generate
<ready

- when no more frames left to be sent: generate <ready

- when stopped with sending while >frame_ type = "other_ type":
generate <number of SDUs and <MA_transmission status
based on >ack

MSP 1.3.2 transmit frames
- >send_repeat =

"send": copy >frames out to <PH_Request
"repeat": copy >checked _symbols_in to <PH_Request

MSP 1.3.3 receive_ frames

- initially: >PH_Indication is connected to
<checked_symbols in

check on volations from >PH Indication, generating
<SD_Detect, <ED Detect, <status indicator
check on FC, check for token from >PH_Indication
in case of token: generate <token detect
else : generate <frame detect, <frame type
check on (from >PH_Indication)
DA = MA --> connect >PH_Indication to <data in
(<checked symbols in is already connected)
SA = MA --> disconnect >PH_ Indication from outputs
else -=> (<checked symbols in is already connected to
>PH_Indication)
check on frame status from >PH Indication

MSP 1.3.4 process_ frames

- combine data with FC, DA and SA and send it to <userdata_in
- generate <reception_ status from >status indicator and
internal events

150



dkkkkkhhhkhkhkhkhkhhkhkhkhkhkhkhhkhhhhhhhhhhhkhkhhhhhhhhhhkhkhhhkhkhkkhkkkhhhhhkhhhhkk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 14 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

dkkkhkhkhhkhhkkhkhhhhhkhhhhkhhhhkhhkhhhhkhhhhkkkhhkhhhhhhkhhhhhhhhhkkkhrhkkkkd

MSP 1.3.5 monitor

- manage the token

- manage counters

control timing

handle MAC and SMT frames

151



dehkhhhhhhdhkhkhdhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkikik
* ProMod V1.7

15-JUL-1991 12:37 -PAGE 15 = *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *
hhkhkdkhkdkhkhkhkhhhkhhkhhkhhkhkhhkhhkhhkhhhhhkhhkhhkhkhhhhhhhhkhhkhkhkhkhkhkhhhkhkhkhhkhkhhkhkk

FD 1.3.1 process_userdata

userda
ta_out

super_1Trame_out

add_
contro
ts

.3

frames_out

process_userdata

requested ‘ “s”“m 4 MA_trens
_service i \ ! t mission
_class H 11 ! \ _status
\ [ i \
] 1]
N number _ \
Y S ——
of_5DUs JEUS - ~——— ——————
— ) S
- S ack
\\
~
-
next_request yid
- '~
N ——————— o S
 Semmmmm e .~
-
’ [ S token_detect
e VAN T —
_ P E \“ \\ ——
<7 (B} \
framo_class [} AN
[ Y
£t LAY
| | LYY
i | LAY
II : \ ‘\ ready tokten_type
s ] LAY -
-
start_transmission / ,l'—-~-~ ‘\ \ ..——"’
13 Lo
- i

frame_type

process_userdata

152




o de de & K K K K Kk Kk Kk Je de de de de de K de Je K Kk e d Kk K Kk ke k ok ok ok ok ok ok ok ok ok ok ok ok ok ok okod ok ok ok ok okod ok ok ok ok okkdkkk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 16 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

o Je Je Je Je g g K K Kk Kk Je Je Je Je Je Je Je Je Je K K Je de Je Je Je de K Kk J d Kk K Kk J e e e de e e ek ko ko ke ok ok ok ok ok kK

MSP 1.3.1.1 store

- on >userdata_out:
#SDUr :=
if >stream :
repeat
take >userdata out, insert >MA, store in memory
take >requested service_class and store
(when not enough space: do not store)
#SDUr := #SDUr + 1
until ? >stream
store #SDUr
- if frames in memory: generate <frame class based on
stored requested_service_class, but only when the
corresponding request has fully been loaded
- on >request data and (>frame_type = "other_type") :

#SDUs :=

get #SDUr

repeat
send frame to >framed_data
#SDUr := #SDUr - 1

#SDUs := #SDUs + 1

until #SDUr = 0 or ? >start transmission

store #SDUs

if #SDUr = 0: generate <ready

if ? >start transmission : delete rest of frames of same
request

- on >next _request : if some request is sent:
generate <number of SDUs = #SDUs

MSP 1.3.1.2 indicate
- initially: next_request outstanding

- on >number of SDUs : store >number of SDUs in #SDUa
- on >ack : #SDUa := #SDUa - 1
if (>AR = S) and (>CR = S):
generate <MA_transmission status =
"acknowledge"
else :
generate <MA_transmission_ status =
"not_acknowledge"
- on >token detect :
if #sSDUa =? 0: generate
MA transmission_status = end acknowledge;
#SDUa := 0
- on #SDUa = 0 generate <next request

153



ge g g g de e e e e o o de ok e g o de e o e ek ok ok ok e ok de ke ke ke g e e e e de ek ke ke ok de ke ke e K e ke ek ke oK ke ke ke ke de ke Kk ke ke ok

* ProMod V1.7 15-JUL-1991 12:37 =PAGE 17 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

dkkhhkhhhhhhhhhhhhhhhhhhhhhhhhhdhdhddhdddhdddeddedededededededededdededededededhdeddkd

MSP 1.3.1.3 add_controls

- on >start transmission :
- put PA * 16 I symbols *
- put SD; generate <request_data
- put >framed_data
- if >frame_type =? token:
- add FCs
- add "T" symbol
- add three "R" symbols
else:
- add two "T" symbols
- send to <frames_out

MSP 1.3.1.4 compose

- >frame_type =

"beacon" --> make [beacon FC] + [DA = 0] + [>MA]
"claim" --> make [claim FC] + [DA = >MA] + [>MA] + [time]
"token" --> make [token FC = >token_ type]

- on >ready and >request_data: send frame to
<framed_data

154



kkkkhkhkkhkkkkkkhkkkkkkkkkkkhkhkkkhkhkhhkhkhhkhhkhkhkkhkhkhkhkhkkhhkhhkkhkkkhkkkkkkkk
* ProMod V1.7 15-JUL-1991 12:37 -PAGE 18 - *
* LicNo. 21470 *
* PROJECT: £ddi Analysis Report (RA&D) *
kdkhkkhkhkhkkkhkkhkhkkhkhkhkhkkkkkhkhkkhkkkkhkkkkhkhkhkhkkhkhhkhkkkhkkkkkkkkkkkkkkk

FD 1.3.3 receive frames

data_in
recelyv

ed_FS

forward
_frames
.1

checked_
symbols_
in

check_on_
vielations
.4

PH_Indication

receive_frames

[ — ®_
— ~— AN
- -~ ~
e e, ~,
P S~. N
A \ 8¢k
/ Sea \
/ . 3
! “ea A
H ™~
! \
: forward ...
H _frames .
H S -
{ I NRIESYE S
: — - < -
i -
\ ul
H -
\ S | —— \\ ’
'U ‘\ N AN I'
] '] 1Y TN, (N H
) /) | R ~ SN b
/ / % Q. Sy
/ 1' ,/ mm———— ~. destin
/ ! - \ e N ation
<o ) - \ hd !
Hme H v \ Sw Source 3y
/ h = // \ o
-, '~
/ ~ 1/ -
/ S\ \ b
/ N 1
[ ¥ \ check_on_ 1 G
/ 1 ! e e function N
[ stews. o T
~
\ indicator | SO_ s A et -
N 1 P S~ —— - u_L .,
\ i Detect .~ - TS ————— - A
\ [ P i N\
\ : P token_ ] -~
P ! e
\\ detect f qoane S
~, S~
~— » J/ detect £
ED_Detect check_on_ \\\\ ,//
——"

viotations

receive_frames

155



kkkkkkkkdkhkhkkhkhkhkkhkhkhkhhkhkhkkhkhkhkdkhkhkhkkhkhhkkkhkkkhkkkkhhkhkhkhkhkhkkhkhkkhkkkkkk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 19 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

khkkdkhkhkhkdkhkkkhkhkhkhhhkkkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkkhkkhkhkhkkkkkkkkkkkkkkkk

MSP 1.3.3.1 forward frames

- on >SD_Detect : start copying >PH_Indication to
<checked _symbols_in

- on >source = "me" : stop copying

- on >status indicator : start sending "I" symbols to
<checked symbols in with delay of one symbol

- on >ED_ Detect while copying, copy >FS to
<checked symbols in

- after >FS is received: start copying >PH Indication to
<checked symbols in

- on >status indicator : send "T" symbols to
<checked symbols_in

- on >destination = "me": copy >PH_Indication to <data_in
: (from FC to but not including FCS)
- on >ED Detect, while copying: generate <copied

MSP 1.3.3.2 process_FS

- on >ED Detect: take frame status from >PH Indication and

remember

- on >length_error or >FCS_error or >invalid_symbols:
generate <E = "g"

- on >destination = "me": generate <A = "g"

- on >copied: generate <C = "“g"

- when frame status is completely received: generate <FS

MSP 1.3.3.3 check_on_function
*all parts are taken from >PH_Indication*

- on SD Detect :

check for FC, if token: generate <token_detect
else : generate <frame_ detect
- when no token is detected
take Da, if DA = >MA: generate <destination = "me",
generate <DA
else: generate <destination = "other"

- when DA is taken

take Sa, if SA = >MA: generate <source = "me"
else: generate <source = "other"
if >destination = "me" : generate <SA

156



% Je g de g K de de de K K g Fe K Kk ke ok de de kg dode do kg K de ek ke ke g de ke Fe ek ek ke ok ok ok ke kde ke ok g ke ok ok ok ok Kk ok khk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 20 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

ek gk gk ek Kk ke ok Kk kK ok ok ok kK ok Kok g koK ok ke ok kg ok ode ok gk k gk de e g ke ke gk ok ke k ok ok ok ok Kk k ok ok kkdkkkkkk

MSP 1.3.3.4 check_on_violations

- search for a start delimiter on >PH_Indication, and
generate <SD_Detect

- search for an end delimiter on >PH Indication, and
generate <ED Detect

- during a frame (>frame detect): check on the frame check
sequence until >ED_Detect and generate <FCS_error as
needed

- on >ED_Detect: check on the length of the frame
(>frame_detect) or token (>token detect) and generate
<length error as needed

- on detection of invalid symbols in a frame or token on
>PH_Invalid, generate <invalid_symbols

157



khkkkhkhkhkhkhkkkkkhkhkkkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhkhkkhkkhkkhkhhhkhkhkhkhkhkhkhhkkkkkkkkkikxk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 21 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

khkkkhkhhkhkhkhhkhkhkhhkhhkkhhkhkhkhkkhkhkkhkkkkhkhkhkhkhkkhkhhkhkhhkhkhkhkhkhkhkhkhhkkkkkkkkkkik

FD 1.3.3.1 forward_frames

switch
- !
checked.
symbols_i
[
PH_Indication
forward_frames
status_
1
indicato ! =SD_Detect
r ] 1 n
' | ! ED_Detect
i I i
P |
v |
\ source ‘ ] ‘ « destin
\ ! ! H i
\ i J ; i ation
\ b/ i ’
hY ] 1] " t
i i/ 7\ /
' \\ i/ 7o f
! \ SN {
] N N {
{ -~ S~ !
\ ey !
1 o hal Y 4
! ) 4
H —”
1
1
[
]
E copled
\ .
\ “ao
\ / Sea
\ ‘l “‘\\
S /’ >
~. ’
~ o

Se.. -
- Sl
s e e

forward_frames

158



% g de K K de K K K ok do d K K F K kg e K ok gk ke do ke K Kk g d de Fe g ok do ek g do de do e g de do de Je Kk e de ok ke e K ok ok k hk ok

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 22 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

khkhkhkhkhkhkhkhkhkhhkhhhhhkhhkhkhhkhhkhkhkhkhhkhkhkhkhkhkhhhkhkhhkhkkkkkhkhhkhkhkhkhkhkhkhkhkhhhkhkk

MSP 1.3.3.1.1 switch
- initially: copy >PH_Indication to <checked_symbols_in

- on >source = me: start sending "I" symbols to
<checked symbols in
- on >SD_Detect : start copying >PH_Indication to
<checked_symbols in
- on >ED_Detect ¢ if copying: copy >FS to
<checked_symbols_in;
start copying >PH Indication to
<checked_symbols_in
- on >status_indicator : start sending "I" symbols to
<checked _symbols_in with delay
of one symbol

MSP 1.3.3.1.2 buffer

- initially: no actions to <data in

- on >destination = "me": after >source: start copying
>PH_Indication to <data_in
- on >ED Detect : if copying: generate <copied,

stop copying

159



% % % & % % K k% ok ok kK gk ke ok k% ke k% K K ok gk de de % Je de o ok ok e % o % o ke %k ok ke ok e ok ok ok ke ok ke ke ok ke ke ke ke ok ek ok ok ok ok

* ProMod V1.7 15-JUL-1991
* LicNo. 21470
* PROJECT: fddi

12:37 -PAGE 23 -

Analysis Report (RA&D)

*
*
*

EIXITETTERTYTI TSI S22 2223388222222 s 2 2 22 222 2 22 2

FD 1.3.3.2 process_FS

ER_AA_CR EAC
recelv
ed_FS
FS
PH_
Indicat
ion
process_FS
"’—--- ~~\\\
\EO_Detect ,/’ [P —-—— \‘\
\\ // '/ It"~\ \, \
\ / { § O\ \
\ / 1 i \
\ / H i \\\ \
I AR}
] ER_AR_CR E.AC
\\\\ ot VAN
] (AN
,’ 1 \\ \\‘\
A o AV
R WY \
[ IR
[} [
1 [
[IRY [ I
;A\ { ‘ \ make_EAC
7\ P N
.2
~, - 1Y
~———e- \ {1
LY [N B |
\ b1
\, I
\ P B |
., ,~ ’l ll
«-,_~‘ /I /
’
‘_.—-_——------_---’..A'/ Il ack
td
-
// I .
”' -
//. - o
- o
4 ,” ,ﬂ—""-— -
s -
,/ // Ve
”~ ’ e
status_ Vi e e
rd
indicato “ e 4
e e
r Ve /
// //
destin 7
td
stion P
rd
,
’/
copied
process_FS

160



Khkkhkhkhhkhkkhkkhkhhkkhkhkhkhkhkhkhkhhkhkhkdhhkhkhkhhkhkhkhhkkhkhkhkhkhkhkhhkhkdkkkhkhdkd

* ProMod V1.7 15-JUL~-1991 12:37 =PAGE 24 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

Khkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkhkkhkhkhhkhhkhhkhhkhkhkhhkhkkhkhkkhkkkkkkkk

MSP 1.3.3.2.1 get EAC

- on >ED_Detect: take next three symbols from >PH Indication
and generate <ER, <AR, <CR corresponding to these symbols
- generate <got

MSP 1.3.3.2.2 make_ EAC

- on >got: - take >E, >A, >C and send the corresponding
symbols to <FS

CS 1.3.3.2 process_FS (Sheet 1)

- on >ER_AR CR:
- generate <E = (if >ER = "g" ; ngw
if >status_indicator = "FCS_error" or
"length_error" or

"invalid_symbols" : "sS"
else "R")
<A = (if >AR = "g" : "gw
if >destination = "me" : "“s"
else "R")
<C = (if >CR = "g" : ugn
if >copied : "“s"
else "R")
- if and >AR and >CR : generate <ack = "acknowledge"
else : generate <ack = "not_acknowledge"

161



o K dodo e K g e K g g do g de e de ke dede e dede de ke Kk ok Jo g de dede de dede de g dedededede g de dede ke de ke K de de ke ke ke de ke K kK ke k

* ProMod V1.7 15-JUL-1991 12:37 ~PAGE 25 - *
* LicNo. 21470 *
* PROJECT: fddi

Analysis Report (RA&D) *
dkdkdkdkdhdkdkdkdkdkkdkkdddkkhkdkkkdkkkkdkkdkkdkkdkkkkkikdkkkkdkkkkkdkdkkddkdkkdkdkk

FD 1.3.3.3 check_on_function

PH_
Indicat
Ton
MA
check_on_function
\ ——
] P ..
\ P ‘\\
ol \
¥
1 \
1 \
] \
) \
1 \
[ .
destin Y
: [}
ation : \'
no_token PG 1
{
SD_Detect e em———— check_ H
""""""" R on_DA ‘,'
-~"‘\~\.-__-_.-—--"’ .2 /l
L ~
-~ ~an,  U_L /I
-~ \ N\ i P
/ \ \ 1 4
H A \ { P
I { \ ¢ DA_taken V4
1 ! \ § e
Y * \ ! /
\ H s
. H /S
token_ frame_ \ v
Uetect detect \\ -

=<~  gource

check_on_function

162




%k de Je % d d de e ke de e de de de K de e ok de de o K de e de e de de de de de de e Je de de de e de de ke de de Je e de de de Jo de dede Kk de doke ke ke ok ke dek

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 26 -
* LicNo. 21470

* PROJECT: fddi Analysis Report (RA&D)

*
*
*

de e Je Je g de Je de de Je de de e de de de de K ke de de ke ke ke e K ke ke Je e de de de g K e de e ke de de de de do ke de de dede de K dede K de de de dede de ke ke ke ok

MSP 1.3.3.3.1 check_on_FC

on >SD Detect:
take FC from >PH_Indication
generate <FC
if FC=1000 0000 b: generate <token_detect="Unrestricted"
else
if FC=1100 0000 b: generate <token_detect="Restricted"
else
generate <no_token
if FC=0x00 0000 b: generate <frame_detect="void"
else
if FC=0x00 xxxx b: generate <frame_ detect="SMT"

else
if FC=1x00 0010 b: generate <frame_ detect="beacon"
else
if FC=1x00 0011 b: generate <frame_ detect="claim"
else
if FC=xx01 O0xxx b: generate <frame_detect="LLC"
else

if FC=xx10 Oxxx b: generate
<frame_detect="Implementer"”

else

skip.

MSP 1.3.3.3.2 check_on_DA

on >no_token: if >I="long" take long DA from >PH_Indication
else take short DA from >PH Indication
generate <DA_taken
if DA=<MA: generate <DA
generate <destination="me"
else generate <destination="other"

MSP 1.3.3.3.3 check_on_SA

on >DA_taken: if >L = "long" take long SA from
>PH_Indication
else take short SA from >PH Indication
if SA = >MA: generate <SA
generate <source = '"me"
else generate <source = “other"

163



hhkhkhkhkhhkhkhkhhhkhhkhkhhhhkhkhhhkhkhkhkhhhhhhhhkhhkhhkhhhhkhhhhhhhhhhhhhkhhkhdhkhkhkk

* ProMod V1.7 15-JUL-1991 12:37
* LicNo. 21470
* PROJECT: fddi

*
*
*

27

-PAGE

Analysis Report (RA&D)

hhkhkhkhkhkhhkhhhhkhkhhkhkhkhhhkhkhkhkhkhkhkhkhhkhhkhhhhkhhkhhkhhkhhkhkhkhhhhhhhhhkhhhkkhhkhkkk

FD 1.3.3.4 check on_violations

convert_
to_contro
}

A

=

check_
on_length

PH_
Indicat

ion
check_on_violations

csymbols
o
4

to_contro
}

frame_
detect

————

.3

status_
indicato
r

-
>

check_on_viotlations

164



g e K g ke K g ke ke g K ke ke ke ke ke o K ok o g o ok e ke g de e de de e ke ke de K ke ke e e ke de ke e dede e e de ke ke ke ke ke ko ke ke ke ok ke ke k

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 28 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

Je g g g K Kk Kk kK Kk Kk k k k ke ke ke ke g g gk ko Kk Kk Kk ke ke ke kK ke ke ke ke ke ke ke ke ke ke ke ke ke ke ke kk ke ko ke ke ki kek ko k ok

MSP 1.3.3.4.1 convert_to_control

- generate <csymbols corresponding to >PH_Indication

MSP 1.3.3.4.2 check_on_FCS

- on >SD_Detect : start making FCS from >PH_Indication, with
delay of one symbol
- on >ED Detect : - stop making FCS, and compare the result
with a reference value
- on error: generate <FCS_error
stop making FCS
stop making FCS

- on >token detect
- on >stop

MSP 1.3.3.4.3 check_on_length

* checks whether the length of the frame is even *
- on >SD_Detect : start counting symbols from >PH Indication
(starting with zero)
- on >stop : stop counting
- on >ED Detect :
if >token_detect : if count =? 4 :
generate <length_error
else : skip
else : if count = even :
generate <length_error

165



ok hkhkhkkhkkhhkhkhkhkhkhhhhhhhhhhhhkhhkhhhhhkhhkkhkhkhkhkhhkhhhhhkhhhkhhkhkhhhhkhhkhkk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 29 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

Akkhkdkhkhkdkhkhhkhhkhkhkhkhhkhhhkkkhkdhhhkhkhhkhhhhhhkhhkhhkhkhhkhhhkhkhhkkhkhkhhkhkhhkdkhkkkkk

CS 1.3.3.4 check_on_violations (Sheet 1)

Initial state: generate I

generate_ 1I:
- on >csymbols = "Jg"
: goto state J_received

J_received:
- on >csymbols = "K"
: goto state in_FC
; generate <SD__ Detect
- on >csymbols =? "K"
: goto state generate I
; generate <invalid_symbols, <stop
- on >PH_Invalid
: goto state generate I
; generate <invalid symbols, <stop

in_FC:

- on >csymbols = "J"

goto state J_received

- on >token detect and >csymbols = "O0".."F"

: goto state expect 2 T
; generate <stop
- on >frame detect and >csymbols = "QO".."F"
: goto state in_ frame
- on >csymbols = "Q", . "F"
: goto state in FC
- on >csymbols _—_‘) lloll IIFII’ llJll

: goto state generate I

; generate <invalid_symbols, <stop
- on >PH_Invalid

¢ goto state generate I

; generate <invalid_symbols, <stop

expect_2 T:
- on >csymbols = "T"

: goto state expect_1 T
>csymbols =? "T"
goto state generate I
generate <token_ lost
>PH_Invalid
goto state generate I
generate <invalid_ symbols

|
(o}
o ]

|
[}
~e 00 MY wo oo

expect 1 T:

- on >csymbols = "T"
¢ goto state generate I
: generate <ED Detect

- on >csymbols =? "T"

166



Thkdkdkhhkkhhkrhkhhhhhhkhhkhhhhhkhhhhhkhhkhhkhhhkhkhhkhkhkhkkhkhhkhhhhkhkhhkhhkhkhkhkhdk®

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 30 - *
* LicNo. 21470 *
* PROJECT: fdadi Analysis Report (RA&D) *

khkkhkhkkhhdkhkhhdhhhhhhhkhhkhkhhkhhhhhkhhkhhhkhhkhhhhkhhkhhkhhkhhhhkhhdkhdkddhddhdkkhkk

: goto state generate I
; generate <length_error
- on >PH_Invalid
: goto state generate_I
: generate <invalid_symbols

in_frame:
- on >csymbols = "0o",."F"
: goto state in_frame
- on >csymbols = "J"
goto state J_received
>csymbols = "I
goto state generate_ 1
generate <stop, <strip
>csymbols = "p"
goto state expect_E
generate <ED_Detect
>cSymbols =? "oll . llFll ’ III" ’ "J’" ' "Tll
goto state generate_I
generate <invalid symbols, <stop
>PH Invalid
goto state generate I
generate <invalid symbols, <stop

I
(o]
o]

I
(¢]

I I
(o] (o]
~e 00 XY wo 00 J wo oo T we oo

expect_E

- on >csymbols = S or >csymbols = "R"
goto state generate_I

generate <strip

csymbols =? "R", "g"

goto state generate 1

generate <invalid_symbols
>PH_Invalid

goto state generate_ I

generate <invalid_ symbols, <stop

|
(o]

1
(o]

wo 00 N ne 00 I3 we 0o

167



khkhkhkhkhkhkhkhkhkhkhhhhhkhkhhhhkhhhkhhhkhkhhhhhkhhkhkhkhhhhhhkhhkhhkhkhkhkhkhhkhhkhhkhhkkik

* ProMod V1.7
* LicNo. 21470
*

FD 1.3.5 monitor

token_

management
M

15-JUL~-1991 12:37

PROJECT: fddi

-PAGE 31 -

Analysis Report (RA&D)

time_info
SMT_
super_ information_
frame_in out

frame_
handter
.6

monitor
token_
class provided_service_class
1imed
1
‘| token_ /I’ token
\ request ’/’ lost
!
! . / ———————— —
\ ' I eriority
1 [ ] ——
1 ) 1 -
1 1 i - Prd s
| S T -~
\ [ [ / Sync 7 [} //
\ 1 I g [
N\ \ i/ / i /
frame N\ \ 1 Vs [ 7
- NN Vi /] ‘
class R [ Y B 4 i1
1o " a 1 invalid_
/ J7 Asyne S ]
/ / ! symbols !
o’ 1 //
- H
reset _TRT ¢
S
S ———

transmission

1
token_typs / : \
/ 1
/ \ \\\\
A AN
/ 1
/ ; token_
’ ; detect
start_ 1
{
{
\4

send_
repeat

token_captured

frame_
handler

frame_type

monltor

EAD

counters
>
>
SMT_
information_
in
super_
frame_out
token_lost frame_
-
o =TT detect
- -
. -
4
/
/

-
~-.
-

——

FCS_error
0”’
”
SMT_
, control_
ovt
' ~,
i S~ length
i _error
[}
\
\
~— 1
~3 SMT_ \
Y
control_ LY
In \
\
\
A
\
\
PH_Invatid

*
*
*

khkhkhkhkdkhkhkhhkhkhkhkhkhkhkhkhhkhkhkhhhhkhkhhkhkhhhhhhhhhhhkhhhkhkhhhkhkhhhhhkhkhhkhkhkhhkhkk

168



hhkkhkhkhkhhkhkhkhkhkhkhkhkhkhkhhkhhhhhkhhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkkkkkkkkkkkkkkkkk

* ProMod V1.7 15-JUL-1991 12:37 =PAGE 32 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

ode Je e e Je g K de de Je de de ke de Ko K K K Fe K K Ko ke ke ke K Kk K ke ke de e de e e Je e e de e Jede dededededede ke ke ke kokokokokok dekokokkk

MSP 1.3.5.1 token_management

- on >token_class :
- wait for >token detect

- if >token class = "Not_specified" :
capt token := >token_detect.type
else :

capt_token := >token_class
- generate <provided_service class = >token_detect.type
<token_captured
<token_type = >token_detect.type

- repeat
- on frame_class = "Synchronous":
if >Sync : generate <start_transmission
<send_repeat = "send"
- on >frame_class = "Asynchronous":

- generate <priority
- if >Async : generate <start transmission
<send_repeat = "send"
until ? >Sync
- on >token_request:
- wait for >token_detect
- on >token_detect: generate <reset TRT

MSP 1.3.5.2 timing

*

SHT = Synchronous Holding Time
*

on >token_captured
- if late Ct =? 0 : copy TRT to THT
- reset TRT to >T opr, late_Ct to 1, SHT to >T_sync
- repeat
- if THT =? O:
- generate <Sync
- if THT <T_ Pri(>priority): generate <Async
else :
- if SHT =? 0 : generate <Sync
until SHT = 0 or late Ct = 0
= on >reset TRT : reset TRT to T opr, late Ct to 1
- on TRT expiring: late_Ct := late Ct - 1
- on TRT = 0 and late_Ct = 0 : generate <timed_token_ lost
- on late Ct = 0 : set THT = 0, SHT = 0O

MSP 1.3.5.3 lost_ct

- on >timed token_lost or >token lost or >invalid symbols :
increment counter
-~ generate continuously <nr lost = counter

169



hhhkhkhkhhhkhhhkhhhhkhkhhdhhhhhhkhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhkhhkhhk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 33 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

khkhhkhhkhkhhhkhhkhkhhkhhhkhhhhkhhhhhhdhhkhhhhhhhhhhkhhkhhhhhdhhkhhkhhkhhkhhhhkhkihk

MSP 1.3.5.4 frame_ct

- on >frame detect : increment counter
- generate continuously <nr_frames = counter

MSP 1.3.5.5 error_ct

- on >FCS_error or >length error : increment counter
- generate continuously <nr_errors = counter

MSP 1.3.5.6 frame_ handler

- construct MAC and SMT frames from >SMT_information out
and >SMT control out and direct to <super frame out

- receive frames from >super frame in and direct to
SMT_information_in and SMT_ control out

- generate <frame type based on SMT__. control _out

170



ARKTKKARAARAAKRRKRAKRAAAARKR KRR AT AR AT AT hkhhhkkhhhhkhhhhhhkhhhkhkxk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 34 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

dkkhkdkkdkhdhhkhdhhkhhkhkhhkhkhhhhkhhhhhhhhkhhhkhhhhhhhhhhhhkkhkkhkhhhkhhhkhhkhkd

DATA_ DICTIONARY
kkkkkkkhkhkhhhhdk

A

*
controlflow

(
process _FS, in E A C

)
indicates the received address_detect status bit
*

= [ ngw
I "Rll ]
ack
*
controlflow

(

MAC, process userdata, receive_ frames, process_FS

)

indicates that a frame is acknowledged by another station

*
controlflow

(
in ER_AR CR
)

indicates the received address_detect status bit
*

= [ "s"

l "n Rll ]

171



dededededededededo g de K K g o o o o ok ok e e e e e e e de ke ke ke e ke e e ke ke e e e de ke ke ke Kok ke de ke ke ok ok ke e kok ok ok kokkk ok

* ProMod V1.7 15-JUL-19%91 12:37 -PAGE 35 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

khkkhkkhkhkkhkkhkhkhkhkhhhhkhhkhkhhhhhhhkhkhkhkhhhkkhhhhhkhkhkhkkhhhhhhhkhhkkhhhhkhhkk

Async

*
controlflow

(

monitor

)
indicates that an asynchronous frame may be sent
*

= [ "True"
| "False" ]
bypass
*
controlflow
(
FDDI, PMD
)
tells PMD to bypass
*
= [ "do_bypass"
| "do_not_bypass" ]
C
*
controlflow

(

process FS, in E A C

)
indicates the new made frame_copied status bit
*

= [ ngn
l HRw ]

172



% de % % de & K de K Kk K Kk ok k de kK K Kk K K K K T K J J Jede K d Je K K K d kK Kk de de ok d e K ok g de K dode K K Kk kKK kdekdkk

* ProMod V1.7 15-JUL~1991 12:37 -PAGE 36 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

% Je % d¢ Je % % de e % de K K g de % J de e K J e K J JJo g K dede g dodkede ok K dkodk K ok kodkokokokokokdkokkkdkdhkkkkkkk

checked symbols in

*
dataflow
(

MAC, receive frames, forward_ frames

symbols copied from symbols in and checked
*

symbol

copied

*
controlflow

(

receive frames, forward frames, process_FS

)
indicates that the frame is entirely copied to frames in
%*

= [ LL] True LLJ
| "False" ]

counters

*
dataflow

(
FDDI, MAC, monitor

)

consists of several counter values
*

= nr_frames
+ nr_lost
+ nr_errors

173



oo e e de e & g ke ke Kk ok g & K gk kK ek kg K g g g g K ko ke ke ke ke ke ke ke ke ke ke ke ke ke ok ke ok ok ke ke Kk ke ke ok ke ok ok ke ok ok kok ok

* ProMod V1.7 15-JUL~1991 12:37 -PAGE 37 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

o o e e e g ke ke g K Kk K d d g gk g ok ok gk g g g g g g K Kk kK ok ko ok kK Kok ke ke ke ke ke ke ok ok ke ok ke ok ok ok ok ok ok ok ok ok ok ok ok k

CR

*
controlflow

in ER_AR CR

indicates the received frame copied status bit

*
-— [ llsll
I "Rll ]
- csymbols
*
controlflow

(

check_on_violations

)

contains the symbols which are to be checked. This is
only created to be able to use the symbols coming on
>symbols in in the state machine

*

= symbol
DA

*
dataflow

(

MAC, receive frames, check-on function

)
destination address supplied by user
*

[ long_address
| short_address ]

174



dkhkkhkkhkhkhkhkhkhkhhkhkhhkhhdkhhhhkhhkhkhkhkhhkhhkdkhhkhkhkhhkhkhhkhhhkhhhkhhhkhkdkhhkhkhdkkhk

* ProMod V1.7 15=-JUL-1991 12:37 -PAGE 38 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

dhkhkdkhkhkhkhkhhkhkhhhkhhkhhhkhhkhkhhkhhkhkhhkhhhkhhkhhkhdhddhdkdhdddhddhdddhdhddkdkiddkdkdhhkk

data_in

*
dataflow
(

MAC, receive_frames, forward frames

)

framed pieces for construction of userdata_in, followed by

received EAC symbols
*

= symbols_4_bit

DA_taken

*
controlflow

check_on_function

)

indicates that the destination address is taken from
>symbols_in
*

= [ "True"
| "False" ]

destination

*
controlflow

(

receive_ frames, forward frames, process FS,
check _on_ function

)

indicates that a frame is addressed to this station (me)
or another (other)

= [ "me "
| "other" ]

175



hhkkhkhkhhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhhkhkhkhhkhkhkhhhkhkhhhkhkhkhhkhhhhkhhkhkhkhkhkik

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 39 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

hhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhkhkhkhkhhhkhkhkhkhhkhkhhhhkhhhkhkhkhhkhkhkhhhhkhhhhhkkk

E

*
controlflow

(

process FS, in E A C

)
indicates the new made error status bit
*

I [ ngn

l npn ]

ED_Detect

*
controlflow

(

receive frames, forward_frames, process_FS,
check on_violations

)

generated each time an ED is detected after a SD_Detect

= [ n True [])
| "False" ]
ER
*
controlflow

(
in ER AR CR

indicates the received error status bit
*

= [ "s"
| "R" ]

176



hkkhkhkdkdkhdkhhkhhhhhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhkhkhhhhhkhkhkhkhkhkhkhkhkkhhhdhkkdhhhk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 40 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

kkkhkdkdkdkhkhkhkhkhhkhhkhkhhkhhkhkhkhkhkhkhkhkhkkhkhkhkhkhhhhhhhhhhkhkhhkhkhkhkhkhkhkhhkhkhkhhkkdhdkhk

ER_AR CR

*
controlflow, store

(

process_FS

)

contains the received error, address_detect, frame_copied
status bits

EAC

*
controlflow, store

(

process_FS
)
contains the new made error, address_detect, frame_copied

status bits
*

+ +
QO»i

FC

*
dataflow
(

MAC, receive_frames, check-on_function

)

frame control derived from user_ FC
*

= bits_8

177



% de d Je % Je de e de d e K K de K K de gk e e g de de e e vk de e e ok e de e e de de e ke ke de ke ke ke ke ok gk ke ke ke gk ke ke e ke ok ek ke ke ke ok

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 41 -~ *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

Jede e de de K Je do K K dede K de de K Je g dede gk K de e e de e e de e Kk e de e e de e e e ok ke ke de ke gk e e gk ke ke ke g ke ek ke ek ke ke ke ok

FCS_error

*
controlflow

(

monitor, in status_indicator

indicates that an error has occurred while checking the
frame check sequence. This can be an invalid symbol or a
violence of the FCS

= [ "True"
| "False" ]

fiber in

*
dataflow

(
context of FDDI, FDDI, PMD

)
light, representing bits, to PMD
%*

= "light"

fiber out

*
data flow

(
context_ of FDDI, FDDI, PMD

)
ligth, representing bits, from PMD
%*

= "light"

178



R X XX RSS2 22222 2 222 2 2 2 R AL AL LSS ST

* ProMod V1.7 15~-JUL-1991 12:37 -PAGE 42 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

B o Y Y X X R X R R R X R XXX XXX EETE X222 S22 222 X 222 222t

framed_data

*
dataflow
(

process_userdata

)
data assembled with basic controls (FC, DA, SA)
*

symbols_4_bit

frames_out

*
dataflow
(

MAC, process_userdata

)
framed userdata_ out
*

symbol

frame_class

*
controlflow

(

MAC, process_userdata, monitor

indicates the class of frame that is next to be sent
*

[ "Synchronous"
| "Asynchronous" ]
+ ( priority_ level )

179



dddehddehddeddeded e ded gk deddedkddedd ok d dedededded ddeded dededd dedd ok ke ddkkkkdkkkkk

* ProMod V1.7 15=-JUL-1991 12:37 =-PAGE 43 - *
* LicNo. 21470 *
* PROJECT: £ddi Analysis Report (RA&D) *

hhkhhhhhkhhhhhhkhhhhhkhkhhkhkhhhkhkhhhdhkhhhhhhkhhhhhhhhhhhhhkhkhhhhhhkhhhhdhk

frame_detect

*
controlflow

(

MAC, receive frames, monitor, check_on function,
check_on_violations

)

indicates the type of frame that is received at the time
*

"void"

" LLC L]

" mac "

”n SMT ”n
"implementer" ]

— ———— — p—y

frame_type

*
controlflow

(

MAC, process userdata, monitor

indicates one of the following frame types to be sent:

claim (time), beacon, token, other
%*

"claim"
"beacon"
"token"
"other_ type" ]
time )

P~ —— o —

FSs

*
dataflow
(

receive_frames, forward_frames, process FS

)
group of received_FS and adjusted_ FS
*

= 3 (SorR)}) 3

180



ok kkkkkhkkrrkhhhhhdhhhhhkhhhhkdkhdhkhkhhhhkhhhhhhdhhkhdhhhhhkdhhkkdkdkdhkhdkkkk

* ProMod V1.7 15-JUL-1991 12:37 ~PAGE 44 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

ARk A I AT AT KT I IR AA AR AR KAk hhhhhhkkhhhhkhkhhhkkkhhhhhhhhhhhkhk

got

*
controlflow

(

process_FS

)
indicates that the received EAC symbols are taken
*

= [ "True"
| "False" ]

invalid_symbols

*
controlflow

(

monitor, in status_indicator

indicates that invalid symbols are found

*
= [ "True"
| "False" ]
IG
*
controlflow

FDDI, MAC, receive frames, check_on_function

)

indicates an individual or group address of the frame
*

[ "Individual”
I 11 Group " ]

181



khkkhkhkhkhhhhhhhhhhhkhhhhkhhhhhkhkhkhkhkkkhhhkhkhhhhhhhhhkhkhdhhhhhhhhkhkkkkk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 45 - %*
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

khkhkhkhkhhhkhkdhkdkhkdhhdkhkhkhkhkhhhhhkkhkhkhkhkhkhkkkkhkhkkhhkhhhhhhhkkhkkkkkkkkhhkkkk

L

*
controlflow

check on_function

)
indicates the address length used in the frame
*

[ "short"
| " 1 ong " ]

length _error

*
controlflow

(

monitor, in status indicator

)

indicates that the received frame is to long (no end
delimiter received at the boundary), or ends at an ineven
symbol boundary

= [ ” True "
| "False" ]
MA
*
dataflow

FDDI, MAC, process_userdata, receive frames,
check_on_function

)

some source address of MAC (many are possible)
*

[ long_address
| short_address ]

182



hhkkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkkkkkkkkkkkkkkkkk

* ProMod V1.7 15-JUL~-1991 12:37 -PAGE 46 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

d dc % & d Je T dc de ek Kk d d K K K ke K de e KK K do e e de Je Je de Je Je Je de K de de Je de Je Je de de Je e de de de de ke K de ke kkde ke ok kkk

MA transmission_status

*
controlflow

(
context of FDDI, FDDI, MAC, process_userdata

)

copies the acknowledges of each returned frame, indicating
that a frame is received or not. The order of the
acknowledges is the same as the order in which the frames
were presented

= [ "acknowledge"
| "not_acknowledge" ]

next_ request

%*
controlflow

(

process userdata

)
indicates that the current MA_ UNITDATA_STATUS.indication

is ready, and a new one can be generated
*

= [ "True"
| "False" ]

no_token

*
controlflow

(

check on_function

)

indicates that the frame that is received now is no token
*

= [ ” True "
| "False" ]

183



Kk hddkhhhhhkhhhhhhkhhhkhkhhhkhhhhhhkhhkhkhhhhkhhhhhhhhhkhhkhkhhhhhhhkhkhhhk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 47 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

dedk o de % o d o d o d o & ok ok gk o K o g %k o ko ok % o o o o ok e o e o ok ok e ke ok ke ok ok ke o ok ok ok ok e ok e e ke ke e ke ke ke ke ke ok

nr_errors

*
dataflow
(

in counters

)

indicates the number of errors counted
*

= "integer"

nr_frames

*
dataflow
(

in counters

)

indicates the number of frames received

= "integer"

nr_lost

*
dataflow
(

in counters

)
indicates the number of token and frames lost during
receiption

= "integer"

184



Thkkkkhkkhkkhkhhkhhhkkrhhkhkhhkrhhhhhkhhhhkhhhhhhhhhhkhhkhhhkhhkhhkhhkhkkhkk

* ProMod V1.7 15-JUL-1991 12:37 ~PAGE 48 =~ *
* LicNo. 21470 *
* PROJECT: £fddi Analysis Report (RA&D) *

Ahhkkhkhkhkhkkkhkhhkkhkrhhhrkkhkkhhkhhhhkhhhhhhhhhhhhhhhhhhhhhhhkhhhkhhkhkk

number_ of SDUs

*
controlflow

(
context of FDDI, FDDI, MAC, process_userdata

indicates the number of SDUs of one request that were
transmitted

= "integer"

OF_UF

*
controlflow

(
PHY

)
indicates the elasticity buffer overflow or underflow
%*

= [ "True"
| "False" ]

oper_control_in

*
controlflow

(
context of_ FDDI, FDDI
)

flow by which the operator can observe the operation of
the FDDI

= unspecified group

185



kkkhhkhhkhkhkhhhkhhhhhhhhhkhkhhhhkhhhhhkhhkhhhhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhd

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 49 - *
* L, icNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

kdkhkkhkhkhhhhhhhhhhhkhhkhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhkhhkhhkhkhhhhhkdk

oper_control_out

*
controlflow

(
context_of_ FDDI, FDDI

flow by which the operator can observe the operation of
the FDDI

unspecified group

- oper: data_in

*
dataflow

(
context of FDDI, FDDI
)

flow by which the operator can observe the current
settings of the FDDI

= unspecified group

oper_data_out

*
dataflow

context of_ FDDI, FDDI

flow by which the operator can supply settings to the
FDDI

= unspecified_group

186



B o Y R X R R R R X R RSS2 22 2 X 22 2 2 2 22 2 2 22 2 X2t sd

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 50 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

B R R g S Y Y Y Y R SRR XTSRS L2222 £ 22 2 2 2 2 2 2 22 2 2t s

optic_in

*
dataflow

(
PMD

)
light received by the PMD, coming from the bypass

*

= "light®

optic_out

*
dataflow

(
PMD

)
light generated in PMD, directed to the bypass
L]

= “light"

PH_Indication

*
dataflow
(

FDDI, PHY, MAC, receive frames, froward frames,
process_FS, check_on_function, check-on_violations

)

data, constructing frames, from PHY to MAC

symbol

187



kkhhkkhkhkhkhkhhhkhhkhkhhhhhkhhkhhkhhkhhkhhhkhhkhhkhhkhhkdkhkhkhkhhkhdhhkhhhhkhkhhkhhkhkhkhhkk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 51 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

khkhhkhhhkhkhkhkhkhkhhkhkhhkhhkhkhhkhkhkhhhhhhhhkhhkhkhkhhkhhkhhkhhkhkhhkhkhhkhkkhkhhhhhkhhkkk

PH_Invalid

*
controlflow

FDDI, PHY, MAC, receive frames, monitor,
check _on_violations

)
indicates that the current frame received is faulty
%*

= [ "True"
| "False" ]

PH_Request

*
dataflow

(
FDDI, PHY, MAC
)

data, constructing frames, from MAC to PHY
*

symbol

PH_transmission_status

*
controlflow

(

FDDI, PHY, MAC

)

indicates that the previous symbol is processed, and the

next can be transmitted
*

= [ "True"
| "False" ]

188



dhkkhkhhkkkkhkhkhkhkhhkhhhkhhhhkhhkhhkhkhhhhkhkhhkhhhhhhhhkhhkhhhhkhhkhhkhhkhkhhhkhkhkkkk

* ProMod V1.7 15-JUL-1991 12:37 =PAGE 52 - *
* LicNo. 21470 *
* PROJECT: fadi Analysis Report (RA&D) *

Fhkhkhkhkhkhhkhkhhkhkhkhkhhkhhkkhkhkhhkhkhhhhhhkhhhhhhkhhkhhkhhhhkhhkhhkhhkhkhhhkhkhkhkk

PM_Indication

*
dataflow

(
FDDI, PHY, PMD

)
data, constructing symbols, from PMD to PHY
*

= bit

PM_Request

*
dataflow

(
FDDI, PMD, PHY

)
data, constructing symbols, from PHY to PMD
*

bit

I

priority

*
controlflow

(

monitor
)
indicates the priority of the next frame to be send,

extracted from frame class
*

priority_level

189



de g ek de g ke ke g g ke K K g de K K ok ke K K g Je K de g de d ke de K K de e ke Je ke K ke de K ke ke ke K ke ke ke Je ok Kk ke ke de ok kK K ok ok ok ok ok

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 53 -~ *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

o e g d Je K g de Je g d de K K de T e K g Je e Je g Je Je K K K K K e ke Je K de ke Kk K ke ke ke Je Kk ke Je K K de kK K ok koK ok okk Kokokokkk

provided_service_class

*
controlflow

(
context of FDDI, FDDI, MAC, monitor
)

indicates the service class that was used for the

currently indicated request (restricted or unrestricted)
%*

= [ "Restricted"
| "Unrestricted" ]

ready

*
controlflow

(

MAC, process userdata

indicates that there are no more frames to be sent at the
time
*

= [ " True 1]
| "False" ]

received_FS

*
dataflow
(

MAC, receive frames, process_FS

gives the frame status as received with the frame by this
station
*

3 (SorR}) 3

190



dhdhhkhhkhhkhhkhkhkhkhkhkhkhkhhkhhkhkhkhkhhkkkkhhhkhhhhhkhhkhkkhkhhkhkhhkhkhhkkhhhkhkhhhhkkhhkk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 54 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

dkhkhkhkhkkkhkhkhkhhkhkhkhhkhkhhhhhhhhhhhhhhkhhhhkhkhhhhhhhhhhkhkhhhkhhhhhhkhhhkkkk

reception_status

*
controlflow

(
context of FDDI, FDDI, MAC

indicates to LLC the status of reception of the frame

just send
*

[ "fr_good"

| "error_ in_FCS"

| "error in_length"
| "internal_error" ]
f

+ frame_status

recovered_clk

*
controlflow

(
PHY

clock obtained from incoming data
*

= "clock"

requested_service_class

*
controlflow

(

context of FDDI, FDDI, MAC, process_userdata

)

indicates the service class that is required for this

frame (restricted or unrestricted)
*

= [ "Restricted"
| "Unrestricted" ]

191



e e de g de g e g g g g e e d o o o e e e e e e ek e e e e g g g ok ok ok o o de e e e o e J d d de e o e o e e e e de de e ke ke ek

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 55 - *
* IL.icNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

dkkkhhkhhhhhhdhdhhdhhhhhhdhhdhhkdddhdhdkdkhdkdkdkdkdkdkdkddhhdddkhkddhkhkhkdkdkdkdkdkdkhkhkkk

request_data

*
control flow

(

process_userdata

)

*

[ request
| norequest ]

reset TRT

*
controlflow

(

monitor

)

indicates that a token has passed, but not captured, and
tells that TRT has to be reset

*

= "pulse"
SA

*

dataflow

(

MAC, receive frames, check on_function

)

source address of the frame
*

[ long_address
| short_address ]

192



khkhhkhhhhhhhhhkrhkrkkhhhkkhhhhhhhhhhhhhkhhhhhhhhhhhhhkhhhhhhhhhhkhhhkhk

* ProMod V1.7 15-JUL~1991 12:37 -PAGE 56 -~ *
* LicNo. 21470 *
* PROJECT: fadi Analysis Report (RA&D) *

kkkhkhkhhkhkhkhhhdkhhkhhhhkhkhhkhkhhhhkhhhhkhkhkhkhkhhkhhhkhhhkhhhhhhhhhkhhkhhkhhkhhhhd

SD_Detect

*
controlflow

receive frames, forward_frames, check on_function,
check_on_violations

generated each time a SD is detected

= "pulse"

send_ repeat

*
controlflow

(

MAC, monitor

tells wether frames out or checked_symbols_in are to be

transmitted
*

= [ "send"
| "repeat" ]

Signal_ Detect

*
controlflow

(
FDDI, PMD, PHY
)

indicates that the ligth power level is above threshold
%*

= [ IITII
I IIFII ]

193



khkkhkhkhkhkhkhhhkhkhkhkhhkhkhkhhhkhkhhhkkhkhhkhkhhhhhhhhhhhhhhhkhkhhhhhhhhhhhhhkhhdhh

* ProMod V1.7 15-JUL-1991 12:37 =PAGE 57 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

de Jc % e d ok J g Je de ok Je g e Je g e g e g de ok K e g de g de gk g K ke g ok g ok Kk ok ke ok e de ok ke ok Kk ok ok gk ok ke Kk ok ek kkkk

SMT control_in

*
controlflow

(
FDDI, MAC, monitor

)
contains the control flows of MAC to SMT
*

= unspecified group

SMT_control_out

*
controlflow

(
FDDI, MAC, monitor

)
contains the control flows of SMT to MAC
*

= unspecified group

SMT_information_in

*
dataflow

(
FDDI, MAC, monitor

)
contains the data flows of MAC to SMT
*

= unspecified group

194



khkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhhhhhhhhkhkhkhkhkhkhhkhkhhhhhhhhhhhhhhhhhkhhkhkhkhhhkhkkkk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 58 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

XXX XXX EXSRR RS R 2222222 2 22 2 2 2 2 R AL AR R EEEELEEEE RS2

SMT_information_out

*
dataflow

(
FDDI, MAC, monitor

)
contains the data flows of SMT to MAC
*

= unspecified group

source

*
controlflow

(

receive frames, forward frames, check on_function

)

indicates that a frame comes from this station (me) or
another (other)

= [ "me "
| "other" ]

start_transmission

*
controlflow

(

MAC, process userdata, monitor

indicates that the transmission can start
*

= [ L] True "
| "False" ]

195



g e I & ¢ % & g % o d e de de e de g e g e K e do o do e de g e do g do d e g g do e de e de e de e e g de ode de odede de de de he ke de ke e ke e ke ke ke

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 59 - *
*# LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

Je 7 % J dc & o d K J J e % g T g ok g & o d e d o g e e g do kK do e do g do g e de e de e de e de de e e de e de ode e de ke de Kk e ke ke ke ke ke

status_indicator

*

controlflow

(

MAC, receive frames, forward_frames, process_FS,
check_on_violations

indicates that a frame is bad or that idles have to be
sent. It consists of several components.

= FCS_error
length_error
token .lost
invalid_symbols
strip

+++ 4+

stop

*
controlflow

check_on_violations

)
indicates the FCS check and the length check to stop
%*

= [ "True"
| "False" ]

stream

*
controlflow

(
context_of_ FDDI, FDDI, MAC, process_userdata

indicates that another frame is following this frame
%*

= [ "True"
| "False" ]

196



Ahkhkhkhhkhkhkdkhhdkhhhkhhrhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhkhhhkhhhkdhk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 60 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

g e J ¢ g g g g g de e Je g K o K ok g g ok e ok o Kk K Kk g e K e e de e de e de ke e de ke ok ke e ke ke e de ke ode ke e d e e ke de K de de ke ke ke ko ke

strip

*
controlflow

in status_indicator

indicates that such a situation is found that the rest of
the frame may be stripped

= [ "True"
| "False" ]

super frame_in

*
dataflow
(

MAC, monitor

)

contains frames to MAC and SMT (SMT information is extracted)
*

symbols 4_bit

super frame out

%*

dataflow

(

MAC, process_userdata, monitor

)

contains frames from MAC and SMT (SMT information is
supplied by SMT)
%*

symbols_4_bit

197



kddkdhkdhkdkdkhhhhhhkhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhhhhkhhkhkhkhkhkhkhkkkkkhkhkkhkhkkhkhkkkk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 61 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

khkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhkhkhkhkhkkhkhhkhhkhkhkhkhhkhhhhhkhkhhkhkhkhhhkhkhhkhkhhhkhkhkhhkhkkkkhk

symbol in

*
dataflow

(
PHY

symbols constructed from the incoming bits. In case the
boundaries have not yet been determined, symbol_in changes
every bit time, else every five bit times

symbol

'symbol_out

*
dataflow

(
PHY

symbols to be serialized. Changes every five bit times
%*

symbol

sync

*
controlflow

(

monitor

)

indicates that a synchronous frame may be sent
*

= [ "True”
| "False" ]

198



o de de g g K & & Je g gk g & K T de g g T e Je g K Je g K gk gk g ok K g g g Kk e e K oKk e ke de ok de Je g Fe ek Je ke ke ke Je de ke k ke hk ok

* ProMod V1.7 15-JUL~1991 12:37 -PAGE 62 -~ *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

o d & g Je K T g & Je g Je de g Je de K g & T d & g K Je K K g e K K g K Je ke Kk g K g K T de K K g Kk g Je K o ode K de K K K K de ke ke Fe ek K

sync_bits

*
dataflow

(
PHY

data bits synchronized to the local clock
*

= bit

timed_token_lost

*
controlflow

(

monitor

indicates that the token has not arrived within 2 T_opr
*

= "pulse"

time_ info

*
dataflow

(
FDDI, MAC, monitor

)
contains information about the timing parameters, the
station is using; T sync = x% of T opr

= T _sync
+ T opr
+ T Pri

199



oo Je e de de de e o e e K de g g ok g de de o de e e e de g de de o e g de g o ke de de e ok K e ok e dede de e de e e de de de de ke de de e de de e ok ke ok ok

* ProMod V1.7 15-JUL=-1991 12:37 =PAGE 63 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

% Je ok g de de ok g de o gk e kg K ke o ok e o ok ke de de de o ok e de de ok ke de de e e de ke e de de de de de e e de de e e de e de de de e de de ke ok Kk ok ok

token_captured

*
controlflow

(

monitor

indicates that a tokenis detected, and captured. TRT must
be copied into THT; TRT must be reset to T_opr, SHT must
be reset to T sync (Synchronous Holding Time)

= "pulse"

token class

*
controlflow

(
context of FDDI, FDDI, MAC, monitor

)
indicates the type of token that has to be issued after

the corresponding request has been served; in case of N
the captured token must be reissued

= [ "Restricted”
| "Unrestricted"
| "Not_specified" ]

token_detect

*
controlflow

(

MAC, receive_ frames, monitor, check_on_ function,
check on violations
)

indicates that some token is detected
*

= [ "Restricted"
| "Unrestricted" ]

200



khkhkhkhkhhkhhkdhhhhkdhdkdhhkhhhkhkhkhhkhkhhhhkhhkhkhhhkhhkkhhhhhkkhkhkhkkhkkhhkhhkk

* ProMod V1.7 15-JUL~1991 12:37 -PAGE 64 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

khkhkkhkhdhhhkhhhhhhkhhkhhkhhkhkhhkhhkhkhkkhkhkhkhkhkhhkhhhkhhhkkhkhhkhhhhhkhkhkhhkkk

token lost

*
controlflow

(

monitor, in status_indicator

)
indicates that a token is lost
*

= "pulse"

token_request

*
controlflow

(
context_of FDDI, FDDI, MAC, monitor

indicates that a token must be captured and hold and the
type requested

= [ "Restricted"
| "Unrestricted" ]
+ ( priority level )

token_type

*
controlflow

(

MAC, process_userdata, monitor

)
indicates the type of token that is to be sent
*

= [ "Restricted"
| "Unrestricted" ]

201



dedededodede g e g dede gk ke g ke ok ok ok ok gk ke ok k ok ok ok ke ok de ok ke ok ok ok d ke ke de de ke ok ke ke ke ke ke ke ke ke ke ke ke ke ke de ke ke ke ke ke

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 65 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

ok g g g de ke K do K g gk K g de ke ok g de ke K de de de ke ke de de ke ke K e e de ok ok ke ke ok ek ke ke ke e ke ke K ke K de ke ke K de ke de ke de ek kK

T opr

*
dataflow
(
in time_info
)

gives the operational target token rotation time to be

used by MAC (determined via claim process)
*

= time

T Pri

*
dataflow
(
in time_info
)

contains the thresshold value for each priority
*

T Prio
T _Pril
T Pri2
T Pri3
T Pri4
T Pri5
T Prié6
T_Pri7

++++4+++

T _Prio

*
dataflow
(
in T _Pri
)

contains the threshold value for level 0
*

= time

202



khkkkhkhhhkhhhhhhhhkhkhkhhkhkhkhhhkhkkhhhhhkhkhkhhhhhhhhhhhhhhhhhhkhhkhkhhhhk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 66 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

Kkhkkrkhhhhhhhkrkkrkrkk Rk ARk hkhhhhhkhhhhhhhkhhhhhhhhhhkhhkhhhkd

T Pril

*
dataflow

(
in T_Pri

)

contains the threshold value for level 1
*

= time

T Pri2

*
dataflow
(
in T Pri
)

contains the threshold value for level 1
*

= time

T Pri3

*
dataflow
(
in T_Pri
)

contains the threshold value for level 3
*

= time

203



o de Je % & J & & d J kK K K g K K d Kk K K ded k& d J gk g K g de e g de d de e de de de de de de Je ke de de de de e de K de Je ke ke de e ke ke K

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 67 - *
*# LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

ode & & & g g g g g g & de & de & de g & de de g g de de de de ok de K K K K de ke & ke k ok k ke k ke k ke ke k k k ok ok ok ok ok ok ok ok ok ok okok ok dkk

T Pri4

*
dataflow
(
in T_Pri
)

contains the threshold value for level 4
*

= time

T Pris

*
dataflow
(
in T _Pri
)

contains the threshold value for level 5
*

= time

T Prié

*
dataflow
(
in T _Pri
)

contains the threshold value for level 6
*

= time

204



kkkkhkhkhkhkhhkhkhkhkhkhkhkhhhkhkhkhhkhkkhkhhkkhkhkhkhkhhkhkhkhkkhkhkhhkhkhkkhkhkhhkkkhkkkkkkhkkkk

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 68 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

ddkhkdkkhkhkhkhkhkkhkhhkkhkhkhkhkhkhhkkhkkhkkhkkhhkhhkkhkkhhkhkhkhkhkhkhhkkkhkkhkhkhhkhkkhkk

T Pri?7

*
dataflow
(

in T_Pri

)
contains the threshold value for level 7
*

= time

T_sync

*
dataflow
(
in time_info
)

gives the allowed synchronous transmission time determined
by SMT

= time

userdata_in

*
dataflow

(
context of FDDI, FDDI, MAC

)
data from MAC to LLC
*

symbols 4 bit

205



khkkkhkhkdkdkhkhhkhkhhhhhhkhhhhkhhhkhhkhkhkhkhhhkhkhhhhkhkhhkhkhkhkhkhhhhkhkkhhdhdkddddkdkdkkkk

* ProMod V1.7 15-JUL-1991 12:37 ~PAGE 69 - *
* LicNo. 21470 *
* PROJECT: fddi Analysis Report (RA&D) *

kkhkhkdkkdkhkhkhiohkhhhhkhkhkhkhkhkhkhhhhhhkhkhkhkhkhhhkhhkhkhhkhkhkhhkhhkhhhkhkhhkdhhdkhdkkdkkhkk

userdata_out

*
dataflow

(
context_of FDDI, FDDI, MAC, process_userdata

)
data from LLC to MAC, contains FC, DA and SDU
%*

= symbols_4_bit

UL

*
controlflow

FDDI, MAC, receive frames, check_on_ function
)
indicates a universal or local administration of the

address
*

= [ "Universal"
| "Local" ]

206



% Je % J o % Jo Jo K K o K J o Kk de K Kk d kK K Kk Kk kg d g g kk gk kkdkkkkdkkkkkdkkkkkkkdkkkik

* ProMod V1.7 15-JUL-1991 12:37 -PAGE 70 - *
* LicNo. 21470 *
* PROJECT: £ddi Analysis Report (RA&D) *

% Je % Jo Jo % Jo Jo Fe K o Kk Ko do T K o T K do de K K Kk K ke Fo Fe de T Fe ke ke Fe Ko ke ho ke Kk ke Fe ke ok ok od K kK ok ok kK kkkkkkkk

ERROR/WARNING STATISTICS

severe errors
errors detected

o

system model may be transformed

207



Appendix G: Graphic representation of control spec
check on violations

This graphic representation of the control spec is included to improve the insight in the operation of the
control spec. The textual specification can be found on p29 of the PROMOD SA analysis report in
appendix F.

Most arrows have an expression that must be satisfied to take the arrow to another state. If not it means
that the arrow must be taken when none of the expressions on the other arrows are satisfied. The > sign
indicates an incoming flow that Is tested. Symbols names on with the arrows mean that these symbols
occur on the flow >csymbols.

With most arrows an action is given via a generation of an outgoing flow. This is indicated by the < sign.

generate_|

<lm!/)alid
symbols <invalid
<stop _symbols
<stop
J

<length_error

expect_1_T
J_received
<SD )_Detect, K
>frame_
detect
and O..F
T

<invalid
.symbols

in_frame
, <stop
o.F <ED_Det
S,R <strip

expect_E

<invalld_symbols

209



Appendix H: Files made with IDaSS

The diskette labelled with IDaSS contains the following files made with IDaSS:

\IDASS\PHY.DES Design of process PHY

\IDASS\PROCUSER.DES Design of process process_userdata

\HEX\MA.HEX File that process_userdata\store\MA writes data to and reads data
from (required for start-up)

\HEX\TESTING.HEX File that process_userdata\LLC_data\testing writes data to and reads

data from (required for start-up)

\HEX\ MA_BASE: Base contents of MA (needed for restoring)
ONE_SHRT: Test pattern for one frame per request with short address
(for process_userdata\LLC_data)
TWO_SHRT: Test pattern for two frames per request with short address
(for process_userdata\LLC_data)

When a file Is loaded in a memory, it must always be saved to the file <memory_name>.hex before
saving the total design after a simulation cycle. This is because the memories are saved to the latest
access file, destroying the contents in the latest used file.

211



Appendix I: IDaSS description of decoder

This text is taken from a system document generated by IDaSS.

Text for function 'decode' of 'PHY\decode\decoder':
—————————————————————— ‘v_——-——————————————————

PH_Indication := (
(symbol = 11110b)
ifl: 0000b
ifo:
((symbol = 01001b)
ifl1: 0001lb
ifo:
((symbol = 10100b)
ifl: 0010b
ifo:
((symbol = 10101b)
ifi: 0011b
ifo0:
((symbol = 01010Db)
ifl: 0100b
ifo0:
((symbol = 01011Db)
ifl: 0101b
ifo:
((symbol = 01110b
ifl: 0110b
ifo:
((symbol = 01111b)
ifl: 0111b
ifo:
((symbol = 10010b)
ifi1: 1000b
ifo:
((symbol = 10011b)
ifl: 1001b
ifo:
((symbol = 10110Db)
ifl: 1010b
ifo:
((symbol = 10111Db)
ifl: 1011b
ifo:
((symbol = 11010Db)
ifl: 1100b
ifo:
((symbol = 11011Db)
ifl: 1101b
ifo:
((symbol = 11100b)
ifi: 1110b
ifo:

213



Appendix I: IDaS$S description of decoder

((symbol = 11101b)
ifi: 1111b
ifo: dummy

;)))))))))))))))

data :=

(symbol = 11110b)
ifl: o0b
ifo:

( (symbol
ifi: ob
ifo:
((symbol = 10100b)
ifi: O0b

ifo:

((symbol = 10101b)
ifi: ob

ifo:

((symbol = 01010b)
ifl: 0b

ifo:

((symbol = 01011b)
ifl: 0b

ifo:

((symbol = 01110b
ifl: ob

ifo:

((symbol = 01111b)
ifl: oOb

ifo:

((symbol = 10010b)
ifl: Ob

ifo:

((symbol = 10011b)
ifl1: ob

ifo:

((symbol = 10110b)
ifi: ob

ifo:

((symbol = 10111b)
ifl: ob

ifo:

((symbol = 11010Db)
ifl: oOb

ifo:

((symbol = 11011b)
ifl: o0b

ifo:

((symbol = 11100b)
ifl: Ob

ifo:

((symbol = 11101b)

01001b)

214



ifl: 0Ob

ifo: ((dummy) from:

;)))))))))))))))

J = (
(symbol
ifl: Ob

ifo: ((dummy) from:

).

K :=

(
(symbol
if1: 0b

ifo: ((dummy) from:

).

T := (
(symbol
ifl1: 0b

0
11000b)

0
10001b)

0

01101b)

ifo: ((dummy) from: O

).

R = (

(symbol
ifl: Ob

00111b)

ifo: ((dummy) from: O

S = (

(symbol
ifi: 0b

11001b)

ifo: ((dummy) from: O

I := (

(symbol =

ifl1: 0Ob

ifo: ((dummy) from:

PH Invalid

11111b)

(o]

to:

to:

to:

to:

to:

to:

to:

(Signal_Detect \/ ((OF_UF)

ifi1: ob
ifo:

( (symbol
ifl: o0b
ifo:

( (symbol
ifl: 0b
ifo:

( (symbol
ifl: 0b

00000b)

00100b)

00001b)

0)

0)

0)

0)

0)

0)

0)

not))

215



Appendix I: IDaS$ description of decoder

ifo:

((symbol = 00010b)
ifl: Ob
ifo:

( (symbol
ifl: 0b
ifo:
((symbol = 00101b)

ifl: Ob

ifo:

((symbol = 00110b)

ifl: Ob

ifo:

((symbol = 01000b)

ifl: Ob

ifo:

((symbol = 01100b)

ifl: Ob

ifo:

((symbol = 10000b)

ifl: Ob

if0: ((dummy) from: 0 to: O0)
;)))))))))

00011b)

End of function descriptions.

216



Appendix J: IDaSS description of encoder

This text is taken from a system document generated by IDaS8.

Text for function 'encode' of 'PHY\encode\encoder':

((Kout = 0b)
ifl: 10001b
ifo:
((Tout = Ob)
ifl: 01101b
ifo:
((Rout = 0b)
ifl: 00111b
ifo:
((Sout = Ob)
ifl: 11001b
ifo:

((dataout = 0Ob)

ifo: dummy

ifl1:

( (PH_Request
ifl1: 11110b
ifo:

( (PH_Request
if1: 01001b
ifo:

( (PH_Request
ifl: 10100b
ifo:

( (PH_Request
ifl: 10101b
ifo:

( (PH_Request
ifl: 01010b
ifo:

( (PH_Request
ifl: 01011b
ifo:

( (PH_Request
if1: 01110b
ifo:

( (PH_Request
ifl: 01111b
ifo:

( (PH_Request
ifil: 10010b
ifo:

( (PH_Request
ifl: 10011b
ifo:

0000b)

0001b)

0010b)

0011b)

0100b)

0101b)

0110b)

0111b)

1000b)

1001b)

217



Appendix J: IDaSS description of encoder

( (PH_Request
ifl: 10110b
ifo:
( (PH_Request
ifl1: 10111b
ifo:
( (PH_Request
if1: 110100
ifo:
((PH_Request
ifl1: 11011b
ifo:
( (PH_Request
ifl: 11100b
ifo:
( (PH_Request
ifl: 11101b
if0o: dummy "this option never exists, only added because
it is required for IDaSs"

)))))))))))

1010b)

1011b)

1100b)

1101b)

1110b)

1111b)

)))))
;))))

End of function descriptions.

218



Appendix K: IDaSS description of read control

This text Is taken from a system document generated by 1DaSS.

Text for state number 1 (reset state)
'process _userdata\read_control':

wait_until request:
[store\write request\begin = store\write_ request\end
|1 <<
|0 store\write_ frame\ft addr_r load;
store\write frame\ft_end load;
ready setto: 1;
=> request ready

______________________ A o - - — - —— - —-—

Text for state number 2 of 'process_userdata\read_control':
—————————————————————— v——————————————————————
request_ready:

store\write_ frame\ft_type valid setto: 0;

store\write symbol\read address load;

store\write symbol\end address load:;

->request_to_send

---------------------- Ao -

Text for state number 3 of 'process userdata\read control':

—————————————————————— v——————————————————————

request_to_send:

[_temp__ end := (store\write frame\ft end -1 from: 0 to: 4).
store\wrlte frame\ft__ addr r = temp end

|1 store\write frame\ft type valid setto: 1;

17

nr_SDUs setto: 0;

store\write_ frame\ft_addr r inc;

-> wait_for_ request data

Text for state number 4 of 'process userdata\read_control':
—————————————————————— v————-—----————————-———
wait_for request_data:
[add controls\request data
|1 <<
|0 nr SDUs inc;
store\write_symbol\strobing symbols setto: 0;
=> produce_frame

______________________ A e o o o - ———— -

of

219



Appendix K: IDaSS description of read_control

Text for state number 5 of 'process userdatal\read_control':

—————————————————————— v-———-—————————————————
produce frame:

store\write symbol\read address inc;
store\write symbol\memory enable: symbols d;
[_temp_end := (store\write symbol\end_address -
10).

store\write_ symbol\read address = _temp_end
|0 "already strobing via strobing symbols"
<<

11 store\write_symbol\strobing_symbols setto: 1;
[ (start transmission=0) /\
(store\write frame\ft_ addr_r "=
store\write frame\ft end)
|1 "another frame"
store\write_symbol\read address inc;
store\wrlte symbol\end_address load;
-> hold_ unt11 frame_done
|0 "end request or end of time"
store\write frame\ft_ type valid setto: 1;
store\write request\begin inc;
[frame_type = 01b
|1 nr_SDUs_valid setto: 0
):
-> hold until request done

---------------------- A o e e e e e . e e e e e e >

Text for state number 6 of 'process userdata\read control':

---------------------- v--——--—---—-—-—-——-———
hold_until_frame_ done:

[done

[1 <<

|0 [_temp end := (store\write_ frame\ft _end -1 from: 0 to:

store\write_frame\ft addr r = temp end
|1 store\write frame\ft type valid setto: 1;
)z
store\write_frame\ft_addr_r inc;
done setto: 1:
-> wait_for_request_data

]

---------------------- A or o e o e o e e e e o - —— - —

1 from:

to:

4).

220



Text for state number 7 of 'process userdata\read control':

—————————————————————— v——————--—————---—-----
hold _until request_done:

[done

11 <<

|]0 done setto: 1;
ready setto: 0;
nr_SDUs_valid setto: 1;
-> wait_until request

---------------------- Amccmcccccmee oo o ———-

End of state descriptions.

221



Appendix L: IDaSS description of add controls contr

This text is taken from a system document generated by IDaSS.

Text for state number 1 (reset state) of
'process_userdatal\add_controls_contr':

—————————————————————— v————-——————_————-———-—

wait:

[start transmission

0 add controls\generate_controls I;
add_controls\counter dec;
-> PA

11 <<

______________________ A o - —

Text for state number 2 of 'process_userdataladd_controls contr':
—————————————————————— v——————————————————————
PA:
[add_controls\counter = 0
|1 add _controls\generate controls J;
add_controls\request data setto: 0;
->J
|0 add_controls\counter dec;

add_controls\generate controls I;
<<

—————————————————————— A e o e - ———— — - ——

Text for state number 3 of 'process_userdataladd controls contr':
—————————————————————— v—————————————_———————_

J:

add_controls\generate_controls K;

add_controls\request_ data setto:1;

-> K

______________________ Ao o o o e e e e > - - ——

Text for state number 4 of 'process_userdata\add controls contr':
—————————————————————— v———-———————_—————————_

[store\write_ symbol\strobing symbols
|0 add_controls\generate controls data;

"make FCS"
<<
|1 [frame_type "= 00b

- }1 add controls\generate controls data;
FCS\FCS_addressing inc;
FCS\FCS enable;
-> add_FcSs
[0 add_controls\generate controls T;
-> add_2_T

223



Appendix L: IDaSS description of add_controls_contr

Text for state number 5 of 'process_userdataladd controls contr':
—————————————————————— V——-——--———--——————————

add_2_T:

add_controls\generate_controls T;

done setto: 0:

-> wait

______________________ A o e o e e e e e e e -

Text for state number 6 of 'process userdatal\add_controls contr':
—————————————————————— v—————————--—-————————-
add_FCS:
[FCS\FCS_addressing = 0
|0 FCS\FCS_addressing inc;
add_controls\generate controls data;
FCS\FCS enable:;
<<
|1 add._controls\generate_controls T;
add_controls\counter setto: 2;
FCS\reset setto:0;
-> ED

---------------------- A o e o e -

Text for state number 7 of 'process userdataladd_controls_contr':
---------------------- v———————————-——————————

ED:

add_controls\generate controls R;

[add_controls\counter = 0

|1 done setto: 0;

-> wait
|0 add_controls\counter dec:
<<

]

---------------------- YT Yy S p——

End of state descriptions.

224



Appendix M: IDaSS description of
store address contr

This text is taken from a system document generated by 1DaSS.

Text for state nunmper 1 (reset state) of
'process_userdata\store\store_address_contr':
—————————————————————— v———_—_-——-——————-——--—
wait_and_addressing_till_data:
"space is available"
[ (active out\/stream\/strobing_ out)
|1 [(nr_done=0)
|1 write_symbol\mux continue;
<<
|]O "FC or DA lost"
-> loose_ redquest

]
10 [((S_L /\ (nr_done=5)) \/ ((S_L not) /\ (nr_done=13)))
|1 write_symbol\store_address loadinc;
write_symbol\memory write: data_out_d;
write_symbol\memory write: MA_d;
[_temp_store addr := (write_symbol\store address + 1 +
((s_L)
ifl: (4 width: 11)
ifo: 12) from: 0 to: 10).
write_ symbol\read address = _temp_store addr
|0 -> addressing _data
|1 full setto: 0;
-> wait_until_ free_space
]

|0 write_symbol\store address inc;
nr_done inc;
write symbol\memory write: data_out_d;
[ (nr_done>=2)
|1 write_symbol\memory write: MA d;
MA\MA address inc

|0
1:
[_temp_store:=(write_symbol\store_address + 1 +
((s_rL)
ifi1: (4 width: 11)
ifo: 12
) from: 0 to: 10).
write_symbol\read address = _temp_store

|0 <<
]1 full setto: 0;
-> wait_until_free_ space

225



Appendix M: IDaSS description of store_address_contr

T e x t f or s t at e numnmnber 2
'process_userdata\store\store address contr':
—————————————————————— v——————————————————————

addressing_data:

[ (active out\/stream\/strobing out)

|0 write_symbol\store address inc;
write_symbol\memory write: data_out_d:;

[_temp store_addr := (write . symbol\store address + 1 from:

to: 10).
write_ symbol\read address = _temp_store addr
|0 <<
|1 full setto: 0:
-> wait _until free_ space
]

|1 [(stream\/strobing out) "active out not"
|0 "end of data, following RSC(PL)"
write frame\ft_type write: data_out_4d;
write frame\ft start write: store addr _d:
write_ frame\ft address inc;
nr_. done reset; "for next frame, this one is ok"

[ temp ft_addr := (write_frame\ft address + 2) from: 0 to

write_frame\ft_addr r = _temp ft addr
|0 => next_ frame
|1 full setto: 0;

-> wait_until_ free_ space

]
|1 "RSC(PL) not found"
=> loose_request

0]

226



T e x t f or s t at e number 3 (o]
'process_userdata\store\store_address_contr':
—————————————————————— V-———————————————————--
next_frame:
[ (active_out\/stream\/strobing out)
|0 "new frame"

write_symbol\store address inc;

nr done inc;

write _symbol\memory write: data_out_d;

[_temp store addr := (write_ symbol\store address + 1 from:
to: 10).

write symbol\read address = temp store_ addr

|0 => walt and addressing till data

|1 full setto: 0;

-> wait_until_free space

]
|1 [((active_out not)\/(stream not)\/strobing_out)

|0 "end request, following token_class"
write request\rt type write: data out_d; "token class"
write request\rt_start write: ft address d:
write request\end inc;
[_temp _end := (write_request\end + 2) from: 0 to: 2.
write request\begin = _temp_end
[0 -> wait_and addressing till _data
|1 full setto: 0;

-> wait_until_free space

|1 "token class not found"
-> loose_request

______________________ L L L T

T e x t f or s t at e number 4 o
'process_userdata\store\store_ address contr':
—————————————————————— V—————————————-—————————
wait_until free space:
[ temp end := (write _request\end+1) from: 0 to: 2.

temp ft_addr := (write_frame\ft_ address+1l) from: 0 to:4.

(write request\begln = temp_end)

\/ (write_frame\ft_addr r = _temp_ft addr)

\/ (write symbol\read address = write_ symbol\store_ address)
|1 << "no free space"
|0 full setto: 1:

-> loose_request

227



Appendix M: IDaSS description of store_address_contr

T e x t f or s t a t e number
'process_userdata\store\store address_contr':
—————————————————————— v——————————————-——————-

loose_ request:
write frame\ft_address load;
-> restore_ frame_address

T e x t f or s t at e number
'process_userdata\store\store_address_contr':
—————————————————————— v———-——————————————————

restore frame address:
write_symbol\mux new;
write_symbol\store_ address load:;
nr_done reset;

-> wait_until end_request

—————————————————————— A o o - ——— —— - —— - ——

T e x t f or s t ate number
'process_userdata\store\store_address_contr':
—————————————————————— v————————————————-————-

wait_until_end request:

[ (active out/\stream)

|1 -> wait_and_addressing till_data
|0 <<

______________________ L T Y e ———

End of state descriptions.

228



Appendix N: IDaSS description of addr |

This text is taken from a system document generated by IDaSS.

Text for state number 1 (reset
'process_userdatal\storel\addr_1':
—————————————————————— v————————-——-————-—--——
waiting:

[ (active_out\/stream\/strobing_ out)
|1 << "no symbol found"
|0 [(data_out from:2 to: 2)
|1 S_L setto: 1 "short address"
|0 S_L setto: 0 "long address"
):
->listening_frame

]

---------------------- A e e e e e e e e e > e e e e

state)

Text for state number 2 of 'process_ userdata\storeladdr_1':

---------------------- v—————————————-———————-
listening frame:

[ (active_out\/stream\/strobing out)
jo <<

|1 -> waiting

]

______________________ A e e o e - — - —— - ———

End of state descriptions.

of

229



Appendix O: IDaSS description of MA contr

This text is taken from a system document generated by IDaSS.

Text for state number 1 (reset state) of
'process_userdata\store\MA_contr':
—————————————————————— V——————————————————————
wait_for frame:
[s_L
|1 "short"
MA\MA address setto: 12
|0 "long"

1:
-> wait_for end of frame

______________________ A o = ——— — ——— ——————— -

Text for state number 2 of 'process userdata\store\MA_contr':
—————————————————————— V——————————————————————
wait_for end_of frame:
[ (nr_done=0)
{1 MA\MA address setto: 0;
-> wait_for frame
|0 <<

—————————————————————— A e ————— = - ——— —— - -— -

End of state descriptions.

231



Appendix P: IDaSS description of mux

This text is taken from a system document generated by 1DaSS.

Text for function 'continue'
'process_userdata\store\write_symbol\mux':
—————————————————————— V———————————————————---

T e x t f or function 'new'
'process_userdata\store\write_ symbol\mux':
---------------------- V——————————————————————

End of function descriptions.

of

o f

233



Appendix Q: IDaSS description of add 4 or 12

~ This'text is taken from a system document generated by IDaSS.

Text for function 'convert' o
‘process_userdata\store\write_symbol\add_4_or_12':
—————————————————————— v———————————-—————--———
MA address :=

((5_L)

ifl: store_address + 4

if0: store address + 12

)

---------------------- Ameoecececececeeeeeacaaaaaooo-

End of function descriptions.

235



Appendix R: IDaSS description of generate controls

This text is taken from a system document generated by 1DaSS.

T e x t f or function '*'dat a’ o f
'process_userdatal\add_controls\generate controls':

—————— -————————-——————V———————--—————————————

I:=1. J:=1. K:=1l, T:=1. R:=1l. S:=1. data:=0

T e x t f or f unction v 1 o f
'process_userdataladd_controls\generate_controls':
—————————————————— ---—V———-———————-----—_—-——

I:=0. J:=1. K:=1l. T:=1l. R:=1. S:=1l. data:=1

T e x t f or f unc¢tion v g ! o f
'process_userdata\add_controls\generate_controls':
—————————————————————— V——————————————————————

I:=1. J:=0. K:=1. T:=1. R:=1l. S:=1. data:=1

T e x t f or f unction ' K ! o f
'process_userdataladd_controls\generate_controls':
—————————————————————— V------————————————————

I:=1. J:=1. K:=0. T:=1l. R:=1l. S:=1. data:=1

—————————————————————— A an an e o ———————_—————

T e x t f or f unction ' R ! o f
'process_userdataladd controls\generate controls':
—————————————————————— V————————--————————————

I:=1. J:=1. K:=1l. T:=1. R:=0, S:=1. data:=1

---------------------- A o o o e e e ——————

T e x t f or f unction ' s o f
'process_userdataladd_controls\generate controls':
—————————————————————— V——————————————————--——

I:=1. J:=1. K:=1l. T:=1. R:=1l. S:=0. data:=

______________________ LT T T e gy

T e x t f or f unction rT7 ! o f
'process_userdataladd_controls\generate controls':
—————————————————————— V——————————————————————
I:=1l. J:=1. K:=1l. T:=0. R:=1l, S:=1. data:=

A

—————— - ———— i — - ————————— ——————————— -

End of function descriptions.

237



Appendix S: IDaSS description of FCS

This text is taken from a system document generated by IDaSS.

Text for function 'connect' of 'process userdata\FCS\FCS':
—————————————————————— v———————————————-———--—

FCS out :=

( (address
ifi: I7
ifo:

( (address
ifl: Ie
If0:

( (address
ifl: IS5
ifo:

( (address
ifi: I4
ifo:

( (address
ifi: I3
ifo:

( (address
ifl: I2
ifo:

( (address
ifi: I1
ifo:

( (address
ifi: IO
ifo: O

))))))))

______________________ A e e o e e e e - - —

End of function descriptions.

0)

1)

2)

3)

4)

5)

6)

7)

239



Appendix T: IDaSS description of fdb operators

This text is taken from a system document generated by 1DaSS.

Text for function 'extract' of 'process userdata\FCS\fdbo':

---------------------- V-—————-—-—————————-———
_X32 := F at: 0.
_X33 :=F at: 1.
_X34 :=F at: 2.
X35 := F at: 3.
_PO := P at: 0.
_Pl := P at: 1.
P2 := P at: 2.
_P3 := P at: 3.
_00 := PO >< X32.
_01 := Pl >< X32 >< _X33.
_02 := _P2 >< _X32 >< _X33 >< _X34.
_03 = _P3 >< X33 >< X34 >< _X35.
© :=_03, 02, 01, _0OO

—————————————————————— v---—-----———————--————
_X32 := F at: 0.
_X33 :=F at: 1.
_ X34 :=F at: 2.
X35 := F at: 3.
_PO0 := P at: 0.
_P1l := P at: 1.
_P2 := P at: 2.
_P3 =P at: 3.
_04 := _PO >< _X32 >< _X34 >< _X35.
_05 := _P1l >< _X32 >< _X33 >< _X35.
_06 = P2 >< X33 >< _X34.
_07 = _P3 >< _X32 >< _X34 >< _X35.

End of function descriptions.

241



Appendix T: IDaSS description of fdb operators

Text for function 'extract' of 'process userdata\FCS\fdb2':
—————————————————————— v——————-———————————————
_X32 = F at: 0.
_X33 := F at: 1.
_X34 := F at: 2.
X35 := F at: 3.
_P0 := P at: 0.
_Pl := P at: 1.
_P2 := P at: 2.
_P3 := P at: 3.
_08 = _PO >< _X32 >< _X33 >< _X35.
"09 := Pl >< _X33 >< _X34.
_010 := _P2 >< _X32 >< _X34 >< _X35.
011 := P3 >< X32 >< X33 >< _X35.
o0 := 011, 010, 09, o8

End of function descriptions.

Text for function 'extract' of 'process_userdata\FCS\fdb3':
—————————————————————— v——————————————————————
_X32 := F at: 0.
_X33 := F at: 1.
X34 := F at: 2.
X35 := F at: 3.
_P0 := P at: 0.
_Pl := P at: 1.
_P2 := P at: 2.
_P3 := P at: 3.
_012 := PO >< _X32 >< _X33 >< _X34.
_013 := _P1l >< _X33 >< _X34 >< _X35.
_014 := P2 >< X34 >< _X35,
015 := _P3 >< _X35.
0 := 015, 014, 013, 012

End of function descriptions.

242



Text for function 'extract' of

—————————————————————— v__-—————
_X32 := F at: 0.
_X33 :=F at: 1.
_ X34 :=F at: 2.
X35 := F at: 3.
_PO := P at: 0.
_P1 := P at: 1.
_P2 := P at: 2.
_P3 := P at: 3.
0l6 := _PO >< _X32.
017 := _P1 >< _X33.
_018 := _P2 >< _X34.
019 := P3 >< _X35.

End of function descriptions.

'process_userdata\FCS\fdb4':

Text for function 'extract' of 'process_userdata\FCS\fdb5':

—————————————————————— v————————
_X32 :=F at: 0.
X33 := F at: 1.
_PO := P at: 0.
_ Pl := P at: 1.
_P2 =P at: 2.
_P3 := P at: 3.
_020 := _PO.
_021 := P1.
_022 := _P2 >< _X32.
023 := P3 >< X32 >< _X33.
0 := _023, _022, 021, _020
______________________ A e e o o - —

End of function descriptions.

243



Appendix T: IDaSS description of fdb operators

Text for function 'extract' of 'process userdata\FCS\fdbé':

—————————————————————— V= e e e e e s o e e e e e e e o
_X32 := F at: 0.
_X33 :=F at: 1.
X34 := F at: 2.
X35 := F at: 3.
_P0 := P at: 0.
_Pl := P at: 1.
_P2 := P at: 2.
_P3 := P at: 3.
024 := PO >< _X33 >< _X34.
025 := Pl >< _X34 >< _X35.
026 := P2 >< _X32 >< X35,
027 := P3 >< _X33.
0 := 027, _026, _025, _024
——— — e = = o e —— — ————— A o e o e e e o e e e e e S e S S e

End of function descriptions.

Text for function 'extract' of 'process_userdata\FCS\fdb7':

—————————————————————— Ve oo o e e e e e e e e e -
_X34 := F at: 2.
X35 := F at: 3.
_P0 := P at: 0.
Pl := P at: 1.
P2 := P at: 2.
_P3 := P at: 3.
028 := PO >< X34.
_029 := P1 >< _X35.
_030 := _P2.
031 := _P3.
O := _031, _030, _029, 028
_______ T et bl o T T Sy ——

End of function descriptions.

244



Literature

1. "Strategies for real-time system specification®, D.J. Hatley and I.A. Pirbhai
1988, Dorset House, New York, USA

N

. American National Standard for information systems
Fiber distributed data interface (FDDI) - token ring physical layer medium dependent (PMD)
ANSI X3.166-1990

3. American National Standard for information systems
Fiber distributed data interface (FDDI) - token ring physical layer protocol (PHY)
ANS| X3.148-1988

o

. American National Standard for information systems
Fiber distributed data interface (FDDI) - token ring media access control (MAC)
ANSI X3.139-1987

(4]

. American National Standard for information systems
Fiber distributed data interface (FDDI) - token ring station management (SMT)
ANSI X3, still under development

6. "The SUPERNET family for FDDI", Technical manual

Advanced Micro Devices, Inc. 901 Thompson Place P.O. Box 3453 Sunnyvale, California 94088-
3453

~

. "Structured Design of an FDDI Protocol Handler”, P.W.A.J.M. Nas
Digital Systems Group, Eindhoven University of Technology, the Netherlands, Sep, Oct 1991

8. "IDaSSs for ULSI", Manual for IDaSS V0.08d, Mini-IDaSS V1.00, Ir. A.C. Verschueren
Digital Systems Group, Eindhoven University of Technology, July 1890

©

. "Error characteristics of FDDI*, R. Jain
IEEE trans commun, USA, V38, N8, P1244-1252, Aug 90

10. "Communications via FDDI", T. van Gelder (in dutch)
Elektronica, V38, N9, P20-31, 4 May 90

11. "Working with FDDI: A designer's guide”, K. Parker
Electron des (USA), V38, N8, P95-98,100,102,105, 26 April 1990

12. "Fiber optic links hold the keys to the fast LANs of the future", K. Parker, S. Kaufman
Electron des (USA), V37, N25, P46-53 (14 Dec 1989)

13. "Engineering building and campus networks for FDDI®, TF. Mcintosh
Proceedings of the SPIE - Int soc opt eng (USA), V1179, P240-251 (1990)
(Fiber networking and telecommunications)

14. "FDDI interoperability between vendors", AR. Khan
Proceedings of the SPIE - Int soc opt eng (USA), V1179, P266-275 (1990)
(Fiber networking and telecommunications)

245



Literature

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

"FDDI - an overview", FE. Ross
Standardization: ASC X3T9; IS ISO/IEC JTC1/SC25
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH2746-6), P5-8

"FDDI ring management”, KB. Ocheltree
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Mlnneapolis
Minnesota (IEEE cath no 89CH2746-6), P18-23

“The role of concentrators in FDDI rings®, J. Hutchison
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH2746-6), P24-40

"A high performance FDDI network and its applications”, RM. Montalvo and K. Ocheltree.
Proceedings of the International Conference on Public Networks (Networks 90), Birmingham,
UK, June 1990, P135-147.

"FDDI MAC services design considerations”, JF. Torgerson
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH2746-6), P41-48

"FDDI-II: Operation and architectures”, M. Teener
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH2746-6), P49-61

"Standards for robust second generation LAN management”, RB. McClure
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH2746-6),P133-142

"Performance analysis of FDDI", R. Sankar
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH2746-6), P328-332

“The FDDI link error rate monitor’, GW. Kajos, DH. Hunt
Proceedings of the 14th conference on Local Computer Networks, 10-12 Oct 1989 Minneapolis,
Minnesota (IEEE cath no 89CH2746-6), P347-357

"Modelling and performance evaluation of FDDI ring", M. Cerqueiro, G. Makhoul, Ruey-Lin Ju, and
K. Jabbour. Department of Electrical and Computer Engineering Syracuse University, 111 Link
Hall. 89CH2785-4

“FDDI ICs and components: Reduced costs key FDDI's acceptance”, M. Wright
EDN (USA), V34, N19, P81-84,86-91 (14 Sept 89)

"Emerging standards, hardware and software light the way to FDDI", K. Marrin
Comput des (USA), V28, N7, P51-54,56-57 (1 April 1989)

"FDDI - A new high speed LAN with optical fibers®, C. Mittasch (in German)
Nachr tech elektron (East Germany), V39, N3, P96-98, (1989)

“FDDI and BWN backbone networks, a performance comparison based on simulation®, T. Welzel
The IEEE 8th annual international Phoenix conference on computers communications,
proceedings (IEEE cath no 89CH2713-6)

246



29.

30.

31.

32.

33.

34.

35.

36.

37.

“Optical high speed (100 Mbps) token ring system”, K. Ohno, et al
Globecom 88, IEEE global telecommunications conference and exhibition - communications for
the information age
Conference record (IEEE cath no 88CH2535-3) hollywood (FL) (USA) 28 Nov-1 Dec 88
New York USA IEEE 88, V2, P645-652

"FDDI - A sign of things to come In datacommunication®, D. van Mierop
Computer communication technologies for the 90s, proceedings of the 9th international
conference, Tel Aviy, Israel 30 Oct-3 Nov 88, p155-161

*Fiber optic transceiver for FDDI! application®, Y. Uda, et al
FOC/LAN ’'88, proceedings 12th international fiber optics communications and Local Area
Networks expositions, Atlanta, GA, USA, 12-16 Sept 88, P126-130

"The FDDI - A new generation standard for LANs", TJ. King
Eurocon 88: 8th European conference on electronics
[proceedings on:area communications (cath no88CH2607-0) Stockholm Sweden 13-17 June 88]
New York USA, IEEE 1988, P239-242

"FDDI-I; Integrated services on high speed LANs", P. Food
ISDN 88, Proceedings of the international conference, London UK, June 88, P303-312

“Extended ethernet connectivity with FDDI technology”’, D. van Mierop, A. Eldad
Networking technology and architectures, Proceedings of the international conference London
UK, June 88, P127-136

*Fibre optic components for the FDD! 100 Mbps LAN", T. King
Proceedings of the SPIE, int soc opt eng (USA) vol 949, P2-13 (1988)

"Distributing FDDI's power”, R. Bruce McClure
Special Report: FDDI, Lightwave February 1991, P32,34,36

*Unsnarling FDDI’s Kinks", Shyamala Reddy
LAN Magazine, June 1991, P36-39

247



Index

4B/5Bencoding . ......oiiiin i 5,19, 74
AMax ... 63
ACD

Architecture Context Diagram .............. 49, 51
AD

Architecture Dictionary ..............ccccvvt. 49
Address detection ........... i, 88
Administration ......... ... . ittt 44
AFD

Architecture Flow Diagram ................ 49, 51
AID

Architecture Interconnect Diagram .......... 49, 51
AIS

Architecture Interconnect Specification ....... 49, 52
Alignment .........ccii ittt 75
ALS ... ... i et 41

Active Line-state ............... ... iieiitn 41
AMS

Architecture Module Specification ........... 49, 52
Aschitecture

Add controls ........... ... ... 118

FDDI ittt e i i, 101

MAC ... ittt it 109

[ 2 | PP 107

PMD ... i i e e 106

Process userdata .............. .ot 109

£ 106

Store ... i i e e 110

Write frame ................ . oo 114

Write_ request . . ...............ooiiain, 115

Write_symbol . ............ ..o 113
Architecture Dictionary .............cooovvinnn. 52
Architecture Model . ............cooiiiiivvnnnn 49
Asynchronous ........... 5, 7, 38, 43, 45, 66, 67, 89, 98
Beacon process .. .........ccuiireiriiieanan 6, 69
2] = 4

BtErrorRate .........covvinteinivnnnnnnerns 4
Bidding process .. ........c..ciiiiriiiiirnenns 7,15
Broadcastaddress ...............0iiinniniainn 44
BYPaSsS . ...t e e 58 15
07 15

Channel Allocator ..........covivnereinenens 15
0 0 o 48

Control Context Diagram . ............cc00u.n 47
[ 0] = o 48

Control Flow Diagram ...............00vvunn 47
7 C P 14

Cyclic GroUP .. v vt et iieins s einaneaness 14
07 14

CycleHeader ...........cccoviiiiiiunnenann 14
Claim token process ...........ccoivvnevnne. 68, 89
Claim FR........ci ittt it 63
Clock . vt it i e e e 74

Recovery ......coe0vuinn et 5, 15, 73-75

Transmission ..........c.civernvnennnnsn, 5, 15
{07 13, 15

CycleMaster ..........ccoivviuenenvenennens 13
CMIP

Common Management Information Protocol . . .. .. 24
CON

Concentrator ..........coviienrinnnnnn 8,9, 12
Concontrator . ......vtiiiiiii et e 25
Connector ... ...t i i i e 5
Connector type

. N 9, 1
= 2 9 11
e 9, 11
L O 10, 11
Context Of FDDI ... .cvvti i iinnnieans 53
Control symbols . .......covvevviii it 14
o (o g 6
Cyclic Redundancy Check ............... 6, 90, 94
073 14
Cycle Sequence . ............. Chaeaaaas oo 14
COPEC ... vt iieii et ittineitnarnaaienns 48
Control Specification .................. ..., 47
ControlSPeC ... ..ot iiiinrnnrnosneneinnns 53
0 B 63
5 6, 44
Destination Address . ................... 6, 44, 93
DAC
Dual Attachment Concentrator ................ 11
DAS ..ttt s 4,8, 15, 84
Dual Attachment Station .................... 4,9
DCimbalance .........coivvninnerernnnranennn 76
5] » e 47
Data Context Diagram . ..............c0uuren 47
Decodefunction . .........covviviirnennnenennns 60
5] 60
Decode Function .............ccvevvvnninenes 60
(5] T 47
DataFlowDiagram . ......... ..o iannennns 47
5] O 3
DatalinkLayer ..............cciiiiiinneenn,s 3
(972 15
Dedicated Packet dataGroup ................. 15
2 60
Elasticity Buffer ................... 60, 73,75, 76
ED .o e e s 6, 40, 44
Ending Delimiter ................... 6, 44, 89, 90
Encodefunction . ...........cnviineninnennnns 59
Encoder/Decoder . ......coivteiiinnienniiinenn 77
Encoding . ....civiiniiiiii i e 5
Error
Detection ........covviiiiiiiiiiinnnnennn. 19
Recovery .......covviininiinnrnnennnanas 8,16
Tolerancy . .. .vvvie i ittt it e 8
Error Ct ... i i i 65
FMax ... 63
Faultdomains ............ccoviiunrvnnvneenas 20
FC i e s 6, 43, 97
FrameControl ...............cc.vuuunn. 6, 43
07 6, 20, 44
Frame Check Sequence ........ 6, 20, 44, 90, 94, 96
5 | 3
Fiber Distributed Data Interface ................ 3
Protocol ... .. i i e 5
Specifications . . .. ....... Caraeaaes e 4
Use ... i e e 3
0 13
Errorrecovery ...........oieueeannnnennnns 16
Operation . .....ccovveiiiniiiiiereeanens 15
Standard ............ ...t 13
FFOL
FDDIfollow-on .........cciviiiininnerennnn 27
Formal description
Method ............. ... ittt 47
Framereception .................covvviunns 96, 97




index

Framerepetition . .. .............coiiiiiinnn 97
Framestripping .......... ...ttt 66
Frame transmission ...........o00ievvvenn 65, 95, 98
Frame Ct.......... ...t 65
Frames
Beacon .......ccchiiiiii s 45, 94, 98
Claim .........oiiiiinii e 45, 93, 94, 98
Data.........ii ittt it 5
Implementer . ......... .0 it 6, 46
LG .. e 6, 45
MAC .. i ittt et e 8, 45
SMT . et e e 6, 45
R =« 45
FRSTAT
Frame Status Register ...................... 90
255 Z R 6, 45
Frame Status ................cc00un 6, 45, 89, 97
Group address . .........ccvieiiniare et eanas 44
HLS ottt ittt it iineeeneiantonninsanntnns 41
Halt Line-state ..........................., 41
Horizontal connection . . . ...........ccivinn s 25
HRC .. i et e et e i s 13
Hybrid RingControl ..................... 13, 27
Hybridmode ............ .. it 13
FMAC ... i i e 13
T 63
L PN 60
initial Line-state Detection Interval .............. 60
1 7O 41
Idle_Line-state .................... .. .. ..., 41
IMC it e et e 15
Isochronous Maintenance Channel ............. 15
IMSK
Interrupt Mask Register ..................... 91
Indicator
A et e e e e 45, 90, 98
02 45, 90, 98
E o e e e 45, 90
Individual address . ..........c.. i, 44
1 6, 44
Informationfield ................... 0 it .. 44
Initialization . .......... ... ... ., 89, 96
Initialization process . .............. it 68
LMax ... i e 63
Late Ct ... e 65
Latecounter ........... ... ittt 65
Latency buffer . .........cccviiiiirrennenennn. 13
) A 19
Link Confidence Test ...........cccvvvvunnnn. 19
R O 60
Line-state Detection Function ................. 60
IR = 19
Unk Error Monitor ...............ccceevvvnn 19
Line-state Detection function .................... 60
LLC i i it i e it e e 42
Logical LinkControl ...........coovvvuee 4, 13, 32
Local administration . ..................ci ... 44
Local clock .. .. v ittt e e e . 61
Loopback .............civiiiinnnn, 8, 36, 88, 92, 96
Lostframe .............ciiiiiiinnnnnnnuennn. 97
Lost Gt ... i e 65
IR 40, 61
Line-State Unknown . ...........ccovvvvennn.. 40
MMax.........co il 63
MA TOKEN.request ..............ccovviininnnnn. 33

MA_UNITDATA.indication ....................... 33
MA_UNITDATArequest . ............ievnennnen 32
MA_UNITDATA_STATUS.indication ................ 33
MAC ... ittt ittt it 3,5 13,78
Functions . ......... ..ottt iinnnens 29
Media AccessControl ... ............ ... 3,87
MiB
Management Information Base ................ 24
MIC .
Media interface Connector . .................. 34
MIR
MAC Information Register . ... ................ 91
MLS . i i ittt 41
Master Line-state .......................... 41
Monitorstation . ...........coi i, 13
Rank ....ciiiiiiiiiveniiiiin i inenaas 15
MTTR
Mean Time ToRepair . .........coivvereennnn 12
NLS ..iiiiiiinenss Ce e veene 4
Noise_Line-state . .......................... 41
NP
Node Processor ..........ccovvvivnuesnss 87, 91
NRZI
Non-Return-to-Zero-Invert-onones ............. 74
Nulladdress ...........cooiiiiiiiiiinnnninenn 44
On-ling . ...oovi i 92, 96, 97
Optical bypass ... ..ot iieiiitiitinnrernnens 11
Orderofbyte ..........coiiiiiiiininnennennn 54
0 L 3,13
Open Systems Interconnection ................. 4
P-MAC . ... i e 13
PA e e e 6, 14,43
Preamble ................. i 6, 43
PDU .. i i e 42
Protocol DataUnit ......................... 42
PE i e 12
PHYEntity . ............coeiiiiin e, 12
PH_INVALID.indication .................c.cvvhinn 31
PH_UNITDATA.indication ....................... 31
PH_UNITDATArequest ......................... 30
PH_UNITDATA_STATUS.ndication ..............., 31
PHY .. e 3,513, 77
Functional blocks . ........... ... coivinenen 74
Functions . ...ttt iinnniians 29
Physical Layer Protocol ................. 3,973
Physical Connection . . . ..........cciiiiininnnn.. 9
Physical interface
LLCtoOMAC ...ttt e it i 103
MACtOLLC ..ottt et 101
MACtOPHY .....iiii ittt e iieians, 105
PHYtOoMAC ... ... ... .. iiiiiininnnnt, 105
Store and add controls .................... 106
Storeand monitor ........... .. i, 106
Physicallayer .. ........cciiiiiiiiinnnnennn 3,2
PLL
Phase Locked Loop ..................... 75, 80
PM_SIGNAL.indication ................c.cuuue. 30
PM_UNITDATA.indication .............c.0cveuunn. 30
PM_UNITDATArequest ............oovviinnnnnn, 30
PMD e e e 3, 4,13
Extension ..............coiiiiiininiiaenan, 16
Functions .........coiviiiiriiiinninnnnie, 29
Physical Medium Dependent ................. 25
Physical Medium Dependent layer ......... 3,973
PMF

250



Parameter Management Frame ............... 24
Polynomial ... ...iviriiii ittt 20
Programming template ................ . 0. 14
PROMOD SA report

FOrmats . ....cvvirriniienrenssnancnnonns 53
Propagationdelay ............... .o i, 73
Protocol

Ndayer ... iiiiiii ittt 6
[T o = o 47

Minispec .......cciiiiiinievereencisnnnns 53

Proces Specification . ...........ciiiiiiii, 47
0 N 41

Quiet Line-state ..................... ... 41
Receive function . .. .........ciiiiii it 59
Recelver .. .......oiiiiiiiiieenininrrnnnaans 70
Reconfiguration. . .. ...... ittt iiiniiiieins 8
Recovery .......ccoivviiinniinnenninnnnnnnns 89
Recoveryoperation ...........oveeeinriinneenn 89
Repeatfilter ................ .. v 62, 76
Requirements model .............c..cvvvnn 47

I 53

Further development ....................... 56

MAC ... e e e 55

PHY . e e s 55

PMD ... e e 55

SMT .. e e e 55
Resource allocation ..............covviiininann 13
RF

Repeat Filter ............ccciviiiniiinnn, 62
Ringscheduling ................. .. ..o, 66
S MIn .. e e 64
QA i et e e 6, 44

Source Address ............c.ciuerennennn 6, 44
SAC

Single Attachment Concentrator . .............. 11
SAS i i i i i e 4,8, 15

Single Attachment Station ................. 4,10
SAW

Surface AcousticWave ...................... 75
SD .. e 6, 14, 40, 43, 75, 97

Starting Delimiter .. .................... 6, 43,97
SDU i e e e 65
Services

MACtOLLC .. ... ...t ia e 32

MAC10 SMT ... ... i et iiinianenn 36

PHYtOMAC. ... 30

PHYtO SMT ...ttt i e i, 34

PMDtoPHY ...t 29
SF i e et e e 61

Smoothing Function . ....................... 61
SM_MA CONTROL.request ................c.... 37
SM MA INITIALIZE_PROTOCOL.confirm ........... 37
SM MA INITIALIZE | . PROTOCOL.request ............ 37
SM MA STATUS indication . ...........eoiuunn.. 38
SM MA  TOKEN.FEQUEST . .. ..o veeeennannnnes 39
SM MA_ . UNITDATA.indication .................... 39
SM MA”  UNITDATArequest ..................... 38
SM MA_UNITDATA STATUS.indication . ............ 39
SM PH CONTROL request ..........ciieniein.n 35
SM PH_LINE-STATE.request .................... 35
SM PH_ |_STATUS.indication . . .................... 35
SM PM_ | BYPASSrequest ............. ...l 34
SM_PM_CONTROL.request ..................... 34
SM_PM_SIGNAL.indication . .............000v.n.. 34
Smoother ...........coviiiiiiiiiii, 5,76, 83

L] O 3,6

Station Management ................. 3,9,13,23
SNMP

Simple Network Management Protocol .......... 24
STAT

Status Register . . ...........iiiiiiiiien, 91
State machine

Add_controls contr ............... . 0h.en 18

Read control ...............c.ociuin.n, 116

Store_address contr ................. ..., 17
Stationlatency ..........0ieii it 73
Strippedframe .......... ..o iiiiiiiieiiiaen, 97
Switching

Circuit . ... iieiiiiieteniniinrsrinanns 13, 16

Packet .........ccoivvieiiiiiininan, 13, 16
SymboIS . ...ttt i i e 40

Control ...t i i e 40

Data........coviiiiiiii i it 40

Line-state . ...............iiiiiiiiiiiinnn. 40

Miolation . .. .ovi e i i i i i 40
Synchronous . ................ 5, 7, 38, 43, 46, 66, 98
Tlnit .o e 64
T Max ..t i e e s 64
T Min e e e 64
TNeg ... e 3,7

Negotiated Token Rotation Time ............ 3,94
LI 3,64

Operational Token Rotation Time ............ 3,94
T Reg . i it e e e 64

Requested Token Rotation Time ............... 94
THT o i i i i e 4,7,64,96

Token Holding Timer ................. 4,7,64, 89
32T £ 88

L 2 LUt 89

TMAX it ittt e e 89

L2 = 89

L1 1 88

L7 S 88
Timeslot .. ....... . it i, 14
TMAX

Timer Rotation Maximum . ................... 89
TNEG

Negotiated Token Rotation Time .............. 89
.- 7

Capture ............cciviviiennnn. 7, 65, 89, 98

Transmission .........coiitiininnnennennnn 66
Token Time ...................ooiivieina, 63
TPR!

Asynchronous Priority Register ................ 89
Transmitfunction ...................0ivvvnnn. 59
L1 1 3, 64, 96

Token Rotation Timer . ............... 3, 64, 88, 94
TTRT i e ittt it et e 3,737

Target Token Rotation Time Chrre e 3
7 S 37, 64, 96

Valid Transmission Timer .. ............... 64, 88
Universal administration ........................ 44
Use of FDDI

Backend ................iiiiiiis, 3,23

Backbone ............... ... e, 3,28

Frontend ..............ccoivnvniennn.. 3,23
utp

Unshielded Twisted-Pair . .................... 26
Voidframe .............cc0ciiniivinnnnennnn. 45




WBC ..t ittt ia i

252



	Voorblad

	Abstract

	Acknowledgements

	Contents

	List of figures.

	List of tables.

	1. Introduction

	2. What is FDDI?

	3. Error detection.

	4. FDDI developements.

	5. Functional specifications.

	6. Formal description method.

	7. Requirements model of FDDI.

	8. Functional blocks of PHY.

	9. Design issues of MAC.

	10. Implementation example of PHY.
	11. Implementation Example of MAC.

	12. Architecture of FDDI.

	13. Conclusions and recommendations.

	Appendix

	Literature

	Index



