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Summary.
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Simons, W.FJ.; Two-loop state control of the MIMO gantry crane.

M.Sc. Thesis, Measurement and Control Section ER, Electrical Engineering, Eindhoven
University of Technology, The Netherlands, December, 1993.

Using a nonlinear simulation model of the gantry crane, the two-loop scheme proposed by Zhu
[Zhu88] has been tested. An initial static state controller, has been applied to make the system
stable and to reduce its nonlinear behaviour. Then a Minimum Polynomial (MP) model [Fal93] of
the system (process in closed loop) has been estimated. Based on this model of the system, a new
second loop static state controller operating parallel to the first state controller has been designed
using a simulation method proposed by Boyd [Boy91]. The new first loop controller is then
formed by addition of the initial and second loop controller. In the next iteration the procedure
described has been repeated. The performance is measured with the tracking error, which is the
difference between the reference track and the actual position of the load. The robust performance
is optimized and it is possible to design a controller that satisfies constraints in time domain.
Vidyasagar [Vid85] showed that if the system is strongly stabilizable the first loop controller puts
no restrictions on the second loop controller. Because the gantry crane has only stable zero
dynamics (minimum phase) it is allowed to use the two-loop structure.
The procedure of system identification and controller design can be applied recursively which
makes the controller adaptive to changing dynamics. If the estimated linear time invariant model
of the system in each iteration is accurate enough, the resulting controller based on the model of
the system can probably perform better and tend to the best controller possible under the given
constraints.
Beside promising simulation results of the gantry crane obtained by this method, a comprehensive
derivation of the nonlinear model, zero dynamics, linearized model and a method for measuring
the nonlinearity of a system are included.
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1. Introduction.
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Most modern techniques for the design of Linear Time Invariant (LTI) controllers need a model of
the process to be controlled. But sometimes this model might be very hard to get, e.g., when the
process is unstable, or when it has some nonlinearity and/or time variations. In these cases open
loop identification with a LTI model set may be very difficult. Another example is an industrial
process. Most of the times it is too expensive to run such a process in open loop for identification.

Zhu [Zhu88] proposed to do the identification in closed loop. Now the system (process in closed
loop) is stabilized by the first loop controller which can also reduce the nonlinear behaviour and
or time variance. With the model of the system a new controller can be designed using a
simulation method proposed by Boyd [Boy91], optimizing robust performance, and satisfying
constraints in time domain. The complete scheme can be applied recursively which makes it
adaptive to changing dynamics.

The method is applied to a nonlinear simulation model of a gantry crane. This is a Multiple Input
Multiple Output (MIMO) system, consisting of a trolley moving along a rail, and a cable of
varying length attached to the trolley and the load. It is often used in harbour areas to move the
cargo from e.g. freighter to truck. The performance is measured with the tracking error, the
difference between the reference signal and the actual position of the load. Some properties of the
nonlinear simulation model are derived and used as a-priori information during identification and
controller design. If the system with the new controller is more linear (we formalize this concept
later), we can estimate a more accurate model of the system. This enables us to design a
controller with less robustness giving a higher performance e.g. a smaller tracking error. If the
estimated model is more accurate each iteration, the resulting controller will tend to the controller
providing the smallest tracking error possible under the given constraints. The simulations show
promising results of this technique.
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2. Two-loop state control.

The 1Wo-Loop Control mC) scheme proposed by Zhu [Zhu87] is briefly discussed. We
show how it works, when it can be used and what the advantages are. Some results from Vos
[Vos92] and Belt [BeI93] for the SISO case are explained. Finally, the two-loop structure is
applied to nonlinear MIMO systems with static state feedback and a design rule is derived.

2.1. Basic ideas or two-loop control.
For optimal controller design, a model of the process under consideration needs to be

available. We consider here only Linear Time Invariant (LTI) models for the design of LTI
controllers. But, obtaining such models can be very difficult when the process is e.g. unstable, has
some nonlinearities and/or time-variance or when open loop identification experiments are not
allowed or too expensive.
In [Zhu87] is proposed to do the identification on the closed loop system, see figure 2.1. Now the
process input u (which has to be sufficiently rich for identification) is correlated with the output
disturbance d through the feedback loop which makes identification of the process P very difficult.

But for the system S (the process in closed loop) the input v is independent of the disturbance d,
so identification is much easier. A properly chosen first loop controller K stabilizes the unstable
process and hopefully reduces the nonlinearities and/or time variances. It can also reduce the
influence of disturbance at the output and the effective order of the system. With the model of the
system we can design a second loop controller AK which operates parallel to the first loop
controller and has the same structure, see again figure 2.1 which also explains the name two-loop
control.

f-----------' " :S:

figure 2.1 Principle of two-loop control.

The new first loop controller ~ can directly be implemented in the system as K" = K + AK
possibly resulting in a more linear system with less time variance. After implementation of K,. we
can start allover again and again, each time designing a controller with better performance e.g. a
smaller tracking error. The scheme is also adaptive to changing dynamics. Of course the dynamics
may not change faster than the update of the controller, which depends on the length of the
impulse response of the system, and the calculation time necessary for identification and controller
design. For identification we need a dataset which roughly has to be 5 to 10 times the length of
the impulse response of the system. This means that we can only adapt to changing dynamics after
5 to 10 times its time constant.
By improving the static state feedback controller K, the estimated model of the system can be
more accurate. Then we can design a controller with less robustness, giving a higher performance.
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Under certain conditions the variance of the estimated model of the system is proportional to the
square of the sensitivity S. This relationship is given by Zhu [Zhu88], see formula (2.1).

var[S(e iw)] ..., !!... ~d'd' =!!... ~d 1812 = !!... ~d I(I + PK)-1 12 (2.1)
N~. N~. N~.

where: S ..., P(l + PK)-I is the estimated model of the system (process in closed loop)
~ and ~ are the power spectral densities of d and u

d •

n is the model order
N is the number of samples
S is the real sensitivity given by (2.2):

8 = (I + PK)-I (2.2)

tIdiS 12 can be interpreted as a new output disturbance tid' acting on the output y of the model of

the system S in figure 2.2. A small sensitivity will result in a good model of th.e system. If we are
controlling the tracking behaviour we shall soon see (section 2.2) that we also want a small
sensitivity. So identification and control become mutually supporting.

d

v y

figure 2.2 Coloured noise on estimated system.

There is still one question. Puts the first loop controller constraints on the effect of the second
loop controller? Vidyasagar [Vid85] showed that the first loop controller puts no constraints on
the effect of the second loop controller if the process is strongly stabilizable which means that the
number of all real poles between any pair of real zeros in the Right Half Plane (RHP) is even
(including zero's at infinity). It is unknown if this is possible if the system is not strongly
stabilizable.
The main purpose of the initial loop controller is stabilizing the process. Because we do not have
an estimated model of the process at that time, we propose to design a "loose" initial loop
controller which stabilizes the process enough to estimate a linear model, but is far from optimal.

2.2. Modification of TLC for tracking.
If we are interested in tracking behaviour we usually have the schemes of figure 2.3 [Vos92],
[BeI93], which are identical when the controller K is stable. The first configuration is

advantageous for tracking and the second configuration for identification of the system S, see
[Vos92].

For the tracking yields:

e = y - r = (I + PK)-I = 8r (2.3)
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figure 2.3 Configuration for track following.
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,----- ... -.-._ ..... - .. _,

.-------,

For good tracking behaviour we want a small sensitivity S given in (2.2), especially for those
frequencies that we are interested in. If we wish for example a small tracking error in steady state,
the sensitivity S should be small for the lower frequencies.

Till yet the controller K is a LTI output feedback controller. Belt [BeI93] used a special structure
of K, a Finite Impulse Response (FIR), so that it won't blow up each iteration. From now on, we
will use it as a static state feedback controller. K and ~K are of the same structure, a static
matrix.

2.3. Static state feedback of nonlinear systems.
In this section we focus on the nonlinearity of a process. So we assume that there is no noise
involved and that the disturbance is due to the nonlinearity of the system. In practice we are
usually not skilled enough to apply nonlinear system control techniques. In system control it is a
well known experience that under feedback most nonlinear systems behave more linear in the
neighbourhood of a working point Xo. This also holds when we feedback the states of the system.
In the two-loop scheme we control the system (process under feedback). If the system is more
linear each iteration (identification and controller design), we can estimate a more accurate LTI
model. Based on that model we can design a controller with higher performance (e.g. a smaller
tracking error) with less robustness.

Define a dynamical nonlinear state space model with n states, p inputs and q outputs in a limited
class as:

with:

x = fix) + g(x)u
y = h(x)

(2.4)

(2.5)u = (ul' ... ,U)T E U C RP
y = (Yl'oo.,y)T

We assume that all the states are observable and controllable. We exclude those systems which are
only controllable with a nonlinear controller. Applying a static state feedback controller results in
the scheme of figure 2.4.

Y"'h(x)
y

figure 2.4 Static state feedback of a nonlinear system.
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(2.6)

(2.7)

(2.8)

A state controller for a linear system is a static matrix which can change all system dynamics!
Hence it is superfluous to design a dynamical state controller based on a linear model of the
system. Because the states of the process under consideration (gantry crane) are measured, it is a
logical choice to apply state feedback.
For the nonlinear system under feedback yields:

i = J{x) + g(x)(u' -Xx)
=J{x) + g(x)u' -g(x)Xx
= J{x) - g(x)Kx + g(x)u'
=!,,(x) + gll(x)u'

y = h(x)
= hll(x)

fll(x) =J{x) - g(x)Xx

gll(x) = g(x)
h

ll
(x) = h(x)

So under static state feedback the system dynamics change as in (2.7). Now we want that the
system under feedback behaves more linear around a working point "0 than the system without
feedback. From (2.7) it is obvious that we can not change the nonlinear dynamics caused by g(x)
and h(x) by only a state feedback. When an output feedback is applied, also g(x) and h(x) can
change. We will not discuss that here. If f(x) is linear and g(x) is nonlinear, the dynamics under
feedback fn(x) = f(x) - g(x)Kx will not be linear anymore if K ~ O. However, there is a class of
systems which do behave more linear under feedback. These systems will be defined here.

First define a linear approximation of the nonlinear system in (2.4) around the working point "0
as:

i=Ai+Bil
j = ei

where i is the state vector of the linearized model which can be interpreted as the deviation from
the linearization point "0. a and j are respectively the input and output of the linearized model
which can be interpreted as the deviation from Uo and yo. A,B and C are obtained using the
classical Taylor expansion and are given in (2.9). We assume that f(x), g(x) and h(x) are all
smooth enough and that the high order terms tend to zero.

A = of(xo>
ox

B = g(xo> (2.9)

C = o\xo>ox
where the Jacobian matrix is defined as:

oql oql

oX1 oXn

oq(x) _ (2.10)ax -

We must be careful with the linear approximation when the system is operating in a large range.
Then it would be better to split up the operating range in smaller parts, estimating a linear
approximation in each part.
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(2.11)

Given a nonlinear system in (2.4) and any linear approximation in (2.8), the nonlinearity index ex
of the nonlinear system is defined by (2.11), given a set of input signals U:

(y
;;'\ IY-Yo-YI2ex ,YJ ;; sup -~-----:::

liEU IYI2

where ct is the supremum of the power (lz-norm) of the difference between nonlinear system
dynamics (without offset Yo) and the linear system dynamics, normed by the power in the linear
dynamics. If the power in the linear dynamics is zero II j II z = 0, the nonlinear system has no
linear term and ex = 00. If the "nonlinear system" is linear ct = O.

With this definition we can measure the nonlinearity of a dynamical system, given an input set U
(see example appendix 1). For example we can choose U={u=ampl'd(k) I ample[-lO,-I,I,lO]},
U={u=cos(2'1rf) I fe[I,2, ...]}, or U={u I II u IIz< I}. Only when ct is small we can estimate an
accurate LTI model.
In this section we focused on the nonlinear aspect, and the effect of linearization by static state
feedback. As said, there is a class of systems which behave more linear under feedback. For these
systems, it holds that ct{rn.sn.hn) < ct{r,g,b) (see also appendix 1). But we will see that this is not true
for the gantry crane (see section 5.3, table 5.2).

2.4. Two-loop static state feedback for tracking control.
Assume a nonlinear system described by (2.4) with a stabilizing static state feedback, p inputs
u = [u!> ... ,uplT, q outputs Y = [Yh ... ,yqf and n states x = [xl,. .. ,Xn]T. Instead of feeding back
the states x only, we feedback the states x and the tracking error e = y - r, where r is a q
dimensional reference r = [rt, ... ,rq]\ see figure 2.5.

u
x-f(x)+g(x)u

·K

x
V-hex)

e

figure 2.5 State transfonnalion providing reference Iracking.

The controller generates the new input signal u applied to the process based on the current states
and the current tracking error, so that when the states are in steady state, the output y is equal to
the reference r. Mt is a nxn matrix with only n-q entries on the diagonal non zero and equal one,
selecting the states which are fed back. Mz is a nxp matrix of columns with only one element non
zero and equal one, leading the multivariable error signals e == [et ... eq]T to the correct input of
the controller K. Now we can split up the controller in a static state feedback part K1 and a static
output feedback part Kz which is a square matrix, see figure 2.6 where K1 and K2 are given by:

K1 = KM1 (2.12)
K,. = KMz

and u is given by:

(2.13)



TWO-LOOP STATIC STATE FEEDBACK fOR THE MIMO GANTRY CRANE.

x-f(x)+g(x)u

figure 2.6 Partitioning controller in state and output feedback.

x
y-h(x)

13

Assume that the states x and the output yare measured. Then a LTI model S of the system

transfer from reference r to states x and a LTI model Ii for the transfer from states x to output y
can be estimated. An important feature is that we can recover the signal v, because K2 is a square
(invertible) static matrix. v is given by v = K2e and the second loop controller output can be
added to the signal v. This means that no additional measurement of the signal v is necessary
while the two-loop structure can still be used. For the gantry crane we assume that h(x) is known.
Measurement of the output y is then superfluous. We will detail this in section 5.1. When the
second loop controller is placed parallel to the first loop controller, we obtain the ultimate two
loop static state tracking control scheme, shown in figure 2.7.

r
x-f(x)+g(x)u

x
y-h(x) f-----r-~y

figure 2.7 Ultimate two-loop static state control scheme for tracking.

We summarize the various steps:
1) Design a stabilizing tirst loop static state controller, K which stabilizes the system,

but is far from optimal.

2) Estimate the transfer from r to x with a LTI model S and the transfer from x to y

with a LTI model iI.
3) Design the second loop static state controller dK based on the estimated model of

the system S and Ii for optimal reference control taking some robustness into
account.

4) Add & and K to form the new tirst loop controller K + ~K

5) Execute steps 2 to 4 again and if the estimated model is more accurate, we can put
more constraints on the optimality and less on the robustness.
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3. The gantry crane.
The gantry crane is used to test the two-loop control scheme with static state feedback. A

dynamical nonlinear state space model is derived, implemented in SIMULAB and used to generate
data for experimental controller design for the laboratory process. A linearized model is used to
design a first loop controller. Some characteristics of the plant will be explained. Finally, sensor
and actuator noise, together with some nonlinearities in the actuators, are modelled too.

3.1. A nonlinear model or the gantry crane.
The gantry crane is used to transport a load through the air from one place to the other. It exists
of a movable trolley on a rail and a cable of varying length, see figure 3.1.

trolley Xt--7
Ft

17 cable

Fh

L
load

~
figure 3.1 Simplified gantry crane.

The six measured states (n=6) of the system are: the position of the trolley ~ bounded by the
length of the rail (-1 ;S; ~ ;S; 1 [m]), the angle 8, bounded by the sensor (-0.5 ;S; 8 ;S; 0.5 [rad]),
the length of the cable L, bounded by the height of the rail (0.1 ;S; L ~ 2 [m]) and all their

derivatives it' 6, and i. The derivatives are actually calculated but using a high sample frequency
we may assume that we measure them. The two inputs (p = 2) of the system are the forces on the
trolley Ft and the rope Fh both bounded by the maximum motor torque (-100 ~ Ft , Fh ~ 100
[NJ). The two outputs (q=2) are the position of the load given by XI and y" which must follow a
predefined track given by Xref and Yref'

The nonlinear model that we use is based on the model used in [Sch93]. A comprehensive
derivation is given in Appendix 2, We repeat here the state space description:

i '" j{x) + g(x)u (3.1)
Y '" h(x)

with input u, state x, output y and reference track r:

[
• • ']T T T T (3 2)x '" xt xt eeL L u '" [Ft F,] Y = [X, y/] r = [Xre/ YreA •

and f(x), g(x) and hex) are given in (3.3) where:

mass of the trolley
mass of the load
gravitation acceleration
linear friction in trolley
linear friction in angle
linear friction in cable

Il\ = 3.5 kg;
mL = 1.5 kg;
g = 9.81 m/s2

;

at = 0.1 Ns/m;
ao = 0.01 Ns/rad;
aL = 10 Ns/m;
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i,

11, •--x
1ft ',
8

~) g IJI, i. lJIe •
--sin(8) + -tcos(8) - (2- + -)8

L Iftl- ' L "'t.

1.
2 IJI IJI

rOOS<O) + IA + -!ipin(8) - ....!:.t.
"', mL

0 0

1 ...!..sin(O)
1ft, 1ft,

0 0

g(x) -~8) __1-sin(O)cos(8)

"'I- "'I-
0 0

-...!..sin(6) -...!... -...!..sin2(6)
"', mL 1ft,

(3.3)

{

X, + l.ain(O»)
lI(x) -

Lcos(O)

(3.4)
Uy,
- = 008(6)
aL

Uy, = -uin(6)
ae

Uy, =0
Ox,

The mass of the load is taken constant, but it is possible to define it as an additional input in a
more complex approach.
This model is an approximation of the true plant. The friction terms are linear, so no attention is
paid at the dead zone and saturation behaviour. In the real case it is not possible to put a force on
the load in the positive y-direetion which is possible in the model. But this will only occur when
Fh < -m~, which can be constrained during controller design. Further we assume that the cable
does not bow. But still this model has great value, because it gives us an indication of the
structure of system and how the real nonlinear crane reacts on control actions. Further L ;t 0
must hold else we divide by zero. A additional remark can be made when 0 is small. When we
tolerate an error of 1% in sin(O) then we may replace it by 0 if 0 < 0.39 rad. In the same way we
may replace cos(O) by 1-0. This does not mean that the output has a tolerance of 1%. We can
derive the propagation of faults from the states x to the output y. Therefore we look at the change
of the output when we change one state slightly and keep the other states constant. Then follows
from hex) by partial differentiating with respect to the changing state:

Ox, Ox, ax,.- = 1 - = Lcos(6) - = sm(6)
Ox, ae aL

This means that for example an error in the position of the trolley ~, will always result in an
error of the same size in the x-position of the load "'t. But an error in the angle 0 will result in an
error in the x-position of the load multiplied with Lcos(O) =:: L if 0=::0.

(3.6)

To investigate if the nonlinear model of the system is strongly stabilizable we introduce the zero
dynamics of a nonlinear system which can be interpreted as the 'zeros' of a linear system [Isi80].
They tell us for which input signals and initial conditions the output can be kept at an equilibrium
for all times. The states of the system are than constrained to evolve so that yet) = Yo 'It.
In a more mathematical way we define the zero dynamics as:

zero dynamics := {uzit) I y(t) = Yo V t} (3.5)

When there exist no unstable zero dynamics it holds that:

lim uzit) = 0
1-00

which means that the system is "minimum phase" in terms of linear system theory. In that case a
linear system has no zeros in the Right Half Plane (RHP). This guarantees that the linear system
is strongly stabilizable, and the two-loop structure can be used. We expect that also for nonlinear
systems with stable zero dynamics the two-loop structure can be used. In appendix 4 the zero
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dynamics of the gantry crane are derived. The resulting zero dynamics are stable because
lim u:tt) = 0, and the system is "minimum phase". Hence we expect that the two-loop structure,....
can be used.

To investigate if the nonlinear system is controllable we first explain this concept for a linear
system. A system is completely state controllable if for any initial state, the state of the system
can be brought to any final state in finite time by appropriate control [Bo092]. A linear system is
controllable if and only if A = [B AB A2J3 ... N-IB] is non singular (has full rank = n). This
holds for both continuous and discrete time, where the continuous LTI state space model is
defined by (3.15) and the discrete LTI state space model by (3.7):

x(k+ 1) =Ai(k) + Bil(k) (3.7)
y(k) = CX(k)

where ii the p dimensional input, y the q dimensional output, and £ is a n-dimensional vector
[XI'" XJT. This can easily be understood by writing out the states for each time in the discrete
time case:

£(l) = Aio + Bii(O)

£(2) =A.i(l) + Bi1(l) =A 2£0 + Bu(l) + Bi1(2)

11(0)

£(k)

u(k-1)

6(k-2)
= A l xo + [B AB A 2B ... A1-IB]

I
11

(3.8)

If we have n controlling moments, we have n degrees of freedom for control of £ (k) so we can
bring £(k) to any desired state using appropriate u under the strict condition that the matrix A has
full rank. We can interpret this as if we are in some point Xo in an n-dimensional linear vector

space i and we want to another point xe in that space. For each control action we apply, we walk
in a direction of that space. But if we have not enough freedom in direction, we can never reach
the point XC' The basis of control actions must have the same dimension as the basis of the vector
space to reach every Xe we want. This idea can be generalized for nonlinear systems. Than we
have to deal with nonlinear vector spaces, so the derivation is slightly more difficult [Nij92].
Consider the nonlinear system with p inputs and q outputs:

i = j{x) + g(x)u (3.9)
y = h(x)

on a n-dimensional state space X. This system is controllable if the span of all repeated Lie
brackets ofj,gj, .... ,gp is n-dimensional at every point ofX.
The Lie bracket is defined as a mapping from RD ...... RD:

[f,g](x) = ogj{x) - Ofg(x) (3.10)
ax ax

In appendix 5 we derived that the gantry crane is controllable. It will be clear that this nonlinear
approach is only possible if we have an exact description of the system. But this will never be true
because we always have a limited model set. Further the approach is very time consuming. I will
confine myself to remarking the possibility of exact linearizing state feedback [Nij92]. This would
lead to a linear system without neglecting higher order terms, and all linear controller design
methods are valid again.
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To stabilize the system we apply an initial loop controller obtained by LQR controller design.
Therefore we need a linear model of the gantry crane.

(3.12)

(3.11)

3.2. A linear model of the gantry crane.
Using the classical Taylor expansion (see section 2.2) we can linearize the model. For a
comprehensive derivation see Appendix 3. As linearization point Xo = [0 0 0 0 1 OJT we take the
middle of the xy-plane where the load can be moved in, and defined by (3.11):

xt = X'o + 1:J.x, = 1:J.xt
it = i'o + 1:J.it = 1:J.it
8 = 80 + 1:J.8 = 1:J.8

a = 6 + 1:J.6 = 1:J.6o
L = Lo + 1:J.L = 1 + 1:J.L

i = io + 1:J.i = 1:J.i
Redefine the state vector as the deviation from the linearization point Xo and the input vector:

x = [1:J.xr 1:J.xr 1:J.6 1:J.6 1:J.L 1:J.it

U = [1:J.Ft 1:J.FJT Y = [1:J.x, 1:J.y,]T f = [1:J.xr~/ 1:J.Yn)T

where

F t = Fro + 1:J.Ft '" mL'g + 1:J.F,

F" = F"0 + 1:J.F" = 1:J.F"
x, = xlo + 1:J.x, = 1:J.x,

y, = Ylo + 1:J.Yz = 1 + 1:J.Y,

x,ef = x"'fo + 1:J.x",/ = 1:J.xref

Y'ef = Y"'fo + 1:J.Y'~f = 1 + 1:J.y",/

(3.13)

l¥, g '"L l¥e
0--(1+-) -- 0

,",.~ 1.0 '", /ilL

0 0 0 0

0 0 0 0 - l¥L

mL

'", '",
o -~

The linear system is now given by (3.14):
o 1 0 0 0

1 0
'",
0 0

B = 1
0

,",.~ (3.14)
0 0

0 1

'"L

000

100

000

o

o

o

o 0

A = 0

c = [1 0~ 000]
000010

Note that the model is decoupled. The states 1:J.L and 1:J.i are independent from the other states.
Looking at the zero and poles:

zeros: -1.4627e+3
poles: 0

-0.0196
-0.0075 + 3.7416i
-0.0075 - 3.7416i
o

-6.7000
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where the first four poles are from !lx, l1i, 118 116 (fourth order system) and the last two poles

from I1L!lL (second order system). The A matrix has not full rank (n=6 and rank(A)=4)
because two eigenvalues are zero (integration). The complex conjugated pole pair with the small
real part is due to the badly damped pendulum frequency. The linear system has no zeros in the
RHP (minimum fase). There are no unstable poles, but because of the small negative real part of
the poles and the poles at zero, the system is not asymptotically stable. Further the system is fully
controllable and observable [boo 87] because A = [B AB A2B ... N-IB] and r = [C CA
CA2

... CN-I] have full rank (n=6). It is not our purpose to study this linear model thoroughly. It
is only one way to find an initial first loop controller necessary to get rid of the poles in zero so
that the system is stable and a linear model can be estimated.

3.3. LQR first loop controller design in continuous time.
Given the following linear model:

x=Ai+Ba
y = Ci

with: dim[A] = nxn;
dim[B] = nxp;
dim[C] = qxn;

and with characteristic polynomial: a(s) = det(sI-A) = sn + alsn-I + ... + '\,
We can change this polynomial using static state feedback: a = a* - Ki, see figure 3.2.

figure 3.2 LQG or state feedback control.

(3.15)

(3.16)

Now the new state space model is defined by:

i = (A-BK)i + Ba"
y = Ci

with characteristic polynomial: a(s) = det(sI-A + BK) = sn + a\sn-l + ... + an
Since {A,B} is controllable, the poles of this characteristic polynomial may be put in any
predefined position by the choosing elements in K properly [Dam90].

Now let the system be at rest in Yo. Due to some (impulsive) disturbance, the output at some time
to is replaced by YCto) ;t. Yo. The regulator problem is to apply a control signal u such that the
output y is returned to its equilibrium Yo' We can translate the problem to the states. We want to
apply a control input u which has to return the disturbed state vector i(to) to the equilibrium state
vector i o• Therefore we can choose a suitable K so that i(to) reaches i o as fast as we wish. The
rate of decay depends on how negative the real parts of the eigenvalues of A-BK are. The more
negative these are, the larger the values of K will be and therefore the higher the required input
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signal energy. Clearly we are dealing with an optimization problem. We have to deal with two
constraints. First we want ji (t) = jio and second there is a limit in the energy of a(t). Therefore
we have to define a performance so that we can calculate the best solution. We take:

J = I~T(t)QX(t)+QT(t)RQ(t)]dt
o

(3.17)

subject to Q ~ 0, R ~ o.
This provides that lim x(t) = 0 and we obtain an optimal stable linear state feedback controller K.

"'00
Using Langrange multipliers we can write the optimization problem in a Algebraic Riccati
Equation (ARE):

(3.18)

and K is given by:
(3.19)

We can solve the ARE using the function Iqr.m in MATLAB. Now we have to choose a proper Q
and R matrix. The Q matrix is already defined, because we want to control the output signal.
Essentially we want to minimize y so:

J = J[y T(t)y(t) +Q T(t)R Q(t)]dt
I,

(3.20)

Remember that in the Iinear system all variables are defined as the deviation from the linearization
point.
Since ji = Ci we can write:

J = 1. liz [XT(t)CTCi(t)+uT(t)RQ(t)]dt

From (3.21) and (3.17) follows:

(3.21)

1 0 1 000

000 000

T 1 0 1 0 0 0 (3.22)
Q=cc=oooooo

o 0 0 0 1 0

o 0 0 0 0 0

Now we must choose R in such way that the effort in the actuators Ft and Fb is only small
obtaining a "loose" controller as suggested in section 2.1. After some trial and error the next Q
and R are chosen:

101000

000000

1 0 10 0 0 0 R = [0.1 0] (3.23)
Q = 0 0 0 0 0 0 0 0.1

000010

o 0 0 0 0 0

Q is modified in such way that there is a stronger feedback in the t!.(), else t!.() was badly damped
which followed from validation of the controller on the linear model. The actuator effort (only
low power dissipation for optaining a "loose" controller) was also checked during the validation.
This controller also aligned the length of the impulse responses of the output ji and hence the
impulse response of the states i. This will prevent numerical problems when we are sampling the
states of the real crane. When the impulse responses of the states are not of the same length,
sampling at a high rate will result in no difference in the samples of the 'slow' impulse responses,
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while a low sample rate wiJI cause aliasing effects in the 'quick' impulse responses. In fact we
move the real parts of the poles to each other in a suitable region so that we obtain a suitable
bandwidth of the system. The resulting initial state controller K equals:

K = [3.1623 5.8638 -2.9401 -0.5707 0 0] (3.24)
o 0 0 0 -3.1623 -0.4636

Note that the controller has six structural zeros which are caused by the decoupling of the
linearized system.
The new poles are:

-0.3686 + 3.765li
-0.3686 - 3.7651i
-0.5682 + 0.5444i
-0.5682 - 0.5444i
-6.6592
-0.3166

From the structure of the decoupled linear system it also follows that ..1.x1 is obtained from a fourth
order differential equation and ..1.YI from a second order differential equation.

3.4. The gantry crane with linear static state feedback.
Applying the static state feedback controller (3.24) to the nonlinear system, we have to correct for
the constant gravity term. The resulting system is implemented in SIMULAB (see appendix 5).
Figure 3.3 shows the deterministic simulation model where no noise is involved.

UEJl:
X

::Jr-I V\ ~ f(x)+g(x)u ::: hex) H--+--.--~' y
~ /

mg

ref

(3.25)

figure 3.3 Deterministic simulation model.

There is some danger in applying this linear controller to the nonlinear system because we do not
know if the nonlinear system wiJI be stabilized by this controller, even if we design a "loose" one.
If we look at the linearization of L we choose L = 4> + ..1.L where Lo = 1. With -0.9 ~ ..1.L ~

1 we can not speak of a small deviation from the linearization point anymore and hence the
linearized model can be very different from the nonlinear model of the gantry crane. Therefore we
verified that the nonlinear system under state feedback with the initial state controller K(O) in
(3.22) is stable for an arbitrary set of input signals USI (no plots here). But for the design of the
second loop controller we must take some robustness into account.
See that instead of the states Xl and L, the error (XI - x",r) and respectively (Y\-Yrer) are fed back.
This is possible because in steady state 0 equals zero and hence:

t'+ cos(6) t'h(x) = = A 6 = 0
~ Lsin(6) L

where Xc is the state vector in a steady state. In fact we apply a state transformation so that the
states tend to Xc' See also section 5.1.

To gather more knowledge of the closed loop system behaviour, the response of the nonlinear
system on a reference impulse in respectively the x- and y-direction is shown in figure 3.4.
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response impulse xref
xl

-~~:P~~~-
o !5 10 1 ~ 20

time (s)

yl

,oo~v:s;: j
o !5 , 0 1 IS 20

time (5)

e

_~~:RE-------I:
o !5 , 0 , ~ 20

time (5)

figure 3.4 Closed loop impulse respones.

response impulse yref
xl
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time (5)
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time (5)
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The behaviour shows indeed a mInImum phase characteristic in terms of linear system theory,
because the "first" response is not opposite to the reference signal. The coupling between Yrer and
XI and between yrer and 8 is due to numerical errors, so the numerical accuracy is about lO-16. For
an impulse on Xrer the response of YI is more than two decades smaller than the response of Xl.

This would suggest that the coupling could be neglected, but as we will see soon, this is not
allowed when we use a white uniformly distributed reference signal. Because the positive y
direction of the load is downwards, the response of YI for an impulse on x",r is indeed minimum
phase in terms of linear system theory. From the badly damped response of 8 for an impulse on
X",r, we detect the pendulum frequency fp caused by the swinging of the pendulum. If we neglect
the mass of the cable and assume that the cable does not bow, fp equals (mathematical pendulum):

J. = ~ rK :; 0.5 Hz for L = 1 (3.23)
p 21tfL

where g = 9.81 m/s2 is the gravitational acceleration. This means that the pendulum time Tp

equals Tp :::: 2 seconds. This pendulum time is visible in the response of XI and 8 for an impulse
on x",r. In the response of YI for an impulse on x..:r we detect the doubled frequency of the
pendulum, due to the fact that when the pendulum makes only one period in the x-direction, it
will make two periods in the y-direction. This is a tipical nonlinear effect, and we need an
additional complex pole pair in a linear system to describe the doubled frequency.

The closed loop transfer from the state space model with linear state feedback K can be calculated
by HclGw) = C(sI - A + BK)"IB. But for the nonlinear system this is not possible. To get an
indication of the "bandwidth" of the system, we use a Fourier transformation based on input and
output data sampled with f. = lO Hz. In fact we estimate a high order LTI approximation for the
spectra of the input and output data. An indication for the "bandwidth" of a nonlinear system is
than gathered from the plot of the ratio of the output and input spectra for each frequency.
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(Y) (Y<(,)»)
F u = U«o)

,~,( (,»
prot: .To.

u(<a»

(3.24)

The input is chosen a uniformly distributed white noise:
Xrer = uniform distributed white noise f [-3,3], mean(xrer) = 0
Yrer = uniform distributed white noise f [-3,5], mean(Yrer) = 1

This does not guarantee that a nonlinear system is exited enough. Therefore the results are only
indicating the bandwidth of the system.

The spectra obtained with the Fourier transformations based on the data of the inputs and outputs
from the nonlinear system, are given in figure 3.5.

Fourier transformation input/Dutput data nonlinear system

w (rad/s)

figure 3.5 Closed loop spectra from r to y of the nonlinear system.

where:
= spectrum from Xrer to Xl

= spectrum from yrer to x,
= spectrum from Xref to YI

. . = spectrum from Yrer to y,
and where w = 1f' rad/s equals Ihf. = 5 Hz, half the sampling rate.

For the Fourier transformation of the data from x",r to y, and from Yrer to XI we detect that there is
coupling in the nonlinear model. This was not visible in the impulse responses. But now the input
was a uniform distributed white noise, and 6 is not negligible anymore, and also coupling between
Yref and XI can physically be explained. For frequencies above 1 rad/s the damping is higher than
10.2, which can be interpreted as the "bandwidth" of the nonlinear gantry crane. Again the
pendulum frequency is visible in the Fourier transformation of the data from x",r to YI' In the
spectrum is a large amount of power concentrated in the frequencies around w = 0.3 rad/s equal
to f ::=: 0.5 Hz corresponding to the pendulum frequency ~ ::=: 0.5 Hz for L = 1.
A nice interpretation can be given to the spectra from x",r to 6 and from Yref to 6, shown in figure
3.6.

fourier triln:;!orm from refereDce to 8 nonlinear sy!fle!Zl:

figure 3.6 Closed loop tmnsfer from r to 8 nonlinear model.
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where:
= spectrum from Xref to (J

= spectrum from Yref to (J

This spectrum has the most power at the frequencies around the pendulum frequency.
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For identification figure 3.4 is extended with sensor noise 11 and actuator noise a (see appendix 6)
both modelled as Gaussian zero mean white noise with:

l1xt E[-O.I,O.I] l1L E[-o.I,O.I]
l1xtd« E [-0.2, 0.2] l1Ldot E [-0.2, 0.2]
l1tbeta E [-0.05, 0.05] aft E [-1, 1]
l1lheladot E [-0.1, 0.1] afb E [-1, 1]

This means a sensor noise of 10% and an actuator noise of 1% which can be seen as a worst case
model. Motor nonlinearities e.g. saturation and dead zones (caused by cogwheels) are also
modelled with (for both forces F t and FJ:

"'""
100 F",>100

F", 1sFblslOO

F = 0 -1<F",<1
0lIl

F,. -100sFbls-1

-100 Fbl<-100

-100

100

-I 0 I

·100

100 FIa

The resulting model is shown in figure 3.7. Because we measure the states of the system, the
sensor noise is added to the states. Using the function h(x), given in (3.25), with high reliability,
we can calculate the virtually measured output y•. y is the real output of the gantry crane.

-K
'.'

:.;.:.:.:.;.:.:.:.:.:.:.:.:.:.:.:.:.:.:.;.::::

figure 3.7 Stochastic model of the system in closed loop.

This scheme is used for identification in the next section.
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4. Identification of the system.

lWO-LOOP STATIC STATE FEEDBACK FOR THE MIMO GANTRY CRANE.

System identification deals with the problem of estimating mathematical models of
dynamical systems based on observed data from the system. In the next sections a linear time
invariant Minimum Polynomial output error model of the gantry crane is estimated based on
input/output data simulated with the nonlinear model. The identification method and experimental
conditions will be explained and the resulting model is validated. The estimated model can be used
to compare with the results ofother identification methods.

4.1. Minimum Polynomial &timation.
Estimation of a MIMO LTI model based on observed input/output data is most times a delicate
problem. Due to a limited model set and all kinds of disturbances (actuator noise, sensor noise,
nonlinearities) the model will never describe the system perfectly. Finding the best model in a
space spanned by the number of parameters results in a nonlinear optimization problem. Decent
methods for finding a minimum get often stuck in local minima of the cost function. This is a
function which measures the performance of the model with e.g. the two norm on the error
signal. A good initial model can help to find the global minimum. For the gantry crane we used
Minimal Polynomial Estimation (MPI) [Fal93] for obtaining a synthetic, dynamical, linear, time
invariant, lumped, parametric, causal, and discrete time model, see [Bo087], [SOd89]. Define the
model set:

(4.1)

where:

A(z -I) = (1 + alz -I + ... + ant!- -1tII)/q

Btl -I) - B B -I B -Ilbu
Z - "0 + "IZ + ... + "_' Z

~ ~ V-u
C( -I) - C C -I C -lie, (4.2)

Z - 0 + I.IZ +... + I,M/Z

D(Z-I) = 1 + d
1
z-1 + + dJ.-Nl

F(z -1) = 1 + liZ -I + + 1,;-ttI

where Z·I is the delay operator defined by z-Iq(k) = q(k-l). The polynomials A(Z'I), D(z·l) and
F(z·l) are scalar polynomials while B(z-l) and C(Z·I) are matrix polynomials of size (q x p) and (q
x q) respectively. The structure of the model is represented by rna, nbij, nc i, nd, nf, nkiJ, where
nk is the number of delays from input j to output i. Assume that C(Z-l) is a diagonal matrix
polynomial for reducing the complexity. This in fact eliminates the true MIMO character of the
noise model. u(k) are the p process inputs at time kT. where T. = l/f. is the sample time and d(k)
the q dimensional disturbance vector at time kT•. The q process outputs at time kT. are denoted by
y(k). We define the parameter vector fl. containing all parameters of A(z·I),B(z·!),C(z·I),D(z·l) and
F(z·l) which must not be confused with () which is the measured angle of the gantry crane! Based
on the data ZN = [y(O) , u(O); y(l), u(l); ... ; y(N), u(N)] with N input/output data samples we
search for the best fl. obtained from a cost function V(fl.,Z):

.e. = arg min VW,zA) (4.3)
bElt

A natural choice for obtaining a model for controller design is the least squares approach:
N

V@,Z") = .!...E e T(k)e(k) (4.4)N
k

_
1

where e(k) is defined as:
e(k) = y(k) - y(k) (4.5)
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where y(k) is the real process output and y(k) the estimated output. After estimating the
parameters in ~ the obtained model is the best model in least squares sense!
Methods for numerical minimization of the function V&.,ZN) update the estimate of the minimizing
argument iteratively according to:

(4.6)

where r is the search direction based on information about V<Q,ZN) gathered at previous iterations,
and 6 is a constant, determined so that an appropriate decrease in the value of V@..,ZN) is
obtained. In this particular case it is possible to give an analytical expression for r in the Gauss
Newton direction [Fal93]. This iterative search procedure leads to a model which corresponds
with a local minimum in the cost function. Nothing guarantees that this local minimum is also the
global minimum. Therefore the initial model is of crucial importance. To obtain an initial model
in the neighbourhood of the global minimum we use the method proposed by Zhu [Zhu_91]. This
method is based on asymptotic properties of the estimated model. Define the models:

y(k) = L (gf4(k-l) + hfl(k-l))
1=1

(4.7)

g\ and hi are the parameters of the impulse response of the model and the disturbance respectively.
With the unity delay operator Z-I the model in (4.7) can be written as:

y(k) = G(z -I)u(k) + H(z -I)d(k) (4.8)

where: G(Z·I) = A·I(z·I)F"(Z")B(z")
H(Z") = A·I(z·I)D·1(z·I)C(Z·I)

With this model we associate the transfer functions:

G(ej ",) = L gil -ji..

1;=1

H(e j ",) = L h1;e -ji..

1;=1

-1t s; w s; 1t

(4.9)

Under certain conditions Ljung [Lju85] proved that:

G;w.,eJ") - Gt(e j ..)

(4.10)

where G;oo.,eJ"') is the nth order estimated model transfer based on N samples input/output data,

with parameter vector ~ and G,(e1"') is the true process transfer. This means that if we take the
order of the estimated process big enough, and the number of data is still much bigger than the
order, the estimated model equals the true model.
When we take F(z·l)= 1, we obtain an equation error (ee) model with G(Z·I)= A'(z-')B(z"). The
least square cost function V@..,Z) is now convex in the parameters of~. This means that the global
minimum will be found. The disadvantage is that an ee model is concentrated on the estimation of
the high frequencies. In the ultimate case the one step ahead prediction y(k+l) is simply the
previous output y(k).
When we take A(Z")= 1, we obtain an output error (oe) model with G(Z")=F"'(Z-')B(z"). The least
square cost function V@..,Z) is now nonlinear in the parameters of~. Nothing guarantees that the
global minimum is found. But this model has a large horizon, and therefore necessary for
controller design.
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The initial output error model is now obtained in four steps:

1). Estimate a high nh order ee model t;;lm.,eJ"') based on a large data set N.

2). Filter u with Ah(zl) yielding u·, Le. u· = Ah(z-I)u

3). Simulate new data y. from u· and t;;lm.,eJ"') , Le. y. = t;;lm.,eJ"')u

4). Estimate a low nl order oe model t;;lm,.eJ"') on the new data set.

Zhu [Zhu91] showed that that if input u and disturbance dare uncorrelated stationary mean zero
white noise sequences, there holds that, for step 4 [Rei93]:

"
vm,zN) = .!1tf IG;l(eJ"') - G;'(eJ"') 12 1 dc.l (4.11)

2 _" l'a~G;l(eJ"'»)
We can interpret this as a weighted cost function. At frequencies where the variance in the high

order model G;' is high, the weighting is small and the low order model G;' may deviate from

G;l because G;' is unreliable. At frequencies where G;l is reliable (small variance) the weighting

is large and G;I is kept close to G;'. G;I(6) can be used as initial model for estimation of an
output error model on the real data set.

Essentially we first estimated a high order ee model, which is easy because it is convex in the
parameters. With this LTI model we simulated new data without noise and of finite order. Using
this new data we estimated the transfer of the ee model with a output error model, weighted with
the reliability. Because this time no noise or disturbances are involved, the oe model can be found
easy. This oe model is used as an initial estimate on the real data, using nonlinear optimization
techniques to improve the model, obtaining the model for controller design. Because the initial
estimate was already in the neigbourhood of the global minimum of V(!i,Z), the resulting model
after optimization is hopefully in the global minimum of V@,Z).

4.2. Experimental conditions.
In general terms the experimental condition is a description of how the identification is carried
out. This includes the choice of the sampling interval, input signal and pre-filtering of the data
prior to estimation of the parameters [Lju87].

4.2.1. Sample frequency.
With the initial feedback we aligned the length of the impulse responses of the load in horizontal
and vertical direction so that they both are about 10 seconds. The sample frequency must be high
enough to guarantee no aliasing and according to Shannon's theorem we take f. ~ 2·fN = 6 Hz
where fN = 3 Hz (see figure 3.5) is the Nyquist frequency, the highest frequency in the system.
But there is also an upper limit on f,. If f. is very high the measured signals change very slightly
between two samples. This will cause numerical problems and all poles will cluster around the
point one [Lju87]. Further the model fIt may be concentrated to the high frequency band. We
choose f, = 10 Hz.

4.2.2. Input signals.
The most appropriate choice for identification of linear systems is a white noise input signal,
because white noise has a tlat frequency spectrum and therefore is sufficiently rich. A zero mean
uniformly distributed white noise input signal stays between two values (zero mean):

u(k)wltil'rwis' e [-a, a]
and each value occurs with equal probability.
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For nonlinear systems we do not know if the white noise input signal is a good choice for
identification. But if there is no a-priori knowledge, this seems to be the best choice.
Another commonly used input signal for identification is a Pseudo Random Binary Noise Squence
(PRBNS) [Bac92b]. The frequency spectrum of this signal is essentially a sinc function, but the
lowest frequency band is flat. And if the frequency band of the process is in this band we can
compare the signal with a white noise, which is for linear systems sufficiently rich. This signal
can jump between two possible values (zero mean):

u(k)PRBS e [-a; a]
and each value occurs with equal probability.
In general we are dealing with systems which behave only linearly around a working point. This
causes troubles as we can see in the following examples:
1). y(k) = u(k) * u(k-l) * ... * u(k-n)

A PRBNS input signal will keep the output on either two values y(k) e [-a"+I; an+I], and
identification is impossible when we did not choose a very specific modelset. With a
uniformly distributed white noise as input the output is in the range y(k) e [(-a)n+l, an+I],
and identification seems possible. But when n is large the output y(k) will be very small
because u(k) will probably be close to zero at one time instant of the last n samples and
hence y(k) will be close to zero too.

2). y(k) = u(k)n
A PRBNS input signal will keep the output on either two values y(k) e [(_a)n; an], and
identification is impossible. With a uniformly distributed white noise as input the output is
in the range y(k) e [(_a)n aU], and identification seems possible.

3). y(k) = sin(u(k))
A PRBNS input signal will keep the output on either two values y(k) e [sin(-a); sin(a)],
and identification is impossible. With a uniformly distributed white noise as input the
output is in the range y(k) e [sin(-a), sin(a)] and identification seems possible.

For these examples the PRBNS input signal is not rich enough. Identification based on that data
can lead to a limited model. The model will be perfectly able to simulate the response on a
PRBNS input signal with the same amplitude but no other input signal. All the examples are static
nonlinear functions. For dynamical nonlinear systems this effect is compensated due to the
memory in the system when the frequency of the PRBNS signal is high enough. Although the
external input takes only two values, the internal states still vary over a range.
For identification of the gantry crane a white input signal is used:

x",c = uniformly distributed white noise e [-3, 3], mean = 0, std(x",c)=2.2511
y",c = uniformly distributed white noise e [-4, 6], mean = 1, std(Y",c)=2.8944

The amplitude (and so the mean power) of the input signal is very important, because a too
powerful input signal can drive the states of the crane into saturation and a linear model is hard to
fit. We also want to identify the crane in its working area. Therefore we choose an input signal so
that the outputs XI and YI vary in the range from -0.9 to 0.9 metre. Because this is the maximum
output possible, the signal to noise ratio on the output is also as good as possible.

An important rule of thumb [Bac92b] is that the experiment for model estimation last 5 to 10
times the largest time constant of the system. An indication of the largest time constant is
determined with the pole of the linearized system in section 3.2. p(z)max = 6.6592. Re{p(z)max} =
e-Ta/nnax = 6.6592 hence Tmax ::::: 19 seconds. This means that the identification experiments must
last between 100 and 200 seconds (1000 and 2000 samples with T. = 0.1).

In figure 4.1 the input reference signals x",c and y",c in time and frequency domain are given.
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figure 4.1 Reference signals used for identification.

4.2.3. Order of the estimation.
Because the nonlinear model has six states it is trivial to estimate a sixth order model. But the
decoupling in the linearized model would suggest to estimate a 4th order model for XI and 2nd order
for y,. This a-priori knowledge is used during the identification and several Minimal Polynomial
(MP) models are estimated. First, we estimated a 4th order SISO oe model for the transfer from
X ref to xt and a 2Dd order SISO oe model for the transfer from Yref to YI, on data of the deterministic
nonlinear simulation model given in figure 3.3. The estimated SISO model structure is:

bo .. blz-1
.. b1!--z .. br. -3 .. b4'--4 60 .. 61z-1 .. 6zZ-2 (4.12)

X, = Xro/ Y, = YN/
1 .. I.z-1.. 11!--2 .. 1.;.-3 .. l.z-4 1 .. J.Z-I .. J1!--z

These models can be brought in one state space model of the same structure as (3.14) by:

A= [AI 0] B= [B I 0] C= rCI 0] (4.13)
OA2 OBz OC2

where {At,Bt,Ct} forms the state space model of the fourth order SISO and {Az,Bz,Cz} forms the
second order SISO state space model. Then we estimate a MIMO model with structure:

[XI] 1 [bl1•o .. "11.IZ-
1

bll.4'--4 bl2,O .. bl2,IZ-1 ....... bI2•6Z-6) rx~ (4.14)

~, = 1 .. lIz-I ....... 16z-6 "21.0 .. b21,.Z-1 b21~-6 bn,o" bn,.z-I .. Bn .zZ-2 ly,J
on the deterministic and stochastic simulation model in figure 3.3 and 3.7 respectively.

4.2.4. Primary signal processing.
First the data set is splitted in an estimation (sample 1: 1500) and validation set (sample
1500:2000). The estimation set is pre-processed to obtain a better model [Bac92a]. First offset
correction and then scaling correction is applied. The numerical values of the inputs and outputs
(all the same dimension for the gantry crane) may differ significantly. The signals with the largest
numerical values will automatically get highest weight in the quadratic criterion. This problem can
be overcome by correcting the signals for offset and by scaling them afterwards. The next step is
the correction of the delay times. This is done by shifting input and output signals relative to each
other. A process with p inputs and q outputs has maximal p*q delay times, while we can maximal
compensate p+q-l (one for the reference). Therefore the compensation has to be such that the
total summed delay left is minimal.
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When real data is used it may be necessary to detrend the measured signals and correct them for
peaks (peak shaving) prior to the manipulations above. After estimation the model is corrected in
the reverse order and in the opposite direction. The resulting performance of model is measured
during validation on the validation set.

4.2.5. Performance of the model.
After identification we need to assure that the estimated model of the system is performing well.
As performance index we use the Lz-norm of the error divided by the Lz-norm of the output:

N N

E le",(k)lz E ley(k) 1
2

Y", =
i-I i-I

y"'vy; + Y~ (4.15)y '"y
N N

E Ixtk)12 E Ijtk)lz
i=1 1=1

where e = x - i and XI the real x-position of the load and i the estimated x-position of the load'" , , ,
and x, the offset corrected real x-position of the load. The same yields for the y-position of the
load. Of course there is a lower bound on this performance because we estimate a LTI model of
finite order and based on N observed input/output data samples perturbated with white noise.
Another criterion is the whiteness of the resulting error. If the disturbance acting on the system is
white and the system is in the model set then the error should resemble these disturbances and
therefore be white too. In our case however the disturbances are also caused by the nonlinearity of
the crane and hence are not white at all. Therefore this criterion is not used.

4.3. Identification results.
First we used the deterministic model in figure 3.3 to get input/output data, and estimated a fourth
order SISO model for the Xl and a second order SISO model for YI as defined in (4.12) connecting
them to a sixth order state space model as defined in (4.13). Then the MIMO model with structure
defined in (4.14) was estimated on the same data set. The performance is given in the second and
third column in tabel 4.1.

tabel 4.1. Performance of the estimated model over the validation set.

ggg

I
.

I'·····•. SISO·dt~term ...l10rw MIMO determ.. MIMOstoch.

'Yx 0.3998 0.3333 0.3349

'Yy 0.0697 0.0685 0.0770

'Y 0.4058 0.3403 0.3437
The detenmmstlc model is iven In 11 ure 3.3 and the stochastic model III ti ure 3:1.

The MIMO model overall performance is circa 15% better, due to the fact it has six states of
freedom and it can estimate cross transfers (especially in the x-position of the load). Hence the
SISO model is rejected. But in fact only the SISO model with the same structure can be compared
with the linearized model in (3.14). A transformation from the continuous time to the discrete
time of the linearized model is then necessary. This is done with a first order hold filter and a
sample frequency of f. = 10 Hz resulting in a discrete model with the following zeros and poles
in the complex z-plane:
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zeros: -9.2631
-0.0961
-0.9502
-0.7931
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poles: 0.8963 + 0.3544i
0.8963 - 0.3544i
0.9434 + 0.0514i
0.9434 - O.0514i
0.5138
0.9688

Compare this with the poles and zeros of the 2 x SISO estimated model:
zeros: 3.9218 poles: 0.8024 + 0.3396i

1.8887 0.8024 - 0.3396i
1.0191 + 0.4988i 0.9224
1.0191 - 0.4988i 0.7852
o 0.6580
o 0.9679

Note that these time discrete systems are non minimum phase, because of the zeros out of the unit
circle. Remember that the first four poles are due to Xl and () and the last two poles are due to L.
The complex pole pair close to 1 in the linearized system is caused by the badly damped
pendulum frequency. Note that this pole pair is not estimated in the 2 x SISO model. The
difference between the linearized model and the 2 x SISO estimated model is not due to noise,
because the data was noisefree. The linearization point and the nonlinearity of the simulation
model are causes of the difference.

Column four in wbel 4.1 shows the resulting model performance of the estimated MIMO model of
the structure given in (4.14) estimated on the input/output data generated with the stochastic model
of figure 3.7. The difference in performance with the deterministic model is very small which
means that the most model errors are due to the nonlinear behaviour of the crane. Figure 4.2
shows the resulting model validation. The maximum value of the error lei. = sup Iy(k) - j(k) I =:<

keN

0.4 m, is relatively large. This is due to the fact that the pendulum frequency is not estimated. In
the lower left plot, the error in the x-position of the load, we detect the pendulum frequency ~ =
0.5 Hz. This means that the model is uncertain around the frequencies fp =:< 0.5 Hz.

-~~
1~oo sample number 2000

-~:~1~oo sample number 2000

figure 4.2 Output signals MIMO model eSlimation on noisy data.

where:
= real data
= estimated model

2~, v . ~

. ""
I ':J
v

o
, ~oo sample number 2000

o.~0.2

o

-0.2
, ~oo sample Dumber 2000
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The estimated MIMO models on the data generated with the deterministic and stochastic
simulation model in figure 3.3 and 3.7 repectively, with the performance given in column 3 and 4
in table 4.1 had the following minimum polynomial poles:

MIMO determ. MIMO stochastic
0.8115 + 0.2974i 0.8222 + 0.2893i
0.8115 - 0.2974i 0.8222 - 0.2893i
0.9813 0.9792
0.9421 0.9546
0.2492 0.1699
0.8434 0.8113

Note that the complex pole pair due to the pendulum is still not estimated. The resulting third and
fourth pole have only real parts.

Figure 4.3 shows the validation of an impulse response. The pendulum frequency ~ =: 0.5 Hz is
not estimated, which is clearly shown in the response of XI on an impulse on x""f.
As mentioned earlier, the effect of the cross transfer is very small for an impulse on a reference
(even zero for an impulse on Yref)' But for a uniformly distributed white noise, the coupling is
greater. The identified model is estimated on the response of a uniformly distributed white noise
sequence, and therefore there exist a cross transfer. But this estimated cross transfer gives poor
results for an impulse response, as shown in the lower left and upper right plot in figure 4.3. This
is probably due the the nonlinear behaviour of the coupling.

response impUlse xref response impulse yref

200

yl

100~O

2 ><1 o-~

1 r- ~f\
1\.1 \

0l---'----+---===~----___t\ /--,~----------- -
-1 '----•..:.../~~--~--~--------'

o

lei

_:::~= . I
o ~o 1 00 1 ~o 200

sample number
lei yl

'00: fA',----------:--------------------] ::~E~:~:j
0.999 0.98

o 50 1 00 150 200 0 50 100 1 50 200

sample number sample number

figure 4.3 Validation impulse noiseless data.

Note that also for the white noise te estimated cross transfer is almost two decades smaller than
the transfer from x""f to XI and from Yref to y,. This means that the coupling is still very small.

Using oe models of higher order had no spectacular effects on the performance of the model (see
figure 4.5). The pendulum frequency is estimated only by oe models of order 15 and higher. This
means that for low order oe models the performance is better when the model does not include the
dynamics of the pendulum.
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figuur 4.5 Error versus model order.

Looking at the loss function the choice of a sixth order model is (as expected) a proper choice.

Additional remark:
The identification method proposed by Backx [Bac89] for obtaining a MPSSM model is
also used for identification of the gantry crane. However for a "loose" controller the
impulse response is about 100 samples. The initial estimate is based on a Markov
Parameter model, which is in fact the impulse response. This means that we need at least
400 parameters (2 inputs x 2 outputs x 100 samples) for obtaining an initial estimate. This
led to memory problems during program execution.
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5. Controller design.

33

The design of the second loop static state controller for the gantry crane is based upon the
identified model of the measured states, a-priori knowledge oj h(x) and a given set of design
specifications which include e.g. actuator saturation. Using a simulation method [Boy91], the
second loop controller is calculated. The two-loop scheme is used iteratively on the nonlinear
simulation model of the gantry crane. Results of the performance of the designed controller acting
on the deterministic nonlinear simulation model of the gantry crane are given, given infigure 3.3.

5.1. Second loop static state controller design.
Given the basic plant including shaping filters and the controller arranged as in figure 5.1.

plant

w

u

figure 5.1 Basic plant.

z

)-----1---, Y

We can distinguish:
input U = the actuator signal vector consisting of inputs which can be manipulated by the

controller, e.g. forces, torques, flows, etc. It is exactly the output signal of the
controller.

input W = the exogenous input vector consisting of all other inputs, e.g. reference signals,
sensor noise, actuator noise, disturbances etc.

output Y = the sensor signal vector consisting of output signals that are accessible to the
controller, e.g. the measured position, measured temperature, etc. It is exactly the
input signal of the controller.

output Z = the regulated output signal vector consisting of all plant outputs to be minimized,
e.g. tracking error, temperature diviation, etc., and all constrained signals, e.g.
input voltage, valve position, etc.

When Pzw, Pzu, Pyw, Pyu and K are all estimated LTI transfer functions we can write:

[~] " [;: ;:] . [~ " p . [~
U = AK' Y

(5.1)

The closed loop transfer from exogenous inputs W to the regulated outputs Z is then given by:

H = P + P AK(I - P AK)-lp (5.2)
zw zw ZII }'II )'W
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For the gantry crane we assume that:
1). h(x) is known and equal to:

t'+ lsin(6)
h(x) =

Lcos(6)

and with a linearization around [Xl () L]T = [0 0 IF (see section 3.2) we get:

it = [1 0 1 0 0 0]
o 0 0 0 1 0

In steady state yields when () = 0, see (3.25):

y•• [:]

(5.3)

(5.4)

(5.S)

Instead of Xl we feed back ex = xCYref and instead of L we feedback ey = YI-Yref>
see figure 5.2. Now the controller K generates a input signal u based on the
current states and the current tracking error, so that in steady state the output Y
equals the reference r.

x=f(x)+g(x)u V-hex)

e
. A

:S '----- -=-.J/

figure 5.2 Tracking control with first loop static state feedback.

where K1 and K2 are defined by:
KI = KMI

~ = KM2

(5.6)

(5.7)

and where M1 and M2 are given by:
000000 10

010000 00

001000 00
M1 = 0 0 0 I 0 0 M1 = 0 0

000000 01

000001 00

Remember from section 2.4 that in fact K1 is a static state feedback controller and
K2 is a static output feedback controller.

2). the states Xl' () and L are measured. Now we estimate the system S between
reference r and the states Xl' () and L. The other three states are then calculated as
the derivatives of the estimated states. This is possible because we kn6w that the
other states are just the derivatives. The sample frequency must be high enough so

that the estimated x,. e. i agree with the real states. The advantage above
estimating all the states is that during estimation of the transfer from the reference
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r to the states x, the global minimum is much easier to obtain. Only half the
number of parameters have to be estimated which provides that the cost has less

local minima. The resulting estimated system S describes the transfer from
reference r to all the states of x, see figure 5.2.

When we want to add the second loop controllers aKl and ~K2' there arises a problem because
the addition point (output of the first loop controller, denoted with ap in figure 5.3) is intern in

the estimated system S. The only possibility left, is to add the output of the second loop controller
u to the input of the system, see figure 5.3. But without any precaution this would not lead to a
parallel construction of K and aK. Therefore we multiply the output of the second loop controller

u with K2-
1

• Adding the resulting signal u· to the input of the system S, we virtually add the
output of the second loop controller u to the output of the first loop controller u as shown in
figure 5.3. This is only possible because K2 is a static square invertible matrix.

. .

y-h(x)

e

figure 5.3 Twoloop static state feedback tracking control.

Note the parallel structure of the scheme in figure 5.3.
For aK1• and ~2· yields:

f1K; = f1K*M1

f1K; = f1K*Mz
(5.8)

When we bring this scheme in the general structure of figure 5.1 we obtain the scheme of figure
5.4.

u.----+-~ y

figure 5.4 Twoloop structure in basic plant.
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where the second loop controller transfer from Y to U is given by:
-1 * -1I1K1 = -K2 I1K1 = -(KM2) I1KM1

11K,. = -K,,-1I1K2* = _(KM2)-1I1KM2
U * = I1K1x + I1K2e

(5.9)

Now yields:

e HS-I -HS

. [:]x = S -S (5.10)

e iIS-I -HS

and for the closed loop transfer Hzw from the reference r to the error e, which is in fact the
sensitivity 5, yields:

(5.11)

Because .6.K1 is different from .6.K2, the H.,.-norm of the closed loop transfer II H.w II 00 is uniform
descending in the parameters of .6.K, where II. II "" is defined as the maximum singular value
which is equal to the maximum gain in the SISO case. This can easily be seen when all transfers
and matrices are SI50. Then the optimal controller is reached when .6.K1 - 00, .6.K2 - 00 and
.6.K2/.6.K1 - 00, making the sensitivity 5 (the transfer from r to e) infinitely small. This implies
that for .6.K1 - 00, .6.K2 - 00 and .6.K2/.6.K1 - CXl, we have perfect tracking or deadbeat control.
The error in that case would be zero. But this will result in an infinitely large input power demand
and no robustness as we will see in the next section. We expect that this also yields for MIMO
systems.

5.2. Robust stability and robust performance.
The ultimate objective of control system design is that the controller works "well" on the real
plant. For example the controller must not make the system unstable if the dynamics of the
estimated model are not exactly equal to those of the real system. To simplify the scheme we

assume that H is exactly equal to hex). Now we can describe the real system with a nominal
estimated model and a perturbation of it, see the scheme in figure 5.7.

e

figure 5.7 Esimated model of the system wiih uncertainty IlS.

Without glvmg a detailed description of robust controller design, assume the system given in

figure 5.7 and let Sand I1S be stable.
The sensitivity 5 (transfer from reference r to tracking error e, see figure 5.7) is given by:
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s = Cbs - I + SaK1)(I + SaKI + HSaK,yI (5.12)

and has to be small for good signal tracking. If we want a good steady state tracking, the
sensitivity S has to be small especially in the lower frequencies. Therefore we define the weighted
sensitivity WIS, where WI is a low pass filter, putting penalty on the low frequencies of S.

The control sensitivity R (transfer from dx to estimated system input v, see figure 5.7) is given
by: -

R = -(aK1 + aK,/l)(I + SaKI + HSaK,yl

Define the family of all additive perturbed systems E:

1:: {SA = S + as I laSI~ IW21 v (ill

(5.13)

(5.14)

Now the system is robustly stable iff S is stabilized by .6.K, and 1/ R.6.S II '" < 1 known as the
baby version small gain theorem, where II. 1/ '" is defined as the maximum singular value, R the

control sensitivity and as the perturbation on the model of the system S. From the triangle

inequality follows that II R 1/ ",' 1/ as II '" < 1 and if I as I < I W2 I v w, robust stability
(guaranteed stability for all plants in E) is guaranteed as 1/ W2-IR 1/ '" < 1.

When all transfers are SISO, then it follows that when .6.KI -+ 00, .6.K2 -+ 00 and .6.Ki.6.KI -+ 00,

R tends to S-I. Since S is chosen proper, representing a physical system S-I(j(il) -+ 00 as w -+ 00,

it follows that II W2-IR 1/ '" > 1, and hence the controller is not robust. Taking smaller .6.KI and
.6.K2 Gust scalars in the SISO case), and increasing robustness will result in a decrease in
performance. This means that there always exist a tradeoff between performance and robustness.
A second limit for .6.KI and .6.K2 is caused by the actuators (or other signals). When .6.KI -+ 00 or
.6.K2 -+ 00, the input signal of the system v -+ 00 (see figure 5.7), which also means that the input
power of the actuators for the process u must tend to infinity, and that is not allowed. We expect
that the previous also yields for MIMO systems.

Now the regulator problem is to design the controller which
minimizes 1/ WtS 1/ '" under the given constraints:
1). The controller must be robust and hence stabilizing

all the systems in E and therefore stabilize the
nominal plant and II W2-IR 1/ < 1.

2). Keeps actuators (or other signals) out of saturation.

The implementation in MATLAB is based upon the function constr.m in the optimization library.
This function can solve inequality constrained optimization problems, and uses a Sequential
Quadratic Programming (SQP) method (see users guide of the optimization toolbox). The solution
is found iteratively according to (4.6). The search direction at the i_til iteration: r, is found
numerically using the information of previous iterations. In each iteration the optimization
criterion J and the constraints are evaluated, which implies a high computational effort. The
advantage of the design in time domain is that we can put restriction on time signals. This in
opposite to H",-design, where it is not possible to design a controller based on constraints in time
domain.
When the optimization criterion J, the constraints and the change in the parameters of the
controller .6.K are smaller than a predefined tolerance the optimization stops and the second loop
controller is designed. The new first loop controller is given by K + .6.K.
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For the gantry crane we implemented the scheme of figure 5.8.

z

U,----j-----'
~----t::j:=h.y

figure 5.8 Implementation of the gantry crane.

where:

e.,

x,

z = 6

L

fi,

X,

x,
6

6 (5.15)y=
L

l
e%

e.,
U = [Ft Fh]T is not explicit known because they are internal signals in the estimated model of the

system S. But we can easily recover those signals. If we look at the scheme in figure 5.3 then
yields:

u = -Klx-K,.e-~K;i-~K;e

This is used in the scheme in figure 5.8, where:

U = -Kli-Ki-~K;x-fJ.K2·e

= -Kli-Ki+K,.~Kli+K2~K,.e

= <K,.fJ.K1-K1)i + (K2~K,. -K,.)e

= [;:l

(5.16)

(5.17)

Now it is possible to calculate the closed loop transfer with the estimated model and the a-priori

information about h(x). To obtain a better controller not if is used during controller design, but
the real h(x). Further we restricted us to a controller with the structure of (3.24), with only six
entries non zero. This results in only half the calculation time for controller design, and since the
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cross transfer is only small (see figure 4.3), we hope that this constraint on the controller
structure, has a neglectable influence on the performance of the controller.

We split Z in two parts:
1). The first 2 variables: [ex eyF = e.

The tracking error is minimized. The minimization criterion is given by:

J = IWteli (S.18)

where WI a MIMO digital filter. By choosing the filter WI low pass, we put more penalty
at the low frequencies than at the high frequencies in the tracking error and hence at the
sensitivity S. The resulting controller will give a smaller tracking error for low
frequencies in the reference track (and worse performance for the higher frequencies)
than without weighting filter WI' For WI we used for example a first order Butterworth
filter with a cut-off frequency at 2, 3 or 4 Hz.

2). The last 5 variables: ~, 0, L, Fh Fh•

All these variables are constrained:
-1 :::;;; Xl:::;;; 1 [m]
-0.5 :::;;; 0:::;;; 0.5 [rad]
0.1 ~ L ~ 2 [m]
-SO :::;;; Ft :::;;; 50 [N]
-14,7 ~ Fh :::;;; 50 [N]
The designed controller is to "strong" when these values are exceeded. Fh is bounded with
a lower value of m~ = 14.7 [N]. This results in a controller wich does not put a force in
the positive y-direction. The other constraints are due to the construction of the gantry
crane, explained in section 2.1. When we take the minimization criterion given in (5.18),
we expect that for I kij I -+00 "'ij' J= " WIe II ",,-+0, if WI is chosen proper. The solution
for the optimization problem will be limited by the constraints. Taking the constraints
convex, [Boy91], will probably provides a minimum number of local minima in the cost
function.

Till yet, no explicit precaution is taken to obtain a robust controller, but in fact the constraints on
Xt, 0 and L make the system robust. They keep the signals in the state x small and hence the
resulting transfer from dx to the states x, which we call the complementary sensitivity T, which
addresses multiplicative robustness, see Doyle [Doy90]. The constraints on F t and Fh will keep the
input of the system v, indirectly small and hence R will be small. That is the reason that in the
approach of Belt [BeI93] only the performance is optimized together with bounds on the input.
Robustness is implicit in the constraints. But this is not enough in the case of the nonlinear gantry
crane, because the resulting controller, obtained with the previous described method, made the
nonlinear system unstable. Therefore we put additional penalty on the complementary sensitivity

T. This is done by weighting the state a. The transfer from dx to a is kept small which implies
that the complementary sensitivity T has to be small, which is necessary for robust controller
design, see again Doyle [Doy90]. It is better to use the constraint: II Wz-IR """ < 1, which is a
convex constraint. This can be checked in the folowing way [Boy91]. Let "Wz,I-IR I II "" < 1 and
II Wz.z-IRz """ < 1 then ( " Wz,I-IRI II "" + "Wz,z-IRz " ",,)/2 < 1. The problem for obtaining W z

is not discussed here. Therefore we need more information about the accuracy of the estimated
system. In [Boon] and [Zhu91] methods for identification for robust control are proposed.

To obtain a robust controller for the gantry crane we weighted a in the cost function J. In this

way large values of a are penalized (and the control sensitivity is kept small). This means that



40 TWO-LOOP STATIC STATE FEEDBACK FOR THE M1MO GANTRY CRANE.

(5.19)

especially those input signal, which give rise to large outputs of a, are penalized in the cost
funtion, and the entries in the controller .1K are kept small. This is wanted because we know that
the "dynamics of the pendulum" (e.g. the pendulum frequency which was not estimated in section
4) are uncertain in the estimated model of the system. The resulting optimization criterion which
is used for controller design in each iteration is:

2 Z • 2
J = ~e%h + leylz + 16h

5.3. Identification results for controller design.
In section 2.4 we summarized the various steps for controller design. The gantry crane is
stabilized by the initial static state controller obtained in section 3.3. Now we are going to
optimize that controller (with the same structure) for a predefined reference signal. Remember that
we chose the same controller structure as in (3.24) because the cross transfer was very small). It
is important that the reference signal is sufficiently rich. Firstly, the estimated model must
represent the behaviour of the system which is only possible if the data contains enough
information (input rich enough). Secondly, we desire a controller which performs well for a class
of reference signals UR' The chosen reference signal must be rich enough to represent UR' The
reference signal used, is given in figure 5.9.

_~bJ\?\fVl
o ~oo

sample nUrT"Iber

figure 5.9 Reference track for optimizalion.

.OrT'1ple number

To prevent actuator saturation we used a smooth reference track, which is obtained by filtering a
random sequence consisting of three values [-0.75, 0, 0.75] with a FIR filter as given in (5.20),
and hence the first and second derivative of the reference signal are continuous.

1 1=10

y(k)=- 1: u(k+l) (5.20)
21 /=-10

The next step in the "two-loop procedure" is to identify the system S, the transfer from reference
r to the states x. The minimum polynomial structure used is:

X,

8 =
L

(5.21)

The other three states it' a, i are calculated as the derivatives of the estimated states Xl' 0, and L.
The data is processed before estimation in the same way as in section 4.2.
Figure 5.10 shows the validation of the estimated system on the output data of the states x. The
sample frequency is f. = 10 Hz.
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figure 5.10 Validation of the estimated model of the system.

where: real output
estimated output

It is obvious that the system (the nonlinear model with initial loop controller given in (3.24»
behaves almost linear for the reference signal, because we can estimate a very accurate LTI
model. The performance of the estimated models each iteration is given in table 5.1. K(O) is the
initial controller given in (3.24), and K(1) to K(4) are the successive designed controllers.
The performance is measured by:

(5.22)

N N N

:E lex(k) 1
2 :E lee(k) 1

2 :E \eL(k) 1
2

t-t ' t-t k-l ./ 2 2 2
Yx = Y8 = YL = Y=y Yx + Ye + YL

~ li,(k) 1
2 ~ le(k) 1

2 ~ ~ li(k) 1
2

where eq = q - q, the difference between the real signal q and the estimated signal q, and q the
real signal correted for offsets.

Table 5.1 Resulting performance of the estimated model each iteration.

0.1665

0.1446

0.0768

0.1199

K(O) 0.0078 0.0793 0.0027

K(1) 0.0218 0.1649 0.0057

K(2) 0.0216 0.1429 0.0054

K(3) 0.0218 0.1178 0.0045

K(4) 0.0222 0.0735 0.0042

tOAtr61lef I»'Y~ ·1< ....••. 'Y~ ··1,,1. it l·yHH H. I
0.0797

Note that the angle () in the third column of table 5.1 is estimated worst, probably due to its
nonlinear behaviour. For each iteration the estimated model has comparable accuracy, as indicated
in the last column of table 5.1, which implies that the real system can be estimated by a LTI
model each iteration. This is also found with the nonlinearity index a see table 5.2. The set of
inputs signals U exist of only the input reference signal used for controller design. In each
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iteration a is small enough to estimate a LTI model of the system. However, a is increasing each
iteration, which means that the gantry crane does not belong to the class of systems which behave
more linear under stronger feedback. This can be explained by the fact that when a stronger

feedback is applied, the angle () takes higher values and for example sin«() I () and cos«() I (i-()
anymore and the nonlinear model in (3.3) will behave more nonlinear.
To estimate a LTI model of the system however, () is small enough, because the entries in table
5.1 (each ')') have all less accuracy.

table 5.2 Nonlinearity index each iteration, U= {r}.

1··.~IJjJ~fnll· ••••••••••••·.··.··i&xl
K(O) 0.4636e-4

K(l) 3.8361e-4

K(2) 8.8205e-4

K(3) 18.9930e-4

K(4) 40.014ge-4

5.4. Controller design results.
Figure 5.11 shows the outputs of the systems with the iteratively calculated controllers. Iteration 5
results in controller K(5) which is almost equal to K(4) and hence we may conclude that the
obtained controller tends to the best possible controller under the given constraints. For the x
position of the load Xl we obtain an overshoot when the controller becomes "tighter". If this is
undesired we must put additional constraints on the output of Xl during optimization.

For this reference signal Xl is the limiting factor, see the response of Xl in figure 5.11. The state ~
would even slightly exceed the maximum value of 1 metre when it was not clamped in the
nonlinear model. This means that even if the maximum value is not exceeded for the estimated
model during controller design, it is possible that on the real crane the maximum value is rather
exceeded, due to unmodelled nonlinearities. The constraints on () and L are not reached, see the
response of 8 and L in figure 5.11. Without constraints, and without taking some robustness into
account, the optimization will result in a deadbeat controller for the estimated model. Of course
this controller will fail (making the system unstable) when the real plant is only slightly different
from the estimated model. So performance and robustness are mutually exchangeable.
Also the forces Fl and Fh are not limiting the optimization procedure, see the response of Fl and
Fh in figure 5.11, and possibly a less smooth input reference signal can be used for optimization.
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figure 5.11 Resulting system output each iteration.

where:
reference signal
initial controller K(O)

iteration 2 = controller K(2)
iteration 4 = controller K(4)
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The performance of the controller obtained in each iteration is given in table 5.3. The
performance is measured by:

N N

L le..(k) 1
2 L leyCk)12

Y.. =
t-l Yy =

t-l y=b~ + Y; (5.23)
N N

L li,(k)12 L Iy,(k) 1
2

t=1 1=1

where ex = XrerXI and ey = YrerYb equal to the tracking error and il' Y, the x- and y-position of
the load corrected for offset.

Table 5.3 Resulting performance of the controllers each iteration.

Igdtitr6il~" ••• •••••·.11··<.... ..<4./>· ··> .•.•·.....li;y~T ...<u.·.·.. I<•• ?<~ •••••·.....}<I

0.9777

0.7752

0.6609

0.5969

0.5549

0.8937

0.7783

0.7316

0.6127

0.4045

1.3246

1.0985

0.9859

0.8554

0.6872

Note that each iteration the controller performs better.
The resulting controller is given by:

[
10.5705 5.6694 -7.2582 -2.0235 0 0] (5.24)

K(5) - o 0 0 0 -10.5336 3.8505

Figure 5.12 shows the resulting impulse response. Especially the response of the y-position of the
load is very fast. The x-position of the load is clearly hard to control, due to the pendulum
frequency (also visible in the resulting impulse response of xJ making the impulse response of XI

badly damped.

sample number

J _~~I :'~P"'·V···· .. : I
200 0 !SO 100 1 !SO 200

sample number

sample number sample nu,...,..,be,..

figure 5.12 Resulling impulse response of obtained controlJ.:r.
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where:
results with controller K(O)
results with controller K(5)

Finally the step responses of the initial and the obtained controller are given in figure 5.13. Both
references X ref and Yref are fed with a filtered (see formule 5.20) step with an amplitude of 0.75[m]
at the same time. Again it is obvious hat XI is much harder to control than YI'

'p,.~~ .E----~ 1
o ~o 100 1~0 :ZOO200'~O

)(1

~O 100

"',

17
·/··\ :7'-

• I
• I

• I
• I

• I
• Io L-.__...../.<::....-__~__---'-__-----l

o

o.~

eClr"r"\ple nur-nb.,.. .o,....,pl. nUr'T'\be,..

figure 5.13 Resulting step responses of obtained controller.

where:
reference signal
results with controller K(O)
results with controller K(4)

Penalizing 6 in the optimization criterion J to obtain a robust controller makes the performance in

the x-position of the load poor. High values in ~ and 6 are necessary for fast control of XI but
these are now penalized in the optimization criterion. No penalty on one of the states will lead to
a controller which is not stabilizing the nonlinear system. Better results can be obtained when we
implement the robustness by the constraint that II W2-1R II 00 < 1. Hence W2 is of crucial
importance. Therefore a description of the perturbation at the estimated model of the system for
each frequency in each iteration is necessary. Then it is possible to gain performance at the
frequencies where the model is more accurate by choosing the correct weighting filter Wt> and
increasing the robustness of the controller for those frequencies where the model is uncertain,
defined by the filter W2' Probably W2 has large values around the pendulum frequency and for the
higher frequencies, where the model is uncertain. Increasing the maximum value of Xl will also
lead to a better controller.
The most practical solution is to alter the construction of the crane. In practical situations the load
is attached to two cables. This increases the damping of the pendulum frequency.
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6. Conclusions and recommendations.

The two-loop control scheme performed well for static state feedback control of the MIMO gantry
crane, which is not only unstable in open loop, but also nonl inear. The model of the gantry crane
is investigated thoroughly, and one result was that the nonl inear simulation model was minimum
phase in terms of linear system theory. Therefore we expect that the two-loop structure is allowed.
The estimated MIMO minimum polynomial model of the system (process in closed loop) was each
iteration accurate enough to use for controller design, also indicated with the nonlinearity index.
Each iteration, a controller with better performance is obtained, and without restrictions a
deadbeat controller for the estimated model of the system will be designed. But this leads to no
robustness and the controller will make the nonlinear system unstable, even if the estimated model
of the system deviates only slightly of the nonlinear simulation model. Therefore robustness is
brought into the optimization procedure by penalizing the states, e.g. the derivative of the angle 8.
Constraints in time domain e.g. actuator saturation are also used in the optimization procedure.
These constraints were satisfied on the linear model of the system, but not alwa'ys on the nonlinear
simulation model, due to model errors. Therefore we must include some redundancy, and take the
constraints during controller design slightly more restrictive than actually necessary. This depends
on the accuracy of the model. After some iterations a controller is obtained, which performs much
better than the initial controller, found by lqr design. Especially the y-position of the load is
controlled much more accurate. The x-position of the load is hard to control, due to the badly
damped swinging of the pendulum.

To obtain better results, the constraint for obtaining a robust controller: \I Wz'IR II 00 < 1 must be
implemented in the controller design procedure. Then we need more information about the
accuracy of the estimated model (given by Wz) for each frequency and in each iteration. A method
for identification for robust control is given in [Bo092] and [Zhu91], but not applied in this study.
If we have proper filters WI and Wz we can optimize the always existing trade off between
performance and robustness.

For the controller design we used a simulation method. But it is also possible to obtain the second
loop controller by other design methods. For example we can design each iteration an Hoo optimal
controller. The disadvantage of this method is that one can not put constraints on signals in time
domain. Also the main problem, obtaining proper weighting filters, will stay. For all these
methods we search for a balance between robustness and performance which are mutually
exchangeable.

We may conclude that the scheme gives promising results for the gantry crane, and the question
arises if it also performs good for other nonlinear systems. By using the scheme iteratively it is
possible to obtain a better controller each time, and the controller will tend to the optimal
controller, giving the best performance under the given constraints as actuator satuaration,
robustness and controller structure. Necessary conditions for convergence are that the system is
strongly stabilizable and the estimated model of the system is accurate enough each iteration.
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v
w
p
q
d
u
y
r
e
x
p

P
K(O)
K
AK
Kt

Kz
AK t

ilKz
M t

Mz
S
S
n
N
ibd

iby
A,B,C
u,i,y
f(x),g(x),h(x)
u,x,y

U
R

a(y,y)

system input
external input
number of inputs (p=2 for the gantry crane)
number of outputs (q=2 for the gantry crane)
output disturbance [d t,.· . A,]
process input [ut ,. ••upF
process output [Yt, ,yqF
reference input [r\, ,rq]T
tracking error signal [e\, ...eqF
state vector [xl, ... ,x,,]T
process dynamics

estimated process dynamics
initial loop controIler
first loop controller
second loop controller
K\ = KM\ part of K
K z = KMz part of K
AK\ = ilKM\ part of ilK
ilKz = ilKMz part of ilK
interconnection matrix 1
interconnection matrix 2

estimated system!
sensitivity!
model order (n=6 for the gantry crane)
number of samples
power spectral density of d
power spectral density of u
linear state space model matrices
linearized input, state, output
nonlinear state space model functions
nonl inear input, state, output
set of input signals u f U c Rq
real numbers

IIY-Yb I' .. dsup-- non meanty m ex
/lEU 1Y12

position of the troIley
velocity of the trolley
angle of the cable

angle speed of the cable
length of the cable

velocity of the cable
force on the trolley
force on the cable
x-position of the load
y-position of the load
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xref

Yref

~t

Ai
t

A8
~8

AL

Ai
M t

M h

~I

AYI
~Xref

Ayref

~

m,
g
at
ae
a L
A
r
P
Q
R
J
fp

Tp

f.
T.
u(k)
H(jw)
F{.}
Z-I

A,B,C,D,F
1'1
It
~
ZN
V&.,ZN)

~
6
f
g\
hi
G(Z·I)
H(z-I)
G(jw)
H(jw)

x-reference for the load
y-reference for the load
linearized position of the trolley
linearized velocity of the trolley
linearized angle of the cable

linearized angle speed of the cable
linearized length of the cable

linearized velocity of the cable
linearized force on the trolley
linearized force on the cable
linearized x-position of the load
linearized y-position of the load
linearized x-reference for the load
linearized y-reference for the load
mass of the trolley
mass of the load
gravitation acceleration g=9.81 m/s2

linear friction in the trolley
linear friction in the angle
linear friction in the cable
controllability matrix
observability matrix
solution Ricatti equation
weighting matrix states for LQR design
weighting matrix inputs for LQR design
cost function for controller design
(mathematical) pendulum frequency
pendulum time
sample frequency
sample time
input signal at time kT.
transfer function
Fourier transformation on data.
delay operator
Minimum Polynomial polynomial matrices
Identity matrix of size q
parameter vector

estimated parameter vector
input/output data (N samples)
cost function for identification

ith iteration during identification
norm of search direction
search direction
impulse response of the model
impulse response of the disturbance
transfer operator of the model
transfer operator of the disturbance
transfer function of the model
transfer function of the disturbance
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a;rn,ei "')

u(k)white noise

U(k)PRBNS

std(q)

mean(q)

'Y
W
U
Z
Y
Pzw
Pzu
Pyw
Pyu
Hzw
ii
y.
WI
W2

AS
S4
dx
i

a
F
"

Fh

Y
e
LU{*

u*
LTI
SISO
MIMO
LQR
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nth order, based on N data samples Gaw)
uniformly distributed white noise sequence
Pseudo Random Binary Noise Sequence

,....-------
1 N- E (q(k) -mean(q»2
Nt =1

1 N
mean of q = -Eq(k)

N t =1

performance indicator
exogenous input signal vector
actuator input signal vector
regulated output signal vector
measured output signal vector
open loop transfer from W to Z
open loop transfer from U to Z
open loop transfer from W to Y
open loop transfer from U to Y
closed loop transfer from W to Z

estimated transfer for hex)
output in steady state
filter for performance
filter for robustness

perturbation on estimated model of the system S
perturbed system
additional disturbance input on the states x
estimated states
estimated process input vector

estimated forces
estimated output
estimated error
second loop controller without correction K2-

1

output of second loop controller with correction
Linear Time Invariant
Single Input Single Output
Multiple Input Multiple Output
Linear Quadratic Regulater
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Appendix 1. An example of a linearizing state feedback.
See the following example where we are interested in the position x.

(AI.I)

We look at this nonlinear unstable system around a working point Xo = 1 and for a predefined input set
U:= {u= 1 +ampl'd(t) I ample [±1, ±10 ±loo ±lOoo]} where d(t) is the unity impulse.
Using! as state vector we become in state space form:

J(x) = [:2} g(x) = [~} hex) = [x]; ~ = [;]
(At.l)

where f(x), g(x) and h(x) defined by the nonlinear state space model:

i =~) + rex).. (AI.3)
)' = hex)

See that g(x) and h(x) are linear functions. The linearized system IS derived using a Taylor expansion
around Xo = 1 (see section 2.3) taking:

A = [~~] B = [~] C = [1 0]
(AI.4)

r(x) = [~] h(x) = [x]

where A,B and C are defined by the linear state space model:

i=Ax+B..
)' = ex

The system under feedback is given in figure 2.4:
For the system under feedback yields:

[
i ]I.(x) =

• x2
- Crt - crr

(AI.S)

(At.6)

For the linearized system under feedback (using again the Taylor expansion arround Xo = 1) yields:

(At.7)

Because the open system is unstable we apply the first loop static state feedback. This system can be seen as
the initial system. We took c, = 10 and ~ = 10 which results in a stable system. The response from the
system on the input signals is given in figure Al.l.

0.01 r------~----~-----~-----~-----~-------,

120100BO604020

o L __L-_~~ ~--===== ===== ~ ~

o

o.ooa

0.002

0.004

0.006

If we apply a second loop static state feedback with t.c. = 90 and t.~ = 0 the resulting c. = 100 and
~ = 10. Again this results in a stable system. The response on the input signals is given in figure Al.2.
In the second case the behaviour of the system is visual more linear arround Xo = 1. This can be measured
with the nonlinearity index. For each input the index is:
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JC 10-':'
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120100eoeo4020
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o

figwe Al.2 Fcedbock c,=IOO, ",=10, _led impuIsc responses.

Table Al.l nonlinearity index for set U of system in (Al.6).

l.iri~rit?iill·.·¢I~·i()~&i~i9\•••·ld;$.~OQ,Ji¥lg ·.·?I
u= l-I000'd(t) 0.1541 0.0033

u=I-loo'd(t) 0.0293 5.8581e-4

u=l-lO'd(t) 0.0304 4.0494e-5

u=l-l-d(t) 0.0314 3.9326e-4

u=I+I'd(t) 0.0315 3.931Oe-4

u=I+10'd(t) 0.0312 3.9376e-4

u= 1+ loo'd(t) 0.0177 2.7493e-4

u= 1+ 1000·d(t) 1.7043 4.4630e-4

Taking the supremum follows that (XI l. 7043 and (X2 = 0.0033 which means that in the second case the
system behaves more linear for that input set. Note that for all inputs the system with C 1= 10 and c2= 100 is
more linear than the system with c,=10 and c2=10. For ampl E [-100, -10, -1, 1, 10, 100, 1000] the
system with c, = 10 and ~= 100 behaves very linear indicated with the smalI (X in column 3 of table Al.l.
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Appendix 2. Comprehensive derivation of the nonlinear equations.
The main idea for modelling the gantry crane is that we obtain a pole coordinate system moving along with
the trolley (Galilei transfonnation). This causes an always present relative force F, in the opposite direction
in the polar system [Roe87]. We may now calculate the force balans in both the (innert) subsystems apart,
SO for each subsystem must yield:

IJf( =EFj
j

where c. =(or,)') for the cartesian system and c. =(rcos(8),rsin(8» in polar system.

(A2.1)

Fg.......t. .

-8F

cable

1\
load

I1eyex)

..................... . .. . . ~ ..... ....... . .

II

figwe A2.1 Foroea bo1aDoo of tho g8lllJy <:rant.

We see that when the trolley is moving to the right, the angle between cable and the equilibrium position of

the cable becomes negative. We assume that -'h1r < 9 < Ih1r. The forces [;J can be controlled. The

position of the load given by y = ~;] must be controlled in such way that it follows as good as possible a

predefined track ref =~:~. Let us look at:

I. Force balans of the trolley.

I~: '"'" = F, - F~in(-8)

i~: '"'" = F
"

+ F.oos(-8) - F.
(A2.2)

Of course the resulting acceleration of the trolley in the y-direction will be zero ;, = 0 if the crane is
designed properly! The resulting acceleration in the Xl-direction equals x. Further yields: : cos(-8) = cos(9)
and sin(-8) = -sin(9) for -lh1r < 9 < Ih1r. Rewriting (A2.2) gives:

i; '"~' = F, + F~(8) (A2.3)
i~: F. =F

"
+ F.oos(8)
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II. Force balans of the load.
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I L: '"i'L = FWLOOS<-6) + F"un(-6) - F,

Ie: '"I!e ~ -F,OOS<-6) + FWLsin(-6)
(A2.4)

In the polar system we can decompose! in a radial direction ~ and a orthogonal direction e.. In the polar
system yields: ! = Lcos(8)ex + Lsin(8)~ but also! = ~. Now the acceleration! and velocity y of a mass
point at place! are related as:

with the flux defined as:

a = dtl : lim. Aa
dt 6,-0 At

If we take as place vector! = ~ we derive for the velocity:

de dUL 'A ~ " .AA
l!=-=-=U +Li =Li +UJedt dt L L L e

(A2.S)

(A2.6)

(A2.7)

Here we used: i
L

= eee which can be derived in the folowing way. In a timestep ~t the place vector! will

change not only in length but also tum in direction over -~8. But also the axis ~ and e. are turned over the
angle -l!.() in the timestep ~t. Because we take the axis normalized on 1 each timestep, must yield: II ~(t) "
= II ~(t+~t) II = 1 and II ~(t) II = II edt+l!.t) II = 1. The change in ~ equals: "l!.~ II =
112sin(-'hl!.() II = 2sin('hl!.() and also the change in e. equals: II ~e.1I = 112sin(-'hl!.() II = 2sin('hl!.(),

as follows from figure A2.2.

(A2.8)

fig"", A2.2 Change in !he axis vectors.

l!.~ makes an angle of Ih1r+ 'hl!.D with ~. So if l!.~, ~~ has the same direction as e•. In the same way,
~e. makes an angle of 'h1r+ '1z~8 with e•. So if l!.~, l!.e, has opposite direction of ~. Now follows:

di A' IA ' I lA' Ii = -' = lim~ = i lim---i = ,.lim---i A6
L tit 61-0 At ."'-0 At 61-0 A6 At

which was used in (A2.7). Also yields:
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i = lim tol, = -i lim. ltol"lim. t.e • -I '1-6 = -6i
, .11M! tot L4 8-00 toO 4Hl tot L L

For the resulting acceleration of the load we can now derive:

• (l-IA1iL + (L6+2t6)i,

substituting this result in (A2.4) gives:

I L: IIIL(l-L81 = F,.C06(O) - F;DnI..O) - FA

I,: IIIL(L6+2t6) = -F,.sin(O) - Fp»(6)

Expressing the forces with Newton's first law:

F,• • IIII$

Fr = III,!,
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(Al.9)

(Al.I0)

(Al.l1)

(Al.12)

The system can now be described by three important coupled nonlinear differential equations as given in
(A2.13). As proposed in [Sch93] we add three linear friction terms a" cx. and aL' This means that
nonlinearities due to hystereses and saturation are not modeled. Also other nonlinearities are not modeled.
For example, if the mass of the cable can not be ignored, the cable will bow when the trolley moves.
Further this model is derived for a cable that can put a force on the load in positive ~ direction
(downwards) which is not possible in the real case. During simulations this can be overcome by taking
Fh > -mlE·

III, '1, = F, + FA 'sin(O) - II, 'i,

IIIL ·L·ij = -IIIL 'g'sin(O) - IIIL'l,'cos(O) - 2·IIIL ·1.·8 - «,'L'8
IIIL·l - IIIL 'gcos(O) - Ph + IIIL'L '62

- IIIL 'i, 'sin(O) - fl.L·L

We can distinguish the states of the system as ~ = [x, i, 0 6 L LIT.
The position of the load can be expressed using these states with:

x, =x, + lsin(O)
Y, = Lcos(6)

The velocity of the load is given by (only for completeness):

i, = i, + i.sin(O) .. Lilcos(O)

;, = i.cos(6) - L6sin(6)

Using the nonlinear state space model:
.t = Jf.x) + g(x)u
Y =h(x)

we can rewrite (A2.13) in:

F, FA fl.,
i, = - .. -sin(O) - -i,

III, III, III,

11 = -.lsin(O) - _1_(F .. FtPin<O)-fl.,i,>cos(O)-(l! .. ~)e
L III!- ' L IIIL

L FA ...2 1 ilL .
= gcos(O) - - .. Lo - -(F, + F~(e) - 1I,i)sin(6) - -L

IIIL III, IIIL
and again rewrite in:

(Al.13)

(Al.14)

(Al.IS)

(Al.I6)

(Al.I7)
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F, F. GI,
i, = - + -sin(8) - -i,

Ill, Ill, Ill,

A" F, F. til, i Gle A
o • - ....sin(6) - -c:os(8) - -sin(8)c:os(8) + -xca(8) - (2- + -)0

L 1Il!- 1Il!- 1Il!- ' L 11I£

L F. .A2 F, F. 2 til, tIl£1.= goos(8) - - + UJ - -sin(8) - -sin (8) + -x,:dn(8) - -
IIlL Ill, Ill, Ill, 11I£

Now the non linear state space model becomes:
i,

0 0

X, GI, • 1 ...!-sin(8)--x
III '

I,
, Ill, Ill,

e Ii 0 0

[::]x = = g . CI, i CI,. + 1 __I-sin(6)oo1(6)e --SlD(6) + -xca(6) - (2- + -) --cos(8)
L 1Il!- ' L 11I£ 1Il!- 1Il!-

i
i 0 0

i -...!-sin(8) -...!.... -...!-sin2(8)L62 Il, ClL •
gcos(6) + + -i;rln(8) - -L Ill, JIlL Ill,

Ill, JIlL

y = [X,+l&in(8)]
Lcos(8)

The equations hold only when L "F 0, else we divide by zero.

(A2.18)

(A2.19)

(A2.20)
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Appendix 3. Comprehensive derivation of the linearized model.
Define the working point &:

x, = X'o + ax, = ax,
i, = ito + ai, = ai,
6 = 60 + a6 .. a&

6 = eo + a6 .. a6
L = La + aL = 1 + Ii.L

i = La + at = ai
We can substitute this in the nonlinear coupled equations yielding:

In, 'J1f, 2 F, + F. 'sin(J18) - 4, .J1:i,

'",·(Lo + J1Lb18 - -'",'g'sin(J18) - ,"£'J1f,'cos(J18) - 2111£·(Lo+I1L)·J18 - a'(Lo+J1L)'J16

'"£'(Lo+J1L) .. ,"£·g·cos(J1O)-F.-'"£·(Lo+I1L)·J16
2

- '"L'l1i,'sin(118) - 4£'(Lo+I1L)

(AJ.l)

(AJ.2)

Using:
cos(x) = 1 ifx. 0
sin(x) =x

a(c + I1x) = J1:i
iJt

I1x'J1y .. 0
(l1x)2 .. 0

(AJ.3)

(AJ.4)

follows:

where we used:

In, -l1i, = F, + F. ·118 - ", ·J1i,

x '"£ '"£ A'" 'l1u .. -- ·g·J18 - - 'l1i - 4 'J1o
£ 1.0 Lo"

,"£·l1l .. ,"£'g - F. - a£ - 111'11£
Substitude of the first equation in the other gives the final decoupled linear equations:

In, 'J1f, = J1F, + J1F. ·118 - ", '11:i,

A '"L '"£ J1F, IIIL'g a, A
IIIL 'l1o = --'g'118 - _.(- + --·6 - -'I1:i) - "e'J1o

Lo Lo In, In, In,

'"L'J1l = -I1F.-"£'J1i

(AJ.S)

(AJ.6)

F, =F.. + I1F, = I1F,

F. = F.. + J1F. = ,"£'g + I1F.
(AJ.7)

(AJ.8)

(AJ.9)

0

0

0
(AJ.I0)

0

1

11I£
o

In,

o
B = __1_

'",'Lo

o

ooo

0 -~
IIIL 'g

0 0 0
In, In,

0 0 0 1 0 0

A = ~ g InL ". 00 --(1+-) -- 0
'",'Lo 1.0 In, '"£

0 0 0 0 0 1

If we use the state space notation, then must yield:

:i = A'x + B·u
Y = C'X

where A,B,C are matrices and x,y and u vectors. In the situation of the gantry crane we have:

x .. (l1x, J1:i, J18 116 I1L 11£)T II" (I1F, I1F.>T

where x is the deviation from the linearization point. Now we can calculate A and B:

01 0000 00

1

o o-~
'"L

In the same way we calculate C. Define the linearization point of the load as:
which results in:
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x, = %", + Ax" x", =0; - xl =Ax,

'1, = '1", + l:.'1P '1", = 1; - '11 = '1z" + A'1,

A%, = A%, + (1.0 + AL) -sin(A6)
'1z" + l:.'1, = (1.0 + l:.L) -cos(A6)

Neglecting the second order terms and knowing that ~ = Ylo:
Ax, = IU, + 1.0-6
A'1, =AL

Now follows C from the definition of the state space model.

C=[10 Lo OOO]
000010

(AJ.ll)

(AJ.12)

(AJ.13)

(AJ.14)
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Appendix 4. Zero dynamics of the gantry crane.
For the output must yields:

X, = X, + 1.&in(6} • 0
'11 = Lcos(6) = 1

Now follows:

-X
sin(6) = -'

L
1

cos(6) = 
L

which yields:

sin2(6) + cos2(6) = 1
2

~ +...!..-1
L2 L2

L = 11 +x; 0/1 plrysiclll grolUld L >0

We also know that the derivative of the output is zero:

X, = i, + im(6) + L6cos(6) = 0

Y, = i.cos(6) - L6sm(6) = 0

. ix, A
X--+O=O

• L

f = -aX
L '

After doing some mathematical work follows:
-X

sin(6) - --'

11+x:

1cos(6} =--

II +x.
2

L = 11+x:

6 = _lx-,-ri_.
2

_-(---:1+_x_~--,-.
(l+x~

"( ~.2L = -'X._X.:....'+_x,_+x_'

(1 +x,13{l

where:
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(A4.1)

(A4.2)

(A4.3)

(A4.4)

(A4.S)

(A4.6)

(A4.7)

(A4.8)
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Substitution of the derived equations (A4.7) in (A4.8) gives:

(A4.9)

(A4.10)

rewriting to:

X~, II,+-----
b+x? IrlL

and to:

a.~,
x =--

I m
L

g U,
=----+

Jl+x? IrlL

(A4.1l)

(A4.12)

From the second equation in (A4.12) follows that x must behave like the solution of a first order differential
problem with a stable pole in the LHP.
The inputs are given by:

(AJ.13)

(A4.14)

and around the equilibrium point:

(AJ.lS)

(A4.16)
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Now follows that lim U,it) = 0 since lim X(t) = O. Therefore the zero dynamics are said to be stable. This
1-- I--

can be compared with zeros in the RHP in linear system theory. For linear systems this implies that the
system is strongly stabilizable. We expect that this also yields for nonlinear systems, and hence we may use
the two-loop scheme for the gantry crane.
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Aooendix 5. Controllability of the gantry crane.
For controllability must yield:

ranlc (fgl,g2JgIJ).[g2Jj,[[g1J)J),[[g2JJJl) = 11

where the nonlinear vectors are given by:

o 0

1 J..sin(6)
nI. nI.

lWG-LOOP STATE fEEDBACK fOR THE MIMO GANTRY CRANE.

(AS.I)

o
I. = __1_cos(6)

nI,L

o
-..!..sin(6)

'",

o
11 = __1-sin(6)cos(6)

'",1.
o

-...!... -..!..sin2(6)
'"L m.

(AS.2)

0 0 0 0 0 0

0
_ CI.

0 0 0 0 1
m. m.

0 0 0 1 0 0 0
CI

- .lcos(6)-~i,.m(6) t CI, ...l.. CI. 2L· 2· 10 -'cos(6) -(2-+-) sin(6)---i cos(6)+-6 --6 --casCO)
111,1. L m,L L mL L1 nI,L2 • L1 L 1tI,L

0 0 0 0 0 0

CI CI
2Le e2 _ Cl L -..!..sin(6)0 ---!sin(6) -gsin(6)+---!i,cos(6) (AS.3)

III. 1tI. mL
1tI.

i.
o 0 0 0 0 0

CI.
o 0 0 0 0 0 --i.

1tI.
o 0 0 0 0 0

9
_ 0 0 _l_sin(O) 0 _1_cos(6) 0

• l. CI. i CI,111,1. ltIp - sin(6)+-i,eos(6)-(2-+-)

o 0 0 0 o 0
L 1tI,L L ltIL

1 i
o 0 --cos(6) 0 0 0

nI. lcos(6) +L62 + CI'i "m(6) _ CIL i
'", ltIL

m.

[g1J) =

-~
2

III.

__1_cos(6)

"',1.
II. 1 t CI, 2 .

-cos(6)+-(2-+-)cos(6)+-Osin(6
",:L 111,1. L niL "',1.

-..!..sin(6)
III.

CI, 2A... ClL-sin(6)--ocos(6)+--sin(6)m: '", "'I"L

o
o
o

__1-9sin(O)+....!:.-cas(6)
1tI,L ltIP

o
-..!..6cos(6)

nIt

(AS.4)
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I

"',
-~

2"',
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[glJl =

-~6)
"',L

Ot, 1 i Ot, I .
-cos(6)+-(-+-)colI(6)+-6sin(6
..:L "',L L "'L ",L

-...!..sin(6)
"',

III, • ( 1 6.--'6) IIIL • (6-SID 6)--"",",\ +--SID )

"': "', "'".L

(AS.5)

iJf og2
£g1Jl = -g1~) - -j(x) =ax ax
a I a 0 a 0 0

a -~ a a 0 0 ...!..sin(8)
"', PIl,

0 a a I 0 0 0

a ~c:o&(6) -{cos(6)-~i,M(6) i Ot, ..l.... Ot, 2i.. 2· • __I-sin(6)cos(6)-(2-+-) u(O)---i cos(8)+-6 --6
"',L L "',L L PIlL L 1 PIl,L1 ' L 1 L "',L

a a a 0 0 I 0

Ot Ot UO 02
" L _....!... -...!..sln2(6)a ---!sin(6) -gsin(6) +---!i,cos(6)

PIl, 1ft, PIlL "'L PIl,
(AS.6)

a 0 0 a a a i,

o 0 ...!..c:o&(6) a 0 a
Ot, .

--x
PIl '"', ,

a a a 0 0 0 0

- 0 a -~O) a _1_!sln(26) 0 g Ot, i "•.
PIl,L PIl,L12

--sin(6)+-i,cos(8)-(2-+-)
L m,L L PIlL

a a 0 0 0 a i
a a -...!..u(20) 0 0 a gcos(6)+L81+ Ot'.i~(6)_ IIILi"', "', PIlL

..!..sin(8)
PIl,

__I_!u(28)
PIl,L2

I (i CIt, Ot,) I . 2, I I. 2-- 2-+-+- -SlIl(26)+- -+-SlIl (6)
"',L L 1IIL m, 2 L "'L 111,

{
....!...+...!..sin1(8»)
1IIL m,

Ot, . 2(6) 6 . (28 CltL( 1 I. 1(6»)-SIn --SIn )+- -+-SlIl
"': PIl, PIlL IftL m,

o

.l.6cos(8)
PIl,

o
- e ) il. 0)--c0s(20 +---sm(2

PIl,L 1IIp2

o

--.!sin(26)
"',

(AS.')
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.!.IiD(O)
lit,

(AS,8)

1

"'.0 0 0 0
-~

0 0 0 0 2"'.
o -~O)

"',£
2" •--" #L II 1I)cos< 1L _+--!+....!. 0)+-tlsin(0)

"',£ L "'L Ill. "',£
1

-.!.sin(0)
lit.

o
, rr, U"
.Jl...sin(O)---i~O)+-"
L2 1It,£2 ' L1

o

o

-~8)-~.t,.m<0)
L "',£

o

-gain(8)+~.t,cas(0)
"'.

0

0 -~
lit,

0 0

0 ~O)
1It'£

0 0

0 ~sin(O)
lit,

o 0

o 0

o 0

o
o

_1_1iD(0)
-,£

o
o
o

o
o

~B)
1It'£'

o
o

o
(AS,9)

o 0 ---.!.J!+~+!!\.;"(B)+~O) _1_1iD(0) __I_(2L+ ae+ a·l...tO) __I_Oain(O) ~O).
IItRL IItL lIt,r 1It'£ 1It'£ ",p L IItL -.r ",p ",p

o 0

o 0

o o

o

o

o

x.
a •.--x
'" '•
6

-.!sin(B) '~i,cas(B)-(2!+~)
L "',£ L "'L

t

galIi(O)'~'~i,sin(O)- aLL

"'. "'L
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,
a,,
III,

0 0 0 0 0

0 -~ 0 0 0 0..
0 0 0 I 0 0

0 ~8) -.l...-(9)-.!!...yu.(8) l -, .L -, 2i.~ 2~-(2-+-) oiD(8) --1"""'9)+- --
"'!- L "'!- L lilt L' "'!-' L' L

0 0 0 0 0

0 ~siIl(9) -,.m(9)+~ipoo(8) 1L8 if _ "'t
"', II, lilt

.!aiD(8)
"',
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(AS. to)

o 0

00

o 0

o 0

o 0

o 0

o 0

o

1..00.<8)..
_.!(~)-6oin(8»)-, -,

-...!,-,(28)
"'!-

I(l "'t "',L.. I(I 2)
;;i:tl:+"'t+-;;r-)-i. ;;+"'t

-.!siD(28)..,

o

o

-.!ca.(8)
Ill,

o

o

1,

-~i"', ,

I. . "', l "'t- 1liD(8)+-ipoo(9)-(2-+-)
L 1Il!- L lilt

l

fO<lII(9)+I1f +~i,...(e)- "'tl
1ft, -L

o

o

o

o

o

o
o

o

o

o

(AS.H)
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Now we have to check that the rank of the repeated Lee-bracket is 6, for example for:
x, € [-1,1]
x, € [-1,1]

e € [-o.s,o.S]
6 € [-O.S,O.S]

L € [0.1,2]
1. € [-1,1]

This is checked for some points.

(AS.U)

(AS.13)
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Appendix 6. Implementation nonlinear model in simulink.

67

figure A6. I Total system with sensor and actuator noise and motor nonline.<tries.
yref

Kfactor 14----1 Mux

u=K1x + K2e

6

figure A6.2 Block: K = static state controller.

"-'

2

th...

3

L yl

figure A6.3 Block: h(x) = tmnsfonllnli,1O from statcs:,to output y. figure A6.4 Block: motor = motor nonlinearities.
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Ft

Fh

theta

thetadot

ath/mL

1-t-t--------1sin(ull+-----I--l

Ldot

figure A6.5 Block: f(x)+g(x)u = nonlinear dynamics.

Saturation

figure A6.6 Block: INT... = integration part with saturation.

theta
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