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Abstract 

The determination of optica! properties: probability for absorption (J..L8) and 

scattering (J..LJ and the anisotropy after scattering (g) of turbid media, with the 

use of integrating spheres, has been investigated. This is done by Monte Carlo 

simulations and integrating sphere measurements. One optica! property was also 

determined with a time resolved technique. Both measurement techniques are compared 

with each other and with theoretica! derived optica! properties. (Mie theory) This 

all was done to understand a thickness dependenee of two optica! properties found by 

others. All the optica! theories used are described: Mie theory, Radiative transfer, 

Monte Carlo simulations, Adding Doubling and time dependent diffusion theory. 

Furthermore a description of the measurement technique: Integrating spheres, is 

given. 

From simulations it followed that the light distribution coming from a sample 

is not equally distributed over all angles (non-Lambertian) and that losses appear 

within the integrating spheres to the sides of the sample, which is placed against, 

or in between, integrating spheres. The measurements were done with to phantoms: 

polystyrene and Intralipid® of different concentrations and different sample 

thicknesses. The polystyrene measurements were in agreement with Mie theory, for 

both measurement techniques. The Intralipid measurements agreed within the both 

measurement techniques and was found to be: J..L
80 

= 40 ± 4 cm-1 %-1, g = 0.66 ± 0.02 

at 633 nm and J.l80 = 23 ± 2 cm-1 %·1, g = 0.52 ± 0.03 at 780 nm, for the integrating 

sphere measurement. 

From measurements and simulations it followed that it is not possible to 

measure low absorption coefficients within integrating spheres, because the 

absorption coefficient determined is largely caused by losses within the integrating 

spheres. For these losses can not be accounted for, because they depend on the 

optica! properties themselves. 
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Table 1: List of the most used symbols. 

Veetors are printed bold, unity veetors are printed with a A-sign above. Subscripts 

are used to distinguish between the different media, superscripts are used to 

distinguish between old and new parameters. 

Symbol: 

Genera!: 

A. 
121 

d 
t 

c 
A s 
A n 
e. <I> 

d~, sine de d<j> 

Optica! properties: 

g, a, 't 

Jl; = Jls (1-g) 

p(~.~·) 
n 

A L(r,s,t) 

<j>(r ,t) 

F(r,t) 

r(Ç,t) 

Description: 

Wavelength. [m] 
I>iameter. [m] 
Thickness of the turbid medium. [m] 
Time. [s] 

Speed of light in a medium. [m s-1] 

Unity vector in the direction of propagation. 

Normal vector. [-] 
Angles with the cartesian z- and x-axis. [rad] 

Solid integration angle. [sr] 

Cross sections for scattering, absorption, total 

attenuation and removed momentum. [m2] 
Scattering, absorption and total attenuation 

coefficient. [m-1] p 

[sr1] 

Anisotropic factor, albedo and optica! thickness. [-] 

The effective scattering coefficient. [m-1] 

(Single scattering) phase function. [srl] 
Index of refraction. [-] 

Radiance. [W m-2 sr1] 

(Radiant energy) fluence rate. [W m-2] 

Net flux. [W m-2 sr1] 

Output flux. [W m-2 s-1] 
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Monte Carlo 

P( ) 

~ 
R 
r = (x,y,z) 
(u,v,w) 
l 
w 

Integrating sphere 

s, 8, h 
A 
a 
~ 
P, pd 

m 

Rd, Td 

K 

Probability function. [?-I] 

Random number uniform distributed between 0 and 1. [-] 
Reflection coefficient. [-] 
Spatial coordinates. [m] 
Direction of propagation. [-] 
Step size. [m] 
Propagation weight. [J] 

Area sample port, detector port and holes. [cm] 
Total inner sphere area (inclusive all ports). [cm] 
Rel a ti ve inner sphere area ( exclusi ve all ports). [-] 
Efficiency of detection. [-] 
Incident and detected power. [W] 
Coefficient of reflection of the sphere wall. [-] 
Diffuse reflection and transmission factors of the 
sample with diffuse incident light. [-] 
Collimated reflection and transmission factors of the 
sample with diffuse incident light. [-] 
Collimated reflection and transmission factors of the 
sample with collimated incident light. [-] 
Efficiency of the detector [V] or [A] depending on the 
detector used. 
Sphere constants. [V] or [A] respectively [-] 
(B1 has the same dimension as K.) 
Detected power. [V] 

Radius sample port. [m] 

V 



1. Introduetion 

Lasers are widely used m medicine. Many different lasers are used for different 

applications based on the various laser-tissue interactions. For instanee the 

treatment of port wine stains 1271 is based on the selective absorption of laser 

light by blood which causes irreversible damage to the blood vessels. To optimize 

this therapy one has to choose the laser wavelength, spot size, power and pulse 

duration. This has to be done in such a way that only the target vessel is damaged 

and the rest of the skin remains intact. For this therapy (and many others) the 

light distribution within the tissue has to be known. This distribution depends on 

the optica! properties of the tissue. 

The optica! properties can be measured in various ways. Here optica! properties 

are are experimentally investigated with integrating spheres and time resolved 

measurements. For both measurements the same concentrations of polystyrene and 

Intralipid® are used. The measurements are done in order to understand a thickness

dependence of the optica! properties found by others 121 !281, and are compared with 

Monte Carlo simulations and Mie theory. 

With the integrating spheres the optica! properties are derived in an indirect 

way. The diffuse reflected and transmitted light intensities, of a thin sample, are 

measured. The relation, between power detected within an integrating sphere and 

reflection and transmission coefficients of a sample, is derived by signa! flow 

graphs and Mason's rule [151 (chapter 3). An Inverse Adding Doubling algorithm, is 

used to reconstruct the optica! properties from the integrating sphere measurement. 

Time dependent diffusion theory is used to calculate the optica! properties 

from the time resolved measurement. 

Monte Carlo simulations, Adding Doubling and time dependent diffusion theory 

are implementations of radiative transfer theory. This theory describes light 

pro pa gation through turbid media by a conservation law. Mie theory describes light 

scattering by one spherical particle, with the use of Maxwell equations. 

Finally a discussion of the methods used will be given (chapter 6) and some 

concluding remarks (chapter 7) on the measurement of optica! properties with the use 

of integrating spheres will end this report. 
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2. Light transport 

2.1 Introduetion 

Tissue opties 1s determined by the optie al properties of tissue ( absorption, 

scattering and angular distribution after scattering). It can be described by the 

Maxwell equations [111. Solutions of the Maxwell equations are only known in simple 

geometries. A simple geometry for scattering is one sphere in a homogeneous medium, 

with a different index of refraction. This geometry was described by Gustav Mie 

(section 2.2). 

In tissue, however, the propagation of light is characterized by multiple 

reflections and multiple refractions of light. This is caused by differences in 

index of refraction on the scale of the wavelength. So instead of solving the 

Maxwell equations for such a complex (random) medium, radiative transfer can be used 

to describe the propagation of light through tissue (section 2.4). This theory is 

based on bulk optical properties of tissue (section 2.3) and neglects the wave-like 

phenomena of light. 

There are several methods and approximations to deal with the equation of 

radiative transfer. We used Monte Carlo simulations, Adding Doubling and time 

dependant diffusion theory. Monte Carlo simulations (section 2.5) are commonly used 

to visualize light energy distributions within tissue. Monte Carlo simulations are 

able to deal with complex geometries, but they are very time-consuming. In case of a 

plane parallel structure Adding Doubling (section 2.6) can be used for solving the 

transport equation. Adding Doubling calculates an angular distribution of the 

reflected and transmitted light of a slab of given thickness. Due to the geometry 

used, results are achieved independent of the spatial coordinates. Adding Doubling 

is relatively fast and any desired accuracy can be achieved. This makes it very 

useful for inverse procedures, where the optica! properties need to be solved from 

e.g. transmission and reflection data. Time dependent diffusion theory (section 2.7) 

is used to derive optica! properties from time resolved measurements. Diffusion 

theory is an approximation of radiative transfer theory. The angular distri bution of 

the light radiance is developed as a multipele and only its frrst two moments are 

considered. In this way, the radiative transfer equation goes over into the 

diffusion equation which can be solved analytically. This means that solutions can 

be calculated in a very fast way. In view of the approximations used, the 

application of diffusion theory thereby remains to be seen. 
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2.2 Mie theory 

The description of the scattering of a plane electromagnetic wave by a spherical 

partiele that was given by Mie 1131 is exact, since it is the solution of Maxwell's 

equations in a spherical geometry. It gives the cross sections for scattering 0'8, 

extinction 0'1 and momenturn removed apr• for a given partiele diameter tf, wavelength 

À and relative index of refraction n. The wavelength is the wavelength of the light 

in the surrounding medium. The relative index of refraction is the index of 

refraction of the sphere divided by the index of refraction of the surrounding 

medium. The cross sections are defmed in the following way: 

Assume a plane wave, with intensity l0 [W m-2], incident on a particle, the total 

rate of energy removed from this beam to be E [W]. The extinction cross section, 0'1 

[m2] is defmed as: 

E 
0' =

I I 
0 

(2.1) 

Energy can be removed from this beam by scattering and absorption. The total rate of 

energy scattered divided by the original intensity gives the scattering cross 

section ( aJ. The total ra te of energy absorbed divided by the intensity gives the 

absorption cross section ( 0'8). From energy conservation it follows that: 

(2.2) 

The incoming beam transfers momenturn to the particle: E/c = 0'1 IJc. The scattered 

light emitted by the partiele transfers momenturn in the forward direction: 0'8 10 

cos8/c. In this way a net pressure cross section (apr) can be defmed which equals: 

Where (the anisotropic factor) g = cos8 is the average eosine of the scattering 

angle for a single scattering event. 
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2.3 Optical properties 

By descrihing light transport through tissue with radiative transfer theory, a few 

assumptions are made. Light is described as a flow of particles, which either 

scatter elastically or are absorbed by the tissue. This means that phenomena which 

deal with the wave-like behavior of light (such as interference) are not considered. 

The optical properties are assumed to be independent of time. (Tissue is 

characterized by one "average" set of optical properties.) The set of optica! 

properties used are the scattering coefficient lls [cm-1], the absorption coefficient 

J.la [cm-1], and the angular distribution of the light after being scattered. They are 

defmed below. 

If light is travelling in direction ~ over an infmitesimally small distance d~. the 

probability that light is being scattered equals Jl8 d~ and the probability that 

light is being absorbed equals lla d~. The total attenuation coefficient is the sum 

of the absorption and scattering coefficients: 

(2.4) 

These bulk optical properties relate to the cross sections given m section 2.2 m 

the following way. lf the scattering (and/or absorbing) particles are sufficiently 

far away from each other, the scattering events are considered independent 1• In 

such a case the scattering (absorption) coefficient equals the scattering 

(absorption) cross section times the concentration of particles p [m-3] 

(2.5) 

(2.6) 

The phase function p(t~') [sri] gtves the probability of light, originally 

traveling in direction ~·, is being scattered in direction ~. The phase function is 

often rotational symmetrie around the original direction. Thus it can be written as 

a function of the angle a, or even the eosine of a, between the original direction 

and the fmal direction of propagation: ~·~· = cosa. Very often the phase function 

is written as a sum of Legendre polynomials (P0 (cosa)). 

1 Van de Hulst [liJ considered a distance between the particles of three times the 
radius sufficient. 
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-------------------------------. 

00 

2 n + 1 
p(cos8) = L gn 

2 
Pn(cos8) (2.7) 

n=O 

2 n + 1 
Where gn is a constant called "the moment of order n". The factor is used 

2 
for normalization: 

+1 

f 
2 Önm 

Pn(cos8) P m(cos8) d(cos8) = ---
2 n + 1 

-1 

(2.8) 

Defmed as above (as a probability function) its zero order moment equals 1: 

(Because a probability function is normalized) 

+1 00 +1 

J p( cos8) d( cos8)= 1 = L J 
-1 n=O -1 

2 n + 1 
gn --

2
- Pn(cos8) d(cos8) = g0 

In which P 0 ( cos8) = 1 and equation (2.8) are used. 

(2.9) 

The first order moment of the phase function is called the anisotropy g: (See also 

sec ti on 2.2.) 

+1 

g = J P1(cos8) p(cos8) d(cos8) = g1 = cos8 

-1 

(2.10) 

The anisotropy 1s a measure of the fraction of light scattered in the forward 

direction. (g = -1 ~ the direction of propagation is tumed around, g = 1 ~ the 

direction of propagation is left unchanged.) 

Usually the Henyey Greenstem phase function (Pao) is used: 

1 - g2 
Pao.(cos8) = ---------

2 (1 - 2 g cos8 + g2rf2 

(2.11) 

which is easily mathematically manipulated because all the moments are known: the 

nth moment equals gn (= the n-th power of g). 
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2.4 Radiative transfer 

The equation of radiative transfer describes the change of radiance L(r,~,t) [W m-2 
sri]. 

At a point r of a surface, in a given direction ~. at time t, the radiance is 

defmed as the radiant intensity of an element of the surface, divided by the area 

of the orthogonal projection of this element on a plane perpendicular to the given 

direction. !251 Figure 2.1 illustrates the defmition of the radiance. (From Star et 
al. !251) 

d~ 
A' 

Figure 2.1 At a point r of a 

surface, in a given direction 

~. at time t, the radiance is 

defined as the radiant 

intensity of an element of the 

surface A, divided by the 

orthogonal projection of this 

element on a plane perpendicu

lar to the given direction A. 

The change of radiance is a sum of losses ( due to scattering and absorption) and 

gains (due to scattering from all other directions into direction ~). This change of 

radiance is given by the equation of radiative transfer 171 (or the linearized 

Boltzmann partiele transport equation): 

" " 1 dL(r,s,t) 1 aL(r,s,t) " " 
--- =- + s·VL(r,s,t) = 

c dt c at 

-J.~.t L(r,s,t) + Jl8 L(r,s' ,t) p(s·s') ds' " I " "" " (2.12) 
47t 

Wh ere 

c = the velocity of light in the medium [m s-I]. 

The important feature of this equation is the second term on the right hand side, 

which is the contribution of light scattered from all other directions into 
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direction ~- So, to calculate the radiance at a point at a time m direction ~. the 

radiance at that point at that time in all other directions bas to be known. 

L(r,s,t) 

1-lt L(r,s,t) 

c dt .. 
L(r,s,t) + dL(r,s,t) 

J.ts L(r, s' ,t) p( s. s') cts' 

7 

Figure 2.2 Scattering and 

absorption that are consi

dered in the equation of 

radiative transfer. 



2.5 Monte Carlo simulations 

Monte Carlo methods simulate the propagation of photons through a tissue. This is 

done by tracing independent pboton paths. These pboton paths are determined by 

several laws of pboton propagation. Such a law gives the distribution of a physical 

quantity (for instanee the distance between two scattering events = the step size). 

To simulate pboton paths, these laws have to be converted into sampling 

functions. Such a function has a random number Ç (e (0,1) ) as input and a physical 

(statistica!) parameter as output. 

The conversion, from a physical law to a sampling function, is considered frrst 

(in section 2.5.1) and foliowed by the different laws of pboton propagation with the 

derived sampling functions (section 2.5.2). Finally (in section 2.5.3) a general 

set-up for a Monte Carlo simulation program is given. 

2.5.1 Sampling functions 

A sampling function has a random number (Ç e (0,1) generated by a random number 

generator) as input and a physical property as output. The physical property is 

described by a probability function. For instanee Beer's law, that gives the 

probability (P8(z) dz) for a photon propagating in the positive z-direction, to have 

an interaction (either scattered or absorbed) between z and z + dz, can be converted 

into a probability function: 

(2.13) 

The factor (!la + J.L8) in front is used to make it a normalized probability function: 

(IC) 

J P8(z) dz = 1 (2.14) 

z=O 
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1 

t r ~x')dx' 
0 a 

1 

t ~x) 
PRND(l;) = 1 t 

0 1 b 

.... .... 
l; x 

Figure 2.3. Illustration of the construction of a sampling function. Equal 

surfaces are equally marked. Upper: probability density functions; lower: 

probability functions; left: a uniform distribution; right: a law of photon 

propagation. (From Jacques !141) 

The probability for an interaction between z = 0 and z = I (I = the step size) Is 

given by: 

1 L P8(z') dz' = I - exp [- ( J.l. + J.l.) z ] (2.15) 

and is called the probability density function. This probability density function is 

in all cases a non-deseending function from 0 to 1. 

The second probability function used is PRN0 (Ç) = 1 with the probability 

density function: 

ç 
J PRNo(Ç') dÇ' = Ç 

Ç=O 
(2.16) 
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This is the uniform probability function generated by the Random Number Generator of 

the computer. Both probability density functions (2.15) and (2.16) have the same 

distribution between 0 and 1, thus the step size l can be calculated: 

(2.17) 

The general procedure is given in figure 2.3, m which the different probability and 

probability density functions are plotted. 

2.5.2 Laws of propagation and sampling functions 

Beer's law 

This has been given in section 2.5.2. 

Proportional distributions 

A proportional distribution implies, a probability function which is either 1 or 0. 

The output of a sampling function is one out of two possibilities. 

For instance, after determination of the step-size, the probability for a photon to 

be scattered equals: 

(2.18) 

This fraction is called the albedo (a). The probability that a photon is absorbed 

equals 1 - a. If a random number (S not correlated with s in equation 2.17) is 

smaller than the albedo, the photon is scattered, otherwise the photon is absorbed. 

A similar distribution is used at boundaries. At a boundary between two layers, with 

different indices of refraction, the laws of Fresnel 1111 are used to determine the 

probability that a photon is being reflected: 

(2.19) 

where 9i lS the angle of incidence relative to the normal, ni is the index of 

10 



refraction of the incident medium and e, and ~ are the symbols for the transmitted 

medium. If a random number is smaller than R(Si, SJ, then the photon is reflected, 

otherwise it is transmitted. The eosine notation is used, because the direction of 

propagation during a simulation, is characterized by the cosines with the Cartesian 
axes. (See tigure 2.4) 

x 

u 

y 

z 

.. .. , .. , 
9 , 

New direction 
of propagation. 

Old direction 
of propagation 

Figure 2.4. Monte Carlo coordinate system. (Adapted from Prah/1231) 

a: The Cartesian coordinate system, specification of photon' s direction. 

b: How e and cj> are specified when a photon is scattered. 

The phase function: 

The phase function gives the probability for a photon, after scattering, to he 

scattered within the solid angle dcj> sin e d9, with the incident direction. The 

Henyey Greenstem phase function is used. (See equation (2.11), which is already 
integrated over the azimuth angle.) 

1 1 - g2 
PH.o ( cj>.9) dcj> sin 9 d9 = - dcj> sin 9 d9 

. 4 1t ( ) 1 + g2 - 2 g cos e 3n. 
(2.20) 

Other phase-functions can also he used, but the Henyey Greenstem phase function is 

used because it is easily mathematically manipulated. Like all probability functions 
it is normalized 

11 



21t 1t 

I dep I PH.a.(ep,e) sine de = 1 

0 0 

and as with all phase functions the anisotropic factor g is defmed as: 

21t 1t 

g = I dep I PH.0 .(ep,e) cose sine de 

0 0 

(2.21) 

(2.22) 

The scattering is assumed independent of the azimuth angle ep, this means that the 

sampling of the angles can be performed independent of each other. The resulting 

sampling functions are2: 

ep=21tÇ 

cos e = -
1- {I + g2 -

2 g 

1 - g2 

[ ] 
2} 

(2.23) 

(2.24) 

Equation (2.23) can be found by use of the procedure described in sectien 2.5.1 and 

is a solution of: 

co se 

I (2.25) 

0 

The direction of propagation is given by (u, v, w) in which each element represents 

the eosine of the angle with one of the axis. The new direction of propagation 

( unew' ynew' wnew) will be 3: 

2 lf the scattering is isotropic, (which means g = 0) then equation 2.23 cannot be 
used. But in such a case the scattering is also independent of e so: 

cos e = 1 - 2 ç 
3 When w is close to 1 these equations loose accuracy. In that case the following 
equations should be used: 

unew = sine cosep 

vnew = sine sinep 

wnew = cose 

12 



unew = sine (u W coscp - V sincp) + U cose 

~ 1 - wi 

vnew = sine (V W coscp + U sincp) + V cose 

JI - w2' 

wnew = - sine coscj> ~ 1 - w2 + w cose 

Figure 2.4 shows the construction of the new direction. 

2.5.3 The program 

(2.26) 

(2.27) 

(2.28) 

A photon is characterized by its position (x, y, z) and its direction (u, v, w). The 

position is in Cartesian coordinates and the direction is given by the cosines with 

the Cartesian axes. This is done for an easy calculation of new position of a photon 

after calculating the step size (1): 

new [ x =x+u; new l y =y+v; znew = z + w l; (2.29) 

So all the laws of photon propagation should be given within these parameters: 

(x, y, z) and (u, v, w). 

Snell's law: 

One law not yet gtven 1s Snell's law which deals with the direction m which a 

photon is transmitted at boundaries. 

(2.30) 

This equation can be rewritten m the desired parameters. With the use of some 

goniometry this equation becomes: 

(2.31) 

So if a photon is transmitted into the next medium, then cose 1s calculated and a 

13 



new direction is calculated taking into account the normalization of the direction: 

u2 + y2 + w2 = 1 (2.32) 

If a photon is transmitted into the next medium the step size has also to be 

adapted. Assume that tll is the remaining step size after the photon has reached the 

border. The new remaining step size (after crossing the border) will be: 

(2.33) 

where equation (2.17) has been used. 

Weighting: 

An additional parameter, the weight W [J], is given to a photon. This is done to 

obtain more information out of one simulation. The weight represents an amount of 

energy. The weight is reduced whenever the program is confronted with a proportional 

distribution (e.g. a scattering or absorption event) in which case the weight is 

split. The original weight is one (W = 1). 

Splitting: 

The weight 1s split after one step, one fraction of the weight is absorbed, 

(absorbed = W (1 - a)) and the other fraction becomes the new weight (W ~ a W). The 

absorbed part can be registered to give a energy distribution. 

The weight is also split if a photon reaches the frrst or last boundary. One 

part is reflected and reenters the sample (= R W). The other part is transmitted and 

registered (W (1 - R)). 

Survival roulette: 

lf the weight is smaller than a critica/ weight, then it has to be terminated, 

because small weights reveal little information. This is done in such a way that the 

Law of energy conservalion is not violated. A technique called "roulette" is used in 

which a photon is given a change of 1 over N to survive the roulette. lf the photon 

survives (Ç < 1/N), then its weight is multiplied by a factor of N. lf the photon 

dies, then a new photon can be launched. 

14 



Flow chart: 

A flow chart of a program is given in figure 2.5. The formulas gtven m the 

foregoing paragraphs are indicated in this flow graph. For the registration of the 

reflected and transmitted photons various techniques are used (See section 4.3). 
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(2.33) 

Figure 2.5. Flow chart of a 

Monte Carlo program. The 

path most used is printed 

in bold. In this flow chart 

the formulas used are 

printed between brackets. 

Update 
Reflection 

or 
Transmission 

Move Photon 
back into layer 

Move Photon to ~--n_o _ __, 
adjacent layer 

addapt stepsize 
and direction 

of propagation 

(2.30) 
(2.31) 
(2.32) 

yes 

Variabie Stepsize Monte Carlo 
with Weighting 

lnitialize Photon 

(2.17) G . 
enererate steps1ze 
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Change 
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2.6 Adding Doubling 

One of the methods to solve the radiative transfer equation, is the Adding Doubling 

method. The method is based on the fact that once the transmission and reflection 

for a thin slab are known, the reflection and transmission for a slab of arbitrary 

thickness may be found by repeatedly doubling the thickness of the thin slab until 

the thickness desired is reached (This has been called the "interaction principle" 

[301). 

The advantages of the Adding Doubling method are: it is fast and accurate, one 

can implement any phase function desired, Presnel boundary conditions can be 

implemented and inhomogeneons layer properties can be added. 

The Adding Doubling method is a salution of the radiative transfer equation in case 

of steady state and a slab geometry in which the optica! properties are either 

constant or a function of depth (z) only. Only the azimuthally averaged intensity 

(i(z) in [W]) is considered: 

IX! IX! 27t 

i(z, cos9) = J dx J dy J d<l> L(x,y,z,<j>,cos9) 

-oo -oo 0 

This averaged intensity is made discrete for various angles. 

i(z) = 

i(z, ±cos91) 

i(z, ±cos92) 

(2.34) 

(2.35) 

The number of angles is always even; when only two angles are used the method is 

called the Delta Eddington method. The number of angles is referred to as the number 

of fluxes used. 

The azimuthally averaged radiative transfer equation satisfies l301: 

I 
ai 

cos9 - + llt i = J.L8 J P(cos9, cos9') i(z, cos9') dcos9' 
az 

-I 

where P(cos9, cos9') is the azimuthally averaged phase function. 
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Due to the discretization, the inlegration can he replaced hy a summation. The 

equation can he split into two equations hy separating all the positive and all the 

negative fluxes. Finally all the equations can he integrated over a small distance 

L\'t (With an appropriate integration formula) and the reflected and transmitted 

intensities for a sample of thickness L\'t are ohtained, where 't is the optica! 

thickness: 

(2.37) 

where d [cm] is the physical thickness. 

The reflected and transmitted intensities, of a sample of thickness 't can he found 

hy douhling the thickness until the (optica!) thickness desired is achieved. If 

needed two glass slides can he added, using the Law' s of PresneL The total 

intensity reflected can he found hy integrating over the contrihutions of all 

angles. 
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2. 7 Time of flight measurements 

Time of fligbt measurements are mainly performed to investigate the possibilities 

for imaging applications. The general idea is that the time of flight of a pboton 

througb tissue tells sarnething about the distance travelled by the pboton (= the 

optica! path). The intensity, after a certain time of fligbt, reveals information 

about the interaction of the pbotons with the tissue, over that distance. 

The time resolved measurements described in this report are for the 

determination of optica! properties. The theory whicb currently describes these kind 

of experiments best, is the diffusion theory. The diffusion equation can be derived 

as an approximation of the radiative transfer equation. For the denvation of the 

diffusion equation, it is assumed that that the influence of boundaries is 

negligible and the absorption coefficient is mucb smaller than the scattering 

coefficient. In that case the diffusion equation for the fluence rate can be 

derived. 

2. 7.1 Diffusion theory 

The diffusion theory is used to calculate the (radiant energy) fluence rate <j>(r,t). 

The fluence rate [W m-2] is defmed as: "at a given point in space, the radiant 

energy flux incident on a small spbere, divided by the cross-sectional area of tbat 

spbere" (ISO 31/6, 1980) The fluence rate is related to the radiance by 

<j>(r,t) = J L(r,tt) d~ 
41t 

The diffusion equation is given by: 

[1 v' - 11, c - :i] ~(r,t) = -q(r,t) 

wbere 
c Y = ------- = the diffusion coefficient [m2 s-I] 

3 [I-la + J.ls(l - g)] 
and 

q(r,t) = a souree function [W m-2 s-I]. 
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The diffusion equation can be derived from the radiative transfer equation by 

consirlering the frrst two moments of the radiance L(r,~,t) l251. 

The diffusion equation has to be solved in a volume n bounded by a surface an. In 

particular the output flux, r(Ç,t) [W s-1 m-2], is calculated 

r(Ç,t) = - i !.._ <l>(r,t) I = - i ~·'i7<1>(r,t) I 
a~ an an 

(2.41) 

where: 

ç = a point on an 
~ = the outward surface normal. 

This time dependent flux expression corresponds to the measurement of intensity as a 

function of time. 
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3. Integrating sphere theory 

3.1 Introduetion 

Integrating spheres are used to detennine the reflectance and transminanee of a 

sample. In this chapter the power detected in a sphere is derived from signal flow 

graphs and related to the sphere geometry and reflection and transmission factors of 

the sample. Signal flow graphs are originally used in feedback theory of electrical 

networks USJ, but are also used in process control theory [91. It will be shown 

below that the light distribution within an integrating sphere can also be described 

by these graphs. 

The integrating sphere theory is based on the work by J.W. Pickering et al. and 

an extensive treatment can be found in his work [191 [201. This theory is improved, 

in this report, by distinguishing between light originating from the sample and 

light originating from the inner sphere wall. The former cannot be incident on the 

sample again, as was assumed by Pickering et al., while the latter can be incident 

on the sphere wall and on the sample. The reason is that the sample is flat and the 

sphere wall is curved. Pickering et al. did not incorporate this distinction in his 

theory. 

The following subjects are dealt with in this chapter: 

- Signal flow graphs, how to construct signal flow graphs and how to use them to 

derive the transfer from input to output (section 3.2) (From Mason USI). 

- Single sphere formulas, related to either reflection or transmission measurements 

(section 3.3). 

- Double sphere formulas which are used m a double integrating sphere setup 

(section 3.4). 

- The calibration of the integrating spheres (section 3.5). 

The nomenclature used is summarized in table I page IV and V. 

3.2 Signal Flow Graphs 

A signal flow graph is a network of directed branches which conneet at nodes. Branch 

jk originates at node j and tenninates upon node k, the direction from j to k being 

indicated by an arrowhead on the branch. Each branch jk bas a parameter associated 

with it called the branch gain gJ"k and each node j bas an associated parameter 
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called the node signa! xj. The various node signals xj are related by the equations 

The graph shown in figure 3.1, for example, has equations: 

al2 xl + ~2 X3 = X2 

an x2 + a43 x4 = x3 

~4 X2 + ~4 X3 = X4 

~s x3 + a45 x4 = Xs 

(3.1) 

(3.2) 

The following defmitions are used. A souree is a node having only outgoing branches 

(node 1 in figure 3.1). A sink is a node having only incoming branches (node 5 in 

figure 3.1). A path is any continuous succession of branches traverse<! in the 

indicated branch directions. A forward path is a path from souree to sink along 

which no node is encountered more than once (a12an~a45, a12~4a45 • a 12~4a43~s· 
a12an~s· in figure 3.1). A feedback loop is a path that forms a closed cycle along 

which each node is encountered once per cycle. <an~2, ~a43 , ~a43~2• but not 

an~4a43~2, because node 3 is encountered twice per cycle, in figure 3.1). A path 

gain is the product of the branch gains along that path. The loop gain of a feedback 

loop is the product of the gains of the branches forming that loop. The gain of a 

flow graph is the signal appearing at the sink per unit signal applied at the 

source. Only one souree and one sink need he considered since sourees are 

superimposable and sinks are independent of each other. 

branch gain: 3.z4 

Figure 3.1. a simple signal flow graph. 
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According to Mason [151 the gain of a flow graph is given by 

where 

k 
G=---

Gk = gain of the kth forward path. 

~ = the discriminant 

~ = 1 - [ P ml + [ P m2 - [ P m3 + ... 

m m m 

(3.3) 

(3.4) 

P mr = gain product of the mth possible combination of r non touching loops. 

~k = The value of ~ for that part of the graph not touching the kth forward 

path. 

The reader is referred to Mason 's paper for further explanations.For figure 3.1 the 

gain of the flow graph is given by: 

- - -------------------------
xl 1 - ~3~2 - ~4a43 - a43~2~ 

where 

GI = a12~3~4a45; 
P11= ~~2; 

~~ = ~2 = ~3 = 0; 

G2 = a12~4a45; G3 = al2~3~s; 

P12 = ~4a43; P13 = a43~2~; 
~ = 1 - ~3~2 - ~4a43 - a43~2~4· 

(3.5) 

In the integrating sphere theory the souree will be the light (with power P) 

entering the sphere. The sink will be the detector (with detected power Pd). The 

branches will be determined by the direction in which the light travels. The gain 

will be the fraction of the light travelling from one part of the sphere to the 

other part. 

3.3 Single spheres 

The calculations are performed for a sphere with a detector which does not receive 

light from the sample. (See figure 3.2). The construction of the sphere is shown in 

tigure 3.3. Each sphere has three ports: one to illuminate the sample, (the entry 

port4), one that contains the sample is, (the sample port), and one in which the 

detector is placed, (the detector port). The construction of the sphere is here such 

4 The sphere can also be used in transmission. In that case the collimated 
transmitted light leaves the sphere through this aperture, called the exit port. 
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that the collimated (or specular) reflection is leaving the sphere through the entry 

port. Other configurations can also be handled and will only require slight 

modifications of the calculations presented below. 

Sample 

Detector Detector 

Figure 3.2. Two ways to make the detector not see the sample: 

a: A non-isotropie detector. 

Sample 

b: Using a baffle (which has the same diffuse coating as the sphere wall). 

en try (exit) port 

Diffuse 
reflecting 
coating 

detector port 

Figure 3.3. Construction of the integrating sphere. 
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3.3.1 Reflection 

a: 

The following setup is assumed (see figure 3.4a): the sample is placed at the sample 

port of the integrating sphere, the light enters the sphere through the entry port, 

light hits the sphere wall frrst and the sample is diffusely irradiated by the 

sphere wall. 

Light which hits the sphere wall will be diffusely reflected by a factor m 

(usually m is close to one). The reflection is assumed to be completely Lambertian. 

This means that the intensity reflected is equally distributed over all angles. The 

power reflected is distributed homogeneously over the different parts of the sphere. 

(Because of the sphere geómetry.) 

b: 

Figure 3.4. Set-up used for reflection measurements: 

a: Light is jirst incident on the sphere wall. 

b: Light is first incident on the sample. 

Light which propagates from the sphere wall to the sample will have a gain factor 

of: 

s 
m-

A 
(3.&) 

where s = the sample area [m2], and A = the total sphere area including all parts. 

[m2] 

Light which propagates from the sphere wall to the detector will be detected with a 
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gain factor of: 

8 
m~

A 
(3.6b) 

where 8 = the detector area [m2], ~ = the efficiency of the detection which includes 

that the detector only sees part of the sphere wall. 

Light which propagates from the sphere wall to other holes will have a gam factor 

of: 

h 
m

A 

where h = the area of holes [m2]. 

Light which propagates from the wall back to the sphere wall has a gain factor of: 

ma (3.6d) 

where a = the relative total inner surface area of the sphere excluding all other 

parts of the inner sphere: 

A-s-h-8 
a=-----

A 

For the situations that the detector receives the light frrst reflected, part of the 

signa! flow graph is given in figure 3.5 . This signa! flow graph is not complete. 

Reflection from all parts of the sphere has to be accounted for. It is assumed that 

only the sample reflects light with a diffuse reflection factor Rd and that this 

light reflected is completely Lambertian. The following gain factors will result 

from it. 

Light which travels from the sample to the holes will have a gain factor of: 

h 
Rd-

A- s 
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mfJ.Ö.. 
A 

Figure 35. Incomplete signa/ 

flow graph; light 

distribution after the first 

rejlection. (See table I page 

IV and V for the symbols 

used.) 

Light which travels from the sample to the sphere wall will have a gain factor of: 

~[1--h] A-s 
(3.6f) 

The complete signal flow graph is given m figure 3.6a. From this figure and 

according to Mason ( equation 3.3 ), the power detected is given by 

p 

8 
m p

A 

s 
1-ma.-m-~ 

A 

(3.7) 

[1--h] A-s 

If collimated light is frrst incident on the sample (figure 3.4b), then a 

distinction is made between the frrst reflection by the sample and all other 

reflections. This is because the diffuse reflection factor for collimated light 

(Red) differs from the diffuse reflection factor for diffuse light (RJ. The signal 

flow graph for this case is given in figure 3.6b, form which follows: 
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Red [1--h-] m~~ 
A-s A 

(3.8) 
p 1 -m a - m ~ Rd [1 -_h_] 

A A-s 

In this case it is assumed that the collimated reflection (Re) leaves the sphere 

trough the entry port. 
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Figure 3.6. Complete 

signa/ flow graphs: 

a: Light is first incident 

on the sphere wal/. 

b: Light is first incident 

on the sample. 

b: 

3.3.2 Transmission 

a: 

~(1- l) 
A-s 

m~Q. 
A 

~__h_ 
A-s 

~_h_ 
A-s 

The following setup is assumed: (see figure 3.7) The sample is placed at the sample 

port of the inlegrating sphere. The light enters the sphere through the sample. The 

collimaled transmission leaves the sphere through the exit port. 

With gains similar to those before a similar signal flow graph can be made as 

before. This is given in figure 3.8. From this signal flow graph we fmd 
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P' d 

p 

Tcd 1 - -- m' ~· -
( 

h' J 8' 
A'-s A' 

1 - m'a'- m' - 'Rd 1 - --s ( h' ] 
A' A'- s 

(3.9) 

Where T cd is the diffuse transmission coefficient for collimated incident light. The 

prime (') is used to indicate the parameters of the transmission sphere. 

Figure 3.8. Signa/ flow graph for 

the transmission measurement. 

30 

Figure 3.7. Set-up used 

for the transmission 

measurement. 

m•A.•Ö' 
t" A' 

~x 
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3.4 Double spheres 

The double integrating sphere setup is shown in figure 3.9. In this case the sample 

is placed between the two integrating spheres. The sample can be illuminated by the 

sphere wall (figure 3.9a), or directly by the beam (figure 3.9b). In the latter case 

the collimated reflection and collimared transmission are assumed to be teaving the 

spheres. 

b: 

Figure 3.9. The double integrating sphere set-up: 

a: Light is first incident on the wall of the rejlection sphere. 

b: Light is first incident on the sample. 

For the denvation of the gain of the flow graphs the following substitutions are 

made: 
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b1 = [1 -_h_] m ~ ~ 
A-s A 

s 
b2 = m

A [1--h] A-s 

(3.10) 

(3.11) 

(3.12) 

From figure 3.1 Oa, for the case that light IS frrst incident on the sphere wall, it 

follows: 

---------------------- (3.13) 

---------------------- (3.14) 

In which primes are used to distinguish between the reflection sphere (without a 

prime) and the transmission sphere (with a prime). From figure 3.10b, for the case 

that light is frrst incident on the sample, it follows: 

(3.15) 

----------------------- (3.16) 

The above four formulas have the same denominator, which is obvious from the 

different signal flow graphs. By rearranging different terms, the denominator 

becomes: 

(3.17) 
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a: 
ma 

0 1 mfJ.Ö.. 
A 

Figure 3.10. 

Signa/ flow 

graphs for the 

double 

int eg rating 

sphere set-up. 

The holes are 

left out . 

... 0 
m'W~ a: Light is 

A' 
first incident 

m'a' on the wall of 

b: the rejlection 
ma sphere. 

mflf (Î) 
b: Light is 

first ... ö 
incident on 

Td[ 1- _h__] 
A-s the sample. 

m'a' 
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3.5 Calibration 

The sphere constants b1, b2 and b3 can be calculated or measured. The measurement of 

the sphere constants can be done with the use of Reflectance standards. In case 

light is frrst incident on the sample the voltage detected satisfies s 

(3.18) 

where equation 3.10, 3.11 and 3.12 are used with, 

V% is the voltage (or current) measured by a detector [V] or [A]. 

[
1--h J~~m 

b
1 

A- s A 
B1 = K = K -------

1-b3 1-ma. 
(3.19) 

K is a proportional constant [V] (or [A]), which is the efficiency of the 

detector. 

[
1--h ]~ m 

b
2 

A-s A 
B2= =------

1 - b3 1 - m a 
(3.20) 

It is assumed that Red equals Rd for the reflectance standards. Rewriting equation 

3.18 yields: 

(3.21) 

One can determine the two sphere constants by platting V IJfi'Rd versus V%· It is noted 

that B2 will be independent of the incident laser power and the reflectance 

standards used. B2 will only be determined by the sphere geometry used and the 

reflectance value of the sphere wall. Thus B2 needs not to be determined during 

every measurement. B2 tells sarnething about how good the "integrating effect" is. 

See figure 3.11. 

s b3 is not of interest with the set-up used. b3 plays only a role when light is 
frrst incident on the sphere wall. 
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.------------------- --------------------------- ----

B1 depends on the incident power. Thus B1 needs to be determined every time a 

measurement is performed. 

Figure 3.11. 

1.0 

A=1 

0.8 s = 0.01 
h = 0.001 

0.6 
Cll 
~ 

0.4-

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

m 

Figure 3.11. The second sphere constant B2, which determines the integrating 

effect, as a function of the reflection factor of the sphere wall, m. 
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4. Matcrials and mcthods 

4.1 Introduetion 

To investigate the determination of optica! properties with the use of integrating 

spheres, the following simulations and experiments were performed. 

Monte Carlo simulations were performed to investigate the light distribution 

within integrating spheres (section 4.3). The Monte Carlo program was written by 

Marleen Keijzer (Delft, The Netherlands) and adapted to calculate the light 

distributions within an inlegrating sphere. 

Integrating sphere measurements were performed to investigate the dependenee of 

the optica! properties of a sample on its thickness (section 4.4). This was done 

with two phantom materials: Intralipid® and Polystyrene (section 4.2). The sphere 

formulas (chapter 3) were implemented in an inverse adding doubling program 

(section 2.6). 

Time resolved measurements were performed with the same phantom materials. This 

was done in order to obtain a second independent measurement of the optica! 

properties (section 4.5). This was done with a set-up used for time resolved 

transillumination imaging [121. 

4.2 Matcrials 

In this study two phantom materials were used: Intralipid-10% (Kabivitrum, 

Stockholm, Sweden) and polystyrene (Polysciences lnc., St. Goar, Germany). These 

materials were used because they are (similar to tissue) having a high scattering 

coefficient and a high anisotropic factor (for skin J.L
8 
~ 500 cm-I and g ~ 0.8 [21). 

lntralipid was diluted with 9% NaCl until 0.5%, 1.0%, 1.5% and 2.0% concentrations6. 

Polystyrene was diluted with distilled water until 0.05%, 0.10%, 0.167%, 0.227%, 

0.417% and 0.714% concentrations. Both phantoms were available from another study 

[121. No absorbers were added .. 

Polystyrene consists of latex spheres 0 = 0.99 J.lm ± 0.004 J.Lm in water. Mie 

calculations (section 2.2) were performed. Results of these calculations are given 

in table 4.1. 

6 1.0 % dilution means 1 part Intralipid-10% and 9 parts 9% NaCI. 
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Table 4.1. The results of Mie calculations: 

À= 633 nm. À= 780 nm. The input parameters were: 

a JA 2.6998 2.0051 
- index of refraction n: 1.6 (latex); 1.33 (water) 

a ,jA 0.0000 0.0000 
- wavelength (in vacuum): 632.8 nm and 780 nm. 

apr/A 0.2321 0.2078 
- diameters spheres: 990 nm. 
No absorption was added. 

g 0.9140 0.8964 A is the physical cross section of the particle. 

4.3 Monte Carlo simulations 

The program used fellows independent photon paths in a five layer structure. (Air, 

glass, tissue, glass, air) These structures are plane parallel and the z-axis was 

chosen perpendicular to the layer interfaces. (See figure 4.1) The photons were 

launched at the air glass boundary and were registered as they left the glass air 

boundary (on either side). 

The input for a simulation consists of: 

- optica! properties (J..L8 , J..L8, g) of the turbid medium, 

- the indices of refraction of the turbid medium and of the glass, 

- the dimensions of the sample and of the integrating spheres. 

The output of a simulation is a distribution of light coming from the sample. 

z=O -r'T"T''7"7'"7"'7~0""7"':'T"T''7"7"'T7....,.....,~0""7"':..,..,.-'T"T'"'T7....,.....,~0""7"':'T"T''T"T'"'T7....,.....,'""7"':.,.....~ x-axis 

z=lmm 

z= 1.5mm 

z=2mm 

I 

' z-axis 

Figure 4.1. The jive layer structure used in the simulations. 

Air 

Photons enter the spheres when they leave the glass air boundary within 

distance r8 (The radius of the sample port.) 
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Incident photon 

Detection 
angle 

Figure 4.2. 

lllustration of 

Sample the detection 

angle within an 

integrating 

sphere. 

Two senes of simulations were performed. In the frrst senes all photons were 

launched at the center of the sample perpendicular to the surface. This was done to 

simulate the illumination with a laser beam. The output of these simulations is a 

reflection and transmission coefficient for collimated irradiation (Red and Tcd). 

The photons were detected as a function of the angle 9 within a sphere (see figure 

4.2). Table 4.2 gives the input for the frrst series of simulations. 

Table 4.2. The input parameters used for the jirst series of simulations. 

't ranged from 2 to 16. The albedo was kept constant (a = 0.99) 
50.000 photons were launched. The critica/ weight equaled 0.0001. 

Layer Index of Jla Jls g thickness 

refraction [cm-1
] [cm-1

] [Jlm] 

air 1 
glass 1.55 0.00001 0.00001 0 1000 
tissue 1.37 0.2*-r 19.8*-r 0.8 500 
g~ass 1.55 0.00001 0.00001 0 1000 
arr 1 

In the second senes diffuse illumination of the sample was simulated, to 

investigate the illumination of the sample by the sphere. This was done in three 

steps. 

The frrst step was a Monte Carlo simulation. All the photons were launched 

Lambertian" at r = 0 for discrete angles: 

1 
cos ei = 1 - -- * i 

n + 1 
i = 1, 2, ... , n (4.1) 
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Figure 4.3. 11/ustration of a convolution with a circular beam profile. The 

radius of the illuminating beam is r5• (From Prahl 1231) 

o < r < rs- r' 

I rs - r' I :s r :s rs + r' 

r> r8 + r' 

o < r< r'- fs 
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The weights of the exiting photons were registered as a function of the lateral 

distance travelled R(r) and T(r). (R(r) and T(r) can he seen as Green's functions.) 

The second step was the calculation of the reflected <l>(r) and transmitted light 

intensities if the sample was illuminated homogeneously by a circular source. This 

was done by convolving the reflection profile R(r) (and transmission profile T(r)) 

with a circular souree (9), with a uniform light distribution ranging from zero to 

the radius of the sample port, r
8

• See tigure 4.3 (From Prahl [231). 

00 

<l>(r) = I R(r') 9(r,r') 2 1t r' dr' 

0 

9(r,r') = 1 

1 
9(r,r') = - arccos 

1t [ 
,2 + 2 2] r r - r8 

2 r' r 

for reflection (4.2) 

0 :s r :s r
8 

- r' 

I r8 - r' I :s r :s r8 + r' 

9(r,r') = 0 r > r8 + r' or 0 < r < r' - r8 

(4. 

3) 

The last step was the calculation of the amount of light which (re)enters the 

sphere after diffuse illumination: 

rs 

~(in sphere) = I <l>(r) 2 1t r dr 

0 

Table 4.3 gives the input for the different simulations for diffuse irradiation. 

Table 4.3. The input parameters used for the second series of simulations. 

All combinations of Jla, J.18 and g were used. 
10.000 photons were launched. The critica/ weight equaled 0.0001. 

Layer Index of Jla Jls g thickness 

refraction [cm"1
] [cm"1

] [Jlm] 

air 1 
glass 1.55 0.00001 0.00001 0 1000 
tissue 1.37 0-5-10-.15 100-150-200 0.7-0.8-0.9 500 
glass 1.55 0.00001 0.00001 0 1000 
air 1 
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4.4 Integrating spheres 

The optica! properties of various dilutions of phantom materials were determined 

with an integrating sphere setup given in figure 4.4. Two similar setups were used: 

one at the Philips Research lab, Eindhoven; and one at the Laser Centre, A.M.C. 

Amsterdam. A general description of both set-ups will be given. 

Laser 

Refr-------------~ 

Lock-in 

Pre-amp. 

sample 

Pinhole 

Neutral 
density 
filter 

Figure 4.4. Experimental set-up used for the integrating sphere measurements. 

Light of a laser is chopped and directed onto a sample. The re.flected and 

transmitted light is measured within the two integrating spheres (l.S.); the 

unscattered light is measured by a detector (D3) at a large distance (!>< 2 m). 

Light from a laser (Eindhoven: 5 m W HeNe, Spectra Physics, model 105-1 and a 

Ti:Sapphire-laser, (See section 4.5) A. "' 780; Amsterdam: 1 mW HeNe, Polytec, model 

PL650,) was chopped mechanically (Eindhoven: EG&G Princeton Applied research, model 

192; Amsterdam: EG&G Princeton Applied research, model 196). A small amount of this 

light was tapped of by a microscope slide and measured with a detector (D 4) to make 

corrections for laser fluctuations possible. By use of steering mirrors (m1 and m2), 

light was directed through the reflection sphere onto the sample. The system was 

aligned such that the specular reflection left the reflection sphere through the 

entrance port. The unscattered light left the transmission sphere and was directed 

by two steering mirrors (m3 and m4) on a pinhole and was detected by a detector 

(D3). The unscattered light was attenuated by a neutral density filter (O.D. 2 ~ 
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attenuation of 1Q-2). For detection photo diodes were used (D1, D2, D3 and D4) 

(Eindhoven: FND 100, EG&G Pboton devices; Amsterdam: Telefunken, Hannover.). Since 

they are current sources, a current sensitive amplifier (Eindhoven: EG&G Princeton 

Applied research, model 184)7 was placed between the detector and the lock-in 

(Eindhoven: EG&G Princeton Applied research, model 124A; Amsterdam: EG&G Princeton 

Applied research, model 5210). 

In Eindhoven the Integrating spheres were self-made, have a low reflection 

factor of the sphere wall (m Ql. 0.70, at 633 nm) and a detector which only sees the 

opposite wall because it is mounted deeper into the sphere wall. In Amsterdam the 

Integrating spheres were made by Labsphere Inc., have a high reflection factor of 

the sphere wall (m Ql. 0.97 at 633 nm) and a baffle placed between the sample port and 

the detector port (see tigure 3.2). The geometries of the spheres are given in table 

4.4. Results of the calibration measurements are given in appendix B . 

The optica! properties (J!8, J.la and g) were reconstructed by an Inverse Adding 

Doubling program. This program is based on the described Adding Doubling procedure 

(section 2.6). The optica! thickness 't was determined by measurement of the 

unscattered light (D3 in tigure 4.4) and reconstructed with the use of Beer's law 

(equation 2.13), taking into account multiple specular reflections (equation 2.19). 

(See appendix A) The inverse adding doubling program was written by Scott A. Prahl 

1221. The program was converted by Gert W. 't Hooft !l21 to run on an I.B.M. 

compatible p.c. and the sphere formulas (chapter 3) were implemented. Four fluxes 

(equation 2.35) were used to reconstruct the optica! properties. 

Table 4.4. The dimensions of the integrating spheres used: 

Dimension: l.S. in Eindhoven l.S. in Amsterdam 

A= 41t~P 314 102 mm2 729 102 mm2 

s 415 mm2 786 mm2 

h 26.7 mm2 147 mm2 

4.4.1 Measurement procedure 

The measurements were performed in the following way: 

- The system was aligned, such that the detected voltage within the integrating 

spheres was minimal when no sample was present. This was done with the steering 

mirrors m1 and ~ in tigure 4.4. 

7 The pre-amplifier was a plug-in unit in Eindhoven. In Amsterdam the pre-amplifier 
was built in the loek-in. 
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- To determine B1 a 99% reflectance standard was used and equation 3.18 was applied. 

B2 was already known (Appendix B) (When two integrating spheres were used this was 

done for both spheres.) 

- A sample consisted of two glass slides and a metal spaeer with a drop of the 

solution to be investigated in between (see figure 4.5). It was mounted in such a 

way that all air was removed out of the spaeer hole by the liquid. The sample 

thickness was deduced from the thickness of the two glass-slides and the thickness 

of the total sample. 

- Either the sample was placed between the two spheres and the reflected and 

transmitted light was measured, or the reflected light was measured, the sphere with 

sample was tumed around and the transmitted light was measured. 

- The unscattered light was aligned (with steering mirrors m3 and m4) such that the 

signal on the third detector (D3) was optima!. The unscattered light intensity was 

measured. (See figure 4.4) 

- The sample was removed, the system was realigned and the total intensity was 

measured by D3• 

Figure 45. Construction of a sample. 

/; ~ Glass-slide 
~t&---------~ :t--- (1 OxSxO.OS cm) 

I 

Salution (j ~---+------:--- lntralipid or Polystyrene 

I I 
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~:/:::::::::::::~~::::::~~~~--~----~ ~-----(1 OxSxO.OS cm) 
I 
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Figure 4.6. Experimental set-up used for the time-resolved measurements. Light 

of a mode-locked Ti:Sapphire laser is focused in a cel/, which is ft/led with 

one of the phantom materials. The scattered light is again focused on the 

streak camera. 

Two signals are tapped of the beam: one to trigger the streak camera 

( electrical) and one to serve as a optica/ reference. 

4.5 Time of flight set-up 

The optical properties of the various solutions were also determined with a time 

resolved measurement as shown in figure 4.6. It consisted of a Ti:Sapphire-laser 

mode-locking on a Kerr lens mechanism and using a HITCI saturable absorber dye jet 

as a starter.l211 At the wavelength of 780 nm the average power output is 250 mW and 

the pulse width is 180 fs. The repetition rate of the laser was adjusted to the 

synchronization speed of the Streak camera, i.e. 82 MHz. 

The light was focused in the sample, which was a cell (h x w x d = 5 x 5 x 1 

cm) filled with the different dilutions. The transrnitted light was focused on the 

entrance slit of a Streak camera (Which was a Hamamatsu C1587 synchroscan with an 

44 



image intensified CCD camera and a streak tube with a S20 photo cathode response.). 

The Streak camera was triggered by a signa! from a photo diode (FND 100, EG&G Pboton 

devices), with a 82 MHz band-pass filter and amplifier (HP 8447). The laser and 

Streak camera combination have an instromental resolution of 6 ps, govemed by the 

(amplitude) stability of the trigger. The minimal integration time of the CCD camera 

is 1 second. The sensitivity is high enough, to detect the laser pulse easily after 

attenuation by an O.D. 13 filter (An attenuation of 1Q-13.). 

Part of the beam was tapped of before it passes through the sample and was also 

focused on the streak camera to serve as a reference. 

Since the thickness of the cell is small compared to the other dimensions, an 

infmitely large plane parallel structure is assumed (Figure 4.7). A solution of the 

diffusion equation in this geometry can be found in Carslaw and Jaeger [SI where the 

method of multiple images is used, which results in a serie of dipoles and makes the 

fluence zero at z = 0 and at z = d. The resulting pulse response equals ( equation 

2.41): 

(4.5) 

where 

T(d,z0,t) = the transmitted, spatially integrated, intensity divided by the 

input intensity. [s-1] 

z+n = (2n + 1 )d + Zo 
z_n = (2n + 1)d - z0 

1 
Zo=--

J.ls(l - g) 

It is assumed that the pboton souree is an instantaneous point souree at depth z0• 

This also means that the time of scattering is delayed by 1n = zJc. 

The transmitted light was fit to this equation ( 4.5) with J.la = 0 and the summation 

was made up to n = 1. So we used only two dipoles; this was considered adequate 

because of the term exp[~] in equation (4.5). Also the system response curve was 

measured (the reference). 
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Figure 4 .7. Geometry for the 

z= -2d 
0 calculation of the time resolved 

- - - - - - - - - - - - reflectance and transmittance • 
I 

from a homogeneaus slab. The 
Z= -d - - - - - - - - - - - - - - boundary conditions cp{p,O,t) = 0 

I and cp(p,d,t) = 0 can be met by 
z=O 0 

• adding an infinite serie of 

z=d 
dipale photon sources. The first 

two are shown in this 

0 illustration. 
z=2d - - - - - - - .- - - - - - - From Patterson et al.U1J 

I 

z=3d - - - - - - - - - - - -
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5. Results 

5.1 Results of simulations 

Figure 5.1 gives the output of the frrst series of sirnulations performed to 

investigate the light distribution within the inlegrating spheres after the frrst 

reflection/transmission. If the light distribution was Lambertian, then the points 

in the tigure would lie on a horizontal line. It shows that for optically thin 

samples, the transmitted light is forward peaked. 

Figure 5.2 gives the output of the second series of simulations performed to 

investigate the losses which occur, if the sample is illuminated by the sphere. It 

shows that losses are of the order of 10% of the total reflected light. 

5.2 Results of integrating sphere measurements 

Integrating sphere measurements were performed. Solutions of Intralipid® and 

Polystyrene of different concentrations were used. Measurements with the single and 

double integrating spheres were performed. A few important results are given below 

(All the results are summarized in Appendix C). 

The measurements in Amsterdam did not work out. The Inverse Adding Doubling 

program could not fmd a unique set of optica! properties, given the three 

measurements. It almost always ended at an albedo of 1, which means an absorption 

coefficient of 0. The measurements in Eindhoven did work out fme. Those results are 

presented below. 

Thickness dependenee 

Others [21 [281 have found a thickness dependenee of the total attenuation 

coefficient (~. They have found that the scattering and absorption coefficients 

both decreased with increasing sample thickness. This is not found in the 

experiments performed here! Figure 5.3 shows the measured optica! thickness as 

function of the physical thickness d, for different concentrations of polystyrene. 

The figure shows straight lines as it should be. 

A thickness dependenee of the absorption coefficient (J.La) is found, J.1a 

decreasing as the sample thickness increases. This dependenee is less in case two 

integrating spheres are used. This is shown in figure 5.4. Zero-values of J.la should 

be considered questionable, because in such a case the inverse adding doubling 

program did not converge to an absolute minimum. 
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Figure 5.1. Results of Monte Carlo simulations. The angular distribution of the 

reflected and transmitted light. All photons were launched in the centre of the 

sample. (Figures 3.4b and 3.7) The sample consisted of a glass-tissue-glass 

geometry with different indices of refraction. The optica/ properties of the 

tissue were: a = 0.99, g = 0.8, 't = 2, 4, 8 and 16. 
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Figure 5.2. Results of Monte Carlo simulations. Percentage of Rd and Td which 

is lost outside the sample port, as a function of the optica[ properties 

{1..1.; = J..L5{1-g)). All photons were launched with a Lambertian angular 

distribution all over the sample port of the integrating sphere. The sample 

thickness was: d = 0.5 mm ( exclusive the glass slides). The radius of the 

sample port was: r 8 = 15.8 mm. 
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Figure 5.3. The measured optica/ thickness ('t) as a function of the physical 

thickness (d) for the different concentrations of polystyrene, at two 

wavelengths. The concentrations are mass concentrations. The straight lines are 
least squares analysis. 
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Figure 5.4. The measured absorption coefficient {1..1.
1

) as a function of the 

sample thickness. Measured within double (above) and single (below) integrating 

spheres. 
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Figure 5.5 gtves the results of the measured scattering coefficient of Intralipid® 

as a function of the concentration. Figure 5.6 compares the Mie-calculations with 

the measured values of J.18 of polystyrene. The scattering coefficients presented are 

averaged over both the different thicknesses and the double and single inlegrating 

sphere measurements (10 measurements). The error bars correspond to standard 

deviations. A veraging is allowed here since no relation was found between the 
scattering coefficient and the thickness. 

There was no systematic relation found between the anisotropic factor g and the 

concentratien and/or thickness. The measured anisotropic factor was: 0.66 ± 0.02 (at 

633 nm); 0.52 ± 0.03 (at 780 nm) for Intralipid® and 0.91 ± 0.02 (at 633 nm); 

0.87 ± 0.04 (at 780 nm) for polystyrene. 

Figure 5.5. The measured scattering coefficient as a function of the 

concentration for different concentrations of Intralipicf®. The straight line is 
found by a least squares procedure. 
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Figure 5.6. The measured scattering coefficient as a function of the 

concentration for different concentrations of polystyrene. The lines are 

calculated with Mie-theory. 
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5.3 Results of time resolved measurements 

Finally the Integrating sphere measurements are compared with the results obtained 

from time resolved measurements. This is shown in figures 5.7 and 5.8. In which the 

transport scattering coefficient J..ls' 

J..ls' = J..ls (1 - g) 
ts plotted as a function of the concentration for the different techniques. With the 

time resolved measurements only one measurement was taken. Thus no error bars are 

printed. 
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Figure 5.7. The measured transport scattering coe.fficient as a function of the 

concentration of polystyrene. The lines are calculated with Mie-theory. The 

Integrating Sphere (l.S.) measurements are averaged over JO measurements. The 

Time Of Flight (T.O.F.) measurements are single measurements. 
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Figure 5.8. The measured transport scattering coe.fficient as a function of the 

concentration of IntralipicJ®. The solid lines are averages. The lntegrating 

Sphere (l.S.) measurements are averaged over JO measurements. The Time Of 

Flight (T.O.F.) measurements are single measurements. 
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6. Discussion 

Monte Carlo simulations: 

The Monte Carlo program used was tested by comparing reflected and transmitted 

intensities with results from the Adding Doubling program. The reflection and 

transmission coefficients agreed well within 1 to 2 %. 

The Monte Carlo simulations performed showed two features. The light 

distri bution in transmission is forward peaked. (Figure 5 .1.) and losses occur to 

the sides of the sample (Figure 5.2). Both features influence the accuracy of the 

optica! properties determined with the use of integrating spheres. 

In case the light distribution, leaving the sample, is forward peaked, more light is 

lost through the exit port than is theoretically accounted for. Since the solid 

angle of the exit port in the integrating sphere is very small, this is only a minor 

effect. 

Also the light distribution, within the integrating sphere, is not uniform. 

This means that the detector can receive more or less light (than is theoretically 

accounted for) depending on which part of the sphere is seen by the detector. In 

case of a non-isotropie detector (Eindhoven), the detector "sees" a part of the 

opposite sphere wall. In case of a baffle (Amsterdam), the detector "sees" merely an 

area around the exit/entry port than around the sample port. So more light is 

measured than is assumed with a Lambertian emitting sample. lf the light 

distribution within the integrating sphere is not uniform, the sample will not be 

uniformly illuminated by the sphere. 

If losses occur at the sides of the sample, the absorption coefficient J!a determined 

will be too high, because the reconstruction algorithm assumes that all reflected 

and transmitted light is measured. These losses are a higher order effect, because 

they relate to the diffuse illumination of the sample by the sphere and not to the 

collimated incident irradiation. Within a "good" integrating sphere (i.e. one with a 

high diffuse reflection factor of the sphere wall) this influence on the absorption 

coefficient will be higher than within a "bad" quality integrating sphere. From 

figure 5.2 it follows that the largest losses appear for samples with the lowest 

absorption coefficients. 

Our Monte Carlo simulations don not predict a thickness dependenee of the total 

attenuation coefficient, because the reconstruction of the total attenuation 
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coefficient is based on the same principles which are used within the Monte Carlo 

method. 

We still don not know which metbod is the best to measure the unscattered light 

and to use this to reconstruct the optica! thickness. We have chosen to place the 

sample perpendicular to the incident laser beam. This is done to minimize the 

displacement of the unscattered reflected and transmitted light, so that they can 

indeed leave the entry and exit port of the integrating sphere(s). Due to this 

contiguration interference effects may appear due to multiple reflections. However 

these effects are small because 95% of the incident light (frrst transmission 

through the frrst glass slide) should interfere with 0.02 % of the incident light 

(second transmissions through the glass slide). The influence of both glass slides 

on each other will be negligible with thick samples. 

Integrating sphere measurements: 

With the measurement technique used (by realigning the unscattered light every time 

a sample is placed in to or out of the beam) we failed to measure thickness 

dependencies. If this realigning is not performed, then it is highly likely that a 

lower unscattered intensity will be measured. (This will result in a higher optica! 

thickness). This artifact becomes more important for thicker samples, thus a 

thickness dependenee can occur in this way. If the sample is not placed 

perpendicular to the incident beam and the optica! thickness is reconstructed with 

the using multiple reflections, a thickness dependenee is also introduced. 

Figure 5.3. shows no thickness dependenee of the total attenuation coefficient. 

Figure 5.4. shows that the absorption coefficient does decrease with increasing 

thickness. Also the varlation in the values of !la measured decreases with increasing 

thickness. The absorption coefficients measured with the double integrating spheres 

are approximate half the values measured with the single integrating spheres. 

In case the other optica! properties (J.18 and g) are known, the absorption 

coefficient is reconstructed in the following way. The average distance travelled 

within the sample (<t>), due to scattering, is calculated (without absorption). The 

total amount of light leaving the sample, after one reflection, is calculated by 

summing up all reflection and transmission coefficients. The losses which occur 

after one reflection/transmission are calculated (L losses = 1 - L reflection 

coefficients L transmission coefficients). The absorption coefficient is 

reconstructed with the use of Beer's law: 
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L: losses = 1 - e- lla <I> L ~ + L Ti = e- lla <I> 

1 1 

All the features in figure 5.4. can be understood with use of this sirnple formula. 

Losses to the sides of the sample (found by the Monte Carlo sirnulations) increase 

the term on the left hand side, thus they will result in the prediction of a higher 

absorption coefficient. With increasing sample ( or optica!) thickness the average 

distance travelled within the sample <I> increases, while the losses, to the sides 

of the sample, remains unchanged. This will result in a lower (reconstructed) 

absorption coefficient. 

From this equation it also follows that increasing the sample thickness (and 

hence increasing <I>) will result in a decrease of the varlation of the absorption 

coefficient. Because while <I> increases, the varlation in the losses remains 

unchanged. 

To understand why double integrating spheres determine a lower absorption 

coefficient, the non-uniform light distribution within the transmission sphere has 

to be used too. This light distribution will be responsible for a non uniform re

illumination of the sample and since the transmission coefficient is higher for 

illumination under small angles (T cd > T d), this illumination will give a stronger 

interaction between the two spheres than is accounted for. Thus more light intensity 

is measured and losses seem less in case two integrating spheres are used. If the 

sample is less forward peaked (thicker samples and/or lower g-factor) this effect is 

smaller. 

This effect is also held responsible for the fact that the integrating sphere 

measurements in Amsterdam did not give reliable results. It is because the detector 

sees that part of the sphere surface which does receive the most light. Thus the 

intensity measured is higher than with a Lambertian sample. The high reflectance 

factor of the sphere wall does magnify this effect. 

From figures 5.5 and 5.6 it follows that the scattering coefficient increases 

proportional with the concentration of scatters, at high concentrations this seems 

not valid anymore. The explanation can be that the scattering events are no longer 

independent. But the criterion of Van de Hulst (Footnote 1 page 4) is not violated. 

For a concentration of 1 %, the distance between the particles is on the average 8 

times the partiele diameter rz1. (For 2.5% they are on the average 6 times the 

partiele diameter away from each other)~ But the question whether or not the 
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scattering events are independent should be related to the type of experiments 

performed. The average distance between the particles is large enough to talk about 

one phase function (in case that polystyrene is used). But in an attenuation 

experiment one measures the probability of light to be scattered over a large 

distance (d "' 300 12l), in which case the scattering events may not be considered 

independent any longer. 

Time resolved measurements: 

The results of the effective scattering coefficient obtained from the time resolved 

measurements are in agreement with the values obtained from the integrating sphere 

measurements. The best fits of the time resolved data, with time dependent diffusion 

theory, were achieved with the highest concentratien of scatters. Por low 

concentrations the width of the detected time resolved peak came in the order of the 

width of the original (reference) pulse. In such a case the fit could slightly by 

improved by convolving the theoretica! curve with the reference pulse (the systems 

response curve). 
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7. Conclusions 

It is possible to measure optica! properties of tissue with inlegrating spheres in 

combination with an Inverse Adding Doubling reconstruction algorithm. However, 

attention has to be given to the following subjects: 

The inlegrating sphere does not need to have a high reflectance factor of the 

sphere wall. In fact, the best integrating sphere is a "bad integrating" sphere. The 

detector has to be placed such that it receives light from a representative part of 

the integrating sphere wall, but not from the sample. (A baffle should be avoided, 

because this disturbs the sphere geometry). This has to be done properly in order to 

deal with non-Lambertian samples. 

Care has to be taken with the measurement of the unscattered light. Optically 

thick samples are preferred ('t e ( 4,8) ). Optically thin samples should be avoided 

because they lead to a too high absorption coefficient. Thick samples should be 

avoided because the unscattered light will virtually impossible to be measured. 

Table 7.1. Results of the measurements performed. (At two wavelengths) 

The scattering is assumed to vary linearly with the concentration: Jls = J.lso 

concentrations. 

The concentration is given in mass percentage [% gig]. 

The absorption coefficient is caused by losses within the inlegrating sphere. 

Polystyrene Intralipid® 

632.8 nm Mie Inlegrating Inlegrating 
theory Spheres Spheres 

J.lso [cm-I %-I] 389.6 346 ± 55 40 ± 4 

J.la [cm-I] 0.0 0.4 ± 0.4 1.2 ± 0.9 

g [-] 0.914 0.91 ± 0.02 0.66 ± 0.02 

J.l;o [cm-I %-I] 33.49 34 ± 6 14 ± 1 

780 nm Mie Inlegrating Time Integrating Time 
theory Spheres resolved Spheres resolved 

J.lso [cm-I %-I] 289.3 256 ± 20 - 23 ± 2 -
J.la [cm-I] 0.0 2 ± 2 - 2 ± 2 -

g [-] 0.896 0.87 ± 0.04 - 0.52 ± 0.03 -
J.l;o [cm-I %-I] 29.98 25 ± 9 31 ± 5 11 ± 1 10 ± 3 
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Low absorption coefficients cannot be measured within the metbod described! It 

seems reasonable to predict that it is possible to measure high absorption 

coefficients, but this has to be investigated further. 

The values measured of the optica! properties are given in table 7.1 

Beek [21 has found for Intralipid at 632.8 nm: 

J.180 = 56.1 ± 2.8 cm-1/(ml/L); g = 0.70 ± 0.05. 

Van Staveren et al.l261 have found: 

Jl80 = 47.6 ± 0.6 cm-1/(ml/L); g = 0.768 ± 0.006; J.180 = 0.0149 ± 0.0004 cm-1/(ml/L); 

(at 633 nm) and 

Jl80 = 13.1 ± 0.3 cm-1/(ml/L); J.180 = 0.48 ± 0.09 cm-1/(ml/L); (at 1064 nm) 

Flock et a/.[81 have found 

Jl80 = 34 ± 3 cm-1/(ml/L); g = 0.825; J.180 = 0.00013 cm-1/(ml/L); (at 633 nm) 
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Appendix A: 

Collirnated reflection en transmission coefficients: 

In this appendix the "collirnated" reflection and transmission coefficients are 

derived with the use of signa! flow graphs. A five-layer geometry is assumed: air, 

glass, tissue, glass and air. These layers are plane parallel and light is incident 

perpendicular at the frrst layer. See tigure A.I. The reflection and transmission 

coefficients are derived from scattering and absorption of the second layer. 

I 

' z-axis 

Air 

Air 

Figure A.J. The Jive layer structure used in the calculations. 

The reflection and transmission coefficients for one boundary are determined by the 

laws of Fresnel. These laws are for normal incidence [111: 

where 

R12 is the reflection coefficient for normal incidence. 

n1 is the index of refraction of the incident medium. 

n2 is the index of refraction of the transmitted medium. 

(A.l) 

All the interfaces reflect light. Light reflected by all the interfaces is a sum of 

multiple reflections. 
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lt is assumed that in the tissue unscattered light propagates according to Beers' 

Law: 

l(z) = 10 exp [- Jlt z] 

where 

l(z) is the light intensity at depth z, 

10 is the light intensity at z = 0, 

Jlt is the total attenuation coefficient (Jlt = Jla + J.LJ. 
The product Jlt z is often referred to as the optical thickness 't. 

This means that when light propagates through the tissue layer, its gain is e-'t. 

Figure A.2. Signa[ flow graph for the calculation of Re and Tc. 

The nodes represent the boundaries between: 

air - glass - tissue - glass -air. 

(I - Rga) 

(A.2) 

For the transmission and reflection of the total geometry the signal flow graph of 

figure A.2 can be made, in which the nodes represent the boundaries. With the use of 

this figure and the use of equation 3.3 the total transmission and reflection can be 

derived. 
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(1-Rag) (1-Rgt)exp(-~J (1-~g) (1-Rga) 

T=------------------------------------------
1- ( 1-Rag )Rgt- (1-Rgt )~gexp [-2~]- ( 1-~g)Rga+ ( 1-Rag)Rgt (1-~g)Rga 

(A.3) 

R,1 [ 1- ( 1-R.,) Jyxp [-2t ]- ( 1-R,g JRaa] 
R = ---------------------------------------------

1- ( 1-Rag )Rgt- ( 1-R8,)~gexp [-2~]- (1-~g)R,a+ (1-Ra,)Rgt ( 1-~8)Rga 
(A.4) 

Where the subscripts indicate the following 

- the first subscript is the incident medium, 

- the second subscript is the adjacent medium. 

a = arr; 

= glass· g ' 

t = tissue; 

With the use of ~Y = ~x these equations become: 

( 1-R,af ( 1-Rgt )
2
exp [-~ J 

T = --------------------------------------------- (A.5) 

1- ( 1-R,a)Rgt- ( 1-Rgt)R,,exp [-2~]- ( 1-R8,)Rga+ ( 1-R,a)R&t ( 1-R8,)R,a 

R., [1- ( 1-R .. ) R.,exp ~2t ]- ( 1-R.,) Rg.l 
R = --------------------------------------------- (A.6) 

1- (1-R8a)R,c (1-Rgt )R8,exp [-2~]- (1-Rgt )R,a+ (1-R8a)Rgt (1-Rgt)R,a 

The denominator can he written as: 

(A.70 

Formally this equation is not correct, because it is not allowed to sum light 

intensities. It is only allowed to sum over amplitudes. This can he done with the 

use of complex amplitudes. 

When light travels from one boundary to the other, the gain should he multiplied by 

66 



-iep e m 

to correct for the phase delay. 

(cl>m = phase delay, m = medium through which light travels) 

Also reflection factors for amplitudes should be used: 

ni - n2 
r12 = --

nl + n2 

The amplitude transmission factor becomes: 

t = 

(A.8) 

(A.9) 

(A.lO) 

If one assumes that the phases are random, than an average transmission can be 

calculated as: 

* <T>=<tt> 
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Appendix B: 

Results of calibration measurements: 

Two types of integrating spheres are used. They both are calibrated with the use of 

reflection standards (made by Labsphere). The reflection values are given in table 

B.l. 

The results of the calibration are given in figures B.l, B.2, B.3 and B.4. 

Table B.l. Reflection values of the reflection standards used. 

number value [%] (at 633 nm) value [%] (at 780 nm) 

99 96.95 ± 0.06 98.4 ± 0.6 
75 74.85 ± 0.03 75.3 ± 0.3 
50 54.82 ± 0.01 54.8 ± 0.1 
2 2.7361 ± 0.0002 2.897 ± 0.002 
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~----------------------------------------------------------------------- 1 

Figure B.l. and B.2. The results of eaUbration measurements performed with the 

spheres in Eindhoven. The linear fit is to determine the sphere constants: B1 

and B2 by use of equation (3.21 ). 
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Figure B.3. and B.4. The results of eaUbration measurements performed with the 

spheres in Amsterdam. The linear fit is to determine the sphere constants: B1 

and B2 by use of equation (3.21). 
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Appendix C: 

Results of Integrating sphere measurements 

lntralipid two lntegr. Spheres 

concentratien wavelength thickness opt. thickness g mu_a mu_s 

[%] [nm] [cm] [-] [-] [cm-1] [cm-1] 
1 632.8 0.0112 0.5017 0.639 2.8529 41.9373 
1 632.8 0.0163 0.5512 0.6762 0.2033 33.6149 
1 632.8 0.0223 0.9292 0.6442 1.2462 40.4231 
1 632.8 0.026 1.2648 0.6611 1.6247 47.0216 
1 632.8 0.032 1.4946 0.6638 1.0275 45.6773 
1 632.8 0.0113 0.4444 0.6504 1.3888 37.9424 
1 632.8 0.0147 0.6364 0.6404 1.5352 41.7548 
1 632.8 0.0216 0.8827 0.6434 1.1035 39.7625 
1 632.8 0.0261 1.0199 0.6552 0.3693 38.7064 
1 632.8 0.033 1.3292 0.6619 0.5274 39.7507 

1.5 632.8 0.012 0.771 0.6135 2.3673 61.8833 
1.5 632.8 0.0154 1.1254 0.6318 3.0395 70.0372 
1.5 632.8 0.0212 1.3723 0.6383 0.9531 63.7781 
1.5 632.8 0.0262 1.5031 0.6526 0.4377 56.9339 
1.5 632.8 0.033 2.0618 0.6715 0.5257 61.9544 

2 632.8 0.0115 0.9056 0.5806 3.0419 75.7062 
2 632.8 0.0154 1.2409 0.6452 0.9779 79.5975 
2 632.8 0.0215 1.6768 0.6469 0.7388 77.2521 
2 632.8 0.0263 2.0257 0.6687 0.328 76.6949 
2 632.8 0.0326 2.5947 0.6659 0.3191 79.2717 
1 632.8 0.0112 0.5451 0.606 4.2796 44.386 
1 632.8 0.0163 0.5512 0.6606 0.4803 33.3378 
1 632.8 0.0223 0.9292 0.6437 1.244 40.4252 
1 632.8 0.026 1.3146 0.6497 1.9 48.6617 
1 632.8 0.032 1.4742 0.6672 0.8952 45.1722 
1 632.8 0.0113 0.4425 0.65 1.4406 37.7146 
1 632.8 0.0147 0.6456 0.6277 1.9078 42.0109 
1 632.8 0.0216 0.8464 0.641 0.769 38.4163 
1 632.8 0.0261 1.028 0.6415 0.5399 38.8455 
1 632.8 0.033 1.308 0.649 0.5302 39.1049 

1.5 632.8 0.012 0.7644 0.6264 2.0638 61.6356 
1.5 632.8 0.0154 0.9666 0.6266 1.8205 60.945 
1.5 632.8 0.0212 1.1803 0.6474 0.1001 55.5743 
1.5 632.8 0.0262 1.5031 0.6682 0.2771 57.0944 
1.5 632.8 0.033 2.052 0.6589 0.537 61.6453 

2 632.8 0.0115 0.9279 0.6299 1.9725 78.712 
2 632.8 0.0154 1.2147 0.6376 0.6811 78.1943 
2 632.8 0.0215 1.6672 0.6364 1.0196 76.525 
2 632.8 0.0263 2.1772 0.6559 0.6969 82.0859 
2 632.8 0.0326 2.4829 0.6608 0.256 75.9061 

1.5 780 0.0111 0.4543 0.4802 3.2059 37.7187 
1.5 780 0.0207 0.7076 0.5285 0.237 33.9446 
1.5 780 0.0317 0.9299 0.4134 0 29.3347 
1.5 780 0.0418 1.4139 0.5535 0.1116 33.7144 

1.5 780 0.0502 1.6127 0.5165 0 32.1261 

1.5 780 0.0111 0.4832 0.5041 2.9423 40.5882 

1.5 780 0.0207 0.7407 0.5274 0.625 35.1561 
1.5 780 0.0317 1.0429 0.4903 0 32.8979 
1.5 780 0.0418 1.4394 0.5386 0.1454 34.2909 
1.5 780 0.0502 1.6158 0.5004 0 32.1869 



lntralipid one lntegr. Sphere 

concentration wavelength thickness opt. thickness g mu_a mu_s 

[%] [nm] [cm] [-] [-] [cm-1] [cm-1] 
1 632.8 0.0112 0.5231 0.67 4.5329 42.1739 
1 632.8 0.0163 0.5295 0.7209 0.6951 31.7924 
1 632.8 0.0223 0.8444 0.6705 1.4236 36.441 
1 632.8 0.026 1.3022 0.7135 1.9189 48.1652 
1 632.8 0.032 2.0081 0.7053 2.6374 60.1171 
1 632.8 0.0113 0.4584 0.6882 2.7623 37.8011 
1 632.8 0.0147 0.6623 0.6611 3.0092 42.0478 
1 632.8 0.0216 0.8104 0.6802 1.2076 36.3103 
1 632.8 0.0261 1.0484 0.6766 1.2774 38.8925 
1 632.8 0.033 1.3074 0.6727 1.0396 38.5792 

1.5 632.8 0.012 0.8258 0.6586 4.3903 64.4303 
1.5 632.8 0.0154 1.4571 0.6359 7.2785 87.3386 
1.5 632.8 0.0212 1.259 0.6622 0.9299 58.4579 
1.5 632.8 0.0262 1.537 0.6776 0.9273 57.7358 
1.5 632.8 0.033 1.9835 0.6702 1.091 59.0151 

2 632.8 0.0115 0.8423 0.6683 2.1909 71.0513 
2 632.8 0.0154 1.1935 0.652 2.1084 75.3944 
2 632.8 0.0215 1.6897 0.6746 1.323 77.27 
2 632.8 0.0263 2.0232 0.6512 1.0549 75.8729 
2 632.8 0.0326 2.5175 0.6756 0.5937 76.6302 

1 632.8 0.0112 0.5177 0.6643 3.7816 42.4422 
1 632.8 0.0163 0.5875 0.7019 1.8116 34.2338 
1 632.8 0.0223 0.9243 0.6845 1.9309 39.5198 
1 632.8 0.026 1.3165 0.6849 2.2971 48.337 
1 632.8 0.032 1.5294 0.6954 1.5442 46.2503 
1 632.8 0.0113 0.4584 0.6808 2.9213 37.6456 
1 632.8 0.0147 0.6154 0.6723 2.0868 39.7739 
1 632.8 0.0216 0.839 0.6823 1.324 37.5172 
1 632.8 0.0261 1.0813 0.677 1.3941 40.0356 
1 632.8 0.033 1.2925 0.671 0.8678 38.2992 

1.5 632.8 0.012 0.7931 0.6847 3.6114 62.478 
1.5 632.8 0.0154 1.0949 0.6623 3.6856 67.4112 
1.5 632.8 0.0212 1.3253 0.6608 1.3886 61.1257 
1.5 632.8 0.0262 1.6118 0.6588 1.333 60.1877 
1.5 632.8 0.033 2.086 0.6826 0.9415 62.2702 

2 632.8 0.0115 0.884 0.6641 2.2768 74.5906 
2 632.8 0.0154 1.2429 0.6794 1.9967 78.7138 
2 632.8 0.0215 1.6752 0.6542 1.5075 76.4088 
2 632.8 0.0263 2.0327 0.6816 0.8404 76.4494 
2 632.8 0.0326 2.5295 0.6723 0.6719 76.9195 

1.5 780 0.0111 0.4645 0.5393 3.9239 37.9197 
1.5 780 0.0207 0.7405 0.568 0.8722 34.9011 
1.5 780 0.0317 0.9396 0.4892 0 29.6402 
1.5 780 0.0418 1.368 0.5515 0.2055 32.5218 
1.5 780 0.0502 1.5462 0.5678 0.0188 30.7818 

1.5 780 0.0111 0.5956 0.4903 8.3513 45.3027 
1.5 780 0.0207 0.7415 0.5597 1.1712 34.6487 
1.5 780 0.0317 0.9795 0.5626 0 30.8985 
1.5 780 0.0418 1.4128 0.5589 0.2609 33.5376 
1.5 780 0.0502 1.5909 0.5607 0.113 31.5777 



con centration wavelength thickness opt. thickness g rn.~_a mu_s 

[%] [nm] [cm] [-] [-] [cm-1] [cm-1] 
0.23 780 0.0115 0.7607 0.7965 6.9569 59.1945 
0.23 780 0.0212 1.1711 0.85 1.7417 53.5001 
0.23 780 0.0314 1.8572 0.8768 0.5812 58.5665 
0.23 780 0.0411 2.5757 0.882 0.5854 62.0826 
0.71 780 0.0116 1.8827 0.8692 1.1615 161.1414 
0.23 780 0.0115 0.7796 0.7748 8.3968 59.3986 
0.23 780 0.0212 1.1418 0.8525 1.1784 52.6789 
0.23 780 0.0314 1.8085 0.8606 0.7323 56.8618 
0.23 780 0.0411 2.5326 0.8695 0.7311 60.8903 
0.71 780 0.0116 1.7606 0.8886 0.1464 151.6295 
0.71 780 0.0211 3.3088 0.8888 0.0747 156.739 
0.71 632.8 0.011 2.6098 0.8921 1.1506 236.1039 
0.71 632.8 0.0211 3.8056 0.9009 0.0911 180.2685 
0.05 632.8 0.0138 0.2633 0.8248 0.8614 18.2198 
0.05 632.8 0.0251 0.557 0.8834 0.3568 21.8364 
0.05 632.8 0.0455 0.9767 0.8797 0.2847 21.1804 
0.05 632.8 0.0455 0.9767 0.8797 0.2847 21.1804 
0.05 632.8 0.0538 1.1105 0.8714 0.4352 20.2053 

0.1 632.8 0.0134 0.4251 0.8305 1.2395 30.4817 
0.1 632.8 0.0254 0.9317 0.877 0.5243 36.1576 
0.1 632.8 0.0458 1.247 0.8693 0.4665 26.76 
0.1 632.8 0.0533 1.3333 0.8614 0.6538 24.3618 

0.167 632.8 0.0138 0.8076 0.8742 0.824 57.7004 
0.167 632.8 0.0251 1.6345 0.8915 0.6093 64.5088 
0.167 632.8 0.0331 1.8922 0.8917 0.4993 56.6657 
0.167 632.8 0.0454 2.9374 0.9036 0.1346 64.5651 
0.167 632.8 0.0526 3.1069 0.9039 0.2292 58.8376 
0.227 632.8 0.0136 0.9568 0.8704 1.0468 69.3047 
0.227 632.8 0.0245 2.4486 0.8969 0.4045 99.5404 
0.227 632.8 0.0314 2.3852 0.8966 0.3875 75.5755 
0.227 632.8 0.0454 4.0426 0.904 0.0625 88.982 
0.227 632.8 0.0538 4.t313 0.9042 0.0623 76.7282 
0.417 632.8 0.0137 1.8658 0.8939 0.8753 135.3146 
0.417 632.8 0.0251 3.9687 0.9057 0.0559 158.0591 
0.417 632.8 0.0333 4.3808 0.9049 0.0363 131.5193 
0.417 632.8 0.0538 7.2769 0.908 0.0169 135.2408 

0.05 632.8 0.0138 0.2574 0.8368 0.9503 17.7024 
0.05 632.8 0.0455 0.9475 0.8882 0.152 20.6721 
0.05 632.8 0.0455 0.9475 0.8882 0.1519 20.6722 
0.05 632.8 0.0538 1.1029 0.8669 0.452 20.0475 

0.1 632.8 0.0134 0.3965 0.8497 1.2501 28.3358 
0.1 632.8 0.0254 0.896 0.8715 0.3726 34.9049 
0.1 632.8 0.0326 0.7534 0.788 0.8768 22.2349 
0.1 632.8 0.0458 1.2911 0.8581 0.6364 27.5538 
0.1 632.8 0.0533 1.2078 0.8579 0.4293 22.2306 

0.167 632.8 0.0138 0.7753 0.859 1.2523 54.9313 
0.167 632.8 0.0251 1.5792 0.8838 0.5597 62.3585 
0.167 632.8 0.0331 1.8313 0.8873 0.4376 54.8876 
0.167 632.8 0.0454 2.9362 0.9061 0.0369 64.637 
0.167 632.8 0.0526 3.0716 0.9004 0.2307 58.1652 
0.227 632.8 0.0136 0.9686 0.8569 1.501 69.7185 
0.227 632.8 0.0245 2.4093 0.8583 0.878 97.4628 
0.227 632.8 0.0314 2.482 0.8869 0.5287 78.5159 
0.227 632.8 0.0454 3.9723 0.8965 0.1082 87.3867 
0.227 632.8 0.0538 4.1717 0.8969 0.1043 77.4363 
0.417 632.8 0.0137 1.7634 - 0.8867 0.7851 127.9303 
0.417 632.8 0.0251 3.9136 0.9 0.047 155.8733 
0.417 632.8 0.0333 4.2944 0.9051 0.0023 128.9583 
0.417 632.8 0.0538 7.308 0.9046 0.0173 135.8185 

0.71 632.8 0.011 2.6774 0.9059 0.561 242.8365 



·~ 

concentratien wavelength thickness opt. thickness g mu_a mu_s 

[%] [nm] [cm] [-] [-] [cm-1] cm[-1] 
0.23 780 0.0115 0.7607 0.8825 6.8475 59.3039 
0.23 780 0.0212 1.1623 0.8953 2.4499 52.3774 
0.23 780 0.0314 1.8149 0.8966 0.9653 56.8326 
0.23 780 0.0411 2.4968 0.8941 1.0395 59.7099 
0.71 780 0.0116 1.9345 0.908 1.0808 165.684 
0.71 780 0.0211 3.6503 0.8975 0.476 172.5246 
0.71 780 0.0314 6.0139 0.898 0.2615 191.2628 
0.71 780 0.0412 7.3473 0.7126 3.5568 174.7759 
0.23 780 0.0115 0.8418 0.8504 10.4155 62.7834 
0.23 780 0.0212 1.1848 0.8803 3.1361 52.7507 
0.23 780 0.0314 1.8215 0.8915 1.2272 56.7831 
0.23 780 0.0411 2.4373 0.8923 0.7768 58.5256 
0.71 780 0.0116 2.3605 0.8981 2.4499 201.0394 
0.71 780 0.0211 3.4832 0.9043 0.3169 164.7655 
0.71 780 0.0314 5.72 0.8947 0.2935 181.8737 
0.71 780 0.0412 7.3633 0.9 0.0146 178.7053 
0.71 632.8 0.011 2.7365 0.922 2.124 246.6451 
0.71 632.8 0.0211 3.9898 0.9229 0.1197 188.9694 
0.71 632.8 0.0314 8.1972 0.9155 0.1124 260.9444 
0.71 632.8 0.0412 10.451 0.9172 0.0458 253.6187 
0.05 632.8 0.0138 0.2735 0.9428 2.0447 17.7724 
0.05 632.8 0.0251 0.5686 0.9062 1.965 20.6875 
0.05 632.8 0.0455 0.9887 0.9307 0.8303 20.8996 
0.05 632.8 0.0455 0.9887 0.9307 0.8303 20.8996 
0.05 632.8 0.0538 1.0792 0.9386 0.7646 19.2944 

0.1 632.8 0.0134 0.3995 0.9404 1.3671 28.4498 
0.1 632.8 0.0254 0.9592 0.9066 1.8122 35.9529 
0.1 632.8 0.0326 0.7398 0.9017 1.7604 20.9334 
0.1 632.8 0.0458 1.2298 0.9015 1.131 25.7202 
0.1 632.8 0.0533 1.2837 0.9047 1.0685 23.0159 

0.167 632.8 0.0138 0.8489 0.9256 2.8582 58.6559 
0.167 632.8 0.0251 1.7101 0.9196 1.419 66.712 
0.167 632.8 0.0331 1.9573 0.9166 1.0654 58.0684 
0.167 632.8 0.0454 2.9638 0.9152 0.6203 64.6613 
0.167 632.8 0.0526 3.2687 0.9162 0.6825 61.4597 
0.227 632.8 0.0136 0.9512 0.9223 1.9321 68.0062 
0.227 632.8 0.0245 2.4896 0.9054 1.4438 100.1717 
0.227 632.8 0.0314 2.5083 0.9129 0.9495 78.9331 
0.227 632.8 0.0454 4.0549 0.9121 0.3887 88.927 
0.227 632.8 0.0538 4.3351 0.9071 0.4399 80.1373 
0.417 632.8 0.0137 1.9061 0.9191 2.0853 137.0479 
0.417 632.8 0.0251 4.1519 0.912 0.708 164.7068 
0.417 632.8 0.0333 4.4987 0.9119 0.5347 134.5624 
0.417 632.8 0.0456 6.7771 0.9111 0.2324 148.388 
0.417 632.8 0.0538 7.3916 0.9144 0.2136 137.1763 

0.05 632.8 0.0138 0.2952 0.9087 3.2214 18.1677 
0.05 632.8 0.0251 0.6266 0.9106 2.2923 22.6715 
0.05 632.8 0.0455 0.9871 0.9277 0.8442 20.8506 
0.05 632.8 0.0455 0.9871 0.9277 0.8442 20.8506 
0.05 632.8 0.0538 1.1264 0.9147 0.8805 20.0559 

0.1 632.8 0.0134 0.3847 0.924 1.6212 27.0898 
0.1 632.8 0.0254 0.9126 0.9019 0.8514 35.0764 
0.1 632.8 0.0326 0.7358 0.9444 0 22.5696 
0.1 632.8 • 0.0458 1.2716 0.9099 1.08 26.6843 
0.1 632.8 0.0533 1.3484 0.9066 1.1363 24.1625 

0.167 632.8 0.0138 0.8021 0.9307 2.1855 55.9357 
0.167 632.8 0.0251 1.7024 0.9181 1.6635 66.1605 
0.167 632.8 0.0331 1.9271 0.9157 1.1355 57.0858 
0.167 632.8 0.0454 2.9627 0.9233 0.4265 64.8316 
0.167 632.8 0.0526 3.171 0.9154 0.6492 59.6358 
0.227 632.8 0.0136 1.0555 0.9078 4.1401 73.4668 
0.227 632.8 0.0245 2.4959 0.9102 1.1901 100.6844 



Polystyrene one lntegr. Sphere 

con centration wavelength thickness opt. thickness g mu_a mu_s 

0.227 632.8 0.0314 2.458 0.9081 1.1324 77.147 
0.227 632.8 0.0454 4.0005 0.9122 0.2773 87.8399 
0.227 632.8 0.0538 4.31 0.9121 0.2804 79.8305 
0.417 632.8 0.0137 1.8956 0.9175 2.5488 135.816 
0.417 632.8 0.0251 4.0544 0.9143 0.5891 160.9394 
0.417 632.8 0.0333 4.3137 0.9118 0.5457 128.995 
0.417 632.8 0.0456 6.741 0.9085 0.3593 147.4699 
0.417 632.8 0.0538 7.298 0.9103 0.257 135.3927 

0.71 632.8 0.011 2.7841 0.9166 2.3915 250.7124 
0.71 632.8 0.0211 3.9613 0.9144 0.6541 187.0872 

• 0.71 632.8 0.0314 7.8999 0.9149 0.0597- 251.5305 
0.71 632.8 0.0412 10.3247 0.916 0.0854 250.5138 


