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Abstract 

At the accelerator laboratory of the TUE a 400 Me V electron storage ring EUTERPE is 
under construction. As a part of the EUTERPE project, a 45 MHz quarter wave cavity, 
operating at a gap voltage of 50 kV was designed to accelerate the electrons. Due to space 
limitations in the circumference of the ring, the cavity length should not exceed 0.5 meter. 
Therefore, we looked for special geometries, which have an effective length several times 
the physical length. Three solutions were found; the first employing radial transmission 
line folding, the second longitudinal transmission line folding and the third employing 
capacitive loading at the open end of the transmission line. 
Transmission line theory was used to predict important cavity parameters like resonance 
frequency, quality factor and shunt impedance. These analytical calculations show good 
agreement with numerical calculations done with the computer codes SUPERFISH and 
URMEL-T. We found that a cavity which employs longitudinal transmission line folding 
is superior to a cavity which employs radial transmission line folding, because it is simpler 
of construction and because it has a better shunt impedance. An important alternative, 
however, is the capacitive loading design because this would result in the far simplest 
construction while the rf parameters like shunt impedance and quality factor are still rather 
good. 
Two different ways of coupling rf power into the cavity are considered. 
An LC equivalent circuit is used to model the impedance matching with respect to the rf 
generator. From this, the conditions for perfect matching are derived. 
In order to verify the analytical and numerical models used, a cold scale 1: 1 experimental 
model was built of a 2-layer cavity that employs longitudinal transmission line folding. 
For convenience this cavity was designed operating at 43 MHz, because at this frequency 
measuring equipment was available from the ILEC project. 
Furthermore, a part of this report deals with the modeling of the Eimac tetrode which will 
be used as a power source for the EUTERPE cavity. 
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Chapter 1 

Introduction 

1.1 Scope of the study 

This report presents the results of a graduate study, performed in the Accelerator Laboratory 
of the Eindhoven University of Technology (EU1). This study is a part of the EUTERPE 
project (Eindhoven University of TEchnology Ring for Protons and Electrons). One of the 
devices that will be accommodated in the ring is an rf accelerating cavity. The cavity will 
operate according to the principles of a 1AA.-resonator. 

The aim of the study is to find a design for the cavity that meets with the requirements of the 
storage ring. This means resonant at a rf frequency of 45 MHz, but with a physical length that 
is shorter than 50 centimetres. The accelerating frequency is the sixth harmonic of the 
revolution frequency of 7.5 MHz. At present, an experimental model cavity has been built, 
on which the numerical and analytical model calculations were tested. 

In this chapter an overview of the EUTERPE project will be given. Furthermore the basic 
principles of a 1AA. rf accelerating structure are reviewed. 
In chapter 2 the basic parameters of an accelerating structure will be discussed, including the 
transit time factor, the shunt impedance and the quality factor. Also a representation of a 
cavity by a lumped element circuit will be described. 
In chapter 3 transmission line matrix theory is used to model the length, quality factor and 
the shunt impedance of a cavity. Furthermore numerical calculations with the computer code 
URMEL-T are done to study the effect of slight changes in geometry on the important cavity 
properties. 
In chapter 4 the problem of coupling power into the cavity is discussed. Two different 
methods are considered, namely direct coupling and inductive coupling. 
In chapter 5 the design and construction of a scale 1:1 cold measuring model is presented, 
together with results of numerical calculations done on this cavity. For the model a resonance 
frequency of 43 MHz was chosen because it is the operating frequency of the ILEC project, 
which is also accommodated in the accelerator laboratory. From this project specific 
knowledge and measuring equipment could be used. 
Results of measurements on the model cavity are discussed in chapter 6. 
Chapter 7 gives an alternative design of a cavity which has the advantage that it is much 
simpler to construct. This cavity design will only be treated briefly because the underlying 
principle of capacitive loading was proposed at the end of this graduate study. 
Finally, in chapter 8 the planned power source, a tetrode, will be described, together with 
calculations on its current characteristics and determination of an operating line. 
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1.2 The EUTERPE project 

In the Cyclotron Laboratory of the Eindhoven University of Technology research is done on 
accelerator technology. At present the 400 MeV electron storage ring EUTERPE is being 
constructed. It is a university project set up for studies of charged particle beam dynamics and 
applications of synchrotron radiation. EUTERPE is a low energy ring, and it is being built 
by the EUT technical workshop. In this section a brief description will be given of the main 
characteristics of EUTERPE. 

The lattice of EUTERPE consists of four superperiods. The magnetic structure of one 
superperiod consists of three 30° dipole magnets and eight quadrupoles for beam focusing. 
Moreover, sextupoles and closed orbit distortion correction magnets are added. Fig. 1.1 shows 
the proposed layout of the storage ring. 
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Figure 1.1: Layout of the storage ring EUTERPE. For clarity, the synchrotron radiation is 
only shown on some of the bending magnets. 

The ring has a circumference of 40 meters, and has 2 meter long dispersion free straight 
sections to be used for insertion devices. The injector of EUTERPE is a 75 MeV racetrack 
microtron. This machine is injected from a 10 MeV (medical) linac. In table 1.1 some main 
parameters of the linac and the microtron are given. The pre-accelerators and the storage ring 
will be connected with two transfer lines. Transfer line 1 connects the linac and the microtron, 
and transfer line 2 connects the microtron and the storage ring. In table 1.2 main parameters 
of EUTERPE are given. 

I II Linac I Microtron I 
Injection Energy lOMeV 

Extraction Energy lOMeV 75 MeV 

Average Pulse Current 30 mA 6mA 

Energy Spread 10% 0.15% 

Pulse Duration 2.2µs 2.2µs 

rf frequency 3000 MHz 3000 MHz 

Table 1.1: Main parameters of the linac and microtron. 
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Circumference 40 m 
Electron energy 400 MeV 
Injection energy 75 MeV 
Beam current 200 mA 
Lifetime 2h 
No. of superperiods 4 
rf frequency 45 MHz 
Harmonic number 6 
rf voltage 50 kV 
Dipoles: 

length 0.48 m 
gap height 2.5 cm 
max. field 1.4 T 

Quadrupoles: 
length 0.25 m 
aperture radius 2.5 cm 
max. poletip field 0.3 T 

Min. emittance 5.4 nm 
Min. hor. beam size 0.07 mm 
Bunch length 3.0 cm 
Energy spread Af!/E 3.5xl04 

Energy loss/tum 2.3 keV 

Table 1.2: Main parameters of EUTERPE. 

As can be seen from table 1.2 the injection energy is 75 MeV. In order to accelerate the 
electrons to an energy of 400 Me V, an accelerating structure must be designed. This 
accelerating structure also has to compensate the energy loss due to synchrotron radiation. 
This loss is about 2.3 ke V per tum. The accelerating structure will be placed in one of the 
four dispersion free straight sections. There will also be other insertion devices placed in these 
sections so there is little space left for this accelerating structure. 
The accelerating station will be a cavity operating according to the principles of a 1AA.­
resonator. Because of space limitations it is desired that the maximum length should not 
exceed 50 cm. This means that the physical length of the cavity must be essentially shorter 
than the electrical length, which is 1.67 meter. 

1.3 Transmission line theory of a 1.41.. cavity. 

The basic shape of a coaxial 1AA. cavity is given in Fig. 1.2. It consists of a beam pipe with 
a gap in it (the accelerating gap) and an outer conductor connected with the beam pipe by a 
shorting plate. In the cavity a standing wave electromagnetic field is generated such that the 
voltage is maximum across the accelerating gap. 
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Figure 1.2: Basic design of a 1AA. coaxial transmission line cavity. 

The electrical features of the cavity can be described with transmission line theory. A general 
transmission line can be represented as two parallel conductors, see Fig. 1.3. 

i(:, I) -+ 
Y(:, I) 

c::===================~---: 

Figure 1.3: Voltage and current definitions of a transmission line. 

The short piece of line of length !lz of Fig. 1.3 can be modelled as a lumped-element circuit, 
shown in Fig. 1.4, where R,L,G and C are per-unit-length quantities defined as follows: 

R=resistance due to the finite conductivity of the two conductors. 
L=total self-inductance of the two conductors. 
G=shunt conductance due to dielectric loss in the material between the conductors. 
C=shunt capacitance due to the close proximity of the two conductors 

i(:. I) - ii:.,.~. I) 

Figure 1.4: Lumped-element equivalent circuit of a short section of a transmission line. 

A finite length of transmission line can be viewed as a cascade of sections of the form of Fig. 
1.4. Using the symbols as defined in Fig. 1.4 the following equations can be derived by 
application of Kirchhoff's voltage law 
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. oi(z t) 
v(z+.1z,t)-v(z,t)=.1v(z,t)=-R&i(z,t)-L& ' , 

ar 

and with Kirchhoff's current law 

i(z+&,t)-i(z,t)=.1i(z,t)=-G.1zv(z+&,t)-C& ov(z+&,t). 
dt 

(1.1) 

(1.2) 

Dividing Eqs. (1.1) and (1.2) by .1z and then letting .1z approach to zero leads to the partial 
differential equations: 

ov(z,t) --Ri(z t)-L oi(z,t) 
az ' at ' (1.3) 

di(z,t) --Gv(z,t)-C ov(z,t). 
az dt 

(1.4) 

These equations are the time-domain form of the transmission line equations. 
For the sinusoidal steady-state condition, for which we use the complex representation 

Eqs. (1.3) and (1.4) simplify to 

v(z,t)~ V(z)ej(l)I 

i(z,t)~l(z)ejWI 

dV(z) =-(R+jroL)I(z), 
dz 

dl(z) =-(G+jroC)V(z). 
dz 

The Eqs. (1.5) and (1.6) can be solved simultaneously to give wave equations: 

d
2
V(z) -y 2V(z)=O, 

dz 2 

where 

d 
2
/(z) -y 2/(z)=O, 

dz 2 
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y=a +j~=J (R +jroL)(G +jroC) , (1.9) 

is the complex propagation constant. Travelling wave solutions can be found as 

(1.10) 

(1.11) 

The voltage and the current on the line are related as 

v + -v-
0 -z - 0 -- o---, 

1· 1-
0 0 

(1.12) 

where the characteristic impedance ~ is defined as 

z =J R+jrol . 
0 

G+jroC 

(1.13) 

The solution above is for a general transmission line. In many practical cases the loss of the 
line is so small, that it can be neglected. So by setting R=G=O Eq. (1.9) gives 

~=roJLC =k, (1.14) 

a=Oo (1.15) 

So y=jk with k the wave factoro The characteristic impedance reduces to 

Z,=J ~ . (1.16) 

For a 1AA.-resonator we get a standing wave solution if we short the line at z={) (V(z=O)=O) 
and terminate the line at z=1AA. (I(z=A/4)=0) as an open circuit 

v(z ,t) =U 
0
sin(kz )sin( rot) , (1.17) 

i(z,t) =l
0
cos(kz )cos( rot) , (1.18) 

with 
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and 

(1.19) 

Here U0 is the gap voltage, lo the current on the shorting plate and Zi the characteristic 
impedance. 
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Chapter 2 

Basic Parameters of an Accelerating structure 

2.1 Introduction 

In this chapter some fundamental properties of an accelerating structure will be explained. The 
following paragraphs will treat successively the transit time factor, shunt impedance and 
quality factor. Furthermore the general features of a cavity will be explained by representing 
it as a lumped element circuit. 

2.2 Transit time factor 

The transit time factor takes into account the reduction in energy gain when crossing an 
accelerating gap due to the finite velocity of the particle. For simplicity we first assume that 
the electrical field is independent of the longitudinal coordinate z in the accelerating gap of 
a cavity. This is illustrated in Fig. 2.1. 

E 

Gap 
• • 

z I J 

-g/2 0 g/2 z 

Gap 
• • 

Figure 2.1: The accelerating gap and its approximate field pattern. 

Suppose the voltage over the gap is Vg, then the accelerating field is given by 

v 
E =-g cos( rot) , 

z g 
(2.1) 

for -g/2<z<g/2, where g is the width of the gap and ro the angular rf frequency. When the 
particle needs a finite transit time to cross the gap its energy gain will be smaller than e V g· 

If we assume that its velocity v is constant then the longitudinal coordinate is 

z=vt. (2.2) 

The total energy gain ~E of the electron passing the gap will be 
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g/2 

J eV roz sin(0/2) 
/1£= - 8 cos(-)dz=eV =eV T , 

g v g 0/2 g 
-g/2 

(2.3) 

where 0=rog/v is called the transit angle and T the transit time factor. 
In reality the shape of the accelerating field will depend on the z coordinate as illustrated in 
Fig. 2.2 

z 
-g/2 0 g/2 

Figure 2.2: An inhomogeneous accelerating field. 

The transit time factor for a inhomogeneous accelerating field is given by 

T= If Ez(z)ei(l)/dzl 

If Ez(z)dz I 

2.3 Shunt impedance 

(2.4) 

When power is coupled into the cavity in order to generate an accelerating voltage over the 
gap, power will be dissipated in the cavity walls. This power will be proportional to the gap 
voltage squared. Mathematically this can be written as: 

v2 
Z=-g. 

p dis 

(2.5) 

In this formula Z is a cavity parameter called the shunt impedance, which is a measure for 
the necessary power to achieve a certain gap voltage. The higher the shunt impedance the less 
power is needed. One can also define a corrected shunt impedance ~h which relates the actual 
energy gain of the particle to the dissipated power. This corrected shunt impedance is related 
to the uncorrected shunt impedance by the equation 

R =ZT 2 
sh ' 

(2.6) 

where T is the transit time factor. 
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2.4 Quality factor 

Every cavity has a certain quality, expressed in the cavity parameter called the quality factor. 
The quality factor of a cavity isolated from the surroundings (i.e. the unloaded quality factor) 
is given by 

w 
Q =~ 

0 p ' 
dis 

(2.7) 

where W51 is the stored energy, Pdis the power dissipated in the cavity walls and c.o=21tff" the 
angular rf frequency. In order to couple power into a cavity it must be connected to a rf 
generator. When so, some of the stored energy may flow out of the cavity to the generator. 
In this case a loaded quality factor is defined as 

(2.8) 

where P rad is the power which flows out of the cavity. The loaded quality factor is related 
with the unloaded quality factor by the equation 

(2.9) 

with ~=P m/Pdis a coupling constant expressing the amount of coupling between the generator 
and the cavity. 

2.5 Representation of a cavity by a lumped element circuit. 

A cavity can be represented by a parallel RLC-circuit as is shown in Fig. 2.3. 

I -
$ : r f C ~L t· 

Zcav 
Figure 2.3: The parallel RLC circuit. 

This circuit has a resonance spectrum from which the bandwidth can be determined. From this 
bandwidth the quality factor can be calculated. 

IZcavl t 
0707:1 ====7fo\_-=~-:_-__ -~~=== 

B.,. 

I 
0 I I ..... 

Figure 2.4: Resonance curve, the cavity impedance magnitude versus frequency. 
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In the RLC-circuit the capacitance is related to the total capacitance between the inner and 
outer conductor of the cavity. The power dissipation in the cavity walls is represented by the 
ohmic losses due to the resistance R. The inductance L relates the currents on the surface of 
the cavity with the induced magnetic fields in the cavity. 
The cavity impedance is 

Z = _+ __ +1coC , 
( 

1 1 . J-l 
cav R jwL J 

The power dissipated by the resistor, R, is 

_ 1 iv12 
Pdis-21?. 

(2.10) 

(2.11) 

The average electric energy stored in the capacitor C and the average magnetic energy stored 
in the inductor L are given by 

w =~1v1 2c 
e 4 ' 

(2.12) 

W =~II l 2L=~IVl2-1-
"' 4 L 4 co2L ' 

(2.13) 

where IL is the current through the inductance L. Resonance occurs when W m=We. Then the 
cavity impedance is Zcav=R, which is a purely real impedance. From Eqs. (2.13) and (2.14), 
W m=W e implies that the resonance frequency, C00, should be defined as 

1 
coo=--. 

JLC 
(2.14) 

Assuming that the cavity is on resonance, the quality factor Qi defined in equation (2.7) can 
(with Ws1=We+W m) be written as 

(2.15) 

Near resonance, letting eo=co0+Aco where Aco is very small, the cavity impedance can be 
simplified to [POZ 90] 

(2.16) 
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The half-power bandwidth edges occur at frequencies 

where ~ro is determined by 

which, from Eq. (2.17), implies that 

1 
BW=-· 

Qo 

We can define a detuning angle 'I' which is defined as 

tan'1'=-2Q08 , 

so that zcav can be written as 

Z =Rcos'" eN . cav T 

In fig. 2.5 Zcav is drawn in the complex plane as a function of 'I'· 

Re(Z) 

Figure 2.5: The complex cavity impedance as a function of the detuning angle. 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

When the cavity is on resonance then 8=0, which gives '!'=0, and a purely real cavity 
impedance. 
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Chapter 3 

The EUTERPE Cavity 

3.1 Radial transmission line folding. 

Due to space limitations in the storage ring, the physical length of a cavity must be much 
smaller than its electrical length. The first design of an accelerating cavity for the EUTERPE 
storage ring was based on the principles of radial transmission line folding. A study was done 
in order to describe the cavity parameters, such as the resonance frequency, the quality factor 
and the shunt impedance, and to find a optimum design. Also the problem of coupling power 
into the cavity was analyzed. This work is described in appendix A, since this cavity will not 
actually be built. We only give here the final results. Fig. 3.1 gives a layout for the cavity and 
in table 3.1 the main parameters are given. The geometrical dimensions of this design are 
given in table A.I of appendix A.2 

.EXT: ::u~ERPE 45 MHz :..l.v:7Y 

;:iL0T: ~-.:-:['_~ AT :IHl:G 

'"' 

; K/V/PC:::1. C.(;07C5 J.T ~~M""' O.GGOO 

; 'O: TNNDRIAN 9-JUL32'1:20:55 ; MOOE:TIAO- EE-~ : ~/M>.Z; 45.coC 

"" ".!\ ,,,- .. .,,. .;,- .,.. 

~ ., ... .... - ~ ..... -7 

.. .. • .... .... ..... ..; 4- -

... ,.. ,.. ... ... - ~ ..... -

.. i. .. .... ,,,,.. .... ... ...... .... 

1 " 7 " 

, ; !=C= J.O 

7 

- - .... 

..... ..... 

i- ...... 

- -
,_ -
,_ -..__ 

... .... 

Figure 3.1: An URMEL-T plot of the electric fields in the initially proposed EUTERPE 
accelerating cavity, employing radial transmission line folding. 
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These main parameters were calculated analytically as well as numerically using the computer 
code URMEL-T [URM 87]. 

I Parameters II Analytical I URMEL-T I 
f0 (MHz) 45.00 45.68 

Qo 2573 2744 

Rsh (kQ) 145.2 135.0 

Pdis (kW) (V8=50 kV) 17.2 18.5 

Pdis (kW) (V8=100 kV) 68.9 74.1 

Table 3.1: Main parameters of the initial design of the EUTERPE cavity. 

As can be seen in Fig. 3.1 the construction of this cavity would become rather complicated. 
Furthermore the quality factor and the shunt impedance are low. This means that the 
dissipated power in the walls of the cavity is high. Therefore we looked for different designs 
of the cavity, with a higher quality factor and, which is more important, a higher shunt 
impedance. 
The solution was found by employing longitudinal transmission line folding. This new design 
is easier to construct and, as we will see, the quality factor and the shunt impedance are 
essentially higher than in the first design. In the subsequent paragraphs of this chapter, 
analytical equations are derived, using transmission line theory for the cavity length, the 
dissipated power, the shunt impedance, the stored energy and the quality factor. Finally results 
of numerical and analytical calculations are given and compared. Furthermore conclusions are 
given. 

3.2 Transmission line matrix theory. 

The properties of a 1AA. cavity can be conveniently described by using matrix multiplication .• 
In this method, a general cavity is decomposed into separate sections with each section 
characterised by a matrix A, which relates the voltage and the current at the exit of the 
section to the voltage and current at the entrance of the section, i.e 

(vl =A(vl . 1 xit 1 ntr. 
(3.1) 

The total transformation of the voltage/current vector from the shorting plate to an arbitrary 
point along the cavity is then obtained by multiplication of all the matrices involved. If we 
take the transformation matrix from the shorting plate to the accelerating gap then the 
resonance condition is simply obtained by putting the right/under element of this matrix to 
zero. The reason for this is that at the shorting plate the voltage must be zero and at the 
accelerating gap the current must be zero. 
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In Fig. 3.2 a general design of the EUTERPE cavity is drawn. This simple two layer cavity 
consists of cylinders positioned concentric around the beam axis, which is the symmetry axis, 
a shorting plate and a return section plate. So the cavity consists of coaxial layers and a return 
section. 

L z 

return 
section Zt 

1 

shorting 
plate 

LC z2 ~ 
1' gap~ 

I r o 

~_111µ1 _________________________ _ 

beam axis 

Figure 3.2: A general layout of a 2-layer coaxial cavity. 

So for the EUTERPE cavity the separate elements are coaxial transmission line sections 
connected by a return section. The transformation matrix for a lossless transmission line 
section is calculated from Eqs.(1.5) and (1.6) (by putting R=G=O) and is given by [GRI 
70],[SAN 86],[GEN 87]. 

cos~z -jZ0sin~z 

A= j 
--sin~z cos~z 

zo 

(3.2) 

where Zi is the characteristic impedance and ~=k the wave factor. 
We model a return section by a lumped element circuit consisting of a series inductance and 
a shunt capacitance as given in Fig. 3.3. This will be a good approximation as long as the 
dimensions of the return section are small compared to the wavelength. 

L 

V1 

o~~~~~~---r-...J._~c~~o 

Figure 3.3: Lumped-element circuit representation of a return section. 
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The transfer matrix for this circuit is given by: 

( 
1 -jroL J 

B = -jroC l -ro2LC . 
(3.3) 

3.2.1 Analytical calculations of the cavity length. 

The cavity can be described by using the transmission line matrix formalism. In order to 
illustrate the method, we assume a two cell cavity. In the simplest approximation one just can 
ignore the return section, and the equation for the length is given by Eq.(E.16) in appendix 
E, which is 

1 ~2 I =-arctan _ , p z, 
(3.4) 

where Z1 and Zi are the characteristic impedances of the two transmission line parts. 
If we take the return section into account then the transmission line configuration of Fig. 3.4 
can be used. 

r0 • v0 -o 11 L 12 13 

-,1 :I ' rv-v"V" 

+~ :2 
) 

~pp plate 

return section 

Figure 3.4: Transmission line configuration of a two layer cavity. 

This network can be decomposed into three components: two lines with length I and a return 
section. The total network then is represented by three transfer matrices. The transformation 
for the total system is 

( J 

cosk/ 

~: = _ j_sink/ 
z2 

coskl 
(3.5) 

-jZ2sink/ ( J 1 -jroL 

coskl -jroC l -w2LC 

where Z1 and Z2 are the characteristic impedances of the outer layer and inner layer 
respectively. For the overall transfer matrix we have the following matrix equation 
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(3.6) 

The cavity is a 1AA.-resonator and so we have the " boundary conditions" V0=0 and 13=0. 
Therefore the matrix component a22 must be zero. This then gives the resonance condition: 

(l-ro2LC)cos2k/-( col +coCZ,)sink/cosk/-
21 

sin2k/=O . 
lz2 z2 

(3.7) 

When divided by cos2k/, the equation becomes 

(3.8) 

which gives the solution for the physical length I of the cavity as 

(3.9) 

where -1hwL/Z1-1hwCZ2 and ro2(L/Zi-CZ1) 2 are perturbation terms which take the return 
section into account. If L=C=O (no return section) we get Eq.(3.4). 
The inductance L of the return section is easily calculated with 

µ r 
L=-0 g1n~, 

27t r min 
(3.10) 

where g the gap, and rmu the outer radius of the outer layer and rmin the inner radius of the 
inner layer. The capacitance C can be calculated in three ways, namely by using the fringing 
field capacity formulas in appendix A.1, the conformal mapping formulas in appendix C or 
the computer code RELAX3D [REL 88] calculations in appendix B. 

3.2.2 Dissipated power and shunt impedance. 

The shunt impedance is defined by Eq.(2.5). In order to calculate it we need an analytical 
expression for the dissipated power. For this we use a model of a 2-layer cavity as given in 
Fig 3.5: the middle cylinder has zero thickness and the current on the shorting plate and in 
the return section are assumed constant. There are four contributions to the dissipated power, 
namely from the shorting plate, the outer coaxial layer, the return section and the inner 
coaxial layer. 

19 



outer cyliDde:r rJ 

z1 i 
/ return •hotdn, I 

•tian miO!le cylinder p1ato 12 I 
LC z ... I 

r2ZZz:z:z:z~z:zzz:z:::2~z:z:z:z:zz:z::1 ~ I I L .Imler cylinder I I I 

z: - - - - - - -IMUi axti----- ___ LJ_ J 

Figure 3.5: Assumed cavity geometry for calculating the shunt impedance. The middle 
cylinder has zero thickness. 

We first consider the shorting plate. The infinitesimal resistance dR of a radial layer with 
thickness drat radius r is given by 

dR= pdr ' 
27tr0 

where p is the specific resistance of the wall material and O is the skin depth: 

with Po the magnetic permeability of vacuum and ro the angular rf frequency. 
So assuming constant current along the shorting plate, the total dissipated power is 

r, 2 
_ 1 p Jl 2 _Pio r3 

P h --- -110 1 dr--ln-, 
S Ori 2 27t0 r, f 47t0 f2 

(3.11) 

(3.12) 

(3.13) 

where r2 and r3 are the inner and outer radii of the outer coaxial layer respectively and lo is 
the shorting plate current. 
Next we consider the outer coaxial layer. From the transformation matrix Eq.(3.2) we obtain 
the voltage and current profile along the outer layer by putting the voltage V 0 at the shorting 
plate equal to zero. Then 

(3.14) 

(3.15) 

with Z1 the characteristic impedance of the outer layer. 
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Now consider a small section dz of the outer layer at position z. The infinitesimal resistance 
of this layer is: 

(3.16) 

where the first contribution comes from the inner cylinder and the second contribution from 
the outer cylinder respectively. So, the total power dissipated in the outer coaxial layer is 

I I [ ) _1 2 _1 p 1 1 2 
pcoax1--f11 (z)dR---J _+_ II1 I dz 

2 
0 

2 2rc8 0 r 2 r 3 
(3.17) 

=-- _+_ __sm2k/ +_ , p/0
2 

[ 1 1 ) ( 1 . I J 
4rc8 r2 r

3 
4k 2 

where I is the length of the outer coaxial layer. 
Next we consider the return section. For simplicity we ignore the thickness of this section and 
only take into account its radial plate. The current in the return section is 

(3.18) 

and so the dissipated power is 

r, 2 

_ 1 P Jl 2 _Pio 2. r3 P 1 ---- .:J1 dr--- cos kl ln_ , 
Pale 2 2rc8 r 4rc8 r 

~ 1 

(3.19) 

where r1 is the inner radius of the inner coaxial layer. 
To determine the current for the second coaxial layer we take the return section into account. 
This because the current profile is not exactly a cosine, but due to the return section, there 
is some deviation from it. After multiplying three matrices (coaxl transfer matrix with z=/, 
simple return section matrix and coax2 transformation matrix) we get for the voltage and the 
current profiles on the inner layer 

V
3 
= -jl 

0
[ (Z

1 
sink/ +roLcoskl)coskz +Z

2
( ( 1 -ro2 LC )cosk/-roCZ

1 
sink/ )sinkz] , (3.20) 

/
3
=/

0
[((1-ro2LC)cosk/-roCZ

1
sinkl)coskz-[

21 
sink/+ roL cosk/}inkz] (3.21) 

z2 z2 

And thus for the dissipated power in the second coaxial layer 

21 



(3.22) 

= p/
02 

(..:.+..:.)1A(_!_sin2k/+.!_}B(--l sin2k/+.!_)-D-
1 

sin2k/], 
47tO r 1 r2 [ l4k 2 4k 2 2k 

with 

A=( (1-ro2LC)cosk/-roCZ
1 
sink/)2 , 

B =(
21 

sink/+ roL coskl)' , (3.23) z2 z2 

D =2((1-ro2LC)cosk/-roCZ1sink/) (
21 

sink/+ roL cosk/) . 
z2 z2 

The total dissipated power in the cavity is 

P =P +P +P +P . 
tm sluir1 coax/ plat•· coax:! 

(3.24) 

To find the shunt impedance we need the relation between the shorting plate current lo and 
the gap voltage V&. This equation has already been derived in Eq.(3.20), namely 
Vg=V3(z=/), so 

The analytical shunt impedance of the cavity is then (assuming a transit time factor equal to 
one): 

IV 1
2 

R - g 
/ ---. 

SI p 
IOI 

(3.26) 

The length I in these equations is given by equation (3.9). For convenience we assume that: 

(3.27) 

The Eq.(3.9) can be simplified by making a Taylor expansion up to first order. If we further 
assume that Z1=Z2=Z we get the following expression for the length /. 

(3.28) 

where c is the speed of light. 
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When we would ignore the effect of the return section on the voltage and current profiles 
completely (L=C=O) then the length of the cavity would simply become 

which equals /=YaA.. 

1t 1 
l=--, 

4k 

Furthermore the approximation for the shunt impedance would simplify to: 

All these calculations can be done in the same way for a multi-layer cavity. 

3.2.3 Stored energy and quality factor. 

(3.29) 

(3.30) 

The quality factor is given by Eq. (2.7). In order to calculate Q analytically for the two layer 
cavity shown in Fig. 3.5, we first have to calculate the stored energy in the cavity. We 
assume that the stored energy of the entire cavity can be calculated by separating it into two 
coaxial parts with length I as defined previously. There are two contributions to the stored 
energy namely from the magnetic field and from the electric field. 

W =W +W . st magn dee 
(3.31) 

If we once more consider a small section dz at position z, then the energy stored in this 
section is 

(3.32) 

where L is the inductance per unit length, C the capacitance per unit length, I(z) the wall 
current at position z and V(z) the voltage at position z. The inductance and capacitance for 
a coaxial transmission line are given by 

Po rb 
l=-ln-, 

21t r a 

where ra and rb are the inner and outer radii of the coax respectively. 

23 

(3.33) 



For the outer coaxial layer we find 

I 2 I 
1 J µ/ r W =- LIIl 2dz=-0-ln-2fcos2kzdz 

magn coax/ 4 87t 
0 '2 0 (3.34) 

P/o
2 '3( 1 . I) =--In- --sm2k/ +_ . 

87t '2 4k 2 

For the stored magnetic energy of the second coaxial layer we get 

I 

_ 1 f Po '2 I 
1
2 W oa:c2-- _}n_ /

3 
dz 

magn c 4 27t r 
0 1 (3.35) 

= P/
02 

In '2lA(~sin2k/+.!_}n(--1 sin2k/+!_)-n-
1 

sin2k/], 
87t r.t 4k 2 4k 2 2k 

in which A,B and D are given by Eqs.(3.23), 13 is the current in the second coaxial layer, 
where in this case the influence of the return section on the current profile is not yet ignored. 
The total stored magnetic energy is 

W =W +W . magn magn coax/ magn coa:c2 

Similarly we can calculate the stored electrical energy in the outer coaxial layer as 

where we used Eq.(3.14) for V1 and 

for the characteristic impedance of the line. 
Furthermore, 
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(3.37) 

(3.38) 



I 

1 J21tEo ? W = IV 1-dz 
dee coa.<2 4 -,- 3 

0 ln.2. 
'1 

- 1tEr/
02222 

fA(--l sin2k/+~}B(~in2k/+~J+D-1 sin2k/], 
r 2 [ 4k 2 4k 2 2k 

2ln-
'1 

where A,B and D are given by Eqs.(3.23). 
The total stored electric energy is 

After some calculation we find for the total stored energy 

W"',=_0
_ ln-2.+(A+B)ln.2. . µ/ 
2

/( r r J 
81t '2 '1 

Then the quality factor is, with 8=(2p/µ0ro0)~, 

r r 
In-2 +(A +B)In.2. 

Q=~ <> ___ x __ _ ,.2 ,.1 

with X 

_ r3 ( 1 1 J( 1 . . I } r3 i. X-ln-+ _+_ --sm2k/+_ In-cos kl 
'2 '2 '2 4k 2 '1 

+(.2_+.2_JfA(-2._sin2k/+~}B(--1 sin2k/+~J-v_1 sin2k/], '1 '2 [ 4k 2 4k 2 2k 

where A,B and D are given in Eqs.(3.23). 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

If we now also ignore the influence of the return section on the current and voltage profiles 
in the second layer, as we have done with the approximation of the shunt impedance, then 
we obtain for the approximation of the quality factor 

( J ( J ~
-1 

I r3 1 1 1 1 1 ,.3 1 1 1 1 
Q=2-ln ln_ +/ _+_ (-+-}-In-+/ _+_ (---J 

8 '2 ,.2 '3 2 7t 2 ,.1 '1 '2 2 7t 

(3.44) 

where we have used kl=n/4 and L=C=O. 
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3.3 Analytical and numerical calculations; conclusions. 

The analytical results for the length, the quality factor and the shunt impedance are compared 
with numerical results that are obtained by the computer code SUPERFISH [POi 87]. We 
therefore choose once more a simple geometry for a two layer longitudinally folded cavity, 
for which the middle cylinder has zero thickness as used in the analytical calculations. The 
radial dimensions are r1=2.6 cm, r2=5.9 cm and r3=13.4 cm. They are chosen in such a way 
that the characteristic impedances of the first and the second layer are equal. The inductance 
of the return section was calculated with Eq.(3.10), where rmax=r3, rmm=r1 and g=5 cm for the 
gap of the return section, which results in L=16.4 nH. The capacitance C=3.6 pF was 
calculated with RELAX3D. This is a numerical program which solves the 3-dimensional 
Laplace equation (see appendix C). In Fig. 3.6 the comparison between analytical and 
numerical results is shown. 
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Figure 3.6: Comparison between analytical and SUPERFISH results as a function of the 
frequency, for a 2-layer cavity employing longitudinal transmission line folding. 
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Curve a represents the SUPERFISH calculations. Curve b is calculated by using the simple 
equations (3.28), (3.44), and (3.30), respectively. These curves show already quite good 
agreement A further improvement of the analytical results is obtained if the influence of the 
return section on the current and voltage profiles in the inner layer is taken into account. 
Curve c is obtained when using Eqs. (3.9), (3.42), and (3.26), respectively. As expected the 
analytical results give even better agreement with the numerical SUPERFISH results. The 
quality factor approximation can even be more improved when I is taken as YaA.=e/8f. The 
results are represented by curve d. This occurs because now we take the entire volume of the 
cavity into account, instead of only the parts defined by the length I used in the transmission 
line matrix theory, without the return section. This means that the calculated stored energy 
increases, and thus the quality factor. 

We can therefore conclude that the transmission line matrix formalism is a valuable method 
for analytically estimating the length, the quality factor and shunt impedance. 
The calculations shown in this chapter have been done for a two layer cavity employing 
longitudinal transmission line folding, but the theory can be also used be used for multi-layer 
cavities. 

We now look at some construction parameters of the cavity employing longitudinal 
transmission line folding. In Fig. 3.7 a general layout of the cavity is drawn. This cavity 
consists of three layers. The more layers a cavity has the smaller the physical length will be. 
The cavity consists of coaxial parts and return sections. For the coaxial parts the characteristic 
impedance is only a function of the outer and inner radii.respectively rb and ra, given by 
Eq.(3.38). In the cavity of Fig. 3.7 the radii are chosen in such a way, that the characteristic 
impedances of the coaxial layers are equal. 
The cavity has three gaps, two gaps between layers and one accelerating gap. By using the 
computer code URMEL-T we calculated the effect on the length, the. quality factor and the 
shunt impedance of the cavity when changing the width of the gaps. The gaps are chosen 
such that they are eqmil to the distances between the cylinders of a layer, denoted by s1, s2, 

s3• In these calculations the frequency was kept constant at about 45 MHz, and the outer 
radius at 31.14 cm. 

---------------------------beam axis 

Figure 3.7: A general layout of a 3-layer coaxial cavity. 
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The results of the numeral calculations are listed in table 3.2. 

I gap 1 I gap 2 I gap 3 II f0 (MHz) I Qo I ~b (k.Q) I I (cm) I 
S3 S3 S3 45.2 8355 1406.8 52.0 

S2 S3 S3 45.6 8362 1448.4 52.5 

S1 S2 S3 45.5 8380 1611.0 55.0 

Table 3.2: Numerical calculations of the effect of changing the distances of the gaps. 
The outer radius is kept constant at Ru.u=3 l. l 4 cm 

By going down in the table the total surface of the cavity becomes smaller. The quality factor 
doesn't change much, but the shunt impedance does, and becomes larger. This is the result 
of the decrease of the dissipated power in the cavity walls, while the volume and therefore 
the stored energy remains the same. 

We now look at the effect of changing the outer radius. For these calculations we use a 
simpler model consisting of two cells (see Fig 3.8). In order to keep the characteristic 
impedance the same for the two layers, the outer radius of the outer layer must also be 
increased, when the outer radius of the inner layer is increased. 

__________ beam_&xiS __________ _ 

Figure 3.8: A 2-layer cavity. 

In table 3.3 the results of the URMEL-T calculations are given when changing Si· while 
keeping the frequency more or less constant. 

I s2 (cm) I s1 (cm) f0 (MHz) Qo ~b (k.Q) I (cm) Ru.u (cm) Z:bar (.Q) 

1.5 2.7 45.8 2451 165.4 83.7 8.2 28.2 

3.0 7.2 44.5 5087 664 83.0 14.2 47.3 

5.0 16.0 44.0 9356 1590 81.3 25.0 65.9 

Table 3.3: URMEL-T calculations of the effect of changing the width of the layers and 
thereby the characteristic impedance. 
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If we increase the radial dimensions, the length of the cavity must be decreased slightly. The 
quality factor and the shunt impedance become much larger. If we would apply this to a 
cavity consisting of three layers, ~ax would increase considerably when increasing Si· For 
Si=3.0 cm, ~ax would become 30.6 cm. 
In the calculations above we kept the characteristic impedances of the different layers 
constant. Now the effect of different characteristic impedances of the layers is determined. 
The results are given in table 3.4. We again use a two cell geometry as in Fig. 3.8, with a 
characteristic impedance of the inner layer of Z,,=47 .3 .Q as a reference. Again we must adjust 
the length in order to keep the resonance frequency constant at 45 MHz. 

I z. (.Q) I II f0 (MHz) I Q, I ~b (k.Q) I l (cm) I ~ax (cm) I 
30.8 Z,<Zi 48.3 3692 324 88.3 10.5 

47.3 Z1=Z2 44.5 5087 664 81.6 13.7 

58.9 Z1>Z2 44.5 6220 962 75.3 16.5 

69.2 Z,>Z,, 44.9 7254 1236 71.0 19.5 

Table 3.4: URMELT-T calculations of the effect of varying the characteristic impedance 
of the outer layer. 

The result is that if the characteristic impedance of the outer layer increases, the cavity 
becomes shorter (see resonance condition described in appendix E), while the quality factor 
and the shunt impedance increase. This is a desired effect, because less power is needed to 
build up an accelerating voltage of 50 kV. We can therefore conclude that it is favourable to 
choose s1 and s3 as large as possible (large ~ax). In reality this will be limited because of 
practical construction limitations. 
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Chapter 4 

Coupling rf Power into the Cavity 

4.1 Introduction. 

To generate an accelerating voltage at the gap power has to be coupled into the cavity. This 
can be done in different ways. One solution is by directly connecting the inner conductor of 
the input transmission line to the inner conductor of the cavity. This is shown in Fig. 4.la and 
is described in detail in appendix B. There it is shown that in order to have matched coupling, 
the coupling point must be very close to the shorting plate. A disadvantage of this is that the 
VSWR (Voltage Standing Wave Ratio, described in paragraph 4.4) is sensitive to changes of 
the coupling position. This leads to the necessity of a movable connection with the inner 
conductor. The current on the inner conductor is high near the shorting plate, so losses can 
occur which lead to undesired heating. 
A second solution is based on inductive coupling with a loop. This is described in paragraph 
4.2, where the matching conditions are derived. In paragraph 4.3 these conditions are used 
to find the required properties of the loop like area, number of windings, position and rotation 
angle. 

4.2 Inductive coupling. 

We have seen that direct coupling is not so convenient for a cavity employing longitudinal 
transmission line folding. The best solution is found in inductive coupling with a small loop. 
This is shown in Fig. 4.1 b. 

a b 

Figure 4.1: a: Direct coupling to the inner conductor. b: Inductive coupling with a little 
loop. 

The complete rf system can be simulated by the equivalent circuit, given in Fig. 4.2. The rf 
generator is represented by an ideal rf voltage V 0 in series with the characteristic impedance 
Ro of the input transmission line. The resonator is represented by a series resonant RLC 
lumped-element circuit. The quantity lo is chosen to represent the current at the shorting plate. 
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The coupling between the input line and the resonator is represented by the mutual inductance 
M. First we calculate the input impedance seen by the generator. 

17 
11 I Vt 

Ro I 
- Vo I Li 

I 

I 
L--7z,n. 

Figure 4.2: Equivalent circuit for the complete rf system. 

For the primary circuit we get the following equation 

V1 =jwL/1 +jroM/0 , 

and for the secundary circuit 

Also 

lo V =-f Y -_ 
2 cJ''s jroC ' 

Io 

where ~ is the series resistance in the circuit. Elimination of V 2 gives 

jroM/1 +!+ml,+ j.'.c +R}O , 
Next, elimination of lo gives 

and with substitution of the angular resonance frequency 
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(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 



Eq. ( 4.5) becomes 

Now the impedance as seen from the generator can, with the use of 

be written as (assuming O<<l) 

2M2 z ='wl + (.I) 
pr '} I -R-s (-1-+ 2-j-Q.....,oo""'") 

In Fig. 4.3 ~ is drawn in the complex plane. 

Im (Z) 

1--------; --- 6 - 0 

z I )">0 
Re (Z) 

Figure 4.3: The complex input impedance seen by the generator. 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

The diameter of the circle is co2M2fRs. The quantity co2M2fRs(l + 2jQ,o) is the impedance of 
the cavity transformed to the primary circuit. The primary impedance is a complex quantity, 
having resistive and reactive components. If we compare this with the input impedance for 
an isolated resonator given in Eq. 2.16 and drawn in Fig. 2.5 we see that the circle has a 
vertical displacement due to the reactance roL1 of the coupling loop. 
To obtain impedance matching of the cavity seen from the transmission line, the voltage 
reflection coefficient r as measured on the transmission line r=(Z.,.-Ro)/(Z.,.+Ro) must be zero. 
Thus ~=Ro=50 Q. 
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From Eq. (4.9) two conditions for zero reflection can be derived. The imaginary part of ~r 
must be equal to zero, and the real part of ~ must be equal to Ro. This leads to a 
requirement for the detuning factor 

(4.10) 

and for the mutual induction 

(4.11) 

The first condition can be satisfied if the resonator is detunable. The second condition can be 
satisfied for example if the loop is rotatable, such that the mutual induction M can be varied 
from zero to a maximum. This maximum must be larger than M given in Eq. (4.11) 

4.3 Requirements for the coupling loop. 

The power dissipated in the lumped element circuit of Fig. 4.2 is 

Pdi. =.!Jo2R • 
SS 2 S 

which must be equal to the power dissipated in the cavity 

v 2 1v2 
P - g - g diss_T_2_· 

sh Rsh 

From these two equations and with the use of Eq. (4.11) we get 

The mutual induction M is determined by the equation 

<l>=M/o ' 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

where <I> is the magnetic flux enclosed by the coupling loop. If we assume that the loop is 
not too large, then the magnetic field can be taken constant across the loop. This gives us 
another equation for the flux 
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Q:>=B A=µ 1-1 A c ct•c ' 
(4.16) 

with A the area of the loop and Be the magnetic induction at the position of the loop at a 
distance z from the shorting plate. The magnetic field strength is detennined by 

(4.17) 

where ~ is the current on the inner conductor at a distance z from the shorting plate, where 
the loop is located, and r the radial distance from the cavity axis to the middle of the loop. 
Together with Eqs. (4.15) and (4.16) we get for M 

(4.18) 

For the matching condition we get by using Eq. (4.14) 

(4.19) 

Suppose we rotate the loop over an angle 0, and the loop consists of N windings, Eq. (4.16) 
becomes 

Q:>=B AN cos0 , c 
(4.20) 

and the matching condition becomes 

(4.21) 

In order to be able to produce always matched coupling the area of the loop must be larger 
than A given by Eq. (4.21) with 0=0. 
The ratio ~N 

8 
can again be calculated with the transmission line matrix theory treated in 

chapter 3. When coupling close to the shorting plate lc=Io. If we approximate the cavity by 
an ideal 1AA.-system with a characteristic impedance Zo. the ratio ljV 

8 
is lfZo. 

4.4 Voltage standing wave ratio. 

The quantity V maxN min=lma/Imm=VSWR is called the voltage standing wave ratio and is a 
measure of the mismatch between a line and its terminating impedance. It is related to the 
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voltage reflection coefficient by 

VSWR-l+Jfl 
1-Jrl ' 

(4.22) 

The VSWR is a real quantity and since OS:lrlS:l, lS:VSWIL<oo, where VSWR=l implies a 
matched load. The magnitude of the reflection coefficient on the line is found from the 
standing wave ratio as 

If'!- VSWR-l 
VSWR+l 
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Chapter 5 

Design and Construction of a Cold Model 

5.1 Introduction. 

A "cold" model was built in order to test the analytical equations derived in chapter 3 and 4 
involving the cavity parameters and the coupling of power into the cavity, and the numerically 
calculated parameters. These numerical calculations have been carried out using the computer 
codes SUPERFISH and URMEL-T. The aim of these calculations was to obtain information 
about the resonance frequency, electric and magnetic fields, shunt impedance and quality 
factor. Both programs calculate azimuthally symmetric modes in a three-dimensional geometry 
with cylindrical symmetry [URM 85], [POI 87]. URMEL-T is the most complex program of 
the two, since it can also calculate azimuthally asymmetric modes. In the next sections the 
results of numerical calculations are presented which lead to the building of a 1: 1 "cold" 
copper model of the EUTERPE accelerating cavity employing longitudinal transmission line 
folding. Cold means that it will only operate at low voltages and currents. The cavity consists 
of two layers. 

5.2 URMEL-T calculations. 

A scale 1: 1 two layer model cavity employing longitudinal transmission line folding was built. 
The radial dimensions were determined by the commercially available copper pipe, with the 
requirement that the characteristic impedances of the two layers were more or less equal. In 
Fig. 5.1 the final layout of the model cavity is drawn, and in table 5.1 the dimensions are 
given. 

L 
z 

( s) r1lr2'l3 
. ,, . . , ro 

----'-----------~~~1_l -
I 

~do 
I )d1 
· ...... --------+dz 
..._--------------~d3 
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Figure 5.1: Lay-out of the scale 1: 1 cavity measuring model. 
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I Radial 
II 

Longitudinal I 
r0= 23.0 mm do= 10.0 mm 

r1= 25.0 mm d1= 76.5 mm 

r2= 52.5 mm d2=836.5 mm 

r3= 55.5 mm d3=864.0 mm 

r4=122.0 mm d4=934.0 mm 

r5=125.0 mm s=66.5 mm 

g=27.5 mm 

Table 5.1: Dimensions of the 1:1 model cavity. 

An example of the input file for URMEL-T is given in appendix G. In order to calculate this 
very long geometry with thin cylinder walls it was necessary to use the maximum number of 
mesh points. URMEL-T needs about 30 min CPU time on a VAX-station (Digital 3100 M38) 
for this geometry. The cavity parameters calculated by URMEL-T are listed in table 5.2. The 
results obtained with SUPERFISH are also included as a comparison. 

I Parameter II URMEL-T I SUPERFISH I 
Frequency f0 43.0 MHz 44.0 MHz 

Quality factor Q0 4590 4746 

Shunt impedance Rh 552 kn 573 kn 

Dissipated power Pdis 4.5 kW 4.4kW 
(Vg=50 kV) 

Table 5.2: Parameters of the cavity in Fig. 5.1 obtained from URMEL-T and SUPER­
FISH. 

There is good agreement between both calculations. In Fig. 5.2 a plot of the electric and 
magnetic field of the ground mode is shown. This is a TM mode, which means that the 
magnetic field is transverse to the propagation direction of the wave, (Bz=O everywhere). 
URMEL-T has the possibility to calculate higher order modes of a cavity. With this a possible 
frequency spectrum of the model cavity can be predicted. These frequencies are also 
calculated analytically. The results of the first ten modes are listed in table 5.3. 
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TEXT: E'JTER?S 43,5 MHz CAVl1Y 2 PRODUC71E0NTWERP ; K/V/?C= 0.00814 AT R/M= 0.0000 

PLOT: H-;iELD AT PHl=O ; ID: TNNDRIAN 26-0CT9213:15:06 ; MCD£:TMO- E~- 1 ; ;/MHZ= 43.038 
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L-----------------------------------------------------------------------
Figure 5.2: Top: The electric field. Bottom: The magnetic field of the ground mode, 

calculated by URMEL-T. 

Freq. (MHz) Freq. (MHz) 
URMEL-T Analytical 

43.083 43.083 

133.09 129.25 

217.16 215.42 

309.01 301.58 

391.09 387.75 

485.63 473.91 

564.49 560.08 

662.69 646.25 

737.36 732.41 

839.93 818.58 

Table 5.3: Resonance frequencies calculated by URMEL-T and analytical. 
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In chapter 4 a matching condition was derived, described by Eq. (4.10). This condition can 
be satisfied if the cavity is detunable. From Eq. (4.10) we find that the cavity must be 
detunable by about 0.01 MHz. The cavity is detunable by moving the beam pipe into the 
cavity such that the capacitance of the accelerating gap is changed. When shifting the beam 
pipe into the cavity the capacitance is increased. The resonance frequency is related to the 
total capacitance of the cavity by CJlo=l/..../(LC), thus the frequency will be decreased. In Fig. 
5.3 the results of the URMEL-T calculations are shown with a gap decreased by 10 mm. In 
table 5.4 results are given for various gap sizes between 27.5 mm and 7.5 mm. 

TEXT: EUTERPE 43,5 MHz CAVITY 2 PROOUCTIEONTWERP ; K/V/PC= 0.01153 AT R'/M= 0.0000 

PLOT: E-FIELO AT PHl=O ; 10: TNNORIAN 28-0CT9209:27:08 ; MODE:TMO- EE- 1 ; F/MHZ= 40.578 

I 
I. 
I 

I I I t j Ii j I 

: ' '\I•• •••Ill•• 
I 

FRAME= 3 

; F/FC= 0.0 

1 ~ .- I 4 I I --1 I I I I- I . I I I I I 
I 

1111111111111• 
I . '-. . 

L-----------------------------------------------------------------------· 

Figure 5.3: The effect on the electrical field when decreasing the gap with 10 mm, by a 
movable beam pipe. 

I gap (mm) I freq. (MHz) I Qo I ~b (k.Q) I 
27.5 43.04 4590 552 

22.5 42.93 4582 555 

17.5 40.58 4707 852 

12.5 41.45 4642 856 

7.5 42.81 4552 524 

Table 5.4: URMEL-T results of the effect of decreasing the gap with a movable tube to 
detune the cavity. 

Instead of a continuous decrease of the frequency when decreasing the gap, it rises again 
when the gap becomes 12.5 mm. Furthermore we see a modulation in the electrical field in 
Fig. 5.3. This modulation is better seen in Fig. 5.4 where we have taken the value of the 
electrical field given by URMEL-T in the middle of the outer layer of the cavity at a radius 
of 8.4 cm from the symmetry axis. The shorting plate is at 86.3 cm, and at 0 cm the return 
section plate is situated. 
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Curve a represents the situation when the gap is maximum, while curve b is calculated when 
the gap is decreased with 10 mm (situation in Fig. 5.3). Suspecting that this modulation could 
be due to the machine inaccuracy of the computer we altered URMEL-T in such a way that 
we could calculate with double precision. The cavity parameters, when the beam pipe is 
moved inward by 10 mm, are shown in table 5.5. 

I URMEL-T URMEL-T double 

freq. (MHz) 40.58 39.95 

Qo 4707 4746 

~b (kQ) 852 904 

Table 5.5: Cavity parameters calculated with URMEL-T and the adjusted URMEL-T 
employing double precision. The gap is decreased by 10 mm. 

There is not much difference between the results of the calculations with or without double 
precision. If we look at the electrical field calculated with URMEL-T employing double 
precision, we see from curve c in Fig. 5.4 that the modulation is still present. As a result of 
these calculations we can conclude that URMEL-T isn't the optimal program to be used for 
this particular geometry of a cavity. Therefore we will use the computer code SUPERFISH 
in the next paragraph. 
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Figure 5.4: a: URMEL-T calculations of the electric field at a radial distance of 8.4 cm 
from the symmetry axis, with the complete gap distance of 27 .5 mm. 
b: URMEL-T calculations with a gap of 17 .5 mm showing modulation. 
c: URMEL-T double precision calculations with a gap of 17 .5 mm. 

The same calculations have been done with URMEL. This program also gave a modula­
tion in the electric fields, and is therefore also not suitable for this geometry. 
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5.3 SUPERFISH calculations. 

The same geometry of the cavity as used for the URMEL-T calculations, shown in Fig. 5.1, 
is used for SUPERFISH. A SUPERFISH input file is given in appendix G. The following step 
sizes were used: .1z=3. l 1 mm and &=2.03 mm. This makes a total of about 18000 mesh 
points. The plots of electrical field lines of a cavity with the full gap of 27 .5 mm, and of a 
detuned cavity with a gap of 17 .5 mm are shown in Fig. 5.5, and in table 5.5 the main 
parameters of the cavity are given. 

superlish productie cavity 43 MHFREO· 43.974 

a 

b 

Figure 5.5: Plot of the electric field lines of a: cavity with a gap of 27.5 mm, b: detuned 
cavity with a gap of 17 .5 mm. 

SUPERFISH 

I 
gap 

I 
gap 

I calculations 27.5 mm 17.5 mm 

freq. (MHz) 43.97 43.94 

Qo 4746 4742 

R,.h (k.Q) 573 573 

Table 5.6: SUPERFISH calculations of the effect of a change in the width of the gap. 
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The frequency is lower when the capacitance is increased by shifting the tube inwards, as 
expected. If we compare the SUPERFISH and URMEL-T results in table 5.2 for the geometry 
with a complete gap of 27.5 mm we see good agreement In the data given by SUPERFISH 
no modulation of the electric fields can be seen. We conclude that for these geometries 
SUPERFISH is superior to URMEL-T. 
In Fig. 5.6 the electric field profiles on the symmetry axis of the cavity are given for a gap 
of 27.5 mm and a gap of 17.5 mm. 
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Figure 5.6: Electric field profile along the axis of a cavity with a: a gap of 27 .5 mm and 
b: the tube shifted inward resulting in a gap of 17.5 mm. 

The definition of the transit time factor used in SUPERFISH is 

.. 
J Ez(z,r=O)coskz dz 

T- -- .. 
J Ez(z,r=O) dz 

Here it is assumed that z=O corresponds with the middle of the gap. 
The electric field profiles in Fig. 5.6 can be approximated by a Gauss function 

f(z)=he -(~}" 

(5.1) 

(5.2) 

where h is the height of the function and a the FWHM (full width at half maximum). If we 
use this function for Ez we get 
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j e -(~rcoskz dz (ka). 2 

T - - _ - T -I 1 (c.ocr) - -e - -- - . 
00 (z)' 4 V J e-a dz 

(5.3) 

To solve the integral we used a table of integrands [GRA 71). 
This can be compared with the approximation of the electric field by a step used in chapter 
2. Here the transit time factor was given by 

sin~ ( J T=--2 = 1-_!_ c.og • 
e 3 v 

(5.4) 

2 

Because cr>g 

(5.5) 

With v=c the velocity of light, f=43 MHz, g=2.75 cm, and cr=3.9 cm the transit time factor 
for the cavity is T=l ( the deviation from unity is less than 10·3). 

5.4 Construction of the model cavity. 

The cold model cavity employing longitudinal transmission line folding was constructed out 
of copper. The construction consists of three coaxial cylinders brazed on two flanges. The 
wall thickness of the outer and middle cylinders is 3 mm, that of the inner cylinder 2 mm. 
Because of the weight and the length of the middle cylinder and because it is brazed at one 
end to the flange it is necessary to calculate the deformation of this cylinder due to its own 
weight. In Fig. 5. 7 the situation is schematically drawn. The parameters are: D the outer 
diameter and d the inner diameter of the middle cylinder, G the centre of mass, 1 the distance 
of the flange to G (half length of the cylinder), and x the deviation from the symmetry axis 
at a distance 2 ·/ from the flange. For this deviation the following equation holds [MAG 93) 

p /3 
x=--

3£1 
(cm) , (5.6) 

with P the mass of the cylinder (kg), E the modulus of elasticity (kg/cm2
), and I the moment 

of inertia 

f =_D_4_-_d_4 
20 
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Figure 5.7: Deformation of the middle cylinder. 

Using the data given in table 5.6 we get for the deformation x==l ·10-3 mm. 

D=ll.lcm 
d=I0.5 cm 
1=42.0 cm 
P=lO kg 

Ecu= 1.2·106 kg/cm2 

Table 5.7: Data of the copper middle cylinder. 

· J "his means that there will be no deviation from the axis of symmetry that will be larger than 
the construction inaccuracy. The largest cylinder doesn't have this problem because it is 
brazed on two sides to the flanges. The smallest cylinder is light compared with the middle 
cylinder, so the deviation from the symmetry axis will even be smaller than that of the middle 
cylinder. Because this is a "cold" model, it is not necessary to braze it with silver. The 
dimensions of the cavity are given in table 5.1. The complete drawing of the cavity is given 
in Fig. 5.8. 
For the decreasing of the gap in order to be able to detune the cavity the criterion of 
Kilpatrick [SCH 81] holds. The Kilpatrick field limit for any frequency is 

8.5 

f=l.64 £ 2 e -T , 
(5.8) 

where f is the frequency in MHz below which sparking is possible for surface peak electric 
field E in MV/m. Suppose the gap voltage V

8
=50 kV over a gap of 1 cm, then E8=50 kV/cm 

so E8=5 MV/m. The frequency limit is then f=7.49 MHz. Because the cavity will operate at 
a frequency of ==45 MHz there will be no sparking when employing 50 kV over 1 cm, even 
when there are peak electrical fields. 
In order to couple power into the cavity three openings were made into the cavity: one at the 
shorting plate, one at the middle of the outer cylinder and one at the return section plate. 
Power will be coupled in at one of the locations at a time. The other two unused couple 
points will be closed with two little flanges. For the one used, a special flange is constructed 
with a BNC with a reading on it for the orientation angle. To this BNC the coupling loop will 
be soldered. The entire flange can be rotated 360 °, in order to adjust the amount of power 
coupled into the cavity. On the other side of the BNC the generator will be connected. 
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Figure 5.8: Construction drawing of the complete cavity. 
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Chapter 6 

Measurements on the Model Cavity 

6.1 Introduction. 

A scale 1: 1 copper "cold" model of a two layer accelerating cavity employing longitudinal 
transmission line folding has been built A photograph of the cavity with its measuring 
equipment is shown in Fig. 6.1. 
Measurements on the cavity were done in order to obtain the resonance frequency, frequency 
spectrum, quality factor and the shunt impedance. Also impedance matching was investigated 
and the VSWR on the input line was measured. In paragraph 6.2 the experiments done to 
measure the quality factor are presented. The results are compared with analytical predictions 
and with the numerical calculations done with URMEL-T and SUPERFISH. In paragraph 6.3 
the measured cavity impedance is presented and compared with curves obtained by the 
analytical model derived in chapter 4. Paragraph 6.4 describes the determination of the shunt 
impedance of the cavity, from the data obtained in paragraph 6.3. These results will also be 
compared with the numerically and analytically obtained results. In paragraph 6.5 the detuning 
effects due to changes of the accelerating gap are presented. The measured VSWR curve will 
be presented in paragraph 6.6. Finally in paragraph 6. 7 some conclusions will be given. 

6.2 The quality factor. 

To measure the unloaded quality factor Qi, power has to be coupled into the cavity at one 
side, and a measuring signal must be coupled out of the cavity at the other side. The quality 
factor Qi is determined by Eqs. (2.17) and (2.18). Therefore the resonance curve of the cavity 
has to be determined. The resonance frequency is determined by sweeping the input frequency 
over a certain range. Resonance occurs when the amplitude of the measuring signal reaches 
a maximum. 
The power will be coupled into the cavity by an inductive loop, as shown in Fig. 6.2. The 
loop can be mounted at three different places: at the shorting plate, at the return section plate, 
and at the middle of the outer cylinder. For strong coupling, the position of the loop should 
be at a place where the magnetic field is high. This will be at the shorting plate. Also for 
strong coupling the loop must be oriented perpendicularly to the magnetic field. Then the 
mutual induction M will be high. 
The cavity signal is measured with a stripped piece of coaxial cable, acting as an antenna that 
is placed on the symmetry axis near the accelerating gap. 

48 



a 

b 

Figure 6.1: Photographs of the "cold" cavity model. a: The cavity with the measuring 
equipment. b: The disassembled cavity. Clearly seen are the different cylinders. 
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cavity 

a b 

Figure 6.2: a) Coupling of rf-power into the cavity with an inductive loop. b) Some 
different coupling loops: one made of copper wire and the other one made of 
copper strip. 

In Fig 6.3 a layout of the experimental setup is given. The output of the rf generator is 
amplified by a 27 dB amplifier. This amplifier was necessary to obtain a high enough cavity 
signal even when the major part of the input power is reflected due to cavity detuning or loop 
mismatch. 

1 3 4 ......._ 5 

I 
2 

Figure 6.3: Schematic layout of the experimental setup, to measure the frequency 
spectrum, resonance curve and the quality factor of the cavity. 
1: rf signal generator (HP 8654 A), 2: frequency counter (PM 6680), 
3: 27 dB amplifier, 4: cavity, 5: oscilloscope (Tektr.2445). 

We measured the frequency spectrum from 10 to 320 MHz. This range is limited to 320 MHz 
by the operational frequency range of the oscilloscope. In this range we found 14 resonances. 
They are listed in table 6.1. The measured results are compared with frequencies of the first 
4 modes numerically calculated with URMEL-T and also with the analytical frequency 
predictions of these modes. The signal coupled out of the cavity has a strong maximum for 
the resonance frequencies corresponding with the 1 st harmonic. These measured resonance 
frequencies agree well with the calculated frequencies. 
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Resonance1> Signal2> Harmonic Mode URMEL-T analytical 
freq. (MHz) freq. (MHz) number number freq.(MHz) freq. (MHz) 

14.61 45 1/3 1 

21.91 40 1/2 1 

43.83 44 1 1 43.08 43.83 

55.69 222 1/4 3 

62.59 320 1/5 4 

67.39 133 1/2 2 

74.25 222 1/3 3 

104.34 222 1/3 3 

111.38 314 1/2 4 

134.77 133 1 2 133.1 131.5 

156.51 314 1/2 4 

200.91 400 1/2 5 

222.75 222 1 3 217.2 219.2 

313.03 314 1 4 309.0 306.8 

Table 6.1: Frequency spectrum of the cavity compared with the numerically and analytically 
calculated frequencies. 1> rf generator frequency 2

> frequency as established 
from the oscilloscope signal. 

In Fig. 6.4 the measured resonance curves of the ground mode are shown. Curve a is obtained 
when the loop is placed at the shorting plate perpendicular to the magnetic field. In curve b 
the loop rotated 90 °. 
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Figure 6.4: Resonance curve of the ground mode. a: Loop perpendicular to the magnetic 
field. b: Loop rotated 90°. The area of the loop is 15 cm2• 
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From these curves the quality factor can be determined, if the bandwidth BW is measured. 
The quality factor is the reciprocal of the bandwidth, as was shown in chapter 2. This means 
that if the curve is narrow, Q is high. In Fig. 6.4 curve b is narrower than curve a. For a good 
measurement of Q0 as little power as possible should be coupled in and out of the cavity by 
the loop. This can be achieved by introducing a mismatch between the power source and the 
cavity, in such a way that almost all power is reflected. When the loop is positioned 
perpendicularly to the magnetic field much power is coupled into the cavity because of the 
large dimensions of the loop and therefore much power is coupled out by the loop. This 
means that the measured quality factor is low. Therefore, the best estimate of Qo is obtained 
when the loop is rotated 90°. In table 6.2 the measured Q-values are given as a function of 
the rotation angle e. 

Rotation angle Resonance Quality 
0 ± 5 (Degr.) frequency f0 (MHz) factor Qo 

0 43.864 1954 

15 43.861 2130 

30 43.858 2475 

45 43.855 3043 

60 43.853 3810 

75 43.851 4075 

85 43.852 4274 

90 43.854 4217 

Table 6.2: The measured quality factor as a function of the rotation angle of the loop. 

In Fig. 6.5 the quality factor is drawn as a function of the rotation angle. If the loop is placed 
at the return section plate, the curve of the quality factor as a function of the rotation angle 
is more or less the same. 
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Figure 6.5: The quality factor as a function of the rotation angle. 
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From table 6.2 and Fig. 6.5 it can be seen that the maximum value doesn't occur at a rotation 
angle of 90° but at 85°. This is the result of a slight deformation of the loop. 
In table 6.3 the quality factors obtained by measurement and by analytical and numerical 
calculations are compared. 

I Method II Qo I 
Measured 4274 

URMEL-T 4590 

SUPERFISH 4746 

Analytical without 4399 
return section 

Analytical with 4625 
return section 

Table 6.3: Comparison of Qo obtained by different methods. 

The measured and calculated Q0-values differ from each other by about 8%, so there is good 
agreement 

Also the normalized amplitude of the signal coupled out the cavity as a function of the 
rotation angle 0 was measured. In all cases the frequency was adjusted so that the signal was 
maximal. The results are shown in table 6.4 and Fig. 6.6. 

Figure 6.6: The normalized signal coupled out of the cavity as a function of the rotation 
angle of the loop. 
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I 
e 

I 
tJ.V/Vmax 

I 
fo 

I ±5 (degr.) (MHz) 

0 0.95 43.860 

8 0.97 43.861 

15 0.98 43.860 

22 0.99 43.859 

30 1.00 43.858 

38 1.00 43.857 

45 0.98 43.855 

53 0.90 43.854 

60 0.80 43.853 

68 0.57 43.852 

75 0.32 43.852 

83 2.02·10"3 43.851 

90 0.29 43.852 

Table 6.4: The normalized output signal as a function of the rotation angle of the loop. 

As expected, the signal coupled out of the cavity decreases if less signal is coupled into the 
cavity. This occurs when the rotation angle of the loop increases. From the table it is seen 
that the resonance frequency decreases when less power is coupled into the cavity. The 
inductance and the capacitance of the cavity are slightly changed when the loop is rotated. 

6.3 Measurements of the cavity input imp~dance. 

With the vector impedance meter HP 4815A the absolute value of the complex input 
impedance of a cavity seen by the generator can be measured as a function of the frequency 
and the argument X· The frequency of the measuring signal generated by the impedance meter 
is obtained with the frequency counter. The probe of the impedance meter has a BNC 
connector which can be attached directly to the BNC connector of the coupling loop. The 
coupling loop was positioned perpendicularly to the magnetic field. 
In Fig. 6. 7 the ~esults are shown when the power is coupled into the cavity at the shorting 
plate and at the return section plate for the same thin loop with an area of A=15 cm2• 

From the data obtained by the vector impedance meter the complex impedance circles are 
simply constructed with the equations 
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ReZ = IZ lcosx , 

/mZ=IZlsinx , 

with -90:::;x:::;90 the angle between IZI and the real impedance axis. 

Vector impedance curves, 8=0', different coupling positions 
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Figure 6.7: Complex cavity impedance curves for a thin coupling loop with an area of 
15 cm2• 

Circle a: power coupled in at the shorting plate. 
Circle b: power coupled in at the return section plate. 

From the intersection of the two curves with the imaginary axis the reactance of the loop can 
be determined: coL1=41±3 il. Furthermore by measuring the diameter of the circles the factor 
co2M2fRs in Eq. (4.9) of the input impedance can be determined. 
Circle a) intersects with the real impedance axes at 106±1 n. There is matched coupling when 
Im Z=O and IZl=Z=Ro. The generator and the coaxial cables all have a characteristic 
impedance of 50 n. This means that for a matched circuit the impedance circle should 
intersect the real impedance axis at 50 il. It is possible to obtain perfect matching for the loop 
placed at the shorting plate. The loop then needs to be rotated over approximately 35°. An 
other possibility is by exchanging the loop for a smaller one (radius of the circle decreases) 
and/or a thicker one (the reactance of the loop decreases). 
For circle b, representing the loop placed at the return section plate, no perfect matching can 
be accomplished by rotating the loop. The circle will never intersect the real axis for the loop 
used in this situation. A solution is a larger and/or thicker loop. 
In Fig. 6.8 the results of choosing a different loop to couple power into the cavity at the 
shorting plate are shown. The larger circle is the same as seen in Fig. 6.7.a. The smaller circle 
is obtained with a coupling loop with an area of 11 cm2 made of a strip of 1 cm width . 
These different dimensions have the result that the diameter of the circle in the impedance 
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plot is smaller as well as the offset in the vertical direction. This because the reactance coL1 

has become smaller. 
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Figure 6.8: Cavity impedance curves. Large circle: large thin loop. 
Small circle: small thick loop. 

ci 

120 

From Fig. 6.8 we find that for the small loop coL1::::21±3 Q, and that the circle intersects the 
real axis at almost 50 n, namely 53 n. Thus for the small thick loop almost perfect matching 
has been accomplished. For perfect matching the loop only has to be rotated by a few 
degrees. We can conclude that it is possible to achieve matched coupling with a correctly 
chosen loop. From the data supplied by the vector impedance meter it is possible to deduce 
the resonance frequency, the quality factor and the reactance of the loop. For this we have 
fitted the curves in Fig. 6.9, representing the absolute value of the cavity impedance as a 
function of the frequency. 
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Fit of the mecsured values of the vectc:: impedance resonc'Ce curve 
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Figure 6.9: The measured vector impedance as a function of the frequency. 

The primary impedance seen by the generator is given by Eq. (4.9) 

2M2 
Z = 'roL + ro pr '} I -R-s(_l _+ 2-j-Q"""'lJ,,...) 

We can define a detuning angle 'If (as in chapter 2) 

tan\jl=-2Q
0
5 , 

so that ~ can be written as, with ~= co2M2fRs, 

Zpr =Rzcos2\jl+j(roL1 +Rpos\jlsin\jl) , 

with the absolute value equal to 

and 

1 

IZprl ={Rz
2
cos"'lf +(roL1 +Rpos\jlsin\jl)2}"'! , 
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By using Eqs. (6.5) and (6.6) to fit the data points in Fig. 6.9 with the computer code 
PLOTDA TA [PLO 92] using the least squares method, we get the following results 

I Parameter II Thin loop I Error II Thick loop I Error I 
f0 (MHz) 43.851 5.9·10"5 43.900 l.3·104 

Qo 4175 39 4245 79 

wL1 (Q) 39.5 0.6 20.7 0.8 

~ (Q) 120.5 0.7 60.0 0.8 

Table 6.5: Results of fitting the vector impedance curves in Fig. 6.9. 

The values of the resonance frequencies and the quality factor are in good agreement with the 
values measured in the previous paragraph. 

6.4 Shunt impedance. 

From the data obtained in the previous paragraph we now can calculate the shunt impedance 
of the cavity. With R,. the series impedance in the equivalent circuit of paragraph 4.2, and lo 
the current at the shorting plate, we have for the dissipated power 

v2 
p =~2R = gap (6.7) 

Jiss 2 0sR' 
sh 

so 

2 
2Vgap (6.8) Rh=--. 

s R 12 
s 0 

With 

R-
w2M2 

(6.9) 
z R ' 

s 

and if we approximate the cavity by a ideal 1AA.-resonator (Vgap=IoZo with Z, the characteristic 
impedance) we get 

(6.10) 
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I 

I 
I 
I 

For the mutual inductance we found in chapter 4 

(6.11) 

where we have used ~=lo because the location where the power is coupled into the cavity is 
close to the shorting plate. Together with Eq. (6.10) we get an expression for the shunt 
impedance 

(6.12) 

When we substitute the data for f0, A, and ~ obtained in the previous paragraph for the thin 
and the thick loop, and use Zo=50 n, r=8.85 cm and compare these results with those 
calculated numerically and analytically, we get 

I Method II Rsb (kil) I 
Measured (thin loop) 579±80 

URMEL-T 552 

SUPERFISH 573 

Analytical without 509 
return section 

Analytical with 556 
return section 

Table 6.6: Measured shunt impedance compared with calculated values. 

For the thick loop we get a measured shunt impedance ~h=537 kil with an error of 80 n due 
to the inaccuracy in determining the area of the loops. The shunt impedances measured for 
the two types of loops agree well. Furthermore there is a good agreement between the 
numerical and analytical values and the measured value of the shunt impedance of the thin 
loop. 

6.5 Detuning. 

The cavity can be detuned by shifting inward a beam pipe at the accelerating gap, decreasing 
the gap. With this action the total capacity of the cavity is increased and therefore the 
frequency decreased. In chapter 5 URMEL-T calculations have been performed yielding the 
results shown in table 5.4. 
Now the detuning of the cavity is measured using the same setup used to measure the quality 
factor. The large thin coupling loop is placed near the shorting plate, perpendicular to the 
magnetic field in order to get a strong output signal on the oscilloscope. Gradually the gap 
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distance is decreased. The results are shown in table 6.7. 

I 
gap 

I 
Resonance 

I (mm) freq. (MHz) 

27.5 43.88 

25.0 43.87 

22.5 43.85 

20.0 43.83 

17.5 43.80 

15.0 43.76 

12.5 43.71 

10.0 43.62 

7.5 43.53 

5.0 43.31 

2.5 42.81 

Table 6.7: Detuning of the cavity by decreasing the· accelerating gap. 

With a quality factor of 4500 the necessary detuning is about 0.01 MHz in order to obtain 
impedance matching. But due to small inaccuracies in the construction of the cavity the 
minimal detuning must be about 0.1 MHz. From the results given in table 6.7 it is seen that 
with detuning by capacitive loading this can be reached on signal level. Detuning of the 
cavity is limited by sparking. This occurs when the gap is less than 1 cm with a gap voltage 
of 50 kV and a frequency of -=45 MHz. If we compare these results with the SUPERFISH 
results in table 5.5 we see good agreement. 

6.6 Voltage standing wave ratio. 

A measure for the mismatch of a line is the VSWR. From Eq. (4.22) it is seen that the 
VSWR is a real quantity such that l~VSWR~oo. The VSWR on the input line of the cavity 
can be measured by placing a VSWR-meter between the generator and the cavity, as is shown 
in the experimental setup in Fig. 6.10. 
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generator - amj,~ VS'WR cavity 
meter 

frequency oscilloscope 
counter 

Figure 6.10: Schematic layout of the experimental setup to measure the VSWR. 

First the VSWR-meter was tested with loads having a known real impedance. The 
characteristic impedance of the generator and the coaxial cables is 50 n. We therefore made 
one load 50 n and one (consisting of two parallel 50 n impedances) 25 n load. The results 
of the test are shown in table 6.8. 

E VSWR VSWR 
expected measured 

BBi 1 

I 
1.2 

I 2 1.8 

Table 6.8: Test of the VSWR-meter. The expected and the measured VSWR as a function 
of a known load. 

For the actual measurements we rotated the loop 17±5° in order to obtain a maximum output 
signal on the oscilloscope. In Fig. 6.11 the results of the measurements are shown. Also the 
resonance curve is shown, in Fig. 6.11. Due to the limit of the VSWR-meter only a small 
range of the resonance curve can be scanned. The resonance frequency measured with the 
oscilloscope is off the frequency scale. The minimum in the VSWR occurs at a frequency of 
43.854 MHz, while the resonance frequency lies at 43.861 MHz. At this minimum the 
VSWR=l.9 with an expected error derived from table 6.8 of 0.2. There isn't perfect matching 
due to the fact that the power is coupled into the cavity by the thin loop, without being 
rotated 35° as discussed in paragraph 6.3. From this value of the VSWR we can calculate the 
absolute value of the load (cavity plus loop) with Eq.(4.23). The load is IZ1=95±9 Q. At a 
frequency of 43.854 MHz where this minimum of the VSWR occurs the measurements of the 
vector impedance in paragraph 6.3 gave IZl=106±1 Q with 0=0°. These two results give good 
agreement. 
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Figure 6.11: The voltage standing wave ratio. 

6. 7 Conclusions. 

The frequency spectrum of the cavity showed more resonance frequencies than predicted by 
URMEL-T and analytical calculations. This is due to higher harmonics in the rf signal. 
Resonance curves were measured from which the quality factor was calculated. The quality 
factor is dependent on the place where power is coupled into the cavity and the rotation angle 
of the loop. The less power is coupled into and out of the cavity the more accurate the 
unloaded quality factor can be determined. The measured ~ is about 8% lower than the 
numerically and analytically calculated values. They all show good agreement. 
It is possible to obtain matched coupling with a loop. Good results for the resonance 
frequency and the quality factor were obtained from fits of the cavity impedance curves. The 
small difference in resonance frequency that occurs when power is coupled in with two 
different loops is due to the inductance of the loops. In order to create matched coupling the 
loops can be rotated, which changes the mutual inductance, and/or the inductance of the loop 
can be lowered by using thick wire. 
From the cavity impedance measurements the shunt impedance can be determined 
experimentally. The analytical and numerical calculations are in good agreement with the 
experimentally obtained values. 
The cavity must be 0.1 MHz detunable. By pushing the beam pipe into the accelerating gap, 
decreasing the distance of the gap to 1 cm, a detuning was reached of =0.3 MHz. 
The absolute cavity impedance can be obtained from a VSWR measurement although this 
method is not so accurate due to the inaccuracy of the VSWR meter. 
We have seen that all the important parameters of a cavity, resonance frequency, quality facor 
and shunt impedance can be determined experimentally, analytically and numerically. 
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Chapter 7 

An Alternative Design of an Accelerating Cavity 

7.1 Introduction. 

The construction of the cavity treated in the previous chapters becomes rather complicated 
because more than two coaxial layers are needed to reduce its length to 0.5 m. In the search 
for a simple design of a cavity with a physical length several times shorter than its electrical 
length, we found at the end of this graduate study a third design which is described in this 
chapter. In paragraph 7.2 analytical calculations are performed on this new cavity, using the 
transmission line matrix theory described in chapter 3. These calculations will be compared 
with numerical calculations performed by SUPERFISH. In paragraph 7 .3 conclusions will be 
drawn. 

7 .2 Analytical calculations. 

The latest design of an accelerating cavity for the EUTERPE storage ring is depicted in Fig. 
7.1. It consists of an inner cylinder serving as beam pipe, an outer cylinder, two flanges and 
a large plate acting as a large capacitor. Due to the large capacitance of the total cavity, the 
length is small. 

~rT1rI2 
----------------------~p _____ - ---

i::=!f 
I 

Figure 7.1: A 1AA. transmission line cavity employing capacitive loading. 

This cavity can be represented by a transmission line terminated with a capacitance, see Fig. 
7.2. 

lo 

I 

·~ z 

~ ·~ 

Figure 7 .2: The cavity represented by a transmission line terminated with a capacitance. 
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The current and voltage profiles are determined by the matrix description in Eq. (3.2). The 
capacitive loading is taken into account with a matrix as in Eq. (3.3), but with the inductance 
L put to zero, because the currents are almost zero this close to the accelerating gap. The 
matrix equation for the entire cavity then becomes 

(V J ( 1 OJ ( cosk/ 1: = -jroC 1 - ~sink/ 
-jZsink/J [voJ 
cosk/ 10 ' 

(7.1) 

with Z the characteristic impedance, C the loading capacitance, and 1 the total length of the 
coaxial line. This equation gives (when using V0=0 and 12=0) the following two equations 

v2 =-jZ/osink/ ' 
/ 0(cosk/-roCZsink/)=O . 

From the second equation we get the resonance condition 

1 
tank/=--. 

roCZ 

(7.2) 

(7.3) 

If we assume that the inner radius r1 is much smaller than the outer radius r2 (r1<<r2) then in 
good approximation the capacitance C is 

(7.4) 

where d is the accelerating gap. As in chapter 3 the shunt impedance and the quality factor 
can be calculated by first calculating the dissipated power and the stored energy. The 
analytical shunt impedance and the unloaded quality factor are 

R = 47t8 Z 2sin2k/ 
sh --

p ln r 2 + .2_ + .2_ .!_ + sin2k/) 
r 1 r 1 r2 2 4k 

(7.5) 

Q = 2kl +sin2k/ R sh 

0 - ' 8sin2k/ Z 
(7.6) 

where I is determined by Eq. (7.3). 
These analytical results are compared with numerical results obtained by SUPERFISH 
calculations for a cavity with r1=2.5 cm, r2=15 cm and d=l cm. These results are shown in 
Fig. 7.3. There is good agreement. As can be seen from Fig. 7 .3 for a cavity operating at 45 
MHz the length would be 45 cm. Furthermore a quality factor of 6600 and a shunt impedance 
of 580 kil can be achieved. For a gap voltage of 50 kV, the required rf power would be 4.3 
kW, compared to 1.8 kW for a 3-layer cavity employing longitudinal transmission line folding 
with a length of ±50 cm. 
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Figure 7.3: Analytical calculations of the length, the quality factor and the shunt 
impedance compared with the numerical calculations of SUPERFISH [HEI 93]. 
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7.3 Conclusions. 

The alternative cavity, employing capacitive loading is much simpler of construction than a 
3-layer cavity employing longitudinal transmission line folding. The important parameters of 
the cavity (such as length, quality factor and shunt impedance) can be calculated analytically. 
They agree well with numerical calculations done with SUPERFISH. 
If we compare the quality factor and the shunt impedance with a cavity employing 
longitudinal transmission line folding with a length of about 50 cm and a characteristic 
impedance of the layers of 50 n (table 3.2) large differences can be seen. The quality factor 
of a 3-layer cavity is =8300, the shunt impedance =1400 ill and the power 1.8 kW, compared 
to Qi=6600, Rsh=580 kil and P diss=4.3 kW of the alternative cavity. The larger ~h the less 
power is needed to obtain an accelerating voltage of 50 kV. 
The design of a cavity employing capacitive loading came up late in this graduate study, so 
more research has to be done on this subject. 
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Chapter 8 

The Tetrode Power Source 

8.1 The tetrode. 

Tetrode vacuum tubes are well established as high power rf sources in the VHF (30-300 
MHz) band. The tetrode consists of an evacuated tube containing four electrodes: a cathode, 
a control grid, a screen grid and an anode. It is also known as a screen-grid tube. 
The tetrode that is going to be used as the power source for the EUTERPE accelerating cavity 
will be the Eimac 4 CW I 0,000 A power tetrode, shown in Fig. 8.1. The electrodes in this 
tube are positioned as coaxial spirals. The thoriated tungsten cathode is placed at the centre. 
The cathode is surrounded by the control grid and the screen grid. The anode is forming the 
outside of the tube. 

OUTLINE 

Ref Inches Millimetres 

A 8.375 ± 0.250 212.7 ± 6.4 
4.656 max 118.3 max 

B 
4.524 min 114.9min 

c 1.625 ± 0.125 41.28 ± 3.18 
D 2. 562 ± 0. 250 65.07 ± 6.35 
E 2.062.± 0.125 52.37 ± 3 18 
F 4.903± 0.122 1245z3.1 

~ 3.500.±0.150 88.90.± 381 
4.156 max 105.6 max 

H 
4.000min 101.6min 

Millimetre dimensions have been derived from inches. 

Figure 8.1: Outline of the Eimac 4 CW 10,000 A power tetrode with in the table its 
dimensions. 

In order to understand the operation of the tube the behaviour of the anode and the cathode 
is considered first, and the effects of the grid and the screen are added later. Suppose the 
cathode, grid and screen are grounded and the anode is held at a positive voltage, then the 
tube behaves as a diode. By passing a current (75 A) through the cathode, it emits electrons. 
The anode collects the electrons when its voltage V. is positive, and repels them when it is 
negative. The current flow in the diode for V.>O is limited by space charge of the electrons 
moving between the cathode and anode. The result is a current I. which is space-charge 
limited and is given by Child's law [ZIE 74] 

I =kV 312 
a a ' 

(8.1) 

where the coefficient k is expressed in amperes per volt312 and is called the perveance, and 
is determined by the geometry of the tube. For very low anode voltages, V. has to be 
corrected [TER 55]. For very high anode voltages the anode collects all the electrons emitted 
by the cathode and the diode is said to be saturated, see Fig. 8.2. 
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Saturation 

Figure 8.2: Characteristic showing space-charge limited and saturated regime. 

Now the control grid is added between the cathode and the anode. The function of this helix 
wire is to control the current flowing from the cathode to the anode independent of the 
voltage between the two. The control grid voltage is negative, so no electrons can arrive at 
the grid. Thus the grid current 18 is zero. The number of electrons that reach the anode in a 
triode tube under space-charge limited conditions is therefore almost solely determined by the 
electrical field in the cathode-grid space; once the electrons have passed the grid, they travel 
so rapidly to the anode plate that space-charge effects in the grid-plate space can be neglected. 
The negative voltage applied to the grid causes an electric field at the cathode which will 
lower the overall attractive field at the cathode, reducing the anode current. Beyond some 
critical value of the grid voltage, called the cut-off point, no anode current will flow. If the 
grid voltage is positive the anode current is increased but also electrons are attracted to the 
grid, leading to a grid current Excessive grid current can overheat the grid. 
The electrical field in the vicinity of the cathode is proportional to the quantity (V 8 +VJµ), 
where V8 is the grid voltage. The quantity µ is the ratio of the effectiveness of the grid and 
the anode in producing electric fields at the cathode and is called the amplification factor, 
[TER 43]. 

p=-l~~J (8.2) 

The amplification factor µ is determined by the geometry of the tube. If the grid has a regular 
geometrical construction, then µ depends only weakly on the adjustment of the tube i.e. the 
grid voltage and can be seen as a constant. 
The anode current depends upon an effective voltage (V8+V Jµ) and equals 

(8.3) 

where k is about the same as in Eq. (8.1). This is a good approximation if in Fig. 8.3 the ratio 
w/d is relatively small (not larger than 5), and if w/dc8 is less than unity. In that case the field 
distribution near the cathode is more or less uniform. However, if w/d is relatively large and 
w is relatively large in comparison with ~8, the field distribution near the cathode is very 
inhomogeneous and the anode current comes mostly from the cathode regions near the middle 
of the spaces between the grid wires. It is found that the anode current can then be 
represented as [ZIE 74] 
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I =k'(V + VaJ . a g µ 
(8.4) 

Figure 8.3: Cross section of a triode. 

Eq. (8.3) doesn't hold for small la. The characteristic of la as a function of Vg is somewhat 
more curved than expected from Eq. (8.3) due to the fact that the field distribution near the 
cathode becomes inhomogeneous. This can mean that the grid voltage needed to completely 
cut off the anode current is more negative than predicted by Eq.(8.4). 
Also when la is small, especially when also Vg is strongly negative, µ decreases with 10 to 
20%. This is also due to the inhomogeneous field distribution. Davidse [DA V 70] calls this 
"eilandvorming". 

Next we consider the behaviour of the complete tetrode. The grid added to a triode is called 
screen-grid or screen, as a result of its screening or shielding action. It acts as an electrostatic 
shield between the grid and the anode. The screen grid is maintained at a positive voltage 
with respect to the cathode, and maintained at ground potential with respect to rf by means 
of a capacitor. It serves to increase or accelerate the flow of electrons to the anode. Because 
there are large openings in the screen mesh, most of the electrons pass through it and arrive 
on the anode. Due also to the screen, the anode current is largely independent of the anode 
voltage over the usual operating range. This increases the amplification factor µ. 
There is a disadvantage in using a screen grid. When electrons from the cathode approach the 
anode with sufficient velocity, they dislodge electrons on striking the anode. This gives rise 
to the condition of secondary emission. The screen is close to the anode and maintained at 
a positive potential, thus the screen will attract these electrons, particularly when the anode 
voltage falls to a lower value than the screen voltage. The result is that the anode current is 
lowered and the amplification is decreased. It is therefore necessary to operate the anode at 
a high voltage in relation to the screen in order to overcome these effects of secondary 
emission. In Fig. 8.4 some anode current characteristics are drawn for a tetrode. The ratio of 
the effectiveness of the grid and the screen in producing electric fields at the cathode is 
known as the screen grid amplification factor Ps· 
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µ,=-(~~J (8.5) 

10 

li).. I ---------,v .. -ov 

----------iv 
----------2V 
-----------lV 

lOO 400 -
Figure 8.4: la-Va characteristics of a tetrode. 

The relation between the anode, grid and screen voltages and the total cathode current of the 
tetrode is now [ORR 75] 

(8.6) 

where Ig=O if the control grid is negative with respect to the cathode. 
It is generally assumed that the cathode current is independent of the anode voltage. Below 
the normal operating range of the anode voltage, the anode current and the screen current are 
not constant This equation also has to be corrected for very low anode voltages [TER 55]. 

8.2 Fits of the Eimac tube current characteristics. 

The manufacturers supplied constant current characteristics of the tetrode, shown in appendix 
F. The total cathode current 1 .. can be obtained from these curves as a function of Va, Vg and 
V5• The equation chosen to model 1 .. is an adaptation of Eq. (8.6) 

(8.7) 

The exponent 3/i is now replaced by the variable ex. This because some of the problems 
mentioned in connection with this equation can be taken into account if a higher value than 
3
/ 2 is chosen for the exponent ex. Consider the cross section of the tetrode in Fig. 8.5. The 

exponent is about% for w/d relatively small and where w/<lcg is not too large. The exponent 
can become 2 (k changes too) if w/d and w/c\;g are both large [ZIE 74]. 
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Figure 8.5: Cross section of a tetrode. 

So, letting a. be variable as a fit parameter, a better fit of the current characteristics can be 
obtained even more because µ and Ps are not really constant The cathode current ~ is 
calculated by adding the anode current and the screen current The grid current is zero over 
the entire operating range. 

The operating screen voltage will be 1500 V. This means that the operating range of the 
anode must be chosen higher than 1500 V in order to prevent secondary electron emission. 
The cathode current curves that will be fitted with Eq. 8.7 are chosen in such a way that the 
anode voltage is constant. This results in one variable namely V

1 
and four parameters, k, µ, 

µs and a.. A command file was written for the VAX software package PLOTDAT A, to fit It 
curves with different constant Va using a least squares fitting method. The command file also 
produces graphs of the actual and calculated values of It as a function of V

1 
for different 

values of Va. 
First it was assumed that µ and µ5 were constants. This resulted in values for a. calculated 
between 2.1 and 2.5. Next we assumed µ a function of la and thus of V1. This resulted in 
2.l~a.S2.8. Finally we assumed that µ and Ps are a function of V

1
. This resulted in the 

expected values of a. distributed around 1.5. The complete results of the calculations of k, µ, 
µs and a. are shown in table 8.1. The input values of µ and Ps when they are taken constant 
are the average values of the µ 's and Ps' s calculated with Eqs. (8.2) and (8.5) from the current 
characteristics in appendix F. The amplification factor µ calculated with Ia=constant is 
constant over the entire range of the anode voltage, but is a function of the grid voltage. This 
is shown in Fig. 8.6. 

The amplification factor as a function of the applied grid voltage 
300 l"T'T"'"rrT"T"T"TT"'"'T"T"T'"r"T"TTT"TT'T.,...,..,...,"'T'T'T'"!"TTTT"TTT..,..,..,.,"'T'T'T'"T'TT"'"T"l 
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Figure 8.6: The amplification factorµ as a function of the grid voltage (Va=7 kV and 
V5=1500 V). 
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I Va (kV) I 2 3 4 5 6 7 

µen µ5 fit param. 

k 2.9·10-s 2.3·10-s 9.6·10"6 1.5 ·10-s 3.2·10-s 4.3·10"6 

µ 182.3 182.0 181.8 170.0 155.5 161.4 

µs 4.1 4.0 3.9 3.8 3.8 3.7 

ex 2.2 2.2 2.4 2.3 2.1 2.5 

µ function of I. 

k 5.6·10-s 4.9·10-5 1.1 ·10-S 1.8·10-s 3.0·10-s 7.4·10"7 

µs 4.3 4.2 4.0 3.9 3.9 3.7 

ex 2.1 2.1 2.4 2.3 2.2 2.8 

µen µ5 functions of la 

k 3.4·10"3 3.4·10"3 1.3·10"3 6.1 ·104 1.3·10"3 6.5·10-5 

ex 1.4 1.4 1.6 1.8 1.7 2.3 

Table 8.1: Results of fitting Iic with Eq. 8.7. 

The screen grid amplification factor~ is a function of v. and I., and therefore a function of 
Va and V g· In table 8.2 the results are given. 

la\ Va 

I 
2 

I 
3 

I 
4 

I 
5 

I 
6 

I 
7 

I (A) (kV) 

14 4.3 4.6 4.9 5.2 5.4 5.7 

12 4.6 4.8 5.1 5.3 5.6 5.9 

10 5.1 4.9 5.3 5.6 5.7 5.9 

8 5.2 5.5 5.6 5.7 5.8 5.9 

6 5.1 5.5 5.4 5.5 5.6 5.7 

4 5.2 5.2 5.3 5.3 5.4 5.4 

3 5.2 5.2 5.2 5.3 5.3 5.3 

2 5.0 5.0 5.0 5.0 5.0 5.0 

1 4.7 4.7 4.7 4.7 4.7 4.7 

0.5 4.5 4.4 4.5 4.4 4.4 4.4 

0 3.3 3.4 3.4 3.4 3.4 3.4 
able ~.2: ~creen ld amplltlcauon tactors Ps as a gn unction ot ' a and la ( V ,). g 

72 



In Fig. 8.7 the results in table 8.2 are shown in a three dimensional plot. 
Screen-grid omplificotion factor µ., 

5.650 

0 2 

Figure 8.7: Three dimensional plot of µs as a function of Va and la. 

As an example the actual and the calculated values of Ik with Va=4 kV are shown in Figs. 
8.8, 8.9 and 8.10. 
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Figure 8.8: Fit of cathode current with µ and µs constants. The contributions of I. and ~ 
are split up, and the fitted curve of Ik with Va=7 kV is plotted for comparison. 
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Figure 8.9: Fit of the cathode current with µ a function of la and V.=4 kV. 
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Figure 8.10: Fit of the cathode current with µ and Ps functions of I •. 

The fit in Fig. 8.10 isn't accurate for low cathode currents. This is due to the fact that Eq. 
(8.7) doesn't hold for small values of It. Also inaccuracy in the determination ofµ and Ps is 
a cause of the fit being not perfect. 
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8.3 The operating line. 

For our purpose the tetrode will operate in class C. The tube is then biased so that it is cut-off 
for more than half of the rf cycle as shown in Fig. 8.11. The slope of the operating line is 
determined by the maximum admissible anode dissipation. The maximum ratings for the 
tetrode operating in this mode are given in table 8.3 [EIM 69]. 

IZ 

'• 

Figure 8.11: Class C amplification. 

30-60 MHz 

Anode voltage 7.0 kV max 

Anode current 2.8 Amax 

Anode dissipation 10 kW max 

Screen voltage 1.5 kV max 

Screen dissipation 250 W max 

Grid dissipation 75 W max 

Table 8.3: Maximum ratings of the Eimac 4 CW 10,000 power tetrode. 

Because the anode circuit of the tetrode will be tuned to the signal frequency, the voltages 
on the operating line in Fig. 8.11 vary sinusoidally in antiphase with each other. The 
operation throughout the rf cycle is therefore represented by points on the straight load-line 
or operating line shown. The anode current is not quite a part of a pure sinusoid because of 
the non-linearity of the tube characteristics. The so called Q (quiescent) point shown by the 
little circle in Fig. 8.11 is found when the tube is biased so that in absence of rf drive it sits 
at this point. 
The operating line is determined by two points, the Q-point which represents the cut-off end 
of the line and the peak anode current end of the line. The selection of an operating line can 
be a process of successive approximation since the peak anode current end of the line may 
require several test calculations to be carried out before the optimal position is selected. 
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The de anode current should not exceed the maximum value of lo <max>=2.8 A. The maximum 
de input power is determined by this value. The bias de anode voltage determines the Q-point. 
The Q-point must lay beneath the Ia=O A current characteristic so that the tetrode is a class 
C amplifier. The maximum de input power needed is therefore 

(8.8) 

and the maximum output power 

p :np oul(max) ' I in(max) ' (8.9) 

where 11 is the efficiency. 
By choosing the Q-point, one end of the operating line is determined. The other end is 
determined by the peak anode current The value of the peak anode current is estimated by 

(8.10) 

where a is a factor which determines the ratio of peak to de anode current, with 
3.5:::;a:::;4.5. Next the operating line is constructed on the characteristic curves in appendix F 
by choosing the minimum anode voltage. We must ensure that the anode voltage is always 
greater than the screen grid voltage, and that the peak positive grid voltage is minimized for 
a low grid current. It is even better to construct the operating line in such way that the peak 
grid voltage is always negative. The left-hand end of the operating line is then fixed by this 
voltage and the peak anode current. 
To find the anode current waveform we carry out the construction shown in the lower part 
of Fig. 8.12. (Here class A amplification is shown, but the method is the same for class C 
amplification.) From the anode current waveform we can calculate the de anode current and 
the peak current value of the first harmonic component The radius of the arc is equal to the 
length of the load line from the Q-point to the other end. From the arc we construct lines 
from which the anode current can be found at 15° phase intervals of the anode voltage. The 
15° interval points are called A (0°) to F (75°). The de and rf anode currents can be found 
by Fourier analysis of the current wave form using numerical formulas given by [PRE 70] 
and [CAS 92]. 

1
0
=(0.5A+B+C+D+E+F)/12, (8.11) 

and 

/ 1 =(A+ l.93B + l.73C + l.41D +E +0.52F)/12 . (8.12) 

lo can be compared with the value of lo assumed at the beginning. The result may differ 
appreciably and if it is not satisfactory another test calculation is carried out with a different 
minimum anode voltage. It may be necessary, if variations in the minimum anode voltage do 
not give the desired result, to modify the assumed value of the peak anode current, by 
modifying the factor in Eq. (8.10). 
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Figure 8.12: Current characteristics with an operating line (class A), plus the arc construc­
tion to calculate the anode current waveform. 

The amplitude of the rf anode voltage is 

(8.13) 

Thus the de input power and the rf output power are then 

(8.14) 

p rf output= Q.5VI /I • (8.15) 

From these two equations the efficiency can be calculated. 

The input and output resistances of the tube can be calculated. The output resistance is 

VI 
R = 

out T' 
I 

(8.16) 

which is often called the load resistance. Because of the high Q0 value of the resonant circuit 
(cavity), only the fundamental frequency component of the signal of the power supply will 
be dissipated in the accelerating system itself. The rest of the supplied power will be 
dissipated at the anode of the tube. 
In order to find the input resistance of the tetrode, the amplitude of the rf control grid voltage 
must be determined 
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v =IV I-IV I in g Q-poi111 g peak ' 
(8.17) 

and the rf input current is 

(8.18) 

181 is the control grid current obtained by reading the control grid currents off Fig. 8.12 at 15° 
intervals and employing Eq. (8.12). Then the rf input resistance is 

v. 
R.=~' 

Ill /. 

Ill 

(8.19) 

and the needed input power is 

P. =0.5V. /. . 
m in 1n 

(8.20) 

From this it can be calculated that the power gain of the amplifier is 

Gain=IO log (p;,~). (8.21) 

From the values of the de anode current lo, the peak anode current Ipt• the amplitude of the 
first harmonic current component 11, and the current opening angle we can find values for the 
exponent a in Eq. (8.7). This is done with the use of Fig. 8.13 [TER 43]. 
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Figure 8. 13: Curves giving the relation of direct-current Io=Ic1c and the fundamental 
frequency 11 components as a function of the opening angle and the peak 
amplitude Ip1c=I.n. 
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An example of these calculations is shown below. 

Estimated efficiency 11=0.65. 
de anode voltage V0=7 kV. 
de anode current Io=l.2 A. 
Min. anode voltage Va Cmin>=l.8 kV. 

Gives: Pm <max>=8.4 kW and P 001 <max>=5.5 kW. 

After trial and error we found: a=4.5 thus \,t=5.4 A. 

The results of the arc construction with the characteristic curves are 

I point I degrees I la (A) 

A 0 5.4±0.1 

B 15 5.0±0.1 

c 30 3.9±0.1 

D 45 1.9±0.1 

E 60 0.55±0.02 

F 75 0.049±0.002 

Table 8.4: Anode currents at 15° phase intervals. 

I 

With Eqs. (8.11) and (8.12) we get: Io=l.18±0.05 A and 11=2.09±0.06 A. The de anode 
current gives good agreement with the previously assumed value. 

For the de input power and the rf output power we get: P 11c inpu,=8.2±0.4 kW and 
Pre outpui=5.4±0.2 kW with 11=0.66±0.01. This also gives good agreement. 

The output resistance is: R001=2.5 kQ 

The amplitude of the rf control grid voltage is V m=500-130=370 V, and 181=0 because 
A=B=C=D=E=F=G=O. Thus the rf input current is lm=l1=2.09 A. 

Then the input resistance is: Rm=177 n. 

The input power is then Pi0=386 W. 

From this it follows that the power gain is: Gain=l 1.5 dB. 

The opening angle is calculated from Fig. 8.14, showing the rf voltage and current 
characteristics: 0=173°. Together with the calculated values of lo, 11 and lp1c the approximation 
for the exponent in Eq. (8.7) is: a=2.3±0.1 
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'14 
R.F. Voltage and Current Relations of the 4CW10.000A Amplifier, Operating in the C-mode 
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Figure 8.14: rf voltage and current characteristics of the operating line. 
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Final Conclusions and Recommendations 

The aim of the graduate study was to find a design for an accelerating cavity resonant at 45 
MHz and with a limited physical length of 50 cm. Three different designs have been 
considered, one employing radial transmission line folding, one employing longitudinal 
transmission line folding and finally one employing capacitive loading. For all the three 
cavities the physical length can be reduced to 50 cm. 

The cavity employing radial transmission line folding has low values for its unloaded quality 
factor and shunt impedance and is complicated of construction. This design was therefore 
rejected. 

Extensive research has been done on the cavity design employing longitudinal transmission 
line folding. Analytical equations have been derived to calculate all the important cavity 
parameters. In chapter 3 equations have been derived for the length, the dissipated power, the 
shunt impedance, the stored energy and the quality factor of a cavity consisting of two layers. 
To obtain these equations, matrix transmission line theory was used. 
The analytically calculated cavity parameters showed good agreement with numerical 
calculations performed by the computer code SUPERFISH. 

In order to check the analytical and numerical results a 1:1 "cold" copper model cavity was 
built of a two layer cavity. URMEL-T calculations of the resonance frequency differed about 
2% from the measured frequency. For SUPERFISH this was less than 0.2%. The measured 
quality factor was only 8% lower than expected. Also the shunt impedance showed very good 
agreement with the measurements. 

In order to establish matched coupling, the cavity must be detunable by 0.01 MHz. 
However, it will be very difficult to construct the cavity such that its resonance frequency is 
within this small band, and therefore it is advisable to have more detuning available (in the 
order of ±0.1 MHz). Detuning by changing the accelerating gap from 27.5 mm to 10 mm 
allowed for a measured frequency band of 250 kHz. 
Comparison between URMEL-T and SUPERFISH showed that the latter is the most reliable 
in predicting the cavity detuning from changing the accelerating gap. 
Another way to detune the cavity is by changing the permeability of ferrites placed near the 
shorting plate of the cavity. The permeability of the ferrite is a function of the applied 
magnetic biasing field. The resonant frequency of a cavity depends on the permeability of the 
medium in it. Ferrites could also be used as a fourth alternative to shorten the cavity to less 
than 50 cm. 

Power can be coupled into the cavity by a loop placed at a position where the magnetic fields 
are large. The coupling problem can be simulated with an equivalent LC-circuit. From an 
expression for the complex cavity input impedance, two conditions for matched coupling have 
been derived. This complex cavity impedance has been compared with measured values. They 
show good agreement. From the circuit model and also from the measurements we can 
conclude that perfect matching can always be achieved if the cavity is detunable and if the 
coupling loc,p can be rotated (for this, however, the loop should be large enough). 
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An alternative design of the accelerating cavity is based on capacitive loading. The main 
adyantage of this cavity is, that it is very simple of construction. Also here transmission line 
matrix theory was used to calculate the cavity parameters. Once more these calculations 
showed good agreement with numerical calculations done with SUPERFISH. The quality 
factor is of the same order as that of a three layer cavity. However, the shunt impedance is 
a factor two lower. Nevertheless this design seems to be the best of the three types considered 
in this report. 

The power source for the cavity will be a tetrode. An empirical equation is used which 
describes the total cathode current as a function of the anode voltage, control grid voltage and 
screen grid voltage. This equation contains parameters which have been obtained by fitting 
the cathode current characteristics of the tube as supplied by the manufacturer. There is good 
agreement between the fitted empirical equation and the actual current characteristics. The 
amplification factor µ and the screen grid amplification factor Ps are no constants, but are a 
function of the anode current. The quantity ~ is also a function of the anode voltage. 
An operating line has been determined, and analytical calculations have been performed 
determining the de anode current, the amplitude of the first harmonic of the anode current, 
the de input power, the rf output power and the rf input power. 
A solution has to be found in order to transport an output power of 5.4 kW to the resonator. 
A coaxial cable heats up due to the damping of the rf wave. Furthermore, impedance 
transformation will be necessary due to the difference of the characteristic impedance of the 
cable (which is 50 .Q) and the output impedance of the tetrode (which is =2.5 kil). 
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Appendix A: The EUTERPE cavity; the initial design. 

Appendix Al: Analytical calculations. 

In the cavity there is an electric field and a magnetic field which, by using E=Edld. and 

H=Hdld., satisfy the Maxwell equations. 

VxE=-jrop H , (A.1) 

VxH=jroeE. (A.2) 

Only ~.Ez and H9 are different from zero. If we transform these equations to equations for 
a two dimensional rotationally symmetric system in z and r coordinates, we get 

And for the electrical field 

a2£ a2£ 
r z 2 E -----=-ro Ep ' az 2 araz r 

1 a ( aEr aEz} 2 -- r--r- roEpE . 
r ar az ar z 

(A.3) 

(A.4) 

These equations are difficult to solve analytically in order to get an expression for the 
capacitance of the cavity drawn in Fig. 3.1. We therefore use approximation methods. 
One cell of the cavity is drawn in detail in Fig. A.1. 

d 

Figure A.1: One cell of the cavity in detail. 
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The inductance of this cell is the sum of the inductances of three parts of the cell 

(A.5) 

Because the E-field rotates twice over an angle of 90° in one cell, the capacitance is split up 
in seven contributing parts. The "coaxial" contributions are 

(A.6) 

Between the vertical plates, supposing the current is constant over this short distance 

(A.7) 

There will be a concentration of the field lines near the comers of the inner conductor. This 
effect is taken into account by calculating the capacitances in the comers with fringing field 
capacitance formulas, given by [GEN 87] 

{ 
(R2-r2)2+s2 2s R2-r2} 

6C
4
=E

0 
In + __ arctan __ (R

2
+r

2
) , 

4s 2 R2 -r2 s 

(A.8) 

The total capacitance of one cell is 

6C=6C
1 
+6C2 +6C3 +6C4 +6C5 +6C6 +6C1 • (A.9) 
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The speed of a travelling wave is 

v= J dLdz ddCz = d+s d+s 
D.L l:l.C 

and with 1AA.=N(d+s), the resonance frequency is with f0=v/'A. 

where N is the number of cells. 

(A.10) 

(A.11) 

To calculate the higher modes of a cavity we use transmission line theory and represent the 
cavity by a network of lumped-circuit elements 

iu-1 Vn-1 in Vn in+l Vn+l 

cr!n-1 L 

c-rf• 
L 

cr!··l 
eel n-1 eel n eel n+l 

Figure A.2: Electrical circuit representing the cavity. 

The expression for the frequency becomes [KOP 92] 

- . ( 2p-1 . 1 ) f -2/0 sm -- -1t , 
p 2N+l 2 

(A.12) 

with p=l,2, ... N. For large N and p=l we get Eq. (A.11) again. 

The resistance n of a circular plate with skin depth B=l/~7tpcrf is 

r, 

n =J p dr=_P_1n r b , 

21trB 21tB r 
'• " 

(A.13) 

where r. is the inner and rb the outer radius of a vertically placed plate. The quantity p is the 
specific resistance. The resistance of a coaxial cylinder is 

with 1 the length of the conductors. 

- p 1 1 
I ( } n-J--+- z. 
0 27tB r., rb 
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For one cell the resistance .Ml is 

(A.15) 

The quality factor is given by Eq. (2. 7) with for the stored energy and the dissipated power 

W =~ (H 2dV=~f (~)
2

dV, 
SI 2 J' 2 27tr 

(A.16) 

_ 1 f 2 _ 1 f ( In J Pdi-- H dS-- _ dS, 
s 2a8 2cr8 27tr 

(A.17) 

with dV the volume of the cell, dS an infinitesimal surf ace part, ~ the current in a cell which 
is supposed to be constant, and a the conductivity. The total stored energy and dissipated 
power summated over N cells become 

Po Lln2~ R2 R2 1 rl} 1 ~ 2 (A.18) W ,=---- d In_+s ln_+_d In_ =-M~In , 
s 2 27t 2 r

2 
R

1 
2 R

1 
2 

The equation for the quality factor becomes then (using Eq. (A.11)) 

7t ~ 
Q- 2Nf).Q ~ Tc . 

(A.20) 

The shunt impedance is given by Eq. (2.5) where V
8 

is the gap voltage. So V8=U0• For one 
cell we have 

(A.21) 
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1u has a cosine character so 

(A.22) 

which results by using Eq. (A.19) in 

R - 4M, 
sh llC!lilN 

(A.23) 
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Appendix A.2: Results of numerical calculations. 

The aim is to find a cavity design with the highest values for the quality factor and the shunt 
impedance, and that has a resonance frequency of 45.0 MHz. The cavity variables are 

N = Number of cells 

d = Thickness of plates 

s = Distance between two plates 

R1 = Outer radius beam pipe 

R2 = Inner radius outer tube 

r. = R,+s 

r2 = R2-s 

A Turbo PAS CAL program has been written that calculates the inner radius of the outer tube, 
the inductance, the capacitance, the resistance, the quality factor and the shunt impedance of 
a cavity as a function of the number of cells, the distance between plates and the outer radius 
of the beam pipe. Variation of d didn't have much effect on these calculated values. The 
frequency was kept constant at a value of 45.00±0.01 MHz. The results are given in Figs. 
A.3-A.8. 
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Figure A.4: The quality factor Q as a function of R1 and s. d=5 mm and N=lO. 
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Figure A.8: The shunt impedance ~h as a function of the quality factor Q. 

The radius R2 depends linearly on the outer radius of the beam pipe. Q differs only a little 
bit on increasing R1, but changes dramatically if we increase the distance between the plates. 
This occurs because Q is a function of the stored energy, and the stored energy increases 
when the volume of the cavity increases. Increasing R1 has the opposite effect on the shunt 
impedance ~h as it has on Q. From Fig. A.5 we can see that ~h increases when s increases. 
Furthermore, the fewer cells, the higher Q and ~h• when maintaining a constant length of the 
cavity. In choosing the best cavity design we prefer a high shunt impedance because it is 
directly related to the dissipated power in the cavity walls. As a result the design will be a 
10 cell cavity with dimensions given below. 

ro 

R1 

rl 

r2 

R1 

r3 

s 

d 

= 

= 

= 

= 

= 

= 

= 

= 

2.3 cm 

2.5 cm 

5.5 cm 

14.9 cm 

17.9 cm 

18.4 cm 

3.0 cm 

0.5 cm 

= 37.0 cm 

n = 10 
Table A.l: Dimensions of a 10 cell cavity. 

This leads to f0=45.00 MHz, Q0=2573 and Rsh=145.2 kil. This means that 17.2 kW is needed 
to build up an accelerating voltage of 50 kV. 
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Appendix A.3: Coupling of rf power. 

The power will be coupled into the cavity by a loop, see Fig. A.9. The equivalent circuit for 
the complete rf system is given by Fig. 4.2. The primary input impedance is 

2M2 z = "CJJL + (I) 
pr '} I -R-,,{-1-+ 2-j-Q""""l>,....} 

(A.24) 

When there is matched coupling the imaginary part of ~ is zero and the real part is equal 
to Ro""50 Q. If the circuit is tuned, o=O. So the condition for matched coupling is 

2M2 z =(I) =50Q. 
pr R 

(A.25) 
.r 

-

-

1 
b1 

- ___________________ .. __________ _ 
Figure A.9: Cavity with coupling loop near the shorting plate. 

The mutual induction is 

(A.26) 

where cj> 12 is the flux enclosed by the loop, generated by the current lo in the cavity. 
~ is calculated by equalizing the dissipated power in the equivalent circuit and the cavity, 
using Eq. (A.22) 

(A.27) 

R =.!.NLin= 6.75·10-3 n 
s 2 • 

(A.28) 

when we use the data of the cavity chosen in the previous paragraph. 
For optimal coupling it is necessary that coL1<<Ro. So for the mutual induction we get, when 
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the real part of ~r=50 .Q, 

~ 
M- ynrf\s = 2.05 nH . 

(1) 

(A.29) 

This can be obtained by using Si=0.70 cm, b1=7.75 cm and bi=16.25 cm for the dimensions 
of the coupling loop in Fig. A.9. 
The inductance of this loop can be calculated by [TER 47] 

(A.30) 

where B' is the skin effect correction factor, and µ=1. In Fig. A.10 the loop with its 
parameters is drawn. 

I 11' 

djl I 
. '11' 11 

/ I i ,...----, ,' g I ! 
--, , I Ii 

~ ! / : 1 

I ' : I 
l 1 I ·, 

I 11 

: ~/ 

Figure A.10: Thin coupling loop with a thickness d. 

Using the dimensions given above (s1=12.51 cm, s2=0.70 cm, g=l2.53 cm, d=0.10 cm, 
B'=0.003), the inductance is L=0.136 µH, and the impedance of the loop is coL1=38.48 .Q. To 
obtain matched coupling coL1 must be smaller then 25 .Q. A solution is found by taking a 
metal strip with width c, see Fig. A.11. 
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Figure A.11: Thick coupling loop with width c. 
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The inductance of this loop is given by [TER 50] 

L=0.004[(s
1
+s

2
)ln(

2
s1s2}s

1
ln(s

1 
+ g)-s

2
ln(s

2 
+ g)+2g- s1 +s2 +0.447(b+c)] . CA.3l) 

b+c 2 

Taking now c=2.50 cm and d=0.30 cm we get for the inductance 26.21 nH and roL1=10.23 
n. By taking a thicker wire and keeping all the other dimensions the same, the mutual 
inductance is not changed. Only the self inductance of the loop is changed. 
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Appendix B: Direct rf coupling. 

When we employ direct coupling, the power is coupled directly to the inner conductor of the 
cavity. This is shown schematically below. 

v , __ v;3 
3 

Figure B.1: Direct coupling of power. 

The shorting plate is located at the left (position 1), while the gap is located at the right hand 
side of the figure (position 3). Power is coupled in at position 2. The cavity is represented by 
2 transmission line sections, which can be described by two matrices A and B. 
Suppose we have a lossless line. The voltage and the current at position 2 are related to the 
voltage and the current at the shorting plate by the transmission matrix A, which is of the 
form given in Eq. (3.2). So 

(B.1) 

A similar relation holds for the voltage and current at position 3 related to the voltage and 
current at position 2 by transmission matrix B 

(B.2) 

For the entire system we get 

(B.3) 

Because of the short circuit (V1=0) and due to the open circuit (13=0), this leads to the 
requirement that the right under element of matrix (B)(A) from Eq. (B.3) is zero. The 
resonance condition is then 
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(B.4) 

The impedance Z at position 2 can be seen as a parallel circuit of the impedances Z1 and ~. 
drawn in Fig. B.2. Z1 is the impedance seen when looking toward the shorting plate, while 
~ is the impedance seen when looking to the open end. 

z,., ... 

Figure B.2: Impedances seen by the generator for a lossless line. 

For the impedances we find 

(B.5) 

-1 v2 B11 V3 b22 z =- =- = 
2 T B-•v b, 

2 21 3 21 

(B.6) 

because Det(B)=l. The minus sign takes into account the direction of the current. Seen from 
position 2 the current left from position 2 flows toward the generator, while at the right it 
flows away from the generator to the open end of the circuit. The total impedance seen by 
the generator is 

1 1 1 
-=-+-=0. 
z z1 z2 

(B.7) 

when we use the resonance condition. This means that the impedance seen by the generator 
is infinite, and no power can be coupled into the resonator. 

We now assume that there is a lossy line, but that the losses are that small that the voltage 
and current distributions along the line remain the same as in the lossless case. These losses 
are depicted as extra parallel ohmic resistors in Fig. B.3, where the total impedance seen by 
the generator is drawn. 

R 

Figure B.3: Impedance seen by the generator for a lossy line. 
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The relation 1/Z1+ 1/Zi=O is still valid because we assumed that the voltage and current 
profiles remained the same. The total impedance is therefore 

1_1 1_1 ---+--_. 
Z R1 R2 R 

The dissipated powers left and right of the coupling position are 

where V2 is the voltage at the coupling position. The resistance is then 

and is with the total dissipated power of the cavity 

y2 y2 
3 3 

P=P1+P2=-=--, 
R 2R • 

sh sh 

equal to 

(B.8) 

(B.9) 

(B.10) 

(B.11) 

(B.12) 

To obtain perfect matching the resistance seen by the generator must be equal to the 
characteristic impedance Ro of the coupling line, R=R0• Thus the relation for matched 
coupling becomes, with V2=Vc the voltage at the coupling position and V3=V max the maximum 
voltage at the gap 

(B.13) 

Suppose the cavity can be approximated by ideal 1AA.-system. Then V max=Zo11, with Z, the 
characteristic impedance, and Vc=V maxsin kx, where x is the distance from the gap to the 
position where power is coupled into the system. Filling these expressions into Eq. (B.13) we 
get 

21C/o 
k=--' 

c 
(B.14) 

where c is the speed of light Using the data for the model cavity, ~h·=Rsi/2=286.7 kn, 
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Ro=50 n, and f0=43.974 Mhz we get for the distance from the gap to the coupling position 
x=l.69 m. A 1AA. is 1.71 m. So the power must be coupled into the resonator at 2 cm from 
the shorting plate. 
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Appendix C: RELAX3D calculations of the capacitance of a return 
section. 

The capacitance of a system consisting of two conductors is defined by the ratio of the 
magnitude of the electric charge on one of the conductors and the magnitude of the potential 
difference between the conductors, 

cc.A (F) . 
IVabl 

(C.1) 

Written in terms of surface charge density p, and the electric field E the equation becomes 

f PsdS 
C= s 

b 

-JE·dl 
a 

(C.2) 

It is difficult to find an analytical description for the electric field of the return section, 
because the two dimensional Poisson equation for the potential 

a1v a1v __ 1 av 
_+_- --
ar2 dZ 2 r dr 

(C.3) 

is difficult to solve for this section. 

I 

r Eo/Z:z?ZLZ?Z.Z.;:z?ZL?ZZ:z?ZL2ZI outer conductor 

retqrn 
on . 

LC wAwwwvm inner conductor 

~at ________________ :~ conductor 

Figure C.1: The return section. 

The computer code RELAX3D is an interactive FORTRAN-program [REL 88], that is able 
to solve numerically general three dimensional Laplace and Poisson problems. The return 
section geometry must be fitted on a three dimensional grid, determined by the variables 
IMAX, JMAX and KMAX. The product of these variables should not exceed 500.000. The 
geometry can be defined by three boundary conditions: the Neumann-condition, the Dirichlet­
condition, and a dielectric transition between two media having a different permittivity. The 
latter one will not be used in our problem. The Neumann-condition implies that the gradients 
of the charge-density, permittivity and the potential perpendicular to the boundary are zero. 
The Dirichlet-condition implies that the points that satisfy the former condition, have a fixed 
value for the potential. 
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The solution of a potential problem is found by solving finite differential equations in these 
points by using point-iteration, with regard of the conditions. Before starting an iteration, a 
FORTRAN subroutine must have been written and compiled in which the geometry and 
starting conditions are defined. The name of this subroutine must start with the letters 'BND'. 
In this subroutine a starting value of the potential and when needed the condition of the points 
are given. A Dirichlet boundary is defined by a negative value of the potential. The 
magnitude of this negative value is the value of the potential held constant. Every point that 
is on a boundary for which the potential isn't defined by a Dirichlet-condition, satisfies 
automatically the Neumann-condition. An example of an input file for RELAX3D is given 
below. 

SUBROUTINE BND2CELl(I,J,K,V,F,LL) 
C==================================================================C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

RELAX3D PROEFl.OBJ 
LAPLACE IN CYLINDERCOORDINATEN 
ONDERZOEK NAAR DE CAPACITEIT VAN HET OMKEERPUNT 
VAN EBJ TESTCAVITY BESTAANDE UIT T'...iEE CELLEN 
Rl= 2.5 CM Zl= 3.0 CM 
R2= 5.5 CM Z2=15.0 CM 
R3= 6.0 CM 
R4=13 .2 CM 
IMAX=31 JMAX=l33 KMAX=l OPT=2 HX=0.5 HY=O.l 

C==================================================================C 
c 
C STARTING V.;LUE FOR NON-BOUNDARY POINTS 
c 

V=0.5 
c 
C DIRICHLET BOUNDARY 
c 

c 

IF (I.EQ.l)V=-1. 
IF (J.EQ.133)V=-l. 
IF (J.LE.26)V=-l. 
IF (I.GE. 7 .AND. J .GE. 56 .AND .J .LE. 61) V=-1. E-20 

C NEUMANN BOUNDARY 
c 

IF \I.EQ.31.Al'ID.J.GT.51.AND.J.LT.l33)V=0.5 
IF I. I. EQ. 31.AND.J .GT .26 .AND.J .LT. 56JV=0. 5 
RETURN 
El-ID 

In order to calculate the capacitance of the return section we use a potential difference 
between the inner and outer condition of 1 volt. This simplifies Eq. (C.2), using Gauss's law, 
to 

C=IQ I =If PsdSI =£0 lf<E·n)dSI =er · (C.4) 

s s 

So the capacitance of the return section is numerically equal to the charge on one of the 
conductors. 

One conductor of the return section consists of the outer cylinder, the return section plate and 
the inner cylinder. For these three sections we can write down expressions for the charges as 
a function of the potential calculated by RELAX3D. 
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For the outer cylinder we have 

<J1 =e0 lj J E·fdzrd~ I =21tE0 rljE·fdz I 

lf(av a1,r.. 1 av "} 1 =21tE
0
r _f+_z+ __ ~ fdz 

ar az r a~ 
I 

=21tE0 r1Jav dz I 
0 ar 

(C.5) 

For the return section plate we have 

r, 

<J2 =21tE0 I J E.Zrdrl =21tE0 I J~~ rdrl (C.6) 

r. 

And for the inner cylinder we have 

(C.7) 

The capacitance of the return section with length l is thus 

(C.8) 

The capacitance can also be calculated from the charge on the inner conductor, consisting of 
the middle cylinder. The resulting value of the capacitance would be the same. The length /, 
defined in Fig. C. l should be chosen long enough, so that the equipotential lines are situated 
parallel to each other at the right hand side of the figure. This is necessary in order to take 
the effect of the fringing fields near the inner conductor entirely into account. 
Command files have been written for the Vax software package PLOTDATA, calculating the 
charge of a conductor from the potential given in every grid-point by RELAX3D. In Fig. C.2 
the results of a RELAX3D calculation are shown. 

The capacitance Ca calculated in Eq. (C.8) is not the capacitance used in the equations in 
chapter 4. It must be reduced with the capacitance of the two coaxial parts of the inner and 
outer layer. The equation for the capacitance of a coaxial structure is given by Eq. (3.33) 
times the length (/-g), where g is the gap. The result is a useful approximation for the return 
section capacitance which can be used in the equations derived in chapter 3. 

Using the dimensions of the model cavity to calculate the capacitance C of the return section, 
the results are 
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I Method II Ca (pF) I C (pF) I 
RELAX3D 15.8 3.7 

Fringing field capacitance 16.4 4.4 
equations (Appendix A.1) 

Equations derived by conformal 15.3 3.2 
mapping (Appendix D) 

Table C. l: Comparison of capacities C calculated in three different ways for the return 
section of the model cavity. 

The third method in the table using conformal mapping equations is discussed in appendix 
D. As we will see it is a very useful tool to calculate the return section capacitance because 
it has better results than the method using the fringing field capacitance equations. 
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Figure C.2: Results of RELAX3D calculations on the return section of the model cavity. 

Note that the length I is chosen long enough, because the equipotential lines are parallel to 
each other in the right hand side of the figure. 
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Appendix D: Conformal mapping, calculation of the capacitance of a 
return section. 

A schematic layout in the z-plane of a cross section of the return section of the cylinder 
symmetrical EUTERPE cavity employing longitudinal transmission line folding is given in 
Fig. D.1. The longitudinal z-component is replaced by the x component while the radial 
component is replaced by the y component. Because of cylinder symmetry, there is no angular 
~ component. In order to calculate the capacitance of the return section, the potential 
distribution in a 20 cross section is calculated using the analytical tool of conformal mapping. 
The middle cylinder is for convenience approximated by a infinitely thin cylinder. 

The outer boundary is set at a potential of 0 while the inner plate is at a potential of V 0. This 
plate is situated at a vertical distance P from the lower boundary y=O, a vertical distance Q 
from the upper boundary y=P+Q, and a horizontal distance G from the return section plate. 
In order to solve the potential distribution in this polygon, the problem can be simplified by 
transforming it to the so called t-plane. The points on the comers of the polygon in the z­
plane are transformed to points on the real t-axis of the t-plane. Here t=-a corresponds to z=O 
while t=-b is given by z=j(P+Q). 
To describe the transformation of the z-plane into the t-plane the Schwarz-Christoffel 
transformation is used, 

dz N ~-I 
-=KIT (t-a ) It 
dt n•I n 

(D.l) 

Here ~n is the angle at a point A0 in the z-plane which is transformed to the point ~ in the 
t-plane. K is a complex constant and N is the number of angles in the polygon. Using the 
nomenclature in Fig. D. l we get for the Schwarz-Christoffel transformation 

dz =K t-1 

dt tJt+aJt+b 
(D.2) 

K is found by integration near t=O where z varies from Im(z)=O to Im(z)=P [WEB 92]: 

1:£ 0 

jP= J dz dt= f -jK d8 
r:-t: dt It {;;t; 

=> K=~.f;J;' 
7t 

using t=Rei9
, where 0~8~7t is an angle in the t-plane, and R a small radius. 

Integrating Eq. (D.2), using z(-a)=O to determine the constant of integration, gives 

(D.3) 

z(t)=K [In (2FaR +2t+(a+b) }-1-ln (2ab+(a+b)t+2.f;J; FaRJ] . (D.4) 
b-a {;;t; t(a-b) 
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Figure D.1: Schematic layout of a cross section of the return section in three planes. 

Transforming the t-plane into the ro-plane, the potential distribution describes a homogeneous 
field. This ro(t) transformation is given by: 

dro A 
~ ro(t) =A ln(t) +C . (D.5) ---

dt t 

The constant C is determined by the choice of the origin in the ro- plane. 
The complex constant A is found by integration near t=O where ro varies from lm(ro)=O to 
lm(ro)=l, 

l:f; 0 

j= J ~~ dt= f;Ad8=-j1tA 
, .. -£ lt 

1 A=--' 
1t 

(D.6) 

using again t=Rei9
• 

The electrical field E is given by E=VV, with V the potential distribution. The non-zero 
component E is given by 

E= dro . 
dz 
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The capacitance between two conducting planes with a potential difference v.b is given by 
Eq. (C.l). The total amount of charge on a conducting plate can be expressed in terms of 
electrical field at some enclosed area, using Gauss's law 

(D.8) 

where fi the normal vector on the surface, shown in Fig. D.2. Considering the real situation 
of the return section, it is seen that it is displaced at a distance ~ with respect to the cavity 
axis. So the radial position is given by r=~+y. 

Figure D.2: Schematic layout of the return section. 

The capacitance C1 of the outer cylinder at a distance r=R2=R0+(P+Q), is equal to the total 
charge on the outer cylinder when the potential difference is 1 V between the two conductors, 
which is 

'r s' (dro r 1(~1) C1 =2rr.R.2 I J E(x)dx I =2rr.R.2 I - I =27tR2 I ro (t) I I 
0 0 dx l•-b 

(0.9) 

The contribution of the charge at the return section plate to the total capacitance is 

C2=2x If E(r)rdrl =2x IK-b dro )r(t)dtl . 
R -a dt • 

(D.10) 

This integral must be evaluated numerically, using a second order integration routine, because 
the first order integration method, having a convergence factor of =1 doesn't converge well. 
The second order integration method has a convergence factor of =2. 
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The contribution of the charge at the lower boundary to the capacitance is 

The total capacitance of the return section with a length I is 

Ca=C1+C2+C3 . 

(D.11) 

(D.12) 

The capacitance C of the return section that is used in chapter 3 is Ca minus the capacitance 
contribution of the coaxial parts with a length /-G. 

The length I is chosen large enough so that the electrical field has only a radial component 
at the right hand side of Fig. D.2. 
For a general EUTERPE cavity Ro is fixed at 25 mm, with a plate thickness of the middle 
cylinder of 5 mm. To describe the integration path along the outer cylinder, Q must be 
increased by 5 mm, because the model we used for confonnal mapping can only handle an 
infinitely thin middle cylinder. This implies that the electrical field far away from the 
symmetry axis is systematically too small by the amount (Q-5 mm)/Q. To compensate for 
this, the electrical fields at the outer cylinder and at the return section plate are multiplied by 
the fraction Q/(Q-5 mm). This results in an electrical field near r=Ro that is too high. But due 
to the radius dependence of the integral in C2, this effect can be neglected. In Fig. D.3 the 
capacitances (in pF) are plotted as a fu~ction of P and Q (in mm) with different gaps, G=20, 
30 and 40 mm. A special case occurs if the characteristic impedances of the two layers are 
equal. Q and P are then related by (P+Q+R.,)/(P+R0)=(P+Ro)/Ro. This relation is plotted by 
the dashed curve. We see an increase of area with low capacitance, when G is increased. This 
occurs because the electrical field at the return section plate is decreased, and therefore the 
capacitance. Furthermore we see that the capacitance along the dashed line doesn't decrease 
monotonically. 
To verify the shape of the curves in Fig. D.3, the same calculations have been done using the 
model of fringing field capacitances described in appendix A. l. The results are shown in Fig. 
D.4. Comparing Fig. D.4 with Fig. D.3 we see that the general shape is the same, but that the 
values of the capacitances calculated using the fringing fields capacitance model are higher, 
especially for larger Q. 
This is probably caused by the fact that the fringing fields capacitance equations only hold 
when the fringing fields at the different corners do not interact with the other corners. When 
increasing Q these interactions become larger. For small Q values the two methods agree 
well. 
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Figure D.3: Equi-capacitance contours versus P and Q with 1=150 mm and a: G=20 mm, 
b: G=30 mm and c: G=40 mm, using conformal mapping. 
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Figure D.4: Equi-capacitance contours calculated by using the fringing fields capacitance 
model in appendix A. I, with the same data as in Fig. D.3 
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Keeping P=30 mm and 0=30 mm constant and letting Q increase we see in Fig. D.3 that for 
one value of P there are two equal values for C with different Q. To verify this we used the 
numerical program RELAX3D. Also, for the same geometries, we calculated the capacitances 
using the fringing fields capacitance equations. The results are shown in table D.1. 

I Method II Q=72 mm I Q=320 mm I 
RELAX3D 21.7 pF 20.3 pF 

Conformal mapping =22 pF =22pF 

Fringing field equations 22.4 pF 30.6 pF 

Table D. l: Capacitances calculated using three different methods. 

The results is that calculating the capacitance of a return section with the conformal mapping 
method is superior to the method using fringing fields capacitance equations, especially when 
Q becomes large. 
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Appendix E: The resonance condition. 

Suppose a two cell cavity can be described by two lossless transmission line sections. For 
simplicity we, for the moment, consider a 2-layer cavity and ignore the effect of the return 
section as well as the losses. This is the simplest model to describe the cavity. This is shown 
schematically in Fig. E. l. 

shorting 
plate 

gap 

Figure E.l: Simplified representation of a 2-layer cavity by two transmission line sections. 

In order to find the resonance condition the problem is split into two sections. Each section 
can be represented by a lossless transmission line terminated in a load impedance Zr_. Zr. =(} 
for section 1 (short circuit) and Zr. =oo for section 2 (open end). See Fig. E.2. 

V(:). /(:) 

--------~h 
4P VL;~ 

I 0 

Figure E.2: A transmission line terminated in a load impedance Zr_. 

z 

The total voltage on the line can then be written as a sum of incident and reflected waves: 

(E.1) 

Similar, the total current on the line is described by: 

(E.2) 

At z=(} we have 

V(O) Vo• +Vo -z = = z 
l I(O) v ·-v - 0 

' 
0 0 

(E.3) 
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and when solving for v 0-

z -z 
v-= l ov+ 

o z +Z o . 
l 0 

So the voltage reflection coefficient, r, is 

Vo- ZL-zo 
f= =-­

vo· ZL +Zo 

The total voltage and current waves on the line can then be written as 

V(z)=Vo ·re -iPz +f eiP=] ' 

(E.4) 

(E.5) 

(E.6) 

(E.7) 

Thus the voltage and the current on the line consist of a superposition of an incident and a 
reflected wave. When Zx_ =Zu then f =0 and there is no reflected wave. Such a load is then said 
to be matched to the line. 
Now the two sections are considered. First we look at the line that is terminated in a short 
circuit, Zx_ =O, and Zo=Z1• From Eq.(E.5) it is seen that the reflection coefficient is r =-1. From 
Eqs.(E.6) and (E.7) the voltage and the current on the line are 

(E.8) 

(E.9) 

These formulas show that for a short circuit V=O and the current is at a maximum. With l=-11, 

the transformed impedance as seen from the transition point is: 

V(-11) • z, - =}Z1tanA/1 • 
rans /(-I,) I-' 

(E.10) 

Next we consider the line terminated by the open circuit where Zx_ =oo. Then the reflection 
coefficient becomes 

(E.11) 

112 



The voltage and the current on this line are 

V(z)=v
0
·[e-JP=+eiP=]=2V

0
·cosPz , (E.12) 

(E.13) 

These formulas show that for an open circuit I=O and the voltage is at a maximum. With 
l=-12, the transformed impedance as seen from the transition point is: 

Z V( -/2) ·z p1 ·z 1 - - cot -
trans - /( -/

2
) -'] 2 2 -'] 2 tanp/

2 

(E.14) 

Since the impedances transformed from the short circuit and the open end to the transition 
point must be equal, the resonance condition can immediately be written as: 

z2 
tanp/1tanP/2=- . 

z. 
(E.15) 

The cavity length should be as small as possible, so /1+/2 should be minimal. Suppose /1=/2=/, 
then we get a condition for the characteristic impedances 

1 JI2 I =-arc tan - . p z1 
(E.16) 

This means that the cavity length decreases when Z/Z2 increases, as we have also seen with 
the numerical calculations in paragraph 3.3. 
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Appendix F: Tetrode current characteristics. 
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TYPICAL CONSTANT CURRENT CHARACTERISTICS 
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Appendix G: Input files for the computercodes URMEL-T and 
SUPERFISH. 

$FILE ITEST=O, LPLO=.T. $END 
EUTERPE 43,5 MHz CAVITY 2 PRODUCTIEON'IWERP 

$BOON $END 
$MESH NPMAX=7000 $END 
#MATDIS 

1 1 
0.0000 0.9340 
0.0000 0.0000 
0.1250 0.0000 
0.1250 0.9340 
0.0000 0.9340 
8888 8888 
0 0 
0.0000 0.0000 
0.0230 0.0000 
0.0230 0.8455 
0.0250 0.8455 
0.0250 0.0100 
0.1220 0.0100 
0.1220 0.8730 
0.0555 0.8730 
0.0555 0.0765 
0.0525 0.0765 
0.0525 0.8730 
0.0230 0.8730 
0.0230 0.9340 
0.0000 0.9340 
0.0000 0.0000 
8888 8888 
9999 9999 

$MODE MROT=O, NMODE=lO, FUP=838, DVLIM=2, PFAC0=0.001, PFAC2=1 $END 
$PLOT MODPL=l $END 
$PRIN MODPR=l, LER=. T., LEZ=. T., LHFI=. T., LMATPR=. F. $END 

ssuperfish productie cavity 43 MHz 
$reg nreg=2, dx=0.467, dy=0.203, xrnax=93.400, ymax=l2.200, 
ndrive=l, npoint=l5 $ 

$pox= 0.0 Y= 0.0 $ 
$pox= 0.0 Y= 2.3 $ 
$po x=84.550 y= 2.3 $ 
$po x=84.550 y= 2.5 $ 
$po X= 1.0 Y= 2.5 $ 
$po x= 1.0 y=l2.2 $ 
$po x=87.300 y=l2.2 $ 
$po x=87.300 Y= 5.55 $ 
$po X= 7.65 Y= 5.55 $ 
$po X= 7.65 y: 5.25 $ 
$po x=87.300 Y= 5.25 $ 
$po x=87.300 y= 2.3 $ 
$po x=93.400 Y= 2.3 $ 
$po x=93.400 Y= 0.0 $ 
$po x= 0 . 0 Y= 0 . 0 · $ 
$reg cur=l, ibound=-1, npoint=l $ 
$po x=87.300 Y= 5.55 $ 
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