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Abstract

For many real-world problems where neural networks are used, time constraints make

hardware implementation indispensable. This is simply due to the fact that only hardware

implementations can fully utilize the benefits coming from the inherent parallelism in neural

networks. Our study start with a brief overview of the existing important chips for neural

networks from major companies in electronic chip manufactoring shows the enormous

diversity among them. Both for this fact and the fact that there is little consensus on the

term performance, comparing these chips and choosing one for an application becomes

a very difficult task. This work will contribute to that task by generating a new set of criteria

which represents the functionality of a neural network chip in a more accurate fashion than

the existing criteria.

In the main part of the present work, first meta-criteria are proposed as guidelines to come

up with a set of good criteria. These meta-criteria demand both generality and practicality

of a hardware performance criterium. Then, several commonly used conventional criteria

are evaluated according to the proposed meta-criteria. The ineffectiveness of these

existing criteria are revealed, from which it can be concluded that there is need for

additional hardware performance criteria to make better comparisons possible. We, next,

study theoretical aspects of a few new criteria, which are primarily related to the capacity

of a neural network. We find that such criteria are often intractable or too weak to say

something about performance of hardware, but they can be used as a starting point for

more hardware related criteria. Several new hardware performance criteria are proposed,

such as a "Reconfigurability Number" that says something about the size and

reconfigurability of a chip. Also, we propose a new speed criterium which is normalized

to the effective accuracy of a connection: "Effective Connection Primitives Per Second".

Finally, experiments with the Intel ETANN chip are reported, where some of the proposed

criteria are put into practice. All the mentioned new criteria, together, provide a set which

is much more effective than the existing conventional criteria for evaluation of the

performance of a neural network chip.



Table of contents

1. Introduction - 1 -

1.1 What is a Neural Network? - 1 -

Neural networks are model-free estimators . . . . . . . . . . . . . . . . .. - 1 -

The basic architecture of a neural network - 2 -

1.2 Why hardware implementation? . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 4 

1.3 How to compare neural network chips . . . . . . . . . . . . . . . . . . . . . . .. - 5 -

2. Chips for neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 6 -

2.1 From software to hardware neural networks - 6 -

2.2 Digital chips for neural networks - 6 -

2.3 Analog chips for neural networks - 9 -

3. Hardware performance meta-criteria - 12 -

4. Conventional hardware performance criteria - 14 -

4.1 Criteria for size and accuracy of the chip . . . . . . . . . . . . . . . . . . . .. - 14 

4.2 Criteria for speed of the chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 15 -

4.3 Criteria for the costs of the chip - 16 -

5. New hardware performance criteria , - 17 -

5.1 Fundamental neural network performance criteria - 17 -

Learning and optimization - 17 -

Probably Approximately Correct learning - 19 -

Capacity as epsilon-cover - 19 -

Capacity as Vapnik Chervonenkis-dimension - 20 -

5.2 Hardware related performance criteria. . . . . . . . . . . . . . . . . . . . . .. - 21 

Reconfigurability Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 21 -

Scalability - 25 -
Weight memory capacity - 26 -

Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 27 

Learning to deal with systematic errors . . . . . . . . . . . . . . . . . . .. - 32 -

Effective Connection Primitives Per Second - 34 -

6. Experiments with the ETANN chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 39 -

6.1 The ETANN chip and its sources of error - 39 -

6.2 The sigmoid generation circuit of the ETANN chip . . . . . . . . . . . . .. - 41 -

6.3 Fitting of ETANNs sigmoids - 45 -

6.4 Learning ETANN to deal with its systematic errors. . . . . . . . . . . . .. - 47 -



6.5 The Signal to Noise Ratio of the ETANN chip - 50 -

7. Conclusions and Recommendations - 52 -

Appendices - 55 -

Appendix 1: Tables of conventional criteria . . . . . . . . . . . . . . . . . . . . .. - 56 -

Appendix 2: Table of new criteria - 59 -

Appendix 3: Results of the fitting of ETANNs sigmoids - 60 -

Appendix 4: Results of learning with ideal sigmoid - 61 -

Appendix 5: Results of learning with ETANNs sigmoid - 62 -

References - 63 -



1. Introduction

Recently, there has been great interest in studying adaptable parallel signal processors

called neural networks. Software implementation of neural networks on conventional

hardware is far from efficient because it does not make use of the inherent parallelism of

the network. So hardware implementation will be needed to fully utilize the benefits of

neural networks. Choosing a specific hardware implementation for an apllication implies

comparison of those chips. However, only little good criteria are present, which makes fair

comparison difficult. This work will be aimed at the constructing of a better, more complete

set of criteria that makes better comparison possible. Therefore, first a short explanation

will be given of what exactly a neural network is.

1.1 What is a Neural Network?

Neural networks are model-free estimators
Globally the world problems can be divided into several categories. One of those is the

category of problems that can be explicitly and analytically solved. Often only simple

problems, for example those in which linear algebra can be applied, can be solved in that

way. For other problems that are too complex analytically or inherently unsolvable, one

can often develop rules or heuristics in order to find an optimal solution. One of such

problems is the fitting of data to an empirical model. The effort here is to make a proper

model of the relation between the input and output data, with a limited number of free

parameters. In this case examples of data points are required as instances of the desired

optimal solution, which will be used to fill in the values of the free parameters during the

fitting of the data to the model.

In the fitting procedure the parameters are chosen according to built-in rules or heuristics

in a way that a previously defined error-criterium is minimized. By definition the optimal

solution will be reached at the point where the values of the parameters are chosen to

make the error-criterium minimal.

At one extreme the model can have no free parameters, in fact the model is exact. This

coincides with the analytical way of solving problems. At the other extreme the model can

have an infinite number of free parameters to be filled in. In this case there is no built-in

knowledge of the problem at all, and therefore statisticians call this method model-free or

non-parametric estimation. Neural networks can be viewed from this point of view as

tending towards the model-free estimators, which can be explained by looking at the basic

architecture of a neural network.
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Figure 1.1: The architecture of a three layer feedforward neural network

The basic architecture of a neural network
A neural network is composed of an arbitrary number of neurons connected to each other

by synapses. Often neural networks are subdivided by looking at the way the neurons are

connected, the architecture or topology. If the data is flowing only from input to output, the

neural network is called a feedforward neural network. Although in strict sense it is not a

requirement, almost all feedforward neural networks can be decomposed in layers of

several neurons. Also in most cases feedforward neural networks are fully connected in

the sense that each neuron in one layer is connected to all of the neurons in the next

layer. In this case data is supplied to the input layer and after it has been transferred

through all the hidden layers it is available at the neurons of the output layer. Figure 1.1

depicts an ordinary feedforward architecture. Because of the fact that in the input layer no

processing is performed, it will not be counted as a real layer. So if a neural network has

only an input and an output layer it is called a one-layer neural network. Another kind of

neural network is the class of recurrent or feedback neural networks, in which there are

some connections in backward direction, 'from output to input. One example of this is the

Hopfield neural network in which all neurons are connected to each other and serve both

as input and output neurons.

So what are the functions performed by the neurons and synapses ? A synapse is a

device in which an input Xi is multiplied by a weight Wi. This will be represented by
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labelling the connections by their weights. In the neuron the contributions of all synapses

are added together forming a weighted sum of the inputs, or in other words the inner

product of the input vector X and weight vector w. An example of a simple d-input 1-layer

1-neuron neural network is given in figure 1.2.

W1

X2

~
X4 W4 S

f
y

V\{j-1

Figure 1.2: The architecture of ad-input 1-output neural network

The various contributions are added and supplied to a non linear saturating function, which

is often chosen to be tanh(s), sgn(s) or 1/(1 +e-5
), in which s is given by (1).

d

s=Lx~+e
1=1

(1)

This model of neurons and synapses has been inspired by the elements of biological

neural networks, such as the brain. Apart from the borrowed terminology there seems to

be only little resemblance between biological and these simple artificial neural networks.

By adjusting the values of the weights, different non-linear mappings can be made. A

learning algorithm is used to adapt the weights of the network in a way that on the

average given an input A, the output ~ of the network is as close as possible to a desired

output, or target 1. Therefore, the learning algorithm or training algorithm has access to a

training set T of size M, in which T = {(xlJ1)'(x2J2)' ....,~,~)}. Its task is to adapt the

weights in order to minimize a predefined error-criterium. Often the error criterium is

chosen to be the mean-square-error over the training set T. For a network with N outputs,

the mean-square-error is given by (2).
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(2)

Since y- depends on the value of the weights, the mean-square-error can be minimized by

adjusting the weights. Error-backpropagation [58] is a popular learning algorithm that can

be used for this purpose. It adjusts the weights in the opposite direction of the gradient of

the error surface in weight space. This means that in each iteration the update of the

weight w is proportional to -aElaw, in a way that this derivative tends to zero, yielding a

minimum of the error surface in weight space.

When there are no restrictions on the number of hidden neurons, a two layer feedforward

neural network can make arbitrary continuous mappings from input space to output space.

This argument is often used when using neural networks as model-free estimators,

however in practical situations the probability that one can find a proper set of weights that

realizes this mapping depends heavily on the learning algorithm that is used, the number

of training examples, the size of the network and the complexity of the desired mapping.

As can be seen from (2), the mean-square-error also depends on the particular choice of

the input-target examples, the training set. In general this is not preferable because good

performance is also expected on inputs that were not in the training set. In fact this is one

of the main reasons to use a neural network and it is called generalization performance.

If generalization performance was not required, storing the training set in a database

would give better performance on that training set. So exactly this generalization

performance gives the predicting power of a neural network and is the main reason to use

one. To measure generalization, the mean-square-error on a so called test set is

calculated. If the error on the test set does not differ much from the error on the training

set, the network is said to generalize well. Better even is to evaluate the learned network

with multiple test sets and to calculate the mean and the standard deviation of the mean

square-error over the test sets [1]. Once convinced of using a neural network to solve a

problem, the implementation in hardware becomes very beneficial.

1.2 Why hardware implementation?

As shown if figure 1.2, a neural network performs connections or multiply-and-add

operations that can be done in parallel. If however a neural network is implemented on a

Von Neumann computer in software, all these operations are done sequentially, making

it a very laborious task. So software neural networks, running on these sequential

machines, do not make use of the inherent parallel architecture of a neural network.

However hardware implementations do, making them orders of magnitude faster than their

software equivalents. As for many problems, also for neural networks speed requirements
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make hardware implementation a necessity, but especially for neural networks the gain

in speed is very high if a hardware implementation is used.

Another argument in favour of hardware implementation of neural networks is their

inherent fault tolerance. It has always been a nuisance of hardware implementations that

no guarantees can be given that the system will be free of fabrication errors, especially

for Very Large Scale Integration (VLSI) of hardware. In fact the required testability for VLSI

circuits is becoming one of the main limiting factors of the integration density, because

often one single error on a chip can make it totally useless. Only if correct functionality of

every part of the chip can be established, correct functionality of the whole chip can be

established. In the case of neural networks it has been shown [2] that they exhibit graceful

degradation of the functionality of the whole network, which means that if in a neural

network one neuron malfunctions, the functionality of the whole network only degrades

partially. This makes the need to test every neuron in the circuit separately less stringent

with increasing size of the integrated network, so it is unlikely that testability will become

a limiting factor for the density of integration.

A third more practical reason in favour of implementing a neural network in hardware is

the possibility of using a relatively cheap hardware neural network in embedded systems

as vacuum-cleaners or washing machines.

1.3 How to compare neural network chips

Once chosen for the use of hardware implementation for a neural network in order to gain

speed at a cost of software flexibility, the next problem to solve is how to choose among

the available chips which is the most suitable one for your application. This question will

be addressed in this work. Therefore, here, both commonly used criteria for neural network

chips and additional criteria, as needed for further evaluation, will be investigated.

First, neural network chips of major companies in electronics will be examined, introducing

the topics under investigation and giving some concrete examples. Next guidelines, which

will be called meta-criteria, will be proposed for neural network hardware implementation

criteria, trying to answer the question: What is a good hardware performance criterium?

Then some traditional criteria will be studied and judged according to the earlier proposed

meta-criteria. In the next chapter some additional criteria will be proposed and explained.

Finally, some experiments using the ETANN chip will be recorded of submitting it to some

of the proposed new criteria. This work will be concluded by critically questioning how far

we have come from having a proper, complete and sufficiently powerful set of criteria to

judge hardware implementations of neural networks.
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2. Chips for neural networks

2.1 From software to hardware neural networks

A major part of the neural networks running today are implemented in software on a

conventional computer. This is due to several reasons. First of all, software gives

maximum flexibility. In many cases where neural networks are being used, it is not clear

whether the problem can be adequately solved using a neural network, and if it is, often

it is not clear what kind of network and what kind of learning algorithm are most

favourable. So much research comes down to mere trial and error, for which software is

the ultimate tool. In software one has access to all data and any learning algorithm can

be tried. Moreover no expensive investments are required to be able to tryout a neural
network.

The only investment to be made in software neural networks is patience, and for many

real world problems (or rather real time problems) this is just what one does not have. It

is of little use to have an optical character recognizer for postal sorting, that does one

character per minute. A first solution for this is to speed up the software program by

writing it for a series of Digital Signal Processors (DSP) connected to the host computer,

a so called accelerator-board. This is a good solution if time constraints are not too heavy,

because no offer in flexibility is required [3]. However since in many problems time

constraints are more severe, dedicated neural hardware implementation becomes the only

alternative at the cost of flexibility.

In this chapter most common and advanced chips for neural networks will be reviewed to

give concrete examples of chips that have to be compared in order to establish their

suitability for a given apllication. These examples then will be used in following chapters

where already existing criteria will be evaluated and new will be proposed. Chips will be

reviewed from digital DSP like neurochips to analog application dedicated ones.

2.2 Digital chips for neural networks

The Connected Netwol1<of Adaptive ProcessorS (CNAPS) chip of Adaptive Solutions and

Inova [4--8] looks very much like the DSP solution. It is a chip consisting of 64 parallel

Processor Nodes (PNs) connected by 8 bit broadcast input and 8 bit broadcast output

busses. A 31 bit control bus is shared among the PNs to control their operation. Using

broadcast busses the designers circumvented the problem of needing many output lines,

at a cost of time. The input and output busses are used in a Time Division Multiplexed

(TDM) way, allOWing N connections per time step, for in each time step one PN can
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broadcast its output to N other PNs. Here N can grow larger than 64 by cascading several

CNAPS chips, connecting their busses. An external sequencer chip controls bus arbitrage

via the control bus. Each processor node consists of an adder, multiplier, a logical unit,

32 16-bit registers, bus-drivers and 4 kB internal weight memory. making the chip

sufficiently flexible to implement any learning algorithm, which is the major strength of this

chip. A weakness is that in the case of many chips connected together, PNs spend more

time waiting for bus availability then for computing, making the total system prohibitively
slow.

The Lneuro 1.0 chip from Laboratoire d'Electroniques Philips [9--10] is a general purpose

LEGO-like building block processor. It has the possibility of performing 16 operations in

parallel on 16 Processing Elements (PEs). Because of the 16 bit resolution of these PEs,

by using only a part of this for the neuron state, several neurons can be implemented on

one PE. Since the sigmoid function is calculated off-chip, effectively, each cycle only one

neuron output is available. In total there is 1 kB on chip weight memory. Connecting

several Lneuro's on a board controlled by a host-transputer makes a powerful accelerator

board for general purpose computers. Here also a trade-off is possible between flexibility

and speed. Though strictly there is no learning algorithm on-chip, because of its general

purpose architecture, off-chip learning algorithms can make use of the chips resources.

The Neural Bit-Slice computing element (NBS) chip of Micro Devices [11--12] is in many

aspects similar to Lneuro, because the same design considerations were made. One NBS

chip implements 8 neurons without synaptic weights, so external (read slow) memory is

needed to provide the weight data. Again by a broadcast bus multiple NBSs can be

connected exchanging speed for size in a TOM way. There is no learning on-chip.

The Polyhedric Discrimination Neuron (PDN) neural network from the NTT LSI

Laboratories [13], implements a 64-input 13-output architecture, that calculates fully in

parallel. Instead of calculating the inner product ~:Yi., the L,-norm is adopted: Ii Ixj-wd,

which makes expensive multiplication become superfluous. Another feature of the chip is

the so called low-power-chain-reaction architecture, which is done without clock signals

and bus-drivers cutting down power consumption. Also calculation is stopped whenever

the neuron output is saturated (this can be done because for every input the L, norm can

only grow) saving power and time. A drawback of course is its fixed architecture and the

unconventional way of calculating the output. As a special purpose chip for low power

consumption systems this however seems to be a suitable chip. Weight updates must be
calculated off-chip.
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The Wafer Scale Integration (WSI) neural network of Hitachi [14--15] implements 576

digital neurons on a 5 inch wafer, which is much more than the typically few neurons that

can be implemented on one digital chip. Although generally chips can be connected to

make a large network, the problem of making the appropriate number of interconnections

is bigger between chips than within chips because of the limited number of possible pins

on a chip. This is exactly why the broadcast approach is so popular, but the disadvantage

of this is the fact that speed degrades with increasing size. An answer for this problem

came from the Hitachi corporation: Implementing a neural network on a wafer makes more

and faster interconnections between chips possible. A wafer consists of 49 neuron chips,

of which one is a spare chip. Each chip has 12 neurons making the total of 576 neurons

on a wafer. The neurons are interconnected by a hierarchical bus structure. The fault

tolerance argument is used to relieve the fact that within a wafer some chips may be not

working. Since each neuron has memory for 64 weights, a maximum of 64 connections

per neuron are possible. No learning is on-wafer. Because of the wafer-scale integration,

large networks can be made faster than by implementing them on cascaded building block

chips.

The newest version of this wafer scale integration neural network includes on-chip back

propagation learning (WS I-BP) [16--17]. Because extra logic and memory were needed

in each neuron to be able to implement the backprop algorithm, the number of neurons

dropped to 288. However for learning, separate neurons are needed for the feedforward

and the back-propagation phase, realizing effectively only 144 neurons on a wafer. Still,

learning on-chip is a significant improvement if the neural network has to be able to adapt

quickly to a changing environment. Only recently, learning has been implemented on

systems large enough to become interesting for real-world problems. This is one of the

first serious attempts in this direction.

Some recent publications show that significant progress has been made in the integration

of larger digital neural networks. Hitachi's 1.5-V 106-Synapse Neural Network (1 06_S NN)

[18] is an example of this. Because pulse-stream techniques use only a very small area

for synapses, these are used to attain this large number of synapses. However, the

effective speed per synapse is not so high, and there is no learning on-chip. The Intel

corporation recently announced to have a digital learning neural network in its test phase

calling it Ni1000 [57]. This chip has 1024 neurons, on-chip Reduced Coulomb Energy

learning [57] and 256k 5-bit synapses.
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2.3 Analog chips for neural networks

With their TOM Neurochip Fujitsu [19] claimed to have the first commercial neurochip. In

a mixed Bipolar-CMOS technology, it implements one neuron consisting of a multiplying

D/A converter, an adder and a sigmoid generation circuit. Weights have to be supplied

from external RAM and get multiplied with analog input by the multiplying D/A converter.

The resulting value is stored as charge on an external capacitor. The sigmoid function is

provided by six Bipolar differential amplifiers. Useful operation requires multiple chips

connected by TDM busses like in many digital chips.

Because of a higher level of integration the Electrically Trainable Analog Neural Network
(ETANN) of the Intel corporation [20--22] is considered to be the first successful

commercial neural network chip. 64 Neurons together with 10,240 synapses are

implemented with the possibility to make two layers of size 64x64. Therefore, two

synapse-arrays are present, which both consist of 4096 normal weights and 64,16=1024

bias weights. There are 16 bias weights per neuron to give the bias sufficient influence in the

sum (1). In two layer operation the outputs of the 64 neurons in the first layer are stored in

buffers, after which they are fed through the second synapse-array. Then the same neurons are

used again for the second layer. An important characteristic is the fact that it uses EEPROM

technology to store its weights. The advantage of this is that unlike many analog chips, ETANN

does not need area consuming refresh circuits to retain the weightvalue. Another advantage is

the non-volatilily of the weightvalue. A disadvantage is the long weight update time, caused

by the Fowler-Nordheim tunnelling process involved. Synapse multiplication is performed by a

simplified differential Gilbert-Multiplier, providing four quadrant multiplication. Summing

is done by a simple summing wire, collecting the differential output-currents from the

multipliers. 64 Sigmoid circuits seperately provide the sigmoid functions. Because of its all

analog operation an Intel Neural NetworkTraining System (iNNTS) has been developed, including

control logic, D/A and AID converters making the chip accessible by a PC-system. Together with

software routines to control the iNNTS, Intel provides a whole platform of support necessary

for commerdal success. It must be noted that because of the EEPROM storage of the weights, the

chip is not suitable for applications where it has to be reprogrammed frequently. Not only

because of the long programming time that is involved, but also because of the limited number

of times that a cell can be reprogrammed before it degenerates. Although no learning is on

chip, ETANN does make the implementation of the Madeline [58] learning algorithms easier

because of the easy way to perturb the neuron inputs by drawing some current from the summing

wires. The architecture of this particular chip as well as its performance will be investigated

further in one of the following chapters, where it will be submitted to some original neural

network hardware performance criteria.
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The BiCMOS Analog Neural Network (BiCMOS ANN) of the Matsushita Electronic

Research Laboratory [23] is a fixed architecture 32x16x16 neural network chip. Weight

memory is implemented by dynamically refreshed capacitors like in DRAMs. Multiplication

output is buffered and added around an operational amplifier, after which a saturating

differential amplifier applies the sigmoid operation. With these circuits Matsushita made

a chip with rather precise operations preventing it from having a large number of

synapses. Learning has to be done off-chip.

The Reconfigurable Neural Net Chip with 32k Connections (NET32K) of the AT&T

company [24--25] is a collection of 256 'building block' neurons. In one block, 128 1x1-bit

multiplications can be performed in parallel. A comparator provides a hard-limiting function.

One feature of this chip is that several blocks can be combined into a block of a certain

(up to 4 bit) analog depth. This is done by multiplying the currents from each block with

different weights (1 1/2 1/4 and 1/8) before adding them together. By setting the

references of the comparators at a different value also up to 4 bit analog output can be

calculated. Using this approach carry bits are not needed, so the analog multiplication can

be done fully in parallel. Configuration registers provide the reconfiguration possibility.

Because of the digital access to the chip, digital system integration is straightforward. No

learning has been implemented on-chip.

Another chip from AT&T is the Artificial Neural Network ALU (ANNA) [26--29]. This chip

implements 8 neurons together with 512 physical synapses and 4096 weights. In one

clockcycle 8 vectormultipliers can each multiply a 3 bit inputvector and a 6 bit weightvector

of dimension 64, after which the value can be multiplexed to one of the eight available

neurons. This is done four times in each calculation making a total of 256 inputs per

neuron possible. Also many configurations with less inputs per neuron are possible without

loss o'f parallel performance. The outputs of the vectormultipliers can be shifted up to 3

bits to enhance the dynamic range of the neurons. Since the weightvalues are charges

on capacitors, they have to be refreshed by on-chip D/A converters. Despite its

reconfigurability, in many practical situations the topology of the network implemented

often does not make full use of the chips parallelism, effectively making it slower [29]. Also

here, digital access makes system integration relatively easy. Weight updates must be

calculated off-chip.

The Neural Networkwith Branch-Neuron-Unit Architecture (336-BNU) from the Mitsubishi

Electric Corporation [30--31] is a highly scalable Bolzmann Machine. The number of

branch-neuron-units, which consist of a few synapses together with a piece of neuron,

scales with the number of chips that are connected together, so one neuron unit always
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has to drive the same load capacitance making the speed constant in the number of

connected chips. Within one chip each of the 336 neurons drives 84 synapses making a

total of 28k synapses. Learning is done according to the Bolzmann algorithm, and is

performed every time the weightvalues, stored on capacitors, begin to degrade.

In spite of the increased number of synapses (40.000) and neurons (400), the next version

of this chip (400-BNU) [32] has refreshable synapses to overcome this relearning

necessity. Since all synapses are refreshed in parallel the refreshtime is proportional to

the number of memorized patterns, which is proportional to the square-root of the number

of synapses. This makes the implementation of large networks advantageous. However,

for both chips it can be argued that the implementation of a Bolzmann machine restricts

them to only a limited application area.

The 2-Chip Set with on-chip learning (2-Chip Set) of the Toshiba corporation [33] has on

chip Backpropagation or Hebbian learning. One of the two chips implements 24 neurons,

and the other 576 synapses in 9 groups of 64. Each group has its own learning control

circuit and the size of these groups was determined by speed/size tradeoffs. Because of

the limited drive force of one neuron a maximum of 20 synapse chips can be driven by

one neuron chip.

Recently the Korea Telecom Research Centre reported a pulse operation chip with as

much as 135.424synapses called the UniversallyReconstnJciable Artificial Neural-network

(URAN) [34]. It consists of 16 modules of each 92x92 synapses in pulse-stream mode

making asynchronous wired-OR expansion possible. Because of this, expansion can be

made without considering timing or load-capacitance constraints.

Apart from all these chips, also much research has been done on analog special-purpose

or Application Specific Integrated Circuits (ASIC). The researchers at the Californian

Institute of Technology became world leaders in this area, by making silicon cochleas [35]

and retinas [36]. Analog technology is very suitable for ASICs because the main drawback

of analog circuitry, little flexibility, is not considered to be a nuisance here. Since only

performance on a specific application is required for these chips, comparison with other

chips is pointless, so they are left out of the scope of this thesis.
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3. Hardware performance meta-criteria

In the previous chapter, a versatile range of chips for neural networks have been

reviewed. All a product of their designers' compromising considerations between

technology, resources and performance demands. A reason for the diversity of chips is

the mere ignorance of making such compromising decisions on the performance of the

chip.

On the one hand, this is because of the fact that the technology of neural network

hardware is relatively new. Therefore there is only little experience in making neural

network chips. First many possible implementations must be tried out before such

experience is gained. On the other hand, there is little consensus on what will be a good

definition of performance. Comparing and deciding in favour of one approach therefore

becomes a very difficult task. So first there must be some standard, accepted set of

criteria, along with standardized measurement methods to measure performances in terms

of these criteria before fairor unbiased comparison can be done. This work will contribute

mainly to the first stage: the definition of a proper set of criteria. Needed for this is a set

of guidelines for those criteria, which will be called meta-criteria, to be able to compare the

hardware performance criteria.

1) A hardware performance criterium must be sufficienUy general

With this it is meant that the criteria must apply to the whole range of possible hardware

neural networks; digital, analog, hybrid and preferably also software neural networks to

make the range of comparison as broad as possible.

2) A hardware performance criterium must be of sufficienUy high conceptual level

A user of neural networks is interested of the performance of the chip on his/her particular

problem, in terms of speed, learnability, generalization ability rather than the fact that

his/her chip has eight or three bits for its weights.

3) A 'hardware performance criterium must be problem independent

Since we talk about general purpose neural network chips, they are supposed to perform

on many different problems. Good performance on one problem does not imply good

performance on the other, making it very difficult to generalize from a criterium that is

problem dependent [37--38]. Still benchmarking, as this is called, is a popular way of
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testing performances of systems in general. Benchmarking will only be acceptable if the

investigated aspects are independent of the particular problem, or at least these

dependencies should be known. This does not seem to hold for neural networks, because

of the little experience with them. One could construct a typical set of problems

representative for the whole universe of problems neural networks can be applied to.

However this requires recording of all the experiments with neural networks trying to find

such typical set, so for the moment it is not clear in what way a benchmark says some

thing about the performance of a chip.

4) A hardware perfonnance criterium must have sufficient distinctive power.

Undoubtedly a criterium must be capable of making distinction between different hardware

approaches. If a certain criterium is so weak as to yield the same numbers for many

intuitively different chips, it fails to distinguish between them and therefore does not reveal

much information about the chips.

5) A hardware perfonnance criterium must be obtainable

This seems a rather trivial demand, but one example of an interesting non-obtainable

criterium would be: The averaged mean-square-error over all possible problems that can

be mapped on the chip, after learning with all possible learning algorithms with infinite

training sets. Although this is a rather extreme example, still, constant care should be

taken to be able to satisfy this demand.

Looking at these meta-criteria, they can be divided globally into two contradicting classes.

Meta-criteria 1,2 and 3 all propose some kind of generality. 1} Demands generality towards

the chips that can be compared. 2} Demands a high level of abstraction and 3} demands

generality towards the problems. The danger of generality or abstraction is loss of

information, which exactly contradicts the demands of the criteria in the second class 4}

and 5}. 4} Demands that there must be sufficient information left to be able to make

distinction between chips. 5} Says that the criterium must not become so general that it

becomes intractable. So 4} and 5} demand practicality. Clearly these two contradicting

classes imply compromising decisions to be taken when coming up with hardware

performance criteria. This is also why good criteria are so hard to find, because criteria

that are good in the sense of 1} 2} and 3} are likely to be bad in the sense of 4} and 5}

and vice versa. In the following chapters traditional hardware performance criteria will be

evaluated and new criteria will be proposed according to these 5 meta-criteria.
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4. Conventional hardware performance criteria

Several aspects playa role in the performance of a neural network chip. First of all, it is

important exactly what a chip can do in terms of its absolute architectural limitations, and

how accurately this can be done. If this is known, the speed of operation is very

interesting, for this was one of the main reasons to use hardware in the first place. Finally

we want to have an indication of the cost of using the chip to make sensible

cost/performance trade-off possible. For all these areas of interest, several criteria have

been proposed in literature. While reviewing them, they will be evaluated according to the

meta-criteria of chapter 3, using the chips of chapter 2 as examples. All the numbers of

these criteria will be given in appendix 1.

4.1 Criteria for size and accuracy of the chip

A constraint that always must be satis'fied when using a neural network chip is that the

neural network to be implemented by hardware must be mappable on the chip. Not only

topological constraints are important here but also whether any analog depth or accuracy

is demanded and whether learning must be on-chip. In previous work similar to this the

following criteria have been proposed [39--42].

The Number of neurons per chip (Nn) and the Number of synapses per chip (Ns) clearly

give an idea of the size of the network that can be implemented. The advantages of these

criteria are clearly the generality of them and in fact meta-criteria 1), 2) and 3) are well

satisfied for these and 5) too. However 4) is not satisfied because these numbers can not

distinguish between chips with the same numbers Nn and Ns that have their neurons and

synapses connected to each other in a different manner, which is equally important to

judge if a given neural network can be mapped on the chip. Also the fact that some chips

multiplex their synapses in time can not be reflected by these criteria. To meet this last

drawback also the Number of weights per chip (Nw) is reported, counting not only the

physical synapses (=multipliers) but rather the number of weights that can be

implemented. Also the Number of Connections per Neuron (CPN) (read weights per

neuron) are reported giving a slightly better idea of the possible topologies of the chip. A

disadvantage of just counting the number of them is that accurate and non accurate

neurons/synapses/weights are counted as equal, while intuitively it is clear that a 8x8-bit

synapse does a lot more than a 1x1-bit synapse. Only the Number of bits per weight (bw)

and the Number of bits per input (bx) are given which do satisfy 1) 3) 4) 5) , but completely

fail to contribute to 2) because the effect of these accuracies are not well known yet.
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Moreover this is not sufficient because there are accurate and less accurate 8x8-bit

multipliers, so the precision of the multiplication and the precision of the neuron function

should also be regarded. To be able to satisfy 2) to a larger extent, the effect of all these

kind of errors (on the outputs of the chip) must be known.

For the learning part (if there is one) it might be interesting which Learning Algorithm (LA)

can be implemented on the chip, again lacking to say anything about the accuracies of the

implemented algorithms.

4.2 Criteria for speed of the chip

The most commonly mentioned criterium for hardware performance is the number of

Connections Per Second (CPS) a chip performs, meaning the number of multiply-and

accumulate operations per second. Although this fits very well to the intuitive idea of speed

for a neural network (in fact 1) 2) 3) and 5) are satisfied) it again completely fails to

discriminate between chips with high and low accuracy. To compare the speed of the

NET32K chip and the CNAPS chip just by their CPS value seems to be biased in favour

of the NET32K chip for the following simple reason: CNAPS does a lot more in one

connection than NET32K does, so it is not fair to count them as equal. Somehow again,

the computational accuracy must weight the extent to which a connection is counted.

Another disadvantage of plain CPS is the fact that it does not say anything about the

speed of one particular connection because a chip with many parallel connections reaches

a given value of CPS with much slower connections than a chip with a little number of

connection does. This can be solved by normalizing the CPS value to the number of

weights of the chip yielding Connections Per Second Per Weight (CPSPW), which seems

better than dividing by the number of synapses, because in this way time division

multiplexed synapses can be included. Also this criterium gives an idea of the ratio

between number of weights and speed, which should in some way be balanced to the

accuracy of the chip, as considered in [42]. Of course this balance is still unclear if the

accuracy is not somehow accounted for and precisely this it where these criteria fall short

of.

Forthe learning phase there are Connection Updates PerSecond (CUPS) and Connection
Updates Per Second Per Weight (CUPSPW). For these the same arguments hold as for

the first criteria: they lack to account for the accuracy of operation thus fail to satisfy 4) to

a reasonable extent.
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4.3 Criteria for the costs of the chip

Since numbers like dollar per connection are hard to obtain and too much depend on

various external condition, costs of hardware are generally given in terms of size of the

package, number of pins and power consumption. Because only few of the reviewed chips

are in their commercial stage, such numbers are rarely given. In stead related numbers

such as the area of a synapse as well as the area of a neuron are mentioned. Because

of the fact that generally there are a lot more synapses than neurons on a chip consuming

most of the chips die area, sometimes the Effective Synapse Area (ESA) of a synapse is

given by dividing the total area of the chip by the number of synapses or by the number

of weights. This second option includes the time division virtual synapses, and therefore

this one will be adopted.

Power Dissipation (PD) is given as the maximum power dissipation at a certain clock

frequency. By dividing this figure by the number of connections in one second (CPS) at

the same frequency the resulting quantity is Energy Per Connection (EPC), giving an idea

of the economy of the chips calculations, again this value should somehow be weighted

by the accuracy of such connection.

Not always the figures are given for these quantities, because they involve measurement;

but as can be seen from appendix 1 there is a link between technology, area and power

consumption, so the technology given will be a good direction in what order of magnitude

these values will be.

Of course, non of the mentioned criteria are designed to satisfy the mentioned meta

criteria, and moreover no criterium can ever satisfy all to a maximum extent. For example

there always will be aspects of a chip that can not be distinguished under a given

criterium, so for those aspects 4) will never hold. It can also be argued that the

combination of the above mentioned criteria does satisfy the meta-criteria to a larger

extent. Although both arguments are valid, in general one is interested in as little as

possible criteria that intuitively fit as well as possible to the interesting characteristics of

a chip. So although Nx,Nw and CPN together say something about size and possible

ways to connect neurons, integrating them into a number that would immediately express

whether a given neural network can be implemented on the chip, both reduces the number

of criteria and fits better to the, for a user, interesting aspect of a chip. Also Nx ' Nw and

CPS together can distinguish between accurate and inaccurate connections in terms of

speed, a number that would integrate these figures intuitively would give a much better

idea of what that chip really does in one second.
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5. New hardware performance criteria

As can be seen from the previous chapter, there is need for some additional criteria to be

able to make a better selection among the available chips. Therefore, first, a review will

be made of some fundamental neural network performance criteria known from theory.

Since for these, several practical requirements are not satisfied, they only will be used as

an inspiration to come up with hardware related criteria. Several new proposals will be

made, such as a number that expresses the reconfigurability and size of a chip, a

definition of capacity and a accuracy normalized speed criterium. Figures, from these

newly proposed criteria, are given in appendix 2.

5.1 Fundamental neural network performance criteria

From a more theoretical, statistical and decision-theoretical point of view, neural networks

are often placed into the more general context of statistical estimators or learning

machines [1 }[43]. Within this framework several definitions of the term capacity are used

to bound the number of training samples needed to give good learning and generalization

performance. By looking at these definitions in more detail, it might be possible to extract

some useful hints for a good definition of a hardware related form of capacity, as

discussed in the following paragraph.

Learning and optimization

Consider the input space X and the output space V. An unknown distribution P on XxV

determines the mapping between points xeX and yeV. Let !TCX~V be the abstract

representation of the set of all possible functions that can be implemented by a given

neural network by varying its weights, and let fwe !T. The goal of learning is to find a point

Err(fw) = E[(y-f...(x»~ (3)

in weight space Wand a corresponding fwthat minimizes the error function (3). Here E

denotes the expectation over P. For a given x the expectation of this squared error is

E[(y-f...(x»2\xl = E[«y-E[Ylxl)+(E[Ylxl-f...(x»)2Ixl
= E[(y-E[YIx»2Ixl + 2E[y-E[Ylxl Ixl°(E[Ylxl-f...(x» + (E[Ylxl-f...(x»2
= E[(y-E[YIx»2Ixl + 2(E[Ylxl-E[Ylxl)o(E[Ylxl-f...(x» + (E[Ylxl-f...(x»2
= E[(y-E[yIx»2j + E[(f...(x)-E[yIxl)2j
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known to consist of two terms: variance and bias as shown in (4). The first term at the

right hand side of (4) is just the variance of Ygiven x and is independent of fw' This is the

price we have to pay for trying to estimate the ambiguous P(Ylx) by a deterministic

function. So the optimal fw(x) is just the expected value of Y given x, known as the

regression. The second term measures in a natural way how far fw(x) is from that

regression and therefore is a good way to evaluate the performance of fw(x) as a predictor

of P(Ylx). In many cases however, as for example in classification there is only one

allowed value for Y given x and then P is said to be degenerate. The variance term then

becomes zero and the minimal error also becomes zero. If P would be known, (3) could

be calculated as a function of wand then it could be tried to find a minimum. However,

P is unknown and therefore we need a learning algorithm that chooses in a suitable way

among the available functions in .7to minimize (3).

Since the calculation of (3) requires integration over the whole input and output space, it

is not computable and it can only be estimated by the average value over a finite training

set as stated in (5).
(5)

For a 'fixed fw the M numbers (Ytfw(xi))2 are identically independently distributed (i.i.d.)

realisations of the random variable (y-fw(x))2. Therefore when M is growing to infinity the

Law of Large Numbers (LLN) says that Err(fw) ~ Err(fw)'

Now let fwminimize (5) and let fw• minimize (3) resulting in Err* under the assumption that

fw. is in /T. To evaluate fwas a minimizer of (3) in stead of fw.' Err(fw) must be evaluated.

(6)

Since by definition Err* is the minimum of (3), also Err(fw) can approximate this minimum

arbitrarily well by enlarging M. This however does not necessarily mean that the bias term

of (3) and (5) both go to zero. This requires that an fwis included .7that has fw(x) = E[Ylx]

for all x, because only then fw.(x) equals E[Ylx], making the bias terms go to zero and both

Err* and Err(fw) go to their absolute minima. So it is important to have .7large enough to

include the regression. For a two layer neural network for which the number of hidden

neurons can grow arbitrary large, it can be guaranteed that for every continuous P on XxV

the regression is in .7 [1].

Another problem comes from using the first time the LLN in (6). It is true that Err(fw) ~ Err(fw)

for fixed functions fw as stated, but fw depends on all the x/s and Yi'S, because it is
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constructed by them and therefore the (Yi-fw(xj))2 are not LLd. anymore. Therefore the LLN

may not hold anymore. To ensure LLN can be used normally it is explicitly demanded that

(7) holds uniformly over all possible probability distributions P.

(7)

This statement is known as the law of uniform convergence of empirical means to their

expectations and was at first pointed out by Vapnik [44]. Because this law needs to hold

for every distribution, it really is some kind of worst case criterium, or minimax criterium.

This as opposed to the Bayesian analysis that depends on specific information about the

probability distribution.

Probably Approximately Correct learning

So in one way Tmust be large enough to include the regression, and in another way Tmust

not be too large to be able to satisfy (7). While learning, freedoms in choosing among Tare

reduced and therefore the effective size of Tis reduced. The more samples that are used, the

less probable it will be that there exists an fw for which its empirical mean error does not

converge sufficiently to its expected value. So the larger T is the more samples are

needed to satisfy (7), but on the other hand the higher the probability that the regression

is in it. One learning method that explicitly uses this is the Probably Approximately Correct

(PAC) learning method [45]. Within this method (7) is assured, by first beginning with a

small Tand then gradually increasing the size to eliminate all bias. Therefore the resulting

fw is probably (with probability 1-B) approximately (not more than £ from being) correct.

Much work has been done to estimate Bas a function of the size of the set of functions

T and the number of samples M. It turns out that for a given required probability B, the

sample size needed grows proportionally to the logarithm of the size 191 [43]. This result

is only useful if this size is finite, so instead of size a more general notion is used and this

is called the capacity of the set of functions !F. For the case of finite size, the capacity can

be defined to be the size, however for infinite sizes capacity can be defined in several

other ways.

Capacity as epSilon-cover

In mathematics, if the size of an infinite but bounded set must be established, the method

of making an £-cover is used. Therefore the infinite set T is covered by a finite set of

functions in Tin a way that all functions in Thave a distance less than £ from any of the

functions in the cover. Distance between two functions fW1 and fW2 now is defined as the

average according to P of the difference in error when using fW1 in stead of fW2 (8).

As this expectation is taken over a given probability distribution, a problem independent

way of defining capacity is as the supremum of the size of the £-covers over all possible
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(8)

distributions P. Again B can be expressed in terms of this capacity, and also for a given

B it has been proven that the number of samples needed, grows proportionally with the

logarithm of this capacity [43]. Although there are some constructive results that bound the

capacity in the case of neural networks [43], these results are rather weak in the sense

that the effect of limitations of hardware such as limited accuracy or others on this capacity

are not known theoretically. One result is that the capacity grows exponentially in the

number of weights, and this agrees with the rule of thumb that the number of samples

needed for proper generalisation of a neural network should be proportional to the number

of weights [58].

It can be seen quite easily that measurement of capacity in this sense is intractable. For

even if the requirement of including all possible distributions was dropped and exchanged

for some statistic, for example the average over a large number of them, the

computational complexity of determining a cover grows exponential in the dimensionality

of the set. This dimensionality is in the case of a neural network the number of weights.

Moreover just to determine one single distance of two functions, again averaging must be

done over a large number of input-output samples.

Capacity as Vapnik Chervonenkis-dimension
An alternate definition of capacity that also can be used to bound (7) is the Vapnik

Chervonenkis dimension (VC-dimension) of a class of functions [46]. This VC-dimension

happens to coincide with the intuitive notion of the capacity of a neural network as some

sort of discrimination ability of the network in the case of classification. Although this work

is based on binary valued functions, recently generalizations of the VC-dimension have

been proposed to address this objection [43].

Let the input space X c Rd and output space Y = {0,1}. Tis the set of functions from X

onto Y for which the VC-dimension can be defined in the following way. First of all a set

of N points in input space are said to be shattered by :T, if each of the 2N possible

mappings of dividing N points in the two classes {O, 1} can be implemented by some

function in :T. The VC-dimension is the size of the largest set of points in the input space

that can be shattered by :T.

Knowledge of the VC-dimension makes estimates possible of the number of samples

needed to achieve good generalisation [47]. The problem here once again is to establish

this VC-dimension. The VC-dimension is known to be d+1 for a simple d-input, 1 output

neural network with a hard-limiting function as in figure 1.2 [48]. However for more general

architectures of networks this VC-dimension only can be bounded in terms of the number

of weights, neurons and layers [60]. Furthermore it is not clear in what sense limitations
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of hardware will effect the VC-dimension. For example when looking at the above stated

simple case of ad-input 1-output neural network but now with weights restricted to have

only b weight bits. The only bound that directly can be given from this is that the VC

dimension will be less than 2db
• This number however is in no proportion to the number

that is given by the limits of the architecture d+1. On the other hand this does not mean

that hardware limitations do not have any effect on the VC-dimension. Because of the

limited input-accuracy there is, unlike in theory, always a finite number possible sets of N

points that can be shattered. Then it is possible that there is only one set of points that

has size N equal to the VC-dimension. The limited weight accuracy now can cause that

this particular set can not be shattered anymore, which decreases the effective VC

dimension.

Straightforward measurement of the VC-dimension is intractable because not only an

exponentially growing number of possible classifications have to be verified, also until such

classi'fication has been found, all possible functions (exponentially in the number of

weights) must be tried out. Still there are some results of measurement of the VC

dimension [49--50], but these rely on the fact that for very simple networks the learning

curve can be predicted by the VC-dimension. By fitting this experimentally achieved curve

to the VC-dimension, this dimension can be measured in very simple cases. However for

larger, more complex networks only crude bounds can be given for the mean-square-error

[59]. The predictive value of the VC-dimension then becomes too small to be able to fit

this curve to a function with the VC-dimension in it.

A classification benchmark that could be extracted from this is to statistically try to

establish the percentage of all 2N classifications that can be learned assuming some

learning algorithm, training set size and number of allowable epochs, to be plotted against

N. Of course then it remains to be seen whether good performance on random classifica

tions predicts performance on other problems.

5.2 Hardware related performance criteria

Reconfigurabilily Number
Important for a neural network is that the relation between the input and output data that

must be predicted is as good as possible in the class of functions that can be implemented

by that neural network. It is the topology of a neural network that determines this class and

therefore at this moment much research is done in order to find a suitable topology for a

given problem. There are even learning algorithms that automate this process. They alter

the topology while exploring the solution space. So although without an application no
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topology can be said to be preferable the ability to change the topology makes a neural

network suitable for more applications. This ability to change the topology of a neural

network is called reconfigurability.

Several criteria say something about possible topologies, as the already known maximum

number of neurons/weights and the maximum number of weights per neuron. However no

number has been proposed to say something about how many different topologies can be

implemented with a chip. To limit the scope only layered feedforward neural networks are

included.

To do this the following will be defined.

• The topology of aM-layer feedforward neural network is the following M+1 tuple:

{Lo,Ll'L2, ... ,LM}, in which La denotes the input layer and L1 tim LM the hidden and

output layers. La = {No}, where No eN is the set of input buffers and for all 1:s;i:s;M:

Lj = {Ni,SJ. Nj eN denoting the set of neurons in layer i and Sj c Nj_1xN j denoting the

sets of synapses from inputs or neurons in layer i-1 to neurons in layer i. To

prevent empty and unconnected layers: No:t0, and for all 1:s;i:s;M: Nj:t0 and S;:t0.

Furthermore since a path from every input to output is required, it will be

demanded that for all input buffers nx E No path_to_outputo(nx) holds.

path_to_output,(n) = 3n'EN,+1: ((n,n~ES'+1 A patJ'Lto_output/+1 (n'»
path_to_outputM(n) = TRUE

(9)

• A topology is implementable by a chip if and only if all the necessary calculations

in order to calculate the output of the neural network that generates this topology

can be performed by the chip under the constraint that the data may not leave the

chip before the output is available. So the whole neural network must fit on the

chip. This means for example that if a certain topology needs off-chip feedback

loops it is not implementable in this sense.

• Two topologies are equal if and only if they can be constructed out of eachother

by permutating the numbering of the neurons or inputs. Formally this defines an

equivalence relationship resulting in partitions of the set of all topologies. Two

topologies are different if and only if they are not equal.

• The set of all different implementable topologies of a chip is constructed out of the

set of all topologies generated by any neural network by picking out of each

equivalence class one of the topologies that is implementable by that chip, if there

is one, and adding it to the set.
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• The Feedforward Reconfigurability Number (RN) can now be defined as the size

of the set of all different implementable topologies.

The difficult part here is to determine this set of all different implementable topologies.

According to the definition it comes down to picking a topology and looking if it is

implementable. Clearly the maximum number of neurons,weights and layers that can be

implemented on the chip make the search space 'finite. But still the number of possible

candidate topologies grows exponential in the number of maximal weights WMAX. For

consider this finite search space and consider the maximal connected topology in this

space. Then each of these weights has the two possibilities to be included in, or left out

a candidate topology resulting in a maximum of 2WMAX candidates. Checking if an equal

candidate already has been tried out is O((#candidates)2) also exponential in WMAX.

Therefore finding the reconfigurability number in this sense becomes intractable. First lets

give an example of all of the above. Suppose your chip can implement a feedforward

neural network of maximal 1 layer, 2 inputs, 2 neurons and 4 weights. Then all of the

possible candidate topologies are shown in figure 5.1.

Now it can be seen that putting the equal ones together yields the following classes of

candidates: {{1 ,2,3,4},{5,6},{7,8},{9,1O},{11 ,12,13,14},{15}}. Since all are implementable in

this case RN=6 DiFs (Different Feedforward networks).

To severely limit the number of candidate topologies the following is delined:

• A fully connected topology is a topology that has the following constraint: For all

neurons in the topology there must be a synapse from every neuron or input in the

previous layer to that neuron, so formally

(10)

• The fully connected feedforward Reconfigurability Number (RN) is the size of the

set of all different implementable fully connected topologies.

So in the example the classes {5,6} and {11, 12,13,14} are not fully connected so the

RN = 4 DiFFs (Different Fully connected Feedforward networks). Since there is only one

way to fully connect two layers of a given size, the number of candidates drops to order

of maximum number of neurons square. To be more specific, a chip that has maxima of

INo I inputs, M layers of each maximum INj I neurons, the maximum number of candidate

fully connected topologies is OJ INj I for i from 0 to M, since for every layer only the number

of neurons can be chosen.
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Figure 5.1: Set of all possible candidate topologies

Now lets give some examples of real chips. For the CNAPS chip, there is really only one

layer of maximal 64 neurons and a maximum of 4K inputs limited by the 4kB weight

memory. All the of the 4096'64=262,144 candidate topologies are implementable, so in 8-bit

weight mode, the RN = 256K DiFFs. In 16-bit weight mode the RN = 128K DiFFs. In 1-bit mode

things get more complicated. For 1 to 64 neurons, they can be spread over all 64 PNs, giving

a maximum of 32K inputs each, for there are a maximum of 32K 1 bit weights per PN. For 65 to 128

neurons only 16K inputs are possible. For 129 to 192, there are (floor of 321<13) 10922 inputs

and so on till we have 449 to 512 neurons for which maximally 4096 inputs. Giving in total a RN

of 5.7'106 DiFFs.

Now lets look at another chip: the ETANN, for here there are other complications. First of

all it can implement a 1-layer 128x64 network. Also it can implement a 2-layer network of

64x64x64, and moreover 2-layer networks of 128x(64-j)xj for 0<j<64.

To calculate the RN, we can do the following:
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In the 128x64 case there are 8K DiFFs

In the 64x64x64 case there are 256K DiFFs.

In the 128x(64-Dxj case for 0<j<64 the additional ways of how many fully connected 2

layer feedforward neural networks can be implement will be counted. This means that care

has to be taken not to count topologies that are equal to already counted topologies. For

j=63, there are 128-64=64 ways to chose the number of input neurons. One way to chose

one hidden neuron and 63 ways to chose a set of 1 to 63 output neurons. For j=62 there

is in fact also only one way to chose the number of hidden neurons although there are two

of them because the topologies that have one hidden neuron have already been counted

in the j=63 case. So every j 0<j<64 contributes 64'j additional topologies giving a total

of 64'(1+2+..+63) = 64'63·64/2 = 129,024. In total this gives a RN of 4'105 DiFFs.

As these examples point out, however straightforward, the counting can become rather

tedious. Therefore since topologies can be described formally very well, the counting can

in principle be performed by a computer, giving it a description of the chip. For a few chips

with simple architectures the RNs a given in appendix 2.

Scalability

Scalability is the ability for the chips to scale up to make implementation of larger neural

networks possible, than those that can be implemented on one chip. In general digital

chips have better scalability, not only because of their larger ability to drive load

capitances, but also because of better controllability by for example transputers or DSP

chips [9]. One of the largest problems with scalability is to keep up with the growing

number of connections that need to be made between chips. The best possible way to

solve this is by transmitting over broadcast busses in a time division multiplexed way.

Chips like CNAPS, Lneuro, WSI have very high scalability. Also with ETANN, broadcast

bus interconnection is possible. In general, with these chips it is not possible to

significantly enlarge the number of synapses per neuron, limiting the systems capabilities

to non-fully connected neural networks. Therefore in this case to determine a

reconfigurability number in the sense previously defined, for systems does not seem

suitable.

There are a few chips that are exception for this rule. Those are the chips with growing

neurons when more synapses are added, as the Mitsubishi BNU chips. Here every few

synapses have their own piece of neuron. By connecting the neurons at their summing

wires, the number of synapses can get very large. Another chip that makes use of this

technique is the 'reconfigurable neurochip' [51--52], but here it is applied within the chip.

Another highly scalable chip is URAN, which allows asynchronous/wired-OR expansion,

which means that outputs can be tied together without considering timing or load effects.
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In this case it will be the growing probability of pulse overlap that limits the scalability. A

suitable figure for comparison would be just to give the number of neurons and weights

of the largest neural network that can be implemented on a system consisting of particular

neurochips. The only constraint that has to be imposed in this matter is to assure that this

largest neural network is globally connected (not necessarily fully) so it can not be

decomposed in two or more separate neural networks. Since for none of the reviewed

chips this number is really known (there are some estimates) no figures are given for this

criterium.

Weight memory capacity
From the theoretical point of view, a neural network consists of weights that can have

infinitely many values, although bounded. For this, results are known that bound the

capacity of the resulting network [43]. An ideal neural network chip would be capable of

implementing all those different weightvalues. Due to practical limitations however,

hardware can never be made to make infinitely many values, at least not significantly. In

digital systems the weightvalues are often quantized to values within a certain range of

maximum to minimum value in a way that the resulting values are not more than half a

quantization level q 'from the intended unquantized value. This is similar to making an q/2

cover of the infinite set of all possible weightvalues. The size of this cover: the number of

quantization levels defines in a straightforward way the capacity of a weight.

Likewise for a whole neural network counting the number of points that cover the whole

weight space would be a good definition of capacity for the network. If a weight can be

specified by b bits, then 2b quantization levels are possible. Now if there are N weights,

then in total 2bN points can be accessed in weight space, in other words the size of the

cover made by the chip is 2bN
• Note that the difference metric that is taken here is just the

absolute difference between the unquantized and the quantized weightvalues. How this

difference translates to differences at the output of a chip is not expressed by this

definition, but as stated before, to get a problem independent definition of capacity in that

way, averaging would be required over a huge amount of problems and input-output

samples.

Since the logarithm of this capacity determines in a more natural way the 'number of

freedoms' the neural network has, this also will be included in the following straightforward

definition of capacity:

Assume a chip has Nw weights and for each weight wj , bj bits to specify its weightvalue.

Then the Weight Memory Capacity (WMC) of the chip is L.jbj•
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Clearly this is just the memory contained on the chip to store the weightvalues in, so it is

a very natural and easy-to-obtain criterium. In many situations the bj values are the same

for all weights (bw) resulting in a WMC of Nw·bw. Note that this criterium does not make

any distinction between chips that have 100 weights of 10 bits each, or 1000 1 bit weights.

Since some problems are better solvable with few accurate weights and other with many

less accurate weights, this seems to be a logical consequence of having a problem

independent definition of capacity.

At first sight it seems that this definition of capacity is only suitable for digital represen

tations weightvalues. Analog systems have other sources of error such as noise, non

Iinearities, decaying weights and so on. The effects of these can be totally different than

those of quantization. A somewhat crude, but commonly used way to deal with this is to

consider the amount of error in the stored weightvalue relatively to the full range of the

weights. This percentage is used to argue that significantly a limited number of

weightvalues can be distinguished. Taking the log2 of tl-Iis number then results in an

effective bit accuracy of a weight storing device. So if for example an analog weight

storing device has an accuracy of 1% of the full range, a maximum of 100 levels can be

distinguished significantly, resulting in a bit-accuracy of log2100 = 6.6 bits. Although

somewhat dubious, there are no better ways to be able to compare analog and digital

weight storing devices in terms of accuracy. By adopting this convention weight memory

capacity becomes a very general and easy to obtain criterium, that contributes better to

the intuitive and theoretical idea of capacity than just counting the number of weights.

Appendix 2 gives the numbers of this criterium for the reviewed chips.

Signal to Noise Ratio
So far, nothing has been said about accuracies of multipliers, adders and sigmoid

functions; the hardware devices that perform these operations. Since all of the

inaccuracies of these devices contribute to the error on the output of the chip, they also

contribute to the mean-square-error of a given training- or test set, therefore limiting the

minimum value of it. Since performance of a trained neural network is most interesting,

only errors will be considered that are left after learning. The learning experiment will be

described in the next paragraph. Given a problem it is interesting to know which part of

the mean-square-error, after learning, is due to the limitations of the architecture of the

neural network that is implemented, and which part comes from hardware inaccuracies.

Since limitations of the chip to implement neural network architectures have already been

considered, now the effects of the hardware inaccuracies will be investigated by the

following experiment. Take a neural network architecture that can be implemented by a

chip under investigation. Now implement this neural network in two ways. First an

idealised version in software with very high accuracies for weightvalues, inputvalues,
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multiplication, addition and sigmoid generation. This version will be called the ideal neural

network. Next implement the neural network using the chip with its limitations in accuracy

and call this the chip neural network. By doing this, errors that occur because of

inaccuracies of hardware can be measured. Since it is impossible to measure difference

in mean-square-error for all problems, the following method will be adopted.

Inputs and weights are drawn from a suitable distribution and supplied to both the ideal

and the chip network. Then the ideal neural network gives an output y and the chip an

output 9. The difference of them t1y = 9 - Y is the error due to hardware inaccuracies.

Figure 5.2 shows the outline of the experiment.

x ---+----1

w

Ideal
Network

Chip

y

/\
Y

l1y

Figure 5.2: Outline of the signal to noise experiment

Both the average value of t1y and the variance of t1y over the chosen input and weight

distributions give an idea of the absolute error contribution of the hardware. Often however

the ratio between the variance of the signal (j2y and the variance of the error d",y gives a

better idea of the magnitude of the error relative to the magnitude of the signal. This ratio

is called the Signal to Noise Ratio (SNR) of a chip.

The problem is to determine a suitable distribution of inputs and weights. A good way to

choose these distributions would be to record input- and weightvalues for many typical

problems the chip is likely to be used for. Since typical distributions for weights and inputs

are unknown and since it is hard to get theoretical results from such complex distributions

each inputvalue and each weightvalue is considered to occur equally frequent resulting

in uniform distributions of input- and weightvalues. Therefore the results that come out of

this experiments might be atypical for many problems, but since only for this distribution

theoretical results are known and since better, more practical distributions are yet

unknown, this is the best that can be done for the moment. Also merely to compare chips

with this number, choosing the same distributions for each chip is more important than
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choosing a typical one. The experiment as such is independent of the distribution, so if

and when more typical distributions will be known, then these can be used for the

experiment. So the inputs Xi are drawn independently from a uniform distribution between

their minimum and maximum value and likewise weights Wi are drawn. For these LLd.

realisations of inputs and weights theoretical results are known that analytically calculate

the SNR [38][53]. Although this experiment can be performed for any size neural network,

for simplicity a one neuron network will be considered with N inputs and weights.

Under the assumptions that inputs Xi are i.Ld. realisations of a uniform distribution with

zero mean and variance (ix and weights Wi are LLd. realisations of a uniform distribution

with zero mean and variance ciw and a large number of inputs N, the values of the

variable s in (1), Ld. the weighted sum of the inputs, tend to the normal distribution

according to the central limit theorem. Therefore the 2N dimensional integral that needs

to be solved to calculate c:fy can be replaced by a one dimensional integral in s.

Similarly the original 4N dimensional integral that has to be calculated in order to calculate

the error variance can be replaced by a two dimensional integral in which the variables

are distributed according to the bivariate normal distribution by making use of the central

limit theorem. Again LLd. realisations of input and weight errors ~Xi and ~Wi are required

as well as a large number of inputs.

If furthermore it is assumed that errors are small in order to be allowed to neglect second

order errors, the SNR of a single neuron neural network with N inputs and a sigmoid

function tanh(As) is given by (11) [38].

(11 )

The value of the Noise to Signal gain (NSR-gain) g depends on the standard deviation O's

of the variable s, normalised to a sigmoid with steepness A.=1. Since inputs and weights

are independently drawn, the value of this O's is just the square-root of (N·c:fx·0'2w)' The

value of g is plotted in figure 5.3 as a function of this normalised standard deviation.

For small values of A'O's' the sigmoid appears to be linear, so the signal is amplified by

the same amount as the error. For larger values of A'O's' the saturating shape of the

sigmoid starts to limit the signal variance, while errors that occur near zero get significantly

amplified. Therefore the NSR-gain increases.
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Figure 5.3: The value of the NSR gain for

neurons with sigmoids

To give an example of the above, the following experiment has been performed. Both

inputs and weights are drawn from a uniform distribution in the range [-r,r]. The chip neural

network differs from the ideal only in that it uniformly quantizes weights and inputs to

levels represented by b bits. This quantization is modeled by adding errors that are

independent of the values and have variance cr2!J.x=cr2!J.w=q2/12 [38], in which q is the

quantization level. Assuming independency of values and errors only is not allowed in

cases of very course quantization. Since in this case q=2r/2b
, and furthermore cr2x=cr2w=r2/3

the NSR can be expressed in terms of r, b, Nand A.

(12)

For r=1, N=64 and 1.,=1,10 theoretical curves and experimental data is plotted of the SNR

in dB against b, the number of input and weight bits. Results are shown in figure 5.4. Also

for a hardlimiting function (A ~ (0) this experiment has been performed. In this case the

theoretical model of (11) does not hold anymore because errors are not small anymore.

For this case it has been derived that the SNR is as in (13). [53]
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Figure 5.4: Theoretical signal to noise ratios

of a neuron with sigmoid functions with

varying steepness from 1 to infinity, together

with points collected from Monte-Carlo
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(13)

Because of the square root in (13), the SNR now grows half as fast with increasing bit

accuracies than in the case of sigmoidal neurons. In this sense hardlimiting neural

networks are less robust than neural networks with sigmoids. The fact that in this case

theory and practice do not match so well anymore for larger values of b, is due to the fact

that straightforward Monte-Carlo simulations, as used in this experiment, are not suitable

for small probabilities of large errors. The above example shows that the SNR criterium

can be used to model errors caused by hardware on a chip. If the data collected by

Monte-Carlo type of measurements matches with the curves predicted by the model, the

model can be regarded as faithful.

Apart from using the SNR as a figure to investigate sources of error in a chip, the SNR

as such is an interesting number to compare chips for their accuracies, even when no

model of the errors is known. The advantage of measuring the signal to noise ratio by this

experiment is the fact that it can be performed for digital as well as analog chips.
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Leaming to deal with systematic errors

A disadvantage of signal to noise ratio is that it only measures error variance relative to

signal variance. The mean values of error and signal are left out of its scope. This is

mainly because originally SNR has been defined for noise-like errors (therefore its name),

which have zero mean. Some examples of not noise-like errors in chips would be offsets

of the sigmoid function, errors occuring due to non-linearities in multipliers, the total

malfunctioning of one or several neurons/synapses and deviations from the required

sigmoid shape. In general, systematic errors could be defined as those errors that

contribute to the mean error at the output of the neural network. So systematic errors are

exactly those errors that are left after averaging over different inputs and weights.

The effects of these systematic errors have been investigated in the case of neural

networks [54], and often it is argued that neural networks can learn to adapt themselves

to these errors. The success in this adaptation does not only depend on the amount and

magnitude of systematic errors, but also on the capabilities of the learning algorithm to

deal with them. Algorithms that originally are designed for ideal neural networks often do

not perform very well on hardware with limited resources. For example for the standard

back-propagation algorithm it is known that for digital implementations at least 12 bits

weight-values are required to be able to make the little weight updates that are necessary.

Also it does not account for the fact that weights are limited in their range. Introducing a

weight-decay term in the error function would cause the learning algorithm to find a

solution with smallest possible weights, which therefore will not have as much trouble from

limited range of weights than algorithms that do not use this. However, in that case, the

effects of small signal quantization will probably play a part. Learning algorithms that

would be capable of distributing the weightvalues evenly over the whole possible range

would compromize between these two effects and therefore in this sense be optimal.

r---+ Ideal Network t
w ~ MSE

X Learning
1---+ Algorithm -

~ Chip Y f
w

dwj
Figure 5.5: Setup of the learning of systematic errors
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The experiment shown in figure 5.5 can determine the ability of a learning algorithm to

learn to deal with the systematic errors of the chip. Therefore again consider the

previously defined ideal neural network and the neural network implemented on the chip.

First, the weights of both networks are initialised with equal random values W. Then a

training sample (A,l) is generated by randomly choosing the input A and calculating the

output of this input of the ideal neural network, which defines 1. These samples will be

generated until a suitable size of the training set has been reached. Next the chip is

learned according to a certain learning algorithm and the generated training set. The

performance of this learning in terms of number of training samples that were required,

residual mean-square-error and the number of epochs needed, in other words the learning

curve gives an idea of the ability of the learning algorithm to deal with the systematic

errors of that chip. This is done for many different weight initializations, for which mean

and variance of the learning curves can be plotted to give an indication of the average

performance of the learning algorithm to learn to deal with the errors of the chip. The

advantage of this experiment is that it can be done no matter which systematic errors a

chip has. The success of it will depend on the ability of the learning algorithm to deal with

them. Therefore, to really compare chips with this experiment, the same learning algorithm

must be adopted in the case that no algorithm is on-chip. If there is an algorithm on-chip,

of course, it is most evident and interesting to use that particular algorithm. A further

advantage of this experiment is that the effects of errors on the learning part of the chip

are measured. If somehow limitations of the chip make learning difficult this results in bad

performance on this experiment. Since this experiment not only measures systematic

errors of the chip, but also performance of a learning algorithm, it really measures the

fitness of a learning algorithm to be used with the chip.

Figure 5.6 shows a typical example of a learning curve generated by the backpropagation

algorithm while learning to deal with simulated offset errors of the sigmoid function. Here

the chip neural network was a simulated chip with built-in offset errors of the sigmoid

function to serve as a systematic error. Measured mean-square-errors are on a test set.

This example only shows that learning to deal with systematic errors is possible. A more

interesting study is to perform this experiment on a real chip with real systematic errors.

This experiment on the ETANN chip will be reported in the next chapter.
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Figure 5.6: A typical learning curve while learning to deal

with systematic offset errors

Effective Connection Primitives Per Second
As considered in previous chapters, it is not fair to compare the speed of chips by just

counting the number of connections per second because clearly accurate devices do more

in one connection than inaccurate ones. Somehow the extent to which a connection is

counted must be weighted by the accuracy of such a connection.

Since the computational complexity of a connection of bxinput bits times bwweight bits is

bx'bw' a first attempt in this direction can be made by weighting a connection by this

product. So Connection Primitives Per Second (CPPS) could be defined as bx·bw·CPS.

Although this already would be far less biased in favour of inaccurate chips, there are two

disadvantages of this criterium. First of all this criterium fails to distinguish between chips

that make accurate and less accurate bxxbw-bit connections. The second disadvantage can

be explained by the following consideration. Suppose chip 1 has 5x5-bit connections and

2 GCPS, then it has 50 GCPPS according to the definition. Now there is another chip, chip

2, that has the same 50 GCPPS. but made up of 10x5-bit connections with 1 GCPS.

Although they have the same number of GCPPS, the second chip is two times as slow,

but is not two times as accurate, because at the output the accuracy is not very much

better than the 5x5-bit connections (as pointed out by (11 )). In other words bx'bwdoes
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not weight the connection properly by the effective accuracy of such a connection at the

outputs of the neural network chip.

Normally accuracy as considered in this sense, can be measured by the SNR and first it

must be clear how speed and accuracy in terms of SNR can be traded-off. In the normal

definition of SNR as signal variance over noise variance, it is assumed that the errors are

independent of the outputs. Then by looking several times at the output the observed

values can be averaged, and so the noise can be averaged out. To be more specific

assume we have T observations of the outputs Yi = y + t1.Yi" Now sum these values, calling

the signal term Ysum and the noise term t1.Ysum' then the following can be derived if LLd.

errors are assumed:

T T

Ysum = Ey/ = Ty+E 4Y/ = Ysum+4Ysum
/..1 /=1

II = E[Ty) = TE[y) = TilYICIIII y

T T

IIAy..., = E[E 4Y/] = E E[4Y/] = TIlAy
/..1 /=1

(14)

(15)

(16)

T

02AylCllll = E[(4Ysum-IIAy.)2] = E[(4ysum>2]-1I2Ay..., = E[(~ 4y/)2]-(TIIA}i (18)

T T

= E E[(4Y/)~- T2112Ay = E (E[(4Y/)~-1I2Ar>-(T2-7)1I2AY = T02
Ay-(T2-7)1I2AY

/..1 /=1

If the mean of the error is zero (IlAY = 0)

or2 2 2
( S) = I -0 Y = TOy = 7l: ~l

NY"" T02 0 2 NYAy Ay
(19)

Looking at (19), if the mean error is zero, the SNR can be doubled by looking twice at the

output, or in other words by proceeding with half the speed. So the product SNR·CPS at

first sight seems to be a good criterium because a chip that has double the speed but half the

SNR of another chip can by looking twice at its outputs get the same accuracy at the same

effective speed.
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However being able to see in what way chips are the same, if they have the same value of a

criterium is not enough. If for example chip 1 has four times the value of chip 2 under this

criterium, then it also must perform four times as good. For speed this means that the amount

of effort that has to be done by chip 2 per unit of time must be four times the effort of chip

1. Clearly when using SNR·CPS as a criterium, this is not the case, because as (12)

points out, adding a bit for inputs and weight would already yield a four times as large

value, while it does not require four times as much effort. For chip 2 to make four times

as much effort, for example the number of bits four inputs and weights must be doubled.

This would give a factor of 2 improvement of the logarithm of the SNR. So a good

criterium that would say something about the effective effort that a chip makes per unit of

time, would scale proportionally to the square of the logarithm of the signal to noise ratio.

Another problem is the fact that for digital circuits the error is not independent of the signal

value, in fact it is totally determined by it. This means that if the output is measured twice,

then also the same errors will occur, so averaging will not decrease the error.

To be able to use the SNR in a speed criterium, a little less obvious construction must be

made:

• A bxb-bit connection neural network chip is an ideal neural network chip except for

the fact that it has b bits for inputs and weights, making bxb-bit connections.

• A neural network chip is said to be equivalent to another neural network chip if and

only if they implement the same neural network topology.

• A neural network chip is said to be equally accurate as another neural network chip

if and only if they have the same SNRs.

• The Effective Connection Primitives Per Second (ECPPS) of a neural network chip

is defined as b2·CPS, where b is from its equivalent equally accurate bxb-bit

connection neural network chip.

In this way all the inaccuracies of the chip are accounted for in the speed criterium of the

chip. If the SNR and the NSR-gain of the chip are known then determining b is

straightforward according to (11) and (12).

- 36 -



(20)

(21)

Note that gequi=gchip because since they are equivalent they implement the same neural

network, so the NSR-gains are equal. From (21) it can be seen that ECPPS is proportional

to the speed CPS and the square of the logarithm of the SNR as was considered to be

a good criterium to measure performance in terms of effort per unit of time. If two chips

have the same ECPPS then they effectively process equal number of connection

primitives per second.

A disadvantage of this criterium is that it relies upon knowledge of the SNR value of the

chip, so measurements have to be done to obtain numbers. Therefore no numbers can

be given yet for the reviewed chips of chapter 2. To be able to give some numbers of

chips for a related criterium, the ECPPS criterium will be weakened a little.

Because the problem is to have a good value for the SNR of a chip (CPS is often known),

it will be idealized by assuming that the only sources of error in the chip come from limited

accuracies for weights and inputs. Of course this is a little optimistic and also biased in

favour of chips with less accurate devices, but by lack of more knowledge of the SNRs of

the chips this is the only way to come up with some numbers.

• Now chips are said to be idealized equally accurate if and only if they have the

same idealized SN Rs.

• The Balanced Connection Primitives Per Second (BCPPS) of a neural network chip

is defined as b2·CPS, where b is from its equivalent idealized equally accurate

bxb-bit connection neural network chip.

Here it is called balanced because the only difference between this and plain CPPS is the

fact that here the number of input and weight bits is balanced. The idealized SNR and

henceforth b can be calculated from (11)

(22)
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1 1
1-log2(-~-1C +-~-)

b = -------2---
(23)

As can be seen from (23) if bx=bw then b=bx=bw• Furthermore if bx» bw then b""bw+V2 and

vice versa. In other words, min(bx,bw) :::; b < min(bx,bw)+Y2. BCPPS values for the reviewed

chips of chapter 2 are given in appendix 2. As can be seen from the above, a chip is

heavily punished under this criterium for not having balanced weight and input accuracies.

Also the 320 BCPPS of the NET32K chip does not seem so extreme as under plain CPS.

From the numbers of the CNAPS chip it can be clearly seen that balancing weight and

input accuracies yield the highest BCPPS rates.
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6. Experiments with the ETANN chip

The ETANN chip will be used to measure its Signal to Noise Ratio after learning with

back-propagation to deal with its errors. Both of these experiments as explained in the

previous chapter. For this, first an overview will be given of ETANNs sources of error.

While learning, the major source of error appeared to be the shape of ETANNs sigmoid.

Since this error covers in magnitude all others it would be interesting to know what would

happen if this shape was adopted by the ideal network. In this way the learnability of other

sources of error could be investigated. In order to be able to do this, a model of ETANNs

sigmoids will be derived. In 6.3 a fitting procedure will be described where all parameters

of the ideal sigmoid and the derived model of the ETANN sigmoid will be obtained. In 6.4

the actual learning experiment is described for both the case where the ideal sigmoid was

adopted and the case where the model of ETANNs sigmoid was adopted. In paragraph

6.5 the results of the Signal to Noise Ratio measurements are given.

6.1 The ETANN chip and its sources of error
64 Analog inputs can be clocked in the ETANN chip, and simultaneously transferred to a

input synapse array, where they are multiplied by 4096 synapses. For every neuron there

are 16 biases (1024 in total), making a total of 5120 synapses.

64 16

SrE Wi" + E W~ for 1~j~64
'-1 11-1

(24)

Inputs are restricted to values in the range [-1,1] and weights can have values in the range

1-2.5,2.5]. After outputs are calculated by the sigmoid generation circuits, they are available

at the output pins, but also they can be fed back to the next array of 5120 synapses,

making implementation of a second layer possible.

Figure 6.1 shows the path of one single input in a little more detail. Looking at the devices

for multiplication addition and sigmoid generation in more detail allows qualitative inventory

of the errors that will be likely to occur. To really predict the magnitudes of these errors

a more detailed model of the chip will be required. Since this requires knowledge of

several specific parameters such as W over L ratios and process variables, no such model

is explicitly derived. Instead a global inventory is made and a more complete version of

this is given in [55].

The input buffers provide the input for 64 synapse circuits and therefore cause the major

part of the total delay of the chip. Physical variations among buffers and within buffers

cause common-mode variations at the output of the buffers for different inputs and for

different buffers. At extreme inputs non-linear effects begin to appear.
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Figure 6.1: ETANNs path from input to output

The same can be said for the simplified Gilbert-Multipliers that implement the synapse

circuits. To maintain sufficient voltage-space, the normally present current source at the

bottom of the device that sets up a constant current through the device has been removed

in the ETANN chip. With I1Vin = (Vin+-Vin-) the input differential voltage, and I1Vw = (V/-Vw-)

the differential voltage over the floating gate cells representing the weight value, the output

differential current 111 = W-r) is proportional to I1Vin·I1Vw• The charges on two floating gate

cells determine Vw+ and Vw- respectively and can be programmed by a Fowler-Nordheim

tunnelling process. At extreme values non-linear saturating effects of the synapse circuits

limit the differential current 111. Common-mode values W+r)/2 vary with different input and

weights.

Summing wires add the various currents for each of the 80 synapse circuits. Simple non

linear load transistors are used to make voltages Vs+ and Vs- as inputs for the sigmoid

generation circuits for two reasons. First of all, when only few synapses are used, the

common-mode current will be little resulting in a higher impedance of the loads, causing

a larger difference in voltages V/ and Vs-. So this results in automatic gain adjustment of

the neuron when few or many inputs are used. A second advantage is that for a fixed

number of inputs common-mode variations of the summing currents, that can vary as

much as 680~ to 1mA in total, get less amplified than with linear loads making the

demands for the common-mode rejection ratio of the sigmoid generation circuit less

severe.
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6.2 The sigmoid generation circuit of the ETANN chip

The operation of the sigmoid generation circuit as shown in 'figure 6.2 will be investigated

in more detail. When !1Vs= (Vs+-Vs-) is zero, equal currents flow through all the transistor

pairs resulting in a completely balanced circuit and therefore then VA = VREF. Assuming

that both M6 and M7 are in saturation they form a current mirror. Therefore, when !1Vs is

different from zero, difference in currents through M2 and M3 cause the flow of an effective

current Itot = Ids4+ldss through M4 and Ms. This current determines the voltage difference

VA-VREF·

At the gate of M4 a constant voltage VREF+VC4 is supplied and similarly the voltage

VREF+VCS to the gate of Ms. Since the voltages VC4-Vt4 and Vcs-Vcsdetermine the operation

area of the transistors, the shape of the sigmoid will be derived as a function of these

values. For simplicity it is assumed that VC4-Vt4=-(VcS-Vts}, which is correct apart from

- 41 -



mismatches in transistors that make these values. For the relation between Ids and Vds

of a N-channel MOST formula (25) will be used. For a P-channel MOST (26) will be used.

Ids=l<{(Vgs- Vt)~-(Vgd- Vt)~) (25)

Ids=-I<{(Vgs- Vt)~-(Vgd- Vt)~) (26)

Here (.t denotes that the term is only included if it is larger than zero and (.). denotes that

the term is only included when it is less than zero. The labels d and s in figure 6.2 have

no strict relation to the sources and drains of transistors M4 and Ms. they are just labels.

The following two cases are distinguished:

For current Ids4 the following holds:

Vgs4 = VREF + VC4 - VREF = VC4 > Vt4 so the first term in (25) is included.

Vgd4 = Vgs4 - Vds4 = VC4 - Vds4•

So if Vds4 < Vc4-Vt4 the second term is also included and M4 is in its linear region yielding

for Ids4

(27)

If Vds4 > Vc4-Vt4 then only the first term is included and M4 is in saturation yielding for Ids4

(28)

For current Idss in a similar way:

Vgss = VREF + VCs - VREF = VCs < Vts so the first term of (26) is included.

Vgds = Vgss - Vdss = VCs - Vdss'

So if Vdss> Vcs-Vts the second term is also included and Ms is in its linear region yielding

for Idss

(29)

If Vdss < Vcs-Vts then only the first term is included and Ms is in saturation yielding for Idss
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(30)

In total Itot = Ids4+ldss and because Vds = Vds4 = Vdss , Itot consists of the following three

parts:

For Vds > VC4-Vt4 clearly also Vds > Vcs-Vts so formula (28) and (29) hold so

For Vcs-Vts < Vds < VC4-Vt4 (27) and (29) hold so

l tot = K4(2(VC4-VtJVds-Vds~ - K5(2(VCs-Vfs)Vds-Vds~

= 2(K4(Vc4-VtJ-K5(VCs-Vfs»)Vds - (K4-K5)Vds 2

Finally for Vds < Vcs-Vts also Vds < VC4-Vt4 so formula (27) and (30) hold so

(31)

(32)

(33)

Now if K4 = Ks then the quadratic term of (32) cancels out resulting in a linear relation

between Vds and Ito!' with gain adjustable by Vc. Note that due to mismatches of the P

and N channel MOST, K4 and Ks typically are not exactly equal, resulting in a not exact

linear relation of formula (32). Also in that case the slopes of the sigmaids will not be

equal anymore.

In this case for both transistors the first terms of (25) and (26) will not be included.

So Ids4 = 0 for Vds > VC4-Vt4 and for Vds < VC4-Vt4 (34) holds:

(34)

Also Idss=O for Vds < Vcs-Vts and for Vds > Vcs-Vts (35) holds:

(35)

The sum Itot is now just given by formula (35) for Vds > Vcs-Vts, formula (34) for

Vds < VC4-Vt4 and zero for values inbetween. As can be seen from (34) and (35)

mismatches of transistors will lead to different slopes for the roll-off sections of the

sigmoid.
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The steepness of the resulting sigmoids of course is not infinite now, but rather determined

by the open loop gain of the resulting transconductance amplifier when M4 and Ms are cut

away. So this also will result in a sigmoid of three sections: Two square-root curves that

provide the roll-off sections of the sigmoid and a linear region in between. From VA=

VREF+Vds it can be seen that the sigmoid shape is formed around VREF. However, at the

output it must be formed around Vrafo ' so after the sigmoid generation circuit, first VREF-Vrafo

is subtracted from VA' After that it is amplified 5x around an inverting amplifier. Together

this would give the sigmoids as shown in figure 6.3. However, the opamps that perform

these operations clip at a given point to their extreme values, limiting the sigmoids.

Therefore, at the output a sigmoid consists of the following 5 sections: 1) When inputs t1Vs

are large in negative, the sigmoid is clipped to a minimum value. 2) For smaller negative

values of t1Vs, a square rooted part provides the negative roll-off section of the sigmoid.

3) For small absolute values of t1Vs, the sigmoid is formed by a straight line. 4) For larger

positive values again a square rooted curve determines the positive roll-off section of the

sigmoid until a point where t1Vs becomes so large that the sigmoid clips to its maximum

value. It is this 5 section model that will be used to fit the datapoints to that are collected

at the output of the ETANN chip and the input of the sigmoid generation circuit. First,

however, this data will be fitted to an ideal sigmoid curve.

Figure 6.3: Typical sigmoid characteristics of

the ETANN chip for different values of VC4

and VCs• as calculated from (31)--(35)
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6.3 Fitting of ETANNs sigmoids

In order to perform the proposed experiment of letting ETANN learn to deal with its errors

not only the chip will be needed, but also a good definition of the ideal neural network that

is involved. Clearly the ideal neural network must have the same architecture as the

ETANN chip: 64 weights and 16 bias weights to each of the 64 neurons. Also it must have

the same range for allowable inputvalues [-1,1] and weightvalues [-2.5,2.5], because it

must be possible to load the ETANN chip with the same weights as the ideal neural

network and also it must be possible to present the same inputs to the ETANN.

Another issue is what sigmoid has to be used to provide the ideal network with. Of course

just 1/(1 +e-5) could be adopted, but this would mean that errors would occur just for the

fact that ETANNs sigmoid gain is different from 1. It is better, because having a gain

different from 1 is not considered to be an error, to use 1/(1 +e-"'5) where Ais the same as

in the ETANN chip. Also, because the extreme values of ETAf\lN are not exactly a and 1

severe errors would occur if the ideal network has those values as extrema for the

sigmoid. Since also it will not be considered an error that ETANN does not exactly have

these extreme values of the sigmoid, the ideal network will have to adopt the same

extrema as the ETANN chip. In other words, all the characteristics of the chip that are not

considered to be errors must be adopted by the ideal network, so the ideal network must

have the same architecture, input and weight ranges and steepness and extreme values

of the sigmoid as the ETANN chip. Using this approach, errors that occur due to any

difference in the ideal network and ETANN chip can be investigated. Examples of these

are limited accuracies for weights and inputs, errors due to non-linearities of multipliers,

offset of the sigmoid and deviations from the sigmoid shape.

So in order to properly make an ideal neural network the sigmoid gain and the extreme

values of ETANNs sigmoid must be known. To estimate these, an experiment has been

performed, called the fitting of ETANNs sigmoids. For one single neuron with 64 inputs

and 16 biases, 100 times, different random weight sets were chosen, in which each weight

was drawn from a uniform distribution on [-2.5,2.5]. For each of these weight instances a

set of 100 different random inputs, drawn uniformly from [-1,1], was fed through the chip,

giving a total of 10,000 output values. These data points could have been fitted together

with the estimated values s of (24), but then errors occurring because of non ideal

calculation of s should be included in the model of the sigmoid in order to make a good

fit possible. The ETANN chip, however, has the possibility to measure the voltages Vs+

and Vs"that represent these values. It is assumed here that the sigmoid generation circuit

has a sufficient common mode rejection ratio to be allowed to consider only differences

t:..V5' These measured values, which henceforth will be called net, are used as input

datapoints for the fitting procedure. The outputs (y) serve as output datapoints and their
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relation will be fitted to a model of an ideal sigmoid and to the model of paragraph 6.2,

using the nonlinear fitting method of Levenberg-Marquardt [56]. Figure A3.1 in appendix

3 shows the results of this fit to the two different sigmoid models. The dotted curve shows

the fit to the following model:

a - b + bY = -~---.,;.-

1+8 -c(net-cI)
(36)

The solid curve shows a fit to the 5 section model presented in paragraph 6.2, with the

clipping of the opamps included. Clearly this fit is far better than the fit with model (36),

because the model is more accurate. However, the first model is the one that will be used

by the ideal network and getting the parameters of this model is of first interest. Later, to

investigate the learnability of other sources of error, the fit to the in paragraph 6.2 derived

model will be used. By performing the first fit a,b,c and d have been estimated so the

extremes of the sigmoid a and b were known. However, not yet a proper value of the gain

of the sigmoid, because value c in this model is the gain of the sigmoid from net values

to output values and not from s values to output values. For the ideal neural network the

parameters of the following model must be known:

Y= a-b +b
1+8-1'.

Where it is assumed that the relation between net and s can be modeled by:

n8t = 8'S + f

(37)

(38)

Demanding that (37) with s given by (38) with f=O equals (36) with d=O, gives the required

value A.=c·e. The only reason that d and f were included was to make a better fit possible.

The values of e and f are estimated by fitting s and net datapoints to model (38) as shown in

figure A3.2. Finally in figure A3.3 a plot is given from s to y, with (37) as the dotted curve

and the solid curve is the same as in A3.1 but then with transformation (38) in it. As ideal

sigmoid (37) will be adopted. The values of the mentioned parameters are given in table 6.1 for

a single neuron of the ETANN chip.

6.4 Learning ETANN to deal with its systematic errors

Fitting of ETANNs sigmoids has given all the parameters needed to construct the ideal

network so all the prerequisites have been made to perform the experiment of learning to

deal with the errors of the ETANN chip by the back-propagation algorithm.
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Table 6.1: Estimated values of the fitting parameters

a b c d e f A

0.87 -0.94 122 0.0052 0.0022 0.013 0.26

First of all, a random weight initialization was generated, where again, weights were drawn

independently from a uniform distribution over [-2.5,2.5]. This set of weights was

downloaded into the ideal network and the ETANN chip. Next a training set of 100 inputs

and targets was generated by feeding the randomly drawn inputs through the ideal

network. This training set was used to train the ETANN chip with the standard back

propagation algorithm without momentum and with constant learning speed. After having

learned one epoch, Ld. one time the whole training set, a test set was generated on which

mean-square-error, mean error and error variance were calculated. This test set was used

as training set for the next epoch, so one sample was only used one time. Because of the

abundancy of samples this was possible. 25 Epochs were needed to detect no further

improvement in the magnitude of the errors. This learning procedure was repeated for 100

different weight initializations. A tlow diagram of the learning procedure is given in

figure 6.4.

Results of the learning procedure are given in appendix 4 figure A4.1. The solid curves

of this figure depict mean learning curves over different weight initializations, while the

dotted curves show the variances of these curves. As can be seen from these curves,

though the main part of the residual mean-square-error is contributed by error variance,

the contribution of the mean of the error is not negligible. Still these mean errors are much

better learned than error variances because before learning, they contributes most to the

mean-square-error. This supports the notion that systematic errors can be learned better

than errors that variate over the inputs and weights. While before learning these errors

contribute most to the mean-square-error, after learning the error variance dominates the

mean-square-error.
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Figure 6.4: Flow diagram of the learning
procedure

To be able to qualitatively judge learning performance, datapoints s against yare plotted
after learning in figure A4.2, together with the ideal learning curve (35). When comparing
this to figure A3.3, it can be seen that mainly errors in the calculation of s are corrected
by learning. Of course this is hardly suprising, because only this value can be manipulated
by reprogramming the weights. From figures A4.3 and A4.4 that depict s against net and
net against y respectively, it can be concluded that learning caused an additional offset
on the sigmoid of the ETANN. This was done in order to keep all the datapoints of figure
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A4.2 as close as possible to the ideal learning curve, because the mean-square-error of

these deviations is what was minimized by the learning algorithm. If no such offset was

introduced the resulting datapoints in A4.2 would have been far further away from the ideal

curve. Figure A4.3 also shows the effect that the variance in net has been reduced which

means that errors due to non linearities of the multipliers are rather well learned. From all

the figures in appendix 4 it can be seen that the main part of the error is caused by the

shape of the sigmoid that ETANN provides. The problem with this is that ETANN can

never learn to adapt to this source of error because it has no way of reshaping its

sigmoids else than changing the gain and the extreme values a little. The best that can

be done is to use a learning algorithm that also automatically adjusts these parameters.

Much improvement does not have to be expected from this however.

When using the ETANN chip in a completely different way, for example for classification,

the mapping that has to be learned will drive the inputs to the sigmoids of the output

neurons to large values because the extreme values of the sigmoids have to be learned.

In that case the deviations of the ideal sigmoid function, which mainly occur in the area

where the sigmoid function has intermediate values, will have not nearly as much inpact

as in the above experiment. So because the above experiment measures in the area

where the sigmoid transfers from extreme values, the outcomes of the experiment are only

significant in cases where the chip is used that way. If the probability distributions of inputs

and weights were chosen to yield large input values for the sigmoids, then the experiment

would say something about the ability to learn to deal with errors in classification

problems.

Because now this error masks in magnitude all the other errors that occur on the chip, no

conclusions about other errors can be made. Therefore it is interesting to know what would

be the next source of error apart from sigmoid shape. To investigate this the model of

ETANNs sigmoids can now be used in the ideal chip, thereby declaring it to be no error

anymore. While the results of this experiment can not be used anymore to compare

ETANN to other chips because a major source of error is eliminated, they do give an

indication of the amount of error caused by other non-idealities of the chip. Results of this

experiment are shown in appendix 5. From figure A5.1 it can be seen that there is

improvement is mean-square-error of approximately factor 3. Almost all mean error is

eliminated, leaving only error variance as contribution to the mean-square-error. Still this

is far from the theoretical value that one would expect if there were only errors of limited

input and weight accuracies as was used in experiments in the previous chapter. Of

course this is because there are a lot more sources of error that occur in the ETANN chip,

as mentioned in paragraph 6.1, and they all should be included in a model that would give

some theoretical expectation of the achievable minimum error.
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Flgure A5.2 show almost the same datapoints as A4.2, except for a change in offset.

Since now these points are compared to the proper model of ETANNs sigmoids, they give

rise to much less error. Also, now, no introdution of a change in offset is required to

correct for these errors, which explains the difference between the results shown in figures

A5.3 and A4.3. From all the fjgures in appendix 5 it can be seen that most of the error

now comes from variations in net values over different input and weight values. Again

these are difficult to learn errors because they variate over inputs and weights.

Note that by incorporating each time an error in the ideal neural network, the difference

in mean-square-error that results from doing this determines the learnability of that error

under a given learning algorithm. In this way the learnability of all errors of a chip can be

determined. Meanwhile this results in a proper model for the chip and its errors.

6.5 The Signal to Noise Ratio of the ETANN chip

While learning the errors of the chip, each time after 25 epochs when the learning had

finished, data was collected to determine the Signal to Noise Ratio of the ETANN chip.

Results of these measurements are given in table 6.2.

Table 6.2: Results of the Signal to Noise measurements of the ETANN chip

I I ~ IldY
CJ2 2 SNR b ECPPSY CJdy

Ideal -0.04 +0.04 0.37 0.021 17.5 3 18G

sigmoid

ETANN -0.3 +0.006 0.37 0.0077 48,7 - -
sigmoid

The effective bit accuracy b as introduced in the previous chapter has been calculated

according to (21). The NSR-gain value that was used for this calculation can only be

determined in the case of the ideal sigmoid shape, because only here the model is valid.

The following values were used: A.=0.26 (see table 6.1), CJx= 1/-../3 for inputs and CJx= 1 for

biases, CJw= 2.5/-../3 and N=80.

The fact that the ETANN chip is after learning only as accurate as a 3x3-bit neural

network, seems to be bad, but care has to be taken to conclude anything from this
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because totally no data of other chips is available from these experiments. It does show

that merely taking input and weight accuracies as main sources of error to estimate the

SNR in this case clearly is too optimistic as can be seen from the difference in this

ECPPS value and the BCPPS value of the ETANN chip in appendix 2.
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7. Conclusions and Recommendations

The success of neural networks will, to a large extent, depend on the ability of them to

deal with interesting real world problems. Since often these kind of problems impose

severe time constraints, hardware implementation becomes indispensable.

A brief review has been given of popular neural network chips of major companies in

electronic chip manufactoring. Chips for neural networks vary widely from straightforward

digital, DSP-like implementations, which are often very general purpose but typically only

have little integration density, to analog ICs, that implement larger networks but suffer from

inaccuracies due to noise and other physical short-comings. Due to this enormous

diversity, which is mainly the product of lack of experience in making them and little

consensus on what makes a good chip, comparing their performance becomes a difficult
task.

The first step for the solution of this problem has been to define a proper set of hardware

performance criteria to which the chips can be subjected. In order to be able to evaluate

hardware performance criteria, first, meta-criteria are proposed. These meta-criteria

demand both generality and practicality of a hardware performance criterium. These two

requirements tend to conflict and therefore a good hardware performance criterium is

subjected to a compromize between them.

Commonly used criteria for size, accuracy, speed and cost of a neural network chip, often

fail to satisfy at least one of the proposed meta-criteria sufficiently. Counting just the

number of neurons and weights that can be implemented does not necessarily answer the

question whether a given neural network topology can be mapped on a chip. Also

something must be said about the possible ways of interconnecting those neurons and

weights: the reconfigurability of the chip. Also counting numbers of bits for the accuracy

of inputs and weights does not give the complete picture of the overall accuracy of the

chip, because there might be many more sources of error. Finally, measuring speed in

"Connections Per Second" (CPS) clearly is biased too much in favour of chips that make

inaccurate connections.

Several newly proposed criteria, which are defined in this thesis, address these objections.

First of all, criteria coming from neural network theory have been reviewed. For example

the term capacity of a neural network can be defined in several ways, such as the size of

the set of all possible functions from input to output, which can be obtained by counting

those functions if this size is finite or by counting the size of its E-cover if it is infinite. Also

the popular VC-dimension is a definition of capacity for a neural network. Knowledge of

any of these capacities would make estimations possible of the number of samples

needed in a training set to guarantee performance on learning and generalization.
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However interesting and promising, either to get numbers from these theoretical criteria

is intractable or they are to weak too say something about performance of hardware. In

other words, their practicality seems to be insufficient. Despite this fact, they do give hints

about what would be a good definition of a hardware related performance criterium.

The first newly proposed hardware related performance criterium is the" Reconfigurability

Number", which counts the number of possible different (fully connected) feedforward

networks that can be mapped on the chip and therefore expresses in one number

something about the size and the reconfigurability of a neural network chip. Next "Weight

Memory Capacity" integrates the number of weights and their bit-accuracy and is a

straightforward, easy-to-obtain definition of capacity inspired from neural network theory.

The "Signal to Noise Ratio" (SNR) of a chip measures the inaccuracies of the chip

independently of their sources by comparing outputs of the chip to an idealized equivalent

of it. The same kind of setup can be used to measure the effect of systematic errors in the

chip by trying to compensate for them according to a given learning algorithm. This

experiment establishes also the fitness of a learning algorithm to be used with a chip,

because not only the amount or magnitude of the systematic errors is important, but also

the ability of the learning algorithm to deal with them. Finally, a new speed criterium has

been proposed, normalized to the effective accuracy of a connection: The" Effective

Connection Primitives Per Second" (ECPPS), in which the SNR and the CPS criteria are

integrated. This criterium counts the number of connection primitives that a suitably

defined "equally accurate equivalent" of the neural network chip makes in a second.

Some of the proposed criteria involve measurement, so experiments have been performed

on the ETANN chip from the Intel corporation to get figures of the Signai to Noise Ratio

of that chip. Therefore, first its systematic errors were learned by the back-propagation

algorithm. From this experiment it could be concluded that ETANNs main source of error

is the shape of its sigmoid. Eliminating this as a source of error gives a factor 3

improvement on the residual error after learning. The SNR and ECPPS of the ETANN chip

have been established, but no conclusions can be drawn from these figures until the same

experiments have been performed on several other chips.

The contribution of this work is mainly towards the definition stage of good criteria to

evaluate the performance of neural network hardware implementations. All the proposed

criteria deserve and need full attention on their own to be able to establish their strengths,

weaknesses and practical importance. Therefore measurement procedures must be

standardized in every detail to eliminate biases due to differences in (details of)

measurements. Next, actual chips must be subjected to them, and from the numbers that

are obtained, then, conclusions can be made on if a certain criterium fits well to the

intuitive idea of performance and if the resulting numbers are really unbiased. Before this

- 53 -



can happen however, it is only after sufficient experience in applying them that a sensible

conclusion can be given on the completeness of a set of criteria for the judgement of

neural network hardware performance. Until this moment, criteria have to be proposed,

rejected, standardized and above all used. Once commercial interest in neural networks

really begins to rise, no doubt, all this effort will be made with substantial speed and care,

for what is a better way to advertize a neural network chip other than by the providing

numerical figures that show good performance on an accepted set of hardware

performance criteria.
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Appendix 1: Tables of conventional criteria

Table A1.1: Conventional criteria for size and accuracy

E Size and Accuracy

Nn No Nw CPN b x b w LA

128K 2K 16
CNAPS 64 64 256K 4K 8 8 -

2M 32K 1

512 16 16 16
Lneuro 1 16 1K . . .. 8 -

256 1

NBS 8 8 - - 8 16 -

PDN 13 832 832 64 8 8 -

WSI 576 576 36K 64 9 8 -

WSI-BP 144 144 9K 64 9 8 BP

10 6 -S NN 256 10 6 106 1024 8 -

Ni1000 1024 256K 256 5 RCE
PNN

TDM NN 1 1 - - 16 -

ETANN 64 10240 10240 64/128 6 6 -

BiCMOS 64 768 768 32/16 -

32K 1 1
NET32K 256 32K . . 128 . . .. -

8K 4 4

16
ANNA 8 512 4096 .. 3 6 -

256

336 BND 336 28K 28K 168 1 8 BZ

400 BND 400 40K 40K 200 1 8 BZ

2-Chip 24 576 576 24 8 BP
HEB

URAN - 135K 135K - 8 -
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Table A1.2: Conventional criteria for speed

I I

Speed
Chips

CPS CPSPW CUPS cUPSPW

0.8G
CNAPS 1. 6G 6.1K - -

12.8G
\

Lneuro O.lG 97.6K - -

NBS 10M - - -

PDN 8.0G 9.6M - -

WSI 1.24G 33.6K - -

WSI-BP 0.28G 30K

10 6 -S NN 1.37G 1.37K - -

Ni1000 10G(?) O. 38M (?)

TDM NN - -

ETANN 2.0G 0.2M - -

BiCMOS O.lG O.13M - -

NET32K 320G 9.8M - -

ANNA lOG 2.4M - -

336 BNU 1T 35M 28G 1M

400 BNU 2T 50M 80G 2M

2-Chip 90M 0.15M

URAN 200G 1.5G - -
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Table A1.3: Conventional criteria for cost

Cost
Chips

ESA I'D EI'C EI'CU
(jJ.m2

) (Watt) (Joule) (,Joule)

5.0m
CNAI'S 4.0 2.5n -

0.3n

Lneuro -

NBS 0.2 20 -

I'DN lOOK 54m 6.8p -

WSI 410K -

WSI-BI'

10"-S NN 273 75m 54p -

Ni1000

TDM NN -

ETANN 2000 2.25 1.1n -

BicMOS -

NET32K 960 -

ANNA -

336 BND 4900 3.0 3.0p 107p

400 BND 3025 4.5 2.3p 56p

2-Chip 80K 0.25 28n

URAN 1124 -
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Appendix 2: Table of new criteria

Table A2.1: New criteria

I I
New criteria

Chips
RN WMC b BCPPS

128K 8.5 57.8G
CNAPS 256K 256 kB 8 102.4G

5.7·10" 1.5 28.8G

Lneuro 1 kB

NBS 0 8.5 0.72G

PON 832 832 B 8 512G

WSI 36 kB 8.3 85.5G

WSI-BP 9 kB 8.3

10 6 -S NN 10 6 B

NilOOO 160 kB

TOM NN 0

ETANN 4.10 6 7.5 kB 6 72G

BiCMOS 768

NET32K 4 kB 1 320G

ANNA 3 kB 3.5 122G

336 BNU 28 kB 1.5 2.25T

400 BNU 40 kB 1.5 4.5T

2-Chip 576 B

URAN 135 kB
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Appendix 3: Results of the fitting of ETANNs
sigmoids
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Figure A3.1: Results of fitting ETANNs

sigmoids, net against y
Figure AJ.2: Results of fitting ETANNs net
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Figure A3.3: Results of fitting ETANNs

sigmoids, s against y
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Appendix 4: Results of learning with ideal
sigmoid
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Figure A4.1: Learning curves of learning
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Figure A4.2: ETANNs outputs after
learning with the ideal sigmoid,s against y
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Figure A4.4: ETANNs outputs after
learning with ideal sigmoid, net against y
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Appendix 5: Results of learning with ETANNs
sigmoid
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Figure AS.1: Learning curves of learning
systematic errors with ETANNs sigmoid

Figure AS.2: ETANNs outputs after lear
ning with ETANNs sigmoid, s against y
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