EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Test generation from SDL-specifications using partial-order reduction methods

Roorda, Sjoerd

Award date:
1993

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ef5ffab6-52c5-4885-abb8-81cd9a2343d4

Author: S.J. Roorda Date: September 1993
Professor: Prof. dr ir C.J. Koomen
Supervisor: ir E. Kwast

Vakgroep EB

Test.gene_ration from S[_)L—
speC|f|§:at|ons using partial-order
reduction methods

Sjoerd Roorda

ti-
1/ __ Fac t

De Technische Universiteit Eindhoven aanvaardt geen aansprakelijkheid voor de
inhoud van stage- of afstudeer verslagen.

EB 4ty

ot

SDL Preface

___Fact

All good things come to an end. And even though I have feared sometimes, this one
would not, my graduation work has reached its completion too. Not that there is no
work left to do, on the contrary. I started out with one question and ended up with
many more.

I have worked at PTT Research, the department of computer science in Leidschendam
in the research project “SDL-fact”. It was also my graduation project for the Eindhoven
University of Technology, department of electrical engineering. My graduation professor,
prof. dr. ir. C.J. Koomen was kind enough to “let me go” and gave me the chance to
carry out my graduation project at PTT Research. My supervisor (and colleague) at
PTT Research was ir. E. Kwast.

As much as I am proud to present this report to you, as the master-piece that ends
my time as a student and is the start of the rest that is yet to come, I am sad that I
have to leave. I enjoyed my time at PTT research very much and I would like to thank
all people that made that possible. Thanks to Erik, who spent a lot of time helping me
out and pointing me to the right direction. Also a big “thank you!” to Stan, Hans, Han,
Hans, Ed, Jan, Willem and Iko for their support.

When graduating at PTT Research, you are not alone. I would like to thank all
fellow students that I have met during the last 10 months. Things would definitely have
been different they all would not have been there... Finally, I probably would not
even have started this without my parents help and advise. I definitely would not have
finished it without Annemiek.

Sjoerd Roorda
September 1993

But now, what happens now?
Well... that’s for you to invent.
-Till the end of the world-

= Summary

]
-

This report describes the work that has been done in de project SDL-fact. The work
has been carried out from December 1992 to September 1993 at PTT Research in Lei-
dschendam, department of computer science (INF). Goal of the project was to evaluate
partial-order based reductions methods for the reduction of the state space explosion
in the context automatic test generation methods. Much of the work that has been
done at PTT Research on the subject of protocol conformance testing is bundled in
toolset called the PTT Conformance Kit. The test generation methods that have
been implemented in the Conformance Kit have been the starting point for this report.
However, in contrast to the toolset, the means of specification of protocols that is used
is not the finite state machine, but the formal description language SDL.

First, an overview is presented of the existing techniques for automatic tests gener-
ation from SD L-specifications. Problems that arise when using SDL as a specification
language are:

¢ the limited observability and controllability in the implementation under test;
¢ the nondeterminism in the system;

¢ the state space explosion that occurs when creating an “internal representation”
of the system.

The explosion of the number of states limits the applicability of current test genera-
tion methods to medium-sized protocols. The construction of an internal representation
of the composite system is necessary for all test generation methods that are presented.
This internal representation holds the possible states in which the system may reside and
the possible state transitions. A similar representation must be built in order to perform
a verification of the system. Therefore, reductions methods that have been developed for
protocol verification are likely to be applicable to the generation of conformance tests.

In the report, a number of heuristics-based methods are presented for the reduction
of the state space representation of a system. The use of heuristics does not guaran-
tee that the complete behaviour of the system still is described by the reduced system.
Holzmann et al. have presented new reduction methods based on partial orders for pro-
tocol verification. These methods can be used to reduce the state space while preserving
completeness of the model. The idea behind the partial order based reduction methods
is that in concurrent systems not all actions are ordered (i.e. it is not defined whether an
action should be executed before or after an other action). This is expressed in a “nor-
mal” representation by the presence of both interleavings of the actions. A reduction
can be achieved by allowing only one interleaving of the un-ordered actions in the rep-
resentation. The algorithms that accomplish this reduction for the protocol verification
problem are:

o reduced search method;
¢ sleep set method;

o stubborn set method.

The algorithms that implement these methods block state transitions in the state
space such that not all interleavings of un-ordered actions are present in the state space.
The problem when these methods are applied to the generation of conformance tests
is that the implementation, due to nondeterministic behaviour, may still select any of
the blocked transitions. The outline for a new test generation method based on SDL
is presented. In this method, the tester does not expect sequences of messages but uses
sets of messages (called output sets) that must be observed. For each possible set, a
(partial) ordering is defined.

It is likely that this new method can be used successfully for the reduction of the
state space. Although the reduction that can be achieved will be much smaller than in
the case of protocol verification, improvements can be achieved in:

o the use of resources (such as CPU-time and memory);
o the amount of test that is generated;

o the fault coverage of the generated test.

Open questions are the relation between the test method based on output sets and
the theory that has been developed in the project ARTEFACT. Also, the effects of the
assumption of a “reasonable environment” on the fault coverage of the tests in not clear.

Contents

1 Introduction

2 Conformance testing

2.1 Specifications e e e e
2.1.1 Formal description techniques
2.1.2 Incompleteness of specifications

2.2 Conformance testing methodology
2.2.1 Abstract test case definition oo Lo
2.2.2 Architecture
2.2.3 Modeling the state space o 0oL
2.2.4 Representations e e e e e e e e e e e
2.2.5 Completion of the specification
2.2.6 Conformancerelations L.
227 Testingstrategy o

2.3 Composition of finite systems

24 Testability e e
2.4.1 Nondeterminism
24.2 Statespaceexplosions e
243 Faultcoverage e
244 Design for testability o .

3 Automatic test generation
3.1 Imtroduction. L e

3.2 FSM-based test generation techniques

0w = O ot O;

10
11
14
17
18
19
21
22
24
24
24
25
25

3.3 Tree-based test generation techniques 32

3.4 TTest generation based on canonical testers, 32
3.5 PTT Conformance Kit, 33
SDL specifications 35
4.1 Structure of SDL specifications e 36
4.2 Observable behaviour 37
4.3 Nondeterminism e e e e e 38
4.4 Modeling the state space of SDL-specified systems 40
4.4.1 Finite state machines 41
4.4.2 Labeled transition system 41
4.4.3 Asynchronous communicationtrees 43
444 SAVE constructs 44
4.5 Simple handshake example 45
4.5.1 Description of the example, 45
4.5.2 Nondeterminism in the example 46
4.5.3 Infinity of the state space 46
4.6 'Testing SDL-specified systems 47
4.6.1 ACT-based test methods 48
4.6.2 SDL-machines 49
4.6.3 Behavioral constraints L. 50
Partial order reduction strategies in protocol verification 53
5.1 Protocol verification e 53
5.1.1 Reachabilityanalysis 55
5.1.2 Statespaceexplosion. e 56
5.2 Reduction methods using heuristics 56
5.2.1 Improving the specification 57
5.2.2 Splitting the specificationo o L., 57
523 Partialsearches L 57
5.3 Reduction methods using partialorders, 59

5.3.1 Reduced searchmethod 59

5.3.2 Sleep Sets e e e e e e e e e
53.3 Stubborn Sets.

Application of the partial order reduction methods

6.1 Controllabilityof traces L
6.1.1 TheLTSmodel,
6.1.2 fairness e
6.1.3 controllability

6.2 Stabletraces e
6.2.1 Non-stablestateso L.
6.2.2 Existence of stable traces L0 L 000
6.2.3 Projection sets e e
6.2.4 Controllable behaviour o oL

6.3 Generating tests for SDL-specified systems
6.3.1 Output sets e
6.3.2 Observation of the outputsets
6.3.3 Refinement of the output sets
634 Notation.

6.4 Application of the reduction methods
6.4.1 Adoption of the algorithms
6.4.2 Test procedure e e
6.43 Faultcoverage oo,

Conclusions

The reduced search method

Conflict set method

Stubborn sets

Two independent processes

Examples stable traces

65
65
66
66
67
68
68
72
73
74
76
76
78
79
80
81
83
84
84

87

95

99

106

112

117

Introduction

Telecommunications is governed by protocols. The use of telecommunications extends
ever further by integrating different media of communications like speech, data, pictures
and video and by accomplishing higher speeds and better availability. The protocols that
accomplish this grow increasingly more complex. In a modern telecommunications ar-
chitecture, a large number of protocols are used at the same time so the environment for
these protocols also becomes more complex. The complexity of modern protocols poses
some important problems. Means are needed to help designers and users of telecommu-
nication protocols to deal with this complexity.

functional specification o
| validation

verification O formal specification
| testing
implementation

e

Figure 1.1: Basic design cycle for a protocol

A typical design process for a telecommunications protocol (the design cycle) is
given in figure 1.1 [Koo91]. Three phases can be distinguished in the design process.
A functional specification is made in the first phase. This functional specification
defines what the protocol should do. The formal specification which is constructed
during the second phase precisely defines how the protocol should accomplish these
tasks. Finally, an implementation is built according to the formal specification that
implements the wanted functionality. Very important in the design process is the recur-
sion to a previous phase to check whether the current steps in the process comply with
the previous phases (figure 1.1).

In the design cycle there are different aspects that have become increasingly important
with the growing complexity of protocols. Formal description techniques (FDT’s)
are becoming very important in the second and third phase of the design. The techniques
allow the designer to deal with complexity by using mathematics and computers. Also,
various other parts of the design cycle can be automated when FDT’s are used. An other
essential aspect for the correct design of a complex protocol is extensive verification
and testing. Only through these techniques the designer is able to ensure he ends up
with a protocol that actually does what it should do. In this report, testing is defined
as checking whether the implementation correctly implements the specification, while
verification checks for logical errors in the specification. The automation of testing
(especially the generation of tests) and verification with the help of formal description
techniques has been an important issue during the last years.

The automated generation of tests in order to test a protocol to its specification is
the main subject of this report. At PTT Research, much work has been done on the
field of automatic test generation from protocol specifications. Much of the results of
this work has been bundled in a toolset called “PTT Conformance Kit” [BKKW91].
This toolset implements different test-generation techniques based on specifications that
are written down as finite state machines (FSM’s). The Conformance Kit has been
used to generate tests for practical protocols. All test-generation techniques, including
the ones that were implemented in the Conformance Kit, are limited to medium-sized
protocols. To keep up with the complexity of modern protocols, it is necessary to improve
the existing test generation methods such that also tests for very large protocols can be
generated automatically.

This report describes the project SDL-fact. This project is a continuation of some
large research projects at PTT Research. The goal of the project was to examine some
recently presented reduction techniques from the field of protocol verification in the
context of the test generation methods that were developed for the PTT Conformance
Kit such that tests can be generated for larger protocols. With these reduction tech-
niques, that were presented by G. Holzmann et al. [HGP92], it should be possible to
apply existing test generation techniques to very large protocols. One of the questions
that had to be solved in the project was: “Can these reduction techniques be used in
cooperation with the test generation techniques that have been implemented in the PTT
Conformance Kit?” Also, one important demand was added: the description technique
that was to be used, was not the finite state machine (which is used in the Conformance
Kit) but the formal description language SDL (Functional Specification and Description
Language).

The report is set-up as follows: First a general overview is given of existing testing
techniques. Some possible architectures are considered and the problem of state space
explosions is introduced. Secondly, some automatic test generation methods are consid-
ered. After this, the attention is shifted to the specification language SDL; some basic
concepts of the language are presented and specific problems related to automatic test

generation from S D L-specifications are summarized. The last part of the report presents
some approaches in reducing the representation of a protocol that are known in the field
of protocol verification (including the reduction methods by Holzmann et al.). The ap-
plication of these methods to the problem of generating tests from SD L-specifications
is covered in the last part of the report.

Conformance testing
T

Testing whether the observable behaviour of an implementation conforms to the relevant
specification is called conformance testing. In this chapter, a number of general
aspects of conformance testing are summarized. The arguments that are given here are
applicable to both manually and automatically generated tests.

In order to obtain some degree of certainty about the correct operation of a protocol
implementation, a very large number of test is needed. With the help of standardized test
description languages these tests can be executed automatically. Still, the reader should
bear in mind that there is a principal difference between a specification of a protocol
(which is an abstract representation of the systems behaviour) and an implementation
of a protocol (a physical system). Tests that are generated for physical systems must
be executed in a finite amount of time and with a finite amount of resources?.

2.1 Specifications

One of the most important reasons for the rapid progress in telecommunications today
is the availability and widespread use of standardized protocols. Making the standards
is a slow and awesome process, yet the benefits are numerous. The most important
institutions that contribute in the development of standardized protocols are the CCITT,
ISO and ETSI. The standardization of communication protocols allows consumers to
choose freely between products of different manufactures. With these products, large
multi-vendor telecommunication architectures can be built that meet the demands of
modern telecommunications.

When interconnecting different building blocks of a telecommunication architecture
such as or protocol layers or complete protocol implementations, it is very important
that each separate building block conforms to its specification (e.g. that it does what
the specification prescribes). This is especially important when the user wants to inter-

'To make a set of generated tests “usable” in a practical system, the finiteness is not sufficient. In
this case practical and economical arguments are even more important

connect protocol implementations made by different manufacturers. Even though each
implementation of a protocol is built according to the same standardized specification,
this does not guarantee correct cooperation of different implementations. A number of
reasons can be found for this problem:

¢ implementation errors;
¢ different interpretations of the specification;
¢ incompleteness of specifications;

¢ implementation of different options.

Due to errors during the design process, an implementation may not fully comply
to the specification. Often, these errors only show up in very complex situations or
even only when the implementation is connected to products of different manufacturers.
Other causes of possible deviation from the standard are considered in the following
paragraphs.

2.1.1 Formal description techniques

A very important problem for the creators of protocol standards is to write down the
definition of the behaviour of the protocol unambiguously. It has appeared that this
is a very difficult task. Almost all standards are written in English, which makes it
almost impossible to exclude ambiguities in the specification. Formally, protocols that
are built according to different interpretations of the same specifications all conform to
the specification. However, such situations must obviously be avoided.

An important solution for the problem of ambiguities in specifications is the growing
use of formal specification languages (see table on page 7). These languages can be used
to describe the behaviour of a protocol. The semantics of these languages allow only one
interpretation. The formal description of protocols also allows for the specifications to be
processed by computers. Large parts of the design cycle of a protocol can be (partially?)
automated this way. This report focusses on automatic verification of protocols and
automatic test generation for protocols. Besides those applications, also automatic
implementation could be considered when using formal languages to describe protocols.

The introduction of formal description techniques in the whole protocol design process
is a difficult task. The choice between the available formal languages is not obvious and
depends on a number of factors such as the kind of protocol, the availability of tools and

?Most approaches toward automating test generation assume that some parts in the design process
are still accomplished manually. Typically, the automation of parts of the design process serves as an
aid to the designer.

Standardized formal specification languages

i Functional Specification and Description Language (SDL):

The language started out in 1976 merely as a collection of standardized pictures that
could be used to describe systems. It has been recommended in different versions:
SDL80, SDL84, SDL88 and recently the latest version: SDL92 was accepted by the
CCITT. In this report, the 1988 version of SDL is used, unless stated otherwise.
The language has a graphical and a phrase representation. It is based on extended
finite state machines. Much effort is done to promote SDL as a means of specifying
protocols [IC92].

ii LOTOS:

The formal language LOTOS was developed for scientific purposes. It has been used
in the development of protocol testing and verification techniques and is based on
the temporal ordering of observational behaviour. It is standardized in the ISO 8807
international standard [ISO88].

iii Estelle:

The structure of Estelle is very much alike SDL. The language was standardized by
the ISO in the ISO 9074 international standard [ISO89]. Estelle was developed as
a means of removing ambiguities in the specifications of layers of the Open Systems
Interconnection (OSI) architecture, defined by ISO.

Figure 2.1: Formal specification languages.

fashion. Each language has its own strengths and weaknesses which make it more or
less suitable for specifying certain kinds of behaviours and allow for easier application
of some automated design techniques. However, with the growing availability of tools
that support formal languages, the formal description techniques become more and more
important.

Often, it still is very hard to automate the generation of tests from the specifications
in formal languages. Later in this report some techniques will be presented that translate
the high-level formal languages to lower-level models of the protocol that can be used
for automatic test generation or automatic verification like finite state machines and
labeled transition systems.

2.1.2 Incompleteness of specifications

Often specifications of protocols are not complete [BEVT89]. However two kinds of
incompleteness can be distinguished. The first is incompleteness that results from the

fact that parts of the protocol are not or only partially specified. The exact completion
is left to the manufacturer. This will inevitably lead to different implementations of the
same specification. The formal methods that were described in the previous paragraph
can be used to determine whether a specification is complete or not.

A second kind of incompleteness results from implementation options that are of-
fered to the manufacturer. Here all possible specifications are well defined. In this
case it is important that the manufacturer specifies exactly which options were chosen.
This procedure is standardized and described in the ISO 9646 standard called “Con-
formance Testing Methodology and Framework” [ISO90]. A document describing the
chosen options is called a PICS (protocol implementation conformance statement). A
second document gives extra information about the implementation that is necessary
to be able to test it to its specification. Such a document is called a PIXIT (protocol
implementation extra information for testing).

In the rest of this text it will be assumed that a complete formal specification is
available, completed with the PICS and PIXIT-documents. Further, it is assumed
that the specification is errorless (i.e. that a complete and rigorous verification of the
specification is detected).

The availability of complete standardized specifications inevitably raises the ques-
tion whether a certain implementation conforms to its specification. Testing whether an
implementation of a protocol conforms to its specification is called conformance test-
ing. It is important during the design process of the protocol implementation to know
whether the implementation still conforms [Hol92]. Therefore, conformance testing is
an important part of the design process that is done by the manufacturer. On the other
hand, users of a specific product want to conduct there own conformance tests to ensure
correct implementation of a standard and interoperability with its existing products.

2.2 Conformance testing methodology

With the growing importance of conformance testing for all parties in the telecommuni-
cation field, the need emerged for a standardized approach towards conformance testing.
The most important contribution in this field is the ISO 9646 international standard.
Their effort is motivated by the following statement (OSI stands for a large range of
standards and recommendations made by ISO):

The objective of OSI will not be completely achieved until systems can be
tested to determine whether they conform to the relevant protocol stan-
dard(s) or recommendation(s). [...] Standard test suites should be devel-
oped for each OSI protocol standard, fur use by suppliers or implementors
in self-testing, by users of OSI products [...] or by other third party testing
organizations. This should lead to comparability and wide acceptance of

test results produced by different testers, and thereby minimize the need for
repeated conformance testing the same system.

Two different properties of an implementation under test (IUT) determine its con-
formance to the specification.

¢ static conformance requirements;

¢ dynamic conformance requirements.

The static conformance requirements define the legal combinations of options or parame-
ters ranges. The dynamic conformance requirements define the ezternal behaviour that
is permitted by the relevant standards. In the remainder of this report the term “con-
formance testing” will be used to denote tests that only test the dynamic conformance
requirements.

Two testing methodologies can be distinguished [Hol91a]. The first: functional test-
ing, is a mere translation of the demands of the administrators of the first multi-party
networks into testing objectives. This kind of testing could work to a reasonable ex-
tend for small systems but is not suited for larger applications. Structural testing, is a
more structured approach that evolved from functional testing to deal with the growing
complexity of the protocols.

¢ Functional testing: establish that a given implementation realizes all functions
of the original specification, over a full range of parameter values and reject erro-
neous inputs in a way that is consistent with the original specification.

e Structural testing: establish that the control structure of the implementation
conforms to the structure of the specification. Implementation and specification
have the same control structure if they model equivalent sets of states and allow
for the same state transitions.

From the definition of structural testing it follows that a model of the protocol is needed
that inhibits the possible states of a protocol. Since the specification to which the
instance is tested is only a model of the real protocol, it is important that the model is
as close to the implementation as possible. Testing whether the implementation under
test (IUT) inhibits the same control structure as the specification has great advantages.
Structural testing is well suited for automated test generation. It is also easier to
standardize structural tests as it is to standardize functional tests. Therefore, only
structural testing will be considered in this report. Yet, a system failing a structural
test could implement the functions correctly, only with a different control structure.
Formal description techniques are becoming more important in writing specifications,
which helps closing this gap.

10

It is important to notice that control structure and internal structure are two different
properties of a protocol implementation. A structural test is based on a notion of
equivalence between the control structures of the implementation and the specification.
However, when conducting a conformance test, the protocol instance can only be tested
as a black box. When testing a system as a black box the internal structure is assumed
irrelevant [Hog91a]. Only the interaction with the environment plays a role (often, this
is also the only part of the behaviour that was standardized). The flow of this interaction
depends on the control structure of the protocol.

Communication protocols are designed to transport information. Very often the
functionality of the protocol does not depend on the exact contents of the exchanged
data. For instance, the words that are exchanged during a telephone call do not influence
the operation of the telephone services. The first step in dealing with the complexity in
protocols is abstracting the contents of the exchanged data from the model. In structural
testing a rigorous abstraction will be made. Consequently, not all possible behaviour of
the protocol is confined in the resulting model. After the generation of the tests, the
designer of the tests will have to find relevant values for the data that was excluded
from the model. Relevant values often are upper and lower limits that are defined for
the system. A complete conformance test should also test whether the data is properly
processed (i.e. whether the computations of the protocol are correct). This aspect, called
data testing is not a part of this report.

2.2.1 Abstract test case definition

Both for the manufacturers and the customers it is very important that it can be estab-
lished whether a protocol implementation conforms to a specification or not. Instead
of testing each implementation to all others, only one test is necessary. However, it is
necessarily that conformance tests are commonly available and accepted by all parties
in the design process. Also the results of the conformance tests must be standardized
and accepted. If this is accomplished, test results of manufacturers or independent test
institutions can serve as a reference for all parties, eliminating the need for repeatedly
testing of the same system. As mentioned, the ISO “Conformance testing Methodol-
ogy and Framework” ([ISO90, part 1&2]) is an important document that is intended to
standardize the way conformance tests are made and used. One part (part 2, “Abstract
test suite specification”), defines a way of defining conformance tests, independently of
the means of executing the tests. Figure 2.2.1 gives an overview of the terms associated
with the abstract test suite specification.

The third part of the ISO 9646 standard deals with the definition of a test specifi-
cation language called “Tree and Tabular Combined Notation” (TTCN). TTCN is
commonly adapted by manufacturers and users as the language in which tests are speci-
fied. With this notation, the tests can be applied directly to the implementation (either
manually or automatically). The tests that are generated by the PTT conformance Kit

11

ISO 9646, Abstract Test Suite Definition

In [ISO90, part 2], the concept of abstract test suites is defined. An abstract test
suite can be divided into different abstraction levels. In the highest level, a specifi-
cation of the tests is presented which is independent of the actual implementation of
the protocol and the testing environment. On a lower level of abstraction, different
test groups can be distinguished (e.g. conformance, performance). A group can
be divided in multiple sub-groups (e.g. call-setup, data exchange and termination).
At the lowest hierarchical level, the test cases are defined. Each test case consists
of a test purpose and a test sequence. This test purpose defines exactly which
part is tested and in which way. The test sequence is a sequence of inputs to the
implementation and the expected outputs.

Abstract Test Suite

Figure 2.2: Abstract Test Suite definition.

are specified in TTCN and optionally also in a private dialect: RNL-TTCN. This
dialect is more readable and can be compiled by interfaces to automatic testers. For the
definition of the language see [ISO90, part 3].

2.2.2 Architecture

A conformance test is done on an existing product. Usually there is not much infor-
mation available about the internal structure. Most protocol standards only define the
observable behaviour of a protocol. For an important class of protocols, defined in the
Open Systems Interface (OSI) architecture this is stated as:

Only the external behaviour of Open Systems is retained as the standard of
behaviour of real Open Systems.

12

The tester can only access the interface between the IUTand the environment. This
communication happens at a limited number of predefined points called points of con-
trol and observation (PCO’s). The manufacturer of the protocol could add extra
PCO’s, for instance to facilitate the testing. The tester is not able to see an other
information than what appears at one of the PCO’s. Conformance testing, therefore,
is black box testing. So the verdict of a conformance test can only be that the exter-
nal behaviour of a system conforms to the external behaviour that could be expected
from a system with the same control structure3. A protocol exchanges messages, called
PDU’s* or ASP’s® with its environment. In the ideal case, these messages can be
exchanged with the TU T directly. In [P5493], a more general applicable architecture for
testing a communication protocol is given. In figure 2.3 this architecture is drawn. The
tester can not access the JUT directly but communicates at the PCO’s via the test
context. In [ISO90], the ideal case, in which the messages can be observed and controlled

tester test context
\ 7
g IUT

O Point of Controll and Observation

Q Implementation Service Point

Figure 2.3: General testing architecture

directly at the boundaries of the protocol is defined (figure 2.4). The testing method re-
lated to this (abstract) architecture is called the local test method. In practical cases,

tester

T
pcO "

—_— ’

tester 14—

Figure 2.4: Local testing architecture

the tester will not be able to apply or observe the messages directly at the boundary

3The verdicts of a tester are denoted as pass, fail or inconclusive. The latter being passed in
situations when the system is non-deterministic.

*PDU = Protocol Data Unit. PDU’s are exchanged in a protocol layer.

SASP = Abstract Service Primitive. An ASP is exchanged with higher or lower layers.

13

of the protocol. A situation like figure 2.5 is more realistic. In this situation (remote
testing) there is only a virtual channel between the tester and the protocol instance. In
the literature, the term “tester” is both used for the unit that executes the tests and
for the person that is responsible for conducting the tests. In this report, the latter will
be denoted as test person if it is not clear from the context. A tester is defined in
definition 1.

Definition 1 (Tester) A tester is a unit which applies the input portion of a test-
sequence to the implementation, observes the outputs, and compares them with the ez-
pected outputs [SD8S].

Often the tester is split in multiple parts. Each part generating I/O sequences for a
specific boundary of the protocol. In the local test method (figure 2.4), this would yield
two testers: an upper tester that acts like an application on the the JUT and a lower
tester that communicates with the bottom-side of the IUT. These testers also have to
inhibit functionality that enables them to transform the (abstract) test-suites to physical
signals and visa versa. In a practical architecture like figure 2.5, upper and lower testers
can also be distinguished. In this case, the lower tester can not communicate directly
with the TUT, but sends the ASP’s via a virtual channel. In order to be able to
perform a conformance test it has to be assumed that both the communication between
the testers and the IUT and the translation of the signals is errorless.

The fact that only the external behaviour of the protocol implementation is accessible
for the tester and that even this accessibility is done indirectly via other protocol layers
limits the possibilities of testing in two ways. First the controllability is limited since
the system can not directly be put in an arbitrary state. Specific sequences of inputs
are necessary to bring the system to a certain state. Second, since the only information
about the system’s internal state can be obtained from its outputs, the observability
is restricted to what can be deduced from the outputs [DSU90].

For systems that consist of large protocol stacks, this kind of architecture puts a
severe limitation on the possibilities of testing the implementation since the messages

Virtual
tester |= e @n_geL_, 1T

J

'y i

f Channel T

Figure 2.5: Remote testing architecture

14

have to pass through all layers of the stack before arriving at the JUT. From a testing
point of view it would be very desirable to be able to apply test sequences directly at the
boundaries of the implementation. Techniques as ferry-clip and boundary scan® would
give the tester a way to apply signals directly to the borders of the implementation. A
lot of effort will be needed before those methods can be standardized.

2.2.3 Modeling the state space

Most existing test generation techniques assume a somewhat different model of the
protocol than the formal description languages like SDL or LOTOS. Such a model is
called an internal representation or an intermediary model. The information that
is needed is:

¢ possible states in which the system may reside;

¢ possible state transitions;

¢ inputs and outputs associated with the possible state transitions.

The models that are described in this report are the labeled transition system (LTS),
the (extended) finite state machine ((E)FSM) and the behavioural tree. The
labeled transition system is the most versatile model. It hardly puts any restrictions
on the protocol. This feature, however, makes it less suitable for the application of
automatic test generation techniques. A short introduction for all models will be given
here:

labeled transition systems

A labeled transition system conmsists of all possible states that can be reached by the
system. States are different if the future behaviour of the system in that states may
differ. A system may transfer from one state to an other by executing an action. This
action is tagged as a label to the relevant transition (hence the name labeled transition
system). Formally the LTS is described as a 3-tuple:

L=(S,4,§)

¢ S = set of states {s;,5,...}

o A = alphabet: finite set of actions {0y, 0,...,0,}

®Boundary scan was introduced as a method in the design of integrated circuits to enable individual
chips to be tested separately form their environment but after they were mounted on the board.

15

¢ & = partial transfer function §: Sx A — §

Often a special action, the T-action is added which models some “internal” behaviour.
Such an internal action is not observable or controllable from the outside of the system.
Such a situation might occur when there is actually some behaviour that is not known.
Often internal actions are used to mode behaviour that is excluded from the model in an
abstraction step. In such cases, T-actions may model a choice on the basis of information
that is not in the model (figure 2.6a) or the manipulation of a variable that is abstracted
from the model (figure 2.6b).

© O, ;
a/\b o \@\b
@ ® ®

Figure 2.6: T-actions in the labeled transition model

The use of internal action may introduce non-deterministic behaviour into the model
(as in the figure). Note that nondeterminism may also be present in the model, even
without internal actions. There are different ways to deal with non-determinism. Some
methods that can be used to deal with nondeterminism will be described later.

finite state machines

Most test generation methods use a model based on finite state machines. This model
resembles the labeled transition system. However, a number of restrictions is added. In
this report a special kind of FSM is used: the Mealy Machine [fsm69]. For this FSM,
the state transitions are defined by input/output pairs. There is only a finite number of
possible states. The system transfers from one state to a next with the consumption of
an input and the output of the output message of the relevant input/output pair. The
Finite State Machines that are used are described as a 5-tuple:

M =(5,1,0,6,])
o S = finite set of states {s;,82,...,8,}
o I = finite set of inputs {i;, ¢s,...,4,}

o O = finite set of outputs {o0,,0,,...,0,}

16

o 6 = transfer function §: S xI — §

¢ A = output function A: SxI —> O

In the following text the FSMs that are used must obey some assumptions. There
are also some methods for state machines that have different properties, but for reasons
of simplicity, these are not presented here.

1. The number of possible states is finite.

2. The system that is modeled by the FSM is deterministic. This means that in
a specific state, a specific input will always cause the same, single, transition.

3. From any state that is reachable by the FSM, any other state can be reached via
a finite sequence of transitions.

4, There is a known initial state: ;.

extended finite state machines

A finite state machine can be extended to hold predicates and variables. Such a model is
called an extended finite state machine e FSM. The restrictions on the number of
states and the nondeterminism are the same as in the case of a normal FSM . However,
if the variables in the e FSM are not bounded (i.e. if the possible values of the variables
are not countable or finite), the total number of possible states in which the system may
reside is infinite.

In contrast with a normal FSM, multiple transitions may be defined for a single
input in a certain state. However, the system will chose one of the possible transitions
on the basis of a predicate. A predicate is a boolean expression containing the available
variables in the model.

An extended finite state machine can be translated to a normal finite state machine
by assigning a unique state to each combination of variable values. The resulting number
of states may become infinite. Often the number of states after the translation can be
reduced drastically by determining which of the possible states are actually reachable
by the system. An example part of an extended finite state specification, which is used
in the PTT Conformance Kit is depicted in figure 2.7.

behavioural trees

A form that is very similar to the labeled transition model is the behavioural tree.
This model was introduced by Milner [Mil80] as a means of modeling the state space
of systems that were specified in CCS. In general, a behavioural tree can be obtained

17

Example part of an extended finite state machine specification

EFSM connaisseur;

VARIABLES

glasses: 0..5; ~-- tasted
START

A: (glasses := 0); -— starting state
GATES

glass, opinion, sound, question;
INPUTS
bordeaux, AH_huisw, coffee @ glass;
do_you_like_it @ question;
OUTPUTS
bon, pas_bon @ opinion;
klok_klok, klok_hips @ sound;

TRANSITIODNS

-- predicate input output action new_state

STATE A;
(glasses<5) bordeaux klok_klok (glasses:=glasses+1) B;
(glasses=5) bordeaux klok_hips - B;
(glasses<5) AH_huisw klok_klok (glasses:=glasses+1) C;
(glasses=5) AH_huisw klok_hips - B;

END

etc.

Figure 2.7: Example part of an extended finite state machine.

by unfolding a labeled transition graph. Such a tree represents all possible sequences of
actions that may be executed by the system, starting form the starting (root-)state. The
problem with a tree-model is the fact that it will, in general, not be finite for practical
systems.

A derivate of the behavioural tree is the asynchronous communication tree (ACT),
that was developed by Agha [Agh86]. An ACT models the observable behaviour of the
system, and is therefore very well suited as a basis for test generation techniques. In
the chapter concerning SDL more attention will be paid the the ACT. Than also an
informal algorithm for the generation of an ACT will be given.

2.2.4 Representations

The common representation of finite state machines and labeled transition systems is a
directed graph. Each edge in the graph G(V, E) represents a transition, all states of the

18

system are represented by the vertices of the graph. Edges exist for a pair of vertices if
a state transition is possible in the model between the two corresponding states. The
label that is connected to the edge, represents the relevant action (or input/output pair,
in the case of a FSM).

G(V,E)

o V = set of vertices {v;,vz,...,0,}
o E = set of edges {(vj,vx,!): v;,v € V}

e | = label connected to an edge

The reachability demand in the list of properties of a finite state machine (page 16)
implies that the graph has to be strongly connected.

2.2.5 Completion of the specification

Often, the specification for a system defines the behaviour in a normal situation. A
normal situation means that the inputs that are offered to the system “make sense”.
In the state space, such a situation is visible by the fact that for some possible inputs,
no state transition is defined (i.e. the §-function in the LTS and the A and é-functions,
that define the (e)FSM, are partial functions). However, in section 2.2.3, the transfer
function and the output function are defined as complete functions. This means that all
combinations (S x I) (e.g. all inputs in every state) should be defined in the model. If
necessary, incompletely specified protocols can be completed by accepting a completeness
assumption. In the case of a labeled transition system, the model is not necessarily
complete. However, it can be completed in a similar way as the finite state model. A
completeness assumption can have the form of definition 2.

Definition 2 (completeness assumption) The system ignores each unezpected input
by consuming the input and remaining in its current state without producing an output,

Such an assumption will add extra transitions to the model that are called non-core
transitions as opposite to core transitions, that are part of the original system. Another
way to deal with incompletely specified FSM’s or LTS’s, is to make a distinction
between different possible inputs [BEVT89]. There are tree possible input messages in
a test system:

e Valid: A message that is received by the implementation is valid when it was
expected by the implementation.

o Inopportune: An inopportune message is a message that is not expected by the
implementation when it is received.

19

¢ Invalid: An invalid message is a message that should never occur. Messages that
are outside their bounds or that were incorrectly coded are invalid.

These definitions of possible test messages are related to the definition of core/non-
core edges as follows: Valid messages trigger core transactions. A completeness assump-
tion like the one in 2, add extra transitions for non-expected inputs. Therefore, non-core
transitions are triggered by invalid and inopportune inputs.

2.2.6 Conformance relations

Formally, an implementation conforms to its specification if the behaviours of both sys-
tems are equivalent. In the literature there are many different definitions of equivalence.
An overview can be found in [Kri89, NH84, Koo91]. Defining whether the behaviour of
an implementation and a specification is equivalent or not, is a delicate matter. One
reason is that they usually exist in different physical domains. An other reason is that
the tests are used to decide whether the functions of the protocol are implemented with-
out errors. This implies that certain ‘different’ behaviours, that implement the same
function correctly, should both pass the conformance test”. According to Holzmann,
two systems are said to be equivalent if they can generate the same sequence of output
symbols when offered the same sequence of input symbols [Hol92]. This means that
non-deterministic systems will have equivalent choices in equivalent states. In deter-
ministic systems, each input sequence should lead to the same output sequence for both
equivalent systems. Notice that all different forms of equivalence in the list are equal
for deterministic models. From [P5493], the following definitions are obtained:

¢ failure: deviation from an agreed description of the expected service.
¢ error: that part of the system which is liable to lead to a failure.

e fault: the phenomenon that caused an error.

For the definition of some important equivalence relations, a trace set is used: A
trace is defined as a sequence of actions which the system is able to perform, from the
initial state So. The trace set of a system § is denoted Tr(S) and contains all possible
traces for the system.

¢ Trace Equivalence: two systems S; and S, are trace equivalent (S; =, S,) iff

Tr(S1) = Tr(S,).

¢ Observational Equivalence: (S, = S,) iff
for every action @, S; is able to perform, there exists a successor of S; via a

"1t will be shown later that the notion of equivalence could differ for other purposes, like verification.

20

such that the resulting behaviours of §; and S, are observational equivalent , and
similarly with §; and S, interchanged.

¢ Testing Equivalence: two systems are testing equivalent (S; =, Sa) iff
S; and 8y may and must satisfy the same set of observers [NH84|.
— a system S may satisfy an observer O if a successful test exists
— a system S must satisfy O if all tests are successful
¢ Failures Equivalence: failure equivalence resembles testing equivalence [FB91,
LBDW91]. If failure equivalence is required, the set of traces of the specification

shall be included in the set of traces of the specification, and the implementation
shall not produce unspecified deadlocks [P5493].

The relation between these notions of equivalence is:

Ps = Pp = PamPp = PamiPp

Figure 2.8: Equivalence between systems

Let the graphs in figure 2.8 represent a part of the behaviour of three systems. The
systems start in the up-most (double circled) state where they are able to execute an
action a. All systems are trace equivalent since their trace sets are equal:

Tr(S) =Tr(S2) =Tr(S3) = {<>,< a >,< ab >, < abe >,< abd >}

Non of the systems is observational equivalent. Each system contains a state in which the
system does not have the same choice as the other systems. For instance, after having
executed action a, S; no longer has a non-deterministic choice between the sequences
< bc > and < bd >. Since the rest of the behaviour of S; is not yet determined after
action a, S, # Ss.

As systems S, and S3 both may refuse an action ¢ or d after the second transition,
the observer that may be satisfied by S, differs from the one of the two other systems.

21

Therefore, S, #;. S, and S; #:. S3. From the outside no observer can distinguish
between systems S, and S3 so 83 ~. Ss.

In practical cases, the observational equivalence may be to strong to prove. In the
case that tests are derived from LOTOS specifications, failure equivalence is often used.
Trace equivalence is often used for SDL-based test generation techniques. In [SD88,
Hol91a, Ura91] difference is made between strong and weak conformance. Notice that for
models in which a completeness assumption like in definition 2 is already implemented,
there is no difference between weak and strong conformance.

¢ Strong Conformance: If the implementation mimics the behaviour of the speci-
fication for every transition (core and non-core) the two have strong conformance.

¢ Weak Conformance: An implementation has weak conformance to its specifi-
cation if the implementation generates the same outputs for each sequence of core
transitions. The behaviour may differ for non-core transitions.

2.2.7 Testing strategy

Most existing test techniques have the same structure. Assuming there is a suite of tests
available, the tester will perform the following actions:

e go to a certain state;
¢ apply an input to the system;

¢ receive outputs from the system;

compare the received outputs with the expected outputs;

check if the expected state is reached (optional).

If the received outputs do not match the outputs that can be expected on the basis
of the specification, the verdict of the tester will be a fail. However, when the outputs
match the expected outputs the situation is more complex. First, assume that there is
no nondeterministic behaviour in the specification. In this case, one would be tempted to
verdict a pass for that part of the system. It is, however, always possible that the system
reacts with different behaviour the next time a similar trace of actions is executed. It is
not possible to test each action an infinite number of times. In order to able to conduct
a meaningful conformance tests, the test person must accept the assumption that no
such behaviour is implemented in the system.

In the case that nondeterministic behaviour can be expected (i.e. the case that the
model does not hold enough information to determine what choices will be made), the

22

tester should at least examine every possible choice. The strategy, therefore, will be to
execute every possible behaviour at least once. This can be done by executing a certain
sequence of actions repeatedly. In most cases the nondeterministic behaviour is actually
deterministic behaviour that depends on parameters that were not in the model. It is
the task of the designers of the tests, to include such parameter ranges and data values
that every possible behaviour is executed. Proving that the implementation under test
contains errors is generally far more easier that proving it is correct.

Another problem that is presented to the test designer is that it is very hard to
determine whether spontaneous outputs will follow or not. On the one hand, if not
all outputs have been generated by the system, the tester should wait until all outputs
have been generated. On the other hand, the tester must ensure that only the expected
outputs are generated and nothing more. In both cases, the tester must determine if
more outputs will follow or not. In practice, this problem is solved by defining (heuristic)
timer values. Without good knowledge of the implementation under test, this may be a
difficult problem.

2.3 Composition of finite systems

In many cases, the system that is to be tested consists of more than one process. The
existence of multiple processes in a system means that there are different entities that
operate parallel next to each other. These processes may exchange messages and data.
Situations in which multiple processes reside in a system that is to be tested are for
instance [DKK91]: implementations that consist of more than one protocol or protocol
layer. If the manufacturer has integrated two systems into a single implementation,
only the resulting composite system can be tested. It may also be necessary to test a
system in a part of its normal environment. In this case, the system under test is the
composition of the system and its environment. Multiple processes may also occur in a
specification of a system. The formal language SDL is an example of a language that
supports the definition of many different processes in the same system.

An external observer is only able to see the behaviour that occurs at the boundary of
the total system. The system that is seen by this external observer is called the com-
posite system and the possible behaviour of this system, the composite behaviour.
The composite behaviour is determined by two aspects:

o the specification of the separate processes;
¢ the communication between the processes.
The communication between the processes in an important factor. Two kinds of

communication can be distinguished: synchronous communication and asynchro-
nous communication. In the first form of communication, messages are exchanged

23

by negotiation. This means that the sending process waits until the receiving process
is ready to receive a message, then in an infinitesimal amount of time, the message is
exchanged after which both process proceed.

The second form of communication, asynchronous communication, assumes that each
receiving process has a queue associated to it. The sending process may put the message
in this queue at any time®. The receiving process takes messages from the queue and
processes them.

For the automatic generation of tests from formal specifications, a model of the
composite state space (i.e. the state space of the composite system) is necessary. This
model should consist of all states and the actions that may cause a transition to a
new composite state. Many of the state transitions may be invisible at the outside
of the system, since they represent internal communications between two processes in
the system. The state space of a system specified as multiple processes is composed of
the Cartesian product of the state spaces of all processes. In the case of asynchronous
communication, each state in the composite state space also holds the state of the queues
in the system:

S = S5/ X8 X x5, X@Qy X XQn

The system may transfer from one state to a new state by executing an enabled action.
In the resulting model, three kinds of (composite) states can be distinguished:

¢ non-reachable states: States that can not be reached by any combination of
stimuli at the boundary of the system.

¢ reachable, non-stable states: States that can be reached by the system from
its initial state. If a state is non-stable, the system may transfer to an other state
without any stimulus from outside the system.

e reachable, stable states: A stable state is a reachable state of the system. If the
system has reached that state, it will only leave that state if it receives an input-
signal from the environment. In the rest of this report, the expression “stable
states” will be used to denote reachable stable states.

For all reachable states in the system it will be assumed that: any reachable state
can be reached from every other reachable state in the system. This means that there
has to be some kind of periodicity in the system. This assumption can easily be verified
in practical systems, which usually have a “reset”-like function.

For an external observer, it may not be possible to determine whether an internal
communication is finished or not. Therefore it may also be impossible to execute actions
in non-stable states. Therefore, when testing a system that consists of multiple processes,

8Sometimes, an upper bound for the queue length is specified. In this case the sending process may
have to wait or the message may be lost, depending on the way the queues are defined

24

usually only a part of the reachable states is tested. The tests are executed by applying
an external input to the system. After this the tester waits long enough until it is
reasonably to assume that all enabled internal actions have been executed. In later
chapters, much more will be said about the testing of composed systems.

2.4 Testability

Testing protocol implementations is a difficult task. During the past years, much work
has been carried out to improve methods for automatic generation of conformance tests.
Also, the standardization organizations like ISO, ETSI and CCITT have been advocating
conformance testing methodologies and the use of formal languages. Still, the practical
use for conformance testing is still limited to medium-sized protocols [DSU90, Hog91b].
There is a number of reasons that make the generation of good conformance tests for
large and complex protocols [LL92] a difficult task or even impossible. An important
reason for this was already mentioned: the limited observability and controllability. The
limited amount of time that is available to execute the generated tests poses an other
limitation. A number of general problems that limit the possibilities of conformance
testing will be summarized in this section.

2.4.1 Nondeterminism

The testability of systems (i.e. the possibilities that exist to test the systems) is worse
when the system inhibits nondeterministic behaviour. Some approaches when testing
nondeterministic systems were already presented in the section about testing strategy.
Nondeterminism that results from abstraction of parameters or variables can be removed
by choosing relevant data and parameter values. However, nondeterminism can also
result from behaviour that can not be influenced by the tester such as critical races or
erroneous channels. In this case, repeatedly testing is the only solution.

2.4.2 State space explosions

The complexity of the protocol pushes all existing test techniques to the limits. An
average protocol can already inhibit very large numbers of states. Each state and all
possible state transitions must be considered when creating tests. Especially, when
translating descriptions of protocols that are written higher-level description languages
to lower-level models like LTS’s or FSM’s, the number of states rapidly grows very
large. This phenomenon is called the state space explosion. There are two main
reasons for the explosion of the number of states.

The first reason for the state space explosion is the existence of variables in the
description of the model. In a lower-level model, each value of such a variable represents

25

a new state. Queues have a similar effect on the state space, since each contents of a
queue represents different behaviour, and thus a different state. When queues are not
bounded or when a variable can hold an infinite range of values, the number of states
may even become infinite.

A second reason for the state space explosion is the fact that concurrent processes in
the description are composed into one single description. This means that every possible
interleaving of concurrent actions will be present as a unique path in the resulting model
(this part of the state space explosion is also called the combinatorial explosion).

The enormous amount of states that are held in the resulting model limit the possibil-
ities of testing. First, the generation of tests will become very difficult. The system will
become to complex for manual generation of tests and the model will become to large
for the resources that are available nowadays. Secondly, if one succeeds in generating
tests, the number of tests will be far to large to use for a practical conformance test.

2.4.3 Fault coverage

The limitations for conformance testing raise the question of what the reliability of a
conformance test will be. The reliability is expressed as the fault coverage of a test,
which is the chance that possible errors in the specification are detected by a test. The
fault coverage can never be a full 100% for practical systems. However, for some systems,
conformance tests can be generated that can obtain a very high degree of certainty.

Generally the limited amount of time that is available to perform the tests is the
major bottle neck in achieving very high fault coverages. Also the choices that are made
by the test person for the relevant data values and parameters is of very large influence
for the fault coverage of the conformance test.

2.4.4 Design for testability

It is generally recognized that a part of the solution toward the problems; that have
been presented in this section lies in the specification. If a protocol is specified with
conformance testing in mind, large improvements can be achieved. ETSI is standardiz-
ing rules for specifying protocols such that testing and validation is facilitated in later
stadia [ETS92]. In the SPECS project (RACE 1046), a lot of attention was paid to the
design of the specification [BKP92].

Independently of the formal description techniques that is used, a number of im-
provements to the specification can be made. This way, the testability of a specification
is increased substantially [EK92]:

o the definition of an upper-bound for the queue lengths;

26

o the definition of upper and lower-bounds for parameters and variables;

¢ the definition of a maximal system response time;

the definition of extra Points of Control and Observation;

adding extra functionally to the system that facilitates testing.

The last two items lay some of the responsibility for the testability with the manufac-
turers. In other fields, this is not new. For instance, large integrated circuited nowadays
often are equipped with boundary scan architectures that allows the IC’s to be directly
accessed, even after they are mounted. Extra PCO’s could give the tester the possi-
bility to improve the controllability and observability by being able to access internal
variables directly. Extra functionality could also serve for extensive status messages,
complete reset functions and direct state transfers.

Automatic test

generation
T

Manual test generation is based on a good insight in the relevant protocols and the
possible parts in which errors may reside. However, with the growing complexity of
protocols, this insight is no longer sufficient. Manually generated tests often do not test
all possible behaviour, which has a negative effect on the fault coverage. Besides the
technical problems of designing good conformance tests, there is also the problem that
two conformance tests, generated manually by two different designers, will be dissimilar.
This is a major disadvantage when trying to standardize the conformance tests and
the way they are used. In practice, this will mean that several conformance tests are
(unnecessarily) conducted on the same product.

Automatic test generation seems to be able to obviate some of the disadvantages of
manual test generation. Providing complete and correct formal models of the protocol
are available, automatic test generation can be used to generate tests that:

¢ achieve a high level of fault coverage;
o are errorless;
e are the same, wherever they are made;

e can be made relatively fast.

This chapter describes some existing test generation techniques. Starting point of
most of these techniques is a finite state-model, that was described in the previous
section. However, also a short description of other possible test generation techniques
is added. The chapter is completed with a short description of the automatic test
generation tool the PTT Conformance Kit.

27

28

3.1 Introduction

Most automatic test generation techniques are based on finite state descriptions of the
protocol. The reason for this partially lies in the fact that this model formalizes many
properties of black-box conformance testing as described in the previous chapter. Typ-
ical properties that distinguish the FSM model from other representations are the
finiteness of the model, the absence of nondeterminism, and the state transitions that
are based on input/output pairs.

input/output pairs

The basic strategy of black-box conformance testing is to apply an input to the imple-
mentation, then wait until all outputs from the JUT have been generated, and finally
check whether these outputs conform to the specification. This typical black-box testing
strategy is illustrated in figure 3.1. The states of the protocol that are considered are
states in which an input is expected from the environment, just as in the FSM model.

® ® ®

Figure 3.1: Basic concept of black-box testing

finiteness

A system that is modeled as a finite state machine should consist of a finite number of
reachable states and a finite number of state transitions. In practical systems, ranges
of variables and the lengths of queues always are bounded, so this demand is usually
met. While it may be difficult to conform to this demand when translating a formal
description of a protocol into an FSM, it is no limitation from a testing point of view.

29

nondeterminism

Often, formal descriptions of a protocol allow for nondeterministic behaviour. In the
physical systems that are considered here, there is no such thing as nondeterminism.
There may however be behaviour that can not be controlled by the tester. The easiest
way to deal with such behaviour is to treat it as if it were nondeterministic. If enough
information is available about the protocol implementation most of the nondeterministic
behaviour can be removed from the model. The removal of nondeterminism from the
model is, however, not always possible so special care should be taken with this property
of the finite state model.

3.2 FSM-based test generation techniques

All conformance tests that are derived from a FSM -model will have the same global
structure: First apply an input to the system, then check whether the outputs that are
generated conform to the outputs that would be expected from the specification. There
are, however, some major differences in the way various methods implement these steps.
An overview of these methods is presented in [Ura91]:

random walk

A simple approach to automate test generation is to apply random sequences of inputs
to the IUT, until every transition was tested or until it is reasonable to assume that
a sufficient part of the total behaviour is tested. The system will be forced to “walk”
through its state space, while the tester is scanning for errors. It can be observed [LCL87]
that an error in the implementation is often repeated several times in the state space.
The random walk method, therefore, is a good alternative to the more complex test
generation methods based on non-random walks through the state space.

transition tours

A different approach is to guide the system in a walk through the total state space. This
way, it can be verified that every possible transition is executed at least once. The first
method that is described here is the transition tour method. Here, the test generator
tours through the complete state space. When the start state and the end state of the
tour are equal, such a sequence of inputs is called a transition tour.

Definition 3 (Transition Tour) A transition tour of M is an input sequence which
takes M from its start state S,, executes every transition of M at least once, and then
returns M to state Sy [Ura91].

30

The efficiency of the method can be improved by minimizing the length of the tran-
sition tour. In graph theory the problem of finding such a minimal tour is known as the
Chinese Postman Problem [ADLUS88]. For most systems a minimal transition tour (i.e.
the shortest test sequence that covers all state transitions of the specification) can be
computed.

An important disadvantage of the transition tour method is that it lacks the possi-
bility to check whether the tour actually reaches the intended states. An other problem
occurs when an error is found. Since the new state of the system after an error is not
known, the tour can not be completed after an error is found. So, once an error is
detected in the implementation, the rest of the generated test is useless. If the tests
are part of a implementation/debug cycle, only one (the first) error can be fixed at the
time.

There is a number of methods that are able to continue a meaningful test after
detecting an error. Most of them yield a set of independent test cases. Such a set is
known as a“partitioned tour”. The structures of these methods are very similar. For
each possible transition:

1. Bring the system to a known starting state with a “synchronizing sequence”;

2. Bring the protocol implementation to a certain state (a sequence to transfer the
system from any state to a state s; is a transferring sequence for s;, TS(s;));

3. Check one state transition by applying the subsidiary input and check whether
the appropriate output is generated (this is called the checking sequence);

4. Check whether the system has reached the intended new state.

The only difference between these methods is the way in which the last step is per-
formed. One of the possibilities to check whether a system has reached a certain states is
the status message. A status message could be implemented as a special transition that
outputs status information and stays in the same state. In such cases, the functionality
that is necessary must be available in the specification. Normally, however, this is not
the case, so different methods are necessary to determine whether the correct state was
reached.

distinguishing sequences

A distinguishing sequence (DS) is an input sequence for a protocol such that the
outputs generated by the implementation will identify the state of the protocol imple-
mentation.

31

Definition 4 (Distinguishing Sequence) An input sequence is a distinguishing se-
quence of FSM M if the output produced by M in response to the sequence is unique
for each state of M [Ura91].

The advantage of this method is that information is available about the end state
of the erroneous transition, presumed there are not to many errors. Unfortunately, for
most practical protocols, there are no distinguishing sequences, and if they exist, they
might be very long.

characterizing sequences

A set of characterizing sequences [Cho78| serves the same purposes as a distin-
guishing sequence. They both answer the question: “What is the current state of the
implementation?”. A characterizing sequence (CS) is defined on a subset of states.
A complete finite state machine that contains no equivalent states always has a set of
characterizing sequences that distinguishes every state of the FSM [Ura91]. For such
an FSM the definition is:

Definition 5 (Characterizing Sequences) A Characterizing sequence is an input
sequence which output distinguishes two or more subsets of states.

A set of sequences which can distinguish the behaviour of every pair of states in an
FSM is called a characterizing set (W-set). Such a set is applied in the same way as
a distinguishing sequence. Test sequences that are generated in this way are usually
longer compared to other methods.

unique input/output sequences

In [SD88] a new test generation method was suggested that uses Unique Input-Output
sequences (UIOs). UIO-methods only determine if the expected state is reached.
Instead of generating a single sequence that identifies the current state, an UIO sequence
is generated for each state of the state machine.

Definition 6 (Unique Input/Output sequences) A UIO sequence for state s; is a
specific input/output sequence with the originating state s; such that there is no s; # s;
for which the sequence is a specified input /output sequence (i.e. from which this sequence
could originate, according to the specification) [SD8S].

To limit the length of the test that is generated the algorithm generates minimal
UIO-sequences i.e. a UIO-sequence that does not contain any other UIO-sequence.
An algorithm could also check if the generated test-sequence (T'S-transition- UIO) is
contained in, or contains, an other test-sequence. Further optimization of this method
can be achieved by using the UIOv, SUIO, or the MUIO method:

32

o the UIOv-method ensures that all UIO-sequences are also unique for an FSM
that contains errors.

¢ In the SUIO-method [ADLUS8S|, a rural Chinese postman tour is generated to
find the shortest connections between test segments.

¢ For a model, more than one SUIO-sequence may exist. The MUIO method
searches for the shortest SUIO-sequence.

3.3 Tree-based test generation techniques

When modeling the behaviour of a protocol, it is not always possible to obtain the
state space from the specification. For instance, there may not be enough memory in
the computer to hold every possible state. A different approach to the modeling of the
system’s behaviour is to construct a behavioral tree. The root of the tree will represent
the starting state of the system. Each path through the tree represents a legal sequence of
actions. A behavioral tree can be obtained from a state graph by unfolding it and leaving
out the state names. A tree that models a typical communication system is infinite (i.e.
it never “stops”). Some algorithms, however, do check whether a (composite) state has
already appeared in the tree, in which case the tree branch does not have to be extended.
However, this eliminates the advantage of not having to store the complete state space.

Test generation from a behavioral tree can be done by testing the paths in the tree.
The generation of tests can be done “on the fly” so there is no necessity to hold the
complete state space model in memory. The major problem of this approach is that
there is no general overview of the global behaviour (e.g. the (composite) state space as
in the LTS and FSM -models). Therefore it is very difficult to limit the size of the tree
(and thus of the generated tests).

An important application of the behavioral tree is the modelling of the observable
behaviour of SDL-specified systems. Hogrefe [Hog88, Hog90] presented some work on
the automatic generation of tests from SD L-specifications using an asynchronous
communication tree (ACT). The ACT models the observable behaviour of the
system. The theory of the ACT was first presented by Agha [Agh86] and is also used
in the project “ARTEFACT” [DGK91] at PTT Research and the RACE project on
computer aided test generation CATG [PRO92].

3.4 Test generation based on canonical testers

A very formal approach to conformance testing is the use of canonical testers [Bri88].
A canonical tester is an environment process that exchanges messages with the TUT.
The theory was developed for the description language LOTOS. In theory, a canonical

33

tester is able to perform an exhaustive test (i.e. all possible behaviour is tested). In
practice, however this means that tests generally will not terminate within finite time.
The practical use of these methods is relatively small. The theory of canonical testers
is beyond the scope of this report.

3.5 PTT Conformance Kit

The PTT Conformance Kit is a set of tools that is meant to help with the generation
of conformance tests [DGK91]. The basic idea was that as large a part of the work that
could be automated would be covered by the toolkit. It is recognized, however, that the
interaction with the people who are conducting the tests, is essential.

It is assumed that the specification is modelled as an extended finite state machine
(EFSM). This model extends the FSM model with variables and predicates. There
are also tools available to compute the behaviour of multiple, interacting FSM’s. The
general set-up of a test generation procedure is:

1. obtain an EFSM specification of the protocol. The Conformance Kit will check
the semantics of the specification;

2. simulate the specification to validate its behaviour

3. design a test suite structure. In this step parts of the behaviour can be excluded
and the appropriate test types are selected;

4. automatically generate the desired tests (all generated tests are written in the
TTCN-MP! format);

5. Create the constraints part to form a complete test suite;

6. If necessary, convert the generated tests to graphical TTCN, this representation
is especially suitable for human interpretation.

The methods that are available for test generation are: Transition Tours, Unique
I/0O sequences and Random Sequences. The former two are already described in
other sections. The latter, Random Sequences, generates tests that check randomly
selected parts of the behaviour. Typically, the complete tests that are generated with
the Conformance Kit have the form of a Partitioned Tour (see page 30). Simple tools
are also added that facilitate the testing of data aspects of the specification. Currently,
work is in progress to add important new modules to the Conformance Kit that enable
the generation of data tests.

!Tabular and Tree combined Notation; Machine Phrase format. This notation is standardized by the

I1SO.

34

In the specification, the test designer may also mark some behaviour with a label.
These labels can be used when generating tests with the Conformance Kit, to exclude
some behaviour from the tests. This feature can be used to select only a subsection of
the possible behaviour of the systems for test generation. This is an important aid in
dealing with the complexity of the protocols.

The Conformance Kit was used in different projects at the PTT Research Labo-
ratories. One of these projects was the development of test suites for ISDN termi-
nals [DHN90]. In this project, the toolkit was used to generate a test suite suited for
the local test method. With the aid of other tools these tests were adapted for a re-
mote testing environment. This was done by computing the composite behaviour of the
system and the test context.

One of the problems when using the algorithms that were implemented in the Con-
formance Kit is the state space explosion, which limits the applicability of the methods
to medium-sized protocols. Various methods have been proposed to improve the ability
of the algorithms to be applied to very large protocol specifications. In short these
methods can be grouped in three categories [Hol87]:

¢ reduction: Exploiting equivalence to reduce the number of states or transitions
that must me explored;

e truncation: Making a selection in what is analyzed in a protocol. These methods
are generally based on heuristics;

o efficacy: By improving the efficacy of the algorithms large improvements can be
made.

The efficacy of an implementation of one of the presented algorithms can make a lot
of difference. In [Hol89], large improvements are reported with methods that do the
storage of state information in a more efficient way. This subject is not within the scope
of this report. Truncation and reduction techniques both try to decrease the size of
the protocol specification. The use of labels in the Conformance Kit is an example of
the use of truncation in dealing with complexity. Methods for both techniques will be
presented in the following chapters.

SDL specifications

Recently, the formal language SDL (Specification and Description Language) has re-
ceived a lot of attention. In contrast with other, often more academic, formal languages
the use of SDL in specifying complex systems is growing. One of the reasons for this
(relative) popularity of the language is that is was designed with the designer of a pro-
tocol in mind. SDL was standardized by the CCITT and was also accepted by the ISO.
In the standard of SDL [IC92] the objectives of the language are stated as:

The purpose of recommending SDL is to provide a language for unambigu-
ous specification and description of the behaviour of telecommunications
systems. The specifications and descriptions using SDL are intended to be
formal in the sense that it is possible to analyze and interpret them unam-
biguously. The general objectives when defining SDL have been to provide
a language that:

e is easy to learn, use and interpret;
e provides unambiguous specification for ordering and tendering;
e may be extended to cover new developments;

e is able to support several methodologies of system specification and
design, without assuming any particular methodology.

The purpose of this chapter is to introduce some general concepts concerning SDL,
such that test generation techniques that are based on SD L-specifications can be pre-
sented. For this purpose, also some representations of the composite state space of an
SDL-specified system are presented. Starting point is basic SDL, which is a subset
of all possible structures in the language. At the end of 1992, the latest revision of
the Z.100 international standard was accepted by the CCITT [IC92]. Some important
changes have been carried through. However since all literature up till this moment has
been based on the 1988 version of the language, SDL’88 will be the basis for this report.
Wherever features of the 1992 version are used, this will be stated explicitly.

35

36

4.1 Structure of SDL specifications

In SDL, both a phrase-syntax and a graphical syntax are available for the designer.
Both syntaxes can be used to describe the same behaviour. However, since the graphical
form is more illustrative, the latter will be used in this report. In an SD L-specification,
three hierarchical levels can be distinguished. The first is the total system. This system
is build from one or more blocks. Communication between the different blocks in the
systems is done via channels. Each block can be divided into multiple sub-blocks. The
partitioning of the specification into different refinement levels is an important aid to
tackle the complexity of the system.

Inside a block, at least one process is present. A process is defined as an extended
finite state machine that runs parallel with respect to the other processes. Processes
can exist at startup or can be created and deleted during run-time. A state in an
SDL-process represents a state of the process in which it waits for an input to arrive
at its input queue. Building blocks of a process are: inputs, outputs, decisions, process
creation/deletion and tasks. The definition can be extended by parts of the total set of
SDL-constructs. Only the SAVE-construct will be described here.

The various processes that exist in the blocks at the lowest level communicate with
each other and the borders of the block via signal routes. Figure 4.1 gives an example of
an SDL-system containing two blocks and three processes. The thick lines between the
blocks denote communication channels, while the thin lines inside the blocks represent
signal routes.

The subdivision of the specification into hierarchical levels is not necessary to explain
the basic concepts of test generation for systems that are specified in SDL. Therefore
it will be assumed that the specified system only consists of different processes that
communicate with each other and with the environment via channels i.e. no blocks are
being considered.

Signals in the simplified system are transferred via channels asynchronously. This
means that the sending process does not have to wait for the receiving process to accept
the message. Each process is assigned an input queue for all arriving communication
channels. In these queues, the signals are stored in FIFO order (see figure 4.2). During
the transport over the channel, the signals suffer a non-deterministic but finite delay®.
As a result, two signals that where sent at the same time to the same point but via
different channels, may arrive at their destination in completely arbitrary order. For
the communication between the protocol implementation and the tester (i.e. the envi-
ronment) the same mechanism as inside the system is assumed.

'Tn the most recent version of SDL; SDL-92, the delay may be specified as zero for a channel.

37

System

Block 1

Process 1

— Process 2

Block 2

Process 3

Figure 4.1: Basic structure of an SDL system.

4.2 Observable behaviour

In a testing-environment it is impossible to obtain information about the system by any
other means than its behaviour at the outside. This is also the only place at which the
tester can influence the state or behaviour of the system. Usually, the interface between
the system and its environment is well defined. Such a place is called a Point of Control
and Observation (PCO). At a PCO, signals leave or enter the system. Depending on
the kind of protocol that is tested, the tester communicates with the system directly
or via a communication medium (that could include, for instance, other parts of the
protocol stack). In the rest of this report it will be assumed that the communication
between the IUT and the tester is error-less and transparent so the tester will act as
the environment of the protocol.

Clearly the reception and sending of signals via the PCQO’s by the tester are ob-
servable by the tester itself. The sending and reception of signals by the environment
actually consist of two actions: a send-action, which puts the message on the channel
and a receive-action, which reads the message from the input queue?. Yet, the systems
behaviour does not change until the reception of the pending signal. Therefore, only the

% Actually the arrival of the signal and its insertion in the queue can also be distinguished. However,
there is no way of observing these events separately from the outside the system

38

S

SDL-process —
—

Figure 4.2: Input queue of an SDL-process.

reception of the signal will be denoted as “observable” (i.e. the action of the receiving
process that reads the signal from the processes input queue) as the action of the system
that can be observed by the environment.

As in the case of communication between the system and the environment, an internal
communication between two processes in the system is composed of a receive and a
send-action. But in this case, neither of those can be observed at the outside of the
system directly. The most straight-forward approach would be to mark those actions as
‘not observable’. It will be shown that establishing a satisfactory conformance relation
between the protocol specification and its implementation is very difficult on this basis.
Although the internal communication itself is not visible at the boundaries of the system,
it should be represented in the model since the results of it are very likely to become
visible in the future. Therefore the model for the external behaviour of the system
will be extended with a r-action. This 7-action represents the reception of an internal
communication by the receiving process. Summarizing, the observable behaviour of a
system specified in SDLis defined by:

¢ reception of a signal by the environment;

e reception of a signal that was sent by the environment;

o reception of an internal communication (the reception of a signal by a process in
the system, that was sent by an other process in the system);

e in implicit transition, caused by the reception, either from an other process or the
environment, of an illegal signal.

4.3 Nondeterminism

Almost all existing test generation techniques are based on the assumption that the
protocol implementation is deterministic and therefore behaves in a deterministic way.

39

There are however various ways in which nondeterminism can be introduced into a
system model.

through the use of SDL

The 1988 version of the language itself had no constructs to introduce nondeterminism
directly. However nondeterminism may arise from the communication mechanism. Sig-
nals may be sent while other messages are pending and there is no way to determine
which signal may arrive at its destination first, leaving the future behaviour nondeter-
ministic.

Under pressure of protocol designers, the language has been extended with special
constructs to model nondeterminism in the 1992 version of SDL. The following con-
structs have been added for this purpose:

¢ spontaneous transition A spontaneous transition allows the activation of a tran-
sition without any stimuli being presented to the process;

¢ nondeterministic decision A decision block may decide on the basis of a “ques-
tion expression”. In SDL’92, the question expression may also be any, denoting
that any of the possible choices may be selected by the system nondeterministi-
cally;

¢ anyvalue expression A random value for a variable may be selected by the
expression: var := any(<sort>).

through abstraction

State of the art communication protocols usually inhibit such an amount of complexity
that abstraction from technical details is necessary to be able to build the internal rep-
resentation that is necessary to generate tests. Possible abstractions are “if reduction”
(see figure 4.3) and neglecting parameter and data values. In SDL, the question expres-
sion may also be put in informal text. In this case, the designer is forced to perform an
if-reduction step.

There are two possible approaches that are usually combined in the modeling of a
SD L-specified system.

o Every choice in a process is based on known parameters and data that is read from
inputs. For every legal input, some behaviour is defined which may be dependent
of the values in the data-fields of the input. Each value or range of values in the
data-field of an input may be defined as a different input. For instance, a single
input of an integer with a legal range of [1..10] would result in 10 different inputs.

40

L T [

L]
—0
—0

as @

Figure 4.3: Model of the state space of a part of the SDL-specification in (1) after “if
reduction”.

¢ A second way is to make an abstraction and model choices on the basis of variables
nondeterministic choices. This way of modelling is called “if-reduction”. Intro-
ducing nondeterminism like this makes the model less accurate, but is sometimes
necessary to limit its size.

through unspecified options

Protocol specifications often define large families of protocols, which are each charac-
terized by their own set of options. One way dealing with those options is leaving the
choice between the different kinds of optional behaviour nondeterministic. However,
since conformance tests usually only are made for specific implementations, of which
the options are well known, this kind of nondeterminism usually is not necessary.

Dealing with nondeterminism in the context of conformance testing is an important
problem. There are two aspects to the problem. The first is a definition of an appropriate
equivalence relation according to which it could be determined whether one system
conforms to the other even when the specification is nondeterministic. The other aspect
is the fault coverage of the resulting test sequences. Since a nondeterministic system
can not be put in any arbitrary state directly, test cases may have to be repeated several
times. Even when test cases are run many times, there will always remain a chance that
some part of the behaviour is not tested.

4.4 Modeling the state space of SDL-specified systems

It was already mentioned that a specification of a protocol in a formal language often
is not a good starting point for automatic test generation algorithms. The general
approach, which will be followed here, is to create an intermediary model of the protocol
that holds information about the composite state space of the system. This composite

41

state space is composed of the state spaces that belong to the separate processes. Each
composite state represents some future behaviour of the system. To do so, a composite
state is build from a local state for each competing process, completed with the pending
messages. Two different approaches can be distinguished. The first approach uses
a complete model for the composite state space. After the generation of tests, the
non-observable actions are removed. In the second approach, which is represented by
the A CT-based methods, first a model is generated that only contains the observable
behaviour. From this model, tests can be generated directly.

4.4.1 Finite state machines

Almost all methods for automatic test generation use finite state machines as base model.
A statein an FSM corresponds to a stable state of the system. A stable state is a state
in which the system can not perform any action but the consumption of an external
input signal. A transition from a state is marked with the input signal, combined with
the outputs that are sent to the environment until the system reaches the next stable
state. There may be zero outputs to the environment (a silent transition). In the FSM-
model, the number of reachable states is finite. For each state in the FSM, the output
behaviour to each input is deterministic and known.

The finiteness of FSM's poses a problem when modeling SD L-specifications since a
system that is specified in SDL may be infinite. This is a result of the fact that the
number of processes may in theory be infinite and the queue-lengths are not bounded.
It is however questionable whether this is a necessary property when specifying “real”
protocols. When a protocol is designed carefully, this does not have to be a problem.

The nondeterministic behaviour of a system that is specified in SDL is however very
difficult to model in a finite state machine. If finite state machines are to be used as
a model for the state space of a system specified in SDL, adaption of the semantics of
FSMs are necessary.

4.4.2 Labeled transition system

In protocol verification techniques, a commonly used model for the composite state space
is the labeled transition system (LT'S). In an LTS a state transition is possible from
a composite state for every action that can be executed by each of the processes in that
composite system. A composite state in the LT'S exists for each reachable combination
of local states and pending signals. The LTS-models inhibits every possible action,
observable and non-observable and is not necessarily finite.

The state space of a system specified in SDL is composed of the Cartesian product

42

of the state spaces of all processes and all possible states of the queues in the system:
S = SIXSZX'-'XSnXQIX...XQm

The system may transfer from one state to a new state by executing an enabled action.
The transitions and the state space together form the labeled transition system. In the
LTSthree kinds of states can be distinguished:

¢ non-reachable states: States that can can not be reached by any combination
of stimuli at the boundary of the system.

¢ reachable, non-stable states: States that can be reached by the system from
its initial state. If a state is non-stable, the system may transfer to an other state
without any stimulus from outside the system.

¢ reachable, stable states: A stable state is a reachable state of the system. If the
system has reached that state, it will only leave that state if it receives an input-
signal from the environment. In the rest of this report, the expression “stable
states” is used to denote reachable stable states.

The asynchronous nature of the communication in the system poses some difficult
problems. FEach communication actually consists of two actions: The first action is
the output-action of the sending process, which puts the signal on the communication
channel. The second action is the consumption of the message from the input queue
of the receiving process. If the signal passes through a channel (i.e. a communication
between two SDL-blocks or communication with the environment), it will suffer a non-
deterministic delay. As a result of this, the sequence in which outputs are received, is
not necessarily the same as in which they were sent.

Normally, both actions that form an internal communication are well defined in the
specification. However, when an erroneous signal (a signal that is not expected) arrives
at a process, the SDL-process performs a “default transition”, which is not explicitly
defined in the specification. This “default transition” consumes the signal and returns
to the same state. In case of communication between the environment and a process,
the actions that are performed by the environment are not explicitly defined in the
specification as well. The part of the communication that is done by the environment
should not be considered in the tests. Therefore, the labeled transition system that
represents the state space of the system will only contain the part of the communication
that is done by the specified system. Figure 4.4 gives the possible actions is a LT'S.

Four possible state transitions can be distinguished. Communication with the envi-
ronment is handled different from internal communications. In the labeled transition
system, only the reachable states are visible. Each state can be reached from an other

3The environment of a SDI-specification is also modeled as a SDIL process.

43

Figure 4.4: Representation of global SDL-specified system.

state by a state transition if the action that is tagged to this transition is enabled in de
SDL-system (i.e. if an implementation of the system might perform that action).

e env!a: output-action that puts signal ‘e’ on a channel to the environment. The
reception of ‘@’ by the environment is not visible in the model.

e env?h: input-action that reads an input prom the environment. This action is
enabled if the input action is encountered in the SD L-specification. If no input is
available, the process will wait.

¢ proc!c: output-action to an other process (i.e. first part of an internal communi-
cation).

¢ proc?d: input-action from an other process. This is the second part of an internal
communication, and is only enabled when the complementary output-action has
been ezecuted. The input action is not necessarily explicitly defined in the SDL-
specification. The process must, however, be in a SDL-state (i.e. waiting for an
input).

4.4.3 Asynchronous communication trees

Instead of the FSM and LTS-graphs a representation that is often used to model con-
current systems are communication trees. A communication tree can be constructed
from a labeled transition system by “unfolding” the graph i.e. a new branch of the tree
is created for every enabled action in a node. Algorithms that generate an asynchro-
nous communication tree from an SD L-specification are presented in [DGK91, HB89]
and [PRO92]. All algorithms are based on the following three steps:

1. compute the start state;
2. compute the children of the start state;

3. for all possible continuations in a child, repeat step 2.

44

When the way of building a communication tree is combined with the notion of
observable behaviour (see previous section) it is possible to construct an asynchronous
communication tree (ACT). In an ACT, branches from a node exist only for each
observable action (page 38) of the system that is enabled in that node. ACT’s are
used in most research projects that focus on automatic test generation from SDL-
specifications (like the RACE-project “PROVE” and the project “ARTEFACT” at PTT
Research).

For cycling processes, a communication tree is not finite. Even when the specification
is well defined (in the context if testability) and finite, this way of modeling may lead
to infinite models. Various techniques have been proposed to limit the trees. The
construction of an ACT via a certain branch can be stopped if the branch ends in a
node that represents a composite state which has already been visited.

4.4.4 SAVE constructs

The SAVE construct can be used to change the sequence in which the massages are
taken from the input queue by the process. Typical use of this construct is depicted
in figure 4.5. In this situation, the process will wait for the arrival of message a. If
during that time messages b or ¢ arrive, they will be “saved” in the input-queue. When
the message a arrives, it will be taken form the queue (even if it is not the head of the
queue) and the process will proceed. If in state “wait input” any other message arrives
than {a,b,c}, it will trigger a default transition.

{ wait input)
\be \ |

Figure 4.5: Typical use of the signal SAVE construct.

One of the approaches that deals with this signal SAVE construct was presented
in [LDB91, LDB93]. The idea of this approach is to extend the description of the model
for each case that one of the messages that is to be saved, is received. This way, the
SAVE construct can be translated into basic SDL.

45

4.5 Simple handshake example

The next example will illustrate some problems that arise when using SDL as the
specification language. The example that is used is a primitive transmission system
that is able to send a message “m” via a channel.

4.5.1 Description of the example

[m] input , [m] channel output [m]

B >

Figure 4.6: Block interaction part of the specification for the “Simple Handshake” sys-
tem.

The example is a very simple transmission system. Via an input port a message “m”
is consumed by process A. After that the message is sent via a channel to process B
which outputs it to the environment.

Figures 4.7 and 4.8 show the two (cycling) processes that perform the service. The
processes in an SDL specification communicate with their environment and other proces-
ses via signal buffers. These buffers can hold an infinite amount of messages. This means
that an arriving message from the environment can always be consumed and that process
A can process a new message from its input queue whenever it has sent the message
to process B. The process does not have to wait until process B has actually consumed
the message.

Figure 4.9 gives the LT representation of the SDL specification. The system transfers
to an other state when the message is sent by A and again transfers when process B
receives the message. However an external observer (the tester) could not distinguish
between these two moments. Therefore the tester can not distinguish between actions
that occur between the actual sending and reception of the message and actions that
occur after the reception of the message by process B. Therefore the LT-system can be
reduced to an asynchronous communication tree (ACT). In an ACT, the sending and
reception of an internal message is modeled as one silent action that takes place at the
reception of the message (the notation 7 or “int.” is used).

An other result of the queues in the communication channels of the processes is the
fact that the state space (which contains all states that can be reached) is infinite.
The graph in figure 4.9 and the graph in figure 4.10 therefore does not end. In the

46

VIA channel

e

VIA channel

VIA output

1
J
HHHAC

Figure 4.7: Example specification of Figure 4.8: Example specification of
process A. process B.

practical system, the depth of the graph depends on how many inputs are offered to the
implementation before the system gets the chance to process the first.

4.5.2 Nondeterminism in the example

In some of the states, the system may act nondeterministically {even though both
processes are deterministic). In figure 4.9, such a situation is reached when a mes-
sage m is put on the channel by process A. If an input is presented at the input before
the message is accepted by process B, two actions may happen concurrently. Either
the reception by process A or the reception of the pending message by process B can
happen first. For the tester, there is no way to determine or influence which choice will
be made.

After the abstraction from the internal communications that results in the ACT
(figure 4.10), a similar nondeterministic choice can be distinguished. Here, the external
observer has no way to determine if the internal action has happened or not.

4.5.3 Infinity of the state space

For the generation of tests, the algorithm should make a search through the state space
of the system. The search algorithm (arbitrarily) picks one process as the first and

47

Figure 4.9: Labeled transition mo- Figure 4.10: Model of the hand-
del of the handshake example shake example using an ACT.

executes an enabled action of that process in that state. The environment may send
an input signal to the system, before the message has been sent from A to B. Since
the input queue of an SDL-process is unbounded, an infinite number of inputs may be
sent to the JTUT. Unless an upper bound for the input queue is defined, the search
will continue to proceed downwards and will not end (while both processes are finite).
If such an upper bound exists, the search continues until that bound is reached, will
examine the rest of the behaviour once and will stop.

4.6 Testing SDL-specified systems

With the rising popularity of SDL as a language to specify communication protocols,
the need emerges for automated test generation techniques based on SD L-specifications.
However, the large number of features in SDL, such as the SAVE construct that was
described in the previous section, are a major difficulty for the existing test generation
techniques. This section will describe some of the existing methods that were developed
for the automatic generation of tests from SD L-specifications.

The semantics of SDL ensure that every input that is offered to a system is accepted.
Therefore, verdicts of the tester are only passed on the basis of outputs of the system.

48

4.6.1 ACT-based test methods

A number of test generation methods based on SD L-specifications use the asynchronous
communication tree as a starting point. The ACT is used to represent the composite
behaviour of the total system. The internal communications (communications between
processes in the SDL-system) is represented by an internal (7-)action. Of course, the
advantage of an ACT is that it represents the observable behaviour only. This way, a
lot of information that can not be accessed by the tester is removed from the model.

? ?
a: a: a?

b! c! b! c!

Figure 4.11: Rewriting of nondeterministic behaviour.

From the asynchronous communication tree, test suites can be derived. However,
special care must be taken when doing so. An ACT is not finite in general, nor will
the behaviour it describes be deterministic. Some approaches that can be used to limit
the size of the generated ACT will be presented in a next section. The methods that
are presented in [PRO92] define a separate test case for each possible outcome of a
nondeterministic choice in the system. To do so, the nondeterministic behaviour in the
ACT that is of the form of figure 4.11; part 1, must be rewritten in the the second form
(4.11; part 2). When generating tests, the tree will be split into separate test trees at
any place where the resulting system makes a nondeterministic choice. When executing
the tests, at least one of the test cases must be satisfied by the system. The algorithms
that generate the tests from the A CT will be of the following form:

¢ eliminate internal transitions from the ACT;
o rewrite internal nondeterminism;

e split the resulting tree into separate tests trees;
¢ create TTCN test case for each test tree;

o create PASS/INCONCLUSIVE verdict (manually)*.

*The FAIL verdict is often passed via an “otherwise” statement.

49

In [DGK91], an extended asynchronous communication tree (XACT) is used. An
XACT resembles a normal ACT but can also be used to describe SDL-systems that
contain the SAVE-construct. Also, extensions for the inclusion of TIMERS in the specifi-
cation are presented. The test generation techniques that are used here are adapted from
FSM -based test generation techniques that were presented in chapter 3. The adaptions
account for the possible nondeterminism in the resulting finite state machines. To use
these methods, that generate tests with much higher fault-coverages as the previous one,
the infiniteness of the A CT-model must be eliminated. In the section about behavioral
constraints, later in this section, some possible solutions will be presented. The structure
of the test generation methods is as follows:

e create asynchronous communication tree from SDL-specification;

e reduce ACT with assumption that external inputs are only generated when the
system is in a stable state;

¢ map the reduced ACT to a state machine;
¢ reduce the number of states, such that the state machine is finite;

o derive test suites with the help of algorithms from the PTT Conformance Kit.

4.6.2 SDL-machines

An other known approach to test generation from SDL-specifications is presented by
v. Bochmann et al. in [LDB91, LDB93]. These papers are based on the idea that SDL-
specifications that contain the SAVE construct can be rewritten to specifications without
the SAVE construct, while preserving the same external behaviour. These specifications
can be translate to finite state machines, that can be used as a basis for automatic test
generation.

The first step in their approach is the construction of an “SDL-machine” from the
process specification. Such an SDL-machine is a finite state machine with an input queue
and SAVE’s. The model is generated by eliminating parameters and variables that do
not influence the dynamic behaviour directly. The variables that control branches in a
decision part of a process specification are preserved in the model by defining a separate
input message for each value or range of values in a data field of an input that may
cause a different branch in a decision block. Problems are the non-finiteness of the
SDL-machine and the explosion of the number of states.

After the generation of the SDL-machines, which possibly contain SAVE-blocks, the
machines are transformed to finite state machines that do not contain SAVE’s. In
most cases this can be done by an “equivalent transformation”, which preserves the

50

input/output relation of the original SDL-specification. On some cases an “approxi-
mately equivalent transformation” must be used. After the generation of FSM’s, The
well known FSM -based test generation techniques can be used to create a set of tests.

To only problem that is not addressed in these papers is the problem of generating a
single process specification for the total SDL-system. While in general a specification
that was written in SDL is built from multiple communicating processes, v. Bochmann
et al. assume that a single-process description is available. The SDL-specifications that
are the subject of this report are assumed to contain more than one process.

4.6.3 Behavioral constraints

As for FSM -based automatic test generation techniques, one of the major problems
for test generation based on SDL is the explosion of the state space when creating
the internal representation. The ACT’s and FSM’s, that are used to represent the
state space, therefore, will grow intolerably large. In the RACE project PROVE, much
attention is paid to techniques that limit the size of the A C'T-representation. Behav-
ioral constraints are used for this purpose. These constraints restrict the behaviour
to only certain aspect of the behaviour, and suppress other parts of the ACT that are
not related to these aspects. This way, tests can be generated that cover only a part
of the total behaviour. If necessary, the procedure can be repeated for other parts of
the behaviour. The metrics that are used to control the behaviour of the total system
include:

¢ definition of a maximum trace depth;
o definition of a reasonable environment;

o definition of a maximum number of occurrences of a signal;

maximum trace depth

The definition of a maximum trace depth is a simple heuristic that can be used to restrict
the behaviour to a certain number of steps that can be taken from the starting state.
If the constraint is defined independently from the specification, the chance exists that
important behaviour is discarded. However, the definition of such an heuristic value on
the basis of the specification is a very difficult task. Often a “natural” bound to the
number of steps in a trace is presented by the capacity of the machines that compute
the traces.

51

reasonable environment

In a normal situation, the construction of a composite state space includes all possible
behaviour that can be executed by the system. The reaction of the system to each
possible behaviour of the environment is specified. Often, this behaviour includes non
reasonable behaviour (i.e. it forces the system to do things, it was not designed for).
Since not all behaviour can be tested, it seems appropriate to start with the “reasonable”
behaviour. In [PRO92], three forms of a reasonable environment are presented:

¢ only one message will be queued per PCO;
¢ the environment will only send a message if all queues in the system are empty;

o signals that will be consumed with an implicit transition will not be sent.

The first environment implements the heuristic: “wait until the last-sent message
is consumed”. The second environment is based on a resemblant heuristic. However,
in this case the tester will wait until no possible transition can be performed by the
system spontaneously. The second environment puts a larger restriction on the possible
behaviour than the first.

The third environment restricts the behaviour of the tester to only the valid behav-
iour. In practice, however, it will be difficult to determine on forehand if a message will
be discarded or not, due to the nondeterminism in the system. In combination with one
of the first two reasonable environments, it is easier to anticipate which messages will
cause an implicit transition.

maximum number of occurrences of a signal

This metric can be used to exclude large (or even infinite) loops in the system. Both
the depth as the breadth of the state graph can be reduced this way. For each signal
that is exchanged with the environment, the number of occurrences is counted. If the
this number exceeds some heuristic value, no new signals will be sent to the system.

All the methods that are presented here can be used to limit the size of the internal
representation of the system. Still it appears that for large systems, these methods
do not suffice. In the next chapters, some methods will be presented that have been
developed in the field of protocol verification.

Partial order
reduction strategies in
e Protocol verification

5.1 Protocol verification

One of the research areas in which much attention is paid to the state space explosion
problem is protocol verification. As shown in figure 1.1, the verification of a protocol
takes place during the specification phase. This section will be based on the assumption
that the specification of the system is given as a set of communicating finite state
machines. The composite state space is the set of all states the system can occupy, i.e.
the Cartesian product of the state spaces of all separate processes. In practical systems
only a fraction of this composite state space is reachable. However, the fraction of the
composite state space that is reachable is still very large for practical systems due to the
state space ezplosion. One of the key subjects in protocol verification is the question of
how to fully explore the composite state space within the practical limits of time and
memory.

After the specification is made, and before the next steps in the design cycle (e.g.
implementation or test derivation) can be taken, it must be ensured that the specification
is logically consistent. This means that the specification is checked for various design
errors that are independent from the actual function of the system. Logical errors that
may appear in a specification are:

¢ incompleteness: a message that was sent by one process cannot be received by
at least one process, or a process expects a message that cannot be sent.

e use of uninitialized data

¢ system deadlock: a deadlock in a system composed of a number of concurrent
processes, is defined as a reachable state of the system in which all processes are
blocked [God93]. The property of a system that a deadlock could not appear is
called the safety property.

e livelock: a livelock or non-progress cycle is a situation in which no progress

53

54

toward providing the desired services takes place [ULS90]. The absence of livelocks
is called the liveness property of a system.

¢ buffer overrun: In systems that have upper bounds for queue lengths this would
mean the loss of a message. In many practical methods, an upper bound is assumed
to ensure that the algorithms end. A buffer overrun, in this context, means that
the assumptions about these bounds must be revised.

¢ unspecified receptions: the reception of a message that was not expected by
the process in this state.

¢ race conditions: critical races between messages or timer. Usually these races
denote (implicit) assumptions about the sequence of messages.

¢ unreachable code: parts of the specification that are never reached during the
execution of the protocol usually denote an error.

¢ violation of user specified correctness assertions: the user may add extra
assertions, like invariants or temporal formulae, to check the consistency of
the specification. Examples are:

— invariants (expressions that must always be TRUE);
— fairness (IF expr.a EVENTUALLY expr._b);
— precedence (expr.a IMPLIES expr_b UNTIL expr.c).

The first two items can be verified during compilation of the code or a semantics
check of the specification. All other items can only be checked during exhaustive sym-
bolic ezecution of all possible state transitions. In this symbolic execution, a search
through the composite state space is performed that visits every reachable state and ex-
plores every possible state transition. In contrast with conformance testing, there is no
controllability or observability problem in protocol verification. During the execution,
all details about state transitions in the specified system are known. This means that,
if the full composite state space can be constructed from all separate processes, every
state can be examined. The best-known algorithm to perform such exhaustive symbolic
execution is reachability analysis. The search through the composite state space of
the system resembles the search that must be performed when automatically generating
conformance tests.

The composite state space is built by executing every enabled transition in every state
that is reachable from the initial state. The explosion of the composite state space during
this search is one of the major problems that limit the applicability of existing verification
methods. Since this problem also exists for automatic test generation methods, solutions
from the field of protocol verification could also be applicable to test generation. In this
chapter a number of state space reduction techniques are presented that have been
presented for protocol verification.

95

5.1.1 Reachability analysis

There are many algorithms that perform reachability analysis. They differ in the re-
sources they need to be executed, the fault coverage, the number of states that can be
explored, the extent in which the analysis can be controlled, etc. For a class of medium-
sized protocols (up to 10° states, according to [Hol91b]), a full (exhaustive) reachability
analysis can be carried out. The simplest form of such an algorithm is a depth-first
search (figure 5.1). In the algorithm, two sets are defined: S, the search stack this
is the set of states that are being explored at the moment. The set D is the set of
states that have been fully explored (i.e. all transitions starting from them have been
explored). When the algorithm ends, D contains all reachable states.

depth first_search

S := {initial_state}; /* search stack */
D = @ /* visited states */

DO WHILES # @
s := last element of S;
IF error(s)=TRUE
report(“error!”); /* an error was found */
ELSE DO for each successor state s’ of s
IF (s’ ¢ S AND &' ¢ D)
add s’ to S;
FI;
0D;
FI;
delete s from S;
add s to D;
oD

Figure 5.1: Depth-first search algorithm.

The function “error(s)” should be adapted to the sort of errors from the list above
that have to be detected. In the simplest form, the function is TRUE (i.e. reports an
error) when there is no way to exit from the current state (deadlock). More elaborate
implementations of the algorithm could check sequences of state transitions to temporal
formulae or invariants.

In the depth-first search algorithm, new states are selected from the “end” of the
stack S. If the first element of S is selected, the search changes to a breadth-first
search. A breadth-first search has the advantage that the shortest sequences leading to
an error are found first. Usually, however, a depth-first search is used. The advantage of
a depth-first search is that the search stack is smaller and that a back-trace (a sequence

56
of state transitions that leads to the specific error) is easily created.

5.1.2 State space explosion

An exhaustive search can only be used to verify medium-sized specifications. During
the search, the algorithm must keep track of all states that have been visited, in order
to detect loops. These states are stored in the sets & and D. Due to the state space
explosion, these sets will become too large to be stored in memory (considering the
large amount of data that must be stored each state). In the case of very large protocol
specifications, the designer has the choice between storing the information in memory,
which is fast, but is limited by the size of the memory. If the amount of data that must
be stored is too large, the information may be stored on disk. This solution, however,
reduces the speed of the search by several factors. Holzmann indicates that systems with
about 10° reachable states is the maximum which can be handled by exhaustive search
with the current technology [Hol91c]. New methods are needed to analyze very large
protocol specifications. One way to do this is by improving the way, the state information
is stored. This is implemented by Holzmann in a method called supertrace. With this
method about 5-108 states can be analyzed. An other, more fundamental approach is to
create smaller state spaces that can be explored by computers. However, it is important
that design errors in the original protocol still can be found in the reduced state space.

5.2 Reduction methods using heuristics

An overview of the possible reduction strategies is presented in [LCL87]. There are three
categories which are applied during different phases of the design process:
o strategies that improve the specifications:

— restrict the number of parameters;
— limit the queue lengths;

— define upper and lower bounds for the variables and parameters that are used.
¢ strategies that divide the specification in smaller parts:

— partition the specification in multiple phases of the protocol;

— make a projection of each function (group) of the protocol.
e strategies that guide the partial search:

— explore “dangerous” situations first;

— cover the largest possible part.

57

5.2.1 Improving the specification

Much attention is paid to the first category of heuristics by the standardization in-
stitutes. These methods are applied at an early stage in the protocol design. Most
verification methods that have been presented, assume that some properties from this
list have already been carried through. Much improvement can be gained from these
methods. These aspects of the specification are the same that determine the “testability”
of a system (see section 2.4).

5.2.2 Splitting the specification

The division of the specification is something that was also described in the previous
chapter (section 4.6.3). These strategies are an important aid for the verification of very
large specifications. The implementation of these methods, however, is very difficult
and no general applicable method has been found yet. Because there is no limited
controllability when verifying a protocol, the splitting of a protocol can be done more
rigorously than when testing the implementation. The protocol could be split in different
parts, that each represent a different phase of the protocol, such as call set-up, data
exchange and disconnection phase. A second method that is mentioned is the projection
of different functions on a new smaller protocol. In general such a projection will be
very difficult on the level of formal specifications. Especially in complex protocols, the
different functions are usually hard to isolate.

5.2.3 Partial searches

Methods have to be found to explore as large parts of the composite state space as
possible. Besides that, much effort is done to direct the searches in such a way that the
largest part of possible errors is verified. These methods are known as partial state
explorations (figure 5.2). Most early partial search methods concentrate on finding
effective heuristics to decide which state transitions have to be explored, and which
have not. Heuristics, however, do not guarantee that all errors in the specification will
be found. Lately, new methods have been presented that reduces the state space, and
preserve the completeness of the specification. Since is seems reasonable to expect that
these methods to reduce the state space for verification are applicable to the automatic
generation of conformance tests, a survey of these methods is presented.

In practical cases, a search through the state space can not be complete due to the
state space explosion. Partial searches are meant to control the search through the state
space of a system in such a way that as much errors as possible are found. Even though
not all states are visited, a major part of the errors in the specifications can be found
since most errors will occur more than once in the behaviour of a system. Next some
important methodologies will be described.

58

partial_search
/* initialization */

DO WHILE S # O
s := last element of S;
IF error(s)=TRUE
report (“error!”); /* an error was found */
ELSE DO for some successor state s’ of s
IF (s ¢ S AND &' ¢ D)
add s’ to S;
FI;
aD;
FI; :
delete s from S;
add s to D;

oD

Figure 5.2: Partial search algorithm.

i depth-bounds:

The most simple method to limit the number of states is to restrict the length of the
execution sequences. This is a fast, but rather crude option. It can be combined with
other methods in order to guarantee termination of the algorithm.

ii scatter search:

During a scatter search, “dangerous” situations are visited first. For instance, poten-
tial deadlock states can be recognized by the absence of any pending messages. There-
fore, in a scatter search, receive operations are favored over send operations. Deadlock
errors can be found quickly this way.

iii guided search:

A more general case of the scatter search is the guided search. Instead of favoring one
sort of behaviour over an other to provoke errors, a cost function guides the search. The
definition of this cost function is very difficult and not much experience is available.

iv. probabilistic search:

Probabilistic search favors the states that are most likely to occur in the real system.
In this way, information about the environment (e.g. the probability of certain message
sequences) can be taken into account.

v random search:

Based on the idea that an error in a specification is very likely to appear many times
in the state space, a random search visits states from as many different parts of the
specification as is possible. An advantage is that the amount of memory and CPU time

59

that is used, can be controlled easily. In a random search, all parts of the specification are
visited. Because of its simpleness and good fault coverage, this method is a commonly
used heuristic.

vi fair and maximum progress search:

In the composite state space of a system, the same action will occur many times. This
is caused by the linearization of the concurrent processes from which the state space in
built. By achieving a certain amount of progress through the state space of the separate
processes, these algorithms try to skip a part of the interleavings of independent actions.

5.3 Reduction methods using partial orders

This section will describe the partial-order based reduction methods that are presented
by Holzmann et al. in [HGP92]. This group of reduction strategies are fundamentally
different from the heuristics mentioned in the previous section since they preserve the
completeness of the specification. Since thereis only a partial ordering between actions in
the system, equivalence relations can be defined for sequences of actions. If two paths
through the composite state space are equivalent, it is sufficient to examine only one
of these paths. The problem of these techniques is finding an equivalence relation that
preserves the distinction between correct and faulty behaviour. Equivalence relations
can be ordered from weak to strong. Weak equivalence relations group large groups of
behaviour, yielding large reductions. Strong equivalence, in return, yields less reduction
but is better in preserving the fault coverage of the verification.

5.3.1 Reduced search method

The reduced search algorithm is based on the notion that an action that does not interact
with other processes, is always independent of all other processes. If a process is about
to execute an independent action (called a local action), it is not important if an action
of another process has been executed or not. The process has no means to determine
what other processes are doing at that moment, nor can any other process “see” if the
action was executed or not. Therefore, all interleavings of the local action with actions
of other processes hold the same information about the system.

Similarly to the “normal” reachability analysis, a depth first search is performed
by the algorithm. The difference is that for the reduced search algorithm, some state
transitions will be blocked during the search (i.e. the search is not continued via this
path). Suppose the graph in figure 5.3 is a part of a composite state graph of the
system. The labels “a” and “b” denote actions from two different processes. If a and
b are independent, the (sub)traces < a : b > and < b: a > hold the same information
about the system’s behaviour. This means that it should be possible to find the same
errors by only examining one of the traces. In appendix A, more details are given about

60

the algorithm that implements the reduced search method.

AR

Figure 5.3: Part of a composite state graph.

Holzmann proves that the following correctness properties still can be established
with the algorithm (i.e. the equivalence preserves the following properties):

A. Each process performs a valid computation, without violating any local assertions,
and without cycling or hanging (safety properties).

B. All processes together proceed from a known composite initial state to a known
composite final state.

To test the presented algorithms, a number of small protocols were evaluated. In the
paper the number of visited states and executed transitions are given as well as the run
time and memory requirements. The following test protocols were used:

1. 5 independent processes, each traversing 10 local states, no cycles
2. 5 independent processes, each cycling through 10 local states

3. 5 completely dependent processes, each traversing 10 states, without cycles

From the first test protocol, large reductions can be expected. Since all processes
are completely independent, only one path that executes all actions once is sufficient
to verify the composite system. The second test protocol forces the search algorithm
to visit every reachable state. The third test protocol is used to give an indication of
the overhead that is induced by the algorithm. Figure 5.4 shows a comparison of the
algorithm with a standard (Dept-first) search for the required amounts of CPU-time and
memory. It is clear that behaviour of the first category in the list can be reduced best.
In this case only a fraction of all reachable states is actually visited. In the verification
of the second test protocol, all states have to be visited because of the cycles. Still a
reduction is achieved since not all transitions have to be explored. The overhead of the
algorithm manifests itself mainly through the increased amount of time that is necessary.

61

Time (s) Memory (Mb) mm Depth—first search
Reduced search

1: N independent processes, M states, no cycles
2: N independent processes, M states, cycling.
3: N completely dependent processes, M states, no cycles.

Figure 5.4: Results of the reduced search algorithm.

In the paper by Holzmann et al. some results with more realistic protocols are pre-
sented. A typical reduction of +25% is achieved with the reduced search algorithm.
Searching for local transitions in not the only way to find independent transitions. More
elaborate methods are presented in the next two sections.

5.3.2 Sleep Sets

The theory of sleep sets was presented a few years ago [God90, God93] as a means to
avoid the part of the combinatorial explosion due to the modeling of concurrency by
interleavings. In [HGP92] the name conflict set method is used. In this report, the
theory as it was presented by Godefroid will be used as the starting point. This section
will give a short impression of the method. The algorithm is presented in appendix B.

Figure 5.5: Part out of the composite state graph. “z!” and “z?” denote actions that
use a variable or buffer called “z”.

Suppose the two graphs in figure 5.5 represent a part of the composite space of a

62

system. The labels “z!” and “z?” denote actions that use a variable or buffer called
“2”. A label “a” denotes a local action. Such a local action is independent of all actions
of all other processes, actions that use common variables or buffers (like z! and z?) are
dependent.

The reduction in the sleep set method is based on the assumption that after a state-
ment z is executed during the depth-first search, it should only be repeated in that
search if a dependent action can be shuffied ahead of «. So, in contrast with the reduced
search method, the sleep set method looks at the actions of a process instead of actions
in the composite state space. To execute the reduction algorithm, the state space model
is extended with a sleep set for every action. A sleep set can contain conflict tags. This
sleep set blocks the action after it has been executed once by placing one or more conflict
tags in it. The block is lifted when an action is executed that conflicts with one of the
tags in the set (i.e. when a dependent action is executed).

In the example in figure 5.5, the search algorithm will “arrive” at the upper node.
Assume that the leftmost actions are executed first. In the first graph, the sequence
< zlwa... > will be executed first. When all behaviour is examined, the search will
“back-up” to the first node. At this point, the algorithm fills the sleep set belonging
to action ‘z!” and continues with the a-action. Since this action is not dependent of z!,
the block on z! is not lifted, and the search will halt at this point and back-up. The
second appearance of the z!-action is not executed.

The same holds for graph 2 until the search backs up for the first time. Now 2! will
be block as in graph 1. The execution of 27, however, conflicts with z! (i.e. both actions
are dependent) so the block is lifted. Both sequences < z!:z?... > and < z%:zl... >
are examined. This is necessary since the results of these two traces could be different.
Imagine, for example, that 27 reads a message from a queue z; In the first trace, the
queue will not be empty (since the read-operation is preceded with a write-operation).
In the second trace, however, queue z can be empty and the system will be forced into
a deadlock state by the execution of 2?.

In [HGP92], some results are presented. The same sample protocols as in the previous
section are used. The results, that are drawn in figure 5.6, show that a much larger
overhead is introduced by the algorithm. The results for the sleep set method are not as
promising as they were for the reduced search method. However, the reduction of the
sleep set method seems to have effect on different kinds of protocols. In the case of the
protocol that consists of cycling, independent processes, the memory usage is smaller
for the sleep set method. Holzmann shows that the efficacy of the reduction methods is
improved when both algorithms are used in combination with each other.

63

Time (s) Memory (Mb) mm Depth—first search
Reduced search

1: N independent processes, M states, no cycles
2: N independent processes, M states, cycling.

30 3: N completely dependent processes, M states, no cycles.

Figure 5.6: Results of the sleep set-algorithm.

5.3.3 Stubborn Sets

The last algorithm that is presented by Holzmann et al. is the stubborn set algorithm?.
Important contributions to the theory for this method have been presented by Val-
mari [Val90, VT91]. Asin the sleep set method, this method uses dependencies between
different actions of processes. Only in this algorithm, information is used about which
processes use which variables. The reduction is achieved by stating that all transitions of
a process P, which do not use a certain variable ¢, are independent of transactions that
do use this variable. The method was presented as a means for program verification.
Therefore, the communication between processes is done via variables. In the context
of communication protocols, one should read “queues” instead of “variables”.

Assume a process A, which uses the variables {z,p, ¢}, a process B, which uses the
variables {y,p, z} and a process C, using {y,q} (figure 5.7). In state “s”, both process
B and C are about to execute an action that accesses (e.g. reads from or writes to)
variable y. The algorithm will only select the actions B?y and C'ly for the continuation
of the search (this is where the name stubborn set comes from; this set contains all
transitions for a specific node that must be explored).

No results are presented for this method. Early experiments have already proved that
the parts of the composite state space that are blocked are different for all presented
methods. As for the sleep set method, the overhead that is induced by the algorithm
will be larger than for the reduced search method. Further investigations are necessary
to determine whether this algorithm can be combined with other reduction methods.

! A method which uses the same starting points is Overman’s Method. However, more information is
available about the stubborn set method. Only stubborn sets will be presented here.

64

X, P, q}
' P, Z}
{y. q)

om>

Figure 5.7: Sample part of a composite state graph. FEach transition belongs to a
different process.

Application of the
partial order reduction

T methods

Holzmann’s Reduced Search method [HGP92] can be used to identify a set of traces in a
labeled transition system. Each trace is a representative of an equivalence class of traces
in the graph. The classes have multiple members since there is only a partial ordering of
the actions in concurrent systems. Together, the equivalence classes cover the behaviour
of the specified system'. Using the structure and semantics of a SD L-specification, the
equivalence classes may be used to improve the test generation methods by noting that
not all representatives of an equivalence class have to be tested. This observation can
be used to reduce the number of tests that are generated and the resources that are
needed to create the test sequences.

The major problem is the limited controllability of the system. Only few of the
states in the LTS can actually be forced upon the system in a deterministic way. The
existing test generation techniques are based on the assumption that sequences of actions
can be forced in the implementation under test. For the application of the partial-
order reduction methods, a distinction must be made between controllable and non-
controllable behaviour in the system. In this chapter, a test generation method is
proposed that pushes the system from one stable state to the next. The reduction
methods that are presented by Holzmann et al. can be applied to this method.

6.1 Controllability of traces

In order to be able to apply the reduction methods from the previous chapter, an internal
representation of the system will have to be generated from the SD L-specification. In
this chapter a labeled transition model is used as the internal representation. This model
also contains the systems internal actions, which may not be controllable from outside
the system. In appendix D, an example is given of the application of the partial order
methods from the previous chapter.

'The set of traces may contain some redundancy in a sense that two traces may belong to the same
equivalence class.

65

66

6.1.1 The LTS model

There are different models for the representation of the state space of a protocol. The
models differ in the amount of information that is available about the internal situation
of the system and the definition of the state transitions. For instance, a state transition
in an A CT-representation can only happen via an observable action, while the same
transition may involve many actions and multiple states in a labeled transition system.
The labeled transition model holds the dynamic behaviour of the system. In general,
no data-dependencies are defined.

The reduction methods that are used rely on a partial ordering of actions in a system.
When some actions are not visible in the model, this may cause the blocking of state
transitions that should not be blocked. Therefore a model will be used that contains
much information about the system. In this chapter, the internal representation of
the composite state space that is used is the labeled transition system, as defined in
section 4.4.2. In this model, five different actions can be distinguished:

¢ input actions from the environment;
¢ output actions to the environment;
e input actions from an other process;
¢ output actions to an other process;

e T-actions.

The labeled transition model that is used, contains both observable and non-obser-
vable actions. The r-action is used to model behaviour that is unknown in the model
(such as SDL-tasks or decisions based on unknown parameters). Note that the internal
input action is only enabled (i.e. present in the model), if the relevant internal output
has been sent. Like in the ACT-model, a state contains information of each process
and the current values of buffers and variables. The reachable states in the system can
be grouped in two sets:

¢ stable states: these are states in which no state transition is possible, unless an
input from the environment is provided (and all timers are expired).

¢ non-stable states: these are states in which the system may transfer to a new
state without any stimulus from the environment.

6.1.2 fairness

In order to deal with non-stable states some properties of the system have to be assumed.
The first assumption is that the system is fair. The definition of fairness that is used

67

here is rather strict and only applicable to non-stable states. In the literature, more
general definitions can be found.

Definition 7 (Fairness-1) If the system is in a certain state in which it can show
some behaviour without being triggered by the environment, it will do so eventually.

This notion of fairness can easily be verified in practical systems: The fact that an
action is enabled, denotes that the system should be able to perform the action. If the
system refuses to execute the action within finite time, the system is malfunctioning.
This notion of fairness is, however, not sufficient in the rest of this chapter. Therefore,
an extended definition of fairness will be adopted here. One of the assumptions that was
made about the specifications was that a thorough verification of the specification has
taken place. In this chapter it is assumed that the specification contains no livelocks.
Now assume a system that performs some behaviour A:

A=B+X: A

In theory, this system could repeat the actions < X : X'... > infinitely. The kind
of fairness that is assumed hers is that, within a finite amount of time, the behaviour
specified by B will be executed too. This notion of fairness is closely related to the one
given in [Koo91].

Definition 8 (Fairness-2) If the system is in a loop from which it might break via
a nondeterministic choice without any stimulus from the environment, it will do so
eventually.

A system is only fair according to definition 8, if no livelocks exist in the system
and if the contents of the data fields in the messages are properly chosen. In SDL,
the delivery of a signal, once it is sent, is guaranteed. The assumption that the system
under consideration is fair according to definition 8, has important consequences. If it is
assumed that there is at least one reachable, stable state in the system, it is guaranteed
that from any reachable state, the system will eventually reach a stable state. Since the
selection of the next action in a non-stable state can be nondeterministic, the choice
between different traces that are executed by the system may be nondeterministic as
well.

6.1.3 controllability

Paths through the state space that are computed with a generic test generation method,
will contain stable and non-stable states in general. If the paths are to be used for test
generation, the tester must be able to force the system into each node in the path. Since
the tester has only access to the outside of the system, this may be very difficult. This
will be demonstrated with the help of a small example (figure 6.1).

68

y c?

O

d!

Figure 6.1: Sample part of a labeled transition system (only communication with the
environment).

The figure shows a small part of the labeled transition system of a system. Five
reachable states are drawn. An exclamation mark denotes an output to the environment,
a question mark an input from the environment. Suppose the tester would want to test
the trace < al,c?,d! > from the up-most state. After the execution of the a-output, the
system reaches a non-stable state. The c-input can be executed. However, the system
may also transfer to another state via a g-output. The choice between ’q!’ and 'c?’ can
not be guided from outside the system. Those choices generally are determined by the
order in which signals arrive at their destination. Since most of the time it is not possible
to make any assumption about the time, signals need to reach their destination within
the semantics of SDL, the tester can not force the ‘c; action in this case. Therefore,
the trace can not be tested directly.

6.2 Stable traces

In this section, the non-stable states in the state space will be investigated. If a path
through the composite state graph contains non-stable states, it is not always possible
to force the sequence of actions in the implementation. Stable traces will be introduced
as an aid that will be used in later sections.

6.2.1 Non-stable states

In this section it will be assumed that processes do not “die” before they have reached
an end-state. Different kinds of non-stable states can be distinguished:

69

¢ Non-stable states with only one input or output-action enabled. Since
fairness was assumed it is guaranteed that enabled output-actions will get executed
eventually. The only problem in the context of conformance testing is the question
of how long the tester has to wait until it is legitimate to assume that no output
is or will be generated. If a single internal input is enabled this means that the
message is already sent. In this case, the action will be executed upon arrival of
the signal. If the enabled input action expects an input from the environment, the
state is stable.

¢ Non-stable states with more than one output enabled. In such a state the
choice between two outputs (i.e. two traces) will be made nondeterministically.
The tester has no way of knowing which choice will be made and should therefore
expect all possible continuations of the trace.

¢ Non-stable states with more than one input enabled. If all inputs come
from the environment, the state is stable. If one or more of the input-actions
consumes an input signal from an internal communication, the tester may no
longer be able to control the future behaviour of the system deterministically.

e Non-stable states with input and output-actions. All enabled output-
actions and enabled internal input actions can be executed. If a subset of the
processes expect an input from the environment, the tester can not force these
actions in a deterministic way.

The non-stable states were defined as reachable states in which the tester can not
control the choice of the next action that is executed. Using the difference between
stable and non-stable states, it is possible to define a stable trace:

Definition 9 (Stable Trace) A stable trace is a legal sequence of actions that begins
and ends in a stable state.

Behaviour that leads to non-stable states with multiple outputs or both input and
output-actions can not be specified in a single SDL-process directly (within the seman-
tics of SDL’88). Non of the separate processes could show behaviour that allows two
different outputs in the same state since this would imply nondeterministic behaviour
which is not allowed in the specification of a process in SDL. Also, a state that allows
both input and output actions is not allowed in a single process. The semantics of SDL
do not allow such a state. Therefore those kinds of non-stable states could only result
from the combination of actions of parallel processes in the system?.

In SDL’88, a state with multiple enabled inputs can not be defined in a single
SDL-process since this would imply that the choice between those input-actions is
nondeterministic. However, the choice is completely defined by the order in which

*In the 1992 version of SDL, the ANY-construct can be used to define processes that can choose
between two actions nondeterministically.

70

the signals arrive at the input port of the process (there is only one input queue per
process). One way of introducing states with multiple inputs is via multiple parallel
processes that each expect an input from another process. There is a second way to
introduce non-stable states with multiple inputs in the state space. When multiple input
signals are enabled at a process that arrive via different channels (figure 6.3), the order
in which those signals arrive is nondeterministic. Therefore, the choice between the two
actions in the LTS will be nondeterministic. To express this kind of nondeterminism,
states with multiple input-actions should exist in the state space.

[01,....] [02,...]
Figure 6.2: Two parallel processes that gen- Figure ?-3-' Single process with two
erate an output concurrently. sequential outputs.

A simple cases of a non-stable state that results from concurrency is a state in which
exactly two outputs are enabled simultaneously. A possible situation that leads to a
state with two outputs is depicted in figure 6.2. The non-stable state is formed by two
processes that both can send an output (O; and O,). In the non-stable state in the
global state space, each of the outputs may be send first. In both cases (figure 6.2
and 6.3), both enabled actions will be executed eventually. This means that a finite
number of actions after the execution of one of the two actions, a state will be reached
in which both output actions have been executed. In the case of multiple outputs, this
is the result of the assumption that the system is fair. In the case of multiple inputs, all
inputs must be executed because the signals have already been sent (and their arrival is
guaranteed).

In the case that a non-stable state enables both input and output-actions, the situ-
ation is more complicated. The first case is the situation in which the actions belong
to different processes (figure 6.4). The first possibility is the case that all enabled input
actions consume an input from the environment. In this case (one of the) the remaining
outputs will be executed if the tester waits long enough. The input actions that were
enabled will still be enabled. The result of this reasoning is that eventually, all output
actions will be executed. The input actions will remain enabled. If the system reaches
a stable state without an input from the environment?3, at least the originally enabled
input actions from the environment will be enabled.

When input-actions are enabled that expect an input from an other process, this
means that the expected signal must already have been sent. Since the arrival of a

3 An example of a system that does not reach a stable state can easily be found. Practical protocols,
however, will reach a stable state eventually.

71

[02,....]

Figure 6.4: Two parallel processes that are able to generate an output and consume an
input signal concurrently.

message that is sent is guaranteed, the enabled inputs will be executed before the system
reaches the next stable state and without any intervention from the tester. Each process
will perform its behaviour, independently of the actual order of execution each separate
action (though it may lead to different behaviour in the future).

The previously described situation, in which multiple inputs are enabled of the same
process, could pose a problem. This situation indicates that multiple signals have been
sent to the receiving process and that they may arrive in “arbitrary” order. When
a state with multiple inputs in the global state space represents a choice of a single
process, the future behaviour of the system depends on the specific choice, and there
is no guarantee that the other input-signals will be expected by the process. Different
from the previous situations, the process will show different behaviour, depending on
the order of execution of the enabled actions

VIA'A' —> i1 n & VIA'B'
N

Figure 6.5: Process that is able to receive signals via two channels, ‘A’ and ‘B’.

A situation in which a single process chooses between different behaviour on the basis
of the sequence of arrival of signals implies that the system behaves nondeterministically.
In the implementation this would yield critical races between signals. It is not likely
that such behaviour is to be specified and therefore it seems acceptable to assume that
such behaviour will not be specified.

72

resumé

In SDL’88, it is not possible to describe a process that behaves nondeterministically.
Yet the composite system will contain states in which the system can be choose non-
deterministically between multiple actions. This nondeterminism has three possible
causes.

¢ concurrency: both actions can be executed by a different process. The behaviour
of the composite system does not depend on the actual sequence in which the
actions are executed.

o critical races: if both actions can be executed by the same process, the future
behaviour depends on the order of arrival of the messages. This order can not be
determined if both messages arrive via different channels.

¢ through constructs in SDL’92: In SDL’92, a number of constructs are avail-
able to describe a process makes nondeterministic choices. If a nondeterministic
choice is made between one of two actions, this could imply that the second action
of never executed.

According to the definition, a stable trace starts in a stable state. The only actions
that are enabled in a stable trace are external inputs. In this report, a stable trace that
starts with an input ¢ will be denoted as #(3).

6.2.2 Existence of stable traces

The first assumption that is made is that the system will reach a stable state after
start-up. So there must be at least one stable state in the system. The reaction of the
system after an input from the environment, can be divided into phases as in figure 6.6.

Suppose that the first state that is encountered is the up-most state in the figure.
The three actions that are enabled in this state can be output-actions or internal inputs,
but each action belongs to a different process. If there are no livelocks in the system,
the fairness assumption ensures that all three action will get executed eventually (this
is the second phase). There will be at least one state in the labeled transition system
(and possibly more) in which all three actions have been executed. These states are
not necessarily stable, since new output actions or internal communications may have
been enabled. However, the system will reach a stable state after a finite number of
actions. In this stable state a;, a, and a3 have been executed*. Enabled input actions
that expect an input from the environment, will remain enabled until that input signal
is generated by the tester.

* Actually, each action may have been executed several times in the path from one stable state to the
next.

73

a a2 a3
a a3
[]
[3
[]
[]
1 eoe «—— al, a2 and a3 executed
:
[]
L]
111 ® ® (L1} ® -— qal, a2 and a3 executed

and stable state reached
Figure 6.6: Behaviour of the global system, from one stable state to another.

The reasoning above is based in the idea that every enabled action that is not executed
will remain enabled in a next state. Note that this assumption is always true for SDL’88.
However, if the any-construct is used that was added in the 1992 version of the language,
this assumption is not necessarily true. In figure 6.7, an example is given of the use of
the any-construct. Before the choice is made, both the a? and b! actions are enabled.
If the a-input action is chosen, the output actions will no longer be enabled in the next
composite state, even though it was not executed by the system.

) Le>

S

Figure 6.7: Example of the any-construct.

6.2.3 Projection sets

A path through the composite state space contains actions from different processes. A
projection of a trace on a process A is denoted as (i) | A. A projection of a trace
t(?) on a process is the trace #(¢), with all actions that are not executed by process A
hidden (i.e. the sequence of actions that are executed by the process within the trace).
All possible projections together form a projection set:

74

Definition 10 (Projection Set) The set P[t(7)], the projection set, is defined as the
set that contains all projections of the trace t(¢) plus a partial ordering for all elements.

Pli()] = {t() L P, 1(3) | Py,...,4(5) | B, Q}

A partial ordering €2 is defined for the actions in the set. The ordering (2 is defined by the
order in which the actions can be executed by each process. So there is only an ordering
for actions belonging to the same process. Later in this section will be shown that this
ordering can be refined to a more complete ordering to increase the fault coverage of the
generated tests.

6.2.4 Controllable behaviour

Large parts of the system’s behaviour can not be controlled from the outside of the
system. The internal communications are “hidden” from the tester so a large part of
the non-stable states in the labeled transition system will not be visible. A tester is
only able to observe outputs and to send input-signals. To test the behaviour of the
implementation under test, the following strategy will be used (based on the reasonable
environment from section 4.6.3):

¢ wait until the system has reached its initial stable state;
e send an input signal to the system;

e wait until the system has reached a new stable state, while recording all outputs
from the system;

o repeat the sending of inputs in such a way that all parts that have to be tested
are executed (if possible).

Consider series of actions between two stable states: in each stable trace, at least one
input action from the environment is executed (the first action). A stable trace ¢(¢) is
defined for a stable state pair (s,, s.) as a sequence of actions that starts in s, with an
input action ‘¢’ and ends in s.. The following notation is used:

88 il)) se
In the remainder of this section, only traces between stable state pairs (s,,s.) will
be considered in which exactly one external input is allowed (necessarily the first action
of the trace). In other words: only pairs of stable states will be considered such that
the end-state can be reached from the starting state with only one input from the
environment.

75

Because of the nondeterminism in the global system, the state after a sequence of
actions may be one of a set of states. Therefore, the end state s,, after input 7 in state
8, is not always determined deterministically. Now, the set S.(¢) is defined as the set of
stable states in which the system may reside after external input 3.

Ss), S 1 8s € S(1)

For each member of S,(7), there is a stable trace. However, there may be more than
one stable trace for a pair (s,,s.). Considering a stable state s,, the following situations
can be distinguished:

1. There is only one stable state s.(¢) that can be reached from the starting state
after the execution of one input 7 from the environment. Different traces ¢(i) may
exist but the projection set P[t(¢)] of is the same for each trace #(i). For each
process A:

()] A=t(i) [A=...=t,(i) | A

SO:

Pli(8)] — P(3)

2. There is more than one stable state s, () that can be reached from s, by the same
external input. For each end-state s, there exists only one set P;(3).

3. There is a pair (s,,s,,) for which there is more than one set P(3).

4. There are two pairs (s;, S,) and (s,, S,) for which there are traces ¢,(i) and #,(7)
such that P[t,(i)] = P[ty(?)]. In this situation, all processes perform the same
actions but the system may reside in to different states after the execution of the
actions.

The situations that are described in items 2,3 and 4 can also be combined. A situation
in which there is more than one possible end-state occurs when a single process chooses
between different behaviours. There are three ways for a process to branch:

o different enabled inputs. When the process expects different inputs, each input
might lead to a different behaviour. Since no external inputs are executed in the
stable trace besides the first action, the branching takes place on the basis of two
(or more) enabled internal inputs.

o choices on the basis of parameters that can not be accessed in the model or non-
determinism from the use of special constructs in SDL’92. When a process makes
a nondeterministic choice, the behaviour, and therefore the end-state, can be dif-
ferent.

76

e the expiring of a timer. When a timer expires in SDL, a message is sent to the
process. In a situation that the timer signal may arrive simultaneously with an
input action (from an other process), there is no way to determine which signal
will arrive first. From the testers point of view, the choice between both resulting
behaviours is nondeterministic.

6.3 Generating tests for SDL-specified systems

Using the stable traces from the former sections, an outline will be given in this section
for an algorithm that generates tests from an SDL-specification. A test sequence will
consist of four parts:

e a starting state;
e an input;
e a set of possible outputs;

¢ a set of possible end-states.

A problem, when deriving tests for §D L-specified systems, is the nondeterministic
delay that each output message suffers before arriving at the boundary of the system?®.
In the following section, output sets will be introduced but it will be assumed that
there is no such delay. In the following section the idea will be extended when the
nondeterministic delay is added to the model.

6.3.1 Output sets

The starting state and the end-state of the test sequence will be the stable states of
the (s,,S.(¢)) pair (i.e. the end-state can be one of a set of stable states because of
nondeterminism). From the projection sets P[¢(i)] an output set is deduced. An output
set is denoted as O[t(¢)] and contains the same ordering as the projection set, but hides
all actions that do not send an output to the environment (i.e. that are not observable).

Consider an arbitrary stable state s, of the system and an external input ¢ which is
enabled in this state. In the most simple case there is a single output set and a single
end-state for this input. In this situation, a simple test case can be defined for this
input. The difference with the usual tests is that there is no exact sequence of actions
given, only a partial ordering of actions. A way to express this partial ordering in TTCN
is to write down all possible paths that exist in the specification that lead from s, to s,
as in the representation of the state space, but a different notation could be considered.

*The nondeterministic delay for internal messages will be discussed later.

77

As noted in the previous section, it might also occur that there are two or more
different output sets {0y, 0,,..., 0} for all possible traces t(z) between a pair (s,, s).
In this case, the tester should expect all outputs of the different output sets. When the
end-state is reached, the tester is able to determine if one of the possible output-sets was
generated by the system. In this case, the stable end-state that is reached is still known.
The tester will return a “fail” if the received outputs do not match any of the output
sets. Due to the nondeterminism the tester can not just return an “pass”-verdict if the
outputs do match one of the output sets. The specific input should be repeated several
times in the same state to test the other behaviours as well. For a specific stable state s,
of the IUT, the test is only then complete, when every output set O; has been observed
at least once.

In some cases, the choice between the different output sets can not be influenced
at all (e.g. when the choice depends on a critical race). The only way to execute all
different output sets, is to repeat the test (the input ¢ in state s,) until every output
set is executed. However, when the choice depends on parameters or variables that are
not visible in the model, it is the responsibility of the tester to choose the appropriate
values of inputs such that every possible output set is executed. In the case that the
existence of multiple output sets is a result of timers that may expire, the tester must
chose the timing for the test in such a way that each output set is executed.

The same combination of s, and 7 could lead to a nondeterministic choice of the
system. The end-state will now be one of a finite set of stable states. The first assumption
will be that the output sets for each pair (s,, s.;) are unique (i.e. for the state s,, each
possible output set O; belongs to one pair (s,, s,)). If this is true, the outputs that are
received by the tester allow the tester to determine which end-state is reached by the
system. As in the previous section the tester passes the verdict “fail” if the response
from the system does not match any existing output set for that state and input.

The situation will become more difficult when an output set, say O,, could indicate
traces between more than one (s,, s.;) pair. What happens is that the tester is not able
to determine the end-state that is reached. It can be checked whether the sequence of
outputs conforms to an output set but the continuation of the test sequence is difficult.
Instead of a known state, there is a set of states, called the uncertainty, which holds
all possible states in the the system may reside at that moment.

After the execution of a stable trace, three situations can be distinguished, depend-
ing on the uniqueness of the enabled output sets and the degree of nondeterminism.
Examples of these three situations can be found in appendix E.

¢ There is only one possible end-state s,.

o The end-state is one of a set S,(%) but the tester is able to determine which end-
state s, is reached from the received outputs.

¢ The end-state is one of a set S.(7) and, using the received outputs, the tester can

78

not determine exactly which end-state s, is reached.

To perform a complete test on a system, at least every possible output set should be
tested. This way, it is ensured that all enabled behaviour of each separate process is
tested. However, this does not mean that all composite behaviour is tested. The fault
coverage of the generated tests can be improved by adding an extra step. This last
step checks whether the end-state s, is actually reached. This can be done by forcing
some behaviour of the system which identifies the state. However, because of the limited
controllability of the system, the computation of such behaviour will be very difficult.
The methods that are given in this section can not be used to generate this last step.

Because of the nondeterminism, the tester can not force arbitrary sequences of stable
states. Also, it may be impossible to determine in which state the system resides after
the execution of a trace. Therefore, designing complete test suites that cover the largest
possible part of the system is very difficult. In [DGK91, K1092], algorithms are presented
that are able to generate complete test suites for nondeterministic finite state machines.
The algorithms that are presented can be rewritten such that they can be applied to
this particular problem without too much problems.

6.3.2 Observation of the output sets

Up till now, it was assumed that output sets can be observed directly by the tester. In
this section the presented methods will be adapted such that the output sets represent
the outputs as they arrive at the boundary of the system®. It is assumed that it is
possible to determine a finite amount of time, after which all messages that have been
sent have arrived at their destination. This is not possible within the semantics of SDL,
but should be possible in practical systems. This assumption is necessary because the
tester must me able to determine whether a certain message has not been sent.

A problem occurs when output messages are sent to the environment via different
channels. Due to the nondeterministic delay suffered by the messages on the channels,
the sequence in which they are received is not necessarily the sequence in which they were
sent. The interleavings of two arrivals of signals that were sent via different channels do
not denote different behaviour. Therefore, there should not exist any temporal ordering
between two outputs in an output set when both messages can be on a different channel
at the same time.

An ordering should exist when messages are sent via the same channel’. Ordering
relations between outputs can only exist per PCO. Even for signals that arrive at the
same PCO, the ordering may be nondeterministic. Nondeterministic ordering of signals
arriving at the same PCO may be caused by two constructs:

®Messages can be received by the tester at points of control and observation (PCO’s)
"Outputs to the environment can only be delivered at a PCO via a channel.

79

¢ Two channels arriving at the same PCO. This kind of nondeterminism is
not visible in the LTS.

¢ The output actions are executed by parallel processes. These interleavings
are visible in the LTS and denote different behaviour of the system.

After the output sets for a specific stable state pair have been defined, it is necessary
to delete those ordering relations from the set that define an ordering for signals that
arrive via different channels (either at one or multiple PCO’s).

6.3.3 Refinement of the output sets

When the output sets are used as described in the former sections, the fault coverage
is limited. Since the actions in the output set are only ordered with respect to actions
that belong to the same process, the output sets can be used to test whether each
separate process performs a valid computation. Some possible errors in the system can
not be detected since the behaviour that is allowed by the output sets is not always
correct behaviour according to the specification. This is due to the fact that interaction
between processes restricts the possible behaviour of the system. The ordering in the
output sets should be stricter to exclude all incorrect behaviour. This can be done by
adding extra ordering relations to the projection sets and by splitting projection sets
into multiple sets.

The effectiveness of the test generation-methods from the previous section can be
improved with some small changes in the definition of the output sets. Since the output
sets are derived from the projection sets, the projection sets will be redefined for a pair
of stable states. A projection set for a stable state pair (s,,s.) was defined as the set
of all possible actions that can be executed in traces between s, and s., and a partial
ordering . The ordering existed only between actions of the same process. Suppose
z1,z2 and z3 are actions of the same process, than:

T12> Ty > 23

denotes that the action z, can only be executed after z, and before zs.

An ordering, however, also exists between actions of different processes. For instance,
an input of an internal message can only be executed if the appropriate output action
has been executed before. When an ordering is defined that also holds relations between
actions of different processes, the possible behaviour that is allowed by the projection sets
is more restricted. An extended ordering for the actions in the projection set will lead
to a stricter ordering in the output sets. When the implementation under test is tested
against those stricter sets, the chance of finding possible errors in the implementation
increases.

80

Each internal communication pair (i.e. the output and the accessory input action)
leads to an extra ordering relations in the projection set. These input/output relations
can be found in the SDL-specification. For each output action, the destination process
is fixed. However, when actions occur more than once, a problem arises. In this case, it is
not always obvious which input actions belong to which output actions. For instance, a
process may be able to receive a certain message in different states of the process. In the
composite system, one or more of these inputs may actually be enabled. The ordering
that is defined for the projection set should only hold relations for input/output pairs
that can actually be enabled in the composite system such that:

output(m,) > input,(m,)

output(m,) > input,(m,)

In the labeled transition model of the composite state space, these relations can easily
be found. Using these relations, the ordering {2 can be refined. In general, the ordering
Q will still be partial.

Using the composite state graph, the projection sets can be split into multiple, com-
pletely ordered projection sets. Each path that exists in the global state space, denotes
different behaviour of the system. To maximize the fault coverage of the generated tests,
all different behaviour should be tested. This means that every possible path between
two stable states (i.e. each stable trace) should be tested. This can be done by defining a
separate projection set for every possible stable trace. These projection sets will denote
exactly one trace. The ordering that is defined over the actions in the set, therefore,
will be complete instead of partial. Since different interleavings of internal actions will
not be visible as outputs at the outside of the system, the translation to output sets
will map different traces on the same output set. Still, the number of output sets that
will result from this approach will grow dramatically. The ordering that is defined is
to strict, since there is also an ordering defined for actions that are not ordered in the
system (e.g. independent actions of concurrent processes).

6.3.4 Notation

The concept of output sets can not be expressed in TTCN directly. One solution to
this problem would be to create a tree for every possible interleaving of non-ordered
elements in an output set. This can easily be done in TTCN, provided the trees are
rewritten as described in section 4.6.1. An example of the rewriting of a tree is presented
in figure 4.11. Such a solutions may, however, have some disadvantages. For instance,
if there is only little ordering in the output set, the amount of possible interleavings,
and therefore the width of the tree, will become very large. This results in very large
test specifications and loss of overview. This overview is important if the tester wants
to determine if a certain output set has already occurred or not.

81

A different approach seems to be more suitable for the test method based on output
sets. If it is possible to define an input set in TTCN, which is the complement of the
relevant output set, only the input sets that can be expected have to be specified. This
can not be represented in a tree because only after the reception of all messages, the
tester is able to determine which of the possible input sets (if any) has been received.
An input set could also be split into separate sets, that each represent a PCO. An
example of plain input sets in a test specification is given in figure 6.3.4.

Test specification

<10> PCO!msg
<20> START T

<30> 7[set #1] PASS
<30> ?[set #2] PASS
<30> ?TIMEOUT T FAIL
<30> ?0THERWISE FATIL

Figure 6.8: Test specification using input sets.

6.4 Application of the reduction methods

The reduced search algorithm that was presented by Holzmann et al. [HGP92] is able to
compute paths through the global state graph such that the complete behaviour of the
specified system is covered by these traces with respect to some correctness properties.
The algorithm was designed for protocol verification, for which Holzmann defines the
following properties that are to be verified:

¢ Each separate process performs a valid computation

o All processes together proceed from a known composite initial state to a known
composite final state

The algorithm distinguishes local and global actions in the state graph. Local actions
are actions that only refer to objects that are local to the executing process. In each
state in the graph, the algorithm searches for processes which actions are all local. Such
a process may execute any of the actions, without any effect on any other process. The
algorithm, therefore, does only include these actions in the search path, and blocks the
actions of all other processes in that state. The graph that only contains the non-blocked
actions (i.e. the actions that have not been executed by the algorithm) represents the
reduced state space.

In the reduced graph, there will only be one path for the different interleavings of
parallel actions if these actions are independent. When parallel actions are not indepen-

82

dent, all interleavings will be represented in the graph. For instance, actions that send
a message to a queue that is able to receive other messages as well, will not be local.

The reduced-search algorithm assumes that each enabled action in a state can be
chosen for continuation and that enabled actions can be blocked. While some transitions
can be blocked in the composite state graph, they can not always be blocked in the
physical system due to the limited controllability of the system. Holzmann’s reduced
search algorithm, therefore, can not be applied directly to automatic test generation.
There are two ways in which Holzmann’s reduced search method (or any state space
reduction method) can be used in test generation from SDL-specifications.

¢ Reduction of the global state space. If a part in the global state space is
blocked such that for a pair of stable states (s,, s), all paths from s, to s, starting
with the same input are blocked, the output set for that pair and input 7 does not
have to be tested. Every stable trace between the pair that is specified in the
projection set that starts with ¢, represents behaviour that is already accounted
for elsewhere in the state space. If projection sets are excluded in the reduced
state graph, non of the inputs in that state have to be tested.

When the system arrives at a state that does not have to be tested at all (i.e. all
projection sets for the traces that start in s, are blocked), the easiest way is to
proceed via an arbitrary input. However, this is not the most efficient way: when
a state is blocked by the reduction algorithm, this is possible because the same
behaviour occurs several times in the LTS and is not blocked elsewhere in the
model. It is sufficient to test the behaviour elsewhere. However, it can also be
tested in this state. A major improvement could be achieved when the algorithm
is able to determine when blocked behaviour was not tested yet, so the test can
proceed with these actions.

o Definition of the partial ordering for actions in a stable trace. The
reduced-search method can be used to find out which interleavings of actions
between two stable states denote independent behaviour and which do not. In-
terleavings that still exist in the reduced state space must be tested separately to
achieve maximal fault-coverage. While in the former section, each path had to be
tested separately, the tests can now be restricted to only the selected paths. How-
ever, since the choice between different paths can not be guided, it is not enough to
mark those paths. A practical approach could be to define different projection sets
for interleavings of actions that still exist in the reduced state space. Interleavings
of independent actions are included in the output sets a partial orderings, so each
representative of the interleaving may be selected by the system.

Both different ways of application of the partial-order reduction methods lead to
different kinds of reduction. Only when complete states in the composite state space
are blocked, a reduction in the memory requirements is achieved. All other states must

83

be computed by the algorithm and must be stored in memory. If projection sets are
blocked by the algorithm, this means that the testing of similar behaviour, elsewhere in
the state space is sufficient for a complete conformance test. This way the number of
required tests can be reduced. When the partial-order methods are used to determine
the ordering that must exist between the received output messages, no reduction in time
or memory requirements are achieved. However, the quality of the tests (i.e. the fault
coverage) is improved.

6.4.1 Adoption of the algorithms

The reduced search algorithm that is described in section 5.3.1, was developed for pro-
tocol verification. In this section, the reduced search algorithm is used as an example
for the application of the partial-order reduction methods to automatic test generation.
To be able to apply the algorithm to the test generation method that was described in
this section, it must be determined how the notion of local and global actions can be
translated. Further it must be determined whether the correctness properties on page 81
are sufficient for a conformance testing. In other words, it must be determined that the
reduction does not block actions that should be tested in a conformance test.

In the paper [HGP92] Holzmann et al. prove that, after the application of the algo-
rithm, it can still be established that each action of every process is executed at least
once. Therefore, each action will occur at least once in the reduced state graph. Sec-
ondly, a path exists in the reduced state space for each valid interleaving of dependent
actions. The ordering between actions is preserved for all dependent actions. The de-
pendence is defined with the help of a distinction between global and local actions. An
action is local if it refers to objects that are local to the executing process. Objects in
an SDL-specifications to which a process may refer are queues and variables. So, if an
actions reads or writes to a queue that can only be accessed by that process, it is called
local.

The reason why this distinction is made, is that interleavings of two dependent actions
denote different behaviour of the system. Therefore both of the interleavings could lead
to an error in the specification. The same reasoning also holds for conformance testing.
So, when generating tests, both interleavings must be tested. In order to ensure that
both interleavings are tested, both paths should exist in the reduced state space. Since
this is the task of the reduced search algorithm, the existence of both interleavings in
guaranteed. The differentiation between local and global actions is for conformance
testing the same as for protocol verification.

The other algorithms that are presented (the sleep set algorithm and the stubborn
set algorithm) differ in the way the dependencies are defined between the actions in
the system. The reduced state spaces that follow from these algorithms still meet the
demands that were stated in this section. All three algorithms are able to block different

84

parts of a composite state space which makes them more or less suitable for specific kinds
of behaviour. The stubborn set algorithm and the sleep set algorithm can be applied in
the same way as the reduced search algorithm.

6.4.2 Test procedure

To use the methods from the former sections, an algorithm must be found such that the
whole (or at least the largest part) of the non-blocked state graph is visited. One way
could be to set up separate test suites, the same way the algorithms are applied in the
PTT Conformance Kit. In this case, a test is defined for every pair of stable states and
enabled input. Such a test may have to be executed several times to test each possible
output set. Algorithms must.be found that force the system from an arbitrary state to
a known state (Synchronizing Sequences) and algorithms that transfer the system
from a known state to a certain new state (Transferring Sequences).

The computation of those sequences will be very difficult because of the limited
controllability and the non-determinism. A second approach could be to make a semi-
random walk through the state space. This methods resembles the “Transition Tour”
test generation method. To reduce the time that is necessary to obtain reliable results,
an algorithm like the one given below could be used.

1. Compute reduced composite state graph;

2. Give an input that is most likely to result in the execution of a non-blocked outputs
set;

3. Find output set for generated outputs;
4. Block tested output set;
5. Repeat until the complete graph is blocked.
Both methods can be extended by using UIO-sequences (Unique Input/Output

sequences) so the tester can establish whether the end-state of the stable state pair is
actually reached.

The major disadvantage of both methods is that they both need a model of the
complete state space. The state space explosion problem will limit the applicability of
the algorithms to only small protocols.

6.4.3 Fault coverage

All tests that are generated following the proposed methods, assume sequences from
one stable state to a new stable state. This is because a reasonable environment was

85

assumed as described in section 4.6.3. This way, it can be ensured that every action of
each process is executed al least once. However, an important part of the behaviour is
not tested. For instance, situations in which the system might receive both internal and
external messages are not tested. In the state space this behaviour is characterized by
paths that execute external inputs in non-stable states. Without detailed information
about the systems internal structure and timing, it is not possible to execute these
traces. Therefore, this adds up to the limited controllability of the system. The fault
coverage is limited by the controllability of the system. It should be investigated to
which extend paths that still exist in the reduced state space can not be tested because
of this limited controllability.

In cases where important behaviour is not tested because of the assumption of such
a reasonable behaviour, the tester could decide to run a set of tests that send input
messages to the JUT before a stable trace was finished. Most of the time it is impossible
to force those traces in a deterministic way. These tests will have to be repeated several
times to reach certain state transitions.

Within the limited controllability and observability, the methods that are presented
here can achieve a relative high degree of fault coverage. The tester can control the
coverage by the strictness of the ordering in the output sets. The algorithms that
were developed in the ARTEFACT project can be used to adapt the partitioned test
generation method (including the unique input/output sequences) for the test generation
methods presented in this chapter.

Conclusions

This report started with the question if the partial-order based reduction methods that
are presented by Holzmann et al. are applicable to the automatic tests generation tech-
niques, as implemented in the PTT Conformance Kit. Also, the demand was added
that the staring point would be the formal language SDL (in stead of finite state ma-
chines, which are used in the PTT Conformance Kit). The use of SDL introduces some
severe problems. Before the question could be answered, a resumé of the test generation
techniques that are available for SDL had to be made.

One of the typical results of the use of high-level formal description languages is
the need for a translation step before the actual test generation can take place. This
translation step converts the description of the protocol into an “internal representation”
that contains the states in which the system may reside and information about the
possible state transitions. For the creation of such an internal representation a single
global system must be composed out of all separate processes. During the composition
of the global system, the number of possible states explodes. Several techniques are
presented to reduce the size of the generated state space such that the protocol can
be analyzed automatically, within reasonable amounts of computer-resources (i.e. CPU-
time and memory).

The possibilities of a conformance test are limited by the controllability and observ-
ability problem. Much of the behaviour of the implementation under test can not be
controlled or observed since the access the tester has to the system is restricted to a
small number of “points of control and observation”. For many systems it is very diffi-
cult to achieve a reasonable fault coverage (the amount of possible errors that is found in
a conformance test). Due to several constructs in SDL and the asynchronous nature of
the communication of an SDL-system, the behaviour often is nondeterministic from the
testers point of view. Nondeterminism further limits the possibilities of a conformance
test.

Different approaches exist to automatic test generation from SDL-specifications.
Most methods are based on the same sort of “reasonable environment”. The assump-
tion of a reasonable environment addresses the problem that very little information is

87

88

available about the JUT when it is executing internal actions. Different kinds of envi-
ronments can be defined, which differ in the restrictions they place on the behaviour of
the system. In this report an environment is assumed that only sends a message to the
system if all enabled internal actions have been executed. In this case, the system resides
in a “stable state”, which is characterized by the fact that all queues in the system are
empty. Such an assumption is necessary because it is generally not possible to obtain
information about internal steps that are taken by the system. For the generated tests,
this means that after the application of the input message, the tester will wait until it
is reasonable to assume that no outputs will be sent by the IUT, without a new input
signal. Such an assumption, however, does limit the fault coverage of the generated
tests.

Besides the assumption of a reasonable environment, other methods are presented
that can be used to reduce the composite state space (and therefore the effects of the
state space explosion). Most of the methods that can be found in literature are based
on heuristics, so the reduction may also involve parts of the system that should not be
reduced since they are liable to contain errors. Partial-order based reduction methods,
that have been presented in the field of protocol verification, do not use heuristics but
equivalence between traces in the composite state space. The three reduction methods
that are presented in this report are the reduced search, the sleep set method and
the stubborn set method. The methods differ in the reduction they can achieve and
the extra complexity they introduce as overhead during the test generation.

In order to apply the partial-order reduction methods to the automatic generation
of conformance tests, non of the existing test generation techniques could be used.
Therefore, the outline for a new test generation method was presented. This method
is based on a similar “reasonable environment” as mentioned and uses partial-ordered
output sets. The reduction methods from protocol verification can be used to improve
three aspects of automatic test generation:

e reduction of the memory and CPU-time requirements during generation;
e reduction of the number of tests that are generated;

¢ improvement of the fault coverage of the tests.

The nondeterministic behaviour in the system limits the efficiency of the test proce-
dure and the fault coverage of the generated tests. Before the generated tests are applied
to the implementation under test, the data-fields of the messages that are sent must be
completed. Also, additional timer information must be supplied. If enough informa-
tion is available about the implementation, a major part of the nondeterminism can be
deleted by the tester. Due to the asynchronous nature of the communication and some
new constructs in SDL’92, there will always remain some degree of nondeterminism.

The answer to the question whether the partial order reduction methods can be

89

applied to the test generation methods as implemented in the PTT Conformance Kit
should be: “No, not directly”. On the one hand, this is due to the fact that the reduction
methods were developed for protocol verification, thus assuming full observability and
controllability. On the other hand, the use of SDL, introduces extra problems that limit
the possibilities of application of the methods in the Conformance Kit. However, if the
test method is used that is based on output sets, partial-order reduction methods can
be used. The reduction that is achieved with those methods for protocol verification,
however, can not be achieved for conformance testing due to the limited controllability
and nondeterminism in the composite system.

future research

More research is necessary to determine the effects of the assumption of a reasonable
environment. In this report some effects of this assumption on the quality of the tests
are summarized. However, it is not clear to which amount the assumption of a reason-
able environment deteriorates the fault coverage of the tests. There is also very little
knowledge of how tests can be generated that do not need the assumption of such an
environment.

In this report, only an outline for a new test generation method was presented. More
research is necessary to develop algorithms that implement the method. The new test
generation method based on output sets resembles the A CT-based method that was
presented in the ARTEFACT-project. It should be investigated if the adapted algo-
rithms for the generation of a partitioned tour based on unique input/output sequences
can be used to increase the fault coverage of the new method.

An outline for the representation of the tests is presented in this chapter. Test that
are generated for SDL-specified systems will always contain partial orderings. Yet,
partial orderings can not be represented in TTCN. The efficiency of the tests and the
notation could be improved if a partial ordering of actions could be represented in the
test notation language.

Finally, the assumption that, in a stable state, all timers have been expired may be
to strict. In the example of a call setup procedure, the call should be set-up before the
timer expires. This usually involves the execution of external input actions in a state
that is not stable in the strict sense. A direction for a solution could be to introduce
stable states in which not all timers haven been expired. The full adaption of timers in
the new test generation method could be the subject of further research.

Bibliography

[ADLUSS]

[Agh86]

[BEVTS9]

[BKKW91]

[BKP92]

[Brigs]

[Cho78§]
[DGK91]

[DHN90]

[DKK91]

A.V. Aho, A.T. Dahbura, D. Lee, and M. Umit Uyar. An optimization technique
for protocol conformance test generation based on uio sequences and rural chinese
postman tours. In S. Aggarwal and K. Sabnani, editors, Proceedings 8th Interna-
tional Symposium on Protocol Specification, Testing, and Verification (PSTV VIII),
pages 75-86, Amsterdam, June 1988. North-Holland.

G.A. Agha. ACTORS: A model of concurrent computation in distributed systems.
The MIT Press, London, England, 1986.

H.V. Bertine, W.B. Elsner, P.K. Verma, and K.T. Tewani. Overview of protocol
testing programs, methodologies and standards. AT&T Technical Journal, Jan./Feb.
1990:7-16, July 1989.

S.P. van de Burgt, J. Kroon, E. Kwast, and H.J. Wilts. Automated protocol test
suite production with the conformance kit. Technical Report TI-PU-91-982, PTT
Research, Leidschendam, 1991.

5.P. van de Burgt, J. Kroon, and A.M. Peeters. Testability of Formal Specifications.
In R.J. Linn, editor, Proceedings 12th International Symposium on Protocol Speci-
fication, Testing, and Verification (PSTV XII), volume C-8 of IFIP Transactions,
pages 63-77. North-Holland, 1992. also available as technical report TI-PU-92-544.

E. Brinksma. A theory for the derivation of tests. In J. de Meer, L. Mackert,
and W. Effelsberg, editors, Proceedings 8th International Symposium on Protocol
Specification, Testing, and Verification (PSTV VIII), pages 343-363. IFIP WG6.1,
North-Holland, June 1988.

T.S. Chow. Testing software design modeled by finite-state machines. IEEE trans
SE, SE-4(3):178-187, 1978.

H. v. Dam, H. Geels-Niestern, and H. Kloosterman. Test derivation from SDL spec-
ifications. Technical Report TI-IR-91-1330, PTT Research, Leidschendam, 1991.

E.M. Dijkerman, R.J. Helwerda, and J.C. Niestern. Computer-aided test suite gen-
eration for the remote test method. In Proceedings of the 3th International Workshop
on Protocol Test Systems, October 1990.

H. van Dam, H. Kloosterman, and E. Kwast. Test derivation for standardised
test methods. In Proceedings of the fth International Workshop on Protocol Test
Systems, pages I11-3 — I11-17, Leidschendam, October 1991.

91

92

[DSU90] A.T. Dahbura, K.K. Sabnani, and M. Umit Uyar. Algorithmic generation of protocol
conformance tests. ATET Technical Journal, Jan./Feb. 1990:101-118, July 1990.

[EK92] Jan Ellsberger and Finn Kristoffersen. Testability in the context of SDL. In Pro-
ceedings 12th International Symposium on Protocol Specification, Testing, and Ver-
ification (PSTV XII). IFIP, June 1992.

[ETS92] ETSI-STC-ATM1-1004. Specification styles for SDL in order to specify testable
systems, 1992. working draft.

[FB91] S. Fujiwara and G. v. Bochmann. Testing non-deterministic state machines with
fault coverage. In Proceedings of the 4th International Workshop on Protocol Test
Systems, pages I11-259 - I11-275, Leidschendam, October 1991.

[fsm69] Itroduction to the theory of finite-state machines. McGraw-Hill, 1969.

[God90] P.G. Godefroid. Using partial orders to improve automatic verification methods.
In R. Kurshan and E. Clarke, editors, Proceeding 2nd Interenational Workshop on
Computer Aided Verification, LNCS 531, pages 176-185, New Brunswick, June 18-
21 1990.

[God93] P.G. Godefroid. Using partial orders for the efficient verification of deadlock free-
dom and safety properties. Eztended version of article in: Proc. 2nd workshop on
Computer Aided Verification, July 1-4 1993. To be published in 1993.

[HB89] D. Hogrefe and L. Bromstrup. Tesdl: Experience with generating test cases from sdl
specifications. In SDL '89: The language at work, pages 267-279, North-Holland,
1989. Elsevier Science Publishers.

[HGP92] G.J. Holzmann, P Godefroid, and D. Pirottin. Coverage preserving reduction strate-
gies for reachability analysis. In Proceedings 12th International Symposium on Pro-
tocol Specification, Testing, and Verification (PSTV XII), page 13, Florida, USA,
June 1992.

[Hog88] D. Hogrefe. Automatic generation of test cases from sdl specifications. SDL-
newsletter, 12:34-53, June 1988.

[Hog90] D. Hogrefe. Conformance testing based on formal methods. In Proceedings Third
International Conference on Formal Desrcription Techniques (FORTE’90), pages
213-245, Madrid, November 1990.

[Hog9la] D. Hogrefe. Conformance testing based on formal methods. In Proceedings Third
International Conference on Formal Desrcription Techniques, volume III, pages 207-
223. Elsevier Science Publishers, 1991.

[Hogd1b] D. Hogrefe. On the development of a standard for conformance testing based on
formal specifications. In J. Kroon, R.J. Heijink, and E. Brinksma, editors, Proceed-
ings of the 4th International Workshop on Protocol Test Systems, pages 59-66. IFIP
WG 6.1, Elsevier Science Publishers, October 1991.

[Hol87] G.J. Holzmann. On limits and possibilities of automated protocol analysis. In
Proceedings 7th International Symposium on Protocol Specification, Testing, and
Verification (PSTV VII), volume VII, Zurich, May 1987.

93

[Hol89] G.J. Holzmann. Validating sdl specifications: an experiment. In Proceedings 9th
International Symposium on Protocol Specification, Testing, and Verification (PSTV
IX), page 11, Enschede, June 1989. IFIP WG 6.1.

[Hol91a] G.J. Holzmann. Design and validation of computer protocols, chapter 9, Confor-
mance testing, pages 189-205. Prentice Hall, 1991.

[Hol91b] G.J. Holzmann. Design and validation of compuier protocols, chapter 11, Protocol
validation, pages 217-246. Prentice Hall, 1991.

[Hol91c] G.J. Holzmann. Design and validation of computer protocols, chapter 8, Protocol
validation, pages 163-188. Prentice Hall, 1991.

[Hol92] G.J. Holzmann. Practical methods for the formal validation of sdl specifications.
Computer Commaunications, 15, no. 2 march 1992:129-134, march 1992.

[IC92] ITU-CCITT. Revised Recommendation Z.100, CCITT Specification and Descrip-
tion Language (SDL). International standard, CCITT, October 1992.

[ISO88] 1SO-DIS-8807. LOTOS, A formal description technique based on the temporal
ordering of observational behaviour, 1988.

[ISO89] ISO-DIS-9074. Information Processing Systems - Open Systems Interconnection -
Estelle - A Formal Technique Based on an Extended State Transition Model, May
1989.

[(ISO90] ISO-DIS-9646. Conformance testing Methodology and Framework, 1990.

[Klo92] Hans Kloosterman. Test derivation from non-deterministic finite state machines.
In Proceedings of the 5th International Workshop on Protocol Test Systems. IFIP,
September 1992. also technical report TI-PU-93-873.

[Koo91] C.J. Koomen. The design of communicating systems. Kluwer Academic Publishers,
Dordrecht, 1991.

[Kri89] K. Kristoffersen. Conformance testing based on sdl specifications. SDL ’89: The
language at work, pages 257-266, 1989.

[LBDW91] G. Luo, G. v. Bochmann, A. Das, and C. Wu. Failure-equivalent transformation of
transition systems to avoid internal actions. Technical Report 789, Université de
Montréal, September 1991.

[LCL87] F.J. Lin, P.M. Chu, and M.T. Liu. Protocol verification using reachability analysis.
the state explosion problem and relief strategies. Computer communications review,
17, No. 5:126-135, 1987.

[LDB91] G. Luo, A. Das, and G. v. Bochmann. Test selection based on sdl specifications with
save. In SDL ’91: evolving methods, pages 313-324, North-Holland, 1991. Elseviers
Science Publishers.

[LDB93] G. Lou, A. Das, and G. v. Bochmann. Generating tests for control portion of SDL
specifications. In Proceedings of the 6th International Workshop on Protocol Test
Systems, 1993. To be published later this year.

[LL92] Lai and Leung. An industrial perspective on academic protocol testing methods. In
Proc. 11th Int. Conference on Computer Commaunication, volume 1, pages 237-242,
Genova, 1992.

94

[Mil80]
[NH84]
[P5493]
[PRO92]
[SD88]

[ULS90]

[Ura9i]

[Val90)]

[VT91]

R. Milner. A Calculus of Communicating Systems. Lecture Notes on Computer
Sciences 92. Springer Verlag, 1980.

R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83-133, 1984.

ISO SC21 WG 1 P54. Formal methods in conformance testing, june 1993. working
document.

PROVE. CATG: Enhanced methodology for computer aided test generation. deliv-
erable 87/EC/JHH/DS/B/063/A1, PROVE RACE Project R1087, 1992.

K. Sabnani and A. Dahbura. A protocol test generation procedure. Computer
Networks & ISDN systems, 15(4):185-297, 1988.

M. Umit Uyar, A. Lapone, and K.K. Sabnani. Algorithmic verification of isdn
network layer protocol. AT#T Technical Journal, Jan./Feb. 1990:17-31, 1989, July
6 1990. :

H. Ural. Formal methods for test sequence generation. Computer Communications,

15, no 5.:311-325, March 1991.

A. Valmari. A stubborn attack on state explosion (abridged version). In R. Kurshan
and E. Clarke, editors, Proceeding 2nd Interenational Workshop on Computer Aided
Verification, pages 157-165, New Brunswick, June 18-21 1990.

A. Valmari and M. Tienari. An improved failures equivalence for finite-state sys-
tems with a reduction algorithm. In Proceedings 11th International Symposium on
Protocol Specification, Testing, and Verification (PSTV XI), Stockholm, 1991.

Appendix A

The reduced search method

The task of the algorithm is to decide during a depth first search which edges (and
succeeding paths) do not have to be explored. Typically many paths through the state
space concist of the same transactions. The only differency between the paths is the
sequence in which the transactions are executed. If those transactions are local to the
executing process, the result of the verification will be the same for all paths. The
algorithm will block paths that do not have to be explored. The following definitions
will be used:

local edge: Any edge in the state graph that corresponds to a transition referring only
to objects local to the executing process.

global edge: Any edge that is not local.

true edge: An edge with its eligibility flag set to TRUE.

true node: A node with its node flag set to TRUE.

search stack: Ordered set of nodes.

edge set: An edge set of state s contains edges exiting from s such that only edges that
correspond to transitions from the same process are in the same edge set.

local edge set: An edge set that only contains local edges.

The state-graph representation is extended with an eligibility flag for each edge in
the graph. An edge is called “TRUE” if its eligibility flag is TRUE. Initially, all edges are
TRUE. Furthermore, edge sets are defined for each newly generated node. With these
definitions, a free edge set can be defined:

Definition A.1 (Free Edge Sets) An edge set £, belonging to state s, is “free” iff:

- & constists of only local edges;
- & contains at least one TRUE edge, “e”;

- the successor of s via e, was not already visited.

95

96

reduced_search_algorithm

S := {initial_state}; /* search stack */
D= 0; /* visited states */
ALL eligibility flags := TRUE

DO WHILES # @
s := last_element_of S;
create_edge sets for s;
IF 3 (TRUE edge from s to successor s’ outside S and D)
IF 3 (free edge set for s)
mark all edges in all other edge sets of s FALSE;
add s’ to S;
ELSE select TRUE edge from s to s';
add s’ to S;
FI
ELSE remove s from S;
add s to D;
FI
0D

Figure A.1: Partial search algorithm

When the algorithm arrives at an unvisited node n in the state graph it wil explore
the nodes that can be reached via an enabled transaction from n. In certain cases the
algorithm will decide not to explore all possible successors:

1. Edges that lead to successors that are not TRUE (that have already been visited)
will not be traversed.

2. If an enabled local edge set £ exists (first IF statement in the algorithm) the
algorithm will only traverse the edges in £. If more than one of such sets exist,
one set is selected arbitrarily (e.g. the one leading to the node with the lowest
ordeal number).

A Proviso

The search algorithm tries to find parts of behaviour that can be executed independently
from the rest of the system. If this behaviour is found, the rest of the behaviour is
temporarily blocked. Holzmann defines the proviso that must be met to allow the
blocking of edges in a state:

97

“There exists a local edge exiting from the current node that leads to a node
outside set §” (the search stack).

For the proper reduction of the state space, it is also necessary that the search is
continued via the edge set to which this local edge belongs. The next example will show
that for a proper reduction of the state space, it is necessary that the search is continued
via an edge set that contains al least one TRUE edge that leads to a node outside S.

S={1,2,3}
3:E = (3-4}
E,= {3-1}

Figure A.2: Small example combining two independent processes A and B. S = search
stack and E are the edge sets.

The example in figure A.2 shows that in this situation, a proviso of a kind is necessary:
if the first edge set (containing edge 3-1) would be selected for the continuation of the
search, all paths that would allow transactions of process B would be marked ineligible.
As a result of this, not all processes perform a valid computation and the algorithm
would not meet our demands.

98

Proof for the reduced search method

LEMMA: When a state s is removed from S, all transactions that each of the
processes in state s could execute have been executed, either at state s itself],
or at successor states of s.

PROOF: Consider so; the first state that is backtracked during the search. It is the
last state of the first path explored by the modified depth-first search. Since
there are no successors for sp, the lemma holds for this state.

Next, state 8, will be considered. This is the n-th state to be backtracked.
There are two possible cases:

1. All enabled transitions of s, have been executed;

2. All edge sets except one, set T, are marked ineligible and all transitions
from T are executed.

The lemma. holds (trivially) for the first possibility. Now suppose the lemma
holds for 8541

define 7' := all enabled transactions not in 7.
s' := a state that is a successor of sn via a true edge in T
and s’ not a member of S.

There must at least be one state s’ and one true edge in 7 that leads to s’.
Since the transactions in set 7 belong to an other process than the ones in 77,
all transitions from 7" remain enabled after an execution of a transition in 7.
Therefore all transitions in 7' are enabled in sate s'.

From the assumption that the lemma holds for s,—1 and the fact that it is
known that all successor states of s, have been backtracked, follows that all
transitions in 7’ have been executed. Since it is known that all transactions
in T were executed in the normal depth-first search, all enabled transactions
in 3n, must haven been executed. By induction this proves the lemma.

Applying the lemma to the root node of the global search tree proves that with the

proviso, all reachable transitions will be executed at least once in algorithm 2.

Figure A.3: Proof for the reduced search method.

Appendix B

Conflict set method

The description of a protocol holds the behaviour of the system. Often, this behaviour
is expressed as a reaction to stimuli from the environment. Therefore, most actions in a
protocol specification will not be local ones. Still not every global action is dependent.
Reduction can be achieved by determining which global actions are dependent, and
which are not. The conflict set method uses a conflict set to determine is a dependent
action has occurred between now, and the last occurrence of the action. Note that the
conflict set method is based on dependencies of actions of competing processes an not
on dependencies between state transitions (as in the reduced search method).

Conflict sets

Holzmann et al. introduce conflicts sets that are used to determine if the execution of
a statement must be repeated in the depth-first search. Actions should be investigated
repeatedly only if a dependent action could be shuffled ahead of the one considered.
The model of the composite search space is extended with conflict sets according to
figure B.1. Note that the conflict sets do not belong to the state transitions, but to the
actions that are tagged to the state transitions.

Conflict sets are assigned to every action that can be executed. For statements
that occur more than once in a process definition, a conflict set is assigned to every
single occurrence of the statement. If code (e.g. in macros) can be executed by multiple
processes, conflict sets are assigned for every process. A conflict set can contain zero
or more ‘conflict tags’. Non-empty conflict sets block the execution of the statement
everywhere in the composite behavior until the conflict set is cleared. This happens if
one of the tags in the set ‘conflicts’ with another executed statement.

Conflict Tags
Up till now it is not defined when a created conflict tag should clear a conflict set or

how those conflict tags are created. The first tag that can be defined is the local-tag.
This tag is created by the execution of a statement that refers to a local variable or a

99

100

Node Flag

Conflict Set Conflict Set

Figure B.1: A sample node in the global state tree

symbolic constant.

Reading from or writing to a global variable clearly can cause dependencies between
processes. Therefore read and write-tags are created for each global variable. Receiv-
ing from or sending to message queues can also cause dependencies between processes,
although this depends on the status of the queues. Conflict tags related to the sending
or receiving of messages are send and receive. Consider the following example:

Assume that z and y are global variables. The following example will create
conflict tags for references to those variables. The expression:

z:=z+y+3

creates the tags: write x, read x, read_y and local. The local-tag is
always cancelled if any other tag exists.

If a >-’ denotes no dependency between two tags, a '+’ denotes a dependency and
an "X’ a conditional dependency, the following table shows the dependencies between
all possible conflict tags. This means that, when a tag is created, all conflict sets that
contain a dependent tag (according to the table) are cleared.

[[| local | read | write | send | receive |

local - - - - -

read - - + + +
write - + + + +
send - + + + X
receive - + + X +

Statements that belong to the same process are always assumed to be dependent.

101

Therefore, the execution of a statement of a process A clears minimally the conflict sets
of all other statements that belong to the process.

Conflict Set update rules

Essentially the algorithm performs a depth-first search. The difference is that some
transitions can be (temporarily) blocked during the search. When a certain global state
is reached, all transactions belonging to one of the enabled processes in that state are
executed first. The tags that are generated by those transactions are only inserted
in the appropriate sets after the complete search through the state space after the
corresponding edges is completed. So the tags are inserted into the conflict sets just
before the search continues with a new process (assuming there is one).

Now, the following situation is assumed: at a point in the depth-first search as state
s; is reached. In this state A processes can execute one or more statements. Processes P
and Q are part of those AV statements. The updating of the conflict sets has to conform
to the following rules:

o First, all statements belonging to one process in s; will be considered (e.g. process

P);

¢ Conflict Tags are created upon execution of each statement, before the traversal
of the corresponding edge;

¢ Conflict Sets are cleared immediately after the creation of the tags. All trans-
actions that conflict with one of the enabled transactions of process P are now
cleared;

o The depth-first search is now continued for all successors of s; via edges from sate
s; that belong to process P. Only when this part of the search is completed,
the created conflict tags are entered in the appropriate sets. In other words: the
conflict tags belonging to the enabled statements of process P are inserted just
before the next process (e.g. process Q) is considered;

o The effect of every conflict set update (clearings and entries) are cancelled (re-
versed) when the depth-first search 'back-tracks’ to a previous state;

o When the complete behavior following execution of a statement of process Q is
explored, the conflict tags belonging to this process in this state are inserted in
the conflict sets. At this moment the conflict sets of all transactions belonging to
processes P and Q are filled with the tags that are created upon execution of all
possible transactions from those processes in state s;;

102

examples

The update rules will now be illustrated with the help of two examples. In the example
in figure B.2 two processes (A and B) are drawn. The actions of both processes that
can be interleaved in any way. This results in the complete state space as shown in the
figure.

A B AlIB

©)
Xi= T / \
® ®
t AR N4
@ ®
x:=x+1 / \ /
@\ /®

Figure B.2: Two processes A and B and their complete composite state graph.

Assume that transaction T of process B can be either dependent or not dependent of
transactions touching the global variable z. It is assumed that a tag ‘T_tag’ is generated.
Starting in node 1 of the state space, the depth-first search will arrive via the path 1-2-
4-6-8 at node 8. At this point the situation is as follows:

current node | 8
search stack | {1, 2, 4, 6, 8}

| statement | Conflict Set | generated |

ri=1 1) writex
t 0] local
zi=z+1 | O write.x, read.x
T 1) T_tag

Since no more transactions can be executed, the depth-first search will back-up to
the previous node. Since all possible transactions in state 6 have been executed, the
search backs-up to state 4. In state 4 two processes exist (A and B). All states that are
reachable from state 4 via transactions of process A are now explored. At this moment
the created conflict tags for the statements (only ’z := z + 1’) must be inserted:

103

current node | 4
search stack | {1, 2, 4}
| statement | Conflict Set | generated |
‘=1) writex
t) local
‘z:=z+1 | {writex, readx}
T 0] T_tag

The search will now continue with the T action of process B. Two possible cases
could apply to this situation:

1. Transaction T does not create a tag that conflicts with any of the tags in the
conflict set of 'z := z + 1’ (i.e. z is not accessed). The search will advance to
node 7. Since the conflict set of ’z := z + 1’ is non-empty, the transaction is
blocked and the search path ends in state 7.

2. By executing T, a tag is created that conflicts with one of the tags is the conflict
set of 'z := z 4+ 1°. This causes the conflict set to be cleared. Now the search
proceeds from state 4 via state 7 to state 8 (state 8 will not actually be visited
since it was already marked by the depth-first search.

Continuing the search in the same way as described, the transaction t and 'z := 1’
(depending on the dependency with T), both of process A will be blocked in the rest of
the search. This results in the search paths in figure B.3.

AlB AIB

® ®
RN VAN
o ® ® ®
/N /NS
® ® ® ®
/N /N
C\Q C\/Q
® ®

T creates no tag T does create a tag
that conflicts with x that confilcts with x

Figure B.3: complete composite state graph of processes A and B.

In most experiments that are described by Holzmann, the best results are obtained by
combining both the reduced search algorithm (algorithm 2) and the conflict sets. This
is particularly true for systems that contain many cycling and independent processes.
The example in figure B.4 is an example of such a system.

104

Figure B.4: example with two independent, cycling processes A and B.

Assume that both process A and B only contain local transitions. The application
of algorithm 2 or 3 alone cannot prevent that during the search multiple interleavings
of transactions of both processes are explored. Since the processes are independent,
this would not be necessary. Both algorithms can be combined quite easily by simply
applying one after the other. This can be done because the algorithms work at different
points in the search: algorithm 2 can block edges exiting from a node when this node is
reached for the first time in the search. Algorithm 3 blocks statements somewhere in the
rest of the search. In Holzmann’s paper it is assumed that applying both algorithms in
the search still allows to check for the two correctness criteria given on page 16. There
is (yet) no proof of this assumption. The result of applying both algorithms is shown in
figure B.5. The figure shows the different search paths when algorithms 2, 3 and both
algorithms were applied during the search. Dashed lines are enabled transactions that
end in a state that was already visited.

105

Figure B.5: Different search paths when algorithms 2, 3 and 2+3 are applied during the
search.

Appendix C

Stubborn sets

A reduction of the state space can also be achieved by using the information about which
processes use which variables, Methods that use these properties have been described
by Overman and Valmari [Val90, VT91]. The idea of those methods is that, for some
global variables, there are processes that cannot touch this variable. Statements of
those processes are independent of statements that use the variable (if the statement
uses no other variables). If one or more processes are about to execute a statement
using this variable, the different interleaving of these transactions with the independent
ones will not give additional information. Therefore, it is sufficient to explore only these
transactions.

Consider tree processes A, B and C. Suppose A never touches the global variable
and that figure C.1 is a part of the composite state graph:

)/ (x x)

Figure C.1: a sample node in the state graph. ‘(z)’ denotes a transaction that touches
variable z.

In the figure each edge corresponds to a different process. If statement (y) is a
statement of process A, only the rightmost edges would be selected to explore. In
this way the interleavings of the dependent actions is generated first. The independent
behavior can be executed afterwards.

Overman’s method

A method to automate the reasoning that was explained in the previous paragraph was
developed by Overman (1981). It uses the following definitions:

106

107

e support set: the set of global variables that can be accessed by a process;
e v;: a global variable;

o V;: set of variables. Contains v; and all global variables that are touched by
enabled statements that are dependent to v;;

o P;: set of processes (for each variable) that may execute a statement. This means
that processes not in the set are not dependent on the variable i. Sets V; and P,
are created for each state that is encountered in the depth-first search.

The following algorithm computes the P; and V; sets for each variable at each state
that is encountered during the depth-first search. The complexity of the algorithm
suggests a major increase in overhead, induced by the algorithm.

1. set V; to {v;};
2. set P; to O;

3. for each process whose support intersects V;, add the global variables that the next
transitions in this process can touch to set V; and add the process to F;;

4. repeat previous step until no more variables can be added;

5. choose set P; that corresponds to the smallest non-zero number of enabled transi-
tions.

At the end of the algorithm a set P; exists for the current state. This set contains
all processes that have transitions that touch variable v; and all processes that have
transitions that touch one of the variables that can be touched by enabled transitions
of processes in P;. All processes that contain a transaction that is dependent on one of
the enabled transactions of the processes in P; are also contained in the set. Therefore
it is save to restrict the search to the enabled transactions in a set P; only.

Example

The following example specification (from [HGP92]) contains three processes. In the
system there are three global variables {z,y, z}.

The reduced search algorithm would yield no optimization here. To be able to com-
pare Overman’s method to the method using conflict sets, both reduction strategies
were applied to the example in figure C.2.

108

) (x) (x)
() (2)

(z)

Figure C.2: Example with three processes. Note that (v) denotes a transaction that
’touches’ variable v.

Stubborn Sets

An other approach to the state space explosion problem was described by Valmari. He
uses the same starting points as Overman in the method that was described in the
previous section. Valmari’s algorithms are able to reduce the exponential state spaces
to polynomial ones in some cases. Since Valmari’s methods are described in more detail
and for more general cases, this report will focus here on these methods.

Assume a system consisting of a finite set V of variables and a finite set 7 of trans-
actions. The set S contains all possible states (thus the Cartesian product 7 xV). Like
in the previous sections:

s ¢
is used to denote that in a state s, transaction t is enabled and, if executed, transfers
the system to state s'. There is a function T: § X 7 — &; the transfer function and a
initial state sy € S. The value of a variable v at state s is denoted by: s(v).

To explain the stubborn set method, some concepts have to be defined. Assume
t,te7T,s,s8ecS, VCV and TCT.

en(s,t), t is enabled in s iff
i

dy:s— ¢
en(s,t,V), t is enabled with respect to V at s iff
3y ren(s,) AV 1 8'(v) = s(v)

The definition states that, if en(s,t, V) is true, there is a state s’ where ¢ is enabled and
all values of the variables in V are the same as in s. Notice that if t is not enabled
with respect to Vit is necessary to change at least one variable to enable t. From the

109

definition follows: en(s,t) = en(s,t,V).

T=wrup(t,V), T is a write up set of t, with respect to V iff
Vg :-(:en(s,t, V)As == s Aen(s',t, V))=> t' € T.

A write up set of a transaction is any set that contains at least those transactions which
may enable this transaction with respect to a set V. It is not necessary the smallest
set. A write up set always exists (e.g. all transactions: 7).

t — t’, t accords with t’ iff

1 t’ 1! t
V,:en(s,t)Aen(s,t') = Ty 0008 = 81— 81 A8 — 8 — sy,

Two transactions accord with each other if their support sets? are disjoint. They also
accord with each other as long as the transactions do not write to common variables.
Transitions writing to FIFO queues accord with transitions reading from them. Tran-
sitions that correspond to different locations in a sequential process accord with each
other because they are never simultaneously enabled.

T is semi-stubborn at s iff
Vie T
(1) —en(s,t) => Ay : —en(s,t, V) Awrup(t, V)C T
(2) en(s,t) >V, ,p:t o tf

The result of the first part of the definition of a semi-stubborn set is that disabled
transitions in a semi-stubborn set can be enabled only by transitions from the same
set. The second part guarantees that transactions in a semi-stubborn set accord with
transactions outside this set.

Both 7 and © are semi-stubborn, thus a semi-stubborn set can be found for every
transition. Furthermore, if a transaction occurs outside T, the set will remain semi-
stubborn.

THEOREM: if T C T sy € S such that T is semi-stubborn at s,
n > 1and
11 ‘tz tn—l tn
0 =8 —* 8 — " —>S8_1 —* S
be a execution sequence such that:
t15..stn-1 & T and t,, € T then:
There is a finite execution sequence o’:
o-lzsoi)sal)sll...t"__;sn_l

such that s,_, = s,,.

'In [VALM:90] en(s,t) < en(s,t,V) is used. This is only true if no local transactions are possible.
2The support set of a transition is the set of all variables the transition can touch. Valmari uses the
term ‘reference sets’.

110

Proof of the theorem is given in earlier papers by Valmari. To use the semi-stubborn
set, one property has to be added to exclude the possibility that the set does not contain
any enabled transactions. This addition yields the stubborn set:

T is stubborn at s iff
T is semi-stubborn at s A 3, 7 : en(s, ?)

So a stubborn set is a semi-stubborn set which contains at least one enabled transition.
Since 7 is a stubborn set for every transition, a stubborn set always exists.

Construction of reduced state spaces

The stubborn sets that were presented in the previous section can very effectively be
used to create a reduced state space. Let

P(s):S— T
be the ‘stubborn set generating function’ such that:

—en(s,t): P(s)=0
en(s,t): ®(s) = a stubborn set.

Assume that a state s € & has just been generated. The difference with a normal
spate space generation (or exploration) is that, in stead of all possible transitions, only
the enabled transitions in ®(s) are used. Depending on the structure of the participating
processes, this will yield less transactions to be executed and possibly less states to be
visited.

Effectiveness of the stubborn set algorithm

The effectiveness of the presented methods is largely dependent on the stubborn set
generator ®(s). The lower boundary of the performance is the ‘normal’ (exponential)
state space. This results can alway be achieved simply by taking ®(s) = 7 for all s € S.
If ®(s) is smaller than 7 for certain states, a reduction is possible. Valmari shows in
previous papers that always taking the smallest set during the construction does not
necessary yields the smallest state space.

A stubborn set is said to be ‘optimal’ if there is no subset of the set that is still
stubborn. Algorithms are available to compute “fairly good” stubborn sets in linear
time with respect to the number of transitions. Optimal stubborn sets can, under
some assumptions, be computed in quadratic time (again with respect to the number of
transitions).

11

Figure C.3: Complete state space. Dashed lines denote blocked transactions after ap-
plication of Overman’s method.

Figure C.4: Complete state space. Dashed lines denote blocked transactions after ap-
plication of the conflict set method.

Appendix D

Two independent processes

This example contains two completely independent processes. The composite state space
(i.e. the set of all states that can be reached by the total system) will at least consist of
the Cartesian product of both individual state spaces. Depending on the communication
model that is used, more different states can be reached. A conventional test generation
algorithm will test every possible transition in the state space. It will be shown that
this is not always necessary, and that the number of generated tests can be decreased
by using this observation.

[:7..“‘;.3]

a_out b_out

a_in ab_in

(] [ba]

Figure D.1: A system containing only two independent processes “A” and “B”.

description of the example

The first example consists of two independent processes. Both processes are determin-
istic and finite. The processes both perform the same “task” (figure D.2).

For the use of the PTT Conformance Kit, the example should be specified as a single
finite state machine. This FSMis given in figure D.3. Since no communication is
exchanged between the two processes, a composite FSM is easily created (figure D.4).
The partitioned tour that is generated by the toolset tests every transition in the
composite state space is tested. This means that even for this extremely simple system,
eight complete test cases are necessary.

112

113

environment process
¢ Consume a message “m”; n
>

«“ ”,
e Prompt for “more”; < more
¢ Consume next message “m”; L >

. ok
¢ End with “ok”; [

e Start all over again.

Figure D.2: Definition of a single process.

am/amore bm/bmore
am/aok bm/bok

Figure D.3: The two processes independent that build the example protocol.

It can be questioned whether all these test cases are necessary to ensure the correct
operation of this particular protocol. For instance, test cases that test transition (0—2)
and transition (1—3) (see figure D.4) actually both test the same transition of process
B. Whether process A has performed some behaviour before, has no influence on the
correct operation of process B. Therefore, if it is assumed that the implementation has
the same structure as the specification, the complete test suite for the system should
only contain a test case for one of both transitions.

Application of the partial order methods

The partial order reduction methods that are presented in [HGP92] assume that the
protocol is specified as a labeled transition model LTS. Each state transition of a finite
state machine actually consists of two state transitions (one for the input and one for the
output) and an extra intermediary state in the LT'S. The methods that were defined for
labeled transition systems can be applied to finite state machine-based test generation
techniques in two ways:

114

Figure D.4: The composite state space of the example.

e Convert the FSM -representation of the specification to a labeled transition sys-
tem. In order to generate tests from the reduced specification, the LT'S should be
translated back into an FSM. Application of the new methods via a translation
to a LTS will be called indirect application here. Special care must be taken if
multiple transitions are allowed to start from the intermediary states since this
behaviour will often be difficult to control by the tester.

o Translate the concepts of dependency between actions to dependency between state
transitions in finite state machines. This way will be called direct application.
When considering communicating FSM’s this may not be possible.

Direct application

In this case (completely independent processes), the second possibility seems the most
appropriate. Considering the FSM, it is clear that any transition of process A is
independent from any transition of process B and vice versa. In terms of the reduced-
search algorithm [HGP92], this means that all state transitions are local.

In figure D.5, the resulting state spaces after the direct application of the reduced
search method and the sleep set method to the example are shown. It can easily be
verified that the blocked transitions (the dashed branches in the graphs) do not represent
extra information about the system’s behaviour, after the remaining transitions have
been tested, and if it is assumed that the structure of the implementation is equal to
the structure of the specification.

This example could suggest that direct application can by applied easiliy. However, if
the processes in the specification communicate with each other, as in practical situations,
the definition of atomic input/output pairs and the discrimination between global and
local actions will be very difficult. This report focusses on the indirect approach, which
is described in the next section.

115

®

Figure D.5: Reduction of the state space. Drawing A is the result of the Reduced Search
algorithm, drawing B of the Sleep Set algorithm.

Indirect Application

An other possible way to use the reduction methods for automatic test generation is via
a translation to a labeled transition system. The labeled transition system is given in
figure D.6. However, the behaviour that is defined by the LTS is not the same as the
behaviour that was defined by figure D.4. The reason for this is that the input/output
pair is no longer atomic. In the LTS-model, process B may execute an action after
process A has consumed an input, but before it has been able to sent the relevant
output.

Figure D.6: State graph for the labeled transition system for two completely independent
processes. Labels and reset transitions are not given.

This LT-system can be reduced with the new methods. The results are given at
the end of this appendix. As is to be expected in this example, a large part of the
transitions can be blocked. The problem that remains is how to convert the labeled
transition system, that remains after the application of the reduction methods, back to

116

a finite state machine which can be used as an input for the existing test generation
techniques. This conversion is a difficult problem.

Figure D.7: Reduced labeled transition system of two completely independent processes.
Reduction was done using the reduced search algorithm.

Figure D.8: Reduced labeled transition system of two completely independent processes.
Reduction was done using the sleep sets algorithm.

Appendix E

Examples stable traces

g g g g g

»

1 Example part of a system. In a composite state (A: state #1, B: state #1 and C: state #1), two. Y
 external inputs are enabled. For input I-1, different traces exist. Every trace leads to the same

1 global end-state (A: state #3, B: state #1 and C: state #1).

B: state #1

B: state #2

B: state #1

117

=<1

118

' Example part of a system. During the transition from a stable composite state to a new stable composite state, t:‘
1 process B can receive messages (m-1) and (m-2). Each message leads to a different end-state. The choice can be
t } detected at the system boundary by the generated outpuls. '

___ 2

(stable) (smble)

tate #2 B: state #3
(slable) (stable)

119

' Example part of a system. The composite state (A: state #1, B: state #1) is stable. The system transfers to a new stable
! composue state after input I-1. In the new stable state, process B resides in one of the states {#2, #3, #4}. The choice is made on the basis | |
of parameters that are not visible in the model. The tester can not determine which state is reached ater the executionof the stable trace. !

m-1

A state #2
(stable)

v A 4

B: state ##2 B: state #3 B: state #4
(stable) (stable) (stable)

	Voorblad
	Preface
	Summary
	Contents
	1 Introduction
	2 Conformance testing
	3 Automatic test generation
	4 SDL specifications
	5 Partial order reduction strategies in protocol verification
	6 Application of the partial order reduction methods
	7 Conclusions
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

