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Abstract

To many scientists the words chaos and fractals either make no sense or are only associated with
nice pictures. Up till now, only relatively few of them seem to fully understand the fundamental
and universal properties of this new theory. One of the goals of this master thesis is to compre-
hend the concepts of chaos theory and fractal geometry in a compact and readable format. This is
achieved by a bottom up approach and an extensive use of examples.

Fractal geometry is an extension of classical geometry and appears to be very suitable to describe
natural structures, such as mountains, trees, clouds, etc. Scale-invariance of the amount of detail
is the key concept.

Chaos theory provides powerful tools to analyze the behaviour of complex dynamical systems. On
one hand it is an extension of the conventional mathematical analysis, which is based on numerical
approximation, on the other hand it ties together aspects from various fields of science, such as
physics, information theory and electronics.

Fractal geometry and chaos theory are closely related to each other by the concepts of scaling, and
iteration (recursive composition). Furthermore, chaos theory has a dual character. On one hand it
puts an end to the dream of full predictability of deterministic dynamical systems, on the other
hand it gives some clues about the up till now supposed unpredictability of nondeterministic
dynamical systems. Chaos theory is also closely related to already known concepts, such as
Lyapunov exponents and entropy.

A dynamical system can be suitably represented by a set of iterated transformations which operate
on a metric space. If the transformations have the property of being affine (i.e. map parallello-
grams to parallellograms), and are each applied with an assigned probability, then such dynamical
system is called an Iterated Function System (IFS). The parameters of an IFS can be represented
in a highly compact IFS-code. In this sense, an IFS-code establishes an extensive compressed
representation of the (behaviour of) the dynamical system it encodes. Compression ratio’s of
10000:1 are possible.

The process of decoding an IFS-code into the associated picture is trivial and fast. The rendered
picture is called the attractor and represents the behaviour of the according dynamical system. If
an attractor has fractal properties, then the associated dynamical system may possess chaotic
behaviour under certain conditions.

The inverse process of encoding a target image into an IFS-code is not trivial at all, but, instead,
is proven to be NP-complete. The reason we are very much interested in IFS-encoding is the fact
that it implies a tool for enormous data compression and good control of real world images, which
could have applications in the defence industry (visual systems of weapon platform simulators,
storage of satellite data) and in new commercial applications (virtual reality, film, VLSI-design).
Maybe IFS-encoding will appear to be a powerful tool for modelling dynamical systems of which
only the attractor is known.




6 Abstract

The practical component of this graduation work is mainly concerned with the implementation of a
toolbox for applying interactive and automatic IFS-encoding. The toolbox is embedded in the
OSF/Motif ® X Window System® and it fully supports IFS-decoding (both deterministic and
nondeterministic) as well as interactive IFS-encoding. A genetic algorithm is implemented to
achieve automatic IFS-encoding. Due to the enormous degree of freedom which exists in the
tuning of the parameterset with which the genetic algorithm is initialized, we have only reached
results up to 88% approximation quality in obtaining a collage (which implies 80% approximation
quality for the rendered attractor). Symmetry group transformations (mainly used for validation of
the genetic algorithm) have been found up to 99% approximation quality. However we feel that
the genetic approach is a promising one and further investigations on this area will certainly
improve its performance.



Acknowledgements

I acknowledge and thank Professor Jochen Jess for giving me the opportunity to fullfill this master
thesis and to use the powerful computer facilities of his special group. It was his open mind and
willingness to enter new unexplored trails that encouraged me to ask him to supervise this work. I
thank Hans Fleurkens for introducing me to the OSF/Motif® X Window System ®. 1 thank Marc
Heijligers and Luc Cluitmans for introducing me to genetic algorithms. I thank the Royal
Netherlands Air Force for providing me with the resources necessary to fullfill my study in
Information Engineering. I thank my girl friend Heidy for her continuous and unconditional
support throughout the whole study period. I thank my parents who stood at the basis of my
personal development and who taught me that hard working is a good property. Last but not least,
I thank God, not only for letting me fullfill this study, but also for creating the world as it is,
especially its beautiful fractal geometry and its surprising chaotic dynamics.

Emile van Duren



Contents
GOV TP . . . it e e e e e e e e 1
ADSHTaCt . . .. . e e e 5
Acknowledgements . . ... ... ... ... e e e e e 7
LO00) 110 11 9
Chapter 1. Introduction . ... ... .. ... ...ttt e 13
1.1. The birthof apew science . . ..... ... ... ... . .0t nnenn. 13
1.2. Whatisnew about chaos ? . .. ... .... ... ...ttt it 14
1.3. Thesis goal . .. ........ .. @ittt e e e 14
l.4. Thesisoutline . .. ...... ... .. .. .. . ittt 15
Chapter 2. Metric SPaCeS . . . ..t v it it it e e e e e e e e, 17
2. 1. Basicdefinitions . . .. ... .. .. ... e e e e e 17
2.2. The metric space (H(X,h)) . . .. ..o i i i et it e e 21
Chapter 3. Fractals . ... ..... ... ...ttt ittt et e e e e 26
3.1. Fractal dimension . .. .. ... .... .. ... .. ... e 26
3.2. Hausdorffdimension . .. ........... .. ... .00t nennnns 31
3.3. Self similarity .. ... ... .. 32
Chapter 4. Dynamical SYStemS . . . ... ... ...ttt ittt e i3
4.1. Transformations . . . . .. ... ... .. ... ittt e e, 33
4.2. Graphical analysis of iterates . ... ............... ... ... ... .. ... 36
4.3. Attractors and bifurcations . . . . .. ... ... ... e 37
4.4, Rescaling function dynamics . ... .. ... .. ... .. .. ... ... ... .. .. 41
4.5.Poincaré maps . . ... ... ... e e 43
Chapter 5. Chaos . .. .. ... ... ... i i it e e e e e 47
S.1. Lyapunov €XponentS . . . . .. .. i e e e e e e 47
5.2, Strange attractorsS . . . . . . vttt i e e e e e e e e 50
S 3L ENtODY . ... e 51
5.4. Sensitive dependence on initial conditions . ... .. ..... ... ... ... ... ... 53

5.5.Period 3implieschaos ... ... ... . ... ... . . S6




10 Contents
Chapter 6. Attractor basin boundaries . ... ....... ... ... .. .. ... ..., 59
6.1 Juliasets ... ... ... e e 59
6.2. Mandelbrot sets . . .. .. .. ... e 61
Chapter 7. Affine transformations . . . ... ... ..... ... . . ... ..ttt annnn 65
7.1. Geometrical definition . .......... ... ... . . . . ... . . e 65
7.2. Fixed pointanalysis . . .. ........ ... ... .0ttt 68
7.3. Affine matrix properties . . ... ... .. ...t e e 69
T4, Similitudes . ... . e e e e 72
7.5. Contraction Mappings . . . . . . ..ttt e e e 74
Chapter 8. IFS-decoding . . . . . ... ... i ittt ettt ettt e 75
8.1. Iterated Function Systems . . . . . ........ .. ... .. .. . i 75
8.2. Condensation . ............... e e e e e e 79
8.3. Analgorithmicapproach . . ... ... .. ... ... ... .. .. . . . .. 80
8.4. Data compression . ... ... . ... ...t e e e 83
8.5. Finite affine automata . ... ... .. ... ... .. ... . ittt 85
Chapter 9. Invariant measures . .. ... ........ccii vt ennenereneensnnn 88
9.1 Fields . .. . .. e e e 88
0.2, MeaSUIES . . ... e e e e e e e e e 90
9.3. Markov OPerators . . . . . . i ittt ittt et e e e e 94
9.4, Moment theory . . . . .t v i ittt it e et e e e e e e 99
Chapter 10. IFS-encoding: the inverseproblem . . . . ... ...................... 102
10.1. The collage theorem . . . . . ... ... ... ... . .0ttt 102
10.2. Computational time complexity . . .............. ...t 105
10.3. A first approach: moment theory .. ........... ... .. .. ... 110
10.4. The quality measure . . . . .. ... ...ttt 115
Chapter 11. Genetic IFS-encoding . . . . ... ... .. .. ... i 121
11.1. Genetic algorithms . . . ... ... ... . . . .0ttt 121
11.2. Chromosome encoding . ... ... .. ... ...ttt 123
11.3. The genetic OpPerators . . . . . . ... v ot v vt ittt e ettt e ee e e 124
11.4. The evaluation function . . . .. ... ... .. ... ..., 127
11.5. Initialization . . . . .. .. ... .. .. e 130

11.6. Some results . . . . . . . i e e e e e e e e 132



Contents 11

Chapter 12. Conclusions and recommendations . . ... ... .... ...t ennn 146
12,1, Conclusions . . .. .. i i i e e e e e 146
12.2. Recommendations on theuser interface . . ........................ 147
12.3. Recommendations on the genetic algorithm . . . . ... ..... ... .. ... . ... 148
12.4. Recommendations on IFS-encoding . .. ........ ... .. ... ... . ... 149
Appendix A. IFS-CODECusers guide .. ... ... .... .. ... . ... ... e, 152
A.l. Theuserinterface ............ ... .. 00t ieraneeenmn.. 152
A2, Getting started . . . .. .o e e e e e e e e 152
A.3. Viewing/editing source images . . . .. ... ... e e 153
A.4. Viewing/editing IFS-codes . ... ... ... ... .. ... . ... 154
AS5.IFSdecoding . . . . ... ... . e e e 154
A.6. Interactive IFS-encoding . . . . . .. ... .. ... ... e e 155
A.7. Automatic IFS-encoding . . .. ... ... ... .. .. ... ... e 156
A8. Special utilities . ... ... ... . ... ... e 158
Appendix B. IFS-CODEC SOUICE COA . . . . . . . i v i ittt it et i e 159
Appendix C. Some IFS-codes and their attractors . .. ...............c.couuron.. 266
Appendix D. Typical genetic monitoroutput . .. ..... ... .. oiiivvr e 279
References . ... .. e e e 285




13

The great morning of the world when first God dawned on chaos.

Porcy Bysshe Shellay (1792 - 1882) IDARSO) Chap te r

Introduction

Newton stated that the world unfolded along a deterministic path, rule-bounded like the planets,
predictable like eclipses and tides. Laplace imagined a supreme intelligence and stated: “"Such an
intelligence would embrace in the same formula the movements of the greatest bodies of the universe
and those of the lightest atom; for it, nothing would be uncertain and the future, as well as the past,
would be present to its eyes" [GLE87].

With chaos theory the era of the deterministic dream came to an end. Scientists who have understood
the essence of chaos, will no longer hunt for full predictability anymore.

1.1. The birth of a new science

In the last few decennia, it has become clear that the language of classical geometry is insufficient to
describe the natural geometry and the behaviour of dynamical systems. Therefore fractal geometry
and chaos theory were developed. Strange enough they were developed almost independently (fractal
geometry from mathematics and chaos theory from physics), despite the fact that they are closely
related to each other. Scaling and iteration are the key concepts of both theories. In particular, it
appears that a fractal is a "picture” of the behaviour of a dynamical system.

Despite the work a few early twentieth century mathematicians, like Cantor, Von Koch and
Sierpinski, put in developing geometrical structures of infinite detail, it was Mandelbrot who gave the
starting shot for the building of the theory of fractal geometry, with his famous paper "How long is
the coast of Britain 7" [MANG67]. Four years earlier, Lorenz had done the same for the building of
chaos theory with his historical paper: "Deterministic nonperiodic flow" [LOR63]. Here too, the man
who gave the starting shot, was not the first one who got a glimpse of what was going on. In the late
nineteenth century, the french mathematician Poincaré proved that it is in general impossible to give
a simple prescription for the orbit of one body influenced by two other bodies (the three-body
" problem).

The concept of chaotic behaviour now pervades virtually all the sciences. In simple terms, we can say
that a dynamical system exhibits chaos if its behaviour is not random, but there are no predictable
patterns to it. Chaotic dynamics is the study of such behaviour, and despite the unpredictability of
chaotic system behaviour, mathematical analysis can often describe it.
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Chaos theory has been successfully applied to scientific fields which study a variety of topics such
as earthquakes, heart attacks, infectuous diseases, stock markets, the weather, chemical reactions,
electronic circuits, organizations, etc.

Geometry is concerned with making our spatial intuitions objective. Classical geometry provides a
first approximation to the structure of physical objects; it is the language which we use to
communicate the designs of technological products and, very approximately, the forms of natural
creations. Fractal geometry is an extension of classical geometry. It can be used to make precise
models of all existing natural structures, such as clouds, mountains, trees, bird feathers, galaxies, etc.

Alltogether, chaos theory and fractal geometry are the first languages that are powerful enough to
describe how the world is really (dis)organized, both with respect to its behaviour as to its geometry.
Both theories contain universal properties, and it has been said that those new theories form the third
scientific revolution of this century, after relativity and quantum mechanics [GLE87].

1.2. What is new about chaos ?

Engineers have always known about chaos. It was called noise or turbulence or something else, and
safety factors were used to design around these apparent random unknowns that seem to crop up in
every technical device. So what is new about chaos ?

First, the recognition that chaotic behaviour can already arise in low-order, nonlinear deterministic
systems, raises the hope of understanding the source of randomlike noise and doing something about
it. Second, the new discoveries in nonlinear dynamics bring with them new concepts and tools for
detecting chaotic dynamics in physical systems and for quantifying this "deterministic noise" with new
measures, such as fractal dimension and Lyapunov exponents. Third, fractal geometry seems to be
a promising tool for enormous data compression and computer animation, since it is able to use
iteration as a decoding mechanism, which transforms very few bytes of information into complex
geometrical structures.

Concluding, what is new about chaotic dynamics is the discovery of a seemingly underlying order
which holds out the promise of being able to predict certain properties of noisy behaviour, which
occurs when some strong nonlinearity exists. Even a chaotic system will at last complete a
deterministic periodic cycle, but this can take centuries. Poincaré already stated that water at room
temperature could spontaniously turn into ice, but the chance that it does is very small.

1.3. Thesis goal

The goal of this thesis is threefold. First it should give a thorough and compact overview of the
essences of chaos theory and fractal geometry. Second it should document the developed user-
interactive program IFS-CODEC, which facilitates application of all important concepts of fractal
geometry. Third it should describe our attempt of solving an unsolved fundamental problem of fractal
geometry, i.e. automatic IFS-encoding. This problem has applications in data compression and
computer animation (flight simulators, virtual reality, etc.).
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1.4. Thesis outline

The first goal of this thesis is achieved by the chapters 1 through 7, the second goal by the appendices
A and B and the third goal by the chapters 8 through 11. We have tried to illustrate the theoretical
concepts as much as possible with representative examples, to facilitate a quick understanding. The
reader who is not familiar with either chaos theory or fractal geometry, is advised to study this thesis
in chronological order, since it is written from a bottom-up point of view, i.e. each chapter introduces
elements that will be used in successive chapters. The text of this thesis contains theorems, definitions
and examples, the termination of which is respectively denoted by M, ¢ and . Predicates are
sometimes written in the "Dijkstra" form, sometimes in the classical form and sometimes in a mixed
form. For example the following predicates are equivalent, but the left one is written in the "Dijkstra”
form, while the right one is written in the classical form:

(An:1<n:(Si:ls<sisn:i) = %(n’*—n)) & v o iz_l:i = %(nz*-n))
Despite the fact that this introduces an inconsequency, we decided to use both notations, because both
have (dis)advantages. The "Dijkstra" form is very wel suited to use in regular textlines, but can be
rather lengthy, while the classical form is not at all suited to use in textlines, but is very compact.

Chapter 2 basically deals with geometrical definitions, the most of which will be used throughout this
thesis.

Chapter 3 gives a brief overview on fractals and their properties.

Chapter 4 introduces dynamical systems. To stress the close relationship of fractal geometry and chaos
theory, dynamical systems are defined as (iterated) transformations in a geometrical space.

Chapter 5 introduces a formal definition of chaos and continues with a description of its separate
elements.

Chapter 6 provides the theory behind some well known fractals, i.e. Julia sets and Mandelbrot sets.

In chapter 7, a special kind of dynamical system is introduced, namely the two-dimensional affine
transformation. It is this transformation which forms the basis for operations on geometrical two-
dimensional images.

Chapter 8 introduces an Iterated Function System (IFS) as a set of affine transformations together with
a set of associated probabilities. Furthermore, IFS-decoding is treated from an algorithmic viewpoint
as well as from a viewpoint of finite automata.

Chapter 9 is basically an introduction to the next chapter and deals with measures, Markov operators
and moment theory.

Chapter 10 addresses the inverse problem of chapter 8, i.e. IFS-encoding. This topic is approached
in a fundamental way. Computational time complexity is considered, as well as an approach to tackle
the problem in closed form, based on moment theory. Furthermore, the 1FS-encoding problem is
proven to be NP-complete. Several quality measures are discussed, and the Pixset distance is
introduced as a practical distance function, which is also proven to be a metric.
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Chapter 11 deals about a genetic approach to solve the IFS-encoding problem. The principles of
genetic algorithms are explained and the chromosome encoding process is illustrated. The developed
genetic operators are discussed as well as the evaluation function. Finally, some results obtained with
the genetic algorithm on the IFS-encoding problem are given.

Chapter 12 contains some conclusions and recommendations. Separate recommendations are made on
the user interface, on the genetic algorithm as well as on IFS-encoding.
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Although there are spaces in which I find nothing which excites
my senses, | must not from that conclude that these spaces contain
no body,

Descartes (1596 - 1650) [ADL77) Chapter

Metric Spaces

Geometry is concerned with the description, classification, analysis and observation of subsets of
metric spaces. Metric spaces are usually, but not always, of an inherently "simple” geometrical
character but the subsets of these spaces are typically geometrically "complicated". There are a
number of general properties of such subsets, which occur over and over again, which are very basic,
and which form part of the vocabulary for describing fractal sets and other subsets of metric spaces.
That is the reason that those properties will be investigated.

2.1. Basic definitions

Definition 2.1. A space X is a set. The points of X are the elements of the set [BAR88al]. ¢

Example 2.1. Let X = R? be the Euclidian plane, the coordinate plane of calculus. A point or vector
x € X can be represented in several equivalent ways:

X

1 -—
=X
xz] *

Example 2.2. Let X = C be the complex plane (also called vector space), where any point x € X
is represented by the complex number x =x, + ix,, where i =+/~1, for some pair of real numbers
x;,X, € R. Any pair of numbers x,,x, € R determine a point of C. It is obvious that C is essentially
the same as R?, but there is an implied distinction. In C we can multiply two points x and y and obtain
a new point in C:

X = (x,x) =

xy =0 + i)y, + iy) = (5, - xy,) + ixy, + xy) *

Example 2.3. Let X = I be the code space on N symbols, where N € N. The symbols are integers
{0,1,2,...,N-1}. A typical point in X is a word such as x =2 1700 1 21 15 (N-1) 30 ... There are
infinitely many symbols in this sequence. In general, for a given element x € I we can write:

X =X, X, X3 Xy X5 X5 X5 Xg ..., Where x; € {0,1,2,...,N} *
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Suppose that X, and X, are spaces. Then a new space can be created by taking the Carthesian product
of X, and X,, denoted by X, X X,. For example, R? is the Carthesian product of R and R, so:
R*=R X R.

Definition 2.2. A metric space (X,d) is a space X together with a real-valued functiond: X X X+ R,
which measures the distance between pairs of points x and y in X. The function d is required to obey
the following four axioms [BAR88al:

A (Ax:x€X:dixx)=0);

() (Axy:xy € X:dxy) =d@y.x));

(i) (Axy:xy € X, x#y:0<d®x)y) < o);

vy (Axyz:xyz € X:dx)y) < d(x,2) + dz)y) ).

Such a function d is called a metric. ¢

A distance function will not automatically be a metric, but a metric always defines a distance. The
concept of shortest paths between points in a space, geodesics, is dependent on the metric. The metric
may determine a geodesic structure of the space. Geodesics on a sphere are great circles, geodesics
in the Euclidian plane are straight lines. The following two metrics in the space X = R? are frequently
used:

Euclidian metric: d(x,y) = J G-y + (0= y)

Manhattan metric: d,(x,y) = |x,-y,| + |x,- ¥,

Definition 2.3. Two metrics d, and d, on a space X are equivalent if there exist constants
0<¢;<c¢,< o such that [BAR88a]:

(Axy:xy € X X X:cdxy) <dxy) < cdkxy)) ¢
The underlying concept is that equivalent metrics give the same notion of which points are close
together and which are far apart. For example the Manhattan metric and the Euclidian metric are
equivalent on R? since:

(Axy:xy € B X R:1:d;xy <dxy) <+2d(x,y))
and also:

(Axy:xy € R X R:A/2-d/xy) <dx,y) < 1-d,,(x,y))
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Definition 2.4, Two metric spaces (X,,d,) and (X,,d,) are equivalent if there is a function g: X, -» X,
which is one-to-one and onto (i.e. it is invertible), such that the metric d, on X, is equivalent to d,,
where d, is defined by [BAR88al:

(Axy:xy € X, :dxy) = dfg().80)) ) ¢

It follows that (C,dg) and (R%,d,) are equivalent metric spaces, since g, : R? - Cand g, : C -~ R’ can
be respectively defined as:

(Axy:x€ER,y€C:y=x,+ix,) and

(Axy:x € R,y € C:x = Re®),Im®y)) )

Definition 2.5. A sequence {x, : n = 1,2,3,...,00} of points in a metric space (X,d) is called a
Cauchy sequence if, for any given number ¢> 0, there is an N € N such that [GUL92]:

(Anm:nm2N:dx,x,) <€) ¢

In other words, the further along the sequence one goes, the closer together become the points in the
sequence. However just because a sequence of points moves closer together as one goes along the
sequence, does not imply that the sequence is approaching a fixed point. Perhaps it is trying to
approach a point that isn’t there.

Definition 2.6. A sequence {x, : n = 1,2,3,...,00} of points in a metric space (X,d) is said to
converge to a point x € X if, for any given number ¢> 0, there is an N € N such that [GUL92]):

(An:n2N:dkx,x) <e€)

In this case the point x € X, to which the sequence converges, is called the limit of the sequence and
we use the notation:

x = limx ¢

neoe N

Clearly, if a sequence of points {x, : n = 1,2,3,...,00} in a metric space (X,d) converges to a point
x € X, then {x, : n = 1,2,3,...,00} is a Cauchy sequence.

Definition 2.7, A metric space (X,d) is complete if every Cauchy sequence {x, : n = 1,2,3,...,00}
in X has a limit x € X [BAR88al. ¢

In other words, in the space X actually exists a point x to which the Cauchy sequence is converging.
This point x is of course the limit of the sequence. For example (R%,d;) and (C,d,,) are complete
metric spaces, but also (by equivalence) are (R%d,,) and (C,dy).



20 2. Metric spaces

Definition 2.8. Let S C X be a subset of a metric space (X,d). A pointx € X is called a limit point
of S if there is a sequence {x, : n = 1,2,3,...,0} of points x, € S\{x} such that the limit of this
sequence equals x [BAR88a]. ¢

Definition 2.9. Let S C X be a subset of a metric space (X,d). The closure of S, denoted by S,, is
defined to be S, = § U {limitpoints of S}. S is closed if it contains all of its limit points, i.e. § = §..
S is perfect if it is equal to the set of all its limit points [BAR88a]. L 4

Definition 2.10. Let S C X be a subset of a metric space (X,d). S is compact if every infinite
sequence {x, : n = 1,2,3,...,o} in § contains a subsequence having a limit in § [BAR88a]. L 4

Definition 2.11. Let § C X be a subset of a metric space (X,d). § is R-bounded if there is a point
a € X and a number R> 0 such that [BAR88a]:

(Ax:x€ X:d@ax) <R) ¢

Definition 2.12. Let S C X be a subset of a metric space (X,d). S is totally bounded if, for each
€> 0, there is a finite set of points {y,,y,,...,y,} C S such that whenever x € X, d(x,y;) < e for some
Y: € {1Yz...,y.}. This set of points {y,,y,,...,Y,} is called an e-net [BAR88al. *

Theorem 2.1. Let (X,d) be a complete metric space and let S C X. Then S is compact if and only
if it is closed and totally bounded.

Proof. See [BAR88al. [ |

Definition 2.13. Let § C X be a subset of a metric space (X,d). S is open if for each x € X there
is an >0 such that B(x,e) = {y € X : d(x,y) < €} C §, where B(x,¢) is a closed ball of radius >0
centered at x (see fig. 2.1) [BAR88al. L

Definition 2.14. Let S C X be a subset of a metric space (X,d). A point x € X is a boundary point
of § if for every number >0, B(x,€) contains a point in X\S and a point in §. The set of all boundary
points of § is called the boundary of §, and is denoted by a5 (see fig. 2.1) [BAR88a]. 4

Definition 2.15. Let S C X be a subset of a metric space (X,d). A pointx € § is called an interior
point of § if there is a number ¢ >0 such that B(x,e) C S. The set of all interior points of § is called
the interior of S, and is denoted by S° (see fig. 2.1) [(BAR88a]. L
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Figure 2.1. The interior of § is a closed set in the metric space
(Y,d;) but an open set in the metric space (Z,dy).

2.2. The metric space (H(X),h)

Definition 2.16. Let (X,d) be a complete metric space. Then H(X) denotes the space whose points are
compact subsets of X, other than & [BAR88al. L4
Definition 2.17. Let (X,d) be a complete metric space, and let A,B € H(X). Define:

d(x,B) = (Min :x € X,y € B:d(x,y) )

Then d(x,B) is the distance from the point x to the set B[BAR88a]. In the same way we can define
the distance from the set A to the point y as:

dAy)=(Max :x €E A,y € X:d(x)y)) ¢
Definition 2.18. Let (X,d) be a complete metric space, and let A,B € H(X). The distance from the
set A to the set B is defined as [BAR88a,GUL92]:

dA,B) = (Max : x € A :d(x,B)) ¢

Example 2.4. Let (X,d) = (R, d,,), x = % and
n-1y ., . 1,2,3,... } U {3}
n’+1

Then we can calculate B and d,(x,B) as follows:

B={x =3+

_ 1 2 7 4 21 6
B ={213221342235 } U {3}

d{x,B) = (Min : y € B:d(x,y)) = d('4,2'%) = | - 2%]| =2 *
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Example 2.5. Let (X,d) = (R%,dp) and p,q € R The point p is given by (1,1) and B is a closed disk
of radius ' centered at the point (*2,0). We can calculate d.(p,B) as follows (see figure):

de(p,B) = (Min : q € B : d(p.q) )

={dJ((1,1),q) :q € B}

q is the intersection point of the line /: y = 2x - 1 and
the disk B: y* + (x - £)* = %, so we can solve:

x- 172+ (x- %B)? = %

e 52-5x+1=0

x,,=2%2V5 20 4 _ 07,1 ~ 028

1,2 T )
g 10
So the intersection point is given by ¢ = (0.72,0.45) and now we can continue with:

d,((1,1),(0.72,0.45)) = y(1 - 0.72)* + (1 - 0.45)* = 0.62 *

Example 2.6. Let (X,d) = (R*,d;) on a roadmap. Define FRANCE and BRITAIN as subsets of X, and
let Calais,Marseille,Paris € FRANCE, and let Dover,Inverness,London € BRITAIN. A travelling
salesman travels between FRANCE and BRITAIN and the starting and terminating points of his travels
are always big cities. First suppose he travels back and forth between London and Paris. Then he
must travel a fixed distance of:

dg(London,Paris) = d(Paris,London) = 366 [km]
If our travelling salesman travels from London to FRANCE he must at least travel a distance of:

dy(London,FRANCE) = (Min : y € FRANCE : d(London.y) )
= d(London, Calais) = 154 [km]

In the same way we obtain the distances from FRANCE to London, from Paris to BRITAIN and from
BRITAIN to Faris:

d{(FRANCE,London) = (Max : x € FRANCE : dg(x,London) )
= d(Marseille,London) = 1049 [km]
dg(Paris,BRITAIN) = ( Min : y € BRITAIN : dg(Paris,y) )
= dg(Paris,Dover) = 280 [km]
d(BRITAIN, Paris) = ( Max : x € BRITAIN : dg(x,Paris) )

= di(Inverness,Paris) = 1112 [km]
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Suppose that the only thing we know is that the travelling salesman travels back and forth between
BRITAIN and FRANCE, then he must travel at most distances of:

d(BRITAIN,FRANCE) (Max : x € BRITAIN : d.(x,FRANCE) )
di(Inverness,FRANCE)
(Min : y € FRANCE : d(Inverness.y) )
di(Inverness,Calais) = 582 [km]

d(FRANCE ,BRITAIN)

(Max : x € FRANCE : d (x,BRITAIN) )

d(Marseille, BRITAIN)

(Min : y € BRITAIN : d(Marseille,y) )

d(Marseille,Dover) = 962 [km] *

From the above examples it becomes clear that as soon as sets are involved, distances such as d.(x,B)
and d(A,B) are not metrics, since not all rules of definition 2.2 are obeyed. What we need is a robust
distance function on sets, which is also a metric.

Definition 2.19. Let (X,d) be a complete metric space. Then the Hausdorff distance between points
A and B in H(X), which are sets in X, is defined by [BAR88al:

h(4,B) = (Max : A,B € H(X) : (d(4,B),d(B,4)) ) ¢

The Hausdorff distance appears to be a robust distance function for calculations on sets. The
association of the name Hausdorff refers to the German mathematician Felix Hausdorff, who was one
of the pioneers in the area of geometry called topology during the early part of this century.

Theorem 2.2. h is a metric on the space H(X).
Proof. We have to prove that 4 obeys the four axioms of definition 2.2.
(i) Tobeproven: (AA:A € HX) : h(4,4) =0).
Let A € H(X), then

h(A,A)

= ( definition 2.19 )

(Max : 4 € H(X) : (d(4,4),d(4,4)) )

= ( definition 2.18 )

(Max : x € A:d(x,A))

= ( definition 2.17 )

(Max :x € A: Min:y € 4:d(x,y)))
= ( calculus )

0
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(i)

(iii)

To be proven: (A A,B: A,B € H(X) : h(A,B) = h(B,A) =0).
Let A,B € H(X), then

h(A,B)

= ( definition 2.19 )

(Max : 4,B € H(X) : (d(4,B),d(B,A)) )
= ( symmetry of Max operator )

(Max : A,B € H(X) : (d(B,A),d(4,B)) )
= ( definition 2.19 )

h(B,A)

To be proven: (A A,B: AB € H(X), A#B : 0 < h(A,B) < = ).

Let A,B € H(X) and A #B, then

= ( A and B are compact )

(Eab:a€ A, b € B: h(A,B) =da,b))

= ( theorem 2.1, definition 2.12 )

0 < h(4,B) < »

=(A#B)
(Ea:a€A:a€¢B)A(0<hAB)< »)
= ( definitions 2.17, 2.18, 2.19 )

0 < d@,B) < d(A,B) < h(A,B) < =

= ( calculus )

0 < h(4,B) < o

To be proven: (A A,B,C: A,B,C € (X) : h(A,B) < h(A,C) + h(C,B) ).

Let AB,C € H(X),a € A,b € B,c € C, a & B, then

= ( proof part (iii) )

0 < d(a,B) < d(A,B) < h(A,B)

= ( definition 2.17 )

d(a,B) < d(a,b)

= ( distances are not negative )

d(a,B) < d(a,b) + d(c,b)

= (a & B, triangle inequality )

d(a,B) < d(a,c) + d(c,B) < d(a,c) + h(C,B)
= ( definitions 2.17, 2.18 )

d(a,B) < d(@a,C) + h(C,B) < h(A,C) + h(C,B)
=2(a€A)

d(A,B) < h(A,C) + h(C,B)

= ( similarly )

d(B,A) < h(A4,C) + h(C,B)

= ( calculus )

(Max : A,B € H(X) : (d(A,B),d(B.,A)) ) < h(A,C) + h(C,B)

So (H(X),h) is a complete metric space.
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Because the Hausdorff distance is a metric on H(X), it is also referred to as the Hausdorff metric.
The space (H(X),h) is referred to as fractal space.

Example 2.7. Consider example 2.5 once more. Now we know that the travelling salesman, who
travels back and forth between BRITAIN and FRANCE, has to travel a distance of at most:
h(BRITAIN,FRANCE) |
= he(FRANCE,BRITAIN)
= (Max : BRITAIN,FRANCE € H(X) :(d(BRITAIN,FRANCE)d (FRANCE,BRITAIN) )
= (Max : : (582 [km],962 [km]) )

= 962 [km] *

Some properties of set distances which can easily been proven are [BAR8S]:
i) BCC=d(A,C < d@A,B);
(i) d(4UB,C) = (Max : A,B,C € H(X) : (d(4,0),dB,0)) );
(ili) d(AUB,CUD) < (Max : 4,B,C.D € H(X) : (d(4,0),d(B,D)) );

(iv)y h(AUB,CUD) < (Max : A,B,C,D € H(X) : (h(4,C),h(B,D)) ).
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Naiure flies from the infinite, for the infinite Iis unending or
imperfect, and Nanire ever seeks an end.

Arisotle (384 - 322 B.C.) [ADL77] Chap ter

Fractals

Fractal geometry is concerned with the description, classification, analysis and observation of subsets
of the metric space (H(X),h). When we want to measure the length of a coastline, for instance of
Britain, we will not succeed in finding a fixed length, because the length depends on the scale we are
using. Suppose we use a unity of measure or yardstick ¢ of 1 [mm] to measure the coastline length
of Britain on scaled maps. When we use a 1:10* map, we will find a coastline length that exceeds
the length of 100 times the measured length on a 1:10° map. Mandelbrot found that the approximate
coastline length of Britain versus the inverse yardstick length ¢, as plotted on a double logarithmic
scale, fall on a straight line when e tends to zero (see fig. 3.3). The reason for this is the fact that the
amount of detail is scale-invariant. This appears to be not only the case for coastlines, but also for
a lot of other natural geometries, like mountains, clouds and trees [MAN83].

3.1. Fractal dimension

Structures in classical Euclidian geometry have an integer dimension. For example a point is zero-
dimensional (OD), a line is one-dimensional (1D), a plane is two-dimensional (2D) and a cube is three-
dimensional (3D). We could also say that the topological dimension D of these structures has an
integer value, hence: D(point) = 0, D(line) = 1, D(plane) = 2 and D(cube) = 3. If we look at fig. 3.1
we see three geometrical structures: a Cantor set, a Sierpinski triangle and a Menger sponge.

Figure 3.1. From left to right: a Cantor set, a Sierpinski triangle and a Menger sponge [GLE87,MANS3].
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By looking at fig. 3.1 we could intuitively say that the Cantor set is more than a point, but less than
a line, the Sierpinski triangle is more than a line, but less than a plane and the Menger sponge is more
than a plane, but less than a cube. In other words:

0 < D(Cantor set) < 1
1 < D(Sierpinski triangle) < 2
2 < D(Menger sponge) < 3

This means that the topological dimension of those structures is not integer, but real valued, or a
fractional integer value. Therefore Mandelbrot defined those geometrical structures as fractal
structures or fractals IMAN83].

Definition 3.1. Let (R™,d;) with m € N denote a complete metric space and let § € H(R™) be a
nonempty subset of R”. For each ¢> 0 we denote by N(S,¢) the smallest number of m-dimensional just
touching boxes of side length e, required to completely cover S. By an m-dimensional box in R™ we
mean a line segment if m=1, a square if m=2 and a cube if m=3. Then the capacity dimension or box
(counting) dimension of S is given by [BAR88a,GUL92]:

. InN(S,¢)
D = lim —2 2

) = lm e
If D(S) exists then N(S,¢) scales as (1/e)°. Moreover, if DS) exists and is non-integer, then § is said
to have fractal dimension. In that case D(S) is called the fractal dimension of § and S is referred to
as a fractal. ¢

For a line segment of length N, a square with sidelength N and a cube with sidelength N, the capacity
dimension yields respectively 1, 2 and 3. So those structures are not fractal. One way to construct
fractals is by means of a context-free grammar. In that case the building process makes use of base-
elements, initiators and generators [KAA87].

Definition 3.2. Define (conform [LEW811) a context-free grammar G as a 4-tuple (V,Z,R,S) where
V is the alphabet, I is the set of terminals (a subset of V), R is the set of (production) rules and § is
the startsymbol (an element of V). A fractal generating context-free grammar F can accordingly be
defined as:

F = (V,L,R,S) with
V = { initiator, generator, base-element } U T
L = { fractal }
R = { initiator = base-element(s),
base-element — generator,
generator — base-element(s),
generator — fractal }
S = initiator ¢
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Example 3.1. Let the initiator be equal to the base-element, i.e. a line segment with a length of 1
[unit], let the generator be the 4-line segment of step 1 below and let the fractal be a Von Koch
curve. The derivation for n steps in F from § is the sequence:

step 0 1 1 1
F1l
1 4
step 1 4 3 3
Fl
step 2 42 (.;.)2 (%)2
Fl
Fl
step n & GQr Gr
3 3

In the above derivation is N the amount of base-elements, each of length e, and is L the total length
of all base-elements the structure contains, so L = Ne.

The capacity dimension of the Von Koch curve (the structure that appears after n—~oo steps) can be
calculated as follows:

D(S) = lim InN(Von Koch curve,e) _ ... Ind" _ Ind ¢
=0 In(1/¢) e ln(%)"' In3
Hence the Von Koch curve has fractal dimension. *

Now we can also determine the capacity dimensions of the Cantor set, the Sierpinski triangle and the
Menger sponge (see fig. 3.1). We follow the same procedure as in example 3.1 (see fig. 3.2). The
generator of the Cantor set is made of N=2 base-elements (lines). The successive derivation steps are
obtained by contractions of ratio e=Va, so the capacity dimension is:

D (Cantor set) = lim In2" _ In2

— = 0.63
== |n3" In3
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Figure 3.2, Derivation of the Cantor set, the Sierpinski triangle and the Menger sponge (front view).

The generator of the Sierpinski triangle is made of N=3 base-elements (triangle planes). The
successive derivation steps are obtained by contractions of ratio e=%4, so the capacity dimension is:

D (Sierpinski triangle) = lim 35" - 185 _ {58
c(Sterp gle) = 2 In2* In2

The generator of the Menger sponge is made of N=20 base-elements (cubes). The successive
derivation steps are obtained by contractions of ratio e=Y%s, so the capacity dimension is:

D.(Menger sponge) = ‘l'l_rg 20" EQ = 2.73

In3" In3

And indeed, we see that all structures have fractal dimension and:

0 < DJ(Cantor set) = 0.63 < 1
1 < D (Sierpinski triangle) =~ 1.58 < 2
2 < DMenger sponge) = 2.73 < 3

Consider example 3.1 once more. If we had choosen the initiator to be a triangle in case of a line
segment, we would have obtained a geometric structure which is known as the Von Koch snowflake
and which has the remarkable property that its finite surface area has a boundary of infinite length
[GIP90a].
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There is another interpretation of the fractal dimension, namely the slope of the log-log plot of the
amount of base elements N(¢) versus the inverse (yardstick) length ¢'. If we make those plots for the
structures of fig. 3.1 and example 3.1, as well as for the coastline of Britain, we obtain fig. 3.3.

4 log(N(e)) Menger

___B".".

—> log(l/e)

1 1

)
0 05 10 1S5

Figure 3.3. Log-log plot of amount of covering segments N(¢) versus the
inverse yardstick length ¢ ' for some earlier mentioned structures.

From fig. 3.3 we conclude that the fractal dimension of coastline of Britain is approximately 1.31.
Several algorithms for computing fractal dimensions of images are developed [CRE89,DUB87,
KEL87,VEP89]. In [KAN8S8] a fractal matrix model is introduced, which should give a better
characterization of the fractal properties of structures than the fractal dimension does.

Example 3.2. Part of this graduation work was the development of a user interface (IFS-CODEC)
to provide several facilities which are related with fractal geometry (see appendix A). One option is
to calculate fractal dimensions of geometrical structures. The IFS-CODEC algorithm does this as
follows. The structure is first covered with M(e) boxes of sidelength e. Then the structure is covered
with N(2€) boxes of sidelength 2¢. Then the fractal dimension is calculated as the slope of the line
through the points (log(1/2¢),log(N(2¢))) and (log(1/e),log(IV(e))), as follows (see figure below):

_ log(N(e)) - log(N(2¢)) _ log{N(e)N(2e)™))
¢ log(1/€) - log(1/2¢) log2

In practice we choose € = 1 [pixel]. With the IFS-CODEC algorithm we obtained for the structures
given in appendix C the fractal dimensions as given in table 3.1.

Table 3.1. Approximated fractal dimensions of structures of appendix C.

log(M(e)) |
structure D, structure D, structure D,
chain 1.48 koch 1.20 tree 1.46
dragon | 1.92 | leaf 196 | triangle | 1.47 || “F0T _
fern 1.78 rect 1.99 mandel 1.92 S i
france 1.98 square 1.87 twig 1.17

*
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3.2. Hausdorff dimension

The Hausdorff dimension (also called Hausdorff-Besicovitch dimension) is another real number which
can be used to characterize the geometrical complexity of bounded subsets of R™. Its definition is
more complex and subtle than that of the fractal dimension. One of the reasons of its importance is
the fact that it is associated with a method for comparing the "sizes" of sets whose fractal dimensions
are the same. It is harder to work with than the fractal dimension and therefore less often used.

Up till now we have used m-dimensional boxes to cover a set. But in fact we may also use
m-dimensional spheres. In that case the geometrical factor v can be defined as the unit length, area
or volume of the m-dimensional boxes or spheres. Thus we have y=1 [unity length] for lines, y=1
[unity area] for surfaces and y=1 [unity volume] for cubes. In the same way we have y=n/4 [unity
surface] for disks and y=%/6 [unity volume] for spheres.

Definition 3.4. Let R",dg) for m € N be a complete metric space and let S be a bounded subset of
this space. The covering of § is now performed by a covering function or measure [FAL90,FED89]:

N
MS,p.e) = Y ve? = ve’NS,e)  for p € [0,)

i=l
with p the dimension of the measure. The Hausdorff p-dimensional measure is defined as:
o if p <D(S) and p € [0,c0)

M(S.p) = lim M(S,p,e) =
- 0 if p >DyS) and p € [0,%)

where D,(S) denotes the Hausdorff dimension (or Hausdorff-Besicovitch dimension) of S. Thus:

Dy(S) = (Inf : M(S,p) =0:p) = (Sup: M(S,p) = :p)

Moreover, the following inequality holds: 0 < Dy(S) < D(S) < m. ¢

The Hausdorff p-dimensional measure M(S,p) as a function of p € [0,00) consists of only one, two
or three values, i.e. zero, a finite number and infinity. In [GAR88] and [STA89] algorithms are
presented for calculating the Hausdorff dimension of images.

Example 3.3. Let S be the Sierpinski triangle (see fig. 3.2). For p=1 we cover S in n steps with one-
dimensional lines and calculate M(S, 1) as (#lines) - (line length). Then for p=2 we cover S in n steps
with two-dimensional triangles and calculate M(S,2) as (#triangles) - (triangle area). The result is given
in table 3.2.
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Table 3.2. Covering of S with lines and triangle areas.

step #lines line length M(S,1) || #triangles | triangle area M(S,2)
1 3! (%) 3.000 3 (%) 1.000
2 32 (%) 4.500 3! (%) 0.750
3 3 (&) 6.750 K (%4)? 0.563
4 3¢ (k) 10.125 3 (%) 0.422
n 3 %)+ © 31 (%! 0.000

Let us see what happens if we choose p = D(S) = (In 3)/(In 2) = 1.58. Now we cover § in n steps
with p-dimensional structures, actually smaller copies of S, and calculate M(S,1.58). From this result
(see table 3.3) we draw M(S,p) as function of p (see figure below).

Table 3.3. Covering of S with copies of itself.

step #copies | area covering | M(S,1.58)
1 3! (Ys)! 1.000
2 32 (%) 1.000 MGp)
3 3 (Vs)® 1.000 T
4 3¢ (Ya)* 1.000
n 3 (Va)* 1.000

It follows that in this specific case Dy(S) = DAS) = 1.58.

3.3. Self similarity

If each piece of a geometric structure is geometrically similar to the whole, then such structure is
called self similar. One could say that the structure is recursively built of down scaled copies of itself.
The class of self similar fractals is also known as linear fractals [IMANS83].

Self similar fractals have the property that their geometric structure is scale-invariant. If we keep
zooming in on such fractal, we will see the same on all scales.
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No more by the law of reason than by the law of nature can
anything occur without a cause.

Jean-Jacques Rousseau (1712 - 1778) [ADL77] Chap t er

Dynamical systems

A dynamical system can informally be described as a mechanism that develops itself deterministically
in time [BRO90]. Such systems are characterized by three properties [BEC90]:

(i) they are dynamic;
(ii) they are complex;
(iii) they are iterative.

Examples of dynamical systems are found in various fields, like electronics, biology, chemistry,
economics, etc.

A discrete dynamical system may be thought of as a formula relating the value of a quantity at
successive discrete time intervals. If the time interval is allowed to tend to zero, then the formula
becomes a differential equation in the usual way [FALSO].

The problem with differential equations is the fact that they cannot always be solved in a closed form.
In those cases the solution must be approximated by discretization, that is, we get a iteration equation
which is initialized with a starting point, and the behaviour of the system is simulated over a certain
period of time. This behaviour can either be periodic or nonperiodic, and can depend strongly on the
initialized starting point. We will formally define a dynamical system in such way that it logically
matches the concepts that we have introduced so far.

4.1. Transformations

Definition 4.1. Let (X,d) be a metric space. A transformation on X is a function f : X — X, which
assigns exactly one point fix) € X to each pointx € X. If § C X then fi§) = { fix) : x € § }, and:

(i) fisoneto-oneif (Axy:x,y €E X:fx) =fy)=x=Yy);
(i) fisontoif (Ax:xE€E X:(Ey:yEX:fix)=y));

(iii) fis invertible if f is one-to-one and onto. In this case it is possible to define an inverse
transformation f* : X - Xby (Axy:x,y E X:y=f) e x =f'()). L4
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Definition 4.2. Let f: X — X be a transformation on a metric space (X,d). The forward n™ iterate
of fis denoted by f* and inductively defined by [LEW81]:

() fO0) =I(x) (i.e. the identity);
(i) fO@) =fx);
(iii) (An:n € N:f"Px) =fof () = f(fPx)).
If f is invertible then the backward n* iterate of f are transformations /™, inductively defined by:
0 R =f'@;
(i) (An:n€N:foOx) = fof @) = flo(fO)'(x) =f(S7r' ™) );
@(iii) (Amn:mn € Z: fPf®x) = f™"()).
Where © denotes the usual composition operation. Note: f®(x) is also denoted as f{x,) or as x,,, and

™) is also denoted as f'(x,) or x,_,.

Definition 4.3. Let f : X - X be a transformation on a metric space (X,d). A point x, € X such that
Sfxp) = x,is called a fixed point of the transformation [BAR88al]. L 4

Definition 4.4. Let f: X —» X be a transformation on a metric space (X,d). Then the Lipschitz
constant of f is defined by [HOR90,HUT811]:

Lip(Hh = (A xy:xy € X, x#y : d(fx),fy)) )

d(x.y)
=(Mins:s€ R:(Ar:¢t € M,x;ty;szt))
d@x,y)
If there is no real number s =1 then the supremum (or least upper bound) equals + oo. L 4

Definition 4.5. Let (X,d) be a metric space and let f: X — X be a transformation. If Lip(f) = s then:
(Axy:xy € X :d(fix), Ay)) < sdxy))

If s< oo then fis Lipschitz, if s< 1 then f is a contraction with contractivity factor s [HUT81]. ¢

Theorem 4.1. Let f: X — X be a contraction mapping on a complete metric space (X,d). Then f
possesses exactly one fixed point x, € X and the sequence { f”(x) : n = 0,1,2,...} converges to x;
(Ax:x € X:’!j.ng""(x) =X )

Proof. See IBAR88a]. [ |
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Theorem 4.2. Let (X,d) be a complete metric space and let f : X - X be a contraction mapping with
contractivity factor s € [0,1) and let the fixed point of f be x, € X. Then [BAR88a]:

(Ax:x € X:dxx) < (1 -5)'d(x, fix)) )
Proof. The distance function d(a,b) for fixed ¢ € X is continuous in b € X, hence:

d(x,x)
= ( theorem 4.1 )

d(x,lim f®(x))

= ( calculus )
limd(x,f ®(x))

= ( definition 4.2 )

lim Y7 d(f (), f O ()

< ( definition 4.5 )
d(x,fx) .!HBE I

iw]

= ( |s| <1, sum for infinite geometric series )

(1 - s)'d(x, fx))

Definition 4.6. A dynamical system is a 2-tuple (X, f), where f: X — X is a transformation on a
metric space (X,d). The orbit of a point x € X is the sequence { f®(x) : n = 0,1,2,...,00 }. ¢

Example 4.1. We calculate some points of the orbits of the following functions:

fx) =x,,, startpoint x, orbit of x,
o 0.3 {0.3,0.547..,0.740..,0.860..,...}
\/;"_ 3 {3,1.732..,1.316..,1.147..,...}
X2 0.3 {0.3,0.09,0.0081,0.00006561,...}
x? 3 §3{9.81,6561,43046721,...}
x2-1 -1 {-1,0,-1,0,-1,0,-1,0,...}
x2+1 -2 {-2,5,26,677,458330,...}

x - 89 o) - x27 3 {3,2.66666..,2.64583..,2.64575. .,...}

S )

We see that x, = 1 and x; = 0 are fixed points of both /x and x*. The lower formula constitutes the
Newton-Raphson method, which is often used for the approximation of a zero of a given function (in
this case g(x)). We will use the notation g*}(x) for the k* derivative of the function g(x). *
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In dynamical systems theory one is interested in what happens when a typical orbit is followed. The
orbit of a single point may be a geometrically complex set or, in other words, a fractal.

Definition 4.7. Let (X, f) be a dynamical system. A periodic point of f is a point x € X such that
Sf®k) = x for some n € N. If x is a periodic point of f then the period of x is the least n € N such
that f®(x) = x and the first n points of the orbit of x are all distinct. If x € X has period n, then the
orbit of x, which is given by:

{ X, %), fP00), fOX),..., f*) }

is a periodic orbit and is called an n-cycle [GUL92]. ¢

In example 4.1 the function «/x possesses a trivial 1-cycle {1} or fixed point 1 for x € (0,%). The
function x* possesses three trivial 1-cycles {0},{1},{+ oo} or fixed points 0,1,+ o for respectively
x € (-1,1), x € {-1,1} and x € R\[-1,1]. The function fix) = x* - 1 possesses a 2-cycle {-1,0} for
x € R and the function x*> + 1 possesses a fixed point + oo for x € R. The last function in example
4.1 possesses a fixed point 2.6457.. which is the zero of the function x* - 7.

Definition 4.8. Let (X, f) be a dynamical system and let x, € X be a fixed point of f. Let B be a
closed unit ball with center x; and radius ¢, thus B(x;,e) = {y € X : d(x;,y) < ¢ }. The point x; is
called an attractive fixed point of f if there is a number ¢ >0 such that fis a contraction mapping on
B(x;,¢). The point is called a repulsive fixed point of f if there are numbers ¢ >0 and C> 1 such that:

(Ay:y € B(x,e) : d(fix),fy)) = C-d(x;,y))

If fis differentiable at x, then the following holds [GUL92]:
@) if [f"(x)| <1 then x; is attracting (stability);
(i) if [f"(x)| >1 then x; is repelling (instability);

@iii) if [f"(x)| =1 then x, can be attracting, repelling or neither.
4.2. Graphical analysis of iterates

If we are able to render a reasonable precise graph of a given function f, then we may be able to
analyze graphically the orbits of various members of the domain of f. First we draw the graph of f,
along with the line fix) = x. To obtain the orbit of x;, first locate x, on the x-axis, then go in vertical
direction to the point (x,, fx,)). From there proceed in horizontal direction towards the line fix) = x,
to arrive at the point (fix,), fix,)), which we will denote (x,, x,). From then on we apply recursively
the same process, i.e. we obtain the orbit of x, as the sequence { f®(x,) : n = 0,1,2,...,00 }.
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Example 4.2. Consider the so called (eco)logistic map: f(x) = ux(1-x), x € [0,1], p € (0,). This
parametrized quadratic function has often be used by biologists to study the variation of population
sizes of biological organisms for which there is a constant supply of food and space. We can calculate
the fixed point(s) of fix) as follows:

If u € (0,1] then we have 1-1/p € (-e0,0], so in this case there is only one fixed point in the
interval [0,1], namely x, = 0. By contrast, when p> 1, there are two distinct fixed points in [0,1],
namely x, = 0 and x, = 1-1/p.

Next we will determine which fixed points are attracting and which are repelling. Since
SUG) = p-2ux, it follows that £1%0) = p and F(1-1/p) = p-2u(1-1/p) = 2-u. Fixed point 0 is
attracting if p € (0,1) and is repelling if p € (1,00), Fixed point 1-1/p is attracting if p € (1,3)
and is repelling if g € (3,%). In fig. 4.1 this is shown graphically. The orbits of a point x, are
shown for three p-values: p =0.8 € (0,1), p =29 € (1,3)and p =4 € (3,0).

@ f@® &
AN A A

1

ale
1

W= -

p=08

Figure 4.1. Graphical analysis of the logistic map for different u-values.

As we can see, the left map possesses an attracting fixed point 0, the middle map possesses an
attracting fixed point 1-1/p = 0.6551 and a repelling fixed point O and the right map possesses two
repelling fixed points 0 and 1-1/p = %. *

4.3. Attractors and bifurcations

We have seen that the amount and the behaviour of the fixed points can change, when the function
parameter (u in case of the logistic map) is changed. Before we are going to investigate this
phenomenon, we will give some more definitions that are necessary to describe it.
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Definition 4.9. Let (X, f) be a dynamical system and let 4, C X. We call A, the attractor of fif A,
is a closed set that is invariant under f, i.e. fld) = A4, such that [FAL90,GUL92]:

lim h(f®A4y),4) = 0 ¢

For example the attractor of the function fx) = x*-1 is the set {-1,0}, because f{~1) = 0 and A0) = -1
(see also example 4.1). So {{-1,0}) = {-~1,0} and, in addition, {-1,0} is a 2-cycle. Roughly speeking
one can say that the attractor is a set to which all nearby orbits converge.

In example 4.1 we saw that for p = 0.8 and p = 2.9 the attractor of f equals {0} and {0.6551..}
respectively. So it seems that the dynamics of f changes as the parameter changes. Up till now we
have only discussed attractive and repelling fixed points, but not the periodic points that are neither
attractive nor repelling.

Let us investigate the dynamics of the logistic map in a numerical way. We will try to find the
periodic points of the logistic map for some increasing values of u € (0,4]. In table 4.1 we iterate
the logistic map 82 times for 7 values of u € (0,4]. Each time we choose startvalue x, = 0.883. In
fact, we may have choosen any startvalue x, € (0,1). This doesn’t make difference for the outcome
of the iteration, but may only influence the amount of necessary iterations to iet the periodic points
converge to the same amount of decimals.

Table 4.1. Orbits of x, = 0.883 as successive iterates of x,,, = ux,(1-x,) forn = 0,1,..,82 and different u € (0,4].
p=0.5 p=15 | u=2.5 | p=3.295 | u=3.514 | u=3.557 | u=3.568

0.8830.. | 0.8830.. | 0.8830.. | 0.8830.. | 0.8830.. | 0.8830.. | 0.8830..
0.0516.. | 0.1549.. | 0.2582.. | 0.3404.. | 0.3630.. | 0.3674.. | 0.3686..
0.0244.. | 0.1964.. | 0.4789.. | 0.7398.. | 0.8125.. | 0.8267.. | 0.8304..

[ I - S

66 | 0.0000.. | 0.3333.. | 0.6000.. | 0.8225.. | 0.8243.. | 0.8318.. | 0.8303..
67 (| 0.0000.. | 0.3333.. | 0.6000.. [ 0.4809.. | 0.5089.. | 0.4974.. | 0.5025..
68 || 0.0000.. | 0.3333.. | 0.6000.. [ 0.8225.. | 0.8782.. | 0.8892.. | 0.8919..
69 || 0.0000.. | 0.3333.. | 0.6000.. | 0.4809.. | 0.3758.. | 0.3503.. | 0.3437..
70 (| 0.0000.. | 0.3333.. | 0.6000.. | 0.8225.. | 0.8243.. | 0.8096.. | 0.8049..
71 | 0.0000.. | 0.3333.. | 0.6000.. | 0.4809.. | 0.5089.. | 0.5482.. | 0.5602..
72 | 0.0000.. | 0.3333.. | 0.6000.. | 0.8225.. [ 0.8782.. | 0.8809.. | 0.8790..
73 || 0.0000.. | 0.3333.. | 0.6000.. | 0.4809.. | 0.3758.. | 0.3730.. | 0.3793..
74 | 0.0000.. | 0.3333.. | 0.6000.. | 0.8225.. | 0.8243.. | 0.8318.. | 0.8400..
75 || 0.0000.. | 0.3333.. | 0.6000.. | 0.4809.. [ 0.5089.. | 0.4974.. | 0.4794..
76 || 0.0000.. | 0.3333.. | 0.6000.. | 0.8225.. | 0.8782.. | 0.8892.. | 0.8904..
77 | 0.0000.. [ 0.3333.. | 0.6000.. | 0.4809.. | 0.3758.. | 0.3503.. | 0.3479..
78 | 0.0000.. | 0.3333.. | 0.6000.. | 0.8225.. | 0.8243.. | 0.8096.. | 0.8095..
79 || 0.0000.. | 0.3333.. | 0.6000.. [ 0.4809.. | 0.5089.. | 0.5482.. | 0.5502..
80 [ 0.0000.. [ 0.3333.. | 0.6000.. | 0.8225.. | 0.8782.. | 0.8809.. | 0.8830..
81 | 0.0000.. [ 0.3333.. | 0.6000.. | 0.4809.. | 0.3758.. | 0.3730.. | 0.3685S..
82 | 0.0000.. [ 0.3333.. | 0.6000.. | 0.8225.. | 0.8243.. | 0.8318.. | 0.8303..
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From table 4.1 we see that the logistic map has the following attractors:
(i) for u = 0.5 an attractive fixed point {0};
(ii) for u = 1.5 an attractive fixed point 1-1/(1.5) = {0.3333..};
(iii) for pu = 2.5 an attractive fixed point 1-1/(2.5) = {0.6000..};
(iv) for u = 3.295 a 2-cycle {0.8225..,0.4809..};
(v) for u =3.514 a 4-cycle {0.8243..,0.5089..,0.8782..,0.3758..};

(vi) for p = 3.557 an 8-cycle {0.8318..,0.4974..,0.8892..,0.3503..,0.8096..,0.5482..,
0.8809..,0.3730..};

(vii) for p = 3.568 a 16-cycle {0.8303..,0.5025..,0.8919..,0.3437..,0.8049..,0.5602..,
0.8790..,0.3793..,0.8400..,0.4794..,0.8904..,0.3479..,0.8095..,0.5502..,0.8830..,
0.3685..}.

It is clear that when u is increased, for certain values p, the period doubles from 2* to 2**'. Also,

when y is increased, it takes longer to converge to the associated 2*-cycle.

Definition 4.10. A one-parameter function family fix,u) has a bifurcation at y,, or bifurcates at p,,
if the number or nature (attracting vs. repelling) of periodic points of fix,u) changes as pu passes
through u,. In this case y, is said to be a bifurcation point for that family of functions [GUL92].¢

Feigenbaum found for the logistic map the following successive bifurcation points [FEI8O0]:

ko = 3.000000..
By = 3.449499.,
B = 3.544090..
wy = 3.564407..
Mo = 3.569946..

The sequence has a limit u, = 3.569946.. which is called the chaos criterium for the system
[MOO87]. Feigenbaum also noticed the following convergence rate in the sequence y, [FEI8O]:

5 = lim [ H

k -
e “‘¢1 “‘

= 4.669201..

The constant 6 is referred to as the Feigenbaum constant or the Feigenbaum ratio and has universal
validity. This means that it also holds for unimodal functions (i.e. functions with a single maximum)
as for instance fix) = usinmx, Ax) = xe *', Ax) = x(1+pu(1-x)), etc. The Feigenbaum ratio is as
characteristic for the period doubling scenarios as the number = is for the relation of the
circumference to the diameter of the circle [FAL90]. It must be noticed that the chaos criterium is
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system dependent (and therefore not universal), while the Feigenbaum constant is system independent
(and therefore universal).

One method of displaying the points at which a parametrized family of functions bifurcates, is by
means of a bifurcation diagram. This is a graph for which the horizontal axis represents the
parameter values p and the vertical axis represents the elements of the attractor 4, i.e. the periodic
points. The bifurcation diagram for the pu-values of table 4.1 and the bifurcation points Feigenbaum
found, is given in fig. 4.2.

1.0 Af

0.0 0s 1.0 15 20 25 30 3s 4.0

Figure 4.2. Construction of bifurcation diagram for the logistic map.

In case we are going to perform the iterations for small p-increments, we will obtain the bifurcation
diagram for f{x) as shown in fig. 4.3. This diagram contains the whole attractor 4, of the logistic map
for p € (0,4].

I ¢ B TSP FORP PP PP PP PPN ST SRR

0.8
0.6
0.4

02 - 4

00 0s 1.0 15 20 25

Figure 4.3. Bifurcation diagram of the logistic map.
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Zooming in on the bifurcation diagram shows that it possesses a self similar fractal structure, which
is scale-invariant. The attractor of a dynamical system is a "picture” of its behaviour. The periodic
fixed points are the solutions of the differential equation(s) which describe the system in the usual
way. From an attractor we can directly see for which u-values these differential equations have a
solution and for which they have not.

4.4. Rescaling function dynamics

In the former paragraph we have seen that the dynamics of the logistic map f changes as p is varied.
More specific, f undergoes period doubling, i.e. instead of having a stable k-cycle, the system gets
a stable 2k-cycle. Feigenbaum found that if f has a k-cycle {x,,...,x;} then f® (for n € [1,1+log,x])
possesses 2™ cycles of period 2"k which form a partition on the k-cycle of f. Eventually f¢***
possesses k fixed points x,,...,X;.

In general @™ can be recursively computed by f@™= f@ o f@, Suppose f©” has a finite cycle that
contains a fixed point x, = '4 for p = p,. Now we are going to increase g to u, so that the fixed point
of the cycle of f“™ nearest to x = % is again at x, = '2 with slope 0 (see fig. 4.4).

f(x) £
lﬂ ................................................ 1_‘ .................................................
0.875-1
o‘m_ ......................
0.384—{
| o
0 0s 0 05 1
__>x

Figure 4.4. Left: ffor u, = 3.2360, night: f® for u, = 3.4986.

Consider fig. 4.4. At the left we plotted f = ux(1-x) for u, = 3.2360 such that f possesses a 2-cycle
{0.5000..,0.8089..}, which contains x, = % as one of its two fixed points. Now we increase y until
S possesses a 4-cycle {0.3835..,0.8272..,0.5000..,0.8746..}, which again contains x, = '% as one of
its (in this case) four fixed points. This happens at u = u, = 3.4986. At the right we plotted
S = px(1-x)(1-px(1-x)) for u, = 3.4986. The maximum of f can be calculated as follows:
f(0.5) =3.2360-0.5(1-0.5) = 0.809. The right maximum of f® can be calculated as follows:
S@(0.8272) = (3.4986)+0.8272(1-0.8272)(1-3.4986 - 0.8272(1-0.8272)) = 0.875. Also, the local
minimum can be calculated as f®(0.5) = (3.4686)?+0.5(1-0.5)(1-3.4986 - 0.5(1-0.5)) = 0.384.

Next consider the contents of the dotted rectangle in the right graph of fig. 4.4 and compare this to
the whole left picture of fig. 4.4. We see that if the contents of the dotted rectangle are reflected



4?2 4. Dynamical systems

through (x, fix)) = (*4,%) and then magnified with a scaling factor «, these contents equal the whole
left picture. This rescaling is determined only by functional composition, so there is some function
g that, composed with itself, will reproduce itself in scale by -« and reflected through
(x, fix)) = (*4,%). This function has a quadratic maximum at x = %4, is symmetric about x = 4 and
can be scaled by hand to equal 1 as x = '%. Shifting coordinates so that x = 4 - x = 0 we have:

—ag(g(x/a))=g(x)

Substituting g(0) = 1 we have g(1) = -1/c.. There is a unique smooth solution to this equation which
(obtained numerically) determines [PEI80al:

o = 2.502907..

Like the Feigenbaum ratio 6, this so called renormalization factor (or rescaling factor) ¢ is a number
that can be measured in any phenomenon exhibiting period doubling, and thus also has universal
property. So we see that the relevant operation upon functions that underlies period doubling is
functional composition followed by magnification [FEI79,FEI80]. In general, the following rescaling
law holds [MOO87]:

me = p~ - ob*

Thus, knowing that two successive bifurcation points can give only an estimate of the chaos criterium
i, We obtain [MOO87]:

Optysy = by

Example 4.3. Consider the logistic map. We first calculate the successive bifurcation points pg, p,, #,
and p, from the known values of «, & and p.. Then we calculate the chaos criterium u, from the
known values of 8, p, and p,:

o = (3.569946..) - (2.502907..)(4.669201..)" = 3.033899..
B, = (3.569946..) - (2.502907..)(4.669201..)% = 3.455141..
= (3.569946..) - (2.502907..)(4.669201..)° = 3.545358..

i

(3.569946..) - (2.502907..)(4.669201..)* = 3.564680..

Po ~ ((4.669201..)(3.564407..) - (3.544090..))(4.669201.. - 1! = 3.569944..

These values are close to the values Feigenbaum found (see below definition 4.10). *
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4.5. Poincaré maps

Up till now we have been dealing with discrete dynamical systems, which are in fact approximations
of continuous dynamical systems. Thus, a continuous dynamical system is a generalization of a
(discrete) dynamical system (X, f) as defined in definition 4.6. Instead of iteration equations of the
form:

Xpey =P = fix)

continuous dynamical systems are described by differential equations of the form:

() = %"; - 8(x())

As in the discrete case, continuous dynamical systems give rise to attractors and repellers. When
X = R, the range of attractors for continuous dynamical systems is rather limited. The only attractors
possible are isolated points (x for which g(x) = 0) or closed loops. More complicated attractors can
not occur [FALS0]. Consequently, to find continuous dynamical systems with fractal attractors (or
strange attractors, see par. 5.2), we need to look at systems in three or more dimensions.

Linear differential equations (with g(x) a linear function of x) can be solved completely by classical
methods, the solutions involving periodic or exponential terms. However, even simple nonlinear
systems can lead to orbits of a highly intricate form. Nonlinear differential equations, particularly in
higher dimensions, are notoriously difficult to analyze. This must be done by a combination of
qualitative mathematical analysis and numerical approximation.

A standard approach in chaos theory to look at a three-dimensional continuous dynamical system g
is by means of a two-dimensional phase plane ®(¢) = x(f) x x"(¢), which is actually a "cross section”
of the three dimensional attractor. If the phase plane @ is a plane region perpendicular to the orbit
of the system, we may define the "first return map” f; ® — & by taking fix) as the point at which the
orbit through x = (x(z,),x"(z,)) next intersects ® (see fig. 4.5), so:

& (tar), X, 0) = fx(2,), X10,))
Then f is a discrete dynamical system on &. If f has an attractor 4, in @ it follows that the union of
the trajectories through the points of 4, is an attractor A4, of 7. Locally, A, looks like a product of 4,

and a line segment, and typically:

DyA) =1 + DyA)

Definition 4.11. Let (X,g) with X C R’ be a continuous three-dimensional dynamical system with
attactor A4,. Then the Poincaré map of g is defined as the two-dimensional (attractor 4, of the) discrete
dynamical system (x(f) X x")(r), f), where f and g are respectively defined by:

x(t,41),8(x(t,.1))) = fix(t,),8(x(t,))) with g(x() = xT)(e) ¢
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g(x(1)

Figure 4.5. The continuous dynamical system (X,g) induces a
discrete dynamical system (X, f) on a phase planc ®.

Example 4.4. Consider the forced nonlinear negative resistance oscillator with periodic excitation,

for which the circuit schematic and the voltage-current characteristic of the negative resistance are
given below [UED81]:

The differential equations of the system in terms of the variables as shown in the figure are given by:

Lﬂ + Ri + v =Ecoswt
dt

._I
a
I

We introduce new quantities conform [UED81]:

7=—L 3;2C = %-3 V=wm T = ! B=7E‘/; J«:—V‘/‘7

R? VYLC v |
Now we can rewrite the differential equations as a Van der Pol equation:

Z_:j + ;ﬂu(xz-l) + x> = Beosvr
T
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which can be rewritten as:
X2 + xy(2 - 1) + x° = Beoswr

By defining z = »r + 2k the system can be transformed to the three-dimensional state space
R? X R (mod 27), with coordinates x,y and z:

X =y

yU = yu(l - x? - x* + Bcosz

™~
—
=
=

=V

This system can be thought of as a cylindrical state space (a torus), where the values of z are
restricted to 2 € [0,27]. We can define the Poincaré map as:

Oy Xas) = f5,.3,)

n+l?

A picture of a part of the attractor of this system, together with Poincaré maps for some different
z-values, is given in fig. 4.6. Poincaré maps for some (B,») pairs are given in fig. 4.7. »*

o)

" Pz;)

Figure 4.6. Sketch of the attractor of a forced non-linear oscillator with some Poincaré maps.

The more "beautiful” the attractors, the less energy the dynamical system dissipates. The time ordered
sequence of phase plane filling points is nondeterministic, but the (fractal) structure which appears
(the attractor) is deterministic.

More information about chaotic dynamics in electronic circuits can be found in [BUS85,UED81].
Especially [BUS85] also deals with the period doubling scenario, visualized by bifurcation diagrams.
It appears to be the case that this type of electronic circuits has a period doubling scenario that obeys
the route to chaos, which is governed by the Feigenbaum constant §. This is also valid for coupled
circuits.



46

4. Dynamical systems

Figure 4.7, Poincaré maps for circuit of example 4.4 for (B,¥) is respectively (2.0,0.6), (2.4,0.7) and (17.0,4.0)
[VED81].
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Had Cleopatra’s nose been shorter, the whole face of the world
would have changed.
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Chaos

From fig. 4.3 we see that when u passes through g, = 3.569946.., the dynamical behaviour of the
logistic map becomes chaotic, i.e. unpredictable. This means that there is no unique ordered finite
n-cycle anymore. We also see that the chaotic region (u. .4] contains "windows of order”, or periodic
windows, where finite cycles occur. We can define this chaotic behaviour formally.

Definition 5.1. Let (X, f) be a dynamical system. Then f: X - X is chaotic if it satisfies at least one
of the following conditions:

(i) fhas a positive Lyapunov exponent at each point in its domain that is not eventually
periodic [GUL92,MQ087];

(i) fhas a strange attractor [MOO87];
(iii) fhas positive entropy [BROSO0];
(iv) f has sensitive dependence on initial conditions [FAL90,GUL92];

(v) fhas a 3-cycle [GUL92]. ¢

We will investigate all five criteria for chaos as mentioned in the definition above.

S.1. Lyapunov exponents

Definition 5.2. Let (X, f) be a dynamical system and let X C R be a bounded interval. Furtermore,
let f: X = X be a one-dimensional differentiable function on X. Define the Lyapunov exponent of f
atx € X as [BRO90,GUL92]:

n~1
M@ = lim LIn|¢)09| = lim - 3 Inlft,)
k=0
If A(x) is dependent of x, then the common value of A(x) is denoted by A and is called the Lyapunov
exponent of f. *

eponent off.
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The Lyapunov exponent of x measures whether and how strong x is repelling or attracting the orbit
of f[BROSO].

Example 5.1. From example 4.2 we know that for u € (1,3) the logistic map possesses an attracting
fixed point x, = 1 - 1/u. This means that in case n increases without bound, all points x € (0,1) will
eventually be equal to x,. In other words:

(Ax:x € (0,1): limf®x) =1-=)

-

Since fU(1 - 1/p) = 2 - p, we get:
(Ax:x € (0,1 : lim (f®)x) = 2-p )

and thus:

(Ax:x € (O : lim %Eln[fm(x‘ﬂ ) & (Ax:x € ©1):1n]2 - | )

k=0

Since the final expression is independent of the number x € (0,1), we conclude that the Lyapunov
exponent for fix) = ux(1 -x) and p € (1,3)equals A =1In |2 -pu |.

If the Lyapunov exponents for all values p € (0,4] are calculated, we get the graph of fig. 5.1.

1.0 ———————7———

Lyspunov exponent A

33 * 36 38 40
parameter p

Flgure 5.1. Lyapunov exponents for the logistic map [MOO87].

If we compare fig. 5.1 with fig. 4.3 we notice that beyond p., = 3.569946.. the Lyapunov exponent
becomes positive, except for the u-values where the bifurcation diagram shows periodic windows. So
the logistic map is chaotic for p 2 u.,.

Definition 5.3. Let (X, f) be a dynamical system and let X C R’ be a bounded region. Furthermore,
let f: X = X be a continuously differentiable two-dimensional function on X. Also assume that f has
an attractor A, and that B(x,e) = {y € X : d(x,y) < €} is a unit ball with center x € A,and radius e.
The first derivative (f®)(x) is a linear mapping which maps the unit ball in n steps into an ellipse
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with major and minor radii of lengts ea,(x) and eb,(x) respectively (see fig. 5.2). We define the
Lyapunov exponents of fat x € X as the average logarithmic rate of growth of these radii lengths
as n increases, so [FAL90,GUL92]:

NG = lim _’l;ln a() ad A\@ = lim .'llln b

If \,(x) and N\,(x) are independent of x, then the common values of A (x) and A,(x) are denoted by A,
and A, respectively and are called the Lyapunov exponents of f. L4

(f®)"(B(x,€))

n iterations

(f ®) )ll]

Figure 5.2. The unit ball is deformed into an ellipse by iteration
under f.

As e - 0 then (F®)(B(x,e)) will typically be close to an ellipse with radii of lengths ee™ and ee™
respectively [FAL90].

Definition 5.4. Let (X, f) be a dynamical system with attractor A, and Lyapunov exponents A, and
M. Assume that \,>0>\, We define the Lyapunov dimension of the attractor A, as
[GUL92,MO087]:

A
D) =1-3

Example 5.2. Consider the so called bakers’ map, in a slightly different form also known as the
horseshoe map, f: {0,1]* - [0,1]? defined by:

@x,p(-1)+1) x€[0.1], 1EQ.D)

fixy) =
(zx‘l,ﬂ)’) x€ (‘;’ 1]9 4 € (0’—;)

This transformation may be thought of as stretching the unit square [0,1] x [0,1] into a 2 X p
rectangle, cutting it into two 1 X pu rectangles and placing these above each other with a gap of 1-2p
in between (see fig. 5.3). Then the attractor A =f ®([0,1] x [0,1]) of the transformation is an
increasing sequence of sets with [0,1] x [0,1] comprising into 2" horizontal strips of height p”
separated by gaps of at least (1-2u)".
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e

Figure 5.3. From upper left to lower right: six successive
iterations of the baker’s map for u = .

The first derivative of fx,y), provided that x# 4, is given by:

1 20 ot 2 0
=g, | = e =g .

Hence a,(x,y) = 2" and b,(x,y) = p". The Lyapunov exponents of f are given by:

Ay = lim Ling(xy) = lim Llin2® = m2
- n

’I-'@n

A&y) = lim %lnbn(x,y) = tim Ling = Ing
n=-» n-o>o n
Because p € (0,'4), the inequality A,>0> A, holds, and the Lyapunov dimension of the attractor 4,
of the bakers’ map can be calculated as follows:

A
DMy =1-2=1-12¢ (2

A, Inp *

The Lyapunov dimension reflects the frequency with which points in the attractor are visited by orbits
of various starting points [GUL92].

5.2. Strange attractors

Definition S.5. Let (X, f) be a dynamical system with attractor 4,. We say that A, is a strange
attractor if A, has a non-integer Lyapunov dimension and we say that 4, is a chaotic attractor if A,
has a Lyapunov dimension which exceeds 1 [GUL92]. *

In example 5.2 we found for the bakers’ map that D,(4) € (1,2), so the bakers’ map has a strange
attractor (which is also chaotic) and thus the bakers’ map is chaotic.
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5.3. Entropy

In chapter 3 We have seen that the capacity dimension D is a measure for the space-filling properties
of an attractor. In the same way the Lyapunov dimension D, is a measure for the frequency with
which points in the attractor are visited by orbits of various starting points. We will introduce another
dimension that is similar to the capacity dimension, but also tries to account for the frequency with
which the trajectory visits each point of the attractor.

To calculate this entropy dimension, one counts the number of points in each of N just-touching boxes
which cover the attractor and the probability of finding a point in each particular box.

Definition 5.6. Let (X, f) be a dynamical system with attractor 4. We denote by N(4;,¢) the smallest
number of two-dimensional just-touching boxes of sidelength ¢, required to completely cover 4. We
number each box with a unique code ¢; and denote the alphabet of fby the sequence C = {c,,...,Cx.1}
[MOO87]. We represent the orbit of £ by a sequence { ¢; : i € {0,...,N-1} } where N denotes the
amount of different points in the orbit, i.e. the total amount of code symbols. We define the
self-information or surprise value of symbol c; as [GAL68]:

N-1
I(c;) = -log, p, [bits] with p, = iNC_‘ and Y p, =1

i=0

So p; denotes the probability that the orbit of f visits the box with code symbol c;. ¢

We are also free to use the natural logarithm (In) in case of the 2-based logarithm (log,), but in that
case the unity of I(c;) becomes natural digits ([nars]) in case of binary digits ([bits]).

The self-information is a measure for the predictability of the distribution of the points x € 4, over
A;. The more predictable the system, the higher the self-information. If 4, consists of a single point
then the self-information becomes -log,1 = 0 [bits]. So the behaviour is fully predictable or, in other
words, we are not at all surprised by this outcome.

Definition 5.7. Let (X, f) be a dynamical system and let its attractor 4, be encoded in a similar way
as described in definition 5.6. The average value of the self-information of all code symbols ¢, is
called the entropy of f and is denoted by [BRO90,FAL90,FED90,MO0871:

N-1

H(f) = -Y p,log,p, [bits/(code symbol)] .
i=0

The entropy is a measure for the unpredictability of a system. That is, for a uniform probability in
each box, p; equals 1/N and thus H(f) reaches its maximum:

N-1
Hf) < -3 N 1og2_11\_( - —N%’logzN = log,N [bits/(code symbol)]

i=0

If all points are located in one box then H(f) = 0. One can also look upon the entropy as the amount
of freedom the system has. The more freedom, the less predictable (deterministic) the system behaves.
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Our alphabet consists of N code symbols, so the theoretical amount of possible different orbits of
length k is equal to N*. But the system doesn’t necessarily have the capability to generate all this
orbits. The smaller the entropy of a system, the less different orbits it can generate. A fully
predictable system will generate only one possible orbit of length N. Let H,(e) denote the amount of
orbits of length k that the system is able to generate, then clearly N < H(¢) < N*. We will now
determine how H,(e) is related to k.

Definition 5.8. Let (X, f) be a dynamical system and let its attractor A, be encoded in a similar way
as described in definition 5.6. The e-entropy of f is defined as [BRO90]:

log,H,(¢)
k

H(f,e) = lim [bits] .

Thus, only if H(¢) = N* then H(f,e) = H(f) = log,N. Without proof we state that the following
equation holds (see [BRO90,M0087]):

H,,\(e) = H (2%
or, in case the natural logarithm is used in definition 5.8 for the e-entropy:

H.\(6) = H(e)e" ™

Definition 5.9. Let (X, f) be a dynamical system and let its attractor 4, be encoded in a similar way
as described in definition 5.6. The entropy dimension (also called the information dimension) of f is
defined as [FED89,MO087]:

N-1

Y plog,p,

im_ H() . i
D, = lim = lim
N = log,(1/e) «<° log,e .

Example 5.3. Consider the bakers’ map (see example 5.2). The attractor 4, = f ®((0,1] x [0,1]) of
this map consists of 2" horizontal strips of length 1 and height x". So the amount of possible orbits
of length k is H,(¢) = 2" and the amount of possible orbits of length k+1 is H,,,(e) = 2"*' = 2H,(¢)
for k=2. Since we know that H,(e) = 2", it follows that H,(¢) = 2"**. So the e-entropy yields:

log,H,(€) log, 271 lim (n+k-1)log,2

=lim—____ =1i

k- k ks

Hf¢) = lim
- qig_;”_;l + Dlog,2 = log,2 = 1 [bif]

Thus, each time the amount of possible orbits (states) doubles, we loose 1 [bit] of information about
the predictability of the system behaviour. If we cover all 2" horizontal strips of the bakers’ map with
boxes of sidelength ¢ = u", then we need N = 2"y boxes to completely cover the attractor 4. In this
case p; = 1/N = 2™u", so we can calculate the entropy of f as:
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N-1 Zum-1

2
H(f) = -3 plogp, = - 3 27plog, @) = -2 u"logz(%)" = nlogz(;)

i=0 i=0

Because H(f)>0 for p € (0,'%%), the bakers’ map has positive entropy and thus is chaotic. We can
also calculate the information dimension of f as:

nlog, (2/ -nlo /2 lo - log,2 log,2

<0 log,(1/e) "= log,u™ s==  -nlog,p log,u log,p

In case p = ¥ this yields D(f) = 1.63, and we see that D,(f) = D([0,1] X Cantor set) = D([0,1])
+ D.(Cantor set) =~ 1 + 0.63. *

5.4. Sensitive dependence on initial conditions

We have seen that the logistic map becomes chaotic for p>pu, which means that (except for the
periodic windows) there are no unique ordered finite n-cycles anymore. But there is more to say.

Example 5.4. Consider the logistic map (see example 4.2). We will investigate the orbits for
p = 3.557 and p = 4, each for two different starting values.

Table 5.1. Orbits of the logistic map for u = 3.557 and u = 4, for different starting values.

n u=3.557 u=3.557 p=4 p=4

0 0.7300.. 0.8830.. 0.88300000000.. 0.88300000001..

1 0.7010.. 0.3674.. 0.41324400000.. 0.41324399997..

2 0.7454.. 0.8267.. 0.96989358586.. 0.96989358584..
32 0.8809.. 0.8809.. 0.01195142608.. 0.00186792168..
33 0.3731.. 0.3730.. 0.04723435801.. 0.00745773022..
34 0.8319.. 0.8318.. 0.18001309374.. 0.02960844992 ..
42 0.8318.. 0.8318.. 0.63954498650.. 0.08079533875..
43 0.4974.. 0.4974.. 0.92210878698.. 0.29706980796..
44 || 0.8892.. 0.8892.. 0.28729668783.. 0.83527734864..
45 0.3503.. 0.3503.. 0.81902920397.. 0.55035639796..
46 || 0.8096.. 0.8096.. 0.59288146805.. 0.98985693274..
47 0.5482.. 0.5482.. 0.96549213157.. 0.04016074180..
48 | 0.8809.. 0.8809.. 0.13326830179.. 0.15419142648..
49 0.3730.. 0.3730.. 0.46203144610.. 0.52166572192..
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We see that for p = 3.557 and totally different startvalues 0.8830 and 0.7300, the logistic map settles
down to a stable 8-cycle {0.8318..,0.4974..,0.8892..,0.3503..,0.8096..,0.5482..,0.8809..,0.3730..}
as we also noticed from table 4.1. But for u = 4 and almost identical startvalues 0.88300000000 and
0.88300000001 the logistic map doesn’t converge at all. Besides chaotic behaviour, we see that the
small difference of 10-"° in startvalues causes the system to behave totally different after relatively few
iterations. *

The first one who noticed this kind of behaviour was Lorenz when he simulated a simple weather
model, consisting of only three differential equations [LOR63]. This effect was called the butterfly
effect, referring to the small scale wing movement of a butterfly in Brazil that is iterated by a
dynamical weather system and could thus eventually cause a large scale tornado in Texas. Thus we
see a propagation of the same behaviour through all scales. The butterfly effect acquired a technical
name: sensitive dependence on initial conditions.

Definition 5.10. Let (X, f) be a dynamical system. Then f: X — X has sensitive dependence on
initial conditions, or just sensitive dependence, if [GUL92]:

(Ae:e>0:(Exyn:x,y€EX,nEN:|x-y| <e A [fP®) -0 >¢)) ¢

Suppose that an iteration map x,,, = fix,) has an initial error Ax,. So we get:
xn+l + Axn+l =.’(xn + Axu)

The right part of this equality can be approximated with a Taylor sequence:

+1

Ax, Ax; ax, Ax,
f&)+ax, fOG) + o fAE) + 2 fP) + .+ —nf) + SUE)
! ! n! (n+1)!

With x,,, = fix,) we get:
Ax,., = Ax,fx,)

So an initial error Ax, causes for x, an error:

Axn = AxofIf"](x,'-l)

il
We can rewrite this equation in the form:
Ax, = Axe™  with A = lim 1Y injfi, )|
A= p Py

The Lyapunov exponent A is a measure for the average increase of the error per iteration. If Ax, = 1
then the calculated value x, has become totally unreliable. This moment will occur from iteration:

n = %lnAJc0
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The logistic map for u = 4 is chaotic, since it has sensitive dependence on initial conditions:

x-y| <107 A [f®)-f20)| > 107

Example 5.5. Consider the logistic map for u = 4. From example 5.1 we know that
A =1n|2-pu| =1n2. From table 5.1 we see that for p = 4 from iteration n = 34 and onwards the
values of the orbits for x, = 0.88300000000.. and x, = 0.88300000001.. differ in all decimals. So at
iteration n = 34, all significant decimals have been lost. This means that the computing device with
which those iterations were performed, stores floating point numbers with an accuracy of:

Axy = e™ = ¢>2 = 2% = 10 [decimals] *

So we loose 1 [bif] of accuracy per iteration. This means that for the accurate prediction of the value
of x, one needs to have x, with an accuracy of at least n [bits]. So the calculation time per iteration
is O(n) and thus the prediction of x, is O(n?). The far future (large n) is unpredictable; there exists
a prediction horizon. By the time we have calculated x,, the system is already beyond this point.

Example 5.6. Assume that we want to make a weather forecast. We have available a computerized
weather model and a sensor which measures the barometric pressure. Our computer has an execution
time of ¢ [us/instruction] and the sensor is able to give readings of an infinite accuracy. For each
iteration of the weather model, k [instructions] must be calculated, so this takes a calculation time of
kt [us/iteration]. For the prediction of x, (the weather behaviour after n iterations), we need to
initialize the weather model with a sensor reading x, of n [decimals]. The computational time
complexity is O(n*), where n is the amount of decimals, i.e. the input length. So, to calculate x, we
need n’kt [us] of computation time. Meanwhile, the real weather is "iterating" with a constant rate
and performs with a linear time complexity O(n). We can draw the graphs of the time complexity
function T{f™) of the real weather system and of our model (see figure below).

U ®) model: n*kt |
T real weather: 11
0 _b —on

There is a unique solution for the intersection point of the two graphs: n = n’kt = n = (k). This is
the prediction horizon of our weather forecast, because at the time our mode! is calculating this value,
we can no longer speak of a prediction, since the real weather system has also arrived at this point.
Since there will never be computers with zero execution time per instruction and each computer
program contains at least one instruction, there will always be a finite prediction horizon, which
prevents the future beyond to be predictable. *
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Example 5.7. Lorenz estimated the prediction horizon of the real weather system to be 2 [weeks], but
at present the weather forecasters estimate it to be at most 7 [days]. Several European countries
participate in the European Centre for Medium-range Weather Forecasts (ECMWF), which is located
in Reading (UK). The ,computers of the ECMWF perform calculations of the weather model on
different grids which lay on concentric spheres. These spheres are a;{?oximately 1 [kan] apart and the
points within a grid are approximately 100 [km] apart. The model is periodically initialized by
sensordata like pressure, velocity, temperature and humidity of the air, which are measured at the
same time all over the world at the gridpoints. This is done by means of radio probes, weather
balloons and satellites. After the model is initialized, the computers start calculating the "orbit" of the
weather with discrete steps of 10 [minutes].

Experience learns that after 5 to 6 [days] the errors have grown so big that the forecast has become
useless and the model has to be re-initialized with up-do-date sensordata. There are meteorologists
who think that the situation can be improved by increasing the amount of grid points, which implies
that the computer power and the amount of sensors have to be increased correspondingly. Let us see
if they are right.

It is true that the weather model is blind as to the space between the grid points. The smallest weather
structure the model takes into account is a depression, which has a size of about 1000 [km] and exists
for about 5 [days]. This is the reason we can only make reliable predictions up to 5 [days]. The
formation of a depression is usually caused by a shower complex on a smaller scale, which is
amplified under iteration of the weather system. A shower complex has a typical size of at most 100
[km] and a duration of about 1 [day]. If we want to take into account such shower complexes, we
must be able to measure at a grid of 10 X 10 [kmn]. This requires both the computer power and the
amount of sensor stations to be increased with a factor 100. This will cost an enormous amount of
money and the gain in prediction time will be equal to the duration of existence of a shower complex,
namely 1 [day]. So, we now can make reliable predictions up to 6 [days]. The formation of a shower
complex is caused by coherent structures on an even smaller scale of 10 [km]. If we increase the
computer power and amount of grid points again with a factor 100, we will be able to predict those
coherent structures. This time the gain in prediction time will be equal to the duration of existence
of a coherent structure: 5 [hours]. So, we now can make reliable predictions up to 6.2 [days]. We
can continue this process until we reach the very small scale on which a butterfly lives. Its wing flaps
cause little turbulences of about 10 [cm] with a duration of about 1 [sec].

It is obvious that the result of this adventure will be that we have spent an astronomical amount of
money and we still are not able to make reliable weather predictions over more than 7 [days].

5.5. Period 3 implies chaos

In fig. 4.3 we see that the logistic map becomes chaotic for p > p., but nevertheless, there are
periodic windows for some p € (u,,4].

Theorem 5.1. (Li-Yorke theorem). Let (X, f) be a dynamical system and suppose that f is continuous
on the closed interval X with AX) € X. If fhas a 3-cycle then f has n-cycles for all n € N*.
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Proof. We will not give the detailed proof which can be found in [LIY75]. The proof is based on the
following idea. Assume that a<b< ¢ and that fla) = b, Ab) = c and fc) = a. It can be proven that
f must have a 1-cycle and also a 2-cycle. Let n>3 then f has all n-cycles. The kernel of this proof
is to show that there is a point p € [b,c] such that:

@) f®p) € [b,c] fork =1,23,...,n-2;

(i) @) € (a.b);

(i) f® =pandp € [b,c];
then automatically p will have period n. |
The Li-Yorke theorem says that if £ has a period-3 point, then it has points of all other periods. But
suppose we can only show that f has for example a period-5 point. Then must f still have points of
all periods ?
Definition 5.11. The Sharkovsky ordering of the positive integers is defined as [GUL92,PEI92]:

3p5p7p ........ 2302552 7p ........ >22:3p22.5p2%Tp ........ >2°p2%p2p 1

odd integers 2+ (odd integers) 22« (0odd integers) powers of 2
So m v n indicates that m appears before n in the Sharkovsky ordering. Thus 17> 14 (because
14 = 2-7) and 40 > 64 (because 40 = 2°-5 and 64 = 2¢). Since every positive integer can be written

as 2*-(odd integer) for a suitable nonnegative integer k and a suitable odd integer, the Sharkovsky
ordering is a permutation on N*. A4

Theorem 5.2. (Sharkovsky theorem). Let (X, f) be a dynamical system and let f be continuous on the
closed interval X with AX) € X. If fhas an m-cycle, then f has n-cycles for all n such that m» n.

Proof. See [BRO90]. ||

By letting m = 3, we see that the Li-Yorke theorem is a direct implication of the Sharkovsky theorem.
Moreover, from the Sharkovsky ordering we can imagine why the period-5 window in fig. 4.3 is
located to the left of the large period-3 window.

The logistic map for p = 3.829 possesses an attracting 3-cycle {0.1576..,0.5085..,0.9569..}, because
f(0.1576..) = 0.508S.. and £(0.5085..) = 0.9569.. and £(0.9569..) = 0.1576.., so the logistic map
is chaotic for u € (u.,4] (see fig. 5.4).
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Figure 5.4. The logistic map possesses an attracting 3-cycle for
u = 3.829.
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Whence is it thas Nature doth nothing in vain and whence arises
all thas order and beauty which we see in the world ?

Sir Isaac Newton (1642 - 1727) (ADL77] Chapter

Attractor basin boundaries

Many of the beautiful exotic sets that have appeared on calendars and covers of magazines are sets
which can be described in terms of iterates of complex functions. In this chapter we will describe the
most famous of such sets, because we feel that we would be incomplete if we didn’t.

Definition 6.1. Let (X, f) be a dynamical system with attractor 4,. The basin of attraction B, of the
attractor A4, consists of all x € X such that [GUL92]:

lim fO() € 4, ¢

Definition 6.2. Let (X, f) be a dynamical system with attractor 4,. The basin boundary of f is the
set that lies between the basin of attraction of 4, and infinity [GUL92]. ¢

Example 6.1. Consider the dynamical system (R, fix) = x*). This system has three fixed points 0,1
and oo. We know that:

0 for x € (-1,1)

lim fix) = 1 for x € {-1,1}
oo for x € R\[-1,1]

The attractor of f is given by 4, = {0,00}. The basin of attraction of O is the interval (-1,1) and the
basin of attraction of oo is given by R\[-1,1]. The basin boundary of f is given by {-1,1}. *

6.1. Julia Sets

Definition 6.3. Let (C,f) be a dynamical system. The basin boundary of fis called the Julia set and
is denoted by J(f). The Julia set can also be defined as the smallest closed set that contains all
repelling periodic points of f [DEV90,PEI88]. ¢

For example J(z*) with z € Cis a circle of radius 1 centered around the origin of the complex plane.
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Example 6.2. Consider the transformation f : C - C given by fiz) = z> + c. In fig. 6.1 eight Julia
sets of f have been plotted in the complex z-plane for different values of c.

(a) ()

(r}

Figure 6.1, Julia sets of fz7) = 2 + c for different c, plotted in the complex z-plane [FAL90].

The eight Julia sets J(f) in fig. 6.1 have the following characteristics:

a) ¢ = -0.1 + 0.1i, fhas an attractive fixed point and J is a quasi-circle;

b) ¢ = -0.5 + 0.5i, fhas an attractive fixed point;

¢) ¢ = -1 + 0.1i, fhas an attractive 2-cycle;

d) ¢ = -0.2 + 0.75i, fhas an attractive 3-cycle;

e) ¢ = 0.25 + 0.55i, fhas an attractive 4-cycle;

f) ¢ = -0.5 + 0.55i, f has an attractive 5-cycle;

g) ¢ = 0.66i, fis chaotic and J is totally disconnected;

h) ¢ = -i, f{0) induces a 2-cycle and J is a dendrite. *
The Julia set is named after the french mathematician Julia, who first studied this kind of sets in the
early twentieth century. The Julia-Fatou dichotomy for quadratic polynomials establishes that for any
choice of c, the resulting attractor is classified by one of only two possible characteristic case: Either
the attractor is mathematically connected (one piece) or mathematically a cloud of fractal dust (a cloud

of infinitely many points, like a Cantor set) [PEI89]. Julia sets of other complex functions, such as:
fi2) =e*, fz) = (¢’ + 0.1)e* and fz) = (1 + ci)sinz, can be found in [PEI88].
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6.2. Mandelbrot sets

We now specialize to the case of quadratic functions on C. We study Julia sets of polynomials of the
form fiz) = 22 + c.

Definition 6.4. Let (C,f) be a dynamical system. The set of parameters ¢ € C for which the Julia
set of fis connected is called the Mandelbrot set and denoted by M(f). Thus:
M(f) = { c € C: J(f) is connected }
={c€ C:{f"0):n=123,..,0o} is bounded } ¢
The Mandelbrot set is named after the french mathematician Mandelbrot, who was the first to render
this set with a computer at March 1* 1980. His ingenuity was to look at complex numbers (a plane)

instead of real numbers (a line) to study iteration processes.

From now on we will refer to J and M as respectively the Julia set and the Mandelbrot set of the
function fiz) = 2 + c. In fig. 6.2 M is plotted in the complex c-plane.

-+

—_— b -l —r g

n A . S L L J_1
—24 =20 —16 -1.2 —-06 -02 0 02 04 06 08

Figure 6.2. Mandelbrot set for f{z) = 2 + c, plotted in the complex c-plane [PEI86].

The Mandelbrot set is a fractal and it combines aspects of self-similarity with the properties of infinite
change. The basin boundary of M lies between the stable (black) and instable (white) regions. This
border can be zoomed in upon endlessly and still new details will appear. Each time we zoom in on
M we are looking at this set at a smaller scale. Here again, we see that the amount of detail is scale-
invariant, which is true for all fractals. But if we want to determine the exact basin boundary of M,
we will not succeed. This is exactly where chaos is all about and shows what sensitive dependence
on initial conditions means. In fig. 6.3 successive zoomings of M are plotted.
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Figure 6.3. Successive zooms into the Mandelbrot set M [PEI92].

Since M consists of all c-values for which J is bounded, M can be considered as a map of the Julia
sets. This is illustrated in fig. 6.4, where The Julia sets for various points ¢ € M are plotted in more
detail. In fact, these Julia sets are the same as in fig. 6.1.
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Figure 6.4. Julia sets for various points ¢ € M [FAL90].

Theorem 6.1, The dynamical systems (C, fiz) = 2> + ¢) and ([0,1] X [0,1], fix) = px(1 - x)) are
equivalent.

Proof. Let fix) = pux(1 - x), let z = -u(x - %) and let fAz) = -p(Ax) - ). Then clearly
= -z/u + %% and:

f2)
= ( substitution )

-p(ux(l - x) - 4)

= ( substitution )

-pu(=z/p + )1 - (<z/p + '4)) - 14)
= ( calculus )

-u((-z + %)/ + ) - '4)

= ( calculus )

2+ (%’ + Yap)

= ( substitution )

Z+c with ¢=-%p+ %y |
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S0 fix) = ux(1 - x) is equivalent to Az) = x* + c withx = -z/u + % and ¢ = -%u® + %pu. If we plot
the bifurcation diagram for Az) = x*> + ¢ for real parameter values ¢ and compare this diagram to the
Mandelbrot set M, we get fig. 6.5.

X

Figure 6.5. Rclation between M and the bifurcation
diagram of f when ¢ is varied as a real parameter
[PEI92].

From fig. 6.5 we see that bifurcations correspond to budding in M. Periodic windows interrupting
the chaotic veil of the bifurcation diagram correspond to small copies of M located on the "main
antenna”. Also notice that the ratio of the radii of the successive buds of M is equal to the
Feigenbaum constant § = 4.669201.. Mandelbrot sets hiave been observed to appear in many nonlinear
dynamical systems, where there is competition between several points of attraction and where the
competitive situation depends on a parameter. In this sense the Mandelbrot set is a universal
mathematical constant, like the Feigenbaum constant.

Each Mandelbrot set can be classified as a grammar for the corresponding Julia-set language. It can
be seen as a dictionary of all possible elements of a dynamical system (C, f). Magnifying the
Mandelbrot set on a point ¢ € M by about 10°, we see a structure that is similar to the corresponding
Julia set for that particular c-value. In this sense the Mandelbrot set can be seen an an image
compressor of infinitely many Julia sets, the entire Julia-set language [PEI89].

In 1982 Douady and Hubbard proved that the Mandelbrot set for the family of dynamical systems
{(C,2> + ¢) : ¢ € C} is connected [DOU82].
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There is no royal road 1o geometry.

Euclid (300 B.C.) IDARBO) Chapter

Affine transformations

We have defined a dynamical system to be a 2-tuple (X, f), where f is an arbitrary transformation.
We will now focus on a special kind of two-dimensional transformation, which is important and which
is frequently used in image processing applications, namely the affine transformation w.

7.1. Geometrical definition

Definition 7.1. Let (X,w) be a dynamical system. A transformation w : R? - R? of the form:
wix,,x,) = (ax, + bx, + e, cx, + dx, + f)

with a,b,c,d,e, f € R, is called a (two-dimensional) affine transformation. Often the following
equivalent notations are used:

X, a bl |x, e
wx) = wix,,x,) = w[xz] = [c d] [xz] + [f] = Ax + ¢t

where the 2 X 2 real-valued matrix 4 deforms Euclidian space relative to the origin and where the
vector t denotes a translation or shift, also relative to the origin. The matrix 4 can always be written
in the form:

ab rcos -ssiny
4= c d| ~ | rsin6 SCOSY
where (r,6) and (s,y + '47) are the polar coordinates of respectively the points (a,c) and (b,d). ¢

Affine transformations can rotate, scale, translate and shear an image. Parallel lines are invariant
under affine transformations and thus an affine transformation maps parallellograms to parallellograms
[SNAS89]. If an affine transformation is written in the form:

X, rcosf -ssiny | |x, h
w = +
X, rsinf scosy | |x, k
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then we will refer to the parameters by the operation they actually perform, thus:

r = x scale factor (xscaling);
s =y scale factor (yscaling);
0 = x rotation angle (xrotation);
¥ =y rotation angle (yrotation);
h = x translation (xtranslation);,
k =y translation (ytranslation).

Example 7.1. Consider the affine transformation w : R?> - R?, which is given by:
wx,,x) = (0.625x, - 0.125x, + 2,-0.25x, + 0.75x, + 2.5)

A graphical illustration of this transformation applied on a square is given below:

(1253.5)
3+ 2.5,3)
24+ (152
Ly 1 1,1 2.75,1.5)
— x
-1 0 '-.::‘ 1 2 3
Cl-h -1 e

In case of Carthesian coordiates, we can also describe the transformation in polar coordinates, which
can be calculated as follows:

r=ya? + c? = /(0.6257 + (0.257 = 0.67

s = yb? + d? = /(-0.125¢ + (0.75)> = 0.76

0 = -1 g = -1 0.625 =-21.8° ~ -1 _0.25 = -1 E
cos [r] cos [ 0.67 96| T |7

¥ = cos™! 4| - cos™! 0751 - 9.5° = sin™! 0.1251 _ sin™ -
s 0.76 0.76 s
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So we can express the affine transformation both in Carthesian coordinates as in polar coordinates:
w(x,,X,) = (ax;, + bx, + e, cx, + dx, + f) = (0.625x, - 0.125x, + 2,-0.25x, + 0.75x, + 2.5)

w(x,,x,) = (rx,cosf — sx;siny + e, rx;sinf + sx,cosy + f)
= (0.67x,cos(-21.8°) -0.76x,5in(9.5°) + e, 0.67x,sin(-21.8°) + 0.76x,c0s(9.5°) + f)

1 6 = -21.8°
b.d) = (-0.125075) . | 4 ¥ =95
y+¥an = 54.5°
05 !

(@) = (0.625,-0.25)

Thus, the following points are equivalent (see figure above):

@) = (0.625,-0.25) & (r,6) = (0.67,21.8°)
(b.d) = (-0.125,0.75) & (s,y + %) = (0.76,54.5°) *

Theorem 7.1. Let w, : R> = R and w, : R? - R? both be affine transformations then so is w, = w,ow,.
Proof. Let wy(x) and w,(x) be affine transformations, which are given by:

wi(x) = wi(x,x) = (@x; + bx, + e, cxy + dix, + f)
Wy(x) = wa(x,,.X) = (ax, + bx, + e, cx, + dx, + f)

Then ws(x)
= ( substitution )
WioW,(x)
= ( definition of composition )
w;(w,(x))
= ( substitution )
wi@ax, + bx, + ey Cx; +dx, + f)
= ( substitution )
(al(<a2x1 + bzx'i + ) + by(cox, +dox, +1,) + ey, (X + by, + ) +dy(cxy +dx, + )+
= ( calculus
((@1a,+ b, c)x, +(a,b,+ bd)x,+(a,e,+ bif, +e,), (c,a,+d,c)x, +(c,b, +dd)x, +(c,e,+ d f,+1,))
= ( substitution )
(@ax; + bx, + €3, X + dyx, + f)

Since ay,b,,c,,d;,e,, f; are real valued numbers, w; is also an affine transformation. [ |
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7.2. Fixed point analysis

The fixed points of a transformation (see definition 4.3) are very important. They tell us which parts
of the space are position-invariant under the transformation. But also, fixed points of transformations
correspond to equilibrium solutions of systems of differential equations, i.e. the attributes of attracting
and repelling fixed points of transformations relate to the notion of stability of the system [GUL92].

Theorem 7.2. Let (R>,w) be a dynamical system with w : R* = R? an affine transformation given by:
wx,x;) =(ax, + bx, + e,cx, + d, + f) =Ax + ¢

Then the fixed point of w is given by:

x = bf + (1-d)e ce + (1-a)f
4 (I-a)(1-d) - bc ° (1-a)(1-d) - bc

Proof. Suppose det(4) = O and I is the identity matrix, then:

X

= ( substitution )
Ax, + t

= ( calculus )
(- At

= ( substitution )

[o1]-|

01

= ( calculus )

HiNe

(1-a -b | [e€]
| ¢ 1-d f

= ( calculus ) )
| [1-d b | [e

(1-a)(1-d) - bc | ¢ l-a]|f]

= ( calculus )
| [(1-d)e  bf

(1-a)(1-d) - bc | ce (l-a)f}

= ( rewrite )

bf + (1-d)e ce + (1-a)f
(1-a)(1-d) - bc ° (1-a)(1-d) - bc |

From the above theorem we see that in case the translation vector ¢ equals zero and w is a contraction,
the fixed point is always the origin.
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Example 7.2. Consider the affine transformation w : R?> — R? of example 7.1:
w(x;,x,) = (0.625x, - 0.125x, + 2,-0.25x, + 0.75x, + 2.5)

The fixed point of w is given by:

X = (-0.25)(2.5) + (1-0.75)(2) (-0.25)(2) 11—0.625)(2.5)
4 (1-0.625)(1-0.75) - (-0.125)(-0.25) ~ (1-0.625)(1-0.75) - (-0.125)(-0.25)

=3,7) *
7.3. Affine matrix properties

Definition 7.2. Let (R%,w) be a dynamical system and let w : R* — R® be an affine transformation
which is given by w(x) = Ax + t. Then the (Euclidian) vector norm of a vector (point) x € R? is
defined as [BAR86b,HOR88]:

Ixl = yxf « 22

We define the matrix norm of the linear transformation matrix 4 as [HOR88]:

|4l = (Max : x € R, x=0 : " )
I =1 ¢

Theorem 7.3. Let (R*,w) be a dynamical system and let w : R* - R® be an affine transformation
which is defined by w(x) = Ax + ¢. If | 4| exists then [BAR88aI:

Jxl)

Proof. Let x € R*, x#0 and suppose that | 4| exists, then:

Il - x|

= ( definition 7.2 )

l4) = (Max : x € R, x%0 :
= ( calculus )

(Max :x € R, x#0: |4x| )
> ( definition of Max operator )
|A4x] for all x € R? u

(Ax: xER: ||ax] < |4

x|

lax],.
"X"

Theorem 7.4. Let (R?,w) be a dynamical system where the affine transformation w : R*> — R? is given
by w(x) = Ax + t and where the real-valued matrix A is the same as defined in definition 7.1. Then
the area of the parallellogram with adjacent sides (a,b) and (c,d) is equal to |det(4)].
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Proof. In R® let x = (a,b,e) and y = (c,d, f). The required area is equal to the norm of the cross
product (or vector product) of x and y [BAX86], so:

x>yl
= (definition of cross product )

[ @f - ed, ec - of, ad - bo)|

= ( definition 7.2 )

Vbf - ed)* + (ec - af)* + (ad - bc)?

= ( switch to R?, so =0 and f=0 )

V(ad - bcy?

= ( calculus )

|ad - bc|

= ( definition of determinant )

|det(4) | |

Definition 7.3. Let (R*,w) be a dynamical system and let w : R* = R? be an affine transformation
which is given by w(x) = Ax + ¢. Then we define the spectrum of the matrix A to be the set of all
eigenvalues of A, which set is denoted a(4). The spectral radius of A is defined as [HOR88]:

p(4) = (Max : A € 6(4) : |\]) ¢

The spectral radius of a matrix A is just the radius of the smallest disk centered at the origin in the
complex plane, that contains all the eigenvalues of A. So an important area of application of matrix
norms is in giving bounds for the spectrum of a matrix.

Theorem 7.5. Let (R%,w) be a dynamical system, where the affine transformation w : R?> = R? is given
by w(x) = Ax + t, Then the trace of A and the determinant of A can be expressed in terms of the
eigenvalues \, and \, of A [HOR88,KRA87]:

tr(d) = ix,. det(d) = f[x,.

i=] i=]
Proof. Suppose I is the identity matrix, then:

det(d - \I)
= ( substitution )

NEE

= (;calculus )
a-\ b

¢ d-\
= ( calculus )
(a@a-Nd-XN-bc

= ( calculus )
AM-(a+ d\+ (ad - bo)

det
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We can determine the eigenvalues by setting this characteristic polynomial equal to zero, and solve
the thus obtained characteristic equation:

N-@+d\+ (@-bc)=0
& ( square root formula )

2@ +d) + /@ + dY - 4ad - bo)
A2 = 3
& ( calculus )
My = 3@+ d) £ 2 - dp +dbc

Now we can calculate:

2
YA =N +X =a+d=trd)
i=1

2

TIN = AN, = ad - bc = det(4) n
i=]

From this theorem and definition 4.5 it is clear that an affine transformation in R? is contractive if
and only if |[N\,| <1 and |A,| <1. In general (with an extension of theorem 7.4 and with use of
theorem 7.5 and definition 7.1) the following properties hold, where § C R? is an arbitrary bounded
region and where w : R*> = R? is given by w(x) = Ax + 1

area of w(S) = s« (area of §)
= [N = |A;] + (area of )
= |det(4)] - (area of )
= |ad - bc| « (area of §)
= |rs(cosfcosy + sinfsiny)

= |rscos(6-y)| - (area of S)

+ (area of §)

Example 7.3, Consider the affine transformation of example 7.1:
wix,, %) = (0.625x, - 0.125x, + 2,-0.25x, + 0.75x, + 2.5) =Ax + ¢

According to theorem 7.5 the eigenvalues of the matrix A can be calculated as follows:

A, = 1(0.625 + 0.75) + 1/(0.625 - 0.75 + 4(-0.125)(0.75) = 0.6875 + 0.1875
which implies that A, = 0.5 and A, = 0.875. The determinant of A can be calculated in two ways:
det(4) = ad - bc = (0.625)(0.75) - (-0.125)(-0.25) = 0.437

det(4) = rscos(6-y) = 0.670.76- cos(-21.8° - 9,5°) = 0.437
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The area of § (the untransformed square) is 4 [units] (see figure in example 7.1), so the area of w(S)
(the transformed parallellogram) is given by:

area of w(§) = |\,

«|N,| *4 = (0.5)(0.875)-4 = 1.75 [units]

= | det(4)

*4 = (0.437)-4 = 1.75 [units]
= |rscos(0-y)| *4 = (0.437)-4 = 1.75 [units]

Notice that the ratio’s of the lengths of the axes of the transformed parallellogram and the
untransformed square are respectively given by |\,| and |),]. *

7.4. Similitudes

Definition 7.4. Let (R%,w) be a dynamical system. The affine transformation w : R?> - R? is called
a similitude if it is an affine transformation with y set equal to 6 and with s set equal to +r. L4

A similitude not only preserves parallel lines (as all affine transformations do), but also preserves
angles.

Theorem 7.6. Every affine transformation w : R* - R? that is also a similitude which doesn’t involve
a reflection, can be written as a transformation f : C— C of the form f{z) = sz + ¢, with 5, € C.

Proof. Let w : R*> —» R ? be a similitude, which is given by:

|:xl:| [rcosﬂ —rsinﬂ] |:x,:| [
woy =wl tf= | .
X, rsinf rcosf | | x,

Since (R%,d;) and (C,d;) are equivalent metric spaces (see definition 2.4), we can define an equivalent
transformation f : C - C as follows:

f2)
=(z€C)
Rz + iz)

= ( substitution of s=+r and switch to C)

rcosf irsinf | | z, f
irsin rcosf | | iz, ' it,

= ( calculus )

rz,(cosf + isinf) + irz(cosf + isinf) + (¢, + it)

= ( calculus )

r(cosf + isinf)(z, + iz) + (¢, + ity

= ( substitution of s = r(cosf + isinf) = re*, s,z,t € C)

sz +t ]

L

t] with r,t,1, € R, § € [0,2]
2
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It is clear that the fixed point of fiz) = sz + ¢ is given by z, = #(1-5)". So ¢ = (1-5)z, and we can write
@) = sz + (1-5)z;. The advantage of this notation is that we can express the parameters of the
transformation in terms of fixed point z, and direction s, where |s| is the scaling factor.
Example 7.4. Consider the similitude w : C— C, which is given by:

w(z) = (0.375Re(z) + 0.5Im(z) + 1.625,-0.5Re(z) + 0.375Im(z) + 2.125)

The effect of this transformation on a square is given in the figure below:

Im(z)
0.752225) y
oL
LD 1 S (15129
................... zf
a1
A, 1,1) et
1 s —~ e(z
| A,
-1,-1) -1 a,-1)

The fixed point determines the point in space that is invariant under w and is given by:

t _ 1.625 + 2.125i - (1.625 + 2.125))(0.625 - 0.5i) ~ 3.244 + 0.805i

b 1-s 1-(0.375-0.5) 0.625 + 0.5)(0.625 - 0.5i)

The (complex) eigenvalues determine the direction of the transformation and are given by:

N =2@+d t la-dP+4bc =0375+ 05i

The modulus of the eigenvalues determines the scaling of the transformation and is given by:

N = [N, = (0.375) + (0.5i)* = 0.625
Furthermore, we can write:
fD)=5z+1t=7Nz+(+ i) =(0.375 - 0.5i)z + (1.625 + 2.125i)

=5z + (1-5)z; with 5 =0.375 - 0.5i and z, = 3.244 + 0.805i. *
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7.5. Contraction mappings

Theorem 7.7. Let w : X — X be a contractive affine transformation on the complete metric space
(X,d) with contractivity factor s € [0,1). Then w : H(X) -» H(X), which is defined by:

WK) =(AK:K € HX), x € K:wx))
is a contraction mapping on (H(X),h) with contractivity factor s [BAR88al.
Proof. Let K,.L € H(X), then:

dwW(K),wm(L))

= ( definition 2.18 )

(Max : x € K: dw(x),w(l)) )

= ( definition 2.17 )

(Max :x € K:(Min:y € L:dwx),my))))
< ( w is contractive, definition 4.5 )
(Max :x € K:(Min:y € L:sdxy)))
= ( definition 2.18 )

sd(K,L)

= ( similarly )

dWL),mK)) < sd(L,K)

Hence, we can now complete the proof for the Hausdorff distance:

h(W(K),w(L))
= (definition 2.19 )

(Max : K,.L € HX) : (dWK),mL)), dWL),mK))) )
< ( first part of this proof )

(Max : K,.L € H(X) : (sd(K,L), sd(L,K)) )

= ( definition 2.19 )

sh(K,L)
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All really efficient power depends, and is really to be deduced
Jfrom the sources of forms.

Francis Bacon (1561 - 1626) [ADL77) Chap ter

IFS-decoding

In this chapter we will address dynamical systems whose behaviour is governed by a set of affine
transformations, a so called IFS. This concept can be considered as the main key for all applications
of fractal operations on images.

8.1. Iterated Function Systems

Definition 8.1. An Iterated Function System (IFS) is a 3-tuple (X,W,P), where X = (X,d) is a
complete metric space and W = {w; : i = 1,2.3,... N ] is a finite set of affine transformations and
P={p :i=123,..,N} is a finite set of assigned probabilities, such that probability p; is assigned
to affine transformation w; and [BAR88a,STA91]:

N
(Ai:l<isN:p,>0) A . Yp-=1
i=1
The contractivity factor of the IFS is given by s = (Max : 1 <i<N:s;). lf s € [0,1) then the IFS
is called hyperbolic. If the probabilities are neglected then the IFS is deterministic. ¢

For comparative reasons we will have to use the term nondeterministic IFS with which we state that
either the IFS is known to be nondeterministic or we simply don’t (want to) know whether or not the
IFS is deterministic. From now on, if we talk just about an IFS we mean a nondeterministic IFS.

Definition 8.2, Let (X,W,P) be a hyperbolic IFS, then a collage is a transformation w : H(X) — H(X)
which is defined by:

(AW,K:WEW,KE:H(X):W(K)=0Wi(K)) ¢

i=1

Thegrem 8.1I. Let (X,W,P) be a hyperbolic IFS with contractivity factor s, then the collage
w : H(X) - H(X) is a contraction mapping on the complete metric space (H(X),4) with contractivity
factor s, that is:

(AKL:KL € HX) : hwK),w(L)) < sh(K,L))
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Proof. The proof is based on mathematical induction. The induction hypothesis is given by:

HW) : h(l:lw,.(K),L‘jw,.(L)) < (Max : 1<i<N: s, )h(K,L)

i=] iel

Base: h(l:l w,(K), L’:Iw. L)
B < H(1) )'

h(UW(K) UW(L))

= ( calculus )
h(w\(K),m(L))

< ( theorem 8.1 )
s;h(K,L)

N+1 N+1

Step: A(|J w,(K),|J w,@))

i=l i=1

= ( definition of Union operator )
h(Uw & Uw N.,(K),U w,(L) U wy,,(L)

i=1 is]

< (h(BU C,DUE) < ( Max (h(B,D),h(C,E))), property of Hausdorff distance [BAR88a] )

h( Max :: ( h(UW(K) UW(L)) Wy, (K), Wy, (L)) ) )

< (IH(N) holds )

(Max :: ((Max : 1<i<N: 5 )a(K,L),h(Wy, (K),Wy.,(L))) )

< (theorem 8.1)

(M = « M : ISISN S,- )h(K’L)’sNHh(K!L)) )

= ( definition of Max operator )

(Max : 1<i<N:s )AK,L)

= ( definition 8.1 )

sh(K,L) |

Definition 8.3. Let (X,W,P) be a hyperbolic IFS with contractivity factor s;. Then we say that the IFS
obeys the average contractivity condition if [BAR88d]:

Definition 8.4. Let (X,W,P) be a hyperbolic IFS, then the associated IFS-code is a finite set
{a.,b,c.,d,e.f,p;:i=123,..,N} such that the average contractivity condition is obeyed
[BAR88d]. The first six elements of the IFS-code are the parameters of affine transformations as
defined in definition 7.1. L J
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Theorem 8.2, Let (X,W,P) be a hyperbolic IFS, then its unique attractor A € H(X) obeys:

A =wA) = LN,Iw,.(A)

i=]

and is givenby A = LimW®(B) for any B C A or in case of a deterministic IFS, for any 5 < FX)-
Proof. This is a direct result of definition 8.1 together with theorem 8.1. [

This means that, in case of a deterministic IFS, it doesn’t matter with which value B we initialize the
IFS, the attractor will always be the same. In case of a nondeterministic IFS we initialize the IFS with
a compact set A, C H(X) and then compute successively:

N
A, =Uww@) for n=123,.

i=1
Thus, we construct a sequence { A4, : n = 0,1,2,3,... } C H(X) which converges to the attractor of
the IFS in the Hausdorff metric [CULS0].

In case of a nondeterministic IFS we initialize the IFS with a point x, € X and then choose
recursively and independently:

X € {wk):i=123,.,N} for n=12,3,..
where the probability of the event x,., = w(x) is p, [CUL90]. Thus we construct a sequence

{x,:n=0,123,.. } C X which converges to the attractor of the IFS in the Hausdorff metric.

Example 8.1. An IFS whose attractor is a Sierpinski triangle (see fig. 3.2) can be given by the
3-tuple: (R, {w,,wy,w3},{p,,P2,.D5}), where:

(x] [os o][x] [1
w = + =
"x, 0 05]Ix 1| P=03
L “J L J U “) L
) 1 (o5 o161 (1
= + =
2|y, o 05||x| " |s0| P =03
y (x] o5 o][x] [50]
= + =
? %] |0 05]|x 50| Ps = 0-34

The IFS-code is given in table 8.1 below:

Table 8.1. IFS-code for a Sierpinski triangle.

i a b c d e f P

1 0.5 0 0 0.5 | 1 0.33
0.5 0 0 0.5 1 50 0.33

3 0.5 0 0 0.5 50 50 0.34
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We disregard the probabilities, so the IFS becomes deterministic. We initialize the IFS with a compact
set Ay, C R? and then compute successively:

N
A, =Uw@,) for n=123,..

i=l

In fig. 8.1 below, this operation is illustrated. Left we choose 4, to be a rectangle, right we choose
A, to be a filled in triangle (we may also have choosen a point). In both cases we get the same
(unique) attractor of the IFS.

T

.n

N
e

T
{
{.i:ﬁv'_

|
{

7

Figure 8.1. Decoding of IFS-code of table 8.1 for A, is a rectanglc and a filled in triangle {BAR88a]. s

In case of a nondeterministic IFS not only the affine transformations, but also the associated
probabilities influence the structure of the attractor. We can show this by the next example.

Example 8.2, Consider four IFS-codes which only differ in their probabilities and which all generate
a Sierpinki triangle (all put in table 8.2 below).

Table 8.2. IFS-codes for 4 Sierpinski triangles with different associated probabilities.

i a b c d e f pl p2 p3 p4

1 0.5 0 0 05 [-50 ([-50 || 033 (020 [ 0.40 | 0.40
2 0.5 0 0 0.5 50 (-50 (033 |0.40 |0.20 | 0.40
3 0.5 0 0 0.5 0 50 (| 034 (040 | 0.40 | 0.20

For each IFS-code we render the attractor of the associated IFS, by initializing the IFS with a point
X, € R? and then choosing recursively and independently:

X, €E{wk):i=123,. . N}forn=123,..
In fig. 8.2, these operations are illustrated. In each case the computation was halted after relatively

few iterations, to prevent the image from getting "saturated”. From the result we see that the rendered
attractors are the same sets, but that the distribution of the points within the sets is different.
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Figure 8.2, Attractors of IFS-codes of table 8.2, from left to right: p1, p2, p3 and pé. *

8.2. Condensation

Definition 8.5. Let (X,W,P) be a hyperbolic IFS which is initialized by a compact set C C H(X).
Define the condensation set as:

C,=C U WYC) U wP(C) U ... UwHC)

- c uJwo(c)
J=1

- wi(C) U |Jwo(C)

=1

Then we call w,, : H(X) = H(X) a condensation transformation (which is not an affine transformation)
and we call (X,W,,P.) with W =w, U Wand P, =p, U Pand (Si: 1sisN:p,)and p, =1
a hyperbolic IFS with condensation [BARS85,BAR88d]. *

Observe that a condensation transformation w, : H(X) = H(X) is an identity mapping on the metric
space (H(X),h) with contractivity factor equal to zero and scaling factor equal to one. It possesses a
unique fixed point, namely the condensation set. In practice, condensation means that we don’t clear
the computer screen between two successive iterations. It is obvious that the condensation set
{C,:n=0,1.2,..,n} is a Cauchy sequence in H(X) which converges to the attractor of the IFS,
with contractivity factor s equal to the contractivity factor of the associated hyperbolic IFS without
condensation. Furthermore, all definitions and theorems about iterated function systems also hold for
iterated function systems with condensation.

Example 8.3. Consider the IFS-code of table 8.3 below.

Table 8.3. IFS-code with condensation transformation.
" i a b c d e f p

0 1 0 0 1 0
1 055 0 0 0.55 | 150

S O
)
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We choose C C R*to be a Sierpinski triangle and we render the attractor of the associated IFS with
condensation. The result is given in fig. 8.3 below.

y-axis

A

';.
A A

&)

v‘
A A

Figure 8.3. Attractor of the IFS-code of table 8.3. *

We can immediately deduce the fact that if we initialize a hyperbolic IFS with condensation with a
compact set C C A, the condensation set C, equals the attractor 4 of the IFS.

8.3. An algorithmic approach

As we have seen in the preceding paragraphs, we can distinguish between deterministic and
nondeterministic IFS-decoding. Both methods can either be applied on an IFS with or without
condensation. We will give simple algorithmic descriptions of those methods, which do not take into
account any efficiency or implementation considerations.

Definition 8.6. Let (R?,d) be a complete metric space. A pixel (picture element) is a discretization
(x,y,2) € N°of a real valued point (x,y,z) € R?, i.e. a mapping = : R?> - N3, where (x,y) denotes
the Carthesian coordinate and z denotes the intensity of that point [FOL90]. ¢

Definition 8.7. Let (X,d) be a complete metric space. If X = [x,0X] X [YigperYiower] © N2, then
we refer to (X,d) as a pixel space. The elements of a pixel space are pixels [FOL9O]. ¢

Definition 8.8. Let (X,d) be a pixel space, i.e. X = [x,,%;] X DigperrYierd C N> A raster image
can be defined as an assignment IT which obeys:



8. IFS-decoding 81

(Axy:x,y € X:(Ebz:bEN,z€[0,25-1]:1I(x,y) =2))

where b denotes the amount of bitplanes of the framebuffer. If b = O then the image is called a
monochrome image, else it is called a color image or a greytone (greylevel) image. ¢

So a monochrome image can be considered to be a special case of a color image (namely for b = 0).
Typical values of b are 0, 4 and 8. The algorithms which are presented hereafter, operate on the pixel
spaces (Screen,d) and (Pixmap,d) and generate raster images. Screen is the graphics computer screen
and Pixmap is a framebuffer, i.e. a memory storage or buffer that can contain pixels. Typical values
for Screen and Pixmap are [STE89]:

[0,319] x [0,199] (CGA)

[0,639] X [0,349] (EGA)

[0,639] x [0,479] (VGA)

[0,719] x [0,347] (HERCULES)

[0,1257] x [0,985] (HIGH RESOLUTION GRAPHICS)

In the following descriptions, C denotes an initializing set consisting of at least one pixel.

(1) Deterministic IFS-decoding with or without condensation:

plot C on screen
for iteration := 1 to maxiterations do
[ clear pixmap
copy screen to pixmap
if not condensation then clear screen
for all pixels in pixmap do
[ for transformation := 1 to N
pixel := transformed pixel
plot pixel on screen

(i1) Nondeterministic IFS-decoding with condensation:

plot C on screen
for iteration := 1 to maxiterations do
clear pixmap
copy screen to pixmap
for all pixels in pixmap do
[ choose a transformation according to its probability
pixel := transformed pixel
pPlot pixel on screen

(iii) Nondeterministic IFS-decoding without condensation:

plot C on screen
for iteration := 1 to maxiterations do
[ choose a transformation according to its probability
pixel := transformed pixel
]plot pixel on screen ]
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In [MON9O] a minimum point plotting algorithm is presented, which plots a pixel not more than
once. It must be noticed that images which are rendered by IFS-decoding contain infinite detail, that
is, the amount of detail is scale-invariant, which can be seen if we keep zooming in on the image. The
reason for this is the fact that IFS-attactors are fractal structures.

It is clear that the different described IFS-decoding algorithms each yield a different amount of new
pixels per iteration. Suppose we have N transformations and in all cases we initialize the IFS with a
set C consisting of one pixel (point). In table 8.4 below the maximal amount of plotted pixels after
each iteration is given. We stress the word "maximal”, because it may be possible that a pixel is
plotted exactly on an already existing pixel.

In case the framebuffer contains more than one bitplane, the nondeterministic IFS-decoding algorithm
can create real color or greytone images by using this property. Each time a pixel is plotted exactly
on an already existing pixel, we increase the color or greylevel value of this pixel with one [bit]. This
means that if the framebuffer contains b [bitplanes], we can plot 2°-1 [pixels] on the same location
before that pixel gets saturated. So we could in this case extend the nondeterministic IFS-decoding
algorithm with a guard that provides the rendered image from getting saturated by comparing the
maximum rendered greylevel so far with the number 2°-1.

Table 8.4. Pixel yields for the four IFS-decoding algorithms (subscript C denotes condensation).

deterministic nondeterministic
iteration X,W.PJ) X, W,P) X, WP X,W,P)
0 |C| 1 [C] 1
1 N+ |C| N 2|C| 2
2 N+ |C|)? N? 4|C| 3
3 (N + |C|? N? 8|C| 4
n N + |Cly N" |C| n+1

From table 8.4 it is clear that from right to left the amount of produced pixels per iteration step
increases. So, in case of flexible parallellization of the decoding process, the overall decoding speed
of all four methods will not be the same anymore. In that case, deterministic IFS-decoding with
condensation is the fastest method and nondeterministic IFS-decoding without condensation is the
slowest method. The parallel computational time complexities of the four methods are respectively
given by (from left to right according to table 8.4) O(logy., 1), O(logyn), O(| C|'log,n) and O(n).

In fact, the serial computations will also differ if pixmaps are used to store the intermediate iteration
results, since plotting pixels into a pixmap is much faster than plotting pixels on a screen. Moreover,
if |C|>1 [pixels] then IFS-decoding with condensation is really faster than IFS-decoding without
condensation. Nondeterministic IFS-decoding is also slower than deterministic IFS-decoding because
some transformations can have very low probabilities, which implies that only relatively few pixels
will be transformed according to these transformations. In [HOR90] some more comments are made
about parallellization of the IFS-decoding process on an array processor.
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8.4. Data compression

It is obvious that IFS-codes constitute data in a highly compressed format and therefore IFS-encoding
can be considered as a powerful data compression tool: the (redundant) pixel information of the target
image can be represented by an IFS-code. Although IFS-encoding is subject of chapter 10, we now
are already able to compare the data compression performance of IFS-encoding with that of other
encoding schemata, such as Huffiman-encoding, runlength-encoding, programmed compression and
adaptive compression. The performance of each method strongly depends on the type of data to be
compressed. In [WEL84] a comparision is made between compression of English text, Cobol files,
floating point arrays, formatted scientific data, system log data, program source code and object code.
Compression of image data is mostly achieved by runlength-encoding, which has a typical average
compression ratio of 10:1. In [REG81] some more data compression techniques are evaluated.

Under UNIX™ there exists an advanced data compression program, which can be invoked with the
command: "compress -v filename.ext". This results in a file filename.ext . Z which contains
the data of the file filename.ext in a compressed format. The decompression is invoked with the
command: "uncompress -v filename.ext". For practical reasons, we will compare the data
compression performance of IFS-encoding only to that of this UNIX™ compression program. It must
be noticed that an IFS-code itself (which already represents a compressed image) can be further
compressed by the UNIX™ compression program, which yields an average extra compression ratio
of 2:1. In table 8.5 below, the data compression performances on several images are listed. The
according images and their IFS-codes are contained in appendix C. The image sources contain the
coordinate pairs for the pixels belonging to the "on"-set of the image. In table 8.5 the amount of
affine transformations the IFS-code contains is denoted by N and the amount of necessary iterations
to render a "good” picture by deterministic IFS-decoding is denoted by n.

Table 8.5. Data compression performances of UNIX™ compress and IFS-encoding.

source UNIX™ compress IFS-encoding
image [bytes) [bytes) ratio Nl n [bytes) ratio
chain 106036 38613 2.7:1 9 6 413 256.7:1
dragon 703615 243225 2.9:1 2 |21 72 9772.4:1
fern 221917 75313 2.9:1 4 |18 174 1275.4:1
france 672111 227611 3.0:1 31 6 482 453.5:1
koch 16539 6060 2.7:1 4 8 180 91.9:1
leaf 632208 214409 2.9:1 4 8 186 3399.0:1
rect 316808 102225 3.1:1 4 8 180 1760.0:1
square 219664 70761 3.1 8 6 354 620.5:1
tree 117641 41823 2.8:1 5 8 238 494.3:1
triangle 50720 17130 3.0:1 3 9 134 378.5:1
twig 18042 6996 2.6:1 3110 144 125.3:1

From table 8.5 we see that IFS-encoding always yields much better compression ratios than UNIX™
compress, but the latter one yields more constant compression ratios and therefore its performance
is better predictable. Since there is no unique IFS-code for a target image, IFS-encoding can result
in different IFS-codes. In general, the amount N of affine transformations in the IFS-code must be
an integer between 2 and the amount of pixels a source image 4 contains, thus 2 < N < |A4].




84 8. IFS-decoding

The amount of necessary iterations  to render an image consisting of |4 | by means of IFS-decoding,
depends strongly on N. Suppose we apply deterministic IFS-decoding without condensation. If we
decrease N, we have to increase n to render enough pixels. Suppose we have to encode the image
"dragon” (see table 8.5 and appendix C). We therefore need to render 89587 [pixels]. So the IFS-code
must contain at least 2 and at most 89587 affine transformations. The amount of necessary iterations
n as function of N can be expressed by the following relationship (see also fig. 8.4 below):

1 . .
- Inj4 I [iterations]
InN
» {iterations)
N1
15+
10+
5_
Jﬁ T T T — 1 T \k\ 1
0 2 s 10 15 20 25 89587
—> N [qffine transformations]

Figure 8.4. Relationship between N and n for |4] = 89587.

So, if we are able to parallellize the IFS-decoding process by distributing the affine transformations
over the array processors, the fastest IFS-decoding will be achieved for the minimal amount of
iterations n, thus for maximal N. This implies a compression-iteration trade off, i.e. the compression
ratio and the amount of iterations are competitive factors.

Finally, we will briefly comment on a comparision between IFS-encoding (also known as the fractal
transform [BAR9O]) and the Discrete Cosine Transform (DCT). When making comparisions, it is
important to remember that image compression methods only work well with image data. Geometric
images such as those produced by CAD-systems are most efficiently stored as geometric data: as
polygons or other primitives.

The DCT can achieve typical compression ratios around 40:1 and can only achieve higher
compression ratios by displaying the image as bigger and bigger blocks. In extrema, a highly
compressed image becomes an unrecognizeable mass of squares. By contrast, an overcompressed
fractal transform picture just looks fuzzy [WRI92].

Aestetic and psychological factors aside, fractals have other advantages. Because a fractal is like an
infinite series, decompression is independent of display resolution. It doesn’t matter how closely we
zoom in onto the image, the level of detail remains the same, because it is scale-invariant. This
illustrates an important point. There is no fundamental limit to the effectiveness of the fractal
transform. While DCT and similar methods run into solid barriers, the fractal transform can go on
improving idefinitely. Image quality can be improved by simply increasing the amount of iterations
of the IFS-decoding process. Also, enlargement of the image by a factor k can simply be achieved
by multiplying the translation vector ¢ of each affine transformation in the IFS by this factor k. This
doesn’t increase the IFS-code. All other methods would in this case result in more code.
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Thus, the fractal transform has two main advantages above all other data compression techniques: its
ability to benefit from improved processors and its resolution independence. The latter makes it
automatically compatible with ever-improving graphics display standards.

Despite these benefits, there are situations where fractal data compression remains unsatisfactory. It
doesn’t work well for images with a low information content, such as engineering drawings or text,
which may limit its embedded applications such as scanners or fax-devices [WRI92]. In general,
promising applications for the fractal transform seem to be the defence industry (flight simulators,
sattelite data) and the chip industry (recursive VLSI-design).

Some more information about the fractal transform applied as a block encoding scheme (compression
ratio of about 40:1) can be found in [BEA91,JAC90,WAI90]. Another interesting approach is that

of a yardstick traversal scheme (compression ratio of about 12:1), which encodes the information in
each scanline of a picture [WAL86,YAN88,ZHA91].

8.5. Finite affine automata

We have seen an algorithmic approach of the IFS-decoding process. But we can also use an approach
that is similar to the one used in par. 3.1. We can define the IFS as a language generator or a finite
automaton.

Definition 8.9. Let (X,d) be a complete metric space and let (X, W, P) be a deterministic IFS operating
on this space. Define (conform [CUL90,LEW81]) a deterministic finite affine automaton M, as a
5-tuple (Q,W,6,s,F), where:

Q is a finite set of states;

W is a finite set of affine transformations (i.e. the alphabet);

0 : @ X W- Q is the transition function;

s € Q is the initial state (an initialization for the IFS);

F C Q is the set of final states (attractors). ¢

Example 8.4. Consider the deterministic finite affine automaton M,, = (Q,W,é,s,F), where:

) = { C:AnAsz:,Aa}

w = {w,,w,,w,}

s = C

F = {4,}

) = tabulated in table 8.6

The state transition diagram of M,, is a digraph G, = (V,E) with V=Qand E C Q X Q and is given
in fig. 8.5.




86 8. IFS-decoding

Table 8.6. The transition function § of M),

q ud 5(q,w)
C w, A,

C w, A,

C w, A,
A, w, A,
A, w, A,
A, Wy A,
A, w, A,
A, W, A,
A, W, A,
4, wy A,
A, w, A,
A, W, A, Figure 8.5. State transition diagram of M.
A, w, A,
A, W, A,
A, W,y A,

*

Definition 8.10. Let (X,d) be a complete metric space and let (X,W,P) be a nondeterministic IFS
operating on this space. Define (conform [CULS0,LEW81]) a nondeterministic finite affine
automaton M, as a 6-tuple (Q,W,P,A,s,F), where:

Q is a finite set of states;

W is a finite set of affine transformations (i.e. the alphabet);

P is a finite set of probabilities;

A: Q X (W x P)* x Qis the transition relation, where (g,,(w,.,p,),qg) is the transition from
state g; € Q to state g; € Q by transformation w, with probability p, ;

s € Q is the initial state (an initialization of the IFS);

F C Q is the set of final states (attractors). 4

Example 8.5. Consider the nondeterministic finite affine automaton M,, = (Q,W,P,A,s,F), where:

{C4}

{w,w,,w,}

{P1D2:Ds}

C

= {4}

= {(C’WI »P: 'A)’(C’Wz’pbA)’(C»WS 'pS:A)’(A rwl 'PI'A)’(A 'W2’p2»A),(A’W3’p3'A)}

B Mo v e
oW

The state transition diagram of M,, is a digraph G, = (V,E) with V= Qand E C Q x Q (fig. 8.6).
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Figure 8.6, State transition diagram of M. *

Theorem 8.3. Let (X,W,P) be an IFS. Then there exists an equivalent finite affine automaton M,
which defines the same image (both as compact set and measure) [CUL90].

Proof. The proof follows from the simple observation that a deterministic IFS is just a special case
of a determinisitc finite affine automaton and that a nondeterministic IFS is just a special case of a
nondeterministic finite affine automaton. u

Example 8.4 constitutes a deterministic IFS with W = {w, w,,w;} and example 8.5 constitutes a
nondeterministic IFS with W = {w,,w,,w;} and P = {p,,p,,D;}.

Definition 8.11. Let M be a finite affine automaton. A string ¢ € L* is accepted by M if and only
if there is a state ¢ € F such that (s,0) |—M* (g,e), where e denotes the empty string and —M*
is the reflexive, transitive closure of a derivation step |—M. The language L accepted by M is
denoted by L(M) and consists of the set of all strings accepted by M [LEW81]. ¢

Example 8.6. Consider the deterministic finite affine automaton M,, of example 8.4. If M, is given
the input string w,w,w;w,w,w; , its initial configuration is (C,w,w,w,;w,w,w;). Then:

(Cww.wywiw,ws)  —Mp, (A, W W ww,ws)
F—M,, (Ao, w,w,wws)
F—M,, (45,W,w,w5)
F—M,, (4,,w,w5)
F—Mp, (4,,w5)
I-_MD (4,,€)

Therefore (C,w,w,w,wwwy) |—Mp* (4,,€) and the string wyw,w,w,w,w; is accepted by M,. %
Example 8.7. Consider the nondeterministic finite affine automaton M,, of example 8.5. If M, is given

the input string (w,,p,)(W;,p3)(Wy,p,), its initial configuration is (C,(W,,p,)(Ws,p5)(W1,p,)), and then:

(C’(Wz,Pz)(Wa’Pa)(waspl)) I—MN (A’(Ws,Ps)(Wz’Pz)) I-_MN (A’(Wz’Pz)) l—MN (Ave)

Therefore (C,(w,,p)(Ws,p3)(W,p,)) |—My* (A,e) and the string (w,,p,)(ws,p5)(w,,py) is accepted
by M,. *
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Invariant measures

In example 8.2 we have seen that not only the affine transformations of an IFS, but also their assigned
probabilities influence the structure of the attractor. The mathematical concept to describe the
distribution or density of the points within the attractor is that of a measure. Measures can be used
to describe intricate distributions of mass on metric spaces. Therefore we need to go through some
more definitions.

9.1. Fields

Definition 9.1. Let X be a space and let S be a nonempty set of subsets of X. Furthermore, let & be
the set of subsets of X which can be built from sets in S using the operations union, intersection and
complementation, with respect to X, such that [BAR88al:

i) ABE€E F=AUBE ¥,
ii) Ae ¥=X4d € 7.

Then (&,U,N) is called a field generated by S and denoted # (according to the De Morgan laws it
is not really necessary to use the intersection operation, because ANB = (AUB)\(A\B U B\4)). ¢

Notice that the above definition is fundamentally different from the standard algebraic definition of
a field. For example, according to the algebraic definition (¥,U,N) is a field if and only if (#,V)
is an Abelian group on X and (F\{D},N) is a group on X and (¥,VU,N) is distributive on X
[DUR8S5]. We can therefore easily check that (#,U,N) is not a field in algebraic terms. The unity
elements of U and N are respectively & and X, because AU =4 = GUA and ANX =4 =
XN A. But there are no inverse elements A" C X such that AUA" = @ = A'UAand ANA' = X
= A'NA. Thus (&,U) and (&, N) are not even groups and (&, U,N) is not even a ring.

Example 9.1. Let X be a space and let A C X. Then & = { X, X4, 4, & } is a field. *

It is obvious that if & is a field of subsets of a space X, then X € ¥ and also & € F. Suppose
A€ F thenX\4 € Fandhenced U X\4 € F=X € & This implies X\X € &, thus J € F.
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Example 9.2. Let Screen denote the set of pixels corresponding to a certain computer graphics
display. The set of all monochrome images which can be produced on this screen forms a field. An
example of a field of subsets of Screen is shown in fig. 9.1 below. This field is generated by the pair
of images A (the Sierpinski triangle in the left row, lower column) and B (the black ellipse in the third
row, second column), together with the set Screen (the black rectangle). So S = {4,B}, but there are
more possible generating pairs. The empty set is represented by the white rectangle.

A £ o,
O£ £

Figure 9.1. The ficld 9 whose elements are sets of pixels of the space Screen [BAR88a).

If we enumerate the elements of this field in row first order from upper left to lower right, we get
an equivalent representation (where AAB = A\B U B\4 = (AUB)\(4NB)):

F = { Screen\(AAB), AAB, AU(Screen\B), Screen\(ANB), Screen\(AUB), I,
A\B, Screen\A, ANB, B, B\A, BU(Screen\d), A, AUB, Screen, Screen\B }

Notice that F contains 2* = 16 elements, since |{ Screen, 4, B, T }| = 4. *

Definition 9.2. Let S be a set of subsets of a space X and let & be a field such that [BAR88al:
(Ei:i=123,. :4, € .7=0UA, € 5)
iwl
then ¥ is called a o-field. Given any field, there always exists a minimal (or smallest) o-field, which

contains the entire field. The minimal o-field which contains S is called the o-field generated by S and
contains the elements of S, together with X and &, ¢
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Example 9.3. Consider example 9.2, where Screen is the pixelspace on a computer screen. Let
S = {A,B}, i.e. respectively the black Sierpinski triangle and the black ellipse, and let .# be the field
generated by S, hence:

F = { Screen\(AAB), AAB, AU (Screen\B), Screen\(ANB), Screen\(AUB), &,
A\B, Screen\A, ANB, B, B\A, BU (Screen\A), A, AUB, Screen, Screen\B }

Let &, be the o-field generated by S and let &, be the o-field generated by .#, then:
F, =, ={Screen, A, B, T } *

In general, if the o-field #o generated by S contains £ elements, then the field # generated by S
contains 2* elements: |.#| = 2!#°!. Thus a field can be considered as the powerset of its o-field.

Definition 9.3. Let (X,d) be a metric space and let B denote the o-field generated by open subsets of
X, then B is called the Borel field associated with the metric space. An element of BB is called a Borel
subset of X and B is also called the Borel set [BAR88a]. ¢

In other words, the class of Borel sets is the smallest collection of subsets of X which do have a mass
and which have the following properties [FALSO]:
(i) every open set and every closed set is a Borel set;

(ii) the union as well as the intersection and the complementation of every finite or countable
collection of Borel sets is a Borel set.

Without proof we state that the associated Borel field B of a compact metric space (X,d) is generated
by a countable set of unit balls (the proof can be found in [BAR88al).

9.2. Measures

Definition 9.4. A measure p on a field & is a real non-negative function p : & - [0,), such that
whenever & is a o-field with A;,NA; = & for i#j we have [FAL9OI:

F'(UA.') = EI"(A.’) .

i=1 i=1

A measure is in fact a mass distribution and we can visualize this concept by taking a finite mass of
sand and spread it in some way across a set X. Then p(X) is a measure or mass distribution on X and
p(A) is the mass of the set A C X. For a measure p certain properties hold. The most important (and
also obvious) one is given by: 4 C X = u(X) = p(X\4) + u(d).
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Definition 9.5. Let (X,d) be a metric space and let B denote the Borel subsets of X. Let u be a
measure on B, then p is called a Borel measure on X. If u(X)=1 then p is said to be
normalized [BAR88a]. ]

Definition 9.6. Let (X,d) be a metric space, let u be a Borel measure and let B(x,e) be the closed unit
ball with radius ¢> 0, centered at x € X, i.e. B(x,e) = { y € X : d(x,y)<e }. Then the support of
u is the closed set of points x € X such that (A € : ¢>0 : u(B(x,6))>0 ) or, in other words, the
support of a measure is the set on which the measure lives [BAR88a). ¢

Definition 9.7, Let (R",d) be a complete metric space and let 4 = { (x,,...,x,) € R™ : x; € [a,,b] }
be a coordinate parallelepiped in R™. Then the m-dimensional volume of A is given by [FAL9O0I:

wl™(A) = f[ b, - a)

i=1

Define the set S of all coverings of A by countable collections of m-dimensional volumes as [FAL90]:

S={Ywi"Ad):4 c J4,}
i=l i=1
The m-dimensional Lebesgue measure L™ of the set A is defined as [FAL9O0]:
Pr=(Inf:sE€ES:5)=(Max:xERA(As:sES:x<5):x) ¢

So we look at all coverings of 4 by countable collections of m-dimensional volumes and take the
smallest total volume possible.

Example 9.4. Consider the metric space (R,d;) end let A C R be given by:

7
4 =4

iwl
Where Al = [092]7 A2 = [135]7 AS = [233]7 A4 = [3’4]7 AS = [4,8], Ab = (5,6) and A7 = [7710] Then
there are 10 possible coverings of 4, given by:

{ A, A\4,, A\4,;, AA,, A\d,, A[A,,Ac}, AN{A3,A4.}, AN[A,, A}, A[ALAs}, A\{As,A,Ag) }
The according set S of 1-dimensional volumes vol '(4) for the above set is given by:

S = {16,12,15,15,15,11,14,14,14,13} & {11,12,13,14,15,16}
Finally we determine the 1-dimensional Lebesgue measure as:

LA =(Inf:sE€ S:5) =11

In fig. 9.2 a graphical representation of the 10 possible coverings is given. From this we can see that
the Lebesgue measure is represented by A\{4,,4,}.
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Figure 9.2. The 10 possible coverings of A. *

Definition 9.8. A function f: X — R is called simple if it can be written in the form [BAR88al:
N
JO) = 3 y,x,®)

i=1
where NE N, B, € B,y, € R, (Unioni: 1 i < N:B,) = Xand BNB; = & for i#j. The
function x; is the characteristic function of the set B C X and is defined by [LEW81]:

®) = { 1 for x€EB
Xy 0 for xEX\B *

A simple function takes only finitely many values y,,...,yy. In fig. 9.3 the graph of a simple function
on a Sierpinski triangle is shown. The domain is a Sierpinski triangle in the x-y-plane. The function
values are represented by the z-coordinates. If the function values were represented by colors, a
painted Sierpinski triangle would replace the graph of fig. 9.3.

& e, |

Figure 9.3. The graph of a simple function on a Sierpinski triangle [BAR88a).
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Definition 9.9. Let X be a space then we define the integral with respect to the measure p of a non-
negative simple function f as [FAL90]:

N
Lf(x)du(x) = Yym{x:f0) =y} N

Example 9.5. Let X = [0.5,12] € Rand let A C X be given by:

3
4 = Jli3i2+2] = [1,3] U [4,6] U [9,11]

i=1
The normalized Borel measure p is defined as:

12

n@x) = % with p(X) = jidx = 4[In|x|]% = 4In12 - 41n0.5 ~ 12.71
X
0.5

Next we define the non-negative simple function f: X - R as f(x) = J:r_ . The mass of the set A4 is
given by:

@ = p(U4) = Y r@) = p(1.3]) + u((4,6) + p(@9,11])

i=] i=]
6

3 11
- jidx . jidx . [idx = 4[In|x|T} + 4[In|x[1¢ + 4[In|x |2
X X X

1 4 9

= 4(In3 - Inl1 + In6 - In4 + Inll - In9) = 6.82

So the normalized u(4) is given by (6.82)/(12.71) = 0.54. We can also calculate the integral of f
with respect to u as:

j f®du@) = Lf(x)x,(x)du(x)

A

= Lf(x)x,(x)u(x)dx
12 4 3 4 6 4 11 4
= | —x,®)dx = | —dx + | —dx + | —dx
s s [ axe [z =
= 8V T} + [8/x 1§ + [8Yx ) =~ 11.98
12 11
Since [ fu()dx = | 4 dx = [8/X 1% = 22.06, the normalized value equals 22-(9)2 ~ 0.54.

0.5 X

In fig. 9.4 the situation is graphically visualized.
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f@),uk)

E

0

—_—>x
Figure 9.4. The shaded area represents the Borel measure. *

9.3. Markov operators

Let (X,d) denote a compact metric space and let B denote the Borel subsets of X. Let f: X - X be
continuous, then it can be proven that f' : B — B [BAR88a]. It follows that if u is a normalized
Borel measure on X, then so is pof™". In turn, this implies that the function defined next, indeed takes
P(X) into itself.

Definition 9.10. Let (X,d) be a compact metric space and let P(X) denote the space of normalized
Borel measures on X. Let (X,{ (w,p) : i = 1,2,...,N }) be a hyperbolic IFS. The Markov operator
associated with the IFS is the function M : P(X) = P(X) defined by [CRI91,STA91a]:

Mu®x) =(Axp:xEX,p€EPX):(Si:1 <i<N:ppw'®))) ¢

Example 9.6. Consider the IFS ([0,1],{%ax,Yax + %3},{'42,'2}). The attractor of the IFS is the Cantor
set. Let M denote the associated Markov operator and let i, € P([0,1]) be the uniform normalized
measure on [0,1], i.e. uy([0,1]) = 1. We look at the sequence of measures { p, = M®(y,) }, where
M®u(x)) = p,pw,'(x) + pu(w, (). With w,'(x) = 3x and w, ' (x) = 3x-2 we get:

M(uo([0,%])) = Yapo(w,'[0,%8]) + Yapo(w;'[0,%8]) = ope([0,1]) + Ypo([-2,-1D) = '% + 0 = %
M(uo([Y5,%D) = Yapo(wi'[¥5,%8]) + Yapo(w,'[¥8,%A]) = Yap([1,2]) + Yepe([-1,0) =0+ 0 =0

M(uo([%,1D) = Yapowi'[%,1]) + Yepo(w, '[%5,1]) = %ao(12,3]) + Yape([0,1]) =0 + % = %

Bl By®) . . H
So after one iteration step the total mass of [0,1] is

spread out equally over [0,Y3] U [3%4,1] and both
subintervals contain ‘4, After n iterations all mass is
concentrated in (%5)" part of the original space [0,1]. The
relative density of the mass in that part is (%)™ times the
original density, but the total mass in the space remains
equal (see figure left). *
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Theorem 9.1. Let (X,d) be a compact metric space and let P(X) denote the space of normalized Borel
measures on X. Let M denote the Markov operator associated with the hyperbolic IFS with
condensation (X,W,,P.) Let u be the unique invariant measure of this IFS, where p, denotes the
condensation measure of (X,W,,P,). Furthermore, let f : X - R be either a simple function or a
continuous function, then [BAR85,BAR88a,FRE90I:

Lf(x)d(M(u(x))) =Y p, LfOW,-(x)du(x) + Py Lf(x)dﬂo(x)

i=1
If p,=0 then we simply get an IFS (X,W,P) without condensation.

Proof. See [BAR88al. |

Definition 9.11. Let (X,d) be a compact metric space. Let P(X) denote the set of normalized
Borel measures on X. Then the Hutchinson metric (or Hutchinson distance) dy is defined by
[CRI91,HUTS81]:

dgu,y) = (Sup : pv € PX), f: X >R, (Axy:xy € X: [f® -f0)| < dxy)) :
Lf(x) dp(x) - Lf(x)dv(x) )

The supremum is taken over all continuous real-valued functions satisfying the stated Lipschitz
condition. Without proof we state that (P(X),d,) is a compact metric space. The proof can be found
in [HUT811. *

Theorem 9.2. Let (X,d) be a compact metric space. Let (X,W,P) be a hyperbolic IFS with
contractivity factor s € [0,1) and associated Markov operator M : P(X) - P(X). Then M is a
contraction mapping with contractivity factor s, with respect to the Hutchinson metric on P(X), that
is [BAR88a,STA91al:

(A:py €PRX) : dy(M@),M) < sdyp,v))

In particular, there is a unique measure u, € P(X) such that M(i) = p,. This unique measure p, is
the fixed point of the Markov operator and is called the invariant (probability) measure of the IFS.
Moreover, the support of y, is the attractor of the IFS.

Proof. See [BARS88al. | |

Definition 9.12. Let p be the invariant measure of the hyperbolic IFS with condensation (X, W,,P,).
If p,>0 then p is a p-balanced measure for the IFS (X,W,,P.). If p,=0 then p is a p-balanced
measure for the IFS (X,W,P) [DEM85]. L ]

So, if an IFS (X,W,P) is initialized with a measure u, then we get a sequence of measures
{ n, = M®(i,) }. The measure p, = M(y,) is such that u(w(X)) = p; for i =1,2,...,N. In the same way
the measure p, = M®(y,) is such that p(w,ow,(X)) = p,p, for i = 1,2,....N. Thus, in general the
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measure p, = M®(uy) is such that u(w,ow,°...ow, (X)) = p,P,...D,, (see fig. 9.5). So when the
Markov operator is applied, the mass in a cell A C X is redistributed among N cells
wy(4),w,(A),...,w,(A4). Also, mass from other cells is mapped into subcells of A in such way that the
total mass of A remains the same as before the Markov operator was applied. In this manner the
distribution of mass is defined on finer and finer scales as the Markov operator is repeatedly applied.

o By K-
]
AL

PP, PP, | PP, PP,
| pp,| 20, |2, | Pi2,

p | p

L PPy | PPy | PPy | PPy

S\
M) M)

Figure 9.5. An IFS ({0,11X[0,11CR,{(w,p), i = 1,2,3,4 }) with
associated Markov operator at work.

Example 9.7. Consider the IFS ([0,1],{0.5x,0.7x+0.3},{0.45,0.55}). The attractor of the IFS is
[0,1]. Let M denote the associated Markov operator and let y, € P([0,1]) be the uniform normalized
measure on [0,1], so p([0,1])=1. We look at the sequence of measures { u, = M®(u,) } where
M@u®)) = puw,'x)) + ppu(w,'(x)). The successive iterates M(u,) and M@ (y,) are represented in
the figure below. Each measure is represented by a collection of rectangles whose bases are contained
in the interval [0,1]. The area of each rectangle equals the measure of its base. For each iteration the
result of w,'(x) = 2x is shaded /// and the result of w,'(x) = (x - 0.3)/0.7 is shaded \\\.

#o([0,1]) = 1

M(110([0.3,0.5])) =0.45pu,w, *([0.3,0.5]) + 0.55uow,'([0.3,0.5])
=0.45u,([0.6,11)+0.55u,([0,0.29])
=0.45-0.44+0.55-0.29
=0.34

So u,(x) = 0.34/0.2 = 1.70 for x € [0.3,0.5), thus alltogether:

0 — X >l

U M(uo) 090 for x € [0,0.3)
2, 1@ p, =1 1.70 for x € [0.3,0.5)
171 T \ 0.79 for x € [0.5,1]

M?P(uy((0.3,0.5))) =0.45,w,7'([0.3,0.5]) +0.55p,w, ([0.3,0.5])
=0.45,([0.6,1])+0.55x,([0,0.29])

w =0.45(0.45uw,([0.6,1]) +0.55 (o w5 ([0.6,11)))
+0.55(0.45u5w,™([0,0.29])+ 0.55(uow,([0,0.29])))
& =0.45(0.45u°([1.2,2])+0.55p,0([0.43,1]);

s —x 1 +0.55(0.451,([0,0.58])+0.551,([0.43, 1))

09
0.79+)

\W

7
.

0 0.

w
(=)
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L MP(y,) =0.45(0.45+0+0.55 < 0.57)+0.55(0.45 - 0.58+0.55 - 0)
_n@ =0.28
, nz T So u,(x) = 0.28/0.2 = 1.42 for x € [0.3,0.5), thus alltogether:
N
142 L.
e N
- 7 é :\\§ | 0.81 for x € [0,0.15) 5
N 152 for x € [0.15,0.2
d ///(Z// E§ 071 for x € [0.25,0.3)
//, %% //s\ w, =1 142 forx € [03,0.5)
© 01502503 05051 0.65 __ . x 1 0.71 for x € [0.5,0. 51)
1.33 for x € [0.51,0.65)
0.62 for x € [0.65,1]

Although the sequence of measures converges to { M™(u,) } in the metric space (P([0,1]),ds), some
of the rectangles would become infinitely tall as n tends to infinity.

Example 9.8. Consider the IFS ([0,1]1X[0,11,{w;,wy,w5,w.},{P1,P2,P3.P,}) With:

w,(x) = (0.5x,,0.5x,+0.5), p, = 0.2
wy(x) = (0.5x,+0.5,0.5x,+0.5), p, = 0.3
wy(x) = (0.5x,,0.5x,), p, = 0.3

w,(x) = (0.5x,+0.5,0.5x,), p, = 0.2

The attractor of the IFS is [0,1]1X%[0,1]. Let M denote the associated Markov operator. Let
o € P([0,1]1X[0,11) be a uniform measure on [0,1]%[0,1], i.e. a rectangle with a certain grey
value, say 1000 [pixels]. We look at the sequence of measures { p, = M®(y)) }, where
M@pX) = pipw,'(X)) + puw,'(x)) + pu(wy'(x)). With u(w'(x)) we actually mean that the mass
is multiplied by the inverse determinant of the linear transformation matrix 4 of the map w. The
successive iterates M(u,), M®(u,) and M®(y,) are represented below.

%
%
%
%

2
Lo
o
o2
%

e Mo

M(p,)

MK X
IR

MY Ho)

e tele

M a)(l-lo)

ST

Each measure is represented by a collection of squares, whose areas are contained in [0,1] X[0,1].
The grey value of a square equals the measure of the area of that square, i.e. the more mass lays on
a square, the more pixels the square contains and the darker it appears. Notice that the total number
of pixels (or average grey value) is constant. Suppose the original square contains 1000 [pixels]. Each
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time the Markov operator M(y,) is applied, the amount of subsquares is multiplied by the amount of
affine transformations N=4. According to the latter figure, we can calculate the successive amounts
of pixels each subsquare contains as:

8,12,12,18,12,18,18,27
12,8,18,12,18,12,27,18

40,60,60,90 12,18,8,12,18,27,12,18

1000 200,300 60,40,90,60 18,12,12,8,27,18,18,12
300,200 60,90,40,60 12,18,18,27,8,12,12,18
90,60,60,40 18,12,27,18,12,8,18,12

18,27,12,18,12,18,8,12
27,18,18,12,18,12,12,8

As we can easily check, the total mass (amount of pixels) stays equal, i.e. 1000. *

Theorem 9.3. Let (X,d) be a compact metric space, let (X,W,P) be a hyperbolic IFS with unique
invariant measure p and let £ : X = R be a bounded continuous function. If we initialize the IFS with
a point x, € X and choose the maps w, recursively and independently according to their assigned
probabilities p, then [BAR88e,BAR89,ELT87]:

lim L 3 fw,, 0wy ... oW, () = Lf(x)dp.(x)

nex n il
Proof. See [ELT87]. [ ]

In other words, starting at any x, € X, the empirical distribution of an orbit { x, : n = 1,2,...,00 }
converges with probability one to the invariant measure . This means that each time we apply
nondeterministic IFS-decoding without condensation (see chapter 8), we can not say what orbit will
be followed, but with probability one, each time the same attractor will appear. A direct result from
the above theorem is stated in the next definition.

Definition 9.13. Let (X,d) be a compact metric space and let (X,W,P) be a hyperbolic IFS with

unique invariant measure u. Let B be a Borel subset of X and let u(@B) = 0. Let N(B,n) be the

number of points in the orbit { x, : n = 1,2,...,00 } which land precisely in B, then [BAR88al:
NBn)=(Nn:1<n:x,€B)

and for all starting points x, € X the mass of B is given by:

u(B) = 1imw

Thus, the mass of B is the proportion of iteration steps which produce points in B. ]
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9.4. Moment theory

Definition 9.14. Let (X,d) be a compact metric space, where X has the dimension ¢ and let (X, W,P)
be a hyperbolic IFS with unique invariant measure u. The moments of p € P(X) for points x € X
and k; € N is defined as [BEC64,HOR88,LAYS0,RED89]:

%
muk :i=1.) = L I1x'de(x)

i=i

If k, =k, = ... =k, = k then with m(u,k) we refer to the k* moment of u, which we denote m,. In
that case the sequence { m, : k = 0,1,2,... } is called the Hausdorff moment sequence of p. L 4

Theorem 9.4. Let (X,d) be a compact metric space and let (X,W,,P.) be a hyperbolic IFS with
condensation and with unique invariant p-balanced measure u and condensation measure p,. Then the
moments { m(u,k) : k = 0,1,2... } can be calculated uniquely explicitly recursively, in terms of the
parameters which define the IFS and the moments { m(uy,k) : k = 0,1,2,... } [BAR84,BAR85].

Proof. Let p, be any probability measure whose support is C and suppose X is a one-dimensional
space, i.e. g=1, then:

m(p,k)
= ( definition 9.14 )

Lx Fdpu(x)

= ( X is bounded, k#0, substitute x* := f)
Lf(x) du(x)

= ( theorem 9.1, theorem 9.2 )

Lf ow,@)dp(x) + p, Lf(X)duo(X)

= (k#O substitute £ := x* )

f:p,. Lx* ow,(x)du(x) + p, LX‘duo(x)

: ( definition 9.14, f(x) = x = fog(x) = g(x) )
L(w COFdu®x) + pmu, k)

= ( suppose for brevity that p,= 0 (no condensation), x=z and w, = 5,2 + b; with b5,z € C)
N

Y r, L(S‘Z + bYdu@)

i=1

= ( calculus )
: LE $)s:2Yb! du)

= ( calculus )
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EPE( )”’”L 2/dp@)

i=] j=0

= ( splitoffj = k)

)13 IE( )s’b 2idu@) + ;)b Lz‘du(z)]

= ( calculus )

N k-1

X3 (()sfotpimGu) + mu, k));p Si

= ( calculus )

[1 - Ypst 22:( )s?b/"p,mu, )
i=l i=1 je0

={(m(,0) = fydu@) =0)
m(p,k) can be calculated uniquely explicitly recursively

We can prove the same for an affine transformation w(x,y) = (ax + by + e, cx + dy + f):

m(l‘,kukz)

= ( definition 9.14, theorem 9.1, theorem 9.2, conform first 6 steps of former part )
N .

Y p.[(@x + by + e)'(cx + dy + ) du(x,y)

Y BN

= (assume k, =k, = k)
Y p.[(ax + by + e)cx + dy + f))dux,y)

i=1 x
= ( calculus )

Y p.[(acx® + adxy + afx + bexy + bdy* + bfy + cex + dey + e.f)du(xy)

f=]1
= ( multinomium )

L (ac x?Y(adxyy @ fxy (b exyy o dy) b fyY(cex) deyy (e fydux,y)

= ( calculus )

Y5 ¥ [.)e

iwl 14 y-k

‘Jz‘hb ‘Js‘lo ' ‘.h‘hdb‘ls‘ll J1‘J|‘Jf’ A/ AN 2jl ‘jz‘js‘L‘j,yj:‘ja‘?;g‘j.‘jl d#(x y)
92,

= ( calculus )
N

Yy

i=sl 44, -k.] '.]2' Jo
= ( m([l.,0,0) = Ix dﬂ(x’y) =0 )
m(u.k,,k,) can be calculated uniquely explicitly recursively |

‘b *J b.h YA AR sz *s¥s _Jrtis ‘j:f Jy*is ¥,

; M, Yy, 54t U st
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Example 9.9. Consider the IFS (R%,W,P) where W and P are given by:
w,x) = (Y4x, %) w(x,x) = (Yax,+%4,%x) wi(x,x) = (Y4x,,'%x,+ %)

We can calculate the moments as follows:

m(khk?)

- [z

= _EP,- L(W,-(xl))" (W,-(x))"du(xl,xz)

* 3G G autnn) + 4 (e Guouten) + 4ot G ute, )

- (-2 s

):()Mokg . g“o(‘:)m,r)]

, K
= (3-28h-1) [zo:(:_')M(j,@ + E("’)M(kl,r)]

r=0

Since m(0,0) = 0, we can compute the moments uniquely explicitly recursively. *
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Duration is the indefinite continuation of existence.

Bt dn Syins 1652 167 AOLT7 Chapter

IFS-encoding: the inverse problem

In chapter 8 we were concerned with IFS-decoding. Here we address the inverse problem, i.e. given
aset A € H(X) (or a set B € P(X)), determine an IFS whose attractor is approximately A (or B). It
is obvious that this inverse problem is less trivial than IFS-decoding.

10.1. The collage theorem

Theorem 10.1 (collage theorem). Let (X,d) be a complete metric space and let A € H(X) and e=20
be given. Choose a deterministic hyperbolic IFS (X,W,P) with or without condensation and with
contractivity factor s € [0,1), such that:

N
h(A, U w(4) < e
i€f{o0,1)
where h denotes the Hausdorff metric, then:
€

h(AA) < _—
A.A4) = ——

where A, is the attractor of the IFS [BAR86al. Equivalently:

(AA:A4 € HX): hdA4,) < (I-S)"h(A,' ITJ}W.-(A) )
Proof. Let w(A) = LNJ w,(A4), then:
i€{0.1}

h(d.4,)
< ( definition 4.9 )
lim Y h(wi 0 (4),wP(4))

iml

< ( calculus )
h(4,w(4)) lim Y s

i=1
< ( |s] <1, sum for an infinite geometric series )
(1-5)"h(A,w(A)) |
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The collage theorem tells us that in order to find an IFS whose attractor is "close to" or "looks like"
a given set A € H(X), one must find a set of transformations W such that the union or collage of the
transformations { w € W : wf’(4) } is near to the given set A. In other words, we perform a "lazy
tiling" of A by affine transformed copies of itself [GIP9Ob]. The less overlap between the separate
tiles exists, the more efficient the IFS-encoding. Nearness is measured using the Hausdorff metric.
In fig. 10.1 the effects of a "good" and a "bad" collage are shown. The ideal case is to find a set of
affine transformations W such that the transformations { w € W : w(4) } form a partition on A4, thus:

Iilw,(A) =A A (Aij:1<ijs<N,i#:wd) Nwd) =0)

[

Figure 10.1. The effect of a "good” collage and a "bad" collage [PEI88].

Exam:ie 10.1. Suppose we are using a trial-and-error procedure to adjust the coefficients in two
affine ransformations w,(x) = ax + b and w,(x) = cx + d, where a,b,c,d € R, to search for a
deterministic hyperbolic IFS (R,{w,,w,},P), with attractor 4, = [0,1]. Of course, since the IFS is
deterministic, we disregard the probabilities P. We might come up with w,(x) = 0.51x - 0.01 and
wy(x) = 0.47x + 0.53. We can calculate the quality of this approximation by:
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h(4,|J w/A))

i=l

= h([0,11,J w([0,1]))

i=1

= h([0,1],[-0.01,0.5]V[0.53,1])
= ( Max :: (d([0,1],[-0.01,0.5]V[0.53,1]),d([-0.01,0.5] U [0.53,1],[0,1])) )
= (Max :: ((Max :: x € [0,1] : d(x,[-0.01,0.5]V[0.53,1])),

( Max :: x € [-0.01,0.5]U[0.53,1] : d(x,[0,1]))) )

= ( Max :: (d(0.515,[-0.01,0.5]U[0.53,1]),d(-0.01,[0,1])) )
= ( Max :: (0.015,0.01) )
= 0.015

The contractivity factor for the IFS is (according to definition 8.1) given by:
s = ( Max :: (5,,5,) ) = ( Max :: (0.51,0.47) ) = 0.51
So by theorem 10.1 :

h(0,11,4,) < (0.015)(1-s)" = (0.015)/(1-0.51) = 0.031 *

Suppose that the collage exists of N affine transformations, then to use nondeterministic IFS-decoding
it is necessary to assign a probability to each transformation. To assure that each transformation is
randomly selected with a chance directly proportional to the information it contributes to the attractor,
its probability must be set equal to the relative determinant value of its transformation matrix 4, with
respect to the sum of the determinant values of the transformation matrices of all transformations in
the IFS [KOC89al]. In other words:

|det(4)]  |ad, - b

i |det(4) | i lad, - b,c,|

i=1 i=]

N
A Xp=1

i=1

If some p; appears to be zero, we should assign a small value to it. In the IFS-CODEC algorithm (see
appendix B) we assign the value 0.001 to p; in such cases.

Theorem 10.2. Let (X,d) be a compact metric space and let (X, W,P) be a nondeterministic hyperbolic
IFS with or without condensation and with contractivity factor s € [0,1). Let » = M(u) be the
associated invariant measure and let M : P(X) -» P(X) be the associated Markov operator and let
p € P(X). Then [BAR88aAI:

o = )

where d,, denotes the Hutchinson metric.

Proof. This is a corollary of theorem 10.1. [
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Theorem 10.1 together with theorem 10.2 tells us that to find an IFS whose invariant measure is
"close to" or "looks like" a given set B € P(X), one must find a set of transformations W such that
the support of its invariant measure is almost equal to B. Nearness is measured by the Hutchinson
metric. Thus concluding:

(i) For IFS-encoding of subsets of the complete metric space (H(X),4), i.e. monochrome
images, we should cover the target image A € H(X) with N affine transformed copies
of itself. The quality of the collage is measured by the Hausdorff metric 4. In particular,
for given ¢ 20 and 4,4, € H(X):

€

N
HAUw@) < ¢ = hdd) s =

where A, is the attractor and s is the contractivity factor of the encoded IFS.

(i) For IFS-encoding of subsets of the complete metric space (P(X),dy), i.e. color or
greytone images, we should cover the target image B € P(X) with N affine transformed
copies of itself and adjust the probabilities. The quality of the collage is measured by the
Hutchinson metric dy. In particular, for given e 20 and p,u, € P(X):

dM@p) < ¢ = dfup) < 1—i§

where g, is the invariant measure (whose support is the attractor) and s is the
contractivity factor of the encoded IFS.

We mention that a collage can be formalized by a collage grammar [HAB9 1], but we will not discuss
this possibility here. Furthermore, notice that the inverse problem has no unique solution, there are
many valid collages.

10.2. Computational time complexity

If we want to solve the IFS-encoding problem by computing and evaluating all possible combinations
of affine transformations and their probabilities, we will not succeed in polynomial time, since the
IFS-encoding problem appears to be intractable.

We will restrict ourselves to the case of monochrome images, which implies that finding a collage
can be done by tiling of the target image with affine transformed copies of itself. So, we only prove
the case for IFS-encoding of subsets of the complete metric space (H(X),%) (see former paragraph).

The proof will not succeed if we use the Hausdorff metric 4 to measure the approximation quality,
since the Hausdorff metric is not powerful enough to quantify the proposition: ANB = & (see later
on). Therefore we will use the Pixset metric d, to measure the approximation quality. The reader
should not be concerned about the details of d, until par. 10.4, where we will introduce this metric
formally. A quick glance at definition 10.1 should do for the moment.
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Theorem 10.3. The IFS-encoding problem is NP-complete.

Proof. For brevity we omit the probabilities. Within this proof we formally define the IFS-encoding
problem as follows (conform [GAR79]):

NAME: IFS-ENCODING.

INSTANCE: A finite set A € H(X), a positive integer N< |4 | and a real-valued number

e € [0,1).

QUESTION: Is there a set W = {w,,...,w,} of affine transformations such that:

N
dA,|Jw) < e (strong constraint)

iml

(Ai,j:1<1ij=<N,i#j:hw(d),wd) = 1-€) (weak constraint)

The proof exists of two parts conform [COR90,GAR79,LEW81]:

®

(i)

To be proven: IFS-ENCODING € NP.

Let T be a nondeterministic Turing machine which generates candidate solutions W for
IFS-ENCODING. A checking algorithm which checks whether Wis a valid solution must
basically do three things. First, the probabilities for each w; € W must be calculated
from the determinants of the affine transformations, which can be done in O(N) time,
where N denotes the amount of affine transformations in W. Second, the attractor A, of
the thus formed IFS (X, W,P) must be rendered, which can be done in O(n) time, where
n denotes the amount of iterations (see par. 8.3). Third, the approximation quality of the
rendered attractor A, as to the instantiated set A must be calculated, which can be done
in O(|A|?) time if we use the Hausdorff metric and in O(|4|) time if we use the Pixset
metric (see par. 10.4), where |4| denotes the cardinality of the instantiated set 4, i.e.
the amount of pixels A contains. For each candidate solution W generated by the
nondeterministic Turing machine 7, the checking algorithm can determine in a time that
is a polynomial function of the input length |4 |+ N+n, whether this candidate solution
is valid or not. In other words, IFS-ENCODING can be solved Nondeterministic
Polynomially and thus belongs to the class NP, which is defined to be the class of all
problems that can be solved by nondeterministic algorithms that run in polynomial time
[GAR79].

The second part of the proof consists of showing that some suitably choosen known
NP-complete problem (in t:is case SET PACKING) can be considered as a special case
of IFS-ENCODING. We must therefore prove that each instance of SET PACKING can
be transformed in polynomial time into an instance of [IFS-ENCODING. In other words,
we must prove that there exists a polynomial transformation f from SET PACKING to
IFS-ENCODING, which we denote with SET PACKING o IFS-ENCODING.

To be proven: SET PACKING o IFS-ENCODING.
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The SET PACKING problem is defined as follows [GAR79]. Does an instantiated
collection C of finite sets contain at least an instantiated number of 1 < N < |C|
mutually disjoint sets?

We define a transformation f that transforms each instance ¢; € C from SET PACKING
into an instance w, € W from IFS-ENCODING. First, the transformation f sorts the
elements of each ¢, We denote the successive elements of ¢; with ¢(1),...,c(]¢;|), where
¢(1) contains the smallest element. Then the transformation f assigns to each element of
C a pixel in a monochrome image A which consists of a horizontal line of adjacent pixels
and which resides in some pixel space, thus |C| = |4|. Each pixel is initially marked
"unassigned”. Furthermore, elements that appear in more than one c; are stored in a
register.

It is clear that f must transform each instance ¢; € C into an instance fic) = w,(4), and
it does so by applying the following (naive, but effective) algorithm:

for (position := 1 to |A|) pixel(position) := "unassigned";
register := o;
for (i := 1 to N )
{
count := 0;
for ( j := 1 to |cJ )
{

position := 1;
while (pixel(position) # "unassigned")

if (pixel(position) = c¢;(j))
{
register := register u ¢(j);
count := count + 1;
}

position := position + 1;

(LTI L

hELOTO W

e}
L}

=1 to IcJ) pixel(e+j) := c;(j);

Only if register = & A (Ni: 1<i<|A| : pixel(i) = "unassigned") = O is true, the
thus obtained collage is valid, since this means that the transformed images w,(4) form
a partition on A. To avoid problems with the implicit discretization which is induced by
applying a transformation w; we let a,b,c,d € Q. Now we must prove two things:

a)  To be proven: fin) is O(p(n)) for some polynomial function p. Clearly, f can
be computed in polynomial time O(Ni,j: 1<isN,jE€ ¢, U..Uc, N¢:J),
since f first assigns to each element of C a pixel in 4 and then applies the above
algorithm, which contains O(|C| + |{ c; : 1<i<N}|) steps. Because f assigns to
each element of ¢; a pixel in wi(4), it is clear that Ac;) = w(A) and |¢;| = |w(A)].
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b) Tobeproven: (A : c;EC: ¢; € SET PACKING » fic) € IFS-ENCODING )
or in other words: ( C contains N mutually disjoint sets) & ( |W| = N).
Lete =0.

"=": Let C contain N mutually disjoint sets, then:
N
Ueg=C A (Aij:1sijsNizj:cNg=0T)

i=]

=N>(applyf)
Uw) =4 A (Aij:1 <1i,j<N,i%j:w) Nwd)=02)

i=]

= ( definition 10.1, ANB = & = dy(4,B) = 1)
N
d,,(A,U w(d) =0 A (Aij:1 =i,j<N,i#j:dew(d),wd) =1)

i=]

=(e=0)
d,,(A,U w) se A (Ai,j:1<i,j<N,i#j:diw(d),wid) = 1-¢)

i=l

"<": Let |W| = N, then:
N
dAJw@) < e A (Aij:1<ij<N,i%:dw(d),wid) = 1-¢)

i=l

=(lete=0)
N
d@Uw@) =0 A (Aij:1<ijs N, i#j:dwd)w@)=1)

iwl

= ( definition 10.1, dy(4,B) =1 = 4ANB =2 )
N
Uw@) =4 A (Aij:1<ijsNizi:w@d)nwA)=093)

im]

= (apply /)
N
Ue=C A (Aij:1Sij<sNi%jigNg=03)

i=]

Thus we see that SET PACKING can be considered as a special case of IFS-ENCODING, namely
for e = 0. Remember that ¢ € [0,1) is also instantiated together with the set A. Since SET PACKING
is known to be NP-complete, IFS-ENCODING must also be NP-complete. |

It is remarkable that we have not been able to find an NP-completeness proof for the IFS-encoding
problem in the available literature on the subject. Even the most recent fundamental book on the field
([PEI92]) doesn’t contain such proof, although it states that IFS-encoding is probably computationally
complex. It is strange that despite the lack of such NP-completeness proof in literature, all known
attempts to implement automatic IFS-encoding so far have been heuristic ones.

Since we have proven IFS-ENCODING to be NP-complete, we know that any combinatorial search
algorithm will fail to generate the (optimal) solution within reasonable time. Even if we bound the
parameter values of the affine transformations w; € W to certain discrete values, the problem still
remains NP-complete.
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Let (X,W,P) be an IFS and assume that the parameters of the according IFS-code are bounded by
ab,cde,f€ { +x/n:x=12,...,n}. Assaid before, we omit the probabilities. Then the amount
of possible affine transformations is given by the amount of possible combinations (a,b,c,d,e, f). This
can be calculated as (2n)° = 64n°. An IFS-code consists of a collage of N different affine
transformations. The amount of possible combinations of N affine transformations is equal to the
amount of possible combinations of N affine transformations from a language of 64r° affine
transformations, i.e. (64n°)". A deterministic algorithm which generates all possible IFS-codes will
therefore have running time T(n,N) = 64n*". Clearly, IFS-encoding is polynomial in n, but
exponential in N. This is illustrated in fig. 10.2 for N=2 (left) and n=2 (right).

7] log,,Tn2) 5] log, TN

7 HE

6- 6

5- 64n'2 5 280D
4 4

3 3

2 2

1 1

0 L T —1 0 T = 1
-1 1 2 3 -1 1 2 3
-2- —>n -2 —>N
-3 -3

-4 -4

-5 -5

Figure 10.2. Time complexity function 7(n,N) for N=2 (left) and n=2 (right).

The growth rate of the polynomial time complexity 7(n,2) = 64n" is less than the growth rate of the
exponential time complexity T\2,N) = 2°¥*V_ In the special case n = N, the polynomial time
complexity T(n,2) is only worse then the exponential time complexity 7{2,N) for values in the interval
(2,4), since:

< 2°¢%Y for n=N € [0,2]
64nt? = { = 2°#Y for n=N € (2,4)
< 2°%Y for n=N € [4,)

Realistic values for n and N are givenby n = 100 and 4 < N < 200 [BAR88¢c,BAR90]. We see
that even for the smallest realistic value of N the amount of possible IFS-codes equals the amount of
atoms contained in the whole universe, which latter amount is roughly estimated to be 10*. This can
be shown as follows:

T(100,4) = 64+ 100°"¢ = 10*%(10)* = 10°* ~ 10%

The state space for the average IFS-encoding problem consists of an amount of elements somewhere
in between 10®* and 10°*'®. This means that a (super) computer with a calculation speed of 200
[GFlops] would at least be kept busy for 5-102.10*® = 5.10°® [seconds] or roughly 10%®
[centuries] to apply a single floating point operation on each possible collage. If we take into account
the probabilities, things are even worse, since these probabilities introduce another factor n = 100.
In that case we get a time complexity function 7{100,N) = 64(100)"" = 10"¥*'%_ If the algorithm has
to check the quality of each generated IFS-code, the running time will increase with a factor |A4], i.e.
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the amount of pixels of the target image, and we get 7| 4|,100,N) = |A]| - 10""*!%, The trivial cases
|A| = 1 [pixel] and N = |A| [affine transformations] can of course be solved in linear time, but the
problem is that there exists no algorithm which can solve the IFS-encoding problem for all N < |A4]|
in polynomial time. The same considerations are valid for the e-values. If we want a collage for
€ = 0.99 then the problem can be solved very quickly, but the problem is that we want an algorithm
which can generate solutions for all e-values € [0,1), thus also for ¢ = 0. The above considerations
force us to develop an algorithm that is not based on elementary state space search, but rather on
some other approach.

10.3. A first approach: moment theory

In par. 9.4 we have seen that it is possible to calculate the moments of an IFS uniquely, explicitly
and recursively, in terms of the moments and the parameters which define the IFS (see theorem 9.4).

Theorem 10.4. Under the conditions of theorem 9.4 the associated moment problem is determinate.
In particular, the corresponding p-balanced measure y is unique.

Proof. See [BAR85]. [ |

This means that, given the first X moments of a target image, which can be calculated in O(kmn) time,
finding the invariant measure g which defines the image, has a unique solution.

Example 10.2. Consider the fractal structure below, known as the twin dragon fractal [MAN83],
and which we denote A.

Figure 10.3. The twin dragon fractal.
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Suppose this is the target image which we want to encode into an IFS-code. As A is symmetric about
its centre, which we represent as the origin in the complex z-plane, we approximate p by a p-balanced
measure u(s,a) for the IFS (C,{w,(2),wx(2)},{0.5,0.5}), with w,(z) = sz+(1-5)a and wy(z) = sz-(1-s)a.
Referring to par. 7.4 it is clear that w,(z) has fixed point a € C and w(z) has fixed point -a € C.
The IFS has a contractivity factor s € C such that |s| < 1. First we calculate the two-parameter
family of moments:

m(u k) = j 24dp()

(o

Since A is symmetric about the origin, we know that m(u,1) = m(u,3) = 0. So we only have to
calculate m(y,1) and m(u,4).

m(y,2)
= ( definition 9.14 )

[ 2%du(2)

C

= ( theorem 9.1, theorem 9.2 )

2

y», j W @)dp(2)
= ( calculus )
L[ 1n @+ @104

( calculus )
j [(sz+(1-5)a)*+(sz-(1 -$)a)] du(z)

C
= ( calculus )
j (2s%22+2(1-s)*a?) du(z)

W et

(ST

C

( calculus )

s2 J 2%du(z) + (I-S)’a’JZ"du(z)
C

C

= ( definition 9.14 )
fmp,2) + (1-sya’m(y,0)
= ( m(u,0) = 1, calculus )
(1-5)’a?

1-5?
= ( calculus )
(1-s)a?

1+s

m(y.,4)
= ( definition 9.14 )

[0
C
= ( theorem 9.1, theorem 9.2 )
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Y, j W,(2)'dp @)

im]
= ( calculus )

[ 100, @)*+ 0@ 1)

= ( calculus )

: j (2524 +125%22(1 -5)%a2+2(1 -s)*a*)dp(2)
(o4

= ( calculus )

#m(u,4) + 65°(1-sy’a®m(u,2) + (1-s)*a‘m(u,0)
= ( m(u,0) = 0, calculus )
6s5%(1-5)’a’m(u,2) + (1-s5)‘a*
1-s¢

= ( substitute m(u,2) )
6s%(1-s)’a* | (1-s)'a*

1+s

(1-5)(1+5)(1+5?)
= ( calculus )
6s5%(1~-s5)%a* + (1+5)(1-5)°a*

(1+s5)*(1+5%)
= ( calculus )
(1-5)%a*[6s* + (1 +s5)(1-9)]
(1+5)%(1+s5?)

= ( substitute m(u,2), calculus )
(145

)

59 2
o) (m(p,2))

Now we solve the latter equation for §°:

(1+5)m(p,4) = (1+55)m(p,2))?
= ( calculus )
s (m(p,4) - 5(mu,2))%) = (mu,2) - m(p,4)
= ( calculus )
52 = (m(ﬂ,z))z = m(ﬂ,"')
m(y,4) - 5(m(u,2))

To each pixel in A we attach a weight of |A4|™, where |A| denotes the cardinality or total amount
of pixels in A. With the IFS-CODEC algorithm (see appendix A and B) We obtain |4| = 89587
[pixels].

With the IFS-CODEC algorithm, we compute the Hausdorff moment sequence {my,m,,m,,m,,m,} (see
definition 9.14), which results in:
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my = 1+i

m, = 0+0i

m, = 8.063819237 - 10°+4.160132117 - 1 0%
m, = 0+0i

m, = -2.027113949 - 107+ 1.968592598 - 10%

We next substitute the computed values m, and m, for respectively m(u,2) and m(u,4):

§2 = (8.063819237-10° + 4.160132117 + 10°§)*> - (-2.027113949- 107 + 1.968592598 - 10°i)
(-2.027113949-107 + 1.968592598 - 10°i) - 5(8.063819237 - 10° + 4.160132117 - 1(°i)?

= 0.004481 + 0.498892i

This yields two roots: 5, = 0.502 + 0.497i and s, = -0.502 - 0.497i. There correspond four
possible solution pairs (s,a), however, each IFS that is assigned to a solution pair yields exactly the
same measure and approximate fractal attractor. The target image was rendered from the IFS
(R, {w,(x),w,(x)},{0.5,0.5}), with

wy(x) = (0.5x, - 0.5x, - 100, 0.5x, + 0.5x,)
w,(x) = (0.5, - 0.5x, + 100, 0.5x, + 0.5,

Since the the affine transformations are similitudes, this IFS can be transformed in an IFS
(C,{w,(2),w,(2)},{0.5,0.5}), with transformations:

wy(z) = (0.5 + 0.5i)z - 100 = sz + ¢ with fixed point -100 + Qi
wy(z) = (0.5 + 0.5i)z + 100 = sz + ¢ with fixed point 100 + 0i

The image in fig. 10.3 was rendered with s = 0.5 + 0.5i. From the moment calculation we obtained
as one of the roots: 5, = 0.502 + 0.497i. If we want to use this value to render the according
attractor, we first go to R? and obtain the IFS: (R?,{w,(x),w,(x)},{0.5,0.5}), with:

w;(x) = (0.502x, - 0.502x, - 100.498, 0.497x, + 0.497x, - 0.373)
w(x) = (0.502x, - 0.502x, + 100.498, 0.497x, + 0.497x, + 0.373)

For this transformation from C to R? we used:

a? = (1+gr:tg,2) t = (1-s)a = 100.498 - 0.373 e =Re(®) f=Im(@)

Re(s) = + &/2 /0.0004481 + /(0.004481) + (0.498892F = 0.502

0.498892

ms) = —xem

= 0.497

The attractor of this IFS is given in fig. 10.4 and as we can see, it is a good approximate of the target
image in fig. 10.3. The pixsetdistance between the two structures was calculated as d, = 0.053713,
which means an approximation quality of about 95%. *
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Figure 10.4. Approximation of fig. 10.3 calculated from moment theory.

From the above considerations, we could conclude that theorem 9.4 supplies us with a powerful tool
to obtain IFS-encoding in closed form. But this method only works under certain hypotheses:

®

(i)

(iii)

The invariant measure p should be uniform upon A, which is only true when all affine
transformations w,(4) of the IFS are mutually disjoint.

Except information about the moments of A, useful application of theorem 9.4 also
expects information about the symmetry of A, which requires certain pattern recognition
techniques. But pattern recognition is a severe unsolved problem which we do not intend
to solve first before solving the IFS-encoding problem. Moreover, we not only have to
know how many transformations we need, but also their associated probabilities.

The structure in fig. 10.3 constitutes the attractor of an IFS of the simple form
(CwW(2) = s,z + (1-5,)a;, p), which only can generate similitudes of 4, as shown in par.
7.4). But to encode real world images, the operations scaling, rotation and translation
alone are not powerful enough. Therefore we also need to be able to shear the image,
which implies that we have to use a more powerful affine IFS of the form
(R%,w(x) = (ax+by+e,bx+cy+f), p).

The above considerations definitely force us to develop an algorithm that is based on a heuristic
approach. This means that we must first be concerned about a quick and reliable method for
evaluating the heuristic generated candidate solutions.
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10.4. The quality measure

If we want to measure the quality of an approximation A4, of a given monochrome image 4 in a pixel
space, we should use the Hausdorff distance A. The Hausdorff distance is calculated by first finding
the minimum of all distances between a pointx € A and apointy € A, Denote the two points where
between the minimum distance exists as x,;, and y,.,. Then the maximum of all distances between a
pointx € 4 and y,,, € 4, must be found. Denote the found point x € 4 as x,,,,. In the same way
the maximum of all distances between a point y € A4, and x,,, € A must be found and the thus
obtained pointy € A, is denoted y,,,,. Finally, the Hausdorff distance is the maximum of the distance
between x,., and y,... and the distance between x,, and y,., (see also par. 2.2).

Assume that 4 and 4, both contain n points, then the computational time complexity of an algorithm
to compute h(d,A)) is clearly T(n’+2n+1) or O(n®). Since the quality measure will become part of
the evaluation function of the IFS-encoding algorithm, and the evaluation time is a critical factor, the
Hausdorff distance is insufficient because of its computational time complexity.

The Hausdorff distance can give strange results, which do not match with our intuitive notion of
closeness. For example, if 4 is a disk and B is the same disk as A, but with an outside connected thin
line segment with length equal to the diameter of B and perpendicular to its boundary, then #(A4,B)
equals the length of the line segment. The structures 4 and B appear visually very close, but the
Hausdorff distance doesn’t imply this at all.

Moreover, the Hausdorff distance is insufficient to model the proposition ANB = & which we will
need hereafter. Therefore we need a quality measure that obeys the following criteria:

(i) it must match with our intuitive notion of closeness;
(ii) it must be able to model the proposition ANB = &J;
(iii) it must have low computational complexity, i.e. less than O(n?);
(iv) it must be a metric on H(X).
In [KOC89b] the following measure is proposed:

[4\A,|

A = TaT

but this is not a metric, since it doesn’t obey axiom (ii) of definition 2.2.

Definition 10.1. Let (X,d) be a complete metric pixel space. We define the Pixset distance between
points A and B in H(X), which are sets in X, as:

d, = (Max : A,.B € H(X), AB * O : [—'l—— f;'])

where |A| denotes the cardinality of A, i.e. the amount of pixels contained in A4. ¢



116 10. IFS-encoding: the inverse problem

Consider the former example of the two disks A and B, where the Hausdorff distance gave a wrong
notion of closeness. The pixset distance would in this case only yield a distance which equals the
quotient of the amount of pixels in the line segment and the amount of pixels in B, which will be a
small number. Clearly, the Pixset distance is able to model the proposition ANB = & (see theorem
10.7). Assume that two structures A and A, both contain n points, then the computational time
complexity of an algorithm to compute dx(4,4)) is clearly O(n). Before we are able to prove that d,
is a metric, we must introduce three theorems, which we need for the proof.

Theorem 10.5. Let (X,d) be a complete metric pixel space, then:
(AAB:AB € HX): |ANB| < (Min :: (|4],|B])))

Proof. Let AL B € H(X) and |4| = |B|, then: Let A,B € H(X) and |4| <|B|, then:

|ANB| |ANB|
< ( definition of Intersection ) < ( definition of Intersection )
|B] 4] n

Theorem 10.6. Let (X,d) be a complete metric pixel space, then:
(AAB:AB € HX): |[A|=|B| =dyA,B) =1- |[ANB|/|A])
Proof. Let A,.B € H(X) and |A| = |B| and A,B # O, then:

dP(A'B)

= ( definition 10.1 )

(Max : 4,B € H(X), A,B = O : (|AB|/|A|,|B\|/|B|))

= ( calculus )

(Max : A,B € H(X), 4,B # & : ((|4]-|ANB|)/|A|,(|B|-|BNA|)/|B]))

= ( |A| 2 |B|, A,B # O, theorem 10.5 )

(l4]-{4nBl)/|4]

= (A # O, calculus )

1-|ANB|/|A] [ |

Theorem 10.7. Let (X,d) be a complete metric pixel space, then:
(AAB:AB € HX):di(A,B) =1 ANB =T )
Proof. Let A.B € H(X) and ANB = & and A,B # O, then:

dy(A,B) = 1

= ( definition 10.1 )

(Max : A,B € H(X), A,.B % O : (|A\B|/|A|,|B\A4|/|B|)) = 1

= ( calculus )

(Max : A,B € H(X), A,B # I : ((|4|-|ANB|)/|A[,(|B|-|BNA[)/[B])) =1
= ( definition of Max operator )
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(14]-14NB|)|4] = 1 v (|B|-|BOA|)|B| = 1
=(AB # @, calculus )

1-|ANB|/|A] =1 vV 1-|BNA|/|B] = 1

= (A,B # &, calculus )

ANB =

ANB =

= (AB # O, calculus )

1-|[ANB|/|A| =1 v 1-|BNA|/|B| = 1

= (AB # J, calculus )

(l4|-14nB{)/|4] =1 v (|B|-{BNA4|)/|B| = 1

= ( definition of Max operator )

(Max : A,B € H(X), 4,B = & : (|A|-|ANB|)/|A|,(|B|-|BNA])/|B|)) = 1
= ( calculus )

(Max : A,B € H(X), A,B# @ : (|AB|/|A|,|B\A]|/|B])) =1

= ( definition 10.1 )

d(A,B) = 1 u

Theorem 10.8. d, is a metric on H(X).

Proof. We have to prove that d,, obeys the four axioms of definition 2.2.

®

@in)

To be proven: (AA: A € H(X) : d(4,4) =0)
Let A € H(X) and A # O, then:

dP(AﬁA)

= ( definition 10.1 )

(Max : 4 € H(X), 4 = T : (|4U]/|4],|A\4]/{4]))
= (A # J, caleulus )

(Max :: (0,0))

= ( calculus )

0

To be proven: (A A,B : A,B € H(X) : ds(A,B) = d,(B,A))
Let A,.B € H(X) and A,B # O, then:

di(A,B)

= ( definition 10.1 )

(Max : 4,B € H(X), A,B # O : (|JA\B|/|A|,|B\4|/|B]))
= ( symmetry of Max operator )

(Max : 4,B € H(X), A,B # & : (|B4]|/|B|,|A\B|/|A]))
= ( definition 10.1 )

d(B,A)
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(iii)

(v)

To be proven: (AA,B: AB € H(X),A # B:0 < dyA,B) < =)
Let A,B € H(X) and A # B, then:

dy(A,B)

= ( definition 10.1 )

(Max : 4,B € H(X), A,B = @ : (|A\B}/|A]|,|B\4|/|B]))

= ( calculus )

(Max : 4,B € H(X), A.B # O : ((|4]|-|ANB|)/|A|,(|B|-|BNA|)/|B]))

case iiia) = ( |4|> |B|, theorem 10.6 )
1-]ANB|/|A|
=(|4|>|B|,AB # &)
0<1-|ANB|/|A] <1

case iiib) = ( |[4| <|B|, theorem 10.6 )
1 - |ANB|/|B|
=(|A|<|B|,AB # &)
0<1-|ANB|/|B| <1

Hence: 0 < (Max : 4,B € H(X), A,B # @ : (|A\B|/|A|,|B\A4|/|B])) < o

To be proven: (A 4,B,C: A,B,C € H(X), A,B,C # D : dp(A,B)<dy(A,C)+d,(C,B) )
Let A,B,C € H(X) and A,B,C # O, then:

case iva)

= ( |A|=|B]|, |B| 2|C|, theorem 10.6 )
(AA,B,C:A,B,CEH(X),A,B,C D :1-|ANB|/|A| <2-|ANC|/|4|-|BNC|/|B|)
= ( calculus )

(AA,B,C:A,B,CEH(X).4,B,C~D: |B||ANB| = |B||[ANC|+|A4||BNC|-|A]||B]|)
= ( theorem 10.5 )

(A A,B,C: A,B,CEM(X) A,B,C~D: |B||B|=|B||ANC|+|4||BNC|-|4||B]|)
= ( calculus )

(A A,B,C: A,B,CEM(X),A,B,C=D: |B|(|B|-|ANC|) = |A|(|BNC|-|B|))

= ( |4| = |B|, |B|2|C|, theorem 10.5= |B|]-|ANC| =0 A |BNC|-|B|<0)
true

case ivb)
=(|4|=|B|, |B|<|C|)
case ivbl) = ( |A|=|C|, similarly case iva )
true

case ivb2) = ( |4|<|C|, similarly case iva )
true
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case ivc)
= (|4 <|B[, |B|=<|C]|)

case ivcl) = ( |4|2]|C|, similarly case iva )
true

case ivc2) = ( |4| < |C], similarly case iva )
true

case ivd)

= ( |A| < |B|, |[B| <|C]|, similarly case iva )
true

Hence, d, is a metric on H(X). n

We might also have choosen a Pixset distance of for example d,’ = (1 - |[ANB|/|AUB]|), but this
function is not linear. Suppose we convolute two identical rectangles and we plot the percentage
overlap against d, then we get a straight line, but if we plot the percentage overlap agains d,” we get
a nonlinear graph.

Despite the fact that solving the IFS-encoding problem in closed form with help of the moment theory
(see par. 10.3) will not succeed in polynomial time (see par. 10.2), theorem 9.4 still holds. This
implies that we can compare the k* moment sequences of a target invariant measure p and its
approximated invariant measure v = M(u), which can both be calculated in linear time [RED89].

Definition 10.5. Let m(u,k) and m(v,k) be the K* moments of resp. a target invariant measure u and
its approximated invariant measure » = M(u), then we define the k* moment distance as [SHO9 1]

k

a0 = Y (ImGe) - mo|?)" ¢

The reader can easily verify that d,, is a metric on P(X) (see definition 2.2). Unfortunately, the k*
moment distance appears to be very unsatisfactory as quality measure. As many as 60 moments of
two totally different 1-dimensional invariant measures can agree to each other up to 10 decimal
places. Even more disturbing is the fact that tuning the associated IFS-code very slightly, gives rise
to another IFS, which attractor is close to the attractor of the original IFS, but their moment
sequences may differ considerably [SHO91].

The above considerations lead us to step away from the k* moment distance as practical quality
measure. If we want to measure the quality of an approximation » of the invariant measure p of a
given color or greytone image A in a pixel space, then we can also use the Hutchinson metric d,, (see
definition 9.11). The Hutchinson metric can be computed for a | Screen| = (%, —X.5) ViwerYigper) Cell
discretized measure, as follows. First the nondeterministic IFS-decoding algorithm (see par. 8.3) must
be applied to generate », which can be done in O(n) time for generating n pixels. In this way a
"histogram" is created, which is stored in the frame buffer. If this frame buffer contains & bitplanes,
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then we have 2* discrete histogram values. Of course we must not "saturate” the image by applying
too much iterations, to get a reliable result (if we iterate long enough, all histogram values will be
either O or 2°-1). Finally, the Hutchinson metric can be computed in O(|Screen|) time by:

| Screen|

dy = Y | - v@l  for i, € {0..2%

im]

So the computation of the Hutchinson metric requires O(n+ | Screen|) computation time, which is
linear in the amount of pixels. In [SHO91] it is reported that the Hutchinson metric works splendidly
as quality measure for the approximation quality of 1-dimensional invariant measures.

If we are going to apply an algorithm for automatic IFS-encoding of a target image A € H(X), we
will have to evaluate candidate solutions which are represented by an IFS consisting of N affine
transformations. The most straight forward way to do this is by deterministically rendering the
attractor A, of the IFS and calculate di(4,4). It is obvious that the (sequential) rendering process is
a time consuming step. This can be avoided by applying the following method. An approximate
attractor 1, of the IFS can be obtained by applying 1 iteration of deterministic IFS-decoding with
condensation set A. It is obvious that A, = wy(4) U wy(4) U ... U wy{A).

Concluding, the quality measure for the approximation of:
(i) asetA € H(X) must be done as follows:

First, apply 1 iteration of deterministic IFS-decoding with condensation set A to render
an approximate attractor Zf = wi(d) U wy4) U ... U wyd), which can be done in
O(log(N+ |A|)) time for sequential computation. Second, calculate the Pixset distance
dy(4,4,), which can be done in O(|4]) time.

(i1) an invariant measure p € P(X) must be done as follows:
First, apply a sufficient amount of n iterations of nondeterministic IFS-decoding to render

the attractor », which can be done in O(n) time for sequential computation. Second,
calculate the Hutchinson distance d,{(u,»), which can be done in O(|Screen|) time.
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I have called this principle, by which each slight variation, if
useful, is preserved, by the term Natural Selection.

Charles Darwin (1809 - 1882) [DARBO) Chap ter

Genetic IFS-encoding

From chapter 10 we know that IFS-encoding is NP-complete, which enforces us to use a heuristic
approach to tackle the problem. There are several possibilities, for example greedy algorithms,
simulated annealing, neural networks and genetic algorithms.

Greedy algorithms seem to be the least powerful of the four mentioned alternatives. Simulated
annealing takes decisions based on information which is memorized by means of the evaluation value
of the last evaluated member. It can therefore only perform single steps through the state space, based
on a comparision of the evaluations of the current and the former candidate solutions. Nevertheless,
good results have been reported with applying this method on the IFS-encoding problem
[LEM81,LEV87,LEV88,MANS89]. Neural networks seem to be very promising to the IFS-encoding
problem, but a major drawback is the fact that all pixels have to be represented by separate neurons,
which also have to be connected to form a network [STA91a,STA91bl. It is obvious that this
method implies an extreme memory load. By the way, it is noteworthy that in [BRE91] the idea is
ventilated to use the collage theorem to develop supervised learning schemes for neural networks.

Based upon the former discussion, and also upon its promising results according to 1-dimensional
IFS-encoding [SHO9 1], we have choosen for a genetic approach to tackle the IFS-encoding problem.
We decided to concentrate upon finding IFS-codes for 2-dimensional monochrome images, thus
omitting the probabilities.

11.1. Genetic algorithms

Genetic algorithms were invented by Holland to mimic the process of natural selection according to
the natural evaluation theory of Darwin [HOL75]. The mechanisms that drive the evolution are not
yet fully understood, but some of its features are known. The evaluation process operates on
chromosomes, organic molecules built up from an alphabet of the 4 digits Adenine (A), Thymine (T),
Guanine (G) and Cytosine (C), which are molecules themselves [SIN91]. Chromosomes encode the
structure and properties of living organisms, and natural selection is the link between chromosomes
(genotypes) and the performance of their decoded structures (phenotypes). The process of natural
selection causes those chromosomes which encode successful structures, to reproduce more often than
those which do not.

The process of reproduction is the point where evolution takes place. Mutations may cause the
chromosomes of biological children to be different from those of their biological parents, and
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recombination processes may create quite different chromosomes in the children by combining
material from the chromosomes of two parents. Biological evolution has no explicit memory.
Whatever it knows about producing individuals that will function well in their environment, is
contained implicitly in the chromosome set of the current generation of individuals [DAVI91].

The way a genetic algorithm works is as follows. Candidate solutions of the problem to be solved are
encoded into chromosomes. A first generation of chromosomes is (randomly) initialized. An
evaluation function is defined to evaluate the fitness of each member of the polulation, by decoding
their genotypes (chromosomes) into phenotypes. The better the candidate solution, the better its
assigned fitness. The next step is to select two members from the current generation, which will act
as parents. The probability that a certain parent is selected, is directly proportional to its fitness. In
this way the fittest members are more frequently choosen than less fit members. After two parents
have been selected, a genetic operator is selected. There can be several genetic operators and each
one has an assigned probability of being choosen. Then the selected operator is applied to the selected
parent pair, which yields a pair of so called children. Those children are placed in the next
generation. As soon as the next generation contains as many members as the current generation, the
next generation becomes the current generation and a certain best percentage of the current generation
is merged into the next generation to avoid loss of good genetic material. This process is repeated
until a satisfactory solution (best population member of the current generation) is found.

In our case the genetic algorithm is embedded within a while loop which increments the number of
the affine transformation N we search for at each iteration. The loop guard compares the maximum
allowed error with the Pixset distance between the target image and the current collage. In this way
we avoid to repeatedly search for a collage consisting of a fixed amount of affine transformations.
In fig. 11.1 the general outline of our genetic algorithm is given in pseudo code.

genotype gen[POP_SIZE] ,nxtgen[POP_SIZE];
int ¢1,c2,1,3),k,n,pl,p2,N=1; .

while (PLxsetDlscance(imge,U w,{image)) > MAX_ERROR)
{ te1
InitializePopulation(gen);
while (gen[0].fitness < 1 - MAX ERROR)
{
for n:=1 to POP_SIZE/2

pl := SelectParent{gen);

p2 1= SelectParent{gen);

k = SelectGeneticoOperator;

)Opezatox Ik) (gen[p1}.genlp2] ,nxtgenlci] ,nxtgen(c2]));

Evaluateandsort (nxtgen) ;
)gen := nxtgen u { gen[j] : 0 < j s POP_SI2E/10 ]1;

Transformation[N] :« Decode(genlO0]});
N++;

}

Figure 11.1, Pseudo code for genetic IFS-encoding algorithm.

Like nature, genetic algorithms solve the problem of finding good chromosomes by manipulating the
material in the chromosomes blindly, and they have no information about the problem they are
actually solving. The only information they have, consists of evaluation values of each produced
chromosome and their only use of that evaluation is to bias the selection of chromosomes such that
those with the best evaluations tend to reproduce more often than those with bad evaluations.
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11.2. Chromosome encoding

The first step in developing a genetic algorithm is to design an appropriate scheme for encoding
phenotypes (candidate solutions) into genotypes (chromosomes). In our case a phenotype consists of
an affine transformed copy of the target image, i.e. the image we want to encode into an IFS. The
corresponding affine transformation w can be represented by a state space vector, i.e. the 6-tuple
(a,b,cd,ef), with a,b,c,d,e,f € [-1,1]. The reader may have noticed that some IFS-codes in
chapter 8 contain values e, f & [-1,1], but this is just a machine dependency. In our case we use a
pixel space Pixmap = [-250,250] x [-250,250], so for rendering of attractors we just apply the
multiplications e *x,,,, and f*Y,,.,. Thus an affine transformation can be represented by the above
introduced 6-tuple state space vector. We can encode such state space vector into a chromosome,
which consists of genes.

Definition 11.1. A chromosome is a 6-tuple (g,,8,,8..8,8..8) where g,,..,.8 are called genes with
(Aitas<isf:1<g<25)

So a gene g contains 8 bits g,,..,g,, each of which is called a nucleotide. ¢

In this way we obtain a chromosome of 48 [bits] which contains 6 genes of each 8 [bizs], each of
which bit is called a nucleotide, and such that the MSB g, is the sign bit and the 7 other bits are the
data bits. So the numbers 1, 0 and -1 are represented by respectively 127, 128 and 255. The
chromosome is the genotype which encodes the phenotype, i.e. the affine transformed copy of the
target image, and each gene encodes a property of this phenotype, i.e. a parameter of the affine
transformation (xscaling, yscaling, xrotation, yrotation, xtranslation, ytranslation). The in this way
obtained encoding resolution is (127)™ or about 0.8 [%]. For the translation parameters e and f this
implies a resolution of 250+ (127) = 2 [pixels]. In fig. 11.2 the chromosome encoding process is
represented schematically. It is obvious that this way of chromosome encoding implicitly places
constraints on the phenotypes as to the scaling, rotation and translation intervals.

affine transformation : (a,b,c.d.e.f) abcdef e [-1,1]
chromosome : (8.80.8:8188) 8188 Bk& € {1.255)

gene: £ = 818:8:%8:8,6:&

|“‘:,m
1 sign bit

Figure 11.2. Chromosome encoding.
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11.3. The genetic operators

The most common genetic operators are crossover and mutation. Crossover operates on two parent
chromosomes from which it creates two child chromosomes in such way that each child chromosome
contains material from both parent chromosomes. Mutation operates on one parent chromosome from
which it creates one child chromosome. In our case, applying only those two operators appeared to
be not powerful enough (see next chapter), so we designed some additional genetic operators.
Alltogether, our genetic algorithm contains 8 genetic operators (MacroCrossover, MicroCrossover,
MixedCrossover, Mutate, Jump, Scale, Rotate, Translate), each of which will be explained hereafter.

MacroCrossover operates on genes. It takes as input two parent chromosomes and generates a random
mask as element of {1,..,63} which represents a bitstring of length 6. The bits from mask indicate
gene locations on the parent chromosomes. If the MSB of mask is not set, then the chromosome of
childl gets the gene of parentl at the leftmost position. In the same way child2 gets the according
gene of parent2. If the MSB of mask is set, then the genes in the leftmost position are crossed, i.e.
childl gets the gene of parent2 and vice versa. This process is applied on all 6 genes within the
chromosome (see fig. 11.3).

parentl mask: 19 parent2
(3,102,184,94,59,6) 010011 (138,55,81,65,146,2)

(3,---,184,94,--,-) (138,--,81,65,---,-)

(--,55,--,--,146,3) (---,102,--,--,59,6)

(3,55,184,94,146,2) I (138,102,81,65,59,6)
childl child2

Figure 11.3. The genetic operator MacroCrossover.

MicroCrossover operates on nucleotides. It takes as input two parent chromosomes and generates a
random mask as element of {1,..,255}, which represents a bitstring of length 8. The bits of mask
indicate nucleotide locations on the parent genes. If the MSB of mask is not set, then each gene of
the chromosome of childl gets the nucleotide of the according gene of parentl at the leftmost
position, i.e. the gene’s sign bit. In the same way the genes of child2 get at their leftmost position
the sign bit (leftmost nucleotide) of the genes of parent2. If the MSB of the mask is set, then the
nucleotides in the leftmost positions are crossed, i.e. childl gets the nucleotide of parent2 and vice
versa. This process is applied on all 8 nucleotides within all 6 genes (see fig. 11.4).

MixedCrossover operates on genes and nucleotides. It takes as input two parent chromosomes and
generates a random mask! as element of {1,..,63} and a random mask2 as element of {1,..,255},
which respectively represent bitstrings of iength 6 and length 8. The bits of mask! indicate gene
locations on the parent chromosomes, and the bits of mask2 indicate nucleotide locations on the parent
genes. MixedCrossover basically does what its name already suggests. It only applies MicroCrossover
on the genes which are selected by MacroCrossover. In other words, maskl determines on which
genes MicroCrossover is going to be applied according to mask2 (see fig. 11.5).
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l

(..,10111000,..... )

(.¢»11110000,..... )
(11,38,240,82,51,2)
childl

parensl mask. 76
(3,102,184,94,59,6) 01001100

parent2
(138,55,81,65,146,2)
(....,01010001,.... )

(....,00012001,....)

l

(130,119,25,77,154,6)

child2

Figure 11.4. The genetic operator MicroCrossover.

parentl

(3,102,184,94,59,6)

maskl; 19

010011

parent

(138,55, 81,65,146,2)

mask2: 37
(-,102,---,--,59,6) 00100101 (---,85,--,--,146,2)

(

(

(-,103,---,--,26,2) (+--,54,--,-+,179,6)

& (3,---,184,94,--,-)

(3,103,184,94,26,2)

child1

(13!,“.!1,55."',')[

{118,54,81,65,179,6)

child?

Figure 11.5. The genetic operator MixedCrossover.

Mutate operates on genes and nucleotides. It takes as input one parent chromosome and generates a
random maskl as element of {1,..,6} and a random mask2 as element of {1,2,4,8,16,32,64,128}.
Mask1 represents just a gene location on a chromosome (1 represents the leftmost gene, 6 represents
the rightmost gene) and mask2 consists of a bitstring of length 8, of which exactly one bit is set. The
position of this bit corresponds to the position of a nucleotide in the gene which is pointed to by
maskl. The only action Mutate takes, is to copy the parent chromosome into the child chromosome
and invert the nucleotide bit at position mask2 in the gene at position maskl (see fig. 11.6).
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Jump operates on genes. It takes as input one parent chromosome and generates a random mask/ and
a random mask2 as element of respectively {1,..,6} and {1,..,6}\mask]. These masks represent two
different gene locations within the parent chromosome. Jump creates a child by copying its
chromosome from the parent chromosome and swapping the genes at the positions maskl and mask2
(see fig. 11.7).

parent mask]
(3,102,184,94.59,6) 4
maskl parent mask2
1 (3,102,184,94.59,6) s
94, )
mask2: 16
00010000 [ P 01011110, .)
"ym
(eoveane 01001110, .) (59, -nermrnren3,-)
\l/ (--,102,184,94,-,6)
(eymmnrmen,78,--,°) (59.102,184,78,3,6)
(3.102,1.4,--,”,‘) child

(3,102,184,78,59,6)

child Figure 11.7. The genetic operator Jump.

Figure 11.6. The genetic operator Mutate.

Scale operates on genes. It takes as input one parent chromosome and generates a random mask as
element of {1,..,126}, which represents a scaling factor in the interval [1/127,126/127]. Scale copies
the parent chromosome into the child chromosome and multiplies the leftmost four genes - which
represent the matrix A of the affine transformation - with mask (see fig. 11.8).

Rotate operates on genes. It takes as input one parent chromosome and generates a random /mask as
element of {1,..,359}, which represents a rotation angle in degrees. The mask is converted into an
angle ¢ [radians). Rotate copies the parent chromosome into the child chromosome and multiplies
the leftmost four genes - which represent the matrix A of the affine transformation - with the standard
rotation matrix (see fig. 11.9):

cos¢ -—Sing

sing cose
Translate operates on genes. It takes as input one parent chromosome and generates a random mask
as element of {1,..,255}, which represents a translation vector {mask,mask]". Translate copies the

parent chromosome into the child chromosome and adds (mask mod 255) to the rightmost two genes,
which represent the translation vector ¢ of the affine transformation (see fig. 11.10).
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127

mask parent
67 (3,102,184,9¢.59.,6)

(3,102,184,94,--,-)

mask parems

71 (3,102,184,94,59,6)

(3,102,184,94,--,-)

mask parent

198 (3,102,184,54,59,6)

y J

(2,54,158,50,--,-})
(oy-eye-cy--,59,6)

(sy=msye-=y=-,2,204)

(54.184,143,127,--.-)

(--immmyemr ee-,59,6) 13,102,184,94,-,---)

(32,54,158,50,59,6) -m (54,184,143,127,59,6) - (3,102,184,94,2,204)

child child child

Figure 11.8, The genetic operator Figure 11.9. Thc genetic operator Figure 11.10. The genetic operator
Scale. Rotate. Translate.

11.4. The evaluation function

To evaluate the fitness of population members, we need an evaluation function. Depending on the
kind of problem, we have to design an evaluation function which assigns penalties and rewards to
certain properties of population members. Basically we have defined two main problems, each of
which asks for a different approach. Those two main problems are finding the identity of a target
image and finding a collage of a target image. Finding the identity is important to validate the genetic
algorithm, but also to investigate its problem solving power in this field. Finding the collage is of
course directly related to our IFS-encoding problem. Before we can proceed, we need to go through
some more definitions.

Definition 11.2. Let Pixset be a pixel space and let {target,member,collage} C Pixset, where:

target = the to be encoded target image;

member = w(target), the affine transformed copy of target according to the chromosome of
member;

collage = w(target) U wy(target) U ... U wyftarget), the union of all affine transformed

copies of target which are found so far, i.e. each best member of the last
generation of the preceding runs of the genetic algorithm.

With |target|, |member| and |collage| we denote the cardinalities in [pixels] of the respective
images and with N the number of the current affine transformation. ¢
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Definition 11.3. A reward is a positive contribute to the fitness of member and a penalty is a negative
contribute to the fitness of member. We define the following penalties and rewards: strongpenalty
(SP), weakpenalty (WP), borderreward (BR), fillreward (FR) and sizereward (SR), which are
quantified as follows:

SP = |member\target |/ |member |

WP= |target N member N collage|/|member |

BR = |(target\collage) O\ member|/|member |

FR = |(target\collage) N member|/|target\collage|

((N+1) | member|)/ | target | for |member|/|target| € [O,I—Niw]
SR = 1 N
((1+.A7)(1— |member|/|target|)  for |member|/|target| € [I-W,l_]
with N € N* the number of the affine transformation and g € N an offset (in our case 1). L4

The penalties and rewards which are introduced in definition 11.3 are derived from the following
considerations (see fig. 11.11).

Figure 11.11. An impression of targe:, member and collage.

In order to get a good fitness, member must cover a reasonable part of the up till now uncovered part
of target and must be located totally within zarget, covering as less as possible of collage. The amount
of covering of the uncovered part of zarget is measured by fillreward (FR). The relative part of
member which accounts for fillreward is measured by borderreward (BR). The relative part of member
which lays outside target is measured by strongpenalty (SP) and the relative part of member which
covers collage is measured by weakpenalty (WP). It makes sense to assume that when the tiling
proceeds, we want to have smaller and smaller affine transformed copies (tiles) in order to be able
to achieve an accurate collage. Therefore sizereward (SR) keeps track of the size of the tiles. This
reward is adjusted each time as N (the number of the current affine transformation) is increased.
Suppose that g=1, then if N=1 the optimal size of a tile member is half the size of target. When N=2
the optimal size of member is one third of the size of rarget, etc. (see fig. 11.12).
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SR (Imember |/|target ).,
T l' ........... N-l,q-], T
' 0.5
-
0 05 1
l- ....... ; N-2,q-l
o om 1
14 N=3,4=1
ooz | 0 1 2 3 4 5
—>> memberl|larger| —>N
Figure 11.12. The sizereward SR is biased to the affine transformation number N.
Definition 11.4. We define the evaluation function E : R* U {0} - (0,1) as:
E = (ky + k\BR + k,FR + k,SR - k,SP -k;WP)/k,
where ko,k,,ky,k. ki, ks € R* U {0} and k, € R* and BR,FR,SR,SP,WP € [0,1]. ¢

The value of the evaluation function will be assigned directly to the member fitness. Whatever values
we choose for k,..,k, we must assure that the obtained member fitness is always contained in the
interval (0,1). In the genetic algorithm this is done by the following C-statement:

if ((int) 1000000* (member{i).fitness) <= 0) -

{
member (i].fitness = 0.000001;

}
if ((int) 1000000* (member{i}].fitness) >= 1000000)
{

member(i].fitness = 0.999999;
}

The tuning of the parameters k; is of great influence on the performance of the genetic algorithm. A
guide for tuning this parameters may be fig. 11.13, where a precedence relation is given on some
possible covering situations.

Not only tuning of the parameters k, but also of the other parameters, such as population size.
amount of generations, etc., influence the performance of the genetic algorithm. In par. 11.6 we will
further comment on this subject. In our case we kept the offset g in SR equal to 1.
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Figure 11.13. Precedence relation of member fitnesses (T = targer,
M = member and C = collage). Fitness(M): a>b>c>d>e>f>g>h.

Definition 11.5. A Genetic Parameter Setting (GPS) is a 7-tuple (N,G,S,T,P,K,¢), where:

N

G

€ N" is the maximum amount of affine transformations in collage;

€ N* is the maximum amount of generations;

€ N" is the population size;

€ [0,1] is the percentage of transferred best members to the next generation;

={p;,: 1 <i < 8} is the set of operator probabilites, where p, = p(MacroCrossover),
D. = p(MicroCrossover), p, = p(MixedCrossover), p, = p(Mutate), ps = p(Jump),
Ps = p(Scale), p, = p(Rotate), p; = p(Translate),

={k :0 < i < 6} is the set of evaluation function parameters, where k, € R* and

k07k17k25k’3’k4’k5 e R+ U {0}’

€ [0,1) is the maximum encoding error. *

11.5. Initialization

The initial population (generation 0) the genetic algorithm starts with, can be created either randomly
or by means of a heuristic. We have choosen for the latter option, and we will use the information
provided by inverse fixed point analysis (see par. 7.2). The input of the process is a target image A4,
which is represented in some pixel space Pixmap. From the collage theorem (theorem 10.1) we can
deduce the fact that the fixed points x, of all I[FS-transformations must be elements of the target image,
hence: (Ai: 1 < i < N:x; € A). Each member of the initial population is created as follows.
First assign a random number in the interval {1,..,255} to each of the four leftmost genes g,,8,.8..84
in the chromosome. Second, convert these chromosome values to transformation values a,b,c,d.
Third, take a random point (x,y,) € A. Next, calculate the transformation values e = (1-a)x, - by,
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and f = (1-d)y, - o, Finally, convert the transformation values ¢ end f into the respective
chromosome values g, and g, and create the chromosome (g,,2;,8.,848..87)- The former calculation
of the transformation values e and f is based on theorem 11.1 which is stated below.

Theorem 11.1. Let (R%,w) be a dynamical system with w : R* = R? an affine transformation given
by: wix,,x,) = (ax; + bx, + e, cx; + dx, + f) with fixed point (x,y,), then the transformation values
of the translation vector ¢ = (e, f)" are given by e = (1-a)x, - by, and f = (1-d )y, - cx,.

Proof. Let the above affine transformation be given, then:

(leyj)
= ( theorem 7.2 )
bf + (1-d)e ce + (1-a)f
(1-a)(1-d) - bc ° (1-a)(1-d) - bc
= ( calculus )

_ l0-a(1-d) - bl - bf 5- yI(1-a)(1-d) - bc] - ce
(1-d) (1-a)
& ( substitute f in left equation, calculus )
_ %l(1-a)(1-d) - bc) _ by, [(1-a)(1-d) - bc} . bce
(1-d) (1-a)(1-d) (1-a)(1-d)

& ( calculus )
. (1-a)(1-d) x{(1-a)(1-d) - be] _ byl(1-a)(1-d) - bc]
(-a)(1-d) - be [ a-a) A-a)(1-d) ]
& ( calculus )
¢ = (1-a)x,[(1-a)(1-d) - bc] - by,[(1-a)(1-d) - bc]
(1-a)(1-d) - bc

& ( calculus )
e = (l-a)xf_ byf

(xj’yf)

= ( theorem 7.2 )

[ bf + (1-d)e ce + (1-a)f
(1

-a)(1-d) - bc ° (1-a)(1-d) - bc
= ( calculus )
fe yf[(l-a)(l-d) - bc] - ce A _ xI(1-a)(1-d) - bc) - bf
(1-a) (1-d)
& ( substitute e in left equation, similarly first part of proof )
f=0-d)y,- ax, u
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11.6. Some results

Not all genetic operators were developed at the same time, but for clearity we will keep using the
GPS notation as introduced in definition 11.5. Thus, whenever an operator probability is set to zero,
this can either indicate that the operator was not yet developed or that it is just not selected, the effect
is the same. The first error free version of our genetic algorithm only possessed five genetic
operators, i.e. MacroCrossover, MicroCrossover, MixedCrossover, Mutate and Jump. The algorithm
was tasked to find the identity of a black square and was initialized with the genetic parameter setting:

GPS, = (1,10,10,0.1,{0.3,0.3,0.2,0.1,0.1,0.0,0.0,0.0},{1-d,,0,0,0,0,0,1},0)

After 10 generations it found a best member fitness of 0.653090. An initialization with the genetic
parameter setting:

GPS, = (1,15,50,0.1,{0.2,0.2,0.2,0.2,0.2,0.0,0.0,0.0},{1-d,,0,0,0,0,0,1},0)

took about 2 [hours] and achieved a best member fitness of 0.784854. Those two runs were mainly
made to validate the correct working of the genetic algorithm. The problem of finding the identity
is not as trivial as it looks, because the genetic algorithm has no visual information, but only the
evaluation values which are based on the Pixset distance dj.

Each time the algorithm is run, it creates two files: monitor.dat and filename.aut. The first file
contains all chromosomes and their assigned fitnesses for generation O (initialization) and the last
generation. From the other generations only the best members are default put in this file. Optional
(by setting the global variable extended = 1 in the file all.h) all generations are completely logged
and also the specific parent and operator selections as well as the resulting childs. Also default, some
other data, like operator probabilities and the amount of operator selections is logged. In appendix D
a typical result of a genetic run is given. The file filename.aut contains the affine transformations
which are created from the best members of the last generation of each while loop (see fig. 11.1).

The main problem of this early version was its time consuming member evaluation of about 9.5
[seconds] per member. Despite the fact that we are forced to run through all pixels of target and
member, we have been able to speed up the evaluation time with a factor 3.5, thus resulting in an
average member evaluation time of 2.7 [seconds]). This speeding up was mainly achieved by
improving the data handling within and in between the pixmaps and by combining the rendering and
pixel counting processes. Also, the search area for target pixels has been limited from the whole
pixmap to the bounding box of target.

We have first tasked this improved version to find the identity of some images. Even for population
sizes of 100 members over 15 generations the best member fitness did not get better than about 0.83.
By displaying the successive generated members on screen, we were able to monitor the progress in
the state space search. This real time monitoring takes about 50% more CPU time, but made clear
that there was need for a scaling operator. Therefore we designed the opertor Scale. An initialization
with the genetic parameter setting:

GPS, = (1,15,75,0.1,{0.2,0.2,0.2,0.15,0.15,0.1,0.0,0.0},{1-d;,0,0,0,0,0,1},0)
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resulted in a best member fitness of 0.907376. Additional runs, also for other seeds of the random
number generator, showed that the best member fitness did not get better than about 0.90. Again the
state space search process was monitored and it became clear that a rotation operator was needed. So
we designed and implemented the operator Rotate. We tasked the algorithm to find the identity of
some of the images as given in appendix C. Each time the algorithm was initialized with the following
parameter setting:

GPS, = (1,25,5,0.1,{0.2,0.2,0.2,0.1,0.1,0.1,0.1,0.0},{1-4,,0,0,0,0,0,1},0)

The results for different population sizes § are given in table 11.2. It is obvious that the searched for
identity mapping has an IFS-code of {1,0,0,1,0,0}, but for symmetric structures, such as rect or
dragon (see appendix C), also other transformations than the identity are valid. In particular all
transformations belonging to the symmetry group of the structure. For example, the symmetry group
of a square (or the structure rect) contains 8 transformations (see table 11.1):

i) ¢ = identity, IFS-code {1,0,0,1,0,0};
ii)  p, = rotation over 90 [degrees], IFS-code {0,-1,1,0,0,0};

iii)  p, = rotation over 180 [degrees], IFS-code {-1,0,0,~1,0,0};
iv)  p, = rotation over 270 [degrees], IFS-code {0,1,-1,0,0,0};
v) 0, = reflection through x=0, IFS-code {-1,0,0,1,0,0};

vi) g, = reflection through y=0, IFS-code {1,0,0,-1,0,0};

vii) o, = reflection through y=-x, IFS-code {0,-1,-1,0,0,0};

viii) o, = reflection through y=x, IFS-code {0,1,1,0,0,0}.

Table 11.1. Cayley table for symmetry group
of the square for the composition operator.

If° t Py Py Py 0y 0, 03 O,

t t Py P2 p3 0y 0, 03 O,
PL| Pr P2 Py t 03 0, 0 O
Py | P2 Py L Py O, Oy Oy Oy
P3| P3 L Py P2 Oy 03 0y O,
Oy | 0, 0, 0; O3 L P, P3 Py
0, | 0, 03 0, 04 P Lt Py P3
gy | 03 0y 0, 0, Py P3 Lt P2
0, | 0, 0 03 0y p3 P Py L

As a result from the above considerations, we will let the genetic algorithm search for any valid
transformation instead of just the identity. For clearity, table 11.2 also contains the found IFS-codes
(i.e. the decoded chromome of the best member of each last generation). In fig. 11.14 the graphs of
the best members from the structure fern are given. From these figures we see that the fitness is
strongly related to the visual closeness, i.e. the better the fitness the better the visual closeness of
target and member (see appendix C). Before we are going to comment on the results of table 11.2,
we have to explain some more about its contents. Although we have speeded up the evaluation time,
the whole process is still time consuming. This is a bottle neck in obtaining enough data to apply a
reliable statistical analysis. Since the problem of finding a symmetry transformation is only relevant
to validate the correct working and the intrinsic problem solving power of the genetic algorithm, we
have choosen a different approach. All runs which are tabulated in table 11.2 have been done again
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Table 11,2, Results of symmetry transformation search for some raster images of appendix C for GPS, (time in [hours]).

image S fitness chromosome IFS-code time
dragon 10 | 0.756734 | (124,11,9,127,0,139) 0.976 0.087 0.071 1.000 0.000 -0.087 0.17
25 | 0.859271 | (253,131,6,256,129,132) -0.984 -0.024 0.047 -1.008 -0.008 -0.031 0.64

50 | 0.897574 | (127,7,1,127,129,129) 1.000 0.055 0.008 1.000 -1.969 -1.969 1.04

100 | 0.899707 | (125,2,132,127,128,128) 0.984 0,016 -0.031 1.000 0.000 0.000 342

fern 10 | 0.560379 | (109,11,111,255,134,148) 0.858 0.087 0.874 -1.000 -0.047 -0.157 0.14
25 | 0.774714 | (127,134,10,125,3,129) 1.000 -0.047 0.079 0.984 5.906 -1.969 0.38

50 | 0.780387 | (127,132,145,125,129,2) 1.000 -0.031 -0.134 0.984 -0.008 0.016 0.93

100 | 0.836296 | (127,131,132,125,129,128) | 1.000 -0.024 -0.031 0.984 -1.969 0.000 1.39

france 10 | 0.882267 | (125,136,16,124,128,8) 0.984 -0.063 0.126 0.976 0.000 0.063 0.23
25 | 0.898903 | (127,2,147,127,2,136) 1.000 0.016 -0.150 1.000 0.016 -0.063 0.46

50 | 0.923906 | (127,144,1,127,130,128) 1.000 -0.126 0.008 1.000 -3.937 0.000 1.23

100 | 0.962674 | (126,128,133,127,128,128) | 0.992 0.000 -0.039 1.000 0.000 0.000 2.47

leaf 10 | 0.697666 | (162,243,120,193,128,128) | -0.268 -0.906 0.945 -0.512 0.000 0.000 0.19
25 | 0.841518 | (127,2,133,111,129,130) 1.000 0.016 -0.039 0.874 -1.969 -3.937 0.62

50 | 0.868127 | (254,72,6,121,7,132) -0.992 0.567 0.047 0.953 13.780 -7.874 1.13

100 | 0.946545 | (127,131,2,124,128,129) 1.000 -0.024 0.016 0.976 0.000 -1.969 2.03

mandel 10 | 0.760231 | (119,180,141,253,136,130) | 0.937 -0.409 -0.102 -0.984 -0.063 -0.016 0.22
25 | 0.896908 | (127,2,137,125,128,6) 1.000 0.016 -0.071 0.984 0.000 0.047 0.41

50 | 0.902132 | (127,128,138,127,3,4) 1.000 0.000 -0.079 1.000 5.906 7.874 1.0

100 | 0.905018 | (127,131,12,126,1,2) 1.000 -0.024 0.094 0.992 1.969 3.937 1.64

rect 10 | 0.846164 | (10,255,126,17,6,10) 0.079 -1.000 0.992 0.134 0.047 0.079 0.16
25 | 0.879834 | (127,130,20,125,128,139) 1.000 -0.016 0.157 0.984 0.000 -0.087 0.35

50 | 0.931589 | (130,254,254,137,131,131) | -0.016 -0.992 -0.992 -0.071 -0.024 -0.024 | 1.06

100 | 0.987552 | (127,129,1,127,1,128) 1.000 -0.008 0.008 1.000 0.008 0.000 1.83

Figure 11.14. Visualized results of table 11.2 for the structure fern (dotted borderline corresponds to target image).
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for different seedings of the random number generator, which is involved in the parent and operator
selection processes. These seedings were obtained from the UNIX™ timing module, which keeps track
of the amount of seconds that have passed since 1970, The best fitness obtained with runs on different
seedings were about in the same range as those tabulated in table 11.2. From this we can conclude
that the developed genetic algorithm is powerful enough to find a good approximate for an affine
transformation for (one of the) symmetry transformations of a raster image in O(n) time, where n
denotes the amount of pixels within the bounding box of the image.

Definition 11.6. The performance graph of a genetic algorithm is a graph of the fitness of the best
member of a generation as function of the number g of that generation. In other words, a graph of
the evaluation function g — E(best member(g)) for 0 < g < G. ¢

In our case a performance graph is a typical non-declining function, since the best member fitness in
two successive generations can not get worse, because the best 10% of a generation will be
transferred to the next generation. In fig. 11.15 the performance graphs of the genetic algorithm are
given for the task of finding transformations belonging to the symmetry groups of the structures from
table 11.2. The plotted values are also tabulated in table 11.3. We have plotted four graphs, each for
a different population size S. Genetic algorithms are stochastic, which implies that their performance
usually varies from run to run and thus a curve showing the behaviour of a single run doesn’t supply
us with much information. Therefore we took the average performance of the algorithm on the six
structures of table 11.2. Although these structures are different, finding transformations of their
symmetry groups belongs to the same class of problems, and therefore it is allowed to take the
average. Since the genetic algorithm has no visual information available and the state space has a lot
of local optima (for example we get a strong oscillating pixsetdistance when convoluting two identical
images of a fern), the obtained results must be classified as satisfying, since it appears to be possible
to find a 99% best case approximation within polynomial time (see last line of table 11.2).

1.0 | best member fitness

5 = 100
0.9 T ----- ”
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Figure 11.15. Performance graph of genetic algorithm for the structures of table 11.2.




136 11. Genetic IFS-encoding

Table 11.3. Average best member fitnesses for generation g.
$=10 $§=25 $=50 S =100

0.459020 | 0.688917 | 0.614644 | 0.465150
0.568170 | 0.735361 | 0.662815 | 0.630836
0.584604 | 0.735361 | 0.666538 | 0.651159
0.642196 | 0.740391 | 0.682728 | 0.690090
0.658090 | 0.747115 | 0.715669 | 0.695425
0.670982 | 0.750775 | 0.724533 | 0.702619
0.670982 | 0.763626 | 0.742966 | 0.730205
0.680799 | 0.763626 | 0.747261 | 0.741330
0.685975 | 0.775617 | 0.760759 | 0.778864
0.694192 | 0.803186 | 0.781674 | 0.781044
10 || 0.694192 | 0.811193 | 0.790659 | 0.786643
11 || 0.703241 | 0.814121 | 0.796624 | 0.798677
12 || 0.708475 | 0.817182 | 0.799066 | 0.802216
13 || 0.710768 | 0.818466 | 0.817631 | 0.811568
14 || 0.714144 | 0.818466 | 0.825628 | 0.830453
15 || 0.714981 | 0.823499 | 0.832908 | 0.836047
16 || 0.723983 | 0.825582 | 0.838229 | 0.856836
17 || 0.723983 | 0.840374 | 0.842677 | 0.873441
18 || 0.732532 | 0.841276 | 0.849532 | 0.878968
19 || 0.734884 | 0.843150 | 0.860350 | 0.882357
20 || 0.739376 | 0.844854 | 0.863135 | 0.909210
21 || 0.748661 | 0.850121 | 0.867863 | 0.909907
22 | 0.749784 | 0.850146 | 0.871945 | 0.912160
23 | 0.750074 | 0.856041 | 0.875738 | 0.912549
24 | 0.750574 | 0.856861 | 0.878970 | 0.915981
25 | 0.750574 | 0.858525 | 0.883953 | 0.922965

o

OO AN WNN—=O

From fig. 11.15 we conclude that a population size of 10 or 25 members is too small, but a
population size of 100 members implies a lot of redundant calculations, since the result is hardly any
better than with a population size of 50 members. Thus from now on we will fix the population size
to 50 members, unless stated otherwise.

Now we are ready to run the genetic algorithm on the IFS-encoding problem, i.e. to let it search for
a valid collage. Due to time constraints, we have only focussed on trying to find an IFS-code for the
structure france (see appendix C). We have choosen for this structure because it is the most difficult
one to encode into an IFS. The reason is the fact that the manually obtained (and thus very efficient)
IFS-code, already contains 31 affine transformations, while the IFS-codes of the other structures in
appendix C contain at most 9 affine transformations. Therefore we may carefully state that whenever
the genetic algorithm is powerful enough to find an IFS-code for the structure france it must be able
to find IFS-codes for all other structures.

Before we put the algorithm at work, we must be concerned about the evaluation function for the first
member we put in the collage, because if we take no special precautions, the algorithm will start
hunting for a symmetry group transformation, since this is the best first transformation it can find.
In an empirical way we obtained as a satisfying parameter set for the evaluation of the first
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transformation X = {1,0,0,1,1,0,2}. Basically, this evaluation function searches for copies which are
half the size of the target image and entirely contained within this target image. In fig. 11.16 some
typical first found transformations are given for the structure france.

Figure 11.16. Some typical first collage tiles for the structure france, found by the genetic algorithm.

From the second tile and onwards, we need a different evaluation function parameter set. Since we
cannot predict the outcome of the genetic algorithm we had to use a trial-and-error method to tune
these parameters. First we tried the genetic parameter setting:

GPS; = (5,15,16,0.1,{0.2,0.2,0.2,0.1,0.1,0.1,0.1,0.0},{0,1,0,1,2,0,2},0.05)

The result is given in fig. 11.17. As we can see from this figure, the problem is that we get very long
and flat tiles which exceed the target image boundary. The first property gives rise to an IFS-code
which can not be decoded into the target image. We can understand this as follows. Suppose we
encode a circle by tiling it with ellipses such that the center of all ellipses is equal to the center of the
circle. If the circle is fully covered then this would certainly be a valid collage. However, if we want
to decode it, we never get a circle, but instead, we get a bunch of pixels around the center of the
circle. This is due to the fact that all transformations have the same fixed point. Thus an additional
requirement for a valid collage should be added.

Theorem 11,2, The collage theorem (see theorem 10.1) is only valid if the fixed points of all
transformations in the collage (see definition 8.2) are different.

Proof. Suppose we define a collage, such that the fixed points of all transformations it contains are
the same, then clearly the attractor of the according IFS equals that fixed point and not the tiled target
image. |

Although we have not been able to find any literature where this problem is mentioned, it is clear that
it is a real and severe problem in the automatic IFS-encoding process. In addition to the above
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Figure 11.17. Result for GPS;. Figure 11.18. Result for GPS,.

theorem, we can state that the further the fixed points of the separate transformations in the collage
are away from each other, the faster the decoding process goes, since the attractor boundary will be
reached earlier. By analyzing the progress of the state space search by real time monitoring the
successive generated population members, we came to the conclusion that a translation operator was
needed to tackle this mutual fixed point problem. This is because it was observed that the further the
algorithm proceeded, the more the members were placed in the center of the target image. In some
cases, any of the 7 operators implemented so far, would yield a worse evaluation value, except for
a translation operator. Therefore we designed and implemented the operator Translate. We initialized
the algorithm with the following genetic parameter setting:

GPS; = (6,25,100,0.1,{0.15,0.15,0.15,0.08,0.11,0.12,0.12,0.12},{0,1,0,1,2,0,2},0.02)

The result with this new added operator, the redefined operator probabilities and the same evaluation
parameter set is given in fig. 11.18. Despite the fact that GPS, yields a more spread out collage,
which is good, the problem that the collage exceeds the boundary of the target, still remains. So we
decided to attach more weight to the penalty which guards exceeding of the target image border (SP).
We initialized the genetic algorithm with the genetic parameter setting:

GPS, = (10,25,100,0.1,{0.15,0.15,0.15,0.08,0.11,0.12,0.12,0.12},{8,1,0,1,8,0,10},0.02)

As we can see from fig. 11.19, the result of GPS, is better than of GPS,, as far as the exceeding of
the boundary of the target image is concerned. But still the boundary of the target image is exceeded.
Also we see that GPS, gives rise to very long and flat structures, from which we must conclude that
each new tile covers a relatively great part of the collage so far. This is something we do not want
because of theorem 11.2, but also because of efficiency considerations. Therefore we decided to
adjust the gain of the penalty which guards this specific property. We therefore came up with the
following genetic parameter setting:

GPS, = (5,15,20,0.1,{0.15,0.15,0.15,0.08,0.11,0.12,0.12,0.12},{0,6,0,4,99,6,10},0.02)
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Figure 11.19. Result for GPS,. Figure 11.20. Result of GPS,.

The outcome of GPS; is given in fig. 11.20, from which we can see that the result is still
unsatisfactory. From the outputfile monitor.dat we learned that the reason for this phenomenon
was the fact that from transformation 3 and onwards only the best 15% of the members from each
last generation had a fitness which was significantly greater than 0.000001. So 85% of the population
had a fitness of 0.000001 due to the relatively strong gain of parameter k,. This means that the
diversity of the population is very restricted, because each member has a chance of being choosen
which is directly proportional to its fitness. Concluding, we can state that this evaluation function
induces an "overshoot™ because of the gain of the guard SP (see definition 11.3). We therefore
adjusted the parameters of the evaluation function once more and tried the genetic parameter setting:

GPS, = (1,15,50,0.1,{0.15,0.15,0.15,0.08,0.11,0.12,0.12,0.12},{0,1,0,1,10,1,2},0.02)

The results of GPS, are given in fig. 11.21 from which we conclude that the guard WP leads to a
"noisy" evaluation function, which confuses the algorithm. This is because it wants to cover as much
of the uncovered area as possible, so it produces tiles which cross the collage and cover uncovered
area’s on both sides of it. Therefore we changed our strategy drastically. Not only was parameter £;
set to zero, but also we choose for an adaptive evaluation function. We modified the guard SR from
a static one (i.e. N=1,g=1) into an adaptive one as described in par. 11.4 (the fact that the description
is already covered in par. 11.4 does not imply that we have used this strategy from the beginning).
In this way we were able to get flexible control over the size of the tiles, which we want to decrease
as the collage contains more and more tiles. The reason for this is of course that the uncovered areas
become smaller and smaller, so we can encode more effective (more accurate), but also more efficient
(less overlap). The other main adjustment we made on the evaluation function was to introduce a
variable parameter set. Some of the parameters %, were tied to the current transformation number N
and were thus made adaptive to the encoding process. Finally we obtained the evaluation parameter
setK = {0,1,0,N,N+1,0,N+1}. Next we initialized the algorithm with the genetic parameter setting:

GPS,, = (12,25,50,0.1,{0.15,0.15,0.15,0.08,0.11,0.12,0.12,0.12},{0,1,0,N,N+1,0,N+1},0.02)
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Figure 11.21. Result for GPS,. Figure 11.22, Result of GPS,,, dp = 0.231388.

Figure 11.23. GPS,,: sizes of successive tiles of the collage decrease proportionally to the transformation number N.




11. Genetic IFS-encoding 141

The result of GPS,, is given in fig. 11.22 from which we conclude that all transformations lay within
the target image boundary. Since this is the first image where the target boundary is not exceeded,
it is also the first image about which it makes sense to assign a quality in terms of the Pixset distance.
For GPS,, the Pixset distance yields d, = 0.231388 which indicates an approximation quality of 77%.
The successive transformations the algorithm found are given in fig. 11.23, from which we see that
the successive tile sizes decrease proportionally to the transformation number N (from 1 upper left
to 12 lower right). From this result we may expect that if we use the genetic parameter setting of
GPS,, with an increased amount of transformations, the collage will get better. Therefore we
initialized the algorithm with a different seed and the genetic parameter setting:

GPS,, = (17,25,50,0.1,{0.15,0.15,0.15,0.08,0.11,0.12,0.12,0.12},{0,1,0,N,N+1,0,N+1},0.02)

Figure 11.24. Result for GPS,,, d, = 0.194123, Figure 11.25. Result for GPS,,, d, = 0.124390.

The result of GPS,, is given in fig. 11.24, from which we conclude that the increased amount of
transformations from 12 in GPS,, to 17 in GPS,, results in a decrease of the Pixset distance from
dp = 0.231388 to d, = 0.194123, which implies an increase in approximation quality from 77%
to 81%. From this we may expect that a further increase of N will also increase the approximation
quality. Therefore we initialized the algorithm with a different seed and the genetic parameter setting:

GPS,, = (50,25,50,0.1,{0.15,0.15,0.15,0.08,0.11,0.12,0.12,0.12},{0,1,0,N,N+ 1,0,N+1},0.02)

The result of GPS), is given in fig. 11.25. We see that a further increase of N from 17 to 50 results
in a decreasing Pixset distance from d, = 0.194123 to d, = 0.124390 and thus in an increasing
approximation quality from 81% to 88%. Due to time constraints we have not been able to perform
successive runs. It must be noticed that a complete run for GPS,, takes about 58 [hours] CPU-time.
Thus a major concern for following research must be to further speed up the evaluation time.
However, the result must be considered as satisfactory as far as the control over the process is
concerned. After all we have been able to reach an approximation quality of 88% with 1.6 times as
much transformations than were needed for the (most efficient) interactive encoding of the (most
difficult) structure france. One must not forget that the results are obtained with a "blind" system.
No attempts at all have been made to apply any pattern recognition techniques.
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In tables 11.4 to 11.6 we have tabulated some intermediate results about the genetic runs which were
initialized with respectively GPS,,, GPS,, and GPS,,. From this we can see that the algorithm is able
to keep finding good fitnesses, even for high transformation numbers. This is important to notice,
because it indicates that the algorithm does not get stuck in local optima. Also we can conclude that
the first transformation is found within a few generations, while the following transformations all need
the full amount of 25 generations, except for the last few ones. An explanation about those three
tables must be given as to the parameter G. In each of the cases the maximum amount of generations
was set to G = 25, but because the maximum encoding error was set to € = 0.02, in some cases the
full amount of generations were not needed. As soon as a member fitness of 1-e or more was found,
then the result was satisfactory for that transformation. In the first column i denotes the transformation
number. In the second column G denotes the amount of generations. We conclude that we get better

than average initial populations (g = 0), due to our inverse fixed point method (see par. 11.5).

Table 11.4. Intermediate results of GPS,, (CPU-time: 13.8 [hours]).

best member fitness
i G chromosome affine transformation

g=0 g=G

" 1 7 0.734840 | 0.981560 | (1,199,47,199,192,133,6) -0.559 0.370 -0.559 -0.504 -9.843 11.811

2 | 25 | 0.628592 | 0.773593 | (55,129,129,97,24,129) 0.433 -0.008 -0.008 0.764 47.244 ~1.969
3 |25 | 0.726888 | 0.833530 | (40,17,8,226,166,139) 0.315 0.134 0.063 -0.772 -74.803 -21.654
4 25 0.696179 | 0.830470 | (45,7,146,200,152,161) 0.354 0.055 -0.142 -0.567 -47.244 -64.961
5 | 25 | 0.614980 | 0.849640 | (177,147,174,198,25,130) -0.386 -0.150 -0.362 -0.551 49.213 -3.937
6 | 25 | 0.663673 | 0.877555 | (56,141,148,163,27,166) 0.441 -0.102 -0.157 -0.276 53.150 -74.803
7 | 25 | 0.680854 | 0.880781 | (58,17,47,147,144,144) 0.457 0.134 0.370 -0.150 -31.496 -31.496
8 | 25 | 0.671484 | 0.897895 | (9,161,48,21,41,161) 0.071 -0.260 0.378 0.165 80.709 -64.961
9 | 25 | 0.650132 | 0.914799 | (7,219,19,170,14,16) 0.055 -0.717 0.150 -0.331 27.559 31.496
10 | 25 | 0.667832 | 0.911150 | (55,136,222,140,130,130) 0.433 -0.063 -0.740 -0.094 -3.937 -3.937
11 8 0.610407 | 0.981027 | (164,172,21,143,140,162) -0.283 -0.346 0.165 -0.118 -23.622 -66.929
12 ] 5§ 0.652295 | 0.994165 | (20,6,12,172,131,32) 0.157 0.047 0.094 -0.346 -5.906 62.992

Table 11.5. Intermediate results of GPS,, (CPU-time: 19.6 [hours]).

best member fitness
i G chromosome affine transformation

g=0 g=G
1 1 0.689007 | 0.999999 | (16,19,144,18,128,2) 0.126 0.150 -0.126 0.142 0.000 3.937
2 25 0.694666 | 0.963624 | (147,185,213,26,2,128) -0.150 -0.449 -0.669 0.205 3.937 0.000
3 25 0.850848 | 0.877129 | (128,165,236,1,164,147) 0.000 -0.291 -0.850 0.008 -70.866 -37.402
4 | 25 | 0.653063 | 0.925333 | (135,193,176,31,25,48) -0.055 -0.512 -0.378 0.244 49.213 94 488
5 25 0.653169 | 0.912883 | (51,15,147,184,31,160) 0.402 0.118 -0.150 -0.441 61.024 -62.992
6|25 0.636166 | 0.887283 | (173,2,189,176,14,154) -0.354 0.016 -0.480 -0.378 27.559 -51.181
7 25 0.702181 | 0.896465 | (178,184,78,50,2,5) -0.394 -0.441 0.614 0.394 3.937 9.843
8 | 25 | 0.706789 | 0.897279 | (153,14,141,191,136,30) ~0.197 0.110 -0.102 -0.496 -15.748 59.055
9 25 0.645808 | 0.907286 | (47,161,59,136,30,135) 0.370 -0.260 0.465 -0.063 59.055 -13.780
10 | 25 0.643598 | 0.911141 | (46,15,1,31,25,157) 0.362 0.118 0.008 0.244 49.213 -57.087
11125 0.624137 | 0.924444 | (22,67,12,149,142.3) 0.173 0.528 0.094 -0.165 ~27.559 5.906
12 | 25 | 0.715309 | 0.939591 | (25,146,161,150,144,190) 0.197 -0.142 -0.26 -0.173 -31.496 -122.047
13 | 25 | 0.741563 | 0.929956 | (131,18,58,22,133,130) -0.024 0.142 0.457 0.173 -9.843 -3.937
14 | 25 | 0.683205 | 0.945376 | (150,147,130,173,170,170) | -0.173 -0.15 -0.016 -0.354 -82.677 -82.677
15| 25 0.632042 | 0.942288 | (2,21,174,148,43,155) 0.016 0.165 -0.362 -0.157 84.646 -53.150
16 | 25 0.705903 | 0.949995 | (14,14,163,20,149,128) 0.110 0.110 -0.276 0.157 -41.339 0.000
17 | 25 | 0.556917 | 0.949913 | (13,14,168,18,2,2) 0.102 0.110 -0.315 0.142 3.937 3.937
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Table 11.6. Intermediate results of GPS;, (CPU-time: 57.6 [hours]).

best member fitness

i G chromosome affine transformation
g=0 g=G

1 22 0.628568 | 0.987870 | (27,219,199,189,128,152) 0.213 -0.717 -0.559 -0.480 0.000 -47.244

2 | 25 | 0.696261 | 0.855267 | (245,128,1,47,132,32) -0.921 0.000 0.008 0.370 -7,874 62.992

3 25 0.621325 | 0.795060 { (146,197,170,63,15,149) -0.142 -0.543 -0.331 0.496 29.528 -41.339
4 | 25 | 0.723438 | 0.819435 ] (168,59,30,35,141,46) -0.315 0.465 0.236 0.276 -25.591 90.551

5] 25 | 0.710251 | 0.838349 | (157,26,183,168,135,3) -0.228 0.205 -0.433 ~-0.315 -13.780 5.906

6 | 25 | 0.662953 | 0.867403 | (50,57,59,22,25,128) 0.394 0.449 0.465 0.173 49.213 0.000

7 125 0.694442 1 0.884074 [ (141,59,173,55,152,130) -0.102 0.465 -0.354 0.433 -47.244 -3.937

8 | 25 (| 0.726687 | 0.890841 | (37,140,28,39,31,31) 0.291 -0.094 0.220 0.307 61.024 61.024

9 25 0.619281 | 0.900479 | (143,28,59,132,136,144) -0.118 0.220 0.465 -0.031 -15.748 -31.496
10 | 25 | 0.728897 | 0.909925 | (32,24,157,23,154,144) 0.252 0.189 -0.228 0.181 -51.181 -31.496
11 | 25 | 0.732075 | 0.919191 | (168,182,177,163,9,129) -0.315 -0.425 -0.386 -0.276 17.717 -1.969
12 | 25 | 0.696687 { 0.930419 | (145,142,23,84,128,128) ~0.314 -0.110 0.181 0.661 0.000 0.000

13 | 25 [ 0.619281 | 0.929861 | (22,28,169,130,136,128) 0.173 0.220 -0.323 -0.016 -15.748 0.000

14 | 25 0.728897 | 0.939952 | (16,132,170,175,138,152) 0.126 -0.031 -0.331 -0.370 -19.685 -47.244
15 | 25 | 0.732075 | 0.943619 | (34,20,144,19,43,47) 0.268 0.157 -0.126 0.150 84.646 92.520

16 | 25 | 0.696687 | 0.950136 | (156,77,128,155,136,128) ~0.220 0.606 0.000 -0.213 -15.748 0.000

17 | 25 | 0.619281 | 0.953109 | (156,129,3,28,38,180) -0.220 -0.008 0.024 0.220 74.803 -102.362
18 | 25 | 0.728897 | 0.949865 | (183,142,144,10,136,136) ~0.433 -0.110 -0.126 0.079 -15.748 -15.748
19 | 25 ] 0.732075 | 0.949854 | (161,10,135,150,4,1) -0.260 0.079 ~0.055 -0.173 7.874 1.969

20 | 25 0.696687 | 0.960482 | (128,148,160,128,27,174) 0.000 -0.157 -0.252 0.000 53.150 -90.551
21 | 25 | 0.619281 | 0.960513 | (24,153,156,54,168,152) 0.189 —0.197 -0.220 0.425 -78.740 -47.244
22 | 25 0.728897 { 0.959826 | (168,10,151,21,138,144) -0.315 0.079 -0.181 0.165 -19.685 -31.496
23 | 25 | 0.732075 | 0.960612 | (180,165,164,165,152,152) | -0.41 -0.291 -0.283 -0.291 —47.244 -47.244
24 | 25 0.696687 | 0.959944 | (3,187,9,25,128,131) 0.024 -0.465 0.071 0.197 0.000 -5.906
25 | 25 | 0.619281 | 0.974438 | (14,30,155,151,38,58) 0.110 0.236 -0.213 -0.181 74.803 114.173
26 | 25 | 0.728897 | 0.969763 | (156,8,173,131,22,2) ~0.220 0.063 -0.354 -0.024 43.307 3.937
27 | 25 | 0.732075 | 0.970202 | (21,153,130,24,51,42) 0.165 -0.197 -0.016 0.189 100.394 82.677
28 | 25 | 0.696687 | 0.970406 | (133,5,85,128,137,149) -0.039 0.039 0.669 0.000 -17.717 -41.339
29| 25 0.619281 | 0.969964 | (8,10,160,16,17,41) 0.063 0.079 -0.252 0.126 33.465 80.709
30 | 25 | 0.728897 | 0.969988 )} (165,146,131,142,2,2) -0.291 -0.142 -0.024 -0.110 3.937 3.937
31 1 25 | 0.732075 | 0.974855 | (144,129,45,31,8,57) -0.126 -0.008 0.354 0.244 15.748 112.205
32 | 25 | 0.696687 | 0.969976 | (64,161,149,4,128,128) 0.504 -0.260 -0.165 0.031 0.000 0.000
33| 6 | 0.619281 | 0.981267 | (139,156,150,155,24,176) -0.087 -0.220 -0.173 -0.213 47.244 -94.488
34 | 25 | 0.573731 | 0.979819 | (135,20,8,20,12,39) -0.055 0.157 0.063 0.157 23.622 76.772
35| 25 0.643031 0.979972 | (143,142,19,131,128,128) -0.118 -0.110 0.150 -0.024 0.000 0.000
36 | 8 | 0.722575 | 0.982489 | (65,72,164,164,157,13) 0.512 0.567 -0.283 -0.283 -57.087 25.591
37 | 25 0.737806 | 0.979937 | ((25,154,26,166,130,163) 0.197 -0.205 0.205 -0.299 -3.937 -68.898
38 | 19 | 0.680204 | 0.980226 | (5,136,13,38,30,169) 0.039 -0.063 0.102 0.299 59.055 -80.709
39 | 25 | 0.762241 | 0.979984 | (19,136,153,26,6,4) 0.150 -0.063 -0.197 0.205 11.811 7.874
40 | 15 0.722197 | 0.980621 (151,140,19,23,178,11) -0.181 -0.094 0.150 0.181 -98.425 21.654
41 | 10 { 0.669912 | 0.980017 { (1,24,13,17,17,58) 0.008 0.189 0.102 0.134 33.465 114.173
42 | 25 0.672086 | 0.979996 | (139,139,144,11,148,151) -0.087 -0.087 -0.126 0.087 -39.370 -45.276
43 | 25 | 0.639545 | 0.979960 | (41,144,139,131,8,132) 0.323 -0.126 -0.087 -0.024 15.748 -7.874
44 | 25 | 0.704970 | 0.9799%96 | (18,7,151,8,131,135) 0.142 0.055 -0.1810.063 -5.906 -13.780
45 1 25 0.582427 | 0.979996 | (174,150,145,130,5,145) -0.362 -0.173 -0.134 -0.016 9.843 -33.465
46 | 25 0.697455 | 0.979913 | (133,145,19,4,139,12) —0.039 -0.134 0.150 0.031 ~21.654 23.622
47 | 25 | 0.662468 | 0.979925 | (7,128,2,42,16,132) 0.055 0.000 0.016 0.331 31.496 -7.874
48 | 25 0.663780 | 0.979913 | (9,26,142,135,19,137) 0.071 0.205 -0.110 -0.055 37.402 -17.717
49 | 10 | 0.621786 | 0.980278 | (3,137,156,143,178,135) 0.024 -0.017 -0.220 -0.118 -98.425 -13.780
50 2 0.604417 | 0.988725 | (10,19,140,131,180,27) 0.079 0.150 -0.094 -0.024 -102.362 53.150
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From the fact that our genetic algorithm is able to find collages with an approximation error of
€ = 0.124390 (measured by the Pixset distance d,), we must not conclude that the rendered attractor
also approximates the target image with an approximation error of e.

The collage theorem (theorem 10.1) states that a collage approximation error of at most e implies an
attractor approximation error of at most e(1-s)', where s is the contractivity factor of the IFS.
According to definition 8.1 the contractivity factor of the IFS is givenby s = (Max i : 1<i<N:s;),
where s, is the contractivity factor of affine transformation w; in the IFS. The contractivity factor of
an affine transformation can be calculated as s; = |a;d; - b;¢c;|. Table 11.7 contains the absolute
determinant values for the affine transformations of table 11.6. From table 11.7 we obtain:

s=(Maxi:1<i<N: |ad; - bc| ) = 0.503043

From this we conclude that we can expect an attractor approximation error of at most:

e _ 0.124390 _ 0.25

T-s 1 -0303043
Rendering of the attractor of the IFS of table 11.6 yields fig. 11.26, from which we calculated:

N
d,(france, |Jw,(france)) = 0.107570

i=l
dy(france.france)) = 0.202205

From this we see that indeed the attractor approximation error is less than the predicted maximum
error of 0.25. This is a nice result as far as the validity of d, as distance measure is concerned, since
we have not proven that it is allowed to replace & by d, in theorem 10.1. Notice that the attractor
(fig. 11.26) not only differs from the collage (fig. 11.25) with respect to the approximation quality
of the target image, but also with respect to its own geometry, i.e. the attractor is a fractal with self
similarity properties, while the collage is not.

In fig. 11.27 the determinant values of the successive affine transformations of table 11.7 are plotted
against the transformation number i. Since the relative determinant value also gives a notion of the
area of the transformed tile (relative to the target image), we can conclude that the tile size control
part in our evaluation function is working very well (compare fig. 11.27 to fig. 11.12).

Table 11.7. Successive tile sizes s of found affine transformations by GPS,, according to table 11.6.

s i s i s i K} i s
0.503043 || 11 | 0.077110 (| 21 | 0.036985 || 31 | 0.027912 || 41 [ 0.018206
0.340770 || 12 | 0.068664 || 22 | 0.037676 | 32 | 0.027276 || 42 | 0.018531
0.250165 || 13 | 0.068292 || 23 | 0.036666 | 33 | 0.019527 || 43 | 0.018714
0.196680 || 14 | 0.056881 || 24 | 0.037743 || 34 | 0.018526 || 44 | 0.018901
0.160585 || 15 | 0.059982 || 25 | 0.030358 || 35 | 0.019332 || 45 | 0.017390
0.140623 || 16 | 0.046860 || 26 | 0.027582 || 36 | 0.015568 || 46 | 0.018891
0.120444 | 17 | 0.048208 || 27 | 0.028033 || 37 | 0.016878 ! 47 | 0.018205
0.110017 || 18 | 0.048067 || 28 | 0.026091 || 38 | 0.018087 || 48 | 0.018645
0.098642 | 19 | 0.049325 || 29 | 0.027846 || 39 | 0.018239 | 49 | 0.018425
0.088704 [ 20 | 0.039564 || 30 | 0.028602 || 40 | 0.018661 || 50 | 0.012204
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Figure 11.26. Rendered attractor france, for GPS,.
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Figure 11.27. Graph of tilesizes 5 of GPS), as function affine transformation i.
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It is a capital mistake to theorize before one has data.

Sir Arthur Conan Doyle (1859 - 1930) IDARB0] Chapter

Conclusions and recommendations

In this final chapter we will draw conclusions on the former chapters and also present some
recommendations for further research. These recommendations are split up as to the subject on which
they reflect, i.e. recommendations on the user interface, on the genetic algorithm and on IFS-
encoding.

12.1. Conclusions

We have presented the concepts of chaos theory and fractal geometry as well as their relationship
from a bottom up approach. We have therefore defined a dynamical system as a transformation on
a metric space. This definition is extended to the concept of the Iterated Function System (IFS), of
which a dynamical system is a special case. An IFS can be encoded by an IFS-code, which appears
to be an extremely compact representation for the attractor of the IFS. An attractor can be looked
upon as a (complex real world) image, but also as a Poincaré map of the behaviour of the system.

We have presented algorithms for efficient deterministic and nondeterministic IFS-decoding with and
without condensation. The data compression performance of IFS-coding is considered, also in
comparision with other encoding schemata. Furthermore it is shown that an IFS can be considered
as a special case of a finite affine automaton.

We have seen that the attractor of a nondeterministic IFS is an invariant measure. Although the orbit
of the system can not be predicted, with probability one the same attractor will appear when the
Markov operator is recursively applied.

IFS-encoding is proven to be NP-complete. Despite its promising expectations, moment theory
appears to be not suitable to solve the IFS-encoding problem in closed form (due to pattern
recognition considerations). A practical try out of the moment approach to a simple structure, resulted
in an approximation quality of 95% (measured by the Pixset distance). This shows that moment theory
is suitable to act as a reliable quality measure for evaluating candidate solutions. However, the
analytical way in which this result was obtained, had nothing to do with automatic IFS-encoding.

Although the Hausdorff distance is known to be a reliable quality measure for evaluating candidate
solutions, it has a practical drawback, i.e. it has a computational time complexity of O(n?), where n
denotes the amount of pixels in the target image. We developed the Pixset distance as useful
alternative and proved that it is indeed a metric.
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As far as the practical part of this graduation work is concerned, we developed the program
IFS-CODEC, which constitutes a user interface as to [FS-decoding and interactive IFS-encoding. With
this toolbox, which is embedded in the OSF/Motif® X Window System®, it is possible to draw and
edit images. Collages can be obtained in an interactive way and rendering of the attractors of the
resulting IFS-codes is possible (deterministic or nondeterministic, with or without condensation).
Furthermore, attractors of manually entered IFS-codes can be rendered for a variable amount of
iterations. Moments of images, fractal dimensions of images, as well as Pixset distances between
images can be calculated. The Mandelbrot set can be rendered for a variable amount of iterations and
the bifurcation diagram for the logistic map can be drawn.

Furthermore, we developed a genetic algorithm as an approach to solve the problem of automatic
IFS-encoding. The chromosome encoding of transformations into chromosomes is achieved in a
straight forward way and has shown to be robust. Also, eight genetic operators have been developed
and tested. Two evaluation function parameter sets have been empirically derived. One for finding
a symmetry group transformation of a target image (GPS,) and one for finding a collage of a target
image (GPS,,). The genetic algorithm has proven to be able to find symmetry group transformations
with an approximation quality up to 99% and collages with an approximation quality up to 88%,
which is a good result compared to the relatively few runs we could perform.

Our genetic algorithm runs for about 57.6 [hours] to encode a 500 X 500 pixel target image into a
2-dimensional IFS, existing of 50 affine transformations. The collage from which this IFS was
extracted had an approximation quality of 88% and the attractor of the IFS had an approximation
quality of 80%. Since the average CPU-assignment was 15%, this means that the effective calculation
time for this collage was about 8.64 [hours). In [ZOR88] it is reported that an interactive system,
operated by a trained user, took about 100 [hours] to compress a 780 X 1024 pixel image. In
[LEV88] it is reported that a simulated annealing based parallellized algorithm took 4 [hours] to find
a 2-dimensional IFS of 3 affine transformations for a 256 X 256 pixel image, with an approximation
quality of 95%. In [SHO91] it is reported that a genetic algorithm took at least 10 [howurs] to find
a 1-dimensional IFS of 3 transformations. In this latter case the collage problem has been simplified
to find the IFS of an image consisting of three separate Cantor sets. Of course this is comparable to
our symmetry group transformation approach, with which we obtained results up to 99%.

This leads us to the conclusion that our genetic algorithm as it is now, is already performing
reasonably well, compared to the other results in the field.

12.2. Recommendations on the user interface

A zoom facility should be implemented in order to be able to zoom in onto rendered fractal attractors
and onto the Mandelbrot set. Some preparations in this direction have already been made (see remark
section of source code headers).

The genetic parameter settings are currently controlled via global variables in the file all.h. A
sliderbox widget should be implemented with which this genetic parameter setting can be tuned.
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12.3. Recommendations on the genetic algorithm

The genetic algorithm has been validated and found to be robust. All runs described in chapter 11
were successfully terminated. The main recommendation in this area would be to apply a great
number of runs on different genetic parameter settings in order to get enough data to perform a
thorough statistical analysis. The empirically obtained parameter setting GPS, is able to get symmetry
group transformations of images with an approximation quality up to 99%. The empirically obtained
parameter setting GPS,, is able to perform IFS-encoding of a target image with an approximation
quality up to 88%. So it seems to be the case that GPS, is sufficient for its task (finding of symmetry
group transformations) but GPS,, can further be improved as far as the task of finding IFS-codes of
images is concerned. When tuning GPS,, the main area of concern should be the parameter set of the
evaluation function. We feel that the operator probabilities as defined in GPS,, are good values.
Besides, different try outs of the intuitively felt to be "problem specific” genetic operator probability
set P = {0.0,0.0,0.0,0.25,0.0,0.25,0.25,0.25} on the symmetry group transformation task, gave
results with a maximum approximation quality of 79%. This implies that those problem specific
operators Scale, Rotate and Translate, together with Mutate are not powerful enough. Thus we need
the crossover and mutation parameters, which are in fact the basis of a genetic algorithm (see also
[SCH91] for an interesting theory about crossover-mutation trade off). Also, from par. 11.6 it has
become clear that there is certainly need for the problem specific parameters.

Inserting introns (non-functional genes) into the chromosomes may be considered to increase the
success rate of the genetic algorithm [LEV91].

The current average member fitness evaluation time is 2.7 [seconds]. It is necessary to speed up this
evaluation time in order to get faster runs of the genetic algorithm. Parallellization may be considered,
such that each processor operates on a specific part of the pixel space.

In [WHI91] delta coding is introduced as a new search strategy for genetic algorithms, which allows
iterative searches with complete reinitialization of the population, preserving the progress already
made towards solving the optimization task. Delta coding is considered to effectively avoid what is
usually a difficult trade off between achieving fast search and sustained diversity (and thereby
avoiding premature convergence). Delta coding basically adjusts the population size by monitoring
its diversity. When the diversity decreases, the population size is accordingly decreased. Iteration is
halted when a certain minimum diversity has been reached. From then on the best solution is saved
as a starting point for the next delta iteration. Delta coding treats chromosomes not as parameters,
but as delta values (+8), which are added to a partial solution before being evaluated. So the next
delta iteration is restarted with an initial population which forms a hypercube of +4 around the
previous solution. After each iteration 4 is increased. In this case a more and more accurate search
around the optimum is performed. This is in fact comparable with the concept of simulated annealing.
We would recomment to implement the following variant of delta coding in our genetic algorithm.
The masks which are generated within the genetic operator functions Scale, Rotate and Translate are
to be divided by the number of the generation which is currently build. In this way we obtain
relatively more precise adjustments to the affine transformations as the search process proceeds. Of
course this implies a trade off between diversity and accuracy.

Implementation of variable chromosome lengths may be considered, where the chromosome encodes
a complete IFS instead of just one affine transformation. In [DAV91] some concepts of variable
chromosome encoding are treated.
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In our genetic algorithm the value of the evaluation function E(child) is directly assigned to the fitness
of that child. The probability that this child will be choosen as parent in the next generation, will be
directly proportional to its relative fitness in that next generation. It might be worth trying to apply
a different way of fitness assignment. In case of directly assigning child[i].fitness = E(child[i]), we
could sort the children by their fitness (which is already done by merging in our genetic algorithm)
and assign fitnesses according to child[#].fitness = S - i, where S is the population size. In this way
each member has a chance of being choosen which is equal to:

S-i _ (S~i) _ 2(S-i)
5 (52+8) §2+S

Y i

i=1

In case of big populations this would increase the relative probability of best members to be choosen,
otherwise they might be "lost" in the diversity of the population. This is because otherwise their
probability is simply equal to their fitness divided by the population size, and since the fitness is at
most 1, this probability of being choosen can never exceed S, which can be a rather small number.

An interesting experiment as to genetic algorithms in general would be to vary the population size §
as function of the current generation g. Since genetic algorithms mimic certain properties of evolution,
why should we not mimic this additional property of evolution. Referring to chaos theory it might
in this case be interesting to use the logistic relationship S,,, = uS,(1-S,) for some appropriate p.

12.4. Recommendations on IFS-encoding

During the practical stage of this graduation work, several ideas have grown about improving the IFS-
encoding process. Due to time considerations, we have not been able to implement those ideas. Some
of the recommended ideas can be carried into the genetic algorithm, others ask for a different
approach.

The most important recommendation on this field would be to search for a direct relationship between
an affine transformation w; and its fitness, without first applying the time consuming step of
transforming the target image according to this transformation w,. This would make it possible to
speed up the member evaluation time tremendously.

According to [BAR88b,MEN9 1] it might be considered to use a Recurrent Iterated Function System
(RIFS) to model deterministic images. An RIFS is an extension of the IFS as defined in par. 8.1.
Unlike IFS-attractors, attractors of recurrent structures are not globally self affine, i.e. one does not
find smaller and smaller copies of the entire fractal model buried in it at every scale. Instead, data
redundancy is exploited through partial self-affinity.

It is worth to investigate whether the encoding of color and greytone images with use of the
Hutchinson distance as part of the evaluation function, will be successful.

It may be considered to try to solve the IFS-encoding problem with a neural network. The choice
between a genetic algorithm and a neural network is basically a time-space trade off, since a genetic
algorithm uses relatively much time and few memory, while a neural network uses relatively few time
and much memory.
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In this case it may be efficient to apply image segmentation to break down the image into segments
which have (almost) the same color or greytone. Each such segment could be encoded with the
collage approach. Of course the IFS-code of the whole image will in this case contain an offset for
each encoded segment. If the image is recursively divided into 4 symmetric segments, which are
placed in a quad-tree [HUN79,MANSO0], then an alphabet of domain blocks could be constructed,
from which the image will be encoded. Since this method does not use the fractal properties which
are resident in almost every real world image, the compression performance will not be better than
that of the Discrete Cosine Transform [WAIS0]. Some more interesting articles about the image
segmentation approach are given by [BHA91,KEL89,PEN84,RIG88].

Also, a collage for a monochrome image could be obtained by matching of the image boundary with
affine transformed boundary segments. An interesting article about this subject is [WIT89].

In [LIB87] an algorithm is presented to obtain the morphological skeleton of an image. A skeleton
S(x) of an image A returns the radius r of the maximal disk centered at the point x € A. A maximal
disk is the largest possible disk which doesn’t exceed the boundary of A. The r® skeleton subset of
A, denoted by S,(A4), is defined to be the set of all skeleton points x € A, such that S(x) = r. An
important property of the skeleton function is the fact that it contains all the information necessary
to reconstruct the original image. The skeleton of an image will contain certain branch points, and
one of them can be considered as the central branch point, i.e. the center of the image. The vectors
of the central branch point to the other branch points represent the affine transformations of the
sought for IFS. If some parts of the image are still uncovered, they can be covered with maximal
disks, which are found by locating skeleton points x in this uncovered region, and calculating S(x) to
obtain the radius of the maximal disk. Since the skeleton of an image can be computed in O(n) time
(with n the amount of skeleton subsets), this approach looks very promising at a first glance, but it
works only for 2-dimensional monochrome images with high fractal dimension, i.e. close to 2. This
can be made clear by comparing for instance the structures leaf and fern (see appendix C). In other
words, we could state that this approach will only work satisfactory for images which can be
represented as simple polygons, i.e. polygons which do not cut themselves. The structure leaf has
a fractal dimension of about 1.96, while the structure fern has a fractal dimension of about 1.78 (see
table 3.1). As we can easily check, the skeleton of the structure leaf will be equal to its nerve
structure (compare to real leaves), but the skeleton of the structure fern will be equal to the structure
itself, because the maximal disks in all points of the image have a diameter of 1 [pixel]. It is obvious
that a skeleton which is equal to the structure itself is of no use.

It may also be considered to first scan the boundary of a target image and represent it as a (simple)
polygon. In [ATA91] an O(n) algorithm (with n the amount of polygon vertices) is presented. Maybe
the current time consuming steps of transforming and evaluating all pixels can be speeded up by only
applying those operations on the polygon vertices.

An approach to tackle the IFS-encoding problem would be the following. Suppose the target image
A contains |A| [pixels]. Then build an IFS consisting of |A| affine transformations, i.e.:

(X Xoighd X Digper Yiowerdo{ WixY) = @x + by + e,cx+dy+f):i=1,.,]4| },P)
such that:

(Aij:1<i<|A,jE€EA:a,b,cd=0An(.f)=&))
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This is of course a trivial IFS-encoding which doesn’t establish any data compression at all. Then
enlarge the parameters g, ,b; ,¢; and d; of each transformation w; and transform the target image
according to this transformation w;. Next remove the transformations from the IFS which are
completely covered by w;,. This could be done in a recursive way. According to the collage theorem
we can control the maximal tile sizes in order to get a small contractivity factor, which will assure
us a good approximation quality. Of course this is a trade off between encoding accuracy and data
compression.

In [BUD9O0] it is shown that recursive techniques in VLSI-design lead in a very natural way to certain
fractals which reflect the asymptotic geometric properties of the design if its degree of recursiveness
tends to infinity. Recursive design consists of breaking a problem into smaller problems in such way
that from solutions to the smaller problems one can easily combine a solution to the entire problem.
The mentioned article is based on a REcursive LAyout Computing System (RELACS). 1t may be
interesting to investigate if and in which way the IFS-principle can be used in VLSI-design processes
which are currently studied.
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Appendix A

IFS-CODEC users guide

As part of the work involved with this master thesis, an integrated algorithm was developed. The goal
of this algorithm is to:

(i) facilitate deterministic [IFS-decoding (with and without condensation);
(ii) facilitate nondeterministic IFS-decoding (with and without condensation);
(iii) facilitate interactive IFS-encoding of an image;

(iv) facilitate automatic IFS-encoding of an image.

The IFS-CODEC algorithm is written in C, is embedded in the OSF/Motif® X Window System® and
runs under the UNIX™ operating system. IFS-CODEC consists of about 7500 lines of source code
(see appendix B) and is implemented on a HP 9000/750 system.

A.l. The user interface

We have choosen for the OSF/Motif® X Window System® because it guarantees a good-looking
software system, but also because it is an industry standard. The development of the user interface
has mainly been ruled by information ergonomic considerations. The most important one is the first
law of information ergonomics: developer # user. But since the users of the algorithm are also
UNIX™ users, we felt that the freedom supported by UNIX™ should also be carried into the IFS-
CODEC ailgorithm. Besides, making an algorithm "idiot proof” implies severe limitations and doesn’t
at all imply user friendiyness.

A.2. Getting started

Make sure that the following files are resident in the same directory: all.h, ifs*, boxes.o,
collage.o, control.o, draw.o, exposures.o, filehandler.o, genetic.o,
graphics.o, handle.o, ifs.o, menubars.o, messages.o, operators.o, render.o,
specials.o, strings.o, tracker.o, writer.o.
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After typing "if£s" from the invocation screen, the IFS-CODEC main window will pop up, consisting
of three menubars, two (upper) text windows and two (lower) pixel windows. The grids of the pixel
windows are default organized as follows:

(i) origin (0,0) in center of window;
(ii) y increasing upwards;
(iii) x increasing to the right.

After the IFS-CODEC window has popped up, the menu selections can either be made by mouse or
by keyboard. If it is done by mouse, then the mouse pointer must be placed on the desired part of
the menubar and the left mouse button must be pressed. When this button is released, the selection
is made. If selection is established by keyboard, the traversal is performed by the direction keys and
the selection is done by hitting the return key. Pressing an (underlined) mnemonic for a menu item
in the most recently posted menu, selects that item. You can press the "Help" button to get more
information. From then on the system should be self explanatory.

First specify a filename without an extension, because the program will determine the appropriate
extension by itself. By looking at the file extensions (with UNIX™ command "1s") you can see what
kind of data each file contains:
(i) "filename.img": a sequence of (x,y) coordinates which specify a user drawn image;
(ii) "filename.col": a sequence of (x,y) coordinates which specify a collage image;
(iii) "filename.man": IFS-code generated with interactive IFS-encoding;
(iv) "filename.aut": IFS-code generated with automatic IFS-encoding;
(v) "filename.ifs": IFS-code generated with a source editor.
Of course, each filename and extension can be modified under UNIX™. If settings of program

parameters are changed interactively, the current values will be automatically updated in the according
text window.

A.3. Viewing/editing source images

With this facility you can operate upon images. First select a file by the "select file" option.
Then apply each of the following steps as many times as desired:

(i) To load an existing image, contained in "filename.img", select "Options -
Viewedit source image -~ Load file";
(i) To put the cursor in draw mode, select "Options - Viewedit source image -
Draw (toggle)". Now you can draw in the pixel window by pushing the left mouse
button and using the mouse pointer as pencil. Each time the former selection is applied,
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(iii)

(iv)

the mode toggles between draw mode and normal mode (the current mode is written to
the invocation screen);

To put the cursor in erase mode, select "Options - Viewedit source image -
Erase (toggle)”. Now you can erase in the pixel window by pushing the left mouse
button and using the mouse pointer as erasor. Each time the former selection is applied,
the mode toggles between erase mode and normal mode (the current mode is written to
the invocation screen);

To save the current image, which is contained in the pixel window, to the file
"filename.img", select "Options -+ Viewedit source image - Save file".

A.4. Viewing/editing IFS-codes

It is possible to view the contents of an IFS-code file, both textual and graphical. First select a file
by the "select file" option. Then apply one of the following three steps:

)

(ii)

(iii)

To achieve a graphical view, select "Options - Viewedit IFS~code - Graphical
view - .ext", where “.ext" is one of the three files (.aut, .man,.ifs) which
contain an IFS-code. On the pixel window the graphical effect of the affine
transformations is shown by applying them on a rectangle;

To achieve a textual view, select "Options - Viewedit IFS-code - Textual view
- .ext", where ".ext" is one of the three files (. aut, .man, . ifs) which contain an
IFS-code. On the pixel window the parameters a,b,c¢,d, e, f,p of all affine transformations
in the file are displayed. If the IFS doesn’t fit completely in the pixel window, then a
scrollbar will automatically pop up, with which you can scroll the IFS up and down;

If you select "Options -» Viewedit IFS-code - Textual edit - .ext", where
".ext" is one of the three files (.aut, .man, . ifs) which contain an IFS-code, then a
message will pop up. This message tells you that editing such file can be done with VI
or Emacs and which format has to be obeyed if you do so.

A.5. IFS-decoding

The IFS-decoding facility operates on files that contain IFS-codes, i.e. files with extensions ".ifs",
“.man" or ".aut". After a filename (without an extension) is selected by the "select file" option,
the following actions must be applied:

@

First decide whether you want to decode with (default) or without condensation. You can
toggle between those options by pressing "Render control -+ Condensation”. The
current selection is written to the invocation screen. If decoding with condensation is
selected, then the initial condensation set consists of all contents (except coordinate axes)
of the according pixel window. These contents may be influenced by the use of
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(i)

(iii)

)

7]

"Display - Clear” and "Options -+ Viewedit source image". From then on you
can either load a file or draw/erase a picture yourself with the mouse;

Next determine the amount of iterations by "Render control - Define
#iterations”. A sliderbar will pop up with which you can vary the amount of desired
iterations between 1 and 100;

Next determine if and how the startpixel has to be defined by "Render control -
Define gtartpixel”. This is not really essential for the decoding result, but only
influences the fact whether or not the pixels which are generated by the first few
iterations will be part of the attractor. The file "codes” (see appendix C) contains some
examples of IFS-codes and the appropriate startpixel settings;

Next determine if and how the origin has to be redefined by "Display - Redefine
origin", The origin is default defined to (0,0) which is the center of the pixel window.
You can check where the origin is actually located by selecting "Display - Axes
(toggle)"” which will toggle the coordinate axes on the pixel window;

Finally invoke the IFS-decoding process by selecting one of the following two options:
"Options - Deterministic IFS-decoding - .ext"

"Options - Nondeterministic IFS-decoding - .ext"

From chapter 8 we know that deterministic IFS-decoding will neglect the probabilities,
and nondeterministic IFS-decoding will not.

If you want to verify the effect of a single affine transformation on a certain image, then load the
image, set the amount of iterations equal to 1, set the condensation mode to FALSE and invoke the
deterministic IFS-decoding process according to point (v) above.

A.6. Interactive IFS-encoding

The interactive IFS-encoding facility generates files that contain IFS-codes (with extension ".man")
and files that contain graphical collages (with extension ".col"). After a filename (without extension)
is selected by the "select file" option, the following actions must be applied:

®

(i)

First make sure that the pixel window contains the image which must be encoded. If this
is done by loading an ".img" file it must be considered wheather or not the current
filename has to be changed, because it may be the case that there already exists a ".man"
file with the current filename. In this case the output of the IFS-encoding session will be
appended to that file;

Next determine if and how the origin has to be redefined by "Display - Redefine
origin”. Note: while making a collage it is not possible to redefine the origin anymore
and any attempt to do so will result in a warning;
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(iii) Next add a similitude by selecting "Options = Interactive IFS-encoding - Add
similitude”. In the pixel window appears a 80% down scaled copy of the original
target image, which is still visible;

(iv) Nextselect "Options = Interactive IFS-encoding - Transform similitude”.
A box with six sliderbars will pop up. You can move the sliderbars by selecting them
with the mouse pointer and then dragging them to the left or to the right while the left
mouse button is kept pressed. Also, you can put the mouse pointer at the far left or at
the far right of the sliderbar and move the slider by clicking the left mouse button. Each
click will move the slider a distance of 10% of the sliderbar width. If the similitude is
to be just rotated, then X-rotation and Y-rotation sliders have to be moved the same
amount. If the similitude is just to be scaled the the X-scaling and Y-scaling sliders have
to be moved the same amount;

(v) If the similitude is to be fixed, select "Options - Interactive IFS-encoding -
Fix similitude”. The program will automatically save the parameters a,b,c,d,e and
f (which are calculated from the slider values) to the file "filename.man";

(vi) If the original image is not yet totally covered with similitudes (i.e. the collage is not yet
ready), new similitudes can be added, transformed and fixed, according to respectively
steps (iii), (iv) and (v). When the collage is finished, select "Options = Interactive
IFS-encoding + Save collage". The program now calculates the probabilities of
the saved affine transformations and adds them to the file "filename.man".

If you want to add a transformation to an already existing collage, then simply select its filename and
apply all steps (iv), (v) and (vi). Of course you can also create an IFS-code directly from a text
editor. Such a file should be saved with the extension ".ifs". if you want to let the program take
care of the probabilities, just apply "mv filename.ifs filename.man” under UNIX™ and select
the filename. Then just apply step (vi), which will calculate the probabilities and add them to the file.
Note: make sure that an editor-created IFS-code file obeys the format as displayed in the message
which appears when selecting "Options -+ Viewedit IFS-code -+ Textual edit".

A.7. Automatic IFS-encoding

When applying an automatic IFS-encoding run, afile "monitor.dat" will be automatically created.
This monitor file contains all kinds of information about a genetic run. In appendix D a typical output
of this file is given. There are a lot of parameter settings involved with this option. Due to time
constraint considerations, most of these parameters can not yet be interactively controlled by means
of the user interface. For the time being, those parameters must be directly set in the file "a11.h"
by applying the following steps:

(i) Decide whether you want to watch the state space search or not. If so, set the global
constant DISPLAY to the value 1, else to the value 0. If DISPLAY is set to 1, the original
target image will get lost from the screen and the state space search of the genetic
algorithm is displayed on the screen by means of the successive population members.
The drawback of this option is the fact that it takes about 50% more CPU-time on an
IFS-encoding run;
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(i)

(i)

(iv)

v)

Decide whether you want to run the algorithm in the debug mode or not. If the global
constant DEBUG is set to 1, additional information will be generated in the monitor file.
This additional information basically deals with the processes of parent and operator
selection, mask generation and child creation;

Decide what the amount of generations and the population size should be. Those values
are set by resp. the global constants MAX GENERATIONS and POPULATION_SIZE;

Decide if you want to change the probabilities with which the genetic operators
MacroCrossover, MicroCrossover, MixedCrossover, Mutate, Jump, Scale, Rotate and
Translate are applied. If so, adjust the values of the according global constants
P_MACRO, P_MICRO, P_MIXED, P MUTATE, P_JUMP, P_SCALE, P_ROTATE and
P_TRANSLATE. 1t is important to make sure that the sum of those probabilities is 1;

Decide what the maximum encoding error should be. This value is represented by the
global variable EPSILON which must have an integer value in the interval [0%,100%).
The default value is 2% . Of course it is not certain that the encoding will be established
with a maximum encoding error EPSILON. It may for instance be the case that the
amount of generations or the population size is not large enough.

After the above global constants in the file "a11.h" have been adjusted, the IFS-encoding session can
be started. To encode an image, first select a filename and make sure that the image which is to be
encoded, is contained in the according pixel window. Then apply the following steps:

(vi)

(vii)

(viii)

If you have set the global constant DISPLAY to 1 (see step (i)), then the original image
will get lost from the screen and the state space search of the genetic algorithm will be
displayed on the screen by means of the successive population members. If you want to
keep the target image continuously visible during the search process, you must load the
image into the opposite window from the one you want to use for the encoding;

Select "Options - Automatic IFS-encoding - Identity (toggle)" if you want
to search for the identity transformation, which maps the target image onto itself. In case
of a symmetric image (like a square) it is possible that a symmetry group transformation
will be found (for example a rotation by 90 [degrees]). The current selection is written
to the invocation screen. This option is basically meant for validation purposes with
respect to the genetic algorithm;

Select "options - Automatic IFS-encoding - Calculate"” to start the encoding
process. If IDENTITY is set to TRUE then only one transformation (the identity or
another member of the symmetry group of the image) will be sought for. If IDENTITY
is set to FALSE (default) then a collage will be sought for. The algorithm will in this
case terminate as soon as at least one of the following conditions holds:

- all members of generation MAX_GENERATIONS have been evaluated;
- the current encoding error is less than EPSILON;
- the collage consists of MAX TRANSFORMATIONS affine transformations.
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During the encoding process, the number of the affine transformation which is encoded, is displayed
on the invocation screen. In the text window the field "iteration" displays the current generation.
After termination of the program the pixel window will contain the collage of all found affine
transformations applied on the target image. The file "filename.aut" will contain these affine
transformations.

A.8. Special utilities

The special utilities contain six options:

)

(i)

(iii)

@iv)

)

(vi)

"Pixset distance"” calculates the Pixset distance d, between the images contained in
the left and right pixel windows. The result will be written to the invocation screen;

"Specials - Rectangle draws a rectangle on the according pixel window, which can
be used for making collages such as the Menger sponge or the Sierpinski triangle. In this
case one doesn’t need to have a target image of those structures. For example to create
a collage of a Sierpinski triangle one does only have to add three similitudes, each with
X-scaling and Y-scaling both set to 50%. Two of those similitudes must cover the lower
half of the rectangle, while the third is placed centered on the top of the two others;

"Specials - Bifurcation diagram" draws the bifurcation diagram of the logistic
map: fix) = ax(1-x). For more information see chapter 4. There are no parameter
settings involved with this option;

"Specials - Mandelbrot set" draws the Mandelbrot set M of the function

fiz) = 22+ in the complex c-plane (see chapter 6). If "Display » Axes (toggle)"
was selected first, then the real and imaginary axis will be displayed. Before you draw
M, first select the amount of iterations that must be applied to each pixel. This can be
done with "Render control - Define #iterations". The higher the amount of
iterations, the more accurate (and slower!) M is rendered. Due to screen resolution, more
than 25 iterations will not visibly increase the picture quality;

"Specials - Moment sequence" calculates the first 5 complex moments of the image
which is displayed in the according window (see par. 9.4 and 10.3). The moments are
calculated with respect to the current origin setting. The result is written both to the
invocation screen and to the file "filename.mom";

"Specials - Fractal dimension" calculates the fractal dimension of the image
which is displayed in the according window. The calculation is done according to
example 3.2.
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IFS-CODEC source code

#&i**i****t****i-******iti***i********i‘***i*i******iﬁﬁ**ii*******i****t*t*****

# Copyright(c)

# Mail address

# Project :
# Supervisor :
# File :
# Purpose :
# Part of :
# Created on :
# Created by :
# Last modified on:
# Modified by :
# Remarks :

Eindhoven University of Technology (TUE,NL)
Faculty of Electrical Engineering (E)
Design Automation Group (ES)
emilevdaviper.es.ele.tue.nl

Fractal imagecompression with Iterated Function Systems
Prof. Dr. Ing. J.A.G. Jess

Makefile

Contains IFS-CODEC makefile

Not applicable

April 12, 1992

Emile van Duren

December 17, 1992

Emile van Duren

None

i e e e i ol e e i o e s e e i ol ok s e v e e o e sk e 9 e e o e v e e s ol v e s e ol e e s oo i e oo e o e ok o e ok o o e o o e e ol o e e o o e

# name of executable file
#

NAME = ifs
#

: libraries to be linked (when debugging: change option -0 into -g)

CFLAGS = -0 -I/usr/include/X11R4 -1/usr/include/Motif1.1
LDFLAGS = -0 -L/usr/lib/X11R4 -L/usr/Lib/Motif1.1

#

# sourcefiles

#

SOURCES = \
boxes.c
collage.c
control.c
draw.c
exposures.c
filehandler
genetic.c
graphics.c
handle.c
ifs.c
menubars.c
messages.c
operators.c
render.c
specials.c
strings.c
tracker.c
writer.c

#

.C

Pl P P P G GV Bl

# convert sourcefiles into objectfiles

OBJECTS = $(SOURCES:.c=,0)
#

# libraries to be linked
#

LIBS = =IXm -LXt -1X11 -LPW -lm
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#
# actual compiler command, to be invoked with “make"
#

$(NAME): $(OBJECTS)
cc $(LDFLAGS) -o $(NAME) $(OBJECTS) $(LIBS)
#

# clean all directories, to be invoked with "make clean"
#

clean:
4 rm -f S$(OBJECTS)

# make backup of sourcefiles, all.h and this file,
# to be invoked with *make backup"
#
backup:
cp /usersi/emilevd/work/codes /usersi/emilevd/codes/
cp /usersi/emilevd/work/*.ifs /usersi/emilevd/codes/
cp /usersi1/emilevd/work/*.img /usersi/emilevd/images/
cp /usersi/emilevd/work/*.c /usersi/emilevd/sources/
cp /usersi/emilevd/work/*.h /usersi/emilevd/lib/
cp /users1/emilevd/work/Makefile /users1/emilevd/sources/
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/**t*****i*iit***i********i*t****i-*****i**t****ii.***Q**iit*i*i*****i******i**

* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)

* : Design Automation Group (ES)

* Mail address : emilevddviper.es.ele.tue.nl

* Project : Fractal imagecompression with Iterated Function Systems
* Supervisor : Prof. Dr. Ing. J.A.G. Jess

* File : all.h

* Purpose : Contains all necessary libraryfiles for IFS-CODEC
* Part of : IFS-CODEC

* Created on : May 08, 1992

* Created by : Emile van Duren

* Last modified on: December 02, 1992

* Modified by : Emile van Duren

* Remarks : None

*i*t**itii*i****t*t***i*********ii******ﬁ*tt***iiﬁ***iﬁi*******it***i.****t**/

*
* includefiles

*/

#include<math.h>
#include<stdio.h>
#include<string.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<x11/StringDefs.h>
#include<Xm/Xm.h>
#include<Xm/Bul letinB.h>
#include<Xm/CascadeB.h>
#include<Xm/DrawingA.h>
#include<xm/Form.h>
#include<Xm/Frame.h>
#include<Xm/Label .h>
#include<Xm/MessageB . h>
#include<Xm/PushB.h>
#include<Xm/RowColumn. h>
#include<Xm/Scrol LBar.h>
#include<Xm/SelectioB.h>
#include<Xm/Separator.h>
#include<Xm/Text.h>

/t

* global constants
*/

#define AREA_WIDTH 500
#define DEBUG 0

#define DISPLAY 1

#define EPSILON 2

#define EXTENDED 0

#define FALSE O

#define IDENTITY 0

#define MAX_ARGS 15

#define MAX_GENERATIONS 10
#define MAXLINES 500

#define MAXLINESIZE 60

#def ine MAX_TRANSFORMATIONS 2
#define PI 3.141592654
#define PIXEL_AREA_HEIGHT 500
#define P_JUMP 0.11

#define P_MACRO 0.15

#idefine P_MICRO 0.15

#define P_MIXED 0.15

#define P_MUTATE 0.011
#define POPULATION_SIZE 10
#define P_ROTATE 0.12
#define P_SCALE 0.12

#define P_TRANSLATE 0.12
#define SCALEBOX_WIDTH 250
#define TEXT_AREA_HEIGHT 215
#define TRUE 1

*

* global structures
*/
typedef struct {
int xrotation,yrotation,xscaling,yscaling,xshift,yshift,probability;
)} Affine;
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typedef struct (
float fitness;
int a,b,c,d,e,f;
) Chromosome;

typedef struct {

Boolean filehelp,fileopenwarning,originwarning, tablemessage;
) Guard;

typedef struct {
float a,b,c,d,e,f,p;
)} IFScode;

typedef struct {
Widget box,slider,okbutton;
) Numberbox;

typedef struct {
Widget box,okbutton,xslider,yslider;
) Positionbox;

typedef struct {
Widget box,scrollbar,okbutton;
) Scrollbox;

typedef struct {
Widget box,okbutton,xscslider,yscslider,xrtslider,yrtslider, xshslider,yshslider;
)} Transformbox;

typedef struct {
Widget box,okbutton,zoomnowbutton,xoffsets! ider,yoffsetslider,zoomslider;
)} Zoombox;
typedef struct {
char mode, *filename;
int ncolors,oldpointx,oldpointy,xoffset, yoffset,zoomfactor;
int niterations,xorigin,yorigin,xstart,ystart;
long int npixels;
Affine transformation;
Boolean axes,condensation,drawgrab,erasegrab, firsttime, identity,unzoom;
Dimension width, height;
GC gc;
Guard first;
Numberbox iterationbox;
Pixmap pix,sim,col;

Positionbox originbox,startpixelbox;
Scrol lbox scrol ibox;
Transformbox similitudebox;

Zoombox zoombox ;
) Drawdata;
typedef struct {
char *ext,*chars [MAXLINES];
int descent, fontheight,nlines, top;
int Length [MAXLINES], rbearing [MAXLINES];

XFontStruct *font;
)} Scrolldata;

typedef struct {
char *mode,*srce,*size,*cont,*save,*orgn,*init,*amit,*iter,*zoom;
) Textdata;

*

* global variables
*/
int ac,maxiterations;
Arg al [MAX_ARGS];
Boolean firsthelp,printmessage,copyrightmessage,debug;
Drawdata leftpixeldata,rightpixeldata,lefttextdata,righttextdata;
Textdata LText,RText;
Scrolldata LScroll,RScroll;
Widget form,leftpixelarea,rightpixelarea,lefttextarea,righttextarea;
Widget lefttextframe,righttextframe, leftpixelframe,rightpixelframe;
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/i**iitﬁi**iffit****t-iii.*i*ii***'iﬁi**'f*it*i*it.i**tffiti***'i**ii'ffiti*i*t

* Copyright(c) Eindhoven University of Technology (TUE,NL)

* : Faculty of Electrical Engineering (E)
* : Design Automation Group (ES)

* Mail address : emilevddviper.es.ele.tue.nl

* Project : Fractal imagecompression with Iterated Function Systems
* Supervisor : Prof. Dr. Ing. J.A.G. Jess

* File : boxes.c

* Purpose : Creates scalebox and promptbox widgets
* part of : IFS-CODEC

* Created on : June 04, 1992

* Created by : Emile van Duren

* Last modified on: December 10, 1992

* Modified by : Emile van Duren

* Remarks : None

ii*ﬁiti****ﬁt'i*iiiiﬁ*****ii*ﬁ****ﬁ****i**ti***iit***i***tt*ii&*it**i*tt*i**i/

#include "all.h"

*
* forward function declarations

*/

void AmountOflterationsHandler(); /* contained in handle.c */
void ChangeStartPixelHandler(); /* contained in handle.c */
void ClearPixelArea(); /* contained in draw.c */
void DrawAxes(); /* contained in draw.c *f
void FileHelpCallback(); /* contained in messages.c */
void ManageSimilitude(); /* contained in transform.c */
void OriginHandler(); /* contained in handle.c */
void Scrol lBarMovedHandler(); /* contained in handle.c */
void SelectFile(); /* contained in filehandler.c */
void Unmanage(); /* contained in handle.c */
void ZoomController(); /* contained in control.c */
void ZoomHandler(); /* contained in handle.c */
Drawdata *GetWindowData(); /* contained in control.c */
Scrol ldata *GetScrollData(); /* contained in control.c */

Widget CreatePromptBox(parent,location)
Widget parent;
char location;

Widget promptbox;

XmString xmstr;

/i

* create promptbox to appear when fileselectionbutton in filemenupane of
* uppermenu is pressed

*/

ac = 0;

if (location == /1)

xmstr = XmStringCreate("select leftfile", XmSTRING_DEFAULT_CHARSET);

v~

if (location == ’p’)

-~

xmstr = XmStringCreate("select rightfile", XmSTRING_DEFAULT_CHARSET);

)
XtSetArg(al [ac] ,XmNdialogTitle,xmstr); ac++;
promptbox = XmCreatePromptDialog(parent,"PromptBox",al,ac);
XtAddCal Lback(promptbox, XmNhelpCal Lback, F i leHelpCal Lback, Location);
XtAddCal Lback(promptbox, XmNokCal lback,SelectFile, location):
XmStringFree(xmstr);
return(promptbox);

Widget CreateSimilitudeTransformBox(parent, location)
Widget parent;
char location;

int mode;

Drawdata *data;
XmString xmstr;

Affine *transformation;
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/i

* parameter initialization

*/

data = GetWindowData(location,’p’);
*

* create transformbox to appear when transform similitudebutton in viewedit
* ifs table menu of optionsmenu of left or rightmenu is pressed
*/

ac = 0;
if (location == i{’)
4
mode = 0;

xmstr = XmStringCreate("transform left similitude",XmSTRING_DEFAULT_CHARSET);
b
if (location == /r’)

mode = 1;
xmstr = XmStringCreate("transform right similitude” , XmSTRING_DEFAULT_CHARSET);
)

XtSetArg(al [ac] ,XmNdialogTitle,xmstr); ac++;

data->similitudebox.box = XmCreateFormDialog(parent,"TransformBox",al,ac);

X:nstringFree(xmstr);

/

: create a X-scaling scrollbar with range 0 to 100 [X]
/

ac = 0;

xmstr = XmStringCreate(" X-scaling [percent]™,XmSTRING_DEFAULT_CHARSET);

XtSetArg(al [ac] ,XmNtitleString,xmstr); ac++;

XtSetArg(al [ac] ,XmNminimum,0); ac++;

XtSetArg(al [ac],XmNmaximum, 100); ac++;

XtSetArg(al [ac] ,XmNwidth,SCALEBOX_WIDTH); ac++;

XtSetArg(al [ac],XmNorientation, XmHORIZONTAL); ac++;

XtSetArg(al [ac]l,Xmkvalue,80); ac++;

XtSetArg(al [ac] ,XmNshowValue, TRUE); ac++;

XtSetArg(al [ac] ,XmNtopAttachment , XmATTACH_FORM); ac++;

XtSetArg(al [ac] ,XmNleftAttachment, XmATTACH_FORM); ac++;

XtSetArg(al [ac] ,XmNrightAttachment, XmATTACH_FORM); ac++;

data->similitudebox.xscslider = XmCreateScale(data->simi l i tudebox.box,

"XscSlider®,al,ac);

XtAddCal Lback(data->simititudebox.xscsl ider,XmNdragCal Lback,
ManageSimi l i tude,mode);

XtAddCal lback(data->simi l i tudebox.xscsl ider, XmNvalueChangedCal L back,
ManageSimi l i tude,mode);

XtManageChitd(data->simil i tudebox.xscslider);

XmStringfree(xmstr);

/t

* create a Y-scaling scrollbar with range 0 to 100 [X)

*/
ac = 0;
xmstr = XmStringCreate(" Y-scaling [percent]" XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNtitleString,xmstr); ac++;
XtSetArg(al [ac] ,XmNminimum,0); ac++;
XtSetArg(al [ac] ,XmNmaximum, 100); ac++;
XtSetArg(al [ac] ,XmNwidth,SCALEBOX_WIDTH); ac++;
XtSetArg(al [ac] ,XmNorientation, XmHORIZONTAL); ac++;
XtSetArg(al [ac],XmNvalue,80); ac++;
XtSetArg(al [ac] ,XmNshowValue, TRUE); ac++;
XtSetArg(al [ac],XmNleftAttachment , XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNrightAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNtopAttachment,XmATTACH_WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget,data->similitudebox.xscslider); ac++;
data->similitudebox.yscslider = XmCreateScale(data->similitudebox.box,

"YscSlider®,al,ac);
XtAddCal lback(data->similitudebox.yscslider,XmNdragCal lback,
ManageSimi l i tude, mode+2);
XtAddCal Lback(data->similitudebox.yscsl ider,XmNvalueChangedCal lback,
ManageSimi l i tude,mode+2);

XtManageChild(data->similitudebox.ysecslider);
XmStringFree(xmstr);
/'ﬁ

* create a X-rotation scrollbar with range -180 to 180 [degrees]

L

/

ac = 0;
xmstr = XmStringCreate(" X-rotation [degrees]",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNtitleString,xmstr); ac++;
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XtSetArg(al [ac] ,XmNminimum, -180); ac++;
XtSetArg(al [ac) ,XmNmaximum, 180); ac++;
XtSetArg(al [ac) ,XmNwidth,SCALEBOX_WIDTH); ac++;
XtSetArg(al (ac) ,XmNorientation, XmHORIZONTAL); ac++;
XtSetArg(al [ac] ,XmNvalue,0); ac++;
XtSetArg(al [ac) ,XmNshowValue,TRUE); ac++;
XtSetArg(al [ac] ,XmNleftAttachment , XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNrightAttachment, XmATTACH_FORM); ac++;
XtSetArg(al[ac] ,XmNtopAttachment , XmATTACH UI‘DGET) acH+;
XtSetArg(al (ac] ,XmNtopWidget,data- ->simil i tudebox. yscsllder)- acH+;
data->simiLitudebox. xrtslider = XmCreateScale(data->similitudebox.box,
wXrtSlider%, al,ac);
XtAddCal Lback(data->simil itudebox.xrtslider,xnudragCal Lback,
ManageSimil i tude, mode+4);
XtAddCal lback(data->similitudebox.xrtslider, XmNvalueChangedCaliback,
ManageSimi litude,mode+4);
XtManageChild(data->similitudebox.xrtslider);
XTStringFree(xmstr);
/
: create a Y-rotation scrollbar with range -180 to 180 ([degrees]
/
= 0;
xmstr = XmStringCreate(" Y-rotation [degrees]™, XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNtitleString, xmstr); ac++; .
XtSetArg(al (ac] ,XmNminimum,-180); ac++;
XtSetArg(al [ac] ,XmNmaximum, 180); ac++;
XtSetArg(al [ac) ,XmNwidth,SCALEBOX_WIDTH); act++;
XtSetArg(al [ac] ,XmNorientation, XmHORIZONTAL); ac++;
XtSetArg(al [ac] ,XmNvalue,0); ac++;
XtSetArg(al [ac] ,XmNshowValue, TRUE); ac++;
XtSetArg(al {ac] ,XmN leftAttachment , XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNrightAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNtopAttachment,XmATTACH_WIDGET); ac++;
XtSetArg(al (ac] ,XmNtopWidget ,data->similitudebox.xrtslider); ac++;
data->similitudebox.yrtslider = XmCreateScale(data->similitudebox.box,
"yrtSlider®,al,ac);
XtAddCal lback(data->simil i tudebox.yrtslider, XmNdragCal Lback,
ManageSimil i tude,mode+6);
XtAddCal lback(data->simil i tudebox.yrtslider, XmNvalueChangedCal lback,
ManageSimil i tude,mode+6);
XtManageChi ld(data->simi l itudebox.yrtslider);
XTStringFree(xmstr);
/
: create a X-translation scrollbar with range -250 to 250 (pixels]
/
=0;
xmstr = XmStringCreate(" X-translation [pixels]" XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNtitleString,xmstr); ac++;
XtSetArg(al [ac] ,XmNminimum,-250); ac++;
XtSetArg(al [ac) ,XmNmaximum,250); ac++;
XtSetArg(al [ac) ,XmNwidth,SCALEBOX_WIDTH); ac++;
XtSetArg(al [ac] ,XmNorientation,XmHOR1ZONTAL); ac++;
XtSetArg(al [ac] ,XmNvalue,0); ac++;
XtSetArg(al [ac] ,XmNshowValue, TRUE); ac++;
XtSetArg(al [ac] ,XmNleftAttachment , XmATTACH_FORM); ac++;
XtSetArg(al (ac] ,XmNrightAttachment ,XmATTACH_FORM); ac++;
XtSetArg(al [ac) XnNtopAttachment xmATTACH _WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget, data->similitudebox. yrtslider), ac++;
data- >s1mll1tudebox xshslider = XmCreateScale(data->similitudebox.box,
"XshSlider®,al,ac);
XtAddCal lback(data->similitudebox.xshslider,XmNdragCal back,
ManageSimi L i tude ,mode+8);
XtAddCal lback(data->simi l i tudebox.xshs|ider,XmNvalueChangedCal lback,
ManageSimi l i tude,mode+8);
XtManageChild(data->similitudebox.xshs|ider);
Xr:lStringFree(xmstr);
/
: create a Y-translation scrollbar with range -250 to 250 [pixels]
/
= 0;
xmstr = XmStringCreate(" Y-translation [pixels]" , XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNtitleString,xmstr); ac++;
XtSetArg(al [ac] ,XmNminimum,-250); ac++;
XtSetArg(al {ac) , XmNmaximum,250); ac++;
XtSetArg(al [ac] ,XmNwidth,SCALEBOX_WIDTH); ac++;
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XtSetArg(al [ac],XmNorientation, XmHORIZONTAL); ac++;

XtSetArg(al [ac) ,XmNvalue,0); ac++;

XtSetArg(al [ac) ,XmNshowValue,TRUE); ac++;

XtSetArg(al [ac) ,XmNleftAttachment , XmATTACH_FORM); ac++;

XtSetArg(al [ac] ,XmNrightAttachment, XmATTACH_FORM); ac++;

XtSetArg(al [ac] ,XmNtopAttachment , XmATTACH_WIDGET); ac++;

XtSetArg(al [ac] ,XmNtopWidget,data->similitudebox.xshslider); ac++;

data->simi litudebox.yshslider = XmCreateScale(data->similitudebox.box,

"yYshSlider®,al,ac);

XtAddCallback(data->similitudebox.yshslider,XmNdragCal lback,
ManageS imi | i tude,mode+10);

XtAddCal Lback(data->similitudebox.yshs|ider, XmNvalueChangedCal lback,
ManageSimi i tude,mode+10);

XtManageChild(data->similitudebox.yshs|ider);

XmStringFree(xmstr);

*

* create OK-button
*/
ac = 0;
XtSetArg(al [ac] ,XmNleftAttachment , XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNrightAttachment ,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNbottomAttachment ,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNtopAttachment , XmATTACH_WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget, data->similitudebox.yshslider); ac++;
data->similitudebox.okbutton = XmCreatePushButtonGadget(data->similitudebox.box,
"0K",al,ac);
XtAddCal Lback(data->simil i tudebox.okbutton,XmNactivateCal lback,Unmanage,
data->similitudebox.box);
XtManageChi ld(data->simil i tudebox.okbutton);
*

* return value of this function
*/
return(data->simil i tudebox.box);

Widget CreateOriginBox(parent,location)
Widget parent;
char location;

int mode;
Drawdata *data;
XmString xmstr;
int xvalue,yvalue;
/i

* parameter initialization
*/

data = GetWindowData(location,’p’);
xvalue = data->xorigin - data->width/2;
yvalue = data->yorigin - data->height/2;
if (location == /|’)
{
mode = 0;
xmstr = XmStringCreate("redefine left origin", XmSTRING_DEFAULT_CHARSET);

)
if (location == 7r?)

mode = 1;
xmstr = )'(nStrinQCreate("redefine right origin", XmSTRING_DEFAULT_CHARSET);
/*)
* create originbox to appear when redefine originbutton in display
* menu of left or rightmenu is pressed
*/
ac = 0;
XtSetArg(al [ac] ,XmNdialogTitle,xmstr); ac++;
data->originbox.box = XmCreateFormDialog(parent,"OriginBox", al, ac);
XmStringFree(xmstr);
/*
* create a X-origin scrollbar with range -250 to 250 [pixels]
*/
ac = 0;
xmstr = XmStringCreate(" X-origin [pixels]™, XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNtitleString,xmstr); ac++;
XtSetArg(al [ac],XmNminimum, -250); ac++;
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XtSetArg(al [ac],XmNmaximum,6250); ac++;
XtSetArg(al fac]) ,XmNwidth SCALEBOX HIDTH)- act+;
XtSetArg(al [ac], XnNorlentation XmHORlZONTAL), ac++;
XtSetArg(al [ac] ,Xanalue,xvalue); act+;
XtSetArg(al [ac],XmNshowValue, TRUE); ac++;
XtSetArg(al [ac], XmNtopAttachment ,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNleftAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [ac], XnﬂrlghtAttachment XmATTACH_FORM); ac++;
data->originbox.xslider = xmreate8cale(data->ongmbox box,*Xorslider",al, ac);
XtAddCal L back(data->originbox.xs|ider , XmivalueChangedCal lback,Originiandler,mode);
XtAddCal Lback(data->originbox.xsl ider,XanalueChangedCal Iback,DrawAxes, location);
XtManageChild(data->originbox.xslider);
XmStringFree{(xmstr);
/*
* create a Y-origin scrollbar with range -250 to 250 [pixels]
*/
=0;
xmstr = XmStringCreate(* Y-origin [pixels]" XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNtitleString,xmstr); ac++;
XtSetArg(al [acl,XmNminimum,-250); ac++;
XtSetArg(al [ac]l,XmNmaximum,250); ac++;
XtSetArg(al [ac] ,XmNwidth, SCALEBOX HXDTH)' ac+s;
XtSetArg(al (ac], XmNorientation ,XmMHORIZONTAL); ac++;
XtSetArg(al [ac] Xanalue,yvalue), acH+;
XtSetArg(al [ac] ,xllehouValue,TRUE); ac++;
XtSetArg(al [ac] ,XmNtopAttachment , XmATTACK WIDGET); ac++;
XtSetArg(al {ac] ,XmNtopWidget, data->originbox. xslider); act++;
XtSetArg(al [ac],XmNleftAttachment , XmATTACH_FORM); ac++;
XtSetArg(al [ac], XnﬂrlghtAttachment XmATTACH FORH), ac++;
data->originbox.yslider = XmCreateScale(data- >or191rbox.box,"¥orshder" al,ac);
XtAddCal | back(data->originbox.yslider XmNvalueChangedCal | back, Orlglnuandler mode+2);
XtAddCal l back(data->originbox.ys| ider,XmNvalueChangedCal |back,DrawAxes, location);
XtManageChild(data->originbox.yslider);
XmstringFree(xmstr);
/*
* create OK-button
*/
= 0;
XtSetArg(al [ac],XmNtopAttachment ,XmATTACH_WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget,data->originbox.yslider); ac++;
XtSetArg(al [ac],XmNleftAttachment, XmATTACH_FORM); ac++;
XtSetArg(al [ac], XnNrightAttachment XmATTACH FORH) ac++;
XtSetArg(al {ac] , XmNbot tomAttachment , XmATTACH _FORM); ac++;
data- >or19mbox.okbutton = xmreatePushButtonGadget(data »originbox.box, "0K",al ,ac);
XtAddCal L back(data->originbox.okbutton, XmNactivateCal l back,Unmanage,
data-»originbox.box);
XtManageChild(data->originbox.okbutton);
/*
* return value of this function
*/
return{data->originbox.box);

Widget CreateStartPixelBox(parent, location)
Widget parent;
char location;

int mode;

Drawdata *data;

XmString xmstr;

int xvalue,yvalue;

/i

* parameter initialization

*/

data = GetWindowData(location,’p’);
xvalue = data->xstart - data->width/2;
yvalue = data->ystart - data->height/2;
if (location == ‘L)

¢
mode = 0;
xmstr = XmStringCreate("define left startpixel", XmSTRING_DEFAULT_CHARSET);

H
if (location == ’r’)
(
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mode = 1;
xmstr = XmStringCreate("define right startpixel", XmSTRING_DEFAULT_CHARSET);
/"')
* create startpixelbox to appear when define startpixelbutton in
* deterministic IFS-decoding or nondeterministic IFS-decoding is
* pressed
*/
ac = 0;
XtSetArg(al [ac] ,XmNdialogTitle,xmstr); ac++;
data->startpixelbox.box = XmCreateFormDialog(parent,"StartPixelBox",al,ac);
Xl:lstringFree(xnstr);
/

* create a X-origin scrollbar with range -250 to 250 [pixels]
*

ac = 0;

xmstr = XmStringCreate(" X-origin [pixels]", XmSTRING_DEFAULT_CHARSET);

XtSetArg(al [ac] ,XmNtitleString,xmstr); ac++;

XtSetArg(al [ac] ,XmNminimum,-250); ac++;

XtSetArg(al [ac] ,XmNmaximum,250); ac++;

XtSetArg(al [ac] ,XmNwidth,SCALEBOX_WIDTH); ac++;

XtSetArg(al [ac) ,XmNorientation, XmHORIZONTAL); ac++;

XtSetArg(al [ac] ,XmNvalue,xvalue); ac++;

XtSetArg(al [ac) ,XmNshowValue, TRUE); ac++;

XtSetArg(al [ac),XmNtopAttachment, XmATTACH_FORM); ac++;

XtSetArg(al [ac] ,XmNLleftAttachment ,XmATTACH_FORM); ac++;

XtSetArg(al [ac) ,XmNrightAttachment, XmATTACH_FORM); ac++;

data->startpixelbox.xslider = XmCreateScale(data->startpixelbox.box,"XorSlider", al,ac);

XtAddCal Lback(data->startpixelbox.xslider,XmNvalueChangedCal lback,
ChangeStartPixelHandler,mode);

XtManageChi ld(data->startpixelbox.xslider);

XTStringFree(xmstr);

/

: create a Y-origin scrol lbar with range -250 to 250 [pixels)
/

ac = 0;

xmstr = XmStringCreate(" Y-origin [pixels)® XmSTRING_DEFAULT_CHARSET);

XtSetArg(al [ac] ,XmNtitleString,xmstr); ac++;

XtSetArg(al [ac],XmNminimum,-250); ac++;

XtSetArg(al [ac] ,XmNmaximum,250); ac++;

XtSetArg(al [ac] ,XmNwidth,SCALEBOX_WIDTH); ac++;

XtSetArg(al [ac] ,XmNorientation, XmHORIZONTAL); ac++;

XtSetArg(al [ac],XmNvalue,yvalue); ac++;

XtSetArg(al [ac]l ,XmNshowValue, TRUE); ac++;

XtSetArg(al [ac] ,XmNtopAttachment , XmMATTACH_WIDGET); ac++;

XtSetArg(al [ac] ,XmNtopWidget,data->startpixelbox.xslider); ac++;

XtSetArg(al [ac] ,XmNleftAttachment,XmATTACH_FORM); ac++;

XtSetArg(al [ac] ,XmNrightAttachment ,XmATTACH_FORM); ac++;

data->startpixelbox.yslider = XmCreateScale(data->startpixelbox.box,"YorSlider",al, ac);

XtAddCal lback(data->startpixelbox.yslider, XmNvalueChangedCal Lback,
ChangeStartPixelHandler,mode+2);

XtManageChild(data->startpixelbox.yslider);

XmStringfree(xmstr);

*

* create OK-button
*/
ac = 0;
XtSetArg(al [ac]l ,XmNtopAttachment,XmATTACK_WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget,data->startpixelbox.yslider); ac++;
XtSetArg(al [ac],XmNleftAttachment, XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNrightAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNbottomAttachment,XmATTACH_FORM); ac++;
data->startpixelbox.okbutton = XmCreatePushButtonGadget(data->startpixelbox.box,
"oK*",al,ac);
XtAddCal lback(data->startpixelbox.okbutton, XmNactivateCal Lback,Unmanage,
data->startpixelbox.box);
XtManageChild(data->startpixelbox.okbutton);
/i
* return value of this function

return(data->startpixelbox.box);
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Widget CreatelterationBox(parent,location)
Widget parent;
char location;

int value;

Drawdata *data;

XmString xmstr;

/*

* paremeter initialization

*/

data = GetWindowData(location,’p’);
value = deta->niterations;

if (location == ’L’) xmstr = XmStringCreate("left #iterations" ,XmSTRING_DEFAULT_CHARSET);
if (location == 'r’) xmstr = XmStringCreate("right #iterations" XmSTRING_DEFAULT_CHARSET);
L g

/

* create iterationbox to appear when define #iterations button in

* rendercontrolpul ldownmenu is pressed
*

/

= 0;

XtSetArg(al{ac] ,XmNdialogTitle,xmstr); ac++;
data->iterationbox.box = XmCreateFormDialog(parent,”iterationBox",al,ac);

XmStringFree(xmstr);
/'l

* create an iteration scrollbar with range 1 to 100 [iterations)

*/
= 0-

xmstr = XmStringCreate(" #iterations [-1",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac]) ,XmNtitleString, xmstr); ac++;

XtSetArg(al [ac] ,XmNminimum,1); ac++;
XtSetArg(al [ac], Xnﬂmxiuun 100); ac++;

XtSetArg(al [ac] ,XmNwidth, SCALEBOX HIDTH),
XtSetArg(al [ac], Xnﬂonentatlon , XmHORI2ONTAL); acu-

XtSetArg(al [ac],XmNvalue, value), ac++;

XtSetArg(al [ac], XnNshouValue ,TRUE); ac++;
XtSetArg(al [ac) XnNtopAttachment xmATTACH _FORM); ac++;
XtSetArg(al [acl, )(aneftAttechment XmATTACH_FORM); act+;
XtSetArg(al [ac) XnNnghtAttachment XmATTACH FORH) ac+;
data- >1teratlonbox slider = XmCreateScale(data- >1teratlonbox box,"slider",al,ac);
XtAddCal lback(data->iterationbox.sl ider, XmNvalueChangedCal Lback,
AmountOfl terationsHandler, locatlon).
XtManageChi ld(data->iterationbox.sl ider);

XmStringFree(umstr);
/i
* create OK-button
*/
= 0;

XtSetArg(al {ac] ,XmNtopAttachment XmATTACH WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget,data->iterationbox.slider);
XtSetArg(al [ac], XnﬂleftAttachment XmATTACH_FORM); ac++;
XtSetArg(al [ac] XerrlghtAttachment XmATTACH_FORM); a
XtSetArg(al [acl, erNbottomAttachment XMATTACH _FORM); acH

data->|terat|onbox okbutton = XnﬁreatePushButtonGadget(data->iterationbox.box,

XtAddCal lback(data->iterationbox.okbutton XnNactwateCallback ,Unmanage,

data->iterationbox.box);

XtManageChi ld(data->iterationbox.okbutton);

/i
* return value of this function
*/
return(data->iterationbox.box);

Widget Create2comBox(parent,\ocation)
Widget parent;
char location;

int mode,xvalue,yvalue,zvalue;
Drawdate *data;

XmString xmstr;

/t

* parameter initialization

*/

data = GetWindowData(location,’p’);
xvalue = data->xoffset - data->width/2;

ac++;




170 B. IFS-CODEC source code

yvalue = data->yoffset - data->height/2;
zvalue = 10;
if (location == ’l’)

mode = 0;
xmstr = )'(HStringCreate("left area zooming", XmSTRING_OEFAULT_CHARSET);

)
if (location == ’r’)
<
mode = 1;
xmstr = XmStringCreate("right area zooming",XmSTRING_DEFAULT_CHARSET);
/*)
* create zoombox to appear when define zoom area button in render control
* pul ldown pane is pressed
*/
ac = 0;
XtSetArg(al [ac] ,XmNdialogTitle,xmstr); ac++;
data->zoombox.box = XmCreateFormDialog(parent,“ZoomBox",al,ac);
XmStringFree(xmstr);
/*
* create a X-offset scrollbar with range -250 to 250 [pixels]
*

ac = 0;
xmstr = XmStringCreate(" X-offset [pixels]",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac),XmNtitleString,xmstr); ac++;
XtSetArg(al [ac] ,XmNminimum, ~250); ac++;
XtSetArg(al [ac] ,XmNmaximum,250); ac++;
XtSetArg(al [ac] ,XmNwidth, SCALEBOX_WIDTH); ac++;
XtSetArg(al [ac] ,XmNorientation,XmHORIZONTAL); ac++;
XtSetArg(al [ac) ,XmNvalue,xvalue); ac++;
XtSetArg(al [ac] ,XmNshowValue,TRUE); ac++;
XtSetArg(al[ac] ,XmNtopAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNleftAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNrightAttachment,XmATTACH_FORM); ac++;
data->zoombox.xoffsetslider = XmCreateScale(data->zoombox.box,"XoffsetSlider",al,ac);
XtAddCal Lback(data->zoombox.xoffsetslider,XmNdragCal Lback,ZoomHandler,mode);
XtAddCal Lback(data->zoombox.xoffsetslider,XmNvalueChangedCat | back ,ZoomHandler ,mode);
XtManageChi ld(data->zoombox.xoffsetslider);
XmStringFree(xmstr);
/*

* create a Y-offset scrollbar with range -250 to 250 [pixels]

*

/

ac = 0;
xmstr = XmStringCreate(" Y-offset [pixels)" XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNtitleString,xmstr); ac++;
XtSetArg(al [ac],XmNminimum,-250); ac++;
XtSetArg(al [ac], XmNmaximum,6250); ac++;
XtSetArg(allac]l,XmNwidth,SCALEBOX_WIDTH); ac++;
XtSetArg(al [ac]l,XmNorientation, XmHORIZONTAL); ac++;
XtSetArg(al [ac] ,XmNvalue,yvalue); ac++;
XtSetArg(al [ac]) ,XmNshowValue,TRUE); ac++;
XtSetArg(al [ac] ,XmNtopAttachment,XmATTACH_WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget,data->zoombox.xoffsetslider); ac++;
XtSetArg(al [ac] ,XmNlef tAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNrightAttachment,XmATTACH_FORM); ac++;
data->zoombox.yoffsetslider = XmCreateScale(data->zoombox.box,"YoffsetSlider",al,ac);
XtAddCal Lback (data->zoombox.yof fsetslider,XmNdragCal lback ,ZoomHandler ,mode+2);
XtAddCal lback(data->zoombox.yoffsetslider,XmNvalueChangedCal Lback,ZoomHandler,mode+2);
XtManageChi ld(data->zoombox.yof fsetslider);
XmStringFree(xmstr);
/*

* create a zoomfactor scrollbar with range 1 to 100 [x]

*

/

ac = 0;
xmstr = XmStringCreate(" Zoomfactor [x 100/value]®, XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNtitleString, xmstr); ac++;
XtSetArg(al [ac] ,XmNminimum,1); ac++;
XtSetArg(al [ac] ,XmNmaximum, 100); ac++;
XtSetArg(al [ac] ,XmNwidth,SCALEBOX_WIDTH); ac++;
XtSetArg(al [ac] ,XmNorientation, XmHORIZONTAL); ac++;
XtSetArg(al [ac] ,XmNvalue,zvalue); ac++;
XtSetArg(al [ac] ,XmNshowValue, TRUE); ac++;
XtSetArg(al [ac] ,XmNtopAttachment, XmATTACH_WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget,data->zoombox.yoffsetslider); ac++;
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XtSetArg(al [ac] ,XmNleftAttachment , XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNrightAttachment, XmATTACH_FORM); ac++;
data->zoombox.zoomslider = XmCreateScale(data->zoombox.box,"ZoomS|ider",al ,ac);
XtAddCal lback(data->zoombox .zooms| ider ,XmNdragCal Lback, ZoomH{andl er ,mode+4);
XtAddCal Lback(data->zoombox.zooms | ider, XmNvalueChangedCal lback,ZoomHandl er ,mode+4 ) ;
XtManageChi ld(data->zoombox.zoomslider);
XEStringFree(xmstr);
/

* create OK-button

*/
ac = 0;
XtSetArg(al [acl ,XmNtopAttachment , XmATTACH_WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget,data->zoombox.zoomslider); ac++;
XtSetArg(al [ac) ,XmNleftAttachment, XmMATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNrightAttachment, XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNbottomAttachment, XmMATTACH_FORM); ac++;
data->zoombox.okbutton = XmCreatePushButtonGadget(data->zoombox.box,"0K",al,ac);
XtAddCal lback(data->zoombox .okbutton, XmNactivateCal lback,Unmanage,data->zoombox.box);
XtAddCal Lback(data->zoombox .okbutton, XmNactivateCal lback,ZoomController,location);
X’t.nanagechi {d{data->zoombox.okbutton);
/

: return value of this function

/

return(data->zoombox.box);

Widget CreateScrollBox(parent,location)
Widget parent;
char location;

int mode;

Drawdata *data;
Scrolldata *scroll;
XmString xmstr;

/*

* parameter initialization

*/
data = GetWindowData(location,’p’);
scroll = GetScrollData(location);
if (location == ’|’)

{

mode = 0;
xmstr = XmStringCreate(”left text®,XmSTRING_DEFAULT_CHARSET);

if (location == ’r’)
<
mode = 1;
xmstr = XmStringCreate("right text",XmSTRING_DEFAULT_CHARSET);
)
/i
* create scrollbox to appear when textual view button in viewedit IFS code
* pul ldown pane is pressed
*
/

ac = 0;
XtSetArg(al fac] ,XmNdialogTitle, xmstr); ac++;
data->scrol lbox.box = XmCreateFormDialog(parent,“Scrol lBox",al,ac);
XEStringFree(xmstr),-
/
: create scrollbar widget
/
ac = 0;
XtSetArg(al [ac] ,XmNorientation, XmHORIZONTAL); ac++;
XtSetArg(al [ac] ,XmNworkWindow,GetWindow(location, 'p’));
data->scrol lbox.scrollbar = XmCreateScrollBar(data->scrol lbox.box,"Scrol LBar",al,ac);
XtAddCal Lback(data->scrol lbox.scrol Lbar, XmNvalueChangedCal Lback,
Scrol lBarMovedHandler, location);
XtAddCal Lback(data->scrol lbox.scrol Lbar,XmNdragCal lback,
Scrol LBarMovedHandler, location);
x:nanageChi ld(data->scrol lbox.scrollbar);
/

* create OK-button

*/

ac = 0;

XtSetArg(al [ac] ,XmNtopAttachment , XmATTACH_WIDGET); ac++;
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XtSetArg(al [ac] ,XmNtopWidget,data->scrollbox.scrol lbar); ac++;
XtSetArg(al [ac] ,XmNleftAttachment XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNrightAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNbottomAttachment , XmATTACH_FORM); ac++;
data->scrol lbox.okbutton = XmCreatePushButtonGadget(data->scrol Lbox.box,"0K",al,ac);
XtAddCal lback(data->scrol lbox.okbut ton,XmNactivateCal lback,Unmanage,data->scrol lbox.box);
XtAddCal lback(data->scrol Lbox.okbutton,XmNactivateCal lback,ClearPixelArea, location);
xsnanagechi ld(data->scrol Lbox.okbutton);
/

: return value of this function

/

return(data->scrol lbox.box);
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,**ﬁi******i*t*i**i****t*t******t******ﬁ****t**iii******ﬂt*************i**i****
* Copyright(c) : Eindhoven University of Technology (TUE,NL)

* : Faculty of Electrical Engineering (E)

* : Design Automation Group (ES)

* Mail address : emilevdaviper.es.ele.tue.nl

* Project : Fractal imagecompression with Iterated Function Systems
* Supervisor : Prof. Or. Ing. J.A.G. Jess

* File : collage.c

* Purpose : Cal lback procedure for interactive collage generation
* Part of : IFS-CODEC

* Created on : June 09, 1992

* Created by : Emile van Duren

* Last modified on: December 17, 1992

* Modified by : Emile van Duren

*

Remarks : None
ﬁiﬁii*i**t*i*i.it***it*itiﬁii*itii***iiiiﬁ*ﬁiﬁ*i*iﬁ***it*i*it**i*tiii**it*iti/

#include "all.ht

/t

* forwerd function declarations
*

void FileOperWarning(); /* contained in messages.c *f
void DrawAxes(); /* contained in draw.c */
void SavelmageToFile(); /* contained in filehandler.c */
void SaveTransformationToFile(); /* contained in filehandler.c */
Drawdata *GetWindowData(); /* contained in control.c */
Widget GetWindow(); /* contained in control.c */

void ResetTransformSl iders(location)
char location;
(

Affine *transformation;
Drawdata *data;
*

* initialize data

*/

data = GetWindowData(location,’p’);

transformation = &(data->transformation);
transformation->xscaling = 80;

transformation->yscaling = 80;

transformation->xrotation = 0;
transformation->yrotation = 0;

transformation->xshift = 0;

transformation->yshift = 0;

/*

* set transformsliders back to initial position

*/

ac = 0;

XtSetArg(al [ac],XmNvalue, transformation->xscaling); ac++;
XtSetValues(data->simi litudebox.xscslider,al,ac);

ac = 0;

XtSetArg(al [ac],XmNvalue, transformation->yscaling); ac++;
XtSetValues(data->simi litudebox.yscslider,al,ac);

ec = 0;

XtSetA:'g(al [ac] ,XmNvalue, transformation->xrotation); ac++;
XtSetValues(data->similitudebox.xrtslider,al,ac);

ac = 0;

XtSetA:'g(al [ac] ,XmNvalue, transformation->yrotation); ac++;
XtSetValues(data->similitudebox.yrtslider,al,ac);

ac = 0;

XtSetA}g(al [ac] ,xmNvalue, transformation->xshift); ac++;
XtSetValues(data->simi litudebox.xshslider,al,ac);

ac = 0;

XtSetA;‘g(al [ac] ,XmNvalue, transformation->yshift); ac++;
XtSetvalues(data->similitudebox.yshslider,al, ac);

void DetermineProbabilities(location,ext)
char location,*ext;
{

char *savefile,*filename;
float a,b,c,d,det,e, f, maxdet = 0,p,pi,sum = 0;

| float ab,c,ddete fimndet = 0ppi o=
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int amount = 0,pdum,pmax = 0,tot = 0,zerocount = 0;
FILE *file,*dumyfile;

Drawdata *data;

Widget w;

/*

* initialize data
*/
pi = PI;
W = GetWindow(location, ’p’);
data = GetWindowData(location,’p’);
savefile = calloc(strien(data->filename)+5,sizeof(char));
strcpy(savefile,data->filename);
filename = strcat(savefile, ext);
if ((file = fopen(filename,”r")) == NULL)
{

FileOperWarning(w, location);
)
else
{
/t

* if file could be successfully opened

*/

dumyfile = fopen(“dummy","w");
while (1feof(file))

{

w

* get affine transformation from file
w

fscanf(file,"Xf Xf Xf Xf Xf Xf Xf\n",&a,&b,&c,&d,&e, &f,&p);
fprintf(dummyfile,"X.3f X.3f X.3f X.3f X.3f %.3f %.3f\n",a,b,c,d,e,f, p);
/*
* calculate determinant of transformatiomnmatrix
]
det = a*d - b*c;
/*
: make determinant absolute
/
if (det < 0) det = -det;
/t

* totalize all determinantvalues and get maximum determinantvalue
-

sum += det;
if (det > maxdet) maxdet = det;
)
fclose(file);
fclose(dumyfile);
dumyfile = fopen("dummy”,"r");
while (!feof(dummyfile))
<
fscanf(dumyfile, "Xf Xf Xf Xf Xf %f Xf\n", &a,&b,&c,Ed,&e, &f, &p);
/t

* calculate determinant of transformationmatrix
w

det = a*d - b*c;

/t

* make determinant absolute

w

if (det < 0) det = -det;

/“

* count total amount of transformations in file
*/

amount++;

/*

* count amount of determinants that are smaller than 0.1% of
* maximum determinantvalue

-

if (det <= 0.001*maxdet) zerocount++;

)
file = fopen(filename,"w");
rewind(dumyfile);
while (!feof(dumyfile))
{

¢ ]
* get affine transformation from dummyfile
-



B. IFS-CODEC source code 175

fscanf(dummyfile, "Xf %f %f %f %f %f Xf\n", &a, kv, &c,dd, ke, &f,8p);
*

* calculate determinant of transformation matrix
*/

det = a*d - b*c;

L

* make determinant absolute

*/

if (det < 0) det = -det;

* if determinantvalue is relatively small then set probability to
* minimum, else calculate probability as ratio of determinantvalue

* and total of sum of determinants and amount of minimum probability
* values
-
f

((det <= 0.001*maxdet) && (amount != zerocount))

p = 0.001;
)
else
{
p = det/(sum + 0.001*zerocount);
/*)
* determine the maximum p-value and the sum of all p-values
*/

if (pmax < 1000*p) pmax = 1000*p;
tot += (int) (1000*p + 0.5);
/i

* put affine transformation together with probability in file
*/
fprintf(file,"X.3f X.3f X.3f X.3f %.3fF %.3f %£.3f\n",a,b,c,d,e,f,p);

~

EE R E R

if the sum of the probabilities is not equal to 1.000, adjust the
maximum probability, so the relative effect is minimal: thus add or
subtract 0.001, since this is the greatest possible round off error
that can occur
/
if (tot i= 1000)

<

fclose(file);
fclose(dummyfile);

file = fopen(filename,"r»);
dumyfile = fopen("dummy", "w");

while (!feof(file))

C

fscanf(file, "4f Xf Xf X%f Xf %f Xf\n", &a,&b,&c,&d,&e, &f,&p);
pdum = (int) (1000%p + 0.5);

if ((pdum >= pmax) && (tot < 1000))

{

p += 0.001;
tot++;

)
if ((pdum >= pmax) && (tot > 1000))
L4

p -= 0.001;
tot--;

)
fprintf(dumyfile, "X.3f %.3f X.3f %.3f X.3f %.3f ¥.3f\n",a,b,c,d,e,f,p);

/ﬂ
* copy dumyfile to file
*/
fclose(file);
fclose(dummyfile);
file = fopen(filename,"w");
dumyfile = fopen(“dummy", ver).
while (!feof(dumyfile))
L8
fscanf(dummyfile, “if %f %f Xf Xf %f Xf\n", &a,Rb,&c,id, &e,&f,8p);
fprintf(file,"X.3f X.3f X.3f X.3f X.3f X.3f X.3f\n",a,b,c,d,e,f,p);
)

)
fclose(dummyfile);
_ felosetdwmyfitey;
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)
fclose(file);
free(savefile);
savefile = NULL;

)

void TransformSimi litude(location)
char location;

(

char *savefile;

int x,y,xt,yt,h,k;

double theta,psi;

float r,s,pi;

Affine *transformation;

Drawdata *data;

FILE *file;

Widget w;

/i

* initialize parameters and try to open file

*

/

w = GetWindow(location,’p’);
data = GetWindowData(location, 'p’);
transformation = &(data->transformation);
pi = PI;
= (transformation->xscaling)/100.0;
= (transformation->yscaling)/100.0;
eta = (data->transformation.xrotation)*2*pi/360;
i = (data->transformation.yrotation)*2*pi/360;
= data->transformation.xshift;
= data->transformation.yshift;
savefile = calloc(strlen(data->filename)+5,sizeof(char));
strcpy(savefile,data->filename);
if ((file = fopen(strcat(savefile,”.img"),"r")) == NULL)

(

r
s
th
ps
h
k

FileOperWarning(w, location);

else
<

/i
* set foreground to black
*/
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
while (!feof(file))
<

*

* if file could be sucessfully opened
*
/
fscanf(file,"%d X%d ", &xt,&yt);
n

* transform coordinate to virtual origin

*/

xt = xt - data->xorigin;

yt = yt - data->yorigin;

/i

* convert y from screen coordinates to Carthesian coordinates
*/

yt = - yt;

/i

*

apply affine transformation
*

X = xt*r*cos(theta)-yt*s*sin(psi)+h;
y = xt*r*sin(theta)+yt*s*cos(psi)+k;
/i
* convert y from Carthesian coordinates to screen coordinates
*/
y=-y;

* transform coordinate to its original position

X += data->xorigin;
y += data->yorigin;
/

* set foreground to black and plot point in screen space
n*
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XDrawPoint(XtDisplay(w),data->pix,data->gc,x,y);
)

>
fclose(file);
free(savefile);
savefile = NULL;
>

void ManageSimil itude(w,code,call_data)
Widget w;
int code;
XmScaleCal LbackStruct *call_data;

char location;
int x,y;
Affine transformation;
Drawdata *data;
if (code X 2 == 0)
<

location = ’17;
)
else

location = 'r/;
code--;

>
W = GetWindow(location,’p’);

data = GetWindowbata(location,’p’);
/*

* determine which slider was moved
*

switch(code)

{

case 0:
data->transformation.xscaling = call_data->value;
break;
case 2:
data->transformation.yscaling = call_data->value;
break;
case 4:
data->transformation.xrotation = call_data->value;
break;
case 6:
data->transformation.yrotation = call_data->value;
break;
case 8:
data->transformation.xshift = call_data->value;
break;
case 10:
data->transformation.yshift = call_data->value;
break;
b
/'h
* clear out data->pix
*

XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w)));
XFillRectangle(XtDisplay(w),data->pix,data->gc,0,0,
data->width, data->height);
/'h
* copy data->col to data->pix
*
/

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));

XCopyArea(XtDisplay(w), data->col ,data->pix,aata->gc,0,0,
data->width,data->height,0,0);

*

* Transform similitude and add it to data->pix
*/

Transformsimilitude(location);
*

* copy data->pix to screen
*/

XCopyArea(XtDisplay(w), data->pix,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);
,'h
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* determine if axes have to be drawn

*/

if (data->axes) DrawAxes(w,location);
)

void AddSimilitude(w, location)
Widget w;
char location;

int x,y;
unsigned long pixel;
Affine *transformation;
Drawdata *data;
XImage *image;
/t

* initialize data

*/
w = GetWindow(location,’p’);
data = GetWindowData(location,’p’);
transformation = &(data->transformation);
transformation->xscaling = 80;
transformation->yscaling = 80;
transformation->xrotation ;
transformation->yrotation
transformation->xshift
transformation->yshift
/*

* set sliders back to initial position
*/
ResetTransformSliders(location);
/*

* pixmaps should only be created once
*/
if (data->firsttime)

{

data->firsttime = FALSE;
/I‘

un
[=X=]

wewe N U
-

* similitude must be made equal to initial image that is in data->pix
*/

XCopyArea(XtDisplay(w),data->pix,data->sim,data->gc,0,0,
data->width,data->height,0,0);

/*

* put current contains of data->pix into data->col

-

XCopyArea(XtDisplay(w),data->pix,data->col ,data->gc,0,0,
data->width,data->height,0,0);

/*

* create image from original drawing located in data->pix

L ]

SavelmageToFile(location,".img");
/"’)
* set foreground to black, transform similitude and draw axes
*/
TransformSimi litude(location);
DrawAxes(w, location);

)

void FixSimilitude(w,location)
Widget w;
char location;

Affine *transformation;

Drawdata *data;

/*

* initialize data

*/

w = GetWindow(location, 'p’);

data = GetWindowData(location,’p’);

transformation = &(data->transformation);

/*

* write transformation to file data->filename.man
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SaveTransformationToFile(location,".man");

L ]

* copy data->pix to data->col in order to save the collage
*/

XCopyArea(XtDisplay(w),data->pix,data->col,data->gc,0,0,
data->width,data->height,0,0);

void SaveCol lage(w, location)
Widget w;
char location;

Drawdate *data;
4

* initialize data

*/

w = GetWindow(location,’p’);

data = GetWindowData(location,’p’);
if (idata->firsttime)

{
/*
* set data->firsttime to TRUE
*
data->firsttime = TRUE;
/*)

* determine probabilities of transformations
*/

DetermineProbabilities(location,".man");

]

* clear out pixmap

*/

XSetForeground(XtDisplay(w),data->gc, WhitePixelOfScreen(XtScreen(w))):

XFillRectangle(XtDisplay(w),data->pix,data->gc,0,0,
data->width,data->height);

/*

* copy dsta->col to data-»pix in order to be able to do the next step

*/

XCopyArea(XtDisplay(w),data->col,data->pix,data->gc,0,0,
data->width,data->height,0,0);
/i

* save data->col to data->filename.col

*/

SavelmageToFile(location,".col™);

/i

* clear data->pix, data->col, data->sim and screen
*

XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w)));
XFillRectangle(XtDisplay(w), data->pix,data->gc,0,0,
data->width,data->height);
XFillRectangle(XtDisplay(w),data->col,data->gc,0,0,
data->width,data->height);
XFillRectangle(XtDisplay(w),data->sim,data->gc,0,0,
data->width,data->height);
XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);
/i
* determine if axes have to be drawn
*
/
if (data->axes) DrawAxes(w, location);
L ]
* finally reset transformsliders
*/
ResetTransformSliders(location);
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/*******************************************t*************t***********t********

*

LR B BN K Bk BE B Bk Bk SE B BN

Copyright(c) Eindhoven University of Technology (TUE,NL)
Faculty of Electrical Engineering (E)
Design Automation Group (ES)

Mail address emi levdaviper.es.ele. tue.nl

Project : Fractal imagecompression with Iterated Function Systems
Supervisor : Prof. Dr. Ing. J.A.G. Jess

File : control.c

Purpose : Controls the operating environment

Part of : IFS-CODEC

Created on : June 18, 1992

Created by : Emile van Duren

Last modified on: November 20, 1992

Modified by : Emile van Duren

Remarks : Zoomcontroller and Unzoomcontrol ler have to be completed

*******************************************i************************t**i*****/

#include "all.h"

*
*

forward function declarations

void DrawMandelbrotSet(); /* contained in specials.c */
void DrawText(); /* contained in writer.c */

void Manage(w,client_data,call_data)

{

Widget w;
XtPointer client_data;
XtPointer call_data;

XtManageChi ld(client_data);

void Unmanage(w,client_data,call_data)

Widget w;
XtPointer client_data;
XtPointer call_data;

XtUnmanageChild(cl ient_data);

Textdata *GetTextData(location)

<

char location;

Textdata *text;
if (location == 71’) text = &LText;
if (location == ’r’) text = &RText;

return(text);

Drawdats *GetWindowData(location,which)

<

char location,which;

char buffer[10];
Drawdata *data;

/*
*

if which == ’t’ then selected drawable is textarea
* if which == 'p’ then selected drawable is pixelarea
* if location == 'L’ then leftarea
* if location == ’r’ then rightarea

*

/

if ((location == ’|’) && (which == /p’)) data = &leftpixeldata;
if ((location == ’r’) & (which == ’p’)) data = &rightpixeldata;
if ((location == ’Ll’) & (which == ’t’)) data = &lefttextdata;
if ((location == 7r’) &8 (which == ‘t’)) data = &righttextdata;

return(data);
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Scrol ldata *GetScrollData(location)
char location;

Scrol ldata *scroll;

if (location == ’1’) scroll = &LScroll;
if (location == 'r’) gscroll = &RScrolt;
return(scroll);

Widget GetWindow(location,which)
char location,which;
<
Widget w;
char buffer[10];
/*
* if which == 'p’ then selected drawable is pixelarea
* if which == ’t’ then selected drawable is textarea
* if location == ’|f then leftarea
* if location == ‘r’ then rightarea
*/

if ((location == ¢1’) L& (Which == /p’)) w = leftpixelarea;
if ((location == ’r’) && (which == ’p’)) w = rightpixelarea;
if ((location == ’1') & (which == t’)) w = lefttextarea;

if ((location == ’r’) && (which == ’t’)) w = righttextarea;

return(w);

void ModeController(w, code)
Widget w;
int code;

{
Drawdata *data;
/*
* if code is even then left, if code is odd then right
*/

if (code % 2 == 0)
{
data = &leftpixeldata;

)
else

<

data = &rightpixeldata;

)
if (code == 0 i code == 1) data->mode = 'v’;
if (code == 2 || code == 3) data->mode = 'u';
if (code == 4 i code == 5) data->mode = ’i’;
if (code == 6 || code == 7) data->mode = ‘a’;
if (code == 8 |! code == 9) data->mode = 'd’;
if (code == 10 ! code == 11) data->mode = ’n’;
if (code == 12 i code == 13) data->mode = ’p’;
if (code == 14 || code == 15) data->mode = ’b’;
if (code == 16 || code == 17) data->mode = ‘m’;

void ClearTextController(w, location)
Widget w;
char location;

Drawdata *data;

data = GetWindowData(location, 'p’);

if (data->mode == ‘w') ClearTextHandler(w, location,14);
if (data->mode == ’i’) ClearTextHandler(w,location,990);
if (data->mode == ‘a’) ClearTextHandler(w, location,990);

void AxesController(w, location)
Widget w;
char location;
{
Drawdata *data;
{ ]
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* toggle axes button is activated, so invert axes operation mode
* (i.e. if axes are currently displayed then erase them and if

* axes are currently not displayed then draw them)

*/
data = GetWindowbata(location,’p’);
data->axes = tdata->axes;

void Passage(w,code)
int code;
{
char lLocation;
Drawdata *data;
if (code X 2 == 0)
{
location = 7L’;

else
{
location = ’'r’;
code--;
)
data = GetWindowData(location,’p’);
switch(code)
{
case 0:
firsthelp = TRUE;
break;
case 2:
data->first.filehelp = TRUE;
break;
case 4:
data->first.fileopenwarning = TRUE;
break;
case 6:
data->first.originwarning = TRUE;
break;
case 8:
data->first.tablemessage = TRUE;
break;
case 10:
printmessage = TRUE;
break;
case 12:
copyrightmessage = TRUE;
break;
)

void ZoomControl ler(w, location)
Widget w;
char location;
{
Drawdata *data;
data = GetWindowData(location,’p’);
/i
* set data->unzoom to FALSE and redraw appropriate picture
*/
data->unzoom = FALSE;
switch(data->mode)
{
case 'd’:
break;
case 'n’:
break;
case 'm’':
DrawMandelbrotSet(w, location);
break;
2
b
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void UnzoomControl ler(w, location)
Widget w;
char location;

Drawdata *data;
w = GetWindow(location,’p’);
data = GetWindowData(location,’p’);
data->unzoom = TRUE;
data->xoffset = Q;
data->yoffset = 0;
data->zoomfactor = 1;
/*
* clear screen and copy data->pix to screen in order to remove zoombox
*/
XSetForeground(XtD isplay(w),data->gc,WhitePixelOfScreen(XtScreen(w)));
XFillRectangle(XtDisplay(w),XtWindow(w),data->gc,0,0,
data->width,data->height);
XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);

/'l

* reset zoomboxsl|iders
*/

ac = 0;

XtSetArg(al (ac) ,XmNvalue,data->xoffset); ac++;
XtSetValues(data->zoombox.xof fsetslider,al ,ac);
ac = 0;

XtSetArg(al fac] ,XmNvalue,data->yoffset); ac++;
XtSetValues(data->zoombox.yoffsetslider,al ,ac);
ac = 0;

XtSetArg(al [ac] ,XmNvalue,data->zoomfactor); ac++;
XtSetValues(data->zoombox.zoomsl ider,al ,ac);

t

* determine operation mode and redraw appropriate picture
*/
switch(data->mode)

{

case 'd’:
break;

case 'n’:
break;

case 'm’':
DrawMandelbrotSet(w, Location);
break;

>

)

void CondensationController(w, location)
Widget w;
char location;

Drawdata *data;
data = GetWindowData(location,’p’);
data->condensation = !(data->condensation);
if (data->condensation)

{

printf(“condensation = TRUE\n",NULL);

else
L4
printf("condensation = FALSE\n" ,NULL);

void DrawControl ler(w, location)
Widget w;
char location;

Textdata *text;

Drawdata *data;

w = GetWindow(location,’t’);

data = GetWindowData(location,’p’);
text = GetTextData(location);

/i
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* set erasegrab to false, toggle drawgrab and mode
*/

data->erasegrab = FALSE;

data->drawgrab = !data->drawgrab;

if (data->drawgrab)

(
text->mode = “mode : Viewedit source file (draw)¥;
printf("drawmode = TRUE\n",NULL);
if (ldata->drawgrab)
{
text->mode = “mode : Viewedit source file";
printf("drawmode = FALSE\n",NULL);
DrawText(location);

void EraseController(w,location)
Widget w;
char location;

Textdata *text;

Drawdata *data;

w = GetWindow(location,’t’);

data = GetWindowbData(location, ’p’);
text = GetTextbata(location);

Ii

* set drawgrab to false, toggle erasegrab and mode
t 4
data->drawgrab = FALSE;
data->erasegrab = !data->erasegrab;
if (data->erasegrab)

{

text->mode = “mode : Viewedit source file (erase)";
printf(“erasemode = TRUE\n", NULL);

)
if (!data->erasegrab)

{
text->mode = "“mode : Viewedit source file";
printf(“erasemode = FALSE\n",NULL);
>
DrawText(location);
}

void ScrollControl ler(w,code)
Widget w;
int code;

char location;
Scrolldata *scroll;
if (code %2 == 0)
{
location = ’L’;
)
else
{
location = ’'r/;
code--;
)
scroll = GetScrol lData(location);
if (code == 0) scroll->ext = " jfs¥;
if (code == 2) scroll-»ext = " man";
if (code == &) scroll->ext = ¥, aut";

void ldentityController(w, location)
Widget w;
char location;

Drawdata *data;
data = GetWindowData(location,’p’);
data->identity = !data->identity;
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if (data->identity)
C

printf("identity = TRUE\n",NULL);
)

else

<
printf("identity = FALSE\n",NULL);
)

void Quit(w,client_data,call_data)
Widget w;
XtPointer client_data;
XtPointer call_data;

{
XtCloseDisplay(XtDisplay(w));
exit(0);

)
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/iiiﬁtiii*tiiitiiﬁtiii*tiiit*iﬁtiii*tiiiiiiitiii.ii*iiiiiiiiittiiit*iiiiiiiiﬁii

* Copyright(c) Eindhoven University of Technology (TUE,NL)
Faculty of Electrical Engineering (E)
Design Automation Group (ES)

Mail address emi levdaviper.es.ele.tue.nl

Project : Fractal imagecompression with Iterated Function Systems
Supervisor : Prof. Dr. Ing. J.A.G. Jess

File : draw.c

Purpose : Program to draw in pixelareas

Part of : IFS-CODEC

Created on : June 11, 1992

Created by : Emile van Duren

Last modified on: November 20, 1992
Modified by : Emile van Duren

Remarks : None
iittiiﬁiiﬁitiiiitiiiii-itiiiitiitiiﬁttiiiiiiiiiiiitiiii*ﬁi*iiiitiiiitiiiiiiﬁi/

LR B 2 20 2N B 2N BN 2N 2% BN BN J

#include “all.h®

/*

* forward function declarations

L

void ClearTextHandler(); /* contained in handle.c */
void DrawText(); /* contained in writer.c */
Drawdata *GetWindowData(); /* contained in control.c */
Widget GetWindow(); /* contained in control.c */

void DrawAxes(w, location)
Widget w;
char location;

Drawdata *data;
data = GetWindowData(location, 'p’);
w = GetWindow(location,’p’);
/i
* whipe out screen and restore pixmap to screen
*

XSetForeground(XtDisplay(w) ,data->gc,WhitePixelOfScreen(XtScreen{w)));
XFillRectangle(XtDisplay(w),XtWindow(w),data->gc,0,0,
data->width,data->height);
XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);
DrawText(location);
/t
* only draw axes if data->axes is TRUE and also we are not dealing with
* either a bifurcation diagram or a mandelbrot set
*/
if (data->axes && !(data->mode == ’'b’ |} data->mode == 'm’))
( o
* set foreground to black
*/

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
*

* draw X-axis

*

XDrawLine(XtDisplay(w), XtWindow(w),data->gc,0,data->yorigin,
data->width,data->yorigin);
XDrawString(XtDisplay(w), XtWindow(w),data->gc, 10,
data->yorigin+15,"X-axis",6);
/*
* draw Y-axis
*/
XDrawl ine(XtDisplay(w),6 XtWindow(w),data->gc,data->xorigin,0,
data->xorigin,data->height);
XDrawString(XtDisplay(w),XtWindow(w),data->gc,data->xorigin+10,15,
"y-axis",6);
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void ClearPixelArea(w,location)
Widget w;
char location;

Drawdata *data;
*

* initialize data and window

*/
data = GetWindowData(location,’p’);
w = GetWindow(location, ’p’);

/*

* clear pixelarea and its pixmap, but also the temporary pixmaps that
* contain the similitudes and collages (data->sim and data->col will
* be automatically cleared if AddSimilitude is invoked)
*/
if (XtlsRealized(w))
{
data->firsttime = TRUE;
data->unzoom = TRUE;
XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w)));
XFillRectangle(XtDisplay(w),data->pix,data->gc,0,0,
data->width,data->height);
XFillRectangle(XtDisplay(w),XtWindow(w),data->gc,0,0,
data->width,data->height);
)
/*
* draw axes if necessary
*/
if (data->axes) OrawAxes(w,location);

void ClearAll(w,location)
Widget w;
char location;

Drawdata *data;

/*

* initielize data and window

*/
data = GetWindowData(location,’p’);

W = GetWindow(location,’p’);

/i'

* clear the pixel area and reset data->npixels
*/

ClearPixelArea(w, location);
data->npixels = 0;
/*

* clear text in textarea (except origin, startpixel, #iterations and
* 20omfactor) and draw axes if necessary

*/

ClearTextHandler(w, location,287);

DrawText(location);

if (data->axes) DrawAxes(w,location);

void DrawRectangle(w, Location,mode)
Widget w;
char location,mode;

int left,upper,width, height;
Drawdata *data;

/*

* initialize data and window
*

data = GetWindowData(location,'p’);
w = GetWindow(location,’p’);
/*
* set Left upper coordinates and dimensions of rectangle
*/
width = 2*(data->width)/5;
height = 2*(data->height)/5;
left = data->xorigin - width/2;
upper = data->yorigin - height/2;
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/*
* set foreground to black, draw rectangle in data-»>pix and on screen
*

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
if (mode == 'd’)
{
/*
* mode is "dashed" so draw & dashed rectangle
*/

XSetlLineAttributes(XtDisplay(w),data->gc,1,LineOnOffDash,CapNotLast,JoinMiter);
XDrawRectangle(XtDisplay(w),data->pix,data->gc, left,upper,width, height);
XDrawRectangle(XtDisplay(w),XtWindow(w),data->gc, left,upper,width,height);
XSetlLineAttributes(XtDisplay(w),data->gc,1,LineSolid,CapNotLast,JoinMiter);

else
{
XDrawRectangle(XtDisplay(w),data->pix,data->gc, left,upper,width, height);
XDrawRectangle(XtDisplay(w),XtWindow(w),data->gc, left,upper,width height);

DrawText(location);
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/iiiiit’iiiﬁiiiiiiiiiiii*iitiiiiﬁiiiiﬁiiﬁiii*iﬁiiiiit*itiiii*iiiiﬁi*iiiiit*iiii

#

* Copyright(c)

Mail address
Project
Supervisor

File

Purpose

Part of

Created on
Created by

Last modified on
Modified by
Remarks :

LR R 2% BN 2N BN BE BE 2 BN 3N 2

: Eindhoven University of Technology (TUE,NL)

Faculty of Electrical Engineering (E)
Design Automation Group (ES)

emi levdaviper.es.ele. tue.nl

Fractal imagecompression with Iterated Function Systems
Prof. Dr. Ing. J.A.G. Jess
exposures.c

Contains function Redisplay
1FS-CODEC

June 10, 1992

Emile van Duren

October 05, 1992

Emile van Duren

None

.
iitiiti't"*iiit'it*ti"i*t‘ﬁt.*tiQi*ﬁi****iit*”ﬁiiQ*’*ﬁi"i"Q"’*"Q”’i’ﬁ/

include “all.h%

void Redisplay(w,data,call_data)

<

Widget w;
Drawdata *data;

XmDrawingAreaCal lbackStruct *call_data;

/

L]

XExposeEvent *event = (XExposeEvent *) call_data->event;
*

extract the exposed area from the event and copy from the saved pixmap

* to the drawingarea

*/

XCopyArea(XtDisplay(w),data->pix, XtWindow(u),data->gc, event->x,event->y,
event->width,event->height,event->x,event->y);
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/******ﬁ*t*********i************ﬁ*****ﬁ******************#*********************

* Copyright(c) : Eindhoven University of Technology (TUE,NL)
: Faculty of Electrical Engineering (E)
Design Automation Group (ES)

Mail address emi levddviper.es.ele.tue.nl

Project : Fractal imagecompression with l1terated Function Systems
Supervisor : Prof. Dr. Ing. J.A.G. Jess

File : filehandler.c

Purpose : Contains fileselection, filesave and fileloadprocedures
Part of : IFS-CODEC

Created on : June 18, 1992

Created by : Emile van Duren

Last modified on: December 17, 1992
Modified by : Emile van Duren

Remarks : None
t******tttt**********itti*******t*************tt*********ttf*ttt*******t*i***,

L2 B 2% 2 BN BF BN N 2N N B N

#include "all.h"

*
* forward function declarations

*/

char *GetStringFromXmString(); /* contained in strings.c */
void DrawAxes(); /* contained in draw.c */
void FileOperWarning(); /* contained in messages.c */
void SavelmageVoFile(); /* contained in filehandler.c */
Drawdata *GetWindowbata(); /* contained in control.c */
Widget GetWindow(); /* contained in control.c */

void SelectFile(w,location,call_data)
Widget w;
char location;
XmSelectionBoxCal lbackStruct *call_data;
{
Drawdata *data;
XmString xmstr;
*

* get selected file, convert it from XmString to characterstring
* and put it into global variable "leftfile” or "rightfile"

*/

xmstr = call_data->value;

data = GetWindowData(location,’p’);

data->filename = GetStringFromXmString(xmstr);

void SavelmageToFile(location,ext)
char location,*ext;

(

char *savefile;

int x,y;

unsigned long pixel;

Drawdata *data;

FILE *file;

Widget w;

XImage *image;

*

* initialize data
*/
W = GetWindow(location,’'p’);
data = GetWindowData(location,’p’);
/*
* save image to data->filename,ext
*/
if (data->filename == NULL)
{

FileOpenWarning(w, location);
)
else
{
/*
* create image from current drawing located in data->pix
*/



B. IFS-CODEC source code

191

image = XGetlmage(XtDisplay(w),data->pix,0,0,data->width,data->height,

1,XYPixmap);
/'ﬁ
* determine filename.ext to save image
*/

savefile = calloc(strlen(data->filename)+5,sizeof(char));
strcpy(savefile,data->filename);
if ((file = fopen(strcat(savefile,ext),"w")) == NULL)
<
FileOpenWarning(w, location);
data->firsttime = TRUE;
b
else
{
/ﬁ
* for all pixels in image
*/
for (y = 0; y < data->height; y++)
{

for (x = 0; x < data->width; x++)
<

/*

* get pixel and put its coordinates in file if pixel is black

*/
pixel = XGetPixel(image,x,y);
if (pixel == 0) fprintf(file,"%d %d ", x,y);
>
b

>

fclose(file);

free(savefile);

savefile = NULL;

XDestroylmage( image);

image = NULL;

void SaveFile(w,location)
Widget w;
char location;

>

SavelmageToFile(location,". img®);

void LoadlmageFromFile(location,ext)
char location,*ext;

<

char *savefile;

int

X,Yi

unsigned long pixel;
Drawdata *data;

FILE *file;

Widget w;

XImage *image;

/‘

* initialize data

*/
W=

GetWindow( location,'p’);

data = GetWindowData(location,'p’);

/

data->npixels = 0;
*

* save image to data->filename.img
*

if (data->filename == NULL)
{

FileOperWarning(w, location);

else

<

/*
* determine filename.ext to load image from
*

savefile = calloc(strlen(data->filename)+5,sizeof(char));
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strcpy(savefile,data->filename);
if ((file = fopen(strcat(savefile,ext),"r")) == NULL)
L4

FileOpenWarning(w, location);

else

<
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
while (!feof(file))

14
fscanf(file,"Xd %d ", &x, 8y);
(data->npixels)++;
XDrawPoint(XtDisplay(w),data->pix,data->gc,x,y);
/')
* copy contents of pixmap to window
w
/

XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);
/i
* determine if axes have to be drawn
w
/
if (data->axes) DrawAxes(w, location);
)
fclose(file);
free(savefile);
savefile = NULL;
)

void LoadFile(w, location)
Widget w;
char location;

LoadlmagefFromfile(location,”.img");
b

void SaveTransformationTofile(location,ext)
char location,*ext;
(
char *savefile;
double psi,theta;
float a,b,c,d,e,f,p,pi;
static Boolean firsttime = TRUE;
Affine *transformation;
Drawdata *data;
FILE *file;
Widget w;
w

* initialize data

*/

pi = PI;

w = GetWindow(location,’p’);

data = GetWindowData(location, 'p’);
transformation = &(data->transformation);
w

* if no filename is specified then invoke file open warning
w

if (data->filename == NULL)
(
FileOperMWarning(w, location);

else

¢

/i
* save transformation to data->filename.ext
*/
savefile = calloc(strien(data->filename)+5,sizeof(char));
strcpy(savefile,data->filename);
if ((file = fopen(strcat(savefile, ext),"a")) == NULL)
{

FileOpenWarning(w, location);
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3

else

/t

* rewind file if this is the first transformation

* (we want to avoid appending transformations to an

* existing file) -~-=---- this doesn’t work, why not?
*/

if (firsttime)
<
rewind(file);
firsttime = FALSE;
)
/i
* transform angles from degrees to radians
*/

theta = (transformation->xrotation)*2*pi/360;
psi = (transformation->yrotation)*2*pi/360;
/i

* sppend transformation to savefile

*

((transformation->xscaling)/100.0)*cos(theta);
((transformation->yscaling)/100.0)*sin(-psi);
((transformation->xscaling)/100.0)*sin(theta);
((transformation->yscaling)/100.0)*cos(psi);
(transformation->xshift)/1.0;
(transformation->yshift)/1.0;

p = (transformation->probability)/100.0;
fprintf(file,"X.3f v,a);

fprintf(file,"X.3f ,b);

fprintf(file,"X.3f v c);

fprintf(file,"X.3f v d);

fprintf(file, "X.3f v e);

fprintf(file, "X.3f v f);
fprintf(file,"X.3f\n",p);

wnwnnnma~

B N-NLN-

)

fclose(file):
free(savefile);
savefile = NULL;
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/ifit**ﬁ****t*ti***'*i********ttti***i***ii*i***t.*t***i******t***it*****i*****

*

LR B I 2 2R IR 2R B B IR 2N I J

Copyright(c)

Mail address

p

Supervisor

F
P
[

Created on
Created by

L
M
R

roject

ile
urpose
art of

ast modified on
odified by
emarks :

Eindhoven University of Technology (TUE,NL)
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#include "all.h"

*

* forward function declarations
*

int SelectGeneticOperator(); /* contained
void FileOperWarning(); /* contained
void IterationHandler(); /* contained
void MacroCrossOver(); /* contained
void MicroCrossOver(); /* contained
void MixedCrossOver(); /* contained
void Mutate(); /* contained
void Jump(); /* contained
void Rotate(); /* contained

void SaveFileHandler(); /* contained
void Scale();

void Translate();
Drawdata *GetWindowData(); /* contained
Widget GetWindow();

/* contained
/* contained

/* contained

float PixsetDistance(w,mode)

Widget w;
int mode;

int col,rom;
float AnotB,BnotA,pixsetdistance;
long int intersection=0,A=0,B=0;
unsigned long pixelA,pixelB;

Drawdata *data;
XImage *imageA,*imageB;

/

*
*

* % % %

*

*
*

initialization:

mode 1: A in leftdata-»>pix,
mode 2: A in leftdata->pix,
mode 3: A in leftdata->pix,
mode 4: A in rightdata->pix, B
mode 5: A in rightdata->pix, B

/

switch(mode)

{

case 1:

w = GetWindow(’Ll’,’p’);
data = GetWindowData(’l’,’p’);

imageA = XGetlmage(XtDisplay(w),data->pix,0,0,data->width,

data->height, 1,XYPixmap);

w = GetWindow(’r’,'p’);
data = GetWindowbata(’r’,’p’);

imageB = XGetImage(XtDisplay(w), data->pix,0,0,data->width,

break;
case 2:
W = GetWindow(

data->height,1,XYPixmap);

v,y

data = GetWindowData(’l’,’p’);

imageA = XGetImage(XtDisplay(w), data->pix,0,0,data->width,

data->height, 1,XYPixmap);

in
in
in
in
in
in
in
in
in
in
in
in
in
in

operators.c
messages.c
handle.c
operators.c
operators.c
operators.c
operators.c
operators.c
operators.c
handle.c
operators.c
operators.c
control.c
control.c

in rightdata->pix
in leftdata->sim
in leftdata->col
in rightdata->sim
in rightdata->col
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imageB = XGetlmage{XtDisplay(w),data->sim,0,0,data->width,
data->height,1,XYPixmap);
break;
case 3:
W = GetWindow('l’,/p’);
data = GetWindowData(’l’,’p’);
imageA = XGetImage(XtDisplay(w),data->pix,0,0,data->width,
data->height,1,XYPixmap);
imageB = XGetImage(XtDisplay(w),data->col,0,0,data->width,
data->height,1,XYPixmap);
break;
case 4:
W = GetWindow(‘r’,’'p’);
data = GetWindowData(’'r‘!,’p’);
imageA = XGetimage(XtDisplay(w),data->pix,0,0,data->width,
data->height,1,XYPixmap);
imageB = XGetImage(XtDisplay(w),data->sim,0,0,data->width,
data->height,1,XYPixmap);
break;
case 5:
W = GetWindow('r’,’p’);
data = GetWindowbata(’'r’,’p’);
imageA = XGetImage(XtDisplay(w),data->pix,0,0,data->width,
data->height,1,XYPixmap);
imageB = XGetImage(XtDisplay(w),data->col,0,0,data->width,
data->height,1,XYPixmap);
break;
b
/*
* for all pixels in image A and image B count #pixels in A, B and Aand8
*
/

for (col = 0; col < data->width; col++)

{
for (row = 0; row < data->height; row++)
< p
* get pixel and if pixel is black
*/
pixelA = XGetPixel(imageA,col,row);
pixelB = XGetPixel(imageB,col,romw);
if (pixelA == 0)
<
A+e;
)
if (pixelB == Q)
<
B++;
p
if (pixelA == 0 && pixelB == 0)
{
intersection++;
b
)
)
/*
* destroy the images
*/

XDestroylmage( imageA);
XDestroyimage( imageB);
imageA = NULL;
imageB = NULL;
*
* calculate pixsetdistance as max(|A\B)/|A}, |B\A!/!B))
*/
if (A==01]!8==0)
{

if (A==0 8% B == 0)

pixsetdistance = -1;
else
<

pixsetdistance = 1;
)

)
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else

/t
* watch overflow !
*

AnotB = (float) (A-intersection)/A;
BnotA = (float) (B-intersection)/B;
if ((int) 1000000*Anot8 < (int) 1000000*BnotA)
¢
pixsetdistance = BnotA;
)
else

L8
pixsetdistance = AnotB;

>
}

/'.

* return value of this function
*/

return(pixsetdistance);

float ChromosomeToTransformation(gene)

int gene;
(
float parameter;
/i
* convert chromosome values to IFS code; if gene >= 128 then the according
* 1FS code parameter is negative
*/
if (gene >= 128) gene = 128 - gene;
parameter = (float) gene/127;
/i
* return value of this function
*/
return(parameter);
)

int TransformationToChromosome(parameter)
float parameter;
({
int gene = 0;
/'.
* convert transformation values to chromosome values as element of (1..255),
* j.e. if parameter <= 0 then the MSB of the chromosome will be set
*/
if ((int) 1000000*parameter <= 0)
{
parameter = -parameter;
gene = 128;
)
gene += (int) (127*parameter + 0.5);
/'h
* return value of this function
*/
return(gene);

void TransformAndEvaluateldentity(location,code,xleft, xright,yupper,ylower, imageA,display)
char location;
int xleft,xright,yupper,ylower;
Boolean display;
Chromosome *code;
X1mage *imageA;

float a,b,c,d,e,f, xt,yt, AnotB,BnotA,pixsetdistance;
int col,i,k,row,x,y;

long int intersection=0,A=0,B=0;

unsigned long pixelA,pixelB;

Drawdata *data;

Widget w;

XImage *imageB;
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/'.

* initialization

*/

w = GetWindow(location,’p’);

data = GetWindowData(location,'p’);
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
/'.

* convert chromosome values to IFS codes

w
ChromosomeToT ransformation(code->a);
ChromosomeToT ransformation(code->b);
ChromosomeToTransformation(code->c);
ChromosomeToTransformation(code->d);
ChromosomeToTransformation(code->e);
ChromosomeToTransformation(code->f);
f (display)

<

/i
* clear out data->sim
*/

e uwunn~

a
b
c
d
e
f
i

XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w)));
XFillRectangle(XtDisplay(w), data->sim,data->gc,0,0,data->width,
data->height);
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
/*)
* get image from data->sim
*/

imageB = XGetlmage(XtDisplay(w),data->sim,D,0,data->width,data->height,
1,XYPixmap);

/i
* for all pixels in image
*/

for (row = yupper; row < ylower; rowt+)
<

for (col = xleft; col < xright; col++)
< -
* get pixel and if pixel is black
*/

pixelA = XGetPixel(imageA,col,row);
if (pixelA == 0)
{

/*
*
*/

A++;

/i
* transform coordinate to virtual origin
*/

Xt

update amount of pixels in target image

col - data->xorigin;

yt = row - data->yorigin;

/ﬁ

* convert y from screen coordinates to Carthesian coordinates
*/

yt = -yt;

/'ﬁ

* apply affine transformation
*/

X = a*xt + b*yt + e*250;
y = c*xt + d*yt + §%250;
/t

* convert y from Carthesian coordinates to screen coordinates
*y

Yy = -y;

/*

* transform coordinate to original position

*/
X += data->xorigin;

y += data->yorigin;

/i

* only plot pixel in data->sim if it is located within window
* and it is not already plotted (i.e. it is possible that in
* case of shrinking several pixels are plotted on the same

* coordinate)
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*
if (x >= 0 & x < data->width && y >= 0 && y < data->height)
(
pixelA = XGetPixel(imageA, x,y);
pixelB = XGetPixel(imageB,x,y);
if (pixelB t=0)
{
if (display) XDrawPoint(XtDisplay(w),data->sim,data->gc,x,y);
XPutPixel (imageB,x,y,0);

,i
* ypdate amount of pixels in approximation image
*
/
B++;
if (pixelA == 0) intersection++;
)
>
}
b
)
if (display)
{
/'.
* copy data->sim to screen
*/

XCopyArea(XtDisplay(w),data->sim,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);
)

/i
* destroy imageB
*

XDestroylmage(imageB);

imageB = NULL;
/i

* calculate pixsetdistance as max({A\B!/]A},}B\A]/iB}), where the target

* image A is located in data->pix and the approximation image B in data->sim
*/

if (A==01!!8==0)

{
if (A==08 8B ==0)
{
pixsetdistance
b
else
{
pixsetdistance = 1;

-1;

/i

* watch overflow !

*/
AnotB = (float) (A-intersection)/A;

BnotA = (float) (B-intersection)/B;

if ((int) 1000000*AnotB < (int) 1000000*BnotA)
{

pixsetdistance = BnotA;

else
{
pixsetdistance = AnotB;
b
b4
/i
* calculate fitness
*/
code->fitness = 1 - pixsetdistance;
b4

void TransformAndEvaluateCol lage(location,code,xleft,xright, yupper,ylower, imageA, imageC,N,display)
char location;
int xleft,xright,yupper,ylower, N;
Boolean display;
Chromosome *code;
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X1mage *imageA,*imageC;

float borderreward, fillreward,sizereward, strongpenal ty,weakpenalty;
float a,b,c,d,e,f, xt,yt;

int col,offset=1,row,x,y;

unsigned long A=0,B=0,C=0,AandBandC=0,AnotC=0,AnotCandB=0, BnotA=0;
unsigned long pixelA,pixelB,pixelC;

Drawdata *data;

Widget w;

XImage *imageB;

/t

* initialization
*

w = GetWindow(location,’p’);
data = GetWindowbData(location,’p’);
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
/t

* convert chromosome values to IFS codes

*

*HNNN NN

a = ChromosomeToTransformation(code->a);

b = ChromosomeToTransformation(code->b);

¢ = ChromosomeToTransformation(code->c);

d = ChromosomeToTransformation(code->d);

e = 250*ChromosomeToTransformation(code->e);

f = 250*ChromosomeToTransformation(code->f);

if (display)

<
/t
* clear out data->sim
*
XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w)));
XFillRectangle(XtDisplay(w),data->sim,data->gc,0,0,data->width,

data->height);

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));

target image contained in data->pix
current similitude contained in data->sim
current collage contained in data->col

* borderreward
fillreward

((A-C)andB)/B
((A-C)andB)/(A-C)

*

* sizereward = ((N+1)*B)/A  for B/A in [0,1-(N/(N+1)))
- = (1+1/N)*(1-B/A) for B/A in [(N/(N+1)),1]
* strongpenalty = (B-A)/B
* weakpenalty = (AandBandC)/8
”
* get image from data->sim
*/
imageB = XGetIlmage(XtDisplay(w),data->sim,0,0,data->width,data->height,
1,XYPixmap);
*
* for all pixels in image
*/
for (row = yupper; row < ylower; row++)
<

for (col = xleft; col < xright; col++)
{
pixelA = XGetPixel (imageA,col,row);
if (pixelA == 0)
(

/*
* update amount of pixels in target image
*/
A++;
/*
* transform coordinate to virtual origin
*/
xt = col - data->xorigin;
yt = row - data->yorigin;
/*
* convert y from screen coordinates to Carthesian coordinates
*/
yt = -yt;

/Q
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* apply affine transformation
*

n o~

X = a*xt + b*yt + e;

y = c*xt + d*yt + f;

/t

* convert y from Carthesian coordinates to screen coordinates
*/

Y =-y;

/i

* transform coordinate to original position
*/

x += data->xorigin;

y += data->yorigin;

/t

*

only plot pixel in data->sim if it is located within window

* and it is not already plotted (i.e. it is possible that in
* case of shrinking several pixels are plotted on the same
* coordinate)
*/
if (x >= 0 & x < data->width && y >= 0 && y < data->height)
L4

/i

* update amount of pixels left to be covered

*/

pixelC = XGetPixel(imageC,col ,row);
if (pixelC != 0) AnotC++;
pixelA = XGetPixel(imageA,x,y);
pixelB = XGetPixel(imageB,x,y);
pixelC = XGetPixel(imageC,x,y);
if (pixelB != 0)

(

if (display) XDrawPoint(XtDisplay(w),data->sim,data->gc,x,y);
XPutPixel (imageB, x,y,0);
L ]
* update amount of pixels in approximation image
*/
B++;
if (pixelA == 0)
4

if (pixelC == 0)
{

AandBandC++;
)
else
{
AnotCandB++;
)
)
else
L4
BnotA++;
)
)
)
)
)
)
if (display)
{ "

* copy data->sim to screen
*/

XCopyArea(XtDisplay(w),data->sim,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);

/*)

* destroy imageB

*/

XDestroylmage(imageB);

imageB = NULL;

/t

* calculate penalties and rewards (watch overflow I)

[ ]

if (A==0)
{
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sizereward = 0.0;

else
L4

/t
* we want smaller and smaller copies as the process proceeds (to
* influence the size of the pictures, adjust offset)
*/
if ((int) 100*B/A < (int) (100.0/(N+offset)))
L4

sizereward = (float) ((N+1)*B)/A;
)
else
{
if ((int) 100*B/A < 100)
L4

sizereward = (float) (1.0 + 1.0/8)*(1.0 - (float) B/A);
)
else
<
sizereward = 0.0;
)
)
if (AnotC == 0)
{
fillreward = 0.0;
)
else
{
fillreward = (float) (AnotCandB)/AnotC;
)
if (B == 0)
borderreward = 0.0;
strongpenalty = 1.0;
weakpenalty = 1.0;
b
else
<
borderreward = (float) (AnotCandB)/B;
strongpenalty = (float) (BnotA)/B;
weakpenalty = (float) (AandBandC)/B;
)

/*

* calculate fitness (prevent the first transformation to become the
* identity mapping by sizereward and force the following similitudes
* to be smaller and smaller copies to be able to get a good tiling

*/
if (N==1)
L 4
code->fitness = (1.0 + sizereward - strongpenalty)/2.0;
2
else
<

code->fitness = (N*sizereward + borderreward - (N+1)*strongpenalty)/((float) N + 1.0);
/*)
* just to make sure the fitness is an element of (0,1) (this is necessary
* because the fitness will be used to represent the relative probability
* with which the member is choosen to be parent for the next generation)
*/
if ((int) 1000000*(code->fitness) <= 0)
<
code->fitness = 0.000001;
>
if (¢int) 1000000*(code->fitness) >= 1000000)

<
code->fitness = 0.999999;
>
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void MergeMemberIntoPopulation(array, member)
Chromosome *member,array(];
(
int i = POPULATION_SIZE-1;
/*

* merge member into population such that all members within population

* remain sorted in best fitness order
*/

while (i > 0 & (int) 1000000*member->fitness > (int) 1000000*array(i-1].fitness)

{
arraylil.a
arraylil.b
array[il.c
arrayl[il.d

arrayli-1).a;
array[i-1).b;
arrayli-1l.c;
arrayli-11.d;
array[il.e = array[i-1].e;
arrayl[il.f = array[i-1].f;
arrayl[il.fitness = arrayl[i-1).fitness;

i--;

)
arraylil.a = member->a;
array[i)l.b = member->b;
arrayl[il.c = member->c;
array[il.d = member->d;
array[i).e = member->e;
array[i).f = member->f;

array[i]l.fitness = member->fitness;

void InitializePopulation(location,wtemp,wnext,xleft,xright,yupper,ylower, imageA,display)

char location;

int xleft,xright,yupper,ylower;
Boolean display;

Chromosome wtemp[],wnext[];
XImage *imageA;

int col,i,k,mode,row,start,startpoint [POPULATION_SIZE];
int count, xfixed [POPULATION_SIZE],yfixed [POPULATION_SIZE];
float a,b,c,d,e,f;

unsigned long pixelA;

Drawdata *data;

Widget w;
/*
* initialization
*/
if (location == *l/)
(
mode = 2;

w = GetWindow(’l’,’p’);
data = GetWindowData(’l’,’p’);

if (location == 'r’)

mode = 4;
W = GetWindow(‘r’,’p’);
data = GetWindowData(’r’,’p’);
)
for (i = 0; i < POPULATION_SIZE; i++)
{
startpoint[i] = 0;
wtemp[i).fitness = 0.0;
xfixed[i]
yfixed[i]
)
/*

0;

* take POPULATION_SIZE random points from target_image T and make those
* points the fixed points of the according affine transformations of the

* initial population

*/

for (k = 0; k < POPULATION_SIZE; k++)
(

start = (int) (rand())*(data->npixels)/32767;
i = POPULATION_SIZE-1;

while (i > 0 && start > startpoint[i-1])

(
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startpoint[i] = startpoint[i-1];
i---
) ’
startpoint[i] = start;
)
/i
* determine the coordinates of the fixed points which must be elements
* of the pixelset of the target image
*/

count = data->npixels;

i=0;

for'(rou = yupper; row < ylower; rowt+)
<

for (col = xleft; col < xright; col++)
4
pixelA = XGetPixel (imageA,col,row);
:

* fixed point must be element of target_image
*
if (pixelA == 0)

C

count--;
if (startpoint[i) == count)
[§

xfixed[i]
yfixed[i]
i+e;

>

col - data->xorigin;
data->yorigin - row;

)
>
)
/i
generate the transformation parameters for the POPULATION_SIZE chromosomes
of the first generation

each time generate 4 transformation parameters a,b,c,d each as element of
{1..255) and calculate the parameters e,f from a,b,c,d and the fixed
points xfixed[i) and yfixed([i]

LI 2R 2N BN 3 BN

for (i = 0; i < POPULATION_SIZE; i++)
<

wnext{il.a = (int) (rand()/129.0 + 0.5);

wnext[il.b = (int) (rand()/129.0 + 0.5);

wnext[il.c = (int) (rand()/129.0 + 0.5);

wnext[i).d = (int) (rand()/129.0 + 0.5);
= ChromosomeToTransformation(wnext(il.a);
ChromosomeToTransformation(wnext (i).b);
ChromosomeToTransformation(wnext [i].c);
ChromosomeToTransformation(wnext [i].d);
(float) (((1 - a)*xfixed[i] - b*yfixed[il)/250.0);
f = (float) (((1 - d)*yfixed[i] - c*xfixed[i1)/250.0);
wnext[i]l.e = TransformationToChromosome(e);
wnext[il.f = TransformationToChromosome(f);

a
b
c
d
e

if (wnext[i).a == 0) wnext[il.a = 128;
if (wnext[il.b == 0) wnext[i]l.b = 128;
if (wnext[i)l.c == 0) wnext[il.c = 128;
if (wnextlil.d == 0) wnext[il.d = 128;
if (wnext(i).e == 0) wnext{il.e = 128;
if (wnext(i).f == 0) wnext[il.f = 128;

/i
* transform target image by current member, evaluate the result and
* merge the member into the population according to its fitness
*/
TransformAndEvaluateldentity(location,&wnext [i],xleft, xright,yupper,ylower, imageA,display);
MergeMemberIntoPopul ation(wtemp,&wnext [i]);
)
" ?
* reset the random number generator with a new seed
*/

srand(wnext([il.a);
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int SelectParent(wtemp)
Chromosome wtemp(];
<
float totalfitness = 0;
int k;
unsigned long p=0,seed;
Boolean found = FALSE;
*

* determine total fitness

*/
for (k = 0; k < POPULATION_SIZE; k++)

{
totalfitness += wtemp(k].fitness;

/*)

* roulette wheel parent selection
*/

seed = rand();

k = 0;

while (k < POPULATION_SIZE && !found)
{

p += 32767*((wtemp[k] .fitness)/totalfitness);
if (seed <= p) found = TRUE;

k++;
)
/*
* return value of this function
*/
return{k-1);

void AutomaticlFSEncoding(w,location)
Widget w;
char location;
{
/t
* chromosome : (a,b,c,d,e,f,fitness);
* genes : a,b,c,d,e, f (elements of (1..255))
: nucleotides: 8 binary digits within genes (1 sign bit, 7 data bits)

char *savefile,*monitor = "monitor.dat", *ext = ", aut", fbuf[BUFSIZ];

float a,b,c,d,e,f,p,xt,yt, pixsetdistance;

float pl1 = P_MACRO,p2 = P_MICRO,p3 = P_MIXED,ps = P_MUTATE,p5 = P_JUMP;
float pé = P_SCALE,p7 = P_ROTATE,p8 = P_TRANSLATE, totalfitness,hours;

int generation,i,index, j,k,mode, N=1,nmax, x,xleft,xright,y, yupper,ylower;
int col,row,parentl, parent2,selection,n,seconds;

int c1=0,c2=0,c3=0,c4=0,c5=0,c6=0,c7=0,c8=0;

unsigned long pixelA,starttime,endtime;

Boolean debug = DEBUG,display = DISPLAY,extended = EXTENDED,skip = FALSE;
Chromosome child(2],wtemp{POPULATION_SIZE],wnext [POPULATION_SIZE];
Drawdata *data;

FILE *file;

leage *imageA,* imageC;

/

* put current amount of seconds since 1970 in starttime
*

time(&starttime);
/*

* initialization (next line must be outcommented for debugging purposes,

* because then each run will generate the same sequence of random numbers)
*/

srand(starttime);

W = GetWindow(location,’p’);
data = GetWindowData(location,’p’);
data->npixels = 0;

*

* if we want to calculate the identity mapping of a target image then
* nmax must be set to 1, i.e. only 1 affine transformation
*
if (data->identity)
{

)
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else

¢
nmax = MAX_TRANSFORMATIONS;

>
xleft = data->width;

xright = 0;
yupper = data->height;
ylower = 0;

if (location == ’L’) mode
if (location == ’r’) mode
/I

* only proceed further if monitor file could be successfully opened
*/

2
4

if ((file = fopen(monitor, "w")) == NULL)
L4

FileOpenWarning(w, location);
data->firsttime = TRUE;
skip = TRUE;

>

else

<
/i
* set vbuffer to force periodic flushing to file monitor.dst and
* put savefile in text window
*

setvbuf(file, fbuf, IOLBF,BUFSIZ);
fclose(file);
SavefileHandier(w,location,ext);

data->pix: contains target_image

data->sim: contains evaluated_image (transformed target image under
currently evaluated transformation)

data->col: contains collage_image (union of transformations selected to be
part of the 1fS code and applied on target_image so far)

clear out data->sim and data->col

* % % % % % ¥

XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w)));

XFillRectangle(XtDisplay(w),data->sim,data->gc,0,0,data->width,
data->height);

XFillRectangle(XtDisplay(w), data->col,data->gc,0,0,data->width,
data->height);

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));

/i

* get target image from data->pix and initialize collage image to zero

*/

imageA = XGetImage(XtDisplay(w),data->pix,0,0,data->width,data->height,
1,XYPixmap);

imageC = XGetImage(XtDisplay(w), data->col,0,0,data->width,data->height,
1,XYPixmap);

/i

* i{f target image is the empty set then quit immediately
*
if (Iskip & (int) PixsetDistance(w,mode) < 0)

4

skip = TRUE;
>
else
<

*
* for all pixels in image
*

for (row = 0; row < data->height; row++)

for (col = 0; col < data->width; col++)
{
/'l
* get pixel and if pixel is black
*/

pixelA = XGetPixel(imageA,col,row);

if (pixelA == 0)

(
/'.
* update amount of pixels in target image
*/
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data->npixels++;
*

* calculate bounding box of target image
*/

if (col < xleft) xleft = col;

fprintf(file,"maximm encoding error (epsilon)
fprintf(file,"maximum amount of generations
fprintf(file,"population size
fclose(file);

}

*d [percent]\n",EPSILON);
Xd\n",MAX_GENERATIONS);
%d\n\n",POPULATION_SIZE);

if (col > xright) xright = col;
if (row < yupper) yupper = row;
if (row > ylower) ylower = row;
)
b
)
t ]
* update file monitor.dat
*/
file = fopen(monitor,"a");
fprintf(file,"file name : %s\n" data->filename);
if (data->identity)
fprintf(file,"searching to find : identity\n",NULL);
else
fprintf(file,"searching to find : collage\n”,NULL);
)
fprintf(file,“operator probabilities: MacroCrossover: %3.2f\n",pl1);
fprintf(file," MicroCrossover: X3.2f\n",p2);
fprintf(file," MixedCrossover: X3.2f\n",p3);
fprintf(file," Mutate s X3.2f\n",ph);
fprintf(file," Jump : 3.2f\n",p5S);
fprintf(file,® Scale : 3.2f\n",pb);
fprintf(file," Rotate : 3.2f\n",p7);
fprintf(file," Translate : X3.2f\n",p8);

while approximation has not been accomplished with required accuracy,
i.e. the pixset distance between the target image T in data->pix and
the union of the transformed similitudes of T according to the trans-
formations found so far in data->col exceeds epsilon

since data->col is empty and data->pix is not empty if T is not the
empty set, the pixsetdistance will always be 1, and thus greater than
EPSILON, which is an element of [0,1), so the while loop will always
be entered

T % % % % % k%%
~

while (N<=nmax && !skip && (int) (100*PixsetDistance(w,mode+1)) > EPSILON)
{ o
* update amount of generations in text window as if it is an iteration
*/

IterationHandler(location,-1);

printf("affine transformation number %d\n",N);
generation = 0;

totalfitness = 0.0;

t ]

* initialize an amount of POPULATION_SIZE transformations wtempl[i)
* randomly (or with a heuristic) to form POPULATION N
*/

InitializePopulation(location,wtemp,wnext,xleft, xright, yupper,ylower, imageA,display);
t ]

* update file monitor.dat

*/

file = fopen(monitor,”a");
fprintf(file,"transformation: %d\n",N);
fprintf(file,"generation : %d (initialization)\n",generation);
fprintf(file,"“member a b ¢ d e f fitness\n" NULL);
for (k = 0; k < POPULATION_SIZE; k++)
(
fprintf(file,"%3d 3d 3d 3d 3d 3d 3d  %8f\n",k+1,wtemplk].a,
wtemp(k] .b,wtemp{k].c,wtemp(k] .d,wtemplk] .e,wtemp(k].f,
wtemplk] . fitness);
totalfitness += wtemplk].fitness;
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)

fprintf(file,"total fitness = Xf\n\n",totalfitness);

fclose(file);

generation++;

/t

* initialize next cycle of genetic simulation to obtain an additional
* transformation for the IFS code

[ ]

while (generation <= MAX_GENERATIONS && (int) 100*wtemp[0].fitness < (100 - EPSILON))
<

totalfitness = 0.0;
]

* update amount of generations in text window as if it is an iteration
-

IterationHandler(location, generation-1);
¢

* clear out next generation array
-

for (k = 0; k < POPULATION_SiZE; k++)
wnext (k) .fitness = 0.0;

/i

* apply all transformations in wtemp to target image in data-»pix
* and put them in data->sim

*

/
for (k = 0; k < POPULATION_SIZE; k += 2)
14 /o
* select 2 parents according to roulette wheel selection
*/

parent1 = SelectParent(wtemp);

parent2 = SelectParent(wtemp);

/i

* select a genetic operator to be applied on both parents

*/

selection = SelectGeneticOperator();

/*

* update file monitor.dat (next 3 lines are meant for debugging
* purposes)

*/

if (debug)
<

file = fopen(monitor,“a");
fprintf(file,"parent1:X3d parent2:X3d operator:%2d ", parenti+1, parent2+1,selection);
fclose(file);

)

*
* apply selected genetic operator and create 2 childs
*

switch(selection)

4
case 1:
M?croCross0ver(utemp[parent1],utemp[parentZ],child[O],child[1]);
cl+s;
break;
case 2:
H;eroCrossover(utemp[parent1],utemp[parentZ],child[O],child[1l);
co++;
break;
case 3:
M;xedcrossOver(utemp[parent1],utemp[parentZ],child[O],child[1]):
Co++;
break;
case 4:
Mutate(wtempparent1],child[0])
Mutate(wtemp([parent2],child[1])
ch++;
break;
case 5:
Jurp(wtemp [parent1],child[0])
Jump(wtemp[parent2] ,child(1])
c5++;
break;
case 6:

.
’
.
’
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Scale(wtemp[parent1],child(0]1);
Scale(wtemp[parent2] ,child[1]);
ch++;
break;
case 7:
Rotate(wtemp[parent1],child(0])
Rotate(wtemp[parent2),child1])
c7++;
break;
case 8:
Translate(wtemp[parent1],childl0])
Trans|late(wtemp[parent2],child[1])
cB++;
break;
3
/'l
* transform target image according to current child chromosome,
* evaluate quality of this child chromosome and assign fitness
t

for (j =0; j <2; j*+)
{
if (data->identity)
{
TransformAndEvaluateldentity(location,&childljl,xleft, xright,
yupper,ylower, imageA,display);
b
else
{
TransformAndEvaluateCol lage(location,&child[j],xleft,xright,
yupper,ylower, imageA, imageC,N,display);
/*)
* update file monitor.dat (next 9 lines are meant for
* debugging purposes)
*/

if (debug)
<
file = fopen(monitor,"a");
ifCji=0
<

fprintf(file,"child a b ¢ d e f fitness\n",NULL);

>

fprintf(file,"3d Bd 3d Bd B3d B3d B3d  X%8f\n",
k+j+1,childlj).a,childl)).b,childljl.c,childlj].d,
child[jl.e,childlj].f,childljl.fitness);

fclose(file);

/i
* merge children in sorted list
*/
MergeMemberlntoPopulation(wnext,&child[j1);
b
b

/i
* transfer best 10% of current population unmodified to next generation
* (the +1 is added to assure that at least one member will be
* transferred, which is important for populations < 10)
*

for (i = 0; i < (int) (POPULATION_SIZE/10 + 1); i++)
<
MergeMemberIntoPopulation(wnext,&wtemplil));
/*)
* make children in wnext the new generation in wtemp and
* update file monitor.dat
*/
file = fopen(monitor,ma");
if (generation <= MAX_GENERATIONS)
<
fprintf(file,"generation : %d\n",generation);
fprintf(file,"member a b ¢ d e f fitness\n",NULL);

)
for (k = 0; k < POPULATION_SIZE; k++)
<

wtemplkl.a = wnext[k].a;
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wtemp[k]l.b = wnext[k].b;
wtemp[k].c = wnext([k].c;
wtemp[k].d = wnext([k] .d;
wtemplk] .e = wnext[k].e;
wtemp[k].f = wnext[k].f;

wtemp([k].fitness = wnext[k].fitness;
if (extended || k == 0 )} generation == MAX_GENERATIONS)

<
fprintf(file,"3d Bd Bd X3d B3d Bd Bd  48f\n",k+1,
wnext (k] .a,wnext [k] .b,wnext [kl .c,wnext [k].d,
wnext [k] .e,wnext [k].f,wnext [k].fitness);
b
totalfitness += wnext[k]l.fitness;

)
fprintf(file,"total fitness = Xf\n\n", totalfitness);
fclose(file);
generationt+;

)
file = fopen(monitor,“a®);
fprintf(file, "#operator selections : MacroCrossover: Xd\n",c1);

fprintf(file,» MicroCrossover: Xd\n",c2);
fprintf(file," MixedCrossover: ﬁtn“,c{);
fprintf(file," Mutat : n",cé);
f::;:tfgf;{:," J:.‘IT:? © : %d\n":c5);
fprintf(file,n Scale : %Xd\n",c6);
fprintf(file," Rotate : Xd\n",c7);
fprintf(file," Translate : %d\n\n",c8);

fclose(file);

€1=0;c2=0;¢3=0;c4=0; c5=0;c6=0;c7=0;c8=0;

/*

* add best found transformation of this cycle of generations as
* transformation number N in filename.aut

*/

savefile = calloc(strlen(data->filename)+5,sizeof(char));
strcpy(savefile,data->fi{ename);

if ((file = fopen(strcat(savefile,ext), "a")) == NULL)

€

FileOpenWarning(w, location);
data->firsttime = TRUE;

>
else
C
a = ChromosomeToTransformation(wtemp[0].a);
b = ChromosomeToTransformation(wtemp[0].b);
¢ = ChromosomeToTransformation(wtemp(0].c);
d = ChromosomeToTransformation(wtemp(0].d);
e = 250*ChromosomeTolransformation(wtemp[0].e);
f = 250*ChromosomeToTransformation(wtemp[0] .f);
p = 0.0;

fprintf(file,"X.3f %.3f X.3f X.3f X.3f X.3f X.3f\n%,a,b,c,d, e, f,p);
fclose(file);
*

* transform target image in data->pix under best transformation found in
* generation MAX_GENERATIONS of this N-cycle, and add the results to the
* collage in data->col
*
for (row = yupper; row < ylower; row++)

for (col = xleft; col < xright; col++)

/*
* get pixel and if pixel is black
*/

pixelA = XGetPixel(imageA, col,row);
if (pixelA == 0)

{
/*
* transform coordinate to virtual origin
*/
xt = col - data->xorigin;
yt = row - data->yorigin;
/*
* convert y from screen coordinates to Carthesian coordinates
*/
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»
* apply affine transformation
*/
X = a*xt + b*yt + e;
y = c*xt + d*yt + f;
/'.
* convert y from Carthesian coordinates to screen coordinates
*/
Yy =-vy:
/'ﬁ
* transform coordinate to original position
*/
x += data->xorigin;
y += data->yorigin;
/'ﬁ
* draw point in collage
*
XDrawPoint(XtDisplay(w),data->col ,data->gc,x,y);
)
)
)
)
/'ﬁ
* free the savefile
*/
free(savefile);
savefile = NULL;
/'ﬁ
* get updated collage image from data->col
*/
imageC = XGetlmage(XtDisplay(w),data->col,0,0,data->width,data->height,
1,XYPixmap);
/i
* increment the current affine transformation that is sought for
*/
N++;
)
/i

* destroy images
[ ]

XDestroylmage( imageA);
XDestroylmage(imageC);
imageA = NULL;
imageC = NULL;

/'.

* calculate pixsetdistance between target image and col lage
*/

pixsetdistance = PixsetDistance(w,mode+1);

/'.

* copy best found member to data->pix and to screen
*/

XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w)));
XFillRectangle(XtDisplay(w), XtWindow(w), data~>gc,0,0,data->width,
data->height);

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));

XCopyArea(XtDisplay(w),data->col ,data->pix,data->gc,0,0,
data->width,data->height,0,0);

XCopyArea(XtDisplay(w),data->col ,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);

/'ﬁ

* put pixsetdistance, amount of affine transformations and cpu time used in
* monitor file
*/

if (tskip)
{

time(&endtime);

seconds = (int) (endtime - starttime);

hours = seconds/3600.0;

file = fopen(monitor,"a");

fprintf(file,"pixsetdistance(target best member) : %7.6f\n\n", pixsetdistance);
fprintf(file,"#affine transformations in IFS-code : %d\n\n",N-1);
fprintf(file,"total CPU time used = %d [seconds]l = %2.2f [hours]\n\n",seconds, hours);
fclose(file);
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/**********i*******************************t**********.***********.*******ﬁ****

* Copyright(c) Eindhoven University of Technology (TUE,NL)

* : Faculty of Electrical Engineering (E)

* : Design Automation Group (ES)

* Mail address : emilevdaviper.es.ele.tue.nl

* Project : Fractal imagecompression with Iterated Function Systems
* Supervisor : Prof. Dr. Ing. J.A.G. Jess

* File : graphics.c

* Purpose : Creates graphics contexts for drawingareas
* part of : IFS-CODEC

* Created on : June 10, 1992

* Created by : Emile van Duren

* Last modified on: November 18, 1992

* Modified by : Emile van Duren

* Remarks :

.
**f.i**itﬁiittti**'tiii*tiﬁii*i*tti*t*iiittiitﬁ*t*iitﬂ***'iii*ifiittt.ﬁt*itft/

#include "all.h®

void InitGraphics(w,data)
Widget w;
Drawdata *data;
/t
* determine amount of available colors
*/
data->ncolors = XDisplayCells(XtDisplay(w),XDefaul tScreen(XtDisplay(w)));
/t
* get the size of the drawingara
*/
ac = 0;
XtSetArg(al [ac] ,XtNwidth,&data->width); ac++;
XtSetArg(al [ac] ,XtNheight,&data->height); ac++;
XtGetValues(w,al,ac);
/t
* create a graphics context
*/
data->gc = XCreateGC(XtDisplay(w),Defaul tRootWindow(XtDisplay(w)), NULL,NULL);
»

* initialize pixmap to 500 x 500 pixels
*
/
data->width = AREA_MIDTH;
data->height = PIXEL_AREA_HEIGHT;
if (data == &lefttextdata || data == &righttextdata) data->height = TEXT_AREA_HEIGHT;
w

* define origins, amount of iterations and zoomfactor
*/
data->xorigin = data->xstart = data->width/2;
data->yorigin = data->ystart = data->height/2;
data->zoomfactor = 10;
data->xoffset = 0;
data->yoffset = 0;
£

* create drawingarea pixmap and set its foreground to white
*/
data->pix = XCreatePixmap(XtDisplay(w),Defaul tRootWindow(XtDisplay(w)),
data->width,data->height,

Defaul tDepthOfScreen(XtScreen(w)));
XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w)));
XFillRectangle(XtDisplay(w),data->pix,data->gc,0,0,data->width,data->height);

/t
* create bufferpixmaps for similitude and collage manipulations
* (this has only to bo done for pixelarea’s)
*/
if (data == &leftpixeldata || data == &rightpixeldata)
<
data->sim = XCreatePixmap(XtDisplay(w),Defaul tRootWindow(XtDisplay(w)),data->width,
data->height,Defaul tbepthOfScreen(XtScreen(w)));
XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w)));
XFillRectangle(XtDisplay(w), data->sim,data->gc,0,0,data->width,data->height);
data->col = XCreatePixmap(XtDisplay(w),Defaul tRootWindow(XtDisplay(w)), data->width,
data->height,Defaul tDepthOfScreen(XtScreen(w)));
XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w)));
XFillRectangle(XtDisplay(w),data->col,data->gc,0,0,data->width,data->height);
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)
Ii

* initialize transformation data
*/
data->transformation.xscaling = 80;
data->transformation.yscaling = 80;
data->transformation.xrotation = 0;
data->transformation.yrotation = 0;
data->transformation.xshift = 0;
data->transformation.yshift = 0;
data->transformation.probability = 100;
/t

* set controlflags

*

data->drawgrab = FALSE;
data->erasegrab = FALSE;
data->firsttime = TRUE;
data->axes = FALSE;
data->unzoom = TRUE;
data->condensation = TRUE;
dsta->identity = IDENTITY;

* initially no mode selected
*/

data->mode = ’0/;
/i
* set help/warning popup box guards to TRUE
*/
data->first.filehelp = TRUE;
data->first.originwarning = TRUE;
data->first.fileopenwarning = TRUE;
data->first.tablemessage = TRUE;
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/tiﬁtttfitttttitttffitttttttt*ftititt.ititttttttttitti*ttittiii*tttttﬁtitiiit*t
Eindhoven University of Technology (TUE,NL)

* Copyright(c)

H
**i**tﬁ*tt't*t**titiiiiit*i*ti*itfiiiiiittii*ftt‘iit.ﬁttiit.i*ittiiiiti.i*i*i/

#include “all.h®

*
* forward function declarations
*

void ClearPixelArea(); /* contained in draw.c
void DrawText(); /* contained in writer.c
void FileOpenWarning(); /* contained in messages.c
void OriginWarning(); /* contained in messages.c
Drawdata *GetWindowData(); /* contained in control.c
Scrol ldata *GetScrollData(); /* contained in control.c
Textdata *GetTextData(); /* contained in control.c
Widget GetWindow(); /* contained in control.c

void ClearTextHandler(w, location,lines)
Widget w;
char location;
short int lines;

Textdata *text;
text = GetTextData(location);
/'

* from textlines 1 till 10 only those lines will be cleared whose according

* position in the binary number "lines" contains a "1*

* example: if lines = 53 (decimal) then Lines = 110101 (binary) so clear

* out lines 1,3,5,6

*/

if (lines X2 1= 0 && lines 1= 0)
<

lines--;
text->mode = “mode HELH

lines /= 2;
if (lines X2 1= 0 &% lines 1= Q)
(

lines--;
text->srce = "sourcefile : ";

lines /= 2;
if (lines X2 1= 0 && Llines != 0)
(
lines--;
text->size = "filesize HILH
)
lines /= 2;
if (lines X2 '= 0 && lines != 0)
(
lines--;
text->cont = “contains HLH

lines /= 2;
if (lines X2 1= 0 && lines != 0)
(
lines--;
text->save = "savefile(s) : ¥;

lines /= 2;

* : Faculty of Electrical Engineering (E)

* : Design Automation Group (ES)

* Mail address : emilevdaviper.es.ele.tue.nl

* Project : Fractal imagecompression with Iterated Function Systems
* Supervisor : Prof. Dr. Ing. J.A.G. Jess

* File : handle.c

* Purpose : Handles text to be written in text window
* part of : IFS-CODEC

* Created on : June 01, 1992

* Created by : Emile van Duren

* Last modified on: December 17, 1992

* Modified by : Emile van Duren

* Remarks : Zoomhandler has to be altered
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if (lines X2 != 0 && lines '= 0)
<
lines--;
text->orgn = Y“origin HELH

lines /= 2;
if (lines %2 !'= 0 && lines != 0)
L4
lines--;
text->init = "startpixel : ";

lines /= 2;
if (lines X2 1= 0 && lines 1= 0)
{
lines--;
text->amit = "“#iterations : ";

lines /= 2;
if (lines X2 1= 0 && lines != 0)

<
lines--;
text->iter = "jteration : ¥;
)
lines /= 2;
if (lines X2 1= 0 && lines != 0)
{
lines--;
text->zoom = “zoomfactor : “;
)

void ModeHandler(w,location)

Widget w;
char location;

Textdata *text;

Drawdata *data;

data = GetWindowData(location,'p’);
text = GetTextData(location);

if (data->mode == ’v’) text->mode = “mode : Viewedit source file";

if (data->mode == 'w’) text->mode = "mode : Viewedit IFS-code";

if (data->mode == ’i’) text->mode = “mode : Interactive IFS encoding";

if (data->mode == ‘a’) text->mode = “mode : Automatic IFS encoding";

if (data->mode == 'd’) text->mode = "“mode : Deterministic IFS decoding";

if (data->mode == 'n’) text->mode = “mode : Nondeterministic IFS decoding®;

if (data->mode == ‘p’) text->mode = "mode : Performance analysis";

if (data->mode == ’b’) text->mode = “mode : Bifurcation diagram of logistic map";
if (date->mode == 'm’) text->mode = “mode : Mandelbrot set";

DrawText(location);

void FileSizeHandler(location, ext)

<

char location,*ext;

char *savefile;
static char string1[60],string2(8]1,string3[) = "filesize : Y,stringd[] = " [bytesl™;
struct stat nfile;
Drawdata *data;
FILE *file;
Textdata *text;
data = GetWindowData(location,’p’);
text = GetTextData(location);
strepy(stringl,string3);
savefile = calloc(strien{(data->filename)+5,sizeof(char));
strcpy(savefile,data->filename);
file = strcat(savefile,ext);
if (stat(file,&nfile) == 0)
{ p
* print filesize in bytes
*/

sprintf(string2,"%d",nfile.st_size);
strcat(stringl,string?);

B. IFS-CODEC source code
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text->sjze = strcat(stringi,stringé);
)
free(savefile);
savefile = NULL;
)

void FileContainmentHandler(location,ext)
char location,*ext;

L4
static char string1[60],string2[4],string3[] = "contains HUH
static char string4[501,stringS5([501;
static char stringé[] = "collage-generated IFS code table";
static char string?[] = “automatic generated IFS code table";
static char string8[] = “manually entered IFS code table";
Textdata *text;
Drawdata *data;
data = GetWindowData(location,’p’);
text = GetTextData(location);
sprintf(string4,"%d [pixels) of source image", data->npixels);
sprintf(string5,"%d [pixels) of collage image", data->npixels);
strepy(string2,ext);
strepy(stringl,string3);
if (string2[2) ‘m’) text->cont = strcat(stringl,strings);
if (string2[2] ’0’) text->cont = strcat(stringl,stringS);
if (string2[2) ‘a’) text->cont = strcat(stringl,stringé);
if (string2l[2] ’y’) text->cont = strcat(stringl,string?);
if (string2(2] /1) text->cont = strcat{stringl,string8);

void SaveFileHandler(w, location,ext)
Widget w;
char location,*ext;

static char string1[60],string2[20],string3[1 = “savefile(s) : ";
Textdata *text;

Drawdata *data;

data = GetWindowData(location,’p’);

text = GetTextData(location);

strepy(stringl,string3);

sprintf(string2, "Xs", data->filename);

if (data->mode == ‘v’ || data->mode == ’d’ || data->mode == 'n’) ext = “.img";

if (data->mode == /i’) ext
if (data->mode == ‘a’) ext
strcat(string2,ext);
text->save = strcat(stringl,string2);
DrawText(location);

)

" (.man & .col)";
“.aut";

void SourceFileHandler(w, location,ext)
Widget w;
char location,*ext;

static char string1[60],string2[20],string3{] = "sourcefile : ";
Textdata *text;
Drawdata *data;
data = GetWindowData(location,’p’);
text = GetTextData(location);
strcpy(stringl,string3);
sprintf(string2,"Xs",data->filename);
if (data->mode == ‘v’ || data->mode == ’a’) ext = ".img";
strcat(string2,ext);
text->srce = strcat(stringl,string2);
/i
* filesize and filecontainment are only connected to the sourcefile
* so call the relevant functions from here (and from nowhere else)
u
FileSizeHandler(location,ext);
FileContainmentHandler(location,ext);
/t
* if sourcefile exists than also savefile exists
*

SavefileHandler(w, location,ext);
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void OriginHandler(w,code,call_data)
Widget w;
int code;
XmScaleCal LbackStruct *call_data;

char location;
Drawdata *data;
Textdata *text;

static char string1[60],string2[91,string3[] = Y“origin P
if (code X 2 == 0)
{
location = 71/;
)
else
{
location = ’r/;
code--;
)

data = GetWindowData(location, 'p’);
text = GetTextData(location);
if (data->firsttime)
L4 e
* origin will be stored in screen coordinates, i.e. (0,0) is upper
* left corner
*/
if (code == 0) data->xorigin = call_data->value + data->width/2;
if (code == 2) data->yorigin = data->height/2 - call_data->value;
strepy(stringl,string3);
sprintf(string2,"(Xd, Xd)",data->xorigin - data->width/2,
data->height/2 - data->yorigin);
text->orgn = strcat(stringl,string2);
DrawText(location);
)
else
L4
ac = 0;
XtSetArg(al [ac] ,XmNvalue,data->xorigin - data->width/2); ac++;
XtSetValues(data->originbox.xslider,al,ac);
ac = 0;
XtSetArg(al [ac],XmNvalue,data->height/2 - data->yorigin); ac++;
XtSetvalues(data->originbox.yslider,al ,ac);
OriginWarning(w, location);

void ChangestartPixelHandler(w,code,call_data)
Widget w;
int code;
XmScaleCal lbackStruct *call_data;

char location;

Drawdata *data;

Textdata *text;

static char string1[601,string2[9],string3[] = “startpixel : ";
if (code % 2 == 0)

(4
location = ’L’;

)

else

<
location = 'r!;
code--;

b

data = GetWindowData(location,’p’);
text = GetTextData(location);

/t

* startpixel will be stored in screen coordinates, i.e. (0,0) is upper

* left corner

*/

if (code == 0) data->xstart = call_data->value + data->width/2;

if (code == 2) data->ystart = data->height/2 - call_data->value;
strepy(string1,string3);

sprintf(string2,"(Xd,%d)",data->xstart - data->width/2,data->height/2 - data->ystart);
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text->init = strcat(stringl,string2);
DrawText(location);
b

void AmountOflterationsHandler(w, location,call_data)
Widget w;
char location;
XmScaleCal lbackStruct *call_data;

Drawdata *data;

Textdata *text;

static char string1[60],string2[9],string3[] = "#iterations : ¥;
data = GetWindowata(location,’p’);

text = GetTextData(location);

data->niterations = call_data->value;

strepy(stringl,string3);
sprintf(string2,"Xd”,data->niterations);

text->amit = strcat(stringl,string2);

DrawText(location);

void IterationHandler(location,iteration)
char location;
unsigned Llong iteration;

static char string1[60],string2(9],string3[] = “iteration : %;
Textdata *text;

text = GetTextData{location);

strcpy(stringi,string3);

sprintf(string2,"Xd",iteration+1);

text->iter = strcat(stringl,string2);

DrawText(location):

void ZoomHandler(w,code,call_data)
Widget w;
int code;
XmScaleCal lbackStruct *call_data;

char location;
int height = 0,width = 0,xleft,yupper;
static char string1(60],string2[9),string3{] = “zoomfactor : “;
Drawdata *data;
Textdata *text;
if (code % 2 == 0)
{

location = '|’/;
else
{
location = /r/;
code--:
3
w = GetWindow(location,’p’);
data = GetWindowData(location,’p’);
text = GetTextData(location);
data->unzoom = FALSE;

/*

* offset will be stored in absolute pixel offset, i.e. (0,0) is center
* of window

*/

if (code 0) data->xoffset = call_data->value;

if (code == 2) data->yoffset = call_data->value;

if (code == &) data->zoomfactor = call_data->value;
width = (data->width)*(data->zoomfactor)/100.0;
height = (data->height)*(data->zoomfactor)/100.0;

*

* calculate left upper zoombox corner in screen coordinates
*/

xleft = data->xoffset + (data->width - width)/2;

yupper = data->yoffset + (data->height - height)/2;

if (xleft < 0)
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xleft = 0;

data->xoffset = (int) (width - data->width)/2;
ac = 0;
XtSetArg(al (ac] ,XmNvalue,data->xoffset); ac++;
XtSetValues(data->zoombox.xoffsetslider,al,ac);

)
if (xleft > (data->width - width))
{

xleft = data->width - width;

data->xoffset = (int) (data->width - width)/2;

ac = 0;

XtSetArg(al (ac] ,XmNvalue,data->xoffset); ac++;

XtSetvValues(data->2oombox.xoffsetslider,al, ac);
)

if (yupper < 0)
{

yupper = 0;
data->yoffset = (int) (height - data->height)/2;
ac = 0;
XtSetArg(al [ac] ,XmNvalue,data->yoffset); ac++;
XtSetValues(data->zoombox.yof fsetslider,al,ac);

)

if (yupper > (data->height - height))
{

yupper = data->height - height;
data->yoffset = (int) (height - data->height)/2;
ac = 0;
XtSetA}g(al[ac],Xmﬂvalue,-(data->yoffset)): ac++;
XtSetvValues(data->zoombox.yoffsetslider,al,ac);
/‘)
* convert yupper from Carthesian coordinates to screen coordinates
*/
yupper = data->height - yupper - width;
/t
* copy data->pix to screen
*/
XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);
/i
* set foreground top black and draw an dashed rectangle (both the white
* dashes and the black dashes are drawn)
L 3

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
XSetLineAttributes(XtDisplay(w),data->gc,1,LineDoubleDash,CapNotLast,JoinMiter);
XDrawRectangle(XtDisplay(w),XtWindow(w),data->gc,xleft,yupper,width, height);
XSetLineAttributes(XtDisplay(w),data->gc,1,LineSolid,CapNotLast,JoinMiter);

/'l

* only redraw text if zoomfactor is changed

*/

if (code == 4)

<

strcpy(stringl,string3);
sprintf(string2, "Xd",data->zoomfactor);
text->zoom = strcat(stringt,string2);
DrawText(location);

void ScrollBarMovedHandler(w,location,call_data)
Widget w;
char location;
XxmScrol LBarCal lbackStruct *call_data;

int index,yloc = 0;
Drawdata *data;
Scrolldata *scroll;
*
* initialization
*/
W = GetWindow(location, 'p’);
data = GetWindowData(location,‘p’);
scroll = GetScrollbata(location);
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scroll->top = call_data->value;

index = scroll->top;

XSetForeground(XtDisplay(w), data->gc,WhitePixelOfScreen(XtScreen(w)));
XFillRectangle(XtDisplay(w),data->pix,data->gc,0,0,data->width,data->height);
XFillRectangle(XtDisplay(w),XtWindow(w),data->gc,0,0,data->width,data->height);
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));

while (index < scroll->nlines)

ylocs= 15;
XDrawlmageString(XtDisplay(w),data->pix,data->gc,20,yloc,

scroll->chars(index],scroll->length(index]);
index++;

)
XCopyArea(XtDisplay(w), data->pix, XtWindow(w),data->gc,0,0,data->width,data->height,0,0);

void ScrollHandler(w, location)
Widget w;
char location;

char *filename,*savefile,line(MAXLINESIZE];
float a,b,c,d,e, f,p;
int ascent,desc,dir,i = 0;
Drawdata *data;
FILE *file;
Scrol ldata *scroll;
Textdata *text;
Widget parent;
XCharStruct char_info;
/i
* initialization
*/
W = GetWindow(location,’p’);
data = GetWindowData(location, ’p’);
text = GetTextData(location);
scroll = GetScrollData(location);
ClearPixelArea(w, location);
savefile = calloc(strien(data->filename)+5,sizeof(char));
strcpy(savefile,data->filename);
if ((file = fopen(strcat(savefile,scroll->ext),”r")) == NULL)
L4

FileOperwarning(w, location);

)
else

L4
/*
* clear out all text in textwindow
*/
ClearTextHandler(w, location, 287);
text->mode = "mode : Viewedit IFS-code (textual view)";
SourceFileHandler(w, location,scrol l->ext);
/t

* put header in buffer “line"
*/

for (i=0 ; i<3; i++)
C
if (i ==0 ]} i ==2) sprintf(line,"%s" v \n¥");
if (i == 1) sprintf(line, "Xs» " 8 b c d e f pAn");
scroll->chars[i]l = XtMalloc(strlen(line) + 1);
linelstrien(line)-1] = '\0’;
strcpy(scroll->chars([il, line);
scroll->length[i} = strlen(scroll->chars[il)};
XTextExtents(scroll->font, scroll->chars[i],scroll->lengthlil,&dir,
&ascent, &desc,&char_info);
scroll->rbearinglil = char_info.rbearing;
scrol l->descent = desc;
scroll->fontheight = ascent + desc;
/3
* calculate amount of transformations
*/
while (!feof(file))

{
J*
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* read each line of the file into the buffer "line", calculating
: and caching the extents fo each line
/
fscanf(file,"%f Xf Xf %f %f Xf Xf\n",&a,db,&c,&d, &e, &f,&p);
sprintf(line,"X7.3f X7.3f %7.3f X7.3f X8.3f X8.3f %7.3f\n",a,b,c,d,e,f,p);
scroll->chars[i] = XtMalloc(strlen(line) + 1);
linelstrlen{line)-1] = ’\0’;
strepy(scroll->chars([il, line);
scroll->length[i] = strlen(scroll->charsli]);
XTextExtents(scroll->font,scroll->chars[i],scroll->length[il,&dir,
&ascent,&desc,&char_info);
scroll->rbearingli] = char_info.rbearing;
scroll->descent = desc;
scroll->fontheight = ascent + desc;
i+
)
/*
: close file, initialize amount of lines and current line number
/

fclose(file);

scroll->nlines = i;

scroll->top = 0;

/*

* only manage scrollslider if text doesn’t fit in actual window
*/

if (15*scroll->nlines > data->height)

Manage(w,data->scrol lbox.box);
ac = 0;
XtSetArg(al[ac] ,XmNmaximum,scroll->nlines); ac++;
XtSetArg(al [ac] ,XmNs liderSize,data->height/15); ac++;
XtSetArg(al [ac] ,XmNpageIncrement ,data->height/15); ac++;
XtSetvalues(data->scrol lbox.scrollbar,al,ac);

A

: call scrollBarMovedHandler to display text for the first time

Scrol LBarMovedHandler(w, Llocation,NULL);
free(savefile);

savefile = NULL;
b
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/t*iit*iitii*i*ititt*t.iittttiiitiiiiﬁttitiitttiittitttﬁtttﬁtiti*iiﬁ****ttiii*f
* Copyright(c) Eindhoven University of Technology (TUE,NL)

* : Faculty of Electrical Engineering (E)
hd : Design Automation Group (ES)

* Mail address : emilevdaviper.es.ele.tue.nl

* Project : Fractal imagecompression with Jterated Function Systems
* Supervisor : Prof. Dr. Ing. J.A.G. Jess

* File : ifs.c

* Purpose : Main body for IFS-CODEC

* Part of s 1FS-CODEC

* Created on : May 08, 1992

* Created by : Emile van Duren

* Last modified on: November 20, 1992

* Modified by : Emile van Duren

* Remarks : None

dededr iy dr drde drdr dedr dede e dr de drdr i ***i*****i*ii****iii***i******iﬁ******t*i*ti****i*t***i**/

#include "all.hv

/*

* forward function declarations

*/

void DrawAxes(); /* contained in draw.c */
void Redisplay(); /* contained in exposures.c */
Widget CreateUpperMenu(); /* contained in menubars.c */

Widget CreatelLeftRightMenu(); /* contained in menubars.c */

/*
* main programbody
*/

void main(argc,argv)
int argc;
char *argvil;

Widget toplevel,uppermenu;
Widget leftmenu,rightmenu;
XmString xmstr;

*

/

* initialize textdata

*/

LText.mode = RText.mode = "mode HILH
LText.srce = RText.srce = "sourcefile : »;
LText.size = RText.size = "filesize HILH
LText.cont = RText.cont = “contains H
LText.save = RText.save = "savefile(s) : ";
LText.orgn = RText.orgn = “origin HELH
LText.init = RText.init = "startpixel : »;
LText.amit = RText.amit = “#iterations : M;
LText.iter = RText.iter = “iteration N
LText.zoom = RText.zoom = “zoomfactor H
/t

* initialize main guards

*/

firsthelp = TRUE;

printmessage = TRUE;

copyrightmessage = TRUE;

/t

* initialize toolkit and create toplevelshell
*/

ac = 0;

toplevel = XtInitialize(argvi0],"TopLevel®, NULL,0,al,ac);
/t

* create form with size of 1030 x 830 pixels
*/

ac = 0;

XtSetArg(al [ac) ,XmNwidth,1030); ac++;

XtSetArg(al {ac],XmNheight,830); ac++;

xmstr = XmStringcreate(“IFS-CWEC",XmSTRlNG_DEFAULT_CHARSET);
XtSetArg(al[ac] ,XmNdialogTitle,xmstr); ac++;

XtSetArg(al [ac) ,XmNhorizontalSpacing, 10); ac++;

XtSetArg(al {ac) ,XmNverticalSpacing,10); ac++;

XtSetArg(al [ac) ,XmNfractionBase,1000); ac++;

form = XmCreateForm(toplevel ,"Form", al,ac);
XtManageChild(form);
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XmStringFree(xmstr);
*

* create upper pulldownmenu

*/
uppermenu = CreateUpperMenu(form);
ac = 0;
XtSetArg(al [ac],XmNtopAttachment ,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNleftAttachment, XmATTACH_FORM); ac++;
XtSetArg(al [ac],XmNrightAttachment,XmATTACH_FORM); ac++;
XtSetValues(uppermenu,al ,ac);

*

/

* create left pulldowrmenu
*/

ac = 0;

leftmenu = CreatelLeftRightMenu(form,’l’);

XtSetArg(al [ac] ,XmNtopAttachment , XmATTACH_WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget,uppermenu); ac++;

XtSetArg(al [ac] ,XmNleftAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNrightAttachment,XmATTACH_POSITION); ac++;
XtSetArg(al [ac] ,XmNrightPosition,495); ac++;
XtSetValues(leftmenu,al,ac);

/*

* create right pulldownmenu
*/

ac = 0;

rightmenu = CreateLeftRightMenu(form,'r’);

XtSetArg(al [ac] ,XmNtopAttachment, XmATTACH_WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget ,uppermenu); ac++;

XtSetArg(al [ac] ,XxmNleftAttachment ,XmATTACH_POSITION); ac++;
XtSetArg(al [ac] ,XmNleftPosition,505); ac++;

XtSetArg(al [ac] ,XmNrightAttachment,XmATTACH_FORM); ac++;
XESetValues(rightmenu,al,ac);

* create lefttextframe for lefttextarea (size = 200 x 500 pixels)
*

ac = 0;

XtSetArg(al [ac] ,XmNtopAttachment,XmATTACH_WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget, leftmenu); ac++;

XtSetArg(al [ac],XmNleftAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNrightAttachment, XmATTACH_POSITION); ac++;
XtSetArg(al [ac],XmNrightPosition,495); ac++;

XtSetArg(al [ac], XmNbottomAttachment, XmATTACH_POSITION); ac++;
XtSetArg(al [ac] ,XmNbottomPosition,374); ac++;

XtSetArg(al [ac] ,XmNshadowType, XmSHADOW_IN); ac++;
lefttextframe = XmCreateFrame(form,"LeftTextFrame", al,ac);
X:Hanagechi ld(lefttextframe);

/

: create left textdrawingarea
/
ac = 0;
lefttextarea = XmCreateDrawingArea(lefttextframe,"LeftTextArea",al,ac);
InitGraphics(lefttextarea,&lefttextdata);
XtAddCal lback(lefttextarea,XmNexposeCal Lback,Redisplay,&lefttextdata);
X:ManageChi ld(lefttextarea);
/
* create righttextframe for righttextarea (size = 200 x 500 pixels)
*/
ac = 0;
XtSetArg(al [ac] ,XmNtopAttachment,XmATTACH_WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget,rightmenu); ac++;
XtSetArg(al [ac] ,XmNleftAttachment, XmATTACH_POSITION); ac++;
XtSetArg(al [ac] ,XmNleftPosition,505); ac++;
XtSetArg(al [ac] ,XmNrightAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNbottomAttachment , XmATTACH_POSITION); ac++;
XtSetArg(al [ac] ,XmNbottomPosition,374); ac++;
XtSetArg(al [ac] ,XmNshadowType,XmSHADOW_IN); ac++;
righttextframe = XmCreateFrame(form,"RightTextFrame”,al, ac);
XtManageChild(righttextframe);
*

/

* create right textdrawingarea
*/

ac = 0;

righttextarea = XmCreateDrawingArea(righttextframe, "RightTextArea",al ,ac);
InitGraphics(righttextarea,&righttextdata);
XtAddCal lback(righttextarea, XmNexposeCal Lback ,Redisplay,&righttextdata);
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XtManageChild(righttextarea);
¢ ]

* create leftpixelframe for leftpixelarea (size = 500 x 500 pixels)
*
/

ac = 0;
XtSetArg(al [ac] ,XmNtopAttachment,XmATTACH_WIDGET); act+;
XtSetArg(al fac] ,XmNtopWidget,lefttextframe); ac++;
XtSetArg(al [ac],XmNleftAttachment, XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNrightAttachment ,XmATTACH_POSITION); ac++;
XtSetArg(al [ac] ,XmNrightPosition,495); ac++;
XtSetArg(al [ac] ,XmNbottomAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [ac],XmNshadowType, XmSHADOW_IN); ac++;
leftpixel frame = XmCreateFrame(form,"LeftPixelFrame",al,ac);
X:HanageChi ld( leftpixelframe);
/

* create left pixeldrawingarea

*/
ac = 0;

leftpixelarea = XmCreateDrawingArea(leftpixelframe, “LeftPixelArea",al,ac);
InitGraphics(leftpixelares,&leftpixeldata);
InitMouseTracker(leftpixelarea);
XtAddCal {back(leftpixelarea,XmNexposeCal lback,Redisplay,&leftpixeldata);
XtAddCal lback( leftpixelarea, XmiexposeCal Lback,DrawAxes,’l’);
)/(:Hanagechi ld(leftpixelarea);

: create rightpixelfreme for rightpixelarea (size = 500 x 500 pixels)

/

ac = 0;
XtSetArg(al [ac] ,XmNtopAttachment ,XmATTACH_WIDGET); ac++;
XtSetArg(al [ac] ,XmNtopWidget,righttextframe); ac++;
XtSetArg(al (ac] ,XmNleftAttachment,XmATTACH_POSITION); ac++;
XtSetArg(al [ac],XmNleftPosition,505); ac++;
XtSetArg(al (ac] ,XmNrightAttachment, XmATTACH_FORM); ac++;
XtSetArg(al [ac] ,XmNbottomAttachment,XmATTACH_FORM); ac++;
XtSetArg(al (ac], XmNshadowType,XMSHADOW_IN); ac++;
rightpixelframe = XmCreateFrame(form, "RightPixelFrame", al, ac);
XtManageChild(rightpixel frame);
/*

: create right pixeldrawingarea

/

ac = 0;

rightpixelarea = XmCreateDrawingArea(rightpixelframe,"RightPixelArea®,al, ac);
InitGraphics(rightpixelarea,&rightpixeldata);
InitMouseTracker(rightpixelarea);
XtAddCal lback(rightpixelarea,XmNexposeCal lback,Redisplay,&rightpixeldata);
XtAddCal lback(rightpixelarea,XmNexposeCal Lback,DrawAxes, 'r’);
X:Managechi ld(rightpixelarea);

* realize widget

*/
XtRealizeWidget(toplevel);
XtMainLoop();
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/iifi'iiitiﬁitiiiii.tttiiiifiiiiiﬁﬁi*tiiiiﬁtttttiiiifiiiiﬁttttiiiiittiiitiﬁtifi

Eindhoven University of Technology (TUE,NL)

* Copyright(c)

Fractal imagecompression with Iterated Function Systems

Contains functions CreateUpperMenu and CreateleftRightMenu

hd : Faculty of Electrical Engineering (E)
* : Design Automation Group (ES)
* Mail address : emilevdaviper.es.ele.tue.nl
* Project :

* Supervisor : Prof. Dr. Ing. J.A.G. Jess

* File : menubars.c

* Purpose :

* Part of = IFS-CODEC

* Created on T May 12, 1992

* Created by : Emile van Duren

* Last modified on: December 16, 1992

* Modified by : Emile van Duren

* Remarks : None

it*ttitfﬁiiﬁiiitiiiiﬁttttifii'ﬁiiiiiiittiiiiitttfii*iiiiiiiﬁt'ttiiiiifiiii!i*/

#include "all.h"
/t

* forward function declarations

*/

void Addsimilitude();

void AutomaticlFSEncoding();
void AxesController();

void CalculatefractalDimension();
void CalculateMoments();
void ClearAll();
void ClearTextController();
void CondensationController();
void CopyrightMessage();
void DeterministicRendering();
void DrawControl ler();
void DrawAxes();
void DrawBifurcationDiagram();
void DrawMandelbrotSet();
void DrawRectangle();
void EraseController();
void FixSimilitude();
void GraphicalView();
void IdentityController();
void LoadFile();
void MainHelpCal lback();
void Manage();
void ModeController();
void ModeHandler();
void NondeterministicRendering();
void PixsetMessage();
void PrintMessage();
void Quit();
void SaveCol lage();
void SaveFile();
void SaveFileHandler();
void ScrollController();
void ScrollHandler();
void SourceFileHandler();
void Unmanage();
void UnzoomControl ler();
void VieweditIFSTabl eMessage();
Widget CreatelterationBox();
Widget CreateOriginBox();
Widget CreateScrollBox();

Widget CreateSimilitudeTransformBox();

Widget CreateStartPixelBox();
Widget CreatePromptBox();
Widget CreateZoomBox();

Widget CreateUpperMenu(parent)
Widget parent;

Widget uppermenu, filepul ldown,helpbutton;

contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained

in collage.c
in genetic.c
in control.c
in specials.c
in specials.c
in draw.c

in control.c
in control.c
in messages.c
in render.c
in control.c
in draw.c

in specials.c
in specials.c
in draw.c

in control.c
in collage.c
in render.c
in control.c
in filehandler.c
in messages.c
in control.c
in control.c
in handle.c
in render.c
in messages.c
in messages.c
in control.c
in collage.c
in filehandler.c
in handle.c
in control.c
in handle.c
in handle.c
in control.c
in corrrol.c
in messages.c
in boxes.c

in boxes.c

in boxes.c

in boxes.c

in boxes.c

in boxes.c

in boxes.c

Widget quitprogram,printbutton,pixsetbutton,copyrightbutton;

XmString xmstr;
/i
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* create uppermenubar
*/
uppermenu = XmCreateMenuBar(parent,"UpperMenu”, NULL,0);
XtManageChild(uppermenu);
/*

* create quit program button in file pul ldown pane

*/
ac = 0;
xmstr = XmStringCreate("Quit",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNlabelString, xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic,’Q’); ac++;
quitprogram = XmCreateCascadeButton{uppermenu,"QuitProgram”,al,ac);
XtAddCal |back(qui tprogram, XmNactivateCal lback,Quit,NULL);
XtManageChild(quitprogram);
XmStringFree(xmstr);

t ]

* create helpbutton in uppermenu

*

/

ac = 0;

xmstr = XmStringCreate("Help" ,XmSTRING_DEFAULT_CHARSET);

XtSetArg(al [ac),XmNlabelString, xmstr); ac++;

XtSetArg(al [ac] ,XmNmnemonic,’H’); ac++;

helpbutton = XmCreateCascadeButton(uppermenu, "HelpButton”,al,ac);

XtAddCal Lback(helpbutton, XmNactivateCal lback,MainHelpCal lback,NULL);

XtManageChild(helpbutton);

)(TStringFree(xmstr);

/
:/create printbutton in uppermenu

ac = 0;

xmstr = XmStringCreate("Print” , XmSTRING_DEFAULT_CHARSET);

XtSetArg(al [ac) ,XmNlabelString, xmstr); ac++;

XtSetArg(al [ac] ,XmNmnemonic,’/P’); ac++;

printbutton = XmCreateCascade8utton(uppermenu,"PrintButton”,al,ac);

XtAddCal lback(printbutton,XmNactivateCal Lback,PrintMessage,NULL);

XtManageChild(printbutton);

XmStringfree(xmstr);

/*

* create pixsetbutton in uppermenu

*/

ac = 0;

xmstr = XmStringCreate("Pixset distance”, XmSTRING_DEFAULT_CHARSET);

XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;

XtSetArg(al [ac] ,XmNmnemonic,’d’); ac++;

pixsetbutton = XmCreateCascadeButton(uppermenu,"PixsetButton”,al,ac);

XtAddCal Lback(pixsetbutton, XmNactivateCal lback,PixsetMessage,NULL);

XtManageChild(pixsetbutton);

X:lStringFree(xmstr);

/

: create copyrightbutton in uppermenu
/

ac = 0;

xmstr = XmStringCreate("Copyright(c)" XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString, xmstr); ac++;

XtSetArg(al [ac] ,XmNmnemonic,’C’); ac++;

copyrightbutton = XmCreateCascadeButton{uppermenu,"CopyrightButton", al, ac);
XtAddCal Lback(copyrightbutton, XmNactivateCal |back,CopyrightMessage,NULL);
XtManageChild(copyrightbutton);

XmStringfree(xmstr);

/*

* return value of this function
*/
return{uppermenu);

Widget CreateLeftRightMenu(parent,location)
Widget parent;
char location;

Widget abutton,apul ldown, asbutton,bdbutton, cabutton,clearbutton,ctbutton;
Widget dabutton,dbutton,dibutton,displaybutton,displaypul {down, dmbutton;
Widget dpul ldown,drawaxes,drbutton, erbutton, fdbutton, fsbutton, gabutton;
Widget gibutton,gmbutton,gvbutton, ibutton, idbutton,ipul ldown, itbutton;
Widget iterationbox, leftrightmenu, lobutton,mobutton, msbutton,nabutton;
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Widget nbutton,nibutton, nmbutton, npul ldown,optionsbutton, optionspul ldown;
Widget orbutton,promptbox, rendercontrolbutton, rendercontrolpul ldown, rtbutton;
Widget scbutton,sebutton,selectfile,spbutton,specialsbutton,specialspul ldown;
Widget tabutton,tibutton, tmbutton,transformbox, trbutton, tsbutton, tvbutton;
Widget uzbutton, vbutton,vpul ldown, vsbutton,wbutton, webutton, wgpul ldown;
Widget wpul ldown,wtpul ldown, zmbutton;

XmString xmstr;

int mode;

Drawdata *data;

data = GetWindowData(location,’p’);

if (location == ’/L’) mode = 0;

if (location == ’r’) mode = 1;

/i

* create leftrightmenubar

*/

leftrightmenu = XmCreateMenuBar(parent, "LeftRightMenu" NULL,0);
XtManageChild(leftrightmenu);

/i

* create select file button in file pulldown pane
*/

ac = 0;

xmstr = XmStringCreate(“Select file",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac),XmNmnemonic,’f’); ac++;

selectfile = XmCreateCascadeButton(leftrightmenu,#SelectFile",al,ac);
promptbox = CreatePromptBox(selectfile, location);
XtAddCal lback(selectfile,XmNactivateCal Lback,Manage, promptbox);
XtManageChild(selectfile);
XmStringFree(xmstr);

L ]

* create displaypul ldown menupane as submenu of leftrightmenu

*/

ac = 0;

displaypulldown = XmCreatePul ldownMenu(leftrightmenu,*DisplayPulldown®,al,ac);
/i

: create displaybutton for display pul ldown pane
/
ac = 0;
xmstr = XmStringCreate("Display",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNlabelString, xmstr); ac++;
XtSetArg(al [ac) ,XmNmnemonic, 'D’); ac++;
XtSetArg(al [ac) ,XmNsubMenuld,displaypul ldown); ac++;
displaybutton = XmCreateCascadeButton(leftrightmenu,"DisplayButton",al,ac);
XtManageChild(displaybutton);
XmStringFree(xmstr);
-

* create clearbutton in display pulldown pane
L ]
/

ac = 0;
xmstr = XmStringCreate("Clear" ,XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNlabelString, xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic,’C’); ac++;
clearbutton = XmCreatePushButtonGadget(displaypul ldown,"Clear",al, ac);
XtAddCal lback(clearbutton,XmNactivateCal lback,ClearAll, location);
XtManageChild(clearbutton);
XTStringFree(xmstr);
/

* create drawaxesbutton in display pul ldown pane
w

ac = 0;
xmstr = XmStringCreate(“Axes (toggle)", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac],XmNlabelString, xmstr); ac++;
XtSetArg(al [ac],XmNmnemonic,’A’); ac++;
drawaxes = XmCreatePushButtonGadget(displaypul ldown,"DrawAxes", al, ac);
XtAddCal lback(drawaxes,XmNactivateCal Lback,AxesController, location);
XtAddCal Lback(drawaxes ,XmNactivateCal lback,DrawAxes, location);
XtManageChild(drawaxes);
XmStringfree(xmstr);
/t

: create redefine origin button in display pulldown pane

/

ac = 0;
xmstr = XmStringCreate("Redefine origin", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic, /R’); ac++;
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orbutton = XmCreateCascadeButton(displaypul ldown,*0rButton®”,al,ac);
data->originbox.box = CreateOriginBox(orbutton, location);
XtAddCal lback(orbutton,XmNactivateCal Lback,ModeHardler, location);
XtAddCal Lback(orbutton,XmNac i vateCal Lback ,Manage,data->originbox.box);
XtManageChild(orbutton);
Xl:lStringFree(xmstr):
/

: create optionspul ldown menupane as submenu of Leftrightmenu

/

ac = 0;

option;pul Ldown =XmCreatePul ldownMenu(leftrightmenu,"OptionsPul ldown",al,ac);
/i

* create optionsbutton for optionspulldown pane

*/

ac = 0;

xmstr = XmStringCreate("Options", XmSTRING_DEFAULT_CHARSET);

XtSetArg(al [ac]),XmNlabelString,xmstr); ac++;

XtSetArg(al [ac] ,XmNmnemonic,’0?); ac++;

XtSetArg(al [ac) ,XmNsubMenuld, optionspul ldown); ac++;

optionsbutton = XmCreateCascadeButton(leftrightmenu, "OptionsButton",al,ac);
XtManageChild(optionsbutton);

XmStringFree(xmstr);

/*
: create viewedit ifs source image pulldown menupane (vpulldown pane)

vgul ldown = XmCreatePul ldownMenu(optionspul Ldown, *VPul ldown" ,NULL,0);
/

: create viewedit ifs source image button for vpulidown pane

/

ac = 0;
xmstr = XmStringCreate("Viewedit source image",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac],XmNmnemonic,’V’); ac++;
XtSetArg(al [ac] ,XmNsubMenuld,vpul Lldown); ac++;
vbutton = XmCreateCescadeButton(optionspul ldown,"vButton",al,ac);
XtManageChild(vbutton);
XmStringFree(xmstr);

]

: create load file button in vpulldown pane
/
ac = 0;
xmstr = XmStringCreate("Load file", XmSTRING_DEFAULT_CHARSET);
XtSetArg{al [ac] ,XmNlabelString,xmstr); ac++;
XtSetArg{al [ac] ,XmNmnemonic,’L’); ac++;
lobutton = XmCreatePushButtonGadget(vpulldown,"LoButton",al, ac);
XtAddCal Lback( lobutton, XmNactivateCal Lback,ModeControl ler,mode);
XtAddCal Lback( Lobut ton,XmNactivateCal lback ,ModeHandler, location);
XtAddCallback(|obutton,XmNactivateCal lback,LoadFile, location);
XtAddCal lback( lobutton,XmNactivateCal lback,SourceFileHandler, location);
XtManageChild(lobutton);
XmStringFree(xmstr);

*

: create draw toggle button in vpul ldown pane
/
ac = 0;
xmstr = XmStringCreate("Draw (toggle)", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic,‘D’); ac++;
drbutton = XmCreatePushButtonGadget(vpul ldown, "DrButton",al,ac);
XtAddCal lback({drbutton,XmNactivateCal lback,ModeControl ler,mode);
XtAddCal lback(drbutton, XmNactivateCal lback,ModeHandler, location);
XtAddCal Lback(drbutton,XmNactivateCal Lback,SavefileHandler,location);
XtAddCal lback(drbutton, XmNactivateCal lback,DrawController, location);
XtManageChi ld(drbutton);
XmStringFree(xmstr);
/i

* create erase (toggle) button in vpulldown pane

*/
ac = 0;
xmstr = XmStringCreate("Erase (toggle)" XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNlabelString, xmstr); ac++;
XtSetArg(al [ac],XmNmnemonic,’E‘); ac++;
erbutton = XmCreatePushButtonGadget(vpul ldown, "ErButton®,al,ac);
XtAddCal Lback(erbutton, XmNactivateCal lback,ModeControl ler,mode);
XtAddCal lback(erbutton, XmNactivateCal | back,MooeHandler, location);
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XtAddCal lback(erbutton, XmNactivateCal lback, SaveFileHandler, location);
XtAddCal Lback(erbutton, XmNactivateCallback,EraseControl ler, location);
XtManageChild(erbutton);
XmStringFree(xmstr);
/*

: create save file button in vpulldown pane

/

ac = 0;
xmstr = XmStringCreate("Save file" XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic,/S’); ac++;
vsbutton = XmCreatePushButtonGadget(vpul ldown,"VsButton",al,ac);
XtAddCal Lback(vsbutton,XmNactivateCal lback,ModeControl ler,mode);
XtAddCal |back(vsbutton,XmNactivateCal {back,ModeHandler, location);
XtAddCal lback(vsbutton,XmNactivateCal Lback,SaveFileHandler, location);
XtAddCal lback(vsbutton,XmNactivateCal lback, SaveFile,location);
XtManageChi ld(vsbutton);
xTStringFree(xmstr);
/

: create viewedit ifs code pulldown menupane (wpulldown pane)

/

wpul ldown = XmCreatePul LdownMenu(optionspul Ldown, "WPul ldown" NULL,0);

/t

* create viewedit ifs code button for wpulldown pane
*/

ac = 0;

xmstr = XmStringCreate("Viewedit IFS-code" XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;

XtSetArg(al [ac],XmNmnemonic, 'w’); ac++;

XtSetArg(al [ac] ,XmNsubMenuld,wpul ldown); ac++;

wbutton = XmCreateCascadeButton(optionspul ldown,"WButton",al,ac);
XtManageChi ld(wbutton);

X:lsrringFree(xmstr);

* create graphical view pul ldown menupane (wgpulldown pane)
*

wgpul ldown = XmCreatePul | downMenu(wpul (down, "WgPul ldown* ,NULL,0);

/i

* create graphical view button for wgpulldown pane
*/

ac = 0;

xmstr = XmStringCreate("Graphical view",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;

XtSetArg(al [ac] ,XmNmnemonic,’G’); ac++;

XtSetArg(al [ac],XmNsubMenuld, wgpul ldown); ac++;

gvbutton = XmCreateCascadeButton(wpul ldown, “GvButton",al,ac);
XtManageChi ld(gvbutton);

XmStringFree(xmstr);

/i

: create .ifs button in wgpul ldownpane

/

ac = 0;

xmstr = XmStringCreate(”.ifs", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;
XtSetArg(al {ac] ,XmNmnemonic,’i’); ac++;

gibutton = XmCreatePushButtonGadget(wgpul ldown,"GiButton",al,ac);
XtAddCal lback(gibutton,XmNactivateCal lback, ModeControl ler,mode+2);
XtAddCal lback(gibutton,XmNactivateCal lback,ModeHandler, location);
XtAddCal lback(gibutton,XmNactivateCallback,GraphicalView,mode);
XtManageChild(gibutton);

XmStringFree(xmstr);

/*

* create .man button in wgpulldownpane

*/

ac = 0;

xmstr = XmStringCreate(".man" ,XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;

XtSetArg(al {ac]l,XmNmnemonic,/m’); ac++;

gmbutton = XmCreatePushButtonGadget (wgpul ldown, *GmButton®,al,ac);
XtAddCal lback(gmbutton,XmNactivateCal lback,ModeControl ler,mode+2);
XtAddCal lback(gmbutton,XmNactivateCal lback,ModeHandler, location);
XtAddCal Lback(gmbutton,XmNactivateCal lback,GraphicalView,mode+2);
XtManageChi ld(gmbutton);

XmStringFree(xmstr);

/i
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* create .aut button in wgpul ldownpane

*/
ac = 0;
xmstr = XmStringCreate(".aut",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac]l ,XmNmnemonic,’a’); ac++;
gabutton = XmCreatePushButtonGadget(wgpul ldown,"GaButton",al ,ac);
XtAddCal Lback(gabutton,XmNactivateCal Lback ,ModeControl Ler, mode+2);
XtAddCal Lback(gabutton,XmNactivateCal lback, ModeHandler, location);
XtAddCal lback(gabutton, XmNactivateCal Lback,GraphicalView,mode+4);
XtManageChi ld(gabutton);
XTStringFree(xmstr);

* create textual view pulldown menupane (wtpulldown pane)
*/

wtpul ldown = XmCreatePul ldownMenu(wpul ldown, "WtPul ldown" NULL,0);
/t

* create textual view button for wtpulldown pane

*/

ac = 0;

xmstr = XmStringCreate("Textual view" XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;

XtSetArg(al [ac] ,XmNmnemonic,’T/); ac++;

XtSetArg(al [ac] ,XmNsubMenuld,wtpul ldown); ac++;

tvbutton = XmCreateCascadeButton(wpul ldown, *GvButton",al, ac);
XtManageChild(tvbutton);

XmStringFree(xmstr);

*

* create .ifs button in wtpulldownpane
»*
/

ac = 0;
xmstr = XmStringCreate(".ifs", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString, xmstr); ac++;
XtSetArg(al [ac]l,XmNmnemonic,’i’); ac++;
tibutton = XmCreateCascadeButton{wtpul ldown,*TiButton®,al,ac);
data->scrol lbox.box = CreateScrol lBox(tibutton, location);
XtAddCal lback(tibutton,XmNactivateCal Lback,ModeControl ler,mode+2);
XtAddCal lback(tibutton,XmNactivateCal Lback,ModeHandler, location);
XtAddCal Lback(tibutton,XmNactivateCal lback,ScrollControl ler,mode);
XtAddCal lback(tibutton,XmNactivateCal lback,ScrollHandler,location);
XtManageChi ld(tibutton);
XmStringFree(xmstr);
/*

: create .man button in wtpul ldownpane

/

ac = 0;
xmstr = XmStringCreate(".man" XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac],XmNlabelString, xmstr); ac++;
XtSetArg(al [ac],XmNmnemonic,’m’); ac++;
tmbutton = XmCreateCascadeButton(wtpul ldown,*TmButton",al,ac);
data->scrol lbox.box = CreateScrol lBox(tmbutton, location);
XtAddCal L back(tmbutton,XmNactivateCal lback,ModeControl ler,mode+2);
XtAddCal lback(tmbutton, XmNactivateCal lback,ModeHandler, location);
XtAddCal back( tmbutton, XmNactivateCal lback,ScrollControl ler,mode+2);
XtAddCal | back( tmbutton,XmNactivateCal lback,Scrol lRandler, location);
XtManageChi ld(tmbutton);
XmStringFree(xmstr);
/i

* create .aut button in wtpulldownpane

*/
ac = 0;
xmstr = XmStringCreate(".aut" , XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString, xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic,’a’); ac++;
tabutton = XmCreateCascadeButton{wtpul ldown,"TaButton", al,ac);
data->scrol lbox.box = CreateScrol lBox(tabutton, location);
XtAddCal lback(tabutton, XmNactivateCal Lback,ModeControl ler,mode+2);
XtAddCal lback(tabutton,XmNactivateCal lback,ModeHandler, location);
XtAddCal Lback( tabutton, XmNactivateCal Lback,Scrol lControl ler, mode+4);
XtAddCal lback(tabutton,XmNactivateCal lback,ScrollHandler, location);
XtManageChild(tabutton);
XTStringFree(xmstr);
/

: create textual edit button in viewedit IFS-code pul ldown pane



230 B. IFS-CODEC source code

ac = 0;
xmstr = XmStringCreate("Textual edit", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al[ac] ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic,’e’); ac++;
webutton = XmCreateCascadeButton(wpul ldown, "WeButton”,al,ac);
XtAddCal Lback(webutton, XmNactivateCal lback,ModeControl ler,mode+2);
XtAddCal lback(webutton,XmNactivateCal lback,Modeandler, location);
XtAddCal lback(webutton,XmNactivateCal lback,ClearTextController,location);
XtAddCal lback(webutton,XmNactivateCal lback,Viewedit1FSTableMessage, location);
XtManageChild(webutton);
XmStringFree(xmstr);
/ﬁ
* create interactive IFS-encoding pul ldown menupane (ipul ldown pane)
*

ipul ldown = XmCreatePul ldownMenu(optionspul Ldown, *1Pul ldown",NULL,0);
*

/

* create interactive IFS-encoding button for ipul ldown pane
*/

ac = 0;

xmstr = XmStringCreate("Interactive 1FS-encoding”,XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac]l ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic,’1’); ac++;

XtSetArg(al [ac) ,XmNsubMenuld, ipul Lldown); ac++;

ibutton = XmCreateCascadeButton(optionspul ldown, "IButton",al,ac);
XtManageChild(ibutton);

XTStringFree(xmstr);

* create add similitude button in ipul ldown pane
*
/

ac = 0;
xmstr = XmStringCreate("Add similitude®, XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString, xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic, ‘A’); ac++;
asbutton = XmCreatePushButtonGadget(ipul ldown,"AsButton", al, ac);
XtAddCal Lback(asbutton,XmNactivateCal lback,ModeControl ler,mode+4);
XtAddCal lback(asbutton,XmNactivateCal Lback ,ModeHandler, Location);
XtAddCal lback(asbutton,XmNactivateCal lback,ClearTextControl ler, location);
XtAddCal lback(asbutton,XmNactivateCal lback,SaveFileHandler, location);
XtAddCal lback(asbutton,XmNactivateCal lback,AddSimilitude, location);
XtManageChild(asbutton);
XmStringFree(xmstr);

*

* create transform similitude button in ipulldown pane

*/
ac = 0;
xmstr = XmStringCreate("Transform similitude",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;
XtSetArg(al {ac] ,XmNmnemonic,’T’); ac++;
tsbutton = XmCreateCascadeButton(ipul ldown,"TsButton",al ,ac);
transformbox = CreateSimilitudeTransformBox(tsbutton, location);
XtAddCal Lback(tsbutton,XmNactivateCal lback,ModeControl ler,mode+4);
XtAddCal Lback(tsbutton,XmNactivateCal lback,ModeHandler, Location);
XtAddCal lback(tsbutton, XmNactivateCal lback,ClearTextController,location);
XtAddCal Lback(tsbutton,XmNactivateCal lback,SaveFileHandler, location);
XtAddCal lback( tsbutton,XmNactivateCal lback,Manage, transformbox);
XtManageChi ld( tsbutton);
XmStringFree(xmstr);

»

* create fix similitude button in ipulldown pane
*
/
ac = 0;
xmstr = XmStringCreate("Fix similitude",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac) ,XmNmnemonic, ‘F’); ac++;
fsbutton = XmCreatePushButtonGadget(ipul ldown,"FsButton",al, ac);
XtAddCal lback(fsbutton,XmNactivateCal lback,ModeControl ler,mode+4);
XtAddCal lback(fsbutton,XmNactivateCal lback,ModeHandler, location);
XtAddCal lback( fsbutton,XmNactivateCallback,ClearTextControl ler, location);
XtAddCal Lback( fsbutton,XmNactivateCal lback,FixSimilitude,location);
XtManageChild(fsbutton);
XmStringFree(xmstr);
/i
* create save collage button in ipulldown pane
*
/
ac = 0;
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xmstr = XmStringCreate("Save col lage", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac],XmNlabelString,xmstr); ac++;
XtSetArg(al [ac),XmNmnemonic, 'S’); ac++;
schutton = XmCreatePushButtonGadget(ipul Ldown,"ScButton",al,ac);
XtAddCal lback(scbutton,XmNactivateCal Lback,ModeControl ler, mode+4);
XtAddCal Lback(scbutton, XmNactivateCal |back,ModeHandler, location);
XtAddCal lback(scbutton, XmNactivateCal lback,ClearTextController, location);
XtAddCal Lback(scbutton, XmNactivateCal lback,SaveFileHandler, location);
XtAddCal lback (scbutton,XmNactivateCal Lback,SaveCol lage, location);
XtAddCal Lback(scbutton,XmNactivateCal |back,Unmanage, transformbox);
XtManageChi ld(scbutton);
Xr:lStringFree(xnstr);
/

* create automatic IFS-encoding pul ldown menupane (apulldown pane)

*

/

apul ldown = XmCreatePul ldownMenu(opt ionspul Ldown, "APul Ldown",NULL,0);
/*

* create automatic IFS-encoding button for apul ldown pane

*/

ac = 0;

xmstr = XmStringCreate("Automatic IFS-encoding”,XmSTRING_DEFAULT_CHARSET);
XtSetArg(al fac], XmNlabelString, xmstr); ac++;

XtSetArg(al [ac] ,XmNmnemonic, 'A’); ac++;

XtSetArg(al fac] , XmNsubMenuld, apul ldown); ac++;

abutton = XmCreateCascadeButton(opt ionspul ldown, "AButton®,al ,ac);
XtManageChild(abutton);

XmStringFree(xmstr);

*

* create identity button in apulldown pane

*/

ac = 0;

xmstr = XmStringCreate("Identity (toggle)", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac],XmNlabelString,xmstr); ac++;

XtSetArg(al [ac] ,XmNmnemonic,’17); ac++;

idbutton = XmCreatePushButtonGadget(apul Ldown,"IdButton®,al,ac);
XtAddCal Lback(idbutton, XmNactivateCallback, IdentityController, location);
XtManageChild(idbutton);

XmStringFree(xmstr);

/* ,

* create collage button in apulldown pane

*/

ac = 0;
xmstr = XmStringCreate("Calculate* XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic,’C’); ac++;
cabutton = XmCreatePushButtonGadget(apul Ldown, "CaButton”,al,ac);
XtAddCal lback(cabut ton,XmNactivateCal Lback,ModeControl ler ,mode+6);
XtAddCal lback(cabutton,XmNactivateCal Lback,ModeHandler, location);
XtAddCal Lback{cabutton,XmNactivateCal Lback,ClearTextController,location);
XtAddCal Lback(cabutton, XmNactivateCal Lback, AutomaticlFSEncoding, location);
XtManageChi ld(cabutton);
XmStringFree(xmstr);
/*

* create deterministic IFS-decoding pul ldown menupane (dpulldown pane)

*

dpul ldown = XmCreatePul ldownMenu(optionspul ldown, "DPul ldown®,NULL,0);
*

: create deterministic IFS-decoding button for dpul ldown pane
/
ac = 0;
xmstr =XmStringCreate("Deterministic IFS-decoding”,XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac),XmNlabelString,xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic, 'D’); ac++;
XtSetArg(al [ac] ,XmNsubMenuld,dpul ldown); ac++;
dbutton = XmCreateCascadeButton(optionspul ldown, "DButton",al, ac);
XtManageCh1ild(dbutton);
XmStringFree(xmstr);
/*
* create .ifs button in dpul ldownpane
*
/
ac = 0;
xmstr = XmStringCreate(".ifs", XmSTRING_DEFAULT _CHARSET);
XtSetArg(al [ac) ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac) ,XmNmnemonic,'i’); ac++;
dibutton = XmCreatePushButtonGadget (dpul Ldown, "DiButton",al,ac);
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XtAddCal Lback(dibutton,XmNactivateCal lback,ModeControl ler,mode+8);
XtAddCal Lback(dibutton,XmNactivateCal lback,ModeHandler, location);
XtAddCal lback(dibutton,XmNactivateCal lback,DeterministicRendering,mode);
XtManageChild(dibutton);
XmStringFree{xmstr);
/I‘

* create .man button in dpul ldownpane

*/
ac = 0;
xmstr = XmStringCreate(".man", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac],XmNlabelString, xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic,’m’); ac++;
dmbutton = XmCreatePushButtonGadget(dpul ldown, "DmButton",al,ac);
XtAddCal Lback (dmbutton,XmNactivateCal Lback,ModeControl Ler,mode+8);
XtAddCal Lback(dmbutton,XmNactivateCal lback,ModeHandler, location);
XtAddCal Lback(dmbutton,XmNactivateCallback,DeterministicRendering, mode+2);
XtManageChi ld(dmbutton);
XTstringFree(xmstr),-
/

* create .aut button in dpul ldownpane

*/

ac = 0;

xmstr = XmStringCreate(".aut", XmSTRING_DEFAULT_CHARSET);

XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;

XtSetArg(al [ac] ,XmNmnemonic, ‘a’); ac++;

dabutton = XmCreatePushButtonGadget{dpul ldown, "DaButton® al,ac);

XtAddCal Lback(dabutton,XmNactivateCal lback,ModeController ,mode+8);
XtAddCal Lback(dabutton,XmNactivateCal lback,ModeHandler, location);

XtAddCal Lback(dabutton,XmNactivateCal Lback,DeterministicRendering,mode+4);
XtManageChild(dabutton);

XmStringFree{xmstr);

/*

* create nondeterministic 1FS-decoding pul ldown menupane (npulldown pane)
-

npul ldown = XmCreatePul ldownMenu(optionspul Ldown, "NPul ldown®,NULL,0);

/*

* create nondeterministic 1FS-decoding button for npul ldown pane
*/

ac = 0;

xmstr =XmStringCreate("Noneterministic IFS-decoding",
XmSTRING_DEFAULT_CHARSET);

XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;

XtSetArg(al [ac] ,XmNmnemonic,'N/); ac++;

XtSetArg(al [ac] ,XmNsubMenuld, npul ldown); ac++;

nbutton = XmCreateCascadeButton(optionspul ldown,"NButton",al,ac);

XtManageChild(nbutton);

XmStringfree(xmstr);

t

* create .ifs button in npul ldownpane
-
/

ac = 0;
xmstr = XmStringCreate(".ifs" XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic,’i’); ac++;
nibutton = XmCreatePushButtonGadget(npul ldown, "NiButton®",al,ac);
XtAddCal lback(nibutton,XmNactivateCal lback,ModeControl ler,mode+10);
XtAddCal Iback(nibutton, XmNactivateCal lback, ModeHandler, location);
XtAddCal Lback({nibutton,XmNactivateCal Lback,NondeterministicRendering,mode);
XtManageChi ld(nibutton);
XmStringFree(xmstr);
/*

* create .man button in npul ldownpane

]

/

ac = 0;
xmstr = XmStringCreate(".man",6 XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;
XtSetArg(al fac] ,XmNmnemonic,’m’); ac++;
nmbutton = XmCreatePushButtonGadget(npul ldown,"NmButton',al,ac);
XtAddCal Lback (nmbutton, XmNactivateCal lback, ModeControl ler,mode+10);
XtAddCal Lback(nmbut ton, XmNactivateCal lback, ModeHandler, location);
XtAddCal Lback(nmbutton,XmNactivateCal lback,NondeterministicRendering,mode+2);
XtManageChi ld(nmbutton);
XmStringFree(xmstr);
/t

* create .aut button in npul ldownpane
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*/
ac = 0;
xmstr = XmStringCreate(", aut", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al (ac) ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac],XmNmnemonic,’a’); ac++;
nabutton = XmCreatePushButtonGadget(npul ldown,"NaButton", al, ac);
XtAddCal lback(nabutton, XmNactivateCal lback,ModeControl ler,mode+10);
XtAddCal lback(nabutton,XmNactivateCal Lback,ModeHandler, location);
XtAddCal Lback(nabutton,XmNactivateCal lback,NondeterministicRendering, mode+4);
XtManageChild(nabutton);
XmStringFree(xmstr);
/*
* create rendercontrol pulldown menupane as submenu of leftrightmenu
*/

ac = 0;

rendert':ontrolpul ldown = XmCreatePul ldownMenu(leftrightmenu,"RenderControlPul ldown",al,ac);
/*

* create rendercontrolbutton for rendercontrol pulldown pane

*/

ac = 0;

xmstr = XmStringCreate("Render control",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac),XmNlabelString,xmstr); ac++;

XtSetArg(al [ac),XmNmnemonic, /R’ ); ac++;

XtSetArg(al [ac] ,XmNsubMenuld, rendercontrolpul ldown); ac++;

rendercontrolbutton = XmCreateCascadeButton(leftrightmenu,"RenderControlButton", al ,ac);

XtManageChi ld(rendercontrolbutton);
XmStringFree(xmstr);
/t

* create define startpixel button in rendercontrol pulldown pane
*
/

ac = 0;

xmstr = XmStringCreate("Define startpixel”,XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac],XmNlabelString,xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic,’s’); ac++;

spbutton = XmCresteCascadeButton(rendercontrolpul | down,"SpButton”,al,ac);
data->startpixelbox.box = CreateStartPixelBox(spbutton, location);
XtAddCal Lback(spbut ton, XmNact ivateCal lback,Manage,data->startpixelbox.box);
XtManageChi ld(spbutton);
XxmStringFree(xmstr);

*

* create define amount of iterations button in rendercontrol pulldown pane
*
/
ac = 0;
xmstr = XmStringCreate("Define #iterations",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic,’i’); ac++;
itbutton = XmCreateCascadeButton(rendercontrolpul ldown,*1tButton®,al,ac); N
data->niterations = 1;
data->iterationbox.box = CreatelterationBox(itbutton, location);
XtAddCel Lback(itbutton,XmNactivateCal lback,Manage,data->iterationbox.box);
XtManageChi ld(itbutton);
XmStringFree(xmstr);
/t
* create zoom button in rendercontrol pulldown pane
*/
ac = 0;
xmstr = XmStringCreate("Zoom area", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac),XmNmnemonic,’2’); ac++;
zmbutton = XmCreateCascadeButton(rendercontrolpul ldown,"ZmButton®”,al,ac);
data->zoombox.box = CreateZoomBox(zmbutton, location);
XtAddCal lback(zmbutton, XmNactivateCal |back,Manage,data->zoombox.box);
XtManageChi ld(zmbutton);
XmStringFree(xmstr);
/*
: create unzoom button in rendercontrol pulldown pane
/
ac = 0;
xmstr = XmStringCreate(*Unzoom area",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic, ‘U’); ac++;
uzbutton = XmCreateCascadeButton(rendercontrolpul ldown, "UzButton",al,ac);
XtAddCal | back(uzbutton, XmNactivateCal Lback,UnzoomControl ler, location);
XtManageChi ld(uzbutton);
XmStringFree(xmstr);
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/*

* create condensation (toggle) button in rendercontrol pulldown pane
*/

ac = 0;

xmstr = XmStringCreate("Condensation (toggle)" , XmSTRING_DEFAULT_CHARSET);
XtSetArg(al fac] ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac) ,XmNmnemonic,’C’); ac++;
ctbutton = XmCreateCascadeButton(rendercontrolpul ldown,"CtButton®,al,ac);
XtAddCal Lback(ctbutton,XmNactivateCal Lback,CondensationControl ler, location);
XtManageChi ld(ctbutton);
XmStringFree(xmstr);
/*

* create specials pulldown menupane as submenu of leftrightmenu

*/
ac = 0;
seecialspulldoun = XmCreatePul ldownMenu(leftrightmenu,“SpecialsPul ldown",al,ac);
/

* create specials button for specials pulldown pane

*/

ac = 0;

xmstr = XmStringCreate("Specials",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac) ,XmNmnemonic,’S’); ac++;

XtSetArg(al [ac] ,XmNsubMenuld, specialspul ldown); ac++;
specialsbutton = XmCreateCascadeButton(leftrightmenu,"SpecialsButton",al,ac);
XtManageChi ld(specialsbutton);

xmStringFree(xmstr);

/*

* create rectangle button in specials pulldown pane

*/

ac = 0;

xmstr = XmStringCreate("Rectangle" , XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;

XtSetArg(al [ac] ,XmNmnemonic,’/R’); ac++;

rtbutton = XmCreateCascadeButton(specialspul ldown,"RtButton", al, ac);
XtAddCal Lback(rtbutton,XmNactivateCal Lback,DrawRectangle, location);
XtManageChild(rtbutton);

XmStringfree(xmstr);

w

.
* create bifurcation diagram button in specials pulldown pane
*

ac = 0;
xmstr = XmStringCreate("Bifurcation diagram",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac) ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic,’B’); ac++;
bdbutton = XmCreateCascadeButton(specialspul ldown,”BdButton®,al,ac);
XtAddCal {back(bdbutton,XmNactivateCal Lback,ModeControl Ler,mode+14);
XtAddCal lback(bdbutton, XmNactivateCal Lback,ModeHandler, location);
XtAddCal Lback(bdbut ton,XmNactivateCal Lback,DrawBifurcationDiagram, location);
XtManageChild(bdbutton);
XmStringFree(xmstr);
/t

* create mandelbrot set button in specials pul ldown pane

*/
ac = 0;
xmstr = XmStringCreate("Mandelbrot set" , XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac] ,XmNmnemonic, 'M’); ac++;
msbutton = XmCreateCascadeButton(specialspul ldown,"MsButton®,al ,ac);
XtAddCal Lback(msbutton, XmNactivateCal Lback,ModeControl ler,mode+16);
XtAddCal Lback(msbutton,XmNactivateCal lback,ModeHandler, location);
XtAddCal Lback(msbutton, XmNactivateCal Lback,DrawMandelbrotSet, location);
XtManageChild(msbutton);
XmStringFree(xmstr);

w*

: create moment sequence button in specials pulldown pane
/

ac = 0;
xmstr = XmStringCreate("Moment sequence”,XmSTRING_DEFAULT_CHARSET);
XtSetArg(al [ac] ,XmNlabelString,xmstr); ac++;
XtSetArg(al [ac) ,XmNmnemonic,’s’); ac++;
mobutton = XmCreateCascadeButton(specialspulldown,*MoButton”, al,ac);
XtAddCal Lback(mobutton, XmNactivateCal lback,Calcul ateMoments, location);
XtManageChi ld(mobutton);
XmStringFree(xmstr);
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,*

* create fractal dimension button in specials pulldown pane
*/

ac = 0;

xmstr = XmStringCreate(“fFractal dimension",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al (ac] ,XmNlabelString, xmstr); ac++;

XtSetArg(al [ac] ,XmNmnemonic,’f’'); ac++;

fdbutton = XmCreateCascadeButton(specialspul ldown,*fdButton", al,ac);

XtAddCal Lback( fdbutton, XmNactivateCal lback,CalculatefractalDimension, location);
XtManageChi ld(fdbutton);

XTStringFree(xmstr);

/

* return value of this function
*/

return(leftrightmenu);
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/...tﬁﬁtttiiittt***iIitttittiitiﬁ!iiiiiittiiiiitiitittﬁ..ttttttttttiittiiiitiit

* Copyright(c) : Eindhoven University of Technology (TUE,NL)
Faculty of Electrical Engineering (E)
Design Automation Group (ES)

Mail address emi levdaviper.es.ele.tue.nl

Project : Fractal imagecompression with Iterated Function Systems
Supervisor : Prof. Dr. Ing. J.A.G. Jess

File : messages.c

Purpose : Contains callbacks for helpmessages and warnings

Part of : IFS-CODEC

Created on : June 02, 1992

Created by : Emile van Duren

Last modified on: November 20, 1992
Modified by : Emile van Duren

Remarks : None
****ittttttttttiiiiiiiittttttttttttti..ttttttttttttttttti.tttttttt*iﬁﬁiiiiiit/

LR B R BE BE BN BN BE R B BN

#include "all.h®

*
* forward function declarations
*

float PixsetDistance(); /* contained in genetic.c */
void Passage(); /* contained in control.c */
void Unmanage(); /* contained in control.c */
Drawdata *GetWindowData(); /* contained in control.c */
Widget GetWindow(); /* contained in control.c */

void CreateMessageBox(w,help_str,what, location)
Widget w;
char *help_str[];
char what, location;

{
Widget messagebox,messagetext;
XmString xmstr;
int i,code;
/t
* create messagebox
*/
= 0;
switch(what)
{
case ’'A’:
xmstr = XmStringCreate("help information",XmSTRING_DEFAULT_CHARSET);
code = 0;
break;
case ‘B’:

xmstr = XmStringCreate("help information",XmSTRING_DEFAULT_CHARSET);

if (location == 'l’) code = 2;
if (location == ’r’) code = 3;
break;

case 'C’:

xmstr = XmStrlngCreate("uarntng" XmSTRING_DEFAULT_CHARSET);
if (location == '|’) code
if (location == ‘r’) code
break;

case 'D’:
xmstr = XmStrlngCreate("uarnlng" XmSTRING_DEFAULT_CHARSET);
if (location == ’|’) code
if (location == ’r’) code
break;

case ‘E’:
xmstr = XmStringCreate(“message",XmSTRlNG_DEFAULT_CHARSET);
if (location == ’|’) code = 8;
if (location == ’r’) code = 9;

5:

7;

break;

case 'F’:
xmstr = XmStringCreate("message" ,XmSTRING_DEFAULT_CHARSET);
code = 10;
break;

case ‘G’:
xmstr = XmStringCreate("Copyright(c)",XmSTRING_DEFAULT_CHARSET);
code = 12;

break;
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)
XtSetArg(al [ac] ,XmNdialogTitle,xmstr); ac++;
XtSetArg(al [ac],XmNautoUnmanage, FALSE); ac++;
messagebox = XmCreateMessageDialog(w,"MessageBox",al, ac);
XmStringFree(xmstr);
/i
* we don’t need the helpbutton and the cancelbutton, so unmenage them
*/
XtUnmanageChi ld(XmMessageBoxGetChi ld(messagebox, XmDIALOG_HELP_BUTTON));
XtUnmanagecChi L d(XmMessageBoxGetChi ld(messagebox, XmDIALOG_CANCEL_BUTTON));

/i

* retreive the message text widget and left justify the text
*/

ac = 0;

XtSetArg(al [ac] ,XmNal ignment ,XmAL IGNMENT_BEGINNING); ac++;
messagetext = XmMessageBoxGetChild(messagebox,XmDIALOG_MESSAGE_LABEL);
/i

* add OK-cal lback
*/

XtAddCal | back(messagebox,XmNokCal Lback,Passage, code);
XtAddCal Lback(messagebox, XmNokCal lback,Unmanage,messagebox);
/i

* count the text up to the first NULL string

*

/
for (i=0;help_str[i1[0)!1="\0’;i++);
/i

* convert the stringarray to an XmString array and set it as the
* messagetext

*/

ac = 0;

xmstr = StringArrayToXmstring(help_str,i);

XtSetArg(al [ac) ,XmNmessageString,xmstr); ac++;
XtSetValues(messagebox,al,ac);

,i

* display the helpmessage

*/

XtManageChi ld(messagebox);
XmStringFree(xmstr);

void MainHelpCallback(w)
Widget W;

static char *help_strl = {
“1) The upper two screens are textareas",
"2) The lower two screens are pixeldrawingareas”,
»3) The left and rightwindow contain the same utilities®,
") The initial origins are set to center of areas, i.e. (0,0)",
“");

if (firsthelp)
<

CreateMessageBox(w, help_str,’A’ ,NULL);
firsthelp = FALSE;
>

void FileHelpCallback(w, location)
Widget W;
char location;

Drawdata *data;

static char *help_str[]l = (
“Specify a filename WITHOUT extension, because the program",
"will determine the appropriate extension itself. By looking",
nat the file extensions (with UNIX command ls) you can see",
“what kind of data each file contains:",

’
»filename.img contains a sequence of integer (x,y) coordinates,”,

" which specify a user drawn image.",
"filename.col contains a sequence of integer (x,y) coordinates,”,
" which specify the image of a user created collage.",

"filename.man contains the code of an IFS that is specified by",
" the corresponding collage.”,
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“filename.aut contains the code of an IFS that is generated by",

" the program to approximate an lmage ",

"filename.ifs contains the code of an IFS that is created by the",
" user with a source editor. For more information,",

" push the Viewedit IFS code button.",

nn

"If you want to save a rendered image, just push the savebutton",
"in the viewedit source image menu. You will find the rendered",
"image in filename.img which you can rename in UNIX if you wish.",
UIII);

data = GetWindowData(location,’p’);
if (data->first.filehelp)

(
CreateMessageBox(w, help_str,’B’,location);
data->first.filehelp = FALSE;

)

void FileOpendarning(w,location)

Widget w;
char location;

Drawdata *data;
static char *help_str{l = {

"WARNING: file could not be opened", n);

data = GetWindowData(location,’p’);
if (data->first.fileopenwarning)

{
CreateMessageBox(w,help_str,’C’, location);
data->first.fileopenwarning = FALSE;

)

void OriginWarning(w, location)

Widget w;
char location;

Drawdata *data;
static char *help_str(] = {

"WARNING: changing coordinates while tiling is not very,",
“smart, because this will lead to an improper 1FS-code","");

data = GetWindowData(location,’p’);
if (data->first.originwarning)

(
CreateMessageBox(w, help_str,’D’, location);
data->first.originwarning = FALSE;

)

void VieweditlFSTableMessage(w, location)

Widget w;
char location;

Drawdata *data;
static char *help_str() = (

“You can do this with VI or Emacs, (obey the following format 1)",
L1} L1}

’
"Each line in the transformation table contains 7 elements, (i.e.”,

“a,b,c,d,e, f,p), contained in the following floating intervals:”,

"un

“a,b,c,d in interval [-1.000,1.000] [dimensionless]",

ve, f in interval [-250.00,250.00] ([pixels]",

"p in interval (0.000,1.000] [x0.01 percent)¥,

nan

“Each line must be terminated by a carriage return. If you want",

“the program to determine the probabilities p, just set the file",

“extension to .man, select the filename and push the save collage",

"button in the interactive IFS encoding menupane.",
llll)'-

= GetWindow(location, 'p’);

data = GetWindowData(location, 'p’);

if

(data->first.tablemessage)
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(
CreateMessageBox(w, help_str,’E’, location);
data->first.tablemessage = FALSE;

}

void PrintMessage(w)
Widget w;
L4
static char *help_str(] = (
“You can do this by opening an xterm window",
“and applying the following procedure:",

nwaa
U

“"xwd > filename_1",
nn
"Af{er the cursor has changed from an arrow into a“,
“crosshair, put the cursor in the desired window and",
"push the left mousebutton. After the second beep type:",
I o
"xpr -dev ps filename_1 > filename_2",
nu
"You can view the printfile with:",
nn
“gs'filename_Z",
n lll
“You can print the printfile with:%,
[ ]
"lp'-dhpps filename_2",
llll);
if (printmessage)
{
CreateMessageBox(w, help_str,’F’);
printmessage = FALSE;
>

void PixsetMessage(w)
Widget w;
<
float distance;
distance = PixsetDistance(w,1);
printf("pixsetdistance = %f\n" distance);

void CopyrightMessage(w)
Widget w;

<

static char *help_str{] = (

"Copyright(c): Eindhoven University of Technology (TUE,NL)",
" Faculty of Electrical Engineering (E)",
n Design Automation Group (ES)",
nn

“Au;hor : Emile van Duren*,
"un

L4
“All rights reserved. No part of this software shall be",
“reproduced, stored in a retrieval system, or transmitted",
"by any means without written permission from NL/TUE/E/ES.",
llll);

if (copyrightmessage)
14

CreateMessageBox(w, help_str,/G’);
copyrightmessage = FALSE;
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/ﬁﬁﬁﬁﬁﬁ*iﬁiiiﬁﬁﬁi......tttttttﬁﬁﬁﬁﬁﬁﬁﬁﬁiiﬁﬁﬁﬁﬁﬁﬁtﬁﬁﬁﬁﬁiiiﬁﬁﬁﬁﬁﬁﬁi....ﬁiiiittttt

* Copyright(c)

Eindhoven University of Technology (TUE,NL)

* : Faculty of Electrical Engineering (E)

bd : Design Automation Group (ES)

* Mail address : emilevddviper.es.ele.tue.nl

* Project : Fractal imagecompression with lterated Function Systems
* Supervisor : Prof. Dr. Ing. J.A.G. Jess

* File : operators.c

* Purpose : Contains genetic operators for genetic algorithm
* Part of : [IFS-CODEC

* Created on : September 30, 1992

* Created by : Emile van Duren

* Last modified on: December 01, 1992

* Modified by : Emile van Duren

* Remarks : None

.
ii******ﬁﬁ..**ttiitttﬁiﬁﬁﬁﬁﬁi*i*ﬁﬁﬁﬁﬁﬁttﬁiﬁﬁﬁﬁﬁﬁﬁiﬁﬁﬁﬁi..ﬁ.iiiiitttttiiﬁﬁﬁﬁiﬁ/

#include "all.h"

int SelectGeneticOperator()

<

>

b

/ﬁ

* initialize operator selection probabilities
*/

static float operator[] = ( P_MACRO, P_MICRO, P_MIXED, P_MUTATE, P_JUMP, P_SCALE, P_ROTATE, P_TRANSLATE

int i=0,p=0;

unsigned long seed;
Boolean found = FALSE;

/t
* roulette
* selected
*
*/
seed = rand(

wheel operator selection, so the chance of each operator to be
is directly proportional to its probability as initialized above

);

while (i < 8 && !found)

4

p += 32767*(operatorl[il);
if (seed <= p) found = TRUE;

i++;
)
/i
* return va
*/
return{i);

lue of this function

void MacroCrossOver(parent1,parent2,child1,child2)
Chromosome *parent1,*parent2,*childl,*child2;

4

char *monitor = "monitor.dat";

int mask;

Boolean debug = DEBUG;

FILE *file;
/.
* initializ
*/
childl->a
childl->b
childl->c
childl->d
childl->e
child1->f
child2->a
child2->b
child2->c
child2->d
child2->e
child2->f
/t

* generate
*/
mask = (int)
/ﬁ

e child to be equal to parent

parent1->a;
parent1->b;
parent1->c;
parent1->d;
parenti->e;
parent1->f;
parent2->a;
parent2->b;
parent2->c;
parent2->d;
parent2->e;
parent2->f;

random mask as element of {1..63)

(rand()/528.5 + 1);
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* update file monitor.dat (next 3 lines are meant for debugging purposes)
*/
if (debug)

{

file = fopen(monitor, “a");
fprintf(file,"mask:%2d\n", mask);

fclose(file);
)
/%
* if mask contains a binary 0 at position i then childl gets the according
* gene of parentl and the same holds for child2 and parent2
*
* if mask contains a binary 1 at position i then childl gets the according
* gene of parent2 and the same holds for child2 and parenti
*
* example: parentil ail,bi,cl,dl,el,ft
* parent2 a2,b2,c2,d2,e2,f2
* mask 011010
hd childl at,b2,c2,dl,e2, f1
. child2 a2,b1,c1,d2,el,f2
/
if (maskX%2 t= 0 && mask != 0)
(
mask--;
child1->f = parent2->f;
child2->f = parent1->f;
)
mask /= 2;
if (mask¥2 t= 0 && mask != Q)
<
mask--;

childi->e = parent2->e;
child2->e = parent1->e;

mask /= 2;
if (mask%2 1= 0 &% mask != 0)
¢
mask--;
childl->d = parent2->d;
child2->d = parenti->d;
}
mask /= 2;
if (mask%2 1= 0 &R mask i= 0)
¢
mask--;
childi->c = parent2->c;
child2->c = parent1->c;
b
mask /= 2;
if (mask¥2 t= 0 && mask = 0)
{
mask--;
childl->b = parent2->b;
child2->b = parent1->b;
)
mask /= 2;
if (mask¥2 != O &% mask != 0)
{
mask--;
childi->a = parent2->a;
child2->a = parenti->a;
b

)

void MicroCrossOver(parent1,parent2,childl,child2)
Chromosome *parentl,*parent2,*childl,*child2;

¢

char *monitor = "monitor.dat";

int mask;

Boolean debug = DEBUG;

FILE *file;

I*

* generate random mask as element of (1..255)

*/

mask = (int) (rand()/129.0 + 1);
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/i
* update file monitor.dat (next 3 lines are meant for debugging purposes)
*/
if (debug)
<

file = fopen(monitor, "a");
fprintf(file,"mask:%2d\n",mask);
fclose(file);

/')
* if mask contains a binary 0 at position i then childl gets the same
* nucleotide as parent1 at position i in the concerning gene and child2
* gets the same nucleotide as parent2 at position i in the concerning gene
*
* if mask contains a binary 1 at position i then childl gets the same
* nucleotide as parent2 at position i in the concerning gene and child2
* gets the same nucleotide as parent! at position i in the concerning gene
*
* example: mask parent1(gene i) parent2(gene i)
* 00111011 11001001 01101110
-
* "o"-mask 11...0.. o01...1..
* "{v-mask ..101.10 ..001.01
*
* merge 111701010 01001101
* childi(gene i) child2(gene i)
*
/
childl->a = (-mask & parenti1->a) | (mask & parent2->a);
child1->b = (-mask & parent1->b) | (mask & parent2->b);
childl->c = (~mask & parenti->c) | (mask & parent2->c);
childl->d = (-mask & parent1->d) | (mask & parent2->d);
childl->e = (-mask & parent1->e) ! (mask & parent2->e);
childi->f = (-mask & parentl1->f) | (mask & parent2->f);
child2->a = (-mask & parent2->a) | (mask & parent1->a);
child2->b = (-mask & parent2->b) ; (mask & parent1->b);
child2->c = (-mask & parent2->c) ! (mask & parent1->c);
child2->d = (-mask & parent2->d) | (mask & parent1->d);
child2->e = (-mask & parent2->e) ! (mask & parent1->e);
child2->f = (-mask & parent2->f) | (mask & parent1->f);
if (child1->a == 0) childl->a = 128;
if (child1->b == 0) childl->b = 128;
if (childl->c == 0) childl->c = 128;
if (child1->d == 0) childl->d = 128;
if (childl->e == 0) child1->e = 128;
if (childl->f == 0) childl->f = 128;
if (child2->a == 0) child2->a = 128;
if (child2->b == 0) child2->b = 128;
if (child2->c == 0) child2->c = 128;
if (child2->d == 0) child2->d = 128;
if (child2->e == 0) child2->e = 128;
if (child2->f == 0) child2->f = 128;
b
void MixedCrossOver(parent1,parent2,childl,child2)
Chromosome *parenti,*parent2,*childl,*child2;
¢
char *monitor = “monitor.dat";
int mask1,mask2;
Boolean debug = DEBUG;
FILE *file;
*
* initialize child to be equal to parent
child1->a = parenti->a;
child1->b = parent1->b;
child1->c = parenti->c;
child1->d = parenti->d;
childl->e = parenti->e;
childl->f = parent1->f;
child2->a = parent2->a;
child2->b = parent2->b;
child2->c = parent2->c;
child2->d = parent2->d;
child2->e = parent2->e;
child2->f = parent2->f;
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/i
* generate random mask! as element of (1..63) and random mask2 as element
* of (1..255)
*/
mask1 = (int) (rand()/528.5 + 1);
mask2 = (int) (rand()/129.0 + 1);
/*
* update file monitor.dat (next 3 lines are meant for debugging purposes)
*)
if (debug)
(

file = fopen(monitor,"a");
fprintf{file,"mask1:%2d mask2:%2d\n",mask1,mask2);
fclose(file);
)
/i
* mixed crossover combines the effect of macro crossover and micro
* crossover, i.e. mask2 is the mask for micro crossover which is applied
* to the genes according to the ones in maskl (see also MacroCrossOver()
* and MicroCrossOver()).

*/
if (mask1%2 !'= 0 &% mask1 !=0)
(
mask1--;
child1->f = (~mask2 & parent1->f) ! (mask2 & parent2->f);
child2->f = (~mask2 & parent2->f) | (mask2 & parent1->f);

if (childi->f == 0) childi->f = 128;
if (child2->f == 0) child2->f = 128;
)
mask1 /= 2;
if (maski¥2 {= 0 && maski 1=0)
C
mask1-=;
child1->e = (~mask2 & parenti1->e) i
child2->e = (~-mask2 & parent2->e) |
if (child1->e == 0) childl->e = 128
if (child2->e == 0) child2->e = 128
)
maskl /= 2;
if (mask1%2 1= 0 && maskl !=0)
(

(mask2 & parent2->e);
(mask2 & parenti->e);

.
¢
.
’

maski--;

child1->d = (~mask2 & parenti->d) |
child2->d = (~mask2 & parent2->d) |
if (childl->d == 0) childl->d = 128
if (child2->d == 0) child2->d = 128

mask2 & parent2->d);

(
(mask2 & parentl->d);

.
’
.
14

)
mask1 /= 2;
if (mask1%2 t= 0 && mask1 1=0)
<
mask1--;
childl->c = (-mask2 & parent1->c) i (mask2 & parent2->c);
child2->c = (-mask2 & parent2->c) ; (mask2 & parenti->c);
if (childl->c == 0) childl->c = 128;
if (child2->c == 0) child2->¢c = 128;
)
mask1 /= 2;
if (mask1%2 != 0 && maskl 1=0)
¢
mask1--;

childl->b = (-mask2 & parenti->b

) | (mask2 & parent2->b);
child2->b = (~mask2 & parent2->b)

1

1

[}

!

| (mask2 & parenti->b);
28
28

if (childi->b == 0) child1-»>b = ;
if (child2->b == 0) child2->b = H
b
mask1 /= 2;
if (mask1%2 != 0 && mask1 !=0)
(
mask1--;
childi->a = (~mask2 & parent1->a) ! (mask2 & parent2->a);
child2->a = (~-mask2 & parent2->a) | (mask2 & parenti->a);

if (childi->a == 0) childi->a = 128;
if (child2->a == 0) child2->a = 128;
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void Mutate(parent,child)

Chromosome *parent,*child;

<

char *monitor = "monitor.dat"”;

int i,mask1,mask2=1;
unsigned long seed;
Boolean debug = DEBUG;

FILE *file;
/*

* initialize child to be equal to parent
*/

child->a
child->b
child->c
child->d
child->e
child->f
/*

* generate random mask1 as element of {1..6)
*

parent->a;
parent->b;
parent->c;
parent->d;
parent->e;
parent->f;

/
mask1 = (int) (rand()/6553.4 + 1);

/*

* generate random mask2 as element of (1,2,4,8,16,32,64,128), therefore
* first generate a random seed as element of {0..7) and calculate mask2

* as 2 exp seed.
*

seed = (int) (rand()/4681.0);
for (i = 0; i < seed; i++)

mask2 *= 2;
)

/*

* update file monitor.dat (next 3 lines are meant for debugging purposes)
*

/
if (debug)
(

file = fopen(monitor, “a");

fprintf(file,"mask1:%X2d mask2:%2d\n", mask1,mask2);

fclose(file);
)
/t

* mask2 contains a single 1 digit at position i which will force the

* nucleotide at position i in the gene at position maskl to be inverted

*/
switch(mask1)

<
case 1:

child->a = (mask2)*(parent->a);
if (child->a == 0) child->a = 128;

break;
case 2:

child->b = (mask2)"(parent->b);
if (child->b == 0) child->b = 128;

break;
case 3:

child->c = (mask2)”"(parent->c);
if (child->c == 0) child->c = 128;

break;
case &4:

child->d = (mask2)”(parent->d);
if (child->d == 0) child->d = 128;

break;
case 5:

child->e = (mask2)"(parent->e);

if (child->e == 0) child->e = 128;

break;
case 6:

child->f = (mask2)"(parent->f);

if (child->f == 0) child->f = 128;

break;
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void Jump(parent,child)
Chromosome *parent,*child;
C
char *monitor = “monitor.dat®;
float array([6],dummy;
int mask1 = 0,mask2 = 0;
Boolean debug = DEBUG;
FILE *file;
/i
* generate random maskl as element of (1..6) and mask2 as element of
* {1..6)\mask1, since maski and mask2 must differ

*/
while (mask1 == mask2)
<
mask1 = (int) (rand()/6553.4 + 1);
mask2 = (int) (rand()/6553.4 + 1);
)

: ]
* update file monitor.dat (next 3 lines are meant for debugging purposes)
*
if (debug)
{
file = fopen(monitor,“a");

fprintf(file,"mask1:X2d mask2:%2d\n",mask1,mask2);
fclose(file);

)
/i
* child becomes equal to parent with genes at positions maskl and mask2 swapped
*
* example: parent = a,b,c,d,e,f
* (mask1,mask2) = (2,6)
* child = a,f,c,d,e,b
*/
array[0] = parent->a;
array[1] = parent->b;
array[2) = parent->c;
array[3) = parent->d;
array (4] = parent->e;

array[5] = parent->f;

dummy = array[maski1-1];
array[mask1-1] = array[mask2-1];
array[mask2-1] = dummy;

child->a = array([0];

child->b = array[1];

child->c = arrayl[2];

child->d = array(3);

child->e = arraylé4];

child->f = array[5);
b)

void Scale{parent,child)
Chromosome *parent,*child;
4
char *monitor = “monitor.dat";
int mask = 0;
Boolean debug = DEBUG;
FILE *file;
/i
* generate random mask as element of {1..126)
*

mask = (int) (rand()/262.1 + 1);

/*

* update file monitor.dat (next 3 lines are meant for debugging purposes)
*/

if (debug)
4

file = fopen(monitor,™a");
fprintf(file,"mask:%2d\n",mask);
fclose(file);

/*
* child will become a scaled version of the parent, such that the signs of

* the parameters a,b,c, and d remains unchanged, thus for x in {a,b,c,d):
* bit 0 of child->x = bit 0 of parent->x
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* bit 1-7 of child->x = ((bit 1-7 of parent->x) + mask) mod 127

*

* example: parent->a = 11001011 = -75
* parent->b = 00110010 = 50

* parent->c = 10000101 = -5

» parent->d = 01110111 = 119
* mask = 1000011 = 67

* child->a = 10001111 = -40
* child->b = 01110101 = 26
* child->c = 11001000 = -3
* child->d = 00111011 = 63
*/

if ((parent->a - 128) > 0)
L4

child->a = (int) (((parent->a - 128)*mask)/127.0 + 128.5);
>
else
{
child-»>a = (int) (((parent->a)*mask)/127.0 + 0.5);
>

if ((parent->b - 128) > 0)
<

child->b = (int) (((parent->b - 128)*mask)/127.0 + 128.5);
)
else

4
child->b = (int) (((parent->b)*mask)/127.0 + 0.5);
>
if ((parent->c - 128) > 0)
<

child-»>c = (int) (((parent->c - 128)*mask)/127.0 + 128.5);
b
else
<
child->c

(int) (((parent->c)*mask)/127.0 + 0.5);
)
if ((parent->d - 128) > 0)
L4
child->d = (int) (((parent->d - 128)*mask)/127.0 + 128.5);

b
else
L[4
child->d = (int) (((parent->d)*mask)/127.0 + 0.5);
)
if (child->a == 0) child->a = 128;
if (child->b == 0) child->b = 128;
if (child->c == 0) child->c = 128;
if (child->d == 0) child->d = 128;

child->e = parent->e;
child->f = parent->f;

void Rotate(parent,child)
Chromosome *parent,*child;
<
char *monitor = "monitor.dat";
double phi;
int mask;
float dummy,pi = P1,acos,asin,bcos,bsin,ccos,csin,dcos,dsin;
Boolean debug = DEBUG;
FILE *file;

/'.
* generate random mask as element of {1..359) degrees
*/

mask = (int) (rand()/91.527 + 1);

/*

* update file monitor.dat (next 3 lines are meant for debugging purposes)
*
if (debug)

<

file = fopen(monitor, “a");
forintf(file,"phi: X3.2f\n",phi);
fclose(file);

>
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/i
* calculate rotation angle phi in radians

*

/
phi = (double) mask*2*pi/360;
/*

* child will become a rotated version of the parent, such that the
* transformation matrix is multiplied by the standard rotation matrix:
*

* 1 x* ] | cos(phi) - sin(phi) | Jab}| x| e}

* 1 1 =1 1 X [} 1 x [} t 40 [}

# Ly I D sinohiy « coscnin | Leal " Lyl 1 el

* example: phi = 77 [degrees] = 1.34 [radians)

* parent->a = 203 = -

* parent->b = 50 = 50

* parent->c = 133 = -5

* parent->d = 119 = 119

* child->a = (int) -75%cos(77) - -S*sin(77) = -12 = 140

* child->b = (int) 50%cos(77) - 119*sin(77) = -105 = 233
* child->c = (int) -75*sin(77) + -5%cos(77) = -74 = 202

: child->d = (int) 50*sin(77) + 119%cos(T7) = 75 = 75
/

if ((parent->a - 128) > 0)
4

acos = (128 - parent->a)*cos(phi);
asin = (128 - parent->a)*sin(phi);

else
{
acos = (parent->a)*cos(phi);
asin = (parent->a)*sin(phi);

)
if ((parent->b - 128) > 0)
{

bcos = (128 - parent->b)*cos(phi);
bsin = (128 - parent->b)*sin(phi);
)
else
{
bcos = (parent->b)*cos(phi);
bsin = (parent->b)*sin(phi);

}
if ((parent->c - 128) > 0)
4

ccos = (128 - parent->c)*cos(phi);
csin = (128 - parent->c)*sin(phi);
else
(
ccos = (parent->c)*cos(phi);
¢sin = (parent->c)*sin(phi);

b
if ((parent->d - 128) > 0)
4

dcos = (128 - parent->d)*cos(phi);
dsin = (128 - parent->d)*sin(phi);
)
else
¢
dcos = (parent->d)*cos(phi);
dsin = (parent->d)*sin(phi);
*)
* calculate children
*/

if ((int) Cacos - ¢sin) < 0)
< .

child->a = ((int) ((csin - acos) + 128.5))%255;
)
else
(
child->a = ((int) ((acos - csin) + 0.5))%255;

)
if ((int) (bcos - dsin) < 0)

e —



248 B. IFS-CODEC source code

child->b = ((int) ((dsin - bcos) + 128.5))%255;

else
{
child->b = ((int) ((bcos - dsin) + 0.5))%255;

if ((int) (asin + ccos) < 0)

<
child->c = ((int) (-Casin + ccos) + 128.5))%255;
2
else

child->c = ((int) ((asin + ccos) + 0.5))%255;
}
tf ((int) (bsin + dcos) < 0)
{

child->d = ((int) ¢(-(bsin + dcos) + 128.5))%255;
else
child->d = ((int) ((bsin + dcos) + 0.5))%255;
>
if (child->a == 0) child->a = 128;
if (child->b == 0) child->b = 128;
if (child->c == 0) child->c = 128;
if (child->d == 0) child->d = 128;

child->e = parent->e;
child->f = parent->f;

void Translate(parent,child)
Chromosome *parent,*child;
<
char *monitor = “monitor.dat";
int i,mask;
unsigned long seed;
Boolean debug = DEBUG;
FILE *file;
/*
* generate random mask as element of {1..255)
*/
mask = (int) (rand()/129.0 + 1);
/*

* update file monitor.dat (next 3 lines are meant for debugging purposes)
*/
if (debug)

{

file = fopen(monitor,“a");
fprintf(file,"mask:%2d\n",mask);

fclose(file);

}
/*
* mask is added modulo 255 with the shift vector
*/
child->a = parent->a;
child->b = parent->b;
child->c = parent->c;
child->d = parent->d;
child->e = (parent->e + mask)%255;
child->f = (parent->f + mask)%255;

if (child->e == 0) child->e = 128;
if (child->f == 0) child->f = 128;
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/iiitiiﬁiittt.iii’."ii*ii****i****i****iﬁ**i*i***ii**t***ii**i*i**i**i***i**i*

* Copyright(c) Eindhoven University of Technology (TUE,NL)
Faculty of Electrical Engineering (E)
Design Automation Group (ES)

Mail address emilevddviper.es.ele.tue.nl

Project : Fractal imagecompression with Iterated Function Systems
Supervisor : Prof. Dr. Ing. J.A.G. Jess

File : render.c

Purpose : Contains procedures for rendering IFS-codes

Part of : 1FS-CODEC

Created on : July 13, 1992

Created by : Emile van Duren

Last modified on: December 17, 1992
Modified by : Emile van Duren
Remarks : Zoomingfacility must be added between lines 280 and 300

i*iii*ﬁ*ii*i*tii.i*i*iti*ifi*i*i*i*ti*i*i*i*iit*ttii*i*iii*i*iiiiiiﬁ*iﬁ*ii*i*/

* % % % % % % % % % ¥ %%

#include "all.h"

t ]
* forward function declarations

*/
void ClearTextHandler(); /* contained in handle.c */
void DrawAxes(); /* contained in draw.c */
void DrawRectangle(); /* contained in draw.c */
void FileOpenWarning(); /* contained in messages.c */
void IterationHandler(); /* contained in handle.c */
void SourcefFileHandler(); /* contained in handle.c */
Drawdata *GetWindowData(); /* contained in control.c */
Textdata *GetTextData(); /* contained in control.c ¥/
Widget GetWindow(); /* contained in control.c */

void GraphicalView(w,code)
Widget w;
int code;

char location,*ext,*filename,*savefile;
int x1,x2,x3,x4,y1,y2,yY3,v4;
float a,b,c,d,e,f,p,xleft,xright,yupper,ylower,width, height;
float xaleft,xaright,ybupper,yblower;
unsigned long pixel;
Drawdata *data;
FILE *file;
Textdata *text;
if (code %2 == 0)
{

location = /L’;

)
else

<
location = ‘r’;
code--;

= GetWindow(location, 'p’);
data = GetWindowbata(location,’p’);
text = GetTextData(location);
if (code == 0) ext = ".jifs¥;
if (code == 2) ext = ".man";
if (code == 4) ext = ", aut¥;
savefile = calloc(strien(data->filename)+5,sizeof(char));
strcpy(savefile,data->filename);
if ((file = fopen(strcat(savefile,ext),"r")) == NULL)
<

FileOpenWarning(w, location);
)
else
<
/t
* clear out all text except origin in textwindow
*/

ClearPixelArea(w, location);

ClearTextHandler(w, location,287);

text->mode = "mode : Viewedit 1FS-code (graphical view)";
SourceFileHandler(w, location,ext);
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/*
* set foreground to black and draw an untransformed dashed rectangle
*/

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));

DrawRectangle(w, location,’d’);

/*

* determine size and position (screen coordinates) of base rectangle
*/

width = 2*(data->width)/5;

height = 2*(data->height)/5;

xleft = data->xorigin - width/2;

yupper = data->yorigin - height/2;
xright = xleft + width;

ylower = yupper + height;

xaleft = xleft - data->xorigin;
xaright = xright - data->xorigin;
ybupper = data->yorigin - yupper;
y?louer = data->yorigin - ylower;
/

* for all transformations in file
*/

while (Ifeof(file))

4

/*
* get transformation from file
*

fscanf(file,"Xf ", &a);
fscanf(file, "Xf ", &b);
fscanf(file,"Xf ", &c);
fscanf(file,"Xf », 8d);
fscanf(file,"Xf ", &e);
fscanf(file,"Xf v, &f);
fscanf(file,"Xf\n", &p);
*

* apply all transformations once the vertices of the rectangle
* in data->pix
*

x1 = a*xaleft + b*ybupper + e + data->xorigin;
yl = -c*xaleft - d*ybupper - f + data->yorigin;
X2 = a*xaright + b*ybupper + e + data->xorigin;
y2 = -c*xaright - d*ybupper - f + data->yorigin;
x3 = a*xaright + b*yblower + e + data->xorigin;
y3 = -c*xaright - d*yblower - f + data->yorigin;
xb = a*xaleft + b*yblower + e + data->xorigin;
yb = -c*xaleft - d*yblower - f + data->yorigin;
/Q

*

and draw lines between the transformed vertices
*/
XDrawL ine(XtDisplay(w),data->pix,data->gc,x1,y1,x2,y2);
XDrawLine(XtDisplay(w),data->pix,data->gc,x2,y2,x3,y3);
XDrawl ine(XtDisplay(w),data->pix, data->gc,x3,y3,x4,y4);
XDrawL ine(XtDisplay(w),data->pix,data->gc,xé4,y4,x1,y1);

FA

* finally, copy data->pix to screen and draw axes if necessary

*/

XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);
if (data->axes) DrawAxes(w, location);

free(savefile);
savefile = NULL;

void DeterministicRendering(w, code)
Widget uw;
int code;

char location,*ext,*filename,*savefile;

float pi,xt,yt;

int col,count = 0, index,iteration,row,x,y = 0;
unsigned long pixel;

Boolean skipflag = FALSE;

Drawdata *data;
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FILE *file;

IFScode *pointer;

XImage *image;

/i

* initialization
-

pi = Pl;

pointer = NULL;

if (code X2 == 0)
(

location = 7l/;

)
else
(4
location = 'r’;
code--;

)

w = GetWindow(location,p’);

data = GetWindowData(location,’p’);
t 4

* determine file extension
R

if (code == 0) ext = », jfs";
if (code == 2) ext = " .man";
if (code == 4) ext = ¥ _agut";
savefile = calloc(strlen(data->filename)+5,sizeof(char));
strcpy(savefile,data->filename);
if ((file = fopen{strcat(savefile,ext),"r#)) == NULL)
(

FileOperMarning(w, location);
skipflag = TRUE;

else
(
/i
* update sourcefile and savefile name in textwindow
*/

52urceFileHandler(u,location,ext);
: if file could be opened
uhgle (1feof(file))
4 /.
: allocate memory for transformations
if/(pointer == NULL)
¢ pointer = (IFScode *) malloc(sizeof(IFScode));

else
{
pointer = (IFScode *) realloc(pointer, (count+1)*sizeof(IFScode));

/i
* get transformation from file and store it in memory
*/

fscanf(file,"Xf ¥ &((pointer + count)->a));
fscanf(file,"Xf ",&((pointer + count)->b));
fscanf(file,"%Xf " R((pointer + count)->c));
fscanf(file,"Xf ,&((pointer + count)->d));
fscanf(file,"Xf » &((pointer + count)->e));
fscanf(file,"X%f v &((pointer + count)->f));
fscanf(file,"Xf\n",&((pointer + count)->p));
count++;
)
)
fclose(file);
free(savefile);
savefile = NULL;
if (4skipflag)
{

/i
* set foreground to black and plot startpixel
*/
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XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
XDrawPoint(XtDisplay(w),data->pix,data->gc,data->xstart,data->ystart);
o

* for each iteration
*

for (iteration = 0; iteration < data->niterations; iteration++)
<
I*
* deterministic rendering with condensation, so don’t clear the
* screen between successive iterations
*/
if (data->condensation)
< o
* copy data->pix to screen an get image from data->pix;
*/
XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);
)
image = XGetlmage(XtDisplay(w),data->pix,0,0,data->width,
data->height,1,XYPixmap);
/ﬁ
* deterministic rendering without condensation, so clear the
* screen between successive iterations .
*/
if (ldata->condensation)
<
XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w)));
XFillRectangle(XtDisplay(w),XtWindow(w),data->gc,0,0,
data->width,data->height);
XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);
XFillRectangle(XtDisplay(w), data->pix,data->gc,0,0,
data->width,data->height);
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
I*)
* for all pixels in image
*

for (row = 0; row < data->height; row++)
<
for (col = 0; col < data->width; col++)
< "
* get pixel and if pixel is black
*/

pixel = XGetPixel (image,col,row);
if (pixel == 0)
<

/i
* apply all transformations sequentially
*/

for (index = 0; index < count; index++)

(

/*
* transform coordinate to virtual origin
*/

xt = col - data->xorigin;

yt = row - data->yorigin;

Iﬁ
* convert y from screen coordinates to Carthesian coordinates
*/

yt = -yt;
*

* apply affine transformation
*

x = ((pointer + index)->a)*xt +
((pointer + index)->b)*yt +
((pointer + index)->e);

y = ((pointer + index)->c)*xt +
((pointer + index)->d)*yt +
((pointer + index)->f);

/*
* rescale coordinate with data->zoom and data->offset
*/
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>
>

/t

/'.

* convert y from Carthesian coordinates to screen coordinates
*/

Y=Y
*

* transform coordinate to original position and plot it

*/

x += data->xorigin;
y += data->yorigin;
XDrawPoint(XtDisplay(w),data->pix,data->gc, X,y);

* update amount of iterations in textdisplay
*

IterationHandler(location,iteration);
*

* destroy image and draw axes if necessary
*

XDestroylmage( image);
image = NULL;

)

XCopyArea(XtDisplay(w),data->pix, XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);
if (data->axes) DrawAxes(w, location);

}
free(pointer);
pointer = NULL;

b

void NondeterministicRendering(w,code)

Widget w;
int code;

char location,*ext, *savefile;

float pi,xt,yt;

int col,count = 0,7,romW,x,y = 0;
unsigned long iteration,p,pixel,seed;
Boolean found,skipflag = FALSE;

Drawdata *data;
FILE *file;
1FScode *ptr;
Ximage *image;
/'l

* jnitialization
*/
pi = PI;
ptr = NULL;
if (code X¢ == 0)
{
location
)
else
{
location
code--;

lll;

lrl:

w = GetWindow(location,’p’);
data = GetWindowData(location,’p’);

" ifsh;
”n .mnll:
" aut";

/*
* determine file extension
*/
if (code == 0) ext
if (code == 2) ext
if (code == 4) ext

savefile = calloc(strlen(data->filename)+5,sizeof(char));
strcpy(savefile,data->filename);
if ((file = fopen(strcat(savefile,ext),"r")) == NULL)

{

FileOperWarning(w, location);

skipflag = TRUE
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b/
else
{
/'h
* update sourcefile and savefile name in textwindow
[ ]

SourceFiledandler(w, location,ext);
-

* if file could be opened

&

while (!feof(file))

{ "
* allocate memory for transformations
*

if (ptr == NULL)
<

ptr = (1FScode *) malloc(sizeof(IFScode));
3
else
L4
ptr = (1FScode *) realloc(ptr,(count+1)*sizeof(1FScode));
>
/'ﬁ

* get transformation from file and store it in memory
*/

fscanf(file, "%f ", &((ptr + count)->a));
fscanf(file,"%f ", &((ptr + count)->b));
fscanf(file,"%f ", &((ptr + count)->c));
fscanf(file,"Xf " &((ptr + count)->d));
fscanf(file,"Xf " &((ptr +
fscanf(file,"Xf »,&((ptr + count)->f));
fscanf(file,"%f\n",&((ptr + count)->p));
count++;
b
3
fclose(file);
free(savefile);
savefile = NULL;
if (Iskipflag)
L8

/'h
* set foreground to black and plot startpixel
L ]

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
XDrawPoint(XtDisplay(w),data->pix,data->gc,data->xstart,data->ystart);
/'ﬁ
* nondeterministic rendering with condensation
*/
if (data->condensation)
L4
for (iteration = 0; iteration < data->niterations; iteration++)
(

/'ﬁ

* copy data->pix to screen and get image from data->pix

W

XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);

image = XGetImage(XtDisplay(w),6data->pix,0,0,data->width,

Y data->height, 1,XYPixmap);

/

* for all pixels in image

*

for (row = 0; row < data->height; row++)
{
for (col = 0; col < data->width; col++)
{ "
* get pixel and if pixel is black
*/

pixel = XGetPixel(image,col,row);
if (pixel == 0)
{
/'ﬁ
* because rand() returns an integer between 0 and 32767,
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* rescale the fractional probabilities for each

* transformation appropriately to this returnvalue and
* select a transformation according to its assigned

* probability

*/

p=0;i =0;
found = FALSE;
seed = rand();
while (i < count &% ! found)
(
p += 32767*((ptr + i)->p);
if (seed <= p) found = TRUE;

i+e;
)
i--.
/t
* transform coordinate to virtual origin
*/
xt = col - data->xorigin;
yt = row - data->yorigin;
/t
*

convert y from screen coordinates to Carthesian
* coordinates

*/
yt = -yt;

*

* apply affine transformation

*/

x = ((ptr + i)->a)*xt + ((ptr + i)->b)*yt + (ptr + i)->e;
y = ((ptr + i)->c)*xt + ((ptr + i)->d)*yt + (ptr + i)->f;
/'t

* rescale coordinate with data->zoom and data->offset
*

/t
* convert y from Carthesian coordinates to screen
* coordinates
*/
Yy = -y;
/'.
* convert coordinate to its original position and plot it
*/
x += data->xorigin;
y += data->yorigin;
XDrawPoint (XtDisplay(w) ,data->pix,data->gc,X,Y);

)

/'l
* update amount of iterations in textdisplay
*

IterationHandler(location, iteration);

*

* destroy image and draw axes if necessary
*/

XDestroyImage( image);
image = NULL;
)
XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);
if (data->axes) DrawAxes(w,location);
/i
* nondeterministic rendering without condensation (orbit calculation)
*/
if (ldata->condensation)
( p
* initialize starting point of orbit
*

data->xstart;
data->ystart;

w s~

X
Y
I*

* apply 1000 times selected amount of iterations
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*/
for (iteration = 0; iteration < 1000*data->niterations; iteration++)
{

/'h
* update amount of iterations in textdisplay
*/
if ((iteration+t1) X 1000 == 0) IterationKandler(location, iteration);
/*

* because rand() returns an integer between 0 and 32767,
* rescale the fractional probabilities for each
* transformation appropriately to this returnvalue and
* select a transformation according to its assigned
* probability
»

/

p=0;i =0;

found = FALSE;

seed = rand();

while (i < count && !found)
<

p += 32767*((ptr + i)->p);
if (seed <= p) found = TRUE;

i++;

)

i PE—

/*

* transform coordinate to virtual origin

*/
xt = x - data->xorigin;
yt = y - data->yorigin;

/*

* convert y from screen coordinates to Carthesian coordinates
*/
yt = -yt;
/*

* apply affine transformation

*/

X = ((ptr + i)->a)*xt + ((ptr + i)->b)*yt + (ptr + i)->e;
y = ({ptr + i)->c)*xt + ({ptr + i)->d)*yt + (ptr + i)->f;
/t

* rescale coordinate with data->zoom and data->offset

*/

/*

* convert y from Carthesian coordinates to screen coordinates
*/
Y =-Y:
/*

* convert coordinate to its original position and plot it
*/

X += data->xorigin;
y += data->yorigin;

w*
* draw point in data->pix and also on screen
w
XbrawPoint(XtDisplay(w), data->pix,data->gc,x,y);
XDrawPoint(XtDisplay(w), XtWindow(w),data->gc,x,y);
)
b
free(ptr);
ptr = NULL;
})
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/*****.*it****t******t**********t.t**ﬁi*******************tt***ttt**********.ii
* Copyright(c) Eindhoven University of Technology (TUE,NL)

* : Faculty of Electrical Engineering (E)

* : Design Automation Group (ES)

* Mail address : emilevdaviper.es.ele.tue.nl

* Project : Fractal imagecompression with Iterated Function Systems
* Supervisor : Prof. Dr. Ing. J.A.G. Jess

* File : specials.c

* purpose : Rendering of Bifurcation diagram and Mandelbrot set
* part of : IFS-CODEC

* Created on : July 31, 1992

* Created by : Emile van Duren

* Last modified on: December 17, 1992

* Modified by : Emile van Duren

* Remarks : Z2oomfacility must be added to DrawMandelbrotSet

***********t****************ﬁ*i************************ﬁ.t**tﬁt*******ﬁ******/

#include "all.h»

/*

* forward function declarations

*/

void DrauText(); /* contained in writer.c */
void ClearPixelArea(); /* contained in draw.c */
void ClearTextHandler(); /* contained in handle.c */
void FileOpenWarning(); /* contained in messages.c */
Drawdata *GetWindowData(); /* contained in control.c */
Textdata *GetTextData(); /* contained in control.c */
Widget GetWindow(); /* contained in control.c */

void DrawBifurcationDiagram(w, location)
Widget w;
char location;

float a,value;
int i,x,y,xleft,xright,yupper,ylower;
Drawdata *data;
= GetWindow(location,’p’);
data = GetWindowData(location,’p’);
ClearPixelArea(w, location);
ClearTextHandler(w, location, 1022);
DrawText(location);
xleft = (data->width)/10;
xright = 9*(data->width)/10;
yupper = (data->height)/4;
ylower = 3*(data->height)/4;
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
XDrawRectangle(XtDisplay(w),data->pix,data->gc,xleft,yupper,8*xleft, 2*yupper);
XDrawString(XtDisplay(w),data->pix,data->gc, xleft, yupper-70,

WAttractor A (vertical) of f(x) = ax(1-x) against",648);
XDrawString(XtDisplay(w),data->pix,data->gc, xleft, yupper-50,

“"control parameter a (horizontal)",32);
XDrawString(XtDisplay(w),data- >p|x data->gc, xleft 10,ylower+15,"0.0",3);
XDrawString(XtDisplay(w),data->pix,data->ge,xleft-10, yupper-5, ".on 3),
XDrawString(XtDisplay(w),data->pix,data->gc,xright- 10,ylouer+15 "4, 0" 3);
for (x=xleft; x<xright; x++)

L4

value = 0.5;

= (x - xleft)/100.0;
for (i=0; i<1000; i++)
L4

value *= a*(1-value);

if (i>750)

L4

= ylower - 2*yupper*value;
XDrawPoint(XtDisplay(w), data->pix,data->gc,x,y);
)
)
XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,0,0,
data->width,data->height,0,0);
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void DrawMandelbrotSet(w, Location)
Widget w;
char Location;

double c1,c2,r,x,y,xmax,xmin, ymax, ymin,z1,z2;

int col,row,maxsize = &4,n;

Drawdata *data;

Textdata *text;

W = GetWindow(location,’'p’);

data = GetWindowData(location,’p’);

text = GetTextData(location);

/'h

* initialize first window and set foreground to black
-

ClearPixelArea(w, location);

ClearTextHandler(w, location,894);

DrawText(location);

xmin = -2.2;xmax = 1.0; ymin = -1.6; ymax = 1.6;

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
*

* jf data->unzoom is TRUE then we zoom for the first time, else the
* amount of jiterations must increase to keep constant detail
*/
if ((maxiterations < 10000) && !(data->unzoom)) maxiterations *= 2;
if (data->unzoom)
<
data->unzoom = FALSE;
maxiterations = data->niterations;
*

* if data->axes is TRUE do this in case of DrawAxes routine
*/

if (data->axes)

col = (int) ((xmin/(xmin - xmax))*(data->width));
row = (int) ((ymax/(ymax - ymin))*(data->height));
XDrawString(XtDisplay(w),XtWindow(w),data->gc,20,20,
YAttractor basin boundary",b24);
XDrawString(XtDisplay(w),XtWindow(w),data->gc, 20,40,
“of the complex function:®,h24);
XDrawString(XtDisplay(w), XtWindow(w) ,data->gc,20,60,
wf(z) = z%z + c",14);
/'h
* draw Re(c) axis
*/
XDrawl ine(XtDisplay(w),XtWindow(w),data->gc,0, row,data->width,row);
XDrawString(XtDisplay(w) ,XtWindow(w),data->gc, 10, row+15,"Re(c)",5);
/'h
* draw Im(c) axis
*/
XDrawline(XtDisplay(w),XtWindow(w) ,data->gc,col,0,col ,data->height);
XDrawString(XtDisplay(w),XtWindow(w),kdata->gc,col+10,15,"Im(c)",5);
)

)
for (col = 0; col < data->width; col++)
(
¢l = xmin + (xmax - xmin)*col/(data->width);
for (row = 0; row < data->height; row++)

L4
c2 = ymax - (ymax - ymin)*row/(data->height);
x = cl;
y = ¢2;
r=0;
/'h

* escape-time algorithm (if orbit doesn’t escape to infinity
* then draw point, i.e. modulus of point remains below &)
*

for (n = 0; n < maxiterations; n++)
4
if (r < maxsize)
(
z1 = x*x - y*y + ¢cl;
22 = 2*x*y + ¢c2;

r = 21%21 + 22*22;
x = 21;
y = 22;
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)
if (r < maxsize)

/*

* we choose for (slow) drawing on the screen instead of
* (fast) drawing in data->pix and then copy to screen,
* because the user must be able to see that something
* is happening

*/
XDrawPoint{XtDisplay(w),XtWindow(w),data->gc,col,row);

)
3
/*
* copy screen to data->pix for redraw purposes
*

XCopyArea(XtDisplay(w),XtWindow(w) ,data->pix,data->gc,0,0,
data->width,data->height,0,0);

void CalculateMoments(w, location)
Widget w;
char location;

/*
* complex moments !
*

char *savefile,*ext = *.mom";

double sxupper,syupper, xm2sq, ym2sq, xupper, x| ower, yupper,ylower;
double sx2,sy2,sxlower;

double xmoment [10], ymoment (10],weight,x,y,xtemp, ytemp, xtemp1,ytempl;
int i,col,n,row;

unsigned long amount = 0,pixel;

Drawdata *data;

FILE *file;

XImage *image;

w = GetWindow(location,’p’);

data = GetWindowData(location, 'p’);

n=>5;

/*

* initialize image and moment array
*/

image = XGetlmage(XtDisplay(w),data->pix,0,0,data->width,
data->height,1,XYPixmap);
xmoment (0] = 1;
ymoment [0] = 1;
for (i =1; i <n; i++)
4
xmoment (i)
ymoment [i]
b
/*
* calculate pixel weight
*

o;
0;

for (col = 0; col < data->width; col++)
4
for (row = 0; row < data->height; row++)
{
pixel = XGetPixel(image,col,row);
if (pixel == 0) amount++;
)
>
if (amount == 0) amount = 1;
weight = (1.0/((double)amount));
/i
* calcutate n-th moment sequence
*

for (cot = 0; col < data->width; col++)
€
for (row = 0; row < data->height; row++)
<
pixel = XGetPixel(image,col,row);
if (pixel == 0)



260 B. IFS-CODEC source code
<
/t
* calculate normalized complex pixel coordinates
*/
x = (double) (col - data->xorigin);
y = (double) (data->yorigin - row);
/t
* calculate first n moments (omit 0)
*/
xtemp = Xx;
ytemp = y;
for (i = 1; i <n; i++)
<
xtemp! = xtemp;
ytempl = ytemp;
xmoment [i] += xtemp;
ymoment [i] += ytemp;
xtemp = x*xtemp! - y*ytempl;
ytemp = x*ytempl + y*xtempl;
)
)
}
)
XDestroylmage( image);
image = NULL;
/t
* correct for relative pixel weights
*/

xmoment [2) *= weight;

ymoment [2] *= weight;

xmoment [4] *= weight;

ymoment [4) *= weight;

/t

* calculate s*s

*/

xm2sq = xmoment [2]*xmoment [2] - ymoment [2] *ymoment [2) ;
ym2sq = 2*xmoment {2) *ymoment [2] ;
Xupper = xm2sq - xmoment {4);
yupper = ym2sq - ymoment [4];
xlower = xmoment [4] - 5*xm2sq;
ylower = ymoment [4] - 5*ym2sq;
/t

* multiply nominator and denominator with complex conjugate
*/

sxupper = xlower*xupper + ylower*yupper;
syupper = xlower*yupper - xupper*ylower;
sxlower = xlower*xlower + ylower*ylower;

if (sxlower !'= 0)

sx2 = (float) sxupper/sxlower;
sy2 = (float) syupper/sxlower;
b
else
{
sx2 = 0;
sy2 = 0;
)

/t
* save image to data->filename.mom
*/

savefile = calloc(strien(data->filename)+5,sizeof(char));

strcpy(savefile,data->filename);
if ((file =
{
FileOpenWarning(w, location);
data->firsttime = TRUE;
b
else
<

fopen(strcat(savefile,ext),"w")) == NULL)

printf("amount,weight = (Xd,%f)\n", amount,weight);

printf(“(x-origin,y-origin) =
printf(file,"(x-origin,y-origin) =
fprintf(file,"file

fprintf(file,"amount
fprintf(file,"weight

(Xd,%d)\n*,data->xorigin,data->yorigin);

(Xd,%d)\n",data->xorigin,data->yorigin);

Xs%s\n", data->filename, ext);
Ad\n", amount);
xf\n", weight);



B. IFS-CODEC source code 261

for (i =0; i <n; i++)

L4
printf(“xmoment [Xd] = %16.9e\n",i,xmoment[i]);
fprintf(file,"xmoment [Xd] = X16.9e\n", i,xmoment[i]);
printf("ymoment [Xd) = %16.9e\n",i,ymoment[i]);
fprintf(file, "ymoment [Xd] = %16.9e\n", i,ymoment[il);

)

printf(ns*s = Xf + %fi\n", sx2,sy2);
fprintf(file,"s*s = Xf + %fi\n",sx2,sy2);
printf(ll%s\nll, IIII);

fclose(file);

free(savefile);
savefile = NULL;

void CalculateFractalDimension(w, location)
Widget w;
char location;

int i,col,row,N1=0,N2=0;
float fdim;
unsigned long amount = 0,pixel1,pixel2,pixel3,pixelé;
Drawdata *data;
X1lmage *image;
w = GetWindow(location, ’p’);
data = GetWindowData(location,’p’);
/t

* jnitialize image

*/

image = XGetlmage(XtDisplay(w),data->pix,0,0,data->width,

data->height,1,XYPixmap);

/t

* calculate fractal dimension as slope of log-log plot, thus:
*

* fractal dimension = Log(N1/N2)/log2
*

* where N1 is the amount of boxes of size 1/500 which contain at least 1
* pixel and where N2 is the amount of boxes of size 1/250 which contain
* at least 1 pixel (notice that N1 is just equal to the amount of pixels
* the image contains, since our pixmap size is 500 pixels)

*/
for (col = 0; col < data->width; col += 2)
L4
for (row = 0; row < data->height; row += 2)
L4

pixel1 = XGetPixel(image,col,row);

if (pixell == 0) N1++;

pixel2 = XGetPixel(image,col+1,row);

if (pixel2 == 0) N1++;

pixel3 = XGetPixel(image,col,rowt1);

if (pixel3 == Q) N1++;

pixelé = XGetPixel(image,col+1,rowt1);

1f (pixelé == 0) N1++;

if (pixell == 0 || pixel2 == 0 !} pixel3 == 0 }! pixel4 == 0) N2++;

)
)
if (N2 !=0)
<
fdim = (float) (log((double) N1/N2)/log(2.0));
)
else
<
fdim = 0;
)

%f\n", fdim);

if (location == ’l’) printf("fractal dimension of left image
= Zf\n", fdim);

if (location == /r’) printf("fractal dimension of right image
XDestroylmage(image);
image = NULL;
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/ttt************************i************************ttttttt*ﬁiiitttttttt******
* Copyright(c) : Eindhoven University of Technology (TUE,NL)

* : Faculty of Electrical Engineering (E)
* : Design Automation Group (ES)

* Mail address : emilevddviper.es.ele,tue.nl

* Project : Fractal imagecompression with Iterated Function Systems
* Supervisor : Prof. Dr. Ing. J.A.G. Jess

* File : strings.c

* Purpose : Contains string conversion operations
* Part of : 1FS-CODEC

* Created on : June 02, 1992

* Created by ¢ Emile van Duren

* {ast modified on: November 20, 1992

* Modified by : Emile van Duren

* Remarks : None

H
tﬁﬁﬁt**ii*ttt*t*t*************************itii********************ttttﬁiiﬁiii/

#include “all.h"

XmString StringArrayToXmString(cs,n)
char *csl};
int n;

int i;
XmString xmstr;
*

* if the array is empty just return an empty string
*/

if (n<=0) return (XmStringCreate("" XmSTRING_DEFAULT_CHARSET));
xmstr = (XmString) NULL;
for (i=0;i<n;i++)
(
if (i>0) xmstr = XmStringConcat(xmstr, XmStringSeparatorCreate());
xmstr=XmStringConcat(xmstr, XmStringCreate(cs[i},XmSTRING_DEFAULT_CHARSET));
>
return (xmstr);
>

char *GetStringFromxmString(string)
XmString string;

(
char *text,*buf = NULL;
Boolean done = FALSE,separator;
XtPointer context ;

XmStringCharSet charset;
XmStringDirection dir;

/*

* jnitialize context

*/
xmStringlnitContext(&context,string);
while (!done)

if (XmStringGetNextSegment(context,&text,&charset,&dir,&separator))
(

if (separator) done = TRUE;
if (buf)
(
buf = XtReal loc(buf,strlen(buf)+strlen(text)+2);
strcat(buf, text);
)
else
(
buf = (char *) XtMalloc(strlen(text)+1);
strcpy(buf, text);
)

XtFree(text);
)
else
(

done = TRUE;
)

)
XmStringFreeContext(context);
return{buf);
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/i*iiii.i*****i*iiﬁ*i*ii.i*i*****iiii*i*iiii***i**iitii***iii*i**i**itii***tﬁﬁ*

*

* % % % % % % % % % % % %

Copyright(c) : Eindhoven University of Technology (TUE,NL)
: Faculty of Electrical Engineering (E)
: Design Automation Group (ES)
Mail address : emilevddviper.es.ele.tue.nl
Project : Fractal imagecompression with Iterated Function Systems
Supervisor : Prof. Dr. Ing. J.A.G. Jess
File : tracker.c
Purpose : Controls conditional tracking of mousepointer
Part of : IFS-CODEC
Created on : June 17, 1992
Created by : Emile van Duren
Last modified on: November 23, 1992
Modified by : Emile van Duren
Remarks : None

H
*********i**i*iii***iiiit*ti*iittﬁi**iiii**iﬁiiiitt*i**iiiitﬂtiiiitttiii*iiiﬁ/

#include "all.h®

void ShowMousePosition(w,data,event)

{

/t
*
*

*

if

Widget w;
Drawdata *data;
XEvent  *event;

extract sprite position from event and draw point at that position,
both in drawingarea and its pixmap

(must be altered to if-condition on mode zoom, draw or origin)
*

(data->drawgrab)

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));
XDrawPoint(XtDisplay(w),data->pix,data->gc,
event->xbutton. x, event->xbutton.y);
XDrawPoint(XtDisplay(w),XtWindow(w),data->gc,
event->xbutton.x, event->xbutton.y);
data->oldpointx = event->xbutton.x;
data->oldpointy = event->xbutton.y;

void TrackMousePosition(w,data,event)

{

/i

*
*

*

Widget w;
Drawdata *data;
XEvent *event;

extract sprite position from event and draw point at that position,

both in drawingarea and its pixmap
*

(must be altered to if-condition on mode zoom, draw, erase, origin)

*/

if
<

)
if
L4

(data->drawgrab)

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen{w)));
XDrawPoint(XtDisplay(w),data->pix,data->gc,
event->xmotion.x,event->xmotion.y);
XDrawPoint(XtDisplay(w),XtWindow(w)},data->gc,
event->xmotion.x, event->xmotion.y);
XDrawl ine(XtDisplay(w),data->pix,data->gc,data->oldpointx,
data->oldpointy, event->xmotion.x, event->xmotion.y);
XDrawl ine(XtDisplay(w),XtWindow(w),data->gc,data->oldpointx,
data->oldpointy,event->xmotion.x, event->xmotion.y);
data->oldpointx = event->xmotion.x;
data->oldpointy = event->xmotion.y;

(data->erasegrab)

XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w)));

XFillRectangle(XtDisplay(w),data->pix,data->gc,
event->xmotion.x,event->xmotion.y,10,10);

XFillRectangle(XtDisplay(w),XtWindow(w),data->gc,
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event->xmotion.x,event->xmotion.y,10,10);

void LeaveWindowHandler(w,data, event)
Widget w;
Drawdata *data;
XEvent  *event;
(<
/'t
* remove the dynamically installed eventhandlers
*

if (ldata->drawgrab & !data->erasegrab)
L4
XtRemoveEventHandler(w,ButtonPressMask, FALSE,ShowMousePosition,data);
XtRemoveEventHandler(w,ButtonMotionMask, FALSE, TrackMousePosition,data);
XtRemoveEventHandler(w,ButtonReleaseMask | LeaveWindowMask,FALSE,
LeaveWindowHandler ,data);

void EnterWindowHandler(w, data,event)
Widget w;
Drawdata *data;
XEvent  *event;
{
/'t
* jf grab is TRUE and the sprite enters the window, then install the
* additional eventhandlers
*/
if (data->drawgrab | data->erasegrab)
{
XtAddEventHandler(w,ButtonPressMask, FALSE, ShowMousePosition,data);
XtAddEventHandler(w,ButtonMotionMask, FALSE, TrackMousePosition,data);
XtAddEventHandler(w,ButtonReleaseMask | LeaveWindowMask,FALSE,
LeaveWindowHandler,data);

void InitMouseTracker(target)
Widget target;
(
/’t
* install initial eventhandlers
*/
if (target == leftpixelarea)

XtAddEventHandler(target,EnterWindowMask, FALSE,
EnterWindowHandler, leftpixeldata);
)
if (target == rightpixelarea)

XtAddEventHandler(target,EnterWindowMask, FALSE,
EnterWindowHandler,rightpixeldata);
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/itiitiiiiiﬁﬁ.iiiiii'*iiiiittiiiiiittﬁiiiiiiii.ﬁitiittiiiiii*tiﬁiiiiiﬁt-iiiiiii

* Copyright(c) : Eindhoven University of Technology (TUE,NL)

* : Faculty of Electrical Engineering (E)

* : Design Automation Group (ES)

* Mail address : emilevddviper.es.ele.tue.nl

* Project : Fractal imagecompression with Iterated Function Systems
* Supervisor : Prof. Dr. Ing. J.A.G. Jess

* File : writer.c

* Purpose : Contains texthandlers for writing in textareas
* part of : 1FS-CODEC

* Created on : June 18, 1992

* Created by : Emile van Duren

* Last modified on: November 20, 1992

: Modified by : Emile van Duren

Remarks : None
ii**itﬁtiiiiitii*iittttiiiiiitttiiiiiiiititiiﬁ*t*iii*t*tii*iiitt*iitiiﬁiiﬁiii/

#include "all.h®

*

* forward function declarations

*/

int StringLength(); /* contained in strings.c */
Drawdata *GetWindowData(); /* contained in control.c */
Textdata *GetTextData(); /* contained in control.c */
Widget GetWindow(); /* contained in control.c */

void DrawText(location)
char location;
(

Drawdata *data;

Textdata *text;

Widget w;

w = GetWindow(location,’t’);

data = GetWindowData(location,’t’);
tsxt = GetTextData(location);

* clear textarea
*

XSetForeground(XtDisplay(w),data->gc,WhitePixelOfSzreen(XtScreen(w)));

XFillRectangle(XtDisplay(w),data->pix,data->gc,0,( ,data->width,data->height);

XFillRectangle(XtDisplay(w),XtWindow(w),data->gc,G,3,

. data->width,data->height);

/

* draw in textarea

*/

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w)));

XDrawString(XtDisplay(w),data->pix,data->gc, 10,20, text->mode,
strlen(text->mode));

XDrawString(XtDisplay(w),data->pix,data->gc, 10,40, text->srce,
strien(text->srce));

XDrawString(XtDisplay(w),data->pix,data->gc, 10,60, text->size,
strien(text->size));

XDrawString(XtDisplay(w),data->pix,data->gc, 10,80, text->cont,
strien(text->cont));

XDrawString(XtDisplay(w),data->pix,data->gc, 10,100, text->save,
strien(text->save));

XDrawString(XtDisplay(w),data->pix,data->gc, 10,120, text->orgn,
strlen(text->orgn));

XDrawString(XtDisplay(w),data->pix,data->gc, 10,140, text->init,
strlen(text->init));

XDrawString(XtDisplay(w),data->pix,data->gc, 10,160, text->amit,
strlien(text->amit));

XDrawString(XtDisplay(w), data->pix,data->gc, 10,180, text->iter,
strlen(text->iter));

XDrawString(XtDisplay(w),data->pix,data->gc, 10,200, text->zoom,
strlien(text->zoom)); '

XCopyArea(XtDisplay(w),data->pix, XtWindow(w),data->g¢,0,0,

data->width,data->height,0,0);
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Appendix

Some IFS-codes and their attractors

/**ﬁt*i*i**ﬁiiitt*******iii**i*i*ﬁﬁit***i**i.ii*tt*i****ii****iiiiﬁitt******iii
Copyright(c) Eindhoven University of Technology (TUE,NL)

Faculty of Electrical Engineering (E)

Design Automation Group (ES)

emi levddviper.es.ele.tue.nl

*

Mail address

. :

* :

* :

* Project : Fractal imagecompression with 1terated Function Systems
* Supervisor : Prof. Dr. Ing. J.A.G. Jess

* File : codes

* Purpose : Contains 1FS-codes for various fractal structures
* part of : 1FS-CODEC

* Created on : August 06, 1992

* Created by : Emile van Duren

* Last modified on: December 17, 1992

* Modified by : Emile van Duren

* Remarks : None

B
itt**i*i*i.ttii**i*tﬁi*i*i*i*i.ittt*i*****ii****i-ﬁﬁﬁit*i****ii.tiitt****iti*/

chain.ifs [origin (-250,-250) startpixel (-78,-183)]

0.132 0.000 0.000 0.420 64.000 115.000 0.127
0.405 0.000 0.000 0.109 143.000 54.000 0.101
0.411 0.000 0.000 0.115 136.000 375.000 0.109
0.140 0.000 0.000 0.457 356.000 125.000 0.147
0.000 0.000 0.000 0.002 101.000 277.000 0.001
0.125 -0.211 0.104 0.248 138.000 18.000 0.122
0.121 0.230 -0.113 0.246 289.000 72.000 0.128
0.123 0.192 -0.104 0.230 41.000 325.000 0.111
0.146 -0.192 0.115 0.303 365.000 251.000 0.153

dragon.ifs [origin (0,0) startpixel (0,0)]

0.557 -0.366 0.366 0.557 -100.000 0.000 0.500
0.557 -0.366 0.366 0.557 100.000 0.000 0.500

fern.ifs [origin (0,-200) startpixel (0,0)]

0.000 0.000 0.000 0.160 0.000 0.000 0
0.850 0.040 -0.040 0.850 0.000 64.000 0.
0.200 -0.260 0.230 0.220 0.000 64.000 0
-0.150 0.280 0.260 0.240 0.000 18.000 O

france.ifs [origin (0,100) startpixel (0,0)]

0.000 -0.033 0.033 0.000 -204.000 14.000 0.001
0.036 0.000 0.000 0.036 -199.000 -8.000 0.001
0.086 -0.043 0.043 0.086 -189.000 10.000 0.005
-0.045 -0.122 0.122 -0.045 -179.000 -6.000 0.009
-0.174 -0.037 0.037 -0.174 -136.000 -40.000 0.016
0.098 -0.106 0.106 0.098 -178.000 4.000 0.011
0.084 0.209 -0.209 0.084 -83.000 -48.000 0.026
-0.130 0.002 -0.002 -0.130 -95.000 0.000 0.009
0.063 -0.024 0.0246 0.063 -110.000 46.000 0.002
-0.193 -0.456 0.456 -0.193 -87.000 -166.000 0.124
-0.235 0.046 -0.046 -0.235 -86.000 -242.000 0.029
0.097 0.081 -0.081 0.097 -118.000 -212.000 0.008
-0.660 -0.253 0.253 -0.660 -10.000 -142.000 0.252
-0.161 -0.192 0.192 -0.161 -34.000 -242.000 0.032
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-0.250 0.013 -0.013 -0.250
0.125 0.000 0.000 0.125
-0.310 0.172 -0.172 -0.310
0.250 0.004 -0.004 0.250
-0.254 0.068 -0.068 -0.254
0.142 -0.099 0.099 0.142
-0.036 -0.187 0.187 -0.036
0.000 0.354 -0.354 0.000
-0.045 -0.256 0.256 -0.045
0.091 0.011 -0.011 0.091
0.113 0.053 -0.053 0.113
-0.219 -0.121 0.121 -0.219
-0.219 -0.121 0.121 -0.219
-0.024 0.123 -0.123 -0.024
-0.106 0.021 -0.021 -0.106
-0.354 -0.006 0.006 -0.354
-0.220 0.008 -0.008 -0.220

-45.000 -248.000 0.032
-23.000 -248.000 0.008
62.000 -212.000 0.064
90.000 -182.000 0.032
98.000 -234.000 0.035
99.000 -208.000 0.015
83.000 -150.000 0.019
98.000 -72.000 0.063
84.000 -40.000 0.034
150.000 -2.000 0.004
115.000 14.000 0.008
-9.000 20.000 0.032

0.000 20.000 0.032
71.000 28.000 0.008

5.000 68.000 0.006
-9.000 -42.000 0.063
-54.000 -24.000 0.024

koch.ifs [origin (0,0) startpixel (0,110)]

0.330 0.000 0.000 0.330
0.330 0.000 0.000 0.330
0.165 -0.286 0.286 0.165
0.165 0.286 -0.286 0.165

leaf.ifs [origin (-250,150)
0.400 -0.380 0.250 0.440

-134.000 0.000 0.250
134.000 0.000 0.250
-34.000 56.000 0.250

34.000 56.000 0.250

startpixel (0,0)]
-25.000 -209.000 0.189

0.590 0.000 0.001
0.400 0.350 -0.260
0.740 -0.003 0.002

0.600 126.000
0.420 309.000
0.740 67.000

16.000 0.247
-73.000 0.181
-80.000 0.383

rect.ifs [origin (0,0) startpixel (0,0)]

0.500 0.000 0.000 0.500
0.500 0.000 0.000 0.500
0.500 0.000 0.000 0.500
0.500 0.000 0.000 0.500

-50.000 50.000 0.250
50.000 50.000 0.250
-50.000 -50.000 0.250
50.000 -50.000 Q.250

square.ifs [origin (0,0) startpixel (0,35)]

0.330 0.000 0.000 0.330
0.330 0.000 0.000 0.330
0.330 0.000 0.000 0.330
0.330 0.000 0.000 0.330
0.330 0.000 0.000 0.330
0.330 0.000 0.000 0.330
0.330 0.000 0.000 0.330
0.330 0.000 0.000 0.330

tree.ifs forigin (-225,-200)

0.195 -0.488 0.344 0.433
0.462 0.414 -0.252 0.361
-0.058 -0.070 0.453 -0.111
=0.035 0.070 -0.469 -0.022
-0.637 0.000 0.000 0.501

-66.000 0.000 0.125

0.000 66.000 0.125
-66.000 66.000 0.125
~66.000 -66.000 0.125
66.000 66.000 0.125

0.000 -66.000 0.125
66.000 -66.000 0.125
66.000 0.000 0.125

startpixel (0,0)]

199.395 110.340 0.276
112.995 256.005 0.297
268.920 43.605 0.042
219.780 228.105 0.037
385.290 113.085 0.348

triangle.ifs [origin (0,0) startpixel (0,0)]

0.500 0.000 0.000 0.500
0.500 0.000 0.000 0.500
0.500 0.000 0.000 0.500

twig.ifs [origin (-225,-225)
0.387 0.430 0.430 -0.387

0.441 -0.091 -0.009 -0.322
-0.461 0.020 -0.113 0.015

-£..000 -50.000 0.334
¥..000 -50.000 0.333
-.000 50.000 0.333

czartpixel (0,0)]
128.000 261.000 0.694

210.950 252.950 0.296
200.000 200.000 0.010
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Figure C.1. Attractor of structure chain. Figure C.2. Graphical view of IFS for structure chain.

Figure C.3. Attractor of structure dragon.

Figure C.4. Graphical view of IFS for structure dragon.
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Figure C.5. Attractor of structure fern. Figure C.6. Graphical view of IFS for structure fern.

Figure C.7. Attractor of structure france. Figure C.8. Graphical view of IFS for structure france.
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Figure C.9. Attractor of structure koch. Figure C.10. Graphical view of IFS for structure koch.

Figure C.11. Attractor of structure leaf. Figure C.12. Graphical view of IFS for structure leaf.
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Figure C.13. Atractor of structure rect. Figure C.14. Graphical view of IFS for structure rect.

Figure C.15. Attractor of structure square. Figure C.16. Graphical view of IFS for structure square.
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Figure C.17. Attractor of structure free.

Figure C.18, Graphical view of IFS for structure tree.
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Figure C.19. Attractor of structure friangle.

Figure C.20. Graphical view of IFS for structure triangle.
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Figure C.21. Attractor of structurc twig. Figure C.22. Graphical view of IFS for structure twig.

Figure C.23. france,, nondeterministically rendered. Figure C.24. france, with a bottle as condensation set.
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Figure C.25. leaf, for P = {0.289,0.147,0.381,0.183}. Figure C.26. leaf, for P = {0.289,0.247,0.281,0.183}.

Figure C.27. leaf, for P = {0.5,0.25,0.125,0.125}. Figure C.28. leaf, for P = {0.25,0.25,0.25,0.25}.
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Figure C.29. leaf, for P = {0.3,0.1,0.4,0.2}. Figure C.30. leaf, for P = {0.2,0.3,0.1,0.4).

Figure C.31. leaf, for P = {0.4,0.2,0.3,0.1). Figure C.32. legf, for P = {0.1,0.4,0.2,0.3}.
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Figure C.33, fern, with a square as condensation set, successive amount of iterations: n = 0,1,2,3,4,8,16,32.
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Figure C.34. fern, with the Mandelbrot set as condensation set, successive amount of iterations: n = 0,1,2,3,4,8,16,32.
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Figure C.35. fern, with its own IFS-code as condensation set, successive amount of iterations: n = 0,1,2,3,4,8,16,32.
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Typical genetic monitor output

file name

searching to find
operator probabilities: MacroCrossover:

maximm encoding error (epsilon)
maximum amount of generations

population size

transformation:
generation :
member 8 b
109 136
3 7
201 149
21 99
55 110
61 73
204 84
232 249
130 167
10 210 217
total fitness =

OVONOV W =

generation : 1
member a b
109 136
109 136
109 136
B 7
113 64
249 129
138 167
67 73
53 99
10 201 149
total fitness =

VONOV WD =

generation : 2
member a b
109 136
107 134
109 136
109 136
77 74
73 157
237 128
113 96
140 169
10 139 167

VONOUVMPEWN -

: france
: identity
0.20
MicroCrossover: 0.20
MixedCrossover: 0.20
Mutate : 0.10
Jump : 0.10
Scale : 0.10
Rotate : 0.10
: 0 fpercent]
: 25
: 10
1
0 (initialization)
c d e f fitness
143 68 128 128 0.445742
19 114 153 8 0.352467
98 186 179 40 0,262182
70 93155 9 0.236376
50 24 15 149 0.211504
131 242 43 241  0.113952
204 107 18 133 0.093416
28 47 25 170 0.070576
149 108 19 3 0.068520
22 7 189 166 0.051151
1.905887
¢c d e f fitness
167 124 178 128 0.507279
143 68 128 128 0.445742
143 68 32 128 0.362960
19 114 153 8 0.352467
35 58155 9 0.197892
61 46 189 166 0.184375
149 108 19 3 0.121503
131 242 139 241  0.114945
70 93 155 9 0.095200
76 128 129 40  0.088855
2.471216
c d e f fitness
167 124 178 128 0.507279
165 124 178 130  0.504466
143 6B 128 128 0.445742
167 92 178 128 0.410672
19 114 153 8 0.371124
130 72 129 160 0.307531
111 180 178 8 0.259996
35 58 155 9 0.144981
151 108 19 1 0.141826
148 109 19 3 0.126465

EEE?I fitness = 3.220082

Appendix
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generation : 3

member a b
109 136
109 136
107 134
107 134
107 134
7 74
97 9
73 157
111 128
10 113 32
total fitness =

VBNV WN =

generation : 4
member a b
109 153
109 136
109 136
109 136
109 72
107 165
109 136
107 134
107 132
10 77 74
total fitness =

VRNV W =

generation : 5
member a b
109 153
109 136
109 136
109 136
109 136
109 153
107 132
109 136
109 136
10 107 165
total fitness =

VBNV W=

generation : 6
member a b
109 153
109 136
109 153
109 136
109 136
109 153
109 136
111 128
107 134
10 105 140
total fitness =

VONOWVMISWN -

generation : 7
member a b
109 136

2 250
109 153
109 136
109 136
109 153
109 153
109 153
109 136

10 33 221
total fitness =

VBNV NN =

c d e
19 124
167 124
165 124
165 124
165 124
167 114

35 122
130 72
237 180

35 58
4.335960

c d e
19 124 136
17 124 153
19 124 153

167 124 162
167 120 178
134 124 178
167 124 178
165 125 178
173 244 178
167 112 178
5.749373

c d e
19 124 136
19 124 146

167 124 136
17 124 153
19 124 153
19 124 162

173 244 144

167 124 162

167 124 162

134 126 178

6.589612

c d e
19 124 136
131 124 136
55 124 136
17 124 144
19 124 146
136 1264 19
19 126 155
173 244 144
173 244 144
167 124 162
7.042974

c d e
19 124 136
122 35 136
19 124 136
131 126 136
131 124 140
55 126 8
136 124 147
19 124 155
19 126 155
239 197 1446
7.409892

f

128
130
130
130
128

160

(= 2 -2 Y

128
128
130
128
130

128

12

NDDP®HOROO -

130
128
128

DOONOOORR O -h

fitness
0.687612
0.507279
0.504466
0.504466
0.504466
0.433926
0.364460
0.306610
0.262182
0.260493

fitness
0.780331
0.688357
0.687612
0.596630
0.538023
0.512182
0.507279
0.506381
0.500508
0.432071

fitness
0.780331
0.734663
0.706376
0.688357
0.687612
0.641696
0.640597
0.598332
0.596630
0.515018

fitness
0.780331
0.779965
0.753013
0.750614
0.734663
0.702617
0.673481
0.648797
0.644697
0.574995

fitness
0.798055
0.786499
0.780331
0.779965
0.766247
0.745155
0.711185
0.686277
0.680830
0.675347

D. Typical genetic monitor output
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generation : 8

member a b ¢ d e f fitness
1 109 136 19 124 136 8 0.798055
2 2 250 122 35 136 8 0.786499
3 109 136 131 124 140 8 0.766247
4 109 136 131 124 140 8 0.766247
5 14 250 114 47 136 8  0.749244
é 109 136 51 126 136 8 0.745108
7 109 185 19 124 136 8 0.724608
8 232 49 161 242 136 8 0.705596
9 107 148 29 125 155 8 0.684091
10 101 184 40 111 136 8 0.681633
total fitness = 7.407328
generation : 9
member a b c¢c d e f fitness
1 109 136 19 124 136 8 0.798055
2 109 138 19 124 136 8 0.797571
3 2 250 122 35 136 8 0.7864%9
4 14 250 122 47 136 8 0.785282
5 109 136 131 124 136 8 0.779965
é 109 137 131 124 140 8 0.765656
7 109 136 51 125 136 8 0.748003
8 14 250 114 47 140 8 0.733966
9 109 185 19 124 152 8 0.686029
10 107 148 29 124 155 8 0.681161
total fitness = 7.562187
generation : 10
member a b ¢ d e ¢ fitness
1 109 136 19 124 136 8 0.798055
2 109 138 19 124 136 8 0.797571
3 124 136 131 109 136 8 0.774742
4 13 248 115 44 136 8 0.756014
5 109 168 19 124 136 8 0.752245
6 110 146 29 111 140 8 0.712579
7 109 153 19 124 152 8 0.707735
8 98 138 138 115 136 8 0.651491
9 11 252 114 60 155 8 0.641814
10 109 136 116 47 140 8 0.332924
total fitness = 6.925170
generation : 11
member a b ¢ d e f fitness
1 109 136 19 124 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 109 138 19 124 136 8 0.797571
4 109 138 19 124 136 8 0.797571
5 109 138 19 124 136 8 0.797571
é 109 168 19 124 136 8 0.752245
7 8 248 1164 41 136 8 0.750898
8 15 248 114 44 139 8 0.738042
9 103 138 139 118 136 8 0.695203
10 168 248 103 162 136 8 0.682839
total fitness = 7.608139
generation : 12
member a b c¢c d e f fitness
1 109 136 19 126 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 109 136 19 124 136 8 0.798055
4 109 140 19 126 136 8 0.796519
5 109 168 19 1264 136 8 0.752245
é 15 248 114 44 136 8 0.750012
7 8 248 114 41 139 8 0.741800
8 105 168 19 124 136 8 0.737097
9 232 168 19 250 136 8 0.702087
10 45 248 103 36 136 8 0.690318

total fitness = 7.564243
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generation : 13

member a b ¢ d e f fitness
1 109 136 19 124 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 109 168 19 124 136 8 0.752245
4 11 248 114 44 136 8 0.751595
5 231 34 169 248 136 8 0.728519
[ 232 168 19 251 136 8 0.704214
7 45 248 103 37 136 8 0.690235
8 179 234 98 204 136 8 0.666934
9 109 216 83 124 136 8 0.625815
10 109 248 114 124 136 8 0.546685
total fitness = 7.062352
generation : 14
member a b ¢ d e f fitness
1 109 136 19 124 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 124 136 19 109 136 8 0.766389
4 109 19 168 124 136 8 0.754880
5 109 168 19 124 136 8 0.752245
6 109 34 19 248 136 8 0.736873
7 109 152 83 124 136 8 0.730776
8 231 136 169 124 136 8 0.717672
9 109 200 19 124 136 8 0.695777
10 109 216 87 124 136 8 0.621822
total fitness = 7.372542
generation : 15
member a b ¢ d e f fitness
1 109 136 19 124 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 109 136 23 124 136 8 0.792608
4 109 136 19 124 140 8 0.780875
5 125 34 19 248 136 8 0.775132
[ 231 136 169 124 136 8 0.717672
7 231 136 169 124 136 8 0.717672
8 109 216 83 124 136 8 0.625815
9 105 244 128 90 136 8  0,460689
10 168 109 19 124 136 8 0.346228
total fitness = 6.812801
generation : 16
member a b ¢ d e f fitness
1 109 136 19 124 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 109 152 19 124 136 8 0.781785
4 109 136 19 124 140 8 0.780875
5 109 136 145 124 136 8 0.750354
) 231 136 169 124 136 8 0.717672
7 109 136 83 124 140 8 0.691145
8 125 136 19 248 34 8 0.674024
9 109 216 19 124 136 8 0.669818
10 231 136 43 124 136 8 0.655733
total fitness = 7.317515
generation : 17
member a b ¢ d e f fitness
1 109 136 19 124 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 109 136 19 124 136 8 0.798055
4 109 152 19 124 136 8 0.781785
5 109 136 19 124 140 8 0.780875
[ 109 136 19 124 140 8 0.780875
7 239 136 3 124 136 8 0.767086
8 231 136 169 124 128 8 0.724726
9 101 136 59 124 136 8 0.696982
10 125 136 19 248 34 8 0.674024

total fitness = 7.600517
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generation : 18

member a b ¢ d e f fitness
1 125 136 19 120 136 8 0.831754
2 109 136 19 124 136 8 0.798055
3 109 136 19 124 136 8 0.798055
4 109 136 19 124 136 8 0.798055
5 109 136 19 124 136 8 0.798055
[ 109 136 3 124 140 8 0.776964
7 101 136 59 124 136 8 0.4696982
8 101 136 59 124 136 8 0.696982
9 101 136 59 124 152 8 0.637395
10 109 136 19 252 34 8 0.624220

total fitness = 7.456518

generation : 19

member a b ¢ d e f fitness
1 125 136 3 120 136 8 0.845862
2 125 136 19 120 136 8 0.831754
3 109 136 19 124 128 8 0.802734
4 109 136 19 124 136 8 0.798055
5 109 136 19 252 136 8 0.718168
é 101 136 59 252 136 8 0.667124
7 93 128 51 116 136 8 0.622483
8 109 136 19 124 34 8 0.616363
9 109 136 19 124 34 8 0.616363
10 25 187 110 48 136 8 0.458066

total fitness = 6.976971

generation : 20

member a b ¢ d e f fitness
1 125 136 19 124 136 8 0.853070
2 125 136 3 120 136 8 0.8458862
3 125 136 19 120 136 8 0.831754
4 125 138 19 120 134 8 0.831340
5 99 237 106 94 136 8 0.632728
6 93 128 51 112 136 8 0.606839
7 77 136 19 124 136 8 0.579308
8 25 187 110 48 152 8 0.440803
9 25 179 110 48 136 8 0.409727
10 40 202 125 191 136 8 0.373972

total fitness = 6,405402

generation : 21

member a b ¢ d e f fitness
1 125 136 19 124 128 8 0.876997
2 125 136 19 124 136 8 0.853070
3 125 136 19 124 136 8 0.853070
4 125 136 3 120 136 8 0.845882
5 125 138 27 120 136 8 0.819418
6 109 136 19 124 136 8 0.798055
7 93 136 19 124 136 8 0.696143
8 225 80 207 218 136 8 0.663390
9 115 253 104 94 152 8 0.598072
10 77 138 19 120 136 8 0.566039

total fitness = 7.570115

generation : 22

member a8 b ¢ d e f fitness
1 125 136 17 124 128 8 0.880344
2 125 136 19 124 128 8 0.876997
3 125 136 19 124 128 8 0.876997
4 125 136 19 124 128 8 0.876997
5 125 136 19 124 136 8 0.853070
6 26 247 124 36 128 B 0.798776
7 97 144 15120 136 8 0.702571
8 93 136 17 124 136 8 0.694938
9 237 7R 211 222 136 8 0.679648
10 115 253 104 94 152 8 0.598072

total fitness = 7.838429
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generation : 23

member a b ¢ d e f fitness
1 125 136 17 124 128 8 0.880364
2 125 136 17 124 128 8 0.880364
3 125 136 17 124 128 8 0.880364
4 125 136 19 124 128 8 0.876997
5 109 152 1 124 128 8 0.773620
6 113 128 31 120 136 8 0.771221
7 115 144 104 120 152 8 0.642440
8 91229 80 70 152 8 0.609864
9 216 125 246 238 136 8 0.594220
10 97 253 15 94 136 8 0.517027
total fitness = 7.426481
generation : 24
member a b ¢ d e ¢ fitness
1 125 136 16 124 128 8 0.882267
2 125 136 17 124 128 8 0.880364
3 125 136 17 124 128 8 0.880364
4 125 136 17 124 128 8 0.880364
5 125 136 17 124 128 8 0.880364
6 125 136 23 124 128 8 0.868194%
7 125 136 19 120 128 8 0.857784
8 125 136 17 124 136 8 0.856154
9 113 128 31 124 136 8 0.787858
10 114 195 40 103 152 8 0.664500
total fitness = 8.438215
generation : 25
member a b ¢ d e f fitness
1 125 136 16 124 128 8 0.882267
2 125 136 17 124 128 8 0.880364
3 125 136 17 124 128 8 0.880364
4 125 136 17 124 128 8 0.880364
5 125 136 17 124 128 8 0.880364
[ 125 136 19 124 128 8 0.876997
7 125 136 21 124 128 8 0.872861
8 125 136 23 124 128 8 0.868194
9 249 173 37 244 128 8 0.758011
10 125 136 128 120 19 8 0.755790

total fitness = 8,535578

#operator selections : MacroCrossover: 23
MicroCrossover: 26
MixedCrossover: 23

Mutate s 24

Jump 12

Scale i 4

Rotate : 10
pixsetdistance(target,best member) : 0.117785
#affine transformations in IFS-code : 1

total CPU time used = 845 (seconds] = 0.23 [hours)
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