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Abstract

To many scientists the words chaos and fractals either make no sense or are only associated with
nice pictures. Up till now, only relatively few of them seem to fully understand the fundamental
and universal properties of this new theory. One of the goals of this master thesis is to compre­
hend the concepts of chaos theory and fractal geometry in a compact and readable format. This is
achieved by a bottom up approach and an extensive use of examples.

Fractal geometry is an extension of classical geometry and appears to be very suitable to describe
natural structures, such as mountains, trees, clouds, etc. Scale-invariance of the amount of detail
is the key concept.

Chaos theory provides powerful tools to analyze the behaviour of complex dynamical systems. On
one hand it is an extension of the conventional mathematical analysis, which is based on numerical
approximation, on the other hand it ties together aspects from various fields of science, such as
physics, information theory and electronics.

Fractal geometry and chaos theory are closely related to each other by the concepts of scaling, and
iteration (recursive composition). Furthermore, chaos theory has a dual character. On one hand it
puts an end to the dream of full predictability of deterministic dynamical systems, on the other
hand it gives some clues about the up till now supposed unpredictability of nondeterministic
dynamical systems. Chaos theory is also closely related to already known concepts, such as
Lyapunov exponents and entropy.

A dynamical system can be suitably represented by a set of iterated transformations which operate
on a metric space. If the transformations have the property of being affine (Le. map parallelIo­
grams to parallellograms), and are each applied with an assigned probability, then such dynamical
system is called an Iterated Function System (IFS). The parameters of an IFS can be represented
in a highly compact IFS-code. In this sense, an IFS-code establishes an extensive compressed
representation of the (behaviour of) the dynamical system it encodes. Compression ratio's of
10000: 1 are possible.

The process of decoding an IFS-code into the associated picture is trivial and fast. The rendered
picture is called the attractor and represents the behaviour of the according dynamical system. If
an attractor has fractal properties, then the associated dynamical system may possess chaotic
behaviour under certain conditions.

The inverse process of encoding a target image into an IFS-code is not trivial at all, but, instead,
is proven to be NP-complete. The reason we are very much interested in IFS-encoding is the fact
that it implies a tool for enormous data compression and good control of real world images, which
could have applications in the defence industry (visual systems of weapon platform simulators,
storage of satellite data) and in new commercial applications (virtual reality, film, VLSI-design).
Maybe IFS-encoding wilI appear to be a powerful tool for modelling dynamical systems of which
only the attractor is known.



6 Abstract

The practical component of this graduation work is mainly concerned with the implementation of a
toolbox for applying interactive and automatic IFS-encoding. The toolbox is embedded in the
OSF/Motif ~ X Window System~ and it fully supports IFS-decoding (both deterministic and
nondeterministic) as well as interactive IFS-encoding. A genetic algorithm is implemented to
achieve automatic IFS-encoding. Due to the enormous degree of freedom which exists in the
tuning of the parameterset with which the genetic algorithm is initialized, we have only reached
results up to 88% approximation quality in obtaining a collage (which implies 80% approximation
quality for the rendered attraetor). Symmetry group transformations (mainly used for validation of
the genetic algorithm) have been found up to 99% approximation quality. However we feel that
the genetic approach is a promising one and further investigations on this area will certainly
improve its performance.
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1

Newton stated that the world unfolded along a deterministic path, rule-bounded like the planets,
predictable like eclipses and tides. Laplace imagined a supreme intelligence and stated: "Such an
intelligence would embrace in the same formula the movements of the greatest bodies of the universe
and those of the lightest atom; for it, nothing would be uncertain and the future, as well as the past,
would be present to its eyes" [GLE87J,

With chaos theory the era of the deterministic dream came to an end. Scientists who have understood
the essence of chaos, will no longer hunt for full predictability anymore.

1.1. The birth of a new science

In the last few decennia, it has become clear that the language of classical geometry is insufficient to
describe the natural geometry and the behaviour of dynamical systems. Therefore fractal geometry
and chaos theory were developed. Strange enough they were developed almost independently (fractal
geometry from mathematics and chaos theory from physics), despite the fact that they are closely
related to each other. Scaling and iteration are the key concepts of both theories. In particular, it
appears that a fractal is a "picture" of the behaviour of a dynamical system.

Despite the work a few early twentieth century mathematicians, like Cantor, Von Koch and
Sierpinski, put in developing geometrical structures of infinite detail, it was Mandelbrot who gave the
starting shot for the building of the theory of fractal geometry, with his famous paper "How long is
the coast of Britain?" [MAN671. Four years earlier, Lorenz had done the same for the building of
chaos theory with his historical paper: "Deterministic nonperiodic flow· [LOR631. Here too, the man
who gave the starting shot, was not the first one who got a glimpse of what was going on. In the late
nineteenth century, the french mathematician Poincare proved that it is in general impossible to give
a simple prescription for the orbit of one body influenced by two other bodies (the three-body
problem).

The concept of chaotic behaviour now pervades virtually all the sciences. In simple terms, we can say
that a dynamical system exhibits chaos if its behaviour is not random, but there are no predictable
patterns to it. Chaotic dynamics is the study of such behaviour, and despite the unpredictability of
chaotic system behaviour, mathematical analysis can often describe it.
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Chaos theory has been successfully applied to scientific fields which study a variety of topics such
as earthquakes, heart attacks, infectuous diseases, stock markets, the weather, chemical reactions,
electronic circuits, organizations, etc.

Geometry is concerned with making our spatial intuitions objective. Classical geometry provides a
first approximation to the structure of physical objects; it is the language which we use to
communicate the designs of technological products and, very approximately, the forms of natural
creations. Fractal geometry is an extension of classical geometry. It can be used to make precise
models of all existing natural structures, such as clouds, mountains, trees, bird feathers, galaxies, etc.

Alltogether, chaos theory and fractal geometry are the first languages that are powerful enough to
describe how the world is really (dis)organized, both with respect to its behaviour as to its geometry.
Both theories contain universal properties, and it has been said that those new theories form the third
scientific revolution of this century, after relativity and quantum mechanics [GLE87].

1.2. What is new about chaos ?

Engineers have always known about chaos. It was called noise or turbulence or something else, and
safety factors were used to design around these apparent random unknowns that seem to crop up in
every technical device. So what is new about chaos ?

First, the recognition that chaotic behaviour can already arise in low-order, nonlinear deterministic
systems, raises the hope of understanding the source of randomlike noise and doing something about
it. Second, the new discoveries in nonlinear dynamics bring with them new concepts and tools for
detecting chaotic dynamics in physical systems and for quantifying this "deterministic noise" with new
measures, such as fractal dimension and Lyapunov exponents. Third, fractal geometry seems to be
a promising tool for enormous data compression and computer animation, since it is able to use
iteration as a decoding mechanism, which transforms very few bytes of information into complex
geometrical structures.

Concluding, what is new about chaotic dynamics is the discovery of a seemingly underlying order
which holds out the promise of being able to predict certain properties of noisy behaviour, which
occurs when some strong nonlinearity exists. Even a chaotic system will at last complete a
deterministic periodic cycle, but this can take centuries. Poincare already stated that water at room
temperature could spontaniously tum into ice, but the chance that it does is very small.

1.3. Thesis goal

The goal of this thesis is threefold. First it should give a thorough and compact overview of the
essences of chaos theory and fractal geometry. Second it should document the developed user­
interactive program IFS-CODEC, which facilitates application of all important concepts of fractal
geometry. Third it should describe our attempt of solving an unsolved fundamental problem of fractal
geometry, Le. automatic IFS-encoding. This problem has applications in data compression and
computer animation (flight simulators, virtual reality, etc.).
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The first goal of this thesis is achieved by the chapters 1 through 7, the second goal by the appendices
A and B and the third goal by the chapters 8 through 11. We have tried to illustrate the theoretical
concepts as much as possible with representative examples, to facilitate a quick understanding. The
reader who is not familiar with either chaos theory or fractal geometry, is advised to study this thesis
in chronological order, since it is written from a bottom-up point of view, Le. each chapter introduces
elements that will be used in successive chapters. The text of this thesis contains theorems, defmitions
and examples, the termination of which is respectively denoted by ., • and *. Predicates are
sometimes written in the "Dijkstra" form, sometimes in the classical form and sometimes in a mixed
form. For example the following predicates are equivalent, but the left one is written in the "Dijkstra"
form, while the right one is written in the classical form:

"
(A n : ISn : (~i : ISi::;;n: i) = i(n 2+n)) ~ V"eN"( Ei = ~(n2+n))

i-I

Despite the fact that this introduces an inconsequency, we decided to use both notations, because both
have (dis)advantages. The "Dijkstra" form is very wei suited to use in regular textlines, but can be
rather lengthy, while the classical form is not at all suited to use in textlines, but is very compact.

Chapter 2 basically deals with geometrical definitions, the most of which will be used throughout this
thesis.

Chapter 3 gives a brief overview on fractals and their properties.

Chapter 4 introduces dynamical systems. To stress the close relationship offraetal geometry and chaos
theory, dynamical systems are defined as (iterated) transformations in a geometrical space.

Chapter 5 introduces a formal definition of chaos and continues with a description of its separate
elements.

Chapter 6 provides the theory behind some well known fractals, Le. Julia sets and Mandelbrot sets.

In chapter 7, a special kind of dynamical system is introduced, namely the two-dimensional affine
transformation. It is this transformation which forms the basis for operations on geometrical two­
dimensional images.

Chapter 8 introduces an Iterated Function System (IFS) as a set ofaffine transformations together with
a set of associated probabilities. Funhermore, IFS-decoding is treated from an algorithmic viewpoint
as well as from a viewpoint of finite automata.

Chapter 9 is basically an introduction to the next chapter and deals with measures, Markov operators
and moment theory.

Chapter 10 addresses the inverse problem of chapter 8, Le. IFS-encoding. This topic is approached
in a fundamental way. Computational time complexity is considered, as well as an approach to tackle
the problem in closed form, based on moment theory. Furthermore, the IFS-encoding problem is
proven to be NP-complete. Several quality measures are discussed, and the Pixset distance is
introduced as a practical distance function, which is also proven to be a metric.
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Chapter 11 deals about a genetic approach to solve the IFS-encoding problem. The principles of
genetic algorithms are explained and the chromosome encoding process is illustrated. The developed
genetic operators are discussed as well as the evaluation function. Finally, some results obtained with
the genetic algorithm on the IFS-encoding problem are given.

Chapter 12 contains some conclusions and recommendations. Separate recommendations are made on
the user interface, on the genetic algorithm as well as on IFS-encoding.
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Chapter 2

Geometry is concerned with the description, classification, analysis and observation of subsets of
metric spaces. Metric spaces are usually, but not always, of an inherently "simple" geometrical
character but the subsets of these spaces are typically geometrically "complicated". There are a
number of general properties of such subsets, which occur over and over again, which are very basic,
and which form part of the vocabulary for describing fractal sets and other subsets of metric spaces.
That is the reason that those properties wiII be investigated.

2.1. Basic dermitions

Definition 2.1. A space X is a set. The points of X are the elements of the set [BAR88a]. •

Example 2.1. Let X = R2 be the Euclidian plDne, the coordinate plane of calculus. A point or vector
x E X can be represented in several equivalent ways:

[

Xl] _x=(x,x)= =x
I 2 X

2 *
Exam,ple 2.2. Let X = C be the complex plDne (also called vector space), where any point X E X
is represented by the complex number X = Xl + ix2, where i =..J-1, for some pair of real numbers
XI ,x2 E R. Any pair of numbers XI ,X2 E R determine a point of C. It is obvious that C is essentially
the same as R2

, but there is an implied distinction. In C we can multiply two points X and y and obtain
a new point in C:

*
Example 2.3. Let X = t be the code space on N symbols, where N E N. The symbols are integers
{0,1,2, ... ,N-l}. A typical point in t is a word such asx =2 1700121 15 (N-l) 30 ... There are
infinitely many symbols in this sequence. In general, for a given element X E t we can write:

*
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Suppose that Xl and X2 are spaces. Then a new space can be created by taking the Carthesian product
of Xl and X2, denoted by Xl X X2• For example, R2 is the Carthesian product of R and R, so:
R2 = R x R.

De.finition 2.2. A metric space (X,d) is a space X together with a real-valued function d: X x X - R,
which measures the distance between pairs of points x and y in X. The function d is required to obey
the following four axioms [BAR88a]:

(i) ( A x : x EX: d(x,x) =0 );

(ii) ( A x,y : x,y EX: d(x,y) = d(y,x) );

(iii) (A x,y : x,y E X, x;ty : 0 < d(x,y) < 00 );

(iv) (A x,y,z : x,y,z EX: d(x,y) ~ d(x,z) + d(z,y) ).

Such a function d is called a metric. •
A distance function will not automatically be a metric, but a metric always defines a distance. The
concept of shortest paths between points in a space, geodesics, is dependent on the metric. The metric
may determine a geodesic structure of the space. Geodesics on a sphere are great circles, geodesics
in the Euclidian plane are straight lines. The following two metrics in the space X = R2 are frequently
used:

Definition 2.3. Two metrics dl and d2 on a space X are equivalent if there exist constants
O<CI <C2 < 00 such that [BAR88a]:

•
The underlying concept is that equivalent metrics give the same notion of which points are close
together and which are far apart. For example the Manhattan metric and the Euclidian metric are
equiValent on R2 since:

( A x,y : x,y E R2 X R2
: 1·dix,y) S; dJ,..x,y) S; ...[2· d/...x,y) )

and also:

( A x,y : x,y E R2 X R2 : 1h.../2· dJ,..x,y) S; d/...x,y) S; 1· dM(x,y) )
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Definition 2.4. Two metric spaces (XJ,dJ) and (Xl,dl ) are equivalent if there is a function g: XJ-+ Xl
which is one-to-one and onto (Le. it is invertible), such that the metric d.Jon XJ is equivalent to dJ,
where fl.J is defmed by [BAR88a]:

( A x,y : x,y E XJ : d.J(x,y) =dl(g(x),g(y» ) •
It follows that (C,dE) and (RZ,dE) are equivalent metric spaces, since gl : R2

-+ C and g2 : C -+ R2 can
be respectively defined as:

( A x,y : x E R2
, Y E C: y =xJ + ul ) and

(A x,y : x E R2
, Y E C: x = (Re(y),Im(y» )

Definition 2.5. A sequence {x" : n = 1,2,3, ... ,00} of points in a metric space (X,d) is called a
Cauchy sequence if, for any given number e>O, there is an N E N such that [GUL92]:

( A n,m : n,m ~ N : d(x",x"J < e) •
In other words, the further along the sequence one goes, the closer together become the points in the
sequence. However just because a sequence of points moves closer together as one goes along the
sequence, does not imply that the sequence is approaching a fixed point. Perhaps it is trying to
approach a point that isn't there.

Definition 2.6. A sequence {x" : n = 1,2,3, ... ,00} of points in a metric space (X,d) is said to
converge to a point x E X if, for any given number e>O, there is an N E N such that [GUL92]:

( An: n ~ N : d(x",x) < e )

In this case the point x E X, to which the sequence converges, is called the limit of the sequence and
we use the notation:

x = limx
" 00 " •

Clearly, if a sequence of points {x" : n = 1,2,3, ... ,00} in a metric space (X,d) converges to a point
x E X, then {x" : n = 1,2,3, ... ,00} is a Cauchy sequence.

Definition 2.7. A metric space (X,d) is complete if every Cauchy sequence {XII: n = 1,2,3, ... ,00}
in X has a limit x E X [BAR88a]. •

In other words, in the space X actually exists a point x to which the Cauchy sequence is converging.
This point x is of course the limit of the sequence. For example (R2,dE) and (C,dM) are complete
metric spaces, but also (by equivalence) are (R2,dM) and (C,dE).
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Definition 2.8. Let Sex be a subset of a metric space (X,d). A point x E X is called a limit point
of S if there is a sequence {xn : n = 1,2,3, ... ,00} of points xn E S\{x} such that the limit of this
sequence equals x [BAR88a). •

Definition 2.9. Let sex be a subset of a metric space (X,d). The closure of S, denoted by Sc, is
defined to be Sc =S U {limitpoints ofS}. S is closed if it contains all of its limit points, Le. S =Sc'
S is perfed if it is equal to the set of all its limit points [BAR88a]. •

Definition 2.10. Let sex be a subset of a metric space (X,d). S is compad if every infinite
sequence {xn : n = 1,2,3, ... ,00} in S contains a subsequence having a limit in S [BAR88a). •

Definition 2.11. Let Sex be a subset of a metric space (X,d). S is R-bounded if there is a point
a E X and a number R> 0 such that [BAR88a]:

( Ax : x EX: d(a,x) < R ) •
Definition 2.12. Let Sex be a subset of a metric space (X,d). S is totlllly bounded if, for each
f> 0, there is a finite set of points {Y]'Y2"" ,Yn} C S such that whenever x E X, d(x,y;) < f for some
Yi E {y],y2""'Yn}. This set of points {y],y2"" ,Yn} is called an f-net [BAR88a). •

Theorem 2.1. Let (X,d) be a complete metric space and let Sex. Then S is compact if and only
if it is closed and totally bounded.

Proof. See [BAR88a). •
Definition 2.13. Let Sex be a subset of a metric space (X,d). S is open if for each x E X there
is an f >0 such that B(X,f) = (y EX: d(x,y) s; f} C S, where B(X,f) is a closed ball of radius f > 0
centered at x (see fig. 2.1) [BAR88a). •

Definition 2.14. Let Sex be a subset of a metric space (X,d). A point x E X is a boundary point
of S if for every number f > 0, B(X,f) contains a point in X\S and a point in S. The set of all boundary
points of S is called the boundary of S, and is denoted by as (see fig. 2.1) [BAR88a). •

Definition 2.15. Let Sex be a subset of a metric space (X,d). A point xES is called an interior
point of S if there is a number f> 0 such that B(X,f) C S. The set of all interior points of S is called
the interior of S, and is denoted by So (see fig. 2.1) [BAR88a). •
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z

Figurr 2.1. The interior of S is a closed set in the metric space

(Y,dE) but an open set in the metric space (Z,ds)'

2.2. The metric space (3-f(X) ,h)

Definition 2.16. Let (X,d) be a complete metric space. Then 1{(X) denotes the space whose points are
compact subsets of X, other than 0 [BAR88a]. •

Definition 2.17. Let (X,d) be a complete metric space, and let A,B E 1{(X). Define:

d(x,B) =( Min: x E X, Y E B : d(x,y) )

Then d(x,B) is the distance from the point x to the set B [BAR88a]. In the same way we can define
the distance from the set A to the point y as:

d(A,y) =( Max : x E A, Y EX: d(x,y) ) •
Definition 2.18. Let (X,d) be a complete metric space, and let A,B E 1{(X). The distance from the
set A to the set B is defined as [BAR88a,GUL92]:

d(A,B) =( Max : x E A : d(x,B) )

Example 2.4. Let (X,d) = (R,dM), x = Ih and

n( 1)"B = { x" = 3 + - : n = 1,2,3, ... } U {3}
n2+1

Then we can calculate B and d~x,B) as follows:

B = {2..!.,3':,2.2.,3~,2~,3~, ... } U {3}
2 ~ 10 17 26 37

d~x,B) =( Min: y E B : d(x,y) ) =d~lh,2Ih) = Ilh - 21h I = 2

•

*
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Example 2.5. Let (X,d) = (R?,dE) and p,q E R? The pointp is given by (1,1) and B is a closed disk
of radius Ih centered at the point (lh,O). We can calculate d~p,B) as follows (see figure):

x-i-

d~p,B) =( Min: q E B : d~p,q) )

= { d~(1,I),q) : q E B }

q is the intersection point of the line I: y = 2x - 1 and
the disk B: f + (x - Ih)2 = lA, so we can solve:

(2x - 1)2 + (x - Ih)2 = IA

~5r-5x+l=0

_ 5 ± J25 - 20 ~ _ _
xJ•2 - 10 xJ - 0.72, x2 - 0.28

So the intersection point is given by q =: (0.72,0.45) and now we can continue with:

di(1,I),(0.72,0.45)) = J(1 - 0.72)2 + (1 - 0.45)2 =: 0.62 *
Example 2.6. Let (X,d) =(R2,dE) on a roadmap. Define FRANCE and BRITAIN as subsets of X, and
let Calais,Marseille,Paris E FRANCE, and let Dover,Inverness,London E BRITAIN. A travelling
salesman travels between FRANCE and BRITAIN and the starting and terminating points of his travels
are always big cities. First suppose he travels back and forth between London and Paris. Then he
must travel a fixed distance of:

d~London,Paris) = d~Paris,London) =: 366 [Ian]

If our travelling salesman travels from London to FRANCE he must at least travel a distance of:

=( Min : y E FRANCE : d~London,y) )
=d~London,Calais) =: 154 [Ian]

In the same way we obtain the distances from FRANCE to London, from Paris to BRITAIN and from
BRITAIN to Paris:

= (Max: x E FRANCE : d~x,London) )
=d~Marseille,London) =: 1049 [Ian]

=(Min: y E BRITAIN: d~Paris,y))

= d~Paris,Dover) =: 280 [Ian]

= ( Max : x E BRITAIN : d~x,Paris) )
=d~lnverness,Paris) =: 1112 [Ian]
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Suppose that the only thing we know is that the travelling salesman travels back and forth between
BRITAIN and FRANCE, then he must travel at most distances of:

dEf..BRITAIN,FRANCE) =( Max : x E BRITAIN: dEf..x,FRANCE) )
= dEf..lnvemess,FRANCE)
=( Min: y E FRANCE: dEf..lnvemess,y) )
= dEf..lnvemess,Calais) =: 582 [km]

dEf..FRANCE,BRITAIN) = ( Max : x E FRANCE: dJ,.x,BRITAIN) )
=dEf..Marseille,BRITAIN)
= (Min: y E BRITAIN: dEf..Marseille,y) )
= dEf..Marseille,Dover) =: 962 [km] *

From the above examples it becomes clear that as soon as sets are involved, distances such as dEf..x,B)
and dEf..A,B) are not metrics, since not all rules of definition 2.2 are obeyed. What we need is a robust
distance function on sets, which is also a metric.

Definition 2.19. Let (X,d) be a complete metric space. Then the Hausdorff distance between points
A and B in 1f(X), which are sets in X, is defined by [BAR88a]:

h(A,B) =( Max : A,B E 1f(X) : (d(A,B),d(B,A» ) •
The Hausdorff distance appears to be a robust distance function for calculations on sets. The
association of the name Hausdorff refers to the German mathematician Felix Hausdorff, who was one
of the pioneers in the area of geometry called topology during the early part of this century.

Theorem 2.2. h is a metric on the space 1f(X).

Proof. We have to prove that h obeys the four axioms of definition 2.2.

(i) To be proven: ( A A : A E 1f(X) : h(A,A) =0 ).

Let A E 1f(X), then

h(A,A)
= ( definition 2.19 )
( Max : A E 1f(X) : (d(A,A),d(A,A» )
= (definition 2.18 )
( Max : x E A : d(x,A) )
= (definition 2.17 )
( Max : x E A : (Min : yEA : d(x,y) ) )
= ( calculus)
o
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(ii) To be proven: ( A A,B : A,B E 1{(X) : h(A,B) = h(B,A) = 0 ).

Let A,B E 1{(X), then

h(A,B)
= (definition 2.19 )
( .Mil! : A,B E 1{(X) : (d(A,B),d(B,A» )
= ( symmetry of Max operator )
(.Mil! : A,B E 1{(X) : (d(B,A),d(A,B» )
= ( defInition 2.19 )
h(B,A)

(iii) To be proven: ( A A,B : A,B E 1{(X), A ¢B : 0 < h(A,B) < 00 ).

Let A,B E 1{(X) and A ¢B, then

~ ( A and B are compact )
( E a,b : a E A, b E B : h(A,B) =d(a,b) )
~ ( theorem 2.1, definition 2.12 )
o ~ h(A,B) < 00

~(A ¢B)
(E a : a E A : a f£ B) A (0 ~ h(A,B) < 00 )

~ (defInitions 2.17,2.18,2.19)
o < d(a,B) ~ d(A,B) ~ h(A,B) < 00

~ ( calculus)
o < h(A,B) < 00

iv) To be proven: ( A A,B,C : A,B,C E (X) : h(A,B) ~ h(A,C) + h(C,B) ).

Let A,B,C E 1{(X), a E A, b E B, C E C, a f£ B, then

~ ( proof part (iii) )
o < d(a,B) ~ d(A,B) ~ h(A,B)
~ ( definition 2.17 )
d(a,B) ~ d(a,b)
~ ( distances are not negative )
d(a,B) ~ d(a,b) + d(c,b)
~ ( a f£ B, triangle inequality)
d(a,B) ~ d(a,c) + d(c,B) ~ d(a,c) + h(C,B)
~ ( definitions 2.17,2.18 )
d(a,B) ~ d(a,C) + h(C,B) ~ h(A,C) + h(C,B)
~(a E A)
d(A,B) ~ h(A,C) + h(C,B)
~ ( similarly)
d(B,A) ~ h(A,C) + h(C,B)
~ ( calculus)
( Max : A,B E 1{(X) : (d(A,B),d(B,A» ) ~ h(A,C) + h(C,B)

So (1{(X),h) is a complete metric space. •
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Because the Hausdorff distance is a metric on ~X), it is also referred to as the Hausdorff metric.
The space (~X),h) is referred to as/metal space.

Example 2.7. Consider example 2.5 once more. Now we know that the travelling salesman, who
travels back and forth between BRITAIN and FRANCE, has to travel a distance of at most:

hJBRITAIN,FRANCE)

=hJ,.FRANCE,BRITAIN)

= (Max: BRITAIN,FRANCE E ~X) :(dJBRITAIN,FRANCE),dJFRANCE,BRITAIN) )

=(~ : : (582 [kIn],962 [kin]) )

=962 [kin]

Some properties of set distances which can easily been proven are [BARB9]:

(i) Be C =t d(A,C) S; d(A,B);

(ii) d(A UB,C) = ( Max : A,B,C E ~X) : (d(A,C),d(B,C» );

(iii) d(A UB,CUD) s; (Max: A,B,C,D E ~X) : (d(A,C),d(B,D» );

(iv) h(A UB,CUD) S; (Max: A,B,C,D E ~X) : (h(A,C),h(B,D» ).

*
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Fractals

Chapter 3

Fractal geometry is concerned with the description, classification, analysis and observation of subsets
of the metric space (,«X),h). When we want to measure the length of a coastline, for instance of
Britain, we will not succeed in finding a fixed length, because the length depends on the scale we are
using. Suppose we use a unity of measure or yardstick E of 1 [mm] to measure the coastline length
of Britain on scaled maps. When we use a 1:10 4 map, we will find a coastline length that exceeds
the length of 100 times the measured length on a 1:106 map. Mandelbrot found that the approximate
coastline length of Britain versus the inverse yardstick length E-1

, as plotted on a double logarithmic
scale, fallon a straight line when E tends to zero (see fig. 3.3). The reason for this is the fact that the
amount of detail is scale-invariant. This appears to be not only the case for coastlines, but also for
a lot of other natural geometries, like mountains, clouds and trees [MAN83].

3.1. Fractal dimension

Structures in classical Euclidian geometry have an integer dimension. For example a point is zero­
dimensional (OD), a line is one-dimensional (lD), a plane is two-dimensional (2D) and a cube is three­
dimensional (3D). We could also say that the topologiClll dimension D of these structures has an
integer value, hence: D(point) =0, D(line) =1, D(plane) =2 and D(cube) =3. If we look at fig. 3.1
we see three geometrical structures: a Cantor set, a Sierpinslci triangle and a Menger sponge.

1111 1111 1111 1111

FIgure 3.1. From left to right: a Cantor set, a Sierpinaki triangle and a Menger sponge IGLE87,MAN831.
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By looking at fig. 3.1 we could intuitively say that the Cantor set is more than a point, but less than
a line, the Sierpinski triangle is more than a line, but less than a plane and the Menger sponge is more
than a plane, but less than a cube. In other words:

o < D(Cantor set) < 1
1 < D(Sierpinski triangle) < 2
2 < D(Menger sponge) < 3

This means that the topological dimension of those structures is not integer, but real valued, or a
fractional integer value. Therefore Mandelbrot defined those geometrical structures as fractal
structures or fractals [MAN83J.

Definition 3.1. Let (R."',dE) with mEN denote a complete metric space and let S E ,«R"') be a
nonempty subset of R"'. For each E>0 we denote by N(S,E) the smallest number of m-dimensional just
touching boxes of side length E, required to completely cover S. By an m-dimensionol box in R'" we
mean a line segment if m=l, a square if m=2 and a cube if m=3. Then the capacity dimension or box
(counting) dimension of S is given by [BAR88a,GUL92]:

D (S) = lim InN(S,E)
c .-00 In(1/E)

IfDc(S) exists then N(S,E) scoles as (liEf. Moreover, ifD~S) exists and is non-integer, then S is said
to have fractal dimension. In that case Dd...S) is called the fractal dimension of S and S is referred to
as a fractal. •

For a line segment of length N, a square with sidelength N and a cube with sidelength N, the capacity
dimension yields respectively 1, 2 and 3. So those structures are not fractal. One way to construct
fractals is by means of a context-free grammar. In that case the building process makes use of base­
elements, initilltors and generators [KAA87].

Definition 3.2. Define (conform [LEW81]) a context-free grammar G as a 4-tuple (V,E,R,S) where
V is the alphabet, E is the set of terminals (a subset of V), R is the set of (production) rules and S is
the startsymbol (an element of V). A fractal generating context-free grammar F can accordingly be
defined as:

F =(V,E,R,S) with
V = { initiator, generator, base-element} U E
E = {fractal }
R = { initiator - base-element(s),

base-element - generator,
generator - base-element(s),
generator - fractal}

S = initiator •
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ExtunR'e 3.1. Let the initiator be equal to the base-element, Le. a line segment with a length of 1
[unit], let the generator be the 4-line segment of step 1 below and let the fractal be a Von Koch
curve. The derivation for n steps in F from S is the sequence:

step 0

/\ Fa

step 1

Fa

step 2

Fa

N

1

4

E L=NE

1 1

1 4

3 3

Fa
step n 4"

In the above derivation is N the amount of base-elements, each of length E, and is L the total length
of all base-elements the structure contains, so L = NE.

The capacity dimension of the Von Koch curve (the structure that appears after n-oo steps) can be
calculated as follows:

D (S) = lim InN(Von Koch curve,E) = lim In4"
c .-0 In(I!E) ,,-- In(2.t"

3

Hence the Von Koch curve has fractal dimension.

In4
In3 =: 1.26

*
Now we can also determine the capacity dimensions of the Cantor set, the Sierpinski triangle and the
Menger sponge (see fig. 3.1). We follow the same procedure as in example 3.1 (see fig. 3.2). The
generator of the Cantor set is made of N=2 base-elements (lines). The successive derivation steps are
obtained by contractions of ratio E=Ys, so the capacity dimension is:

In2"Dc(Cantor set) = lim­
..-00 In3"

In2
In3 =: 0.63
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Flgurt 3.2. Derivation of the Cantor 1Ct, the Sierpinski triangle and the Menger sponge (front view).

The generator of the Sierpinski triangle is made of N=3 base-elements (triangle planes). The
successive derivation steps are obtained by contractions of ratio e=lh, so the capacity dimension is:

Dc(Sierpins/d triangle) = lim In3" = In3 = 1.58
-- In2" In2

The generator of the Menger sponge is made of N=20 base-elements (cubes). The successive
derivation steps are obtained by contractions of ratio e=Ys, so the capacity dimension is:

Dc(Menger sponge) = lim In20" = In20 = 2.73
-- In3" In3

And indeed, we see that all structures have fractal dimension and:

o < Dd...Cantor set) = 0.63 < 1
1 < DC<Sierpins/d triangle) = 1.58 < 2
2 < Dc<Menger sponge) = 2.73 < 3

Consider example 3.1 once more. If we had choosen the initiator to be a triangle in case of a line
segment, we would have obtained a geometric structure which is known as the Von Koch snowflake
and which has the remarkable property that its finite surface area has a boundary of infinite length
[GIP90a].



30 3. Fractals

There is another interpretation of the fractal dimension. namely the slope of the log-log plot of the
amount of base elements N(e) versus the inverse (yardstick) length e-1

• If we make those plots for the
structures of fig. 3.1 and example 3.1. as well as for the coastline of Britain. we obtain fig. 3.3.

4 log(N(E» Menger

i
3

2

1

---7 log(1/E)

0 0.5 1.0 1.S

FIgure 3.3. Log-log plot of amount of covering sc:gments N(E) versus the
inverse yardstick length E-1 for some earlier mentioned stnJcbJres.

From fig. 3.3 we conclude that the fractal dimension of coastline of Britain is approximately 1.31.
Several algorithms for computing fractal dimensions of images are developed [CRE89,DU887,
KEL87,VEP89]. In [KAN88] a fraetol1lUltrix model is introduced. which should give a better
characterization of the fractal properties of structures than the fractal dimension does.

Example 3.2. Part of this graduation work was the development of a user interface (IFS-CODEC)
to provide several facilities which are related with fractal geometry (see appendix A). One option is
to calculate fractal dimensions of geometrical structures. The IFS-CODEC algorithm does this as
follows. The structure is first covered with N(e) boxes of sidelength e. Then the structure is covered
with N(2e) boxes of sidelength 2e. Then the fractal dimension is calculated as the slope of the line
through the points (log(1I2e).log(N(2e») and (log(l/e).log(N(e»). as follows (see figure below):

D :::: log(N(e» - log(N(2e» = log{N(e)N(2et1
)

c log(l/e) - log(l/2e) log2

In practice we choose e = 1 (pixel]. With the IFS-CODEC algorithm we obtained for the structures
given in appendix C the fractal dimensions as given in table 3.1.

Table 3.1. Approximated fractal dimensions of strocbJres of appendix C.

structure Dc structure Dc structure Dc

chain 1.48 koch 1.20 tree 1.46
dragon 1.92 leaf 1.96 triangle 1.47
fern 1.78 rect 1.99 mandel 1.92
france 1.98 square 1.87 twig 1.17

1o&<N(E» ....

1og(N(2E» -

o 10&<1!lE) IOI(1/E)

*
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3.2. Hausdorff dimension

31

The Hausdorff dimension (also called Hausdorff-Besicovitch dimension) is another real number which
can be used to characterize the geometrical complexity of bounded subsets of R"'. Its definition is
more complex and subtle than that of the fractal dimension. One of the reasons of its importance is
the fact that it is associated with a method for comparing the "sizes" of sets whose fractal dimensions
are the same. It is harder to work with than the fractal dimension and therefore less often used.

Up till now we have used m-dimensional boxes to cover a set. But in fact we may also use
m-dimensional spheres. In that case the geometrical faetor -y can be defined as the unit length, area
or volume of the m-dimensional boxes or spheres. Thus we have -y=1 [unity length] for lines, -y=1
[unity area] for surfaces and -y=1 [unity volume] for cubes. In the same way we have -y=1r/4 [unity
suiface] for disks and -y=1r16 [unity volume] for spheres.

IXtiniJion 3.4. Let (R"',dE) for mEN be a complete metric space and let S be a bounded subset of
this space. The covering of S is now performed by a coveringfunction or measure [FAL90,FED89J:

N

M(S,p,E) = L -yEP = -yEPN(S,E)
j-1

for p E [0, (0)

with p the dimension of the measure. The Hausdorffp-dimensionol measure is defined as:

{

00 if P < D,l..S) and p E [0,(0)
M(S,p) = lim M(S,p,E) =

~~O •° If P > D,l..S) and p E [0,(0)

where DJ...S) denotes the Hausdorffdimension (or Hausdorff-Besicovitch dimension) of S. Thus:

DJ...S) =( lnf : M(S,p) =°:p ) =( fum : M(S,p) = 00 : p )

Moreover, the following inequality holds: °:::;; DJ.S) :s: DctS) :::;; m. •
The Hausdorffp-dimensional measure M(S,p) as a function of p E [0,(0) consists of only one, two
or three values, Le. zero, a finite number and infinity. In [GAR88] and [STA89] algorithms are
presented for calculating the Hausdorff dimension of images.

Example 3.3. Let S be the Sierpinski triangle (see fig. 3.2). For p=1 we cover Sin n steps with one­
dimensional lines and calculate M(S,I) as (#lines)· (line length). Then for p=2 we cover S in n steps
with two-dimensional triangles and calculate M(S,2) as (#triangles)· (triangle area). The result is given
in table 3.2.
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Tllbk 3.2. Covering of S with lines and triangle areas.

3. Fractals

step #lines line length M(S,I) #triangles triangle area M(S,2)

1 31 (112)° 3.000 3° (1,4)0 1.000

2 32 (thy 4.500 31 (1,4 )1 0.750

3 33 (lh)2 6.750 32 (iA)2 0.563

4 34 (lh)3 10.125 34 (1,4)3 0.422

.
n 3" (lh)11-1 00 311-1 (iA )11-1 0.000

Let us see what happens if we choose p =DJ.S) =(In 3)/(ln 2) =:: 1.58. Now we cover Sinn steps
with p~imensional structures, actually smaller copies of S, and calculate M(S, 1.58). From this result
(see table 3.3) we draw M(S,p) as function ofp (see figure below).

Tllbk 3.3. Covering of S with copies of itself.

1-1·····················>············.

step #copies area covering M(S,I.58)

1 31 (Va) I 1.000

2 32 (Va)2 1.000

3 33 (Ya)3 1.000

4 34 (Va)4 1.000

n 3" (Va)" 1.000

M(S,p) ClOl
i

o 1

o

1.58 2

It follows that in this specific case DJ...S) =DJ..S) =:: 1.58.

3.3. Self similarity

*

If each piece of a geometric structure is geometrically similar to the whole, then such structure is
called selfsimilar. One could say that the structure is recursively built of down scaled copies of itself.
The class of self similar fractals is also known as linear fraetQ/.s [MAN83].

Self similar fractals have the property that their geometric structure is scale-invariant. If we keep
zooming in on such fractal, we will see the same on all scales.
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Dynamical systems
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Chapter 4

A dynamical system can informally be described as a mechanism that develops itself deterministically
in time [BR090]. Such systems are characterized by three properties [BEe90]:

(i) they are dynamic;

(ii) they are complex;

(iii) they are iterative.

Examples of dynamical systems are found in various fields, like electronics, biology, chemistry,
economics, etc.

A discrete dynamical system may be thought of as a formula relating the value of a quantity at
successive discrete time intervals. If the time interval is allowed to tend to zero, then the formula
becomes a differential equation in the usual way [FAL90].

The problem with differential equations is the fact that they cannot always be solved in a closed form.
In those cases the solution must be approximated by discretization, that is, we get a iteration equation
which is initialized with a starting point, and the behaviour of the system is simulated over a certain
period of time. This behaviour can either be periodic or nonperiodic, and can depend strongly on the
initialized starting point. We will formally define a dynamical system in such way that it logically
matches the concepts that we have introduced so far.

4.1. Transformations

Definition 4.1. Let (X,d) be a metric space. A transjomuztion on X is a functionj: X - X, which
assigns exactly one point fix) E X to each point x E X. Ifsex thenfiS) ={fix) : xES }, and:

(i) j is one-to-one if ( A x,y : x,y EX: fix) =fly) =x =y );

(ii) j is onto if ( A x : x EX: (E y : y EX: fix) =y ) );

(iii) j is invertible if j is one-to-one and onto. In this case it is possible to define an inverse
transjormotion F' : X - X by ( A x,y : x,y EX: y =. f{x) ~ x =F'(y) ). •
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IXfinition 4.2. Letf: X - X be a transformation on a metric space (X,d). The forward n'" iterate
offis denoted by f") and inductively defined by [LEW81]:

(i) r)(x) =I(x) (Le. the identity);

(ii) f1)(x) =fl..x);

(iii) (A n : n E N :p"+l)(X) =lof")(x) =I (P")(x» ).

IfI is invertible then the backward "" iterate ofI are transformations f-fl), inductively defmed by:

(i) f-1)(x) =F1(x);

(ii) (A n : n E N :p--l)(X) =1(-I)oP-fl)(x) =F1oC/(")yl(X) =FI«f"»-l(X» );

(iii) (A m,n : m,n E Z : f"')oP")(x) =p"'+")(x) ).

Where 0 denotes the usual composition operation. Note: f")(x) is also denoted as fl..x") or as x,,+ 1 and
f-fl)(x) is also denoted asFI(x,.) or XII-I. •

De.finition 4.3. Let/: X - X be a transformation on a metric space (X,d). A point XI E X such that
fl..xI) = XI is called a fixed point of the transformation [BAR88a). •

Definition 4.4. Let I: X - X be a transformation on a metric space (X,d). Then the lipschitz
constant ofI is defined by [HOR90,HUT81]:

Lip(f) = ( A x,y : x,y E X, x;ty : d(fl..x),fiy» )
d(x,y)

= ( Min s : s E R : ( At: t E d(fl..x),fiy» x;ty: s~t ) )
- - d(x,y) ,

If there is no real number s ~t then the supremum (or least upper bound) equals + 00. •

Definition 4.5. Let (X,d) be a metric space and let/: X - X be a transformation. If Lip(f) =s then:

( A x,y : x,y EX: d(fl..x),fiy» s; sd(x,y) )

If s< 00 then I is lipschitz, if s< 1 thenI is a contraction with contractivity factor s [HUT81 ]. •

Theorem 4.1. Let I : X - X be a contraction mapping on a complete metric space (X,d). Thenl
possesses exactly one fixed point XI E X and the sequence {f")(x) : n = O,1,2, ... } converges to Xi

( A X : X EX: lim P")(x) = X )- ,,_... 'f

Proof. See [BAR88a). •
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Theorem 4.2. Let (X,d) be a complete metric space and letf: X - X be a contraction mapping with
contractivity factor s E [0,1) and let the fixed point offbe xI E X. Then [BAR88a):

Proot The distance function d(a,b) for fixed a E X is continuous in b E X, hence:

d(x,xl )

= (theorem 4.1 )
d(x,lim p"}(x»........
= ( calculus)
limd(x,p")(x»........
= ( defmition 4.2 )..
l~L d(j(i-\}(x),pil(x»

i-I

;S; ( definition 4.5 )..
d(x,ftx» l~L S(i-I)

i-I

= ( Is I< 1, sum for infinite geometric series )

(1 - stld(x,ftx»

Definition 4.6. A dynamical system is a 2-tuple (X,J), where f: X - X is a transformation on a
metric space (X,d). The orbit of a point x E X is the sequence {p"}(x) : n = 0,1,2, ... ,00 }. •

ExaJn]Jle 4.1. We calculate some points of the orbits of the following functions:

j{x) = Xft+1 startpoint Xo

F: 0.3

F: 3

x
2 0.3..

x; 3

x 2 -1 -1
"

x;+1 -2

x - g(x) g(x) = x 2-7 3
" g[J](x)'

orbit of Xo

{0.3,0.547 .. ,0.74O.. ,0.86O.. , ...}

{3, 1.732 .. ,1.316.. ,1.147 .. ,...}

{0.3,0.09,0.OO81 ,0.00006561, ...}

~ J,.f9,81,6561,43046721 , }

{-I ,0,-1,0,-1 ,0,-1 ,O, }

{-2,5,26,677,458330, ...}

{3,2.66666.. ,2.64583 .. ,2.64575 .. , ... }

We see that XI = 1 and XI =°are fixed points of both..jx and x2
• The lower formula constitutes the

Newton-Raphson method, which is often used for the approximation of a zero of a given function (in
this case g(x». We will use the notation gll](X) for the /Cit derivative of the function g(x). *
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In dynamical systems theory one is interested in what happens when a typical orbit is followed. The
orbit of a single point may be a geometrically complex set or, in other words, a fractal.

Definition 4.7. Let (X,f) bea dynamical system. A periodic point ofI is a point x E X such that
j<ft)(x) = x for some n E N. If x is a periodic point ofI then the period ofx is the least n E N such
thatj<ft)(x) = x and the first n points of the orbit of x are all distinct. If x E X has period n, then the
orbit of x, which is given by:

is a periodic orbit and is called an n-cyde [GUL92]. •
In example 4.1 the function.Jx possesses a trivial I-cycle {I} or fixed point 1 for x E (0,00). The
function r possesses three trivial I-cycles {O},{I},{+ oo} or fixed points 0,1, + 00 for respectively
x E (-1,1), x E {-1,1} and x E R\[-I,I]. The functionftx) =r - 1 possesses a 2-cycle {-1,0} for
x E R and the function r + 1 possesses a fixed point + 00 for x E R. The last function in example
4.1 possesses a fixed point 2.6457.. which is the zero of the function r - 7.

Definition 4.8. Let (X,/) be a dynamical system and let xf E X be a fixed point off. Let B be a
closed unit ball with center xf and radius E, thus B(Xf,E) = {y EX: d(xf ,y) :s: E }. The point xf is
called an attractive jixed point ofI if there is a number E>0 such thatI is a contraction mapping on
B(Xf,E). The point is called a repulsivejixedpoint of/ifthere are numbers E>O and C> 1 such that:

If/is differentiable atxfthen the following holds [GUL92]:

(i) if lflll(xf) I< 1 then xf is attracting (stability);

(ii) if lflll(xf) I> 1 then xf is repelling (instability);

(iii) if lflll(xf) I=1 then xf can be attracting, repelling or neither.

4.2. Graphical analysis of iterates

If we are able to render a reasonable precise graph of a given function J, then we may be able to
analyze graphically the orbits of various members of the domain off. First we draw the graph ofJ,
along with the line ftx) =x. To obtain the orbit of Xo, first locate Xo on the x-axis, then go in vertical
direction to the point (Xo,ftXo)). From there proceed in horizontal direction towards the lineftx) =x,
to arrive at the point (ftXo), ftXo)), which we will denote (Xl> Xl)' From then on we apply recursively
the same process, i.e. we obtain the orbit of Xo as the sequence {j<ft)(xo) : n =0,1,2, ... ,00 }.
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Example 4.2. Consider the so called (eco)logistic map:.f{x) = ,a(I-x), x E [0,1], p. E (0,00). This
parametrized quadratic function has often be used by biologists to study the variation of population
sizes of biological organisms for which there is a constant supply of food and space. We can calculate
the fixed point(s) ofJtx) as follows:

If p. E (0,1] then we have I-lip. E (-00,0], so in this case there is only one fixed point in the
interval [0,1], namely XI =O. By contrast, when p.> 1, there are two distinct fixed points in [0,1],
namely XI = 0 and XI = I-lip..

Next we will determine which fixed points are attracting and which are repelling. Since
.fll(X) = p.-2,a, it follows thatjll](O) = p. andjI1l(I-1Ip.) = p.-2p.(1-1Ip.) = 2-p.. Fixed point 0 is
attracting if p. E (0,1) and is repelling if p. E (1,00). Fixed point I-lip. is attracting if p. E (1,3)
and is repelling if p. E (3,00). In fig. 4.1 this is shown graphically. The orbits of a point Xo are
shown for three JL-values: JL = 0.8 E (0,1), JL = 2.9 E (1,3) and JL = 4 E (3,00).

11
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I
'I)~

/ 1/ \
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I

1(%)

i

1 0 oJ;,1
'2

I~)

i
1 ~ -1

4

1&
'4

I(x)

i
1

~. 0.8 ~. 2.9

Figure 4.1. Graphical analysis of the logistic map for different It-values.

As we can see, the left map possesses an attracting fixed point 0, the middle map possesses an
attracting fixed point I-lip. =0 0.6551 and a repelling fixed point 0 and the right map possesses two
repelling fixed points 0 and 1-11p. = ~. *

4.3. Attractors and bifurcations

We have seen that the amount and the behaviour of the fixed points can change, when the function
parameter (p. in case of the logistic map) is changed. Before we are going to investigate this
phenomenon, we will give some more definitions that are necessary to describe it.
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Definition 4.9. Let (X,I) be a dynamical system and let AI C X. We call AI the attrador of/if AI
is a closed set that is invariant under.t. i.e.ftA/) =AI' such that [FAL90,GUL92]:

lim h(f<ft)(A ),A) = 0 •ft..... 'I 'I

For example the attractor of the functionftx) =r-1 is the set {-1,0}, becauseft-1) =0 andftO) = -1
(see also example 4.1). Soft{-l,O}) = {-1,0} and, in addition, {-1,0} is a 2-cycle. Roughly speeking
one can say that the attractor is a set to which all nearby orbits converge.

In example 4.1 we saw that for p. = 0.8 and p. = 2.9 the attractor of/ equals to} and {0.6551.. }
respectively. So it seems that the dynamics of/changes as the parameter changes. Up till now we
have only discussed attractive and repelling fixed points, but not the periodic points that are neither
attractive nor repelling.

Let us investigate the dynamics of the logistic map in a numerical way. We will try to find the
periodic points of the logistic map for some increasing values of p. E (0,4]. In table 4.1 we iterate
the logistic map 82 times for 7 values of p. E (0,4]. Each time we choose startvalue.to = 0.883. In
fact, we may have choosen any startvalue.to E (0,1). This doesn't make difference for the outcome
of the iteration, but may only influence the amount of necessary iterations to let the periodic points
converge to the same amount of decimals.

Table 4.1. Orbits of .1'0 = 0.883 as successive iterates of .1'.+\ = ,a.(1-x.) for n = 0,1, .. ,82 and different I/o E (0,4].

n p.=0.5 p.=1.5 p.=2.5 p.=3.295 p.=3.514 p.=3.557 p.=3.568

0 0.8830.. 0.8830.. 0.8830.. 0.8830.. 0.8830.. 0.8830.. 0.8830..
1 0.0516.. 0.1549.. 0.2582.. 0.3404.. 0.3630.. 0.3674.. 0.3686..
2 0.0244.. 0.1964.. 0.4789.. 0.7398.. 0.8125.. 0.8267.. 0.8304..

66 0.0000.. 0.3333 .. 0.6000.. 0.8225.. 0.8243.. 0.8318.. 0.8303 ..
67 0.0000.. 0.3333.. 0.6000.. 0.4809.. 0.5089.. 0.4974.. 0.5025 ..
68 0.0000.. 0.3333.. 0.6000.. 0.8225.. 0.8782.. 0.8892.. 0.8919..
69 0.0000.. 0.3333.. 0.6000.. 0.4809.. 0.3758.. 0.3503.. 0.3437..
70 0.0000.. 0.3333.. 0.6000.. 0.8225.. 0.8243 .. 0.8096.. 0.8049..
71 0.0000.. 0.3333 .. 0.6000.. 0.4809.. 0.5089.. 0.5482.. 0.5602..
72 0.0000.. 0.3333.. 0.6000.. 0.8225.. 0.8782.. 0.8809 .. 0.8790..
73 0.0000.. 0.3333 .. 0.6000.. 0.4809.. 0.3758.. 0.3730.. 0.3793..
74 0.0000.. 0.3333 .. 0.6000.. 0.8225.. 0.8243.. 0.8318 .. 0.8400..
75 0.0000.. 0.3333 .. 0.6000.. 0.4809.. 0.5089.. 0.4974.. 0.4794..
76 0.0000.. 0.3333.. 0.6000.. 0.8225.. 0.8782.. 0.8892.. 0.8904..
77 0.0000.. 0.3333.. 0.6000.. 0.4809.. 0.3758.. 0.3503 .. 0.3479..
78 0.0000.. 0.3333 .. 0.6000.. 0.8225.. 0.8243.. 0.8096.. 0.8095..
79 0.0000.. 0.3333 .. 0.6000.. 0.4809.. 0.5089.. 0.5482.. 0.5502..
80 0.0000.. 0.3333 .. 0.6000.. 0.8225.. 0.8782.. 0.8809.. 0.8830..
81 0.0000.. 0.3333 .. 0.6000.. 0.4809.. 0.3758.. 0.3730.. 0.3685..
82 0.0000.. 0.3333 .. 0.6000.. 0.8225.. 0.8243.. 0.8318.. 0.8303 ..
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From table 4.1 we see that the logistic map has the following attractors:

(i) for IJ. = 0.5 an attractive fixed point to};

(ii) for IJ. = 1.5 an attractive fixed point 1-11(1.5) ={0.3333 ..};
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(iii) for IJ. = 2.5 an attractive fixed point 1-11(2.5) = {0.6000..};

(iv) for IJ. = 3.295 a 2-cycle {0.8225.. ,0.4809..};

(v) for IJ. = 3.514 a 4-cycle {0.8243.. ,0.5089.. ,0.8782.. ,0.3758..};

(vi) for IJ. = 3.557 an 8-cycle {0.8318.. ,0.4974.. ,0.8892.. ,0.3503.. ,0.8096.. ,0.5482.. ,
0.8809.. ,0.3730..};

(vii) for IJ. = 3.568 a 16-cycle {0.8303.. ,0.5025.. ,0.8919.. ,0.3437.. ,0.8049.. ,0.5602.. ,
0.8790.. ,0.3793 .. ,0.8400.. ,0.4794.. ,0.8904.. ,0.3479.. ,0.8095.. ,0.5502.. ,0. 8830.. ,
0.3685..}.

It is clear that when IJ. is increased, for certain values IJ.! the period doubles from 2! to 21+ I. Also,
when IJ. is increased, it takes longer to converge to the associated 2!-eycle.

Definition 4.10. A one-parameter function family J{x,IJ.) has a bifurcotion at IJ.!, or bifurcates at IJ.!,
if the number or nature (attracting vs. repelling) of periodic points of ft.x,lJ.) changes as IJ. passes
through IJ.!. In this case IJ.! is said to be a bifurcation point for that family of functions [GUL92).•

Feigenbaum found for the logistic map the following successive bifurcation points [FEI80):

JLo = 3.o00ooo..
1J.1 = 3.449499..
IL2 = 3.544090..
Il3 = 3.564407..

lJ.oo = 3.569946..

The sequence has a limit lJ.oo = 3.569946.. which is called the chaos criterium for the system
[M0087). Feigenbaum also noticed the following convergence rate in the sequence IJ.! [FEI80):

The constant {, is referred to as the Feigenbaum constant or the Feigenbaum ratio and has universal
validity. This means that it also holds for unimodal functions (i.e. functions with a single maximum)
as for instance ft.x) = IJ.siD1rx, ft.x) = xe ,.(1-.1'), ft.x) =x(1 +1J.(1-x)), etc. The Feigenbaum ratio is as
characteristic for the period doubling scenarios as the number 11' is for the relation of the
circumference to the diameter of the circle [FAL90). It must be noticed that the chaos criterium is
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system dependent (and therefore not universal), while the Feigenbaum constant is system independent
(and therefore universal).

One method of displaying the points at which a parametrized family of functions bifurcates, is by
means of a bifurcation diagram. This is a graph for which the horizontal axis represents the
parameter values p. and the vertical axis represents the elements of the attractor AI' Le. the periodic
points. The bifurcation diagram for the p.-values of table 4.1 and the bifurcation points Feigenbaum
found, is given in fig. 4.2.

o.a

0.6 .

0.4 :::::::::::::::::::::::::::::::::::::::::::/:.., , ':""'''''C

0.2

0.0 0..5 1.0 1..5 2.0 3.0 3..5 4.0

Ftgury 4.2. Col1ltnJction of bifurcation diagram for the logistic map.

In case we are going to perform the iterations for small p.-increments, we will obtain the bifurcation
diagram for j{x) as shown in fig. 4.3. This diagram contains the whole attraetor Al of the logistic map
for p. E (0,4].

1.0 .

AI
0.8 t
0.6

0.4

0.2

0.0 0..5 1.0 1..5 2.0 3.0 3..5 4.0

FtgUry 4.3. Bifurcation diagram of the logistic map.
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Zooming in on the bifurcation diagram shows that it possesses a self similar fractal structure, which
is scale-invariant. The attractor of a dynamical system is a "picture" of its behaviour. The periodic
fixed points are the solutions of the differential equation(s) which describe the system in the usual
way. From an attractor we can directly see for which Wvalues these differential equations have a
solution and for which they have not.

4.4. Rescaling function dynamics

In the former paragraph we have seen that the dynamics of the logistic map f changes as #L is varied.
More specific, f undergoes period doubling, Le. instead of having a stable k-cycle, the system gets
a stable 2k-cycle. Feigenbaum found that iffhas a k-cycle {Xt .... ,xt} thenf") (for n E [1,1 +logt])
possesses 2....t cycles of period 2\-f'k which form a partition on the k-cycle off. Eventually ft+~)

possesses k fixed points xt.... ,xt.

In general f\2"') can be recursively computed by f\2"') = f\2") of\2"). Suppose f\2") has a finite cycle that
contains a fixed point XI = th for #L = #Lt. Now we are going to increase #L to #L2 so that the fixed point
of the cycle of f\2-') nearest to X = th is again at XI = th with slope 0 (see fig. 4.4).

f(x)

l'

1

--7x
0.5o

1..,···············································"

0.875

0.5o

0.809

Figure 4.4. Left: f for III = 3.2360, right:.raJ for Il2 = 3.4986.

Consider fig. 4.4. At the left we plottedf =1LX(1-X) for #Ll =3.2360 such thatfpossesses a 2-cycle
{0.5000.. ,O.8089.. }, which contains XI = 1h as one of its two fixed points. Now we increase #L until

fpossesses a 4-cycle {0.3835.. ,O.8272.. ,O.5000.. ,O.8746..}, which again contains XI = th as one of
its (in this case) four fixed points. This happens at #L = #L2 = 3.4986. At the right we plotted
r) = #L2x(l-x)(l-ILX(1-x» for #L2 = 3.4986. The maximum of f can be calculated as follows:
flO.5) =3.2360 0 0.5(1-0.5) =: 0.809. The right maximum of f(2) can be calculated as follows:
r)(0.8272) = (3.4986)2 0 0.8272(1-0.8272)(1-3.4986-0.8272(1-0.8272» =: 0.875. Also, the local
minimum can be calculated asr)(O.5) =(3.4686f-0.5(1-0.5)(1-3.4986-0.5(l-0.5» =: 0.384.

Next consider the contents of the dotted rectangle in the right graph of fig. 4.4 and compare this to
the whole left picture of fig. 4.4. We see that if the contents of the dotted rectangle are reflected
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through (x,.f{x» = (lh,lh) and then magnified with a scaling factor a, these contents equal the whole
left picture. This rescaling is determined only by functional composition, so there is some function
g that, composed with itself, will reproduce itself in scale by -a and reflected through
(x,.f{x» = (Ih, \h). This function has a quadratic maximum at x = \h, is symmetric about x = Ih and
can be scaled by hand to equal 1 as x = Ih. Shifting coordinates so that x = Ih - x = 0 we have:

-ag(g(xla» =g(x)

Substituting g(O) = 1 we have g(1) =-Va. There is a unique smooth solution to this equation which
(obtained numerically) determines [PEISOa]:

a = 2.502907..

Like the Feigenbaum ratio 0, this so called renomwlizotionfactor (or rescaling factor) a is a number
that can be measured in any phenomenon exhibiting period doubling, and thus also has universal
property. So we see that the relevant operation upon functions that underlies period doubling is
functional composition followed by magnification [FEI79,FEISOl. In general, the following rescaling
law holds [MOOS7]:

Thus, knowing that two successive bifurcation points can give only an estimate of the chaos criterium
IL... , we obtain [MOOS7]:

OILk+1 - ILk
IL... ::= ---..,,.....-,..-

0-1

Example 4.3. Consider the logistic map. We first calculate the successive bifurcation points Jlo, ILl> JL2
and IL3 from the known values of a, 0 and IL.... Then we calculate the chaos criterium IL... from the
known values of 0, JL2 and 1L3:

Jlo ::= (3.569946..) - (2.502907.. )(4.669201..)-1 ::= 3.033899..

ILl ::= (3.569946.. ) - (2.502907.. )(4.669201..t2 ::= 3.455141..

JL2 ::= (3.569946..) - (2.502907 .. )(4.669201..t3 ::= 3.545358..

IL3 ::= (3.569946..) - (2.502907..)(4.669201..)-4 ::= 3.564680..

IL... ::= «4.669201..)(3.564407 .. ) - (3.544090..»(4.669201.. - It l
::= 3.569944..

These values are close to the values Feigenbaum found (see below definition 4.10). *
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4.5. Poincare maps
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Up till now we have been dealing with discrete dynamical systems, which are in fact approximations
of continuous dynamical systems. Thus, a continuous dynamical system is a generalization of a
(discrete) dynamical system (X,f) as defmed in definition 4.6. Instead of iteration equations of the
form:

continuous dynamical systems are described by differential equations of the form:

xlll(t) = dx = g(x(t))
dt

As in the discrete case, continuous dynamical systems give rise to attractors and repellers. When
X = R2

, the range of attractors for continuous dynamical systems is rather limited. The only attractors
possible are isolated points (x for which g(x) = 0) or closed loops. More complicated attractors can
not occur [FAL90). Consequently, to find continuous dynamical systems with fractal attractors (or
strange attractors, see par. 5.2), we need to look at systems in three or more dimensions.

Linear differential equations (with g(x) a linear function of x) can be solved completely by classical
methods, the solutions involving periodic or exponential terms. However, even simple nonlinear
systems can lead to orbits of a highly intricate form. Nonlinear differential equations, particularly in
higher dimensions, are notoriously difficult to analyze. This must be done by a combination of
qualitative mathematical analysis and numerical approximation.

A standard approach in chaos theory to look at a three-dimensional continuous dynamical system g
is by means of a two-dimensional phase plane ~(t) =x(t) x .rll(t), which is actually a "cross section"
of the three dimensional attractor. If the phase plane ~ is a plane region perpendicular to the orbit
of the system, we may define the "first return map" f ~ -. ~ by takingj{x) as the point at which the
orbit through x = (X(t,,),xlll(t,,)) next intersects ~ (see fig. 4.5), so:

Then f is a discrete dynamical system on ~. Iff has an attractor A.r in ~ it follows that the union of
the trajectories through the points of AI is an attractor As of ;:'. Locally, As looks like a product of AI
and a line segment, and typically:

Definition 4.11. Let (X,g) with X C R3 be a continuous three-dimensional dynamical system with
attactor As. Then the Poincare map of g is defined as the two-dimensional (attractor AIof the) discrete
dynamical system (x(t) x .r1l(t).!), where f and g are respectively defined by:

(x(tIl+1),g(x(t,,+ I))) =j{x(t,,),g(x(t,,))) with g(x(t)) =.rll(t) •
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Flgllrt 4.5. The continuous dynamical system (X,g) induces a
discrete dynamical system (X,f) on a phase plane +.

Example 4.4. Consider the forced nonlinear negative resistance oscillator with periodic excitation,
for which the circuit schematic and the voltage-current characteristic of the negative resistance are
given below [UED81]:

L R

The differential equations of the system in terms of the variables as shown in the figure are given by:

L di R' E- + I + V = coswt
dt

C dv
dt

We introduce new quantities conform [UED81]:

3L
'Y = L - R2C

I'=J3L_ 3
R2 " = wJ'YLC t

r=--

J'YLC

B = 'YEf;
V

s

x = "f;
V

s

Now we can rewrite the differential equations as a Van der Pol eqUlltion:

d2x + dxJL(x2-1) + x 3 = BcoSH
dr dr
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which can be rewritten as:

4S

By defining z = "" + 2k1r the system can be transformed to the three-dimensional state space
R2 x R (mod 211"), with coordinates x,y and z:

XU] = Y

i l
] = YIL(l - x2) - x 3 + Bcosz

ZUJ = II

This system can be thought of as a cylindrical state space (a torus), where the values of z are
restricted to z E [0,211"]. We can define the Poincar~ map as:

(Xn+I,X~~]I) = !(xn,yn)

A picture of a part of the attractor of this system, together with Poincar~ maps for some different
z-values, is given in fig. 4.6. Poincar~ maps for some (B,1I) pairs are given in fig. 4.7. *

x
Figure 4.6. Sketch of the attractor of a forced non-linear oscillator with some poincare maps.

The more "beautiful" the attractors, the less energy the dynamical system dissipates. The time ordered
sequence of phase plane filling points is nondeterministic, but the (fractal) structure which appears
(the attraetor) is deterministic.

More information about chaotic dynamics in electronic circuits can be found in (BUS85,UED81 J.
Especially (BUS85] also deals with the period doubling scenario, visualized by bifurcation diagrams.
It appears to be the case that this type of electronic circuits has a period doubling scenario that obeys
the route to chaos, which is governed by the Feigenbaum constant o. This is also valid for coupled
circuits.
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FlguTt 4.7. Poincar6 map. for circuit of example 4.4 for (B,,) iI respectively (2.0,0.6), (2.4,0.7) and (17.0,4.0)
[UED81 ).



81Jd O«JpIIlTa's IIDS~ bUll shonu. w wIIoleJIl« oj w _rid
woulJ 1t4v~ dumBed.

m.u. P.-.l (1623 - 1(62) [ADl77]

Chaos

47

Chapter 5

From fig. 4.3 we see that when p. passes through p... = 3.569946.. , the dynamical behaviour of the
logistic map becomes chaotic, Le. unpredictable. This means that there is no unique ordered finite
n-cycle anymore. We also see that the chaotic region (p.",.4] contains "windows of order", or periodic
windows, where finite cycles occur. We can define this chaotic behaviour formally.

Definition 5.1. Let (X,!) be a dynamical system. Thenf: X -. X is chaotic if it satisfies at least one
of the following conditions:

(i) f has a positive Lyapunov exponent at each point in its domain that is not eventually
periodic [GUL92,M0087);

(ii) fhas a strange attractor [M0087);

(iii) fhas positive entropy [BR090);

(iv) fhas sensitive dependence on initial conditions [FAL90,GUL92);

(v) fhas a 3-cycle [GUL92).

We will investigate all five criteria for chaos as mentioned in the definition above.

5.1. Lyapunovexponents

•

Definition 5.2. Let (X,!) be a dynamical system and let X C R be a bounded interval. Furtermore,
letf: X -. X be a one-dimensional differentiable function on X. Define the Lyapunov exponent off
at x E X as [BR090,GUL92):

lIn-I
X(x) = lim -In I(f(n»[Il(x) I = lim - E In lflll(x ) I

n_ n n~" n !-o !

If A(x) is dependent of x, then the common value of A(x) is denoted by Aand is called the Lyapunov
exponent of j. •
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The Lyapunov exponent of x measures whether and how strong x is repelling or attracting the orbit
off [BR090].

Exam,ule 5.1. From example 4.2 we know that for p, E (1,3) the logistic map possesses an attracting
fixed point XI = 1 - lip,. This means that in case n increases without bound, all points x E (0,1) will
eventually be equal to XI' In other words:

( A x : x E (0,1) : !~ f(ll)(x) = 1 - .!. )
p,

Since fl](l - lip,) = 2 - p" we get:

( A x : x E (0,1) : lim (f(II»)[I](X) = 2-p, )
11-

and thus:
1 II-I

(A x : x E (0,1) :!~ -Llnlf[I](Xk)1 ) ... (A x: x E (0,1) : Inl2 - p,1 )
n k-O

Since the final expression is independent of the number x E (0,1), we conclude that the Lyapunov
exponent for j{x) = p.x(1 - x) and p, E (1,3) equals A = In 12 - p, I. *
If the Lyapunov exponents for all values p, E (0,4] are calculated, we get the graph of fig. 5.1.

1.01'"""""........,......,---.---..--..--r--r--..........,...................,.......,

-eI o.~

i 0.0

..l -DoS

-1.~

-2.0 1.-...l'--'--:L3•4.,..................--'---:;3:l-::.6,...........................--.J3.':-a--'-.....................-:!4.0

...-"
FiguTt 5.1. Lyapunov exponents for the logistic map [M0087).

If we compare fig. 5.1 with fig. 4.3 we notice that beyond P,... = 3.569946.. the Lyapunov exponent
becomes positive, except for the p,-values where the bifurcation diagram shows periodic windows. So
the logistic map is chaotic for p, ~ P, ....

Definition 5.3. Let (X,/) be a dynamical system and let X C R2 be a bounded region. Furthermore,
letf: X - X be a continuously differentiable two-dimensional function on X. Also assume thatfhas
an attractor AI and that B(x,e) = {y EX: d(x,y) ::s;; e } is a unit ball with center x E AI and radius e.
The first derivative (f(II»)[I](X) is a linear mapping which maps the unit ball in n steps into an ellipse
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with major and minor radii of lengts ea,,(x) and eb,,(x) respectively (see fig. 5.2). We defme the
Lyapunov exponents ofI at x E X as the average logarithmic rate of growth of these radii lengths
as n increases, so [FAL90,GUL92]:

AI(X) = lim lin a (x)
..~OO n PI

and ~(x) = lim lin b,,(x)
,,- n

If AI(X) and ~(x) are independent of x, then the common values of AI(x) and A2(X) are denoted by AI
and ~ respectively and are called the Lyapuno~ exponents off. •

•
II itcratiOllS

Flgun 5.2. The unit ball is defonned into an ellipse by iteration

underf·

As e -.°then (f"l)[I](B(x,E» will typically be close to an ellipse with radii of lengths ee").' and ee").,
respectively [FAL90J.

Definition 5.4. Let (X,I) be a dynamical system with attractor AI and Lyapunov exponents AI and
~. Assume that AI>°>~. We define the Lyapunov dimension of the attractor AI as
[GUL92,M0087]:

•
Example 5.2. Consider the so called baleers' map, in a slightly different form also known as the
horseshoe map,/: [0,1]2 -. [0,1]2 defined by:

{

(2x,JL(y-1)+1)

.f(x,y) =
(2x-1,JLY)

x E [0,':], 1£ E (0,':)
2 2

x E (.:, 1], 1£ E (0,':)
2 2

This transformation may be thought of as stretching the unit square [0, l] x [0,1] into a 2 x 1£
rectangle, cutting it into two 1 x 1£ rectangles and placing these above each other with a gap of 1-21£
in between (see fig. 5.3). Then the attractor AI = j<"l([O, 1] x [0,1]) of the transformation is an
increasing sequence of sets with [0,1] x [0,1] comprising into 2" horizontal strips of height 1£"
separated by gaps of at least (l-2JLf.
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FIgure S.3. From upper left to lower right: six successive
iterations of the baker's map for p. = 'AI.

The first derivative of.f{x,y). provided that x;t Ih. is given by:

[20] [2" 0]JlI] = ~ (f(..»[I](x y) =
o p. • 0 p."

Hence a..(x,y) = 2" and b..(x,y) = p.... The Lyapunov exponents offare given by:

AI(x.y) = lim .!.lna (x.y) = lim .! In2" = In2
..- n" ..- n

~(x.y) = lim .!.lnb (x.y) = lim .!.lnp." = Inp.
..- n" ...... n

5. Chaos

*

Because p. E (O.lh). the inequality AI> 0>~ holds. and the Lyapunov dimension of the attraetor AI
of the bakers' map can be calculated as follows:

DL(A
I
) = 1 - AI = 1 - In2 E (1.2)

~ Inp.

The Lyapunov dimension reflects the frequency with which points in the attraetor are visited by orbits
of various starting points [GUL92J.

5.2. Strange attractors

Definition 5.5. Let (X,j) be a dynamical system with attractor AI. We say that AI is a strange
attractor if AI has a non-integer Lyapunov dimension and we say that AI is a chaotic attractor if AI
has a Lyapunov dimension which exceeds 1 [GUL92J. •

In example 5.2 we found for the bakers' map that DL(AI) E (1.2). so the bakers' map has a strange
attractor (which is also chaotic) and thus the bakers' map is chaotic.
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5.3. Entropy

51

In chapter 3 We have seen that the capacity dimension Dc is a measure for the space-filling properties
of an attraetor. In the same way the Lyapunov dimension DL is a measure for the frequency with
which points in the attractor are visited by orbits of various starting points. We will introduce another
dimension that is similar to the capacity dimension, but also tries to account for the frequency with
which the trajectory visits each point of the attractor.

To calculate this entropy dimension, one counts the number of points in each of N just-touching boxes
which cover the attractor and the probability of finding a point in each particular box.

l&.finiJion 5.6. Let (X,/) be a dynamical system with attractor AI" We denote by N(AI,E) the smallest
number of two-dimensional just-touching boxes of sidelengtb E, required to completely cover 4. We
number each box with a unique code Ci and denote the alphabet of/by the sequence C = {co, ... ,CN_1}

[M0087]. We represent the orbit of/by a sequence { Ci : i E {O, ... ,N-l} } where N denotes the
amount of different points in the orbit, Le. the total amount of code symbols. We define the
self-information or surprise value of symbol ci as [GAL68]:

So Pi denotes the probability that the orbit of/visits the box with code symbol ci.

I(c) = -Iogz Pi [bits]
N-I

and LPi = 1

•
We are also free to use the natural logarithm (In) in case of the 2-based logarithm (logz), but in that
case the unity of I(ci) becomes natural digits ([nats]) in case of binary digits ([bits]).

The self-information is a measure for the predictability of the distribution of the points x E AI over
AI' The more predictable the system, the higher the self-information. If AI consists of a single point
then the self-information becomes -10&1 =0 [bits]. So the behaviour is fully predictable or, in other
words, we are not at all surprised by this outcome.

Definition 5.7. Let (X,f) be a dynamical system and let its attraetor AI be encoded in a similar way
as described in definition 5.6. The average value of the self-information of all code symbols Ci is
called the entropy of/and is denoted by [BR090,FAL90,FED90,M0087]:

N-I

H(j) = - L Pilog:JJi [bits/(code symbol)]
;-0 •

The entropy is a measure for the unpredictability of a system. That is, for a uniform probability in
each box, Pi equals liN and thus H(f) reaches its maximum:

N-I 1 1
H(j) S - L N log2- = -N-Iog2 N = log2N [bits/(code symbol)]

i-O N N

If all points are located in one box then H(f) =O. One can also look upon the entropy as the amount
of freedom the system has. The more freedom, the less predictable (deterministic) the system behaves.
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Our alphabet consists of N code symbols, so the theoretical amount of possible different orbits of
length k is equal to N1. But the system doesn't necessarily have the capability to generate all this
orbits. The smaller the entropy of a system, the less different orbits it can generate. A fully
predictable system will generate only one possible orbit of length N. Let H1(e) denote the amount of
orbits of length k that the system is able to generate, then clearly N ~ H1(e) s: N1. We will now
determine how H1(e) is related to k.

DefiniJion 5.8. Let (X,/) be a dynamical system and let its attractor AI be encoded in a similar way
as described in definition 5.6. The e-entropy ofjis defined as [BR090]:

•
Thus, only if H1(e) = N 1 then H(f,e) = H(j) = log~. Without proof we state that the following
equation holds (see [BR090,M0087]):

or, in case the natural logarithm is used in definition 5.8 for the e-entropy:

DefiniJion 5.9. Let (X,/) be a dynamical system and let its attraetor AI be encoded in a similar way
as described in definition 5.6. The entropy dimension (also called the information dimension) ofjis
defined as [FED89,M0087]:

D if) = lim Hif)
E .~o log2(l/e)

N-I

LPilog.Jli
= lim _i-_O-:--__

.~O log2e •
Example 5.3. Consider the bakers' map (see example 5.2). The attractor A.r =f")([O,l] x [0,1]) of
this map consists of 2" horizontal strips of length 1 and height p.". So the amount of possible orbits
of length k is H1(e) = 2" and the amount of possible orbits of length k+ 1 is Hl+1(e) =2H1 = 2H1(e)
for k~2. Since we know that H1(e) =2", it follows that H1(e) =2H1-1. SO the e-entropy yields:

log H (e) log 2"+1-1 . (n+k-l)log22
H(f,e) = lim 2 1 = lim 2 = 11m__-:--__

1~~ k 1~~ k 1~~ k

n-l= (lim_ + 1)log22 = log22 = 1 [bit]
1~~ k

Thus, each time the amount of possible orbits (states) doubles, we loose 1 [bit] of information about
the predictability of the system behaviour. If we cover all 2" horizontal strips of the bakers' map with
boxes of sidelength e = p.", then we need N =2"p." boxes to completely cover the attractor AI' In this
case Pi = liN =2-"p.", so we can calculate the entropy ofjas:
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Because H(f»O for p. E (O,th), the bakers' map has positive entropy and thus is chaotic. We can
also calculate the information dimension ofjas:

D if)
-_ llDl' Hif) . nlo~(2/p.) . -nlog2(p./2) 10g2p. - 10g22 -_ 1 10g22

-;--~~ = hm = hm = ---,----
E ...0 10g2(lIe) 11- 10g2P.-II 11- -nlo~p. 10g2p. 10g2p.

In case p. =Ya this yields DJil) = 1.63, and we see thatDJil) =De([O,I] x Cantor set) =DC<[O,I])
+ Dc(Cantor set) = 1 + 0.63. *
5.4. Sensitive dependence on initial conditions

We have seen that the logistic map becomes chaotic for p. >p.... which means that (except for the
periodic windows) there are no unique ordered finite n-cycles anymore. But there is more to say.

Emmo1t 5.4. Consider the logistic map (see example 4.2). We will investigate the orbits for
p. =3.557 and p. =4, each for two different starting values.

Tabu 5.1. OrbitB of the logistic map for p. = 3.557 and p. = 4, for different starting values.

n p.=3.557 p.=3.557 p.=4 p.=4

0 0.7300.. 0.8830.. ..0oooooס0.8830 0ooooo1ס0.883 ..
1 0.7010.. 0.3674.. 0.41324400000.. 0.41324399997..
2 0.7454.. 0.8267.. 0.96989358586.. 0.96989358584..

32 0.8809.. 0.8809.. 0.01195142608.. 0.00186792168 ..
33 0.3731.. 0.3730.. 0.04723435801 .. 0.00745773022..
34 0.8319.. 0.8318.. 0.18001309374.. 0.02960844992..

42 0.8318.. 0.8318.. 0.63954498650.. 0.08079533875 ..
43 0.4974.. 0.4974.. 0.92210878698.. 0.29706980796..
44 0.8892.. 0.8892.. 0.28729668783 .. 0.83527734864..
45 0.3503.. 0.3503 .. 0.81902920397.. 0.55035639796..
46 0.8096.. 0.8096.. 0.59288146805.. 0.98985693274..
47 0.5482.. 0.5482.. 0.96549213157 .. 0.04016074180..
48 0.8809.. 0.8809.. 0.13326830179.. 0.15419142648..
49 0.3730.. 0.3730.. 0.46203144610.. 0.52166572192..
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We see that for p. = 3.557 and totally different startvalues 0.8830 and 0.7300, the logistic map settles
down to a stable 8-cycle {0.8318.. ,0.4974.. ,0.8892.. ,0.3503 .. ,0.8096.. ,0.5482.. ,0.8809.. ,0.3730..}
as we also noticed from table 4.1. But for p. = 4 and almost identical startvalues 0oooooס0.8830 and
0ooooo1ס0.883 the logistic map doesn't converge at all. Besides chaotic behaviour, we see that the
small difference of 10-10 in startvalues causes the system to behave totally different after relatively few
iterations. *
The first one who noticed this kind of behaviour was Lorenz when he simulated a simple weather
model, consisting of only three differential equations [LOR63l. This effect was called the butteTjly
effect, referring to the small scale wing movement of a butterfly in Brazil that is iterated by a
dynamical weather system and could thus eventually cause a large scale tornado in Texas. Thus we
see a propagation of the same behaviour through all scales. The butterfly effect acquired a technical
name: sensitive dependence on initial conditions.

Definition 5.10. Let (X,f) be a dynamical system. Then f: X - X has sensitive dependence on
initial conditions, or just sensitive dependence, if [GUL92]:

( A E : E > 0 : (E x,y,n : x,y E X, n EN: Ix - y I < E A If">(x) - f">(y) I > E) ) •

Suppose that an iteration map XII+ I =j(x..) has an initial error Axo. So we get:

X II+ I + axil+ I = ~II + ax..)

The right part of this equality can be approximated with a Taylor sequence:

4L Ax:+1

+ _"jl")(X ) + __" -Jl"+I)(~)
n! II (n+ 1)!

with

With XII+ I =~..) we get:

So an initial error Axo causes for XII an error:

II

ax = ax IIf[l](x. )II 0 ,-I
; ...1

We can rewrite this equation in the form:
1 II

>.. = lim - L In If(I](x·_I) I
,. ...oa n i-I I

The Lyapunov exponent>.. is a measure for the average increase of the error per iteration. If axil = 1
then the calculated value XII has become totally unreliable. This moment will occur from iteration:
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The logistic map for IL =4 is chaotic, since it has sensitive dependence on initial conditions:

Ix - y I < 10 -10 1\ ~(x) - 1(32)(y) I > 10-10

ss

Example 5.5. Consider the logistic map for IL = 4. From example 5.1 we know that
A =In 12-ILI =1n2. From table 5.1 we see that for IL = 4 from iteration n = 34 and onwards the
values of the orbits for Xc> = ..0oooooס0.8830 and Xc> = ..0ooooo1ס0.883 differ in all decimals. So at
iteration n =34, all significant decimals have been lost. This means that the computing device with
which those iterations were performed, stores floating point numbers with an accuracy of:

Axo =e-#l)., =e-341112 =2-34 = 10-10 [decimals] *
So we loose 1 [bit] of accuracy per iteration. This means that for the accurate prediction of the value
of x" one needs to have Xc> with an accuracy of at least n [bits]. So the calculation time per iteration
is O(n) and thus the prediction of x" is O(n2

). The far future (large n) is unpredictable; there exists
a prediction horizon. By the time we have calculated x"' the system is already beyond this point.

Example 5.6. Assume that we want to make a weather forecast. We have available a computerized
weather model and a sensor which measures the barometric pressure. Our computer has an execution
time of t [p.s/instruetion] and the sensor is able to give readings of an infinite accuracy. For each
iteration of the weather model, k [instructions] must be calculated, so this takes a calculation time of
kt [p.s/iteration]. For the prediction of x" (the weather behaviour after n iterations), we need to
initialize the weather model with a sensor reading Xc> of n [decimals]. The computational time
complexity is O(n2

), where n is the amount of decimals, Le. the input length. So, to calculate x" we
need n2kt [p.s] of computation time. Meanwhile, the real weather is "iterating" with a constant rate
and performs with a linear time complexity O(n). We can draw the graphs of the time complexity
function n...f"» of the real weather system and of our model (see figure below).

o 1
let

There is a unique solution for the intersection point of the two graphs: n =n2kt ~ n =(ktt l
• This is

the prediction horizon of our weather forecast, because at the time our model is calculating this value,
we can no longer speak of a prediction, since the real weather system has also arrived at this point.
Since there will never be computers with zero execution time per instruction and each computer
program contains at least one instruction, there will always be a finite prediction horizon, which
prevents the future beyond to be predictable. *
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Exam]lle 5.7. Lorenz estimated the prediction horizon of the real weather system to be 2 [weeks], but
at present the weather forecasters estimate it to be at most 7 [days]. Several European countries
participate in the European Centre for Medium-range Weather Forecasts (ECMWF), which is located
in Reading (UK). The computers of the ECMWF perform calculations of the weather model on
different grids which la~on concentric spheres. These spheres are ap:oximately 1 [km] apart and the
points within a grid are approximately 100 [km] apart. The model is periodically initialized by
sensordata like pressure, velocity, temperature and humidity of the air, which are measured at the
same time allover the world at the gridpoints. This is done by means of radio probes, weather
balloons and satellites. After the model is initialized, the computers start calculating the "orbit" of the
weather with discrete steps of 10 [minutes].

Experience learns that after 5 to 6 [days] the errors have grown so big that the forecast has become
useless and the model has to be re-initialized with up-do-date sensordata. There are meteorologists
who think that the situation can be improved by increasing the amount of grid points, which implies
that the computer power and the amount of sensors have to be increased correspondingly. Let us see
if they are right.

It is true that the weather model is blind as to the space between the grid points. The smallest weather
structure the model takes into account is a depression, which has a size of about 1000 [km] and exists
for about 5 [days]. This is the reason we can only make reliable predictions up to 5 [days]. The
formation of a depression is usually caused by a shower complex on a smaller scale, which is
amplified under iteration of the weather system. A shower complex has a typical size of at most 100
[km] and a duration of about 1 [day]. If we want to take into account such shower complexes, we
must be able to measure at a grid of 10 x 10 [km]. This requires both the computer power and the
amount of sensor stations to be increased with a factor 100. This will cost an enormous amount of
money and the gain in prediction time will be equal to the duration of existence of a shower complex,
namely 1 [day]. So, we now can make reliable predictions up to 6 [days]. The formation of a shower
complex is caused by coherent structures on an even smaller scale of 10 [km]. If we increase the
computer power and amount of grid points again with a factor 100, we will be able to predict those
coherent structures. This time the gain in prediction time will be equal to the duration of existence
of a coherent structure: 5 [hours]. So, we now can make reliable predictions up to 6.2 [days]. We
can continue this process until we reach the very small scale on which a butterfly lives. Its wing flaps
cause little turbulences of about 10 [em] with a duration of about 1 [sec].

It is obvious that the result of this adventure will be that we have spent an astronomical amount of
money and we still are not able to make reliable weather predictions over more than 7 [days]. *

5.5. Period 3 implies chaos

In fig. 4.3 we see that the logistic map becomes chaotic for #L > #Lou but nevertheless, there are
periodic windows for some #L E (p..,.,4].

Theorem 5.1. (Li-Yorke theorem). Let (X,f) be a dynamical system and suppose thatfis continuous
on the closed interval X withftX) ~ X. If fhas a 3-cycle thenfhas n-cycles for all n E N+.
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Proof. We will not give the detailed proof which can be found in [L1Y75]. The proof is based on the
following idea. Assume that a<b<e and thatfia) = b,fib) = e and fie) = a. It can be proven that
f must have a I-cycle and also a 2-eycle. Let n >3 then f has all n-cycles. The kernel of this proof
is to show that there is a point p E [b,e] such that:

(i) .r1)(P) E [b,e] for k = 1,2,3, ... ,n-2;

(ii) .r,,-I)(P) E (a,b);

(iii) .r") =p and p E [b,e];

then automatically p will have period n. •
The Li-Yorke theorem says that iffhas a period-3 point, then it has points of all other periods. But
suppose we can only show thatfhas for example a period-5 point. Then mustfstill have points of
all periods "

Definition 5.11. The Sluzr1covs1cy ordering of the positive integers is defined as [GUL92,PEI92]:

odd integers 2· (odd integers) 22 • (odd integers) powers of 2

So m t> n indicates that m appears before n in the Sharkovsky ordering. Thus 17t> 14 (because
14 = 2·7) and 40 t> 64 (because 40 = 23 .5 and 64 = 26

). Since every positive integer can be written
as 21

• (odd integer) for a suitable nonnegative integer k and a suitable odd integer, the Sharkovsky
ordering is a permutation on N+. •

Theorem 5.2. (Sluzrlcovslcy theorem). Let (X,f) be a dynamical system and letfbe continuous on the
closed interval X with fiX) ~ X. Iff has an m-cycle, then f has n-cycles for all n such that m t> n.

Proof. See [BR090]. •
By letting m =3, we see that the Li-Yorke theorem is a direct implication of the Sharkovsky theorem.
Moreover, from the Sharkovsky ordering we can imagine why the period-5 window in fig. 4.3 is
located to the left of the large period-3 window.

The logistic map for #L =3.829 possesses an attracting 3-cycle {0.1576.. ,0.5085.. ,0.9569.. }, because
f(0.1576 .. ) = 0.5085.. andf(0.5085..) = 0.9569.. andf(0.9569..) = 0.1576.. , so the logistic map
is chaotic for #L E (p. ... ,4] (see fig. 5.4).
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FIgure 5.4. The logistic map possesses an attracting 3-cyclc for
Po = 3.829.
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Attractor basin boundaries

S9

Chapter 6

Many of the beautiful exotic sets that have appeared on calendars and covers of magazines are sets
which can be described in terms of iterates of complex functions. In this chapter we will describe the
most famous of such sets, because we feel that we would be incomplete if we didn't.

Definition 6.1. Let (X,f) be a dynamical system with attractor Af . The basin ofattraction Bf of the
attraetor Af consists of all x E X such that [GUL92]:

lim p")(x) E A.._ 'f •
Definition 6.2. Let (X,f) be a dynamical system with attraetor Af . The basin boundary of/is the
set that lies between the basin of attraction of Af and infinity [GUL92]. •

Extmll'le 6.1. Consider the dynamical system (R,j{x) =r). This system has three fixed points 0,1
and CIO. We know that:

o for x E (-1,1)

limj{x) = 1 for x E {-1,1}
....CO>

CIO for x E R\[-l,l]

The attractor of/is given by Af = to, CIO }. The basin of attraction of 0 is the interval (-1,1) and the
basin of attraction of CIO is given by R\[-l,l]. The basin boundary of/is given by {-1,1}. *
6.1. Julia Sets

Dt:.finition 6.3. Let (C,f) be a dynamical system. The basin boundary of/is called the Julia set and
is denoted by J(/). The Julia set can also be defined as the smallest closed set that contains all
repelling periodic points of/ [DEV90,PEI88]. •

For example J(r) with z E C is a circle of radius 1 centered around the origin of the complex plane.
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Example 6.2. Consider the transformationj: C -. C given by j{z) = Z2 + c. In fig. 6.1 eight Julia
sets ofjhave been plotted in the complex z-plane for different values of c.

FtgUTt 6.1. Julia sets ofj(z) =t + c for different c, plotted in the complex z-plane [FALBO!.

The eight Julia sets J{f) in fig. 6.1 have the following characteristics:

a) c = -0.1 + O.li, jhas an attractive fixed point and J is a quasi-circle;

b) c = -0.5 + 0.5i, jhas an attractive fixed point;

c) c = -1 + O.li, j has an attractive 2-cycle;

d) c = -0.2 + 0.75i,jhas an attractive 3-cycle;

e) c =0.25 + 0.55i, jhas an attractive 4-cycle;

t) c = -0.5 + 0.55i, jhas an attractive 5-cycle;

g) c = O.66i, j is chaotic and J is totally disconnected;

h) c = -i, j{0) induces a 2-cycle and J is a dendrite. *
The Julia set is named after the french mathematician Julia, who first studied this kind of sets in the
early twentieth century. The Julia-Fatou dichotomy for quadratic polynomials establishes that for any
choice of c, the resulting attractor is classified by one of only two possible characteristic case:, Either
the attractor is mathematically connected (one piece) or mathematically a cloud of fractal dust (a cloud
of infinitely many points, like a Cantor set) [PEI89]. Julia sets of other complex functions, such as:
j{z) =eZ-I,j{z) = (e-I + O.l)e Zandj{z) = (1 + ci)sinz, can be found in [PE188l.
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6.2. Mandelbrot sets
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We now specialize to the case of quadratic functions on C. We study Julia sets of polynomials of the
formj{z) =t + c.

Definition 6.4. Let (C,f) be a dynamical system. The set of parameters c E C for which the Julia
set of/is connected is called the Mandelbrot set and denoted by M(f). Thus:

M(f) = { c E C: J(f) is connected }

= { c E C: {f")(0) : n = 1,2,3, ... ,00} is bounded } •

-2.4 -2.0 -1.6 -1.2

The Mandelbrot set is named after the french mathematician Mandelbrot, who was the first to render
this set with a computer at March lit 1980. His ingenuity was to look at complex numbers (a plane)
instead of real numbers (a line) to study iteration processes.

From now on we will refer to J and M as respectively the Julia set and the Mandelbrot set of the
functionj{z) =Z2 + c. In fig. 6.2 M is plotted in the complex c-plane.

...---r---r-""""T"---,-,-...,.--..---,.-,.---r---r-""""T"---,-,-...,.---, 12

1.0

0.8

0.6

0.4

02

'-----i0

-0.2

-0.4

-0.6

-0.8

-1.0

L-...J.---'-----'-----''--...L..---'----'------"_''---...J.---'-----'-----''--...L..---'----" -12
-0.6 -02 0 02 0.4 0.6 0.8

Figure 6.2. Mandelbrot set forJ(z) =t + c, plotted in the complex c-plane [PEI861.

The Mandelbrot set is a fractal and it combines aspects of self-similarity with the properties of infinite
change. The basin boundary of M lies between the stable (black) and instable (white) regions. This
border can be zoomed in upon endlessly and still new details will appear. Each time we zoom in on
M we are looking at this set at a smaller scale. Here again, we see that the amount of detail is scale­
invariant, which is true for all fractals. But if we want to determine the exact basin boundary of M,
we will not succeed. This is exactly where chaos is all about and shows what sensitive dependence
on initial conditions means. In fig. 6.3 successive zoomings of M are plotted.
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FtgulY 6.3. SuccC8sive zooms into the Mandelbrot set M (PEI921.

Since M consists of all c-values for which J is bounded, M can be considered as a map of the Julia
sets. This is illustrated in fig. 6.4, where The Julia sets for various points c E M are plotted in more
detail. In fact, these Julia sets are the same as in fig. 6.1.
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FIgure 6.4. Julia ICts for various points c E M [FAL90l.
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Theorem 6.1. The dynamical systems (C,j(z) = t + c) and ([0,1] x [O,l],.f(x) =p.t{1 - x)) are
equivalent.

Proof. Let j(x) = p.t{1 - x), let z = -p.(x - Ih) and let j(z) = -p.(j(x) - Ih). Then clearly
x = -zip. + Ih and:

j(z)
=(substitution)
-p.{p.x(l - x) - Ih)
= ( substitution )
-p.(p.(-zlp. + Ih){1 - (-zip. + Ih)) - Ih)
= ( calculus )
-p.«-z + Ihp.)(zlp. + Ih) - Ih)
= ( calculus)
t + (_IAp.2 + Ihp.)
= (substitution)
t + c with c = _IAp.2 + Ihp. •
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So.fl.x) =p(1 - x) is equivalent to j{z) =r + c with x =-zip. + lh and c =-lAp.2 + lhp.. If we plot
the bifurcation diagram for ft..z) =r + c for real parameter values c and compare this diagram to the
Mandelbrot set M, we get fig. 6.5.

,,,
-2.0 -1.5 -1.0 -a.S 0.0 o.,,, ,_~ ... 4. _

, ,

I ~. I
, ,
J '

i,,

I
J,

·t············· ········t-······_······
FIgure 6.5. Relation between M and the bifurcation
diagram of f when c is varied as a real parameter
[PEI92].

From fig. 6.5 we see that bifurcations correspond to budding in M. Periodic windows interrupting
the chaotic veil of the bifurcation diagram correspond to small copies of M located on the "main
antenna". Also notice that the ratio of the radii of the successive buds of M is equal to the
Feigenbaum constant 0 =4.669201 .. Mandelbrot sets have been observed to appear in many nonlinear
dynamical systems, where there is competition between several points of attraction and where the
competitive situation depends on a parameter. In this sense the Mandelbrot set is a universal
mathematical constant, like the Feigenbaum constant.

Each Mandelbrot set can be classified as a grammar for the corresponding Julia-set language. It can
be seen as a dictionary of all possible elements of a dynamical system (C, f). Magnifying the
Mandelbrot set on a point c E M by about 1()6, we see a structure that is similar to the corresponding
Julia set for that particular c-value. In this sense the Mandelbrot set can be seen an an image
compressor of infinitely many Julia sets, the entire Julia-set language [PEI89].

In 1982 Douady and Hubbard proved that the Mandelbrot set for the family of dynamical systems
{ (C, Z2 + c) : c E C} is connected [DOU82].
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Affme transformations

Chapter

6S

7

We have defmed a dynamical system to be a 2-tuple (X,!), wherefis an arbitrary transformation.
We will now focus on a special kind of two-dimensional transformation, which is important and which
is frequently used in image processing applications, namely the affine transformation w.

7.1. Geometrical dermition

DefiniJion 7.1. Let (X, w) be a dynamical system. A transformation w : R2
- R2 of the form:

with a,b,e,d,e,f E R, is called a (two-dimensional) affine transfoTnUJtion. Often the following
equivalent notations are used:

where the 2 x 2 real-valued matrix A deforms Euclidian space relative to the origin and where the
vector t denotes a translation or shift, also relative to the origin. The matrix A can always be written
in the form:

A= [a b] = [rc~s8 -SSinIP]
e d rsm8 SCOSIP

where (r,8) and (s,IP+ Ih'll") are the polar coordinates of respectively the points (a,e) and (b,d). •

Affme transformations can rotate, scale, translate and shear an image. Parallel lines are invariant
under affine transformations and thus an affine transformation maps parallellograms to parallellograms
[SNA89J. If an affine transformation is written in the form:

W [XI] = [rc~s8 -ssinIP ] [XI] + [h]
x2 rsm8 SCOSIP x2 k
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then we will refer to the parameters by the operation they actually perform, thus:

r = x scale factor (xscaling);
s =y scale factor (yscaling);
(J = x rotation angle (xrotation);
1/t = y rotation angle (yrotation);
h = x translation (xtranslation);
k = Y translation (ytranslation).

Exa1'1lJ'le 7.1. Consider the affine transformation w : R2
- R2

, which is given by:

w(XI~ = (0.625xl - 0.125~ + 2, -0.25xl + 0.75~ + 2.5)

A graphical illustration of this transformation applied on a square is given below:

y
(1.25,3.5)

2 (1.5,2)

(-1,1) 1 (1':1 (2.75,1.'1
W(l)

X
-1 1 2 3

(-1,-1) -1 (1,-1)

3

In case of Carthesian coordiates, we can also describe the transformation in polar coordinates, which
can be calculated as follows:

r = Ja 2 + c2 = J(0.625)2 + (0.25)2 "'" 0.67

s = Jb 2 + d 2 = J(-0.125)2 + (0.75)2 "'" 0.76

_1[0.75] 950 . _1[0.125] . -If -b]= cos -- "'" . "'" SID -- = SID -
0.76 0.76 s
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So we can express the affine transformation both in Carthesian coordinates as in polar coordinates:

w(X1~) = (ax1 + bx" + e, CX1 + dx" + f) = (0.625xl - 0.125x" + 2, -0.25xl + 0.75x" + 2.5)

w(X1~) = (r.tlcos8 - oUzSin'" + e, r.tlsin8 + sx"cos'" + f)

= (0.67xlcos(-21.8°) -0.76x2sin(9.5°) + e,0.67xlsin(-21.8°) + 0.76x2cos(9.5°) + f)

1

(b,d) • (-0.125,0.75)

-0.5

-005

1

(a,c) • (0.625,-0.25)

Thus, the following points are equivalent (see figure above):

(a,c) = (0.625,-0.25) ~ (r,8) =(0.67,21.8°)
(b,t!) = (-0.125,0.75) ~ (s,'" + Ih'lr) = (0.76,54.5°) *

Theorem 7.1. Let WI: R2 - R2 and W2 : R2 - R2 both be affine transformations then so is w3 = WIOW2•

Proof. Let wl(x) and wix) be affine transformations, which are given by:

W1(x) = WI(XI,x,,) = (a~1 + blx" + el> C~I + d~ + it)
w2(x) = W2(XI,x,,) = (~I + bM + e2, C~I + dM + fJ

Then w3(x)
= ( substitution)
WIOW2(X)

= (definition of composition )
WI (w2(x»
= (substitution)
WI(~I + bM + e2, C~I + t¥2 + fJ
= ( substitution)
(al(~1 + bM + eJ + bl(c~1 + dM +fJ + el, CI(~I + b~2 + eJ + dl(c~1 + d~2 + fJ + f)
= ( calculus)
«ala2+blcz.}xl +(a lb2+bld;)x2+ (ale2+bJh +el), (cla2+dlcz.}xl +(clb2+dldJx"+(cle2+dJA+];,»
= (substitution)
(a~1 + b~2 + e3, C~1 +~ + A)

•
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7.2. Fixed point analysis

The fixed points of a transformation (see definition 4.3) are very important. They tell us which parts
of the space are position-invariant under the transformation. But also, fixed points of transformations
correspond to equilibrium solutions of systems of differential equations, Le. the attributes of attracting
and repelling fixed points of transformations relate to the notion of stability of the system [GUL92].

Theorem 7.2. Let (R2,W) be a dynamical system with w : R2
- R2 an affme transformation given by:

Then the fixed point of w is given by:

x = [ bf + (l-d)e ee + (l-a)f 1
'I (l-a)(I-d) - be ' (l-a)(I-d) - be

Proof. Suppose det(A) ;II!! 0 and I is the identity matrix, then:

•
ee + (l-a)f 1

(I-a)(l-d) - be

[

(l-d)e bf 1
ee (l-a)fJ

I

I

(I-a)(l-d) - be

= ( calculus)

= ( calculus )

(I-a)(l-d) - be

= ( rewrite)

[
bf + (l-d)e

(l-a)(I-d) - be '

XI
= (substitution)
Axl + t
= ( calculus )
(I - At1t
= ( substitution )

[[~~] -[: :]r [;]
= (calculus )

[
I-a -b] -I [e]
-e I-d f

[
I-d b] [e]

e I-a f

From the above theorem we see that in case the translation vector t equals zero and w is a contraction,
the fixed point is always the origin.
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Example 7.2. Consider the affine transformation w : R2
-+ R2 of example 7.1:

w(Xl~ =(0.625x1 - 0.125~ + 2, -0.25x1 + 0.75~ + 2.5)

The fixed point of w is given by:

x - [ (-0.25)(2.5) + (1-0.75)(2) (-0.25)(2) + (1-0.625)(2.5) ]
'f - (1-0.625)(1-0.75) - (-0.125)(-0.25) , (1-0.625)(1-0.75) - (-0.125)(-0.25)

=(3,7)

7.3. Atrme matrix properties
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*

Definition 7.2. Let (R2,W) be a dynamical system and let w : R2 -+ R2 be an affine transformation
which is given by w(x) =Ax + t. Then the (Euclidian) J1eclor nonn of a vector (point) x E R2 is
defined as [BARB6b,HORBB]:

Ilxll = Jx~ + xi
We define the matrix nonn of the linear transformation matrix A as [HORBB]:

•
Theorem 7.3. Let (R2,W) be a dynamical system and let w : R2 -+ R2 be an affme transformation
which is defined by w(x) = Ax + t. If IIA II exists then [BARBBa]:

( A x : x E R2
: II Ax II ~ II A II • II x II )

Proof. Let x E R2
, x¢O and suppose that IIA II exists, then:

IIA 1I·llxll
= (definition 7.2 )
IIA II = ( Max : x E R2

, x¢O: II Ax II )·llxll
= (calculus) lfXf
(Max: x E R2

, x~O: II Ax II )
~ ( definition of Max operator )

II Ax II for all x E R2 •
Theorem 7.4. Let (R2,W) be a dynamical system where the affine transformation w : R2-+ R2 is given
by w(x) =Ax + t and where the real-valued matrix A is the same as defmed in definition 7.1. Then
the area of the parallellogram with adjacent sides (a,b) and (c,d) is equal to Idet(A) I.
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Proof. In R3 let x = (a,b,e) and y = (e,d,f). The required area is equal to the norm of the cross
product (or vector product) of x and y [BAX86], so:

II x x y II
= (definition of cross product )
II (bf - ed, ee - aj, ad - be) II
= ( definition 7.2 )
J(bf - ed)2 + (ee - afi + (ad - be)2
= ( switch to R2

, so e=O andf=O )
J(ad - be)2
= ( calculus )
lad - bel
= ( definition of determinant )
Idet(A) I •

Definition 7.3. Let (R2,W) be a dynamical system and let w : R2 -.. R2 be an affine transformation
which is given by w(x) = Ax + I. Then we defme the spedrum of the matrix A to be the set of all
eigenvalues of A, which set is denoted a(A). The spedral radius of A is defined as [HOR88]:

p(A) = ( MM : A E a(A) : IAI ) •
The spectral radius of a matrix A is just the radius of the smallest disk centered at the origin in the
complex plane, that contains all the eigenvalues of A. So an important area of application of matrix
norms is in giving bounds for the spectrum of a matrix.

Theorem 7.5. Let (R2,W) be a dynamical system, where the affme transformation w : R2-.. R2 is given
by w(x) = Ax + I, Then the trace of A and the detennilUlnt of A can be expressed in terms of the
eigenvalues Al and ~ of A [HOR88,KRA87]:

2

det(A) = II Ai
i-I

Proof. Suppose I is the identity matrix, then:

det(A - AI)
= ( substitution)

d& [ [: :] - A[~ ~]]
= ( calculus)

d&[a:A d~A]
= ( calculus)
(a - A)(d - A) - be
= ( calculus )
A2

- (a + d)A + (ad - be)
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We can determine the eigenvalues by setting this characteristic polynomial equal to zero, and solve
the thus obtained characteristic equation:

A2
- (a + d)A + (ad - be) = 0

... ( square root formula )
~(a + d) ± ,jr-(a~+-d)-:2~--4(~ad---b"-e""")

A = -- ~----_
1.2 2

.. ( calculus )

AI ,2 = ~(a + d) ± ~J(a - d)2 + 4be

Now we can calculate:

2

L Ai = AI + Az = a + d = tr(A)
i-1

2

II Ai = AI' Az = ad - be = det(A)
/-1 •

From this theorem and definition 4.5 it is clear that an affine transformation in R? is contractive if
and only if IAI I< 1 and IAz I< 1. In general (with an extension of theorem 7.4 and with use of
theorem 7.5 and definition 7.1) the following properties hold, where S C R,z is an arbitrary bounded
region and where w : R2- R2 is given by w(x) = Ax + t:

area of w(S) = S' (area of S)

= IAll' IAz I •(area of S)

= Idet(A) I •(area of S)

= lad - bel'(area of S)

= Irs(cosOCOSlP + sinOsinlP) I•(area of S)

= Irscos(O-lP) I •(area of S)

Example 7.3. Consider the affine transformation of example 7.1:

w(XI.xz) = (0.625xI - 0.125Xz + 2, -0.25xI + 0.75Xz + 2.5) =Ax + t

According to theorem 7.5 the eigenvalues of the matrix A can be calculated as follows:

AI •2 = i(0.625 + 0.75) ± ~J(0.625 - 0.75)2 + 4(-0.125)(0.75) = 0.6875 ± 0.1875

which implies that AI = 0.5 and Az = 0.875. The determinant of A can be calculated in two ways:

det(A) = ad - be = (0.625)(0.75) - (-0.125)(-0.25) =:: 0.437

det(A) = rscos(O-1/!) = 0.67' 0.76· cos(-21.8° - 9,5°) =:: 0.437
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The area of S (the untransformed square) is 4 [units] (see figure in example 7.1), so the area of w(S)
(the transformed parallellogram) is given by:

area ofw(S) = IAllol~104 = (0.5)(0.875)04 = 1.75 [units]

= Idet(A) 1 04 =(0.437)04 = 1.75 [units]

= Irscos(8-If) I04 = (0.437)·4 = 1.75 [units]

Notice that the ratio's of the lengths of the axes of the transformed parallellogram and the
untransformed square are respectively given by IAl 1 and I~ I. *

7.4. Similitudes

Definition 7.4. Let (R2,W) be a dynamical system. The affine transformation w : R2 -. R2 is called
a similiJude if it is an affine transformation with If set equal to 8 and with s set equal to ±r. +

A similitude not only preserves parallel lines (as all affine transformations do), but also preserves
angles.

Theorem 7.6. Every affine transformation w : R2 -. R2that is also a similitude which doesn't involve
a reflection, can be written as a transformation!: C -. C of the formj{z) = sz + t, with s,t E C.

Proof. Let w : R2
-. R 2 be a similitude, which is given by:

with r,tl ,t2 E R, 8 E [0,211"]

Since (R2,dE) and (C,dE) are equivalent metric spaces (see definition 2.4), we can define an equivalent
transformation!: C -. C as follows:

j{z)
= (z E C)

j{ZI + izJ
= (substitution of s=±r and switch to C)

[
rcos8 irsin8] [Zl] [ t l ]

irsin8 rcos8 iZ2 + it2
= (calculus)
nl(cos8 + isin8) + in2(cos8 + isin8) + (t l + itJ
= ( calculus )
r(cos8 + isin8)(zl + izJ + (t l + itJ
= ( substitution of s =r(cos8 + isin8) =re'i, s,z,t E C)
sz + t •
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It is clear that the fixed point ofj(1.) = s1. + t is given by l.t = t(l-s)-I. So t = (1-s)1.j and we can write
j(1.) = s1. + (l-s)l.t. The advantage of this notation is that we can express the parameters of the
transformation in terms of fixed point l.t and direction s, where IsI is the scaling factor.

Example 7.4. Consider the similitude w : C - C, which is given by:

w(1.) = (0.375 Re(1.) + 0.5Im(1.) + 1.625, -0.5 Re(1.) + 0.375Im(1.) + 2.125)

The effect of this transformation on a square is given in the figure below:

........."
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(2.5,2)

2

(1.75,3)

(1,1)

(1,-1)-1

2

Im(z)
3

(0.75,2.25)

-i---f----t----+---+----t--Re(z)
-1 1

(-1,-1)

The fixed point determines the point in space that is invariant under w and is given by:

1. = _t_ = 1.625 + 2.125i = (1.625 + 2.1251)(0.625 - 0.5i) =: 3.244 + 0.805i
'f 1 - s 1 - (0.375 - 0.5i) (0.625 + 0.5i)(0.625 - 0.5i)

The (complex) eigenvalues determine the direction of the transformation and are given by:

A1,2 = ~(a + d) ± ~J(a - d)2 + 4bc = 0.375 ± 0.5i

The modulus of the eigenvalues determines the scaling of the transformation and is given by:

IAI I = I~ I = J(0.375)2 + (0.5i)2 = 0.625

Furthermore, we can write:

j(1.) = s1. + t = ~ 1. + (e + if) =(0.375 - 0.5i)1. + (1.625 + 2.125i)

= s1. + (1-s)z., with s =0.375 - O.5i and l.t = 3.244 + 0.805i. *
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7.5. Contraction mappings

7. Affine transformations

Theorem 7.7. Let w : X - X be a contractive affine transformation on the complete metric space
(X,d) with contractivity factor s E [0,1). Then w : 1-f(X) -1-f(X), which is defined by:

w(K) = ( A K : K E 1-f(X), x E K : w(x) )

is a contraction mopping on (1-f(X),h) with contractivity factor s [BAR88a].

Proof. Let K,L E 1-f(X), then:

d(w(K),w(L»
= ( definition 2.18 )
( Max : x E K: d(w(x),w(L» )
= ( definition 2.17 )
( Max : x E K: ( Min: y E L : d(w(x),W(Y» ) )
~ ( w is contractive, definition 4.5 )
( Max : x E K: ( Min : y E L : sd(x,y) ) )
= ( definition 2.18 )
sd(K,L)
.. ( similarly)
d(w(L),w(K» ~ sd(L,K)

Hence, we can now complete the proof for the Hausdorff distance:

h(w(K),w(L»
= (definition 2.19 )
( Max : K,L E 1-f(X) : (d(w(K),w(L», d(w(L),w(K») )
~ ( first part of this proof)
( Max : K,L E 1-f(X) : (sd(K,L), sd(L,K» )
= ( definition 2.19 )
sh(K,L) •
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Chapter 8

In this chapter we will address dynamical systems whose behaviour is governed by a set of affine
transformations, a so called IFS. This concept can be considered as the main key for all applications
of fractal operations on images.

8.1. Iterated Function Systems

Definition 8.1. An Iterated Function System (lFS) is a 3-tuple (X, W,P), where X = (X,d) is a
complete metric space and W = { Wi : i = 1,2,3, ... ,N } is a fmite set of affine transformations and
P = {Pi: i = 1,2,3, ... ,N} is a finite set of assigned probabilities, such that probability Pi is assigned
to affine transformation Wi and [BAR88a,STA91]:

N

( Ai: 1~i ~N : Pi > 0 ) A. LPi = 1
i-I

The contraetivity factor of the IFS is given by s = ( Max : 1~ i ~N : Si)' If S E [0,1) then the IFS
is called hyperbolic. If the probabilities are neglected then the IPS is detenninistic. •

For comparative reasons we will have to use the term nondetenninistic 1FS with which we state that
either the IPS is known to be nondeterministic or we simply don't (want to) know whether or not the
IPS is deterministic. From now on, if we talk just about an IFS we mean a nondeterministic lFS.

Definition 8.2. Let (X, W,P) be a hyperbolic IFS, then a collage is a transformation w : ~X) - ~X)

which is defmed by:
N

( A w,K : w E W, K E ~X) : w(K) = UWi (K) ) •
i-I

Theorem 8.1. Let (X, W,P) be a hyperbolic IPS with contractivity factor s, then the collage
w : ~X) - ~X) is a contraction mapping on the complete metric space (~X),h) with contractivity
factor s, that is:

( A K,L : K,L E ~X) : h(w(K),w(L» < sh(K,L) )
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Proof. The proof is based on mathematical induction. The induction hypothesis is given by:

N N

IH(N): h(Uwi(K),Uwi(L» S; (Max: lS;iS;N: Sj )h(K,L)
; -I i-I

N N

Base: h(U Wi (K),U Wi (L»
/-1 i-I

= ( IH(1) )
I I

h(U Wi (K),U Wi (L»
i-I i-I

= ( calculus )
h(wl(K),wl(L»
S; (theorem 8.1 )
slh(K,L)

N+I N+I
Step: h( Uwi(K),U wi(L»

i-I i-I

= ( definition of Union operator )
N N

h(U wi(K) U WN+I(K),U wi(L) U wN+I(L»
i-I i-I

s; ( h(BU C,DUE) S; ( Max (h(B,D),h(C,E»), property of Hausdorff distance [BAR88a] )
N N

h( Max :: ( h(U Wi (K),U Wi (L»,h(wN+I(K),wN+I(L» ) )
i-I i-I

s; ( IH(N) holds)
(Max :: «Max : 1S;iS;N: Si )h(K,L),h(wN+I(K),wN+I(L») )
S; (theorem 8.1 )
( Max :: «Max : 1S;iS;N: Si )h(K,L),SN+lh(K,L» )
= ( definition of Max operator )
( .Mi!X : 1 S; i S; N : Si )h(K,L)
= ( defmition 8.1 )
m~~ _

Definition 8.3. Let (X, W,P) be a hyperbolic IFS with contractivity factor Si' Then we say that the IFS
obeys the average contractivily condition if [BAR88d]:

N

II si' < 1
i-I •

Definition 8.4. Let (X, W,P) be a hyperbolic IFS, then the associated IFS-code is a finite set
{ ai' hi' Ci , di , ei,f: , Pi : i = 1,2,3, ... ,N } such that the average contractivity condition is obeyed
[BAR88d]. The first six elements of the IFS-code are the parameters of affme transformations as
defined in definition 7.1. •
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Theorem 8.2. Let (X, W,P) be a hyperbolic IFS, then its unique attractor A E ~X) obeys:

77

N

A = w(A) = Uwi(A)
;.)

and is given by A = limW<")(B) for any B C A or in case of a deterministic IFS, for any B C ~X).
"....

Proof. This is a direct result of defInition 8.1 together with theorem 8.1. •
This means that, in case of a deterministic IFS, it doesn't matter with which value B we initialize the
IFS, the attractor will always be the same. In case of a nondeterministic IFS we initialize the IFS with
a compact set Ao C ~X) and then compute successively:

N

A"+I = Uwi(AJ for n = 1,2,3, ...
i-I

Thus, we construct a sequence { A" : n =0,1,2,3, ... } C ~X) which converges to the attractor of
the IFS in the Hausdorff metric [CUL90].

In case of a nondeterministic IFS we initialize the IFS with a point Xo E X and then choose
recursively and independently:

X"+I E {wi(x") : i = 1,2,3, ... ,N} for n = 1,2,3, ...

where the probability of the event X".l = wi(xJ is Pi [CUL90J. Thus we construct a sequence
{x" : n =0,1,2,3, ... } C X which converges to the attraetor of the IFS in the Hausdorff metric.

Example 8.1. An IFS whose attractor is a Sierpinski triangle (see fIg. 3.2) can be given by the
3-tuple: (R2,{W1,W2,W3},{PI7P2,P3}), where:

• [5~ I. p, • 0.33

·[~~ I. p, • 0.34

The IFS-code is given in table 8.1 below:

Ttlble 8.1. IFS-eode for 8 Sierpinski triangle.

i a b c d e f P

1 0.5 0 0 0.5 1 1 0.33
2 0.5 0 0 0.5 1 50 0.33
3 0.5 0 0 0.5 50 50 0.34
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We disregard the probabilities, so the IFS becomes deterministic. We initialize the IFS with a compact
set Ao C R2 and then compute successively:

N

.1".1 = UWi (A,,) for n = 1,2,3, ...
i-I

In fig. 8.1 below, this operation is illustrated. Left we choose Ao to be a rectangle, right we choose
Ao to be a filled in triangle (we may also have choosen a point). In both cases we get the same
(unique) attractor of the IFS.

Ftgun 8.1. Decoding of lFS-code of table 8.1 for Ao ill a rectangle and a filled in triangle (BAR88e). *
In case of a nondeterministic IFS not only the affine transformations, but also the associated
probabilities influence the structure of the attraetor. We can show this by the next example.

Example 8.2. Consider four IFS-codes which only differ in their probabilities and which all generate
a Sierpinki triangle (all put in table 8.2 below).

TDble 8.2. IFS-codes for 4 Sicrpinaki triangles with different associated probabilities.

i a b c d e f pi p2 p3 p4

1 0.5 0 0 0.5 -50 -50 0.33 0.20 0.40 0.40
2 0.5 0 0 0.5 50 -50 0.33 0.40 0.20 0.40
3 0.5 0 0 0.5 0 50 0.34 0.40 0.40 0.20

For each IFS-code we render the attractor of the associated IPS, by initializing the IFS with a point
Xo E R2 and then choosing recursively and independently:

X"+l E {wi(x,,) : i = 1,2,3, ... ,N } for n = 1,2,3, ...

In fig. 8.2, these operations are illustrated. In each case the computation was halted after relatively
few iterations, to prevent the image from getting"saturated" . From the result we see that the rendered
attractors are the same sets, but that the distribution of the points within the sets is different.
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Flgurt 8.2. Attractors of IFS-codCli of table 8.2, from left to right: pi, p2, p3 and p4.

8.2. Condensation

*

Definition 8.5. Let (X, W,P) be a hyperbolic IPS which is initialized by a compact set C C ~X).

Define the condensation set as:

,.
=wo(C) U UwU>(C)

J-'

Then we call Wo : ~X) ...~X) a condensation transformation (which is not an affine transformation)
and we call (X,Wc,Pc) with Wc =Wo U Wand Pc =Po U P and (S i : 1SaiSaN: Pi) and Po = 1
a hyperbolic IFS with condensation [BAR85,BAR88dl. •

Observe that a condensation transformation Wo : ~X) ... ~X) is an identity mapping on the metric
space (~X),h) with contraetivity factor equal to zero and scaling factor equal to one. It possesses a
unique fixed point, namely the condensation set. In practice, condensation means that we don't clear
the computer screen between two successive iterations. It is obvious that the condensation set
{ C,. : n =0,1,2, ... ,n } is a Cauchy sequence in ~X) which converges to the attractor of the IFS,
with contractivity factor s equal to the contractivity factor of the associated hyperbolic IFS without
condensation. Furthermore, all definitions and theorems about iterated function systems also hold for
iterated function systems with condensation.

ExamPle 8.3. Consider the IFS-code of table 8.3 below.

Table 8.3. IFS-code with condensation transfonnation.

i a b c d e f p

0 1 0 0 1 0 0 1
1 0.55 0 0 0.55 150 0 1
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We choose C C R,2 to be a Sierpinski triangle and we render the attractor of the associated IFS with
condensation. The result is given in fig. 8.3 below.

Ftgun 8.3. Attractor of the IFS-code of table 8.3. *
We can immediately deduce the fact that if we initialize a hyperbolic IFS with condensation with a
compact set C C A, the condensation set CII equals the attractor A of the IFS.

8.3. An algorithmic approach

As we have seen in the preceding paragraphs, we can distinguish between deterministic and
nondeterministic IFS-decoding. Both methods can either be applied on an IFS with or without
condensation. We will give simple algorithmic descriptions of those methods, which do not take into
account any efficiency or implementation considerations.

IX,finition 8.6. Let (R?,d) be a complete metric space. A pixel (picture element) is a discretization
(x,y,z) E N 3 of a real valued point (x,y,z) E R,3, Le. a mapping 1r : R,3 - N 3, where (x,y) denotes
the Carthesian coordinate and z denotes the intensity of that point [FOL90). •

Definition 8.7. Let (X,d) be a complete metric space. If X = [xkft,xri,J x [Y..",..,r'Yloowr] C N 2
, then

we refer to (X,d) as a pixel space. The elements of a pixel space are pixels [FOL90). •

Definition 8.8. Let (X,d) be a pixel space, Le. X = [xl<ft,xri,J x [Y..",..,r'Yloowr] C N 2
• A raster image

can be defmed as an assignment II which obeys:
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( A x,y : x,y EX: (E b,z : bEN, z E [0,2b-l] : II(x,y) =z ) )
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where b denotes the amount of bitplanes of the framebuffer. If b = 0 then the image is called a
monochrome image, else it is called a color image or a greytone (greylevel) image. •

So a monochrome image can be considered to be a special case of a color image (namely for b = 0).
Typical values of bare 0,4 and 8. The algorithms which are presented hereafter, operate on the pixel
spaces (Screen,d) and (PixmDp,d) and generate raster images. Screen is the graphics computer screen
and Pixmop is a framebuffer, i.e. a memory storage or buffer that can contain pixels. Typical values
for Screen and Pixmo.p are [STE89]:

[0,319] x [0,199]
[0,639] x [0,349]
[0,639] x [0,479]
[0,719] x [0,347]
[0,1257] x [0,985]

(CGA)
(EGA)
(VGA)
(HERCULES)
(HIGH RESOLUTION GRAPHICS)

In the following descriptions, C denotes an initializing set consisting of at least one pixel.

(i) Deterministic IFS-decoding with or without condensation:

plot C on screen
for iteration := 1 to maxiterations do

( clear pixmap
copy screen to pixmap
if not condensation then clear screen
for all pixels in pixmap do

[ for transformation := 1 to N
(pixel := transformed pixel
plot pixel on screen

I

(ii) Nondeterministic IFS-decoding with condensation:

plot C on screen
for iteration := 1 to maxiterations do

(clear pixmap
copy screen to pixmap
for all pixels in pixmap do

(choose a transformation according to its probability
pixel := transformed pixel
plot pixel on screen

I

(iii) Nondeterministic IFS-decoding without condensation:

plot C on screen
for iteration := 1 to maxiterations do

( choose a transformation according to its probability
pixel ;= transformed pixel
plot pixel on screen

I
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In [MON90] a minimum point plotting algorithm is presented, which plots a pixel not more than
once. It must be noticed that images which are rendered by IFS-decoding contain infinite detail, that
is, the amount of detail is scale-invariant, which can be seen if we keep rooming in on the image. The
reason for this is the fact that IFS-attactors are fractal structures.

It is clear that the different described IFS-decoding algorithms each yield a different amount of new
pixels per iteration. Suppose we have N transformations and in all cases we initialize the IFS with a
set C consisting of one pixel (point). In table 8.4 below the maximal amount of plotted pixels after
each iteration is given. We stress the word "maximal", because it may be possible that a pixel is
plotted exactly on an already existing pixel.

In case the framebuffer contains more than one bitplane, the nondeterministic IFS-decoding algorithm
can create real color or greytone images by using this property. Each time a pixel is plotted exactly
on an already existing pixel, we increase the color or greylevel value of this pixel with one [bit]. This
means that if the framebuffer contains b [bitplanes], we can plot 2b-l [pixels] on the same location
before that pixel gets saturated. So we could in this case extend the nondeterministic IFS-decoding
algorithm with a guard that provides the rendered image from getting saturated by comparing the
maximum rendered greylevel so far with the number 2b-l.

Tllbk 8.4. Pixel yields for the four IF~ecoding algorithms (subscript C denotes condensation).

deterministic nondeterministic

iteration (X,Wc,Pc) (X, W,P) (X,Wc,Pc) (X, W,P)

0 ICI 1 ICI 1
1 N + ICI N 21C1 2
2 (N + ICI)2 N 2

41C1 3
3 (N + ICI)2 N 3

81C1 4

n (N + ICI)" N" 2"ICI n+l

From table 8.4 it is clear that from right to left the amount of produced pixels per iteration step
increases. So, in case of flexible parallellization of the decoding process, the overall decoding speed
of all four methods will not be the same anymore. In that case, deterministic IFS-decoding with
condensation is the fastest method and nondeterministic IFS-decoding without condensation is the
slowest method. The parallel computational time complexities of the four methods are respectively
given by (from left to right according to table 8.4) O(lOgN+ jCjn), O(logNn), O( ICI-1log2n) and O(n).

In fact, the serial computations will also differ if pixmaps are used to store the intermediate iteration
results, since plotting pixels into a pixmap is much faster than plotting pixels on a screen. Moreover,
if ICI > 1 [pixels] then IFS-decoding with condensation is really faster than IFS-decoding without
condensation. Nondeterministic IFS-decoding is also slower than deterministic IFS-decoding because
some transformations can have very low probabilities, which implies that only relatively few pixels
will be transformed according to these transformations. In [HOR90] some more comments are made
about parallellization of the IFS-decoding process on an array processor.
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8.4. Data compression
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It is obvious that IPS-codes constitute data in a highly compressed format and therefore IPS-encoding
can be considered as a powerful data compression tool: the (redundant) pixel information of the target
image can be represented by an IPS-code. Although IPS-encoding is subject of chapter 10, we now
are already able to compare the data compression performance of IFS-encoding with that of other
encoding schemata, such as Huf/nuJn-encoding, runlength-encoding, programmed compression and
tJdllptive compression. The performance of each method strongly depends on the type of data to be
compressed. In [WEL84] a comparision is made between compression of English text, Cobol files,
floating point arrays, formatted scientific data, system log data, program source code and object code.
Compression of image data is mostly achieved by runlength-encoding, which has a typical average
compression ratio of 10: 1. In [REG81] some more data compression techniques are evaluated.

Under UN'JX1'K there exists an advanced data compression program, which can be invoked with the
command: "compress -v filename.ext". This results in a file filename. ext. Z which contains
the data of the file filename. ext in a compressed format. The decompression is invoked with the
command: "uncompress -v filename. ext". For praetical reasons, we will compare the data
compression performance of IFS-encoding only to that of this UNIX" compression program. It must
be noticed that an IFS-code itself (which already represents a compressed image) can be further
compressed by the UNIX" compression program, which yields an average extra compression ratio
of 2: 1. In table 8.5 below, the data compression performances on several images are listed. The
according images and their IFS-codes are contained in appendix C. The image sources contain the
coordinate pairs for the pixels belonging to the "on"-set of the image. In table 8.5 the amount of
affine transformations the IFS-code contains is denoted by N and the amount of necessary iterations
to render a "good" picture by deterministic IFS-decoding is denoted by n.

TIlbIe 8.5. Data compression perfonnances of UNIX'" compress and IFS-cncoding.

source UNIX" compress IFS-encoding

image [bytes] [bytes] ratio N n [bytes] ratio

chain 106036 38613 2.7:1 9 6 413 256.7:1
dragon 703615 243225 2.9:1 2 21 72 9772.4: 1
fern 221917 75313 2.9:1 4 18 174 1275.4:1
france 672111 227611 3.0:1 31 6 482 453.5: 1
koch 16539 6060 2.7:1 4 8 180 91.9: 1
leaf 632208 214409 2.9:1 4 8 186 3399.0:1
reet 316808 102225 3.1: 1 4 8 180 1760.0:1
square 219664 70761 3.1: 1 8 6 354 620.5:1
tree 117641 41823 2.8: 1 5 8 238 494.3:1
triangle 50720 17130 3.0:1 3 9 134 378.5: 1
twig 18042 6996 2.6:1 3 10 144 125.3: 1

From table 8.5 we see that IFS-encoding always yields much better compression ratios than UNIX"
compress, but the latter one yields more constant compression ratios and therefore its performance
is better predictable. Since there is no unique IFS-code for a target image, IFS-encoding can result
in different IFS-codes. In general, the amount N of affine transformations in the IFS-code must be
an integer between 2 and the amount of pixels a source image A contains, thus 2 ~ N ~ IA I.
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The amount of necessary iterations n to render an image consisting of IA I by means of IFS-decoding,
depends strongly on N. Suppose we apply deterministic IFS-decoding without condensation. If we
decrease N, we have to increase n to render enough pixels. Suppose we have to encode the image
"dragon" (see table 8.5 and appendix C). We therefore need to render 89587 [pixels]. So the IFS-code
must contain at least 2 and at most 89587 affine transformations. The amount of necessary iterations
n as function of N can be expressed by the following relationship (see also fig. 8.4 below):

n = In IA I [iterations]
InN

" (itmItioM]1'11
1

5

Iii
025

I
10

~

I i r\~
15 20 2S 89587

-?N (qffiJIe trllll4fo1lllQtimu]

Ftgllrr 8.4. Relationship between Nand n for IAI = 89587.

So, if we are able to parallellize the IFS-decoding process by distributing the affme transformations
over the array processors, the fastest IFS-decoding will be achieved for the minimal amount of
iterations n, thus for maximal N. This implies a compression-iteration trade off, Le. the compression
ratio and the amount of iterations are competitive factors.

Finally, we will briefly comment on a comparision between IFS-encoding (also known as the/ractol
trans/onn [BAR90)) and the Discrete Cosine Trans/onn (DC1). When making comparisions, it is
important to remember that image compression methods only work well with image data. Geometric
images such as those produced by CAD-systems are most efficiently stored as geometric data: as
polygons or other primitives.

The OCT can achieve typical compression ratios around 40: 1 and can only achieve higher
compression ratios by displaying the image as bigger and bigger blocks. In extrema, a highly
compressed image becomes an unrecognizeable mass of squares. By contrast, an overcompressed
fractal transform picture just looks fuzzy [WRI92].

Aestetic and psychological factors aside, fractals have other advantages. Because a fractal is like an
infinite series, decompression is independent of display resolution. It doesn't matter how closely we
zoom in onto the image, the level of detail remains the same, because it is scale-invariant. This
illustrates an important point. There is no fundamental limit to the effectiveness of the fractal
transform. While nCT and similar methods run into solid barriers, the fractal transform can go on
improving idefinitely. Image quality can be improVed by simply increasing the amount of iterations
of the IFS-decoding process. Also, enlargement of the image by a factor k can simply be achieved
by multiplying the translation vector t of each affine transformation in the IFS by this factor k. This
doesn't increase the IFS-code. All other methods would in this case result in more code.
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Thus, the fractal transform has two main advantages above ill other data compression techniques: its
ability to benefit from improved processors and its resolution independence. The latter makes it
automatically compatible with ever-improving graphics display standards.

Despite these benefits, there are situations where fractal data compression remains unsatisfactory. It
doesn't worle well for images with a low information content, such as engineering drawings or text,
which may limit its embedded applications such as scanners or fax-devices [WRI921. In general,
promising applications for the fractal transform seem to be the defence industry (flight simulators,
sattelite data) and the chip industry (recursive VLSI-design).

Some more information about the fractal transform applied as a block encoding scheme (compression
ratio of about 40:1) can be found in [BEA91 ,JAC90,WAI901. Another interesting approach is that
of a yardstick traversal scheme (compression ratio of about 12: 1), which encodes the information in
each scanline of a picture [WAL86,YAN88,ZHA91].

8.5. Finite aff"me automata

We have seen an algorithmic approach of the IPS-decoding process. But we can also use an approach
that is similar to the one used in par. 3.1. We can define the IPS as a language generator or a finite
automaton.

Definition 8.9. Let (X,d) be a complete metric space and let (X, W,P) be a deterministic IFS operating
on this space. Define (conform [CUL90,LEW81l) a detenninistic finite affine automaton MD as a
5-tuple (Q, W,c'J,s,F), where:

Q is a finite set of states;

W is a fmite set of affine transformations (i.e. the alphabet);

c'J : Q x W- Q is the transition function;

sEQ is the initial state (an initialization for the IFS);

F C Q is the set of final states (attractors).

Example 8.4. Consider the deterministic finite affine automaton MD = (Q, W,c'J,s,F), where:

•

Q
W =
s =
F
c'J

{C,A1,A2,AJ.A4}
{wt>w2,wJ }

C
{AJ }

tabulated in table 8.6

The state transition diagram of MD is a digraph GD =(V,E) with V =Q and E C Q x Q and is given
in fig. 8.5.
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Tabk 8.6. The transition function lJ of MD.

q W O(q,W)

C WI AI
C W2 A4

C W3 A4

AI WI A4

AI W2 A2
AI W3 A4

A2 WI A4

A2 W2 A4

A2 W3 A3
A3 WI AI
A3 W2 A4

A3 W3 A4

A4 WI A4

A4 W2 A4

A4 W3 A4

8. IFS-decoding

Flgun 8.5. State transition diagram of MD.

*
Definition 8.10. Let (X,d) be a complete metric space and let (X, W,P) be a nondeterministic IFS
operating on this space. Define (conform lCUL90,LEW81]) a nondetenninistic finite affine
automolon MN as a 6-tuple (Q, W,P,t:J.,s,F), where:

Q is a finite set of states;

W is a finite set of affine transformations (Le. the alphabet);

P is a finite set of probabilities;

t:J. : Q x (W x P)* x Q is the transition relation, where (qi,(W"Ps),qj) is the transition from
state qi E Q to slate f/j E Q by transformation w, with probability Ps ;

sEQ is the initial state (an initialization of the IFS);

F C Q is the set of final states (attraetors). •
Example 8.5. Consider the nondeterministic finite affine automaton MN = (Q, W,P,t:J.,s,F), where:

Q
W
P =
s =
F =
t:J.

{C,A}
{WI,W2,W3}
{PI,P2,P3}
C
{A}
{(C,WI,PI ,A),(C,W2,P2,A),(C,w3 ,P3,A),(A,WI ,PI,A),(A,W2,P2,A),(A,W3,P3,A)}

The state transition diagram of MN is a digraph GN = (V,E) with V = Q and E C Q x Q (fig. 8.6).
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Ftgurr 8.6. State transition diagram of MHo
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*
Theorem 8.3. Let (X, W,P) be an IFS. Then there exists an equivalent finite affme automaton M,
which defines the same image (both as compact set and measure) [CUL90].

Proof. The proof follows from the simple observation that a deterministic IFS is just a special case
of a determinisitc finite affine automaton and that a nondeterministic IFS is just a special case of a
nondeterministic finite affine automaton. •

Example 8.4 constitutes a deterministic IFS with W = {W\7W2,W3} and example 8.5 constitutes a
nondeterministic IFS with W = {W\7W2,W3} and P = {P"P2,P3}'

Definition 8.11. Let M be a finite affine automaton. A string a E E* is accepted by M if and only
if there is a state q E F such that (s,a) r--M* (q,e), where e denotes the empty string and r-M*
is the reflexive, transitive closure of a derivation step r--M. The language L accepted by M is
denoted by L(M) and consists of the set of all strings accepted by M [LEW81]. •

Exll1nJ!le 8.6. Consider the deterministic finite affine automaton MD of example 8.4. If MD is given
the input string WtW2W3WtW2W3, its initial configuration is (C,WtW2W3WtW2W3)' Then:

(C,WtW2W3WtW2W3) r--MD (A\7W2W3WtW2W3)
r--MD (A2,W3WtW2W3)
r--MD (A 3,wtW2W3)

r--MD (A t ,W2W3)

r-MD (A 2, w3)

r-MD (A 3,e)

Example 8.7. Consider the nondeterministic finite affine automaton MN of example 8.5. IfMN is given
the input string (w2,pJ(W3,P3)(W\7Pt), its initial configuration is (C,(W2,P2)(W3,P3)(W\7Pt)), and then:

Therefore (C,(w2,pJ(W3,P3)(W\7Pt)) r-MN* (A,e) and the string (W2,P2)(W3,P3)(WI>Pt) is accepted

~~ *
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God doa nor play dice.

AlM1 EiIutGt (1879- 19S5) (DAR801

Invariant measures

Chapter 9

In example 8.2 we have seen that not only the affine transformations of an IPS, but also their assigned
probabilities influence the structure of the attraetor. The mathematical concept to describe the
distribution or density of the points within the attractor is that of a measure. Measures can be used
to describe intricate distributions of mass on metric spaces. Therefore we need to go through some
more definitions.

9.1. Fields

Definition 9.1. Let X be a space and let S be a nonempty set of subsets of X. Furthermore, let 9' be
the set of subsets of X which can be built from sets in S using the operations union, intersection and
complementation, with respect to X, such that [BAR88s]:

(i) A,B E 9'~ A UB E 9';

(ii) A E 9'~ X\A E 9'.

Then (9', U , n) is called afield generated by S and denoted 9' (according to the De Morgan laws it
is not really necessary to use the intersection operation, because A nB = (A UB)\(A\B U B\A)). •

Notice that the above definition is fundamentally different from the standard algebraic definition of
a field. For example, according to the algebraic definition (9', U ,n) is a field if and only if (9', U)
is an Abelian group on X and (9'\{0}, n) is a group on X and (9', U , n) is distributive on X
[DUR85]. We can therefore easily check that (9',U,n) is not a field in algebraic terms. The unity
elements of U and n are respectively 0 and X, because AU 0 = A = 0 U A and A n X = A =

xnA. But there are no inverse elements A-I C X such that A UA-I = 0 = A-I UA and AnA-I = X
= A-I nA. Thus (9', U) and (9', n) are not even groups and (9', U, n) is not even a ring.

Example 9.1. Let X be a space and let A C X. Then 9' = { X, X\A, A, 0 } is a field. *
It is obvious that if 9' is a field of subsets of a space X, then X E 9' and also 0 E 9'. Suppose
A E 9', then X\A E 9'and hence A U X\A E 9'~ X E 9'. This implies X\X E 9', thus 0 E 9'.
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Example 9.2. Let Screen denote the set of pixels corresponding to a certain computer graphics
display. The set of all monochrome images which can be produced on this screen forms a field. An
example of a field of subsets of Screen is shown in fig. 9.1 below. This field is generated by the pair
of images A (the Sierpinski triangle in the left row, lower column) and B (the black ellipse in the third
row, second column), together with the set Screen (the black rectangle). So S = {A,B}, but there are
more possible generating pairs. The empty set is represented by the white rectangle.

-

A

Ffgun 9.1. The field .9'"whOle elemcnta are leta of paola of the space Scnen (BARB8e!.

If we enumerate the elements of this field in row first order from upper left to lower right, we get
an equivalent representation (where AAB = A\B U B\A = (A UB)\(A nB»:

:T = { Screen\(AAB), AAB, AU (Screen\B) , Screen\(AnB), Screen\(AUB), 0,
A\B, Screen\A, A nB, B, B\A, BU (Screen\A), A, A UB, Screen, Screen\B }

Notice that :T contains 24 = 16 elements, since I{ Screen, A, B, 0 }I = 4.

Definition 9.2. Let S be a set of subsets of a space X and let :Tbe a field such that [BAR88a}:
00

(g i : i = 1,2,3,... : Ai E :T- UAi E :T)
i-I

*

then :T is called a a-field. Given any field, there always exists a minimal (or smallest) a-field, which
contains the entire field. The minimal a-field which contains S is called the a-field generated by S and
contains the elements of S, together with X and 0. •
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Example 9.3. Consider example 9.2, where Screen is the pixelspace on a computer screen. Let
~ = {A,B}, i.e. respectively the black Sierpinski triangle and the black ellipse, and let 9'"be the field
generated by ~, hence:

9'" = { Screen\(AMJ), AMJ, AU (Screen\B), Screen\(A nB), Screen\(A U B), 0,
A\B, Screen\A, AnB, B, B\A, BU(Screen\A), A, AUB, Screen, Screen\B }

Let 9'"1 be the O'-field generated by ~ and let 9; be the O'-field generated by 9', then:

9'"1 =9; ={Screen, A, B, 0 } *
In general, if the O'-field 9'"0' generated by ~ contains k elements, then the field 9'"generated by ~

contains 2! elements: /9'"1 =2' '01. Thus a field can be considered as the powerset of its O'-field.

Definition 9.3. Let (X,d) be a metric space and let mdenote the O'-field generated by open subsets of
X, then mis called the Borel field associated with the metric space. An element ofmis called a Borel
subset of X and mis also called the Borel set [BARBBa]. •

In other words, the class of Borel sets is the smallest collection of subsets of X which do have a mass
and which have the following properties [FAL90]:

(i) every open set and every closed set is a Borel set;

(ii) the union as well as the intersection and the complementation of every finite or countable
collection of Borel sets is a Borel set.

Without proof we state that the associated Borel field mof a compact metric space (X,d) is generated
by a countable set of unit balls (the proof can be found in [BARBBa)).

9.2. Measures

Definition 9.4. A measure JL on a field 9'" is a real non-negative function JL : 9'" - [0,(0), such that
whenever 9'" is a O'-field with AjnAj =0 for i¢j we have [FAL90]:

'" '"
JL(UA) = L JL(A)

j -I j-l •
A measure is in fact a mass distribution and we can visualize this concept by taking a finite mass of
sand and spread it in some way across a set X. Then JL(X) is a measure or mass distribution on X and
JL(A) is the mass of the set A C X. For a measure JL certain properties hold. The most important (and
also obvious) one is given by: A C X ~ JL(X) = JL(X\A) + JL(A).
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Definition 9.5. Let (X,d) be a metric space and let lB denote the Borel subsets of X. Let ,.,. be a
measure on lB, then ,.,. is called a Borel measure on X. If ,.,.(X)=1 then ,.,. is said to be
normtllized [BAR88a). •

Definition 9.6. Let (X,d) be a metric space, let,.,. be a Borel measure and let B(x,e) be the closed unit
ball with radius e> 0, centered at x E X, i.e. B(x,e) ={y EX: d(x,y) < e }. Then the support of
,.,. is the closed set of points x E X such that ( A e : e>O : ,.,.(B(x,e»>O ) or, in other words, the
support of a measure is the set on which the measure lives [BAR88a). •

Definition 9.7. Let (R"',d) be a complete metric space and let A ={ (xI, ... ,xIl) E R'" : Xi E [ai,bi] }

be a coordinate parallelepiped in R.... Then the m-dimensional volume of A is given by [FAL90):
...

vol"'(A) = IT (b i - ai )

i-I

Define the set Sof all coverings ofA by countable collections of m-dimensional volumes as [FAL90):
... GO

S = { Lvol"'(A i ) : A C UAi }

i-I i-I

The m-dimensional Lebesgue measure :£'" of the set A is defined as [FAL90]:

:£... =( Iof : s E S : s ) = (~ : x ERA (A s : s E S : x ~ s ) : x ) •
So we look at all coverings of A by countable collections of m-dimensional volumes and take the
smallest total volume possible.

Example 9.4. Consider the metric space (R,dE) end let A C R be given by:
7

A = UA j

i-I

where AI = [0,2], A2 = [1,5], A3 = [2,3], A4 = [3,4], A~ = [4,8], A6 = (5,6) and A7 = [7,10]. Then
there are 10 possible coverings of A, given by:

The according set S of 1-dimensional volumes voll(A) for the above set is given by:

S = {16,12,15,15,15,1l,14,14,14,13} ... {1l,12,13,14,15,16}

Finally we determine the 1-dimensional Lebesgue measure as:

:£I(A) = ( Inf : s E S : s ) = 11

10 fig. 9.2 a graphical representation of the 10 possible coverings is given. From this we can see that
the Lebesgue measure is represented by A\{A2,A6}'
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*
Definition 9.8. A functionf: X - R is called simple if it can be written in the form [BAR88a]:

N

f(x) = LY,XB(x)
i-I t

where N E N, B, E IJ, Yi E R, ( Union i : 1 ~ i ~ N: Bi ) = X and BirlBj = 0 for i¢j. The
function XlI is the characteristic function of the set B C X and is defined by [LEW81]:

XB(X) = { ~ for xEB
for xEX\B •

A simple function takes only finitely many values YIt""YN' In fig. 9.3 the graph of a simple function
on a Sierpinski triangle is shown. The domain is a Sierpinski triangle in the x-y-plane. The function
values are represented by the z-coordinates. If the function values were represented by colors, a
painted Sierpinski triangle would replace the graph of fig. 9.3.

z

x

Flgul't 9.3. The graph of a simple function on a Sierpinski triangle [BAR88s).
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Definition 9.9. Let X be a space then we define the integroI with resped to the measure p. of a non­
negative simple functionf as [FAL90):

N

V(X)dp.(X) = ~YiP. { X : f(x) = Yi }

Example 9.5. Let X = [0.5,12] E R and let A C X be given by:
3

A = U[F,F+2] =[1,3] U [4,6] U [9,11]
i-I

The normalized Borel measure p. is defined as:

•

12

p.(x) = ~ with p.(X) = I~dx = 4[lnlxl]~~~ = 41n12 - 41nO.5 =:: 12.71
x o.~ x

Next we defme the non-negative simple functionf: X - R as f(x) = 6. The mass of the set A is
given by:

3 ;,

p.(A) = p.(UAi ) = Ep.(A j ) = p.([1,3]) + p.([4,6]) + p.([9,1l])
i-I i-I

3611

= I~dx + I~dx + I~dx = 4[lnlxll~ + 4[lnlxll: + 4[lnlxll~1
I x 4 X 9 X

= 4(1n3 - In 1 + In6 - In4 + Inll - In9) =:: 6.82

So the normalized p.(A) is given by (6.82)/(12.71) =:: 0.54. We can also calculate the integral off
with respect to p. as:

!f(X)dp.(X) = J!(XhiX)dp.(x)

= !!(Xhix)p.(X)dX

12 3 6 11

= I~ xix) dx = I~ dx + I~ dx + I~ dx
o.~ 6 I 6 4 6 9 6

= [86]~ + [86]: + [86]~1 =:: 11.98

12

Since rf(x)p.(x)dx = J~dx = [86]~~~ =:: 22.06, the normalized value equals 11.98 =:: 0.54.
~ o.~ 6 22.06

In fig. 9.4 the situation is graphically visualized.
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Figure 9.4. The shaded area represents the Borel measure.

9.3. Markov operators
*

Let (X,d) denote a compact metric space and let ~ denote the Borel subsets of X. Let f: X -. X be
continuous, then it can be proven thatF' : ~ -. ~ [BAR88al. It follows that if p. is a normalized
Borel measure on X, then so is p.oj'. In tum, this implies that the function defined next, indeed takes
P(X) into itself.

Definition 9.10. Let (X,d) be a compact metric space and let P(X) denote the space of normalized
Borel measures on X. Let (X,{ (Wi,Pi) : i = 1,2,... ,N Dbe a hyperbolic IPS. The Markov operator
associated with the IPS is the function M : P(X) -. P(X) defmed by [CR191 ,STA91 a]:

M(p.(x» = (A x,p. : x E X, p. E P(X) : (S i : 1 ~ i ~ N: Pi p.(Wj-' (x» ) ) •
Example 9.6. Consider the IPS ([O,l],{Vax,Vax + %},{Jh, 'hD. The attractor of the IPS is the Cantor
set. Let M denote the associated Markov operator and let Po E P([0,1]) be the uniform normalized
measure on [0,1], Le. J1.o([O,l]) = 1. We look at the sequence of measures { p." =M")(J1.o) }, where
M")(p.(x» =p,p.(w,-'(x» + P2J.L(w2-'(x». With w,-'(x) = 3x and w2-'(x) = 3x-2 we get:

I
T

tt' ttl-" -"

So after one iteration step the total mass of [0,1] is
spread out equally over [0, Y3] U [%,1] and both
subintervals contain 'hp.o' After n iterations all mass is
concentrated in (0/3)" part of the original space [0,1]. The
relative density of the mass in that part is (%t" times the
original density, but the total mass in the space remains
equal (see figure left). *
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Theorem 9.1. Let (X,d) be a compact metric space and let P(X) denote the space of normalized Borel
measures on X. Let M denote the Markov operator associated with the hyperbolic IPS with
condensation (X, Wc'Pc) Let IL be the unique invariant measure of this IFS, where JLo denotes the
condensation measure of (X, Wo,Po). Furthermore, let I: X ... R be either a simple function or a
continuous function, then [BAR85,BAR88a,FRE901:

N

V(X)d(M(JL(X))) = ~PjVOWj(X)dIL(x) + PoV(x)dILo(X)

IfPo= 0 then we simply get an IPS (X, W,p) without condensation.

f!:!l!JL See [BAR88a). •
Definition 9.11. Let (X,d) be a compact metric space. Let P(X) denote the set of normalized
Borel measures on X. Then the Hutchinson metric (or Hutchinson distance) dB is defined by
[eR191 ,HUT81 1:

db,p) =( Slm : IL,P E P(X), I: X ... R, ( A x,y : x,y EX: If(x) - 1(Y) I ~ d(x,y)) :

V(X)dIL(X) - V(X)dp(x)

The supremum is taken over all continuous real-valued functions satisfying the stated Lipschitz
condition. Without proof we state that (.P(X),dB) is a compact metric space. The proof can be found
in [HUT81). •

Theorem 9.2. Let (X,d) be a compact metric space. Let (X, W,P) be a hyperbolic IPS with
contractivity factor s E [0,1) and associated Markov operator M : P(X) ... P(X). Then M is a
contraction mapping with contractivity factor s, with respect to the Hutchinson metric on P(X), that
is [BAR88a,STA91 al:

( A : IL,P E P(X) : dJM(JL),M(p)) ~ sdB<JL,p) )

In particular, there is a unique measure ILf E P(X) such that M<JLf) = ILf. This unique measure ILf is
the fixed point of the Markov operator and is called the invariilnl (probability) measure of the IFS.
Moreover, the support of IJ.J is the attractor of the IFS.

Proof. See [BAR88a). •
Definition 9.12. Let IL be the invariant measure of the hyperbolic IFS with condensation (X, Wc,Pc).
If Po> 0 then IL is a p-balanced measure for the IFS (X, Wc,Pc). If Po= 0 then IL is a p-balanced
measure for the IFS (X, W,P) [DEM85). •

So, if an IFS (X, W,P) is initialized with a measure JLo then we get a sequence of measures
{ IL" = M")<JLo) }. The measure ILl =M<JLo) is such that IL(Wj(X» =pj for i =1,2, .. .,N. In the same way
the measure JL2 =Mf2)<JLo) is such that IL(Wil oW,'2(X») =pjJPf2 for i = 1,2, ... ,N. Thus, in general the
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measure p." = M")<P.o) is such that p.(wilowl2o... ow;,,(X)) = PilPI2",PiII (see fig. 9.5). So when the
Markov operator is applied, the mass in a cell A C X is redistributed among N cells
wt(A),w2(A), ... ,w,,(A). Also, mass from other cells is mapped into subcells of A in such way that the
total mass of A remains the same as before the Markov operator was applied. In this manner the
distribution of mass is defined on finer and [mer scales as the Markov operator is repeatedly applied.

1-10 f.Ll 1-12

PIPI P~, PIP2 P~2

PI P2
P'pi PJ, P'p2 p.P2

PI,
P,Ps P~s PIP. p~.

P3
P,Ps PJs p,P. PJ.

~~
M(I-Lo) M(I-Ll)

Fipre 9.5. An IFS ([O,I]X[O,I]CR,{(wj ,PJ, i = 1,2,3,4 }} with
IIlISOCiatcd Markov operator at work.

Example 9.7. Consider the IPS ([0,l),{0.5x,0.7x+0.3},{0.45,0.55}). The attractor of the IPS is
[0,1]. Let M denote the associated Markov operator and let Il<J E P([0,1]) be the uniform normalized
measure on [0,1], so /JQ([0,1])=1. We look at the sequence of measures { p." = M")(p.o) } where
M(p.(x)) =Ptp.(wt-t(x)) + P2P-(w2-

t(x)). The successive iterates M<P.o) and M2)<P.o) are represented in
the figure below. Each measure is represented by a collection of rectangles whose bases are contained
in the interval [0,1]. The area of each rectangle equals the measure of its base. For each iteration the
result of wt-t(x) = 2x is shaded 11/ and the result of w2-

t(x) = (x - 0.3)/0.7 is shaded \\\.

2

j
"'(Z)

1.7 r

0.9
0.79

o 0.3 0.5 __ :I: 1

p.o([O, 1]) = 1

M<P.o([0.3,0.5]))=0.45/JQwt-t([O.3,0.5])+0.55/JQw2-
I([O.3,0.5])

=0.45/JQ([0.6, 1])+0.55/JQ([O,0.29])
=0.45 -0.4+0.55 -0.29
=0.34

So p.t(x) = 0.34/0.2 = 1.70 for x E [0.3,0.5), thus alltogether:

{

0.90 for x E [0,0.3)
P.I = 1.70 for x E [0.3,0.5)

0.79 for x E [0.5,1]

~)%([0.3,0.5])) =0.45p.1Wl-I([O. 3,0.5]) + 0.55p.1W2-
1([0.3,0.5])

=0.45p.t ([0.6,1])+ 0.55p.t([0,0.29])
=0.45(0.45/JQwl-t([0.6, 1]) +0.55<P.ow2-

t([O.6, 1])))
+0.55(0.45/JQwt-I([0,0.29])+0.55<P.ow2- t([O,0.29])))

=0.45(0.45/JQ([1.2,2])+0.55p.o([0.43,1]))
+ 0.55(0.45/JQ([0,0.58]) + 0.55p.o([0.43, 1]))
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1.52
1A2

1.»
o.al

0.71

97

=0.45(0.45 '0+0.55 '0.57)+0.55(0.45 '0.58+0.55·0)
=0.28
So /L2(x) = 0.28/0.2 = 1.42 for x E [0.3,0.5), thus alltogether:

0.81 for x E [0,0.15)
1.52 for x E [0.15,0.25)
0.71 for x E [0.25,0.3)

IL2 = 1.42 for x E [0.3,0.5)
0.71 for x E [0.5,0.51)
1.33 for x E [0.51,0.65)
0.62 for x E [0.65,1]

Although the sequence of measures converges to { MfI>(p.O) } in the metric space (P([O,l]),dH), some
of the rectangles would become infinitely tall as n tends to infinity. *

WI(x) = (0.5xh O.5x2+O.5), PI = 0.2
w2(x) = (0.5xI+0.5,0.5~+0.5), P2 = 0.3
w3(x) = (0.5xl ,0.5xJ, P3 = 0.3
w4(x) = (0.5xI+0.5,0.5~), P4 = 0.2

The attraetor of the IPS is [O,l]X[O,l]. Let M denote the associated Markov operator. Let
/Lo E P([0,1] X[0,1]) be a uniform measure on [O,l]x[O,l], i.e. a rectangle with a certain grey
value, say 1000 [Pixels]. We look at the sequence of measures { ILfI = MfI>{JLo) }, where
M(p.(x)) = PIIL(WI-I(X)) + p2/L(W2-

I(X)) + p3/L(W3-
I(X)). With IL(W-I(X)) we actually mean that the mass

is multiplied by the inverse determinant of the linear transformation matrix A of the map w. The
successive iterates M{JLo), J,Pl{JLo) and kf3>{JLo) are represented below.

Each measure is represented by a collection of squares, whose areas are contained in [0,1] X[O,l].
The grey value of a square equals the measure of the area of that square, Le. the more mass lays on
a square, the more pixels the square contains and the darker it appears. Notice that the total number
of pixels (or average grey value) is constant. Suppose the original square contains 1000 [pixels]. Each
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time the Markov operator M<Po) is applied, the amount of subsquares is multiplied by the amount of
affine transformations N=4. According to the latter figure, we can calculate the successive amounts
of pixels each subsquare contains as:

1000
200,300
300,200

40,60,60,90
60,40,90,60
60,90,40,60
90,60,60,40

8,12,12,18,12,18,18,27
12,8,18,12,18,12,27,18
12,18,8,12,18,27,12,18
18,12,12,8,27,18,18,12
12,18,18,27,8,12,12,18
18,12,27,18,12,8,18,12
18,27,12,18,12,18,8,12
27,18,18,12,18,12,12,8

As we can easily check, the total mass (amount of pixels) stays equal, Le. 1000. *
Theorem 9.3. Let (X,d) be a compact metric space, let (X, W,P) be a hyperbolic IPS with unique
invariant measure p. and let/: X - R be a bounded continuous function. If we initialize the IPS with
a point Xo E X and choose the maps Wi recursively and independently according to their assigned
probabilities Pi then [BAR88e,BAR89 ,ELT87]:

. 1 "
!~ -n E/(Wi1 OWi(l_l) ••. oWiI(XO)) = r/(x)dp.(x)

1-1 1;

Proof. See [ELT87]. •
In other words, starting at any Xo E X, the empirical distribution of an orbit { x.. : n = 1,2, ... ,00 }

converges with probability one to the invariant measure p.. This means that each time we apply
nondeterministic IPS-decoding without condensation (see chapter 8), we can not say what orbit will
be followed, but with probability one, each time the same attractor will appear. A direct result from
the above theorem is stated in the next definition.

Definition 9.13. Let (X,d) be a compact metric space and let (X, W,P) be a hyperbolic IPS with
unique invariant measure p.. Let B be a Borel subset of X and let p.(oB) = O. Let N(B,n) be the
number of points in the orbit { x.. : n = 1,2, ... ,00 } which land precisely in B, then [BAR88a]:

N(B,n) =( N n : 1 ~ n : x.. E B )

and for all starting points Xo E X the mass of B is given by:

p.(B) = lim N(B,n)
....... n

Thus, the mass of B is the proportion of iteration steps which produce points in B. •
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9.4. Moment theory

99

IX,finition 9.14. Let (X,d) be a compact metric space, where X has the dimension q and let (X, W,P)
be a hyperbolic IFS with unique invariant measure p.. The moments of p. E P(X) for points x E X
and k; E N is defined as [BEC64,HOR88,LAY90,RED89l:

q

m(p.,kj : i = l..q) = f IIxjl'dp.(x)
~ i-I

If k1 = Ie,. = '" =kq =k then with m(p.,k) we refer to the f(h moment of p., which we denote ml' In
that case the sequence { ml : k =0,1,2, ... } is called the Hausdorff moment sequence of p.. •

Theorem 9.4. Let (X,d) be a compact metric space and let (X, Wc,PC> be a hyperbolic IFS with
condensation and with unique invariantp-balanced measure p. and condensation measure /Lo. Then the
moments { m(p.,k) : k =0,1,2... } can be calculated uniquely explicitly recursively, in terms of the
parameters which define the IPS and the moments { m{lJ.o,k) : k = 0,1,2, ... } [BAR84,BAR85J.

Proof. Let ILo be any probability measure whose support is C and suppose X is a one-dimensional
space, i.e. q=l, then:

m(p.,k)
= ( definition 9.14 )

Lx ldp.(.x)

= (X is bounded, k¢O, substitutex l := j)

V(X) dp.(x)

= (theorem 9.1, theorem 9.2 )
N

~Pj f! owj(.x)dp.(x) + Po f!(X)dJLo(X)

= (k¢O, substitutej:= Xl)
N

~Pj Lx l owj(x)dp.(x) + Po LXldp.o(X)

= ( definition 9. 14, j(x) = x = jog(x) = g(.x) )
N

~PjL(wj(x»ldp.(.x) + Po"'(p.o ,k)

= (suppose for brevity that Po=°(no condensation), X=Z and Wj =SjZ + bj with bj,sj,z E C)
N

~PjL(SjZ + bydp.(z)

= ( calculus)
N 1

~Pj L r; (;)(SjZ)ibtidp.(z)

= ( calculus)
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N k

~Pi~ e)S!bjk-i fZidJL(z)
,-I J-O ~

= ( split off j =k )

Epj [~e)S!bik-i rZidJL(z) + (:)Sikbik-k rZkdJL(Z)]
i-I J-I ~ ~

= ( calculus)
N ~I N

L L (~)s!btipim{JLJ) + m{JL,k)LPjS/
i-I j-O J i-I

= ( calculus )

[

N ]-1 N k-I
1 - LPjSjk L L (~)S!blk-ipjm{JL,J)

j_1 j-I i-O J

- (m{JL,O) = Ix dJL(z) =°}
m{JL,k) can be calculated uniquely explicitly recursively

9. Invariant measures

We can prove the same for an affine transformation w(x,y) = (ax + by + e, ex + dy + f):

m{JL,kt>k,)
= ( definition 9.14, theorem 9.1, theorem 9.2, conform first 6 steps of former part )

N

LPj f (ajx + bjy + e/'(cjx + diy + ./;)k.,dJL(x,y)
i-t -!r
= ( assume kl =~ =k )
N

~PjL«ajx + bjy + ej)(cjx + djy + ./;)'1dJL(x,y)

= ( calculus)
N

~p. L<a.c.x2 + ad.xy + a. ~x + b.c.xy + bd.y2 + b. ~y + ce.x + de.y + e. ~)kdlllx,y)L.." , , , r ,J; , , , , .Ji , , , I ,J; r\:
i-I

= ( multinomium )
N

bPj Li,+~,-kC. Lj,)<a,.cjxZY'(a,djXY'f(aj./;xY'(bjCjXYY·(b,diy~i'(bj./;YY·(CiejXY'(d,ejyY'(eJ;/,dJL(x,y)

= ( calculus )
N

~p. ~ ( k )a~,+i'+i·b~·+i.+i'c~,+i.+i'd~+i.+i'e~'+i'+i'r!.+i.+i' Lx'1i'+i'+i'+i.+i'Yh+i.+'1i.+i.+i'd IX y)L..J J L.J ..., , , , ,J; It\: ,
; -I i, +••• "'j,_j: J. h· .J,

- ( m{JL,O,O) = Ix dJL(x,y) = °}
m{JL,kt>k,) can be calculated uniquely explicitly recursively •



9. Invariant measures

Example 9.9. Consider the IPS (R2,W,P) where Wand P are given by:

We can calculate the moments as follows:

= tX~'X~2dp,(Xt,xJ

3

= ~Pjt(Wj(Xt)t' (wj(xJ)!,dp,(xt.x:J

= 2. f(2.x t' (2.x \k2dll(x ,x \ + 2. f(2.x +2.)k, (2.x \!,dll(x ,x \ + 2. f(2.x t, (2.x +2.)!'dp,(x ,x \
3-!r2t 22/ ,.. t 2/ 3-!r2t 2 22/ ,.. t 2/ 3-!r2t 222 t 2/

= (l-i(~t'+!'r ~(~t,+k2 [t (~')MU,kJ + E(;)M(kt,r)]
J-O ,-0

= (3 0 2
k
'+!'-ltt [t(~I)MU'kJ + E(;)M(kt,r)]

J-O J ,-0

Since m(O,O) =0, we can compute the moments uniquely explicitly recursively.
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B.-lid u SpiRolII (1632· 1677) (ADl771 Chapter 10
IFS-encoding: the inverse problem

In chapter 8 we were concerned with IFS-decoding. Here we address the inverse problem, i.e. given
a set A E 1l(X) (or a set B E P(X»), determine an IFS whose attractor is approximately A (or B). It
is obvious that this inverse problem is less trivial than IFS-decoding.

10.1. The collage theorem

Theorem 10.1 (coUage theorem). Let (X,d) be a complete metric space and let A E 1l(X) and f ~ 0
be given. Choose a deterministic hyperbolic IFS (X, W,P) with or without condensation and with
contractivity factor s E [0,1), such that:

N

h(A, Uwi(A)) :::;; f
iE{D.I}

where h denotes the Hausdorff metric, then:

h(A,A
f

) ~ _f_
1-s

where Af is the attractor of the IFS [BAR86a]. Equivalently:

N

( A A : A E 1l(X) : h(A,A,) ~ (1-stlh(A, Uwi(A) )
iE {D.I}

N

Proof. Let w(A) = Uwi(A), then:
iE{D,I}

h(A,A,)

~ ( definition 4.9 )
"

!!.~ L h(W<i-1l (A),W<il(A))
i-I

:::;; ( calculus)
"

h(A,w(A)) lim ~ Si-I_CD L.J
i-I

~ ( IsI< 1, sum for an infinite geometric series )

(l-stlh(A,w(A)) •
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The collage theorem tells us that in order to find an IFS whose attraetor is "close to" or "looks like"
a given set A E "«X), one must find a set of transformations Wsuch that the union or coUage of the
transformations { W E W: w'1)(A) } is near to the given set A. In other words, we perform a "lazy
tiling" of A by affine transformed copies of itself [GIP90b]. The less overlap between the separate
tiles exists, the more efficient the IFS-encoding. Nearness is measured using the Hausdorff metric.
In fig. 10.1 the effects of a "good" and a "bad" collage are shown. The ideal case is to find a set of
affine transformations Wsuch that the transformations { W E W: w(A) } form a partition on A, thus:

N

Uw,(A) = A " (A i,j: 1 ~ i,j ~ N, i¢j: wj(A) n w,,<A) =0)
'-I

Figure 10.1. The effect of a "good" collage and a "bad" collage IPEI88).

Exam:>le 10.1. Suppose we are using a trial-and-error procedure to adjust the coefficients in two
affine transformations wI(x) =ax + b and w2(x) = ex + d, where a,b,c,d E R, to search for a
deterministic hyperbolic IFS (R,{Wh W2},P), with attraetor Al = [0,1]. Of course, since the IFS is
deterministic, we disregard the probabilities P. We might come up with wI(x) = 0.51x - 0.01 and
w2(x) = 0.47x + 0.53. We can calculate the quality of this approximation by:
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N

h(A,U wi(A»
i-I

2

= h([O,l],U wi ([O,l]))
i-t

= h([O,l],[-O.Ol,O.5] U [0.53,1])
= ( Max :: (d([O,l],[-O.Ol,O.5] U [0.53,1]),d([-0.01,0.5] U [0.53,1],[0,1])) )
= (Max :: (( Max :: x E [O,l] : d(x,[-O.Ol,O.5] U [0.53,1])),

(Max :: x E [-0.01,0.5]U[0.53,l] : d(x,[O,l]))))
=(Max :: (d(0.515,[-0.01,0.5]U[0.53,1]),d(-0.01,[0,1])))
= ( Max :: (0.015,0.01) )
=0.015

The contractivity factor for the IFS is (according to definition 8.1) given by:

s =( Max :: (st>sJ ) =(MM. :: (0.51,0.47) ) =0.51

So by theorem 10.1 :

h([O,l],A/) ~ (0.015)(1-st1 =(0.015)/(1-0.51) =: 0.031 *
Suppose that the collage exists of N affine transformations, then to use nondeterministic IFS~ecoding
it is necessary to assign a probability to each transformation. To assure that each transformation is
randomly selected with a chance directly proportional to the information it contributes to the attractor,
its probability must be set equal to the relative determinant value of its transformation matrix A, with
respect to the sum of the determinant values of the transformation matrices of all transformations in
the IFS [KOC89a). In other words:

Idet(A)I
N

L Idet(A)I
i-I

=
N

L laA - bic/I
i-I

If some Pi appears to be zero, we should assign a small value to it. In the IFS-CODEC algorithm (see
appendix B) we assign the value 0.001 to Pi in such cases.

Theorem 10.2. Let (X,d) be a compact metric space and let (X, W,P) be a nondeterministic hyperbolic
IFS with or without condensation and with contractivity factor s E [0,1). Let JI = M(p.) be the
associated invariant measure and let M : P(X) ... P(X) be the associated Markov operator and let
p. E P(X). Then [BAR88a):

dH(p.,JI) ~ dH(p.,M(p.»
l-s

where dH denotes the Hutchinson metric.

Proof. This is a corollary of theorem 10.1. •
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Theorem 10.1 together with theorem 10.2 tells us that to find an IPS whose invariant measure is
"close to" or "looks like" a given set B E P(X), one must find a set of transformations W such that
the support of its invariant measure is almost equal to B. Nearness is measured by the Hutchinson
metric. Thus concluding:

(i) For IPS-encoding of subsets of the complete metric space (~X),h), i.e. monochrome
images, we should cover the target image A E ~X) with N affine transformed copies
of itself. The quality of the collage is measured by the Hausdorff metric h. In particular,
for given f ~O and A.Af E ~X):

N

h(A,U wi(A» S; f =t h(A,Af) S; _f_

i-' l-s

where Af is the attraetor and s is the contractivity factor of the encoded IFS.

(ii) For IFS-encoding of subsets of the complete metric space ('P(X),dB), Le. color or
greytone images, we should cover the target image B E P(X) with N affine transformed
copies of itself and adjust the probabilities. The quality of the collage is measured by the
Hutchinson metric dB' In particular, for given f ~O and IL,ILf E P(X):

dJp,M(p.» S; f =t dJp,IL'f) S; _f_
l-s

where ILf is the invariant measure (whose support is the attractor) and s is the
contractivity factor of the encoded IFS.

We mention that a collage can be formalized by a collage grammar [HAB9 1I, but we will not discuss
this possibility here. Furthermore, notice that the inverse problem has no unique solution, there are
many valid collages.

10.2. Computational time complexity

If we want to solve the IFS-encoding problem by computing and evaluating all possible combinations
of affine transformations and their probabilities, we will not succeed in polynomial time, since the
IFS-encoding problem appears to be intractable.

We will restrict ourselves to the case of monochrome images, which implies that finding a collage
can be done by tiling of the target image with affine transformed copies of itself. So, we only prove
the case for IFS-encoding of subsets of the complete metric space (~X),h) (see former paragraph).

The proof will not succeed if we use the Hausdorff metric h to measure the approximation quality,
since the Hausdorff metric is not powerful enough to quantify the proposition: A n B := 0 (see later
on). Therefore we will use the Pixset metric dp to measure the approximation quality. The reader
should not be concerned about the details of dp until par. 10.4, where we will introduce this metric
formally. A quick glance at definition 10.1 should do for the moment.
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Theorem 10.3. The IPS-encoding problem is NP-complete.

Proof. For brevity we omit the probabilities. Within this proof we formally define the IFS-encoding
problem as follows (conform [GAR79l):

NAME:

INSTANCE:

QUESTION:

IFS-ENCODING.

A fmite set A E 1!(X), a positive integer N ~ IA I and a real-valued number
f E [0,1).

Is there a set W = {wh""WN} of affine transformations such that:

N

dp(A,U wj(A)) ~ f
i-I

(A i,j : 1 ~ i,j ~ N, i;tj : h(wj(A),wJ{A)) ~ I-f)

(strong constraint)

(weak constraint)

The proof exists of two parts conform [COR90,GAR79 ,lEWS1]:

(i) To be proven: IFS-ENCODING E NP.

Let T be a nondeterministic Turing machine which generates candidate solutions W for
IPS-ENCODING. A checking algorithm which checks whether Wis a valid solution must
basically do three things. First, the probabilities for each wj E W must be calculated
from the determinants of the affine transformations, which can be done in O(N) time,
where N denotes the amount of affine transformations in W. Second, the attraetor AI of
the thus formed IFS (X, W,P) must be rendered, which can be done in O(n) time, where
n denotes the amount of iterations (see par. 8.3). Third, the approximation quality of the
rendered attractor AI as to the instantiated set A must be calculated, which can be done
in O( IA 12

) time if we use the Hausdorff metric and in O( 1A I) time if we use the Pixset
metric (see par. 10.4), where IA I denotes the cardinality of the instantiated set A, Le.
the amount of pixels A contains. For each candidate solution W generated by the
nondeterministic Turing machine T, the checking algorithm can determine in a time that
is a polynomial function of the input length IA I+N+n, whether this candidate solution
is valid or not. In other words, IFS-ENCODING can be solved Nondeterministic
folynomially and thus belongs to the class NP, which is defined to be the class of all
problems that can be solved by nondeterministic algorithms that run in polynomial time
[GAR79i.

(ii) The second part of the proof consists of showing that some suitably choosen known
NP-complete problem (in it is case SET PACKING) can be considered as a special case
of IFS-ENCODING. We ID,lst therefore prove that each instance of SET PACKING can
be transformed in polynomial time into an instance of IPS-ENCODING. In other words,
we must prove that there exists a polynomial transformation/from SET PACKING to
IFS-ENCODING, which we denote with SET PACKING oc IFS-ENCODING.

To be proven: SET PACKING oc IFS-ENCODING.
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The SET PACKING problem is defined as follows [GAR79]. Does an instantiated
collection C of finite sets contain at least an instantiated number of I ~ N ~ IC I
mutually disjoint sets?

We define a transformationjthat transforms each instance c/ E C from SET PACKING
into an instance Wj E W from IPS-ENCODING. First, the transformationj sorts the
elements of each Ct. We denote the successive elements of Cj with c/(l), ... ,cj ( ICjl>, where
c;(I) contains the smallest element. Then the transformation/assigns to each element of
C a pixel in a monochrome image A which consists of a horizontal line of adjacent pixels
and which resides in some pixel space, thus 1CI = IA I. Each pixel is initially marked
"unassigned". Furthermore, elements that appear in more than one Cj are stored in a
register.

It is clear thatjmust transform each instance c/ E C into an instanceJtcJ = w;(A), and
it does so by applying the following (naive, but effective) algorithm:

for (position := 1 to IAI) pixel (position) := "unassigned";
register := 0;
for ( i := 1 to N )

{
count := 0;
for ( j := 1 to ICj I )

{
position := 1;
while (pixel (position) _ "unassigned")

{
if (pixel (position) = ~(j»

{
register := register u ~(j);

count := count + 1;
}

position := position + 1;
}

}

a : = d : = Icd / Ic I;
e := position - count;
b := c := f := 0;
Wi := {a,b,c,d,e,f};
W := W U Wi;

for (j := 1 to Icd) pixel(e+j) := Cj(j);
}

Only if register = 0 A (~i : 1~i ~ IA I : pixel(i) = "unassigned") = 0 is true, the
thus obtained collage is valid, since this means that the transformed images wj(A) form
a partition on A. To avoid problems with the implicit discretization which is induced by
applying a transformation wj we let a,b,c,d E <Q!. Now we must prove two things:

a) To be proven: Jtn) is O(p(n» for some polynomial function p. Clearly, / can
be computed in polynomial time O( N i,j : I ~i ~N,j E c1 U ... U cj _1 n Cj :j),
sincejfirst assigns to each element of C a pixel in A and then applies the above
algorithm, which contains O( ICI + I{ cj : I:s;; i:s;;N} I) steps. Because / ass"igns to
each element of cj a pixel in w;(A), it is clear thatJtc;) =w;(A) and 1cj I = Iwj(A) I.
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b) To be proven: (A ci : ciE C: ci E SET PACKING C:* ftci) E IFS-ENCODING)
or in other words: ( C contains N mutually disjoint sets) C:* ( IWI = N).
Let f =O.

"~": Let C contain N mutually disjoint sets, then:
N

Uci = C A (A i,j : 1 ~ i,j ~ N, i~j : Ci n cj = 0 )
i-I
~ ( apply j)
N

Uwi(A) = A A (A i,j : 1 :s: i,j :s: N, i~j : wi(A) n wJ{A) = 0 )
i-I
~ ( definition 10.1, A nB = 0 ~ d,,(A,B) = 1 )

N

dp(A,U wi(A» = 0 A (A i,j : 1 :s: i,j :s: N, i~j : d,,(wi(A),"j{A» = 1 )
i-I

~(f =0)
N

dp(A,U wi(A» ~ f A (A i,j : 1 ~ i,j ~ N, i~j : d,,(wi(A),wJ{A» ~ I-f)
i-I

"<=": Let IWI = N, then:
N

dp(A,U wi(A» ~ f A (A i,j : 1 :s: i,j ~ N, i ~j : dp(wi(A),wJ{A» ~ I-f)
i-I

~ ( let f =0 )
N

d/A,U wi(A» = 0 A (A i,j : 1 S i,j ~ N, i~j : dp(wi(A),wj(A» = 1 )
i-I

~ ( definition 10.1, d,,(A,B) = 1~ AnB = 0 )
N

UWi(A) = A A (A i,j : 1 ~ i,j ~ N, i~j : wi(A) n wJ{A) = 0 )
i-I
~ ( apply j-1 )
N

Uci = C A (A i,j : 1 ~ i,j :s: N, i~j : Ci n cj = 0 )
i-I

Thus we see that SET PACKING can be considered as a special case of IFS-ENCODING, namely
for f =O. Remember that f E [0,1) is also instantiated together with the set A. Since SET PACKING
is known to be NP-complete, IFS-ENCODING must also be NP-complete. •

It is remarkable that we have not been able to find an NP-completeness proof for the IFS-encoding
problem in the available literature on the subject. Even the most recent fundamental book on the field
([PEI92]) doesn't contain such proof, although it states that IFS-encoding is probably computationally
complex. It is strange that despite the lack of such NP-completeness proof in literature, all known
attempts to implement automatic IFS-encoding so far have been heuristic ones.

Since we have proven IFS-ENCODING to be NP-complete, we know that any combinatorial search
algorithm will fail to generate the (optimal) solution within reasonable time. Even if we bound the
parameter values of the affine transformations Wi E W to certain discrete values, the problem still
remains NP-complete.
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Let (X, W,P) be an IFS and assume that the parameters of the according IPS-code are bounded by
a,b,c,d,e,f E { + x/n : x = 1,2, ••. ,n }. As said before, we omit the probabilities. Then the amount
of possible affine transformations is given by the amount of possible combinations (a,b,c,d,e,f). This
can be calculated as (2n)6 = 64n6. An IFS-code consists of a collage of N different affine
transformations. The amount of possible combinations of N affine transformations is equal to the
amount of possible combinations of N affine transformations from a language of 64Tf affine
transformations, Le. (64n6)N. A deterministic algorithm which generates all possible IPS-codes will
therefore have running time T(n,N) = 64n6N

• Clearly, IFS-encoding is polynomial in n, but
exponential in N. This is illustrated in fig. 10.2 for N=2 (left) and n=2 (right).

9 logJo7ln,2) 9 Iog107{2.N>8 8
7 i 7 i6 6
S 641112 S
4 4
3 3
2 2
1 1
0 0

-1 -1 1 2 3
-2 -2 ----7 N
-3 -3
-4 -4
-s -s

Figun 10.2. Time complexity function T(n,N) for N=2 (left) and n=2 (right).

The growth rate of the polynomial time complexity T(n,2) = 64n12 is less than the growth rate of the
exponential time complexity T(2,N) = 26(N+I). In the special case n = N, the polynomial time
complexity T(n,2) is only worse then the exponential time complexity T(2,N) for values in the interval
(2,4), since:

{

< 26(N+1) for n=N E [0,2]
64n 12 = ~ 26(N+1) for n=N E (2,4)

< 26(N+1) for n=N E [4, co)

Realistic values for n and N are given by n = 100 and 4 S N s 200 [BAR88e,BAR90], We see
that even for the smallest realistic value of N the amount of possible IFS-codes equals the amount of
atoms contained in the whole universe, which latter amount is roughly estimated to be 1~. This can
be shown as follows:

The state space for the average IPS-encoding problem consists of an amount of elements somewhere
in between 10"9.8 and H)7A01.8. This means that a (super) computer with a calculation speed of 200
[GFlops] would at least be kept busy for 5· 10...12 • 10"9.8 = 5· Wn.8 [seconds] or roughly 1()29
[centuries] to apply a single floating point operation on each possible collage. If we take into account
the probabilities, things are even worse, since these probabilities introduce another factor n = 100.
In that case we get a time complexity function T(100,N) = 64(l00)7N = 1014N+1.8. If the algorithm has
to check the quality of each generated IPS-code, the running time will increase with a factor IA I, i.e.
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the amount of pixels of the target image, and we get TtIA 1,100,N) = IA I ·1014N
+I.8. The trivial cases

IA I = 1 [pixel] and N = IA I [affine transformations] can of course be solved in linear time, but the
problem is that there exists no algorithm which can solve the IFS-encoding problem for ml N s IA I
in polynomial time. The same considerations are valid for the E-ValUes. If we want a collage for
E = 0.99 then the problem can be solved very quickly, but the problem is that we want an algorithm
which can generate solutions for ml E-ValUes E [0,1), thus also for E =O. The above considerations
force us to develop an algorithm that is not based on elementary state space search, but rather on
some other approach.

10.3. A nrst approach: moment theory

In par. 9.4 we have seen that it is possible to calculate the moments of an IPS uniquely, explicitly
and recursively, in terms of the moments and the parameters which define the IPS (see theorem 9.4).

Theorem 10.4. Under the conditions of theorem 9.4 the associated moment problem is determinate.
In particular, the corresponding p-balanced measure p. is unique.

Proof. See [BAR85]. •
This means that, given the first k moments of a target image, which can be calculated in O(kn) time,
finding the invariant measure p. which defines the image, has a unique solution.

Example 10.2. Consider the fractal structure below, known as the twin dragon fractal [MAN83],
and which we denote A.

Figure 10.3. The twin dragon fractal.
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Suppose this is the target image which we want to encode into an IFS-code. As A is symmetric about
its centre, which we represent as the origin in the complex z-plane, we approximate p. by ap-balanced
measure p.(s,a) for the IFS (C,{wl(z),w2(z)},{O.5,O.5}), with wl(z) = sz+(l-s)a and w2(z) = sz-(l-s)a.
Referring to par. 7.4 it is clear that wl(z) has fixed point a E C and w2(z) has fixed point -a E C.
The IFS has a contractivity factor sec such that Is I< 1. First we calculate the two-parameter
family of moments:

m(p.,k) = Iz ldp.(z)
c

Since A is symmetric about the origin, we know that m(p.,1) = m(p.,3) = O. So we only have to
calculate m(p.,1) and m(p.,4).

m(p.,2)

= ( definition 9.14 )

Iz2dp.(z)
c

= ( theorem 9.1, theorem 9.2 )
2

~PjL(wj(z»2dp.(z)

= ( calculus )

~I[(wl(z»2+(w2(z»2]dp.(z)
c

= ( calculus)

~I[(sz+(l-s)a)2+(sz-(l-s)a)2] dp.(z)
c

= ( calculus)

~I(2s2z 2+2(l-S)2a 2)dp.(z)
c

= ( calculus)

s21 z2dp.(z) + (1-S)2a21 zOdp.(z)
c c

= ( definition 9.14 )

m(p.,2) + (1-S)2tim(p.,O)

= ( m(p.,O) = 1, calculus )
(l-S)2a2

1-s2

= (calculus)

(l-s)a 2

1+s

m(p.,4)

= ( definition 9.14 )

Iz 4dp.(z)
c

= (theorem 9.1, theorem 9.2 )
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2

~PiL(w;(z»4dJL(Z)

= ( calculus )

~I[(wl (z»4+(w2(z)t]dJL(z)
c

= ( calculus)

~I(2S4Z4+12s2z2(1-s)2a2+2(l-sta 4)dJL(z)
c

= ( calculus)

tm{JL,4) + 6s2(l-S)2a?n{JL,2) + (l-sta4m{JL,0)

= ( m{JL,O) = 0, calculus )

6s2(l-S)2a 2m{JL,2) + (l-sta4

1-s4

= ( substitute m{JL,2) )

6s2(1-s)3a4 + (1-sta 4
1+s

(l-s)(l +s)(l +sZ)

= ( calculus )

6s2(l-S)2a4 + (l +S)(l-S)3a4

(l +S)2(l +sZ)
= ( calculus )

(l-S)2a4[6s 2+ (l +s)(1-s)]
(l +s)2(1 +sZ)

= ( substitute m{JL,2), calculus )

(l +5sZ) (m{JL,2»2
(l +sZ)

Now we solve the latter equation for s2:

(l +s2)m{JL,4) = (l +5s2)(m{JL,2»2

- ( calculus)
s2(m{JL,4) - 5(m{JL,2»2) = (m{JL,2»2 - m{JL,4)

- ( calculus )

S2 = (m{JL,2»2 - m{JL,4)
m{JL,4) - 5(m{JL,2»2

10. IFS-encoding: the inverse problem

To each pixel in A we attach a weight of IA I-I, where IA I denotes the cardinality or total amount
of pixels in A. With the IFS-CODEC algorithm (see appendix A and B) We obtain IA I = 89587
fpixels].

With the IFS-CODEC algorithm, we compute the Hausdorffmoment sequence {lno,mh mz,ln:3,m4} (see
defmition 9.14), which results in:
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mo=l+i
m,=O+Oi
~ = 8.063819237 0 101+4.160132117 olO1i
~ = O+Oi
m4 =-2.027113949 0 107 + 1.968592598 0 108i

113

We next substitute the computed values ~ and m4 for respectively m{JL,2) and m{JL,4):

S2 = (8.063819237 0 l(P + 4.160132117 0 101i)2 - (-2.027113949 0 107 + 1.968592598.1080
(-2.027113949.107 + 1.968592598 0 108i) - 5(8.063819237 ol(P + 4.160132117 ·1(Pi)2

:::::: 0.004481 + 0.498892i

This yields two roots: s, = 0.502 + 0.497i and S2 :::= -0.502 - 0.497i. There correspond four
possible solution pairs (s,a), however, each IPS that is assigned to a solution pair yields exactly the
same measure and approximate fractal attraetor. The target image was rendered from the IPS
(R2, {w,(x),w2(x)}, {0.5,0.5}), with

w,(x) = (0.5x, - 0.5x2 - 100, 0.5x, + 0.5x,J
w2(x) = (0.5x, - 0.5x2 + 100, 0.5x, + 0.5x,J

Since the the affine transformations are similitudes, this IPS can be transformed in an IFS
(C, {w,(Z),w2(z)},{0.5,0.5}), with transformations:

w,(Z) = (0.5 + 0.5i)z - 100 = sz + t with fixed point -100 + Oi
w2(z) = (0.5 + 0.5i)z + 100 = sz + t with fixed point 100 + Oi

The image in fig. 10.3 was rendered with s = 0.5 + 0.5i. From the moment calculation we obtained
as one of the roots: s, :::= 0.502 + 0.497i. If we want to use this value to render the according
attractor, we first go to R2 and obtain the IPS: (R2,{w,(x),w2(x)},{0.5,0.5}), with:

w,(x) = (0.502x, - 0.502xz - 100.498, 0.497x, + 0.497Xz - 0.373)
w2(x) = (0.502x, - 0.502xz + 100.498, 0.497x, + 0.497Xz + 0.373)

For this transformation from C to R2 we used:

a2 = (l +s)m{JL,2) t = (l-s)a :::::: 100.498 - 0.373 e = Re(t) f = Im(t)
(l-s)

Re(s) = .:!: ~fi JO.0004481 + J(0.004481)2 + (0.498892)2 :::= 0.502

Im(s) = 0.498892 :::::: 0.497
Re(s)

The attractor of this IFS is given in fig. 10.4 and as we can see, it is a good approximate of the target
image in fig. 10.3. The pixsetdistance between the two structures was calculated as dp = 0.053713,
which means an approximation quality of about 95%. *
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FIg",,., 10.4. Approximation of fig. 10.3 calcu1atcd from moment theory.

From the above considerations, we could conclude that theorem 9.4 supplies us with a powerful tool
to obtain IPS-encoding in closed form. But this method only works under certain hypotheses:

(i) The invariant measure p. should be uniform upon A, which is only true when all affine
transformations w,(A) of the IPS are mutually disjoint.

(ii) Except information about the moments of A, useful application of theorem 9.4 also
expects information about the symmetry ofA, which requires certain pattern recognition
techniques. But pattern recognition is a severe unsolved problem which we do not intend
to solve first before solving the IFS-encoding problem. Moreover, we not only have to
know how many transformations we need, but also their associated probabilities.

(iii) The structure in fig. 10.3 constitutes the attraetor of an IFS of the simple form
(C,w(z) = s,z + (l-s,)a, ,pJ, which only can generate similitudes of A, as shown in par.
7.4). But to encode real world images, the operations scaling, rotation and translation
alone are not powerful enough. Therefore we also need to be able to shear the image,
which implies that we have to use a more powerful affine IPS of the form
(R2,wj(X) = (ax+by+e,bx+cy+f),p,).

The above considerations definitely force us to develop an algorithm that is based on a heuristic
approach. This means that we must first be concerned about a quick and reliable method for
evaluating the heuristic generated candidate solutions.
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10.4. The quality measure
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If we want to measure the quality of an approximation~ of a given monochrome image A in a pixel
space, we should use the Hausdorff distance h. The Hausdorff distance is calculated by first finding
the minimum of all distances between a point x E A and a point y E AI" Denote the two points where
between the minimum distance exists as x..... and y...... Then the maximum of all distances between a
point x E A and y..... E AJ must be found. Denote the found point x E A as x.-. In the same way
the maximum of all distances between a point y E AJ and x_ E A must be found and the thus
obtained pointy E AJ is denoted y_. Finally, the Hausdorff distance is the maximum of the distance
between x..... and y_ and the distance between x_ and y..... (see also par. 2.2).

Assume that A and AJ both contain n points, then the computational time complexity of an algorithm
to compute h(A,AJ} is clearly 7l:n2 +2n+ 1} or O(n~. Since the quality measure will become part of
the evaluation function of the IFS-encoding algorithm, and the evaluation time is a critical factor, the
Hausdorff distance is insufficient because of its computational time complexity.

The Hausdorff distance can give strange results, which do not match with our intuitive notion of
closeness. For example, if A is a disk and B is the same disk as A, but with an outside connected thin
line segment with length equal to the diameter of B and perpendicular to its boundary, then h(A,B}
equals the length of the line segment. The structures A and B appear visually very close, but the
Hausdorff distance doesn't imply this at all.

Moreover, the Hausdorff distance is insufficient to model the proposition A riB = 0 which we will
need hereafter. Therefore we need a quality measure that obeys the following criteria:

(i) it must match with our intuitive notion of closeness;

(ii) it must be able to model the proposition A riB = 0;

(iii) it must have low computational complexity, Le. less than O(n~;

(iv) it must be a metric on j{(X).

In [KOC89bJ the following measure is proposed:

rditllA,A,) ~JI~~,I
but this is not a metric, since it doesn't obey axiom (ii) of definition 2.2.

Definition 10.1. Let (X,d) be a complete metric pixel space. We define the fuset distance between
points A and B in j{(X), which are sets in X, as:

_. . [IA\B 1 IB\A 1 ]dp - (~ • A,B E j{(X), A,B ;Jt. 0. IAI'IBI}

where IA I denotes the cardilUllity of A, Le. the amount of pixels contained in A. •
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Consider the former example of the two disks A and B, where the Hausdorff distance gave a wrong
notion of closeness. The pixset distance would in this case only yield a distance which equals the
quotient of the amount of pixels in the line segment and the amount of pixels in B, which will be a
small number. Clearly, the Pixset distance is able to model the proposition A n B = 0 (see theorem
10.7). Assume that two structures A and Af both contain n points, then the computational time
complexity of an algorithm to compute dP(A,Af ) is clearly O(n). Before we are able to prove that dp
is a metric, we must introduce three theorems, which we need for the proof.

Theorem 10.5. Let (X,d) be a complete metric pixel space, then:

(A A,B: A,B E 1{(X) : IAnBI ~ (Min:: (IAI,IBI»)

Proof. LetA,B E 1{(X) and IAI ~ IBI, then: LetA,B E 1{(X) and IAI ~ IBI, then:

IAnBI
~ ( definition of Intersection )
IBI

IAnBI
S ( definition of Intersection )
IAI •

Theorem 10.6. Let (X,d) be a complete metric pixel space, then:

(A A,B : A,B E 1{(X) : IA I~ IBI - dp(A,B) = 1 - IAnBl/lA I )

Proof. Let A,B E 1{(X) and IA I~ IB I and A,B ;t 0, then:

dP(A,B)
= ( definition 10.1 )
(Max: A,B E 1{(X), A,B ;t 0 : (IA\BI/IAI,IB\AI/IBI»
= ( calculus)
(Max: A,B E 1{(X), A,B ;t 0 : «jAI-IAnBI)/IAI,(IBI-IBnAI)/IBI»
= ( IAI ~ IBI, A,B ;t 0, theorem 10.5)
(IA 1-IAnBI)/IA I
= (A ;t 0, calculus )
1- IAnBl/lAI

Theorem 10.7. Let (X,d) be a complete metric pixel space, then:

( A A,B : A,B E 1{(X) : dp(A,B) = 1~ A nB = 0 )

Proof. Let A,B E 1{(X) and A nB = 0 and A,B ;t 0, then:

dP(A,B) = 1
- ( definition 10.1 )
(Max: A,B E 1{(X), A,B ;t 0 : (IA\BI/IAI,IB\AI/IBI» = 1
- ( calculus )
(Max: A,B E 1{(X), A,B ;t 0 : «IAI-IAnBI)/IAI,(IBI-IBnAI)/IBI» = 1
- ( definition of Max operator )

•
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(IAI-IAnBI)/IAI = 1 v (IBI-IBnAI)/IBI = 1=(A,B ~ 0, calculus)
l-IAnBI/IAI = 1 v l-IBnAI/IBI =1
=(A,B ~ 0, calculus)
AnB =0
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AnB = 0
=(A,B ~ 0, calculus)
l-IAnBI/IAI = 1 v l-IBnAI/IBI = 1
=(A,B ~ 0, calculus)
(IAI-IAnBI)/IAI = 1 v (IBI-IBnAI)/IBI = 1
=(definition of MM operator)
(Max: A,B E j{(X), A,B ~ 0 : «IAI-IAnBI)/IAI,(IBI-IBnAi)/IBI» = 1=(calculus )
(Max: A,B E j{(X), A,B ~ 0 : (IA\BI/IAI,IB\AI/IBI» = 1=(definition 10.1 )
dl'(A,B) = 1 •

Theorem 10.8. dl' is a metric on j{(X).

Proof. We have to prove that dl' obeys the four axioms of definition 2.2.

(i) To be proven: ( A A : A E j{(X) : d,,(A,A) = °)
Let A E j{(X) and A ~ 0, then:

dl'(A,A)
= ( definition 10.1 )
(~ : A E j{(X), A ~ 0 : (IA\A I/IA I, IA\A I/IA I) )
= (A ~ 0, calculus )
( Max :: (0,0) )
= ( calculus)

°
(ii) To be proven: ( A A,B : A,B E j{(X) : dl'(A,B) = dl'(B,A) )

Let A,B E j{(X) and A,B ~ 0, then:

d,,(A,B)
= ( defmition 10.1 )
(~ : A,B E j{(X), A,B ~ 0 : (IA\BI/IA I, IB\A I/IBI)
= (symmetry of Max operator )
(Max: A,B E j{(X), A,B ~ 0: (IB\AI/IBI,IA\BI/IAI)
= ( definition 10.1 )
d,,(B,A)
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(iii) To be proven: ( A A,B : A,B E ~X), A ;t B : 0 < dP{A,B) < 00 )

Let A,B E ~X) and A ;t B, then:

dP{A,B)
= ( definition 10.1 )
(~ : A,B E ~X), A,B ;t 0 : (IA\BI/IAI, IB\AI/IBI»
= ( calculus )
(Max: A,B E ~X), A,B ;t 0 : «IAI-IAnBI)/IAI,(IBI-IBnAI)/IBI»

case iiia) = ( IA I > IB I, theorem 10.6 )
1 - IAnBI/IAI
~ ( IA I> IBI, A,B ;t 0 )
o < 1 - IAnBI/IAI ~ 1

case iiib) = ( IAI < IBI, theorem 10.6)
1 - IAnBI/IBI
~ ( IAI < IBI,A,B;t 0)
o < 1 - IAnBI/IBI ~ 1

Hence: 0 < (Max: A,B E ~X), A,B ;t 0 : (IA\BI/IAI,IB\AI/IBI» < 00

(iv) To be proven: ( A A,B,C: A,B,C E ~X), A,B,C ;t 0 : dP{A,B) ~dp(A,C)+dp(C,B) )

Let A,B,C E ~X) and A,B,C ;t 0, then:

case iva)

= ( IAI ~ IBI, IBI ~ ICI, theorem 10.6)
(AA,B,C:A,B,CE~X),A,B,C;t0:1-IAnBI/IA I ~ 2-IAnCi/IA 1-IBnCl/IBI )
= ( calculus)
(AA,B,C:A,B,CE~X),A,B,C;t0: IBllAnBI ~ IBllAnCi + IA IIBnCl-IA IIBI)
~ ( theorem 10.5 )
(A A,B,C: A,B,CE~X),A,B,C;t0: IBIIBI ~ IBllAn CI + IA IIBn CI-IA IIBI )
= ( calculus )
(A A,B,C: A,B,CE~X),A,B,C;t0: IBI(IBI-IAnCI) ~ IAI(IBnCl-IBI»
= ( IAI ~ IBI, IBI ~ ICI, theorem 10.5 ~ IBI-IAnCi ~o 1\ IBnCl-IBI ~O)
true

case ivb)

= (IAI~IBI, IBI<iCl)

case ivbl) = ( IA I ~ ICI, similarly case iva)
true

case ivb2) = ( IA I < ICI , similarly case iva)
true
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case ivc)

= ( IA I< IB I, IB I s; ICI )

case ivcl) = ( IA I~ ICI, similarly case iva)
true

case ivc2) =( IA I< ICI , similarly case iva)
true

case ivd)

= ( IAI < IBI, IBI < ICI, similarly case iva)
true

Hence, dp is a metric on :H(X).
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•
We might also have choosen a Pixset distance of for example d/ = (l - IA nB IliA UB I), but this
function is not linear. Suppose we convolute two identical rectangles and we plot the percentage
overlap against dp then we get a straight line, but if we plot the percentage overlap agains d/ we get
a nonlinear graph.

Despite the fact that solving the IFS-encoding problem in closed form with help of the moment theory
(see par. 10.3) will not succeed in polynomial time (see par. 10.2), theorem 9.4 still holds. This
implies that we can compare the JCh moment sequences of a target invariant measure J.L and its
approximated invariant measure II =M(p.), which can both be calculated in linear time [RED89].

Definition 10.5. Let m(p.,k) and m(1I,k) be the IC" moments of resp. a target invariant measure J.L and
its approximated invariant measure II =M(p.), then we define the It" moment distance as [SH091 J

1

d",(p.,1I) = E(lm(p.,k) - m(1I,k)\2YI2
;-1 •

The reader can easily verify that d", is a metric on P(X) (see defmition 2.2). Unfortunately, the IC"
moment distance appears to be very unsatisfactory as quality measure. As many as 60 moments of
two totally different I-dimensional invariant measures can agree to each other up to 10 decimal
places. Even more disturbing is the fact that tuning the associated IFS-code very slightly, gives rise
to another IFS, which attractor is close to the attractor of the original IFS, but their moment
sequences may differ considerably [SH091 ].

The above considerations lead us to step away from the IC" moment distance as practical quality
measure. If we want to measure the quality of an approximation II of the invariant measure J.L of a
given color or greytone image A in a pixel space, then we can also use the Hutchinson metric dB (see
definition 9.11). The Hutchinson metric can be computed for a IScreen I = (Xriglll-Xkft)(Yw-r-Y"""r) cell
discretized measure, as follows. First the nondeterministicIFS-decoding algorithm (see par. 8.3) must
be applied to generate II, which can be done in O(n) time for generating n pixels. In this way a
"histogram" is created, which is stored in the frame buffer. If this frame buffer contains b bitplanes,
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then we have 2" discrete histogram values. Of course we must not "saturate" the image by applying
too much iterations, to get a reliable result (if we iterate long enough, all histogram values will be
either 0 or 2"-1). Finally, the Hutchinson metric can be computed in O( IScreen I) time by:

ISerHaI
dB = L IIL(i) - 1'(01 for 1L(i),v(i) E {O..2"}

i-I

So the computation of the Hutchinson metric requires O(n + IScreen I) computation time, which is
linear in the amount of pixels. In [SH091] it is reported that the Hutchinson metric works splendidly
as quality measure for the approximation quality of I-dimensional invariant measures.

If we are going to apply an algorithm for automatic IFS-encoding of a target image A E ~X), we
will have to evaluate candidate solutions which are represented by an IFS consisting of N affine
transformations. The most straight forward way to do this is by deterministically rendering the
attractor AI of the IFS and calculate dP(A,AI). It is obvious that the (sequential) rendering process is
a time consuming step. This can be avoided by applying the following method. An approximate
attractor AI of the IFS can be obtained by applying 1 iteration of deterministic IFS-decoding with
condensation set A. It is obvious that AI = wl(A) U w2(A) U ... U w,JA).

Concluding, the quality measure for the approximation of:

(i) a set A E ~X) must be done as follows:

First, apply 1 iteration of deterministic IFS-decoding with condensation set A to render
an approximate attractor AI = wl(A) U w2(A) U ... U w,JA), which can be done in
O(log(N+ IA I)) time for sequential computation. Second, calculate the Pixset distance
dp(A,AI)' which can be done in O( IA Dtime.

(ii) an invariant measure 1£ E :P(X) must be done as follows:

First, apply a sufficient amount of n iterations of nondeterministic IFS-decoding to render
the attractor 1', which can be done in O(n) time for sequential computation. Second,
calculate the Hutchinson distance dJp.,p), which can be done in O( IScreen I) time.
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Chapterll

From chapter 10 we know that IFS-encoding is NP-complete, which enforces us to use a heuristic
approach to tackle the problem. There are several possibilities, for example greedy algorithms,
simulated annealing, neural networks and genetic algorithms.

Greedy algorithms seem to be the least powerful of the four mentioned alternatives. Simulated
annealing takes decisions based on information which is memorized by means of the evaluation value
of the last evaluated member. It can therefore only perform single steps through the state space, based
on a comparision of the evaluations of the current and the former candidate solutions. Nevertheless,
good results have been reported with applying this method on the IFS-encoding problem
[LEM81 ,LEV87,LEV88,MAN89]. Neural networks seem to be very promising to the IFS-encoding
problem, but a major drawback is the fact that all pixels have to be represented by separate neurons,
which also have to be connected to form a network [STA91 a,STA91 b]. It is obvious that this
method implies an extreme memory load. By the way, it is noteworthy that in [BRE91] the idea is
ventilated to use the collage theorem to develop supervised learning schemes for neural networks.

Based upon the former discussion, and also upon its promising results according to I-dimensional
IFS-encoding [SH091 ], we have choosen for a genetic approach to tackle the IFS-encoding problem.
We decided to concentrate upon finding IFS-codes for 2-dimensional monochrome images, thus
omitting the probabilities.

11.1. Genetic algorithms

Genetic algorithms were invented by Holland to mimic the process of natural selection according to
the natural evaluation theory of Darwin [HOL75]. The mechanisms that drive the evolution are not
yet fully understood, but some of its features are known. The evaluation process operates on
chromosomes, organic molecules built up from an alphabet of the 4 digits Adenine (A), Thymine (f),
Guanine (G) and Cytosine (C), which are molecules themselves [SIN91]. Chromosomes encode the
structure and properties of living organisms, and natural selection is the link between chromosomes
(genotypes) and the performance of their decoded structures (phenotypes). The process of natural
selection causes those chromosomes which encode successful structures, to reproduce more often than
those which do not.

The process of reproduction is the point where evolution takes place. Mutations may cause the
chromosomes of biological children to be different from those of their biological parents, and
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recombination processes may create quite different chromosomes in the children by combining
material from the chromosomes of two parents. Biological evolution has no explicit memory.
Whatever it knows about producing individuals that will function well in their environment, is
contained implicitly in the chromosome set of the current generation of individuals [DAV91 ].

The way a genetic algorithm works is as follows. Candidate solutions of the problem to be solved are
encoded into chromosomes. A first generation of chromosomes is (randomly) initialized. An
evaluation function is defined to evaluate the fitness of each member of the polulation, by decoding
their genotypes (chromosomes) into phenotypes. The better the candidate solution, the better its
assigned fitness. The next step is to select two members from the current generation, which will act
as parents. The probability that a certain parent is selected, is directly proportional to its fitness. In
this way the fittest members are more frequently choosen than less fit members. After two parents
have been selected, a genetic operator is selected. There can be several genetic operators and each
one has an assigned probability of being choosen. Then the selected operator is applied to the selected
parent pair, which yields a pair of so called children. Those children are placed in the next
generation. As soon as the next generation contains as many members as the current generation, the
next generation becomes the current generation and a certain best percentage of the current generation
is merged into the next generation to avoid loss of good genetic material. This process is repeated
until a satisfactory solution (best population member of the current generation) is found.

In our case the genetic algorithm is embedded within a while loop which increments the number of
the affine transformation N we search for at each iteration. The loop guard compares the maximum
allowed error with the Pixset distance between the target image and the current collage. In this way
we avoid to repeatedly search for a collage consisting of a fixed amount of affine transformations.
In fig. 11.1 the general outline of our genetic algorithm is given in pseudo code.

int Cl,C2.i.j,k.n.pl.p2.N-l;
•

while (PixsetDistance(1JIIage, Uw 1 (image» > MAX_ERROR)
( 1-,
InitializePopulation(gen)/
while (gen[O] . fitness ( 1 - MAX_ERROR)

(

tor n:-l to POP_SIZE/2
(
pl :- selectparent(gen);
p2 ,- SelectParent(gen);
k ,- SelectGeneticOperator;
Operator!k] (gen[Pl].gen[p2],nxtgen[cl] ,nxtgen[c2]);

)
EvaluateAndSort(nxtgen);
gen ,- nxtgen u ( gen[j] 'Os j s pop SIZE/10 ];

) -
Transformation[N] :- Decode(gen!O]l;
H++;

Figure 11.1. Pseudo code for genetic IFS-encoding algorithm.

Like nature, genetic algorithms solve the problem of finding good chromosomes by manipulating the
material in the chromosomes blindly, and they have no information about the problem they are
actually solving. The only information they have, consists of evaluation values of each produced
chromosome and their only use of that evaluation is to bias the selection of chromosomes such that
those with the best evaluations tend to reproduce more often than those with bad evaluations.
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11.2. Chromosome encoding
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The first step in developing a genetic algorithm is to design an appropriate scheme for encoding
phenotypes (candidate solutions) into genotypes (chromosomes). In our case a phenotype consists of
an affine transformed copy of the target image, Le. the image we want to encode into an IFS. The
corresponding affine transformation w can be represented by a state space vedor, Le. the 6-tuple
(a,b,c,d,e!), with a,b,c,d,e! E [-1,1]. The reader may have noticed that some IPS-codes in
chapter 8 contain values e! fl. [-1,1], but this is just a machine dependency. In our case we use a
pixel space PixmIlp = [-250,250] x [-250,250], so for rendering of attractors we just apply the
multiplications e ·xriglJl and /·Y'-r' Thus an affine transformation can be represented by the above
introduced 6-tuple state space vector. We can encode such state space vector into a chromosome,
which consists of genes.

Definition 11.1. A chromosome is a 6-tuple (ga,g",gt>gd,g~,g,) where ga, .. ,g, are called genes with

( Ai: a :s;; i :s;; /: 1 :s;; gi :s;; 255 )

So a gene g contains 8 bits gO, .. ,g7, each of which is called a nucleotide. •
In this way we obtain a chromosome of 48 [bits] which contains 6 genes of each 8 [bits], each of
which bit is called a nucleotide, and such that the MSB g7 is the sign bit and the 7 other bits are the
data bits. So the numbers 1, 0 and -1 are represented by respectively 127, 128 and 255. The
chromosome is the genotype which encodes the phenotype, Le. the affine transformed copy of the
target image, and each gene encodes a property of this phenotype, Le. a parameter of the affine
transformation (xscaling, yscaling, xrotation, yrotation, xtranslation, ytranslation). The in this way
obtained encoding resolution is (127)-1 or about 0.8 [%]. For the translation parameters e and/this
implies a resolution of 250· (127)-1 = 2 [pixels]. In fig. 11.2 the chromosome encoding process is
represented schematically. It is obvious that this way of chromosome encoding implicitly places
constraints on the phenotypes as to the scaling, rotation and translation intervals.

Figu,., 11.2. Chromosome encoding.
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11.3. The genetic operators
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The most common genetic operators are crossover and mutation. Crossover operates on two parent
chromosomes from which it creates two child chromosomes in such way that each child chromosome
contains material from both parent chromosomes. Mutation operates on one parent chromosome from
which it creates one child chromosome. In our case, applying only those two operators appeared to
be not powerful enough (see next chapter), so we designed some additional genetic operators.
Alltogetber, our genetic algorithm contains 8 genetic operators (MacroCrossover, MicroCrossover,
MixedCrossover, Mutate, Jump, Scale, Rotate, Translate), each of which will be explained hereafter.

MacroCrossover operates on genes. It takes as input two parent chromosomes and generates a random
mask as element of {1, .. ,63} which represents a bitstring of length 6. The bits from mask indicate
gene locations on the parent chromosomes. If the MSB of mask is not set, then the chromosome of
child] gets the gene of parent] at the leftmost position. In the same way child2 gets the according
gene of parent2. If the MSB of mask is set, then the genes in the leftmost position are crossed, Le.
child] gets the gene of parent2 and vice versa. This process is applied on all 6 genes within the
chromosome (see fig. 11.3).

ptJnrrtl IllAfC 19 ptlTenf}.
13.102.114,94,59,6) 010011 (131.55.11.65.146.2)

(3.-'-.114,94,'-,-)

(3,55.114.94,146,2)

cIIildl

(···.102. --. ".59.6)

(131.102.11.65.59.6)

Figure ll.3. The genetic operator MacroCrossuver.

MicroCrossover operates on nucleotides. It takes as input two parent chromosomes and generates a
random mask as element of {1, .. ,255}, which represents a bitstring of length 8. The bits of mask
indicate nucleotide locations on the parent genes. If the MSB of mask is not set, then each gene of
the chromosome of child] gets the nucleotide of the according gene of parent] at the leftmost
position, Le. the gene's sign bit. In the same way the genes of child2 get at their leftmost position
the sign bit (leftmost nucleotide) of the genes of parent2. If the MSB of the mask is set, then the
nucleotides in the leftmost positions are crossed, Le. child] gets the nucleotide of parent2 and vice
versa. This process is applied on all 8 nucleotides within all 6 genes (see fig. 11.4).

MixedCrossover operates on genes and nucleotides. It takes as input two parent chromosomes and
generates a random mask] as element of {1, .. ,63} and a random mask2 as element of {1, .. ,255},
which respectively represent bitstrings of length 6 and length 8. The bits of mask] indicate gene
locations on the parent chromosomes, and the bits of mask2 indicate nucleotide locations on the parent
genes. MixedCrossover basically does what its name already suggests. It only applies MicroCrossover
on the genes which are selected by MacroCrossover. In other words, mask] determines on which
genes MicroCrossover is going to be applied according to mask2 (see fig. 11.5).
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Figurr 11.5. The genetic operalor MixedCrollover.

Mutate operates on genes and nucleotides. It takes as input one parent chromosome and generates a
random maskl as element of {l ... ,6} and a random mask2 as element of {1,2,4,8,16,32,64,128}.
Maskl represents just a gene location on a chromosome (l represents the leftmost gene, 6 represents
the rightmost gene) and mask2 consists of a bitstring of length 8, of which exactly one bit is set. The
position of this bit corresponds to the position of a nucleotide in the gene which is pointed to by
maskl. The only action Mutate takes, is to copy the parent chromosome into the child chromosome
and invert the nucleotide bit at position mask2 in the gene at position maskl (see fig. 11.6).
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Jump operates on genes. It takes as input one parent chromosome and generates a random maskJ and
a random mask2 as element of respectively {1,.. ,6} and {1, .. ,6}\maskJ. These masks represent two
different gene locations within the parent chromosome. Jump creates a child by copying its
chromosome from the parent chromosome and swapping the genes at the positions maskJ and mask2
(see fig. 11.7).
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FIgure 11.7. The genetic operator Jump.

FIgure 11.6. The genetic operator MUlaIe.

Scale operates on genes. It takes as input one parent chromosome and generates a random mask as
element of {l, .. ,126}, which represents a scaling factor in the interval [11127,126/127]. Scale copies
the parent chromosome into the child chromosome and multiplies the leftmost four genes - which
represent the matrix A of the affine transformation - with mask (see fig. 11.8).

Rotate operates on genes. It takes as input one parent chromosome and generates a random mask as
element of {1, .. ,359}, which represents a rotation angle in degrees. The mask is converted into an
angle rp [radians]. Rotate copies the parent chromosome into the child chromosome and multiplies
the leftmost four genes - which represent the matrix A of the affme transformation - with the standard
rotation matrix (see fig. 11.9):

[~srp -sinrp]

smrp cosrp

Translate operates on genes. It takes as input one parent chromosome and generates a random mask
as element of {1, .. ,255}, which represents a translation vector [mask,mask]T. Translate copies the
parent chromosome into the child chromosome and adds (mask mod 255) to the rightmost two genes,
which represent the translation vector t of the affine transformation (see fig. 11.10).
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FiguTt 11,8. The genetic operator
Scole.

F/guTt 11.9. The genetic operator
Rotale.

FlguTt 11.10. The genetic operator
Translate.

11.4. The evaluation function

To evaluate the fitness of population members, we need an evaluation function. Depending on the
kind of problem, we have to design an evaluation function which assigns penalties and rewards to
certain properties of population members. Basically we have defined two main problems, each of
which asks for a different approach. Those two main problems are finding the identity of a target
image and finding a collage of a target image. Finding the identity is important to validate the genetic
algorithm, but also to investigate its problem solving power in this field. Finding the collage is of
course directly related to our IPS-encoding problem. Before we can proceed, we need to go through
some more definitions.

Definition 11.2. Let fuset be a pixel space and let {target,member,collage} C fuset, where:

target = the to be encoded target image;

member = w(target), the affine transformed copy of target according to the chromosome of
member;

collage w,(target) U w2(target) U ... U w,l...target), the union of all affine transformed
copies of target which are found so far, i.e. each best member of the last
generation of the preceding runs of the genetic algorithm.

With Itarget I, Imember I and Icollage I we denote the cardinalities in [pixels] of the respective
images and with N the number of the current affine transformation. •

/
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Definition 11.3. A reward is a positive contribute to the fitness of member and a penalty is a negative
contribute to the fitness of member. We define the following penalties and rewards: strongpenalty
(SP), weakpenalty (WP) , borderreward (BR), fillreward (FR) and sizereward (SR) , which are
quantified as follows:

SP = Imember\target I/Imember I

WP = Itarget n member n collage I/Imember I

BR = I(target\collage) n member I/Imember I

FR = I(target\collage) n member I/Itarget\collage I

SR =

«N+1) Imember I)/ Itarget I

{{l +-!.)(1-1 member I/Itarget I)
N

N
for Imember I/Itarget I E [0,1--]

N+q

N
for Imemberl/ltargetl E [1--,1]

N+q

with N E N+ the number of the affine transformation and q E N an offset (in our case 1). •

The penalties and rewards which are introduced in definition 11.3 are derived from the following
considerations (see fig. 11.11).

Figure 11.11. An impression of targer, member and collage.

In order to get a good fitness, member must cover a reasonable part of the up till now uncovered part
of target and must be located totally within target, covering as less as possible of collage. The amount
of covering of the uncovered part of target is measured by fillreward (FR). The relative part of
member which accounts for fillreward is measured by borderreward (BR). The relative part of member
which lays outside target is measured by strongpenalty (SP) and the relative part of member which
covers collage is measured by weakpenalty (WP). It makes sense to assume that when the tiling
proceeds, we want to have smaller and smaller affine transformed copies (tiles) in order to be able
to achieve an accurate collage. Therefore sizereward (SR) keeps track of the size of the tiles. This
reward is adjusted each time as N (the number of the current affine transformation) is increased.
Suppose that q= 1, then if N= 1 the optimal size of a tile member is half the size of target. When N=2
the optimal size of member is one third of the size of target, etc. (see fig. 11.12).
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Figure 11.12. The sizereward SR is biased to the affme transfonnation number N.

Definition 11.4. We define the evaluationfundion E : R+ U to} - (0,1) as:

E = (to + klBR + kJ"R + ~R - k.SP -ksWP)lk6

where to,kh~,~,k.,ks E R+ U to} and kt, E R+ and BR,FR,SR,SP,WP E [0,1]. •
The value of the evaluation function will be assigned directly to the member fitness. Whatever values
we choose for to, ..,~ we must assure that the obtained member fitness is always contained in the
interval (0,1). In the genetic algorithm this is done by the following C-statement:

if «int) 1000000*(member[i).fitness) <= 0)
{

member[i).fitness = 0.000001;
}

if «int) 1000000*(member[i).fitness) >= 1000000)
{

member[i).fitness = 0.999999;
}

The tuning of the parameters k; is of great influence on the performance of the genetic algorithm. A
guide for tuning this parameters may be fig. 11.13, where a precedence relation is given on some
possible covering situations.

Not only tuning of the parameters ki • but also of the other parameters, such as population size.
amount of generations, etc., influence the performance of the genetic algorithm. In par. 11.6 we will
further comment on this subject. In our case we kept the offset q in SR equal to 1.
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Figun 11.13. Precedence relation of member fitneases (T =target,
M = member and C = collage). Fitness(M): a>b>c>d>c>f>g>h.

Definition 11.5. A Genetic Parameter Setting (GPS) is a 7-tuple (N,G,S,T,P,K,f.), where:

N E N+ is the maximum amount of affine transformations in collage;

G E N+ is the maximum amount of generations;

S E N+ is the population size;

T E [0,1] is the percentage of transferred best members to the next generation;

P = {Pi: 1 s: i s: 8 } is the set of operator probabilites, where PI = p(MacroCrossover),
P2 = p(MicroCrossover), P3 = p(MixedCrossover), P4 = p(Mutate), Ps = p(Jump),
P6 = p(Scale), P7 = p(Rotate), PI = p(Translate);

K = { ki : 0 s: i s: 6 } is the set of evaluation function parameters, where kt, E R+ and
ko,kh~,~,k4'ks E R+ U {OJ;

E [0,1) is the maximum encoding error.

11.5. Initialization

•

The initial population (generation 0) the genetic algorithm starts with, can be created either randomly
or by means of a heuristic. We have choosen for the latter option, and we will use the information
provided by inverse fixed point analysis (see par. 7.2). The input of the process is a target image A,
which is represented in some pixel space Pixnuzp. From the collage theorem (theorem 10.1) we can
deduce the fact that the fixed points xj of all IFS-transformations must be elements of the target image,
hence: ( Ai: 1 s: i s: N: Xji E A ). Each member of the initial population is created as follows.
First assign a random number in the interval {1, .. ,255} to each of the four leftmost genes ga,gb,gc,gd
in the chromosome. Second, convert these chromosome values to transformation values a,b,c,d.
Third, take a random point (xftYj) E A. Next, calculate the transformation values e = (l-a)xj- byj
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and I = (l-d)Yf - CXf. Finally, convert the transformation values e end I into the respective
chromosome values g~ and gf and create the chromosome (gQ,g",gc,gd,g~,gf)' The former calculation
of the transformation values e and I is based on theorem 11.1 which is stated below.

Theorem 11.1. Let (R2,W) be a dynamical system with w : R2 - R2 an affine transformation given
by: w(x1,.l2) =(ax1 + b~ + e, cx1 + dx,. +f) with fixed point (XpYf)' then the transformation values
of the translation vector t = (e,fl are given by e = (l-a)xf - byf and1= (l-d )Yf - CXf.

Proq[. Let the above affine transformation be given, then:

(XfSf)
= (theorem 7.2 )

[
bi + (l-d)e ee + (l-a)f ]

(l-a)(l-d) - be ' (l-a)(l-d) - be

=> ( calculus)

e = xf[(l-a)(l-d) - be] - bi 1\ 1= yf[(l-a)(l-d) - be] - ee

(l-d) (l-a)
C=t ( substituteI in left equation, calculus)

xf[(l-a)(l-d) - be] byf[(l-a)(l-d) - be] bee
e = (I-d) - (l-a)(1-d) + ....,.,(l--a~)"':":'(l--d"=")

C=t ( calculus )

e = (l-a)(1-d) [xf[(l-a)(l-d) - be] _ byf[(1-a)(1-d) - be]]
(l-a)(l-d) - be (I-d) (l-a)(1-d)

C=t ( calcuius )

e = (l-a)xf[(1-a)(l-d) - be] - byf[(l-a)(1-d) - be]

(l-a)(l-d) - be
C=t ( calculus )

e = (l-a)xf - bYf

ee + (l-a)f 1
(l-a)(l-d) - be

(Xf'Yf)
= ( theorem 7.2 )

[
bi + (l-d)e

(l-a)(1-d) - be '

=> ( calculus)

1= y/[(l-a)(l-d) - be] - ee 1\ e = xj [(1-a)(1-d) - be] - bl

(l-a) (l-d)
C=t ( substitute e in left equation, similarly first part of proof)

I = (l-d)Yj - cx/ •
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11.6. Some results

11. Genetic IFS-encoding

Not all genetic operators were developed at the same time, but for clearity we will keep using the
GPS notation as introduced in definition 11.5. Thus, whenever an operator probability is set to zero,
this can either indicate that the operator was not yet developed or that it is just not selected, the effect
is the same. The first error free version of our genetic algorithm only possessed five genetic
operators, Le. MacroCrossover, MicroCrossover, MixedCrossover, Mutate and Jump. The algorithm
was tasked to find the identity of a black square and was initialized with the genetic parameter setting:

GPS1 = (1,10,10,0.1,{0.3,0.3,0.2,0.1,0.1 ,O.O,O.O,O.O}, {1-dp,O,O,O,O,O, I} ,0)

After 10 generations it found a best member fitness of 0.653090. An initialization with the genetic
parameter setting:

GPS2 = (1,15,50,0.1, {0.2,0.2,0.2,0.2,0.2,0.0,0.0,0.0},{1-dp,O,O,O,O,O, I} ,0)

took about 2 [hours] and achieved a best member fitness of 0.784854. Those two runs were mainly
made to validate the correct working of the genetic algorithm. The problem of finding the identity
is not as trivial as it looks, because the genetic algorithm has no visual information, but only the
evaluation values which are based on the Pixset distance dp •

Each time the algorithm is run, it creates two fIles: monitor. dat and filename. aut. The first file
contains all chromosomes and their assigned fitnesses for generation °(initialization) and the last
generation. From the other generations only the best members are default put in this fIle. Optional
(by setting the global variable extended = I in the file all. h) all generations are completely logged
and also the specific parent and operator selections as well as the resulting childs. Also default, some
other data, like operator probabilities and the amount of operator selections is logged. In appendix D
a typical result of a genetic run is given. The file filename. aut contains the affine transformations
which are created from the best members of the last generation of each while loop (see fig. ILl).

The main problem of this early version was its time consuming member evaluation of about 9.5
[seconds] per member. Despite the fact that we are forced to run through all pixels of target and
member, we have been able to speed up the evaluation time with a factor 3.5, thus resulting in an
average member evaluation time of 2.7 [seconds]. This speeding up was mainly achieved by
improving the data handling within and in between the pixmaps and by combining the rendering and
pixel counting processes. Also, the search area for target pixels has been limited from the whole
pixmap to the bounding box of target.

We have first tasked this improved version to find the identity of some images. Even for population
sizes of 100 members over 15 generations the best member fitness did not get better than about 0.83.
By displaying the successive generated members on screen, we were able to monitor the progress in
the state space search. This real time monitoring takes about 50% more CPU time, but made clear
that there was need for a scaling operator. Therefore we designed the openor Scale. An initialization
with the genetic parameter setting:

GPS3 =(1,15,75,0.1,{0.2,0.2,0.2,0.15,0.15,0.1,0.0,0.0},{I-dp ,O,O,O,O,O,I},O)
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resulted in a best member fitness of 0.907376. Additional runs, also for other seeds of the random
number generator, showed that the best member fitness did not get better than about 0.90. Again the
state space search process was monitored and it became clear that a rotation operator was needed. So
we designed and implemented the operator Rotate. We tasked the algorithm to find the identity of
some of the images as given in appendix C. Each time the algorithm was initialized with the following
parameter setting:

GPS4 =(l ,25,S,0.1,{0.2,0.2,0.2,0.1 ,0.1 ,0.1,0.1 ,O.O},{l-dp,O,O,O,O,O, 1},O)

The results for different population sizes S are given in table 11.2. It is obvious that the searched for
identity mapping has an IFS-code of {l,0,0,1,0,0}, but for symmetric structures, such as reer or
dragon (see appendix C), also other transformations than the identity are valid. In particular all
transformations belonging to the symmetry group of the structure. For example, the symmetry group
of a square (or the structure reer) contains 8 transformations (see table 11.1):

i) L =identity, IFS-code {1,0,0,1,0,0};
ii) p, =rotation over 90 [degrees], IFS-code {0,-1,1,0,0,0};
iii) P2 =rotation over 180 [degrees], IFS-code {-1,0,0,-1,0,0};
iv) P3 =rotation over 270 [degrees], IFS-code {0,1,-1,0,0,0};
v) (1, = reflection through x=O, IFS-eode {-I ,0,0,1,O,O};
vi) (12 =reflection through y=O, IFS-code {1,0,0,-1,0,0};
vii) (13 =reflection through y=-x, IFS-code {0,-1,-1,0,0,0};
viii) (14 =reflection through y=x, IFS-code {0,1,1,0,0,0}.

TtIbk 11.1. Cayley table for symmetry group
of the square for the composition operator.

0 L p, P2 P3 (1, (12 (13 (14

L L P, P2 P3 (1, (12 (13 (14

P, P, P2 P3 L (13 (14 (12 (1,

P2 P2 P3 L P, (12 (1, (14 (13

P3 P3 L P, P2 (14 (13 (1, (12

(1, (1, (14 (12 (13 L P2 P3 P,
(12 (12 (13 (1, (14 P2 L P, P3
(13 (13 (1, (14 (12 P, P3 L P2
(14 (14 (12 (13 (1, P3 P, P2 L

As a result from the above considerations, we will let the genetic algorithm search for any valid
transformation instead of just the identity. For clearity, table 11.2 also contains the found IFS-codes
(Le. the decoded chromome of the best member of each last generation). In fig. 11.14 the graphs of
the best members from the structure fern are given. From these figures we see that the fitness is
strongly related to the visual closeness, Le. the better the fitness the better the visual closeness of
target and member (see appendix C). Before we are going to comment on the results of table 11.2,
we have to explain some more about its contents. Although we have speeded up the evaluation time,
the whole process is still time consuming. This is a bottle neck in obtaining enough data to apply a
reliable statistical analysis. Since the problem of finding a symmetry transformation is only relevant
to validate the correct working and the intrinsic problem solving power of the genetic algorithm, we
have choosen a different approach. All runs which are tabulated in table 11.2 have been done again
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Table 11.2. Results of symmetJy transfonnation eearch for lOme raster images of appendix C for GPS. (time in [hours]).

image S fitness chromosome IFS-code time

dragon 10 0.756734 (124,11,9,127,0,139) 0.976 0.087 0.071 1.000 0.000 -0.087 0.17
25 0.859271 (253,131,6,256,129,132) -0.984 -0.024 0.047 -1.008 -0.008 -0.031 0.64
50 0.897574 (127,7,1,127,129,129) 1.000 0.055 0.008 1.000 -1.969 -1.969 1.04

100 0.899707 (125,2,132,127,128,128) 0.984 0.016 -0.031 1.000 0.000 0.000 3.42

fern 10 0.560379 (109,11,111,255,134,148) 0.8580.0870.874 -1.000 -0.047 -0.157 0.14
25 0.774714 (127,134,10,125,3,129) 1.000 -0.047 0.079 0.984 5.906 -1.969 0.38
50 0.780387 (127,132,145,125,129,2) 1.000 -0.031 -0.1340.984 -0.008 0.016 0.93

100 0.836296 (127,131,132,125,129,128) 1.000 -0.024 -0.031 0.984 -1.969 0.000 1.39

france 10 0.882267 (125,136,16,124,128,8) 0.984 -0.063 0.126 0.976 0.000 0.063 0.23
25 0.898903 (127,2,147,127,2,136) 1.000 0.016 -0.1501.000 0.016 -0.063 0.46
50 0.923906 (127,144,1,127,130,128) 1.000 -0.126 0.008 1.000 -3.937 0.000 1.23

100 0.962674 (126,128,133,127,128,128) 0.992 0.000 -0.039 1.000 0.000 0.000 2.47

leaf 10 0.697666 (162,243,120,193,128,128) -0.268 -0.906 0.945 -0.512 0.000 0.000 0.19
25 0.841518 (127,2,133,111,129,130) 1.000 0.016 -0.039 0.874 -1.969 -3.937 0.62
50 0.868127 (254,72,6,121,7,132) -0.992 0.567 0.047 0.953 13.780 -7.874 1.13

100 0.946545 (127,131,2,124,128,129) 1.000 -0.024 0.016 0.976 0.000 -1.969 2.03

mandel 10 0.760231 (119,180,141,253,136,130) 0.937 -0.409 -0.102 -0.984 -0.063 -0.016 0.22
25 0.896908 (127,2,137,125,128,6) 1.000 0.016 -0.071 0.984 0.000 0.047 0.41
50 0.902132 (127,128,138,127,3,4) 1.000 0.000 -0.079 1.000 5.906 7.874 1.05

100 0.905018 (127,131,12,126,1,2) 1.000 -0.024 0.094 0.992 1.969 3.937 1.64

reet 10 0.846164 (10,255,126,17,6,10) 0.079 -1.000 0.992 0.134 0.047 0.079 0.16
25 0.879834 (127,130,20,125,128,139) 1.000 -0.016 0.157 0.984 0.000 -0.087 0.35
50 0.931589 (130,254,254,137,131,131) -0.016 -0.992 -0.992 -0.071 -0.024 -0.024 1.06

100 0.987552 (127,129,1,127,1,128) 1.000 -0.008 0.008 1.000 0.008 0.000 1.83
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Flgurt 11.14. Visualized results of table 11.2 for the stnJcture fern (dotted borderline corresponds to target image).
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for different seedings of the random number generator, which is involved in the parent and operator
selection processes. These seedings were obtained from the UNIX'" timing module, which keeps track
of the amount of seconds that have passed since 1970. The best fitness obtained with runs on different
seedings were about in the same range as those tabulated in table 11.2. From this we can conclude
that the developed genetic algorithm is powerful enough to find a good approximate for an affine
transformation for (one of the) symmetry transformations of a raster image in O(n) time, where n
denotes the amount of pixels within the bounding box of the image.

Definition 11.6. The perjormtlnce graph of a genetic algorithm is a graph of the fitness of the best
member of a generation as function of the number g of that generation. In other words, a graph of
the evaluation function g - E(best member(g» for 0 :s; g :s; G. •

In our case a performance graph is a typical non-declining function, since the best member fitness in
two successive generations can not get worse, because the best 10% of a generation will be
transferred to the next generation. In fig. 11.15 the performance graphs of the genetic algorithm are
given for the task of finding transformations belonging to the symmetry groups of the structures from
table 11.2. The plotted values are also tabulated in table 11.3. We have plotted four graphs, each for
a different population size S. Genetic algorithms are stochastic, which implies that their performance
usually varies from run to run and thus a curve showing the behaviour of a single run doesn't supply
us with much information. Therefore we took the average performance of the algorithm on the six
structures of table 11.2. Although these structures are different, finding transformations of their
symmetry groups belongs to the same class of problems, and therefore it is allowed to take the
average. Since the genetic algorithm has no visual information available and the state space has a lot
of local optima (for example we get a strong oscillating pixsetdistance when convoluting two identical
images of a fern), the obtained results must be classified as satisfying, since it appears to be possible
to find a 99% best case approximation within polynomial time (see last line of table 11.2).
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FiguTt 11.15. Perfonnance graph of genetic algorithm for thl ~tnJctures of table 11.2.
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Tobie 11.3. Average best member fitnesses for generation g.
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g S = 10 S = 25 S =50 S = 100

0 0.459020 0.688917 0.614644 0.465150
1 0.568170 0.735361 0.662815 0.630836
2 0.584604 0.735361 0.666538 0.651159
3 0.642196 0.740391 0.682728 0.690090
4 0.658090 0.747115 0.715669 0.695425
5 0.670982 0.750775 0.724533 0.702619
6 0.670982 0.763626 0.742966 0.730205
7 0.680799 0.763626 0.747261 0.741330
8 0.685975 0.775617 0.760759 0.778864
9 0.694192 0.803186 0.781674 0.781044
10 0.694192 0.811193 0.790659 0.786643
11 0.703241 0.814121 0.796624 0.798677
12 0.708475 0.817182 0.799066 0.802216
13 0.710768 0.818466 0.817631 0.811568
14 0.714144 0.818466 0.825628 0.830453
15 0.714981 0.823499 0.832908 0.836047
16 0.723983 0.825582 0.838229 0.856836
17 0.723983 0.840374 0.842677 0.873441
18 0.732532 0.841276 0.849532 0.878968
19 0.734884 0.843150 0.860350 0.882357
20 0.739376 0.844854 0.863135 0.909210
21 0.748661 0.850121 0.867863 0.909907
22 0.749784 0.850146 0.871945 0.912160
23 0.750074 0.856041 0.875738 0.912549
24 0.750574 0.856861 0.878970 0.915981
25 0.750574 0.858525 0.883953 0.922965

From fig. 11.15 we conclude that a population size of 10 or 25 members is too small, but a
population size of 100 members implies a lot of redundant calculations, since the result is hardly any
better than with a population size of 50 members. Thus from now on we will fix the population size
to 50 members, unless stated otherwise.

Now we are ready to run the genetic algorithm on the IFS-encoding problem, Le. to let it search for
a valid collage. Due to time constraints, we have only focussed on trying to fmd an IFS-code for the
structurefrance (see appendix C). We have choosen for this structure because it is the most difficult
one to encode into an IFS. The reason is the fact that the manually obtained (and thus very efficient)
IFS-code, already contains 31 affine transformations, while the IFS-codes of the other structures in
appendix C contain at most 9 affine transformations. Therefore we may carefully state that whenever
the genetic algorithm is powerful enough to find an IFS-code for the structure france it must be able
to find IFS-codes for all other structures.

Before we put the algorithm at work, we must be concerned about the evaluation function for the first
member we put in the collage, because if we take no special precautions, the algorithm will start
hunting for a symmetry group transformation, since this is the best first transformation it can find.
In an empirical way we obtained as a satisfying parameter set for the evaluation of the first
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transformation K = {I ,0,0, 1,1,0,2}. Basically, this evaluation function searches for copies which are
half the size of the target image and entirely contained within this target image. In fig. 11.16 some
typical first found transformations are given for the structure france.

J1lguIY 11.16. Some typical rU'llt collage tiles for the structure france, found by the genetic algorithm.

From the second tile and onwards, we need a different evaluation function parameter set. Since we
cannot predict the outcome of the genetic algorithm we had to use a trial-and-error method to tune
these parameters. First we tried the genetic parameter setting:

GPS, = (5,15,16,0.1,{0.2,0.2,0.2,0.1 ,0.1 ,0.1,0.1 ,O.O}, to,1,0,1,2,0,2},0.05)

The result is given in fig. 11.17. As we can see from this figure, the problem is that we get very long
and flat tiles which exceed the target image boundary. The first property gives rise to an IFS-code
which can not be decoded into the target image. We can understand this as follows. Suppose we
encode a circle by tiling it with ellipses such that the center of all ellipses is equal to the center of the
circle. If the circle is fully covered then this would certainly be a valid collage. However, if we want
to decode it, we never get a circle, but instead, we get a bunch of pixels around the center of the
circle. This is due to the fact that all transformations have the same fixed point. Thus an additional
requirement for a valid collage should be added.

Theorem 11.2. The collage theorem (see theorem 10.1) is only valid if the fixed points of all
transformations in the collage (see definition 8.2) are different.

Proof. Suppose we defme a collage, such that the fixed points of all transformations it contains are
the same, then clearly the attractor of the according IFS equals that fixed point and not the tiled target
image. •

Although we have not been able to find any literature where this problem is mentioned, it is clear that
it is a real and severe problem in the automatic IPS-encoding process. In addition to the above
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FIgure 11.11. Rcault for GPS,.
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Figure 11.18. Rcault for GPS,.

theorem, we can state that the further the fixed points of the separate transformations in the collage
are away from each other, the faster the decoding process goes, since the attractor boundary will be
reached earlier. By analyzing the progress of the state space search by real time .monitoring the
successive generated population members, we came to the conclusion that a translation operator was
needed to tackle this mutual fixed point problem. This is because it was observed that the further the
algorithm proceeded, the more the members were placed in the center of the target image. In some
cases, any of the 7 operators implemented so far, would yield a worse evaluation value, except for
a translation operator. Therefore we designed and implemented the operator Translate. We initialized
the algorithm with the following genetic parameter setting:

GPS6 = (6,25,100,0.1, {O. 15,0.15,0.15,0.08,0. 11 ,0.12,0. 12,0.12},to, 1,0, 1,2,0,2} ,0.02)

The result with this new added operator, the redefined operator probabilities and the same evaluation
parameter set is given in fig. 11.18. Despite the fact that GPS6 yields a more spread out collage,
which is good, the problem that the collage exceeds the boundary of the target, still remains. So we
decided to attach more weight to the penalty which guards exceeding of the target image border (SP).
We initialized the genetic algorithm with the genetic parameter setting:

GPS, =(10,25, 100,0.1,{0.15,0.15,0.15,0.08,0.11,0.12,0.12,0.12},{8,1 ,0,1 ,8,0,10},0.02)

As we can see from fig. 11.19, the result of GPS, is better than of GPS6, as far as the exceeding of
the boundary of the target image is concerned. But still the boundary of the target image is exceeded.
Also we see that GPS, gives rise to very long and flat structures, from which we must conclude that
each new tile covers a relatively great part of the collage so far. This is something we do not want
because of theorem 11.2, but also because of efficiency considerations. Therefore we decided to
adjust the gain of the penalty which guards this specific property. We therefore came up with the
following genetic parameter setting:

GPS. = (5,15,20,O.1,{0.15,0.15,0.15,0.08,0.11,0.12,0.12,0.12},{O,6,0,4,99,6,10},0.02)
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FIgure 11.19. Rcault for GPs.,.
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FIgure 11.20. Rcault of GPS•.

The outcome of GPS. is given in fig. 11.20, from which we can see that the result is still
unsatisfactory. From the outputfile monitor. dat we learned that the reason for this phenomenon
was the fact that from transformation 3 and onwards only the best 15% of the members from each
last generation had a fitness which was significantly greater than .oo1סס0.0 So 85% of the population
had a fitness of oo1סס0.0 due to the relatively strong gain of parameter k". This means that the
diversity of the population is very restricted, because each member has a chance of being choosen
which is directly proportional to its fitness. Concluding, we can state that this evaluation function
induces an "overshoot" because of the gain of the guard SP (see definition 11.3). We therefore
adjusted the parameters of the evaluation function once more and tried the genetic parameter setting:

GPS9 = (7,15,50,0.1,{0.15,0.15,0.15,0.08,0.11,0.12,0.12,0.12},{0,1,0,1,10,1,2},0.02)

The results of GPS9 are given in fig. 11.21 from which we conclude that the guard WP leads to a
"noisy" evaluation function, which confuses the algorithm. This is because it wants to cover as much
of the uncovered area as possible, so it produces tiles which cross the collage and cover uncovered
area's on both sides of it. Therefore we changed our strategy drastically. Not only was parameter ~
set to zero, but also we choose for an adaptive evaluation function. We modified the guard SR from
a static one (i.e. N=I,q=l) into an adaptive one as described in par. 11.4 (the fact that the description
is already covered in par. 11.4 does not imply that we have used this strategy from the beginning).
In this way we were able to get flexible control over the size of the tiles, which we want to decrease
as the collage contains more and more tiles. The reason for this is of course that the uncovered areas
become smaller and smaller, so we can encode more effective (more accurate), but also more efficient
(less overlap). The other main adjustment we made on the evaluation function was to introduce a
variable parameter set. Some of the parameters Ie; were tied to the current transformation number N
and were thus made adaptive to the encoding process. Finally we obtained the evaluation parameter
set K ={O,I,O,N,N+ 1,0,N+ l}. Next we initialized the algorithm with the genetic parameter setting:

GPSIO =(12,25,50,0.1,{O.15,O.15,O.15,0.08,0.11,0.12,0.12,O.12},{O, 1,O,N,N+ 1,O,N+ I} ,0.02)
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Ftgun 11.21. Result for GPS,.
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Ftgun 11.22. Result of GPS.o, dl' • 0.231388.

Ftgun 11.23. GPS,o: sizes of succClIIBive tiles of the collage dccrcuc proportionally to the tranBfonnation number N.
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The result of GPS10 is given in fig. 11.22 from which we conclude that all transformations lay within
the target image boundary. Since this is the first image where the target boundary is not exceeded,
it is also the first image about which it makes sense to assign a quality in terms of the Pixset distance.
For GPS10 the Pixset distance yields dp .. 0.231388 which indicates an approximation quality of 77%.
The successive transformations the algorithm found are given in fig. 11.23, from which we see that
the successive tile sizes decrease proportionally to the transformation number N (from 1 upper left
to 12 lower right). From this result we may expect that if we use the genetic parameter setting of
GPS10 with an increased amount of transformations, the collage will get better. Therefore we
initialized the algorithm with a different seed and the genetic parameter setting:

GPSI1 =(17,25,50,0.1,{0.15,0.15,0.15,0.08,0.11 ,0.12,0.12,0.12},{O, 1,O,N,N+ 1,O,N+ 1},0.02)

Ftgure 11.24. Result for GPSII • d, • 0.194123. Figure 11.25. Result for GPS12 • d, • 0.124390.

The result of GPSI1 is given in fig. 11.24, from which we conclude that the increased amount of
transformations from 12 in GPS10 to 17 in GPSI1 results in a decrease of the Pixset distance from
dp .. 0.231388 to dp "". 0.194123, which implies an increase in approximation quality from 77%
to 81 %. From this we may expect that a further increase of N will also increase the approximation
quality. Therefore we initialized the algorithm with a different seed and the genetic parameter setting:

GPSI2 .. (50,25,50,0.1,{0.15,0.15,0.15,0.08,0.11,0.12,0.12,0.12},{O, 1,0,N,N+ 1,O,N+ 1} ,0.02)

The result of GPSI2 is given in fig. 11.25. We see that a further increase of Nfrom 17 to 50 results
in a decreasing Pixset distance from dp :: 0.194123 to dp :: 0.124390 and thus in an increasing
approximation quality from 81 % to 88%. Due to time constraints we have not been able to perform
successive runs. It must be noticed that a complete run for GPSI2 takes about 58 [hours] CPU-time.
Thus a major concern for following research must be to further speed up the evaluation time.
However, the result must be considered as satisfactory as far as the control over the process is
concerned. After all we have been able to reach an approximation quality of 88% with 1.6 times as
much transformations than were needed for the (most efficient) interactive encoding of the (most
difficult) strueturefrance. One must not forget that the results are obtained with a "blind" system.
No attempts at all have been made to apply any pattern recognition techniques.
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In tables 11.4 to 11.6 we have tabulated some intermediate results about the genetic runs which were
initialized with respectively GPS10, GPSu and GPSI2• From this we can see that the algorithm is able
to keep finding good fitnesses, even for high transformation numbers. This is important to notice,
because it indicates that the algorithm does not get stuck in local optima. Also we can conclude that
the first transformation is found within a few generations, while the following transformations all need
the full amount of 25 generations, except for the last few ones. An explanation about those three
tables must be given as to the parameter G. In each of the cases the maximum amount of generations
was set to G =25, but because the maximum encoding error was set to E =0.02, in some cases the
full amount of generations were not needed. As soon as a member fitness of l-E or more was found,
then the result was satisfactory for that transformation. In the first column i denotes the transformation
number. In the second column G denotes the amount of generations. We conclude that we get better
than average initial populations (g = 0), due to our inverse fixed point method (see par. 11.5).

Ttlble 11.4. Intennediate results of GPS.o (CPU-time: 13.8 [hoursD.

best member fitness
i G chromosome affine transfonnation

g = 0 g=G

1 7 0.734840 0.981560 (1,199,47,199,192,133,6) -0.559 0.370 -0.559 -0.504 -9.843 11.811
2 25 0.628592 0.773593 (55,129,129,97,24,129) 0.433 -0.008 -0.008 0.764 47.244 -1.969
3 25 0.726888 0.833530 (40,17,8,226,166,139) 0.3150.1340.063 -0.772 -74.803 -21.654
4 25 0.696179 0.830470 (45,7,146,200,152,161) 0.3540.055 -0.142 -0.567 -47.244 -64.961
5 25 0.614980 0.849640 (177,147,174,198,25,130) -0.386 -0.150 -0.362 -0.551 49.213 -3.937
6 25 0.663673 0.877555 (56,141,148,163,27,166) 0.441 -0.102 -0.157 -0.276 53.150 -74.803
7 25 0.680854 0.880781 (58,17,47,147,144,144) 0.4570.1340.370 -0.150 -31.496 -31.496
8 25 0.671484 0.897895 (9,161,48,21,41,161) 0.071 -0.260 0.3780.165 80.709 -64.961
9 25 0.650132 0.914799 (7,219,19,170,14,16) 0.055 -0.717 0.150 -0.331 27.55931.496

10 25 0.667832 0.911150 (55,136,222,140,130,130) 0.433 -0.063 -0.740 -0.094 -3.937 -3.937
11 8 0.610407 0.981027 (164,172,21,143,140,162) -0.283 -0.346 0.165 -0.118 -23.622 -66.929
12 5 0.652295 0.994165 (20,6,12,172,131,32) 0.1570.0470.094 -0.346 -5.906 62.992

Ttlble 11.5. Intcnnediate results of GPSII (CPU-time: 19.6 [hoursD.

best member fitness
i G chromosome affme transfonnation

g=O g=G

1 1 0.689007 0.999999 (16,19,144,18,128,2) 0.1260.150 -0.126 0.142 0.000 3.937
2 25 0.694666 0.963624 (147,185,213,26,2,128) -0.150 -0.449 -0.669 0.205 3.937 0.000
3 25 0.850848 0.877129 (128,165,236,1,164,147) 0.000 -0.291 -0.850 0.008 -70.866 -37.402
4 25 0.653063 0.925333 (135,193,176,31,25,48) -0.055 -0.512 -0.378 0.244 49.213 94.488
5 25 0.653169 0.912883 (51,15,147,184,31,160) 0.402 0.118 -0.150 -0.441 61.024 -62.992
6 25 0.636166 0.887283 (173,2,189,176,14,154) -0.3540.016 -0.480 -0.378 27.559 -51.181
7 25 0.702181 0.896465 (178,184,78,50,2,5) -0.394 -0.441 0.6140.3943.9379.843
8 25 0.706789 0.897279 (153,14,141,191,136,30) -0.1970.110 -0.102 -0.496 -15.748 59.055
9 25 0.645808 0.907286 (47,161,59,136,30,135) 0.370 -0.260 0.465 -0.063 59.055 -13.780

10 25 0.643598 0.911141 (46,15,1,31,25,157) 0.3620.1180.0080.244 49.213 -57.087
11 25 0.624137 0.924444 (22,67,12,149,142,3) 0.173 0.528 0.094 -0.165 -27.5595.906
12 25 0.715309 0.939591 (25 ,146,161,150,144,190) 0.197 -0.142 -0.26 -0.173 -31.496 -122.047
13 25 0.741563 0.929956 (131,18,58,22,133,130) -0.0240.1420.4570.173 -9.843 -3.937
14 25 0.683205 0.945376 (150,147,130,173,170,170) -0.173 -0.15 -0.016 -0.354 -82.677 -82.677
15 25 0.632042 0.942288 (2,21,174,148,43,155) 0.0160.165 -0.362 -0.15784.646 -53.150
16 25 0.705903 0.949995 (14,14,163,20,149,128) 0.1100.110 -0.276 0.157 -41.339 0.000
17 25 0.556917 0.949913 (13,14,168,18,2,2) 0.102 0.110 -0.315 0.142 3.937 3.937
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TtJbh 11.6. Intennediate results of GPS12 (CPU-timc: 57.6 [hours».
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best member fitness
i G chromosome affIne transformation

g=O g=G

1 22 0.628568 0.987870 (27,219,199,189,128,152) 0.213 -0.717 -0.559 -0.480 0.000 -47.244
2 25 0.696261 0.855267 (245,128,1,47,132,32) -0.9210.000 0.0080.370 -7,874 62.992
3 25 0.621325 0.795060 (146,197,170,63,15,149) -0.142 -0.543 -0.331 0.49629.528 -41.339
4 25 0.723438 0.819435 (168,59,30,35,141,46) -0.3150.465 0.236 0.276 -25.591 90.551
5 25 0.710251 0.838349 (157,26,183,168,135,3) -0.2280.205 -0.433 -0.315 -13.780 5.906
6 25 0.662953 0.867403 (50,57,59,22,25,128) 0.3940.4490.465 0.173 49.213 0.000
7 25 0.694442 0.884074 (141,59,173,55,152,130) -0.1020.465 -0.3540.433 -47.244 -3.937
8 25 0.726687 0.890841 (37,140,28,39,31,31) 0.291 -0.094 0.220 0.307 61.024 61.024
9 25 0.619281 0.900479 (143,28,59,132,136,144) -0.1180.2200.465 -0.031 -15.748 -31.496

10 25 0.728897 0.909925 (32,24,157,23,154,144) 0.2520.189 -0.228 0.181 -51.181 -31.496
11 25 0.732075 0.919191 (168,182,177,163,9,129) -0.315 -0.425 -0.386 -0.276 17.717 -1.969
12 25 0.696687 0.930419 (145,142,23,84,128,128) -0.314 -0.110 0.1810.6610.000 0.000
13 25 0.619281 0.929861 (22,28,169,130,136,128) 0.1730.220 -0.323 -0.016 -15.748 0.000
14 25 0.728897 0.939952 (16,132,170,175,138,152) 0.126 -0.031 -0.331 -0.370 -19.685 -47.244
15 25 0.732075 0.943619 (34,20,144,19,43,47) 0.2680.157 -0.126 0.15084.646 92.520
16 25 0.696687 0.950136 (156,77,128,155,136,128) -0.2200.606 0.000 -0.213 -15.748 0.000
17 25 0.619281 0.953109 (156,129,3,28,38,180) -0.220 -0.008 0.0240.22074.803 -102.362
18 25 0.728897 0.949865 (183,142,144,10,136,136) -0.433 -0.110 -0.126 0.079 -15.748 -15.748
19 25 0.732075 0.949854 (161,10,135,150,4,1) -0.260 0.079 -0.055 -0.1737.8741.969
20 25 0.696687 0.960482 (128,148,160,128,27,174) 0.000 -0.157 -0.252 0.000 53.150 -90.551
21 25 0.619281 0.960513 (24,153,156,54,168,152) 0.189 -0.197 -0.220 0.425 -78.740 -47.244
22 25 0.728897 0.959826 (168,10,151,21,138,144) -0.3150.079 -0.1810.165 -19.685 -31.496
23 25 0.732075 0.960612 (180,165,164,165,152,152) -0.41 -0.291 -0.283 -0.291 -47.244 -47.244
24 25 0.696687 0.959944 (3,187,9,25,128,131) 0.024 -0.465 0.071 0.1970.000 -5.906
25 25 0.619281 0.974438 (14,30,155,151,38,58) 0.1100.236 -0.213 -0.181 74.803 114.173
26 25 0.728897 0.969763 (156,8,173,131,22,2) -0.2200.063 -0.354 -0.024 43.307 3.937
27 25 0.732075 0.970202 (21,153,130,24,51,42) 0.165 -0.197 -0.016 0.189 100.39482.677
28 25 0.696687 0.970406 (133,5,85,128,137,149) -0.0390.0390.6690.000 -17.717 -41.339
29 25 0.619281 0.969964 (8,10,160,16,17,41) 0.063 0.079 -0.252 0.126 33.465 80.709
30 25 0.728897 0.969988 (165,146,131,142,2,2) -0.291 -0.142 -0.024 -0.1103.9373.937
31 25 0.732075 0.974855 (144,129,45,31,8,57) -0.126 -0.0080.3540.244 15.748 112.205
32 25 0.696687 0.969976 (64,161,149,4,128,128) 0.504 -0.260 -0.165 0.031 0.000 0.000
33 6 0.619281 0.981267 (139,156,150,155,24,176) -0.087 -0.220 -0.173 -0.213 47.244 -94.488
34 25 0.573731 0.979819 (135,20,8,20,12,39) -0.0550.1570.0630.15723.62276.772
35 25 0.643031 0.979972 (143,142,19,131,128,128) -0.118 -0.110 0.150 -0.024 0.000 0.000
36 8 0.722575 0.982489 (65,72,164,164,157,13) 0.5120.567 -0.283 -0.283 -57.08725.591
37 25 0.737806 0.979937 «25,154,26,166,130,163) 0.197 -0.205 0.205 -0.299 -3.937 -68.898
38 19 0.680204 0.980226 (5,136,13,38,30,169) 0.039 -0.0630.102 0.299 59.055 -80.709
39 25 0.762241 0.979984 (19,136,153,26,6,4) 0.150 -0.063 -0.1970.205 11.811 7.874
40 15 0.722197 0.980621 (151,140,19,23,178,11) -0.181 -0.0940.1500.181 -98.42521.654
41 10 0.669912 0.980017 (1,24,13,17,17,58) 0.008 0.189 0.102 0.13433.465 114.173
42 25 0.672086 0.979996 (139,139,144,11,148,151) -0.087 -0.087 -0.126 0.087 -39.370 -45.276
43 25 0.639545 0.979960 (41,144,139,131,8,132) 0.323 -0.126 -0.087 -0.02415.748 -7.874
44 25 0.704970 0.979996 (18,7,151,8,131,135) 0.1420.055 -0.1810.063 -5.906 -13.780
45 25 0.582427 0.979996 (174,150,145,130,5,145) -0.362 -0.173 -0.134 -0.016 9.843 -33.465
46 25 0.697455 0.979913 (133,145,19,4,139,12) -0.039 -0.1340.1500.031 -21.65423.622
47 25 0.662468 0.979925 (7,128,2,42,16,132) 0.0550.000 0.016 0.331 31.496 -7.874
48 25 0.663780 0.979913 (9,26,142,135,19,137) 0.071 0.205 -0.110 -0.05537.402 -17.717
49 10 0.621786 0.980278 (3,137,156,143,178,135) 0.024 -0.017 -0.220 -0.118 -98.425 -13.780
50 2 0.604417 0.988725 (10,19,140,131,180,27) 0.0790.150 -0.094 -0.024 -102.36253.150
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From the fact that our genetic algorithm is able to find collages with an approximation error of
E =0.124390 (measured by the Pixset distance dp), we must not conclude that the rendered attractor
also approximates the target image with an approximation error of E.

The collage theorem (theorem 10.1) states that a collage approximation error of at most E implies an
attractor approximation error of at most E(l-S)-I, where s is the contractivity factor of the IPS.
According to definition 8.1 the contractivity factor of the IPS is given by s = ( Max i : 1S; i S; N : s; ),
where s; is the contractivity factor of affine transformation wj in the IPS. The contractivity factor of
an affine transformation can be calculated as Sj = Iajd; - bjej I. Table 11.7 contains the absolute
determinant values for the affine transformations of table 11.6. From table 11.7 we obtain:

S =(Max i : 1S;iS;N: la;d; - bje;1 ) == 0.503043

From this we conclude that we can expect an attractor approximation error of at most:

E 0.124390 == 0.25
l-s 1 - 0.503043

Rendering of the attractor of the IPS of table 11.6 yields fig. 11.26, from which we calculated:
N

dp(franee, ,U wj(franee» == 0.107570
i-I

dp(franee,jranee,) == 0.202205

From this we see that indeed the attractor approximation error is less than the predicted maximum
error of 0.25. This is a nice result as far as the validity of dp as distance measure is concerned, since
we have not proven that it is allowed to replace h by dp in theorem 10.1. Notice that the attractor
(fig. 11.26) not only differs from the collage (fig. 11.25) with respect to the approximation quality
of the target image, but also with respect to its own geometry, Le. the attractor is a fractal with self
similarity properties, while the collage is not.

In fig. 11.27 the determinant values of the successive affine transformations of table 11.7 are plotted
against the transformation number i. Since the relative determinant value also gives a notion of the
area of the transformed tile (relative to the target image), we can conclude that the tile size control
part in our evaluation function is working very well (compare fig. 11.27 to fig. 11.12).

Table 11.7. Successive tile sizes s of found affme transfonnations by GPS12 according to table 11.6.

i S i S i S i S i S

1 0.503043 11 0.077110 21 0.036985 31 0.027912 41 0.018206
2 0.340770 12 0.068664 22 0.037676 32 0.027276 42 0.018531
3 0.250165 13 0.068292 23 0.036666 33 0.019527 43 0.018714
4 0.196680 14 0.056881 24 0.037743 34 0.018526 44 0.018901
5 0.160585 15 0.059982 25 0.030358 35 0.019332 45 0.017390
6 0.140623 16 0.046860 26 0.027582 36 0.015568 46 0.018891
7 0.120444 17 0.048208 27 0.028033 37 0.016878 47 0.018205
8 0.110017 18 0.048067 28 0.026091 38 0.018087 48 0.018645
9 0.098642 19 0.049325 29 0.027846 39 0.018239 49 0.018425
10 0.088704 20 0.039564 30 ·0.028602 40 0.018661 50 0.012204
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Sir A1du.v C_ Do,U (1859 - 1930) IDAR801 Chapter 12
Conclusions and recommendations

In this final chapter we will draw conclusions on the former chapters and also present some
recommendations for further research. These recommendations are split up as to the subject on which
they reflect, Le. recommendations on the user interface, on the genetic algorithm and on IFS­
encoding.

12.1. Conclusions

We have presented the concepts of chaos theory and fractal geometry as well as their relationship
from a bottom up approach. We have therefore defined a dynamical system as a transformation on
a metric space. This definition is extended to the concept of the Iterated Function System (lFS), of
which a dynamical system is a special case. An IFS can be encoded by an IFS-code, which appears
to be an extremely compact representation for the attractor of the IFS. An attractor can be looked
upon as a (complex real world) image, but also as a Poincar6 map of the behaviour of the system.

We have presented algorithms for efficient deterministic and nondeterministic IFS-decoding with and
without condensation. The data compression performance of IFS-coding is considered, also in
comparision with other encoding schemata. Furthermore it is shown that an IFS can be considered
as a special case of a finite affine automaton.

We have seen that the attractor of a nondeterministic IFS is an invariant measure. Although the orbit
of the system can not be predicted, with probability one the same attractor will appear when the
Markov operator is recursively applied.

IFS-encoding is proven to be NP-complete. Despite its promising expectations, moment theory
appears to be not suitable to solve the IFS-encoding problem in closed form (due to pattern
recognition considerations). A practical try out of the moment approach to a simple structure, resulted
in an approximation quality of 95% (measured by the Pixset distance). This shows that moment theory
is suitable to act as a reliable quality measure for evaluating candidate solutions. However, the
analytical way in which this result was obtained, had nothing to do with automatic IFS-encoding.

Although the Hausdorff distance is known to be a reliable quality measure for evaluating candidate
solutions, it has a practical drawback, Le. it has a computational time complexity of O(n~, where n
denotes the amount of pixels in the target image. We developed the Pixset distance as useful
alternative and proved that it is indeed a metric.
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As far as the practical part of this graduation work is concerned, we developed the program
IFS-CODEC, which constitutes a user interface as to IFS-decoding and interactive IFS-encoding. With
this toolbox, which is embedded in the OSF/Motif~ X Window System~, it is possible to draw and
edit images. Collages can be obtained in an interactive way and rendering of the attractors of the
resulting IFS-codes is possible (deterministic or nondeterministic, with or without condensation).
Furthermore, attractors of manually entered IFS-codes can be rendered for a variable amount of
iterations. Moments of images, fractal dimensions of images, as well as Pixset distances between
images can be calculated. The Mandelbrot set can be rendered for a variable amount of iterations and
the bifurcation diagram for the logistic map can be drawn.

Furthermore, we developed a genetic algorithm as an approach to solve the problem of automatic
IFS-encoding. The chromosome encoding of transformations into chromosomes is achieved in a
straight forward way and has shown to be robust. Also, eight genetic operators have been developed
and tested. Two evaluation function parameter sets have been empirically derived. One for finding
a symmetry group transformation of a target image (GPS4) and one for finding a collage of a target
image (GPSI';)' The genetic algorithm has proven to be able to find symmetry group transformations
with an approximation quality up to 99% and collages with an approximation quality up to 88%,
which is a good result compared to the relatively few runs we could perform.

Our genetic algorithm runs for about 57.6 [hours] to encode a 500 x 500 pixel target image into a
2-dimensional IFS, existing of 50 affine transformations. The collage from which this IFS was
extracted had an approximation quality of 88% and the attraetor of the IFS had an approximation
quality of 80%. Since the average CPU-assignment was 15%, this means that the effective calculation
time for this collage was about 8.64 [hours]. In [ZOR88J it is reported that an interactive system,
operated by a trained user, took about 100 [hours] to compress a 780 x 1024 pixel image. In
[LEV88J it is reported that a simulated annealing based parallellized algorithm took 4 [hours] to find
a 2-dimensional IFS of 3 affine transformations for a 256 x 256 pixel image, with an approximation
quality of 95%. [n [SH091 J it is reported that a genetic algorithm took at least 10 [hours] to find
a I-dimensional IFS of 3 transformations. [n this latter case the collage problem has been simplified
to find the IFS of an image consisting of three separate Cantor sets. Of course this is comparable to
our symmetry group transformation approach, with which we obtained results up to 99%.

This leads us to the conclusion that our genetic algorithm as it is now, is already performing
reasonably well, compared to the other results in the field.

12.2. Recommendations on the user interface

A zoom facility should be implemented in order to be able to zoom in onto rendered fractal attractors
and onto the Mandelbrot set. Some preparations in this direction have already been made (see remark
section of source code headers).

The genetic parameter settings are currently controlled via global variables in the file all-h. A
sliderbox widget should be implemented with which this genetic parameter setting can be tuned.
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12.3. Recommendations on the genetic algorithm

The genetic algorithm has been validated and found to be robust. All runs described in chapter 11
were successfully terminated. The main recommendation in this area would be to apply a great
number of runs on different genetic parameter settings in order to get enough data to perform a
thorough statistical analysis. The empirically obtained parameter setting GPS4 is able to get symmetry
group transformations of images with an approximation quality up to 99%. The empirically obtained
parameter setting GPSI2 is able to perform IFS-encoding of a target image with an approximation
quality up to 88 %. So it seems to be the case that GPS4 is sufficient for its task (finding of symmetry
group transformations) but GPSI2 can further be improved as far as the task of finding IPS-codes of
images is concerned. When tuning GPSI2 the main area of concern should be the parameter set of the
evaluation function. We feel that the operator probabilities as defined in GPSI2 are good values.
Besides, different try outs of the intuitively felt to be "problem specific" genetic operator probability
set P = {O.O,O.O,O.O,O.25,O.O,O.25,O.25,O.25} on the symmetry group transformation task, gave
results with a maximum approximation quality of 79%. This implies that those problem specific
operators Scale, Rotate and Translate, together with Mutate are not powerful enough. Thus we need
the crossover and mutation parameters, which are in fact the basis of a genetic algorithm (see also
[SCH91] for an interesting theory about crossover-mutation trade oft). Also, from par. 11.6 it has
become clear that there is certainly need for the problem specific parameters.

Inserting in/rons (non-functional genes) into the chromosomes may be considered to increase the
success rate of the genetic algorithm [LEV91 ].

The current average member fitness evaluation time is 2.7 [seconds]. It is necessary to speed up this
evaluation time in order to get faster runs of the genetic algorithm. Parallellization may be considered,
such that each processor operates on a specific part of the pixel space.

In [WH191 ] deltll coding is introduced as a new search strategy for genetic algorithms, which allows
iterative searches with complete reinitialization of the population, preserving the progress already
made towards solving the optimization task. Delta coding is considered to effectively avoid what is
usually a difficult trade off between achieving fast search and sustained diversity (and thereby
avoiding premature convergence). Delta coding basically adjusts the population size by monitoring
its diversity. When the diversity decreases, the population size is accordingly decreased. Iteration is
halted when a certain minimum diversity has been reached. From then on the best solution is saved
as a starting point for the next delta iteration. Delta coding treats chromosomes not as parameters,
but as delta values (±o), which are added to a partial solution before being evaluated. So the next
delta iteration is restarted with an initial population which forms a hypercube of +0 around the
previous solution. After each iteration 0 is increased. In this case a more and more accurate search
around the optimum is performed. This is in fact comparable with the concept of simulated annealing.
We would recomment to implement the following variant of delta coding in our genetic algorithm.
The masks which are generated within the genetic operator functions Scale, Rotate and Translate are
to be divided by the number of the generation which is currently build. In this way we obtain
relatively more precise adjustments to the affine transformations as the search process proceeds. Of
course this implies a trade off between diversity and accuracy.

Implementation of variable chromosome lengths may be considered, where the chromosome encodes
a complete IFS instead of just one affine transformation. In [DAV91] some concepts of variable
chromosome encoding are treated.
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In our genetic algorithm the value of the evaluation function E(child) is directly assigned to the fitness
of that child. The probability that this child will be choosen as parent in the next generation, will be
directly proportional to its relative fitness in that next generation. It might be worth trying to apply
a different way of fitness assignment. In case of directly assigning child[i].fitness = E(child[i]), we
could sort the children by their fitness (which is already done by merging in our genetic algorithm)
and assign fitnesses according to child[i].fitness =S - i, where S is the population size. In this way
each member has a chance of being choosen which is equal to:

S-i
s

I>
i-t

=

In case of big populations this would increase the relative probability of best members to be choosen,
otherwise they might be "lost" in the diversity of the population. This is because otherwise their
probability is simply equal to their fitness divided by the population size, and since the fitness is at
most 1, this probability of being choosen can never exceed S -I, which can be a rather small number.

An interesting experiment as to genetic algorithms in general would be to vary the population size S
as function of the current generation g. Since genetic algorithms mimic certain properties of evolution,
why should we not mimic this additional property of evolution. Referring to chaos theory it might
in this case be interesting to use the logistic relationship S,+I =pS,(l-S,) for some appropriate JL.

12.4. Recommendations on IFs-encoding

During the practical stage of this graduation work, several ideas have grown about improving the IFS­
encoding process. Due to time considerations, we have not been able to implement those ideas. Some
of the recommended ideas can be carried into the genetic algorithm, others ask for a different
approach.

The most important recommendation on this field would be to search for a direct relationship between
an affine transformation Wi and its fitness, without first applying the time consuming step of
transforming the target image according to this transformation Wi' This would make it possible to
speed up the member evaluation time tremendously.

According to [BARSSb,MENS1] it might be considered to use a Recurrent ItemJed Function System
(RlFS) to model deterministic images. An RIPS is an extension of the IFS as defined in par. 8.1.
Unlike IFS-attractors, attractors of recurrent structures are not globally self affine, i.e. one does not
find smaller and smaller copies of the entire fractal model buried in it at every scale. Instead, data
redundancy is exploited through partial self-affinity.

It is worth to investigate whether the encoding of color and greytone images with use of the
Hutchinson distance as part of the evaluation function, will be successful.

It may be considered to try to solve the IFS-encoding problem with a neural network. The choice
between a genetic algorithm and a neural network is basically a time-space trade off, since a genetic
algorithm uses relatively much time and few memory, while a neural network uses relatively few time
and much memory.
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In this case it may be efficient to apply image segmentation to break down the image into segments
which have (almost) the same color or greytone. Each such segment could be encoded with the
collage approach. Of course the IFS-code of the whole image will in this case contain an offset for
each encoded segment. If the image is recursively divided into 4 symmetric segments, which are
placed in a qUDd-tree [HUN79,MAN90], then an alphabet of domain blocks could be constructed,
from which the image will be encoded. Since this method does not use the fractal properties which
are resident in almost every real world image, the compression performance will not be better than
that of the Discrete Cosine Transform [WAI90l. Some more interesting articles about the image
segmentation approach are given by [BHA91 ,KEL89,PEN84,RIG88].

Also, a collage for a monochrome image could be obtained by matching of the image boundary with
affine transformed boundary segments. An interesting article about this subject is [WIT89].

In [L1B87] an algorithm is presented to obtain the morphologicol skeleton of an image. A skeleton
S(x) of an image A returns the radius r of the maximal disk centered at the point x EA. A maximal
disk is the largest possible disk which doesn't exceed the boundary of A. The rib skeleton subset of
A, denoted by S,(A), is defmed to be the set of all skeleton points x E A, such that S(x) = r. An
important property of the skeleton function is the fact that it contains all the information necessary
to reconstruct the original image. The skeleton of an image will contain certain branch points, and
one of them can be considered as the central branch point, Le. the center of the image. The vectors
of the central branch point to the other branch points represent the affine transformations of the
sought for IFS. If some parts of the image are still uncovered, they can be covered with maximal
disks, which are found by locating skeleton points x in this uncovered region, and calculating S(x) to
obtain the radius of the maximal disk. Since the skeleton of an image can be computed in O(n) time
(with n the amount of skeleton subsets), this approach looks very promising at a first glance, but it
works only for 2-dimensional monochrome images with high fractal dimension, Le. close to 2. This
can be made clear by comparing for instance the structures leafandfem (see appendix C). In other
words, we could state that this approach will only work satisfactory for images which can be
represented as simple polygons, Le. polygons which do not cut themselves. The structure leaf has
a fractal dimension of about 1.96, while the structure fern has a fractal dimension of about 1.78 (see
table 3.1). As we can easily check, the skeleton of the structure leaf will be equal to its nerve
structure (compare to real leaves), but the skeleton of the structurefem will be equal to the structure
itself, because the maximal disks in all points of the image have a diameter of 1 [pixel]. It is obvious
that a skeleton which is equal to the structure itself is of no use.

It may also be considered to first scan the boundary of a target image and represent it as a (simple)
polygon. In [ATA91] an O(n) algorithm (with n the amount of polygon vertices) is presented. Maybe
the current time consuming steps of transforming and evaluating all pixels can be speeded up by only
applying those operations on the polygon vertices.

An approach to tackle the IFS-encoding problem would be the following. Suppose the target image
A contains IA I [pixels]. Then build an IFS consisting of IA I affine transformations, i.e.:

([xkft ,Xrigh/] x [y..""., 'YIowe,] , { wj(x,y) = (ajx + bjy + e, cjx + djy + f) : i = 1.... , IA I },P)

such that:
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This is of course a trivial IFS-encoding which doesn't establish any data compression at all. Then
enlarge the parameters a j ,bi ,ei and di of each transformation Wi and transform the target image
according to this transformation Wi' Next remove the transformations from the IFS which are
completely covered by Wi' This could be done in a recursive way. According to the collage theorem
we can control the maximal tile sizes in order to get a small contractivity factor, which will assure
us a good approximation quality. Of course this is a trade off between encoding accuracy and data
compression.

In [BUD90] it is shown that recursive techniques in VLSI-design lead in a very natural way to certain
fractals which reflect the asymptotic geometric properties of the design if its degree of recursiveness
tends to infinity. Recursive design consists of breaking a problem into smaller problems in such way
that from solutions to the smaller problems one can easily combine a solution to the entire problem.
The mentioned article is based on a REcursive LAyout Computing System (RELACS). It may be
interesting to investigate if and in which way the IFS-principle can be used in VLSI-design processes
which are currently studied.
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AppendixA
IFS-CODEC users guide

As part of the work involved with this master thesis, an integrated algorithm was developed. The goal
of this algorithm is to:

(i) facilitate deterministic IFS-decoding (with and without condensation);

(ii) facilitate nondeterministic IFS-decoding (with and without condensation);

(iii) facilitate interactive IFS-encoding of an image;

(iv) facilitate automatic IFS-encoding of an image.

The IFS-CODEC algorithm is written in C, is embedded in the OSF/Motif~ X Window System~ and
runs under the UNIX'" operating system. IFS-CODEC consists of about 7500 lines of source code
(see appendix B) and is implemented on a UP 90001750 system.

A.l. The user interface

We have choosen for the OSFIMotif~ X Window System~ because it guarantees a good-looking
software system, but also because it is an industry standard. The development of the user interface
has mainly been ruled by information ergonomic considerations. The most important one is the first
law of information ergonomics: developer ;it user. But since the users of the algorithm are also
UNIX'" users, we felt that the freedom supported by UNIX'" should also be carried into the IFS­
CODEC algorithm. Besides, making an algorithm "idiot proof' implies severe limitations and doesn't
at all imply user friendlyness.

A.2. Getting started

Make sure that the following files are resident in the same directory: all-h, ifs*, boxes.o,
collage.o, control.o, draw.o, exposures. 0, filehandler.o, genetic.o,
graphics.o, handle.o, ifs.o, menubars.o, messages.o, operators.o, render.o,
specials.o, strings.o, tracker.o, writer.o.
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After typing" Hs" from the invocation screen, the IFS-CODEC main window will pop up, consisting
of three menubars, two (upper) text windows and two (lower) pixel windows. The grids of the pixel
windows are default organized as follows:

(i) origin (0,0) in center of window;

(ii) y increasing upwards;

(iii) x increasing to the right.

After the IFS-CODEC window has popped up, the menu selections can either be made by mouse or
by keyboard. If it is done by mouse, then the mouse pointer must be placed on the desired part of
the menubar and the htli mouse button must be pressed. When this button is released, the selection
is made. If selection is established by keyboard, the traversal is performed by the direction keys and
the selection is done by hitting the return key. Pressing an (underlined) mnemonic for a menu item
in the most recently posted menu, selects that item. You can press the "Help" button to get more
information. From then on the system should be self explanatory.

First specify a filename without an extension, because the program will determine the appropriate
extension by itself. By looking at the file extensions (with UNJXft command "ls") you can see what
kind of data each file contains:

(i) "filename. img": a sequence of (x,y) coordinates which specify a user drawn image;

(ii) "f ilename. col": a sequence of (x,y) coordinates which specify a collage image;

(iii) "f ilename. man": IFS-code generated with interactive IFS-encoding;

(iv) "f ilename. aut": IFS-code generated with automatic IFS-encoding;

(v) "filename. Hs": IFS-code generated with a source editor.

Of course, each filename and extension can be modified under UNIX"'. If settings of program
parameters are changed interactively, the current values will be automatically updated in the according
text window.

A.3. Viewing/editing source images

With this facility you can operate upon images. First select a file by the "Select .file" option.
Then apply each of the following steps as many times as desired:

(i) To load an existing image, contained in "filename. img", select "Qptions ...
yiewedit source image ... ~oad file";

(ii) To put the cursor in draw mode, select "Qptions ... yiewedit source image ...
I2.raw (toggle)". Now you can draw in the pixel window by pushing the left mouse
button and using the mouse pointer as pencil. Each time the former selection is applied,
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the mode toggles between draw mode and normal mode (the current mode is written to
the invocation screen);

(iii) To put the cursor in erase mode, select "Qptions -+ ~iewedit source image -+

~rase (toggle)". Now you can erase in the pixel window by pushing the left mouse
button and using the mouse pointer as erasor. Each time the former selection is applied,
the mode toggles between erase mode and normal mode (the current mode is written to
the invocation screen);

(iv) To save the current image, which is contained in the pixel window, to the file
"filename. img" , select "Qptions -+ ~iewedit source image -+ ~ave file".

A.4. Viewing/editing IFS-codes

It is possible to view the contents of an IFS-code file, both textual and graphical. First select a file
by the "Select file" option. Then apply one of the following three steps:

(i) To achieve a graphical view, select "Qptions -+ Viel:ledit IFS-code -+ Qraphical
view -+ .ext", where" .ext" is one of the three files (.aut, .man, .ifs) which
contain an IFS-code. On the pixel window the graphical effect of the affine
transformations is shown by applying them on a rectangle;

(ii) To achieve a textual view, select "Qptions -+ Viel:ledit IFS-code -+ !extual view
-+ • ext", where" . ext" is one of the three files (. aut, •man, . its) which contain an
IFS-code. On the pixel window the parameters a,b,c,d,e,f,p of all affine transformations
in the file are displayed. If the IFS doesn't fit completely in the pixel window, then a
scrollbar will automatically pop up, with which you can scroll the IFS up and down;

(iii) If you select "Qptions -+ Viel:ledit IFS-code -+ Textual ~dit -+ • ext", where
".ext" is one of the three files (.aut, .man, . its) which contain an IFS-code, then a
message will pop up. This message tells you that editing such file can be done with VI
or Emacs and which format has to be obeyed if you do so.

A.5. IFS-decoding

The IFS-decoding facility operates on files that contain IFS-codes, i.e. files with extensions" . its",
" . man" or " . aut". After a filename (without an extension) is selected by the "Select file" option,
the following actions must be applied:

(i) First decide whether you want to decode with (default) or without condensation. You can
toggle between those options by pressing "Render control -+ £ondensation". The
current selection is written to the invocation screen. If decoding with condensation is
selected, then the initial condensation set consists of all contents (except coordinate axes)
of the according pixel window. These contents may be influenced by the use of



A. IFS-CODEC users guide 155

"I2.isplay ... £lear" and "Qptions ... Yiewedit source image". From then on you
can either load a file or draw/erase a picture yourself with the mouse;

(ii) Next determine the amount of iterations by "Bender control ... Def ine
#iterations". A sliderbar will pop up with which you can vary the amount of desired
iterations between 1 and 100;

(iii) Next determine if and how the startpixel has to be defined by "Bender control ...
Def ine .§tartpixel". This is not really essential for the decoding result, but only
influences the fact whether or not the pixels which are generated by the first few
iterations will be part of the attractor. The file "codes" (see appendix C) contains some
examples of IFS-eodes and the appropriate startpixel settings;

(iv) Next determine if and how the origin has to be redefined by "I2.isplay ... Bedefine
origin". The origin is default defined to (0,0) which is the center of the pixel window.
You can check where the origin is actually located by selecting "I2.isplay ... ~es
(toggle)" which will toggle the coordinate axes on the pixel window;

(v) Finally invoke the IFS-decoding process by selecting one of the following two options:

"Qptions ... I2.eterministic IFS-decoding .... ext"

"Qptions ... ~ondeterministic IFS-decoding .... ext"

From chapter 8 we know that deterministic IFS-decoding will neglect the probabilities,
and nondeterministic IFS-decoding will not.

If you want to verify the effect of a single affine transformation on a certain image, then load the
image, set the amount of iterations equal to 1, set the condensation mode to FALSE and invoke the
deterministic IFS-decoding process according to point (v) above.

A.6. Interactive IFS-encoding

The interactive IFS-encoding facility generates files that contain IFS-codes (with extension" .man")
and files that contain graphical collages (with extension" •col "). After a filename (without extension)
is selected by the "Select .file" option, the following actions must be applied:

(i) First make sure that the pixel window contains the image which must be encoded. If this
is done by loading an ". img" file it must be considered wheather or not the current
filename has to be changed, because it may be the case that there already exists a ".man"
file with the current filename. In this case the output of the IFS-encoding session will be
appended to that file;

(ii) Next determine if and how the origin has to be redefined by "I2.isplay ... Redefine
origin". Note: while making a collage it is not possible to redefine the origin anymore
and any attempt to do so will result in a warning;
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(iii) Next add a similitude by selecting "Qptions ... ,!nteractive IFS-encoding ... Add
similitude". In the pixel window appears a 80% down scaled copy of the original
target image, which is still visible;

(iv) Next select "Qptions ... ,!nteractive IFS-encoding ... :x:ransform similitude".
A box with six sliderbars will pop up. You can move the sliderbars by selecting them
with the mouse pointer and then dragging them to the left or to the right while the left
mouse button is kept pressed. Also, you can put the mouse pointer at the far left or at
the far right of the sliderbar and move the slider by clicking the left mouse button. Each
click will move the slider a distance of 10% of the sliderbar width. If the similitude is
to be just rotated, then X-rotation and Y-rotation sliders have to be moved the same
amount. If the similitude is just to be scaled the the X-scaling and Y-scaling sliders have
to be moved the same amount;

(v) If the similitude is to be fixed, select "Qptions ... ,!nteractive IFS-encoding ...
lix similitude". The program will automatically save the parameters a,b,c,d,e and
f(which are calculated from the slider values) to the file "filename.man";

(vi) If the original image is not yet totally covered with similitudes (i.e. the collage is not yet
ready), new similitudes can be added, transformed and fixed, according to respectively
steps (iii), (iv) and (v). When the collage is finished, select "Qptions ... ,!nteractive
IFS-encoding ... §ave collage". The program now calculates the probabilities of
the saved affine transformations and adds them to the file "filename •man" .

If you want to add a transformation to an already existing collage, then simply select its filename and
apply all steps (iv), (v) and (vi). Of course you can also create an IFS-code directly from a text
editor. Such a file should be saved with the extension " • its". if you want to let the program take
care of the probabilities, just apply "mv filename. its filename.man" under UNIX" and select
the filename. Then just apply step (vi), which will calculate the probabilities and add them to the file.
Note: make sure that an editor-created IFS-code file obeys the format as displayed in the message
which appears when selecting "Qptions ... Vie~edit IFS-code ... Textual ~dit".

A.7. Automatic IFS-encoding

When applying an automatic IFS-encoding run, a file "monitor.dat" will be automatically created.
This monitor file contains all kinds of information about a genetic run. In appendix D a typical output
of this file is given. There are a lot of parameter settings involved with this option. Due to time
constraint considerations, most of these parameters can not yet be interactively controlled by means
of the user interface. For the time being, those parameters must be directly set in the file "all. h"
by applying the following steps:

(i) Decide whether you want to watch the state space search or not. If so, set the global
constant DISPLAY to the value 1, else to the value O. If DISPLAY is set to 1, the original
target image will get lost from the screen and the state space search of the genetic
algorithm is displayed on the screen by means of the successive population members.
The drawback of this option is the fact that it takes about 50% more CPU-time on an
IFS-encoding run;
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(ii) Decide whether you want to run the algorithm in the debug mode or not. If the global
constant DEBUG is set to 1, additional information will be generated in the monitor file.
This additional information basically deals with the processes of parent and operator
selection, mask generation and child creation;

(iii) Decide what the amount of generations and the population size should be. Those values
are set by resp. the global constants MAX_GENERA110NS and POPULA110N_SIZE;

(iv) Decide if you want to change the probabilities with which the genetic operators
MacroCrossover, MicroCrossover, MixedCrossover, Mutate, Jump, Scale, Rotate and
Translate are applied. If so, adjust the values of the according global constants
P_MACRO, P_MICRO, P_MlXED, P_MUTA1E, PJUMP, P_SCALE, P_ROTA1E and
P_TRANSLA1E. It is important to make sure that the sum of those probabilities is 1;

(v) Decide what the maximum encoding error should be. This value is represented by the
global variable EPSILON which must have an integer value in the interval [0%,100%).
The default value is 2%. Of course it is not certain that the encoding will be established
with a maximum encoding error EPSILON. It may for instance be the case that the
amount of generations or the population size is not large enough.

After the above global constants in the file"all. h" have been adjusted, the IFS-encoding session can
be started. To encode an image, first select a filename and make sure that the image which is to be
encoded, is contained in the according pixel window. Then apply the following steps:

(vi) If you have set the global constant DISPLAY to 1 (see step (i)), then the original image
will get lost from the screen and the state space search of the genetic algorithm will be
displayed on the screen by means of the successive population members. If you want to
keep the target image continuously visible during the search process, you must load the
image into the opposite window from the one you want to use for the encoding;

(vii) Select "Qptions -. automatic IFS-encoding -. Identity (toggle)" if you want
to search for the identity transformation, which maps the target image onto itself. In case
of a symmetric image (like a square) it is possible that a symmetry group transformation
will be found (for example a rotation by 90 [degrees]). The current selection is written
to the invocation screen. This option is basically meant for validation purposes with
respect to the genetic algorithm;

(viii) Select "Qptions -. automatic IFS-encoding -. £alculate" to start the encoding
process. If IDENJ11Y is set to TRUE then only one transformation (the identity or
another member of the symmetry group of the image) will be sought for. If IDENJ11Y
is set to FALSE (default) then a collage will be sought for. The algorithm will in this
case terminate as soon as at least one of the following conditions holds:

- all members of generation MAX_GENERATIONS have been evaluated;
- the current encoding error is less than EPSILON;
- the collage consists of MAX_TRANSFORMA110NS affine transformations.
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During the encoding process, the number of the affine transformation which is encoded, is displayed
on the invocation screen. In the text window the field "iteration" displays the current generation.
After termination of the program the pixel window will contain the collage of all found affine
transformations applied on the target image. The file "f ilename. aut" will contain these affine
transformations.

A.8. Special utilities

The special utilities contain six options:

(i) "~ixset distance" calculates the Pixset distance dp between the images contained in
the left and right pixel windows. The result will be written to the invocation screen;

(ii) "~ecials -+ Bectangle draws a rectangle on the according pixel window, which can
be used for making collages such as the Menger sponge or the Sierpinski triangle. In this
case one doesn't need to have a target image of those structures. For example to create
a collage of a Sierpinski triangle one does only have to add three similitudes, each with
X-scaling and Y-scaling both set to 50%. Two of those similitudes must cover the lower
half of the rectangle, while the third is placed centered on the top of the two others;

(iii) "~ecials -+ ~ifurcation diagram" draws the bifurcation diagram of the logistic
map: j{x) =ax(1-x). For more information see chapter 4. There are no parameter
settings involved with this option;

(iv) "~ecials -+ Handelbrot set" draws the Mandelbrot set M of the function
j{z) =Z2+ C in the complex c-plane (see chapter 6). If "Qisplay -+ bxes (toggle)"
was selected first, then the real and imaginary axis will be displayed. Before you draw
M, first select the amount of iterations that must be applied to each pixel. This can be
done with "Bender control -+ Define #iterations". The higher the amount of
iterations, the more accurate (and slower!) M is rendered. Due to screen resolution, more
than 25 iterations will not visibly increase the picture quality;

(v) "~ecials -+ Moment ~equence" calculates the first 5 complex moments of the image
which is displayed in the according window (see par. 9.4 and 10.3). The moments are
calculated with respect to the current origin setting. The result is written both to the
invocation screen and to the file "filename.mom";

(vi) "~ecials -+ fractal dimension" calculates the fractal dimension of the image
which is displayed in the according window. The calculation is done according to
example 3.2.
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APpendixB

IFS-CODEC source code

#******************************************************************************
# CopyrightCc) Eindhoven University of Technology CTUE,NL)
# Faculty of Electrical Engineering CE)
# Design Automation Group CES)
# Mail address emilevdaviper.es.ele.tue.nl
# Project Fractal imagecompression with Iterated Function Systems
# Supervisor Prof. Dr. Ing. J.A.G. Jess
# File Makefile
# Purpose Contains IFS-CODEC makefile
# Part of Not applicable
# Created on April 12, 1992
# Created by : Emile van Duren
# Last modified on: December 17, 1992
# Modified by Emile van Duren
# Remarks : None
#******************************************************************************

#
# name of executable file
#
NAME = Hs
#
# libraries to be linked Cwhen debugging: change option -0 into -g)
#
CFLAGS = -0 -1/usr/include/X11R4 -1/usr/include/Motif1.1
LDFLAGS = -0 -L/usr/lib/X11R4 -L/usr/lib/Motif1.1
#
# sourcef i Ies
#
SOURCES = \

boxes.c \
collage.c \
control.c \
draw.c \
exposures.c \
filehandler.c \
genetic.c \
graphics.c \
handle.c \
Hs.c \
menubars.c \
messages.c \
operators.c \
render.c \
specials.c \
strings.c \
tracker.c \
writer.c

#
# convert sourcefiles into objectfiles
#
OBJECTS = $CSOURCES:.c=.o)
#
# libraries to be linked
#
LIBS = -IXm -IXt -IX11 -IPW -1m
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#
# actual cCJq)i ler cOllllland, to be invoked with "make"
#
S(NAME): S(OBJECTS)

cc S(lDFlAGS) -0 S(NAME) S(OBJECTS) S(lIBS)
#
# clean all directories, to be invoked with "make clean"
#
clean:

rm -f S(OBJECTS)
#
# make backup of sourcefiles, all.h and this file,
# to be invoked wi th "make backup"
#
backup:

cp /users1/emilevd/work/codes /users1/emilevd/codes/
cp /users1/emilevd/work/*.ifs /users1/emilevd/codes/
cp /users1/emilevd/work/*.img /users1/emilevd/images/
cp /users1/emilevdlwork/*.c /users1/emilevd/sources/
cp /users1/emilevd/work/*.h /users1/emilevd/lib/
cp /users1/emilevd/work/Makefile /users1/emilevdlsources/

B. IFS-CODEC source code
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1******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdaviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File all.h
* Purpose Contains all necessary libraryfiles for IFS-CODEC
* Part of IFS-CODEC
* Created on May 08, 1992
* Created by : Emi le van Duren
* Last modified on: December 02, 1992
* Modified by Emile van Duren
* Remarks : None
*****************************************************************************1

1*
* includefi les
*1

#include<math.h>
#include<stdio.h>
#include<string.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<X11/StringDefs.h>
#include<Xm/Xm.h>
#include<Xm/BulletinB.h>
#include<Xm/CascadeB.h>
#include<Xm/DrawingA.h>
#include<Xm/Form.h>
#include<Xm/Frame.h>
#include<Xm/Label.h>
#include<Xm/MessageB.h>
#include<Xm/PushB.h>
#include<Xm/RoWColumn.h>
#include<Xm/ScrollBar.h>
#include<Xm/SelectioB.h>
#include<Xm/Separator.h>
#include<Xm/Text.h>
1*
* global constants
*1

#define AREA WIDTH 500
#define DEBUG 0
#define DISPLAY 1
#define EPSILON 2
#define EXTENDED 0
#define FALSE 0
#define IDENTITY 0
#define MAX ARGS 15
#define MAX-GENERATIONS 10
#define MAXLINES 500
#define MAXLINESIZE 60
#define MAX TRANSFORMATIONS 2
#define PI 3.141592654
#define PIXEL AREA HEIGHT 500
#define P JUMP 0.11
#define P-MACRO 0.15
#define P-MICRO 0.15
#define P-MIXED 0.15
#define P-MUTATE 0.011
#define POPULATION SIZE 10
#define P ROTATE 0:12
#define P-SCALE 0.12
#define P-TRANSLATE 0.12
#define SCALEBOX WIDTH 250
#define TEXT AREA HEIGHT 215
#define TRUE-1 -
1*
* global structures
*1

typedef struct {
int xrotation,yrotation,xscaling,yscaling,xshift,yshift,probability;

} Affine;

161



162 B. IFS-CODEC source code

typedef struct {
float fitness;
int a,b,c,d,e,f;

} ChrOlllOsome;

typedef struct {
Boolean filehelp,fileopenwarning,originwarning,tablemessage;

} Guard;

typedef struct {
float a,b,c,d,e,f,p;

} IFScode;

typedef struct {
Widget box,slider,okbutton;

} N\.Ilt)erbox;

typedef struct {
Widget box,okbutton,xslider,yslider;

} Positionbox;

typedef struct {
Widget box,scrollber,okbutton;

} Scrollbox;

typedef struct {
Widget box,okbutton,xscslider,yscslider,xrtslider,yrtslider,xshslider,yshslider;

} Transforri:lox;

typedef struct {
Widget box,okbutton,zoomnowbutton,xoffsetslider,yoffsetslider,zoomslider;

} Zoorixlx;

typedef struct
char
int
int
long int
Affine
Boolean
Dimension
GC
Guard
N\.Ilt)erbox
Pixmap
Positionbox
Scrollbox
Transforri:lox
Zoorixlx

} Drawdata;

{

mode,*filename;
ncolors,oldpointx,oldpointy,xoffset,yoffset,zoomfactor;
niterations,xorigin,yorigin,xstart,ystart;
npixels;
transformation;
axes,condensation,drawgrab,erasegrab,firsttime,identity,unzoom:
width,height;
gc;
first;
iterationbox;
pix,sim,col;
originbox,startpixelbox;
scrollbox;
similitudebox;
zoorixlx;

struct {
*ext,*chars[MAXLINES1;
descent,fontheight,nlines,top;
length[MAXLINES1,rbearing[MAXLINES1:
*font;

typedef
char
int
int
XFontStruct

} Scrolldata;

typedef struct {
char *mode *srce *size *cont *save *orgn *init *amit *iter *zoom·} Textdata; , , , , , , , , , ,

/*
* globel variables
*/

int ac,maxiterations;
Arg al[MAX ARGS1;
Boolean firsthelp,printmessage,copyrightmessage,debug;
Drawdata leftpixeldata,rightpixeldata,lefttextdata,righttextdata;
Textdata LText,RText;
Scrolldata LScroll,RScroll;
Widget form, leftpixelarea,rightpixelarea, lefttextarea,righttextarea;
Widget lefttextframe,righttextframe,leftpixelframe,rightpixelframe;
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/******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdaviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File boxes.c
* Purpose creates scalebox and promptbox widgets
* Part of IFS-CODEC
* Created on June 04, 1992
* Created by : Emi le van Duren
* Last modified on: December 10, 1992
* Modified by Emi le van Duren
* Remarks : None
*****************************************************************************/

#include "all.h"

/*
* forward function declarations
*/

void AmountOflterationsHandler();
void ChangeStartPixelHandler();
void ClearPixelArea();
void DrawAxesO;
void FileHelpCallback()i
void ManageSimilitude():
void OriginHandler():
void ScrollBarMovedHandler():
void SelectFile():
void UrmanageO:
void ZoomController():
void ZoomHandler():
Drawdata *GetWindowData()i
Scrolldata *GetScrollData():

/* contained in handle.c */
/* contained in handle.c */
/* contained in draw.c */
/* contained in draw.c */
/* contained in messages.c */
/* contained in transfonn.c */
/* contained in handle.c */
/* contained in handle.c */
/* contained in filehandler.c */
/* contained in handle.c */
/* contained in control.c */
/* contained in handle.c */
/* contained in control.c */
/* contained in control.c */

Widget CreatePromptBox(parent,location)
Widget parenti
char location;

{
Widget promptboXi
Xmstring xmstr:
/*
* create promptbox to appear when fileselectionbutton in filemenupane of
* uppermenu is pressed
*/

ac =0:
if (location == 'l')

(

xmstr =XmstringCreate("select leftfile",xmsTRING_DEFAULT_CHARSET):

rightfile",XmsTRING_DEFAULT_CHARSET)i

}

if (location == 'r')
{

xmstr =XmstringCreate("select
}

XtSetArg(al[acl,XmNdialogTitle,xmstr): ac++:
promptbox =XmcreatePromptDialog(parent,"PromptBox",al,ac):
XtAddCallback(promptbox,XmNhelpCallback,FileHelpCallback,location):
XtAddCallback(promptbox,XmNokCallback,SelectFi le, location):
XmstringFree(xmstr):
return(promptbox):

}

Widget CreateSimilitudeTransformBox(parent,location)
Widget parent;
char locati on:

{
int mode:
Drawdata *data:
Xmstring xmstr:
Affine *transfonnationi
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/*
* parameter initialization
*/

data =GetWindowData(location,'p')i
/*
* create transformbox to appear when transform similitudebutton in viewedit
* ifs table menu of optionsmenu of left or rightmenu is pressed
*/

ac =Oi
if (location == 'l')

(

mode =0i
xmstr =XmstringCreate("transform left similitudell,xmsTRING_DEFAULT_CHARSET)i

)
if (location == 'r')

(

mode = 1i
xmstr =XmstringCreate(lItransform right similitude",XmsTRING_DEFAULT_CHARSET)i

)
XtSetArg(al[acl,XmNdialogTitle,xmstr)i aC++i
data->similitudebox.box =xmcreateFornOialog(parent,ITransfordox",al,ac)i
XmstringFree(xmstr)i
/*
* create a X-scaling scrollbar with range 0 to 100 [Xl
*/

ac =0i
xmstr =XmstringCreate(" X-scaling [percentl",XmsTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl,XmNtitleString,xmstr)i aC++i
XtSetArg(al[acl,XmNminimum,O)i aC++i
XtSetArg(al[acl,XmNmaximum,100)i ac++i
XtSetArg(al[acl,XmNwidth,SCALEBOX_WIDTH)i aC++i
XtSetArg(al[acl,XmNorientation,XmHORIZONTAL)i aC++i
XtSetArg(al[acl,XmNvalue,80); ac++;
XtSetArg(al[acl,XmNshowValue,TRUE)i aC++i
XtSetArg(al[acl,XmNtopAttachment,XmATTACH_FORM)i ac++;
XtSetArg(al[acl,XmNleftAttachment,XmATTACH_FORM); aC++i
XtSetArg(al[acl,XmNrightAttachment,XmATTACH_FORM); ac++;
data->similitudebox.xscslider =XmcreateScale(data->similitudebox.box,

IXscSlider" al ac)·
XtAddCallback(data->similitudebox.xscslider,XmNd;agCallback,

Managesimilitude,mode)i
XtAddCallback(data->similitudebox.xscslider,XmNvalueChangedCallback,

ManageSimilitude,mode);
XtManageChild(data->similitudebox.xscslider);
XmstringFree(xmstr)i
/*
* create a V-scaling scrollbar with range 0 to 100 [Xl
*/

ac =0i
xmstr =XmstringCreate(" V-scaling [percentl",XmsTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl,XmNtitleString,xmstr)i ac++;
XtSetArg(al[acl,XmNminimum,O); aC++i
XtSetArg(al[acl,XmNmaximum,100); ac++;
XtSetArg(al[acl,XmNwidth,SCALEBOX_WIDTH)i aC++i
XtSetArg(al[ac],XmNorientation,XmHORIZONTAL); ac++;
XtSetArg(al[acl,XmNvalue,80); aC++i
XtSetArg(al[acl,XmNshowValue,TRUE); aC++i
XtSetArg(al[acl,XmNleftAttachment,XmATTACH_FORM); aC++i
XtSetArg(al[acl,XmNrightAttachment,XmATTACH_FORM)i aC++i
XtSetArg(al[acl,XmNtopAttachment,XmATTACH WIDGET); aC++i
XtSetArg(al[acl,XmNtopWidget,data->simiLitudebox.xscslider); aC++i
data->similitudebox.yscslider = XmcreateScale(data->similitudebox.box,

"YscSl ider",al,ac);
XtAddCalLback(data->similitudebox.yscslider,XmNdragCallback,

ManageSimilitude,mode+2)i
XtAddCallback(data->similitudebox.yscslider,XmNvalueChangedCallback,

ManageSimilitude,mode+2)i
XtManageChild(data->similitudebox.yscslider)i
XmstringFree(xmstr);
/*
* create a X-rotation scrollbar with range -180 to 180 [degreesl
*/

ac =0;
xmstr =XmstringCreate(" X-rotation [degreesl",XmsTRING_DEFAULT_CHARSET);
XtSetArg(al[acl,XmNtitLeString,xmstr)i aC++i
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XtSetArgCal[acl,XmNminimum,-180)j aC++j
XtSetArgCal[acl,XmNmaximum,180); ac++;
XtSetArg(al[acl,XmNwidth,SCALEBOX_WIDTH); ac++;
XtSetArg(al[acl,XmNorientation,XmHORIZONTAL)j aC++j
XtSetArg(al[acl,XmNvalue,O); ac++;
XtSetArg(al[acl,XmNshowValue,TRUE); ac++;
XtSetArg(al[acl,XmNleftAttachment,XmATTACH_FORM); ac++;
XtSetArg(al[acl,XmNrightAttachment,XmATTACH_FORM); ac++;
XtSetArg(al[acl,XmNtopAttachment,XmATTACH_WIDGET); ac++;
XtSetArg(al[acl,XmNtopWidget,data->similitudebox.yscslider)j aC++j
data->similitudebox.xrtslider = xmcreateScale(data->simi 1itudebox. box,

"XrtSl iderll , al, ac);
XtAddCallback(data->similitudebox.xrtslider,XmNdragCallback,

ManageSimilitude,mode+4);
XtAddCallback(data->similitudebox_xrtslider,XmNvalueChangedCallback,

ManageSimilitude,mode+4);
XtManageChild(data->similitudebox.xrtslider)j
XmStringFree(xmstr);
/*
* create a V-rotation scrollbar with range -180 to 180 [degreesl
*/

ac = 0;
xmstr = XmStringCreate(" V-rotation [degreesl",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al[acl,XmNtitleString,xmstr); aC++j
XtSetArgcal[acl,XmNminimum,-180); ac++;
XtSetArg(al[acl,XmNmaximum,180); ac++;
XtSetArg(al[acl,XmNwidth,SCALEBOX_WIDTH); ac++;
XtSetArg(al[acl,XmNorientation,XmHORIZONTAL); ac++;
XtSetArg(al[acl,XmNvalue,O); ac++;
XtSetArg(al[acl,XmNshowValue,TRUE); ac++;
XtSetArg(al[acl,XmNleftAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [acl,XmNrightAttachment,XmATTACH_FORM); ac++;
XtSetArg(al[acl,XmNtopAttachment,XmATTACH_WIDGET); ac++;
XtSetArgCal[acl,XmNtopWidget,data->similitudebox.xrtslider); ac++;
data->similitudebox.yrtslider = XmcreateScale(data->similitudebox.box,

"YrtSlider" al ac)'
XtAddCallback(data->similitudebox.yrtslider,XmNd;agCallback,

ManageSimilitude,mode+6)j
XtAddCallback(data->similitudebox.yrtslider,XmNvalueChangedCallback,

ManageSimilitude,mode+6);
XtManageChild(data->similitudebox.yrtslider);
XmStringFree(xmstr);
/*
* create a X-translation scrollbar with range -250 to 250 [pixelsl
*/

ac = 0;
xmstr = XmStringCreate(" X-translation [pixelsl",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al[acl,XmNtitleString,xmstr); ac++;
XtSetArg(al[acl,XmNminimum,-250); ac++;
XtSetArgCal[acl,XmNmaximum,250); ac++;
XtSetArg(al[acl,XmNwidth,SCALEBOX_WIDTH); ac++;
XtSetArg(al[ac],XmNorientation,XmHORIZONTAL); ac++;
XtSetArg(al[ac],XmNvalue,O); ac++;
XtSetArg(al[acl,XmNshowValue,TRUE); aC++j
XtSetArg(al[acJ,XmNleftAttachment,XmATTACH_FORM); aC++j
XtSetArg(al[acl,XmNrightAttachment,XmATTACH_FORM)j ac++;
XtSetArg(al[acl,XmNtopAttachment,XmATTACH_WIDGET); ac++;
XtSetArg(al[acJ,XmNtopWidget,data->similitudebox.yrtslider); ac++;
data->similitudebox.xshslider =XmcreateScale(data->similitudebox.box,

IIXsnSliderll ,al,ac);
XtAddCallback(data->similitudebox.xshslider,XmNdragCallback,

ManageSimilitude,mode+8);
XtAddCallback(data->similitudebox.xshslider,XmNvalueChangedCallback,

ManageSimilitude,mode+8);
XtManageChi ld(data->simi I itudebox.xshsl ider);
XmStringFree(xmstr)j
/*
* create a V-translation scrollbar with range -250 to 250 [pixels]
*/

ac =0;
xmstr = XmStringCreateC" V-translation [pixelsJ",XmsTRING_DEFAULT_CHARSET);
XtSetArg(al[acl,XmNtitleString,xmstr); ac++;
XtSetArg(al[acl,XmNminimum,-250); ac++;
XtSetArg(al[acl,XmNmaximum,250); ac++;
XtSetArg(al[ac],XmNwidth,SCALEBOX_WIDTH); ac++;
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mode =0;
xmstr =XmstringCreate("redefine left origin",xmsTRING_DEFAULT_CHARSET);

XtSetArg(al[ae],XmNorientation,XmHORIZONTAL); ae++;
XtSetArg(al[ae],XmNvalue,O); ae++;
XtSetArg(al[ae],XmNshowValue,TRUE); ae++;
XtSetArg(al[ael,XmNleftAttaehment,XmATTACH FORM); ae++;
XtSetArg(al[ael,XmNrightAttaehment,XmATTACH_FORM); ae++;
XtSetArg(al[ae],XmNtopAttaehment,XmATTACH_WIDGET); ae++;
XtSetArg(al[ael,XmNtopWidget,data->similitudebox.xshslider); ac++;
data->similitudebox.yshslider = XmcreateSeale(data->similitudebox.box,

IYshSlider" al ae)·
XtAddCallbaek(data->similitudebox.yshslider,XmNd;agcallbaek,

ManageSimilitude,mode+10);
XtAddCallbaek(data->similitudebox.yshslider,XmNvalueChangedCallbaek,

ManageSimilitude,mode+10);
XtManageChild(data->similitudebox.yshslider);
XmstringFree(xmstr);
1*
* create OK-button
*1

ae = 0;
XtSetArg(al[ael,XmNleftAttaehment,XmATTACH_FORM); ae++;
XtSetArg(al[ael,XmNrightAttaehment,XmATTACH_FORM); ae++;
XtSetArg(al[ael,XmNbottomAttaehment,XmATTACH_FORM); ae++;
XtSetArg(al[ael,XmNtopAttaehment,XmATTACH_WIDGET); ae++;
XtSetArg(al[ael,XmNtopWidget,data->similitudebox.yshslider); ac++;
data->similitudebox.okbutton =xmcreatePushButtonGadget(data->similitudebox.box,

"OK" al ae)·
XtAddCallbaek(data->similitudebox.okbutton,XmNaeti~at~Callbaek,Unmanage,

data->similitudebox.box);
XtManageChild(data->similitudebox.okbutton);
1*
* return value of this function
*1

return(data->similitudebox.box);
}

Widget CreateoriginBox(parent,location)
Widget parent;
char location;

{

int mode;
Drawdata *data;
Xmstring xmstr;
int xvalue,yvalue;
1*
* parameter initialization
*1

data = GetWindowData(loeation,'p');
xvalue =data->xorigin • data->width/2;
yvalue =data->yorigin - data->height/2;
if (location == 'l')

{

}

if (location == 'r')
{

mode = 1;
xmstr = XmstringCreate("redefine right origin",XmsTRING_DEFAULT_CHARSET);

}

1*
* create originbox to appear when redefine originbutton in display
* menu of left or rightmenu is pressed
*1

ae =0;
XtSetArg(al[ael,XmNdialogTitle,xmstr); ae++;
data->originbox.box = xmcreateFornOialog(parent,"0riginBox",al,ae);
xmstringFree(xmstr);
1*
* create a X-origin serollbar with range -250 to 250 [pixelsl
*1

ae =0;
xmstr = XmstringCreate(" X-origin [pixelsl",Xm5TRING_DEFAULT_CHARSET);
XtSetArg(al[ael,XmNtitleString,xmstr); ae++;
XtSetArg(al[ael,XmNminimum,-250); ae++;
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XtSetArg(al[acl,XmNmaximum,250); ac++;
XtSetArg(al[acl,XmNwidth,SCALEBOX_YIDTH); ac++;
XtSetArg(al[acl,XmNorientation,XmHORIZONTAL); ac++;
XtSetArgCal[acl,XmNvalue,xvalue): ac++:
XtSetArg(al[acl,XmNshowValue,TRUE); ac++;
XtSetArgCal[acl,XmNtopAttachment,XmATTACH_FORM); ac++;
XtSetArgCal [acl,XmNleftAttachment,XmATTACH_FORM); ac++;
XtSetArgCal[acl,XmNrightAttachment,XmATTACH_FORM); ac++:
data->originbox.xslider =XmCreateScale(data->originbox.box,"XorSlider",al,ac);
XtAddCallbackCdata->originbox.xslider,XmNvalueChangedCallback,originHandler,mode);
XtAddCallbackCdata->originbox.xslider,XmNvalueChangedCallback,DrawAxes, location);
XtManageChild(data->originbox.xslider);
XmstringFree(xmstr);
/*
* create a Y-origin scrollbar with range -250 to 250 [pixelsl
*/

ac =0;
xmstr =XmstringCreate(U Y-orig;n [p;xelsl",XmsTRING_DEFAULT_CHARSET):
XtSetArgCal[acl,XmNtitleString,xmstr); ac++:
XtSetArg(al[acl,XmNminimum,-250): ac++;
XtSetArg(al[acl,XmNmaximum,250); ac++;
XtSetArgCal[acl,XmNwidth,SCALEBOX YIDTH); ac++;
XtSetArgCal[acl,XmNorientation,XmHORIZONTAL); ac++;
XtSetArg(al[acl,XmNvalue,yvalue); ac++:
XtSetArg(al[acl,XmNshowValue,TRUE); ac++:
XtSetArgCal[acl,XmNtopAttachment,XmATTACH YIDGET); ac++:
XtSetArgCal[acl,XmNtopYidget,data->originbox.xslider): ac++:
XtSetArgCal [acl,XmNleftAttachment,XmATTACH FORM); ac++;
XtSetArgCal[acl,XmNrightAttachment,XmATTACH_FORM); ac++;
data->originbox.yslider =XmCreateScaleCdata->originbox.box,"YorSlider",al,ac);
XtAddCallback(data->originbox.yslider,XmNvalueChangedCallback,originHandler,mode+2):
XtAddCallback(data->originbox.yslider,XmNvalueChangedCallback,DrawAxes,location):
XtManageChild(data->originbox.yslider):
XmstringFreeCxmstr):
/*
* create OK-button
*/

ac = 0:
XtSetArg(al[acl,XmNtopAttachment,XmATTACH_YIDGET); ac++;
XtSetArgCal[acl,XmNtopWidget,data->originbox.yslider); ac++:
XtSetArg(al[acl,XmNleftAttachment,XmATTACH_FORM); ac++;
XtSetArg(al [acl,XmNrightAttachment,XmATTACH FORM); ac++;
XtSetArg(al[acl,XmNbottomAttachment,XmATTACH FORM); ac++:
data->originbox.okbutton =xmCreatePushButtofiGadget(data->originbox.box,"0K",al,ac):
XtAddCallback(data->originbox.okbutton,XmNactivateCallback,unmanage,

data->originbox.box);
XtManageChildCdata->originbox.okbutton);
/*
* return value of this function
*/

returnCdata->originbox.box):
}

Yidget CreateStartPixelBoxCparent,location)
Yidget parent:
char locat ion:

(

int mode:
Drawdata *data:
Xmstring xmstr:
int xvalue,yvalue;
/*
* parameter initialization
*/

data =GetYindowData(location,'p');
xvalue =data->xstart - data->width/2:
yvalue =data->ystart - data->height/2:
if (location == '1')

(

mode =0;
xmstr =XmstringCreate("define left startpixel",XmsTRING_DEFAULT_CHARSET):

}

if (location == 'r')
{
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mode = 1:
xmstr =XmStringCreateC"define right startpixel",XmSTRING_DEFAULT_CHARSET):

}

/*
* create startpixelbox to appear when define startpixelbutton in
* deterministic IFS-decoding or nondeterministic IFS-decoding is
* pressed
*/

ac =0:
XtSetArgCal[acl,XmNdialogTitle,xmstr): ac++:
data->startpixelbox.box =XmcreateFOrmDialogCparent,"StartPixelBox",al,ac):
XmStringFreeCxmstr):
/*
* create a X-origin scrollbar with range -250 to 250 [pixelsl
*/

ac =0:
xmstr =XmStringCreateC" X-origin [pixelsl",XmSTRING_DEFAULT_CHARSET):
XtSetArgCal[acl,XmNtitleString,xmstr): ac++:
XtSetArgCal[acl,XmNminimum,-250): ac++:
XtSetArgCal[acl,XmNmaximum,250): ac++:
XtSetArgCal[acl,XmNwidth,SCALEBOX_WIDTH): ac++:
XtSetArgCal[acl,XmNorientation,XmHORIZONTAL): ac++:
XtSetArgCal[acl,XmNvalue,xvalue): ac++:
XtSetArgCal[acl,XmNshowValue,TRUE): ac++:
XtSetArgCal[acl,XmNtopAttachment,XmATTACH_FORM): ac++:
XtSetArgCal[acl,XmNleftAttachment,XmATTACH FORM): ac++:
XtSetArgCal[acl,XmNrightAttachment,XmATTACH_FORM): ac++:
data->startpixelbox.xslider =xmcreateScaleCdata->startpixelbox.box,"XorSlider",al,ac):
XtAddCallbackCdata->startpixelbox.xslider,XmNvalueChangedCallback,

changeStartPixelHandler,mode):
XtManageChildCdata->startpixelbox.xslider):
XmStringFreeCxmstr):
/*
* create a V-origin scrollbar with range -250 to 250 [pixelsl
*/

ac =0:
xmstr =XmStringCreateC" V-origin [pixelsl",XmSTRING_DEFAULT_CHARSET):
XtSetArgCal[acl,XmNtitleString,xmstr): ac++:
XtSetArgCal[acl,XmNminimum,-250): ac++:
XtSetArgCal[acl,XmNmaximum,250): ac++:
XtSetArgCal[acl,XmNwidth,SCALEBOX_WIDTH): ac++:
XtSetArgCal[acl,XmNorientation,XmHORIZONTAL): ac++:
XtSetArgCal[acl,XmNvalue,yvalue): ac++:
XtSetArgCal[acl,XmNshowValue,TRUE): ac++:
XtSetArgCal[acl,XmNtopAttachment,XmATTACH_WIDGET): ac++:
XtSetArgCal[acl,XmNtopWidget,data->startpixelbox.xslider): ac++:
XtSetArgCal[acl,XmNleftAttachment,XmATTACH_FORM): ac++:
XtSetArgCal[acl,XmNrightAttachment,XmATTACH_FORM): ac++:
data->startpixelbox.yslider =XmcreateScaleCdata->startpixelbox.box,"YorSlider",al,ac):
XtAddCallbackCdata->startpixelbox.yslider,XmNvalueChangedCallback,

ChangeStartPixelHandler,mode+2):
XtManageChildCdata->startpixelbox.yslider):
XmStringFreeCxmstr):
/*
* create OK-button
*/

ac = 0:
XtSetArgCal[acl,XmNtopAttachment,XmATTACH_WIDGET): ac++:
XtSetArgCal[acl,XmNtopWidget,data->startpixelbox.yslider): ac++:
XtSetArgCal[acl,XmNleftAttachment,XmATTACH_FORM): ac++;
XtSetArgCal[acl,XmNrightAttachment,XmATTACH_FORM): ac++:
XtSetArgCal[acl,XmNbottomAttachment,XmATTACH_FORM): ac++:
data->startpixelbox.okbutton = xmcreatePushButtonGadgetCdata->startpixelbox.box,

"OK" ,al ,ac);
XtAddCallbackCdata->startpixelbox.okbutton,XmNactivateCallback,Unmanage,

data->startpixelbox.box):
XtManageChildCdata->startpixelbox.okbutton):
/*
* return value of this function
*/

returnCdata->startpixelbox.box):
}
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Widget CreatelterationBox(parent,location)
Widget parenti
char Iocat i oni

{

int valuei
Drawelata *datai
Xmstring xmstri
1*
* parameter initialization
*1

data =GetWindowData(location,'p')i
value ~ data->niteratlonsi
if (location == 'I') xmstr = XmstringCreate("left literations",XmSTR1NG_DEFAULT_CHARSET)i
if (location == 'r') xmstr = XmstringCreate(IIright 'iterations",xmsTR1NG_DEFAULT_CHARSET)i
1*
* create iterationbox to appear when define 'iterations button in
* rendercontrolpulldownmenu is pressed
*1

ac =0i
XtSetArg(al[acl,XmNdialogTitle,xmstr)i aC++i
data->iterationbox.box = XmcreateFornOialog(parent,"1terationBoX",al,ac)i
XmstringFree(xmstr)i
1*
* create an iteration scrollbar with range 1 to 100 [iterationsl
*1

ac = 0i
xmstr =XmstringCreate(II Iiterations [-l",XmSTR1NG_DEFAULT_CHARSET)i
XtSetArg(al[acl,XmNtitleString,xmstr)i aC++i
XtSetArg(al[acl,XmNminimum,1)i ac++i
XtSetArg(al[acl,XmNmaxlmum,100)i ac++;
XtSetArg(al[acl,XmNwidth,SCALEBOK_W1DTH)i aC++i
XtSetArg(al[acl,XmNorientation,XmHORI20NTAL)i ac++;
XtSetArg(al[acl,XmNvalue,value)i aC++i
XtSetArg(al[acl,XmNshowValue,TRUE); aC++i
XtSetArg(al[acl,XmNtopAttachment,XmATTACH_FORM)i ac++;
XtSetArg(al[acl,XmNleftAttachment,XmATTACH FORM); aC++i
XtSetArg(al[acl,XmNrightAttachment,XmATTACH_FORM); ac++;
data->iterationbox.sl ider = XmcreateScale(data->iterationbox.box,"S1 ider" ,al,ac) i
XtAddCallback(data->iterationbox.slider,XmNvaluechangedCallback,

AmountOflterationsHandler,location)i
XtManageChild(data->iterationbox.slider)i
XmStringFree(xmstr)i
1*
* create OK-button
*1

ac = 0i
XtSetArg(al[acl,XmNtopAttachment,XmATTACH_W1DGET); ac++;
XtSetArg(al[acl,XmNtopWidget,data->iterationbox.slider)i aC++i
XtSetArg(al [acl ,XmHleftAttachment,XmATTACH FORM); ac++;
XtSetArg(al[acl,XmHrightAttachment,XmATTACH_FORM); aC++i
XtSetArg(al[acl,XmHbottomAttachment,XmATTACH_FORM)i aC++i
data->iterationbox.okbutton =XmcreatePushButtonGadget(data->iterationbox.box,

"0K",al,ac)i
XtAddCallback(data->iterationbox.okbutton,XmNactivatecallback,Unmanage,

data->iterationbox.box)i
XtManageChild(data->iterationbox.okbutton)i
1*
* return value of this function
*1

return(data->iterationbox.box)i
}

Widget Create20omBox(parent,location)
Widget parenti
char locationi

{

int mode,xvalue,yvalue,zvaluei
Drawelata *data;
XmString xmstri
1*
* parameter initialization
*1

data =GetWindowData(location,'p')i
xvalue =data->xoffset - data->width/2i
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yvalue = data->yoffset - data->height/2i
zvalue = 10i
if Cloeation == 'l')

<
mode = Oi
xmstr = XmStringCreateC"left area zooming",XmSTRING_OEFAULT_CHARSET)i

}

if Cloeation == 'r')
<

mode = 1i
xmstr = XmStringCreateC"right area zooming",XmSTRING_DEFAULT_CHARSET)i

}

1*
* create zoombox to appear when define zoom area button in render control
* pulldown pane is pressed
*1

ae = 0i
XtSetArgCal[ael,XmNdialogTitle,xmstr)i ac++i
data->zoombox.box = XrnCreateForROialogCparent,"Zooftlox",al,ae)i
XmStringFreeCxmstr)i
1*
* create a X-offset serollbar with range -250 to 250 [pixelsl
*1

ae = Oi
xmstr = XmStringCreateC" X-offset [pixelsl",XmSTRING_DEFAULT_CHARSET)i
XtSetArgCal[ael,XmNtitleString,xmstr)i ae++i
XtSetArgCal[ael,XmNminimum,-250)i ae++i
XtSetArgCal[ael,XmNmaximum,250)i ae++i
XtSetArgCal[ael,XmNwidth,SCALEBOX_WIDTH)i ae++i
XtSetArgCal[ael,XmNorientation,XmHORIZONTAL)i ae++i
XtSetArgCal[ael,XmNvalue,xvalue)i aC++i
XtSetArgCal[ael,XmNshowValue,TRUE)i ae++i
XtSetArgCal[ael,XmNtopAttaehment,XmATTACH_FORM)i ae++i
XtSetArgCal[ael,XmNleftAttaehment,XmATTACH FORM)i ae++i
XtSetArgCal[ael,XmNrightAttaehment,XmATTACH_FORM)i ae++i
data->zoombox.xoffsetsl ider = XrnCreateSealeCdata->zoombox.box, "XoffsetSl ider" ,al ,ae)i
XtAddCallbaekCdata->zoombox.xoffsetslider,XmNdragCallbaek,ZoomHandler,mode)i
XtAddCallbaekCdata->zoombox.xoffsetslider,XmNvalueChangedCallbaek,ZoomHandler,mode)i
XtManageChildCdata->zoombox.xoffsetslider)i
XmStringFreeCxmstr)i
1*
* create a V-offset serollbar with range -250 to 250 [pixelsl
*1

ae =0i
xmstr = XmStringCreateC" V-offset [pixelsl",XmSTRING_DEFAULT_CHARSET)i
XtSetArgCal[ael,XmNtitleString,xmstr)i ae++i
XtSetArgCal[ael,XmNminimum,-250)i ae++i
XtSetArgCal[ael,XmNmaximum,250)i ae++i
XtSetArgCal[ael,XmNwidth,SCALEBOX_WIDTH)i ae++i
XtSetArgCal[ael,XmNorientation,XmHORIZONTAL)i ae++i
XtSetArgCal[ael,XmNvalue,yvalue)i ae++i
XtSetArgCal[ael,XmNshowValue,TRUE)i ae++i
XtSetArgCal[ael,XmNtopAttaehment,XmATTACH_WIDGET)i ae++i
XtSetArgCal[ael,XmNtopWidget,data->zoombox.xoffsetslider)i ae++i
XtSetArgCal[ael,XmNleftAttaehment,XmATTACH_FORM)i ae++i
XtSetArgCal[ael,XmNrightAttaehment,XmATTACH_FORM)i ae++i
data->zoombox.yoffsetsl ider = XrnCreateSealeCdata->zoombox.box, "YoffsetSl ider" ,al, ae) i
XtAddCallbaekCdata->zoombox.yoffsetslider,XmNdragCallbaek.£oomHandler,mode+2)i
XtAddCallbaekCdata->zoombox.yoffsetslider,XmNvalueChangedCallbaek,ZoomHandler,mode+2)i
XtManageChildCdata->zoombox.yoffsetslider)i
XmStringFreeCxmstr)i
1*
* create a zoomfaetor serollbar with range 1 to 100 [xl
*1

ae = 0i
xmstr = XmStringCreateC" Zoomfaetor [x 100/valuel",XmSTRING_DEFAULT_CHARSET)i
XtSetArgCal[ael,XmNtitleString,xmstr)i ae++i
XtSetArgCal[ael,XmNminimum,1)i ae++i
XtSetArgCal[ael,XmNmaximum,100)i ae++i
XtSetArgCal[ael,XmNwidth,SCALEBOX_WIDTH)i ae++i
XtSetArgCal[ael,XmNorientation,XmHORIZONTAL)i ae++i
XtSetArgCal[ael,XmNvalue,zvalue)i ae++i
XtSetArgCal[ael,XmNshowValue,TRUE)i ae++i
XtSetArgCal[ael,XmNtopAttaehment,XmATTACH_WIDGET)i ae++i
XtSetArgCal[ael,XmNtopWidget,data->zoombox.yoffsetslider)i ae++i
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XtSetArg(al[ae],XmHleftAttachment,xmATTACH_FORM); ae++;
XtsetArg(al[ae],XmHrightAttaehment,XmATTACH_FORM): ac++:
data->zoombox.zoomslider =xmcreateSeale(data->zoombox.box,"Zoomslider",al,ae);
XtAddCallbaek(data->zoombox.zoomslider,XmHdragCallback,ZoomHandler,mode+4):
XtAddCallbaek(data->zoombox.zoomslider,XmHvalueChangedCallbaek,ZoomHandler,mode+4):
XtManageChild(data->zoombox.zoomslider);
XmstringFree(xmstr);
/*
* create OK-button
*/

ac = 0:
XtsetArg(al[ac],XmHtopAttachment,XmATTACH_WIDGET): ac++:
XtSetArg(al[ac],XmHtopWidget,data->zoombox.zoomslider): ac++:
XtSetArg(al[ae],XmHleftAttachment,XmATTACH_FORM); ae++;
XtSetArg(al[ac],XmHrightAttachment,XmATTACH_FORM); ac++:
XtSetArg(a1[ac],XmHbottomAttachment,XmATTACH_FORM): ac++:
data->zoombox.okbutton = xmcreatePushButtonGadget(data->zoombox.box,"O"",al,ac):
XtAddCallback(data->zoombox.okbutton,XmHactivateCallback,Unmanage,data->zoombox.box):
XtAddCallbaek(data->zoombox.okbutton,XmHaetivatecallback,Zooml:ontroller,location):
XtManageChild(data->zoombox.okbutton):
/*
* return value of this function
*/

return(data->zoombox.box):
)

Widget CreateScrollBox(parent,location)
Widget parent:
char location:
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text",xmsTRING_DEFAULT_CHARSET):

(

int mode:
Drawdata *data:
Serolldata *seroll;
Xmstring xmstr:
/*
* parameter initialization
*/

data =GetWindoWOata(location,'p');
scroll = GetScrollData(location):
if (location == 'l')

(

mode = 0:
xmstr '" XmstringCreate("left text",xmsTRING_DEFAULT_CHARSET):

)

if (location == 'r')
(

mode = 1;
xmstr =XmstringCreate("right

)

/*
* create scrollbox to appear when textual view button in viewedit IFS code
* pulldown pane is pressed
*/

ac =0:
XtSetArg(al[ac],XmHdialogTitle,xmstr); ae++;
data->scrollbox.box =xmcreateFoMlOialog(parent, "ScrollBox" ,al ,ac):
xmstringFree(xmstr):
/*
* create scrollbar widget
*/

ac = 0;
XtSetArg(al[ac],XmHorientation,XmHORIZONTAL); ac++:
XtSetArg(sl[ac],XmHworkWindow,GetWindow(location,'p'»;
data->scrollbox. scrollbar = XmcreateScrollBar(data->scrollbox.box, "ScrollBar", a l, ac);
XtAddCallback(data->serollbox.scrollbar,XmNvalueChsngedCsllback,

ScrollBarMovedHandler,location);
XtAddCallback(data->scrollbox.scrollbar,XmNdragCallback,

Scrol lBarMovedHandler, location);
XtManageChild(data->scrollbox.scrollbar);
/*
* create OK-button
*/

ac = 0;
XtSetArg(al[ac),XmHtopAttachment,XmATTACH_WIDGET); ac++;
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XtSetArgCal[acl,XmNtopWidget,data->scrollbox.scrollbar)i aC++i
XtSetArgCal[acl,XmNleftAttachment,XmATTACH_FORM)i aC++i
XtSetArgCal[acl,XmNrightAttachment,XmATTACH_FORM); ac++;
XtSetArgCal[acl,XmNbottomAttachment,XmATTACH_FORM)i ac++;
data->scrollbox.okbutton = Xml:reatePushButtonGadgetCdata->scrollbox.box,IQK",al,ac);
XtAddCallbackCdata->scrollbox.okbutton,XmNactivateCallback,Unmanage,data->scrollbox.box);
XtAddCallbackCdata->scrollbox.okbutton,XmNactivateCallback,ClearPixelArea,location);
XtManageChildCdata->scrollbox.okbutton)i
/*
* return value of this function
*/

returnCdata->scrollbox.box);
}
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/******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdaviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. lng. J.A.G. Jess
* File collage.c
* Purpose Callback procedure for interactive collage generation
* Part of IFS-CODEC
* Created on June 09, 1992
* Created by : Emile van Duren
* Last modified on: December 17, 1992
* Modified by Emile van Duren
* Remarks : None
*****************************************************************************/

#include "all.h"
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/*
* forward function declarations
*/

void FileQpenWarning();
void DrawAxes();
void SavelmageToFile();
void SaveTransformationToFile():
Drawdata *GetWindowData();
Widget GetWindow();

void ResetTransformsliders(location)
char location;

<

/* contained in messages.c */
/* contained in draw.c */
/* contained in filehandler.c */
/* contained in filehandler.c */
/* contained in control.c */
/* contained in control.c */

Affine *transformation;
Drawdata *data;
/*
* initialize data
*/

data =GetWindowData(location,'p');
transformation =&(data->transformation);
transformation->xscaling =80;
transformation->yscaling =80;
transformation->xrotation =0;
transformation->yrotation =0;
transformation->xshift =0;
transformation->yshift =0:
/*
* set transformsliders back to initial position
*/

ac =0;
XtSetArg(al[acl,XmNvalue,transformation->xscaling); 8C++:
XtSetValues(data->similitudebox.xscslider,al,ac);
ac =0;
XtSetArg(al[acl,XmNvalue,transformation->yscaling); ac++;
XtSetValues(data->similitudebox.yscslider,al,ac);
ac =0;
XtSetArg(al[acl,XmNvalue,transformation->xrotation); ac++:
XtSetValues(data->similitudebox.xrtslider,al,ac);
ac =0;
XtSetArg(al[acl,XmNvalue,transformation->yrotation); ac++;
XtSetValues(data->similitudebox.yrtslider,al,ac):
ac = 0;
XtSetArg(al[acl,XmNvalue,transformation->xshift); ac++;
XtSetValues(data->similitudebox.xshslider,al,ac);
ac " 0;
XtSetArg(al[acl,XmNvalue,transformation->yshift); ac++:
XtSetValues(data->similitudebox.yshslider,al,ac);

}

void DetermineProbabilities(location,ext)
char location,*ext:

<
char *savefile,*filename:
float a,b,c,d,det,e,f,maxdet = D,p,pi,sum =0;
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int amount = O,pdum,pmax = O,tot = O,zerocount = 0;
FILE *file,*dummyfile;
Drawdata *data;
Widget W;
/*
* initialize data
*/

pi = PI;
w = GetWindowClocation,'p');
data = GetWindowDataClocation,'p');
savefile = callocCstrlenCdata->filename)+5,sizeofCchar»;
strcpyCsavefile,data->filename);
filename = strcatCsavefile,ext);
if CCfile = fopenCfilename,lIr ll » == NULL)

<
Fi leopenWarningCw, location);
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)

else
<

/*
* if file could be successfully opened
*/

dumlyfile = fopenC"dumlyll, "W");
while ClfeofCfile»
<

/*
* get affine transformation from file
*/

fscanfCfile,"%f %f %f %f %f %f %f\n" ,&a,&b,&c,&d,&e,&f ,&p);
fprintfCdumlyfile,"%.3f %.3f %.3f %.3f %.3f %.3f %.3f\nll ,a,b,c,d,e,f,p);
/*
* calculate detenminant of transformationmatrix
*/

det = a*d - b*c·
/* '
* make detenminant absolute
*/

if Cdet < 0) det = -det;
/*
* total ize all detenminantvalues and get maxinun detenminantvalue
*/

sum += det;
if Cdet > maxdet) maxdet = det;

)

fcloseCfile);
fcloseCdumlyfile);
dummyfile = fopenCldummy", "r");
while C!feofCdumlyfile»

<
fscanfCdummyfile,"%f %f %f %f %f %f %f\n" ,&a,&b,&c,&d,&e,&f ,&p);
/*
* calculate detenminant of transformationmatrix
*/

det = a*d - b*c;
/*
* make determinant absolute
*/

if Cdet < 0) det = -det;
/*
* count total amount of transformations in file
*/

amount++;
/*
* count amount of detenminants that are smaller than 0.1% of
* maxinun determinantvalue
*/

if Cdet <= 0.001*maxdet) zerocount++;
)

file = fopenCfilename,"wl );
rewindCdummyfile);
while C!feofCdummyfile»
<

/*
* get affine transformation from dummyfile
*/
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fscanf(clurmyfile,"Xf Xf 1f Xf Xf 1f Xf\n" ,&a,&D,&c,&d,&e,&f ,&p);
1*
* caLcuLate determinant of transfonmation matrix
*1

det .. a*d - b*c;
1*
* make determinant absoLute
*1

if (det < 0) det = -det;
1*
* if determinantvaLue is reLativeLy smaLL then set probabiLity to
* minimum, eLse caLcuLate probabiLity as ratio of determinantvaLue
* and totaL of sum of determinants and amount of minimum probabiLity
* vaLues
*1

;f (Cdet <"' 0.001*maxdet) && (amount != zerocount»
{

p "' 0.001:
}

eLse
(

p = det/(sum + 0.001*zerocount);
}

1*
* determine the maximum p-vaLue and the sum of aLL p-vaLues
*1

if (pmex < 1000*p) pmex "' 1000*p;
tot += (int) (1000*p + 0.5);
1*
* put affine transformation together with probabiLity in fiLe
*1

fprintfUiLe,"X.3f X.3f X.3f X.3f X.3f X.3f 1.3f\n",a,b,c,d,e,f,p);
}

1*
* if the sum of the probabiLities is not equaL to 1.000, adjust the
* maximum probabiLity, so the reLative effect is minimaL: thus add or
* subtract 0.001, since this is the greatest possibLe round off error
* that can occur
*1

if Ctot 1= 1000)
(

fcLose(fi Le);
fcLose(clurmyfiLe);

file"' fopenUiLename,"r");
dlmlllYf fle .. fopen( "dlmlllY", "w") ;

whiLe (!feof(fiLe»
(

fscanf(file,"1f 1f 1f 1f 1f 1f 1f\n",&a,&b,&c,&d,&e,&f,&p);
pdum .. (int) (1000*p + 0.5);
if «pdum >.. pmax) && (tot < 1000»
{

p += 0.001;
tot++;

}

if «pdum >= pmex) && (tot> 1000»
{

p -= 0.001;
tot--;

}

fprintftdlmlllYfiLe,"%.3f %.3f X.3f X.3f X.3f X.3f X.3f\n",a,b,c,d,e,f,p);
}

1*
* copy dlmlllYfiLe to fiLe
*1

fcLoseCfiLe);
fcLoseCdlmlllYfiLe);

fi Le = fopen(fj Lename, "W");
clurmyfiLe = fopen("c1mny","r");
whiLe (!feof(dlmlllYfiLe»

(

)

fscanf(dlmlllYfiLe, "Xf Xf 1f Xf 1f 1f Xf\n" ,&a,&b,&c,&d,&e,&f ,&p);
fprintf(fiLe,"1.3f 1.3f 1.3f 1.3f 1.3f 1.3f 1.3f\n",a,b,c,d,e,f,p);

}

fcLose(clurmyfi Le);
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}

fcloseCfile)i
freeCsavefi le)i
savefile = NULLi

}

void TransformSimilitudeClocation)
char locationi

(
char *savefi lei
int x,y,xt,yt,h,ki
double theta,psii
f loat r, s, pi i
Affine *transformationi
Drawdata *datai
FI LE *filei
Widget Wi
1*
* initialize parameters and try to open file
*1

W = GetWindowClocation,'p')i
data =GetWindowDataClocation,'p')i
transformation = &Cdata->transformation)i
pi =Pli
r = Ctransformation->xscaling)/100.0i
s = Ctransformation->yscaling)/100.0i
theta = Cdata->transformation.xrotation)*2*pi/360i
psi = Cdata->transformation.yrotation)*2*pi/360i
h = data->transformation.xshifti
k = data->transformation.yshifti
savefile = callocCstrlenCdata->filename)+5,sizeofCchar»i
strcpyCsavefile,data->filename)i
if CCfile = fopenCstrcatCsavefile,".img"),"r"» == NULL)

{

FileDpenWarningCw,location)i
}

else
(
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1*
* set foreground to black
*1

XSetForegroundCXtDisplayCw),data->gc,BlackPixeIOfScreenCXtScreen(w»)i
while C!feof(file»
{

1*
- if file could be sucessfully opened
*1

fscanfCfile,"XcI XcI ",&xt,&yt)i
1*
- transform coordinate to virtual origin
*1

xt = xt - data->xorigini
yt = yt - data->yorigini
1*
* convert y from screen coordinates to Carthesian coordinates
*1

yt = - yti
1*
* apply affine transformation
*1

x = xt*r*cosCtheta)-yt*s*sinCpsi)+hi
y = xt*r*sin(theta)+yt*s*cosCpsi)+ki
1*
* convert y from Carthesian coordinates to screen coordinates
*1

y =- Yi
1*
* transform coordinate to its original position
*1

x += data->xorigini
y += data->yorigini
I-
* set foreground to black and plot point in screen space
*1
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XDrawPointCXtDisplayCw),data->pix,data->gc,x,Y)i
}

}
fcloseCfile)i
freeCsavefile)i
savefile =NULL;

}

void ManageSimilitudeCw,code,call_data)
Widget wi
int code;
XmScaleCallbeckStruct *call_data;

{
char location;
int x,y;
Affine transformationi
Drawdata *data;
if (code X 2 == 0)

{

location = , l ' ;
}

else
{

location = 'r';
code--i

}

w =GetWindowClocation,'p');
data =GetWindowDataClocation,'p');
/*
* determine which slider was IllOVed
*/

switchCcode)
{

case 0:
data->transformation.xscaling • call_data->valuei
break;

case 2:
data->transformation.yscaling =call_data->valuei
break;

case 4:
data->transformation.xrotation =call data->value;
breaki -

case 6:
data->transformation.yrotation =call_data->valuei
break;

case 8:
data->transformation.xshift = call_data->valuei
break;

case 10:
data->transformation.yshift = call_data->valuei
break;

/*

}

/*
* clear out data->pix
*/

XSetForegroundCXtDisplayCw),data->gc,WhitePixelOfScreenCXtScreenCw»);
XFillRectangleCXtDisplaYCw),data->pix,data->gc,O,O,

data->width,data->height)i
/*
* copy data->col to data->pix
*/

XSetForegroundCXtDisplayCw),data->gc,BlackPixelOfScreenCXtScreenCw»);
XCopyArea(XtDisplaYCw),data->col,data->pix,aata->gc,O,0,

data->width,data->height,O,O);
/*
* Transform similitude and add it to data->pix
*/

Transform5imil itudeC location);
/*
* copy data->pix to screen
*/

XCopyAreaCXtDisplaYCw),data->pix,XtWindowCw),data->gc,O,0,
data->width,data->height,O,O)i
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* determine if axes have to be drawn
*/

if Cdata->axes) DrawAxesCw,location);
}

void AddSimilitudeCw,location)
Widget W;
char locati on;

{
int x,y;
unsigned long pixel;
Affine *transfonmation;
Drawdata *data;
Xlmage *image;
/*
* initialize data
*/

w =GetWindowClocation,'p');
data =GetWindowData(location,'p');
transformation =&Cdata->transfonmation);
transfonmation->xscaling = 80;
transfonmation->yscaling =80;
transfonmation->xrotation = 0;
transfonmation->yrotation =0;
transfonmation->xshift =0;
transfonmation->yshift =0;
/*
* set sliders back to initial position
*/

ResetTransformSl idersC location);
/*
* pixmaps should only be created once
*/

if Cdata->firsttime)
{
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data->firsttime =FALSE;
/*
* similitude must be made equal to initial image that is in data->pix
*/

XCopyAreaCXtDisplaycw),data->pix,data->sim,data->gc,O,O,
data->width,data->height,O,O);

/*
* put current contains of data->pix into data->col
*/

XCopyAreaCXtDisplaYCw),data->pix,data->col,data->gc,O,O,
data->width,data->height,O,O);

/*
* create image from original drawing located in data->pix
*/

SavelmageToFi leC location,". imgll);
}

/*
* set foreground to black, transform similitude and draw axes
*/

TransformSimilitudeClocation);
DrawAxesCW,location)i

}

void FixSimi litudeCw, location)
Widget Wi
char location;

{

Affine *transformationi
Drawdata *datai
/*
* initialize data
*/

w =GetWindowClocation,'p');
data =GetWindowDataClocation,'p');
transformation = &Cdata->transfonmation)i
/*
* write transformation to file data->filename.man
*/



/*
* copy data->col to data->pix in order to be able to do the next step
*/

XCopyArea(XtOisplay(w),data·>col,data->pix,data->gc,O,O,
data->width,data->height,O,O)i
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SaveTransformati onToFi lee location, II .man");
/*
* copy data->pix to data->col in order to save the collage
*/

XCopyArea(XtDisplay(w),data->pix,data->col,data->gc,O,O,
data->width,data->height,O,O);

}

void SaveCollage(w,location)
Widget w;
char location;

(

Drawdata *dat8;
/*
* initialize data
*/

w=GetWindow(location,'p');
data =GetWindowData(location,'p');
if (Idata->firsttime)

{

/*
* set data->firsttime to TRUE
*/

data->firsttime =TRUE;
}

/*
* detenmine probabilities of transformations
*/

OetenmineProbabi Iiti esC location,".man");
/*
* clear out pixmep
*/

XSetForeground(XtOisplay(w),data->gc,WhitePixeIOfScreen(XtScreen(w»);
XFiIIRectangle(XtDisplay(w),data->pix,data->gc,O,O,

data->width,data->height)i

/*
* save data->col to data->filename.col
*/

SaveImageToF i lee location, ".col II);
/*
* clear data->pix, data->col, data->sim and screen
*/

XSetForeground(XtOisplay(w),data->gc,WhitePixeIOfScreen(xtScreen(w»);
XFiILRectangLe(XtOisplay(w),data->pix,data->gc,O,O,

data->width,data->height);
XFiIIRectangle(XtOisplay(w),data->col,data->gc,O,O,

data->width,data->height);
XFiIIRectangle(XtOisplay(w),data->sim,data->gc,O,O,

data->width,data->height);
XCopyArea(XtOisplay(w),deta->pix,XtWindow(w),data->gc,O,O,

data->width,data->height,O,O);
/*
* determine if axes have to be drawn
*/

if (data->axes) OrawAxes(w,location)i
/*
* finally reset transformsliders
*/

ResetTransformsliders(location);
}
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/******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdaviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File control.c
* Purpose Controls the operating environment
* Part of IFS-CODEC
* Created on June 18, 1992
* Created by Emi le van Duren
* Last modified on: November 20, 1992
* Modified by Emile van Duren
* Remarks : Zoomcontroller and Unzoomcontroller have to be completed
*****************************************************************************/

#include "all.h"

/* contained in specials.c
/* contained in writer.c

{

}

{

/*
* forward function declarations
*/

void DrawMandelbrotSet();
void DrawTextO;

void Manage(w,client data,call data)
Widget w; - -
XtPointer client_data;
XtPointer call_data;

XtManageChild(client_data);

void Unmanage(w,client_data,call_data)
Widget w;
XtPointer client data;
XtPointer call_data;

XtUnmanageChild(client_data);
}

Textdata *GetTextData(location)
char locat ion;

{

Textdata *text;
if (location == 'l') text =&LText;
if (location == 'r') text =&RText;
return(text);

}

Drawdata *GetWindowData(location,which)
char location,which;

{

*/
*/

which == 't' then selected drawable is textarea
which == 'p' then selected drawable is pixelarea
location == 'l' then leftarea
location == 'r' then rightarea

}

char buffer [10] ;
Drawdata *data;
/*
* if
* if
* if
* if
*/
if «(location ==
if «(location ==
if «location ==
if «(location ==
return(data);

, l' ) && (which --
'r') && (which --
, l' ) && (which --
'r') && (which --

'p' »
'p' »
, t'»
't' »

data =&leftpixeldata;
data =&rightpixeldata;
data =&lefttextdata;
data =&righttextdata;
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Scrolldata *GetScrollData(location)
char location;

{

Scrolldata *scroll;
if (location == 'l') scroll =&LScroll;
if (location == 'r') scroll =&RScroll;
return(scroll );

}

Widget GetWindow(location,which)
char location,whichi
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which == 'p' then selected drawable
which == 't' then selected drawable
location == 'l' then leftarea
location == 'r' then rightarea

{

}

Widget w;
char buffer [10];
/*
* if
* if
* if
* if
*/
if «location ==
if « locati on ==
if « location ==
if «location ==
return(w);

'l')
'r')
'l' )
'r')

&& (which ==
&& (which ==
&& (which ==
&& (which ==

'p' »
'p' »
't'»
't'»

is pixelarea
is textarea

w = leftpixelarea;
w =rightpixelarea;
w = lefttextarea;
w =righttextarea;

void ModeController(w,code)
Widget w;
int code;

{

Drawdata *data;
/*
* if code is even then left, if code is odd then right
*/

if (code X 2 == 0)
{

data =&leftpixeldata;
}

else
{

data =&rightpixeldata;

}

}

if (code == 0
if (code == 2
if (code == 4
if (code == 6
if (code == 8 I

if (code == 10
if (code == 12
if (code == 14
if (code == 16

code == 1)
code == 3)
code == 5)
code == 7>
code == 9)

I code == 11)
I code == 13)I code == 15)
I code == 17>

data->mode =
data->mode =
data->mode =
data->mode =
data->mode =
data->mode =
data->mode =
data->mode =
data->mode =

'v' ;
'Wi;
, ; I ;

'a'i
'd' ;
'n' ;
'p' ;
'b' ;
'm' ;

void ClearTextController(w,location)
Widget w;
char location;

(

}

Drawdata *data;
data =GetWindowData(location,'p');
if (data->mode == 'W') ClearTextHandler(w,location,14);
if (data->mode == 'i') ClearTextHandler(w,location,990);
if (data->mode == 'a') ClearTextHandler(W,location,990);

void AxesController(w,location)
Widget w;
char location;

{

Drawdata *data;
/*
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* toggLe axes button is activated, so invert axes operation mode
* (i.e. if axes are currentLy dispLayed then erase them and if
* axes are currentLy not dispLayed then draw them)
*/

data =GetWindowOata(Location,'p'):
data->axes =Idata->axes:

}

void Passage(w,code)
int code:

{

char Location:
Drawclata *data:
if (code % 2 == 0)

{

Location = 'L':
}

eLse
{

Location ='r':
code-- :

}

data =GetWindowOata(location,'p');
switch(code)

{

case 0:
firstheLp =TRUE;
break;

case 2:
data->first.fiLeheLp = TRUE:
break;

case 4:
data->first.fiLeopenwarning =TRUE:
break;

case 6:
data->first.originwarning = TRUE;
break;

case 8:
data->first.tabLemessage =TRUE;
break;

case 10:
printmessage =TRUE:
break;

case 12:
copyrightmessage =TRUE;
break:

}
}

void ZoomControLLer(w,Location)
Widget w:
char Location:

(

Drawclata *data:
data = GetWindowOata(Location,'p'):
/*
* set data->unzoom to FALSE and redraw appropriate picture
*/

data->unzoom =FALSE:
switch(data->mode)

(

case 'd':
break:

case 'n':
break:

case 'm':
DrawMandeLbrotSet(w,Location):
break:

}
}
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void Unzoomcontroller(w,location)
Widget w;
char locat ion;

(
Drawdata *data;
w =GetWindow(location,'p');
data =GetWindowData(location,'p');
data->unzoom =TRUE;
data->xoffset =0;
data->yoffset =0;
data->zoomfactor =1;
/*
* clear screen and copy data->pix to screen in order to remove zoombox
*/

XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w»);
XFillRectangle(XtDisplay(w),XtWindow(w),data->gc,O,O,

data->width,data->height);
XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,O,O,

data->width,data->height,O,O);
/*
* reset zoomboxsliders
*/

ac =0;
XtSetArg(al[acl,XmNvalue,data->xoffset); ac++;
XtSetValues(data->zoombox.xoffsetslider,al,ac);
ac =0;
XtSetArg(al[acl,XmNvalue,data->yoffset); ac++;
XtSetValues(data->zoombox.yoffsetslider,al,ac);
ac =0;
XtSetArg(al[acl,XmNvalue,data->zoomfactor); ac++;
XtSetValues(data->zoombox.zoomslider,al,ac);
/*
* determine operation mode and redraw appropriate picture
*/

switch(data->mode)
(
case 'd':

break;
case 'n':

break;
case 'm':

DrawMandelbrotSet(w,location);
break;

}
}

void CondensationController(w,location)
Widget w;
char location;

(

Drawdata *data;
data =GetWindowData(location,'p');
data->condensation = !(data->condensation);
if (data->condensation)

(

printf("condensation =TRUE\n",NULL);
}

else
{

printf("condensation = FALSE\n",NULL);
}

}

void DrawControl ler(w, location)
Widget w;
char location;

(
Textdata *text;
Drawdata *data;
w =GetWindow(location,'t');
data =GetWindowData(location,'p');
text =GetTextData(location);
/*
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* set erasegrab to false, toggle drawgrab and mode
*/

data->erasegrab =FALSE;
data->drawgrab = ldata->drawgrab;
if (data->drawgrab)

{

text->mode = "mode : Viewedit source file (draw)";
printf("drawmode =TRUE\n",NULL);

}

if (Idata->drawgrab)
(

text->mode = "mode : Viewedit source file";
printf("drawmode =FALSE\n",NULL);

}

DrawText(location);
}

void Erasetontroller(w,location)
Widget W;
char location;

(
Textdata *text;
Drawclata *data;
w =GetWindow(location,'t');
data =GetWindowData(location,'p');
text ~ GetTextData(location);
/*
* set drawgrab to false, toggle erasegrab and mode
*/

data->drawgrab =FALSE;
data->erasegrab = ldata->erasegrab;
if (data->erasegrab)

{

text->mode ="mode : Viewedit source file (erase)";
printf("erasemocle = TRUE\n",NULL);

B. IFS-CODEC source code

}

}

if (!data->erasegrab)
(

text->mode ="mode
printf("erasemocle =

}

DrawText(location);

: Viewedit source file";
FALSE\n",NULL);

void ScrollController(w,code)
Widget w;
int code;

{

char location;
Scrolldata *scroll;
if (code X2 == 0)

{

location = 'l';
}

else
{

location = 'r';
code-Oj

}

scroll =GetScrollData(location);
if (code == 0) scroll->ext =".ifs"
if (code == 2) scroll->ext =".man"
if (code == 4) scroll->ext =".aut"

}

void IdentityController(w,location)
Widget W;
char location;

(

Drawdata *data;
data =GetWindowData(location,'p');
data->identity = ldata->identity;
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if (data->identity)
{

printf("identity =TRUE\n",NUll)i
}

else
{

printf("identity = FAlSE\n",NUll)i
}

}

void Quit(w,client data,call data)
Widget Wi - -
XtPointer client datai
XtPointer call_datai

{
XtCloseDisplay(XtDisplay(w»i
exit(O)i

}
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/******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Nail address emilevdiviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File draw.c
* Purpose Program to draw in pixelareas
* Part of IFS-CODEC
* Created on June 11, 1992
* Created by Emi le van Duren
* Last modified on: November 20, 1992
* Nodified by Emi le van Duren
* Remarks : None
*****************************************************************************/

#include "all.h"

/* contained
/* contained
/* contained
/* contained

/*
* forward function declarations
*/

void ClearTextHandler()i
void DrawText()i
Drawdata *GetWindowData()i
Widget GetWindow()i

void DrawAxes(w,location)
Widget Wi
char locat ioni

{

in handle.c
in writer.c
in control.c
in control.c

*/
*/
*/
*/

Drawdata *datai
data =GetWindowData(location,'p')i
w =GetWindow(location,'p')i
/*
* whipe out screen and restore pixmap to screen
*/

XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w»)i
XFillRectangleeXtDisplay(w),XtWindow(w),data->gc,O,O,

data->width,data->height)i
XCopyAreaeXtDisplay(w),data->pix,XtWindow(w),data->gc,O,0,

data->width,data->height,O,O)i
DrawText(location)i
/*
* only draw axes if data->axes is TRUE and also we are not dealing with
* either a bifurcation diagram or a mandelbrot set
*/

if (data->axes && !(data->mode == 'b' :: data->mode == 'm'»
{

/*
* set foreground to black
*/

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»)i
/*
* draw X-axis
*/

XDrawLine(XtDisplay(w),XtWindow(w),data->gc,O,data->yorigin,
data->width,data->yorigin)i

XDrawString(XtDisplay(w),XtWindow(w),data->gc,10,
data->yorigin+15,IX-axis",6)i

/*
* draw Y-axis
*/

XDrawLine(XtDisplay(w),XtWindow(w),data->gc,data->xorigin,O,
data->xorigin,data->height)i

XDrawString(XtDisplay(w),XtWindow(w),data->gc,data->xorigin+10,15,
"Y-axis",6)i

}
}
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void ClearPixelArea(w, location)
Widget w;
char locat ion;

(

Drawclata *data;
1*
* initialize data and window
*1

data =GetWindowData(location,'p');
w =GetWindow(location,'p');
1*
* clear pixelarea and its pixmap, but also the temporary pixmaps that
* contain the similitudes and collages (data->sim and data->col will
* be automatically cleared if AddSimilitude is invoked)
*1

if (XtlsRealized(w»
(

data->firsttime =TRUE;
data->unzoom =TRUE;
XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w»);
XFillRectangle(XtDisplay(w),data->pix,data->gc,D,O,

data->width,data->height);
XFillRectangle(XtDisplay(w),XtWindow(w),data->gc,O,O,

data->width,data->height);
}

1*
* draw axes if necessary
*1

if (data->axes) DrawAxes(w,location);
}

void ClearAll(w,location)
Widget w;
char location;

(

Drawclata *data;
1*
* initialize data and window
*1

data =GetWindowData(location,'p');
w =GetWindow(location,'p');
1*
* clear the pixel area and reset data->npixels
*1

ClearPixelArea(w,location)i
data->npixels =0;
1*
* clear text in textarea (except orIgIn, startpixel, #iterations and
* zoomfactor) and draw axes if necessary
*1

ClearTextHandler(w,location,287);
DrawText(location)i
if (data->axes) DrawAxes(w,location);

}

void DrawRectangle(w,location,mode)
Widget w;
char location,modei

(

int left,upper,width,heighti
Drawclata *datai
1*
* initialize data and window
*1

data =GetWindowData(location,'p')i
w =GetWindow(location,'p');
1*
* set left upper coordinates and dimensions of rectangle
*1

width =2*(data->width)/5;
height =2*(data->height)/5;
left =data->xorigin - width/2i
upper =data->yor;gin - height/2i
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/*
* set foreground to black, draw rectangle in data->pix and on screen
*/

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»);
if (mode == 'd')

(
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/*
* mode is "dashed" so draw 8 dashed rectangLe
*/

XSetLineAttributes(XtDisplay(w),data->gc,1,LineOnOffDash,CapNotLast,JoinMiter)i
XDrawRectangle(XtDispLay(w),data->pix,data->gc,left,upper,width,height);
XDrawRectangle(XtDisplay(w),XtWindow(w),data->gc, left ,upper,width,height)i
XSetLineAttributes(XtDisplay(w),data->gc,1,LineSoLid,capNotLast,JoinMiter);

}
else

(

XDrawRectangle(XtDisplay(w),data->pix,data->gc, Left,upper,width,height);
XDrawRectangle(XtDispLay(w) ,XtWindow(w) ,data->gc, Left ,upper, width,height)i

}
DrawText(Location)i

}
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/******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdiviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File exposures.c
* Purpose Contains fl.R:tion Redisplay
* Pert of IFS-CODEC
* Created on June 10, 1992
* Created by Emile van Duren
* Last lIIOdified on: October 05, 1992
* Modified by Emile van Duren
* Remarks : None
*****************************************************************************/

'include "all.h"

void Redisplay(w,data,call data)
Yidget Wi -
Draweta *datai
XmDrawingAreaCallbackStruct *call_datai

{
XExposeEvent *event = (XExposeEvent *) call data->eventi
/* -
* extract the exposed area from the event and copy from the saved pixmap
* to the drawingarea
*/

XCopyArea(XtDisplay(w),data->p;x,XtY;ndow(w),data->gc,event->x,event->y,
event->width,event->he;ght,event->x,event->Y)i

}
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/******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdaviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File filehandler.c
* Purpose Contains fileselection, filesave and fileloadprocedures
* Part of IFS-CODEC
* Created on June 18, 1992
* Created by Emile van Duren
* Last modified on: December 17, 1992
* Modified by Emile van Duren
* Remarks : None
*****************************************************************************/

#include "all.h"

/*
* forward function declarations
*/

char *GetStringFromKmString():
void DrawAxesO:
void FileOpenWarning():
void SavelmageToFile():
Drawdata *GetWindowData();
Widget GetWindow():

/* contained in strings.c
/* contained in draw.c
/* contained in messages.c
/* contained in filehandler.c
/* contained in control.c
/* contained in control.c

*/
*/
*/
*/
*/
*/

void SelectFile(w,location,call data)
Widget w: -
char locat ion:
XmSelectionBoxCallbackStruct *call_data:

(

Drawdata *data:
XmString xmstr:
/*
* get selected file, convert it from xmstring to characterstring
* and put it into global variable "leftfile" or "rightfile"
*/

xmstr =call data->value:
data =GetWindowData(location,'p'):
data->filename =GetStringFromKmString(xmstr);

)

void SavelmageToFile(location,ext)
char locatio~,*ext:

(

char *savefile:
int x,y;
unsigned long pixel:
Drawdata *data;
FILE *file:
Widget w:
Xlmage *image:
/*
* initialize data
*/

w =GetWindow(location,'p'):
data =GetWindowData(location,'p'):
/*
* save image to data->filename.ext
*/

if (data->filename == NULL)
(

Fi IeOpenWarni ng(w, location);
)

else
{

/*
* create image from current drawing located in data->pix
*/
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image = XGetlmage(XtDisplav(w),data->pix,O,O,data->width,data->height,
1,XYPixmap)i

/*
* determine filename.ext to save image
*/

savefile =calloc(strlen(data->filename)+5,sizeof(char»i
strcpy(savefile,data->filename)i
if «file = fopen(strcat(savefile,ext),"w"» == NULL)
{

Fi leDpenwarning(w, location)i
data->firsttime =TRUEi

}
else
{

/*
* for all pixels in image
*/

for (V =0i V < data->heighti y++)
{

for (x =0i x < data->widthi x++)
{

/*
* get pixel and put its coordinates in file if pixel is black
*/

pixel =XGetPixel(image,X,V)i
if (pixel == 0) fprintf(file, "Xd Xd II ,x,V) i

}
}

}

fclose(file)i
free(savefi le)i
savefi Ie = NULLi
XDestrovlmage(image)i
image =NULLi

}
}

void SaveFile(W,location)
Widget Wi
char locationi
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{

}
SavelmageToFi lee locat ion,". imgll) i

void LoadlmageFromFile(location,ext)
char location,*exti

{

char *savefilei
int X,Vi
unsigned long pixel;
Drawdata *datai
FILE *filei
Widget Wi
Xlmage *imagei
/*
* initialize data
*/

w =GetWindow(location,'p')i
data =GetWindowData(location,'p')i
data->npixels =0i
/*
* save image to data->fi lename. img
*/

if (data->filename == NULL)
{

Fi leOpenwarning(w, location)i
}

else
{

/*
* determine filename.ext to load image from
*/

savefile =calloc(strlen(data->filename)+5,sizeof(char»i
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}
}

B. IFS-CODEC source code

strcpy(savefile,data->filename)i
if «file = fopen(strcat(savefile,ext),"r"» == NULL)
{

FileDpenWarning(w,location)i
}

else
{

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»)i
while (!feof(file»

{
fscanf(fi le,"Xd Xd ",&X,&Y)i
(data->npixels)++i
XDrawPoint(XtDisplay(w),data->pix,data->gc,x,y)i

)

/*
* copy contents of pixmap to window
*/

XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,O,0,
data->width,data->height,O,O)i

/*
* determine if axes have to be drawn
*/

if (data->axes) DrawAxes(w,location)i
}
fclose(file)i
free(savefile)i
savefile = NULLi

void LoadFi le(w, location)
Widget wi
char locationi

{

}
LoadlmageFromFile(location,".img")i

void SaveTransformationToFile(location,ext)
char location,*exti

{

char *savefilei
double psi,thetai
float a,b,c,d,e,f,p,pii
static Boolean firsttime =TRUEi
Affine *transformationi
Drawdata *datai
FILE *filei
Widget wi
/*
* initialize data
*/

pi = PI i
w =GetWindow(location,'p')i
data =GetWindowData(location,'p')i
transformation =&(data->transformation)i
/*
* if no filename is specified then invoke file open warning
*/

if (data->filename == NULL)
{

FileOpenWarning(w,location)i
}

else
{

/*
* save transformation to data->filename.ext
*/
savefile = calloc(strlen(data->filename)+5,sizeof(char»i
strcpy(savefile,data->filename)i
if «file = fopen(strcat(savefile,ext),"a"» == NULL)
{

FileopenWarning(w,location)i
}
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else
{

1*
* rewind file if this is the first transformation
* (we want to avoid appending transformations to an
* existing file) -------- this doesn't work, why not?
*1

if (firsttime)
{

rewind(file)i
firsttime =FALSE;

}
1*
* transform angles from degrees to radians
*1

theta =(transformation->xrotation)*Z*pi/360;
psi = (transformation->yrotation)*Z*pi/360;
1*
* append transformation to savefile
*1

a = «transformation->xscaling)/100.0)*cos(theta);
b =«transformation->yscaling)/100.0)*sin(-psi)i
c =«transformation->xscaling)/100.0)*sin(theta);
d =«transformation->yscaling)/100.0)*cos(psi);
e =(transformation->xshift)/1.0;
f =(transformation->yshift)/1.0;
p =(transformation->probabilitY)/100.0i
fprintf(file,"X.3f " a)·
fprintf(file,"X.3f ":b);
fprintf(file,"X.3f " c)·
fprintf(file,"X.3f ":d);
fprintf(file,"X.3f ",e);
fprintf(file,"X.3f ",f);
fprintf(fi le, "X.3f\n" ,p);

}

fc losee file) i
free(savefi le);
savefile = NULL;

}
}
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/******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emile¥dQviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File genetic.c
* Purpose Performs automatic IFS-encoding with a genetic algorithm
* Part of IFS-CODEC
* Created on September 17, 1992
* Created by Emile van Duren
* Last modified on: December 17, 1992
* Modified by Emile van Duren
* Remarks : None
*****************************************************************************/

'include "all.h"

/*
* forward function declarations
*/

int SelectGeneticOperator()i
void FileopenWarning()i
void IterationHandler()i
void MacroCrossOver()i
void MicroCrossOver()i
void MixedCrossOver()i
void MutateC) i
void J~C)i

void RotateC)i
void SaveFileHandler()i
void ScaleC)i
void Translate()i
Drawdata *GetWindowData()i
Widget GetWindow()i

float PixsetDistance(w,mode)
Widget Wi
int modei

(

/* contained in operators.c
/* contained in messages.c
/* contained in handle.c
/* contained in operators.c
/* contained in operators.c
/* contained in operators.c
/* contained in operators.c
/* contained in operators.c
/* contained in operators.c
/* contained in handle.c
/* contained in operators.c
/* contained in operators.c
/* contained in control.c
/* contained in control.c

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

B in rightdata->pix
B in leftdata->sim
B in leftdata->col
B in rightdata->sim
B in rightdata->col

int col,rowi
float AnotB,BnotA,pixsetdistancei
long int intersection=O,A=O,B=Oi
unsigned long pixelA,pixelBi
Drawdata *datai
Xlmage *imageA,*imageBi
/*
* initialization:
*
* mode 1: A in leftdata->pix,
* mode Z: A in leftdata->pix,
* mode 3: A in leftdata->pix,
* mode 4: A in rightdata->pix,
* mode 5: A in rightdata->pix,
*/

switch(mode)
{

case 1:
w = GetWindow('l','P')i
data = GetWindowData('l','P')i
imageA = XGetlmage(XtDisplay(w),data->pix,O,O,data->width,

data->height,1,XYPixmap)i
w = GetWindow('r','p')i
data = GetWindowData('r' ,'P')i
imageB = XGetlmage(XtDisplay(w),data->pix,O,O,data->width,

data->height,1,XYPixmap)i
breaki

case 2:
w = GetWindow('l' ,'P')i
data = GetWindowData('l','P')i
imageA = XGetlmage(XtDisplay(w),data->pix,O,O,data->width,

data->height,1,XYPixmap)i
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break;

imageB =XGetlmage(XtDisplay(w),data->sim,O,O,data->width,
data->height,1,XYPixmap);

break;
case 3:

w =GetWindow('l','p');
data =GetWindowData('l','P')i
imageA =XGetlmage(XtDisplay(w),data->pix,O,O,data->width,

data->height,1,XYPixmap)i
images =XGetlmage(XtDisplay(w),data->col,O,O,data->width,

data->height,1,XYPixmap):
break;

case 4:
w =GetWindow('r','p');
data =GetWindowData('r','p');
imageA =XGetlmage(XtDisplay(w),data->pix,O,O,data->width,

data->height,1,XYPixmap);
images =XGetlmage(XtDisplay(w),data->sim,O,O,data->width,

data->height,1,XYPixmap);
break:

case 5:
w =GetWindoW('r','p');
data =GetWindowData('r','p');
imageA =XGetlmage(XtDisplay(w),data->pix,O,O,data->width,

data->height,1,XYPixmap);
images =XGetlmage(XtDisplay(w),data->col,O,O,data->width,

data->height,1,XYPixmap)i

}

1*
* for all pixels in image A and image B count #pixels in A, B and AandB
*1

for (col =0; col < data->width; col++)
{

for (row =0; row < data->height; row++)
(

1*
* get pixel and if pixel is black
*1

pixelA =XGetPixel(imageA,col,row)j
pixelB =XGetPixel(imageB,col,row);
if (pixelA == 0)

{
A++j

}

if (pixelB == 0)
{

B++;
}

if (pixelA == 0 && pixelB == 0)
{

intersection++;
}

}
}

1*
* destroy the images
*1

XDestroylmage(imageA);
XDestroylmage(imageB);
imageA =NULL:
imageB =NULL;
1*
* calculate pixsetdistance as max(IA\Bl/lAI,IB\A:/IBI)
*1

if (A == 0 I I B == 0)
{

if (A == 0 && B == 0)
{

pixsetdistance = -1:
}
else
{

pixsetdistance =1:
}

}
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else
(

1*
* watch overflow!
*1

AnotB = (float) (A-intersect on)/A;
BnotA = (float) (B-intersect on)/B;
if «int) 1000000*AnotB < ( nt) 1000000*BnotA)
(

pixsetdistance = BnotA;
)

else
(

pixsetdistance = AnotB;
)

}
1*
* return value of this function
*1

return(pixsetdistance);
}

float ChromosomeToTransfonmation(gene)
int gene;

(
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float parameter;
1*
* convert chromosome values to IFS code; if gene >= 128 then the according
* IFS code parameter is negative
*1

if (gene >= 128) gene = 128 - gene;
parameter = (float) gene/127i
1*
* return value of this function
*1

return(parameter)i
}

int TransformationToChromosome(parameter)
float parameteri

(

int gene = 0i
1*
* convert transformation values to chromosome values as element of (1 •. 255),
* i.e. if parameter <= 0 then the MSB of the chromosome will be set
*1

if «int) 1000000*parameter <= 0)
(

parameter = -parameter;
gene = 128i

)

gene += (int) (127*parameter + 0.5);
1*
* return value of this function
*1

return(gene) i
}

void TransformAndEvaluateldentity(location,code,xleft,xright,yupper,ylower,imageA,display)
char locationi
int xleft,xright,yupper,ylower;
Boolean display;
Chromosome *code;
Xlmage *imageA;

(

float a,b,c,d,e,f,xt,yt,AnotB,BnotA,pixsetdistancei
int col,i,k,row,x,y;
long int intersection=O,A=O,B=Oi
unsigned long pixelA,pixelBi
Drawdata *dat8i
Widget w;
Xlmage *imageBi
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/*
* initialization
*/

w =GetWindow(location,'p');
data =GetWindowData(location,'p');
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»);
/*
* convert chromosome values to IFS codes
*/

a =ChromosomeToTransformation(code->a)i
b =ChromosomeToTransformation(code->b);
c =chromosomeToTransfonmation(code->c);
d =ChromosomeToTransfonmation(code->d);
e =ChromosomeToTransformation(code->e);
f =ChromosomeToTransformation(code->f);
if (display)

(

/*
* clear out data->sim
*/

XSetForeground(XtDisplay(w),data->gC,WhitePixelOfScreen(XtScreen(w»)i
XFillRectangle(XtDisplay(w),data->sim,data->gc,O,O,data->width,

data->height)i
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»);

}

/*
* get image from data->sim
*/

imageB =XGetlmage(XtDisplay(w),data->sim,D,O,data->width,data->height,
1,XYPixmap);

/*
* for all pixels in image
*/

for (row =yupper; row < ylower; row++)
{

for (col =xleft; col < xrighti col++)
(

/*
* get pixel and if pixel is black
*/

pixelA =XGetPixel(imageA,col,row);
if (pixelA == 0)

{

only plot pixel in data->sim if it is located within window
and it is not already plotted (i.e. it is possible that in
case of shrinking several pixels are plotted on the same
coordinate)

/*
* update amount of pixels in target image
*/

A++i
/*
* transform coordinate to virtual origin
*/

xt = col - data->xorigini
yt =row - data->yorigin;
/*
* convert y from screen coordinates to Carthesian coordinates
*/

yt = -yti
/*
* apply affine transformation
*/

x =a*xt + b*yt + e*250;
y =c*xt + d*yt + f*250;
/*
* convert y from Carthesian coordinates to screen coordinates
*/

y = 'y;
/*
* transform coordinate to original position
*/

x += data->xorigin;
y += data->yorigin;
/*
*
*
*
*
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}
}
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*1
if Cx >= °&& x < data->width && y >= °&& y < data->height)
(

pixelA = XGetPixeICimageA,x,y);
pixelB = XGetPixeICimageB,x,y);
if CpixelB !=o)

(
if Cdisplay) XDrawPointCXtDisplaYCw),data->sim,data->gc,x,y);
XPutPixeICimageB,x,y,O);
1*
* update amount of pixels in approximation image
*1

B++;
if CpixelA == 0) intersection++;

}
}

}

if Cdisplay)
(

1*
* copy data->sim to screen
*1

XCopyAreaCXtDisplaYCw),data->sim,XtWindowCw),data->gc,O,O,
data->width,data->height,O,O);

}

1*
* destroy imageB
*1

XDestroylmageCimageB);
imageB = NULL;
1*
* calculate pixsetdistance as maxCIA\BI/IAI,IB\AI/:BI), where the target
* image A is located in data->pix and the approximation image B in data->sim
*1

if CA == ° II B == 0)
(

if CA == °&& B == 0)
{

pixsetdistance = -1;
}

else
{

pixsetdistance = 1;
}

}

else
(

1*
* watch overflow !
*1

AnotB = Cfloat) CA-intersection)/A;
BnotA = Cfloat) CB-intersection)/B;
if CCint) 1000000*AnotB < Cint) 1000000*BnotA)
{

pixsetdistance = BnotA;
}

else
{

pixsetdistance = AnotB;
}

}

1*
* calculate fitness
*1

code->fitness = 1 - pixsetdistance;
}

void TransformAndEvaluatetollageClocation,code,xleft,xright,yupper,ylower,imageA,imageC,N,display)
char location;
int xleft,xright,yupper,ylower,N;
Boolean display;
Chromosome *code;
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Xlmage *imageA,*imageC;
(

float borderreward,fillreward,sizereward,strongpenaltY,weakpenalty;
float a,b,c,d,e,f,xt,yt;
int col,offset=1,row,x,y;
unsigned long A=O,B=O,C=O,AandBandC=O,AnotC=O,AnotCandB=O,BnotA=O;
unsigned long pixelA,pixelB,pixelC;
Drawdata *datai
Widget w;
Xlmage *imageB;
1*
* initialization
*1

w = GetWindowClocation,'p');
data = GetWindowDataClocation,'p');
XSetForegroundCXtDisplaYCw),data->gc,BlackPixelOfScreenCXtScreenCw»);
1*
* convert chrlllllOsome values to IFS codes
*1

a = ChrlllllOsomeToTransformationCcode->a);
b = ChrlllllOsomeToTransfonmationCcode->b);
c = ChrlllllOsomeToTransformationCcode->c);
d = ChrlllllOsomeToTransfonmationCcode->d)i
e = 250*ChrlllllOsomeToTransfonmationCcode->e);
f = 250*ChrlllllOsomeToTransformationCcode->f);
if Cdi splay),

(

1*
* clear out data->sim
*1

XSetForegroundCXtDisplayCw),data->gc,WhitePixelOfScreenCXtScreenCw»);
XFillRectangleCXtDisplaYCw),data->sim,dats->gC,O,O,data->width,

data->height);
XSetForegroundCXtDisplayCw),data->gc,BlackPixelOfScreenCXtScreenCw»);

}

1*
* A = target image contained in data->pix
* B = current similitude contained in dats->sim
* C = current collage contained in data->col
*
* borderreward = CCA-C)andB)/B
* fillreward = CCA-C)andB)/CA-C)
* sizereward = CCN+1)*B)/A for B/A
* = C1+1/N)*C1-B/A) for B/A
* strongpenalty = CB-A)/B
* weakpena l ty = CAandBandC)/B
*
* get image from data->sim
*1

imageB = XGetlmageCXtDisplaYCw),data->sim,O,O,data->width,data->height,
1,XYPixmap);

1*
* for all pixels in image
*1

for Crow = yupper; row < yloweri row++)
(

for Ccol = xleft; col < xright; col++)
(

pixelA = XGetPixelCimageA,col,row);
if CpixelA == 0)

{

1*
* update amount of pixels in target image
*1

A++;
1*
* transform coordinate to virtual origin
*1

xt =col - data->xorigin;
yt = row· data->yorigini
1*
* convert y from screen coordinates to Carthesian coordinates
*1

yt = -yti
1*
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}
}
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* apply affine transformation
*/

x = a*xt + b*yt + ei
y = c*xt + d*yt + fi
/*
* convert y from Carthesian coordinates to screen coordinates
*/

y = -Yi
/*
* transform coordinate to original position
*/

x += data->xorigini
y += data->yorigini
/*
* only plot pixel in data->sim if it is located within window
* and it is not already plotted (i.e. it is possible that in
* case of shrinking several pixels are plotted on the same
* coordinate)
*/

if (x >= 0 && x < data->width && y >= 0 && y < data->height)
{

/*
* update lIllIOU"It of pixels left to be covered
*/

pixelC = XGetPixel(imageC,col,row)i
if (pixelC != 0) AnotC++i
pixelA = XGetPixel(imageA,x,y)i
pixelB = XGetPixel(imageB,x,y)i
pixelC = XGetPixel(imageC,x,y)i
if (pixelB !z 0)

{

if (display) XDrawPoint(XtDisplay(w),data->sim,data->gc,x,y)i
XPutPixel(imageB,x,y,O)i
/*
* update amount of pixels in approximation image
*/

B++·
if (pixelA == 0)
{

if (pi xelC == 0)
{

AandBandC++i
}

else
{

AnotCandB++i
}

}
else
{

BnotA++i
}

}
}

}
if (display)

{

/*
* copy data->sim to screen
*/

XCopyArea(XtDisplay(w),data->sim,XtWindow(w),data->gc,O,0,
data->width,data->height,O,O)i

}

/*
* destroy imageB
*/

XDestroylmage(imageB)i
imageB = NULLi
/*
* calculate penalties and rewards (watch overflow!)
*/

if (A == 0)
{
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sizereward = 0.0:
}

else
{

1*
* we want smaller and smaller copies as the process proceeds (to
* influence the size of the pictures, adjust offset)
*1

if «int) 100*B/A < (int) (100.0/(N+offset»)
{

sizereward = (float) «N+1)*B)/A;
)

else
(

if «int) 100*B/A < 100)
{

sizereward = (float) (1.0 + 1.0/N)*(1.0 - (float) B/A);
}

else
{

sizereward = 0.0;
}

}
}

if (AnotC == 0)
{

fillreward = 0.0;
}

else
{

fillreward = (float) (AnotCandB)/AnotC;
}

if (B == 0)
{

borderreward = 0.0:
strongpenalty = 1.0:
weakpenalty = 1.0:

)

else
{

borderreward = (float) (AnotCandB)/B:
strongpenalty = (float) (BnotA)/B:
weakpenalty = (float) (AandBandC)/B:

)
1*
* calculate fitness (prevent the first transformation to become the
* identity mapping by sizereward and force the following similitudes
* to be smaller and smaller copies to be able to get a good tiling
*1
if (N==1)

{

code->fitness = (1.0 + sizereward - strongpenalty)/2.0;
}

else
{

code->fitness = (N*sizereward + borderreward - (N+1)*strongpenalty)/«float) N + 1.0);
}

1*
* just to make sure the fitness is an element of (0,1) (this is necessary
* because the fitness will be used to represent the relative probability
* with which the member is choosen to be parent for the next generation)
*1

if «int) 1000000*(code->fitness) <= 0)
{

code->fitness =0.000001:
}

if «int) 1000000*(code->fitness) >= 1000000)
{

code->fitness = 0.999999:
}

}
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void MergeMemberlntoPopuLation(arraY,member)
Chromosome *member,array[];

{
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(

int i =POPULATION SIZE-1;
/* -
* merge member into popuLation such that aLL members within popuLation
* remain sorted in best fitness order
*/

whiLe (i > 0 && (int) 1000000*member->fitness > (int) 1000000*array[i-1].fitness)
{

array[i].a = array[i-1].a;
array[i].b = array[i-1].b;
array[i].c = array[i-1].c;
array[i].d =array[i-1].d;
array[i].e =array[i-1].e;
array[i].f =array[i-1].f;
array[i].fitness =array[i-1].fitness;
i-e.,

}

array[i].a =member->a;
array[i].b =member->b;
array[i].c =member->c;
array[i].d =member->d;
array[i].e =member->e;
array[i].f =member->f;
array[i].fitness =member->fitness;

}

void InitiaLizePopuLation(Location,wtemp,wnext,xLeft,xright,yupper,yLower,imageA,dispLay)
char Location;
int xLeft,xright,yupper,yLower;
BooLean dispLay;
Chromosome wtemp[],wnext[];
Xlmage *imageA;

int coL,i,k,mode,row,start,startpoint[POPULATION_SIZE];
int count,xfixed[POPULATION SIZE],yfixed[POPULATION SIZE];
fLoat a,b,c,d,e,f; - -
unsigned Long pixeLA;
Drawdata *data;
Widget w;
/*
* initiaLization
*/

if (Location == 'L')
(

mode = 2;
w =GetWindow('L','p');
data =GetWindoWOata('L' ,'p');

}

if (Location == 'r')
(

mode = 4;
w = GetWindow('r','p');
data = GetWindoWOata('r','p');

}

for (i = 0; i < POPULATION SIZE; i++)
{ -

startpoint[i] =0;
wtemp[i].fitness =0.0;
xfixed[i] = 0;
yfixed[i] = 0;

}

/*
* take POPULATION_SIZE random points from target_image T and make those
* points the fixed points of the according affine transformations of the
* initiaL popuLation
*/

for (k = 0; k < POPULATION_SIZE; k++)
{

start = (int) (rand(»*(data->npixeLs)/32767;
i = POPULATION_SIZE-1;
whiLe (i > 0 && start> startpoint[i-1])
{
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startpoint[i] = startpoint[i-1];
i-e.,

}

startpoint[i] = start;
}

1*
* determine the coordinates of the fixed points which IIUst be elements
* of the pixelset of the target image
*1

count = data->npixels;
i=O;
for (row = yupper; row < ylower; row++)

{

for (col = xleft; col < xright; col++)
(

pixelA = XGetPixel(imageA,col,row);
1*
* fixed point IIUst be element of target_image
*1
if (pixelA == 0)

{

cOU'\t-- •
if (sta~tpoint[i] == count)
{

xfixed[i] = col - data->xorigin;
yfixed[i] = data->yorigin • row;
i++;

}
}

}
}

1*
* generate the transformation parameters for the POPULATION_SIZE chromosomes
* of the first generation
*
* each time generate 4 transformation parameters a,b,c,d each as element of
* {1 •• 255} and calculate the parameters e,f from a,b,c,d and the fixed
* points xfixed[i] and yfixed[i]
*1

for (i = 0; i < POPULATION_SIZE; i++)
{

wnext[i].a = (int) (rand()/129.0 + 0.5);
wnext[i].b = (int) (rand()/129.0 + 0.5);
wnext[i].c = (int) (rand()/129.0 + 0.5);
wnext[i].d = (int) (rand()/129.0 + 0.5);
a = ChromosomeToTransformation(wnext[i].a);
b = ChromosomeToTransformation(wnext[i].b);
c = ChromosomeToTransformation(wnext[i].c);
d = ChromosomeToTransformation(wnext[i].d);
e = (float) «(1 - a)*xfixed[i] - b*yfixed[i])/250.0);
f = (float) «(1 - d)*yfixed[i] - c*xfixed[i])/250.0);
wnext[i].e = TransformationToChromosome(e);
wnext[i].f = TransformationToChromosome(f);
if (wnext[i].a == 0) wnext[i].a = 128;
if (wnext[i].b == 0) wnext[i].b = 128;
if (wnext[i].c == 0) wnext[i].c = 128;
if (wnext[i].d == 0) wnext[i].d = 128;
if (wnext[i].e == 0) wnext[i].e = 128;
if (wnext[i].f == 0) wnext[i].f = 128;
1*
* transform target image by current member, evaLuate the resuL t and
* merge the member into the popuLation according to its fitness
*1

TransformAndEvaluateldentity(location,&wnext[i],xLeft,xright,yupper,yLower,imageA,dispLay);
MergeMemberlntoPopuLation(wtemp,&wnext[i]);

}

1*
* reset the random number generator with a new seed
*1

srand(wnext[i].a);
}
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int SelectParent(wtemp)
Chromosome wtemp[l;

{

float total fitness = 0;
int k;
unsigned long p=O,seed;
Boolean found = FALSE;
/*
* detennine total fitness
*/

for (k = 0; k < POPULATION_SIZE; k++)
{

totalfitness += wtemp[kl.fitness;
}

/*
* roulette wheel parent selection
*/

seed = rand();
k =0;
while (k < POPULATION SIZE && !found)

( -
P += 32767*«wtemp[kl.fitness)/totalfitness);
if (seed <= p) found = TRUE;
k++;

}

/*
* return value of this function
*/

return(k-1);
}

void AutomaticIFSEncoding(w,location)
Widget W;
char locat ion;

(
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(a,b,c,d,e,f,fitness);
a,b,c,d,e,f (elements of (1 •• 255})
8 binary digits within genes (1 sign bit, 7 data bits)

/*
* chromosome :
* genes
* nucleotides:
*/

char *savefile,*monitor = "monitor.dat",*ext = l.aut",fbuf[BUFSIZl;
float a,b,c,d,e,f,p,xt,yt,pixsetdistance;
float p1 = P_MACRO,p2 = P_MICRO,P3 = P_MIXED,p4 = P_MUTATE,p5 = P_JUMP;
float p6 = P_SCALE,p7 = P_ROTATE,p8 = P_TRANSLATE,totalfitness,hours;
int generation,i,index,j,k,mode,N=1,nmax,x,xleft,xright,y,yupper,ylower;
int col,row,parent1,parent2,selection,n,seconds;
int c1=O,c2=O,c3=O,c4=O,c5=O,c6=O,c7=O,c8=0;
unsigned long pixelA,starttime,endtime;
Boolean debug = DEBUG,display = DISPLAY,extended = EXTENDED,skip = FALSE;
Chromosome child[2l ,wtemp[POPULATION_SIZEl,wnext[POPULATION_SIZEl;
Drawdata *data;
FILE *file;
Xlmage *imageA,*imageC;
/*
* put current amount of seconds since 1970 in starttime
*/

time(&starttime);
/*
* initialization (next line must be outcommented for debugging purposes,
* because then each run will generate the same sequence of random numbers)
*/

srand(starttime);
w = GetWindow(location,'p');
data = GetWindowData(location,'p');
data->npixels = 0;
/*
* if we want to calculate the identity mapping of a target image then
* nmax must be set to 1, i.e. only 1 affine transformation
*/

if (data->identity)
{

nmax = 1;
}
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else
{

nmax = MAX_TRANSFORMATIONS;
}

xleft =data->width;
xright =0;
yupper =data->height;
ylower =0;
if (location == 'l') mode =2;
if (location == 'r') mode =4;
/*
* only proceed further if monitor file could be successfully opened
*/

if «file =fopen(monitor,"w"» == NULL)
(

Fileopenwarning(w,location);
data->firsttime =TRUE;
skip =TRUE;

}

else
(

/*
* set vbuffer to force periodic flushing to file monitor.dat and
* put savefile in text window
*/

setvbuf(file,fbuf, IOLBF,BUFSIZ);
fclose(file); -
SaveFileHandler(w,location,ext);

}

/*
* data->pix: contains target image
* data->sim: contains evaluated image (transformed target image under
* currently evaluated transformation)
* data->col: contains collage image (union of transformations selected to be
* part of the IFS code and applied on target_image so far)
* clear out data->sim and data->col
*/

XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w»);
XFilIRectangle(XtDisplay(w),data->sim,data->gc,O,O,data->width,

data->height);
XFilIRectangle(XtDisplay(w),data->col,data->gc,O,O,data->width,

data->height);
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»);
/*
* get target image from data->pix and initialize collage image to zero
*/

imageA =XGetlmage(XtDisplay(w),data->pix,O,O,data->width,data->height,
1,XYPixmap);

imageC =XGetlmage(XtDisplay(w),data->col,O,O,data->width,data->height,
1,XYPixmap);

/*
* if target image is the empty set then quit immediately
*/

if (!skip && (int) PixsetDistance(w,mode) < 0)
{

skip = TRUE;
}

else
{

/*
* for alL pixels in image
*/

for (row =0; row < data->height; row++)
{

for (coL =0; col < data->width; col++)
(

/*
* get pixel and if pixeL is black
*/

pixelA =XGetPixel(imageA,col,row);
if (pixelA == 0)
{

/*
* update amount of pixels in target image
*/



206

data->npixels++;
/*
* calculate bounding box of target image
*/

if (col < xleft) xleft = col;
if (col> xright) xright = col;
if (row < yupper) yupper = row;
if (row> ylower) ylower = row;

)
)

)

/*
* update file monitor.dat
*/

file = fopen(monitor,"a");
fprintf(file,"file name
if (data->identity)
(

fprintf(file,"searching to find
)

else
(

fprintf(fi le,"searching to find
)

fprintf<f ile, "operator probabil i ties: MacroCrossover:
fprintf<fi le," MicroCrossover:
fprintf(fi le, II MixedCrossover:
fprintf(file," Mutate
fprintf(file,11 J~

fprintf(file," Scale
fprintf(file,11 Rotate
fprintf(file," Translate
fprintf<file,"maxinun encoding error (epsilon)
fprintf(file,"maxinun amount of generations
fprintf(f ile, "population si ze
fclose(file);
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Xs\n" ,data->f i lename);

identity\n",NULL);

: collage\n",NULL);

X3.2f\n",p1);
X3.2f\n",p2);
X3.2f\n",p3);
X3.2f\n",p4);
X3.2f\n",pS);
X3.2f\n",p6);
X3.2f\n",p7);
X3.2f\n l .,pS);
XcI [percentl\n",EPSILON);
XcI\n",MAX_GENERATIONS);
XcI\n\nl" POPULAT ION_SIZE);

)

/*
* while approximation has not been accomplished with required accuracy,
* i.e. the pixset distance between the target image T in data->pix and
* the union of the transformed similitudes of T according to the trans·
* formations found so far in data->col exceeds epsilon
*
* since data->col is empty and data->pix is not empty if T is not the
* empty set, the pixsetdistance will always be 1, and thus greater than
* EPSILON, which is an element of [0,1), so the while loop will always
* be entered
*/

while (N<=nmax && !skip && (int) (100*PixsetOistance(w,mode+1» > EPSILON)
(

/*
* update amount of generations in text window as if it is an iteration
*/

IterationHandler(location,-1);
printf("affine transformation number XcI\n",N);
generation = 0;
totalfitness = 0.0;
/*
* initialize an amount of POPULATION_SIZE transformations wtemp[i]
* randomly (or with a heuristic) to form POPULATION N
*/

InitializePopulation(location,wtemp,wnext,xleft,xright,YUpper,ylower,imageA,display);
/*
* update file monitor.dat
*/

file = fopen(monitor,"a");
fprintf(fi le,"transformation: XcI\n",N);
fpri ntf( file, "generat ion XcI (init iali zat ion)\n", generat ion);
fprintf(fi le,"menOer abc d e f fitness\n",NULL);
for (k = 0; k < POPULATION SIZE; k++)
( -

fprintf(file,"%3d X3d X3d X3d X3d X3d X3d XBf\n",k+1,wtemp[k].a,
wtemp[k] .b,wtemp[k].c,wtemp[k].d,wtemp[k].e,wtemp[k] .f,
wtemp[k].fitness);

totalfitness += wtemp[k].fitness;
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}

fprintf(file,"total fitness = Xf\n\n",totalfitness);
fclose(file);
generat ion++;
/*
* initialize next cycle of genetic simulation to obtain an additional
* transformation for the IFS code
*/

while (generation <= MAX GENERATIONS && (int) 100*wtemp[Ol.fitness < (100 - EPSILON»
( -

total fitness = 0.0;
/*
* update amount of generations in text window as if it is an iteration
*/

IterationHandler(location,generation-1);
/*
* clear out next generation array
*/

for (k = 0; k < POPULATION_SIZE; k++)
{

wnext[kl.fitness = 0.0;
}

/*
* apply all transformations in wtemp to target image in data->pix
* and put them in data->sim
*/

for (k = 0; k < POPULATION SIZE; k += 2)
( -

/*
* select 2 parents according to roulette wheel selection
*/

parent1 =SelectParent(wtemp);
parent2 =SelectParent(wtemp);
/*
* select a genetic operator to be applied on both parents
*/

selection =SelectGeneticOperator();
/*
* update file monitor.dat (next 3 lines are meant for debugging
* purposes)
*/

if (debug)
(

207

file =fopen(moni tor, "a");
fprintf(file,"parent1:X3d parent2:X3d operator:X2d ",parent1+1,parent2+1,selection);
fclose(fi le);

}

/*
* apply selected genetic operator and create 2 childs
*/

switch(selection)
(

case 1:
MacroCrossOver(wtemp[parent1l,wtemp[parent2l,child[Ol,child[1l);
c1++·
break;

case 2:
MicroCrossOver(wtemp[parent1l,wtemp[parent2l,child[Ol,child[1l);
c2++;
break;

case 3:
MixedCrossOver(wtemp[parent1l,wtemp[parent2l,child[Ol,child[1l);
c3++;
break;

case 4:
Mutate(wtemp[parent1l,child[Ol);
Mutate(wtemp[parent2l,child[1l);
c4++;
break;

case 5:
Jump(wtemp[parent1l,child[Ol);
Jump(wtemp[parent2l,child[1l);
c5++;
break;

case 6:
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Scale(wtemptparent1],childtO]);
Scale(wtemptparent2],childt1]);
c6++;
break;

case 7:
Rotate(wtemptparent1],child[0]);
Rotate(wtemptparent2],childt1]);
c7++·
break;
case 8:
Translate(wtemp[parent1],child[0]);
Translate(wtemp[parent2],child[1]);
c8++;
break;

}

1*
* transform target image according to current child chromosome,
* evaluate quality of this child chromosome and assign fitness
*1

for (j = 0; j < 2; j++)
{

if (data->identity)
{

TransformAndEvaluateldentity(location,&childtj],xleft,xright,
yupper, ylower, imageA,display);

}

else
{

TransformAndEvaluateCollage(location,&child[j],xleft,xright,
yupper,ylower,imageA,imageC,N,display);

}

1*
* update file monitor.dat (next 9 lines are meant for
* debugging purposes)
*1

if (debug)
{

file = fopen(monitor,"a");
if ( j == 0)
{

fprintf(file,"child abc d e f fitness\n",NULL);

fitness\n",NULL);

}

fprintf(file, "%3d %3d %3d %3d %3d %3d %3d XBf\n",
k+j+1,child[j].a,child[j].b,child[j].c,child[j].d,
childtj].e,child[j].f,child[j].fitness);

fclose(file);
}

1*
* merge children in sorted list
*1

MergeMemberlntoPopulation(wnext,&child[j]);
}

}

1*
* transfer best 10% of current population unmodified to next generation
* (the +1 is added to assure that at least one member will be
* transferred, which is important for populations < 10)
*1

for (i = 0; i < (int) (POPULATION_SIZE/10 + 1); i++)
{

MergeMemberlntoPopulation(wnext,&wtemp[i]);
}

1*
* make children in wnext the new generation in wtemp and
* update file monitor.dat
*/

file =fopen(monitor,"a");
if (generation <= MAX GENERATIONS)

{ -
fprintf(file,"generation : Xd\n",generation);
fprintf(file,"member abc d e f

}

for (k =0; k < POPULATION_SIZE; k++)
{

wtemp[k].a = wnexttk].a;
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wtemp[k].b = wnext[k].b;
wtemp[k].c = wnext[k].c;
wtemp[k].d = wnext[k].d;
wtemp[k].e = wnext[k].e;
wtemp[k].f = wnext[k].f;
wtemp[k].fitness = wnext[k].fitness;
if Cextended I: k == 0 II generation == MAX_GENERATIONS)
(

fprintfCfHe,"X3d X3d X3d X3d X3d X3d X3d XSf\n",k+1,
wnext[k].a,wnext[k].b,wnext[kl.c,wnext[k].d,
wnext[k].e,wnext[k].f,wnext[k].fitness);

}

totalfitness += wnext[k].fitness;
}

fprintfCfHe, "total fitness = 1f\n\n", total fi tness);
fcloseCfile);
generation++;

Xcl\n",c1);
Xcl\n",c2);
Xcl\n",c3);
Xcl\n",c4);
Xcl\n" , c5 );
Xcl\n" , c6) ;
Xcl\n" , c7) ;
Xcl\n\n",c8);

MacroCrossover:
MicroCrossover:
MixedCrossover:
Mutate
J~
Scale
Rotate
Translate

}
file = fopenCmonitor,la");
fprintfCfile,"#operator selections
fprintfCfile, "
fprintfCfile,"
fprintfCfile, "
fprintfCfile,"
fprintfCfile,"
fprintfCfi le,"
fprintfCfi le,"
fcloseCfile);
c1=0·c2=0·c3=0·c4=0·c5-0·c6=0·c7=0·c8=0·/*' , , , , , , ,

* add best found transformation of this cycle of generations as
* transformation number N in filename.aut
*/

savefile = callocCstrlenCdata->filename)+5,sizeofCchar»;
strcpyCsavefile,data->filename);
if CCfile = fopenCstrcatCsavefile,ext),"a"» == NULL)
(

Fi leDpenWarningCw, location);
data->firsttime = TRUE;

}
else
(

a = ChromosomeToTransformationCwtemp[O].a);
b =ChromosomeToTransformationCwtemp[O].b);
c =chromosomeToTransformationCwtemp[O].c);
d =ChromosomeToTransformationCwtemp[O].d);
e =250*ChromosomeToTransformationCwtemp[0].e);
f = 250*ChromosomeToTransformationCwtemp[0] .f);
p =0.0;
fprintfCfile,"1.3f X.3f 1.3f X.3f X.3f X.3f X.3f\n",a,b,c,d,e,f,p);
fcloseCfi le);
/*
* transform target image in data->pix under best transformation found in
* generation MAX GENERATIONS of this N-cycle, and add the results to the
* collage in data->col
*/

for Crow = yupper; row < ylower; row++)
(

for Ccol = xleft; col < xright; col++)
(

/*
* get pixel and if pixel is black
*/

pixelA = XGetPixelCimageA,col,row);
if CpixelA == 0)

{

/*
* transform coordinate to virtual origin
*/

xt = col - data->xorigin;
yt = row - data->yorigin;
/*
* convert y from screen coordinates to Carthesian coordinates
*/

yt = -yt;
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/*
* apply affine transformation
*/

x = a*xt + b*yt + ei
y = c*xt + d*yt + fi
/*
* convert y from Carthesian coordinates to screen coordinates
*/

y = -Yi
/*
* transform coordinate to original position
*/

x += data->xorigini
y += data->yorigini
/*
* draw point in collage
*/

XDrawPoint(XtDisplay(w),data->col,data->gc,x,y)i
}

}
}

}

/*
* free the savefile
*/

free(savefi le)i
savefile =NULL;
/*
* get updated collage image from data->col
*/

imageC = XGetlmage(XtDisplay(w),data->col,O,O,data->width,data->height,
1,XYPixmap);

/*
* increment the current affine transformation that is sought for
*/

N++;
}

/*
* destroy images
*/

XDestroylmage(imageA);
XDestroylmage(imageC);
imageA =NULL;
imageC =NULL;
/*
* calculate pixsetdistance between target image and collage
*/

pixsetdistance = PixsetDistance(w,mode+1);
/*
* copy best found member to data->pix and to screen
*/

XSetForeground(XtDisplay(w),data->gc,WhitePixeIOfScreen(XtScreen(w»);
XFiIIRectangle(XtDisplay(w),XtWindow(w),data->gc,O,O,data->width,

data->height)i
XSetForeground(XtDisplay(w),data->gc,BlackPixeIOfScreen(XtScreen(w»)i
XCopyArea(XtDisplaY(w),data->col,data->pix,data->gc,O,O,

data->width,data->height,O,O);
XCopyArea(XtDisplay(w),data->col,XtWindow(w),data->gc,O,0,

data->width,data->height,O,O)i
/*
* put pixsetdistance, amount of affine transformations and cpu time used in
* monitor file
*/

if C!skip)
(

time(&endtime);
seconds = (int) (endtime - starttime)i
hours =seconds/3600.0;
file =fopen(monitor,"a")i
fprintf(file,"pixsetdistance(target,best member) : X7.6f\n\n",pixsetdistance);
fprintf(file,"#affine transformations in IFS-code : Xd\n\n",N-1);
fprintf(fi le,"totaL CPU time used = Xd [seconds] = %2.2f [hoursl\n\n",seconds,hours);
fclose(file);

}
}
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1******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdaviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File graphics.c
* Purpose Creates graphics contexts for drawingareas
* Part of IFS-CODEC
* Created on June 10, 1992
* Created by Emile van Duren
* Last modified on: November 18, 1992
* Modified by Emile van Duren
* Remarks : None
*****************************************************************************1

#include "all.h"

void InitGraphics(w,data)
Widget w;
Drawdata *data;

(
1*
* detennine amount of available colors
*1

data->ncolors =XDisplayCells(XtDisplay(w),XDefaultScreen(XtDisplay(w»);
1*
* get the size of the drawingara
*1

ac =0;
XtSetArg(al[acl,XtNwidth,&data->width): ac++:
XtSetArg(al[acl,XtNheight,&data->height): ac++:
XtGetValues(w,al,ac):
1*
* create a graphics context
*1

data->gc =XCreateGC(XtDisplay(w),DefaultRootWindow(XtDisplay(w»,NULL,NULL):
1*
* initialize pixmap to 500 x 500 pixels
*1

data->width =AREA_WIDTH;
data->height =PIXEL AREA HEIGHT;
if (data == &lefttextdata-:l data == &righttextdata) data->height =TEXT_AREA_HEIGHT;
1*
* define origins, amount of iterations and zoomfactor
*1

data->xorigin =data->xstart =data->width/2;
data->yorigin =data->ystart =data->height/2;
data->zoomfactor =10;
data->xoffset =0;
data->yoffset = 0;
1*
* create drawingarea pixmap and set its foreground to white
*1

data->pix =XCreatePixmap(XtDisplay(w),DefaultRootWindow(XtDisplay(w»,
data->width,data->height,
DefaultDepthOfScreen(XtScreen(w»):

XSetForeground(XtDisplay(w),data->gc,WhitePixeLOfScreen(XtScreen(w»);
XFiIIRectangle(XtDisplay(w),data->pix,data->gc,O,O,data->width,data->height);
1*
* create bufferpixmaps for similitude and collage manipuLations
* (this has only to bo done for pixelarea's)
*1

if (data == &leftpixeldata I: data == &rightpixeldata)
(

data->sim =XCreatePixmap(XtDisplay(w),DefaultRootWindow(XtDispLay(w)),data->width,
data->height,DefaultDepthOfScreen(XtScreen(w»);

XSetForeground(XtDisplay(w) ,data->gc,Whi tePixelOfScreen(XtScreen(w»):
XFiIIRectangLe(XtDisplay(w),data->sim,data->gc,O,O,data->width,data->height);
data->col =XCreatePixmap(XtDisplay(w),DefaultRootWindow(XtDispLay(w)),data->width,

data->height,DefaultDepthOfScreen(XtScreen(w»);
XSetForeground(XtDisplay(w),data->gc,WhitePixeIOfScreen(XtScreen(w»):
XFiIIRectangLe(XtDisplay(w),data->col,data->gc,O,O,data->width,data->height);
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}
/*
* initialize transformation data
*/

data->transformation.xscaling =80;
data->transformation.yscaling =80;
data->transformation.xrotation =0;
data->transformation.yrotation =0;
data->transformation.xshift = 0;
data->transformation.yshift =0;
data->transformation.probability =100;
/*
* set controlflags
*/

data->drawgrab =FALSE;
data->erasegrab = FALSE;
data->firsttime =TRUE;
data->axes =FALSE;
data->unzoom =TRUE;
data->condensation =TRUE;
data->identity =IDENTITY;
/*
* initially no mode selected
*/

data->mode = '0'·
/* '
* set help/warning popup box guards to TRUE
*/

data->first.filehelp =TRUE;
data->first.originwarning =TRUE;
data->first.fileopenwarning =TRUE;
data->first.tablemessage =TRUE;

}

B. IFS-CODEC source code
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/******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,Nl)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdaviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File handle.c
* Purpose Handles text to be written in text window
* Part of I FS-CODEC
* Created on June 01, 1992
* Created by Emi le van Duren
* lBSt modified on: December 17, 1992
* Modified by Emi le van Duren
* Remarks : Zoontlandler hBs to be al tered
*****************************************************************************/

#include "all.h"
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/*
* forward function declarations
*/

void ClearPixelArea();
void DrBwTextC);
void FileQpenWarning();
void OriginWarning();
Drawdata *GetWindowDatB();
Scrolldeta *GetScrollData();
Textdata *GetTextData();
Widget GetWindow();

/- contained in draw.c
/- contained in writer.c
/* contained in messages.c
/* contained in messages.c
/* contained in control.c
/* contained in control.c
/* contained in control.c
/* contained in control.c

*/
*/
*/
*/
*/
*/
*/
*/

(

void ClearTextHandler(w, location, lines)
Widget w;
char location;
short int lines;

Textdata *text;
text =GetTextDBta(location);
/*
* from textlines 1 till 10 only those lines will be cleared whose according
* position in the binary number "lines" contains a "1"
* example: if lines =53 (decimal) then lines =110101 (binary) so clear
* out lines 1,3,5,6
*/

if (lines Xl 1= 0 && lines 1= 0)
{

lines-Oj
text->mode = "mode II.,

)
lines /= 2;
if (l ines Xl 1= o && lines != 0)

(
lines-Oj
text->srce = "sourcefile II.,

)
lines /= 2;
if (l ines Xl != 0&& lines != 0)

(
lineS-Oj
text->size = "fi lesize II.,

)

lines /= 2;
if (l ines Xl != o && lines != 0)

(
lines-Oj
text->cont = "contBins II.,

)
lines /= 2;
if (l ines Xl != 0&& lines != 0)

(
lines-Oj
text->SBve = "saveti lees) II.,

)

lines /= 2;
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if (lines X2 != 0 && lines != 0)
{

B. IFS-CODEC source code

lines--;
text->orgn ="origin II.,

}

lines /= 2;
if (lines X2 != 0 && lines != 0)

{

lines-- ;
text->init ="startpixel II.,

}

lines /= 2;
if (lines X2 != 0 && lines != 0)

{

lines--;
text->amit = "#iterations : ";

}

lines /= 2;
if (lines X2 1= 0 && lines != 0)

{

}

lines /= 2;
if (lines X2 != 0 && lines != 0)

{

l ines--;
text->zoOlll ="zoOlllfactor

l ines-·;
text->iter = "iteration

}
}

void ModeHandler(w,location)
Widget w;
char location;

(

II.,

II.,

Textdata *text;
Drawdata *data;
data =GetWindowData(location,'p');
text =GetTextData(location);
if (data->mode == 'v') text->mode ="mode
if (data->mode == 'w') text->mode ="mode
if (data->mode == 'i') text->mode ="mode
if (data->mode == 'a') text->mode ="mode
if (data->mode == 'd') text->mode ="mode
if (data->mode == 'n') text->mode ="mode
if (data->mode == 'p') text->mode ="mode
if (data->mode == 'b') text->mode ="mode
if (data->mode == 'm') text->mode = "mode
DrawText(location);

}

void FileSizeHandler(location,ext)
char location,*ext;

(

Viewedit source file";
Viewedit IFS-code";
Interactive IFS encoding";
Automat ic IFS encodi ng";
Deterministic IFS decoding";
Nondeterministic IFS decoding";
Performance analysis";
Bifurcation diagram of logistic map";
Mandelbrot set";

char *savefile;
static char string1 [60] ,string2[8] ,string3[] = "filesize
struct stat nfile;
Drawdata *data;
FILE *fi le;
Textdata *text;
data = GetWindowData(location,'p');
text =GetTextData(location);
strcpy(string1,string3);
savefile =calloc(strlen(data->filename)+5,sizeof(char»;
strcpy(savefile,data->filename);
file =strcat(savefile,ext);
if (stat(file,&nfile) == 0)

(

/*
* print filesize in bytes
*/

spri ntf<stri ng2, "Xd", nf i leo st_s i ze);
strcat(string1,string2);

",string4[] = " [bytes]";
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text->size =strcat(string1,string4);
}

free(savefi le);
savefi le = NULL:

}

void FileContainmentHandler(location,ext)
char location,*ext;

(
static char string1 [60] ,stringZ[4] ,string3[] ="contains
static char string4[50],string5[SO];
static char string6[] ="collage-generated IFS code table";
static char string1[] = "automatic generated IFS code table";
static char string8[] ="manually entered IFS code table";
Textdete -text:
Drawdata *data:
data =GetWindowData(location,'p');
text =GetTextData(location);
sprintf(string4,"Xd [pixels] of source image",data->npixels):
sprintf(string5,"Xd [pixels] of collage image",data->npixels);
strcpy(stringZ,ext);
strcpy(string1,string3);
if (stringZ[Z] == 'm') text->cont =strcat(string1,string4);
if (stringZ[Z] == '0') text->cont =strcat(string1,stringS);
if (stringZ[Z] == 'a') text->cont =strcat(string1,string6);
if (stringZ[Z] == 'u') text->cont =strcat(string1,string7);
if (stringZ[Z] == 'f') text->cont =strcat(string1,string8);

}

void SaveFileHandler(w,location,ext)
Widget w:
char location,*ext;

(

static char string1[60] ,stringZ[ZO] ,string3[] = "savefile(s) ";
Textdata *text;
Drawdata *data:
data = GetWindowData(location,'p');
text = GetTextData(location);
strcpy(string1,string3);
sprintf(stringZ,"Xs",data->filenarne);
if (data->mode == 'v' : I data->mode == 'd' II data->mode == 'n') ext = ". img";
if (data->mode == 'i') ext =" (.man & .col)";
if (data->mode == 'a') ext =".aut";
strcat(stringZ,ext):
text->save =strcat(string1,stringZ);
DrawText(location);

}

void SourceFileKandler(w,location,ext)
Widget w:
char location,*ext;
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II.,
(

}

static char string1 [60] ,string2[ZO] ,string3[] = "sourcefi le
Textdata *text;
Drawdata *data;
data = GetWindowData(location,'p');
text = GetTextData(location);
strcpy(string1,string3);
sprintf(stringZ,"Xs",data->fi lename);
if (data->mode == 'v' II data->mode == 'a') ext ".img";
strcat(stringZ,ext);
text->srce =strcat(string1,stringZ);
/*
* filesize and filecontainment are only connected to the sourcefile
* so call the relevant functions from here (and from nowhere else)
*/

FileSizeHandler(location,ext);
FileContainmentKandler(location,ext);
/*
* if sourcefile exists than also savefile exists
*/

SaveFileKandler(w,location,ext);
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void OriginHandlerCw,code,call_data)
Widget W;
int code;
XmscaleCallbackStruct *call_data;

(

char location;
Drawclata *data;
Textdata *text;
static char string1 [60] ,string2[9] ,string3[] ="origin
if Ccode X 2 == 0)

{

location = , l ' ;
}

else
{

location = 'r' ;
code-Oj

}

data =GetWindowDataClocation,'p');
text =GetTextDataClocation);
if Cdata->firsttime)

(

II.,
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/*
* origin will be stored in screen coordinates, i.e. CO,O) is upper
* left corner
*/

if Ccode == 0) data->xorigin =call data->value + data->width/2;
if Ccode == 2) data->yorigin =data7>height/2 - call data->value;
strcpyCstring1,string3); -
spri ntfCstri ng2, "CXd, Xd)II, data->xori gi n - data->width/2,

data->height/2 - data->yorigin);
text->orgn =strcatCstring1,string2);
DrawTextClocation);

}
else

(

ac =0;
XtSetArgCal[ac],XmNvalue,data->xorigin - data->width/2); ac++;
XtSetValuesCdata->originbox.xslider,al,ac);
ac =0;
XtSetArgCal[ac],XmNvalue,data->height/2 - data->yorigin); ac++;
XtSetValuesCdata->originbox.yslider,al,ac);
OriginwarningCw,location);

}
}

void ChangeStartPixelHandlerCw,code,call data)
Widget W; -
int code;
XmscaleCallbackStruct *call_data;

(

char location;
Drawclata *data;
Textdata *text;
static char string1 [60] ,string2[9] ,string3[] = "startpixel
if Ccode X 2 == 0)

{

location = , l ' ;
}

else
{

location = 'r';
code-Oj

II.,

}

data =GetWindowDataClocation,'p');
text = GetTextDataClocation);
/*
* startpixel will be stored in screen coordinates, i.e. CO,O) is upper
* left corner
*/

if Ccode == 0) data->xstart =call data->value + data->width/2;
if Ccode == 2) data->ystart =data7>height/2 - call_data->value;
strcpyCstring1,string3);
sprintfCstring2,ICXd,Xd)",data->xstart - data->width/2,data->height/2 . data->ystart);



B. IFS-CODEC source code

text->init =strcat(string1,string2);
DrawText(location);

}

void AmountOflterationsHandler(w,location,call_data)
Widget w;
char location;
XmScaleCallbackStruct *call_data;

(
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Drawdata *data;
Textdata *text;
static char string1 [60] ,string2[9] ,string3[] ="#iterations
data = GetWindoWData(location,'p');
text =GetTextData(location);
data->niterations • call data->value;
strcpy(string1,string3);­
sprintf(string2,"Xcl",data·>niterations);
text->amit = strcat(string1,string2);
DrawText(location);

}

void IterationHandler(location,iteration)
char location;
unsigned long iteration;

(

static char string1 [60] ,string2[9] ,string3[] = lI;teration
Textdata *text;
text =GetTextData(location);
strcpy(string1,string3);
sprintf(string2,"Xcl",iteration+1);
text->iter = strcat(string1,string2);
DrawText(location);

}

void ZoomHandler(w,code,call data)
Widget w; -
int code;
XmScaleCallbackStruct *call_data;

{
char location;
int height =O,width = O,xleft,yupper;
static char string1 [60] ,string2[9] ,string3[] = "zoomfactor
Drawdata *data;
Textdata *text;
if (code X 2 == 0)

{

location = , I' ;
}

else
(

location = 'r';
code--;

II.,

II.,

II.,

)
w = GetWindow(location,'p');
data = GetWindowData(location,'p');
text = GetTextData(location);
data->unzoom =FALSE;
1*
* offset will be stored in absolute pixel offset, i.e. (0,0) is center
* of window
*1

if (code == 0) data->xoffset =call data->value;
if (code == 2) data->yoffset : call:data->value;
if (code == 4) data->zoomfactor : call data->value;
width =(data->width)*(data->zoomfactor)/100.0;
height = (data->height)*(data->zoomfactor)/100.0;
1*
* calculate left upper zoombox corner in screen coordinates
*1

xleft = data->xoffset + (data->width - width)/2;
yupper = data->yoffset + (data->height - height)/2;
if (xleft < 0)
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(

xleft =0i
data->xoffset = Cint) Cwidth - data->width)/2i
ac =0:
XtSetArgCal[acl,XmNvalue,data->xoffset)i ac++:
XtSetValuesCdata->zoombox.xoffsetslider,al,ac):

}

if Cxleft > Cdata->width - width»
(

xleft =data->width - width:
data->xoffset =Cint) Cdata->width - width)/2:
ac =0:
XtSetArgCal[acl,XmNvalue,data->xoffset): ac++:
XtSetValuesCdata->zoombox.xoffsetslider,al,ac):

}

if Cyupper < 0)
(

yupper =0:
data->yoffset =Cint) Cheight - data->height)/2:
ac =0:
XtSetArgCal[acl,XmNvalue,data->yoffset): ac++:
XtSetValuesCdata->zoombox.yoffsetslider,al,ac):

}

if Cyupper > Cdata->height - height»
(

yupper =data->height - height:
data->yoffset = Cint) Cheight - data->height)/2:
ac =0:
XtSetArgCal[acl,XmNvalue,-Cdata->yoffset»: ac++:
XtSetValuesCdata->zoombox.yoffsetslider,al,ac)i
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}

1*
* convert yupper from Carthesian coordinates to screen coordinates
*1

yupper =data->height - yupper - width:
1*
* copy data->pix to screen
*1

XCopyAreaCXtDisplaYCw),data->pix,XtWindowCw),data->gc,O,0,
data->width,data->height,O,O):

1*
* set foreground top black and draw an dashed rectangle Cboth the white
* dashes and the black dashes are drawn)
*1

XSetForegroundCXtDisplaYCw),data->gc,BlackPixelOfScreenCXtScreenCw»):
XSetLineAttributesCXtDisplayCw),data->gc,1, LineDoubleDash,CapNotLast,JoinMiter):
XDrawRectangleCXtDisplaYCw),XtWindowCw),data->gc,xleft,yupper,width,height):
XSetLineAttributesCXtDisplaYCw),data->gc,1,LineSolid,CapNotLast,JoinMiter):
1*
* only redraw text if zoomfactor is changed
*1

if Ccode == 4)
(

strcpyCstring1,string3)i
sprintfCstring2,IXd",data->zoomfactor):
text->zoom = strcatCstring1,string2):
DrawTextClocation):

}
}

void ScrollBarMovedHandlerCw,location,call_data)
Widget w:
char location:
XmscrollBarCallbackStruct *call_datai

(

int index,yloc =0:
Drawdata *data;
Scrolldata *scroll;
1*
* initialization
*1

w = GetWindowClocation,'p')i
data = GetWindowDataClocation,'p'):
scroll = GetScrollDataClocation):
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scroll->top = call_data->value;
index = scroll->top;
XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w»);
XFillRectangle(XtDisplay(w),data->pix,data->gc,O,O,data->width,data->height);
XFillRectangle(XtDisplay(w),XtWindow(w),data->gc,O,O,data->width,data->height);
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»);
while (index < scroll->nlines)

(

yloc+= 15:
XDrawlmageString(XtDisplay(w),data->pix,data->gc,20,yloc,

scroll->chars[index],scroll->length[index]):
indeX++i

)

XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,O,O,data->width,data->height,O,O):
)

void ScrollHandler(w,location)
Widget w:
char location:

(

char *filenane,*savefile,line[MAXLINESIZE];
float a,b,c,d,e,f,p:
int ascent,desc,dir,i = 0:
Drawdeta *data:
FILE *file:
Scrolldata *scrolli
Textdata *text:
Widget parenti
XCharStruct char info:
/* -
* initialization
*/

w = GetWindow(location,'p')i
data = GetWindowData(location,'p'):
text = GetTextData(location):
scroll = GetScrollData(location)i
ClearPixelArea(w,location):
savefile. calloc(strlen(date->filename)+5,sizeof(char»:
strcpy(savefile,data->filename):
if (file = fopen(strcat(savefile,scroll->ext),"r"» == NULL)

(

Fi leopenWarning(w, location):
)

else
{

/*
* clear out all text in textwindow
*/

ClearTextHandler(w,location,287)i
text->mode = "mode : Viewedit IFS-code (textual view)":
SourceFileHandler(w,location,scroll->ext)i
/*
* put header in buffer "line"
*/

for (i=O : i<3; i++)
{
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if (i == 0 II i == 2) sprintf<L ine,"Xs"," \n"):
if (i == 1) sprintf(line,"X!;"," abc d e
scroll->chars[i] = XtMalloc(strlen(line) + 1):
line[strlen(line)-1] = '\0';
strcpy(scroll->chars[i],line);
scroll->length[i] = strlen(scroll->chers[il)i
XTextExtents(scroll->font,scroll->chers[iJ,scroll->length[iJ,&dir,

&ascent,&desc,&char_info);
scroll->rbearing[iJ = char info.rbearing;
scroll->descent = desci ­
scroll->fontheight = ascent + desc:

)
/*
* calculate amount of transformations
*/

while (!feof(file»
(

/*

f p\n");
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* read each line of the file into the buffer "line", calculating
* and caching the extents fo each line
*1

fscanf(file, "%f %f %f %f %f %f "f\n" ,&a,&b,&c,&d,&e,&f ,&p);
sprintf(line,"%7.3f %7.3f %7.3f %7.3f XS.3f XS.3f %7.3f\n",a,b,c,d,e,f,p);
scroll->chars[il =XtMalloc(strlen(line) + 1);
line [strlen(l ine)-1l = '\0';
strcpy(scroll->chars[il,line);
scroll->length[il =strlen(scroll->chars[il);
XTextExtents(scroll->font,scroll->chars[il,scroll->length[il,&dir,

&ascent,&desc,&char info);
scroll->rbearing[il =char infO:rbearing;
scroll->descent =desc; ­
scroll->fontheight =ascent + desc;
i++;

}

1*
* close file, initialize amount of lines and current line number
*1

fclose(f i le);
scroll->nlines =i;
scroll->top = 0;
1*
* only manage scrollslider if text doesn't fit in actual window
*1

if (1S*scroll->nlines > data->height)
(

Manage(w,data->scrollbox.box);
ac =0;
XtSetArg(al[acl,XmNmaximum,scroll->nlines); ac++;
XtSetArg(al[acl,XmNsliderSize,data->height/1S); ac++;
XtSetArg(al[acl,XmNpagelncrement,data->height/1S); ac++;
XtSetValues(data->scrollbox.scrollbar,al,ac);

}

1*
* call ScrollBarMovedHandler to display text for the first time
*1

ScrollBarMovedHandler(w,location,NULL);
}

free(savefile);
savefile = NULL;

}
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/******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdiviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File ifs.c
* Purpose Main body for IFS-COOEC
* Part of I FS-COOEC
* Created on May 08, 1992
* Created by Emile van Duren
* Last modified on: November 20, 1992
* Modified by Emile van Duren
* Remarks : None
*****************************************************************************/

'include "all.h"

/* contained
/* contained
/* contained
/* contained

/*
* forward function declarations
*/

void DrawAxesO;
void Redisplay();
Widget CreateupperMenu();
Widget CreateLeftRightMenu();

in draw.c
in exposures.c
in menubars.c
in men\bars.c

*/
*/
*/
*/

/*
* main programbody
*/

void main(argc,argv)
int argc;
char *argv[];

II.,
II.,
II.,
II.,
II.,
II.,
II.,
II.,
II.,
II.,

"mode
"sourcefile
"filesize
"contains
"savefile(s)
"origin
"startpixel
"'iterations
"iteration
"zoomfactor

(

Widget toplevel,uppermenu:
Widget leftmenu,rightmenu;
XmString xmstr:
/*
* initialize textdata
*/

LText.mode =RText.mode =
LText.srce =RText.srce =
LText.size =RText.size =
LText.cont =RText.cont =
LText.save =RText.save =
LText.orgn =RText.orgn =
LText.init =RText.init =
LText.amit =RText.amit =
LText.iter =RText.iter =
LText.zoom = RText.zoom =
/*
* initialize main guards
*/

firsthelp =TRUE;
printmessage =TRUE:
copyrightmessage =TRUE;
/*
* initialize toolkit and create toplevelshell
*/

ac = 0;
toplevel = Xtlnitial ize(argv[O] ,"TopLevel",NULL,O,al,ac):
/*
* create form with size of 1030 x 830 pixels
*/

ac =0;
XtSetArg(al[ac],XmNwidth,1030); ac++:
XtSetArg(al[ac],XmNheight,830): ac++;
xmstr =XmStringCreate(IIFS-COOEC",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al[acl,XmNdialogTitle,xmstr): ac++:
XtSetArg(al[ac],XmNhorizontalSpacing,10): ac++:
XtSetArg(al[ac],XmNverticalSpacing,10); ac++;
XtSetArg(al[ac],XmNfractionBase,1000): ac++;
form = XmCreateForm(toplevel,"Form",al,ac):
XtManageChild(form);
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XmstringFree(xmstr);
/*
* create upper pulldownmenu
*/

uppermenu =CreateupperMenu(form);
ac =0;
XtSetArg(al[acl,XmNtopAttachment,XmATTACH_FORM); ac++;
XtSetArg(al[acl,XmNleftAttachment,XmATTACH_FORM); ac++;
XtSetArg(al[acl,XmNrightAttachment,XmATTACH_FORM); ac++;
XtSetValues(uppermenu,al,ac);
/*
* create left pulldownmenu
*/

ac =0;
leftmenu =CreateleftRightMenu(form,'l');
XtSetArg(al[acl,XmNtopAttachment,XmATTACH_WIDGET); ac++;
XtSetArg(al[acl,XmNtopWidget,uppermenu); ac++;
XtSetArg(al[acl,XmNleftAttachment,XmATTACH_FORM); ac++;
XtSetArg(al[acl,XmNrightAttachment,XmATTACH_POSITION); ac++;
XtSetArg(al[acl,XmNrightPosition,49s); ac++;
XtSetValues(leftmenu,al,ac);
/*
* create right pulldownmenu
*/

ac =0;
rightmenu =CreateleftRightMenu(form,'r');
XtSetArg(al[acl,XmNtopAttachment,XmATTACH_WIDGET); ac++;
XtSetArg(al[acl,XmNtopWidget,uppermenu); ac++;
XtSetArg(al[acl,XmNleftAttachment,XmATTACH_POSITION); ac++;
XtSetArg(al[acl,XmNleftPosition,sOs); ac++;
XtSetArg(al[acl,XmNrightAttachment,XmATTACH FORM); ac++;
XtSetValues(rightmenu,al,ac); -
/*
* create lefttextframe for lefttextarea (size =200 x 500 pixels)
*/

ac =0;
XtSetArg(al[acl,XmNtopAttachment,XmATTACH_WIDGET); ac++;
XtSetArg(al[acl,XmNtopWidget,leftmenu); ac++;
XtSetArg(al[acl,XmNleftAttachment,XmATTACH FORM); ac++;
XtSetArg(al[acl,XmNrightAttachment,XmATTACH_POSITION); ac++;
XtSetArg(al[acl,XmNrightPosition,49s); ac++;
XtSetArg(al[acl,XmNbottomAttachment,XmATTACH_POSITION); ac++;
XtSetArg(al[acl,XmNbottomPosition,374); ac++;
XtSetArg(al[acl,XmNshadowType,XmsHADOW IN); ac++;
lefttextframe =XmCreateFrame(form,lleftTextFrame",al,ac);
XtManageChild(lefttextframe);
/*
* create left textdrawingarea
*/

ac =0;
lefttextarea =XmCreateDrawingArea(lefttextframe,lleftTextArea",al,ac);
InitGraphics(lefttextarea,&lefttextdata);
XtAddCallback(lefttextarea,XmNexposeCallback,RedisplaY,&lefttextdata);
XtManageChild(lefttextarea);
/*
* create righttextframe for righttextarea (size = 200 x 500 pixels)
*/

ac =0;
XtSetArg(al[acl,XmNtopAttachment,XmATTACH_WIDGET); ac++;
XtSetArg(al[acl,XmNtopWidget,rightmenu); ac++;
XtSetArg(al[acl,XmNleftAttachment,XmATTACH POSITION); ac++;
XtSetArg(al[acl,XmNleftPosition,sOs); ac++;
XtSetArg(al[acl,XmNrightAttachment,XmATTACH_FORM); ac++;
XtSetArg(al[acl,XmNbottomAttachment,XmATTACH_POSITION); ac++;
XtSetArg(al[acl,XmNbottomPosition,374); ac++;
XtSetArg(al[acl,XmNshadowType,XmsHADOW_IN); ac++;
righttextframe =XmCreateFrame(form,"RightTextFrame",al,ac);
XtManageChild(righttextframe);
/*
* create right textdrawingarea
*/

ac = 0;
righttextarea =XmCreateDrawingArea(righttextframe,"RightTextArea",al,ac);
In;tGraphics(righttextarea,&righttextdata);
XtAddCallback(righttextarea,XmNexposeCallback,RedisplaY,&r;ghttextdata);
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XtManageChild(righttextarea)i
/*
* create leftpixelframe for leftpixelarea (size =500 x 500 pixels)
*/

ac = 0i
XtSetArg(al[acl,XmNtopAttachment,XmATTACH WIDGET); aC++i
XtSetArg(al[acl,XmNtopwidget,lefttextframe); aC++i
XtSetArgCal[acl,XmNleftAttachment,XmATTACH_FORM)i aC++i
XtSetArg(al[acl,XmNrightAttachment,XmATTACH_POSITION)i aC++i
XtSetArgCal[acl,XmNrightPosition,495)i aC++i
XtSetArgCal[acl,XmNbottomAttachment,XmATTACH_FORM); aC++i
XtSetArgCal[acl,XmNshadowType,XmsHADOW_IN)i aC++i
leftpixeLframe ... XmCreateFrame(form,lleftPixeLFrame",al,ac);
XtManageChiLd(Leftpixelframe)i
/*
* create left pixeldrawingarea
*/

ac ... 0i
leftpixeLarea ... XmCreateDrawingArea( leftpixelframe,lIleftPixeIAreall ,al,ac);
InitGraphics(leftpixelarea,&leftpixeldata)i
InitMouseTracker(leftpixelarea)i
XtAddCallback(leftpixelarea,XmNexposeCallback,RedisplaY,&leftpixeldata);
XtAddCal lback(leftpixelarea,XmNexposeCallback,DrawAxes,' I') ;
XtManageChild(leftpixelarea)i
/*
* create rightpixelframe for rightpixelarea (size ... 500 x 500 pixels)
*/

ac ... 0;
XtSetArg(al[acl,XmNtopAttachment,XmATTACH_WIDGET)i aC++i
XtSetArg(al [acl,XmNtopwidget,righttextframe)i aC++i
XtSetArg(al[acl,XmNleftAttachment,XmATTACH_POSITION)i aC++i
XtSetArg(al[acl,XmNleftPosition,505); ac++;
XtSetArg(al[acl,XmNrightAttachment,XmATTACH_FORM)i aC++i
XtSetArg(al[acl,XmNbottomAttachment,XmATTACH_FORM)i ac++;
XtSetArg(al[acl,XmNshadowType,XmSHADOW_IN)i aC++i
rightpixelframe ... XmCreateFrame(form,IRightPixelFrame",al,ac);
XtManagechild(rightpixelframe)i
/*
* create right pixeldrawingarea
*/

ac ... 0;
rightpixelarea ... XmCreateDrawingArea( rightpixel frame, "RightPixelArea" ,al,ac);
InitGraphics(rightpixeLarea,&rightpixeldata)i
InitMouseTracker(rightpixelarea)i
XtAddCallback(rightpixelarea,XmNexposeCallback,RedisplaY,&rightpixeldata)i
XtAddCallbackCrightpixelarea,XmNexposeCallback,DrawAxes,'r') i
XtManageChild(rightpixelarea)i
/*
* realize widget
*/

XtRealizewidget(toplevel)i
XtMainloopC)i

}
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/******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdaviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File menubars.c
* Purpose Contains functions CreateupperMenu and CreateLeftRightMenu
* Part of IFS-CODEC
* Created on May 12, 1992
* Created by : Emile van Duren
* Last modif i ed on: Decellber 16, 1992
* Modified by Emile van Duren
* Remarks : None
*****************************************************************************/

'include "all.h"

/*
* forward function declarations
*/

void AddSimilitude()i
void AutomaticIFSEncoding()i
void AxesController()i
void CalculateFractalDimension()i
void CalculateMomentS()i
void ClearAll 0 i
void ClearTextController()i
void Condensationcontroller()i
void CopyrightMessage()i
void DeterministicRendering()i
void DrawController();
void DrawAxesOi
void DrawBifurcationDiagram()i
void DrawMandelbrotSet()i
void DrawRectangle();
void EraseController()i
void FixSimilitude()i
void GraphicalView()i
void IdentityController()i
void LoadFileO i
void MainHelpCallback()i
void ManageOi
void ModeController()i
void ModeHandler()i
void NondeterministicRendering()i
void PixsetMessage()i
void PrintMessage();
void QuitO;
void SaveCollage();
void SaveFileOi
void SaveFileHandler();
void ScrollController();
void ScrollHandler()i
void SourceFileHandler();
void UrmanageOi
void UnzoomController()i
void VieweditIFSTableMessage()i
Widget CreatelterationBox()i
Widget CreateoriginBox();
Widget CreateScrollBox()i
Widget CreateSimilitudeTransformBox();
Widget CreateStartPixelBox();
Widget CreatePromptBox()i
Widget CreateZoomBox();

Widget CreateupperMenu(parent)
Widget parenti

{

/* contained in collage.c
/* contained in genetic.c
/* contained in control.c
/* contained in specials.c
/* contained in specials.c
/* contained in draw.c
/* contained in control.c
/* contained in control.c
/* contained in messages.c
/* contained in render.c
/* contained in control.c
/* contained in draw.c
/* contained in specials.c
/* contained in specials.c
/* contained in draw.c
/* contained in control.c
/* contained in collage.c
/* contained in render.c
/* contained in control.c
/* contained in filehandler.c
/* contained in messages.c
/* contained in control.c
/* contained in control.c
/* contained in handle.c
/* contained in render.c
/* contained in messages.c
/* contained in messages.c
/* contained in control.c
/* contained in collage.c
/* contained in filehandler.c
/* contained in handle.c
/* contained in control.c
/* contained in handle.c
/* contained in handle.c
/* contained in control.c
/* contained in co~trol.c

/* contained in messages.c
/* contained in boxes.c
/* contained in boxes.c
/* contained in boxes.c
/* contained in boxes.c
/* contained in boxes.c
/* contained in boxes.c
/* contained in boxes.c

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Widget uppermenu,filepulldown,helpbutton;
Widget quitprogram,printbutton,pixsetbutton,copyrightbutton;
XmString xmstri
/*
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* create uppermenubar
*1

uppermenu = XmCreateMenuBar(parent ,IUpperMenu" ,NULL,O);
XtManageChild(uppermenu);
1*
* create quit program button in file pulldown pane
*1

ac =0;
xmstr =XmStringCreate("Quit",XmSTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl,XmNlabelString,xmstr); ac++;
XtSetArg(al[acl,XmNmnemonic,'Q'); ac++;
quitprogram =XmCreateCascadeButton(uppermenu,"QuitProgram",al,ac);
XtAddCallback(quitprogram,XmNactivateCallback,Quit,NULL);
XtManageChild(quitprogram);
XmStringFree(xmstr);
1*
* create helpbutton in uppermenu
*1

ac =0;
xmstr =XmStringCreate("Help",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al[acl,XmNlabelString,xmstr); ac++;
XtSetArg(al[acl,XmNmnemonic,'H'); ac++;
helpbutton =XmCreateCascadeButton(uppermenu,"HelpButton",al,ac);
XtAddCallback(helpbutton,XmNactivateCallback,MainHelpCallback,NULL);
XtManageChild(helpbutton);
XmstringFree(xmstr);
1*
* create printbutton in uppermenu
*1

ac =0;
xmstr =XmStringCreate("Print",XmSTRING DEFAULT CHARSET);
XtSetArg(al[acl,XmNlabelString,xmstr)i ac++; ­
XtSetArg(al[acl,XmNmnemonic,'P'); ac++;
printbutton =xmCreateCascadeButton(uppermenu,"PrintButton",al,ac);
XtAddCallback(printbutton,XmNactivateCallback,PrintMessage,NULL);
XtManageChild(printbutton);
XmstringFree(xmstr);
1*
* create pixsetbutton in uppermenu
*1

ac =0;
xmstr =XmStringCreate("Pixset distance",XmsTRING DEFAULT CHARSET);
XtSetArg(al[acl,XmNlabelString,xmstr); ac++; - -
XtSetArg(al[acl,XmNmnemonic,'d'); ac++;
pixsetbutton =XmCreateCascadeButton(uppermenu,"PixsetButton",al,ac);
XtAddCallback(pixsetbutton,XmNactivateCallback,PixsetMessage,NULL);
XtManageCh i I.d(pi xsetbutton);
XmStringFree(xmstr);
1*
* create copyrightbutton in uppermenu
*1

ac =0;
xmstr =XmStringCreate("Copyright(c)",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al[acl,XmNlabelString,xmstr); ac++;
XtSetArg(al[acl,XmNmnemonic,'C'); ac++;
copyrightbutton =XmCreateCascadeButton(uppermenu,"CopyrightButton",al,ac);
XtAddCallback(copyrightbutton,XmNactivateCallback,CopyrightMessage,NULL);
XtManageChild(copyrightbutton);
XmstringFree(xmstr)i
1*
* return value of this function
*1

return(uppermenu)i
}

Widget CreateLeftRightMenu(parent,location)
Widget parent;
char location;

{

Widget abutton,apulldown,asbutton,bdbutton,cabutton,clearbutton,ctbutton;
Widget dabutton,dbutton,dibutton,displaybutton,displaypulldown,dmbutton;
Widget dpulldown,drawaxes,drbutton,erbutton,fdbutton,fsbutton,gabutton;
Widget gibutton,gmbutton,gvbutton,ibutton,idbutton,ipulldown,itbutton;
Widget iterationbox,leftrightmenu,lobutton,mobutton,msbutton,nabutton;
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Widget nbutton,nibutton,nmbutton,npulldown,optionsbutton,optionspulldown;
Widget orbutton,promptbox,rendercontrolbutton,rendercontrolpulldown,rtbutton:
Widget scbutton,sebutton,selectfile,spbutton,specialsbutton,specialspulldown:
Widget tabutton,tibutton,tmbutton,transformbox,trbutton,tsbutton,tvbutton:
Widget uzbutton,vbutton,vpulldown,vsbutton,wbutton,webutton,wgpulldown:
Widget wpulldown,wtpulldown,zmbutton;
Xmstring xmstr;
int mode:
Drawdata *cIata:
data =GetWindowData(location,'p'):
if (location == 'l') mode =0:
if (location == 'r') mode =1:,*
* create leftrightmenubar

*'leftrightmenu =xmcreateMenuBar(parent,"leftRightMenu",NUll,O);
XtManageChild(leftrightmenu):

'** create select file button in file pulldown pane*,
ac =0:
xmstr = XmstringCreate("Select file",XmsTRING_DEFAUlT_CHARSET):
XtSetArg(al[ac],XmNlabelString,xmstr): ac++;
XtSetArg(al[ac],XmNmnemonic,'f'); ac++;
selectfile = XmcreateCascadeButton(leftrightmenu,"SelectFile",al,ac):
promptbox =CreatePromptBox(selectfile,location):
XtAddCallback(selectfile,XmNactivateCallback,Manage,promptbox):
XtManageChild(selectfile):
XmstringFree(xmstr);,*
* create displaypulldown menupane as submenu of leftrightmenu

*'ac =0:
di splaypulldown = XmcreatePulldownMenu( leftrightmenu, "DisplayPulldown" ,al ,ac):,*
* create displaybutton for display pulldown pane*,

ac =0:
xmstr =XmstringCreate("DisplaY",XmsTRING_DEFAUlT_CHARSET):
XtSetArg(al[ac],XmNlabelString,xmstr): ac++:
XtSetArg(al[ac],XmNmnemonic,'D'): ac++:
XtSetArg(al[ac],XmNsubMenuld,displaypulldown): ac++:
displaybutton = XmcreatecascadeButton( leftrightmenu, "Di splayButton" ,al ,ac):
XtManageChild(displaybutton):
XmstringFree(xmstr):,*
* create clearbutton in display pulldown pane*,

ac =0:
xmstr = XmstringCreate("Clear",xmsTRING_DEFAULT_CHARSET):
XtSetArg(aL[ac],XmNlabelString,xmstr): ac++:
XtSetArg(aL[ac],XmNmnemonic,'C'): ac++:
clearbutton =xmcreatePushButtonGadget(dispLaypulldown,"Clear",al,ac):
XtAddCallback(clearbutton,XmNactivateCallback,ClearAll,location):
XtManageChild(clearbutton):
XmstringFree(xmstr):,*
* create drawaxesbutton in display pulldown pane

*'ac =0:
xmstr =XmstringCreate("Axes (toggle)",XmsTRING_DEFAULT_CHARSET):
XtSetArg(aL[ac],XmNlabelString,xmstr): ac++:
XtSetArg(al[ac],XmNmnemonic,'A'): ac++:
drawaxes = xmcreatePushButtonGadget(displaypulldown,"DrawAxes",al,ac):
XtAddCallback(drawaxes,XmNactivateCallback,AxesController,location):
XtAddCallback(drawaxes,XmNactivateCallback,DrawAxes,location):
XtManageChild(drawaxes):
XmstringFree(xmstr):

'** create redefine origin button in display pulldown pane*,
ac =0:
xmstr =XmstringCreate("Redefine origin",XmsTRING DEFAULT CHARSET):
XtSetArg(al[ac],XmNlabelString,xmstr): ac++: - -
XtSetArg(al[ac],XmNmnemonic,'R'): ac++;
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orbutton =xmcreateCascadeButton(displaypulldown, l orButton",al,ac)i
data->originbox.box =CreateoriginBox(orbutton,location)i
XtAddCallback(orbutton,XmNactivateCallback,ModeHandler,location);
XtAddCallback(orbutton,XmNac,;vateCallback,Manage,data->originbox.box)i
XtManageChild(orbutton)i
XmstringFree(xmstr)i
/*
* create optionspulldown menupane as submenu of leftrightmenu
*/

ac =0;
optionspulldown =XmcreatePulldownMenu( leftrightmenu, l OptionsPulldown" ,al ,ac);
/*
* create optionsbutton for optionspulldown pane
*/

ac = 0;
xmstr = XmstringCreate(lOptions",XmsTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl,XmNlabelString,xmstr); ac++;
XtSetArg(al[acl,XmNmnemonic,'O'); ac++;
XtSetArg(al[acl,XmNsubMenuld,optionspulldown); ac++;
optionsbutton = xmcreateCascadeButton(leftrightmenu,IOptionsButton",al,ac);
XtManageChild(optionsbutton);
XmstringFree(xmstr);
/*
* create viewedit ifs source image pulldown menupane (vpulldown pane)
*/

vpulldown = XmcreatePulldownMenu(optionspulldown, IVPulldown" ,NULL,O);
/*
* create viewedit ifs source image button for vpulldown pane
*/

ac =0;
xmstr =XmstringCreate("Viewedit source image",XmsTRING_DEFAULT_CHARSET);
XtSetArg(al[acl,XmNlabelString,xmstr); aC++i
XtSetArg(al[acl,XmNmnemonic,'V'); ac++;
XtSetArg(al[acl,XmNsubMenuld,vpulldown); ac++;
Ybutton = XmcreateCascadeButton(optionspulldown,"VButton",al,ac);
XtManageChild(Ybutton);
XmstringFree(xmstr);
/*
* create load file button in vpulldown pane
*/

ac =0;
xmstr = XmstringCreate("Load file",XmsTRING_DEFAULT_CHARSET);
XtSetArg(al[acl,XmNlabelString,xmstr); ac++;
XtSetArg(al[acl,XmNmnemonic,'L'); ac++;
lobutton = xmcreatePushButtonGadget(vpulldown,ILoButton",al,ac);
XtAddCallback(lobutton,XmNactivateCallback,ModeController,mode);
XtAddCallback(lobutton,XmNactivateCallback,ModeHandler,location);
XtAddCallback(lobutton,XmNactivateCallback,LoadFile,location)i
XtAddCallback(lobutton,XmNactivateCallback,SourceFileHandler,location);
XtManageChild(lobutton);
XmstringFree(xmstr);
/*
* create draw toggle button in vpulldown pane
*/

ac = 0;
xmstr =XmstringCreate("Draw (toggle)lI,xmsTRING_DEFAULT_CHARSET);
XtSetArg(al[acl,XmNlabelString,xmstr); ac++;
XtSetArg(al[acl,XmNmnemonic,'D'); ac++;
drbutton =XmcreatePushButtonGadget(vpulldown,"DrButton",al,ac);
XtAddCallback(drbutton,XmNactivateCallback,ModeController,mode);
XtAddCallback(drbutton,XmNactivateCallback,ModeHandler,location);
XtAddCallback(drbutton,XmNactivateCallback,SaveFileHandler,location);
XtAddCallback(drbutton,XmNactivateCallback,DrawController,location);
XtManageChild(drbutton);
XmStringFree(xmstr);
/*
* create erase (toggle) button in vpulldown pane
*/

ac =0;
xmstr = XmstringCreate(IIErase (toggle)",XmSTRING_DEFAULT_CHARSET);
XtSetArg(al[acl,XmNlabelString,xmstr); ac++;
XtSetArg(al[acl,XmNmnemonic,'E'); ac++;
erbutton =XmcreatePushButtonGadget(vpulldown,IErButton",al,ac);
XtAddCallback(erbutton,XmNactivateCallback,ModeController,mode);
XtAddCallback(erbutton,XmNactivateCallback,MooeHandler,location);
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XtAddCallback(erbutton,XmNactivateCallback,SaveFileHandler,location);
XtAddCallback(erbutton,XmNactivateCallback,EraseController,location);
XtManageChild(erbutton);
XmstringFree(xmstr);
/*
* create save fi le button in vpulldown pane
*/

ac =0;
xmstr =XmstringCreate("Save file",XmsTRING_DEFAULT_CHARSET);
XtSetArg(al[ac],XmNlabelString,xmstr); ac++;
XtSetArg(al[ac],XmNmnemonic,'S'); ac++;
vsbutton =XmcreatePushButtonGadget(vpulldown,IVsButton",al,ac);
XtAddCallback(vsbutton,XmNactivateCallback,ModeController,mode);
XtAddCallback(vsbutton,XmNactivateCallback,ModeHandler,location);
XtAddCallback(vsbutton,XmNactivatecallback,SaveFileHandler,location);
XtAddCallback(vsbutton,XmNactivateCallback,SaveFi le, location) ;
XtManageChild(vsbutton);
XmstringFree(xmstr);
/*
* create vi ewedi t i fs code pulldown menupane (wpulldown pane)
*/

wpulldown = xmcreatePulldownMenu(optionspulldown, IWPulldown" ,NULL,O);
/*
* create viewedit ifs code button for wpulldown pane
*/

ac =0;
xmstr =XmstringCreate("Viewedit IFS-code",XmsTRING_DEFAULT_CHARSET);
XtSetArg(al[ac],XmNlabelString,xmstr); ac++;
XtSetArg(al[acl,XmNmnemonic,'w'); ac++;
XtSetArg(al[acl,XmNsubMenuId,wpulldown); ac++;
wbutton =xmcreateCascadeButton(optionspulldown,"WButton",al,ac);
XtManageChild(wbutton);
XmstringFree(xmstr);
/*
* create graphical view pulldown menupane (wgpulldown pane)
*/

wgpulldown =XmcreatePulldownMenu(wpulldown,IWgPulldown",NULL,O);
/*
* create graphical view button for wgpulldown pane
*/

ac =0;
xmstr =xmstringcreate("Graphical view",XmsTRING_DEFAULT_CHARSET);
XtSetArg(al[ac],XmNlabelString,xmstr); ac++;
XtSetArg(al[ac],XmNmnemonic,'G'); ac++;
XtSetArg(al[acl,XmNsubMenuId,wgpulldown); ac++;
gvbutton =XmcreateCascadeButton(wpulldown,IGvButton",al,ac);
XtManageChild(gvbutton);
XmstringFree(xmstr);
/*
* create .ifs button in wgpulldownpane
*/

ac =0;
xmstr =XmstringCreate(". its" ,XmsTRING DEFAULT CHARSET);
XtSetArg(al[ac],XmNlabelString,xmstr);-ac++; ­
XtSetArg(al[acl,XmNmnemonic,'i'); ac++;
gibutton =XmcreatePushButtonGadget(wgpulldown,IGiButton",al,ac);
XtAddCallback(gibutton,XmNactivateCallback,ModeController,mode+2);
XtAddCallback(gibutton,XmNactivateCallback,ModeHandler,location);
XtAddCallback(gibutton,XmNactivateCallback,Graphicalview,mode);
XtManageChild(gibutton);
XmstringFree(xmstr);
/*
* create .man button in wgpulldownpane
*/

ac =0;
xmstr =XmstringCreate(".man",XmsTRING_DEFAULT_CHARSET);
XtSetArg(al[acl,XmNlabelString,xmstr); ac++;
XtSetArg(al[acl,XmNmnemonic,'m'); ac++;
grrtlutton = XmcreatePushButtonGadget (wgpulldown, "GmButton", a l, ac);
XtAddCallback(gmbutton,XmNactivateCallback,ModeController,mode+2);
XtAddCallback(gmbutton,XmNactivateCallback,ModeHandler,location);
XtAddCallback(gmbutton,XmNactivateCallback,GraphicalView,mode+2);
XtManageChild(gmbutton);
XmstringFree(xmstr);
/*
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* create .aut button in wgpulldownpane
*/

ac =0;
xmstr =XmStringCreate(l.aut",XmSTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl,XmNlabelString,xmstr); aC++i
XtSetArg(al[acl,XmNmnemonic,'a'); ac++;
gabutton = Xml:reatePushButtonGadget(wgpullclown,IGaButton" ,al ,ac)i
XtAddCallback(gabutton,XmNactivateCallback,ModeController,mode+2)i
XtAddCallback(gabutton,XmNactivateCallback,ModeHandler,location)i
XtAddCallback(gabutton,XmNactivateCallback,GraphicalView,mode+4);
XtManageChild(gabutton);
XmStringFree(xmstr);
/*
* create textual view pulldown menupane (wtpulldown pane)
*/

wtpulldown = Xml:reatePulldowrllenu(wpulldown, "WtPulldown" ,NULL,O);
/*
* create textual view button for wtpulldown pane
*/

ac =0;
xmstr =XmStringCreate("Textual view",XmSTRING DEFAULT CHARSET);
XtSetArg(al[acl,XmNlabelString,xmstr); aC++i - -
XtSetArg(al [acl,XmNmnemonic,'T'); aC++i
XtSetArg(al[acl,XmNsubMenuld,wtpulldown)i ac++;
tvbutton =Xml:reateCascadeButton(wpulldown,IGvButton",al,ac)i
XtManageChild(tvbutton);
XmStringFree(xmstr);
/*
* create .ifs button in wtpulldownpane
*/

ac =0i
xmstr =XmStringCreate(l.ifs",XmSTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl,XmNlabelString,xmstr); aC++i
XtSetArg(al[acl,XmNmnemonic,'i')i aC++i
tibutton =Xml:reateCascadeButton(wtpulldown,ITiButton",al,ac);
data->scrollbox.box =CreateScrollBox(tibutton,location);
XtAddCallback(tibutton,XmNactivateCallback,ModeController,mode+2)i
XtAddCallback(tibutton,XmNactivateCal lback,ModeHandler, location);
XtAddCallback(tibutton,XmNactivateCallback,ScrollController ,mode)i
XtAddCallback(tibutton,XmNactivateCallback,ScrollHandler,location)i
XtManageChild(tibutton)i
XmStringFree(xmstr)i
/*
* create .man button in wtpulldownpane
*/

ac =0i
xmstr =XmStringCreate(I.llIBn",XmSTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl,XmNlabelString,xmstr)i aC++i
XtSetArg(al[acl,XmNmnemonic,'m')i aC++i
tmbutton =Xml:reateCascade8utton(wtpulldown,"TmButton",al,ac)i
data->scrollbox.box =CreateScrollBox(tmbutton,location)i
XtAddCallback(tmbutton,XmNactivateCallback,ModeController,mode+2)i
XtAddCal lback(tmbutton,XmNactivateCallback,ModeHandler, location)i
XtAddCallback(tmbutton,XmNactivateCallback,ScrollController,mode+2)i
XtAddCallback(tmbutton,XmNactivateCallback,ScrollHandler,location)i
XtManageChild(tmbutton);
XmStringFree(xmstr);
/*
* create .aut button in wtpulldownpane
*/

ac =0i
xmstr =XmStringCreate(l.aut",XmSTRING DEFAULT CHARSET)i
XtSetArg(al[acl,XmNlabelString,xmstr);-ac++; ­
XtSetArg(al[acl,XmNmnemonic,'a'); aC++i
tabutton =Xml:reateCascadeButton(wtpulldown,ITaButton",al,ac);
data->scrollbox.box =createScrollBox(tabutton,location);
XtAddCallback(tabutton,XmNactivateCallback,ModeController,mode+2);
XtAddCallback(tabutton,XmNactivateCallback,ModeHandler,location)i
XtAddCallback(tabutton,XmNactivateCallback,ScrollController,mode+4)i
XtAddCallback(tabutton,XmNactivateCallback,ScrollHandler,location)i
XtManageChild(tabutton)i
XmStringFree(xmstr)i
/*
* create textual edit button in viewedit IFS-code pulldown pane
*/
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ac =0i
xmstr =XmStringCreateC"Textual edit",XmSTRING DEFAULT CHARSET)i
XtSetArgCal[acl,XmNlabelString,xmstr)i aC++i - -
XtSetArgCal[acl,XmNmnemonic,'e')i aC++i
webutton = xmcreateCascadeButtonCwpulldown,"WeButton" ,al ,ac) i
XtAddCallbackCwebutton,XmNactivateCallback,ModeController,mode+2)i
XtAddCallbackCwebutton,XmNactivateCallback,ModeHandler,location)i
XtAddCallbackCwebutton,XmNactivateCallback,ClearTextController,location)i
XtAddCallbackCwebutton,XmNactivateCallback,VieweditIFSTableMessage,location)i
XtManageChildCwebutton)i
XmStringFreeCxmstr)i

'** create interactive IFS-encoding pulldown menupane Cipulldown pane)

*'ipulldown = XmcreatePulldownMenuCopti onspulldown, IIPulldown" ,NULL,O) i

'** create interactive IFS-encoding button for ipulldown pane

*'ac =0i
xmstr =XmStringCreateC"lnteractive IFS-encoding",XmSTRING_DEFAULT_CHARSET)i
XtSetArgCal[acl,XmNlabelString,xmstr)i aC++i
XtSetArgCal[acl,XmNmnemonic,'I')i aC++i
XtSetArgCal[acl,XmNsubMenuld,ipulldown)i ac++i
ibutton =xmcreateCascadeButtonCoptionspulldown,IIButton",al,ac)i
XtManageChildCibutton)i
XmStringFreeCxmstr)i

'** create add similitude button in ipulldown pane

*'ac =0i
xmstr = XmStringCreateC"Add simil itude",XmSTRING DEFAULT CHARSET)i
XtSetArgCal[acl,XmNlabelString,xmstr)i aC++i - -
XtSetArgCal[acl,XmNmnemonic,'A')i aC++i
asbutton =xmcreatePushButtonGadgetCipulldown,"AsButton",al,ac)i
XtAddCallbackCasbutton,XmNactivatecallback,ModeController,mode+4) i
XtAddCallbackCasbutton,XmNactivateCallback,ModeHandler,location)i
XtAddCallbackCasbutton,XmNactivateCallback,ClearTextController,location)i
XtAddCallbackCasbutton,XmNactivatecallback,SaveFileHandler,location)i
XtAddCallbackcasbutton,XmNactivatecallback,AddSimilitude,locat ion)i
XtManageChildCasbutton)i
XmStringFreeCxmstr)i

'** create transform simil itude button in ipulldown pane

*'ac =Oi
xmstr = XmStringCreateC"Transform similitude",XmSTRING DEFAULT CHARSET)i
XtSetArgCal[acl,XmNlabelString,xmstr)i aC++i - -
XtSetArgCal[acl,XmNmnemonic,'T')i aC++i
tsbutton = XmcreateCascadeButtonC ipulldown, "TsButton" ,a l , ac) i
transfonmbox =CreateSimilitudeTransformBoxCtsbutton,location)i
XtAddCallbackCtsbutton,XmNactivateCallback,ModeController,mode+4)i
XtAddCallbackCtsbutton,XmNactivatecallback,ModeHandler,location)i
XtAddCallbackCtsbutton,XmNactivateCallback,ClearTextController,location)i
XtAddCallbackCtsbutton,XmNactivateCallback,SaveFileHandler,l ocation)i
XtAddCallbackCtsbutton,XmNactivateCallback,Manage,transformboX)i
XtManageChildCtsbutton)i
XmStringFreeCxmstr)i

'** create fix similitude button in ipulldown pane

*'ac = 0i
xmstr = XmStringCreateC"Fix similitude",XmSTRING_DEFAULT_CHARSET)i
XtSetArgCal[acl,XmNlabelString,xmstr)i aC++i
XtSetArgCal[acl,XmNmnemonic,'F')i aC++i
fsbutton = XmcreatePushButtonGadget( ipulldown, "FsButton" ,al ,ac)i
XtAddCallbackCfsbutton,XmNactivatecallback,ModeController,mode+4 )i
XtAddCallbackCfsbutton,XmNactivateCallback,ModeHandler,locati on)i
XtAddCallbackCfsbutton,XmNactivateCallback,ClearTextController,location)i
XtAddCallbackCfsbutton,XmNactivateCallback,FixSimilitude,location)i
XtManageChildCfsbutton)i
XmStringFreeCxmstr)i

'** create save collage button in ipulldown pane

*'ac =0i
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xmstr = XmStringcreate("Save collage",XmsTRING_DEFAULT_CHARSET);
XtSetArg(al[acl,XmNlabelString,xmstr); ac++;
XtSetArg(al[acl,XmNmnemonic,'S')i aC++i
scbutton = Xmc:reatePushButtonGadget( ipulldown, "ScButton" ,al ,ac);
XtAddCallback(scbutton,XmNactivateCallback,ModeController,mode+4)i
XtAddCallback(scbutton,XmNactivateCallback,ModeHandler,location);
XtAddCallback(scbutton,XmNactivateCallback,ClearTextController,location);
XtAddCallback(scbutton,XmNactivateCallback,SaveFileHandler,location);
XtAddCallback(scbutton,XmNactivatetallback,SaveCollage,location);
XtAddCallback(scbutton,XmNactivateCallback,Unmanage,transformbox)i
XtManageChild(scbutton);
XmStringFree(xmstr);
/*
* create automatic IFS-encoding pulldown menupane (apulldown pane)
*/

apulldown = Xmc:reatePulldownMenu(optionspulldown, IAPulldown" ,NULL ,0);
/*
* create automatic IFS-encoding button for apulldown pane
*/

ac =Di
xmstr = XmStringCreate("Automatic IFS-encodingll,XmSTRING_DEFAULT_CHARSET>i
XtSetArg(al[acl,XmNlabelString,xmstr); ac++;
XtSetArg(al[acl,XmNmnemonic,'A'); ac++;
XtSetArg(al[acl,XmNsubMenuld,apulldown); ac++;
abut ton = Xmc:reateCascadeButton(optionspulldown,IAButton",al,ac);
XtManageChild(abutton);
XmStringFree(xmstr);
/*
* create identity button in apulldown pane
*/

ac =0;
xmstr = XmStringCreate("ldentity (t09gle)II,XmSTRING DEFAULT CHARSET>;
XtSetArg(al[acl,XmNlabelString,xmstr); ac++; - -
XtSetArg(al[acl,XmNmnemonic,'I'); ac++;
idbutton = XmtreatePushButtonGadget(apulldown, "ldButton" ,al ,ac);
XtAddCallback(idbutton,XmNactivateCallback,ldentityController,location);
XtManageChild(idbutton)i
XmStringFree(xmstr);
/*
* create collage button in apulldown pane
*/

ac =0;
xmstr = XmStringcreate("Calculate",XmSTRING DEFAULT CHARSET>;
XtSetArg(al[acl,XmNlabelString,xmstr); ac++; -
XtSetArg(al[acl,XmNmnemonic,'C'); ac++;
cabutton = Xmc:reatePushButtonGadget(apulldown,ICaButton",al,ac);
XtAddCallback(cabutton,XmNactivateCallback,ModeController,mode+6);
XtAddCallback(cabutton,XmNactivateCallback,ModeHandler,location);
XtAddCallback(cabutton,XmNactivateCallback,ClearTextController,location);
XtAddCallback(cabutton,XmNactivateCallback,AutomaticIFSEncoding,location);
XtManageChild(cabutton);
XmStringFree(xmstr);
/*
* create deterministic IFS-decoding pulldown menupane (dpulldown pane)
*/

dpulldown = Xmc:reatePulldownMenu(optionspulldown, IDPulldown" ,NULL,O)i
/*
* create deterministic IFS-decoding button for dpulldown pane
*/

ac =0;
xmstr =XmstringCreate("Deterministic IFS-decoding",XmsTRING DEFAULT CHARSET>;
XtSetArg(al[acl,XmNlabelString,xmstr)i ac++; --
XtSetArg(al[acl,XmNmnemonic,'D'); ac++;
XtSetArg(al[acl,XmNsubMenuld,dpulldown)i ac++;
dbutton = Xmc:reateCascadeButton(opt ionspulldown, "DButton", al, ac) i
XtManageChild(dbutton);
XmstringFree(xmstr);
/*
* create •ifs button in dpulldownpane
*/

ac =0;
xmstr = XmstringCreate(".ifs",XmSTRING_DEFAULT_CHARSET>;
XtSetArg(al[acl,XmNlabelString,xmstr); ac++;
XtSetArg(al[acl,XmNmnemonic,'i'); ac++;
dibutton = Xmc:reatePushButtonGadget(dpulldown,"DiButton",al,ac);
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XtAddCallbackCdibutton,XmNact vateCallback,ModeController,mode+8);
XtAddCallbackCdibutton,XmNact vateCallback,ModeHandler,location);
XtAddCallbackCdibutton,XmNact vateCallback,DeterministicRendering,mode);
XtManageChildCdibutton);
XmstringFreeCxmstr);
/*
* create .man button in dpulldownpane
*/

ac =D;
xmstr = XmstringCreateCI.man",XmsTRING_DEFAULT_CHARSET);
XtSetArgCal[ac],XmNlabelString,xmstr); ac++;
XtSetArgCal[ac],XmNmnemonic,'m'); ac++;
dmbutton = xmcreatePushButtonGadgetCdpulldown,IDmButton",al,ac);
XtAddCallbackCdmbutton,XmNactivateCallback,ModeController,mode+8);
XtAddCallbackCdmbutton,XmNactivateCallback,ModeHandler,location);
XtAddCallbackCdmbutton,XmNactivateCallback,DeterministicRendering,mode+2);
XtManageChildCdmbutton);
XmstringFreeCxmstr);
/*
* create .aut button in dpulldownpane
*/

ac =0;
xmstr = XmstringCreateCI.aut",XmsTRING_DEFAULT_CHARSET);
XtSetArgCal[ac],XmNlabelString,xmstr); ac++;
XtSetArgCal[ac],XmNmnemonic,'a'); ac++;
dabutton = XmcreatePushButtonGadgetCdpulldown,IDaButton",al,ac);
XtAddCallbackCdabutton,XmNactivateCallback,ModeController,mode+8);
XtAddCallbackCdabutton,XmNactivateCallback,ModeHandler,location);
XtAddCallbackCdabutton,XmNactivateCallback,DeterministicRendering,mode+4);
XtManageChildCdabutton);
XmstringFreeCxmstr);
/*
* create nondeterministic IFS-decoding pulldown menupane Cnpulldown pane)
*/

npulldown = xmcreatePulldowrl4enuCoptionspulldown, INPulldown" ,NULL,O);
/*
* create nondeterministic IFS-decoding button for npulldown pane
*/

ac =0;
xmstr =XmstringCreateC"Noneterministic IFS-decodingll,

XmsTRING DEFAULT CHARSET);
XtSetArgCal[ac],XmNlabelString,xmstr); ac++;
XtSetArgCal[ac],XmNmnemonic,'N'); ac++;
XtSetArgCal[ac],XmNsubMenuld,npulldown); ac++;
nbutton = xmcreateCascadeButtonCoptionspulldown,INButton" ,al ,ac);
XtManageChildCnbutton);
XmstringFreeCxmstr);
/*
* create .ifs button in npulldownpane
*/

ac = 0;
xmstr = XmstringCreateCI.ifs",xmsTRING DEFAULT CHARSET);
XtSetArgcal[ac],XmNlabelString,xmstr);-ac++; ­
XtSetArgCal[ac],XmNmnemonic,'i'); aC++j
nibutton = xmcreatePushButtonGadgetCnpulldown,INiButton",al,ac);
XtAddCallbackCnibutton,XmNactivateCallback,ModeController,mode+10);
XtAddCallbackCnibutton,XmNactivateCallback,ModeHandler,location);
XtAddCallbackCnibutton,XmNactivateCallback,NondeterministicRendering,mode);
XtManageChildCnibutton)j
XmstringFreeCxmstr);
/*
* create .man button in npulldownpane
*/

ac =0;
xmstr = XmstringCreateCI.man",XmsTRING_DEFAULT_CHARSET);
XtSetArgCal[ac],XmNlabelString,xmstr); ac++;
XtSetArgCal[ac],XmNmnemonic,'m')j ac++;
mtlutton = XmcreatePushButtonGadgetCnpulldown,INmButton",al,ac);
XtAddCallbackCmtlutton,XmNactivateCallback,ModeController,mode+10);
XtAddCallbackCmtlutton,XmNactivateCallback,ModeHandler,location )j
XtAddCallbackCmtlutton,XmNactivateCallback,NondeterministicRendering,mode+2);
XtManageChildCmtlutton)j
XmstringFreeCxmstr)j
/*
* create .aut button in npulldownpane
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*'ac =0i
xmstr = XmStringCreate(l.aut".XmSTRING_OEFAULT_CHARSET) i
XtSetArg(al[acl.XmNlabelString.xmstr)i aC++i
XtSetArg(al[acl.XmNmnemonic.'a')i aC++i
nabutton =xmcreatePushButtonGadget(npulldown."NaButton".al.ac)i
XtAddCallback(nabutton.XmNactivateCallback.ModeController.mode+10) i
XtAddCallback(nabutton.XmNactivateCallbeck.ModeHandler.location)i
XtAddCallback(nabutton.XmNactivateCallback.NondeterministicRendering.mode+4)i
XtManageChild(nabutton)i
XmStringFree(xmstr)i

'** create rendercontrol pulldown menupane as submenu of leftrightmenu

*'ac =0i
rendercontrolpulldown = XmcreatePulldo.n4enu( leftrightmenu. I RenderControlPulldown".al.ac) i

'** create rendercontrolbutton for rendercontrol pulldown pane

*'ac =0;
xmstr =XmStringCreate("Render control".XmSTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl,XmNlabelString.xmstr)i aC++i
XtSetArg(al[acl.XmNmnemonic.'R')i aC++i
XtSetArg(al[acl.XmNsubMenuld.rendercontrolpulldown)i aC++i
rendercontrolbutton =xmcreateCascadeButton(leftrightmenu. I RenderControlButton".al.ac) i
XtManageChild(rendercontrolbutton)i
XmStringFree(xmstr)i

'** create define startpixel button in rendercontrol pulldown pane

*'ac =0i
xmstr =XmStringCreate(IIDefine startpixel".XmSTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl.XmNlabelString.xmstr)i aC++i
XtSetArg(al[acl.XmNmnemonic.'s')i aC++i
spbutton = XmcreateCascadeButton(rendercontrolpul l.down. I SpButton".al.ac) i
data->startpixelbox.box =CreateStartPixelBox(spbutton.location)i
XtAddCallback(spbutton,XmNactivateCallback.Manage.data->startpixelbox.box)i
XtManageChild(spbutton)i
XmstringFree(xmstr)i

'** create define 8IIIOunt of iterations button in rendercontrol pulldown pane

*'ac =0i
xmstr =XmStringCreate("Define #iterations".XmSTRING DEFAULT CHARSET)i
XtSetArg(al[acl.XmNlabelString.xmstr)i aC++i - -
XtSetArg(al[acl.XmNmnemonic.'i')i aC++i
itbutton =XmcreateCascadeButton(rendercontrolpulldown. l ltButton".al.ac)i
data->niterations =1i
data->iterationbox.box =CreatelterationBox(itbutton.location)i
XtAddCallback(itbutton,XmNactivateCallback.Manage.data->iterationbox.box)i
XtManageChild(itbutton)i
XmStringFree(xmstr)i

'** create ZOOlll button in rendercontrol pulldown pane

*'ac =Oi
xmstr =XmStringCreate("ZoOlll area".XmSTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl.XmNlabelString.xmstr); aC++i
XtSetArg(al[acl.XmNmnemonic.'Z')i aC++i
znh.ltton =XmcreateCascadeButton(rendercontrolpulldown."ZmButton".al.ac)i
data->zoombox.box =CreateZoomBox(znh.ltton.location)i
XtAddCallback(znh.ltton.XmNactivateCallback.Manage.data->zoombox.box)i
XtManageChild(znh.ltton)i
XmstringFree(xmstr)i

'** create unzOOlll button in rendercontrol pulldown pane

*'ac =0i
xmstr =XmstringCreate("UnzoOlll area".XmSTRING DEFAULT CHARSET)i
XtSetArg(al[acl.XmNlabelString.xmstr)i aC++i - -
XtSetArg(al[acl.XmNmnemonic,'U')i ac++;
uzbutton =XmcreateCascadeButton(rendercontrolpulldoWrl."UzButton".al.aC)i
XtAddCallback(uzbutton.XmNactivatecallback.Unzoomtontroller.location)i
XtManageChild(uzbutton)i
XmStringFree(xmstr)i
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/*
* create condensation (toggle) button in rendercontrol pulldown pane
*/

ac =0i
xmstr =XmstringCreate("Condensation (toggle)II,XmsTRING DEFAULT CHARSET)i
XtSetArg(al[acl,XmNlabelString,xmstr)i aC++i --
XtSetArg(al[acl,XmNmnemonic,'C')i aC++i
ctbutton =Xml:reateCascadeButton(rendercontrolpulldown,ICtButton",al,ac)i
XtAddCallback(ctbutton,XmNactivateCallback,CondensationController,location)i
XtManageChild(ctbutton)i
XmstringFree(xmstr)i
/*
* create specials pulldown menupane as slbnenu of leftrightmenu
*/

ac =0i
specialspulldown = Xml:reatePulldowri4enu( leftrightmenu,ISpecialsPulldown" ,al ,ac) i
/*
* create specials button for specials pulldown pane
*/

ac =0i
xmstr =XmstringCreate(ISpecials",XmsTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl,XmNlabelString,xmstr)i aC++i
XtSetArg(al[acl,XmNmnemonic,'S')i aC++i
XtSetArg(al[acl,XmNsuCMenuld,specialspulldown)i aC++i
specialsbutton =Xml:reateCascadeButton(leftrightmenu,ISpecialsButton",al,aC)i
XtManageChild(specialsbutton)i
XmstringFree(xmstr)i
/*
* create rectangle button in specials pulldown pane
*/

ac = Oi
xmstr =XmstringCreate(IRectangle",XmsTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl,XmNlabelString,xmstr)i aC++i
XtSetArg(al[acl,XmNmnemonic,'R')i aC++i
rtbutton = Xml:reateCascadeButton(specialspulldown,IRtButton" ,al ,ac) i
XtAddCallback(rtbutton,XmNactivateCallback,DrawRectangle,location)i
XtManageChild(rtbutton)i
XmstringFree(xmstr)i
r •
* create bifurcation diagram button in specials pulldown pane
*/

ac =0i
xmstr =XmstringCreate("Bifurcation diagram",xmsTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl,XmNlabelString,xmstr)i aC++i
XtSetArg(al[acl,XmNmnemonic,'B')i ac++:
bdbutton = Xml:reateCascadeButton(specialspulldown, IBdButton" ,al ,ac)i
XtAddCallback(bdbutton,XmNactivateCallback,ModeController,mode+14) i
XtAddCallback(bdbutton,XmNactivateCallback,ModeHandler,location)i
XtAddCallback(bdbutton,XmNactivateCallback,DrawBifurcationDiagram,location)i
XtManageChild(bdbutton)i
XmstringFree(xmstr):
/*
* create mandelbrot set button in specials pulldown pane
*/

ac =0:
xmstr =XmstringCreate("Mandelbrot set",XmsTRING_DEFAULT_CHARSET)i
XtSetArg(al[acl,XmNlabelString,xmstr): ac++:
XtSetArg(al[acl,XmNmnemonic,'M'): ac++:
msbutton =Xml:reateCascadeButton(specialspulldown,IMsButton",al,aC)i
XtAddCallback(msbutton,XmNactivateCallback,ModeController,mode+16):
XtAddCallback(msbutton,XmNactivateCallback,ModeHandler,location)i
XtAddCallback(msbutton,XmNactivateCallback,DrawMandelbrotSet,location)i
XtManageChild(msbutton):
XmstringFree(xmstr):
/*
* create moment sequence button in specials pulldown pane
*/

ac =0:
xmstr =XmstringCreate("Moment sequence",XmsTRING DEFAULT CHARSET):
XtSetArg(al[acl,XmNlabelString,xmstr): ac++: - -
XtSetArg(al[acl,XmNmnemonic,'s'): ac++:
mobutton =Xml:reateCascadeButton(specialspulldown,IMoButton",al,ac)i
XtAddCallback(mobutton,XmNactivateCallback,CalculateMoments,location):
XtManageChild(mobutton):
XmstringFree(xmstr)i



B. IFS-CODEC source code

/*
* create fractal dimension button in specials pulldown pane
*/

ac =0;
xmstr =XmStringCreate("Fractel dimension",XmSTRING DEFAULT CHARSET);
XtSetArg(al[acl,XmNlabelString,xmstr); ac++; - -
XtSetArg(al [acl,XmNmnemonic,'F'); ac++;
fdbutton = XmcreatecascadeButton(specillspul ldown,"FdButton" ,Il ,IC);
XtAddCIllback(fdbutton,XmNlctivlteClllback,CllcullteFractllDimension,locltion);
XtManlgeChild(fdbutton);
XmStringFree(xmstr);
/*
* return vIlue of this function
*/

return(leftrightmenu);
}
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/******************************************************************************
* CopyrightCc) Eindhoven University of Technology CTUE,NL)
* Faculty of Electrical Engineering CE)
* Design Automation Group CES)
* Mail address emilevdiviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File messages.c
* Purpose Contains callbacks for helpmessages and warnings
* Part of IFS-CODEC
* Created on June 02, 1992
* Created by Emi le van Duren
* Last modifi ed on: NovenD!r 20, 1992
* Modified by Emi le van Duren
* Remarks : None
*****************************************************************************/

#include "all.h"

/* contained
/* contained
/* contained
/* contained
/* contained

/*
* forward function declarations
*/

float PixsetDistanceC);
void PassageC);
void UnmanageC);
Drawdata *GetWindowDataC);
Widget GetWindowC);

in genetic.c
in control.c
in control.c
in control.c
in control.c

*/
*/
*/
*/
*/

messagebox,messagetext;
xmstr;
i ,code;

void CreateMessageBoxCw,help str,what,location)
Widget w; -
char *help str[];
char what,Tocation;

(

Widget
Xmstring
int
/*
* create messagebox
*/

ac =0;
switchCwhat)
(

case 'A':
xmstr =xmstringCreateC"help information",XmsTRING_DEFAULT_CHARSET);
code =0;
break;

case 'B':
xmstr =xmstringCreateC"help information",XmsTRING_DEFAULT_CHARSET);
if Clocation == 'l') code =2;
if Clocation == 'r') code =3;
break;

case 'C':
xmstr = XmstringCreateClwarning",xmsTRING_DEFAULT_CHARSET);
if Clocation == 'l') code =4;
if Clocation == 'r') code =5;
break;

case 'D':
xmstr =XmstringCreateClwarning",XmsTRING_DEFAULT_CHARSET);
if Clocation == 'l') code =6;
if Clocation == 'r') code =7;
break;

case 'E':
xmstr =XmstringCreateClmessage",XmsTRING_DEFAULT_CHARSET);
if Clocation == 'l') code =8;
if Clocation == 'r') code =9;
break;

case 'F':
xmstr =xmstringCreateClmessage",XmsTRING_DEFAULT_CHARSET);
code = 10;
break;

case 'G':
xmstr =XmstringCreateCICopyrightCc)",xmsTRING_DEFAULT_CHARSET);
code = 12;
break;
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}
XtSetArg(al[ac],XmNdialogTitle,xmstr); ac++;
XtSetArg(al[ac],XmNautoUnmanage,FALSE); ac++;
messagebox = XftlCreateMessageDialog(w,"MessageBoX",al,ac);
XmstringFree(xmstr);
/*
* we don't need the helpbutton and the cancelbutton, so I.ftIIlInage them
*/

XtUnmanageChild(XmMessageBoxGetChild(messagebox,XmDIALOG_HELP_BUTTON»;
XtUnmanageChild(XmMessageBoxGetChild(messagebox,XmDIALOG_CANCEL_BUTTON»;
/*
* retreive the message text widget and left justify the text
*/

ac =0;
XtSetArg(al[ac],XmNalignment,XmALIGNMENT_BEGINNING); ac++;
messagetext = XmMessageBoxGetChild(messagebox,XmDIALOG MESSAGE LABEL);
~ - -
* add OK-callback
*/

XtAddCal Iback(messagebox,XmNokCa I lback,Passage,code);
XtAddCallback(messagebox,XmNokCallback,Unmanage,messagebox);
/*
* count the text up to the first NULL string
*/

for (i=O;help_str[i] [O]I='\O';i++);
/*
* convert the stringarray to an Xmstring array and set it as the
* messagetext
*/

ac =0;
xmstr = StringArrayToXmstring(help_str,i);
XtSetArg(al[ac],XmNmessageString,xmstr); ac++;
XtSetValues(messagebox,al,ac);
/*
* display the helpmessage
*/

XtManageChild(messagebox);
XmstringFree(xmstr);

}

void MainHelpCallback(w)
Widget W;

{
static char *help_str[] = (

"1) The upper two screens are textareas",
"2) The lower two screens are pixeldrawingareas",
"3) The left and rightwindow contain the same utilities",
"4) The initial origins are set to center of areas, i.e. (0,0)",
"");

if (firsthelp)
(

CreateMessageBox(w,help str,'A' ,NULL);
firsthelp = FALSE; -

}
}

void FileHelpCallback(w,location)
Widget w;
char location;

{
Drawdata *data;
static char *help_str[] = {

"Specify a filename WITHOUT extension, because the program",
"wi II determine the appropriate extension itself. By looking",
"at the file extensions (with UNIX conmand Is) you can see",
"what kind of data each file contains:",.. I.
"filename.img contains a sequence of integer (x,y) coordinates,",
" which specify a user drawn image.",
"filename.col contains a sequence of integer (x,y) coordinates,",
" which specify the image of a user created collage.",
"filename.man contains the code of an IFS that is specified by",
" the corresponding collage.",
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"filename.aut
""fi lename. Us
"
"

contains the code of an IFS that is generated by",
the program to approximate an image.",
contains the code of an IFS that is created by the",
user with a source editor. For more information,",
push the Viewedit IFS code button.",
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II ..

"If'you want to save a rendered image, just push the savebutton",
"in the viewedit source image menu. You will find the rendered",
"image in filename.img which you can rename in UNIX if you wish.",
1111) ;

data =GetWindowData(location,'p');
if (data->first.filehelp)

(

CreateMessageBox(w,help_str,'B',location);
data->first.filehelp =FALSE;

)
)

void Fileopenwarning(w,location)
Widget W;
char l ocat ion;

{

Drawdata *data;
static char *help_str[] = (

"WARNING: file could not be opened" , 111I);
data =GetWindowData(location,'p');
if (data->first.fileopenwarning)

(

CreateMessageBox(w,help str,'C',location);
data->first.fileopenwarning =FALSE;

)
)

void Originwarning(w,location)
Widget W;
char locat ion;

{

Drawdata *dau;
static char *help_str[] = (

"WARNING: changing coordinates while tiling is not very,",
"smart, because this will lead to an in.,roper IFS-code","");

data =GetWindowData(Location,'p');
if (data->first.originwarning)

(

CreateMessageBox(w,help_str,'D', location):
data->first.originwarning = FALSE;

)
)

void VieweditIFSTableMessage(w,location)
Widget W;
char Location;

in interval [-1.000,1.000] [dimensionless]",
in intervaL [-250.00,250.00] [pixeLs]",
in interval [0.000,1.000] [xO.01 percent]",

{
Drawdata *dau:
static char *help_str[] ={

"You can do this with VI or Emacs, (obey the foLLowing format !)",
II II

"Each line in the transformation table contains 7 eLements, (i.e.",
"a,b,c,d,e,f,p), contained in the foLLowing floating intervaLs:",.. .. ,
"a,b,c,d
"e,f
"p.. .. ,
"Each line IIlJSt be terminated by a carriage return. If you want",
"the program to determine the probabilities p, just set the file",
"extension to .man, select the filename and push the save coLLage",
"button in the interactive IFS encoding menupane.",
"");

w = GetWindow(location,'p');
data = GetWindowData(Location,'p');
if (data->first.tabLemessage)
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{

CreateMessageBoxCw,help_str,'E',location)i
data->first.tablemessage = FALSE;

}
}

void printMessageCw)
Widget wi

{

static char *help_str[] =(
"You can do this by opening an xterm window",
"and applying the following procedure:",
" II

"xwd :> fi lename 1"- ,.. I'
"After the cursor has changed fram an arrow into a",
"crosshair, put the cursor in the desired window and".
"push the left mousebutton. After the second beep type:",
II II

"xp~ -dev ps filename_' > filename_2",
II .1 ,
"You can view the printfile with:",
II II,
lOgs fi lename_2"... ..
"Yo~ can print the printfHe with:".
II II

"lp' -dhpps f ilename_2",
1111>;

if Cprintmessage)
{

CreateMessageBoxCw,help_str,'F')i
printmessage =FALSE;

}
}

void PixsetMessageCw)
Widget w;
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{

}

float distancei
distance =PixsetDistanceCw,1)i
printfC"pixsetdistance = Xf\n",distance)i

void CopyrightMessageCw)
Widget Wi

{

static char *help_str[] =(
"Copyri ghtCc): Eindhoven Universi ty of Technology (TUE.NL)",
" Faculty of Electrical Engineering CE)II,
" Design Automation Group CES)" •
.. II.
"Author Emi Ie van Duren".
II ..

"Ad rights reserved. No part of this software shall bell,
"reproduced. stored in a retrieval system. or transmitted",
"by any means without written permission fram NL/TUE/E/ES.".
"");

if Ccopyrightmessage)
{

CreateMessageBoxCw,help_str,'G')i
copyrightmessage = FALSE;

}
}
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1******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdiviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File operators.c
* Purpose Contains genetic operators for genetic algorithm
* Part of IFS-CODEC
* Created on September 30, 1992
* Created by Emi le van Duren
* Last modified on: December 01, 1992
* Modified by Emile van Duren
* Remarks : None
*****************************************************************************1

'include "all.h"

int SelectGeneticOperator()
{

1*
* initialize operator selection probabilities
*1

static float operator[] = { P_MACRO, P_MICRO, P_MIXED, P_MUTATE, P_JUMP, P_SCALE, P_ROTATE, P_TRANSLATE
};

int i=O,p=O;
uns igned long seed;
Boolean found = FALSE;
1*
* roulette wheel operator selection, so the chance of each operator to be
* selected is directly proportional to its probability as initialized above
*
*1

seed = rand();
while (i < 8 && !found)

(

P += 32767*(operator[i]):
if (seed <= p) found = TRUE;
i++;

}

1*
* return value of this function
*1

return(i);
}

void MacroCrossOver(parent1,parent2,child1,child2)
Chromosome *parent1,*parent2,*child1,*child2;

parent1->a;
parent1->b:
parent1->c:
parent1->d:
parent1->e:
parent1->f;
parent2->a:
parent2->b:
parent2->c:
parent2->d:
parent2->e:
parent2->f:

{

char *monitor = "monitor.dat":
int mask:
Boolean debug = DEBUG;
FILE *file;
1*
* initialize child to be equal to parent
*1

child1 ->a =
child1->b =
child1 ->c =
child1->d =
child1->e =
child1->f =
child2->a =
child2->b
child2->c =
chi ld2->d =
chi ld2->e =
child2->f =
1*
* generate random mask as element of {1 ••63}
*1

mask = (int) (rand()/528.5 + 1);
1*
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* update fiLe monitor.dat (next 3 Lines are meant for debugging purposes)
*1
if (debug)

(

file = fopen(monitor,"a");
fprfntf(fiLe,"mask:%<!d\n",mask);
fcLose(fiLe);

a1,b1,c1,d1,e1,f1
a2,b2,c2,c12,e2,f2
o 1 101 0

a1,b2,c2,d1,e2,f1
a2,b1,c1,c12,e1,f2

parent1
parent2
mask
chiLd1
ch f Lc12

*1
if (maskX2 1= 0 && mask 1= 0)

{

mask--'
chiLd1~>f =parent2->f;
chiLdZ->f = parent1->f;

}

1*
* if mask contains a binary 0 at position i then chiLd1 gets the according
* gene of parent1 and the same hoLds for chiLc12 and parent2
*
* if mask contains a binary 1 at position i then chiLd1 gets the according
* gene of parent2 and the same hoLds for chi Lc12 and parent1
** eX8IIJILe:
*
*
*
*

}

mask 1= 2;
if (maskX2 1= 0 && mask != 0)

{

mask--;
chiLd1->e = parent2->e;
chiLcI2->e =parent1->e;

}

mask 1= 2;
if (mask%<! != 0 && mask != 0)

{

mask--'
ChiLd1~>d =parent2->d;
chi Ld2->d =parent1->d;

}

mask 1= 2;
if (maskX2 1= 0 && mask 1= 0)

{
mask--;
chiLd1->c =parent2->c;
chiLcI2->c =parent1->c;

}

mask 1= 2;
if (mask%<! 1= 0 && mask != 0)

{

mask---
chiLd1~>b = parent2->b;
chi LcI2->b = parent1->b;

}

mask 1= 2;
if (mask%<! != 0 && mask != 0)

{

mask--'
chiLd1~>a =parent2->a;
chi Ld2->a = parent1->a;

}
}

char *monitor ="monitor.dat";
int mask;
BooLean debug =DEBUG;
FILE *fiLe;
1*
* generate random mask as eLement of {1 ••255}
*1

mask =(int) (rand()/129.0 + 1);

void MicroCrossOver(parent1,parent2,chiLd1,chiLd2)
Chromosome *parent1,*parent2,*chi Ld1,*chi ldZ;

{
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/*
* update file monitor.dat (next 3 lines are meant for debugging purposes)
*/

if (debug)
{

file = fopen(monitor,"a")i
fprintf(file,"mask:X2d\n",mask)i
fclose(fi le)i

o 1
.

o 0 1
o 1

parent2(gene i)
o 1 101 1 1 0

o 1 001 101
chi ld2(gene i)

o ..
1 0

. . .
1 0 1

parent1(gene i)
1 100 1 001

1 1 101 010
child1(gene i)

merge

mask
001 1 101 1

"O"-mask
"1"-mask

*
*
*
*
*
*

}
/*
* if mask contains a binary 0 at position i then child1 gets the same
* nucleotide as parent1 at position i in the concerning gene and child2
* gets the same nucleotide as parent2 at position i in the concerning gene
*
* if mask contains a binary 1 at position i then child1 gets the same
* nucleotide as parent2 at position i in the concerning gene and child2
* gets the same nucleotide as parent1 at position i in the concerning gene
*
* eXaq:lle:
*

*/
child1->a = (--mask &parent1->a) (mask &parent2->a)i
child1->b = (--mask &parent1->b) (mask &parent2->b)i
child1->c = (--mask &parent1->c) (mask &parent2->c)i
child1->d = (--mask &parent1->d) (mask &parent2->d)i
child1->e = (--mask &parent1->e) (mask &parent2->e)i
child1->f = (--mask &parent1->f) (mask &parent2->f)i
child2->a = (--mask &parent2->a) (mask &parent1->a)i
child2->b = (--mask &parent2->b) (mask &parent1->b)i
child2->c = (--mask &parent2->c) (mask &parent1->c)i
child2->d = (--mask &parent2->d) (mask &parent1->d)i
child2->e = (--mask &parent2->e) (mask &parent1->e)i
child2->f = (--mask &parent2->f) (mask &parent1->f)i
if (child1->a == 0) child1->a =128·
if (child1->b == 0) child1->b =128;
if (child1->c == 0) child1->c =128·
if (child1->d == 0) child1->d =128;
if (child1->e == 0) child1->e =128·
if (child1->f == 0) child1->f =128;
if (child2->a == 0) child2->a =128i
if (child2->b == 0) child2->b =128i
if (child2->c == 0) child2->c =128i
if (child2->d == 0) child2->d =128i
if (child2->e == 0) child2->e =128·
if (child2->f == 0) child2->f =128;

}

void MixedCrossOver(parent1,parent2,child1,child2)
Chromosome *parent1,*parent2,*child1,*child2i

{

char *monitor = "monitor.dat"i
int mask1,mask2i
Boolean debug =OEBUGi
FILE *filei
/*
* initialize child to be equal to parent
*/

child1->a = parent1->ai
child1->b = parent1->bi
child1->c = parent1->ci
child1->d = parent1->di
child1->e = parent1->ei
child1->f = parent1->fi
child2->a = parent2->ai
child2->b = parent2->bi
child2->c = parent2->ci
child2->d = parent2->di
child2->e =parent2->ei
child2->f =parent2->fi
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1*
* generate random mask1 as element of <1 •• 63} and random mask2 as element
* of {1. .255}
*/

mask1 = (int) (rand()/528.5 + 1);
mask2 = (int) (rand()/129.0 + 1);
1*
* update file monitor.dat (next 3 lines are meant for debugging purposes)
*/
if (debug)

(

file = fopen(monitor,"a");
fprintfCfi le, "mask1 :~d mask2:~d\n" ,mask1 ,mask2);
fclose(file) ;

}

/*
* mixed crossover combines the effect of macro crossover and micro
* crossover, i.e. mask2 is the mask for micro crossover which is applied
* to the genes according to the ones in mask1 (see also MacroCrossOver()
* and MicroCrossOVer(».
*/

if (mask1~ !- 0 && mask1 !=O)
{

mask1--·
child1-;f = (--mask2 &parent1->f) I (mask2 &parent2->f);
child2->f = (--mask2 &parent2->f) I (mask2 &parent1->f);
if (child1->f == 0) child1->f = 128;
if (child2->f == 0) child2->f = 128;

}

mask1 1= 2;
if (mask1~ 1= 0 && mask1 1=0)

{
mask1--·
child1-;e = (--mask2 &parent1->e) I (mask2 &parent2->e);
child2->e = (--mask2 &parent2->e) I (mask2 &parent1->e);
if (child1->e == 0) child1->e = 128;
if (child2->e == 0) child2->e = 128;

}

mask1 /= 2;
if (mask1~ != 0 && mask1 !=O)

{

mask1--'
child1-;d = (--mask2 &parent1->d) I (mask2 & parent2->d);
child2->d = (--mask2 &parent2->d) : (mask2 &parent1->d);
if (child1->d == 0) child1->d = 128;
if (child2->d == 0) child2->d = 128;

}

mask1 1= 2;
if (mask1~ 1= 0 && mask1 !=O)

{
mask1--·
child1-;c = (--mask2 &parent1->c) I (mask2 &parent2->c);
child2->c = (--mask2 &parent2->c) ! (mask2 &parent1->c);
if (child1->c == 0) child1->c = 128;
if (child2->c == 0) child2->c = 128;

}
mask1 /= 2;
if (mask1X2 != 0 && mask1 !=O)

{

mask1--'
child1-;b = (--mask2 &parent1->b) I (mask2 &parent2->b);
child2->b = (--mask2 &parent2->b) I (mask2 &parent1->b);
if (child1->b == 0) child1->b = 128;
if (child2->b == 0) child2->b = 128;

)

mask1 1= 2;
if (mask1X2 != 0 && mask1 !=O)

{
mask1·-·
child1-;a = (--mask2 &parent1->a) I (mask2 &parent2->a);
child2->a = (--mask2 &parent2->a) ! (mask2 & parent1->a);
if (child1->a == 0) child1->a = 128;
if (child2->a == 0) child2->a = 128;

}
}
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void Mutate(parent,chiLd)
Chromosome *parent,*chiLd;

{

B. IFS-CODEC source code

char *monitor = "monitor.dat";
int i,mask1,mask2=1;
unsigned Long seed;
BooLean debug = DEBUG;
FILE *fiLe;
1*
* initiaLize chiLd to be equaL to parent
*1

chiLd->a = parent->a;
chiLd->b = parent->b;
chi Ld->c = parent->c;
chiLd->d = parent->d;
chiLd->e =parent->e;
chi Ld->f = parent->f;
1*
* generate random mask1 as eLement of {1 ••6}
*1

mask1 = (int) (rand()/6553.4 + 1);
1*
* generate random mask2 as eLement of {1,2,4,8,16,32,64,128}, therefore
* first generate a random seed as eLement of {0•• 7> and caLcuLate mask2
* as 2 exp seed.
*1

seed = (int) (rand()/4681.0);
for (i = 0; i < seed; i++)

{

mask2 *= 2;
}

1*
* update fiLe monitor.dat (next 3 Lines are meant for debugging purposes)
*1
if (debug)

(

fiLe = fopen(monitor,"a");
fprintf(fiLe,"mask1:X2d mask2:X2d\n",mask1,mask2);
fcLose(fiLe);

}

1*
* mask2 contains a singLe 1 digit at position i which wiLL force the
* nucLeotide at position i in the gene at position mask1 to be inverted
*1

switch(mask1 )
{

case 1:
chi Ld->a = (mask2)A(parent->a);
if (chiLd->a == 0) chiLd->a = 128;
break;

case 2:
chiLd->b = (mask2)A(parent->b);
if (chiLd->b == 0) chiLd->b = 128;
break;

case 3:
chiLd->c = (mask2)A(parent->c);
if (chiLd->c == 0) chiLd->c = 128;
break;

case 4:
chi Ld->d = (mask2)A(parent->d);
if (chi Ld->d == 0) chiLd->d = 128;
break;

case 5:
chi Ld->e = (mask2)A(parent->e);
if (chi Ld->e == 0) chiLd->e = 128;
break;

case 6:
chiLd->f = (mask2)A(parent->f);
if (chiLd->f == 0) chi Ld->f = 128;
break;

}
}



B. IFS-CODEC source code

void Jump(parent,child)
Chromosome *parent,*child;

<
char *monitor ="monitor.dat";
float array[6l,dummy;
int mask1 =0,mask2 =0;
Boolean debug =DEBUG;
FILE *fHe;
1*
* generate random mask1 as element of <1 ••6} and mask2 as element of
* <1 ••6}\mask1, since mask1 and mask2 must differ
*1

while (mask1 == mask2)
<

mask1 =(int) (rand()/6553.4 + 1);
mask2 =(int) (rand()/6553.4 + 1);

}

1*
* update file monitor.dat (next 3 lines are meant for debugging purposes)
*1

if (debug)
<

file = fopen(monitor,"a");
fprintf(file,"mask1:X2d mask2:X2d\n",mask1,mask2);
fclose(fHe);

}
1*
* child becomes equal to parent with genes at positions mask1 and mask2 swapped
*
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* ex~le:

*
*

parent =a,b,c,d,e,f
(mask1,mask2) =(2,6)
child =a,f,c,d,e,b

*1
array[Ol =parent->a;
array[1l =parent->b;
array[2l =parent->c;
array[3l =parent->d;
array[4l =parent->e;
array[Sl =parent->f;
dummy =array[mask1-1l;
array[mask1-1l =array[mask2-1li
array[mask2-1l =dummy;
child->a =array[Ol;
child->b =array[1l;
child->c = array[2l;
child->d =array[3l;
child->e =array[4l;
child->f =array[5l;

}

void Scale(parent,child)
Chromosome *parent,*child;

<
char *monitor ="monitor.dat";
int mask =0;
Boolean debug =DEBUG;
FILE *fi lei
1*
* generate random mask as element of <1 •• 126}
*1

mask =(int) (rand()/262.1 + 1);
1*
* update file monitor.dat (next 3 lines are meant for debugging purposes)
*1

if (debug)
<

file =fopen(monitor,"a")i
fpri ntf(f i le, "mask:X2d\n" ,mask);
fclose(fi le);

}

1*
* child will become a scaled version of the parent, such that the signs of
* the parameters a,b,c, and d remains unchanged, thus for x in <a,b,c,d}:
* bit 0 of child->x =bit 0 of parent->x
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* bit 1-7 of chiLd->x = CCbit 1-7 of parent->x) + mask) mod 127
*
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* exaq>Le:
*
*
*
*
*
*
*
*

parent->a =11001011 =-75
parent->b =00110010 =50
parent->c =10000101 =-5
parent->d =01110111 =119
mask = 1000011 =67
chiLd->a =10001111 =-40
chiLd->b =01110101 = 26
chiLd->c =11001000 = -3
chiLd->d =00111011 = 63

*1
if CCparent->a - 128) > 0)

(

chiLd->a =Cint) CCCparent->a • 128)*mask)/127.0 + 128.5);
}

eLse
(

chiLd->a = Cint) CCCparent->a)*mask)/127.0 + 0.5);
}

if CCparent->b - 128) > 0)
(

chiLd->b =Cint) CCCparent->b - 128)*mask)/127.0 + 128.5);
}

eLse
(

chi Ld->b =Cint) CCCparent->b)*mask)/127.0 + 0.5);
}

if CCparent->c - 128) > 0)
(

chiLd->c =Cint) CCCparent->c - 128)*mask)/127.0 + 128.5);
}

eLse
(

chi Ld->c =Cint) CCCparent->c)*mask)/127.0 + 0.5);
}

if CCparent->d - 128) > 0)
(

chiLd->d =Cint) CCCparent->d - 128)*mask)/127.0 + 128.5);
}

eLse
(

chi Ld->d =Cint) CCCparent->d)*mask)/127.0 + 0.5);
}

if CchiLd->a == 0) chi Ld->a =128;
if CchiLd->b == 0) chi Ld->b =128;
if CchiLd->c == 0) chiLd->c =128;
if CchiLd->d == 0) chi Ld->d =128;
chiLd->e =parent->e;
chiLd->f =parent->f;

}

void RotateCparent,chiLd)
Chromosome *parent,*chiLd;

(

char *monitor = "monitor .dat";
doubLe phi;
int mask;
fLoat dummy,pi =PI,acos,asin,bcos,bsin,ccos,csin,dcos,dsin;
BooLean debug =DEBUG;
FILE *fi Le;
1*
* generate random mask as eLement of {1 •• 359} degrees
*1

mask =Cint) CrandC)/91.527 + 1);
1*
* update fiLe monitor.dat Cnext 3 Lines are meant for debugging purposes)
*1

if Cdebug)
(

fiLe =fopenCmonitor,"a");
fprintfCfi Le, "phi: X3.2f\n",phi);
fcLoseCfi Le);

}
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f

ex I
I +y!x

a b

c d
x

cos(phi) - sin(phi)

sin(phi) + cos(phi)

phi =77 [degrees] =1.34 [radians]
parent->a =203 =-75
parent->b = 50 = 50
parent->c =133 = -5
parent·>d =119 =119
child->a =(int) -75*cos(77) - -5*sin(77) = -12 =140
child->b =(int) 50*cos(77) - 119*sin(77) =-105 =233
child->c =(int) -75*sin(77) + -5*cos(77) = -74 =202
child->d =(int) 50*sin(77) + 119*cos(77) = 75 = 75

=

* ex~le:

*
*
*
*
*
*
*
*

1*
* calculate rotation angle phi in radians
*/

phi =(double) mask*2*pi/360;
1*
* child will become a rotated version of the parent, such that the
* transformation matrix is multiplied by the standard rotation matrix:
*
* x'
*
* y'
*

*/
if «parent->a - 128) > 0)

(

acos = (128 - parent->a)*cos(phi)i
asin =(128 - parent->a)*sin(phi)i

)

else
(

acos =(parent->a)*cos(phi)i
asin =(parent->a)*sin(phi);

)
if «parent->b - 128) > 0)

(
beos = (128 - parent->b)*cos(phi)i
bsin =(128 - parent->b)*sin(phi)i

)

else
(

beos =(parent->b)*cos(phi);
bsin =(parent->b)*sin(phi)i

)

if «parent->c - 128) > 0)
(

ccos =(128 - parent->c)*cos(phi);
csin =(128 - parent->c)*sin(phi)i

)
else

(

ccos = (parent->c)*cos(phi)i
csin = (parent->c)*sin(phi)i

)

if «parent->d - 128) > 0)
(

deos = (128 - parent->d)*cos(phi)i
dsin = (128 - parent->d)*sin(phi)i

)

else
(

dcos =(parent->d)*cos(phi)i
dsin =(parent->d)*sin(phi);

)
/*
* calculate children
*1

if «int) (acos - csin) < 0)
(

child->a =«int) «csin - acos) + 128.5»1255;
}

else
(

child->a =«int) «acos - csin) + 0.5»1255;
}

if «int) (beos - dsin) < 0)
(
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child->b = «int) «dsin - bcos) + 128.5»%255;
}

else
{

child->b = «int) «bcos - dsin) + 0.5»%255;
}

if «int) (asin + ccos) < 0)
{

child->c =«int) (-(asin + ccos) + 128.5»%255;
}

else
{

child->c =«int) «asin + ccos) + 0.5»%255;
}

if «int) (bsin + dcos) < 0)
{

child->d =«int) (-(bsin + dcos) + 128.5»%255;
}

else
{

child->d =«int) «bsin + dcos) + 0.5»%255;
}

if (child->a == 0) child->a =128;
if (child->b == 0) child->b =128;
if (child->c == 0) child->c =128;
if (child->d == 0) child->d =128;
child->e = parent->e;
child->f =parent->f;

}

void Translate(parent,child)
Chromosome *parent,*child;

{

char *monitor ="monitor.dat";
int i ,mask;
unsigned long seed;
Boolean debug =DEBUG;
FILE *file;
1*
* generate random mask as element of {1 •• 255}
*1

mask =(int) (rand()/129.0 + 1);
1*
* update file monitor.dat (next 3 lines are meant for debugging purposes)
*1
if (debug)

(

file = fopen(monitor,"a");
fprintf(file,"mask:%2d\n",mask);
fclose(file);

}

1*
* mask is added modulo 255 with the shift vector
*1

child->a = parent->a;
child->b = parent->b;
child->c = parent->c;
child->d = parent->d;
child->e = (parent->e + mask)%255;
child->f =(parent->f + mask)%255;
if (child->e == 0) child->e =128;
if (child->f == 0) child->f =128;

}
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1******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdaviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File render.c
* Purpose Contains procedures for rendering IFS-codes
* Part of IFS-CODEC
* Created on July 13, 1992
* Created by Emile van Duren
* Last modified on: Decen*Jer 17, 1992
* Modified by Emile van Duren
* Remark.s : ZOOlllingfacil ity must be added between lines 280 and 300
*****************************************************************************/

#include "all.h"
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/* contained
/* contained
1* contained
/* contained
/* contained
/* contained
/* contained
/* contained
1* contained

/*
* forward function declarations
*/

void ClearTextHandler();
void DrawAxes();
void DrawRectangle():
void FileDpenWarning();
void IterationHandler();
void SourceFileHandler();
Drawdata *GetWindowData();
Textdata *GetTextData();
Widget GetWindow();

void GraphicalView(w,code)
Widget w;
int code;

{

in handle.c */
in draw.c */
in draw.c */
in messages.c */
in handle.c */
in handle.c */
in control.c */
in control.c */
in control.c */

char location,*ext,*filename,*savefile;
int x1,x2,x3,x4,y1,y2,y3,y4;
float a,b,c,d,e,f,p,xleft,xright,yupper,ylower,width,height;
float xaleft,xaright,ybupper,yblower;
unsigned long pixel;
Drawdata *data;
FILE *fi lei
Textdata *text;
if (code X2 == 0)

{

location = 'l';
}

else
{

location = 'r';
code-Oj

}
w =GetWindow(location,'p');
data = GetWindowData(location,'p');
text = GetTextData(location)i
if (code == 0) ext = ". ifs";
if (code == 2) ext = ".man";
if (code == 4) ext = ".aut";
savefile =calloc(strlen(data->filename)+5,sizeof(char»;
strcpy(savefile,data->filename)i
if CCfi le = fopen(strcat(savefi le,ext),"r"» == NUll)

(

Fi leOpenWarning(w, location);
}

else
(

1*
* clear out all text except origin in textwindow
*/

ClearPixelArea(w,location);
ClearTextHandler(w,location,287);
text->mode = "mode : Viewedit IFS-code (graphical view)";
SourceFileHandler(w,location,ext)i
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1*
* set foreground to black and draw an untransformed dashed rectangle
*1

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»);
DrawRectangle(w,locat;on,'d');
1*
* determine size and position (screen coordinates) of base rectangle
*1

width =2*(data->width)/5;
height =2*(data->height)/5;
xleft =data->xor;gin - w;dth/2;
yupper =data->yorigin - height/2;
xright =xleft + width;
ylower =yupper + height;
xaleft =xleft - data->xorigin;
xar;ght = xr;ght - data->xor;gin;
ybupper =data->yorigin - yupper;
yblower =data->yorigin - ylower;
1*
* for all transformations in file
*1

while (Ifeof(file»
(

1*
* get transformation from file
*1

fscanf(file,"%f " &a)·
fscanf(fHe, "%f ,,'&b) ~
fscanf(file,"%f ":&c);
fscanf(file, "%f ",&d);
fscanf(f He, "%f ",&e);
fscanf(file,"%f ",&f);
fscanf(f; le, "%f\n" ,&p);
1*
* apply all transformations once the vertices of the rectangle
* in data->pix
*1

x1 = a*xaleft + b*ybupper + e + data->xorigin;
y1 =-c*xaleft - d*ybupper - f + data->yorigini
x2 =a*xar;ght + b*ybupper + e + data->xorigin;
y2 =-c*xaright - d*ybupper - f + data->yor;gin;
x3 =a*xaright + b*yblower + e + data->xor;gin;
y3 = -c*xar;ght - d*yblower - f + data->yorigini
x4 =a*xaleft + b*yblower + e + data->xorig;n;
y4 =-c*xaleft - d*yblower - f + data->yorig;n;
1*
* and draw lines between the transformed vertices
*1

XDrawLine(XtDisplay(w),data->pix,data->gc,x1,y1,x2,y2);
XDrawLine(XtD;splay(w),data->p;x,data->gc,x2,y2,x3,y3);
XDrawLine(XtD;splay(w),data->p;x,data->gc,x3,y3,x4,y4);
XDrawL;ne(XtD;splay(w),data->pix,data->gc,x4,y4,x1,y1);

}

1*
* finally, copy data->pix to screen and draw axes if necessary
*1

XCopyArea(XtD;splay(w),data->pix,XtWindow(w),data->gc,O,0,
data->w;dth,data->he;ght,O,O);

;f (data->axes) DrawAxes(w,locat;On)i
}

free(savefi le);
savefile =NULL;

}

void Determin;sticRender;ng(w,code)
Widget W;
int code;

{

char location,*ext,*filename,*savefile;
float pi,xt,yt;
int col,count =O,index,iteration,row,x,y =0;
unsigned long pixel;
Boolean skipflag =FALSE;
Drawdata *datai
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FILE *f; lei
IFScode *pointer:
Xlmage *image:
/*
* initial ization
*/

pi = PI:
pointer =NULL:
if (code X2 == 0)

{
location = 'l' ;

}
else

(
location = 'r'i
code-Oj

)

w = GetWindow(location,'p'):
data =GetWindowData(location,'p');
/*
* determine file extension
*/

if (code == 0) ext =".ifs";
if (code == 2) ext =".man":
if (code == 4) ext =".aut":
savefile = calloc(strlen(data->filename)+5,sizeof(char»:
strcpy(savefile,data->filename);
if «file = fopen(strcat(savefile,ext),"r"» == NULL)

(

Fi leopenwarning(w, location):
skipflag =TRUE:

}
else

(

/*
* update sourcefile and savefile name in textwindow
*/

SourceFileHandlerCw,location,ext):
/*
* if file could be opened
*/

while (!feof(file»
(

/*
* allocate memory for transformations
*/

if (pointer == NULL)
(

pointer =(IFScode *) malloc(sizeof(IFScode»;
)

else
(
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pointer = (IFScode *) reallocCpointer,(count+1)*sizeof(IFScode»:

}

}
/*
* get transformation from file and store it in memory
*/

fscanf(file,"Xf ",&«pointer + count)->a»;
fscanfCfile,"Xf ",&«pointer + count)->b»:
fscanf(file,"Xf ",&«pointer + count)->c»:
fscanf(fi le, "Xf ",&«pointer + count)->d»;
fscanfCfile,"Xf ",&«pointer + count)->e»:
fscanf(file,"Xf ",&«pointer + count)->f»:
fscanfCfile,"Xf\n",&«pointer + count)->p»;
count++:

}

fclose(file);
free(savefile):
savefile =NULL;
if (!skipflag)

{
/*
* set foreground to black and plot startpixel
*/
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XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»):
XDrawPoint(XtDisplay(w),data->pix,data->gc,data->xstart,data->ystart):
/*
* for each iteration
*/

for (iteration = 0: iteration < data->niterations: iteration++)
{

/*
* deterministic rendering with condensation, so don't clear the
* screen between successive iterations
*/

if (data->condensation)
(

/*
* copy data->pix to screen an get image from data->pix:
*/

XCopyArea(XtDisplay(w) ,data->pix,XtYindow(w) ,data->gc,O,0,
data->width,data->height,O,O):

}

image =XGetlmage(XtDisplay(w),data->pix,O,O,data->width,
data->height,1,XYPixmap);

/*
* deterministic rendering without condensation, so clear the
* screen between successive iterations
*/

if (Idata->condensation)
(

XSetForeground(XtDisplay(w),data->gc,YhitePixelOfScreen(XtScreen(w»):
XFillRectangle(XtDisplay(w),XtYindow(w),data->gc,O,O,

data->width,data->height)i
XCopyArea(XtDisplay(w) ,data->pix,XtYindow(w) ,data->gc,O,O,

data->width,data->height,O,O);
XFillRectangle(XtDisplay(w),data->pix,data->gc,O,O,

data->width,data->height);
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»):

}

/*
* for all pixels in image
*/

for (row =0; row < data->height; row++)
{

for (col =0; col < data->width; col++)
(

/*
* get pixel and if pixel is black
*/

pixel =XGetPixel(image,col,row);
if (pixel == 0)

{

index)->a)*xt +
index)->b)*yt +
index)->e);
index)->c)*xt +
index)->d)*yt +
index)->f);

«pointer +
«pointer +
«pointer +
«pointer +
«pointer +
«pointer +

y =

/*
* apply all transformations sequentially
*/

for (index =0: index < count; index++)
{

/*
* transform coordinate to virtual origin
*/

xt = col - data->xorigin:
yt = row - data->yorigin;
/*
* convert y from screen coordinates to Carthesian coordinates
*/

yt = -yt:
/*
* apply affine transformation
*/

x =

/*
* rescale coordinate with data->zoom and data->offset
*/
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/*
* convert y from Carthesian coordinates to screen coordinates
*/

y = -V;
/*
* transform coordinate to original position and plot it
*/

x += data->xorigin;
y += data->yorigin;
XDrawPoint(XtDisplay(w),data->pix,data->gc,x,y);

}
}

}
}

/*
* update amount of iterations in textdisplay
*/

IterationHandler(location,iteration);
/*
* destroy image and draw axes if necessary
*/

XDestroylmage(image);
image = NULL;

}

XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,O,0,
data->width,data->height,O,O);

if (data->axes) DrawAxes(w,location);
}

free(pointer);
pointer = NULL;

}

void NondetenministicRendering(w,code)
Widget w;
int code;

{
char location,*ext,*savefile;
float pi,xt,yt;
int col,count = O,i,row,x,y = 0;
unsigned long iteration,p,pixel,seed;
Boolean found,skipflag = FALSE;
Drawdata *data;
FILE *file;
IFScode *ptr;
Xlmage *image;
/*
* initialization
*/

pi =PI;
ptr = NULL;
if (code X2 == 0)

{
location = , l ' ;

}
else

{
location = , r' ;
code-Oj

}

w = GetWindow(location,'p');
data = GetWindowData(location,'p');
/*
* determine file extension
*/

if (code == 0) ext = ".ifs";
if (code == 2) ext = ".man";
if (code == 4) ext = ".aut";
savefile = calloc(strlen(data->filename)+5,sizeof(char»;
strcpy(savefile,data->filename);
if «file = fopen(strcat(savefile,ext),"r"» == NULL)

{

FileopenWarning(w,location);
skipflag = TRUE;
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}

else
(

/*
* update sourcefile and savefile name in textwindow
*/

SourceFileHandlerCw,location,ext):
/*
* if file could be opened
*/

while C!feofCfile»
(

/*
* allocate memory for transformations
*/
if Cptr == NULL)

(

ptr =CIFScode *) mallocCsizeofCIFScode»:
}

else
(

ptr =CIFScode *) reallocCptr,Ccount+1)*sizeofCIFScode»:
}

/*
* get transformation from file and store it in memory
*/

fscanfCfi le,"Xf ",&CCptr + count)->a»;
fscanfCfile,"Xf ",&CCptr + count)->b»:
fscanfCfi le,"Xf ",&CCptr + count)->c»:
fscanf(fi le,"Xf ",&CCptr + count)->d»;
fscanf(file, "Xf ",&CCptr + count)->e»:
fscanfCfi le,"Xf ",&CCptr + count)->f»:
fscanf(fi le,"Xf\n",&CCptr + count)->p»:
count++:

}
}

fcloseCfile):
freeCsavefile):
savefi Ie = NULL:
if C'sldpflag)

(
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/*
* set foreground to black and plot startpixel
*/

XSetForeground(XtDisplayCw),data->gc,BlackPixelOfScreen(XtScreenCw»):
XDrawPointCXtDisplaYCw),data->pix,data->gc,data->xstart,data->ystart):
/*
* nondeterministic rendering with condensation
*/

if Cdata->condensation)
(

for Citeration = 0: iteration < data->niterations: iteration++)
(

/*
* copy data->pix to screen and get image from data->pix
*/

XCopyAreaCXtDisplaYCw),data->pix,XtWindowCw),data->gc,O,0,
data->width,data->height,O,O):

image =XGetlmageCXtDisplaYCw),data->pix,O,O,data->width,
data->height,1,XYPixmap):

/*
* for all pixels in image
*/

for Crow =0: row < data->height: row++)
(

for Ccol = 0: col < data->width: col++)
(

/*
* get pixel and if pixel is black
*/

pixel =XGetPixelCimage,col,row):
if Cpixel == 0)
(

/*
* because rand() returns an integer between °and 32767,
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* rescale the fractional probabilities for each
* transformation appropriately to this returnvalue and
* select a transformation according to its assigned
* probabi I ity
*/

p = O;i = 0;
found = FALSE;
seed =randC);
while Ci < count && !found)

(
P += 32767*CCptr + i)->p);
if Cseed <= p) found = TRUE;
i++;

)
i-··
/* '
* transform coordinate to virtual origin
*/

xt =col - data->xorigin;
yt = row - data->yorigin;
/*
* convert y from screen coordinates to Carthesian
* coordinates
*/

yt = -yt;
/*
* apply affine transformation
*/

x = CCptr + i)->a)*xt + CCptr + i)->b)*yt + Cptr + i)->e;
y = CCptr + i)->c)*xt + CCptr + i)->d)*yt + Cptr + i)->f;
/*
* rescale coordinate with data->zoom and data->offset
*/

/*
* convert y from Carthesian coordinates to screen
* coordinates
*/

y = -y;
/*
* convert coordinate to its original position and plot it
*/

x += data->xorigin;
y += data->yorigin;
XDrawPointCXtDisplaYCw),data->pix,data->gc,x,y);

)
)

)

/*
* update amount of iterations in textdisplay
*/

IterationHandlerClocation,iteration);
/*
* destroy image and draw axes if necessary
*/

XDestroylmageCimage);
image = NULL;

)

XCopYAreaCXtDisplayCw),data->pix,XtWindowCw),data->gc,O,0,
data->width,data->height,O,O);

if Cdata->axes) DrawAxesCw,location);
)

/*
* nondeterministic rendering without condensation Corbit calculation)
*/

if C!data->condensation)
{

/*
* initialize starting point of orbit
*/

x =data->xstart;
y =data->ystart;
/*
* apply 1000 times selected amount of iterations
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}
}
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*/
for (iteration = 0; iteration < 1000*data->niterations; iteration++)

(

/*
* update amount of iterations in textdisplay
*/

if «iteration+1) X 1000 == 0) IterationHandler(location,iteration);
/*
* because rand() returns an integer between 0 and 32767,
* rescale the fractional probabilities for each
* transformation appropriately to this returnvalue and
* select a transformation according to its assigned
* probabil ity
*/

p =O;i =0;
found = FALSE;
seed = randO;
while (i < count && ! found)
(

P += 32767*«ptr + i)->p);
if (seed <= p) found = TRUE;
i++;

}
i--·
/* '
* transform coordinate to virtual origin
*/

xt = x - data->xorigin;
yt = y - data->yorigin;
/*
* convert y from screen coordinates to Carthesian coordinates
*/

yt =-yt;
/*
* apply affine transformation
*/

x = «ptr + i)->a)*xt + «ptr + i)->b)*yt + (ptr + i)->e;
y = «ptr + i)->c)*xt + «ptr + i)->d)*yt + (ptr + i)->f;
/*
* rescale coordinate with data->zoom and data->offset
*/

/*
* convert y from Carthesian coordinates to screen coordinates
*/

y = -y;
/*
* convert coordinate to its original position and plot it
*/

x += data->xorigin;
y += data->yorigin;
/*
* draw point in data->pix and also on screen
*/

XDrawPoint(XtDisplay(w),data->pix,data->gc,x,y);
XDrawPoint(XtDisplay(w),XtWindow(w),data->gc,x,y);

}
}

free(ptr);
ptr = NULL;
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1******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdiviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File specials.c
* Purpose Rendering of Bifurcation diagram and Mandelbrot set
* Part of IFS-COOEC
* Created on July 31, 1992
* Created by Emile van Duren
* Last modified on: December 17, 1992
* Modified by Emile van Duren
* Remarks : Zoomfacility must be added to DrawMandelbrotSet
*****************************************************************************1

#include "all.h"
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1* contained
1* contained
1* contained
1* contained
1* contained
1* contained
1* contained

1*
* forward function declarations
*1

void DrawTextO i
void ClearPixelArea()i
void ClearTextHandler()i
void FileDpenWarning()i
Drawdata *GetWindowData()i
Textdata *GetTextData()i
Widget GetWindow()i

void DrawBifurcationDiagram(w,location)
Widget Wi
char locationi

{

in writer.c
in draw.c
in handle.c
in messages.c
in control.c
in control.c
in control.c

*1
*1
*1
*1
*1
*1
*1

float a,valuei
int i,x,y,xleft,xright,yupper,yloweri
Drawdata *datai
w = GetWindow(location,'p')i
data = GetWindowData(location,'p')i
ClearPixelArea(w,location)i
ClearTextHandler(w,location,1022)i
DrawText(location)i
xleft = (data->width)/10i
xright = 9*(data->width)/10i
yupper = (data->height)/4i
ylower = 3*(data->height)/4i
XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»)i
XDrawRectangle(XtDisplay(w),data->pix,data->gc,xleft,yupper,8*xleft,2*yupper)i
XDrawString(XtDisplay(w),data->pix,data->gc,xleft,yupper-70,

"Attractor A (vertical) of f(x) = ax(1-x) against",48)i
XDrawString(XtDisplay(w),data->pix,data->gc,xleft,yupper-50,

"control parameter a (horizontal)" ,32) i
XDrawString(XtDisplay(w),data->pix,data->gc,xleft-10,ylower+15,"0.0",3)i
XDrawString(XtDisplay(w),data->pix,data->gc,xleft-10,yupper-5,"1.0",3);
XDrawString(XtDisplay(w),data->pix,data->gc,xright-10,ylower+15,"4.0",3)i
for (x=xlefti x<xright; x++)

{

value = 0.5;
a = (x - xleft)/100.0i
for (i=Oi i<1000; i++)
(

value *= a*(1-value);
if (i>750)

(

y = ylower - 2*yupper*value;
XDrawPoint(XtDisplay(w),data->pix,data->gc,x,y);

)
)

XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,O,0,
data->width,data->height,O,O);

)
)
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void DrawMandelbrotSetCw, location)
Widget w:
char locat ion;

(
double c1,c2,r,x,y.xmax,xmin,ymax,ymin,z1,z2:
int col,row,maxsize = 4,n;
Drawclata *data:
Textdata *text:
w = GetWindowClocation,'p');
data = GetWindowDataClocation,'p');
text = GetTextDataClocation);

'** initialize first window and set foreground to black

*'ClearPixelAreaCw, location);
ClearTextHandlerCw,location,894);
DrawTextClocation):
xmin = -2.2;xmax = 1.0; ymin = -1.6; ymax = 1.6;
XSetForegroundCXtDisplayCw),data->gc,BlackPixelOfScreenCXtScreenCw»);

'** if data->unzoom is TRUE then we zoom for the first time, else the
* amount of iterations must increase to keep constant detail

*'if CCmaxiterations < 10000) && ICdata->unzoom» maxiterations *= 2;
if Cdata->unzoom)

(
data->unzoom = FALSE;
maxiterations = data->niterations;

'** if data->axes is TRUE do this in case of DrawAxes routine

*'if Cdata->axes)
(

col = Cint) CCxmin'Cxmin - xmax»*Cdata->width»;
row = Cint) CCymax'Cymax - ymin»*Cdata->height»;
XDrawStringCXtDisplayCw) ,XtWindowCw) ,data->gc,20,20,

"Attractor basin boundaryt',24);
XDrawStringCXtDisplaYCw),XtWindowCw),data->gc,20,40,

"of the complex function:",24);
XDrawStringCXtDisplayCw),XtWindowCw),data->gc,20,60,

"fCz) = z*z + c",14);
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'** draw ReCc) axis

*'XDrawLineCXtDisplayCw),XtWindowCw),data->gc,O,row,data->width,row);
XDrawStringCXtDi splayCw) ,XtWindowCw) ,data->gc, 10, row+1S, "ReCc)lI, 5):

'** draw ImCc) axis

*'XDrawLineCXtDisplaYCw),XtWindowCw),data->gc,col,O,col,data->height);
XDrawStringCXtDisplayCw),XtWindowCw),data->gc,col+10,1S,"ImCc)I,S):

}
}

for Ccol = 0; col < data->width; col++)
(

c1 = xmin + Cxmax • xmin)*col'Cdata->width):
for Crow = 0: row < data->height: row++)
(

c2 = ymax - Cymax • ymin)*row'Cdata->height):
x = c1;
y =c2:
r =O·

'* '* escape-time algorithm Cif orbit doesn't escape to infinity
* then draw point, i.e. modulus of point remains below 4)

*'for Cn = 0: n < maxiterations: n++)
(

if Cr < maxsize)
{

z1 = x*x - y*y + c1:
z2 = 2*x*y + c2:
r = z1*z1 + z2*z2:
x = z1:
y =z2;
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}
}

if (r < maxsize)
(

1*
* we choose for (slow) drawing on the screen instead of
* (fast) drawing in data->pix and then copy to screen,
* because the user must be able to see that something
* is happening
*1

XDrawPoint(XtDisplay(w),XtWindow(w),data->gc,col,row):
}

}
}

1*
* copy screen to data->pix for redraw purposes
*1

XCopyArea(XtDisplay(w),XtWindow(w),data->pix,data->gc,O,O,
data->width,data->height,O,O):

}

void CalculateMoments(w,location)
Widget w:
char location:

(
1*
* complex moments
*1

char *savefi le,*ext =".IlIOIlI":
double sxupper,syupper,xmlsq,ymlsq,xupper,xlower,yupper,ylower:
double sx2,sy2,sxlower:
double xmoment[10],ymoment[10],weight,x,y,xtemp,ytemp,xtemp1,ytemp1:
int i,col,n,row:
unsigned long amount = O,pixel;
Drawdata *data:
FILE *file:
Xlmage *image:
w =GetWindow(location,'p');
data =GetWindowData(location,'p'):
n =5:
1*
* initialize image and moment array
*1

image =XGetlmage(XtDisplay(w',data->pix,O,O,data->width,
data->height,1,XYPixmap):

xmoment [0] = 1:
ymoment [0] = 1:
for (i =1: i < n: i++)

{

xmoment [i] = 0:
ymoment [i] =0:

}

1*
* calculate pixel weight
*1

for (col =0: col < data->width: col++)
{

for (row =0: row < data->height: row++)
(

pixel =XGetPixel(image,col,row):
if (pixel == 0) amount++:

}
}

if (amount == 0) amount =1;
weight =(1.0/«double)amount»:
1*
* calculate n-th moment sequence
*1

for (col =0: col < data->width: col++)
{

for (row =0: row < data->height: row++)
(

pixel =XGetPixel(image,col,row);
if (pixel == 0)
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{

1*
* calculate normalized complex pixel coordinates
*1

x = (double) (col • data->xorigin)i
y = (double) (data->yorigin - row)i
1*
* calculate first n moments (omit 0)
*1

xtl!q) = Xi
ytl!q) = Yi
for (i = 1i < ni i++)
(

xtl!q)1 = xtl!q)i
ytI!q)1 = ytI!q)i
xmoment[i) += xtl!q)i
ymoment[i) += ytl!q)i
xtl!q) = x*xtl!q)1 • y*ytl!q)1i
ytl!q) = x*ytl!q)1 + y*xtl!q)1 i

)
)

)
)

XDestroylmage(image)i
image = NULLi
1*
* correct for relative pixel weights
*1

xmoment[2) *= weighti
ymoment[2) *= weighti
xmoment[4) *= weighti
ymoment[4) *= weighti
1*
* calculate s*s
*1

xm2sq = xmoment[2)*xmoment[2)-ymoment[2)*ymoment[2)i
ym2sq = 2*xmoment[2)*ymoment[2)i
xupper = xm2sq • xmoment [4) i
yupper = ym2sq • ymoment [4) i
xlower = xmoment[4) • 5*xm2sqi
ylower = ymoment[4) • 5*ym2sqi
1*
* nultiply nominator and denominator with complex conjugate
*1

sxupper = xlower*xupper + Ylower*yupperi
syupper = xlower*yupper - xupper*yloweri
sxlower = xlower*xlower + ylower*yloweri
if (sxlower != 0)

(

sx2 = (float) sxupperlsxloweri
sy2 = (float) syupperlsxloweri

)
else

(
sx2 = o·
sy2 = 0;

)

1*
* save image to data->filename.mom
*1

savefile = calloc(strlen(data->filename)+5,sizeof(char»i
strcpy(savefile,data->filename)i
if «file = fopen(strcat(savefile,ext),"w"» == NULL)

(

FileOpenWarning(w,location)i
data->firsttime = TRUEi

)

else
{
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printf("amount,weight = (XcI,Xf)\n",amount,weight)i
pri ntH "(x-origi n,v-origin) = (XcI, XcI)\n" ,data->xorigi n,data->yori gin) i
printf(file,"(x-origin,y-origin) = (XcI,XcI)\n",data->xorigin,data->yorigin)i
fpri ntf(f i Ie, "fi Ie XaXa\n" ,data->f ilename, ext) i
fprintf(fi Ie, "amount = XcI\n",amount)i
fprintf(file,"weight = Xf\n",weight)i
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for (i = 0; i < n; i++)
(

printf("xmomenUXd] = X16.ge\n",i,xmoment[i])i
fprintf(fi le,"xmomenUXd] = X16.ge\n", i ,xmomenUi])i
printfC"ymoment[Xd] = X16.ge\n",i,ymoment[i);
fprintf(file,"ymoment[Xd] = X16.ge\n", i,ymoment[i])i
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}
}

}
printf(lls*s
fprintf(file,"s*s
printf(IlXs\nll ,IlIl);
fclose(file);
free(savefile);
savefile = NUlli

= Xf + Xfi\n",sxZ,syZ);
= Xf + Xfi\n",sxZ,SyZ)i

void CalculateFractalDimension(w,location)
Widget W;
char location;

fractal dimension = log(N1/NZ)/logZ

}

(

}

int i,col,row,N1=0,NZ=0;
float fdim;
unsigned long amount = 0,pixel1,pixelZ,pixel3,pixel4;
Drawdata *daUi
Xlmage *image;
w = GetWindow(location,'p');
data = GetWindowData(location,'p');
1*
* initialize image
*1

image = XGetlmage(XtDisplay(w),data->pix,O,O,data->width,
data->height,1,XYPixmap);

1*
* calculate fractal dimension as slope of log-log plot, thus:
*
*
*
* where N1 is the amount of boxes of size 1/500 which contain at least 1
* pixel and where NZ is the amount of boxes of size 1/Z50 which contain
* at least 1 pixel (notice that N1 is just equal to the amount of pixels
* the image contains, since our pixmap size is 500 pixels)
*1

for (col = 0i col < data->width; col += Z)
{

for (row = 0; row < data->height; row += Z)
{

pixel1 = XGetPixel(image,col,roW)i
if (pixel1 == 0) N1++;
pixelZ = XGetPixel(image,col+1,row)i
if (pixelZ == 0) N1++i
pixel3 = XGetPixel(image,col,row+1)i
if (pixel3 == 0) N1++;
pixel4 = XGetPixel(image,col+1,row+1);
if (pixel4 == 0) N1++;
if (pixel1 == 0 :1 pixelZ == 0 :1 pixel3 == 0 :: pixel4 == 0) NZ++;

}
if (NZ != 0)

{

fdim =(float) (log«(double) N1/NZ)/log(2.0»;
}

else
(

fdim =Oi
}

if (location == 'l') printf("fractal dimension of left image = Xf\n",fdim)i
if (location == 'r') printf(lIfractal dimension of right image = Xf\n",fdim)i
XDestroylmage(image)i
image =NUll;
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/******************************************************************************
* CopyrightCc) Eindhoven University of Technology CTUE,NL)
* Faculty of Electrical Engineering CE)
* Design Automation Group CES)
* Mail address emilevdaviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File strings.c
* Purpose Contains string conversion operations
* Part of IFS-CODEC
* Created on June 02, 1992
* Created by : Emile van Duren
* Last modified on: November 20, 1992
* Modified by Emile van Duren
* Remarks : None
*****************************************************************************/

'include "all.h"

XmString StringArrayToXmStringCcs,n)
char *cs[];
int n;

(

int i;
xmString xmstr;
/*
* if the array is empty just return an empty string
*/
if Cn<=O) return CXmstringCreateC"I,XmsTRING_DEFAULT_CHARSET»;
xmstr = CXmstring) NULL;
for Ci=O;i<n;i++)

(

if Ci>O) xmstr = XmStringConcatCxmstr,XmStringSeparatorCreateC»;
xmstr=XmStringConcatCxmstr,XmStringCreateCcs[i],XmSTRING_DEFAULT_CHARSET»;

}

return Cxmstr);
}

char *GetStringFromXmstringCstring)
Xmstring string;

(

char *text,*buf = NULL;
Boolean done = FALSE, separator;
XtPointer context ;
XmStringCharSet charset;
XmStringDirection dir;
/*
* initialize context
*/

XmstringlnitContextC&context,string);
while C!done)

(

if CXmStringGetNextSegmentCcontext,&text,&charset,&dir,&separator»
(

if Cseparator) done = TRUE;
if Cbuf)

(

buf =XtReallocCbuf,strlenCb4f)+strlenCtext)+2);
strcatCbuf,text);

}
else

(

buf =Cchar *) XtMallocCstrlenCtext)+1);
strcpYCbuf,text);

}

XtFreeC text);
}

else
{

done = TRUE;
}

}

XmStringFreeContextCcontext);
returnCbuf);

}
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/******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address ernilevdaviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File tracker.c
* Purpose Controls conditional tracking of mousepointer
* Part of I FS-CODEC
* Created on June 17, 1992
* Created by Emile van Duren
* Last modi f ied on: Novetrber 23, 1992
* Modified by Emile van Duren
* Remarks : None
*****************************************************************************/

#include "all.h"

void ShowMousePosition(w,data,event)
Widget Wi
Drawelata *datai
XEvent *eventi

{

/*
* extract sprite position from event and draw point at that position,
* both in drawingarea and its pixmap
*
* (must be altered to if-condition on mode zoom, draw or origin)
*/

if (data->drawgrab)
{

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»)i
XDrawPoint(XtDisplay(w),data->pix,data->gc,

event->xbutton.x,event->xbutton.Y)i
XDrawPoint(XtDisplay(w),XtWindow(w),data->gc,

event->xbutton.x,event->xbutton·Y)i
data->oldpointx =event->xbutton.xi
data->oldpointy =event->xbutton.Yi

}
}

void TrackMousePosition(w,data,event)
Widget Wi
Drawclata *data:
XEvent *eventi

{

/*
* extract sprite position from event and draw point at that position,
* both in drawingarea and its pixmap
*
* (must be altered to if·condition on mode zoom, draw, erase, origin)
*/

if (data->drawgrab)
{

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»)i
XDrawPoint(XtDisplay(w),data->pix,data->gc,

event->xmotion.x,event->xmotion.Y)i
XDrawPoint(XtDisplay(w),XtWindow(w),data->gc,

event->xmotion.x,event->xmotion.Y)i
XDrawLine(XtDisplay(w),data->pix,data->gc,data->oldpointx,

data->oldpointY,event->xmotion.x,event->xmotion.Y)i
XDrawLine(XtDisplay(w),XtWindow(w),data->gc,data->oldpointx,

data->oldpointy,event->xmotion.x,event->xmotion.Y)i
data->oldpointx =event->xmotion.xi
data->oldpointy =event->xmotion.Yi

}

if (data->erasegrab)
{

XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w»)i
XFillRectangle(XtDisplay(w),data->pix,data->gc,

event->xmotion.x,event->xmotion.y,10,10)i
XFillRectangle(XtDisplay(w),XtWindow(w),data->gc,
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event->xmotion.x,event->xmotion.y,10,10)i
}

}

void LeavewindowHandler(w,data,event)
Widget w;
Drawdata *data;
XEvent *event;

{

/*
* remove the dynamically installed eventhandlers
*/

if (Idata->drawgrab && Idata->erasegrab)
(

B. IFS-CODEC source code

XtRemoveEventHandler(w,ButtonPressMask,FALSE,ShowMousePosition,data);
XtRemoveEventHandler(w,ButtonMotionMask,FALSE,TrackMousePosition,data);
XtRemoveEventHandler(w,ButtonReleaseMask : LeavewindowMask,FALSE,

LeaveWindowHandler,data);
}

}

void EnterWindowHandler(w,data,event)
Widget w;
Drawdata *data;
XEvent *event;

{

/*
* if grab is TRUE and the sprite enters the window, then install the
* additional eventhandlers
*/

if (data->drawgrab I data->erasegrab)
(

XtAddEventHandler(w,ButtonPressMask,FALSE,ShowMousePosition,data);
XtAddEventHandler(w,ButtonMotionMask,FALSE,TrackMousePosition,data);
XtAddEventHandler(W,ButtonReleaseMask : LeavewindowMask,FALSE,

LeavewindowHandler,data);
}

}

void InitMouseTracker(target)
Widget target;

{

/*
* install initial eventhandlers
*/

if (target == leftpixelarea)
{

XtAddEventHandler(target,EnterWindowMask,FALSE,
EnterWindowHandler,leftpixeldata);

}

if (target == rightpixelarea)
(

XtAddEventHandler(target,EnterWindowMask,FALSE,
EnterWindowHandler,rightpixeldata);

}
}
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/******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdaviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File writer.c
* Purpose Contains texthandlers for writing in textareas
* Part of IFS-CODEC
* Created on June 18, 1992
* Created by Emile van Duren
* Last modified on: November 20, 1992
* Modified by Emile van Duren
* Remarks : None
*****************************************************************************/

#include "all.htl
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/* contained
/* conte ined
/* contained
/* contained

/*
* forward function declarations
*/

int StringLength();
Drawdata *GetWindoWOata();
Textdata *GetTextData();
Widget GetWindow();

void DrawText(location)
char location;

(

in strings.c
in control.c
in control.c
in control.c

*/
*/
*/
*/

Drawdate *data;
Textdata *text;
Widget w;
W =GetWindow(location,'t');
data =GetWindowData(location,'t');
text =GetTextData(location);
/*
* clear textarea
*/

XSetForeground(XtDisplay(w),data->gc,WhitePixelOfScreen(XtScreen(w»);
XFillRectangle(XtDisplay(w),data->pix,data->gc,O,l',data->width,data->height);
XFillRectangle(XtDisplay(w),XtWindow(w),data->gc,C,O,

data->width,data->height);
/*
* draw in textarea
*/

XSetForeground(XtDisplay(w),data->gc,BlackPixelOfScreen(XtScreen(w»);
XDrawString(XtDisplay(w),data->pix,data->gc,10,20,text->mode,

strlen(text->mode»;
XDrawString(XtDisplay(w),data->pix,data->gc,10,40,text->srce,

strlen(text->srce»;
XDrawString(XtDisplay(w),data->pix,data->gc,10,60,text->size,

strlen(text->size»;
XDrawString(XtDisplay(w),data->pix,data->gc,10,80,text->cont,

strlen(text->cont»;
XDraWString(XtDisplay(w),data->pix,data->gc,10,100,text->save,

strlen(text->save»;
XDrawString(XtDisplay(w),data->pix,data->gc,10,120,text->orgn,

strlen(text->orgn»;
XDrawString(XtDisplay(w),data->pix,data->gc,10,140,text->init,

strlen(text->init»;
XDrawString(XtDisplay(w),data->pix,data->gc,10,160,text->amit,

strlen(text->amit»;
XDrawString(XtDisplay(w),data->pix,data->gc,10,180,text->iter,

strlen(text->iter»;
XDrawString(XtDisplay(w),data->pix,data->gc,10,200,text->zoom,

strlen(text->zoom»;
XCopyArea(XtDisplay(w),data->pix,XtWindow(w),data->gc,O,0,

data->width,data->height,O,O);
}
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Appendix

Some IFS-codes and their attractors

/******************************************************************************
* Copyright(c) Eindhoven University of Technology (TUE,NL)
* Faculty of Electrical Engineering (E)
* Design Automation Group (ES)
* Mail address emilevdaviper.es.ele.tue.nl
* Project Fractal imagecompression with Iterated Function Systems
* Supervisor Prof. Dr. Ing. J.A.G. Jess
* File codes
* Purpose Contains IFS-codes for various fractal structures
* Part of : IFS-CODEC
* Created on : August 06, 1992
* Created by : Emile van Duren
* Last modified on: December 17, 1992
* Modified by : Emile van Duren
* Remarks : None
*****************************************************************************/

chain.ifs [origin (-250,-250) startpixel (-78,-183)]

0.132 0.000 0.000 0.420 64.000 115.000 0.127
0.405 0.000 0.000 0.109 143.000 54.000 0.101
0.411 0.000 0.000 0.115 136.000 375.000 0.109
0.140 0.000 0.000 0.457 356.000 125.000 0.147
0.000 0.000 0.000 0.002 101.000 277.000 0.001
0.125 -0.211 0.104 0.248 138.000 18.0000.122
0.121 0.230 -0.113 0.246 289.000 72.000 0.128
0.123 0.192 -0.104 0.230 41.000 325.000 0.111
0.146 -0.192 0.115 0.303 365.000 251.0000.153

dragon.ifs [origin (0,0) startpixel (0,0)]

c

0.557 -0.366 0.366 0.557 -100.000
0.557 -0.366 0.366 0.557 100.000

0.000 0.500
0.000 0.500

fern.ifs [origin (0,-200) startpixel (0,0)]

0.000 0.000 0.000 0.160
0.850 0.040 -0.040 0.850
0.200 -0.260 0.230 0.220

-0.150 0.280 0.260 0.240

0.000
0.000
0.000
0.000

0.000 0.001
64.0000.m
64.0000.111
18.0000.116

france.ifs [origin (0,100) startpixel (0,0)]

0.000 -0.033 0.033 0.000 -204.000 14.000 0.001
0.036 0.000 0.000 0.036 -199.000 -8.000 0.001
0.086 -0.043 0.043 0.086 -189.000 10.000 0.005

-0.045 -0.122 0.122 -0.045 -179.000 -6.000 0.009
-0.174 -0.037 0.037 -0.174 -136.000 -40.000 0.016
0.098 -0.106 0.106 0.098 -178.000 4.0000.011
0.084 0.209 -0.209 0.084 -83.000 -48.000 0.026

-0.130 0.002 -0.002 -0.130 -95.000 0.0000.009
0.063 -0.024 0.024 0.063 -110.000 46.000 0.002

-0.193 -0.456 0.456 -0.193 -87.000 -166.000 0.124
-0.235 0.046 -0.046 -0.235 -86.000 -242.000 0.029
0.097 0.081 -0.081 0.097 -118.000 -212.000 0.008

-0.660 -0.253 0.253 -0.660 -10.000 -142.000 0.252
-0.161 -0.192 0.192 -0.161 -34.000 -242.000 0.032
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-0.250 0.013 -0.013 -0.250
0.125 0.000 0.000 0.125

-0.310 0.172 -0.172 -0.310
0.250 0.004 -0.004 0.250

-0.254 0.068 -0.068 -0.254
0.142 -0.099 0.099 0.142

-0.036 -0.187 0.187 -0.036
0.000 0.354 -0.354 0.000

-0.045 -0.256 0.256 -0.045
0.091 0.011 -0.011 0.091
0.113 0.053 -0.053 0.113

-0.219 -0.121 0.121 -0.219
-0.219 -0.121 0.121 -0.219
-0.024 0.123 -0.123 -0.024
-0.106 0.021 -0.021 -0.106
-0.354 -0.006 0.006 -0.354
-0.220 0.008 -0.008 -0.220

-45.000 -248.000 0.032
-23.000 -248.000 0.008
62.000 -212.000 0.064
90.000 -182.000 0.032
98.000 -234.000 0.035
99.000 -208.000 0.015
83.000 -150.000 0.019
98.000 -72.000 0.063
84.000 -40.000 0.034

150.000 -2.000 0.004
115.000 14.000 0.008
-9.000 20.000 0.032
0.000 20.000 0.032

71.000 28.000 0.008
5.000 68.000 0.006

-9.000 -42.000 0.063
-54.000 -24.000 0.024

koch.ifs [origin (0,0) stertpixel (0,110)]

0.330 0.000 0.000 0.330 -134.000
0.330 0.000 0.000 0.330 134.000
0.165 -0.286 0.286 0.165 -34.000
0.165 0.286 -0.286 0.165 34.000

0.000 0.250
0.000 0.250

56.000 0.250
56.000 0.250

leaf.ifs [origin (-250,150) stertpixel (0,0)]

0.400 -0.380 0.250 0.440 -25.000 -209.000 0.189
0.590 0.000 0.001 0.600 126.000 16.000 0.247
0.400 0.350 -0.260 0.420 309.000 -73.000 0.181
0.740 -0.003 0.002 0.740 67.000 -80.000 0.383

rect.ifs [origin (0,0) stertpixel (0,0)]

0.500 0.000 0.000 0.500 -50.000 50.000 0.250
0.500 0.000 0.000 0.500 50.000 50.000 0.250
0.500 0.000 0.000 0.500 -50.000 -50.000 0.250
0.500 0.000 0.000 0.500 50.000 -50.000 Q.250

squere.ifs [origin (0,0) stertpixel (0,35)]

0.330 0.000 0.000 0.330 -66.000 0.000 0.125
0.330 0.000 0.000 0.330 0.000 66.000 0.125
0.330 0.000 0.000 0.330 -66.000 66.000 0.125
0.330 0.000 0.000 0.330 -66.000 -66.0000.125
0.330 0.000 0.000 0.330 66.000 66.000 0.125
0.330 0.000 0.000 0.330 0.000 -66.000 0.125
0.330 0.000 0.000 0.330 66.000 -66.000 0.125
0.330 0.000 0.000 0.330 66.000 0.000 0.125

tree.ifs [origin (-225,-200) startpixel (0,0)]

0.195 -0.488 0.344 0.433 199.395 110.340 0.276
0.462 0.414 -0.252 0.361 112.995 256.005 0.297

-0.058 -0.070 0.453 -0.111 268.920 43.605 0.042
-0.035 0.070 -0.469 -0.022 219.780 228.105 0.037
-0.637 0.000 0.000 0.501 385.290 113.085 0.348

triengle.ifs [origin (0,0) stertpixel (0,0)]

0.500 0.000 0.000 0.500 -S:,.OOO -50.000 0.334
0.500 0.000 0.000 0.500 ".000 -50.000 0.333
0.500 0.000 0.000 0.500 .000 50.000 0.333

twig.ifs [origin (-225,-225) s:artpixel (0,0)]

0.387 0.430 0.430 -0.387 128.000 261.000 0.694
0.441 -0.091 -0.009 -0.322 210.950 252.950 0.296

-0.461 0.020 -0.113 0.015 200.000 200.000 0.010
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FIgu,., C.l. Attractor of IItNctu~ chain.

Ftg",., C.3. Attractor of IItNctu~ dragon.
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........-0..: 0 0
~

Fig",., C.2. Graphical view of IPS for IItNctu~ chain.

Ftp,., C.4. Graphical view of IPS for Btructu~ dragon.
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Jltgrut C.S. Attractor of ItNcture fern.

FIgure C.7. Attractor of IItnlcture france.
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FIgure C.6. Graphical view of IPS for structure fern.
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: 0

0:

'1()o?

Figure C.8. Graphical view of IFS for structure france.
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Ftgu" C.9. Attractor of stNcture koch.

Ftgu" C.l1. Attractor of stNcture leaf

C. Some IFS-codes and their attractors

:'--·00··.-....... ._._.-:
,, ,, ,: 0o ., ,
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I~ •• - __ --_._--------------

Ftgurr C.IO. Graphical view of IPS for 8tNcture koch.

-.------------------.----,,,·,·,,,
,,··,,,·,,,,,
,----------- ------------

Figurr C.12. Graphical view of IFS for stNcture leaf
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FIgrue C.13. Attraetor of lltrUeture reel.

Figun C.lS. Attractor of structure square.

271

FIgrue C.14. Graphical view of IPS for IltrUcture reel.

Figure C.16. Graphical view of IFS for structure square.
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D
FIgure C.l? Attractor of 8tnJcture tree.

Flgun C.l9. Attractor of 8tnJcture triangle.

Figun C.l8. Graphical view of IPS for 8tnJcture tree.

Figun C.20. Graphical view of IPS for structure triangle.
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Flgurt C.21. AttnIctor of BtnJcturc twig.

Flgurt c.n, franceJ. nondctcrministically rendered.
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FlgUrt c.n. Graphical view of IPS for BtnJcturc twig.
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Figure C.24. franceJ with a bottle as condensation set.
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Ftgtm C.2S. letifJfor p. {O.289,O.147,O.381,O.183}.

Ftgun C.2? leah for P = {O.S,O.2S,O.l2S,O.l2S}.
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Ftgun C.26. letifJfor P • {O.289,O.247,O.281,O.183}.

Figure C.28. leah for P = {O.2S,O.2S,O.2S,O.2S}.
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Fig",. C.29. leah for P .. (O.3,O.1,O.4,O.2). Figun C.30. leah for P .. (O.2,O.3,O.1,O.4).
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Fig",. C.31. leah for p .. (O.4,O.2,O.3,O.1). FIgure C.32. leah for P .. (O.1,O.4,O.2,O.3).
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FIgure C.33. fem! with a square as condensation Bet, succC8sive amount of iterations: n = 0,1,2,3,4,8,16,32.
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FIgure C.34. fernj with the Mandelbrot set 88 condensation set, 1II1CCC88ive amount of iterations: n = 0,1,2,3,4,8,16,32.
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Typical genetic monitor output

file name : france
searching to find : identity
operator probabilities: MacroCrossover: 0.20

MicroCrossover: 0.20
MixedCrossover: 0.20
Mutate : 0.10
J~ : 0.10
Scale : 0.10
Rotate : 0.10

maxinun encocUng error (epsilon) : 0 [percent]
maxinun amount of generations : 25
population size : 10

transformation: 1
generation : 0 (initialization)
member abc d e f fitness

1 109 136 143 68 128 128 0.445742
2 73 74 19 114 153 8 0.352467
3 201 149 98 184 179 40 0.262182
4 21 99 70 93 155 9 0.236376
5 55 110 50 24 15 149 0.211504
6 67 73 131 242 43241 0.113952
7 204 84 204 107 18 133 0.093416
8 232 249 28 47 25 170 0.070576
9 130 167 149 108 19 3 0.068520

10 210 217 22 7 189 166 0.051151
total fitness = 1.905887
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generat ion: 1
member abc d e f

1 109 136 167 124 178 128
2 109 136 143 68 128 128
3 109 136 143 68 32 128
4 73 74 19 114 153 8
5 113 64 35 58 155 9
6 249 129 61 46 189 166
7 138 167 149 108 19 3
8 67 73 131 242 139 241
9 53 99 70 93 155 9

10 201 149 74 128 129 40
total fitness = 2.471216

generation: 2
member abc d e f

1 109 136 167 124 178 128
2 107 134 165 124 178 130
3 109 136 143 68 128 128
4 109 136 167 92 178 128
5 77 74 19 114 153 8
6 73 157 130 72 129 160
7 237 128 111 180 178 8
8 113 96 35 58 155 9
9 140 169 151 108 19 1

10 139 167 148 109 19 3
total fitness = 3.220082

fitness
0.507279
0.445742
0.362960
0.352467
0.197892
0.184375
0.121503
0.114945
0.095200
0.088855

fitness
0.507279
0.504466
0.445742
0.410672
0.371124
0.307531
0.259996
0.144981
0.141826
0.126465
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generation : 3
member abc d e f

1 109 136 19 124 153 8
2 109 136 167 124 178 128
3 107 134 165 124 178 130
4 107 134 165 124 178 130
5 107 134 165 124 178 130
6 77 74 167 114 178 128
7 97 96 35 122 153 9
8 73 157 130 72 131 160
9 111 128 237 180 178 8

10 113 32 35 58 155 9
total fitness =4.335960

generation : 4
member abc d e f

1 109 153 19 124 136 8
2 109 136 17 124 153 8
3 109 136 19 124 153 8
4 109 136 167 124 162 128
5 109 72 167 120 178 128
6 107 165 134 124 178 130
7 109 136 167 124 178 128
8 107 134 165 125 178 130
9 107 132 173 244 178 8

10 77 74 167 112 178 128
total fitness =5.749373

generation: 5
member abc d e f

1 109 153 19 124 136 8
2 109 136 19 124 146 0
3 109 136 167 124 136 8
4 109 136 17 124 153 8
5 109 136 19 124 153 8
6 109 153 19 124 162 128
7 107 132 173 244 144 8
8 109 136 167 124 162 130
9 109 136 167 124 162 128

10 107 165 134 124 178 128
total fitness =6.589612

generation : 6
member abc d e f

1 109 153 19 124 136 8
2 109 136 131 124 136 8
3 109 153 55 124 136 8
4 109 136 17 124 144 128
5 109 136 19 124 146 128
6 109 153 136 124 19 8
7 109 136 19 124 155 8
8 111 128 173 244 144 8
9 107 134 173 244 144 8

10 105 140 167 124 162 128
total fitness =7.042974

generation: 7
member abc d e f

1 109 136 19 124 136 8
2 2 250 122 35 136 8
3 109 153 19 124 136 8
4 109 136 131 124 136 8
5 109 136 131 124 140 8
6 109 153 55 124 8 8
7 109 153 136 124 147 8
8 109 153 19 124 155 8
9 109 136 19 126 155 8

10 33 221 239 197 144 8
total fitness =7.409892

fitness
0.687612
0.507279
0.504466
0.504466
0.504466
0.433926
0.364460
0.306610
0.262182
0.260493

fitness
0.780331
0.688357
0.687612
0.596630
0.538023
0.512182
0.507279
0.506381
0.500508
0.432071

fitness
0.780331
0.734663
0.706376
0.688357
0.687612
0.641696
0.640597
0.598332
0.596630
0.515018

fitness
0.780331
0.779965
0.753013
0.750614
0.734663
0.702417
0.673481
0.648797
0.644697
0.574995

fitness
0.798055
0.786499
0.780331
0.779965
0.766247
0.745155
0.711185
0.686277
0.680830
0.675347

D. Typical genetic monitor output
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generation : 8
IIIl!IlOer a b c d e f fitness

1 109 136 19 124 136 8 0.798055
2 2 250 122 35 136 8 0.786499
3 109 136 131 124 140 8 0.766247
4 109 136 131 124 140 8 0.766247
5 14 250 114 47 136 8 0.749244
6 109 136 51 124 136 8 0.745108
7 109 185 19 124 136 8 0.n4608
8 232 49 161 242 136 8 0.705596
9 107 148 29 125 155 8 0.684091

10 101 184 40 111 136 8 0.681633
totaL fitness = 7.407328

generation : 9
meriler a b c d e f fitness

1 109 136 19 124 136 8 0.798055
2 109 138 19 124 136 8 0.797571
3 2 250 122 35 136 8 0.786499
4 14 250 122 47 136 8 0.785282
5 109 136 131 124 136 8 0.779965
6 109 137 131 124 140 8 0.765656
7 109 136 51 125 136 8 0.748003
8 14 250 114 47 140 8 0.733966
9 109 185 19 124 152 8 0.686029

10 107 148 29 124 155 8 0.681161
totaL fitness = 7.562187

generation : 10
meriler a b c d e f fitness

1 109 136 19 124 136 8 0.798055
2 109 138 19 124 136 8 0.797571
3 124 136 131 109 136 8 0.774742
4 13 248 115 44136 8 0.756014
5 109 168 19 124 136 8 0.752245
6 110 146 29 111 140 8 0.712579
7 109 153 19 124 152 8 0.70m5
8 98 138 138 115 136 8 0.651491
9 11 252 114 60 155 8 0.641814

10 109 136 114 47 140 8 0.332924
totaL fitness = 6.925170

generation: 11
IIIl!IlOer a b c d e f fitness

1 109 136 19 124 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 109 138 19 124 136 8 0.797571
4 109 138 19 124 136 8 0.797571
5 109 138 19 124 136 8 0.797571
6 109 168 19 124 136 8 0.752245
7 8 248 114 41 136 8 0.750898
8 15 248 114 44 139 8 0.738042
9 103 138 139 118 136 8 0.695293

10 168 248 103 162 136 8 0.682839
totaL fitness = 7.608139

generation : 12
meriler a b c d e f fitness

1 109 136 19 124 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 109 136 19 124 136 8 0.798055
4 109 140 19 124 136 8 0.796519
5 109 168 19 124 136 8 0.752245
6 15 248 114 44 136 8 0.750012
7 8 248 114 41 139 8 0.741800
8 105 168 19 124 136 8 0.737097
9 232 168 19 250 136 8 0.702087

10 45 248 103 36 136 8 0.690318
totaL fitness = 7.564243
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generation: 13
member a b c d e f fitness

1 109 136 19 124 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 109 168 19 124 136 8 0.752245
4 11 248 114 44 136 8 0.751595
5 231 34 169 248 136 8 0.n8519
6 232 168 19 251 136 8 0.704214
7 45 248 103 37 136 8 0.690235
8 179234 98 204 136 8 0.666934
9 109 216 83 124 136 8 0.625815

10 109 248 114 124 136 8 0.546685
total fitness =7.062352

generation: 14
member a b c d e f fitness

1 109 136 19 124 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 124 136 19 109 136 8 0.766389
4 109 19 168 124 136 8 0.754880
5 109 168 19 124 136 8 0.752245
6 109 34 19 248 136 8 0.736873
7 109 152 83 124 136 8 0.730776
8 231 136 169 124 136 8 0.7176n
9 109 200 19 124 136 8 0.695m

10 109 216 87 124 136 8 0.621822
total fitness =7.3n542

generation: 15
member a b c d e f fitness

1 109 136 19 124 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 109 136 23 124 136 8 0.792608
4 109 136 19 124 140 8 0.780875
5 125 34 19 248 136 8 0.775132
6 231 136 169 124 136 8 0.7176n
7 231 136 169 124 136 8 0.7176n
8 109 216 83 124 136 8 0.625815
9 105 244 128 90 136 8 0.460689

10 168 109 19 124 136 8 0.346228
total fitness =6.812801

generation: 16
member a b c d e f fitness

1 109 136 19 124 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 109 152 19 124 136 8 0.781785
4 109 136 19 124 140 8 0.780875
5 109 136 145 124 136 8 0.750354
6 231 136 169 124 136 8 0.7176n
7 109 136 83 124 140 8 0.691145
8 125 136 19 248 34 8 0.674024
9 109 216 19 124 136 8 0.669818

10 231 136 43 124 136 8 0.655733
total fitness =7.317515

generation: 17
member a b c d e f fitness

1 109 136 19 124 136 8 0.798055
2 109 136 19 124 136 8 0.798055
3 109 136 19 124 136 8 0.798055
4 109 152 19 124 136 8 0.781785
5 109 136 19 124 140 8 0.780875
6 109 136 19 124 140 8 0.780875
7 239 136 3 124 136 8 0.767086
8 231 136 169 124 128 8 0.n4n6
9 101 136 59 124 136 8 0.696982

10 125 136 19 248 34 8 0.674024
total fitness =7.600517

D. Typical genetic monitor output
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generation: 18
menber a b c d e f fitness

1 125 136 19 120 136 8 0.831754
2 109 136 19 124 136 8 0.198055
3 109 136 19 124 136 8 0.198055
4 109 136 19 124 136 8 0.198055
5 109 136 19 124 136 8 0.198055
6 109 136 3 124 140 8 0.176964
7 101 136 59 124 136 8 0.696982
8 101 136 59 124 136 8 0.696982
9 101 136 59 124 152 8 0.637395

10 109 136 19 252 34 8 0.624220
total fitness = 7.456518

generation: 19
menber a b c d e f fitness

1 125 136 3 120 136 8 0.845862
2 125 136 19 120 136 8 0.831754
3 109 136 19 124 128 8 0.802734
4 109 136 19 124 136 8 0.198055
5 109 136 19 252 136 8 0.718168
6 101 136 59 252 136 8 0.667124
7 93 128 51 116 136 8 0.622483
8 109 136 19 124 34 8 0.616363
9 109 136 19 124 34 8 0.616363

10 25 187 110 48 136 8 0.458066
total fitness = 6.976971

generation : 20
menber a b c d e f fitness

1 125 136 19 124 136 8 0.853070
2 125 136 3 120 136 8 0.845862
3 125 136 19 120 136 8 0.831754
4 125 138 19 120 136 8 0.831340
5 99 237 104 94 136 8 0.632n8
6 93 128 51 112 136 8 0.606839
7 17 136 19 124 136 8 0.519308
8 25 187 110 48 152 8 0.440803
9 25 119 110 48 136 8 0.409n7

10 40 202 125 191 136 8 0.3739n
total fitness = 6.405402

generation : 21
menber a b c d e f fitness

1 125 136 19 124 128 8 0.876997
2 125 136 19 124 136 8 0.853070
3 125 136 19 124 136 8 0.853070
4 125 136 3 120 136 8 0.845862
5 125 138 27 120 136 8 0.819418
6 109 136 19 124 136 8 0.198055
7 93 136 19 124 136 8 0.696143
8 225 80 207 218 136 8 0.663390
9 115 253 104 94 152 8 0.5980n

10 17 138 19 120 136 8 0.566039
total fitness = 7.570115

generation : 22
menber a b c d e f fitness

1 125 136 17 124 128 8 0.880364
2 125 136 19 124 128 8 0.876997
3 125 136 19 124 128 8 0.876997
4 125 136 19 124 128 8 0.876997
5 125 136 19 124 136 8 0.853070
6 26 247 124 36 128 8 0.198176
7 97 144 15 120 136 8 0.702571
8 93 136 17 124 136 8 0.694938
9 237 n 211 222 136 8 0.619648

10 115 253 104 94 152 8 0.598072
total fitness = 7.838429
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generation : 23
lllellt>er a b c d e f fitness

1 125 136 17 124 128 8 0.880364
2 125 136 17 124 128 8 0.880364
3 125 136 17 124 128 8 0.880364
4 125 136 19 124 128 8 0.876997
5 109 152 1 124 128 8 0.773620
6 113 128 31 120 136 8 0.771221
7 115 144 104 120 152 8 0.642440
8 91 229 80 70 152 8 0.609864
9 216 125 246 238 136 8 0.594220

10 97 253 15 94 136 8 0.517027
total fitness =7.426481

generation: 24
lllellt>er a b c d e f fitness

1 125 136 16 124 128 8 0.882267
2 125 136 17 124 128 8 0.880364
3 125 136 17 124 128 8 0.880364
4 125 136 17 124 128 8 0.880364
5 125 136 17 124 128 8 0.880364
6 125 136 23 124 128 8 0.868194
7 125 136 19 120 128 8 0.857784
8 125 136 17 124 136 8 0.856154
9 113 128 31 124 136 8 0.787858

10 114 195 40 103 152 8 0.664500
total fitness =8.438215

generation : 25
lllellt>er a b c d e f fitness

1 125 136 16 124 128 8 0.882267
2 125 136 17 124 128 8 0.880364
3 125 136 17 124 128 8 0.880364
4 125 136 17 124 128 8 0.880364
5 125 136 17 124 128 8 0.880364
6 125 136 19 124 128 8 0.876997
7 125 136 21 124 128 8 0.8n861
8 125 136 23 124 128 8 0.868194
9 249 173 37 244 128 8 0.758011

10 125 136 128 120 19 8 0.755790
total fitness =8.535578

#operator selections : MacroCrossover: 23
MicroCrossover: 26
MixedCrossover: 23
Mutate : 24
J~ : 12
Scale : 7
Rotate : 10

pixsetdistance(target,best lllellt>er) : 0.117785

#affine transformations in IFS-code : 1

total CPU time used =845 [seconds] =0.23 [hours]

D. Typical genetic monitor output
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