
 Eindhoven University of Technology

MASTER

Verification of protocol implementations by means of test generation from specifications

van Opstal, Marc F.

Award date:
1993

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/101c84de-c014-4c27-a6d7-08a579cff1ea

Technische Universiteit Eindhoven

Faculteit der Elektrotechniek

Vakgroep Digitale Systemen (EB)

Eindhoven University of Technology

Faculty of Electrical Engineering

Subfaculty Digital Systems (EB)

Verification of Protocol Implementations

by means of

Test Generation from Specifications

by
lv/arc F. van Opstal

id.nr. : 255505

Report of graduation project

Carried out trom December 1992 until August 1993

In charge of prof. C.J. Koomen

TRT Le Plessis Robinson

Philips Research Laboratories Eindhoven

University of Technology Eindhoven

The department of Electrical Engineering of the Eindhoven University of Technology does not accept any

responsability regarding the contents of student projects and graduation repons

Summary

In order to graduate at the Eindhoven University of Technology, I have been working on

automatically deriving test cases in the test language TFCN for protocols specified in the

formal description language LOTOS. This work has been done during one month

(December 1992) at Philips Research Laboratories in Eindhoven, the Netherlands, and

eight months (January until August 1993) at TRT, a subsidiary of Philips' Product

Division Communication Systems, in Le Plessis Robinson near Paris in France. My work

was a continuation of the graduation project done by M. ten Hacken at TRT in 1992. The

aim of my work was to improve the test environment of TRT.

In order to do this, some research is done about the various existing methods to automati­

cally derive test sequences for formally specified protocols. The most useful methods are

based on transforming the protocol to an (Extended) Finite State Machine (EFSM)

representation and traversing in some way this machine while checking if the outputs

generated by the Implementation Under Test (IUT) are as expected. In order to transform

the LOTOS specification to an EFSM a tool called SMILE of the toolset UTE is used.

There are two major aspects of protocols to be checked, viz. the control flow of the

protocol which is the base structure of a protocol and the data flow of a protocol which

can be used to lead the protocol in some direction. The method used to derive test

sequences for control flow is a variant of the so called UIO-method and is based on

checking each input of the IUT and checking the state reached after checking this input.

The method used to derive test sequences for data flow is a variant of the so called Data

Flow chain method and is based on checking all sequences from a definition of a variable

to the output use of a variable influenced by this definition.

A method is given how to derive test cases in TTCN from a specification in LOTOS. This

methods consists of the following steps: specification of the protocol in LOTOS, construc­

tion of a LOTOS EFSM with SMILE, rewriting this EFSM in a suitable way to derive test

sequences, transformation of the EFSM into an Extended Flow Graph (EFG), derivation of

test sequences for control flow with a variant of the UIO-method, derivation of sequences

for data flow sequences with the Data Flow chain method, linking and optimizing all

sequences, checking executability and determining input test values and finally testing the

JUT.

For the derivation of control and data flow test cases in TICN a tool called ProTeGe is

developed. This tool works as expected for the protocols on which it is tested but has to

be tested more thoroughly. Some possible improvements of this tool are given. Also it is

needed to examine how to adapt the tool to other formal description languages.

Some problems arise when applying the method(s) to the protocol test environment of

TRT, but directives for possible solutions are given. These problems are that the test

environment of TRT is not based on the conformance testing methods such as the UIO­

method, the absence in general of formal specifications and the use of SDL instead of

LOTOS in case of formal specifications, and TICN is not used in the test environment at

this moment.

Resume

Dans Ie cadre de mes etudes ~ l'Ecole Polytechnique d'Eindhoven il est necessaire d'effectuer

un stage de fin d'etudes concretisant rna formation d'ingenieur. J'ai effectue Ie premier mois

(decembre 1992) ~ Philips Research Laboratories en Eindhoven, et les huit autres mois

Ganvier 1993 jusqu'~ aout 1993) ~ TRT, une fIliale de la division de produits

"Communications Systems" de Philips, situe au Plessis Robinson dans la banlieue de Paris.

Le travail realise consistait ~ deriver automatiquement des tests ecrits dans Ie langage ITCN

pour des protocoles specifies dans Ie langage formel LOTOS; Ie but etant d'ameliorer

l'environnement de test de TRT.

Afin de trouver des methodes pour la derivation automatique des tests, j'ai effectue une

recherche bibliographique. Les methodes les plus utilisables etaient basees sur la

transformation d'un protocole vers une Machine aEtat Fini Etendu (Extended Finite State

Machine, EFSM) et apr~s traverser cette machine d'une mani~re donnant la possibilite de

contrOler les sorties generees par l'Implementation Testee (Implementation Under Test, IUT)

du protocole. Afin de transformer la specification en LOTOS vers une EFSM, un outil nomme

SMILE est utilise.

Les deux plus importants aspects pour contrOler les protocoles sont: Ie control flow (flux des

informations), la structure de base d'un protocole, et Ie data flow (flux des donnees) qui

permet de conduire Ie protocole en utilisant des variables. La methode pour la derivation des

tests pour Ie control flow est une variante de la methode nommee Unique Input/Output (UIO)

method. Cette methode contrOle toutes les entrees de l'IUT et contrOle l'etat atteint apr~s

l'entree. La methode pour la derivation automatique des tests pour Ie data flow est une

variante de la methode nommee Data Flow Chain method. Cette methode controle toutes les

sequences qui commencent avec une definition d'une variable et qui s'arr~tent avec

l'utilisation d'une variable influencee par cette definition.

Une methode pour la derivation des tests en TTCN ~ partir d'une specification en LOTOS

est expliquee. Cette methode se decompose en une dizaine de phases : specification du

protocole en LOTOS, construction d'une EFSM en LOTOS avec SMILE, adaptation de cette

EFSM afin d'effectuer la derivation plus facilement, transformation de la EFSM vers une

Extended Flow Graph (EFG), derivation des sequences de test pour Ie control flow avec une

variante de la UIO method, derivation des sequences de test pour Ie data flow avec Ie Data

Flow Chain method, combinaison et optimisation des sequences, contrOle de l'executabilite,

determination des entrees pour tester les protocoles et enfin test de l'IUT.

Un outil nomme ProTeGe est developpe pour la derivation des tests en TICN pour Ie control

flow et Ie data flow. Cet outil marche comme prevu mais il faut Ie tester avec des protocoles

plus realistes. Quelques conseils pour ameliorer cet outil sont donnes. La recherche de

l'adaptation de cet outil pour d'autres langages formels est necessaire.

Quand on applique les methodes Al'environnement de test de TRT, on constate qu'il existe

quelques probl~mes, mais des conseils pour resoudre ces probl~mes sont donnes. Ces

probl~mes sont: l'environnement de test A TRT n'est pas bas6 sur les methodes de test

comme I'UIO method, l'absence en general des specifications formelles, l'utilisation de LDS

au lieu de LOTOS quand des specifications formelles sont utilisees, et la meconnaissance de

TTCN dans l'environnement de test actuel.

Acknowledgments

First of all I would like to thank prof. c.J. Koomen for giving me this great opportunity of

carrying out my graduation project at Philips Research Laboratories at Eindhoven and

TRT near Paris. Especially being for eight months in a city like Paris, meeting all kind of

people, getting to know all kinds of cultures, improving speaking all kinds of languages

and visiting all kinds of interesting musea, beautiful parks and streets and really nice pubs,

while working on a project that really interested me, has been one of the best experiences

of my life.

Also I would like to thank Ron Koymans for following my project from Philips Research

Laboratories, giving me useful advice concerning my project and correcting my report. I

would also like to thank Yat Man Lau for this. At TRT, I would like to thank all people

from Service Genie Logiciel, especially my daily supervisor Benoit Pinta, for their support

to help getting me around in a new environment in a foreign country. Also all other

trainees who made my stay at TRT a very pleasant one I would like to thank, especially

Fran~ois Rousselot for his efforts in showing me the French way of live. Further I would

like to thank Chantal Samy for her efforts to make me feel home and making it possible

for me to move to a student residency.

In the Netherlands I would like to thank all my friends and family for visiting me in Paris,

for sending me all kinds of cards and mail to overcome the more difficult periods, and for

making the weekends back efficiently used weekends. I especially would like to thank

Sjoerd Roorda for his lots of mailed support and suggestions when having problems.

Finally I would like to thank all other nice people I met for making this time in Paris a

wonderful time, and all not nice people for not meeting me.

Contents

Contents

Page 1

CHAPTER 1: Introduction 3

CHAPTER 2: Project specification and tools .. 5

2.1 Project specification .. 5

2.2 Specification language LOTOS 6

2.2.1 Introduction 6

2.2.2 Basic LOTOS .. 7

2.2.3 Full LOTOS .. 8

2.3 Toolset LITE .. 9

2.4 Symbolic simulator SMILE. .. 11

2.5 Extended Finite State Machines (EFSMs) 13

CHAPTER 3: Conformance testing methods. .. 17

3.1 Introduction . 17

3.2 Methods based on generating testsequences for FSMs 18

3.3 Including data in test sequences .. 20

3.4 DFG-based methods. .. 23

3.5 Used method of developed algorithm by M. ten Hacken 24

CHAPTER 4: TRT and its test environment .. 27

4.1 An introduction to TRT 27

4.2 TRT Software Engineering Department .. 28

4.3 Development and Test Procedure used within TRT 29

4.4 Applying automatic test methods to test the environment of TRT 30

CHAPTER 5: The used methodes) .. 33

5.1 Considerations concerning control flow testing methods 33

5.2 Considerations concerning data flow testing methods 34

5.3 Method and developed tool of M. ten Hacken 35

5.4 Automatic test generation approach 37

5.5 Constructing a suitable LOTOS EFSM .. 38

5.6 Transformation of the LOTOS EFSM into an EFG 41

5.7 Derivation of test sequences for control flow. 43

5.8 Derivation of test sequences for data flow .. 44

Page 2 Verification of Protocol Implementations by means of Test Generation from Implementations

5.9 Linking the test sequences. .. 47

5.10 Transformation of test sequences into TTCN 48

5.11 Checking executability and determining test values. 51

CHAPTER 6: Implementation .. 53

6.1 Introduction .. 53

6.2 Output files .. 54

6.3 MAlN.C and headerfiles .. 55

6.4 MAKEEFG.C 55

6.5 MAKEUIO.C 58

6.6 GENDFLOW.C 60

6.7 TTCN.C 61

6.8 Example session. .. 62

6.9 Conclusions and recommendations .. 65

CHAPTER 7: Conclusions 67

Glossary .. 69

Bibliography .. 75

Appendices:

A : Makefile ProTeGe

B : SMILE input cd+.lot

C : Adapted SMILE output EFSM cd++.efsm

D : STATE_FILE_2 for cd++.efsm

E : TRANS_FILE_1 for cd++.efsm

F : UIO_FILE for cd++.efsm

G : DFLOW_FILE for cd++.efsm

H : CFLOW_TTCN_FILE for cd++.efsm

I : UIO_TTCN_FILE for cd++.efsm

J : DFLOW_TTCN_FILE for cd++.efsm

K : Example session ProTeGe

L : Source Code ProTeGe

CHAPTER I: Introduction

CHAPTER 1: Introduction

Page 3

The importance of telecommunication systems has grown enormously during the last

decennia. Communication nowadays is done by means of television, radio, phone,

computer, fax and other media. Integration of these techniques has been another issue to

work on. To provide standardized communication with few errors during communication,

complex communication protocols have been developed.

To deal with these very complex protocols formal description techniques (FDTs) have

been developed. Examples are Estelle, SDL and LOTOS. These languages provide an

unambiguous specification of the protocols.

Using some methods to traverse a state machine model of the protocol, it is possible to

automatically derive test scenarios directly from the formal description. These scenarios

can then be used for the validation of the implementation of a protocol. The advantage of

doing this automatically is the reduction in the testing time and the reduction in errors.

From 1 December 1991 till 14 July 1992 M. ten Hacken has been working on automati­

cally deriving test suites from formal specifications at TRT in Paris. The purpose of my

project was the improvement of the algorithm developed by M. ten Hacken and the

application of this improved algorithm at the test environment of TRT. This work was

done with the ambition to graduate from the Eindhoven University of Technology within

the faculty Electrical Engineering, subfaculty EB (digital systems).

To do this I have been working from 1 December 1992 till 1 January 1993 at the Philips

Research Laboratories Eindhoven and I will work from 1 January 1993 till 1 September

1993 at TRT in Paris. The next chapter is an abstract of the work done at the Philips

Research Laboratories.

CHAPTER 2: Project specification and tools

CHAPTER 2: Project specification and tools

§ 2.1 Project specification

The aim of my project is:

The improvemellt of the protocol test ellvirOl,mellt of TRT at Le Plessis

RobillSOll by mealls of automatic gelleratioll of test suites from formal

specificatiOllS of commullicatiOl' protocols.

Page 5

As told in chapter 1, this automatic generation of test cases causes a significant reduction

in the duration of the testing part of the development cycle. Moreover, automatic gener­

ation can improve the quality of testing by making less faults and by being more com­

plete.

This project is a continuation of the graduate project (title: "Using FDT LOTOS to derive

tests") carried out by M. ten Hacken from 1 December 1991 till 14 July 1992. During his

project [Ha92], M. ten Hacken has done research for the derivation of Extended Finite

State Machines (EFSM) from the specification of protocols in LOTOS, a Formal Descrip­

tion Technique [lS08807]. On the basis of this derived EFSM a method is found which

derives one test suite consisting of one test trace for every input action of the

Implementation Under Test. The developed tools to establish this conversion have the

EFSM as input and produce the test case in the language TICN [IS09646-3] which is

commonly used for test descriptions.

During the last years, tools have been developed which are helpful for verification, testing

and simulation of protocols. One of these (sets 00 tools is LITE, developed by the

LOTOSPHERE consortium. Besides other things, LITE consists of a syntax and semantics

checker for LOTOS and an simulator called SMILE. Among other things, SMILE can

automatically derive EFSMs from the LOTOS input These EFSMs can then be used for

derivation of test cases by means of the algorithms developed by M. ten Hacken. A

problem is that this algorithm puts some restrictions on the EFSM that is used as input.

My work consists of improving the algorithm and extending the applicability on a more

fundamental level.

Page 6 Verification of Protocol Implementations by means of Test Generation from Implementations

At the Philips Research Laboratories I have obtained acquaintance and experience with the

toolset LITE and in particular with SMILE. Also getting to know LOTOS was done at

Eindhoven. This chapter consists besides the above project specification of a section about

LOTOS, a section about LITE, a section about SMILE and a section about EFSMs.

§ 2.2 Specification language LOTOS

§ 2.2.1 Introduction

LOTOS (Language of Temporal Ordering Specification) is one of the two FDTs developed

within ISO (International Organization for Standardization) for the formal specification of

open distributed systems, and in particular for those related to the Open System

Interconnection (OSI) computer network architecture. It was developed during the years

1981-1986 and became an ISO standard in 1988 [IS08807]. In the following sections we

will give a brief overview of LOTOS. More complete introductions are given in [BoBr87],

[DrChBI92] and [LoFaHa92].

In LOTOS a distributed, concurrent system is seen as a process, possibly consisting of a

hierarchy of several sub-processes. A process is an entity able to perform internal,

unobservable actions, and to interact with other processes, which form its environment.

The language is split in two parts:

1) A part for the description of data structures and value expressions. This part is based on

the formal theory of abstract data types. It is inspired by the abstract data type formalism

"ACT ONE".

2) A part for the description of processes. This part is based on the formal theory of

process algebras. It is inspired by CCS (Calculus of Communicating Systems) and CSP

(Language of Communicating Sequential Processes).

First we will introduce basic LOTOS where processes interact with each other by pure

synchronizations, without exchanging values. After that we will introduce full LOTOS,

where processes may exchange values, or be parametrized by them. Also predicates can

then be used.

CHAPTER 2: Project specification and tools

§ 2.2.2 Basic LOTOS

The typical structure of a basic LOTOS process definition is as follows:

process proc_name[gate list] .­
behaviour expression

where
process definitions

endprocess

Page 7

Reserved LOTOS words are bold and syntactic categories, that is, nonterminal symbols are

italic. The names of the gates in the gate list identify the observable actions in basic

LOTOS.

An essential component of a process definition is its behaviour expression. A behaviour

expression is built by applying an operator to other behaviour expressions. A behaviour

expression may also include instantiations of other processes, whose definitions are

provided in the where clause following the expression. We will now give the complete list

of basic LOTOS behaviour expressions. Symbols B, Bl and B2 stand for any behaviour

expression.

• inaction stop

stop represents the completely inactive process.

• action prefix
- unobservable (internal) 1; B

- observable g; B

This is an operator which produces an new behaviour expression out of an existing one,

by prefixing the latter with an action (gate name) followed by a semicolon.

• choice Bl [] B2

This operator denotes a process that behaves either like Bl or like B2.

• parallel composition
- general case Bl '[gl, ..• , gn] I B2

- pure interleaving Bl I I I B2

- full synchronization Bl I I B2

In the general case this operator says that a parallel composition expression is able to

perform any action that either component is ready to perform at a gate not denoted

Page 8 Verification of Protocol Implementations by means of Test Generation from Implementations

between [and], or any action that both components are ready to perform at a gate

denoted between [and]. The pure interleaving operator III is shorthand for the situation

where the set of synchronization gates is empty. The full synchronization operator II is

used when the set of synchronization gates is the set of all gates. In this situation the two

composed processes are forced to proceed in complete synchrony, except for possible

internal actions.

• hiding hide gl, .,. , gn in B

The hide operator allows abstracting from the internal functioning of a process, by hiding

actions that are internal to it.

• process instantation
A process instantation defines

specified in the where clause.

p[gl, ... , gn]

some other process, or itself. Other processes can be

• successful termination exit

exit is a process whose purpose is solely that of performing the successful termination

action 0, after which it transforms into the dead process stop.

• enabling B1 » B2

If B1 terminates successfully, and not because of a premature deadlock, then the execution

of B2 is enabled.

• disabling
This operator allows

performing actions.

§ 2.2.3 Full LOTOS

B1 [> B2

B2 to interrupt, disable, B1 at any point in time when B1 is

In full LOTOS, it is possible to describe process synchronization involving the exchange

of data values. Data structures and value expressions are defined using the abstract data

type specification language ACT ONE. We will not describe ACT ONE or the definition

of a specification in full LOTOS, but we will give some principles of value passing in

LOTOS' behaviour part.

In full LOTOS an action consists of three components: a gate, a list of events, and an

optional predicate. Processes synchronize their actions, provided that they name the same

CHAPTER 2: Project specification and tools Page 9

gate, that the list of events are matched, and that the predicates, if any, are satisfied. An

event can either offer (!) or accept (1) a value. For example, consider the following action:

g ?X:Nat !1 [X =< 2]

This is a LOTOS action that occurs at gate g and expects a value for x of sort Nat

restricted to be less than or equal to 2, while at the same time offering the value 1.

Furthermore, a behaviour expression can be proceeded by a guard that must be true in

order for the former to be enabled. For example:

[X =< 2] -> g !X !O ; stop [] [X > 2] -> g !X !1 ; stop

If variables are defined, they can be used as parameters for a process. Also the

functionality of a process, Le. is it likely to terminate successfully (exit) or not (noexit), is

given in the process definition. A process header can then look like this:

process consumer [In_ele] (Msgl, Msg2:Nat): exlt(Nat, Nat) .-

§ 2.3 Toolset LITE

LITE (LOTOS Integrated Tool Environment) is a set of tools which support the develop­

ment of complex distributed and concurrent systems in the whole trajectory from

specification to implementation. It was developed in the ESPRIT project LOTOSPHERE

[ViPiLa92] which was started in 1989. Nowadays still new tools are developed which can

be incorporated in future releases of LITE. The tools can handle full LOTOS. More

information about LITE can be found in the user manual [Lot92], an introduction [Ma92]

and an evaluation [Lau92].

For my project I have used only some of the tools that were available:

• A syntax checker. This tool checks whether the input file in LOTOS is

syntactically all right.

• A semantics checker. This tool checks whether the input file is semantically

all right

• Symbolic simulator SMILE. This tool provides means to "unfold" the specification

for close inspection of behaviour composition and is

Page 10 Verification of Protocol Implementations by means of Test Generation from Implementations

able to generate EFSMs. This tool is described in the

following section.

Besides the above tools, LITE contains tools for (structure) editing, report generation,

graphical representation, verification, conversion to basic LOTOS, compilation and testing.

The main window is shown below.

@J LITE 3.11

(ouit)IEdit. ·llstat1c. ·IIDyruIIII1c .. I! Behaviour Analysis . ·11Y1scel1aD8OUS .. r

LITE settinqs (LI'1'E sett1nqs Help)(on Line Help)

sp8Citication tile : ltest. lot. I

Osed library :
[Y1n1mal)(Bool nat)[Bool_int)[Is-neq)

B!I(Yod-IS) [Yod-IS-lIeq)

[other:)L I
~kinq Directory : ~L· I

spec=: test
library: -1/hame/ql16/opstal/trt/stdlib/is
semantics analysis .. ,
lsa -e -l/hcme/ql16/opstal/trt/stdlib/is < test.lte > . /tmp_topoS949
!mY ./tmp_topoS949 test .lsa

WIJIIILI'1'E: Runninq the s1mDlator sm1le ...
WIIIILlTE: ... sm1le , ~!='I1e

Figure 2.1 : Complete main window LITE

In the window all parameters are shown. When you start LITE, only the upper three

parameters are visible. The parameter Specification file requires a character string

representing the LOTOS input file. The extension .lot need not be written in this text area.

For the parameter Used library several buttons can be chosen. Each button represents a

standard defined library which is to be used during checking or simulation.

The top row of the main window contains some buttons, each indicating a certain group of

actions one might want to perform on a specification. These submenus are:

• Edit Commands for the creation and modification of a specification.

• Static Syntax and semantics checker and generation of reports based on

static analysis of the specification.

CHAPTER 2: Project specification and tools Page 11

• Dynamic Tools for simulation (SMILE), compilation or transformation of

LOTOS specifications.

• Behaviour analysis Transformation and verification tools.

• Miscellaneous Additional tools like a reports browser, a graphical browser and

cleaning facilities.

In the bottom panel all kinds of messages concerning the execution of LITE are displayed.

§ 2.4 Symbolic simulator SMILE

In this section a small introduction to SMILE will be given. More information is found in

the user manual [Lot92] and an introduction [Eer92].

When simulation is selected in the Dynamic menu, the symbolic simulator SMILE is

started on the current specification. This specification must be correct with respect to the

LOTOS static checkers. The created window, after some simulating, is shown in figure

2.2. This window consists of the following four parts:

1) an error-line. In this line error messages, warnings and diagnostics are displayed. This

is the line directly below the title.

2) the specification window. In this window, the behaviour part of the input specification

is shown. The simulation of the whole specification, or of a part from the specification by

selecting with the mouse, can be started by clicking on the simulate button. The root node

of the simulation tree representing the initial state of the selected expression is formed.

3) the simulation tree window. This window contains the (partly) unfolded simulation tree.

Unfolding is done by clicking on the unfold button, after which the selected simulation

tree will be unfolded up to the given depth (chosen in unfold option depth). An other

important possibility is complete EFSM. This command makes the finite state machine

corresponding to the currently simulated behaviour expression complete by expanding

every state in the state machine. Instantiate as well as Adt interface give the possibility

of analysis of the abstract data type part of the specification. By clicking on write EFSM

an extended finite state machine representation of the state machine is printed to the

specified file in the output files part. An example of such an EFSM is given in the next

section. Write tree prints the simulation tree in the specified tree output file. The other

buttons make analyzing the simulation tree easier.

Page 12 Verification of Protocol1mplementations by means of Test Generation from 1mplementations

ltl smilel.5

1M'''': -... after 1
~_l UNFOLD :

(SlRUale) CSPdY Tny (M In.,.oa)~ (Oull_) at" w II WI 0.,-= c::J
~lIc8JIDIl ~ 191:

DlIlMIJ:~• (chaica y: naJII
COUPll_IoO_31!11 (y»

,..,......-:IC:J
WHERE

JI"ICIOS8 CIMd_lD_3 IIII(x: net):~EwMa:lywla.~
(((XIl3))-.g !X:-:.~CIMd_lD_31g1 CCX.1»)o([(x glJ)I-. 9 !X:

COUI'll_IoO_31!11 CCx - 1))) UNPNlSlllG :o([(x .. 3)1-•• Ill:

"----=.~
CIMd_IoO.319.1 (x))

.....-: (0 COUI'll_IoO_3 0)
......-: (0 tesl0)

~.--.~
~_o,~

EIcteo*lI..-.....: IywIII
(IM'oId)~(Rnd...) (1d8n_..-) (m...aate) (MIte EFSW) ('M1t8TIW)

0UtIM,..:
(~ EFSWl (ReMtta Ewn~ (SIIow ..-) (SIlOw) (SIIow '-III)

Trw: LIast... I4'00&-......
• 'Y_3

EFSM: Ltesut.a I(y_3 .. 3)
9 'Y.3 (" ReaniIIII _tactelI 0)

'Mite EFSM. 4': IywIII(y_3 .. 3)
• 'Y.Z

(y_Z gt3) StaM-~..... :
9 l(y_Z· 1)

CCY.Z - 1) gt 3) ~--.:
,

9 !(y_Z ·1) (0 ReaniIIII_.... 0)
CCY_' -1) .. 3) e.....- : ,

9 'Y.1
(y.1 1l3) u.. : ,
9 !succ(y.l)

CCy.l.I)1l3)
~T~

,
• !succ(-=c(y_'»

(y_, 1l_(0))
9 !succ(_(y_'» (" ReaniIIII_tactelI 0) u.. 'InMItIIM : ,

(y_' .. _(O))
9 !succ(y.1) (" ReaniIIII_tactelI°) ~T....... :

CCY_' • 1) .. 3l : 7 EwMa: U

Figure 2.2 : SMILE main window

4) the control panel. In this panel some options for the commands can be set. The unfold

options describe options used during the unfold-process; the unparsing options describe

how the structures are displayed on the screen; the output files specify the names of the

files that are created when writing the simulation results to a file; the state-graph info

section gives some infonnation about the number of states and transitions in the computed

labelled transition system; the simulation tree info section gives the number of nodes and

events of the simulation tree.

If during unfolding it is derived that the resulting node is equivalent to some other node,

the event leading to the resulting node is annotated with (* Analyzed elsewhere

) or, if it is a loop, (Recursion detected *).

CHAPTER 2: Project specification and tools

§ 2.5 Extended Finite State Machines (EFSMs)

Page 13

It is possible to translate a finite state LOTOS specification, e.g. a LOTOS specification

that can be represented by a state machine with a limited number of states, into an

extended finite state machine (EFSM) by repeated unfolding of states and removing

operators such as parallel composition and disable. Such an EFSM is a state machine in

which the states are parametrized with some free variables. The EFSM contains the

following information M, which can be seen as a 7-tuple:

with:

I is set of states

N is set of transitions

V is set of data declarations (variables)

jo E J is the initial state

IF a subset of J is a set of final states

R is a set of rules

fo is the set of initial value assignments to the variables of V

R, the set of rules itself is a 5-tuple:

r =<a. j, j', p, f>

with:

a =an action

j = From state

j' =To state

P =precondition

f = sequence of variable assignments

SMILE is able to generate an EFSM representation out of a finite state LOTOS specifica­

tion automatically. This transformation removes all parallelism from the initial specifica­

tion, and transforms it into a LOTOS specification in which in the behaviour part only

(generalized) choice expressions, action prefix expressions, guarded expressions and

process instantiations occur. An example of such an SMILE output LOTOS EFSM is

Page 14 Verification ofProtocol Implementations by means of Test Generation from Implementations

given below. First the input specification is given. The EFSM is generated by SMILE

using the button complete EFSM and written to a file using the button write EFSM.

specification test[g] : noexit
library basicnaturalnumber, naturalnumber, boolean
endlib

type my_nat is naturalnumber
opns

1,2,3
eqns ofsort nat

forall x, y : nat
x - ° = Xi° - X = Oi
succ{x) - succ{y) = X - Yi
1 = succ (O) ;
2 = sUCC(1)i
3 = sUCC(2)i

endtype (* my_nat *)

nat, nat -> nat
-> nat

behaviour
{choice y:nat [] count_to_3[g] (y))
where

process count_to_3[g] (x : nat) : noexit:=
[x It 3] -> g!x i count_to_3 [g] (x + 1)

[] [x gt 3] -> g!x ; count_to_3 [g] (x - 1)
[] [x eq 3] -> g!x i count_to_3 [g] (x)

endproc (* count_to_3 *)
endspec (* test *)

SMILE input LOTOS specification

Such an EFSM contains a set of LOTOS processes, each corresponding to a state. A

transition to another state is composed of an event and a call to the next process. For

example 9 !x_69_0i State2 [g] (x_69_0). The data declarations are given in the

header of a process, like (x_69_0:nat). The initial state is Statel, because that is where

the behaviour starts. The set of rules is embedded in the processes. If a machine is in state

j and the precondition p is true, it can be transferred to state j' under transmission or

reception of action a and activating the sequence of variable assignments defined in f.

Some remarks regarding the generation of EFSMs by SMILE and the transformation from

an EFSM into a TTCN test case have to be made. The generation of an EFSM from a

LOTOS specification is not being optimized. Further investigation about how the SMILE

output EFSM can be made smaller is desirable. A smaller EFSM will decrease the output

TTCN test case. A second remark is that the algorithm developed by M. ten Hacken

cannot manage variables. This restriction in his derivation method will in fact eliminate

every variable in the state machine and will make every condition true.

CHAPTER 2: Project specification and tools

SPECIFICATION test [g]: noexit(* EFSM generated by SMILE *)

BEHAVIOUR
State1 [g]
WHERE

PROCESS Statel [g]: noexit .­
(choice y_70_0: nat []

[(y_70_0 It 3)] -> 9 !y_70_0i
State2 [g] ((y_70_0 + 1)))

l] (choice y_70_0: nat l]
[(y_70_0 gt 3)] -> 9 !y_70_0i

State2 [g] ((y_70_0 - 1)))
l] (choice y_70_0: nat []

[(y_70_0 eq 3)] -> 9 !y_70_0i
State2 [g] (y_70_0))

ENDPROC

PROCESS State2 [g] (x_69_0:nat): noexit
[(x_69_0 eq 3)] -> 9 !x_69_0i

State2 [g] (x_69_0)
l] [(x_69_0 gt 3)] -> 9 ! x_69_0 i

State2 [g] ((x_69_0 - 1))
[] [(x_69_°1t 3)] - > 9 ! x_69_°i

State2 [g] ((x_69_0 + 1))
ENDPROC

ENDSPEC

SMILE output LOTOS EFSM

Page 15

CHAPTER 3: COnfonnance testing metlwds

CHAPTER 3: Conformance testing methods

§ 3.1 Introduction

In the world of communication protocols two kinds of tests are important:

Page 17

• Interoperability Testing: Can the protocol interoperate with another protocol

implementation that conforms to the same standard?

• Conformance Testing: Does the protocol conform to the standard?

In this chapter we will concentrate on conformance testing. Conformance testing is done to

ensure a correct operation of an implementation. It consists of examining if the

implementation behaves exactly as specified by the standard, Le. if it conforms to the

specification. For more information about OSI conformance standards we refer to the

standard [IS09646-1,2] which defines the guidelines for various aspects of conformance

testing, such as abstract test suite specification, test description notation, test realization

and test result evaluation.

There are two major methods to check whether an Implementation Under Test (IUT) has a

conforming behaviour to a formal description using a FDT:

• Generation of a testing process from the formal description: This theory is developed

for basic LOTOS [Br88] [BrAlLa90] [BrScSt87] and expanded for full LOTOS [Tre90]

[0091]. The main idea of this theory is generation of canonical testers that can test for

conformance of an implementation with respect to a formal notion of conformance. An

algorithm to generate such canonical testers is developed by Wezeman and is called the

CO-OP method [We92] [WeBaLy91]. It is integrated in LITE by Alderen calling it

COOPER [AI90]. The main problem of this theory is that the canonical tester represents

complete, exhaustive testing. This means that the generation of the canonical tester does

not necessarily terminate and, even if it terminates, that it may not be possible to decide

upon the conformance in a finite or reasonable number of execution steps.

• Generation of test cases as sequences of VOs of (E)FSMs: This theory is based on the

modeling of the control portion of a protocol as a (E)FSM. A variant of this method is

Page 18 Verification of Protocol Implementations by means of Test Generation from Implementations

used for the developed algorithm by M. ten Hacken [Ha92]. In the following section this

theory will be explained including several variants.

§ 3.2 Methods based on generating testsequences for FSMs

There are several methods based on the FSM representation of a protocol. For a summary

of these methods we refer to [SiLe89] [WaHu87] [BoUy91]. In all these methods a

protocol specification is modeled as a deterministic FSM. A test sequence tests every state

transition in the implementation of the FSM to check whether it is implemented as defined

by the specification. Testing a state transition from state Sj to state Sj with input a en

output 0 is done in three steps:

1) The FSM implementation is put into state Sj.

2) Input a is applied and the output is checked to verify that it is 0, as expected.

3) The new state of the FSM implementation is checked to verify that it is Sj' as expected.

Normally these steps are followed or proceeded by a reset step to put the FSM in its

initial state. The sequence of input symbols to test a transition or a state is called a test

subsequence. These test subsequences are concatenated to form a test sequence which can

be optimized by providing that no (test) subsequence of this test sequence is completely

contained in any other subsequence.

As told before, there are several methods to generate protocol test sequences:

1) Transition tour method (T-method)

In this method, a test sequence (called a transition tour sequence) can be generated by

simply applying random inputs to a fault-free machine until the machine has traversed

every transition at least once. The major advantage of this method is its simplicity. The

major disadvantage is that step 3 of the test procedure is not executed, Le. a test sequence

generated by this method only checks for the existence of transitions and does not test the

tail states of the transitions. This approach has been applied to protocol testing by

Sarikaya and Bochmann [SaB082].

The problem of finding the minimum-cost tour (non-null sequence of consecutive

transitions that starts and ends in the same state) of a directed and strongly connected

CHAPTER 3: Conformance testing methods Page 19

graph (for each state pair (Sj, Sj) there is a transition path going from Sj to Sj) can be seen

as the Chinese Postman Problem (see also textbox on next page). For solving this problem

several algorithms exist [AhDaLeUy88].

2) Distinguishing sequences (D-method)

A distinguishing sequence is defined as a set of inputs that generate a set of outputs

different for each starting state Sj in a FSM. The distinguishing sequence is used in step 3

of the test procedure to check if the FSM is in the expected state. The major disadvanta­

ges are that many practical implementations do not have a distinguishing sequence, and

secondly, the distinguishing sequences are typically very long. The method was developed

by Oonenc [0070].

3) Characterizing sequences (W-method)

In case an implementation does not have a distinguishing sequence, this method may

overcome this problem. The characterizing sequences method defines "partial" distinguish­

ing sequences. Instead of distinguishing a state Sj from every state of the FSM, a charac­

terizing sequence distinguishes a state Sj from a subset of the remaining states. The

complete set of such input sequences for a FSM is called the characterizing set W of the

FSM. This method works better in real-life FSMs than the distinguishing sequence

method. A disadvantage still is that it does not address the controllability problem, Le. the

ability to bring the implementation into a desired state by applying inputs. The method

was developed by Chow [Ch78].

4) Unique inpuUoutput (UIO) sequence (U-method)

A UIO sequence for a state is an input/output behaviour that is not exhibited by any other

state. An UIO sequence is calculated for every state of the FSM. Preferably the shortest

UIO sequence for a state is used for checking if the FSM is in that state. So the difference

with the D-method and W-method is that this sequence does not identify in which state

the FSM is, but it checks whether the FSM is in state Sj. There are two important

advantages for the UIO-method compared to the distinguishing or characterizing sequen­

ces. First, the length of the UIO sequences are typically smaller because the UIO

sequences are a special subclass of the distinguishing sequences. The second advantage is

Page 20 Verification of Protocol Implementations by means of Test Generation from Implementations

that almost all FSMs in practice have VID sequences for each state while few have a

distinguishing sequence. The method was developed by Sabnani and Dahbura [SaDa88].

In [ChVuIt89] this method is improved, calling it the UIOv-method. This method is based

on the observation that although each VID sequence is unique for the FSM constructed out

of the specification, the uniqueness of VID sequences may not hold in a faulty implemen­

tation.

Aho et al. [AhDaLeUy88] have shown that the VID method in combination with the Rural

Chinese Postman Algorithm (see textbox below) can be used to generate minimum-cost

test sequences for graphs with the following two sufficient, but not necessary, conditions:

a) the FSM specification has the reset feature (it can move into the start state from any

other state with a single input operation), and b) each FSM state has the self-loop property

(there exists at least one self-loop per state).

So using the VID method in combination with the Rural Chinese Postman Algorithm

addresses both the controllability and the observability (ability to observe the current state

of a FSM) problem. This method is sometimes called the SUIO-method.

In [Vr92] several variations and improvements of the above methods are discussed. The

first improvement is the MUIO-method, based on [ShLoDa92]. The key idea of this

method is based on the fact that there may be more than one minimum-length VID

sequence for a state of FSM M. Since these Multiple VID sequences may be of different

CHAPTER 3: Conformance testing methods Page 21

length, and may end with different states of M, a judicious choice of UIO sequences for

each state could reduce the overall length of a test sequence. Also an further improvement

for the MUIO-method to derive a Rural Chinese Postman Tour in polynomial time and to

provide also a minimal test sequence length instead of minimal UIO sequences, is

presented.

More possible improvements are presented in [SuShLoSc91], where test sequence length is

improved by using discriminating UIO-sequences, and in [ChAm92], where partial UIO­

sequences (PUIO) are used when no UIO-sequences exist for a given state. These PUIO­

sequences distinct a given state from a number of other states, not from all as with normal

UIO-sequences. By using several PUIO-sequences for a state, this state can still be

distinguished from other states although il has no UIO-sequence.

A different approach to minimalize test sequences is allowing partial overlapping of test

subsequences during the construction of minimal length test sequences. In [MiPa91] it is

shown that it is possible to generate optimal length test sequences which include MUIO

sequences and overlapping under certain conditions. In the absence of the above menti­

oned conditions, a heuristic technique is used to obtain sub-optimal solutions which show

significant improvement over optimal solutions without overlapping. In [ChChKe90] two

new procedures are presented. The first procedure incorporates the overlapping phenome­

non into a Rural Chinese Postman Problem formulation. The second one further takes into

account the MUIO-sequences and heuristic techniques to generate test sequences.

§ 3.3 Including data in test sequences

Except for minimalizing lengths of test sequences other problems arise when trying to

automatically derive test suites from formal specifications. For example, some research has

been done in the area of fault coverage of test sequences [ChVult89] [SaDa88].

Another important area is including data aspects. The approach presented in the previous

section only considers control flow aspects of protocols and not parameter depending and

data flow aspects. Therefore, FSM-based methods are only capable of deriving tests for

basic control flow aspects, and are incapable of deriving tests for the data aspects. To

overcome these deficiencies of the FSM-model the EFSM-model is used (see § 2.5). Out

of the EFSM modelled representation there are several ways to generate test suites:

1) Transform EFSM into FSM and apply conventional methods.

Page 22 Verification of Protocol Implementations by means of Test Generation from Implementations

2) Transfonn EFSM into Control How Graph and Data How Graph and derive test

sequences by conventional methods combined with parameter variation.

3) Method using axiomatic semantics approach.

4) Canonical testers.

5) Method which fonnalizes data flow aspects.

6) Non-fully automated methods.

Ad 1) This method is the most simple. The approach is to transfonn a given input

specification into an equivalent FSM model during one of the initial steps, before the test

generation takes place. For SDL this method is implemented by v.d. Burgt et al [BuKr­

Kw90]. The problem with this approach is that the transfonnation from EFSM to FSM can

easily lead to a very large or even infinite FSM. This state space explosion is caused by

the fact that for every value of a parameter a new state is constructed.

Ad 2) This method is mostly used. The basic approach here is first transforming the

EFSM into a Control Flow Graph (CFG) and a Data Flow Graph (DFG), possibly

combined in one graph. The data flow is tested by variation of parameters chosen

according to some method and the control flow is tested in the conventional way. Also a

combined test sequence generation is possible. Because of the possible importance of these

methods for my project, some articles containing variations of these method, are summa­

rized in the next section.

Ad 3) This method is described in [WaLi92]. It is based on defining a set of axioms,

which specify the semantics of the various types of actions of transitions. Such an axiom

gives rules for transfonning a precondition into a postcondition in case of an action.

Testsequences are generated by checking transitions and final states of transitions and

looking how conditions change by the axioms.

Ad 4) Some theoretical research is done in this area to provide canonical testers for full

LOTOS, which means that also data aspects are tested [D091] [Tre90] [We92].

Unfortunately this method is still not practically applicable.

Ad 5) The starting point of this method is that data flow aspects are given in normal

English. Testing is done by formalizing these aspects and then checking them. An example

is given in [Kw91].

CHAPTER 3: Confonnance testing metlwds Page 23

Ad 6) These methods are based on the observation that other approaches are often

suffering from the fact that the test purposes employed are unrelated to the protocol

functions that should be tested. In addition, the number of tests generated is often too

large to be useful in practice. The methods include parameters that can be adjusted by a

test designer. An example can be found in [VeSchZ092]. The method used is based on

exploiting the structure information available in formal descriptions.

§ 3.4 DFG-based methods

In this section some articles containing variations of the method to derive test sequences

by transforming an EFSM into a CFG and a DFG and applying parameter variation, are

summarized.

In [SaBoCe87], an Estelle EFSM is transformed into a simpler form consisting of Normal

Form Transitions (NFfs). It can then be modeled by a CFG and a DFG. The CFG is

decomposed into subtours by conventional transition tour methods. The DFG is

decomposed into blocks representing functions of the protocol. Tests are designed by

considering parameter variations of the input primitives of each data flow function and

determining the expected outputs.

In [Dr87], this method is adjusted because of the observation that a considerable amount

of effort is needed for the identification of functions and their relationships in the case of

complex protocol specifications. In the new method, it is also assumed that the protocol

specification is given in Estelle as a normal form specification. The specification is

transformed into a graph modelling both control and data in the specification. The graph

explicitly identifies the associations between definitions and usages of each variable

employed in the specification. Based on this information, test sequences are constructed to

cover all definition and usage pairs satisfying certain constraints.

Because [Dr87] does not explore associations between individual definition and use pairs

in the given protocol specification and thus not provides full coverage of data flow

aspects, the method is adjusted in [DrYa9l]. Again a flowgraph modeling the flow of both

control and data expressed in the given specification is constructed. In this flowgraph,

definitions and uses of each context variable as well as each input and output interaction

parameter employed in the specification are identified. Based on this information,

Page 24 Verification of Protocol Implementations by means of Test Generation from Implementations

associations between each output and those inputs that influence the output are established.

Then, test sequences are selected to cover each such association at least once.

In [MiPa92] a similar method is used, but now including the generation of test data and

the fault coverage issues of such test sequences.

In [TriSa91], a similar approach is applied for full LOTOS. The specification is transfor­

med into a simpler form. Then the specification is mapped to an EFSM called chart. The

flow of data in the chart is modeled by a DFG. The DFG is decomposed into different

functions that can be tested independently to give complete data flow coverage. Control

flow coverage is assured by generating all the test cases from the chart. Protocol functions

obtained from the DFG must be tested using the test cases obtained from the chart.

Finally, in [ChVuIt90], a hybrid technique is proposed to generate testsequences that cover

both control and data flow aspects of protocols. First testsequences covering control flow

are generated based on one of the variants of the UIO-method. Then data flow is tested by

a method called static data flow analysis [RaWe85] which was first used by Ural [Ur8?]

for protocol testing. Ural however did not take control flow testing into consideration.

Data flow paths are added to the CFG so that an Extended Flow Graph (EFG) is construc­

ted. A minimal tour of the EFG is obtained, which ensures each data flow path is visited

at least once. Also reducing the total testsequence by checking if data flow paths are also

traversed during control flow testing and removing these flow paths, is possible.

§ 3.5 Used method of developed algorithm by M. ten Hacken

In this section a brief explanation of the method used by M. ten Hacken is given. The

method is placed in the context of the rest of this chapter. For a more extensive

explanation we refer to the report of his work [Ha92] or the articles on which he based his

method [GuL090] [NaSa92].

The basic idea of the method is generating one test trace for each input event of the input

LOTOS EFSM as defined in § 2.5. The test traces will be given in TTCN [lS09646-3], a

commonly used language for testing. Some restrictions are made to the EFSM to ensure

that a FSM-based method as explained in § 3.2 can be used to generate the test traces.

These restrictions will in fact eliminate every variable in the EFSM and every condition

will be guarded true. Now a test process similar to the 3 steps in § 3.2 can be applied. For

CHAPTER 3: Conformance testing methods Page 25

the verification of the new state in step 3 a variant of the UIO-method is used. The steps

used in the method are called initialization step, evaluation step, verification step and

termination step. We will now shortly explain each of these steps to test a state transition

from state Sj to state Sj with input action a.

Initialization step:

This step contains the path which brings the IUT from the initial state of the machine into

state Sj' To bring the state machine into state Sj' the path with the minimum amount of test

events is selected.

Evaluation step:

In this step the input event to be tested is tested by sending the event to the IUT after

which any response frame received, is accepted. If the received event is as expected, the

procedure is continued by verifying the reached state Sj by applying the verification step.

If there is no or a wrong frame received, or if an internal action is possible after sending

the event, some measures are taken to continue or terminate the procedure.

Verification step:

In this step the present state is verified to see if it is Sj' as expected. In order to do this, a

variant of the UIO-method is used. In this variant, to every event a variable is added

which indicates if an event is unique, half unique or not unique. If an event is unique then

no other equal event is used in the specification. Half unique means that the name is not

unique but there is no other equal event with the same destination. In case of a not unique

event, more equal events with the same destination occur in the IUT.

To find a unique path, we have to search for a unique event which is starting in the state

to verify. This state can be an output event of the IUT or an input event of the IUT, which

generates an output afterwards. If it is a unique event which ends up in a stable state, you

didn't deliver a proof, because no reaction event from the IUT is given. If it is not

possible to directly find a path like this, you can move to another state via a unique or

half unique event and verify this state.

Termination step:

This step can be seen as the reset step of the test process. As with the initialization step,

the path containing the minimum amount of events is selected.

CHAPTER 4: TRT and its test environment

CHAPTER 4: TRT and its test environnlent

§ 4.1 An introduction to TRT

Page 27

TRT is a subsidiary of the Philips Product Division Communication Systems. This division

is the most important Product Division of Philips for professional activities with 18% of

the total Group sales volume (31.6 billions of francs in 1992). It employs about 14 500

people.

Philips Communication Systems is organised in six "Business Units" (BU). Its main

centres are the following subsidiaries:

• TRT : Telecommunications Radioelectriques et Telephoniques in France

• PReS: Philips Radio Communication Systems Ltd in Great-Britain

• PKI : Philips Kommunikations Industrie AG in Germany

• PTDSN : Philips Telecommunicatie en Data Systemen BV in the Netherlands

.11I••••
PKI

Cologne

Philips PKI

Nuremberg

Philip.

Hilver.um

Figure 4.1 : Philips Product Division Communication Systems

Each BU has a worldwide responsibility, within its allocated activity scope, for strategy.

marketing, development, manufacturing, sales, maintenance and training.

Page 28 Verification of Protocol Implementations by means of Test Generation from Implementations

In France, TRT sells its own manufactured equipment units as well as products from other

Business Units. On an international level, TRT sells its products either directly or through

the Philips National Sales Organisations (about forty worldwide). The activities of TRT

are implementing infrastructure for microwave radio systems, subscriber distribution, rural

telephony, digital leased line-based communication networks, access networks, specific

digital equipment, data transmission equipment, X25 and multiprotocol networks,

VoicelData multiplexers, secure network access and smart cards.

In 1992 its sales volume was 2415 millions of francs which is about 8% more than in

1991. About 40% of its sales volume is export. The profit of TRT was 38 millions of

francs in 1992 against 15 million of francs in 1991. TRT employs about 2330 people in 6

centres in France, of which about 900 people work in Le Plessis Robinson.

§ 4.2 TRT Software Engineering Department

As of 1980, TRT started a Software Engineering Group, with the purpose to improve

software design methods. In order to support software development they used some

available tools like GEODE (a development tool based on the specification language

SOL). Other tools, like Platine 2, were developed for this goal. Platine 2 provides a

structured software development method, which follows a predefined lifecycle.

Nowadays, the Software Engineering Department (Service G~nie Logiciel) consists of

about 10 engineers and 5 trainees. The main project of this department is to develop a new

tool called PIatine 3, which defines an environment for software development. Platine 3

will help the developer to follow a structured path of developing software given by the

design lifecycle of Platine 3. It makes integrating practically every tool in this platform

possible. Platine 3 is based on the EAST framework which uses the peTE (Portable

Common Tool Environment) standard.

My graduation project took place in this Software Engineering Department of TRT,

situated in Le Plessis Robinson, a suburb of Paris.

CHAPTER 4: TRT and its test environment

§ 4.3 Development and Test Procedure used within TRT

Page 29

To explain the development procedure [Gu], the various stages used in developing

software are shown in figure 4.2. Requirements is a description of the product which the

customer wants to purchase. System Specification is the description of the product that is

agreed upon to produce. In the next stage, Software Specification, the specifications of the

software (DOC190) and the way how this system should be verified (DOC170) will be

written. These documents are nonnally written in french or english and provided with lots

of time diagrams for protocols. Formal specifications are rarely used.

.. _._ _ _ - - .

SOFTWARE
SPECIFICATION

SOFTWARE DESIGN L1FECYCLE
Alpha-te s

- - - - - - - - - - - - - OOC170 - - - - - - - - - - - -

- - - - - - - - OOC160 - - - - - - -

- - -obc{e1 -

Figure 4.2 : Software Design Lifecycle

After this phase, the specification in DOC190 will be implemented. First of all a

Preliminary Design will be made to define the architecture of the system. This architecture

is usually written in SOL and/or in an executable real time system. During the stage

Detailed Design the architecture will be refined and the algorithms to be used will be

selected. During Coding the software will be written in a high level programming

Page 30 Verification of Protocol Implementations by means of Test Generation from Implementations

language like C or Pascal. After coding the software units will be tested and integrated in

the phases Unit Testing and Integration. In the phases Preliminary Design through

Integration it is possible to use development programs like GEODE, based on SDL, to

produce DOC160 and DOC161 automatically. This software can then be tested by tools

like TESTEUR and LOGISCOPE.

The verification of the software takes place in the phase Software Verification; the

verification of the system will be done in the phase System Verification. The alphatests,

written in DOC170 by the verification team after design by the design team, will be

transformed by the test team from a specification in time diagrams and normal

french/english into executable tests in C or Basic for the protocol test environment This

environment consists of several protocol test machines such as the Chameleon 32

(Tekelec), the PTSOO (HP), the Kll (Siemens) and the DA30 (WO). The reasons for

doing this transformation automatically are reducing the time needed for the transfor­

mation (approximately 6 men working during one month) and the possible improvement of

the criterions used for the tests. At this moment the decisions what to test are based on

experience and indications by the design team. Typical protocols to be tested at the

moment are X25, SDLC, BSC, VIP, RNIS, RTC, asynchronous (PAD, PAVI) and

Ethernet.

The last phase is Validation, during which the system will be launched on the market to

let the customer test the system.

§ 4.4 Applying automatic test methods to test the environment of TRT

When applying automatic test methods to the specific test environment of TRT, some

problems arise. In this section these problems are explained and recommendations how

these problems can be resolved are given.

• Test environment not based on conformance testing

This problem is the most severe. The ISO testing methodology [lS09646-1] defines

abstract test methods in terms of input/output behaviour of an Implementation Under Test

(lUT). The observation and control of an IUT are carried out by an entity, called tester,

which surrounds the JUT. At the abstract level, the tester can be divided into two parts ­

upper tester (UT) and lower tester (LT). The upper (lower) tester is responsible for the

CHAPTER 4: TRT and its test environment

Test
EqUipment

•
Pi

(IUT)

Page 31

control and observation of events at

the upper (lower) interface of the

IUT. Two types of test methods are

possible: local, suitable for in-house

testing of products and external,

suitable for remote testing by third

parties. An example of the local test

method is shown in figure 4.3.

However, the test method at the test

environment of TRT is different

from this test method. In the test

environment of TRT (figure 4.4), the

protocol Pi to be tested is not

Figure 4.3 : Local Test Method considered as a stand-alone protocol

that can be tested separately. Instead,

the IUT consists of the user protocol Pi and the network protocol Pj together. The

observation points for the test equipment are the user side of the JUT A and the network

side of the JUT A. At these observation points, different protocols can be working. The

protocol Pi cannot be considered seperately because the product made by TRT consists of

these two protocols together. A possible solution for this problem is to consider not only

A B
erser · Network . Us

~ Pi · Pj ~ Pj I

Pi ~ , · "'
, .

"
,

I I ·I I I

,

(IUT) (IUT) ··I
I

···
Test I

....... ~ - . . - - - - - - - - - - - - - - - - -·,
EqUipment "

U

Figure 4.4 Test environment at TRT

IUT A. but JUT A combined with IUT B. In this situation the observation points are

Page 32 Verification of Protocol Implementations by means of Test Generation from Implementations

different user sides of protocols exchanging information via the network. So only events

for the user protocol Pi have to be considered.

Another possible solution is not to test the protocol in this environment, but in an earlier

stage, when the protocol can still be considered seperately. In such a stage, the protocol is

also tested at TRT with a test machine called m. Applying the automatic test generation

method presented in this report to this stage may also be useful.

• Few formal specifications and no LOTOS

In about 90% of the cases, the protocol is not formally specified but in normal

french/english with time diagrams to show the functionalities of the protocol. When

formally specified, no LOTOS is used but SOL. In the future however, the use of formal

specifications will probably grow because of increasing complexity of the protocols, an

improved formal development environment and because designers will get used to specify

in a formal way. To overcome the problem that SOL is used instead of LOTOS, the

program to be developed will be made flexible with a seperate module for transforming

the LOTOS EFSM into the EFG. In this way the program only needs another compiler to

transform the SOL specification or SOL EFSM into the EFG and the program will have to

be adapted for the possible differences between SOL and LOTOS like internal events or

time dependent events. More research in this area is necessary.

• No TTCN used

In the test environment of TRT, no TTCN is used. Instead, the tests consist of indications

given by the designteam and time diagrams and are transformed by the testteam into

executable C and Basic tests that can be provided to the test machines like the

Chameleon. However, there exists nowadays a tool that can transform the machine version

of TTCN (TTCN-MP) into executable tests for the Chameleon. The output of the

automatic test generation program is given in the graphical version of TTCN (TTCN-GR).

This difference can be solved by using a tool for transforming TTCN-GR into TTCN-MP

or to rewrite the program such that it (also) produces TTCN-MP output.

CHAPTER 5: The used metlwd(s)

CHAPTER 5: The used Dlethod(s)

Page 33

In this chapter the chosen approach for testing control and data flow is presented. Before

the method is explained more thoroughly, the circumstances and considerations which led

to this method, are given. In order to present a good approach, the previously given

control and data flow testing methods are analyzed (§ 5.1 and § 5.2) and the program

developed by M. ten Hacken is analyzed (§ 5.3).

§ 5.1 Considerations concerning control flow testing methods

First of all the main approaches to test control flow are considered.

Although the transition tour method is very simple, this method is not used because of its

incapability to test the final state of a tested transaction. The other three methods have

about the same fault coverage, but because the UIO-method produces in general the

shortest testsubsequences and because this method is best documented and many

improvements have been found, this method is preferred. Concerning which variant of the

UIO-method is to be used, one has to choose between the following techniques:

• UIOlUlOv with resetting after each transition/final state testing.

• Omitting the reset for example by constructing optimal length testsequences with the

Rural Chinese Postman Tour (RCPT).

• Methods using Multiple UIO sequences.

• Methods using overlap, possibly in combination with MUIO sequences and RCPT.

• Methods using Discriminating UIO sequences.

• Methods using Partial UIO sequences when no normal UIO sequences exist

The methods using Discriminating UIO sequences are not chosen because they are to

different from all the other methods and have no better performance than for example the

methods using overlap. The method using Partial UIO sequences is not used because of

the increased complexity to implement. This method can possibly be used in the future to

improve the developed tool.

Concerning the other methods, no choice is made at this moment because it is necessary

to examine rust whether and how the various methods can be implemented and whether

the increased complexity is worthwhile, with respect to the length of the testsequence.

Page 34 Verification of Protocol Implementations by means of Test Generation from Implementations

§ 5.2 Considerations concerning data flow testing methods

Concerning the six main approaches for testing data aspects of protocols, mentioned in

§ 3.3, the following remarks can be made:

Transfonning EFSMs into FSMs (approach 1) is not chosen because of the state space

explosion caused by this method. Possibly this method is in some way combined with the

method which fonnalizes data flow aspects (approach 5) at PTT Research in the Nether­

lands. Because of the uncleamess how to use this method for the LOTOS EFSM and

because of the initial stage in which the development of this method is, it is not chosen.

The method using the axiomatic semantics approach (approach 3) is not chosen because of

the limited documentation (only one article), the unclearness how to apply the method to

LOTOS, the deviating way of testing a state by mutants of the graph, and because also

this method is in its initial stage of development. However in the future this method may

well become a useful method. The method with canonical testers (approach 4) is not used

because it is not practically applicable at this moment. The approach containing non-fully

automated methods (approach 6), described in [VeSchZo92], is not chosen because of its

limited documentation and because it is still in its initial stage. The general idea, however,

to use interaction with the user instead of fully automated test derivation methods may

well turn out to be useful.

These eliminations leave us with the methods which construct a Data Flow Graph or

combined ControllData Flow Graph from an EFSM and then examine data flow paths of

this graph. The major drawback of this approach is that most methods use Estelle Normal

Form Transitions (NFfs) as the base for constructing the graph. Therefore it is unclear

whether the method can be used for the LOTOS EFSM, the output of SMILE. However,

because the problem of applying a method to LOTOS or a LOTOS EFSM is a general

problem for all methods, and because the LOTOS EFSM has many similarities with

Estelle NFfs, it is believed that this problem will not be insolvable.

The first advantage of the approach is that there are many articles using different

variations of the method. Therefore it will be easier to apply this method to the LOTOS

EFSM. Also future improvements of the methods can be expected because of its rather

wide use, so possibly one may improve the tool to be developed. Another advantage is

that the method is sure to work also on Estelle specifications and may well be applicable

CHAPTER 5: The used method(s) Page 35

to SDL, if such a SDL specification can be transfonned to an EFSM, which is probably

the case.

Which variant of the approach is to be used depends mainly on how the method can be

applied to the LOTOS EFSM. Probably a mixture of elements from the several articles

will be used. For example, in [TriSa91] the chart representation may be helpful, whereas

the extension of testing also input/output parameters [UrYa91] may be useful too. The

approach in [SaBoCe87] will probably not be used because of its amount of effort needed

to identify functions and their relationships in the case of complex protocol specifications.

The last remarks concern the hybrid technique proposed in [ChVuIt90]. This approach has

several advantages compared to directly applying the forementioned DFG-based methods.

Contrary to these methods, which hardly take control flow into consideration, the hybrid

method takes both control and data flow in consideration, although principally separated.

The advantages of this approach are the following:

• Separation between control and data flow testing is more clear, which makes it easier to

apply several methods and to implement.

• Latest improvements of testing methods will be easier to be used for updating the

program to be developed.

• Length of the final testsequence will probably not very long because besides possible use

of (sub)optimal methods, the final testsequence may possibly be reduced by removing

control flow paths that are already contained in the data flow paths.

In summary, one can say that this method is very flexible and open for improvements.

Taking these advantages in mind, this approach is preferred.

§ 5.3 Method and developed tool of M. ten Hacken

In this section the method and developed tool by M. ten Hacken [Ha92] are analyzed in

order to see if it is possible to use this tooVmethod or parts of this tooVmethod for the

tool that can test control and data flow.

A main problem M. ten Hacken was confronted with was the absence of the tool SMILE

during almost his total graduation period. Therefore it was unclear which expressions were

possible in what way in the LOTOS EFSM. The result is the incapability of his tool to

handle several constructions like:

Page 36 Verification of Protocol Implementations by means of Test Generation from Implementations

• The choice operator: (choice x:nat [) [(x It 3)) -> g!x; State2[g) ((x)))

• Expressions with a combination of several variables, constants and brackets:
g!x; State2[g) ((x - succ(O)))

• Constructions with several conditions for one action: [(x It 3)) -> [(x gt 1)) ->

g!x; State2[g)

• Constructions with several actions at one transition: g !x!x; State2 [g)

• Constructions with several types of internal actions: (*middle !x*) i; State2 [g) or

(*exit*) i; State2[g)

• Conditions for variables after input: g?x:sort [(valid(x))) ;

Also several data constructions are not considered because his tool was developed to test

only control flow.

Probably because of lack of time, the tool is not well documented and not provided with

lots of comment. If we should use this tool, this should be adjusted because of the

necessity to make the tool well understood by its users.

Concerning the method used by his tool, it may be worthwhile to examine if improved

UIO-methods can be used, as also proposed by M. ten Hacken. While examining the

working of the improved method doubts have risen whether the tool correctly handles all

internal actions. Little has been written about how to handle internal actions.

Of course there are also several advantages to the tool. First of all it has already been

implemented, saving much development time. Secondly it has a simple way of

transforming the testsequences to TICN. Also a general approach how to interpret the

LOTOS EFSM is given.

Taking the advantages and disadvantages in mind, probably the best approach is to rewrite

the tool for handling all constructions of the LOTOS EFSM including data constructions,

testing the control flow with a similar or improved (MUIO/RCPT/overlap) method and

testing data flow with a static data flow analysis method. Principally the same method is

used to traverse the graph and constructing a TICN testsuite out of this traversal.

Improvements and adaptations are applied whenever necessary and possible. In the next

sections these methods will be explained more elaborately.

CHAPTER 5: The used methodes)

§ 5.4 Automatic test generation approach

Page 37

In this section a survey will be given of the methodology used to generate tests auto­

matically. As told before the best approach is to split the methodology into different parts.

In this way the program can easily be adapted for other input or output languages and

other methods to derive test sequences. In the next sections the various elements of the

approach will be looked at.

The approach can be divided into the following steps:

1) Specifation of the protocol in LOTOS

No automatic test generation can take place without a formal specification. LOTOS is

chosen because of the availability of a toolset to derive an EFSM (step 2) and to check

executability and to determine test values (step 7).

2) Construction of a suitable LOTOS EFSM

Automatic test generation methods are generally based on a representation of a protocol as

a EFSM (chapter 3). The construction of a LOTOS EFSM out of a specification with full

LOTOS can be done with the tool SMILE as explained in § 2.4. To reduce the amount of

test sequences and to provide a LOTOS EFSM more suitable to derive test sequences this

SMILE EFSM has to be rewritten manually by the test person or designer. More about

these problems is told in § 5.5.

3) Transformation of the LOTOS EFSM into an EFG

This is the first step that has to be implemented. This step is necessary to adapt the EFSM

into a structure well suited for the derivation of the test sequences and to dispose of

redundant information (for example complete predicates). This EFG can also be used as

the basic structure (some adaptations may be necessary) when not using SMILE output as

the input EFSM. This step will be elucidated in § 5.6.

4) Derivation of test sequences for Control Flow with variant of UIO-method

This also has to be implemented. Some variant of the UIO-method will be used to derive

the test sequences. This method will be explained in § 5.7.

5) Derivation of test sequences for Data Flow with adapted IO-df-chain method

The third step to be implemented. The method will be explained in § 5.8.

Page 38 Verification ofProtocol Implementations by means of Test Generation from Implementations

6) Linking and optimizing all Control and Data Flow test sequences

Several methods can be used to link the test sequences. Because of probable lack of time

only the reset method or the direct link method will be implemented. Also optimizing the

final test sequence by combining the same test paths for different aspects of the protocol

will be left for the future. The linking will be explained in § 5.9.

7) Checking executability and determining input test values

This step may also take place before linking the test sequences. In this step the executa­

bility of the test sequences will have to be tested and the test values that will be provided

to the IUT will have to be determined. Non-executability can for example happen because

condional transitions are not taken in consideration. SMILE can be used to help testing

executability and determining test values. Some more explanation can be found in § 5.11.

8) Testing IUT with executable test sequences and test values

This is the final step. The tests will be provided to the IUT and the outputs are checked.

Because of the considerations in the previous section, the program will be rewritten but

useful elements of the program and approach of M. ten Hacken will be used. An example

of this is the transformation of the test sequences into TTCN. This will be explained in

§ 5.10.

§ 5.5 Constructing a suitable LOTOS EFSM

In order to explain the various phases more clearly, an example SMILE output LOTOS

EFSM is written. This is not an EFSM of an existing protocol, but contains the most

typical structures of SMILE output LOTOS EFSMs.

As can be seen in this example LOTOS EFSM (see text box), reception and transmission

of specific frames can be represented by the combination of a transmission/reception of a

general frame and selection predicates for this frame. For example, consider the following

frame reception:

L ?fr_l: framesort [(fr_l eq DM)]

The only frame value which can be generated from the selection predicate is a DM frame.

Therefore this event can be rewritten to L ?DM. This reduces the amount of test sequences

CHAPTER 5: The used method(s)

SPECIFICATION example (L]: noexit

BEHAVIOUR
Statel (L]
WHERE

PROCESS Statel (L]: noexit :=
L ?fr_l: framesort ((fr_l eq DM)]; State2 (L] ((0»

ENDPROC

Page 39

PROCESS State2 (L] (X:nat): noexit :=
(choice fr_2: framesort (]

((fr_2 eq SABM)] -> ((X <> 2)] -> L !fr_2; State3 (L] (X»
(] (choice fr_3: framesort (]

((fr_3 eq DM)] -> ((X = 2)] -> L !fr_3; Statel (L])
ENDPROC

PROCESS State3 (L] (Y:nat): noexit :=
L ?fr_4: framesort ((fr_4 eq DISC)]; State4 (L]
(] i; State2 (L] ((Y+l»

ENDPROC

PROCESS State4 (L]: noexit :=
(choice fr_5: framesort []

((fr_5 eq UA)] -> L !fr_5; Statel (L]
ENDPROC

ENDSPEC

Example SMILE output LOTOS EFSM

for the data flow because the variable fr_l is not considered any more. Another advantage

is that the determination of VIO sequences will be better possible. If general frames are

used, two general frames fr_l and fr_2 are always considered distinctive although they

might have equal values. For VIO sequences this means that the two reception sequences

L ?fr_l and L ?fr_2 are considered to be unique which well might not be the case.

While testing the IVT this means that manually generated frames must be provided to the

IUT. A difficulty at doing this is that complex selection predicates admit that more than

one frame value appears. When this is the case, suitable frame values must be selected or

the expression must be left intact and possible faults in the VIO sequences must be taken

into consideration. Normally suitable frame values can be chosen.

The case is a little bit different when rewriting transmission of frames. For example, take

the following frame transmission:

(choice fr_2: frarnesort []
[(fr_2 eq SABM)] -> [(X <> 2)] -> L !fr_2

This can be rewritten into [(X <> 2)] -> L ! SABM. This has the same advantages as the

ones mentioned for the reception of frames, Le. reduction of the number and complexity

of test sequences for Data Flow and improved possibility to derive VIO sequences. The

Page 40 Verification of Protocol Implementations by means of Test Generation from Implementations

difference however is that the frames must be generated by the IUT and not by an external

person. The consequence is that in the case of more possible frame values these values

cannot be selected but have to be tested all. In this case, the transmission of the general

frame must be rewritten into parallel transmission of the possible values. For determining

the possible values, also in the case of reception, the instantiate tool of SMILE can be

used. This tool generates possible values for variables with selection predicates. In the

case of complex frames, it is recommended to replace the general frame by the action

(SABM, DM, etc.) and to place other predicates concerning the frame behind the action as

a selection predicate. For example:

(choice fr_2: framesort []
[(control(fr_2) eq SABM)] -> [valid(fr_2)] -> L !fr_2

can be replaced by L !SABM [valid (SABM)]. In this way the variables to be tested are

restricted to the important variables and the UIO sequences can be determined properly.

The rewritten example LOTOS EFSM is given in the next text box.

SPECIFICATION example [L]: noexit

BEHAVIOUR
Statel [L]
WHERE

PROCESS Statel [L]: noexit :=
L ?DM; State2 [L] «0»

ENDPROC

PROCESS State2 [L] (X:nat): noexit .-
[(X <> 2)] -> L !SABM; State3 [L] (X)
[] [(X = 2)] -> L !DM; Statel [L]

ENDPROC

PROCESS State3 [L] (Y:nat): noexit .­
L ?DISC; State4 [L]
[] i; State2 [L] «Y+l»

ENDPROC

PROCESS State4 [L]: noexit .­
L !UA; Statel [L]

ENDPROC

ENDSPEC

Rewritten example LOTOS EFSM

CHAPTER 5: The used method(s)

§ 5.6 Transformation of the LOTOS EFSM into an EFG

Page 41

In order to be able to derive test sequences for both the Data and Control Flow of a

protocol, the rewritten LOTOS EFSM will be transformed to an Extended Flow Graph

(EFG). This is a flowgraph G = (V,E) where V is a set of nodes representing control flow

states and possible actions and E is a set of edges representing the flow between nodes. It

is called extended because not only the control flow but also data flow is considered.

The basic nodes of the EFG are the control flow nodes if-nodes), one for each process of

the LOTOS EFSM. Each event of the EFSM is also mapped on a node. In this way the

following nodes are constructed:

• an input node (i-node) for each input event (events containing'?,),

• an output node (o-node) for each output event (events containing '!' and events

consisting of only ports),

• an internal event node (x-node) for each internal event i of the specification.

Directed edges are constructed from a control flow state to i-nodes, o-nodes and x-nodes

which represent actions in the process represented by the f-node. Also directed edges are

constructed from these action nodes to f-nodes representing the next state after the action.

In case of a choice-construction such as
(choice fr_2: framesort []

[(fr_2 eq SABM)] -> L !fr_2

a choice state (c-node) is constructed, a directed edge is formed from the control flow

node to this c-node and an edge is constructed from the c-node to the action node, here an

o-node. The last node constructed is a start node (s-node) representing the BEHAVIOUR­

part of the specification. This node is necessary to include the initial calling of the first

process which might contain parameter values for the first process.

In order to be able to derive test sequences for the Data Flow, each variable occurrence in

the specification is represented in the EFG and classified as being a definition, computa­

tional use, or predicate use which are referred to as def, c-use and p-use, respectively. We

use the following convention to identify defs, c-uses and p-uses of each variable in G:

a) A process header PROCESS State2 [L] (Xl:sort, ... ,Xn:sort) in a f-node

contains defs of Xl' ... , xn•

b) An input action port ?X: sort in a i-node contains a def of x.

c) An output action port !X in a o-node where X is a defined variable contains a c­

use of x.

Page 42 Verification of Protocol Implementations by means of Test Generation from Implementations

d) A choice-construction choice X: sort in a c-node contains a def of x.

e) A call to a next state; Statei [port] (fl(Xl , ..• ,Xn), ••• , f 2(XlI ••• ,Xn »

where f (Xl' ... , Xn) represents a function of defined variables, contains for each

parameter of the called state (the defs in the header, see a» c-uses of the used

variables. For example, ; State3 [port] (X, X·Y+2) contains a c-use of variable

X for the first parameter of state 3 and c-uses of X and Y for the second parameter

of state 3.

f) A predicate [pdXl , ... ,Xn)] -> ... -> [P2(Xl , ... ,Xn)] -> in a edge where

p (Xl' ... , Xn) represents a predicate contains p-uses of Xl' ... , Xn•

Figure 5.1 shows the EFG of the example LOTOS EFSM including definitions and uses of

the variables.

I1: L?DM
12: L?DISC
01: L!DM
02: L!SABM
03: L!UA
i: internal event

Os-nodeo i-node

Do-node

D i-node

L. x-node

Figure 5.1 : EFG and definitions/uses example LOTOS EFSM

CHAPTER 5: The used method(s)

§ 5.7 Derivation of test sequences for control flow

Page 43

For the derivation we make use of a variant of the VIO-method, the VIOv method. The

basic principle of the method is the one explained in § 3.2. Test sequences are constructed

for each input event a from state Sj to state Sj by the following steps: First put the state

machine into state Sj; details of this step are given in § 5.9. Then input a is supplied and

possible output events are checked; this procedure is explained more elaborately in § 5.10.

Finally, the tail state after receiving the output events is checked to verify that it is as

expected. In order to do this, we use (a variant 00 the VIO-method.

The VIO-method was first introduced in [SaDa88]. VIO-sequences have to be computed

for every state to which the evaluation step can lead. An VIO-sequence for a state is an

input/output behaviour that is not exhibited by any other state. For example, if we consider

the state machine in figure 5.2 (edges are expected to have an input and an output, a

slightly different situation compared to the

LOTOS EFSM), the following VIO-sequences

can be found:

SI: all

S2: aiD all

S3: aiD aiD

The algorithm to compute all VIO-sequences for

b/l b/1 a state machine is as follows (details in

[SaDa88]): Check the uniqueness of the

input/output sequences of increasing length from

the possible tail states until a VIO-sequence is

located. For each possible tail state, all

input/output sequences of length 1 are computed

and checked for uniqueness. If there is no

Figure 5.2: Example FSM unique sequence of length 1, then the same

procedure is repeated for all sequences of length

2. This procedure is continued for longer sequences until a unique input/output sequence is

found or the length of the sequences exceeds a certain upper bound.

A possible improvement of the VIO-method is the UIDv-method [ChVuIt89]. This method

is based on the observation that although each VIO-sequence is unique in the FS~ of the

specification, the uniqueness of the VIO-sequences may not hold in a faulty implemented

Page 44 Verification ofProtocol Implementations by means of Test Generation from Implementations

FSM j • That is, for some FSM j , the input/output behaviour related to an VIa-sequence may

be exhibited by more than one state. This method requires the following procedures to be

performed after computing the VIa-sequences:

1) For each state Sj of specification S, apply the VIa-sequence for state Sj after FSM j

is brought into state Sj. This procedure verifies that each state in FS~ exists in

FSMj •

2) For each state Sj of specification S, apply the VIa-sequence for state Sj after FSM j

is brought to each state Sj' where the input part of the VIa-sequence for state Sj is

different from the one of the VIa-sequence for state Sj. This procedure verifies that

the VIa-sequence for each state is unique in the given FSM j •

As already mentioned, the LOTOS EFSM is different from the above assumed (E)FSM.

First of all the LOTOS EFSM does not have edges containing an input and an output

leading from one flow state to another flow state. The fact that for inputs and outputs

separate states are defined instead of assigning these events to an edge is only a matter of

definition. The fact that between such an input event and an output event another flow

state is defined from which several transitions may take place is more difficult to handle.

For flow states which are necessary only for connecting an input and an output event it is

not necessary to search VIa-sequences. Only for flow states from which an input event

can take place VIa-sequences have to be computed. We will call such states basic flow

states. Another difference is the presence of internal events. There are two types of

internal events in the LOTOS EFSM. The first one appears after an input or an output and

is harmless because it only increases the time to pass an input/output action. The second

one is more difficult to handle. It provides the possibility in a certain flow state not to

choose the desired action from that state but to jump to another, not desired action. The

path initiated by such an internal event must be marked as inconclusive. More details are

given in § 5.10.

§ 5.8 Derivation of test sequences for data flow

Several criterions can be used to derive test sequences for the data flow part of a protocol.

A survey of several criterions can be found in [RaWe85]. One of these criterions, the all­

uses criterion is used in [Vr8?]. In this section the criterion from [VrYa91] will be

explained, the IO-dC-chain criterion. An adapted form of the method in [VrYa91] will be

used to derive test sequences for data flow.

CHAPTER 5: The used method(s) Page 45

Before the criterion is stated that should be satisfied by test sequences selected by the

method, some terms are defined that will be used in the formulation of the criterion.

Definition 5.1: An input is the start of a def of a variable which

1) occurs in an input interaction

2) is defined by a call to a next state whose parameter list contains only

constants

For example, in figure 5.3 there are no definitions of variables in an input interaction and

there is one call with only constants, the defmition of X with O. This input is called in1

and is defined on the transition that leads to the def of the variable X.

11: L?OM
12: L?OISC
01: LfOM
02: LfSABM
03: LfUA
i: internal event

Os-nodeo {-node

Do-node

D i-node

~ x-node

Figure 5.3 : EFG, definitions/uses and inputs/outputs

Definition 5.2: An output is either a variable output (i.e., a c-use of a

variable in an output interaction) or a constant output (i.e., an output

interaction whose parameter list contains only constants).

Page 46 Verification of Protocol Implementations by means of Test Generation from Implementations

For example, no variable outputs, however three constant outputs oun, out2, and out3
exist in figure 5.3.

Definition 5.3: An use of a variable x, which may be a c-use or a p-use, is

affected by a def of a variable y if either

1) x and yare the same variable and the use of x is reached by the def of y

through a def-clear path1 with respect to y or

2) a def of variable z is given in terms of a use of y at a node which is

reached by the def of y through a def-clear path with respect to y, and the

use ofx is affected by the def of z.

For example, all p-uses and c-uses of X in figure 5.3 are affected by the def of X and by

the def of Y and the c-use of Y is affected by the defs of X and Y. An advantage of the

LOTOS EFSM is that all variables are defined only once and are only valid within one

process.

Definition 5.4: An input I illfluellces an output °if
1) °is a variable output which is affected by I, or

2) ° is a constant output and the last p-use which leads the control flow to° is affected by I. Searching back to such a p-use is stopped whenever a

basic flow state is reached.

For example, in figure 5.3 input inl influences output oun and out2 but not out3

because there is no p-use after basic flow state S3.

Definition 5.5: An illput-output dataflow e1will (IO-df-e11aill) C is a tuple

(I,S,O) where input I influences output ° through S which is an ordered

sequence of alternating uses and defs containing at most two occurrences of

any (u;c,dy)n'

A path (n.,n2, ...,nm•l ,n,.) is a del-clear path with respect to a variable y from node nl to edge (n....
I'n...) if there are no defs of y at node nl following the def of y and there are no defs of y at nodes n2 to nm-I
inclusively.

A path (nl ,n2, •••,nm•I,n...) is a del-clear path with respect to a variable y from node nl to node n... if
there are no defs of y: a) at node n\ following the def of y, b) at nodes n2 to nm•1 inclusively, and c) at node
n... preceding the c-use of y.

CHAPTER 5: The used metlwd(s) Page 47

For example, the tuple (dx, (ux,dY)s3' (uy,dx)s2' ux) with the last Ux representing one of the

p-uses of X is an IO-df-chain in figure 5.3. In order to be able to connect the test

sequences we will start and end a path covering such a chain in basic flow states. The

path covering the above mentioned IO-df-chain is [SI,I1,S2,02,S3,i,S2,OI,Sl] or

[SI,Il,S2,02,S3,i,S2,02,S3]. All possible paths covering IO-df-chains in figure 5.3 are:

[S I,ll ,S2,OI,S1]

[S 1,1 I,S2,02,S3,i,S2,OI,S1]

[S 1,11 ,S2,02,S3,i,S2,02,S3,i,S2,OI,S 1]

[SI,Il,S2,02,S3]

[SI,Il,S2,02,S3,i,S2,02,S3]

[S 1,1I,S2,02,S3,i,S2,02,S3,i,S2,02,S3]

Definition 5.6: For a given EFG G, the IO-df-chaill criterioll requires that

test sequences be selected to cover each IO-df-chain of G at least once.

This criterion will be used to derive the test sequences for the data flow part of the

protocol.

§ 5.9 Linking the test sequences

Mter having derived test subsequences for control and data flow with the methods

explained in the above sections, these test subsequences have to be linked to one test

sequence that can be used for testing the ruT. Several methods can be used to do this.

The most simple one is the reset method, used for example by M. ten Hacken in [Ha92].

This method returns after a test subsequence to the initial state SI and departs from this

initial state to the first state of a next test subsequence to test this next subsequence. When

applying this method to the LOTOS EFSM this method needs sequences to be generated

from state S1 to all other basic flow states and to state S1 from all other basic flow states.

Only basic flow states have to be considered because these states are possible start and

end states of test subsequences. It is probably better to generate all possible linksequences

instead of computing such a linksequence for each test subsequence to avoid computing

several times the same resetsequence for test subsequences that start or end in the same

state.

Page 48 Verification of Protocol Implementations by means of Test Generation from Implementations

Clearly, this method is the most simple but not the most efficient method. A better method

is the direct link method which provides computing linksequences between all basic flow

states. After generating all these linksequences a suitable one has to be chosen. For

example, if a subsequence ends in state S3 and a next starts in state S6 the linksequence

from S3 to S6 has to be used to link these subsequences. For computing such a link path

between two states a shortest-path algorithm can be used, for example the Dijkstra's

Algorithm [AhHoUI76].

Other possible improvements are the Rural Chinese Postman Tour or linking using an

overlap method such as the ones referred to in § 3.2. These are not used because of their

complexity. Also research can be done in the area of combining test subsequences and

thus reducing the total test sequence in the case of equivalence of several test sub­

sequences.

When deriving TICN link sequences out of the EFG some difficulties arise. For example,

when computing a shortest path it is prefered not to have such a path containing many

unstable flow states, Le. flow states from which several outputactions or internal actions

may depart. Such a state will make the TICN sequence more complex and less effective

because of the several inconclusive paths. The transformation into TICN will be explained

in the next section.

§ 5.10 Transformation of test sequences into TTCN

The fundamental idea on which this transformation can be based can be found in

[GuL090], the article on which M. ten Hacken based his derivation method. However,

some adaptations were necessary because of the application to the SMILE output LOTOS

EFSM and because the control flow, data flow and link subsequences are already

constructed before the transformation to TICN. The notation form of TICN to be used

will be TICN-GR, the human-readable tabular form of TICN. In the future, also the

machine-processable form, TTCN-MP, can be used by adapting the transformation

procedure or using an TICN-GR to TICN-MP compiler.

As explained in § 3.5, the method of [GuLo90] consists of 4 steps, the initialization step,

the evaluation step, the verification step and the termination step. In our method, the

initialization and termination step are replaced by the link subsequences, the verification

step is replaced by the derivation of UIO-sequences and the test subsequences for the data

CHAPTER 5: The used method(s) Page 49

flow are added to the steps. So the transfonnation consists of two basic parts; for the

evaluation step the same approach as in [GuLo90] will be used with some minor

adaptations for applying to the SMILE output LOTOS EFSM; for the transformation of

control flow sequences, data flow sequences and link sequences a procedure has to be

developed. This procedure is the same for all these sequences because they all consist of a

certain path through the EFG and they all start and end in a basic flow state.

Testing the control flow consists of applying the evaluation step for every inputaction of

the EFG and adding the VIO-sequence to the tail basic flow state of this evaluation step.

The next procedure will be used for this evaluation step: For a reception of a frame is in

the EFG, there is a transmission of frame is in the evaluation step. Successively, for a

transmission of a frame fr in the EFG, there is a reception of the frame fr in the evaluation

step. The transmission of is and the reception of fr, if any, represent the body of the test

case.

If a frame fr is received after sending is, the verification path of the basic flow state

following the reception offr will be added to the body of the test case after reception of fr.
This adding means that after the evaluation step the VIO-sequence for the tail state of the

evaluation state has to be executed. This reception of fr can be preceded or followed by a

number of internal events. These internal events are of the harmless sort, so they may only

increase the time necesarry to receive fr In the case of several possible receptions two

approaches can be followed. Either one of them is declared the right one and the others

are declared inconclusive paths, or each possible reception is treated as a separate sidepath.

The first approach is the most simple but will cause many problems when applying the

test sequences to an IUT; the second approach is more complete but results in possibly

complex test subsequences, certainly when linking these subsequences. However, this

approach is prefered. If no reception follows the sending of is and the first basic flow state

is a stable flow state, Le. no outputs or internal events lead from this state, the verification

path for the stable basic flow state is added to the test case after the timer starts and stops

(to make sure that nothing is received). If the basic flow state is unstable, the verification

path is added immediately to the body of the test case. An otherwise is added and a

verdict fail is issued at any point where something different from what is expected to be

received can occur. All this is summarized in the following textbox.

As already mentioned, the same procedure can be followed for VIO-sequences, data flow

sequences and link sequences because they all start and end in a basic flow state and

Page 50

port!/,

Verification of Protocol Implementations by means of Test Generation from Implementations

possible I's
-if reception before basic stale
port?,f,

possible I's
+verification path basic flow state

port?other_rrames
possible I's

+verification paths basic flow states
?otherwise
?expiration or timer

-if no reception and basic flow state is unstable
+verification path basic flow state(s)

-if no reception and basic flow state is stable
start timer

?time_out
+verification path basic flow state

?otherwise

pass

pass
fail
fail

pass

pass
fail

Transfonnation procedure evaluation step

because they consist of an already defined path. The procedure to be followed here is as

follows: Transfonn all actions and internal events to subsequent steps in TfCN (reception

in EFG becomes transmission in TfCN and transmission in EFG becomes reception in

TfCN). If at a certain moment in the path a unstable flow state is reached, all paths

containing outputactions, also via internal events must be marked as inconclusive. If the

internal events lead to a stable flow stale this path must be marked as inconclusive also.

An otherwise is added and a verdict jail is issued at any point where something different

from what is expected to be received can occur. All this is summarized in the second

textbox of this section.

If no UID-sequence is found for a certain basic flow state, a warning must be provided in

order to let the testperson take the necessary actions.

CHAPTER 5: The used method(s)

actions

-at any unstable flow state:
-for ail paths leading to a reception (output in EFG)
possible 1'5

port?/,
?otherwise
?expiration of timer

-for ail paths leading to a stable flow state via I's
possible 1'5, at least one

?expiration of timer

actions

-for each intended reception
port?.fr
?otherwise
?expiration of timer

Transfonnation procedure VIO, data flow and link sequences

§ 5.11 Checking executability and determining test values

Page 51

inconclusive
fail
fail

inconclusive

pass

fail
fail

The last thing that has to be done before the real testing can take place is checking the test

sequences for executability and the determination of values for the variables that have to

be provided to the IUT. Testing the executability is necessary because the conditions for a

transition are not taken in consideration. For example, if we take the computed data flow

test sequences in § 5.8, [S I,11,S2,01 ,S I] and [S I,11 ,S2,02,S3,i,S2,0l,S I] are not

executable because the condition (X = 2) for making the transition from S2 to 01 is not

met Also [SI,II,S2,02,S3,i,S2,02,S3,i,S2,02,S3] is not executable because X has the

value 2 the last time the condition (X <> 2) for making the transition from S2 to 02 has

to be met. Therefore these 3 test subsequences can be removed from the set of test

subsequences.

Detennining input test values that have to be provided to the IUT is closely connected

with testing executability. In some cases the test values are already computed. For

example, step 2 of the automatic test generation approach (explained in § 5.5) can be seen

as detennining the appropriate values for the frame variables. For other variables, values

may have to be computed. For example, imagine the value of X is not initialized 0 on the

transition from II to S2, but that it is asked as a input in 11. In that case, values for X

Page 52 Verification 0/ Protocol Implementations by means o/Test Generation/rom Implementations

higher than 1 will cause the transition from S2 to 02 never to be executed and thus will

effect in inreachability for the states 02, S3, i, 12, S4 and 03.

For checking executability and determining appropriate test values SMILE can be used

(see figure 2.2). Checking executability can be done by unfolding each action of the test

subsequence successively. During this traversing of a sequence, test values can be

determined using the Instantiate or Adt Interface buttons. For example, after having

traversed a certain path, the option Solve Goal after calling Instantiate will provide all

possible values for the variables of the traversed path.

CHAPTER 6: Implementation

CHAPTER 6: Inlplementation

§ 6.1 Introduction

Page 53

In order to derive test cases automatically a tool called ProTeGe (Protocol Test

Generator) is developed by me. This tool can construct an EFG out of an (adapted)

LOTOS EFSM as described in section 5.6, it can derive TTCN test cases for control flow

with the algorithm explained in section 5.10 (evaluation step), it can derive DIO sequences

and transform them to TTCN as described in section 5.7 and section 5.10 (transformation

procedure DIO) and it can derive data flow test sequences as explained in section 5.8 and

have them transformed to TTCN with a similar algorithm as for DIO sequences.

The tool is written in the language C and can be compiled to work under the Sun4

workstations, which are also used for the tool Lite and Smile, necessary to derive input

files for ProTeGe. The makejile used to compile the various modules and to construct

ProTeGe is given in appendix A. In this makefile can be seen that ProTeGe is partitioned

in two headerfiles and six source modules. In short these modules perform the following

task:

typedef.h

efghead.h

main.c

makeefg·c

makeuio.c

gendflow.c

linksubs.c

ttcn.c

This headerfile contains all type definitions used in all modules and all

macro definitions.

This headerfile is used for all extern function declarations.

This module gives the main menu, calls the other modules and contains the

error function.

This module makes the EFG out of an input SMILE EFSM.

This module makes DIO sequences for all basic flow states of the EFG.

This module makes the data flow subsequences for the EFG.

This module is almost empty, but should make link subsequences in the

future.

This module constructs TTCN control flow test cases (evaluation step) and

it transforms DIO sequences and data flow subsequences to TTCN test

cases.

The source code of these files is given in appendix L. In section 6.3 the headerfiles and

main.c are considered, in section 6.4 makeefg.c, in section 6.5 makeuio.c, in section 6.6

Page 54 Verification of Protocol Implementations by means of Test Generation from Implementations

gendflow.c and in section 6.7 ncn.c. In the following section (6.2) the output files

structure is explained, in section 6.8 a test session is being done and in section 6.9

conclusions and recommendations are given.

§ 6.2 Output files

ProTeGe uses various files to store the EFG, the calculated subsequences and to write the

output test cases to. These files are defined to be constructed in a subdirectory of the

directory containing ProTeGe called efgfiles, so this directory has to exist. Files are used

instead of memory to store intermediate results such as the EFG because problems with

insufficient memory in case of huge SMILE EFSMs can be avoided in this way. Also the

results can be interpreted more easily if necessary. Disadvantages of using files are the

increased complexity of the tool and the increased computing time.

The following files are constructed by ProTeGe (between parentheses the macro

definitions for these files, used in the modules) :

statel.tmp

transl.efg

varl.tmp

state2.efg

var2.tmp

intrans.tmp

outtrans.tmp

basseq.uio

basact.uio

basuniq.uio

totseq.uio

totact.uio

totuniq.uio

uio.seq

dflow.seq

link.seq

uio.ttcn

(STATE_FILE_I)

(TRANS_FILE_l)

(VAR_FILE_l)

(STATE_FILE_2)

(VAR_FILE_2)

(IN_FILE)

(OUT_FILE)

(BAS_SE(LFILE)

(BAS_ACT_FILE)

(BAS_UNI(LFILE)

(TOT_SEQ_FILE)

(TOT_ACT_FILE)

(TOT_UNI(LFILE)

(UIO_FILE)

(DFLOW_FILE)

(LINK_FILE)

(UIO_TTCN_FILE)

: file constructed to make file state2.efg

: contains all transitions of the EFG

: contains defined vars for each flowstate

: contains all states of the EFG

: contains all defined variables in the EFSM

: contains incoming transitions for flowstates

: contains outgoing transitions for flowstates

: contains basic sequences to construct UIO

sequences for basic flowstates

: contains actions of these basic sequences

: giving existence of variables in basic actions

: contains all calculated sequences to construct

UIO sequences

: contains all actions for these sequences

: giving uniqueness (or not) for actions

: contains UIO sequences for all basic states

: contains all data flow subsequences

: contains link subsequences

: contains TTCN UIO sequences for basic states

CHAPTER 6: Implementation Page 55

cflow.ttcn

dflow.ttcn

link.ttcn

(CFLOW_TICN_FlLE)

(DFLOW_TICN_FlLE)

(LINK_TICN_FILE)

: contains all TICN control flow subsequences

: contains all TICN data flow subsequences

: contains TICN link subsequences

The most important files are explained in one of the following sections describing the

module in which it is created. In appendix D until I examples of STATE_FlLE_2,

TRANS_FILE_I, UIO_FlLE, DFLOW_FILE, CFLOW_TICN_FlLE, UIO_TICN_FlLE

and DFLOW_TICN_FlLE are given.

§ 6.3 MAIN.C and headerfiles

The headerfile typedef.h contains as already told all type definitions and macro definitions

for all files. The major type definitions are:

a structure called jiles_type used to transfer all pointers to all used files between functions.

a structure called ejg_type used to transfer information about the EFG between functions.

a structure called ttcn_eCtype used to construct a TICN test case. It contains elements

like the action at a certain time in a test case, a pointer to elements containing next

possibilities at this time, a pointer to an element in a next time period, the indentation

level and some comment about the action.

The header file efghead.h contains as already told external function declarations for the

modules.

The module main.c contains the function main which is the overall structure for calling

the other submodules. The user is given a menu giving the various possibilities to do, e.g.

deriving an EFG, deriving UIO sequences, data flow sequences, link subsequences (not

implemented) and transformation of the subsequences to TICN test cases. Also this

module contains the error function which is called in all modules when something is going

wrong.

§ 6.4 MAKEEFG.C·

This module creates an Extended Flow Graph (EFG) out of a description of a protocol as

an EFSM as created by Smile, the symbolic simulator of the LITE-toolset If you choose

this module from the menu in main, the name of the Smile EFSM will be asked, after

Page 56 Verification of Protocol Implementations by means of Test Generation from Implementations

which this EFSM will be scanned and transfonned to some files of the suitable fonn for

usage by the other modules. These files are:

- VAR_FILE_l:

This file contains for all flowstates (processes) in the EFSM the defined variables in the

header. The structure of this file is as follows: For every flowstate a line 'STATE <num>',

where <num> the number of the state is as indicated in the process. After such a line a new

line is created for each defined variable and consisting only of the name of this variable.

- VAR_FILE_2:

This file contains all defined variables in the EFSM, each given on a separate line. This

file is not used in this module.

- STATE_FILE_l:

This file is actually a temporary file to construct STATE_FILE_2. The structure is the

same as the structure of STATE_FILE_2, except for the incoming and outgoing transitions

of flowstates which are given in the files IN_FILE en OUT_FILE.

- IN_FILE:

This file contains the incoming transitions of the flowstates. During scanning each time

such a call to a flowstate is found, a line'<statenum> <trans>' is written to this file;

<statenum> is the number of the flowstate, <trans> is the internal number of the

transition (see TRANS_FILE_I).

- OUT_FILE:

This me contains the outgoing transitions of the flowstates. The structure is the same as

the structure of IN_FILE.

- The files STATE_FlLE_2 en TRANS_FlLE_l are the mes that describe the EFG. In

STATE_FILE_2 all flowstates, input actions, output actions, choice actions and internal

events are described as states as explained in section 5.6. These states are connected by

transitions which are given in TRANS_FILE_I. The structures of these mes are as

follows:

CHAPTER 6: Implementation Page 57

- STATE_FlLE_2:

For each state the following lines are given:

'@ST <int_num>' : <int_num> is the statenumber used to discern the various flow­

states and actions. This number is also used in TRANS_FILE_I.

, <type> <num>' : <type> gives the type of the state. This can be S (startstate), F

(flowstate), I (inputaction), 0 (outputaction), x (internal event) and c

(choice-action). <num> gives the number for a certain type of state.

For example, for flowstates this is the number as indicated in the

process.

'@ACT <action>' : <action> contains in case of an inputaction or outputaction this

action. In other cases the line consists only of '@ACT'.

'@VAR <var_type>' : In case of a flowstate is looked in VAR_FlLE_I if there are

variables defined in the header of this flowstate. If so, <var_type>

is 'd' and this line is followed by lines each containing such a

variable. In case of an inputaction <var_type> is ' d' and the line is

followed by a line containing the input variable. In case of an

outputaction is looked if there are any defined variables used in this

outputaction. If so, <var_type> becomes'c' and the line is followed

by lines containing these output variables. In case of a choicestate

<var_type> is ' d' and the line is followed by a line containing the

choice variable. In other cases the line consists only of '@VAR'.

'@IN' : This line is followed by a certain number of lines, each containing

a transition number as defined in TRANS_FILE_I, which leads to

this state (incoming transitions).

'@OUT' : This line is followed by a certain number of lines, each containing

a transition number as defined in TRANS_FILE_I, which leads from

this state (outgoing transitions).

- TRANS_FILE_I:

For each transition the following lines are given:

'@TR <tr_num>' : <;tr_num> is the transition number used to discern all transitions

used in this file. This number is also used as incoming and outgoing

transitions in STATE_FlLE_2.

: This line indicates in which state the transition starts. <st_num> is

a statenumber, as given in the '@ST <int_num>' line in

Page 58 Verification of Protocol Implementations by means of Test Generation from Implementations

'@TO <st_num>' : This line indicates in which state the transition ends. <st_num> is a

statenumber, as given in the '@ST <int_num>' line in

STATE_FILE_2.

'@VAR <var_type>' : In case of a transition containing predicates (' [..] ->' in the

Smile EFSM), <var_type> is 'p' and the line is followed by a

number of lines, each giving a variable used in the predicates. In

case of a call to a flowstate which defines variables in his header

(parameters), <var_type> is 'c'. This line is then followed by a line

for each parameter. In case that one or more variables are used to

form a certain parameter, these variables are given in this line

separated by tabs. In case a constant value is given to the parameter,

the line consists of a tab followed by '@CONST'. If the transition

contains no predicates and there is no call to a flowstate containing

parameters, the line consists only of '@VAR'.

§ 6.5 MAKEUIO.C

This module calculates for each basic flow state if possible one or more UIO sequences

and writes these sequences to the UIO_FILE. In order to derive this file other intermediate

files are created and used. The calculation of the UIO sequences consists of the following

steps:

First calculate all basic sequences from all basic flow states (state from which input action

takes place) to next basic flow states. These sequences are checked for not including

variables in the 10 sequence because this will complicate making statements about

uniqueness of a sequence containing such variables. The basic sequences not containing

variables will be checked for uniqueness (no other sequences having the same input/output

sequence), half-uniqueness (other equal 10 sequences exist but they lead to a different

endstate) and non-uniqueness (other equal 10 sequences to same endstate). If for a basic

flowstate an UIO sequence is found this state is marked and in a next step no new

sequences will be calculated. If for a certain flowstate no UIO sequence is found, all half

unique sequences of the last step starting with this flowstate will be expanded with all

possible basic sequences starting with the same basic flowstate as with which the half

unique sequence ends. This algorithm continues until for each basic flowstate an UIO

sequence is found or a certain limit is reached.

CHAPTER 6: Implementation

The files used in this module are:

Page 59

- VAR_FILE_2:

This file, constructed in the module makeefg, is used for checking if variables exist in a

basic sequence.

- BAS_SE(LFILE:

This file contains all calculated basic sequences, each on a separate line. Such a sequence

consists of all states traversed, for example 'Fl 13 F4 02 X6 F5\n'.

- BAS_ACT_FILE:

This file consists of all input/output sequences matching to the state sequences of

BAS_SE(LFILE, each on the same line as the matching state sequence. Example: 'L?SABM

L!DM \n'.

- BAS_VNI(LFILE:

This file contains for each matching input/output sequence of BAS_ACT_FILE a '0' if

this sequence contains no variables, and a '3' if it contains variables.

- TOT_SE(LFILE:

This file contains all calculated state sequences in the different steps in a same structure as

BAS_SE(LFILE.

- TOT_ACT_FILE: This file contains all input/output sequences matching to the state

sequences of TOT_SE(LFILE.

- TOT_UNI(LFILE:

This file contains for each sequence in the TOT-files a '0' if the sequence is non-unique, a

'1' if the sequence is unique and a '2' if the sequence is half-unique.

- VIO_FILE: This me .is the main file of this module. It contains all calculated VIO

sequences for all basic flow states. For each basic flow state, it has the following

structure:

Page 60

'F<x>'

Verification of Protocol Implementations by means of Test Generation from Implementations

<x> is number of flowstate

For each VIO sequence of this flow state:

a blank line

state sequence as in TOT_SECLFILE

10 sequence as in TOT_ACT_FILE

§ 6.6 GENDFLOW.C

'NO UIO' if no VIO sequence found

'NO uro' if no VIO sequence found

This module calculates all data flow subsequences for the EFG and writes them to

DFLOW_FILE. The method used to do this is explained in section 5.8. A data flow chain

is a state sequence from an 'input' to an 'output'. An 'input' (see definition 5.1) can be a

real input of a variable but can also be a call to a flowstate with only constants. An

'output' (see definition 5.2) can be a variable in a variable output or a variable in a

predicate that leads to a constant output before a basic flowstate is encountered. In the

calculated data flow chains the 'output' must be influenced by the 'input', e.g. the value

of the 'output' depends in some way on the 'input'. The written data flow sequences are

always extended at the beginning and end to the nearest basic flow state. Stop criteria for

calculating data flow chains are, besides the situations when there are no new definitions

of variables in a new flowstate influenced by the input variable, the existence of three

subsequent flowstate loops in the state sequence and reaching a maximal length in states

of the data flow chain without extension to basic flow states. This maximal length is asked

before calculating the data flow chains. Also is asked if data flow chains have to be

calculated for variable inputs, constant calls or for both.

The constructed file in this module, DFLOW_FILE, has the following structure:

- A line' ------------------ Real Inputs ------------------ \n'

- For each data flow chain where the 'input' is a real variable input:

- a line 'var_out <input_var> <output_var> <sequence>\n' where

<input_var> is the variable in the input, <output_var> is the variable in the

variable output en <sequence> is the total data flow chain with extensions to the

nearest basic flow state.

- a line 'const_out <input_var> <output_var> <sequence>\n' where <in­

put_var> is the variable in the input, <output_var> is the variable used in a

predicate leading to a constant output en <sequence> is the total data flow chain

with extensions to the nearest basic flow state.

CHAPTER 6: Implementation

- Aline '------------------ Constant Calls ------------------\n'

Page 61

- For each data flow chain where the 'input' is a constant call:

a line 'var_out <input_var> <output_var> <sequence> \n' where

<input_var> is the variable in the input, <output_var> is the variable in the

variable output en <sequence> is the total data flow chain with extensions to the

nearest basic flow state.

- a line 'const_out <input_var> <output_var> <sequence>\n' where <in­

put_var> is the variable in the input, <output_var> is the variable used in a

predicate leading to a constant output en <sequence> is the total data flow chain

with extensions to the nearest basic flow state.

§ 6.7 TTCN.C

This module constructs TTCN test cases for the control flow and it transforms the DIO

sequences and the data flow sequences formed in makeuio.c and gendflow.c to lTCN. The

transformation of link subsequences is not yet implemented. The TTCN test cases for

control flow are written, with a header giving the purpose of the test case, its identifier

and some comment lines giving information about the test case, to CFLOW_lTCN_FILE.

For example, if we take the test case for control flow of the following text box the header

Test Case Control Flow

Purpose: Testing input 'L ?SABM' from flowstate F1
Identifier: CFL_1

Line

1
2
3
4
5
6
7
8
9

10

Behaviour Description

L !SABM
L ?UA

+UIO sequence state F3
L ?DM

START TIMER
?TIME OUT

+UIO sequence state F1
?OTHERWISE

?OTHERWISE
?EXPIRATION OF TIMER

verdict

PASS

PASS
FAIL
FAIL
FAIL

COMMENTS:
Line 1: Start in F1, check input 'L ?SABM'
Line 5: Checking if state F1 is stable

Example control flow TTCN test case

of a test case contains information about the purpose of the test case and a identifier for

the test case. The identifier starts with CFL in case of a control flow test case, UfO in

Page 62 Verification of Protocol Implementations by means of Test Generation from Implementations

case of an VIO sequence and DFL in case of a test case for data flow. In the body of the

test case the test sequence is given in the graphical form of TICN and preceded by a line

number. This line number is used in the comment part to explain some actions or to give

some additional information that can be useful to the user. If in the body a line starts with

a '+' this means that here some other TICN test case or test case part must be inserted.

The algorithm to construct TTCN control flow test cases is the one explained in section

5.10 (evaluation step). The VIO sequences and data flow subsequences are read from

DFLOW_FILE and VIO_FILE (only one VIO sequence for each basic state) and transfor­

med to TICN and written, also preceded by a header and followed by comment lines, to

DFLOW_TTCN_FILE and VIO_TICN_FILE. The used algorithm is the second one in

section 5.10 (for VIO, data flow and link sequences).

§ 6.8 Example session

In this section an example session will be elucidated in order to show how ProTeGe

works, what choices can be made and which messages are given by the tooL As an

example input EFSM we take a simple version of a Connection Disconnection LAPB

protocoL This LOTOS specification is given in appendix B. After we transformed this

specification in an EFSM using SMILE, we have a LOTOS EFSM called cd+.efsm.

Because all the input frames only can have one value, we can transform this EFSM into a

simplified version using the transformation procedure of section 5.5. After we have done

this, we have the adapted EFSM called cd++.efsm that is given in appendix C. We will

use this EFSM in our example session. The state machine representing this EFSM is given

in figure 6.1 on the next page.

We start our session with typing protege in the directory where we can find this tool. The

output of the session on the screen and the inputs given (bold) are given in appendix K.

We see that the tool starts with giving a main menu, asking whether you want to create an

EFG out of an EFSM (1), make VIO sequences for the (basic) flow states of this EFG (2),

generate data flow subsequences for this EFG (3), generate link subsequences (4) which is

not yet implemented, transform subsequences to TICN test cases (5) or if you want to

quit ProTeGe (0).

We always have to start with creating an EFG out of the EFSM, so option 1. After

choosing this option, the name of the input LOTOS EFSM (the SMILE output) is asked.

CHAPTER 6: Implementation

Figure 6.1: State machine representation cd++.efsm

Page 63

start state~

stable basic flow-state.

instable basic flow-state •

non basic flow-state 0

Page 64 Verification of Protocol Implementations by means of Test Generation from Implementations

We type here the name of our example EFSM with a path relative to the directory in

which the tool is called. So, if this is the same directory as where ProTeGe can be found,

we type cd++.efsm. Next ProTeGe starts to scan this LOTOS EFSM, starting with

scanning all defined variables in all flowstates (processes in the LOTOS EFSM) and

writing these variables to varl.tmp. Then it scans the name and the ports of the EFSM, the

SPECIFICATION part of the EFSM, the BEHAVIOUR part and all processes (flowstates).

While doing this, the user is being informed on the progress by message lines. The stars in

the message lines for a process indicate the number of lines scanned in this process. The

next thing being done is finishing the EFG by adding incoming and outgoing transitions of

flowstates. At the end the user is informed about some statistics of the EFG, e.g. how

many transitions and states are constructed to form the EFG. After this the main menu is

shown again.

The next option we can choose is making UIO sequences, generating data flow sequences,

generating link sequences or even a suboption in transformation to TTCN, making control

flow TTCN test cases. If we choose making UIO sequences (2), ProTeGe first calculates

basic sequences for constructing UIO sequences (BAS_SEQ...FILE), e.g. all sequences

from a basic flow state to a basic flowstate. Next it constructs the actions of these basic

sequences (BAS_ACT_FILE), and it checks which basic actions contain variables

(BAS_UNIQ...FILE) which will not be used for constructing UIO sequences. Then the

maximal number of steps to construct UIO sequences will be asked, e.g. how many steps

from a flowstate to another flowstate. The default is the square of the number of basic

flow states. Calculating will continue until this maximal number of steps is reached or

until an UIO sequence is found for each basic flowstate. After this, the main menu is

shown again.

If we choose to generate data flow subsequences (3), the maximal length of such a

sequence in states (also input, output, internal events and choice states) is asked. This

maximal length doesn't include the extensions from the start and end of such a sequence

to the nearest basic flowstate. Then it is asked if you want to have sequences derived for

'inputs' being formed by a constant call or by a real input of a variable (or both). During

calculating these sequences the user is being informed about the progress, e.g. the present

length of the sequences to check if they are all right.

If we choose generating link sequences (4), a message is given that this option is not yet

implemented.

CHAPTER 6: Implementation Page 65

If we have constructed all these sequences we can transfonn them to TICN test cases and

also derive TICN test cases for the control flow. It is asked whether you want to make

TICN control flow test cases, TICN data flow test cases or TICN link test cases. If you

choose control flow test cases, also the UIO sequences are transfonned to TICN test case

parts. At the end we choose 0 to quit the ProTeGe.

§ 6.9 Conclusions and recommendations

If we look at the results we can say a tool has been developed that can help by testing

implementations of protocols specified in LOTOS. However, some action is needed from

the user to rewrite the input LOTOS EFSM and to test the executability of the calculated

test cases. For example, if we take the example protocol and we want to apply the UIO

sequence for flowstate 11, we have to provide that tries_71_1 when starting in flowstate

11 equals 0, because otherwise the condition for going from flowstate 10 to IUT output

L! SABM can never be true. In relation also with these conditional jumps a number of data

flow test sequences cannot be executed: DFL_I, DFL_3, DFL_6, DFL_7, DFL_9 and

DFL_12. But the tool provides the basic tools for constructing a number of tests for a

protocol in both the field of control flow and data flow.

Unfortunately the tool is not tested exhaustively. Besides for the inputfile cd, used in the

example session and given in the appendices ProTeGe has been used to derive test cases

for a more complex version of this protocol called coo. This protocol has also been

adapted for this purpose with the methods of section 5.5. This protocol consists of 36

flowstates. No errors appeared when using ProTeGe and the time necessary to get all

TICN test cases was in the order of a few minutes. Another protocol called lapb

containing about the same number of flowstates as cdo but much more transitions and

more complex conditional transitions had no problems when deriving the EFG, but

because this protocol was not rewritten with the methods of section 5.5 there were too

many real input variables to derive reasonable test cases in a reasonable time.

There are several possibilities to improve the tool. First of all, ProTeGe doesn't have a

graphical user interface which would be more user friendly in showing the various

possibilities and the results. Also, for showing the intermediate and final outputfiles and

offering possibilities to change these files in relation to non-executable sequences (these

sequences can be removed) or a restricted number of test cases some tools could be

developed. These tools should be able to provide reading and changing the files for

Page 66 Verification of Protocol Implementations by means of Test Generation from Implementations

example between deriving test sequences and transfonning them to ITCN. To be able to

check executability some link to SMILE or some simple tools to traverse the EFG could

be provided. Another improvement that can be realized quite easily is the possibility to

quit ProTeGe between the different steps and returning to it without losing infonnation.

This would require the infonnation in the structure efg to be stored in some file instead of

in a structure. A very obvious amelioration is providing a tool that can derive link

sequences between basic flowstates. This can be easily done by a breadth-first search in

the EFG from a basic flowstate to another (or to one reset basic state and back). For

transfonning these sequences to TTCN the same procedure as for transfonning UIO

sequences and data flow sequences can be used with only some minor adaptations for the

header and for the comment. A next improvement would be the amelioration of the

procedure to derive UIO sequences. At this moment the first UIO sequence that is found is

chosen. This can result in bad UIO sequences like the one for flowstate 7 only containing

one inputaction of the UIO. An improvement would be to show all found UIO sequences

for a state and asking the user which one has to be chosen or whether searching new ones

should continue. Also improving the method by choosing UIO sequences with the UIOv­

method is recommendable. This would require a tool perfonning the two procedures in

section 5.7. A tool combining several test cases can decrease the number of test cases to

be executed. For example in case of loops in the case of data flow chains there is no need

to consider each loop as another test case. Finally, a tool choosing the best order of

executing the various test cases in order to have minimal link sequences and giving the

best possibilities to go to the beginning of the next test case when entering an

inconclusive-path or fail-path can improve ProTeGe.

The most complex improvement is to adapt the tool for deriving test cases for protocols

specified in other languages like SOL or Estelle. There has been tried to give a general

model to the EFG in order to have only compilers to be written which construct a similar

EFG out the specification or specification EFSM, but research is necessary to find the

differences between the languages and the impact of those differences on the adaptation of

ProTeGe.

CHAPTER 7: Conclusions

CHAPTER 7: Conclusions

Page 67

The conclusions can be divided into conclusions about the methods to be used for deriving

automatically test cases for protocols. conclusions about the tool ProTeGe developed to do

this derivation and conclusions about the applicability of this tool and the methods at the

protocol test environment of TRT.

For both control flow and data flow aspects of protocols several test methods exist. The

methods for testing control flow are more examined and applied than the rather recently

developed methods to test data flow aspects of protocols. The best control flow method to

use for developing a tool to derive test is the DIO-method because of its generality and

FSM-based approach. The data flow test method based on data flow chains was also

chosen because of its generality and possibility to improve the method in the future.

The developed tool called ProTeGe is able to derive TICN test cases for both control

flow and data flow aspects of a protocol specified in LOTOS and converted to an EFSM

with a tool called SMILE. However. it must be tested more thoroughly with bigger

protocols to detect possible errors. The tool itself can be improved in many ways of which

the most important are generating link sequences. improving the DIO sequence derivation

procedure and making it more userfriendly by providing a graphical user interface and

providing reading and changing output files. Also research has to be done about the

differences between LOTOS and other specification languages and the impact of those

differences on deriving TICN test cases and using ProTeGe. Also. the method(s) on

which ProTeGe is based needs some effort of the user like adapting the input EFSM in

order to restrict the number of test cases and making it easier for ProTeGe to derive DIO

sequences. and like checking the output test sequences for executability and finding test

values. So the developed tool is not fully automatic but tries to find acceptable test cases

with an acceptable level of user activity.

When applying the automatic test derivation methods and in especially ProTeGe to the test

environment of TRT in order to improve this environment (the aim of my project) some

difficulties arise. First of all. the test environment at TRT is not based on the conformance

testing methods used to derive automatically test sequences. Possible solutions for this

problem are changing the observation points of the test equipment or testing in an earlier

stage of development of the protocol. A second problem is the absence of formal

specifications in general and. if formally specified. the use of SDL instead of LOTOS. As

Page 68 Verification of Protocol Implementations by means of Test Generation from Implementations

already mentioned, research has to be done to how to apply the methods and ProTeGe to

SOL. A third problem is that TTCN is not used as the test language. However, a tool

exists to transform TTCN to the language used at the test environment of TRT.

In general it can be concluded that the methods and developed tool cannot be used directly

to improve the test environment of TRT, but a survey of the most important test methods

is given and a tool is developed to help deriving test sequences more easily. However,

more research can and must be done.

Glossary

Glossary

Page 69

Basic flowstate

Flowstate from which at least one inputaction takes place. These basic flowstates are used

in ProTeGe as start and endpoints of test subsequences.

=> ProTeGe, test subsequence, stable flowstate

CFG

Control Flow Graph. Graph representation of a protocol only showing the control flow

part of the protocol, so the basic structure of the protocol.

=> Control Flow, DFG, EFG

Conformance Testing

Testing method for communication protocols checking if an implementation of a protocol

acts as expected with regard to its specification.

=> Interoperability Testing

Control Flow

Part of a protocol representing the basic structure of the protocol; part of protocol that can

be represented by an FSM without conditional transitions, variable uses etc.

=> Data Flow, FSM, CFG

Data Flow Chain

Test sequence constructed by applying 10 df-chain method, testing an aspect of the data

flow. Chain starts at a definition of a variable and ends at some variable that is used in a

output or in a conditional transition to an output. This end variable must be influenced by

the defined variable.

=> 10 df-chain method, Data Flow

Data Flow

Part of the protocol enabling to lead the protocol in some direction using conditional

transitions and use of variables.

=> Control Flow, DFG

Page 70 Verification 0/ Protocol Implementations by means o/Test Generation/rom Implementations

DFG
Data Flow Graph. Graph representation of a protocol showing the data flow part of a

protocol.

=> Data Flow, CFG, EFG

EFG
Extended Flow Graph. Graph representation of a protocol showing both control and data

flow part of the protocol.

=> Control Flow, CFG, Data Flow, DFG

EFSM
Extended Finite State Machine. Finite state machine in which the states are parametrized

with some variables, allowing conditional jumps from one state to another.

=>FSM

Estelle

Formal Description Technique based on an EFSM representation.

=> FDT, EFSM, LOTOS, SDL

FDT
Formal Description Technique. Language used to specify protocols in a formal way. Most

important FDTs: LOTOS, SDL, Estelle.

=> LOTOS, SDL, Estelle

FSM
Finite State Machine. State machine representation of for example a protocol.

=> EFSM

Half Unique 10 sequence

Sequence of inputs and outputs in a protocol having at least one similar input/output (10)

sequence in the state machine that traverses different states. No one of these similar 10

sequences leads however to the same endstate.

=> Unique 10 sequence, Non Unique 10 sequence

Glossary Page 71

Interoperability Testing

Testing method for communication protocols checking if a protocol implementation can

interoperate with another protocol implementation.

=> Conformance Testing

10 dr-chain method

Input/Output Data Flow chain method. Method testing data flow part of a protocol by

making test sequences for all sequences starting with a defintion of a variable and ending

with a output use of a variable that is influenced by this definition.

=> Data Flow chain

IUT

Implementation Under Test Implementation of a protocol that is to be tested.

LITE

LOTOS Integrated Tool Environment. LOTOS toolset supporting the development of

complex real distributed and concurrent systems in the whole trajectory from specification

to implementation.

=> SMILE

LOTOS

Language Of Temporal Ordering Specification. FDT for the formal specification of open

distributed systems, which are seen as processes, possibly consisting of a hierarchy of

several SUb-processes.

=> FDT, SDL, Estelle

MUIO method

Multiple Unique Input/Output method. Variant of UIO method using multiple UIO

sequences.

=> UIO method

NFT

Normal Form Transition. Simplified form of Estelle transitions.

=> Estelle

Page 72 Verification of Protocol Implementations by means of Test Generation from Implementations

Non Unique 10 sequence

Sequence of inputs and outputs in a protocol having at least one similar input/output (10)

sequence in the state machine that traverses different states, leading to a same endstate.

=> Unique 10 sequence, Half Unique 10 sequence

Overlap method

Method deriving test sequences for states using partial overlap of these sequences in order

to reduce the total sequence.

ProTeGe

Protocol Test Generator. Developed tool to derive TTCN test cases for control and data

flow of a protocol represented as a LOTOS EFSM.

=> TTCN, Control Flow, Data Flow, LOTOS, EFSM

PUIO method

Partial Unique Input/Output method. Variant of the UIO method using partial test

sequences.

=>UIO

RCPT

Rural Chinese Postman Tour. A minimum cost roundtrip in a graph involving a selected

set of edges.

SDL

Specification and Description Language. FDT based on a EFSM model, designed as a

means of support to the specification and description process of telecommunication

systems.

=> FDT, LOTOS, Estelle

SMILE

Tool of LITE, acting asa symbolic simulator for protocols specified in LOTOS. Can also

derive LOTOS EFSMs which are used as inputfile for ProTeGe.

=> LITE, LOTOS, EFSM, ProTeGe

Glossary

Stable flowstate

Flowstate from which only inputactions take place.

=> Basic flowstate

Page 73

Test sequence

Concatenated test subsequences. However, in this report often test sequences is used when

test subsequences was intended when wrong understanding was not probable.

=> test subsequence

Test subsequence

Sequence of input symbols for a protocol causing certain outputs by the implementation.

Such a sequence is used for testing some aspect of a protocol.

=> test sequence

Transition Tour

Method to check a protocol implementation by traversing all nodes of the graph

representation of the protocol.

TTCN

Tree and Tabular Combined Notation. Language used to describe test cases of protocols.

UIO method

Unique Input/Output method. Method for checking a state in a state machine by searching

for unique input/output sequences starting at this state to be tested.

=> Unique 10 sequence

UIOv method

Variant of the UIO method based on the observation that the uniqueness of UIO sequences

may not hold in a faulty implementation.

=> UIO method

Unique 10 sequence

Unique Input/Output sequence. Sequence of inputs and outputs in a protocol having no

similar input/output (10) sequence in the state machine that traverses different states.

=> Non Unique 10 sequence, Half Unique 10 sequence

Bibliography

Bibliography

Page 75

[AhDaLeUy88]

[AhHoU176]

[Al90]

[BoBr87]

[BoUy9Il

[Br88]

[BrAlLa90]

[BrScSt87]

[BuKrKw90J

Aho A.V., Dahbura A.T., Lee D., Uyar M.D.
An optimization technique for protocol CJ)IIfonnance test generation based on UIO sequences and Rural Chinese

Postman Tours

Protocol Specification, Testing and Verification, VIII, Page 75-86

Elseviers Science Publishers B.V. (North-Holland), 1988

also in:

IEEE Trans. on Communications, Vol 39, No 11, P 1604-1615, November 1991

Aho A.V., Hopaoft J.E., Ullman J.D.

The Design and Analysis of Computer Algorithms

Addison-Wesley, Reading, MA, p 207-209,1976

Alderen R.

COOPER the compositional constnlCtioll of a canonical tester

Formal Description Techniques II

S.T. Vuong (Editor) Elsevier Science Publishers <North-Holland), 1990

Bolognesi T., Brinksma E.

Introduction to the ISO Specification umguage LOTOS

Computer Networks and ISDN Systems Vol 14, No 1, P 25-59, 1987

Elsevier Science Publishers B.V. <North-Holland), 1987

Bosik B.S., Uyar M.D.
Finite state machine based formal methods in protocol performance testing: from theory to implementation

Computer Netw. and ISDN systems, Vol 22, No 1, P 7-33,1991

Brinksma E.

A theory for the derivation of tests

Protocol Specification, Testing and Verification VIII

Elseviers Science Publishers B.V. (North-Holland), IFIP 1988

Brinksma E., Alderen R., Langerak R., Lagemaat J. v.d, Termans J.

A Formal Approach to Conformance Testing

Formal Description Techniques II

S.T. Vuong (Editor), Elsevier Science Publishers <North-Holland), 1990

Brinksma E., Sco110 G., Steenbergen C.

LOTOS speci{icatioIlS, their implementations and their tests

Protocol Specification, Testing and Verification, VI. Page 349-360

Elseviers Science Publishers B.V. (North-Holland), IFIP 1987

Burgt S.P. v.d., Kroon J., Kwast E., Wilts H.J.

The RNL Conformance Kit

Proc. 2nd Int. Workshop on Protocol Test Systems

W. Effelsberg, L. Mackert, J. de Meer: editors

North-Holland 1990

Page 76

[Ch78)

[ChAm92)

[ChChKe90)

[ChVuIt89)

[ChVuIt90]

[0091]

[DrChBI92)

[Eer92)

[Go70)

[GuLo90)

[Gu)

Verification of Protocol Implementations by means of Test Generation from Implementations

ChowT.S.

Testing software design modeled by FSM's

IEEE Trans. on Software Eng., VOL SE-4, No 3, P 178-187, March 1978

Chun W., Amer P.D.

Improvements on WO sequence generation alld lklrtial WO sequences

12th International Symposium on Protocol Specification, Testing and Verification

Lake Buena Vista, Florida, USA, June 22-25 1992

Chen M.•S., Choi Y., Kershenbaum A.

Approaches utl7izing segment overlap to minimize test sequences

L. Logrippo, R. L. Probert, H. Ural (editors)

Protocol Specification, Testing and Verification X, p 85-98

Elseviers Science Publishers B.V. (North-Holland) 1990

Chan W.Y.L., Vuong S.T., Ito M.R.

An improved protocol test generation procedure based on WOS

Computer Communications Review, Vol 19, No 4, September 1989

Chan W.Y.L., Vuong S.T., Ito M.R.

On test sequence generation for protocols

Protocol Specification, Testing and Verification, IX, Page 75-86

Elseviers Science Publishers B.V. (North-Holland), IFIP 1990

Doombosch P,

Test derivation for full LOTOS

ISSN 0923-1714, Memoranda Informatica 91-51 TIOS 91/020

April 1991

Drayton L., Chetwynd A., Blair G.

Introduction to LOTOS through a uJorked example

Computer Communications, Vol 15 No 2 March 1992

Eertink H.

Executing LOTOS specifications: the SMlLE tool

Workshop proceedings VoU, Third Lotosphere Workshop & Seminar 1992

Gonenc G.

A method for the design of fault detection experiments

IEEE Trans. Comput., Vol C-19, p 551-558, June 1970

Gueraichi D., Logrippo L.

Derivation of Test Cases for LAPB from a LOTOS Specification

Formal Description Techniques II

S.T. Vuong (editor), Elseviers Science Publishers B.V. <North-Holland), 1990

Guillet Ph.

Manuel de metllodologie dossier du logiciel, Procedure generale

FBW 105 225, TRT internal report

Bibliography Page 77

lHa92] Hacken M.A.M. ten

Using FDT LOTOS to derive tests

graduation report

Eindhoven University of Technology, 1992

[1508807] 150 15/8807

LOTOS - a Formal Description Technique based on the temporal ordering of obserwtiorud behaviour

1988

{1509646-1,2] 15015/9646-1,2

OSI Conformance Testing Methodology and Framework, Part 1 & 2: General Principles and Absract Test Suite

Specification

{l509646-3) 150 015/9646-3

OSI Conformana Testing Methodology and Framework, Part 3: The Tree and Tabular Combined Notation (TTeN),

March 1990

TTCN Extensions (interim working document), lSOIIEC JTC lISC 21 N5077

(Kw91] Kwast E.

Towards automatic test generation for protocol data aspects

B. Jonsson, J. Parrow, B. Pehrson (editors)

Protocol Specification, Testing and Verification XI, p 333-348, <North-Holland) 1991

{lau92]

IloFaHa92]

[Lot92]

[Ma92]

{MiPa91J

[MiPa92]

[NaSa92]

Lau Y.M.

Ewluation of Lite toolset

Philips Natlab internal report, 1992, Eindhoven

Logrippo L., Fad M., Haj-Hussein M.

An introduction to LOTOS: learning by examples

Computer networks and ISDN systems 23 (I992), page 325-342

The Lotosphere Consortium

Parts of the Lotosphere Ute user manual

1992

Manas J.A.

Getting to use Lite

Workshop proceedings VoU, Third Lotosphere Workshop 8£ Seminar, August 21,1992

Miller R.E., Paul 5.

Generating minimal length test sequena for conformana testing of communication protocols

IEEE INFOCOM '91

Miller R.E., Paul 5.

Generating conformana test sequenas for combined control and datJJ flow of communication protocols

12th International Symposium on Protocol Specification, Testing and Verification

Lake Buena Vista, Florida, USA, June 22-251992

Naik K., Sarikaya B.

Testing Communicating Protocols

IEEE Software, January 1992, p 27-37

Page 78

[RaWe85]

[SaB082]

[SaBoCe87]

[SaDa88]

[ShLoDa92]

[SiLe89]

[SuShLoSc91]

[Tre90]

[TriSa91]

[Ur87]

[Ur92]

[UrYa91]

Verification of Protocol Implementations by means of Test Generation from Implementations

Rapps S., Weyuker E.].

Selecting software test data using data flaw informJJtion

IEEE Trans. on Software Engineering, Vol 11, No 4, P 367-375, April 1985

Sarikaya B., Bochmann G.v.

Some experience with test sequence getleration

(c. Sunshine editor) Protocol Specifications, Testing and Verification II

North-Holland 1982, p 555-567

Sarikaya B., Bochmann G. v., Cerny E.

A test design methodology for protocol testing

IEEE Trans. on Software Engineering, Vol 13, No 5, P 518-539, May 1987

Sabnani K.K., Dahbura A.T.

A protocol test generation procedure

Computer Networks and ISDN Syst. 15, P 285-297, 1988

Shen Y.-N., Lombardi F., Dahbura A.T.

Protocol ConformJJnce Testing Using Multiple UIO Sequences

IEEE Tr. on Communications, Vol 40, No 8, P 1282-1287, August 1992

Sidhu D.P., Leung T.-K.

FOrmJJl methods for protocol testing: a detailed study

IEEE Trans. on Software Engineering, Vol 15, No 4, P 413-426, April 1989

Sun X., Shen Y.-N., Lombardi F., Sciuto D.

Protocol conformance testing by discriminating UIO sequences

B. Jonsson, J. Parrow, B. Pehrson (editors)

Protocol Specification, Testing and Verification XI, p 349-364, (North-Holland) 1991

Tretmans].

Test Case Derivation from LOTOS Specifications

Formal Description Techniques II

S.T. Vuong (editor), Elseviers Science Publishers B.V. (North-Holland), 1990

Tripathy P., Sarikaya B.

Test Generation from LOTOS Specifications

IEEE Transactions on Computers, Vol 40, No 4 April 1991

Ural H.

Test sequence selection based on static data flow analysis

Computer Communications, Vol 10, No 5, P 234-242, October 1987

Ural H.

FOrmJJl methods for test sequence generation

Computer Communications, Vol 15, No 5, P 311-325, June 1992

Ural H., Yang B.

A test sequence selection method for protocol testing

IEEE Trans. on Communications, Vol 39, No 4, April 1991

Bibliography Page 79

[VeSchZo92] Velthuys R.J... Schneider J.M... Zomtlein G.

A test derivation method based on exploiting structure information

12th International Symposium on Protocol Specification, Testing and Verification

Lake Buena Vista, Florida, USA, June 22-25 1992

[ViPiLa92] Vissers C.A... Pires L.F., Lagemaat J. v.d.

Lotosphere, an attempt towards a design culture

Workshop proceedings VoU, Third Lotosphere Workshop 8£ Seminar, July 27, 1992

[WaHu87) Wang B., Hutchinson D.

Protocol testing techniques

Computer Communications, Vol 10, No 2, P 79-87, April 1987

[WaLi92] Wang C.J., Liu M.T.

A test suite generation method for Extended Finite State Machines using axiomatic semantics approach

12th International Symposium on Protocol Specification, Testing and Verification

Lake Buena Vista, Florida, USA, June 22-25 1992

[We921 Wezeman C.D.

Deriving tests from LOTOS specifications

Workshop proceedings Vol.l, Third Lotosphere Workshop 8£ Seminar 1992

[WeBaLy91] Wezeman C.D., Batley S., Lynch J.A.

Formal Methods to Assist Conformance Testing

Formal Description Techniques III

J. Quemada, J. Mafias, E. Vazquez (editors)

Elseviers Science Publishers B.V. (North-Holland), 1991

Appendix A: trUl1ceflle for ProTeGe Page A-I

CFLAGS=

OBJ=

INC=

-g

main.o \
makeefg.o \
makeuio.o \
gendflow.o \
linksubs.o \
ttcn.o

typedef.h efghead.h

protege $ (OBJ)

cc -0 protege $ (OBJ)

main.o : $(INC) main.c

makeefg.o $(INC) makeefg.c

makeuio.o $ (INC) makeuio.c

gendflow.o $(INC) gendflow.c

linksubs.o $ (INC) linksubs .c

ttcn.o $(INC) ttcn.c

all:
touch *.c
make

Appendix B: SMILE input cd+.efsm

specification connection_disconnection [L,U] :noexit
library NaturalNumber, DecNatRepr, DecDigit, Boolean endlib

type L_Frame_type is
sorts L_Frame_sort
opns SABM,UA,DISC,DM -> L_Frame_sort
endtype

type U_Frame_type is
sorts U_Frame_sort
opns ConReq, DiscReq: -> U_Frame_sort
endtype

Page B-]

type
opns
eqns

control_I_type is Boolean, L_Frame_type
_e~,_ne_ : L_Frame_sort,L_Frame_sort -> Bool

forall x,Y:L_Frame_sort
ofsort Bool

x = y =>
x eq y = true;
x ne y = not (x eq y) ;
SABM eq UA = false;
SABM eq DISC = false;
SABM eq DM false;
UA eq SABM false;
UA eq DISC false;
UA eq DM = false;
DISC eq SABM = false;
DISC eq UA false;
DISC eq DM false;
DM eq SABM false;
DM eq UA = false;
DM eq DISC false

endtype (* control_I_type *)

type control_u_type is Boolean, U_Frame_type
opns _e~,_ne_ : U_Frame_sort,U_Frame_sort
eqns

-> Bool

forall x,Y:U_Frame_sort
ofsort 8001

x = y =>
x eq y true;
x ne y = not(x eq
ConReq eq DiscReq
DiscReq eq ConReq

endtype (* control_u_type *)

behaviour connection[L,·U]

where

y) ;

false;
= false

process connection [L,U] :noexit:=
L?lf:L_Frame_sort[lf eq DM]; connect_res [L,U] (Natnum(O))

[)

U?uf:U_Frame_sort[uf eq ConReq); connect_res [L,U) (Natnum(O))
[)

Appendix B: SMILE input cd+.ejsm

L?lf:L_Frame_sort[lf eq DISC]; L!DM; connection [L,U]
[]

L?lf:L_Frame_sort[lf eq SABM]; (L!DM; connection[L,U]
[]

L!UA; disconnection [L,U]I
endproc

process connect_res [L,U] (tries:natl :noexit:=
[tries ne NatNum(21] -> (L!SABM;

(L?lf:L_Frame_sort[lf eq SABM]; L!UA; disconnection [L,U]
[]

L?lf:L_Frame_sort[lf eq UA]; disconnection [L,U]
[]

L?lf:L_Frame_sort[lf eq DISC]; L!UA; connection[L,U]
[]

i; connect_res [L,U] (succ(trieslll I
[]

[tries eq natnum(21] -> L!DM; connection [L,U]
endproc
process disconnection [L,U] :noexit:=

U?uf:U_Frame_sort[uf eq DiscReq]; L!DISC;
(L?lf:L_Frame_sort[lf eq DM]; connection[L,U]

[]

L?lf:L_Frame_sort[lf eq UA]; connection[L,U]
[]

L?lf:L_Frame_sort[lf eq DISC];L!UA; connection [L,U]I
[]

L?lf:L_Frame_sort[lf eq DISC]; L!UA; connection [L,U]
[]

i; L!DM; connection [L,U]
endproc

endspec

Page B-2

Appendix C: Adapted SMILE output EFSM cd++.ejsm Page Col

SPECIFICATION connection_disconnection [L, Uj: noexit{* EFSM generated by SMILE *)

BEHAVIOUR
Statel [L, Uj
WHERE

PROCESS Statel [L, Uj : noexit .-
L ?SABM;

State2 [L, Uj
[j L ?DISC;

State9 [L, Uj
[j U ?ConReq;

StatelO [L, Uj (Natnurn{O))
[j L ?DM;

StatelO [L, Uj (Natnurn{O))
ENDPROC

PROCESS State2 [L, Uj: noexit .-
L lUA;

State3 [L, Uj
[j L !DM;

Statel [L, Uj
ENDPROC

PROCESS State3 [L, Uj: noexit .-
(*i*) i ;

State4 [L, Uj
[j L ?DISC;

StateS [L, Uj
[j U ?DiscReq;

State6 [L, Uj
ENDPROC

PROCESS State4 [L, Uj: noexit .-
L IDM;

Statel [L, Uj
ENDPROC

PROCESS StateS [L, Uj: noexit .-
L !UA;

Statel [L, Uj
ENDPROC

PROCESS State6 [L, Uj: noexit .-
L IDISC;

State? [L, Uj
ENDPROC

PROCESS State? [L, Uj: noexit .-
L ?DISC;

StateS [L, Uj
[j L ?UA;

Statel [L, Uj
[] L ?DM;

Statel [L, Uj

Appendix C: Adapted SMILE output EFSM cd++.ejsm

ENDPROC

PROCESS StateS [L, Uj: noexit
L !UA;

Statel [L, Uj
ENDPROC

PROCESS State9 [L, Uj: noexit
L !DM;

Statel [L, Uj
ENDPROC

PROCESS StatelO (L, Uj (tries_71_0:natl: noexit
[(tries_71_0 eq Natnum(21lj -> L !DM;

Statel [L, Uj
[j [(tries_71_0 ne Natnum(21lj -> L !SABM;

Statell [L. Uj (tries_71_01
ENDPROC

PROCESS Statell [L, Uj (tries_71_1:natl: noexit
(*i*l i ;

StatelO [L, Uj (succ(tries_71_11 I
[j L ?DISC;

State12 [L, Uj
[j L ?UA;

State3 [L. Uj
[j L ?SABM;

State13 [L, Uj
ENDPROC

PROCESS State12 [L, Uj : noexit .-
L lUA;

Statel [L, Uj
ENDPROC

PROCESS State13 [L, Uj: noexit .-
L !UA;

State3 [L, Uj
ENDPROC

ENDSPEC

Page C·2

Appendix D: srATE_FlLE_2 for cd++.efsm (3-column style) Page D-J

@ST 1 @ST 6 51
S 1 F 9 @OUT
@ACT @ACT 14
@VAR @VAR 16
@IN @IN 18
@OUT 5
1 @OUT @ST 12

34 o 2
@ST 2 @ACT L 10M
F 1 @ST 7 @VAR
@ACT I 3 @IN
@VAR @ACT U ?ConReq 12
@IN @VAR @OUT
1 @IN 13
13 6
21 @OUT @ST 13
23 7 X 1
29 @ACT i
31 @ST 8 @VAR
33 F 10 @IN
35 @ACT 14
37 @VAR d @OUT
49 tries_71_0 15
@OUT @IN
2 7 @ST 14
4 9 F 4
6 41 @ACT
8 @OUT @VAR

36 @IN
@ST 3 38 15
I 1 @OUT
@ACT L ?SABM @ST 9 20
@VAR I 4
@IN @ACT L ?DM @ST 15
2 @VAR I 5
@OUT @IN @ACT L ?OISC
3 8 @VAR

@OUT @IN
@ST 4 9 16
F 2 @OUT
@ACT @ST 10 17
@VAR o 1
@IN @ACT L IUA @ST 16
3 @VAR F 5
@OUT @IN @ACT
10 10 @VAR
12 @OUT @IN

11 17
@ST 5 @OUT
I 2 @ST 11 22
@ACT L ?DISC F 3
@VAR @ACT @ST 17
@IN @VAR I 6
4 @IN @ACT U ?OiscReq
@OUT 11 @VAR
5 45 @IN

Appendix D: STATE_F1LE_2 for cd++.efsm (3-column style) Page D-2

18 26 37
@OUT @OUT
19 27 @ST 30

o 9
@ST 18 @ST 24 @ACT L ISABM
F 6 F 8 @VAR
@ACT @ACT @IN
@VAR @VAR 38
@IN @IN @OUT
19 27 39
@OUT @OUT
24 32 @ST 31

F 11
@ST 19 @ST 25 @ACT
o 3 I 8 @VAR d
@ACT L IDM @ACT L ?UA tries_71_1
@VAR @VAR @IN
@IN @IN 39
20 28 @OUT
@OUT @OUT 40
21 29 42

44
@ST 20 @ST 26 46
o 4 I 9
@ACT L IUA @ACT L ?DM @ST 32
@VAR @VAR X 2
@IN @IN @ACT i
22 30 @VAR
@OUT @OUT @IN
23 31 40

@OUT
@ST 21 @ST 27 41
o 5 o 6
@ACT L IDISC @ACT L !UA @ST 33
@VAR @VAR I 10
@IN @IN @ACT L ?DISC
24 32 @VAR
@OUT @OUT @IN
25 33 42

@OUT
@ST 22 @ST 28 43
F 7 o 7
@ACT @ACT L IDM @ST 34
@VAR @VAR F 12
@IN @IN @ACT
25 34 @VAR
@OUT @OUT @IN
26 35 43
28 @OUT
30 @ST 29 48

o 8
@ST 23 @ACT L IDM @ST 35
I 7 @VAR I 11
@ACT L ?DISC @IN @ACT L ?UA
@VAR 36 @VAR
@IN @OUT @IN

Appendix D: STATE_FlLE_2 for cd++.efsm (3-column style)

44
@OUT
45

@ST 36
I 12
@ACT L ?SABM
@VAR
@IN
46
@OUT
47

@ST 37
F 13

@ACT
@VAR
@IN
47
@OUT
50

@ST 38
o 10
@ACT L !UA
@VAR
@IN
48
@OUT
49

@ST 39
011

@ACT L lUA
@VAR
@IN
50
@OUT
51

Page D-3

Appendix E: TRANS_FlLE_1 for cd++.efsm (3-column style) Page E-1

@TR 1 @TR 12 @FROM 20
@FROM 1 @FROM 4 @TO 2
@TO 2 @TO 12 @VAR
@VAR @VAR

@TR 24
@TR 2 @TR 13 @FROM 18
@FROM 2 @FROM 12 @TO 21
@TO 3 @TO 2 @VAR
@VAR @VAR

@TR 25
@TR 3 @TR 14 @FROM 21
@FROM 3 @FROM 11 @TO 22
@TO 4 @TO 13 @VAR
@VAR @VAR

@TR 26
@TR 4 @TR 15 @FROM 22
@FROM 2 @FROM 13 @TO 23
@TO 5 @TO 14 @VAR
@VAR @VAR

@TR 27
@TR 5 @TR 16 @FROM 23
@FROM 5 @FROM 11 @TO 24
@TO 6 @TO 15 @VAR
@VAR @VAR

@TR 28
@TR 6 @TR 17 @FROM 22
@FROM 2 @FROM 15 @TO 25
@TO 7 @TO 16 @VAR
@VAR @VAR

@TR 29
@TR 7 @TR 18 @FROM 25
@FROM 7 @FROM 11 @TO 2
@TO 8 @TO 17 @VAR
@VAR c @VAR

@CONST @TR 30
@TR 19 @FROM 22

@TR 8 @FROM 17 @TO 26
@FROM 2 @TO 18 @VAR
@TO 9 @VAR
@VAR @TR 31

@TR 20 @FROM 26
@TR 9 @FROM 14 @TO 2
@FROM 9 @TO 19 @VAR
@TO 8 @VAR
@VAR c @TR 32

@CONST @TR 21 @FROM 24
@FROM 19 @TO 27

@TR 10 @TO 2 @VAR
@FROM 4 @VAR
@TO 10 @TR 33
@VAR @TR 22 @FROM 27

@FROM 16 @TO 2
@TR 11 @TO 20 @VAR
@FROM 10 @VAR
@TO 11 @TR 34
@VAR @TR 23 @FROM 6

Appendix E: TRANLFlLE_l for cd++.efsm (3-column style) Page E-2

(9'1'0 28
@VAR

@TR 35
@FROM 28
@'1'O 2

@VAR

@TR 36
@FROM 8
@'1'O 29

@VAR P
tries_71_0

@TR 37
@FROM 29
@'1'O 2

@VAR

@TR 38
@FROM 8
@'1'O 30

@VAR P
tries_71_0

@TR 39
@FROM 30
@'1'O 31
@VAR c

@TR 40
@FROM 31
@'1'O 32
@VAR

@TR 41
@FROM 32
@'1'O 8

@VAR c

@TR 42

@FROM 31
@'1'O 33
@VAR

@TR 43
@FROM 33
@'1'O 34
@VAR

@TR 44
@FROM 31
@'1'O 35
@VAR

@TR 45
@FROM 35
@'1'O 11

@VAR

@TR 46
@FROM 31
@'1'O 36
@VAR

@TR 47
@FROM 36
@'1'O 37
@VAR

@TR 48
@FROM 34
@'1'O 38

@VAR

@TR 49

@FROM 38
@'1'O 2
@VAR

@TR 50
@FROM 37
@'1'O 39
@VAR

@TR 51
@FROM 39
@'1'O 11

@VAR

Appendix F: UfO_FILE for cd++.efsm

FI

FI 11 F2 02 FI
L?SABM L!DM

FI 12 F9 07 FI
L?D1SC L!DM

Fl 13 FlO 08 FI
U?ConReq L!DM

FI 13 FlO 09 FII
U?ConReq L!SABM

FI 14 FlO 08 FI
L?DM L!DM

FI 14 FlO 09 FII
L?DM L!SABM

F3

F3 16 F6 05 F7
U?DiscReq L!D1SC

F7

F7 19 FI
L?DM

Fll

FII X2 FlO 09 FII
L!SABM

Page F-l

Appendix G: DFLOW_F1LEfor cd++.efsm Page G-l

------------------ Real Inputs ------------------
------------------ Constant Calls ------------------
canst_out tries_71_0 tries_71_0 FI 13 FlO 08 FI
canst_out tries_71_0 tries_71_0 FI 13 FlO 09 Fll
canst_out tries_71_0 tries_71_0 FI 13 FlO 09 Fll X2 FlO 08 Fl
canst_out tries_71_0 tries_71_0 FI 13 FlO 09 Fll X2 FlO 09 Fll
canst_out tries_71_0 tries_71_0 FI 13 flO 09 Fll X2 FlO 09 Fll X2 FlO 08 FI
canst_out tries_71_0 tries_71_0 FI 13 FlO 09 Fll X2 FlO 09 Fll X2 FlO 09 Fll
canst_out tries_71_0 tries_71_0 FI 14 FlO 08 FI
canst_out tries_71_0 tries_71_0 FI 14 FlO 09 Fll
canst_out tries_71_0 tries_71_0 FI 14 FlO 09 Fll X2 FlO 08 FI
canst_out tries_71_0 tries_71_0 FI 14 FlO 09 Fll X2 FlO 09 Fll
canst_out tries_71_0 tries_71_0 FI 14 FlO 09 Fll X2 FlO 09 Fll X2 flO 08 FI
canst_out tries_71-0 tries_71_0 FI 14 FlO 09 Fll X2 FlO 09 Fll X2 FlO 09 Fll

Appendix H: CFLOW_ITCN_FlLE for cd++.efsm

Test Case Control Flow

Purpose: Testing input 'L ?SABM' from flowstate F1
Identifier: CFL_1

Line Behaviour Description Verdict

1 L !SABM
2 L ?UA
3 +UIO sequence state F3 PASS
4 L ?DM
5 START TIMER
6 ?TIME OUT
7 +UIO sequence state F1 PASS
8 ?OTHERWISE FAIL
9 ?OTHERWISE FAIL

10 ?EXPlRATION OF TIMER FAIL

COMMENTS:
Line 1 Start in F1, check input 'L ?SABM'
Line 5: Checking if state F1 is stable

Test Case Control Flow

Purpose: Testing input 'L ?DISC' from flowstate F1
Identifier: CFL_2

Page H-1

Line

1

2
3
4
5
6
7
8

Behaviour Description

L !DISC
L ?DM

START TIMER
?TIME OUT

+UIO sequence state F1
?OTHERWISE

?OTHERWISE
?EXPlRATION OF TIMER

Verdict

PASS
FAIL
FAIL
FAIL

COMMENTS:
Line 1 Start in F1, check input 'L ?DISC'
Line 3: Checking if state F1 is stable

Test Case Control Flow

Purpose: Testing input 'u ?ConReq' from flowstate F1
Identifier: CFL_3

Appendix H: CFLOW_TTCN_FlLEfor cd++.efsm Page H-2

Line

1

2
3
4

5
6
7

8
9

10

Behaviour Description

U !ConReq
L ?DM

START TIMER
?TIME OUT

+UIO sequence state F1
?OTHERWISE

L ?SABM
+UIO sequence state F11

?OTHERWISE
?EXPlRATION OF TIMER

Verdict

PASS
FAIL

PASS
FAIL
FAIL

COMMENTS:
Line 1 Start in F1, check input 'U ?ConReq'
Line 3: Checking if state F1 is stable

Test Case Control Flow

Purpose: Testing input 'L ?DM' from flowstate F1
Identifier: CFL_4

Line Behaviour Description

1 L !DM
2 L ?DM
3 START TIMER
4 ?TIME OUT
5 +UIO sequence state F1
6 ?OTHERWISE
7 L ?SABM
8 +UIO sequence state F11
9 ?OTHERWISE

10 ?EXPIRATION OF TIMER

COMMENTS:
Line 1 Start in F1, check input 'L ?DM'
Line 3: Checking if state F1 is stable

Verdict

PASS
FAIL

PASS
FAIL
FAIL

----------------------~~---

Test Case Control Flow

Purpose: Testing input 'L ?DISC' from flowstate F3
Identifier: CFL_5

Line

1 L !DISC

Behaviour Description Verdict

Appendix H: CFLOW_ITCN_FILE for cd++.efsm Page H-3

2
3
4

5
6

7
8

L ?UA
START TIMER

?TIME OUT
+UIO sequence state Fl

?OTHERWISE
?OTHERWISE
?EXPlRATION OF TIMER

PASS
FAIL
FAIL
FAIL

COMMENTS:
Line 1 Start in F3, check input 'L ?DISC'
Line 3: Checking if state Fl is stable

Test Case Control Flow

Purpose: Testing input 'u ?DiscReq' from flowstate F3
Identifier: CFL_6

Line

1

2
3
4

5
6

7

8

Behaviour Description

U !DiscReq
L ?DISC

START TIMER
?TIME OUT

+UIO sequence state F7
?OTHERWISE

?OTHERWISE
?EXPlRATION OF TIMER

Verdict

PASS
FAIL
FAIL
FAIL

COMMENTS:
Line 1 Start in F3, check input 'u ?DiscReq'
Line 3: Checking if state F7 is stable

Test Case Control Flow

Purpose: Testing input 'L ?DISC' from flowstate F7
Identifier: CFL_7

Line

1

2
3
4

5
6
7

8

Behaviour Description

L !DISC
L ?UA

START TIMER
?TIME OUT

+UIO sequence state Fl
?OTHERWISE

?OTHERWISE
?EXPlRATION OF TIMER

Verdict

PASS
FAIL
FAIL
FAIL

Appendix H: CFLOW3TCN_FILEfor cd++.efsm

COMMENTS:
Line I Start in F7, check input 'L ?DISC'
Line 3: Checking if state FI is stable

Test Case Control Flow

Purpose: Testing input 'L ?UA' from flowstate F7
Identifier: CFL_8

Page H-4

Line

I
2

Behaviour Description

L IUA

+UIO sequence state FI

Verdict

PASS

COMMENTS:
Line I: Start in F7, check input 'L ?UA'

Test Case Control Flow

Purpose: Testing input 'L ?DM' from flowstate F7
Identifier: CFL_9

Line

I
2

Behaviour Description

L 10M

+UIO sequence state FI

Verdict

PASS

COMMENTS:
Line I: Start in F7, check input 'L ?DM'

Test Case Control Flow

Purpose: Testing input 'L ?DISC' from flowstate FII
Identifier: CFL_IO

Line

I

2
3

4
5

6
7

Behaviour Description

L !DISC
L ?UA

START TIMER
?TIME OUT

+UIO sequence state FI
?OTHERWISE

?OTHERWISE

Verdict

PASS
FAIL
FAIL

Appendix H: CFLOW_ITCN_FILEfor cd++.efsm Page H-5

8 I ?EXPlRATION OF TIMER FAIL

COMMENTS:
Line I Start in FII, check input 'L ?DISC'
Line 3: Checking if state FI is stable

Test Case Control Flow

Purpose: Testing input 'L ?UA' from flowstate FII
Identifier: CFL_II

Line

I

2

Behaviour Description

L !UA
+UIO sequence state F3

Verdict

PASS

COMMENTS:
Line I: Start in FII, check input 'L ?UA'

Test Case Control Flow

Purpose: Testing input 'L ?SABM' from flowstate FII
Identifier: CFL_12

Line

I

2
3
4
5

Behaviour Description

L !SABM
L ?UA

+UIO sequence state F3
?OTHERWISE
?EXPlRATION OF TIMER

Verdict

PASS
FAIL
FAIL

COMMENTS:
Line I: Start in FII, check input 'L ?SABM'

Appendix I: UIO_ITCN_FlLEfor cd++.efsm

Test Case Part UIO Sequence

Purpose: Testing uniqueness flowstate F1
Identifier: UIO_1

Page 1-1

Line

1

2
3
4

5

Behaviour Description

L !SABM
L ?DM
L ?UA
?OTHERWISE
?EXPlRATION OF TIMER

Verdict

PASS
INCONCLUSIVE
FAIL
FAIL

COMMENTS:
Line 3: Possible sidepath to output

Test Case Part UIO Sequence

Purpose: Testing uniqueness flowstate F3
Identifier: UIO_2

Line Behaviour Description Verdict

1 U !DiscReq
2 L ?DISC PASS
3 ?OTHERWISE FAIL
4 ?EXPlRATION OF TIMER FAIL
5 I
6 L ?DM INCONCLUSIVE
7 ?OTHERWISE FAIL
B ?EXPlRATION OF TIMER FAIL

COMMENTS:
Line 5 Internal Event : i
Line 6: Possible sidepath to output

Test Case Part UIO Sequence

Purpose: Testing uniqueness flowstate F7
Identifier: UIO_3

Line

1

COMMENTS:

Behaviour Description

L !DM

Verdict

PASS

Appendix I: UIO_ITCN_FILEfor cd++.efsm

Test Case Part UIO Sequence

Purpose: Testing uniqueness flowstate Fll
Identifier: UIO_4

Page 1-2

Line

1
2
3
4

5

I

Behaviour Description

L ?SABM
L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

Verdict

PASS
INCONCLUSIVE
FAIL
FAIL

COMMENTS:
Line 1 Internal Event : i
Line 3: Possible sidepath to output

Appendix J: DFLOW_ITCN_F1LEfor cd++.efsm

Test Case Data Flow

Purpose: Testing Data Flow Chain from constant call variable 'tries_71_0'
to predicate variable 'tries_71_0' (constant output)
Start in flowstate F1

Identifier: DFL_1

Page J-l

Line

1

2
3
4

5

Behaviour Description

U !ConReq
L ?DM
L ?SABM
?OTHERWISE
?EXPIRATION OF TIMER

Verdict

PASS
INCONCLUSIVE
FAIL
FAIL

COMMENTS:
Line 1

Line 3

Call to flowstate 10 in which the following variables are defined:
'tries_71_0' formed by constant call
Possible sidepath to output

Test Case Data Flow

Purpose: Testing Data Flow Chain from constant call variable 'tries_71_0'
to predicate variable 'tries_71_0' (constant output)
Start in flowstate F1

Identifier: DFL_2

Line

1

2
3
4

5

Behaviour Description

U !ConReq
L ?SABM
L ?DM
?OTHERWISE
?EXPIRATION OF TIMER

Verdict

PASS
INCONCLUSIVE
FAIL
FAIL

COMMENTS:
Line 1

Line 2

Line 3

Purpose:

Call to flowstate 10 in which the following variables are defined:
'tries_71_0' formed by constant call
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable{s) 'tries_71_0'
Possible sidepath to output

Test Case Data Flow

Testing Data Flow Chain from constant call variable 'tries_71_0'
to predicate variable 'tries_71_0' (constant output)

Appendix J: DFLOW_ITCN_FILE for cd++.efsm

Start in flowstate Fl
Identifier: DFL_3

Page J-2

Line

1

2
3
4
5
6
7

8
9

10

Behaviour Description

U !ConReq
L ?SABM

I
L ?DM
L ?SABM
?OTHERWISE
?EXPlRATION OF TIMER

L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

Verdict

PASS
INCONCLUSIVE
FAIL
FAIL
INCONCLUSIVE
FAIG
FAIL

COMMENTS:
Line 1

Line 2

Line 3

Line 5
Line 8

Call to flowstate 10 in which the following variables are defined:
'tries_71_0' formed by constant call
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'
Internal Event : i
Call to flowstate 10 in which the following variables are defined:
'tries_71_0' influenced by variable(s) 'tries_71_1'
Possible sidepath to output
Possible sidepath to output

Test Case Data Flow

Purpose: Testing Data Flow Chain from constant call variable 'tries_71_0'
to predicate variable 'tries_71_0' (constant output)
Start in flowstate Fl

Identifier: DFL_4

Line

1

2

3
4
5
6
7

8
9

10

Behaviour Description

U !ConReq
L ?SABM

I
L ?SABM
L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

Verdict

PASS
INCONCLUSIVE
FAIL
FAIL
INCONCLUSIVE
FAIL
FAIL

COMMENTS:
Line 1

Line 2

Call to flowstate 10 in which the following variables are defined:
'tries_71_0' formed by constant call
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'

Appendix J: DFLOW_ITCN_FILEfor cd++.efsm Page J-3

Line 3: Internal Event : i
Call to flowstate 10 in which the following variables are defined:
'tries_71_0' influenced by variable(s) 'tries_71_1'

Line 4 Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'

Line 5 Possible sidepath to output
Line 8 Possible sidepath to output

Test Case Data Flow

Purpose: Testing Data Flow Chain from constant call variable 'tries_71_0'
to predicate variable 'tries_71_0' (constant output)
Start in flowstate F1

Identifier: DFL_5

Line Behaviour Description Verdict

U !ConReq
L 7SABM

I

1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

L 7SABM
I

L 7DM
L 7SABM
70THERWISE
7EXPlRATION OF TIMER

L 7DM
70THERWISE
7EXPlRATION OF TIMER

L 7DM
70THERWISE
7EXPIRATION OF TIMER

PASS
INCONCLUSIVE
FAIL
FAIL
INCONCLUSIVE
FAIL
FAIL
INCONCLUSIVE
FAIL
FAIL

COMMENTS:
Line 1

Line 2

Line 3

Line 4

Line 5

Line 7
Line 10
Line 13

Call to flowstate 10 in which the following variables are defined:
'tries_71_0' formed by constant call
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'
Internal Event : i
Call to flowstate 10 in which the following variables are defined:
'tries_71_0' influenced by variable(s) 'tries_71_1'
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'
Internal Event : i
Call to flowstate 10 in which the following variables are defined:
'tries_71_0' influenced by variable(s) 'tries_71_1'
Possible sidepath to output
Possible sidepath to output
Possible sidepath to output

Appendix J: DFLOW_ITCN_FILE for cd++.efsm

Test Case Data Flow

Purpose: Testing Data Flow Chain from constant call variable 'tries_71_0'
to predicate variable 'tries_71_0' (constant output)
Start in flowstate Fl

Identifier: DFL_6

Line Behaviour Description Verdict

Page J-4

U !ConReq
L ?SABM

I

1

2
3
4
5

6
7

8
9

10
11
12
13
14
15

L ?SABM
I

L ?SABM
L ?DM
?OTHERWISE
?EXPIRATION OF TIMER

L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

PASS
INCONCLUSIVE
FAIL
FAIL
INCONCLUSIVE
FAIL
FAIL
INCONCLUSIVE
FAIL
FAIL

COMMENTS:
Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7
Line 10
Line 13

Call to flowstate 10 in which the following variables are defined:
'tries_71_0' formed by constant call
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'
Internal Event : i
Call to flowstate 10 in which the following variables are defined:
'tries_71_0' influenced by variable(s) 'tries_71_1'
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'
Internal Event : i
Call to flowstate 10 in which the following variables are defined:
'tries_71_0' influenced by variable(s) 'tries_71_1'
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'
Possible sidepath to output
Possible sidepath to output
Possible sidepath to output

• •

Test Case Data Flow

Purpose: Testing Data Flow Chain from constant call variable 'tries_71_0'
to predicate variable 'tries_71_0' (constant output)
Start in flowstate Fl

Identifier: DFL_7

Appendix J: DFLOW_ITCN_FILE for cd++.efsm Page J·5

Line

1

2
3
4

5

Behaviour Description

L !DM
L ?DM
L ?SABM
?OTHERWISE
?EXPlRATION OF TIMER

Verdict

PASS
INCONCLUSIVE
FAIL
FAIL

COMMENTS:
Line 1

Line 3

Call to flowstate 10 in which the following variables are defined:
'tries_71_0' formed by constant call
Possible sidepath to output

Test Case Data Flow

Purpose: Testing Data Flow Chain from constant call variable 'tries_71_0'
to predicate variable 'tries_71_0' (constant output)
Start in flowstate Fl

Identifier: DFL_8

Line

1

2
3
4

5

Behaviour Description

L !DM
L ?SABM
L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

Verdict

PASS
INCONCLUSIVE
FAIL
FAIL

COMMENTS:
Line 1

Line 2

Line 3

Call to flowstate 10 in which the following variables are defined:
'tries_71_0' formed by constant call
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'
Possible sidepath to output

Test Case Data Flow

Purpose: Testing Data Flow Chain from constant call variable 'tries_71_0'
to predicate variable 'tries_71_0' (constant output)
Start in flowstate Fl

Identifier: DFL_9

Line Behaviour Description Verdict

1 L !DM
2 L ?SABM
3 I

Appendix J: DFLOW3TCN_FILEjor cd++.ejsm Page J-6

4

5
6
7

B
9

10

L ?DM
L ?SABM
?OTHERWISE
?EXPlRATION OF TIMER

L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

PASS
INCONCLUSIVE
FAIL
FAIL
INCONCLUSIVE
FAIL
FAIL

COMMENTS:
Line 1

Line 2

Line 3

Line 5
Line B

Call to flowstate 10 in which the following variables are defined:
'tries_71_0' formed by constant call
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'
Internal Event : i
Call to flowstate 10 in which the following variables are defined:
'tries_71_0' influenced by variable(s) 'tries_71_1'
Possible sidepath to output
Possible sidepath to output

Test Case Data Flow

Purpose: Testing Data Flow Chain from constant call variable 'tries_71_0'
to predicate variable 'tries_71_0' (constant output)
Start in flows tate Fl

Identifier: DFL_I0

Line Behaviour Description Verdict

1
2

3
4

5
6
7
B

9
10

L !DM
L ?SABM

I
L ?SABM
L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

PASS
INCONCLUSIVE
FAIL
FAIL
INCONCLUSIVE
FAIL
FAIL

COMMENTS:
Line 1

Line 2

Line 3

Line 4

Line 5
Line B

Call to flowstate 10 in which the following variables are defined:
'tries_71_0' formed by constant call
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'
Internal Event : i
Call to flowstate 10 in which the following variables are defined:
'tries_71_0' influenced by variable(s) 'tries_71_1'
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'
Possible sidepath to output
Possible sidepath to output

Appendix J: DFLOW_ITCN_FILEfor cd++.efsm Page J-7

Test Case Data Flow

Purpose: Testing Data Flow Chain from constant call variable 'tries_71_0'
to predicate variable 'tries_71_0' (constant output)
Start in flows tate F1

Identifier: DFL_11

Line Behaviour Description Verdict

L !DM
L ?SABM

I

1
2

3
4
5
6
7

8

9
10
11
12
13
14
15

L ?SABM
I

L ?DM
L ?SABM
?OTHERWISE
?EXPlRATION OF TIMER

L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

PASS
INCONCLUSIVE
FAIL
FAIL
INCONCLUSIVE
FAIL
FAIL
INCONCLUSIVE
FAIL
FAIL

COMMENTS:
Line 1

Line 2

Line 3

Line 4

Line 5

Line 7
Line 10
Line 13

Call to flowstate 10 in which the following variables are defined:
'tries_71_0' formed by constant call
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'
Internal Event : i
Call to flowstate 10 in which the following variables are defined:
'tries_71_0' influenced by variable(s) 'tries_71_1'
Call to flowstate 11 in which the following variables are defined:
'tries_71_1' influenced by variable(s) 'tries_71_0'
Internal Event : i
Call to flowstate 10 in which the following variables are defined:
'tries_71_0' influenced by variable(s) 'tries_71_1'
Possible sidepath to output
Possible sidepath to output
Possible sidepath to output

Test Case Data Flow

Purpose: Testing Data Flow Chain from constant call variable 'tries_71_0'
to predicate variable 'tries_71_0' (constant output)
Start in flowstate F1

Identifier: DFL_12

Appendix J: DFLOW_ITCN_FlLEfor cd++.efsm Page J-8

Line

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15

Behaviour Description

L !DM
L ?SABM

I

L ?SABM
I

L ?SABM
L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

L ?DM
?OTHERWISE
?EXPlRATION OF TIMER

Verdict

PASS
INCONCLUSIVE
FAIL
FAIL
INCONCLUSIVE
FAIL
FAIL
INCONCLUSIVE
FAIL
FAIL

COMMENTS:
Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7
Line 10
Line 13

Call to flowstate 10 in which the following variables are defined:
'tries_7l_0' formed by constant call
Call to flowstate 11 in which the following variables are defined:
'tries_7l_1' influenced by variable(s) 'tries_7l_0'
Internal Event : i
Call to flowstate 10 in which the following variables are defined:
'tries_7l_0' influenced by variable(s) 'tries_7l_l'
Call to flowstate 11 in which the following variables are defined:
'tries_7l_l' influenced by variable(s) 'tries_7l_0'
Internal Event : i
Call to flowstate 10 in which the following variables are defined:
'tries_7l_0' influenced by variable(s) 'tries_7l_l'
Call to flowstate 11 in which the following variables are defined:
'tries_7l_l' influenced by variable(s) 'tries_7l_0'
Possible sidepath to output
Possible sidepath to output
Possible sidepath to output

Appendix K: Example session ProTeGe

AUTOMATIC TEST GENERATION FROM LOTOS SPECIFICATIONS

Page K-l

1
2
3
4
5

o

Your choice? 1

Create Extended Flow Graph out of Smile EFSM
Make UIO sequences for EFG flow states
Generate Data Flow testsubsequences
Generate linksequences
Transform subsequences to TTCN

Quit

Give name of Smile output (LOTOS EFSM): cd++.efsm

State variables written to efgfiles/varl.tmp

spec: connection-disconnection
port: L
port: U

SPECIFICATION-header scanned

BEHAVIOUR-part scanned

Scanning process 1 : ** •• Ready
Scanning process 2 : ** Ready
Scanning process 3 : *** Ready
Scanning process 4 : * Ready
Scanning process 5: * Ready
Scanning process 6 : * Ready
Scanning process 7: *** Ready
Scanning process 8: * Ready
Scanning process 9: * Ready
Scanning process 10: ** Ready
Scanning process 11: •••• Ready
Scanning process 12: * Ready
Scanning process 13: * Ready

Adding incoming and outgoing transitions: ready

13 processes scanned, End Of File (Smile EFSM) reached
Extended Flow Graph consists of 39 states en 51 transitions
These states can be subdivided into:
1 Start State
13 Control Flow States
12 Input States
11 Output States
o Choice States
2 Internal States

AUTOMATIC TEST GENERATION FROM LOTOS SPECIFICATIONS

1
2
3
4

Create Extended Flow Graph out of Smile EFSM
Make UIO sequences for EFG flow states
Generate Data Flow testsubsequences
Generate linksequences

Appendix K: Example session ProTeGe Page K-2

5

o

Your choice? 2

Transform subsequences to TTCN

Quit

Calculating basic sequences for flows tate 11

Calculating actions of basic sequences

Checking variable existence in basic sequences

Give maximal number of steps for UIO-Iength (default 16): 16

Calculating step 1 of determination of UIO sequences

All uio's found

AUTOMATIC TEST GENERATION FROM LOTOS SPECIFICATIONS

1
2
3
4

5

o

Your choice? 3

Create Extended Flow Graph out of Smile EFSM
Make UIO sequences for EFG flow states
Generate Data Flow testsubsequences
Generate linksequences
Transform subsequences to TTCN

Quit

Give maximal length of sequences to look for (max 500 states) : 200

For which 'inputs' do you want to derive Data Flow testsubsequences?

1
2
3

o

Your choice? 1

Inputs of Variables and Constant Calls
Only Inputs of Variables
Only Constant Calls

No derivation Data Flow testsubsequences

Calculating Data Flow subsequences for real inputs length of sequence none
Calculating Data Flow subsequences for constant calls. length of sequence 4

AUTOMATIC TEST GENERATION FROM LOTOS SPECIFICATIONS

1
2
3
4

5

o

Your choice? •

Create Extended Flow Graph out of smile EFSM
Make UIO sequences for EFG flow states
Generate Data Flow testsubsequences
Generate linksequences
Transform subsequences to TTCN

Quit

NOT YET IMPLEMENTED

Appendix K: Example session ProTeGe

AUTOMATIC TEST GENERATION FROM LOTOS SPECIFICATIONS

Page K-3

1
2
3
4
5

o

Your choice? 5

Create Extended Flow Graph out of Smile EFSM
Make UIO sequences for EFG flow states
Generate Data Flow testsubsequences
Generate linksequences
Transform subsequences to TTCN

Quit

Which sequences do you want to have transformed to TTCN?

1
2
3
4

o

Your choice? 1

Control Flow, Data Flow and Link subsequences
Only Control Flow sUbsequences
Only Data Flow subsequences
Only Link subsequences

No transformation to TTCN

Transformation of Control Flow subsequences to TTCN
Transformation of UIO sequences to TTCN
Transformation of Data Flow subsequences to TTCN
Transformation of link subsequences to TTCN not yet implemented

AUTOMATIC TEST GENERATION FROM LOTOS SPECIFICATIONS

1
2
3
4
5

o

Your choice? 0

Create Extended Flow Graph out of Smile EFSM
Make UIO sequences for EFG flow states
Generate Data Flow testsubsequences
Generate linksequences
Transform subsequences to TTCN

Quit

Appendix L: Source Code ProTeGe Page L-l

/***

*
* File I typedef.h

* Description I

This header file contains all type definitions used in the other modules and all macro definitions
for all used files in these modules.

* Editor I M.F. van Opstal

* Version I 30-7-1993

**/

1* TYPE DEFINITIONS *1

typedef struct port_tp
(char

struct port_tp
) port_type;

name[80);
*next;

1* name of port *1
1* next port *1

typedef struct
(char

port_type
int

efg_tp
name[80);
*ports;
num_flow,
num_input,
nUllLoutput,
nUllLintern,
nUllLchoice,
nUllLstates,
DUIrLtrans,
DUIrLvars,
nUllLbasflow;

1* specification name *1
1* chain of ports *1
1* number of flowstates *1
1* number of inputstates *1
1* number of output states *1
1* number of internal states *1
1* number of choicestates *1
1* number of total states *1
1* number of transitions *1
1* number of variables *1
1* number of basic flowstates *1

typedef struct
(FILE

files_tp
*statelfp,
*translfp,
*varlfp,
*state2fp,
*var2fp,
*infp,
*outfp,
*basseqfp,
*basact fp,
*basuniqfp,
*totseqfp,
*totactfp,
*totuniqfp,
*uiofp,
*dflowfp,
*linkfp,
*uiottcnfp,
*cflowt tcnfp,
*dflowttcnfp,
*linkttcnfp,
*smilefp;

1* filepointer to file constructed to make file with pointer state2fp *1
1* filepointer to file containing all transitions of the EFG *1
1* filepointer to file containing defined vars for each flowstate *1
1* filepointer to file containing all states of the EFG *1
1* filepointer to file containing all defined variables in the EFSM *1
1* filepointer to file containing incoming transitions for flowstates *1
1* filepointer to file containing outgoing transitions for flowstates*1
1* filepointer to file containing basic sequences for basic flowstates*1
1* filepointer to file containing actions of basic sequences *1
1* filepointer to file giving existence of variables in basic actions *1
1* filepointer to file containing all calculated sequences *1
1* filepointer to file containing all actions for the sequences*1
1* filepointer to file giving uniqueness (or not) for actions *1
1* filepointer to file containing uio sequences for all basic states *1
1* filepointer to file containing all data flow subsequences *1
1* filepointer to file containing link subsequences *1
1* filepointer to file containing TTCN uio sequences for basic states *1
1* filepointer to file containing all TTCN control flow sUbsequences *1
1* filepointer to file containing all TTCN data flow subsequences *1
1* filepointer to file containing TTCN link subsequences *1
1* filepointer to input SMILE EFSM file *1

typedef enurn (start, flow, input, output, intern, choice) state_sort_type; 1* type of state *1
typedef enurn (no, yes, half) stable_type; 1* state stable? *1
typedef enum (def, e_use, p_use) var_use_type; 1* def/use variable *1
typedef enum (nothing, in, out) var_io_type; 1* var 'input'l'output'? *1
typedef enum (mn, m_efg, !!Luio, gen_d, link_ss, ttcn) module_type; 1* which module *1

typedef struct
(int fstate;

int found;
) uio_found_type;

typedef struct
(long seq;

long act;
long uniq;

ends_type;

1* number of flowstate *1
1* showing if uio sequence is found for flowstate *1

1* position in total sequence file showing last end of file *1
1* position in total action file showing last end of file *1
1* position in total uniqueness file showing last end of file *1

1* name of variable *1
1* def/p_use/c_use variable *1
1* variable is 'input'l'output' (io-df-chain)? *1
1* next variable of same transition/state *1

var_tp
name[80);
use;
io;
*next;

typedef struct
(char

var_use_type
var_io_type
struct var_tp

var_type;

typedef enum (pass,fail,inconclusive,none) 1* pass, fail, inconclusive or none *1

int

verdict_type
struct ttcn_el_tp

typedef struct ttcn_el_tp
(char action[200),

comment [500);
verdict;
*01,
*np:

indent,
state;

1* action in this element *1

1* pass, fail, inconclusive or none *1
1* next level, the events to be executed after this event *1
1* next possibility, next alternative event *1

1* level of indention *1
1* internal number of corresponding state *1

Appendix L: Source Code ProTeGe

ttcn_el_type;

typedef struct case_tp
(int num_cflow.

num_uio,
num_dflow,
num_link;

/* number of control flow testcases */
/* number of UIO sequence testcases */
/* number of data flow testcases */
/* number of link sequence testcases */

Page L-2

/* MACRO DEFINITIONS */

ldefine STATE_FIL~l

Idefine TRANS_FIL~l

Idefine VAR_FIL~l

Idefine STATE_FIL~2

Idefine VAR_FIL~2

Idefine IN_FILE
Idefine OUT_FILE
Idefine BAS_S~FILE

Idefine BAS-ACT_FILE
Idefine BAS_UNIO-FILE
Idefine TOT_S~FILE

Idefine TOT-ACT_FILE
Idefine TOT_UNIO-FILE
Idefine UIO_FILE
Idefine DFLOW_FILE
Idefine LINK-FILE
Idefine UIO_TTCN_FILE
Idefine CFLOW_TTCN_FILE
Idefine DFLOW_TTCN_FILE
ldefine LINK-TTCN_FILE

"efgfiles/statel.tmp"
"efgfiles/transl.efg"
"efgfiles/varl.tmp"
"efgfiles/state2.efg"
"efgfiles/var2.tmp"
"efgfiles/intrans.tmp"
"efgfiles/outtrans.tmp"
"efgfiles/basseq.uio"
"efgfiles/basact.uio"
"efgfiles/basuniq.uio"
"efgfiles/totseq.uio"
"efgfiles/totact.uio"
"efgfiles/totuniq.uio"
"efgfiles/uio.seq"
"efgfiles/dflow.seq"
"efgfiles/link.seq"
"efgfiles/uio.ttcn"
"efgfiles/cflow.ttcn"
"efgfiles/dflow.ttcn"
"efgfiles/link.ttcn"

Appendix L: Source code ProTeGe

/********************************* •••• ************* ••••• -.---------_ ••••• __ ._--­

*
* File I efghead.h

* Description This header file contains extern function declarations

* Editor M.F. van Opstal

* Version I 30-7-1993

..._------_• --------_ ...•....._--------- •........ _--------_•.......• _/

/ * FUNCTION DECLARATIONS */

Page L-2

/* MAIN.C */

tifndef STDC
extern void

telse
extern void

tendif

/* MAKEFG.C */

tifndef __STDC__
extern void

telse
extern void

tendif

err () I

err (module_type. into int),

/* MAKEUIO.C */

tifndef __STDC__
extern
extern
extern
extern
extern
extern
extern
extern
extern

telse
extern
extern
extern
extern
extern
extern
extern
extern
extern

tendif

void
int
char *
char *
int
int
int
int
void

void
int
char *
char *
int
int
int
int
void

f ind.-line () ;
find.-st_Iine_next_state() ;

add_next_state();
add_next_state_begin();

is_basic() ;
is_stable I) ;
statenumber() I
f lownumber () ;

make_uio() ;

find.-linelchar *. FILE *);
find.-st_Iine_next_state(files_type * char *);

add_next_state(files_type *. char *)1
add_next_state_beginlfiles_type *. char *);

is_basic(int. files_type *);
is_stable(int. files_type *);
statenumber(int. files_type *);
flownumber(int. files_type *);

make_uio(efg_type *. files_type *1;

/* GENDFLOW.C */

tifndef __STDC__
extern int
extern void

telse
extern int
extern void

tendif

/* LINKSUBS.C */

tifndef __STDC__
extern void

telse
extern void

tendif

/* 'ITCN.C */

tifndef __STDC__
extern void

telse
extern void

tendif

is_inputstate();
gen_dflow() ;

is_inputstate(int. files_type *1;
gen_dflow(efg_type *. files_type *);

link_subseq () ;

link_subseq(efg_type *. files_type *),

to_ttcn () ;

to_ttcn(efg_type *. files_type *);

Appendix L: Source code ProTeGe

le •••••• _---_ •••• _---.-------._- ••• _--_ ••••• _----_ ••• - _.eeee __ e ._ •• _

·
Page 1.-3

• File • main.c

• Editor

• Description •
This module contains the tunction main which is the overall
structure tor calling the other submodules. Also this module
contains the error tunction which is called in all modules when
sanething is goir,g wrong.

M.F. van Opstal

• Version I 30-7-1993

printJllenu () ;
errorJllessage();

printJllenu(void);
errorJllessage(int);

eeeeee ••• ••• __ ••••• ••• ••••• eeeee ••••• /

,. INCLUDE FILES .,

tinclude <stdio.h>
tinclude ·typedet.h"
tinclude "efghead.h"

,. PREPROCESSOR COMMANDS .,

titndef __STDC__
static void
static void

telse
static void
static void

tendit

,. FUNCTION DEFINITIONS .,
, •• •••••• •••• ••• •••• ee_ee • _

·• Function main

• Description
Main tile tor generating automatically test sequences for protocols.
Gives menu tor ditterent aspects of the generation and calls the other
files it chosen.

• Arguments
int
char

• Returns

•
argc
·argv(J

• int 0

number of arguments
arguments

e._e_eeee._._. ._._._ ••• __ ._ •• • ********* ••• ******** ••• */

main(argc. argyl
int argc;
char ·argv[] ;
(

etg_type
files_type
char
char

·etg;
·tiles;
inbuf [80] ;
menu;

etg = (etg_type .) malloc(sizeof(efg_type»);
tiles = (tiles_type .) malloc(sizeot(files_type»);

do
(

do
(

printJllenu () ;
gets (inbut) ;
menu = inbut[O];

whi Ie (! ('0' <= menu < •6 •) I ;

switch (menu)
(
case '1' I

make_efg(efg. tiles),
break,

case '2'.
make_uio(etg, tiles),
break;

case '3' I

gen_dflow(etg, tiles);
break,

case '4' I

lin~subseq(etg. tiles);
break;

case '5' I

to_ttcn(etg. tiles);
break;

case '0'.
break;

detault.
break;

)
while (menu 1= '0');

Appendix L: Source code ProTeGe

free(efg)I
free(files) I
return(O)I

/************************* •••••••• *** ••••••••••••••• **** •••• ********************

"

Page 1

" Function , print.Jtlenu

"Description ,
This function prints a menu for deriving test sequences on the screen.

" Arguments

" Returns

I none

, void

********** •• *************** •••••• *************** ••• ***.***********************/

static void
print.Jtlenu (I
{

print f (• \n,-:-::====-=-===--c=====:-:=:::--:-:==-=--=:=======---;"--:-:-__\n·) I
printf(·\nAUTOMATIC TEST GENERATION FROM LOTOS SPECIFICATIONS\n\n·);
printf(·\nl Create Extended Flow Graph out of Smile EFSM·);
printf(·\n2 Make UIO sequences for EFG flow states·) I
printf(·\n3 Generate Data Flow testsubsequences·) I
printf(·\n4 Generate linksequences·)I
printfC·\nS Transform subsequences to TTCN·);
printfC·\n\nO Quit·);
printf(·\n\nYour choice? .);

/*** •••• ********************.*.*****

"
" Function err

"Description •
This function prints error messages and exits the program.

" Arguments ,
module_type module
int error

parameter

, module in which fault happened
number of error
possible parameter to give extra info

" Returns • void

********.******************************m*********************** ••••• **********/

extern void
err (module, error, parameter)
module_type module;
int error,

parameter;

switch(error)
(
case I,

print f C• \n\s cannot be opened·, VAR_FILE_l);
exit (1) ;

case 2.
print f (• \nlls cannot be opened·, TRANS_FILE_l) ;
exit (2) ;

case 3,
printf(·\nlls cannot be opened· , STATE_FILE_l) I
exit (31 I

case 4,
printf(·\nlls cannot be opened·, IN_FILE) ;
exit (4) ;

case 5,
print f (• \nlls cannot be opened-, OUT_FILE) ;
exit(S),

case 6,
print f (·\nlls cannot be opened-, STATE_FILE_2) I
exit (6) ;

case 7,
'" smile output file cannot be opened "'
exit(7);

case 8,
printf(·\nInputfile not as expected,·) I
printf(·\n'State' not found after 'PROCESS'·),
exit(811

case 9.
printf(·\nInputfile not as expected,·) I
printf(·\nEnd Of File before specification name read") I
exit (91 I

case 10,
printf(·\nInputfile not as expected,·);
printf(·\nEnd Of File before ports scanned·) I
exit(lO),

case II,
printf(·\nInputfile not as expected,·) I
printf(·\nEnd Of File before ports 'SPECIFICATION'·),
exit(ll) ;

case 12,

Appendix L: Source code ProTeGe

printf('\nCa11ing write_state() with non-existing statetype');
exit(12),

case 13,
printf('\n'STATE \d not found in varfi1e', parameter) I
exit(13),

case 14,
printf('\nInputfile not as expected,') I
printf('\nEnd Of File before ports 'BEHAVIOUR"),
exit(14);

case 15.
printf('\nInputfile not as expected,') I
printf('\nEnd Of File before ports 'WHERE")I
exit(15);

case 16,
printf('\nInputfile not as expected,');
printf('\nEnd Of File at reading line in PROCESS State\d', parameter);
exit(16)1

case 17.
printf('\nCannot decide which action while reading line in State\d', parameter);
exit(17);

case 18.
printf('\nInputfile not as expected.');
printf('\nEnd Of File at reading rest header PROCESS State\d', parameter);
exit(18)1

case 19.
printf('\nInputfile not as expected.') I
printf('\n'ENDPROC' not found');
exit(19),

case 20.
printf('\n\s cannot be opened', VAR_FILE_2);
exit(20)1

case 21.
printf('\n\s cannot be opened', BAS_SEQ_FILE);
exit(21),

case 22.
printf('\n\s cannot be opened', BAS-ACT_FILE);
exit(22);

case 23,
printf('\n\s cannot be opened', BAS_UNI~FILE)I

exit(23),
case 24.

printf('\n\s cannot be opened', TOT_SEQ_FILE);
exit(24),

case 25,
printf('\n\s cannot be opened', TOT-ACT_FILEII
exit(25);

case 26.
printf('\n\s cannot be opened', TOT_UNI~FILE)I

exit(26);
case 27.

printf('\n\s cannot be opened', UIO_FILE);
exit(27);

case 28.
/' some line not found ,/
exit (28) I

case 29.
printf('\nEOF reached in \s when not expected', TRANS_FILE_l);
exit (29) ;

case 30.
printf('\nEOF reached in \s when not expected', STATE_FILE_2);
exit(30);

case 31.
printf('\n\s cannot be opened', DFLOW_FILE) I
exit(31) ;

case 32.
printf('\n\s cannot be opened', LINK-FILE);
exit(32);

case 33,
printf('\n\s cannot be opened', CFLOW_TTCN_FILE);
exit(33) ;

case 34.
printf('\n\s cannot be opened', UIO_TTCN_FILE);
exit(34) I

case 35.
printf('\n\s cannot be opened', DFLOW_TTCN_FILE);
exit(35),

case 36.
printf('\n\s cannot be opened', LINK-TTCN_FILE) I
exit(36)I

case 37.
printf('\nUnknown verdict') I
exit (37);

default.
printf('\nUnknown error, sorry, have a nice day.\n');
exit(666);

Page L-5

Appendix L: Source code ProTeGe

/*****0** •.
Page 1

" File • makeefg.c

"Description •
This module creates an Extended Flow Graph (EFG) out of a description of a protocol as an EFSM as
created by Smile, the symbolic simulator of the LITE-toolset. If you choose this module from the menu
in main, the name of the Smile EFSM will be asked, after which this EFSM will be scanned and transformed
to some files of the suitable form for usage by the other modules. These files are:
- VAR_FILE-I. This file contains for all flowstates (processes I in the EFSM the defined variables in the
header. The structure of this file is as follows: For every flowstate a line 'STATE <num>', where <num>
the number of the state is as indicated in the process. After such a line a new line is created for each
defined variable and consisting only of the name of this variable.
- VAR_FILE-2: This file contains all defined variables in the EFSM, each given on a separate line. This
file is not used in this module.
- STATE_FILE-I: This file is actually a temporary file to construct STATE-FILE_2. The structure is the
same as the structure of STATE-FILE_2, except for the incoming and outgoing transitions of flowstates
which are given in the files IN_FILE en OUT_FILE.
- IN_FILE. This file contains the incoming transitions of the flowstates. During scanning each time
such a call to a flowstate is found, a line '<statenurn> <trans>' is written to this filel <statenurn> is
the number of the flowstate, <trans> is the internal number of the transition (see TRANS_FILE-I) •
- OUT_FILE. This file contains the outgoing transitions of the flowstates. The structure is the same as
the structure of IN_FILE.
- The files STATE_FILE_2 en TRANS_FILE_I are the files that describe the EFG. In STATE_FILE-2 all
flowstates, inputactions, outputactions, choice-actions and internal events are described as states.
These states are connected by transitions which are given in TRANS_FILE_I. The structures of these
files are as follows.
- STATE_FILE_2: For each state the following lines are given.

'@ST <int_num>' : <int_num> is the statenumber used to discern the various flowstates and actions.
This number is also used in TRANS_FILE-I.

'<type> <num>' : <type> gives the type of the state. This can be S (startstatel, F (flowstate),
I (inputactionl, 0 (outputactionl, X (internal event) and C (choice-actionl. <num> gives the
number for a certain type of state. For example for flowstates this is the number as indicated
in the process.

'@ACT <action>': <action> contains in case of an inputaction or outputaction this action. In other
cases the line consists only of '@ACT'.

'@VAR <var_type>, • In case of a flowstate is looked in VAR_FILE_I if there are variables defined
in the header of this flowstate. If so, <var_type> is 'd' and this line is followed by lines
each containing such a variable. In case of an inputaction <var_type> is 'd' and the line is
followed by a line containing the inputvariable. In case of an outputaction is looked if there
are any defined variables used in this outputaction. If so, <var_type> becomes 'c' and the line
is followed by lines containing these outputvariables. In case of a choicestate <var_type> is
'd' and the line is followed by a line containing the choicevariable. In other cases the line
consists only of '@VAR'.

'@IN' • This line is followed by a certain number of lines, each containing a transitionnumber
as defined in TRANS_FILE_I, which leads to this state (incoming transitionsl.

'@OUT' • This line is followed by a certain number of lines, each containing a transitionnumber
as defined in TRANS_FILE_I, which leads from this state (outgoing transitions).

- TRANS_FILE_I: For each transition the following lines are given.
'@TR <tr_num>' : <tr_num> is the transitionnumber used to discern all transitions used in this file.

This number is also used as incoming and outgoing transitions in STATE_FILE_2.
'@FROM <st_num>' : This line indicates in which state the transition starts. <st_num> is a

statenumber, as given in the '@ST <int_nurn>' line in STATE_FlLE_2.
'@TQ <st_num>': This line indicates in which state the transition ends. <st_num> is a statenumber,

as given in the '@ST <int_num>' line in STATE_FILE_2.
'@VAR <var_t~·pe>' : In case of a transition containing predicates (' [•• 1 ->' in the Smile EFSMI,

<var_type> is 'p' and the line is followed by a number of lines, each giving a variable used in
the predicates. In case of a call to a flowstate which defines variables in his header
(parameters), <var_type> is 'c'. This line is then followed by a line for each parameter. In
case that one or more variables are used to form a certain parameter, these variables are given
in this line seperated by tabs. In case a constant value is given to the parameter, the line
consists of a tab followed by '@CONST'. If the transition contains no predicates and there is
no call to a flowstate containing parameters, the line consists only of '@VAR'.

" Editor

" Version

M.F. van Opstal

30-7-1993

**/

/" INCLUDE FILES "/

linclude <stdio.h>
linclude "typedef.h"
linclude "efghead.h"

/" FUNCTION DEFINITIONS "/

1*** **************************

"
" Function

" Description
This function tries to open the necessary files in this module. Also it asks for the Smile EFSM file
and tries to open it.

pointer to all filepointers

" Returns : int
O. all OK
1: unable to open Smile EFSM file

**/

Appendix L: Source code ProTeGe

static int
open_files_efglfiles)
files_type "files,
(

Page L-7

char inbuf [80l,

if «files->varlfp = fopenlVAR_FILE_l, "w.'» == NULL)
err (m-efg, I, 0);

if ((files->translfp • fopen(TRANS_FILE_l, 'we»~ == NULL)
err (m_efg, 2, 0);

if ((files->statelfp • fopen(STATE_FILE_l. 'W.")) == NULL)
err (m_efg, 3, 0),

if (lfiles->infp • fopenIIN_FILE. 'w.')) == NULL)
err (m-efg, 4. 0),

if (files->outfp = fopen(OUT_FILE. 'w.')) == NULL)
err (m_efg, 5. 0),

if «files->state2fp = fopen(STATE_FILE_2, 'w')) == NULL)
err (m-efg, 6, 0),

if ((files->var2fp = fopenIVAR-FILE_2, 'w')) == NULL)
err (m_efg. 20. 0),

printf('\nGive name of Smile output (LOTOS EFSM) I '),

getslinbuf) ,
if (lfiles->smilefp = fopen(inbuf, 'r'» == NULL)
(

printf('\n\s cannot be opened', inbuf),
fclose(files->varlfp);
fclose(files->translfp) ,
fcloselfiles->infp) ;
fclose(files->statelfp),
fcloselfiles->outfpl;
fclose(files->state2fp) I
fclose(files->var2fp) ;
return(l) ,

l
returnlO) ;

I··· .
"
" Function

" Description
This function closes all files used in this module.

pointer to all filepointers

" Returns , void

..,
static void
close_files_efglfilesl
files_type "files;
(

fclose(files->varlfp) ;
fclose(files->translfp) ,
fclose(files->infp) ;
fclose(files->statelfp) ;
fcloselfiles->outfpl,
fcloselfiles->state2fp);
fclose(files->var2fp) ,
fclose(files->smilefp);

I··· .
"
" Function

"Description I

This function resets all num-xxx variables in the efg to O.

" Arguments I

efg_type "efg, pointer to efg to be resetted

" Returns I void

.. /

static void
inicefg(efg)
efg_type "efg;
[

efg->num-flow = 0,
efg->num-input = 0,
efg->num-output = 0;
efg->num-intern = 0;
efg->num-choice • 0,
efg->num-states = 0;
efg->num-trans = 0,
efg->num-vars = 0;
efg->num-basflow = 0,

Appendix L: Source code ProTeGe

/***************.************* •••••••••••••••• ********_. __ •••••• _---_ ••• __ •••• _.

"

Page l

" Function

"Description ,
This function calculates VAR_FILE_2. In this file all variables defined in de Smile EFSM file are given,
each on a new line. This file is not used in this module.

" Arguments I

files_type "files, pointer to all files

" Returns I void

..... _ __ - _--_ _ __ _ /

static void
calc_vars(files)
files_type "files/
(

int

char

c,
i = 0;
variable [50 l/

strcpy(variable, "");
c = fgetc(files->smilefp);
while (c != EOF)
(

if (isalnum(c) II (c == '_'))
(

variable[i++l = (char)c;
variable [il = '\0';

fo possible variable "f

)
else if «c == ',') && (strcmp(variable, "") != 0))

(
fprintf(files->var2fp, "'s\n", variable);
strcpy(variable, "")/
i = 0;

)
else
(

strcpy(variable, "");
i = 0;

fo variable "f

f" no part of variable of

c = fgetc(files->smilefp) /

/** ••••• *.* ••••••••••••••••••••••• ~***~************~**************•••••••• ~ •••••

"
" Function

"Description I

This function creates a pointer to a variable of type var_type, initiates the various members of this
type and returns the pointer.

" Arguments

" Returns

none

var_type " • pointer to initiated variable

••••••••••••••••••••••••••• ***************************---_ •••• _. __ •••• _--_ •• _./

static var_type "
init_var()
(

·temp;

temp = (var_type ") malloc(sizeof(var_type));
strcpy(temp->name, ""),
temp->use = defl
temp->io = nothing,
temp->next = NULLI
return (temp) I

1----·-----------_··_· __ ·_-_·_·_----------_···_-------_ _-----------_ .
"
" Function

"Description I

This function creates a pointer to a variable of type port_type. initiates the various members of this
type and returns the pointer.

" Arguments

" Returns

I none

I port_type " : pointer to initiated variable

•••••••••••••• •••••••• __ ••••••••••••••••••••••••••••• ** ••••••••••••••• 0 •• '

static port_type "
init_port ()
(

"temp;

temp = (port_type ") mallocCsizeofCport_typel);

Appendix L: Source code ProTeGe

strcpy(temp->name, "),
temp->next = NULL,
return (temp) ;

, _--------*-_ __ - __ -_ _---- .. _._------_._ _ .
*

Page L-9

*' Function I white

* Description ,
This function checks if the character argument is equal to a space, newline or tab.

* Arguments ,
char c • character to be checked

* Returns • int
o. c is not equal to space, newline or tab
1, c is equal to space, newline or tab

.. _----.--_ ... _-_•.•••. _----_•...•.. ---..... _•.....•....••••• _------/
static int
white(c)
char c;
(

if (c == ' ') I I (c
return(l) ,

else
return(O);

'\n') II (c '\t'))

1---····_·_·_··_·-·_·_·_·_······_-_·····_·······_--_·- -_ _.... _--_ ... _­
*
* Function • reao-statevars

Description
This function creates VAR_FILE_l. It scans all headers of processes in de smile EFSM, extracts the
statenumbers of the flowstates and the defined variables in the header of the various flowstates.
For the structure of this file, see Description module make_efg.

pointer to all used files in this module

* Returns I void

._-_._._-- _... -._------ ... _-- .. ----_._.- .. --_-----_.-._----_ ... _/

static void
reao-statevars(files)
files_type *files,
(

char
int
int
int

s [80),
statenum
i, c;
last,

0;

rewind(files->smilefp);
while (fscanf(files->smilefp, "s', s) != EOF)
(

if (strcmp(s, 'PROCESS') == 0)
(

fscanf(files->smilefp, "s', s),
if «s[O] != 'S') II (s[l) != 't') II (s[2) != 'a') II (s[3]

err (m_efg, 8, 0);

strcpy(s, &s[5);
statenum = atoi(s),
fprintf(files->varlfp, '\nSTATE 'd\n', statenum);

f* end of file reached *f

!= 't') II (s[4] != 'e'))
f* check if word after PROCESS is State *f

f* remove 'State' *f
f* number of State *f

while
while
if (c
(

((c = fgetc(files->smilefp}) != ')');
(white(c = fgetc(files->smilefp»)),

, (')

f* ignore ports *f
f* ignore possible white *f
f' start of variable declarations *f

do
(

last = 0,
fscanf(files->smilefp, "s', s);
for (i = 0; s[i) != '\0', i++)
(

if (s[i) == 'I')
last. 1,

if (s[i) Ka ',')

s[i) = '\0';
f* remove ',type' *f

)
fprintf(files->varlfp, "s\n', s);

while (last == 0);

)
printf('\nState variables written to's', VAR_FILE_ll'

,..• _ __ _ ------_ __ _-_ ---_. __ ._. __ --_.-.
*
• Function

Appendix L: Source code ProTeGe

" Description
This function reads the name of the specification and returns it in name.

Page L-

" Arguments
files_type
char

"files • pointer to files used in this module
name[80]: returns name of specification

" Returns • void

**/

static void
scan_name (files, name)
files_type "files;
char name[80j;
I

int
int

do

c;
i = 0;

c fgetc(files->smilefp); '" remove possible white "'
while «white(c» && (c 1= EDF»;

strcpy(name, ");
while «Iwhite(c» && (c 1= EOF) && (c 1= '['»
I

name[i++l = c;
name [i] = '\0' ;
c = fgetc(files->smilefp);

)
if (c == '[') ungetc(c, files->smilefp);

printf('\n\nspec: %s', name);

if (c == EOF) err (m_efg, 9, 0);

1**~*******~*******~**

"
" Function • scan_ports

" Description
This function scans the ports which are defined in the header of the specification and returns them
via the variable ports.

" Arguments •
files_type
port_type

"files
"ports

• pointer to files
pointer to variable containing all portnames

" Returns • void

.***********************************~*****************************~***********I

static void
scan_ports(files, ports)
files_type "files;
port_type "ports;
(

int
int
porCtype

c;
i

*prt;
0;

do
c = fgetc(files->smilefp);

while «white(c» && (c != EDF));
'" remove possible white "'

if Ic 1= EDF)
('" c ,[' *'

'" get first port "'

prt = ports;
c = fgetc(files->smilefp);
while «c 1= ']') && Ic 1= ',') && Ic 1= EDF»
I

prt->name[i++] = c;
prt->name[i] = '\0';
c = fgetc(files->smilefp);

)
printf("\nport. %s', prt->name);
while «c ! = ']') && (c 1= EDF»
I '" c

, ,, => next port "'

prt->next = init_port();
prt = prt->next;
i = 0;
c = fgetc(files->smilefp);
c = fgetc(files->smilefp);
while «c 1= '] ') && (c ! = ',') && (c ! = EDF»
(

prt->name[i++] = c;
prt->name[i] = '\0';
c = fgetc(files->smilefp);

I
printf('\nport. %s', prt->name);

'* space after ',' *'
'" get next port "'

Appendix L: Source code ProTeGe

if «c == EOF)) err (m-efg, la, 0);

'.e __ . _
"

Page L-ll

" Function • react..spec

"Description •
This function reads the header of the specification, e.g. it calls scan-name() and scan-POrts().

" Arguments •
efg_type
files_type

"efg
" files

pointer to efg
pointer to all files

" Returns , void

----_•....._-------_••---------------_ ---******* •••••• *********.*/

static void
react..spec(efg, files)
efg_type "efg;
files_type "files;
(

char s (80] ;

rewind(files->smilefp);
do
(

if (fscanf(files->smilefp, "'s", s) == EOF) err (m_efg, 11, 0);
while (strcmp(s, "SPECIFICATION") != 0),

scan_name (files, efg->name)1

efg->ports = init_port();
scan_ports(files, efg->ports);

fgets(s, 79, files->smilefp);

printf("\n\nSPECIFICATION-header scanned\n"),

'" scan rest of line "'

/******.**** •••••••• **** ••• *** ••• ****** •••

"
" Function

"Description ,
This function checks whether the flowstate with number <flowstate> already exists in the file designated
by fp. If so, it assigns the internal statenumber of the found state to <intern_num> and returns the
value 1. If not so, it returns O.

" Arguments
FILE
int
int

"fp : pointer to file in which the states of the EFG are constructed
flowstate : number of flowstate as in 'PROCESS StateX'
"intern_num • number of flowstate as used in statefile, line '@ST X'

char

" Returns , int
A' flowstate not found
1. flowstate found

•...•..•..••.•..••..•••........•••.....•••....•••.....•••••••••..••.•••.•.....,
static int
exist_flow(fp, flowstate, intern_num)
FILE "fp,
int flowstate,

"intern_numl

line[801,
inbuf[801,
wordl[801,
word2[8011

rewind (fp) I
sprintf (line, "F 'd\n", flowstate)I
do
(

fgets(inbuf, 79, fp);
sscanf(inbuf, "'s", wordl)1
if (strcmp (wordl , "@ST") == 0)
(

sscanf(inbuf, "'s's", wordl, word2)1
"intern-num = atoi(word2) I

I
while (!feof(fp)) && \strcmp(inbuf, line) != a»'

fflush(fp) ;
if (feof(fp)
(

return(O)I
I
else
(

fseek (fp, OL, 2);
return(1) ;

'" get possible intern statenumber "'

'" EOF or flowstate exists "'

'" flowstate exists "'

Appendix L: Source code ProTeGe

, •• ****** •••• ** •••••••••••••••••••••• ** •••

·

Page L-

• Function

• Description
This function creates STATE_FIL~2 out of STATE_FIL~l, IN_FILE and OUT_FILE. It copies line by line
STATE_FIL~l until it reaches a the '@IN'-part of a flowstate. It searches IN_FILE for the right
incoming transitions, OUT_FILE for the right outgoing transitions and adds them to STATE_FIL~2.

- Arguments :
files_type ·files I pointer to files

• Returns I void

••••••• ** ••• /

static void
update_inout(files)
files_type ·filesl
(

char

int

inbuf [200l,
word[90l,

flowstate,
flowstate2,
trans;

printf(·\n\nAdding incoming and outgoing transitions: Flowstate .),
rewind(files->state1fp) ;
while (!feof(files->state1fp»
(

strcpy(word, "");
do
(

fgets(inbuf, 199, files->statelfp);
if (!feof(files->state1fp» fputs(inbuf, files->state2fp);
sscanf(inbuf, "\s", word);

while«lfeof(files->state1fp» && (strcmp(word, "F") != 0»;

if (lfeof(files->state1fp»
(

sscanf(inbuf, "\s\d", word, &flowstate);
printf("\b\b\b\-3d", flowstate);
fflush(stdout) I

do
(

fgets(inbuf, 199, files->state1fp);
if (lfeof(files->state1fp) fputs(inbuf, files->state2fp);

while ((lfeof(files->statelfp» && (strcmp(inbut. "@IN\n") != 0»;

if (lfeof(files->state1fp»
(

rewind(files->infp) I
rewind(files->outfp)I
while (lfeof(files->infp»
(

fgets(inbuf, 199, files->infp);
sscanf(inbuf, "\d\d", &flowstate2, &trans);
if «flowstate == flowstate2) && (!feof(files->infp»)

fprintf(files->state2fp, "\d\n", trans);
}
fgets(inbuf, 199, files->state1fp);
fputs(inbuf, files->state2fp);
while (lfeof(files->outfp»
(

fgets(inbuf, 199, files->outfp);
sscanf(inbuf, "\d\d", &flowstate2, &trans},
if «flowstate == flowstate2) && (lfeof(files->outfp»}

fprintf(files->state2fp, "\d\n", trans)1

}
printf("\b\b\b\b\b\b\b\b\b\b\b\b\b ready");

/ ••••• **.** •• ** •••••••

·

/. search first flowstate ./

/. flowstate found ./

/. copy till line after '

/. add all incoming transitions ./

/. copy @OUT-line -/
/. add all outgoing transitions ./

• Function

• Description I

This function prints on standard output some statistics about the efg, e.g. number of various states.

• Arguments
efg_type "efg • pointer to efg

• Returns : void

•• * •• *** •• ,

static void
status_efg(efg}

Appendix L: Source code ProTeGe Page L-13

"efg;

printf("\n\n\d processes scanned, End Of File (Smile EFSM) reached", efg->num-flowl;
printf("\nExtended Flow Graph consists of \d states en \d transitions", efg->num-states, efg->num-trans);
printf("\nThese states can be subdivided into,"l;
printf("\nl Start State");
printf("\n\d Control Flow States", efg->num_flowl;
printf("\n\d Input States", efg->num-input);
printf("\n\d OUtput States", efg->num_output);
printf("\n\d Choice States", efg->num_choice);
printf("\n\d Internal States\n" , efg->num-internl;

1·································_-_················· _-_ _-_ ..
"
" Function

"Description •
This function writes all necessary info about a state in an writefile. This info consists of the
following lines.

QST <intern_statenum>
<state_type> <statenum>
QACT <action>
QVAR <var_type>
lines containing a variable
QIN
lines containing an incoming transition
QOUT
lines containing outgoing transitions

The exact structure is described in the Description module make_efg.

" Arguments •
FILE
state_sort_type
int
char
var_type

int
outgoing
"

"writefp
type_of_state

flowstate
act[80)
"statevars

ins, outs

"efg

pointer to file where state is to be written to
parameter indicating which type the state has (flow. input etc)

, gives in case of a flowstate the statenumber as in PROCESS StateX
, gives in case of an input or output action the complete action

• in case of a flowstate, contains all defined variables in processheader
in case of an inputstate: contains the inputvariable if existing
in case of an outputstate, contains all variables used in outputstate
in case of a choicestate, contains choicevariable

gives for all statetypes except flowstates the incoming and

transition
pointer to efg

the

" Returns : void

*._.** •••• _.- ••••• *_._.*._ -.*._.**._ .. _.******-._****---*-************/

static void
write_state (writefp, type_of_state, flowstate, act, statevars, ins, outs, efg)
FILE "writefp;
state_sort_type type_of_state;
int flowstate;
char act (80) ;
var_type "statevars;
int ins, outs;
efg_type "efg;
(

*temp_var;
intern_num,

c_use_exist = 0;

switch (type_of_state)
(
case start,

fprintf(writefp, "QST \d\n", ++efg->num_states);
fprintf(writefp, "S l\n");
fprintf(writefp, "QACT\n");
fprintf(writefp, "QVAR\n");
fprintf(writefp, "QIN\n");
if (ins 1= 0) fprintf(writefp, "\d\n", ins);
fprintf(writefp, "QOUT\n");
if (outs 1= 0) fprintf(writefp, "\d\n", outs);
fprintf(writefp, "\n");
break;

'" statevars consists of all defined vars in processheader "'
'" minimal one variable "'

case flow:
fprintf(writefp, "QST \d\n", ++efg->num_states);
efg->num-flow++;
fprintf(writefp, "F \d\n", flowstate);
fprintf(writefp, "QACT\n");
fprintf(writefp, "QVAR");
temp_var = statevars;
if (strcmp(temp_var->name, "") 1= 01
(

fprintf(writefp, " d\n");
while (strcmp(temp_var->name, "") != 0)
(

fprintf(writefp, "\s\n", temp_var->name);
temp_var = temp_var->next;

)
else
(

fprintf(writefp, "\n");

'" for all variables "'

'" no variables defined "'

Appendix L: Source code ProTeGe Page L·

I
fprintf(writefp, "@IN\n");
if (ins != 0) fprintf(writefp, "\d\n", ins);
fprintf(writefp, "@OUT\n");
if (outs 1= 0) fprintf(writefp, "\d\n", outs);
fprintf(writefp, "\n");
break;

case input:
fprintf(writefp, "eST \d\n", ++efg->num_states);
efg->num-input++;
fprintf(writefp, "I \d\n", efg->num-input);
fprintf(writefp, "iACT \s\n", act);
fprintf(writefp, "@VAR ");
if (strcmp(statevars->name, "") != 0)
(

fprintf(writefp, "d\n");
fprintf(writefp, "\s\n", statevars->namel;

1* act. total inputaction *1

1* input = variable *1

1* statevars. inputvariable *1
I
else fprintf(writefp, "\n");
fprintf(writefp, "@IN\n");
if (ins 1= 0) fprintf(writefp, "\d\n", ins);
fprintf(writefp, "@OUT\n");
if (outs 1= 0) fprintf(writefp, "\d\n", outs);
fprintf(writefp, "\n");
break;

case output.
fprintf(writefp, "eST \d\n", ++efg->num_states);
efg->num-output++;
fprintf(writefp, "0 \d\n", efg->num_output);
fprintf(writefp, "@ACT \s\n", act); 1* act. total outputaction *1
fprintf(writefp, "@VAR");
temp_var = statevars; 1* statevars: all defined/used variables in process *1
while (strcmp(temp_var->name, "") 1= 0)
(

if (temp_var->use == c_use) && (c_use_exist == 01)
(

c_use_exist = 1;
fprintf(writefp, " c\n");
fprintf(writefp, "\s\n", temp_var->name);

I
else if «(temp_var->use == c_use) && (c_use_exist

fprintf(writefp, "\s\n", temp_var->name);
temp_var = temp_var->next;

)
if (c_use_exist == 0) fprintf(writefp, "\n");
fprintf(writefp, "@IN\n");
if (ins != 0) fprintf(writefp, "\d\n", ins);
fprintf(writefp, "@OUT\n");
if (outs != 0) fprintf(writefp, "\d\n", outs);
fprintf(writefp, "\n");
break;

case intern,
fprintf(writefp, giST \d\n", ++efg->num_states);
efg->num-intern++;
fprintf(writefp, "X \d\n", efg->num_intern);
fprintf(writefp, "@ACT \s\n", act);
fprintf(writefp, "@VAR\n");
fprintf(writefp, "@IN\n");
if (ins != 0) fprintf(writefp, "\d\n", ins);
fprintf(writefp, "@OUT\n"l;
if (outs 1= 0) fprintflwritefp, "\d\n", outs);
fprintf(writefp, "\n");
break;

case choice.
fprintf(writefp, giST \d\n", ++efg->num_states);
efg->num-choice++;
fprintf(writefp, "C \d\n", efg->num_choice);
fprintf(writefp, "@ACT\n"):
fprintf(writefp, "@VAR d\n"):
fprintf(writefp, "\s\n", statevars->name):
fprintf(writefp, "@IN\n");
if (ins 1= 0) fprintf(writefp, "\d\n", ins);
fprintf(writefp, "@OUT\n"):
if (outs != 0) fprintf(writefp, "\d\n", outs):
fprintf(writefp, "\n");
break:

default:

1))

1* first time that a c_use is found *1

1* next times c_use found *1

1* c_use is not found *1

1* statevars. choice variable *1

1·---------_· __ ··_·_--_·_-------_···_-_·····_--_······ _-----_ .
*
* Function

"Description •
This function writes
following lines.

@TR <tr_num>
@FROM <st_num>
@'IO <st_num>
@VAR

the basic structure of a transition to the writefile. This structure consists of the

<tr_num> is number of transition
<st_num> is a number of a state in the statefile where the transition starts
<st_num> is a number of a state in the statefile where the transition ends

* Arguments •
FILE "writefp file where transition is to be written to

Appendix L: Source code ProTeGe Page LoI5

efg_type
int
int

'efg I pointer to efg
fromstate • number of state where transition starts
tostate I number of state where transition ends

, Returns I void

•• e ••••••••••••••••••••••• /

static void
write_basic_trans(writefp, efg, fromstate, tostatel
FILE 'writefpl
efg_type 'efg,
int fromstate,
int tostate,
I

fprintf(writefp, 'QTR 'd\n', ++efg->num-trans)I
fprintf(writefp, 'QFROM 'd\n', fromstatell
fprintf(writefp, 'QTO 'd\n', tostate),
fprintf(writefp, 'QVAR')I

, ••••• **** ••••••••••• **** •• *** •••• *** ••••••••••••••••••••••• - •••••••••••••••••••,
, Function

pointer to files
: pointer to integer variable which contains the flowstatenumber after scanning

'files
'statenum

, Description
This function scans the number of a flowstate X in StateX, and assigns it to parameter statenum. Also
it ignores further characters until], e.g. it ignores the ports.

, Arguments :
files_type
int

, Returns : void

...._-- - ,
static void
scan-state(files, statenum)
files_type 'filesl
iot 'statenum;
I

char
int

s [80],
CI

fscanf(files->smilefp, "s', sl;
if l(s[O] != 'S') II(s[l] 1= 't') II(s[2] 1= 'a') II(s[3] 1= 't') II(s[4] != 'e'»

err (m_efg, 8, 0),

strcpy(s, &s[5]),
'statenum atoi(s) I
while «c = fgetc(files->smilefp» != ']');

/* remove 'State' */
/' get number State '/
/' ignore ports */

/ .
*
* Function
*
** Description

This function searches the readfile lvarfile) for a given flowstate and fills statevars with the found
variables for this flowstate

* Returns

* Arguments
FILE
int
var_type

: void

*readfp
flowstate

*statevars

: pointer to file containing variables for flowstates
: number of flows tate as in StateX

returns all variables of the flowstate

* ••• ,

static void
get_varslreadfp, flowstate, statevars)
FILE *readfpl
int flowstate:
var_type 'statevarsl
I

char
char
var_type

inbuf[80] I
compare [80] I
*temp_varl

rewind(readfpl,
temp_var = statevarsl
sprintf(compare, 'STATE 'd\n', flowstate):

do
I

fgetslinbuf, 79, readfp);
while ((Ifeof(readfp» && (strcmplcompare, inbuf) Iz 0»,

if llfeoflreadfp»
I

if (fscanf(readfp, "s', inbuf) 1= 0)
I

/* find STATE met statenumber */

/* EOF */

while «strcmplinbuf, 'STATE" 1= 0) ,& l!feoflreadfp»)

Appendix L: Source code ProTeGe

strcpy(temp_var->name, inbuf) I
temp_var->next = init_var() I
temp_var = temp_var->next,
fscanf(readfp, "'s", inbuf) I

)
else err(m-efg, 13, flowstate);

'* get variable *'

Page L·

1··············_·_······························-·····•........ _... _...•••.
*
* Function

* Description I

This function frees a variable chain of type var_type

* Arguments I

var_type *statevars I the variable to be freed

* Returns I void

___ •••• e •• __ •• __ ._ •••• _ ••• /

static void
free_var_chain(statevars)
var_type ·statevars;
(

if (statevars->next != NULL) free_var_chain(statevars->next);
free(statevars);

I •••••••• eee •• _ •••••••••••••••• _ •••••••••••••••••••••• •••••••• ee ••••••••••••••• _

*
* Function

* Description •
This function scans the variables which are used while calling a flowstate and writes them to the
writefile. If one or more variables are used for a parameter these variables are written on a line
seperated and preceeded by a tab. If there are no variables used a tab followed by iCONST is written
to the writefile.

* Arguments
FILE
FILE
var_type

*smilefp
*writefp
*statevars

pointer to Smile file
• pointer to transfile
I structure containing all defined variables in this process, so all variables

which can be used while calling

• Returns • void

..****.****************~***~********/

static void
scan_pars (smilefp, writefp, statevars)
FILE ·smilefp;
FILE *writefp;
var_type *statevarsl
(

var_type
char
int
int
int

*temp_varl
parameter [80] I

i, c;
parenthese
conSt,

11

fprintf(writefp, " c\n"),

do
(

temp_var = statevarsl
while (white(c = getc(smilefp»)I

'* c == , && par == I. next parameter reached;
for (i = 01 ! « (c == ',') && (parenthese == 1» II
I

if (c == '(') parenthese++1
if (c == ') ') parenthese--I
if (parenthese != 0) parameter!i] = CI
C = fgetc(smilefp)I

J
parameter!i] = '\0'1

const = 11
while lstrcmpltemp_v~r->name, "") != 0)
(

if (strstrlparameter, temp_var->name) 1= NULL)
(

const = 0,
fprintf(writefp, "\t's", temp_var->name)I

J
temp_var = temp_var->next;

J
if (const == 1)

fprintf(writefp, "\t@OONST\n");
else

'* remove possible white *'

par == O. end of parameters reached *'
(parenthese == 0», i++)

'* check all variables if they are used *'

,. variable is used *'

'* no variables used *'

Appendix L: Source code ProTeGe

fprintfCwritefp, "\n"),
) while (parenthese 1= 0),
fprintf(writefp, "\n"),

/***-_ ••••• --------_._._-----­

*

Page L-J7

* Function • read..behav

* Description •
Function that scans the behaviour-part of the Smile EFSM, e.g. it writes the startstate, it scans to
which flowstate this startstate calls and writes this flowstate. Also it checks for possible
parameter calling and constructs the first transition.

* Arguments •
efg_type
files_type

*efg
*files

I pointer to efg
pointer to files

* Returns • void

----------_._....._--------------------------------------_._-_ __ ._._..... -/

static void
read..behav(efg, files)
efg_type *efg,
files_type *filesl
(

char
int
int
char
var_type

s[80],
CI
flowstate,

act [80],
*statevars;

do
(

if Cfscanf(files->smilefp, "'s", s)
while (strcmp(s, "BEHAVIOUR") 1= 0) I

EOF) err (m_efg , 14, 0) I

strcpy (act, "") I
statevars = init_varC)1
write_state(files->state1fp, start, I, act, statevars, 0, I, efg)1

scan-state(files, &flowstate) I
get_vars(files->var1fp, flowstate, statevars),
write_state (files->state1fp, flow, f1owstate, act, statevars, 0, 0, efg) I
fprintf (files->infp, "'d 1 \n", flowstate) I
free_var_chain(statevars) I

statevars = init_var()I
write_basic_trans(files->trans1fp, efg, I, 2) I
while ((c = fgetc(files->smilefp» 1= '\n') && (c 1= '('»1
if (c == '(')

scan_pars (files->smilefp, fi1es->trans1fp, statevars);
else

fprintf(files->trans1fp, "\n\n"),
free_var_chain(statevars);

'* write startstate *'

'* write first called state *'
'* add incoming transition *'

'* write trans from start to first *'

'* parameters are used *'

do
(

if Cfscanf(files->smilefp, "'s", s)
while (strcmp(s, "WHERE") != 0) I

printf("\nBEHAVIOUR-part scanned\n");

EOF) err (m_efg, 15, 0);
'* ignore until WHERE *'

1--------------_····---------------------------------- e ••••• _

*
* Function

* Description
This function scans the choice variable, adds it to the chain of variables used in this process, writes
the choicestate and writes the transition to this choicestate.

* Arguments •
files_type
efg_type
char
var_type
int

*files pointer to files
*efg pointer to efg
inbuf(80] line of Smile file containing choice
*statevars • chain of defined variables in this process (flowstate)

intern_num • statenumber of flowstate as in StateX

* Returns : void
____ e •••• ••• ._. •••• ._ ••••• /

static void
do_choice (files, efg, inbuf, statevars, intern_num)
files_type *filesl
efg_type *efg,
char inbuf(80];
var_type *statevars;
int intern_numl
{

*temp_var;
act [801,
rest[401,

Appendix L: Source code ProTeGe Page L-.

int
clLvar[40];

i, CI

sscanf(inbuf, "\s\s", rest, ch_var);
for (i = 0; ch_var[i] 1= '\0'1 i ••)
(

if (clLvar[i] == ',') cn-var[i] = '\0':

ternp_var = statevarsl
while (temp_var->next !. NULL) temp_var = temp_var->next:
strcpy(temp_var->name, ch_var),
temp_var->next = init_var()I
strcpy (act, "") I

/" get choice variable "/

/" add choice variable to varchain "/

write_statelfiles->state1fp, choice, 0, act, temp_var, efg->num_trans • 1, efg->nuffi-trans • 2, efglJ

write_basic_translfiles->trans1fp, efg, intern_num, efg->num-states):
fprintf(files->trans1fp, "\n\n"),

1-·································· __ ·_·············· __ .·• Function

• Description
This function writes the the transition from the flowstate or choicestate to the actionstate including
possible variables used in predicates for this transition.

• Returns

• Arguments
int
int
int
files_type
efg_type
var_type

, void

choice equals 1 if fromstate is choicestate, else 0
pred equals 1 if predicates are used for this transition, else 0
intern-num number of flows tate as in @ST <num>

·files pointer to files
·efg , pointer to efg
·statevars chain of all defined and possibly p-used variables for this transition

.... -.._------ ---- ----.-_ --_ _-/
static void
write_translchoice, pred, intern_num, files, efg, statevars)
int choice,

pred,
intern_nurn;

files_type *files;
efg_type *efg;
var_type ·statevars;
(

if [choice == 1)
write_basic_trans(files->trans1fp,

else
write_basic_trans(files->translfp,

if (pred == 1)
(

/* trans starts in choice state */
efg, efg->nuffi-states, efg->nuffi-states • 11:

/. trans starts in flowstate ./
efg, intern_num, efg->nuffi-states • 11;

/* trans contains predicates */

fprintflfiles->trans1fp, " p\n"l;
temp_var = statevars;
while (strcmp(temp_var->name, "0) != 01
(

if (temp_var->use == p_usel
fprintflfiles->trans1fp, "\s\n°, temp_var->name);

temp_var = temp_var->next;
J
fprintf(files->trans1fp, "\n"ll

)
else fprintf(files->trans1fp, *\n\n*);

1----······· __·· .-.-._._._---_..... ------­·

/* print predicate variable */

/* trans contains no predicates ./

• Function

• Description •
This function checks whether a port is present in character string <inbuf>. If so, it returns 1, else O.

• Arguments ,
port_type
char

·ports
inbuf[400]

ports used in this EFSM
string containing line of Smile file

• Returns , int
O. no port is present in the string
1, at least one port is present in the string

.*.*.**.**.**.** •••••• * •••• *~ •••• * ••••• * •••• *•• * ••• o* •• **** ••••• *o*~.**o*./

static int
port_cmp(ports, inbuf)
port_type ·portsl
char inbuf[400],
{

·temp-port,

Appendix L: Source code ProTeGe Page L-19

int end = 0,

ports,

if (strstr(inbuf, temp_port->name) 1= NULL) return(l),
if (temp_port->next 1= NULL) temp-port = temp-port->next;
else end = I,

while (lend);

return(O);

, .
·• Function I react.line

• Description •
This function scans an entire action line of a process. First it adds a transition to OUT_FILE, then it
checks whether a choicestate has to be inserted and calls do_choice() if this is the case. Next it
ignores possible (••.•) comment, looks which variables are used in possible predicates and assigns
p-use to these variables. Then it calls write_trans() to write a transition. After this it checks
which action is used in this line and calls write_state() to write this actionstate. Then it scans
to which flowstate the action leads and writes the transition and if necessary this flowstate. Also it
calls scan_pars to check if variables are used while calling a flowstate and writing these variables
to TRANS_FILE_l if this is the case. At the end it writes the outgoing transition to OUT_FILE and resets
the chain of variables for the next actionline to be read.

• Arguments
files_type
efg_type
int
var_type
int

'files I pointer to files
'efg I pointer to efg

flowstate ,number of flowstate as in StateX
'statevars ,chain of used and defined variables

intern_num I number of flowstate as in @ST <num>

• Returns , void

•...,
static void
react.line(files, efg, flowstate, statevars, intern_num)
files_type 'files;
efg_type 'efg,
int flowstate;
var_type 'statevars,
int intern.-num,
(

int choice 0,
pred = 0,
end. 0,
star 1lI 0,
last_arrow 0;

char inbuf [400 J.
inbuf2[4001,
act [801,
int_act [801 ,
in_var(80) ;

var_type *temp_var,
·olct.last,

char CI
int i, j,

printf("'"), I' shows number of scanned lines '1
f flush (stdout) I

fprintf(files->outfp, "'d'd\n", flowstate, efg->num-trans+l),

temp_var = statevars,
do
(

old_last = temp_var,
if (old_last->next == NULL) end
else temp_var = temp_var->next,

while (!end);

I' add outgoing transition '1

I' olct.last indicates end of original varchain. '1
I' Is to be used to restore old varchain before °1
I' scanning a new line. '1

fgets(inbuf, 399, files->smi1efp);
if (feof(fi1es->smi1efp» err (m_efg, 16, f1owstate);

if «strstr(inbuf, "(choice ") 1= NULLl && (strstr(inbuf, "[)") != NULL»
(

do_choice (files, efg, inbuf, statevars, intern_num);
choice = I;
fgets(inbuf, 399, fi1es->smi1efp);
if (feof(fi1es->smi1efp») err(m_efg, 16, f1owstatel;

for (i = 0; inbuf[i) == ' '; i++l;
strcpy(inbuf, &inbuf[i);

if llstrstr (inbuf, "('") I = NULL) " (strcmp(inbuf, "')") I = NULL)
(

for (i = 0; (inbuf[i) != "'); i++);
strcpy(int_act, &inbuf[i+l);

for (i = 0; (int_act [i) != "'); i++);

I' get line' I

I' line is choice line '1

I' get new line '1

I' remove possible white '1

I' line starts with (•.••) '1

I' get intern event action '1

Appendix L: Source code ProTeGe

int_act[il = '\0';

for (i = 0; star < 2; i++)
(

if (inbuf[il == '.') star++;
)
strcpy(inbuf, &inbuf[i+21);

for (i = 0, inbuf[il != '\0'1 i++)
(

if «inbuf[il == 'I') && (inbuf[i+11
last_arrow = i+31

Page L-

,. remove rest action .,

,. remove (••••) .,

,. check if predicates .,

, ') && (inbuf[i+21 == '-') && (inbuf[i+3) == '>'»

)
for (i = 0; i != last_arrow, i++) inbuf2[il = inbuf[ill
inbuf2[il = '\0'1
if (last_arrow != 0) strcpy(inbuf, &inbuf[last_arrow+21)1

temp_var = statevars;
while (strcmp(temp_var->name, "") la 0)
(

if (strstr(inbuf2, temp_var->name) 1= NULL)
(

temp_var->use = p_use,
pred 1;

)
temp_var = temp_var->next;

write_trans (choice, pred, intern_num, files, efg, statevars);

,. check action .,
sscanf(inbuf, "'s", inbuf2);
if (strcmp(inbuf2, "i") == 0)
(

,. fill inbuf2 with predicates .,
,. remove predicates from inbuf .,

,. check which variables are used in predicates .,

,. intern .,

write_state(files->state1fp, intern, 0, int_act, statevars, efg->num_trans, efg->num_trans + 1, efg)1
)
else if (port_cmp(efg->ports, inbuf2) == 1) && (strstr(inbuf2, ",") != NULL»
(

,. pure output .,

temp_var = init_var();
for (i = 0; inbuf [i 1 != '\0' I i ++) ,. remove ';' .,

if (inbuf[il == ';') inbuf[il = '\0';
write_state(files->state1fp, output, 0, inbuf, temp_var, efg->num_trans, efg->num-trans + 1, efg);
free (temp_var) ;

)
else if «port_cmp(efg->ports, inbuf2) == 1) && (strstr(inbuf, "!") != NULL»
(

temp_var = statevars;
while (strcmp(temp_var->name, "") != 0)
(

if (strstr(inbuf, temp_var->name) != NULL) temp_var->use
temp_var = temp_var->next;

,. output .,

,. check Which variables .,
,. are used in output action .,

)
for (i = 0 I i nbu f [i 1 != '\0'; i ++) ,. remove ';' .,

if (inbuf[il == ';') inbuf[il = '\0'1
write_state (files->state1fp, output, 0, inbuf, statevars, efg->num_trans, efg->num-trans + 1, efg);

)
else if «port_cmp(efg->ports, inbuf2) == 1) && (strstr(inbuf, "7") != NULL»
(

temp_var = statevars;
while (strcmp(temp_var->name, "") != 0) temp_var = temp_var->next;
if (strstr (inbuf, ",") != NULL)
(

,. input .,

,. input variable .,

for (i
i++;
for (j
(

0; inbuf[i] != '7'; i++);

0; inbuf[i] != ','; j++)

,. parameters are given to State .,

,. write flowstate if not exists .,

in_var[j] = inbuf[i++I; ,. get input variable .,
)
in_var[jl = '\0';
strcpy(temp_var->name, in_var)I ,. add inputvar aan varchain .,
temp_var->next = init_var();

)
for (i = 0; inbuf[il != '\0'; i++) ,. remove 'I' .,

if (inbuf[i] == ',') inbuf[i] = '\0';
write_state (files->state1fp, input, 0, inbuf, temp_var, efg->num-trans, efg->num_trans + 1, efg)1

)
else err(m-efg, 17, flowstate)I ,. fault .,

scan_state(files, &flowstate);
if (lexist_flow(files->state1fp, flowstate, &intern-num» intern_num • efg->num-states + 11

write_basic_trans(files->trans1fp, efg, efg->num-states, intern_num);
While «(c = fgetc(files->smilefp») 1= '\n') && (c != '('»,
if (c == '(')

scan_pars (files->smilefp, files->trans1fp, statevars);
else

fprintf(files->translfp, "\n\n");

if (!exist_flow(files->state1fp, flowstate, &intern_num»
(

temp_var = init_var()I
get_vars(files->var1fp, flowstate, temp_var);
write_state(files->state1fp, flow, flowstate, act, temp_var, 0, 0, efg),
free_var_chain(temp_var);

Appendix L: Source code ProTeGe

I
fprintf(files->infp. "'d 'd\n". flowstate, efg->num-transll

if (old_last->next Iz NULL)
{

free_var_chain (oldLlast->next I I
old_last->next = NULL I

I
strcpy(oldLlast->name. ""II

end z 0,
temp_var • statevarsl
do
{

temp_var->use • defl
if (temp_var->next •• NULL) end. 11
else temp_var • temp_var->next,

while (lend' I

Page L-21

'* add incoming transition *'

'* remove possible line-dependent tail of varchain *'

'* reset all uses of varchain to def *'

1·-········· __ ········_·_--_·····_----_···············------.-- _-----
*
* Function • readLproc

* Description •
This function scans a process by scanning 'PROCESS', calling scan_state() for scanning the number of
the flowstate, calling get_vars() to get defined variables in this process, writing the flowstate if
it doesn't exist yet, calling read_line() as long as new actionlines appear and finally scanning
'ENDPROC'. if the starting PROCESS cannot be found, this function calls update_inout() and status_efg()
to transform STATE_FILE_1 to STATE_FILE_2 and to print some statistical information about the efg .

• Arguments •
efg_type
files_type

*efg
*files

pointer to efg
pointer to files

* Returns • int
O. PROCESS scanned
1: End of Smile file reached

....._------ .. _--- - _---- __ _-- .. -----_ _-----------/
static int
readLproc(efg. files)
efg_type *efg:
files_type *files:
(

int

char
var_type
char

flowstate,
intern_num,
act [8011
*statevarsl
inbuf[4001,
s[8011

do
{

if (fscanf(files->smilefp, "'s", s)
(

update_inout(files) I
status_efg(efg)I
return(1) :

EOF) '* no next process, return with 1 *'

I
while (strcmp(s, "PROCESS"' 1= 0) I

scan_state(files, &flowstate):
printf("\nScanning process 'd: ", flowstate)I

fgets(inbuf, 399, files->smilefp):
if (feof(files->smilefp» err (m_efg, 18, flowstate) I

strcpy(act. ""' I
statevars • init_var(),
get_vars(files->var1fp, flowstate, statevars):

if (lexist_flow(files->state1fp, flowstate. &intern-num»
(

'* scan flowstate *'

'* write flowstate if not exists *'

do
(

write_state(files->statelfp. flow, flowstate, act, statevars, O. O. efgll

'* scan all lines *'

readLline{files. efg. flowstate. statevars. intern_num)1
fscanf(files->smilefp. "'so. S),

while (strcmp(s. "n"1 •• OI,

free_var_chain(statevars)I

if (strcmp(s, "ENDPROC") != 0) err (lILefg, 19, 0),
else
(

printf(" Ready"11
return(OI,

/** ••••• *************** ••••• **************** •••••••••• -----_ •• ----.----.- •••••••

Appendix L: Source code ProTeGe Page L

* Function

* Description I

This function is the main function of this module; it sequently calls init_efg(). open_files_efg().
readLstatevars(l. readLspec(). read_behav(). read-proc() as much as necessary and close_files_efg().

* Arguments I

efg_type
files_type

*efg
*files

pointer to efg
pointer to files

* Returns I void

_ ,
extern void
make_efg(efg. files)
efg_type *efg;
files_type *files,
(

int end = 0,

inicefg(efg) ,

calc_vars(files) ,

readLstatevars(files) ;

readLspec(efg. files);

readLbehav(efg. files);

do
(

1) return;

end readLproc(efg. files);
while (end == 0); t* end 1. EOF reached; OK *t

Appendix L: Source code ProTeGe

1-*·········_-----_····_---_··········_-----_········· .. _* ••••••••••••••••••••••·
Page L-23

• File • makeuio.c

• Description •
This module calculates for each basic flow state if possible one or more UIO sequences and writes these
sequences to the UIO_FILE. In order to derive this file other intermediate files are created and used.
The calculation of the UIO sequences consists of the following steps.
First calculate all basic sequences from all basic flow states lstate from which input action takes place)
to next basic flow states. These sequences are checked for not including variables in the 10 sequence
because this will complicate making statements about uniqueness of a sequence containing such variables.
The basic sequences not containing variables will be checked for uniqueness lno other sequences having
the same input/output sequence), half-uniqueness lother equal 10 sequences exist but they lead to a
different endstate) and non-uniqueness (other equal 10 sequences to same endstate). If for a basic
flowstate an UIO sequence is found this state is marked and in a next step no new sequences will be
calculated. If for a certain flowstate no UIO sequence is found. all half unique sequences of the last
step starting with this flowstate will be expanded with all possible basic sequences starting with
the same basic flowstate as with which the half unique sequence ends. This algorithm continues until
for each basic flowstate an UIO sequence is found or a certain limit is reached.
The files used in this module are.
- VAR_FIL~2. This file, constructed in the module makeefg, is used for checking if variables exist in
a basic sequence.
- BAS_SEQ_FILE: This file contains all calculated basic sequences. each on a separate line. Such a
sequence consists of all states traversed, for example 'Fl 13 F4 02 X6 F5\n'.
- BAS-ACT_FILE: This file consists of all input/output sequences matching to the state sequences of
BAS_SEO-FILE. each on the same line as the matching state sequence. Example: 'L?SABM L!DM \n'.
- BAS_UNI~FILE: This file contains for each matching input/output sequence of BAS-ACT_FILE a '0' if
this sequence contains no variables. and a '3' if it contains variables.
- TOT_SEQ_FILE: This file contains all calculated state sequences in the different steps in a same
structure as BAS_SE~FILE.

- TOT_ACT_FILE: This file contains all inPut/output sequences matching to the state sequences of
TOT_SEQ_FILE.
- TOT_UNI~FILE: This file contains for each sequence in the TOT-files a '0' if the sequence is
non-unique, a 'I' if the sequence is unique and a '2' if the sequence is half-unique.
- UIO_FILE, This file is the main file of this module. It contains all calculated UIO sequences for
all basic flow states. For each basic flow state, it has the following structure.

• Editor

• Version

'Fx'
For each UIO sequence of this flow state:
blank line
state sequence as in TOT_SE~FILE

10 sequence as in TOT-ACT_FILE

M.F. van Opstal

30-7-1993

x is number of flowstate

'NO UIO' if no UIO sequence found
'NO UIO' if no UIO sequence found

•• _* •• _••••• ,

/. INCLUDE FILES ./

linclude <stdio.h>
linclude "typedef.h"
linclude "efghead.h"

/. FUNCTION DEFINITIONS ./

1··_--_····· * •• _••••••••••••••••• _••••·• Function

• Description •
This function tries to open the necessary files in this module.

• Arguments •
files_type ·files pointer to files

• Returns : void

..................- /

static void
open_fi les_uio I files)
files_type ·files,
(

if Ilfiles->state2fp fopen(STATE_FILE_2, Or"»~ NULL)
err (m_uio, 6. 0);

if I (files->translfp • fopenITRANS_FILE_l, Or"»~ NULL)
errlm-uio, 2, 0),

if «files->varlfp • fOpP.nIVA~FILE_l, Or"»~ NULL)
err (m_uio, 1. 0),

if Ilfiles->var2fp • fopen(VAR_FILE_2, "r"» NULL)
err (m_uio, 20, 0),

if «files->basseqfp • fopen(BAS_SE~FILE, "w."» NULL)
err (m_uio, 21, 0);

if llfiles->basactfp = fopenI BAS_ACT_FILE. "w."» NULL)
err (m_uio, 22. 0),

if «files->basuniqfp = fopenIBAS_UNI~FILE, "w."» == NULL)
errlm-uio, 23. 0);

if llfiles->totseqfp • fopenlTOT_SE~FILE, ·w."» NULL)
errlm-uio, 24. 0) I

if (lfiles->totactfp = fopenlTOT_ACT_FILE. "w."» NULL)
err (m-uio, 25. 0),

if (lfiles->totuniqfp = fopen(TOT_UNI~FILE, "w."» == NULL)
errlm-uio, 26, 01,

Appendix L: Source code ProTeGe

if «files->uiofp E fopen(UIO_FILE, °w.o» E= NULL)
err IIlLUio, .27, 0) I

/***--------------------_ ••• _­

"

Page L·

" Function

"Description •
This function closes all files used in this module.

" Arguments I

files_type "files I pointer to files

" Returns • void

--------------_._ •• _- •••• _---------_._-------_ •••• _••• ************************/

static void
close_files_uiolfiles)
files_type "filesl
(

fcloselfiles->state2fp) I
fcloselfiles->translfp) I
fclose(files->varlfp) I
fclose(files->var2fp) I
fclose(files->basseqfp) I
fcloselfiles->basactfp) I
fcloselfiles->basuniqfp)I
fclose(files->totseqfp);
fclose(files->totactfp) I
fclose(files->totuniqfp)I
fclose(files->uiofp)I

1---------_····· __ ·_--------------_········_-------_·- wweee __ • _

"
" Function • f ind.-line

" Description
This function tries to find a line in the file with filepointer fp.

" Arguments I

char
FILE

" Returns

line[90]
"fp

void

line to search for
file in which to search for line

***************.*****.**~**************~**.***********-*-**•••••••••••_--*-_._/
extern void
find.-line(line, fp)
char line[901;
FILE "fpl
(

char

do
(

inbuf [901,

fgets(inbuf, 79, fp)1
) while «!feoflfp» && lstrcmplinbuf, line) != 01),
if (feof(fp»)
(

printfIO\n%s not found\n°, line),
errlm_uio, 29, 0),

1······_----------_· __ ·_------_····_---_·_------------ ** ••••• *********~*********
"
" Function

" Description
This function will find in TRANS_FILE_I the transition with the number in parameter word. Next it will
find the tostate of the transition and go to after the o@STo-line of this tostate in STATE_FIL~2.

" Arguments •
files_type
char

"files
"word

• pointer to files
: string consisting of transition number

" Returns int • internal number of next flowstate

-*.*----_... _-----------------_. __ ... _------------****************************/

extern int
find.-st_Iine_next_state(files, word)
files_type "filesl
char "word I
{

int

char

trans,
tostate,
inbuf[90l,
line[90l,
word2[SOI I

Appendix L: Source code ProTeGe

trans = atoi(wordl;

rewind(files->translfp) ;
sprintf(line, "9TR \d\n", trans);
find-line(line, files->translfpl; f" find transition "f

fgets(inbuf, 79, files->translfpl;
fgetslinbuf, 79, files->translfpl;
if (sscanf(inbuf, "\s\s", word, word2) E= EOF) err (m-uio, 29, 01;
tostate = atoi(word21;

Page L-25

rewind(files->state2fp);
sprintf(line, "eST \d\n", tostate);
find-line(line, files->state2fp); f" find tostate of transition "f

return(tostate);

/***** ••

"
" Function

"Description •
This function will add the next state, which ought to be in the next line of STATE_FILa-2, to seq
and will return the first word of this line (e.g. F or I or X or 0 or C) .

" Arguments
files_type
char

" files
"seq

I pointer to files
: sequence which will be updated

" Returns • char " first word of first encountered line in STATE_FILE_2

..,
extern char"
add_next_state(files, seq)
files_type "files;
char "seq;
(

int

char inbuf[B01,
wordl[401,
word2[401;

1.
seqlen;

fgets(inbuf, 79, files->state2fp);
if (sscanflinbuf, "\s\s", wordl, word21
strcat(seq, " "I:
for(i = 0; inbuf[il 1= '\0'; ioo)
(

EOF) err (m_uio, 30, 01;

if «inbuf[il 1= ' 'I && (inbuf[il 1= '\n'»
(

seqlen = strlen(seq):
seq [seqlen) = inbuf[il:
seq[seqlenoll = '\0',

)
return(word1):

f" add next state to sequence "f

, .
"
" Function

" Description
This function will add the next state, which ought to be in the next line of STATE_FILa-2, to the
beginning of seq and will return the first word of this line (e.g. F or I or X or 0 or Cl •

• Arguments •
files_type
char

" files
"seq

• pointer to files
• sequence which will be updated

" Returns char " • first word of first encountered line in STATE-FILa-2

..,
extern char"
add_next_state_begin(files, seq)
files_type "files:
char "seq:
(

char

int

inbuf[BO),
"buf2,
word1 [40l,
word2{401:

i,
seqlen:

EOF) err (m_uio, 30, 0):

buf2 = (char ") malloc«strlen(seq) 0 120) " sizeof(char»;

fgets(inbuf, 79, files->state2fpl;
if (sscanf(inbuf, "'s's", word1, word2)
strcpy (buf2, ""):
for (i = 0: inbuf{il IE '\0'; i++)
(

Appendix L: Source code ProTeGe Page L-

if « inbu f [i I ! = ' ') " (inbuf [i I ! = '\n'»
(

seqlen = strlen(buf2);
buf2[seqlenl = inbuf[il;
buf2[seqlen+11 = '\0';

)
strcat (buf2, " ");
strcat(buf2, seq);
strcpy(seq, buf2);

t" expand seq with word and a space at beginning of seq "t

return (word1) ,

I··· .
"
" Function

"Description I

This function checks whether a flowstate is basic or not by looking if there is an inputaction from
the flowstate.

I internal number of flowstate to check
pointer to files

" Returns lint
0, flowstate is not basic
1: flowstate is basic

..,

line[801;
word1[401;
pos,
pos_state;

tostate;

files)
state;

" files;

int

char
char
long

extern int
is_basic (state,
int
files_type
(

pos_state = ftell(files->state2fp);
rewind(files->state2fp) ;
sprintf(line, "eST \d\n", state);
fin~line(line, files->state2fpl; t" find 'eST state' *t

sprintf(line, "@OUT\n");
fin~line(line, files->state2fp);

if (fscanf(files->state2fp, "\s", wordl) == EOF) strcpy(word1, "@ST");
pos = ftell(files->state2fp);
while (strcmp(word1, "eST") != 0)
(

t" find '@OUT' "t

t" in case state is last state "t
t" in file "t

t" no next state reached "t

if (fscanf(files->state2fp, "\s", word1) == EOF) err(m-uio, 30, 0);
if (strcmp (word1, "1") == 0)
(

fseek(files->state2fp, pes_state, 0);
return(ll; t" basic if at least one input from state "t

)
fseek(files->state2fp, pos, 0);
if (fscanf(files->state2fp, "\s", word1)
pos = ftell(files->state2fp);

)
fseek(files->state2fp, pos_state, 0);
return(O) ;

EOF) strcpy(word1, "@ST");

t" not basic if no inputs from state "t

, ••••••••••••••••••••••••••• a •••

"
" Function

"Description I

This functions checks if a flowstate is stable by looking if there are output, internal events or
choice states leaving from the flowstate.

: internal number of flowstate to check
I pointer to files

" Returns : int
0: flowstate is not stable
1: flowstate is stable

extern int
is_stable (state, files)
int state;
files_type "files;
(

char line[801;

Appendix L: Source code ProTeGe Page L-27

char
long

int

wordl[401;
pos,
pos_state;

tostate;

pos_state = ftell(files->state2fp);
rewind(files->state2fp) ;
sprintflline, 'QST 'd\n', state);
fin~linelline, files->state2fp);;

sprintflline, '@OUT\n'l;
fin~line(line, files->state2fpl;;

if Ifscanf(files->state2fp, "s', wordl) == EOF) strcpy(wordl, '@ST');
pos = ftell(files->state2fp);
while (strcmplwordl, '@ST') 1= 01
(

/' find '@ST state' */

/* find '@OUT' '/

/* in case state is last state */
/* in file */

/* no next state reached */

tostate = fin~st_line_next_statelfiles, wordll;

if (fscanf(files->state2fp, "s', wordll == EOFI err(m-uio, 30, 01;
if I (strcmp (wordl , 'X'I -= 0) II (strcmplwordl, '0') == 0) II (strcmplwordl, 'C') -= 01)
(

fseeklfiles->state2fp, pos_state, 0);
return(O) ;

)
fseek(files->state2fp, pos, 0);
if Ifscanf(files->state2fp, "s', wordll
pos = ftell(files->state2fp);

)
fseeklfiles->state2fp, pos_state, 0);
return(l) ;

/* not stable if output, intern event or choice from state */

EOF) strcpYlwordl, '@ST');

/* stable if only inputs from state */

, ••••••••••••••••••••••••••••••••••••••• ** ••••••••••••••••••••••••••••••••••••••

*
* Function statenumber

* Description 1

This function calculates the internal number of a flowstate from the number given as in PROCESS StateX.

* Arguments
int
files_type

* Returns 1 int

flowstate 1 flowstatenumber as in PROCESS
*files I pointer to files

1 statenumber as in EFG

long

char

......................- ,
extern int
statenumber(flowstate, files)
int flowstate;
files_type *files;
(

pos,
pos_old,
pos_new;
line[80l,
inbuf[801,
inbuCold(801,
wordl [401,
word2[401;

pos = ftelllfiles->state2fp);

sprintflline, 'F'd\n', flowstate);

rewindlfiles->state2fp) :
strcpy(inbuf, ");
do
(

strcpylinbuf_old, inbuf);
fgetslinbuf, 79, files->state2fp):

) While «lfeof(files->state2fpll && (strcmplinbuf, line) 1= Oll;
if (feoflfiles->state2fp»
(

printf('\n's not found\n', line);
err (m_uio, 28, 01;

sscanf(inbuf_old, "s's', wordl. word2);
fseek(files->state2fp. pos, 01;
return(atoi(word2»;

, ••••••••• ***** •• ** •• ** ••••••• ** ••••••••••• ** •••••••••••••••••••••• _••••••••••••
*

/* find 'F flowstate' */

/* scan internal number flowstate */

* Function 1 flownumber

* Description I

This function calculates the number given as in PROCESS StateX from the internal number of a flowBtate.

state statenumber as in EFG
*files I pointer to files

Appendix L: Source code ProTeGe Page L-

• Returns lint , flowstatenumber as in PROCESS

--------_ *------* •••.•..•••..••••••••••.•••••••.•••/
extern int
flownumber(state, files)
int state;
files_type 'files;
{

long
char

pos;
11ne[80) ,
inbuf[80) ,
word1 [40),
word2(40) ;

pos = ftell(files->state2fp);
rewind(files->state2fp) ;

sprintf(line, '@ST %d\n", state);
do
(

fgets(inbuf, 79, files->state2fp);
) while «lfeof(files->state2fp» && (strcmp(inbuf, line) 1= 0»;
if (feof(files->state2fp»
(

printf("\n%s not found\n" , line);
err (m_uio, 28, 0);

fscanf(files->state2fp, "%s%s", word1, word2);
fseek(files->state2fp, pas, 0);
return(atoi(word2» ;

/. find 'eST state' ./

/. scan number flowstate as in PROCESS ./

1·····················********························ ******.**** ••••·• Function

• Description
This function adds the next state to a sequence and, depending of this next state does the following,
If the state is a basic flow state, write sequence in basic sequence file.
EIsel If the state is a visited flowstate, ignore the sequence.
Else, call step_state for a next step.

• Arguments
char
int

• Returns

files_type
efg_type

I void

'seq
'basic

'visited
• files
'efg

I pointer to string containing sequence
I pointer to structure giving which flowstates are basic

pointer to structure giving which flowstates are already visited
pointer to files
pointer to EFG

••• *.***** ••• * •••••• ** •••••••••••••••••••••••••••••••••••• * ••• *v*.** •••••••••• /

static void
step_state (seq, basic, visited, files, efg)
char ·seq;
int ·basic,

'visited;
files_type 'files;
efg_type 'efg;
(

char
long
char
iet

int
char

word[40) ;
pos;
*seq2;

tostate,
toflow,
i;

'visited2;
11ne[80] ;

seq2 (char') malloc(sizeof(char) • 200);
visited2 = (int .) malloc(sizeof(int) • (efg->num_flow+1»;

if (fscanf(files->state2fp, "%s", word) == EOF) strcpy(word, "eST");
pos = ftell(files->state2fp);
while (strcmp(word, "eST") 1= 0)
(

/. state is last state in file ./

/. no next state ./

./

tostate = findLst_line_next_state(files, word);
toflow = flownumber(tostate, files);

strcpy(seq2, seq) I
strcpy(word, addLnext_state(files, seq2»;

if «basic[toflow) == 1) && (strcmp(word, "F") == 0»
fprintf(files->basseqfp, "%s\n", seq2);

else
(

if «visited[toflow) && (strcmp(word, "F") -= 0» I

else
{

sprintf(line, "@OUT\n');

/" if basic flowstate reached, put sequence ./
/* in basic sequence file

/* else, if flowstate already vistedl ./
/. do nothing, skip this sequence ./

/* else (flowstate not visited) I ./

Appendix L: Source code ProTeGe

fin~line(line, files->state2fp);
for (is1; il=efg->num_flow+1; i++) visited2[i)
step_state(seq2. basic. visited2. files, efg);

j. do step_state for next state
visited[i] ;

.j

Page L-29

)
fseek(files->state2fp, pos, 0)/
if (fscanf(files->state2fp, "s', word)
pos = ftell(files->state2fp)/

)
free(seq21/
free(visited2)/

EOF) strcpy(word, '@ST');

/***-----_ ••••• __ • __ • __ .-----­·, Function

• Description I
Function calling step_state for each basic flowstate after initializing this basic sequence by the
departing flows tate.

, Arguments I

files_type
efg_type
int

·files • pointer to files
·efg • pointer to EFG

·basic : pointer to structure giving which flowstates are basic

• Returns : void

--_ .•••... _. ___---_... -... _--_._-----_ _-_....-..._._--_.-._ ... _-_._ .. _/

static void
get_basic_seq(files. efg, basic)
files_type ·files;
efg_type ·efg/
int -basic;
(

int
int

char
char

·visited;
flowstate,

state,
seqlen,
i;
·seq;
line[80].
inbuf [80) ;

visited = (int .) malloc(sizeof(int) • (efg->num-flow+1));

efg->num-basflow = 0;
for (flowstate=1/ flowstatel=efg->num_flow+1; flowstate++)
(

if «basic[flowstate] = is_basic(statenumber(flowstate, files). files))
efg->num-basflow++;

visited[flowstate] = 0;
)
seq = (char .) malloc(sizeof(char) • 200);
strcpy(seq, ")/

printf('\nCalculating basic sequences for flowstate ');
for (flowstate=1; flowstatel=efg->num_flow+1: flowstate++)
(

if (basic [flowstate] == 1)
(

printf('\b\b\b'-3d', flowstatel;
fflush (stdout) ;

state = statenumber(flowstate, files);
visited[flowstate] = 1;

rewind(files->state2fp) ;
sprintf(line, '@ST 'd\n', state);
fin~line(line, files->state2fp);

fgets(inbuf, 79. files->state2fp);
strcpy(seq. ") /
for(i s 0/ inbuf[i) 1= '\0'; iH)
(

if «inbuf[i) 1= ' ') " (inbuf[i] 1= '\n'))
(

1)
j. init basic[] .j

j. init visi ted [] • j

j. for each basic flowstate .j

j' flowstate is visited .j

j. find '@ST state' .j

seqlen s strlen(seq)/
seq [seqlen] = inbuf[i); j' init sequence with flowstate .j
seq[seqlen+1) s '\0'/

sprintf(line, '@OUT\n')/
fin~line(line. files->state2fp); j. find '@OUT' 'j

step_state(seq, basic, visited. files, efg);

)
printf('\n');
free(seq)/
free(visited) /

j. call step_state 'j

Appendix L: Source code ProTeGe

1-······_-------_·········_-_···_---------_··········· _- __ - .·

Page L-.

• Function

• Description •
This function makes the basic action file out of the basic sequence file by traversing each line of
the sequence file and writing the action of a input or output states encountered in this line into
the basic action file. From these actions type parts (, •.) and unnecessary spaces are removed.

• Arguments •
files_type
efg_type

• files
·efg

I pointer to files
I pointer to EFG

* Returns • void

-----_ _-------._----_ -_ _-------_ _ _ - _-----/
static void
get_basic_act(files, efg)
files_type *files;
efg_type *efg;
(

int

char

i,
j,
c.
action:
word[lOI,
line[lOI,
inbuf [4001,
inbuf2 [400] ;

rewindlfiles->basseqfp) ;
printf(·\nCalculating actions of basic sequences\n");

do
(

action = 0;
strcpy(word, "");
c = fgetclfiles->basseqfp);
for (i = 0 I (c I = EOF) && I c I = ' ') && I c ! = • \0 '); i ++)
(

word[il = c;
c = fgetc(files->basseqfp);

)
word[i] = '\0';

f· get statetype and number ·f

if I (word[O]
(

'I') II lword[O] '0'» f* if statetype is input or output ·f

, ,'I
'\0';

action = 11
line[OI = word[O] ;
line[11 = ' ';
line[21 = '\0';
strcpy(word, &word[1]);
strcat(line, word);
strcat(line, "\n");
rewind(files->state2fp);
fin~line(line, files->state2fp);

fgets(inbuf, 399, files->state2fp);
strcpYlinbuf, &inbuf(5);
j = 0;
for (i = 0; inbuf[i] != '\n'; i++)
(

if (i nbu f [i I ! = ' ')
(

if (inbuf[i] ==
inbuf2[j++l

else
inbuf2 [j++] inbuf[i];

f* find state *f

f· get 'QACT *f
f* remove 'QACT ' ·f

f* remove spaces ·f

f· remove variable type parts (: type) *f

)
inbuf2[j) = '\0';

fprintflfiles->basactfp, "'s", inbuf2);

if Ilc '\n'l II «c==' 'I && (action--1»)) fputc(c, files->basactfpll

while (c != EOF);

, __ __ _---_ _--------_ _--------- _-_ .. _ .
*
* Function

* Description
This function initiates the structure uio_found with all numbers of basic flowstates and sets the variable
found for each state to O.

* Arguments •
uio_found_type

*efg
·basic

, pointer to structure giving all basic flowstates and telling if a uio
sequence is found for these states

pointer to EFG
I pointer to structure giving which flowstates are basic

Appendix L: Source code ProTeGe Page L-31

" Returns • void

•........ _-_ .. _..•.....•...•..••••......•........••••- ,
static void
init_uio_found(uio_found, efg, basic)
uio_found-type "uio_found,
efg_type "efg,
int "basic,
(

int flows tate,
i - 0,

for (flowstate=1, flowstateI =efg->nurn-flow+1, flowstate++)
(

if (basic [flowstate) _. 1)
(

(&uio_found[i)->fstate = flowstate,
(&uio_found[i)->found _ 0,
i++,

/***** ••••••••••••••• ** ••••••••••••••••••••••••••••••••••••••• - •••••••••••••••••

"
" Function

"Description •
Function making total sequence and action files by looking in the basic uniqueness file which actions
contain no variables and putting these actions and sequences into the total files.

" Arguments
files_type
efg_type

" files
"efg

I pointer to files
pointer to EFG

" Returns : void

........•..•••.-............•............•••.........•.................... _...,
static void
init_tot_fileslfiles, efg)
files_type "files,
efg_type "efg,
(

char

int

inact
inseq

*inact,
• inseq;

c,
uiofnd,

(char ") malloc(sizeof(char) " 200),
(char ") malloc(sizeoflchar) " 200) 1

rewindlfiles->basseqfp) I
rewindlfiles->basactfp) ,
rewindlfiles->basuniqfp);
c = getc(files->basseqfp),
while (c 1= EOF)
(

ungetc(c, files->basEeqfp);
fgets(inseq, 199, files->basseqfp),
fgetslinact, 199, files->basactfp),
fscanf(files->basuniqfp, "'d", &uiofnd);
if (uiofnd 1= 3)
(

fputs(inseq, files->totseqfp),
fputs(inact, files->totactfp),

)
c = getc(files->basseqfp),

)
clearerr(files->basseqfp) ,
clearerr(files->basactfp) ,

free(inact) ,
free(inseq) ;

/" if action consists no variables. "/

/" copy sequence to total sequence file "/
/" copy action to total action file "/

I···•...•...•..•......
"
" Function

"Description •
This function checks if there is a basic flowstate for which uio_found->found iequals zero.

" Arguments •
uio_found_type

efg_type

"uio_found • pointer to structure giving all basic flowstates and telling if a uio
sequence is found for these states

"efg • pointer to EFG

" Returns • int
O. not all uio sequences found
1: all uio sequences found

---_ ••••••••••••••••• _••••••••••••••• __ ••••••••••••• _- •••••••••••••••••• *** ••• ,

Appendix L: Source code ProTeGe

static int
all_uios_found(uio_found, efg)
uio_found-type *uio_found;
efg_type *efg;
(

int flows tate;

for (flowstate • 0; flowstate 1= efg->nurn-basflow; flowstate++)
if «&uio_found[flowstatel)->found •• 0) return(O);

return(1);

, ••••••••••••• _-_ •• *** •••••••• **

*

Page L-.

* Function

* Description ;
This function checks if inbuf contains one of the variables written in VAR_FILE_2.

* Arguments ,
char
files_type

*inbuf
*files

pointer to string to check
pointer to files

* Returns , int
0, inbuf contains no variables
1, inbuf contains variables

_____________________ ••••••• ••• eeeeeeeee /

static int
contains_var(inbuf, files)
char *inbuf;
files_type *files;
(

char word[40];

rewind(files->var2fp) ;

while (lfeof(files->var2fpl)
(

fscanf(files->var2fp, "'s*, word);
if (strstr(inbuf, word) != NULL) return(1);

return (0) ,

/*** •••••••••••••••••••••••• ~ •••••••••• **** ••••••••••• ••••••••••••••••••••••• ***

*
* Function

* Description
This function checks all lines in the basic action file if it contains a variable from VAR_FILe-2.
If so, it writes '3\n' in the basic uniqueness file for this line. Otherwise, it writes 'O\n'.
Also, it initiates uio_found with O's or with a 3 if there are no actions without variables for a
given flowstate.

* Arguments
files_type
efg_type
uio_found-type

*files
*efg
*uio_found

pointer to files
pointer to EFG

, pointer to structure giving all basic flowstates and telling if a uio
sequence is found for these states

* Returns , void

••••• _--------------------------------_ •••••••• - •••••••••••• **********.*******/

static void
check_vars(files, efg, uio_found)
files_type *files;
efg_type *efg;
uio_found_type *uio_found;
(

char

int

• inact,
*inseq,
word[401;

c,
flows tate,
end;

printf("\nChecking variable existence in basic sequences\nO);
fflush(stdout) ,

inact = (char *) malloc(sizeof(char) * 200);
inseq • (char *) malloc(sizeof(char) * 200);

rewind(files->basseqfp) ;
rewind(files->basactfp) ;
rewind(files->basuniqfp);

c = getc(files->basactfpl;
while (Ifeof(files->basactfpl)
(

ungetc(c, files->basactfp),

'* for each action line *'

Appendix L: Source code ProTeGe

fgets(inact, 199, files->basactfp);
if (contains_var(inact, files»
(

fprintf (files->basuniqfp, "3\n");
)
else
(

fprintf(files->basuniqfp, "O\n");
)
c getc(files->basactfp);

)
clearerr(files->basactfp),

for lflowstate = 0; flowstate != efg->num_basflow; flowstate++)
('uio_found[flowstate])->found = 3,

rewind(files->basseqfp),
rewind(files->basuniqfp),

c = getc(files->basuniqfp),
while (!feof(files->basuniqfp»
(

fgets(inseq, 199, files->basseqfp),
if (c == '0')
(

;' if action contains variables ';

;' if action contains no variables '/

/' init uio_found with 3's '/

/' for each basic sequence '/

;' if action contains no variables '/

Page L-33

sscanf (inseq, "'s", word);
end = 0;
for (flowstate = 0, «flowstate 1= efg->num_basflow) " (end
(

if (atoi('word[1]) == ('uio_found[flowstate])->fstate)
(

('uio_found[flowstate]l->found = 0;
end = 1,

0); flowstate++)

/' set uio_found of state that begins in '/
/' sequence to 0 ';

)
c getc(files->basuniqfp);
c getc(files->basuniqfp);

)
clearerr(files->basuniqfp);

rewind(files->basseqfp),
rewind(files->basactfp) ;
rewind(files->basuniqfpl;

free(inact) ;
free (inseq) ,

, ••• *** ••• e __ *ae* ••• e • •••• _
,
, Function I getJl\axstep

'Description I

This function asks for the maximal number of steps for calculating UIO sequences. Default is n'n, with
n equaling the number of basic flowstates.

, Arguments
efg_type 'efg I pointer to EFG

, Returns lint • number of steps
._ ••• e ••••• ••••• •••••• ••• _._* __ * •• e ••••• *./

static int
getJl\axstep(efgl
efg_type 'efg;
{

int
char

steps;
inbuf[200J:

printf("\nGive maximal number of steps for UIO-length (default 'd), ", efg->num-basflow' efg->num_basflow);
gets(inbufl,
if (sscanf(inbuf, "'d", 'steps) != 1) steps = efg->num-basflow ' efg->num-basflow,
return (steps) ,

I-*--*.ee .* •• ••••• • ••• _. ••••• __ * __ e •••• •• __ ••••• _

,
, Function

, Description
This function returns the number of the first flowstate in a string 'inbuf' having the structure of a
line from a sequence file.

, Arguments I

char 'inseq : pointer to a string containing a sequence

, Returns lint I first state of sequence
*.**_*_e**** •••• _****_ •• _* ** * * **. __ ****** __ *****ea.*._* /

static int
first_state (inseq)
char 'inseq;

Appendix L: Source code ProTeGe Page L-.

int
char

i;
word[10] ;

for (i 0; Inseq[il ! = ' '; i++) word [i]
word[11 = '\0';
return(atoi(&word[I]));

inseq[i] ;

/***** ••

"
" Function

"inseq I pointer to a string containing a sequence

"Description I

This function returns the number of the last flowstate in a string 'inbuf' having the structure of a
line from a sequence file.

" Arguments •
char

" Returns lint I last state of sequence

..,
static int
last_state(inseq)
char "inseq;
(

char
int

word[10] ;
L j,

i = strlen(inseq),
while (inseq[il ! = 'F') i--,
for (j = 0; inseq[++i] != '\n', j++)
(

word[jl = inseq[i];
)
word [j I = '\0 ' ,
return (atoi (word));

I ••• 00.0 ••••••••••••••••••

"
" Function

" Description
This function checks of a certain action sequence if it is the same as some other action sequence in tho

total actions file. If so, and the endstates of these sequences are also the same, the action is marked
as non unique and 'O\n' is written to the total uniqueness file. If the endstates are not the same,
the sequence is marked as half unique. If after comparing the sequence to the whole total actions file
the action sequence is still marked half unique, '2\n' is written to the total uniqueness file. If it
is still marked unique, 'l\n' is written.

" Arguments
files_type
int

"files
steps

pointer to files
I step in which calculating UIO sequences algorithm is

" Returns I void

••• 0 •••••••••••••• 0 ••••••••••••••••••• ,

static void
check_line_uniq(files, steps)
files_type "files,
int steps;
(

char

long

int

*inseq,
*inact,
"bufseq,
"bufact;
posseq,
posact;

uniq,
half,
Don,

inseq = (char ") malloc(sizeof(char) " 200 " steps);
inact = (char ") malloc(sizeof(char) " 200 " steps);
bufseq = (char ") malloc(sizeof(char) " 200 " steps);
bUfact = (char ") malloc(sizeof(char) " 200 " steps);

fgets(inseq, (200 " steps)-I, files->totseqfp);
fgets(inact, (200 " steps)-I, files->totactfp);
posseq = ftell(files->totseqfp),
posact = ftell(files->totactfp);
rewind(files->totseqfp);
rewind(files->totactfp);

uniq = I;
half = 0;
non = 0;
while « fgets (bufact, (200 " steps) -I, files->totactfp) ! = NULL) && (non
(

fgets(bufseq, (200 " steps)-I, files->totseqfp);
if «strcmp(inact, bufact) == 0) && (strcmp(inseq, bufseq) != 0»

0)) /" while no nonunique "/
/" actions to same state found "/

/" if same action found "/

Appendix L: Source code ProTeGe

uniq = 0/
if (last_state(inseq) == last_state(bufseq))
(

half = 0/
non = 1;

)
else if (non == 0) half = 1/

I
if (non == 1) fprintf(files->totuniqfp, "O\n"):
if (uniq == 1) fprintf(files->totuniqfp, "l\n"):
if (half == 1) fprintf(files->totuniqfp, "2\n"):

fseek(files->totseqfp, posseq, 0):
fseek(files->totactfp, posact, 0):

free(inseq) :
free(inact) :
free(bufseq) :
free(bufact);

'***

"

Page L-35

/" if action leads to same state "/

" Function

* Description I

This function calls for each line from the last end of the total files upto the present end of the total
files the function check_line_uniq to construct the total uniqueness file. Also it sets uio_found->found
for a given flowstate to 1 if in this step a UIa sequence is found.

* Arguments I

files_type
efg_type
uio_found_type

" files
"efg
"uio_found

"ends
steps

pointer to files
pointer to EFG

I pointer to structure giving all basic flowstates and telling if a uio
sequence is found for these states

pointer to structure giving positions of last ends of total files
I step in which calculating UIa sequences algorithm is

* Returns I void

**/

static void
check_uniq(files, efg, uio_found. ends, steps)
files_type "files;
efg_type *efg:
uio_found_type "uio_found:
ends_type "ends;
int steps;
(

int
char

1, c;
*inseq;

fseek(files->totseqfp, ends->seq, 0):
fseek(files->totactfp, ends->act, 0):
fseek(files->totuniqfp, ends->uniq, 0):

c = getc(files->totactfp):
while (!feof(files->totactfp))
(

ungetc(c, files->totactfp):
check_line_uniq(files, steps):
c = getc(files->totactfp):

fseek(files->totuniqfp, ends->uniq, 0):
fseek(files->totseqfp, ends->seq, 0):
inseq = (char ") malloc(sizeof(char) " 200 " steps):

c = getc(files->totuniqfp);
While (Ifeof(files->totuniqfp))
(

fgets(inseq, (200 " steps)-I, files->totseqfp);
if (c == 'I')
(

for(i = 0; i != efg->num-basflow: i++)
(

if «&uio_foundli])->fstate == first_state(inseq))
(&uio_foundli])->found = I;

I
c getc(files->totuniqfp);
c getc(files->totuniqfp):

I
free(inseq) ;

/" check all lines for uniqueness */

/" if an action is unique "/

/" set uio_found of startstate to 1 "/

/***.******* ••••••••••••••••••

*
" Function

"Description I

This function makes the string newseq out of inseq and bufseq by concatenating these strings and removing

Appendix L: Source code ProTeGe

the last flowstate of string inseq.

Page L-:'

* Arguments
char

* Returns

*newseq
*inseq
*bufseq

void

pointer to new formed string
pointer to start string
pointer to end string

--_._-----_ _-------*--._._---------------------************************/
static void
cat_seq (newseq, inseq, bufseq)
char *newseq ,

* inseq,
*bufseq;

int i;

strcpy(newseq. inseq);
i = strlen(newseq),
while (newseq[il 1= 'F') i--,
newseq[i] = '\0';
strcat(newseq, bufseq);

/*** __ ewww __ wwww *_._ ..
*
* Function

* Description I

This function makes the string newact out of inact and bufact by concatenating these strings.

* Arguments
char

* Returns

*newact
*inact
*bufact

I void

pointer to new formed string
I pointer to start string

pointer to end string

eeeweee* * ._* . ************************/

static void
cat_act (newact, inact, bufact)
char *newact,

*inact,
*bufact;

strcpy(newact, inact):
newact(strlen(newact) - 1]
strcat(newact. bufact);

, \0' 1

/**~** ••*----_. __ ._--_._-------­
*
* Function

* Description I

This function forms for given action and state sequences new sequences by concatenating these sequences
with basic sequences not containing variables and starting with the same flowstate as with which the
old sequences end.

* Arguments
files_type
char

int

*files
*inseq
*inact

steps

pointer to files
string containing
string containing

I step in which

state sequence to be expanded
action sequence to be expanded
calculating UIO sequences algorithm is

* Returns • void
__ eeeeeeeeeeewe • * ************************/

static void
add_basic(files, inseq. inact, steps)
files_type *files:
char *inseq,

*inact;
lnt steps,
(

char

lnt
long

bufseq
bufact
newseq
newact

*bufseq,
*bufact,
*newseq,
*newact,

c,
posseq,
posact;

(char *) malloc(sizeof(char) * 200);
(char *) malloc(sizeof(char) * 200);
(char *) malloc(sizeof(char) * 200 * (steps+l»;
(char *) malloc(sizeof(char) * 200 * (steps+l»,

posseq ftell(files->totseqfp);
posact ftelllfiles->totactfp);
rewind(files->basseqfp) ;

Appendix L: Source code ProTeGe

rewind(files->basactfp) ,
rewind(files->basuniqfp),
fseek(files->totseqfp, OL, 2),
fseek(files->totactfp, OL, 2),

c = getc(files->basuniqfp);
while (Ifeof(files->basuniqfp»
(

Page L-37

/* for all lines in basic files */

*/

*/

*/

fgets(bufseq, 199, files->basseqfp),
fgets(bufact, 199, files->basactfp),

if «c 1= '3') && (last_state (inseq) == first_state (bufseq) »
(

cat_seq (newseq, inseq, bufseq),

cat_act (newact, inact, bufact),

fprintf(files->totseqfp, ·'s·, newseq);

fprintf(files->totactfp, ·'s·, newact);
)
c getc(files->basuniqfpl,
c getc(files->basuniqfpl,

fseek(files->totseqfp, posseq, 0),
fseek(files->totactfp, posact, 0),

freelbufseq);
freelbufact) ;
free Inewseq) ,
free (newact) ,

/* if action contains no variables */
/* and first state of basic sequence */

/* is last state of sequence to be

/* expanded: put total sequence and

/* action in total files

/***

*
* Function

* Description
This function checks for each flowstate for which not yet an UIO sequence is found which line in the
total sequence files (from the last end position upto the present end position) starts with this flowstate
and is halfunique. All these sequences are expanded to new sequences by calling add-basic.

* Argument s I

files_type
efg_type
uio_found_type

ends_type
int

*files
*efg
*uio_found

*ends
steps

: pointer to files
: pointer to EFG
: pointer to structure g1v1ng all basic flowstates and telling if a uio
sequence is found for these states
: pointer to structure giving positions of last ends of total files

: step in which calculating UIO sequences algorithm is

* Returns : void

**/

static void
calc_next_seq(files, efg, uio_found, ends, steps)
files_type *files;
efg_type *efg;
uio_found_type *uio_found;
ends_type *ends;
int steps;
(

char

int
long

*inseq,
*inact;

i, CI
old--pos_seq,
old--pos_act,
old--pos_uniq;

inseq = (char *) malloc(sizeof(char) * 200 * steps);
inact = (char *) malloc(sizeof(char) * 200 * steps),

old--pos_seq = ends->seq,
old--pos_act = ends->act,
old--pos_uniq = ends->uniq;
fseek(files->totseqfp, OL, 2),
fseek(files->totactfp, OL, 2);
fseek(files->totuniqfp, OL, 2);
ends->seq = ftell(files->totseqfp),
ends->act = ftell(files->totactfpl,
ends->uniq = ftell(files->totuniqfp),

for(i = 0; i < efg->nurn-basflow; i ••)
(

if «&uio_found[i)l->found == 0)
(

/* for all basic flowstates for which no uio sequence is found */

fseek(files->totseqfp, old_pos_seq, 0);
fseek(files->totactfp, old_pos_act, 01,
fseek(files->totuniqfp, old--pos_uniq, Ol,

c = getc(files->totuniqfp);
while (Ifeof(files->totuniqfpl)
(

fgets(inseq, (200 * steps)-l, files->totseqfp),

/* for all lines in total files */

Appendix L: Source code ProTeGe Page L-

fgets(inact, (200 • steps)-l, files->totactfp);

if (c == '2') && (first_state(inseq) == (&uio_foundlil)->fstate» /. if action is half unique ./
(/. and starts with basic flowstate ./

add-basic (files, inseq, inact, steps);
)
c getc(files->totuniqfp);
c • getc(files->totuniqfp),

free(inseq) ,
free(inact) ,

/***·• Function I print_uio-message

• Description :
This function prints on the screen fopr which basic flow states no UIO sequence is found or that for all
basic flowstates UIO sequences are found.

• Arguments
uio_found_type

" Returns

efg_type

: void

"uio_found I pointer to structure giving all basic flowstates and telling if a uio
sequence is found for these states

'efg I pointer to EFG

**/

static void
print_uio-message(uio_found, efg)
uio_found_type "uio_found;
efg_type "efg;
(

int i;

if(!all_uios_foundCuio_found. efg»
(

printfC"\nNo UIO sequence found for state ");
for(i = 0; i < efg->num_basflow; i++)
(

if «(&uio_foundli)->found == 0)
(

print f ("'d,

)
printf("\b\b.\n") ,

C&uio_foundlil)->fstate);

I
else printf("\nAll uio's found\n");

1*** **************************

"
" Function

• Description
This function makes the UIO_FILE by writing in this file for each basic flowstate a horizontal line, on
the next line the flowstate (for example 'F12\n') followed by a blank line. After this blank line all
found UIO state and action sequences for this flowstate are written, separated by a blank line. If no
UIO sequence is found, twice the line 'NO UIO\n' is written.

" Arguments
fUes_type
efg_type
uio_found_type

int

" files
"efg
"uio_found

steps

pointer to files
I pointer to EFG
I pointer to structure g1v1ng all basic flowstates and telling if a uio
sequence is found for these states

: step in which calculating UIO sequences algorithm is

" Returns I void

**/

static void
get_uio_file(files, efg, uio_found, steps)
files_type "files;
efg_type "efg;
uio_found_type "uio_found;
int steps;
(

char

int

inseq
inact

for (1
(

"inseq.
"inact,

i, c;

(char ") malloc(sizeof(char) " 200 " steps);
(char ") malloc(sizeof(char) " 200 " steps);

0, i < efg->num_basflow; i++) /" for all basic flowstates "/

fprintf(files->uiofp, " \n"),
fprintf(files->uiofp, "F'd\n\n". (&uio_foundli)->fstate),

Appendix L: Source code ProTeGe Page L-39

1)if «&uio_found[i])->found
(

rewind(files->totseqfp) I
rewind(files->totactfp);
rewind(files->totuniqfp)I

c = getc(files->totuniqfp)I
while (lfeof(files->totuniqfp))
(

/" if unique seq exists for this state "/

/" for all lines in total files "/

fgets(inseq, (200 " steps)-1, files->totseqfp) I
fgets(inact, (200 " stepsl-1, files->totactfp)I

if «c E= '1') && (first_state(inseq) == (&uio_found[i])->fstate)) /" if action is unique "/
(/" and starts with basic flowstate "/

fprintf(files->uiofp, "'s", inseq);
fprintf(files->uiofp, "'s\n", inact);

)
c
c

getc(files->totuniqfp)I
getc(files->totuniqfp)I

)
else
(

fprintf(files->uiofp, "NO UIO\n");
fprintf(files->uiofp, "NO UIO\n\n");

/" no unique seq exists for this state "/

)
free(inseq) I
free (inact) ;

I·e ••••••••••••••••••••••• - •••••••••••••••••••• _-_ •••• ---_.-_ ••••••••••• __ ••••••
"
" Function

"Description I

This file is the main file of this module. It calls other functions to construct the basic state sequence,
action sequence, uniqueness files and the total state sequence, action sequence and uniqueness files.

" Arguments
efg_type "efg
files_type "files

pointer to EFG
I pointer to files

" Returns I void

...........••-•......•..•........•.....• _ _•......... _-_ __ -_ ,

-basic:
*uio_found:
"ends,

steps,
max_step;

extern void
make_uio(efg, files)
efg_type "efg;
files_type "files;
(

int
uio_found_type
ends_type
int

open_files_uio(files) ,

basic = (int ") malloc(sizeoflint) " (efg->num-flow.1));
get_basic_seq(files, efg, basic);
get_basic_act(files, efg) I

/" make basic sequence file "/
/" make basic action file "/

" efg->num_basflow);
/" init struct for telling if uio is found "/

/" make basic unique file, telling for which action variables are used "/
/" make total sequence and total action file "/

uio_found = (uio_found_type ") malloc(sizeof(uio_foun~type)

init_uio_found(uio_found, efg, basic) I
check_vars(files, efg, uio_found);
init_tot_files(files, efg);

ends = (ends_type ") malloc(sizeof(ends_type»);
ends->seq = OL,
ends->act = OL;
ends->uniq = OL,

max_step = get_maxstep(efg)I /" ask for maximal number of steps for calculating uio sequence "/
for (steps = 1; (steps <= max_step) && (!all_uios_found(uio_found, efg)); steps••) /" for each basic state "/
(/" not having an uio seq "/

/" expand total unique file "/
/" expand total sequence and action file "/

printf("\nCalculating step 'd of determination of UIO sequences\n", steps) I
check_uniq(files, efg, uio_found, ends, steps);
calc_next_seq(files, efg, uio_found, ends, steps);

print_uio_message(uio_found, efg) I
get_uio_file(files, efg, uio_found, steps);

free(basic) ,
free (uio_found) I
free(ends) ;
close_files_uio(files) I

/" give message whether all uio's are found "/
/" make uio file "/

Appendix L: Source code ProTeGe

I***********·~*******·····**************************** --------_._----------_ ••••
"

Page L-

" File I gendflow.c

"Description I

This module calculates all data flow subsequences for the EFG and writes them to DFLOW_FILE. A data
flow chain is a state sequence fram an 'input' to an 'output'. An 'input' can be a real input of a
variable but can also be a call to a flowstate with only constants. An 'output' can be a variable
in a variable output or a variable in a predicate that leads to a constant output before a basic
flowstate is encountered. In the calculated data flow chains the 'output' must be influenced by the
'input', e.g. the value of the 'output' depends in some way of the 'input'. The written data flow
sequences are always extended at the begin and end to the nearest basic flow state. Stop criteria for
calculating data flow chains are, besides the situations when there are no new definitions of variables
in a new flowstate influenced by the input variable, the existence of three subsequent flowstate loops
in the state sequence and reaching a maximal length in states of the data flow chain without extension
to basic flow states. This maximal length is asked before calculating the data flow chains. Also is
asked if data flow chains have to be calculated for variable inputs, constant calls or for both.
The constructed file in this module, DFLOW_FILE, has the following structure:
- A line "------------------ Real Inputs ------------------\n"
- For each data flow chain where the 'input' is a real variable input.

- a line "var_out input_var output_var sequence\n" where input_var is the variable in the input,
output_var is the variable in the variable output en sequence is the total data flow chain with
extensions to the nearest basic flow state.
- a line "const_out input_var output_var sequence\n" where input_var is the variable in the input,
output_var is the variable used in a predicate leading to a constant output en sequence is the
total data flow chain with extensions to the nearest basic flow state.

- A line "------------------ Constant Calls ------------------\n"
- For each data flow chain where the 'input' is a constant call:

- a line "var_out input_var output_var sequence\n" where input_var is the variable in the input,
output_var is the variable in the variable output en sequence is the total data flow chain with
extensions to the nearest basic flow state.
- a line "const_out input_var output_var sequence\n" where input_var is the variable in the input,
output_var is the variable used in a predicate leading to a constant output en sequence is the
total data flow chain with extensions to the nearest basic flow state.

* Editor

• Version

• M.F. van Opstal

30-7-1993

_.... _-_ .. _...._---------------------------------_._.-************************/
'* INCLUDE FILES "'

'include <stdio.h>
'include "typedef.h"
'include "efghead.h"

'* FUNCTION DEFINITIONS *'

/************.***************** ••••••••••••• ***************************.*******~.
* Function

" Description
This function opens the necessary files for this module

* Arguments I

files_type *files I pointer to all files

* Returns • void

.----------------------_._----------------_ ••••••••••• **********************/

static void
open_files_dflow(files)
files_type "files;
(

if «(files->state2fp ~ fopen(STATE_FILE_2, Or"»~ NULL)
err (gen_d, 6, 0);

if «files->trans1fp = fopen(TRANS_FILE_1, Or")~ NULL)
err (gen_d, 2, 0),

if «(files->dflowfp ~ fopen(DFLOW_FILE, "w."» == NULL)
err (gen_d, 31, 0),

/***** ••••••••••• ***.******************** •• ***********---_ ••••• ---_ •••••• _-----­

*
" Function

* Description •
This function closes the necessary files in this module

" Returns I void

•• ------------- ••••••••••• __ • •••••••••••••••••••••• ••• o •• * •••••• ~ •• * •••*.**/

static void
close_files_dflow(files)
files_type "files:
I

fclose(files->state2fp) ;
fclose(files->trans1fp),

Appendix L: Source code ProTeGe

fclose(files->dflowfpl;

/**************************** •••• *********************------------- •••••••••••••

*

Page L-41

* Function

* Description •
This function tries to find a next variable input in STATa-FILE_2.

* Arguments •
FILE
int
char

*fp I STATE_FILa-2
*input_state I state in which input takes place

*variab I variable in input

* Returns • int I

A, no next variable input found
1. next variable input found

----------_ _---------------------_ ------_ _----------.-,
static int
var_inputCfp, input_state, variab)
FILE *fp;
int *input_state;
char *variab;
(

char word1[50l,
word2[50] ,
word3[50] ,
word4 [50],
inbuf[200] ,
line[80];

sprintf(word1, "@ST");
while (!feofCfp))
(

fscanf(fp, "'s", word2);
if CstrcmpCword1, word2) 0)
(

fscanf(fp, ·'s·, word3)
fscanf(fp, ·'s·, word41
if (strcmpCword4, .1") = 0)
(

fgetsCinbuf, 199, fp);
fgets(inbuf, 199, fpl;
fgets (inbuf, 199, fp);
sprintfCline, ·@VAR d\n·);
if (strcmp(inbuf, line) == 0)
(

fscanf(fp, "'s", variab);
*input_state = atoiCword3);
return (1) ;

I
c learerr (fp) ;
return CO) :

1* rest line *1
1* @ACT-line *1
1* @VAR-line *1

1------··· .
*
* Function

* Description
This function tries to find the next call with only constants to a flowstate in STATa-FILE_2.

* Arguments •
files_type
int

char

*files I pointer to all files
*from-state • pointer to state from which constant call starts

*to_state I pointer to state to which constant call takes place
*variab • variable defined by constant call

* Returns int •
O. no next constant call found
1: next constant call found.---- ..- _._._.-._._- _.- - _ - -_._-_ -.- .. _.. /

static int
const_callCfiles, fro~state, to_state, variab)
files_type ·files;
int • from_state,

·to_state;
char ·variab;
(

char word1[50],
word2[50] ,
word3[501,
word4[50l,
inbufl [801.
inbuf2[80l,
inbuf3 [801,
line[80];

Appendix L: Source code ProTeGe

fgeta(inbuf3. 79, files->translfp);
fscanf(filea->state2fp. "a'. variab);
if (strcmp(inbuf3, '\n') zz 0)

fgets(inbuf3, 79, files->translfpll

if (strstr(inbuf3. '@TR') =z NULL) goto nextvar_label;

while (Ifeof(filea->tranalfp»
(

if (atrstr(inbuf3. '@TR') != NULL)
(

fgeta(inbufl. 79, filea->tranalfp)I
fgets(inbuf2. 79, filea->tranalfp)I
fgets(inbuf3. 79, files->translfp)I
aprintf(line. '@VAR c\n') I
if (strcmp(inbuf3, line) =z 0)
(

sacanf(inbufl, "a'a'. wordl, word2);
'from-state z atoi(word2)I
aacanflinbuf2, "a'a·. wordl. word2);
'to_atate = atoi(word2) I

rewindlfiles->state2fp) ;
sprintf(line, '@ST %d\n', 'to_atate);
fin~line(line, files->state2fp);
fgeta(inbuf3, 79. files->atate2fp);
fgeta(inbuf3, 79, files->state2fpl;
fgeta(inbuf3, 79, files->state2fp);

fgeta(inbuf3, 79. files->tranalfp);
facanf(filea->atate2fp, '%a', variab);

nextvar_label.
while (atrcmp(inbuf3, '\n') != 0)
(

if (atratr(inbuf3, '@CONST') !z NULL)
return(l) ;

fgeta(inbuf3, 79, files->translfp);
facanf(files->atate2fp. '%s', variab),

)
fgeta(inbuf3. 79, files->translfp);

)
clearerr(filea->translfp);
return(O) ;

Page L-

f' end of tranaition reached, get next @TR-line 'f

f' if inbuf3 is no @TR-line, skip FROHfTOfVAR-part 'f

f' @FROM-line 'f
f' @TO-line • f
f' @VAR-l1ne 'f

f' F X-line' f
f' @ACT-line • f
f' @VAR-line • f

/. get next variable of transition 'f

'***.**** ••••••••• ****·• Function

• Description
This function checka if the given atate ia a flowatate.

• Argumenta
int
filea_type

atate
• filea

, state to be checked
pointer to all files

• Returna • int :
0: state ia no flowstate
1. atate is flowstate

--.•.•...•-*_._..**-_._---._-_ *** ***************~********I

atatic int
ia_flowstate(atate, filea)
int state;
files_type 'filea;
(

char
char
long

l1ne[80] I
word[40] ;
poa_atate,

pos_atate = ftell(files->atate2fp)1
rewind(files->atate2fp) I
aprintf(line, '@ST 'd\n', atate);
fin~line(line. filea->atate2fp);1

if (facanf(filea->atate2fp, "a'. word) =z £OF) errlgen_d. 30, 0) I
if (strcmp(word. 'F') z= 0)
(

faeek(filea->state2fp, poa_state. 0);
return(l) I

I
elae
(

faeek(filea->state2fp. poa_atate, 0),
return(O);

/** •• ** ••••_**.***.***.*************----

f' find '@ST state' 'f

Appendix L: Source code ProTeGe Page L-43

" Function , is_inputstate

"Description I

This function checks if the given state is a inputstate.

state I state to be checked
"files I pointer to all files

" Returns • int :
0: state is no inputstate
1. state is inputstate

extern int
is_inputstate(state, files)
int state;
files_type "files;
(

char
char
long

11ne[80) ,
word[40) ,
pos_state;

pos_state: ftell(fi1es->state2fp);
rewindlfiles->state2fp);
sprintfl1ine, 'eST 'd\n', state);
find-linel1ine, files->state2fp)//

if Ifscanflfiles->state2fp, "s', word)
if (strcmplword, 'I') := 0)
(

fseek(files->state2fp, pos_state, 0);
return(l) ;

I
else
(

fseek(files->state2fp, pos_state, 0);
return(O) ;

EOF) err (gen_d, 30, 0);

f" find 'eST state' "f

/** ••• ************ •• ************ ••••• ***************** •••••• - •••••••••••••••••••

"
" Function : is_startstate

" Description
This function checks if the given state is a startstate.

state : state to be checked
"files pointer to all files

" Returns : int :
0: state is no startstate
1. state is startstate

._--_ - _ _ -.. _ /

static int
is_startstatelstate, files)
int state;
files_type "files;
(

char
char
long

line[80);
word[40) ,
pos_state;

pos_state: ftell(files->state2fp),
rewind(files->state2fp) ,
sprintf(line, 'QST 'd\n', state),
find-line(line, files->state2fp);,

if (fscanf(files->state2fp, "s', word) == EOF) err (gen_d, 30, 0) I
if (strcmp(word, 'S') := 0)
(

fseek(files->state2fp, pos_state, 0);
return(ll,

I
else
(

fseek(files->state2fp, pos_state, 0),
return(OI,

f· find 'eST state' "f

1····_·················_······························ __ _ .
"
" Function

• Description I

This function constructs a state sequence starting in a basic flowstate or startstate and ending in
the inputstate.

Appendix L: Source code ProTeGe Page L-

" Argument s I

files_type
char
int

"files I pointer to all files
"seq I state sequence to be constructed

input_state : endstate of sequence

" Returns : void

..•.......,
static void
start_se~inputs[files, seq, input_state)
files_type "files;
char ·seq:
int input_state,
(

long

int

char

pos_state,
pas_trans,

state,
end,
L
trans:
line[80l,
word[SO];

pos_state = ftell(files->state2fp),
pos_trans = ftell(files->translfp);
state = input_state,
strcpylseq, ."),
end = 0,

do
(

rewind[files->state2fp) ,
sprintflline, "@ST 'd\n", state);
find-line(line, files->state2fp);

add_next_state_beginlfiles, seq);

if «is_basic(state, files) && is_flowstatelstate, files» I I (is_startstate(state, files»)
end = 1;

else
(

sprintf(line, "@IN\n");
find-linelline, files->state2fp);
if (fscanf(files->state2fp, ·'s", word)
trans = atoi(word);
rewind(files->translfp) ;
sprintf(line, "@TR 'd\n", trans);
find-linelline, files->translfp);
if (fscanf(files->translfp, "'SO, word)
if (fscanf(files->translfp, "'SO, word)
state = atoi(word);

)
) while (!end);
seq[strlen(seq) - 1] = '\0';

fseek(files->state2fp, pos_state, 0);
fseek(files->translfp, pos_trans, 0);

EOF) err (gen_d, 30, 0);

EOF) err (gen_d, 29, 0);
EOF) err (gen_d, 29, 0);

/" get previous state "/

/" remove last space "/

t··· .
"
" Function

"Description :
This function constructs a state sequence starting in a basic flows tate or startstate and ending in
the the flowstate called by a constant call. The state from which the constant call takes place
is also included in the sequence.

" Arguments I

files_type
char
int

"files I pointer to all files
• seq : state sequence to be constructed

from-state : second last state of startsequence
to_state I last state of startsequence

" Returns I void

•..•...•...••..•••.. /

static void
start_s~const_calls(files,seq, from_state, to_state)
files_type "files;
char "seq;
int from-state,

to_state;

long

int

char

pos_state,
pos_trans;

state,
end,
L
trans:
line[80l,
word[SOl;

Appendix L: Source code ProTeGe

pas_state = ftell(files->state2fp);
pos_trans = ftell(files->trans1fp);
state = from-state,
strcpy(seq, ""),
end = 0,

do
(

rewind(files->state2fp)I
sprintf(line, "QST %d\n", state) I
findLline{line, files->state2fpll

addLnext_state_begin(files, Seq)1

if « is_basic (state, files) " is_flowstate (state, files)) I I (is_startstate (state, files) I I
end. 1,

else
(

Page L-45

word) == EOF) err (gen_d, 3D, 0),

sprintf(line, "QIN\n"11
findLline(line, files->state2fp);
if (fscanf(files->state2fp, "'s",
trans = atoi{word) I
rewind(files->trans1fpl I
sprintf(line, "QTR %d\n', trans);
findLline{line, files->trans1fp);
if (fscanf(files->trans1fp, "'s",
if {fscanf (files->translfp, "'s",
state = atoi(word);

I
} while (!end);
seq!strlen(seql - 1] = '\0' I

rewind(files->state2fp) I
sprintf{line, "@ST %d\n", to_state);
findLlinelline, files->state2fp);

add-next_state(files, seq);

fseeklfiles->state2fp, pas_state, 0);
fseeklfiles->trans1fp, pos_trans, 01;

word)
word)

EOF) err (gen_d, 29, 0);
EOFI err (gen_d, 29, 0) I

f" get previous state "f

f" remove last space "f

/************************************ •• ****** ••••• **********.*******************

"
" Function

"Description I

This function returns the second last state of a sequence with a space inserted and a '\n' at the end.

" Arguments
char "seq I sequence from which to derive second last state

" Returns I char " I

second last state with space inserted and \n at end

********** •• ************ •••••••• ********* ••• **********************************/

static char"
get-prev_seQ-statelseql
char "seq;
(

int
char

i, j;
word!10]I

i = strlen{seq);
while (seq!i] 1= ' ') i--I
i--;
while {(seq!i] != ' ') " (i >= 01) i--; f" goto begin of previous state "f

word[j] = seq[i],

word!O] = seq!++i];
word!1} • ' 'I
for {j = 2; seq!..i] !=
(

I
word [j] = '\n' I
word[j+1] • '\0'1
return (word) ;

, " j++)

f" get previous state with space inserted and \n at end "f

/**********************************.**

"
" Function

• Description I

This function checks whether the given state is a flowstate defining a variable that is influenced
by the variable in the previous sequence state.

• Arguments I

files_type
int
char

"files I pointer to all files
state I state to be checked

"seq I present sequence
"variab I variable to be checked in call to state

• Returns I int I

Appendix L: Source code ProTeGe

O. state is no flowstate or flowstate is called with variable
1. state is not called with variable

••••••• ***.****** •••• *** •••••• ****.**.***********.**** ••• **************** •• ***/

static int
no_new_def(files, state, seq, variab)
files_type "files;
lnt state;
char "seq,

"variab;

Page L-

long

char

int

pos_state,
pos_trans;
line[80l,
inbuf[200l,
word[40] ;

trans;

pos_state z ftell(files->state2fp);
pos_trans = ftell(files->translfp);

if (is_flowstate(state, files»
(

rewind(files->state2fp) ;
strcpy(line. get_prev_seQ-state(seq);
find-line(line, files->state2fp);
sprintf(line, "@OUT\n");
find-line(line, files->state2fp);
if (fscanf(files->state2fp, "'s", word)
trans = atoi(word);
rewind(files->translfp) ;
sprintf(line, "@TR 'd\n", trans);
find-line(line, files->translfp);
fgetsCinbuf, 199, files->translfp);
fgets(inbuf, 199, files->translfp);
fgets(inbuf, 199, files->translfp);

EOF) errCgen_d, 30, 0);
'" get outgoing trans "'

'" @FROM-line "'
," @TO-line "'
," @VAR-line "'

if (fscanf(files->translfp, "'s", word)
while (strcmp(word, "@TR") != 0)
{

if (strcmp(word, variab) == 0)
(

EOF) strcpy(word, "@TR");

'" check if variab is used in call to flowstate "'

fseek(files->state2fp, pos_state, 0);
fseek(files->translfp, pos_trans, 0);
return(O) ;

if (fscanf(files->translfp, "'s", word)

fseek (files->state2 fp, pos_state, 0);
fseek(files->translfp, pos_trans, 0);
return(l);

fseeklfiles->state2fp, pos_state, 0);
fseek(files->translfp, pos_trans, 0);
return(O) ;

EOF) strcpy(word, "@TR");

/***** ••••• **~*~*********••• **************** •• ******** ******** •••••• ************

"
" Function

" Description
This function checks whether the sequence contains three subsequent same loops starting and ending
in some flowstate.

" Arguments
char "seq • present state sequence

" Returns lnt •
O. no three loops
1. three loops

** •••• ***.************ •••••••• ******************************* •• ***************/

static int
three_loops (seq)
char "seq;
{

char

int

char

*seq2,
"seq3,
"seq4,
word!50l,
"ptr;

i, j.
seqlen;
c;

seq2 z (char ") malloc lstrlen(seq) " sizeof(char»;
seq3 (char *) malloc (strlen(seq) * sizeof(char»;
seq4 (char") malloc (strlen(seq) * sizeof(char»;

for (i = 0; seq!il != '\0'; i++) '" check total sequence "'

Appendix L: Source code ProTeGe

if (seq[i] =a 'F')
(

for (j 'II: 0; isalnum(seq[i]) , j++)
(

word[j] = seq[i] ,
i++,

)
word[j] a . "
word[j+l] . '\0' ,

strcpy(seq2. &seq[i - strlen(word) + I]),
seqlen • 0,
while ((ptr • strstr(&seq2[seqlen+l]. word» !. NULL)
(

seqlen = strlen(seq2) - strlen(ptr),
c = *ptr;
"ptr • '\0',
strcpy(seq3. seq2),

"' *ptr :II: C,
strcpy(seq4, ptr),

if (strstr(seq4, seq3) == seq4)
(

strcpy(seq4, &seq4(strlen(seq3)]) I
if (strstr(seq4, seq3) == seq4)
(

Page L-47

'" get flowstate sequence "'

'" remove states until flowstate "'

'" check total rest of sequence "'

'" seq3 becomes loop part to be checked

'" seq4 becomes rest of seq2 "'

'" check if two loops "'

'" check if three loops "'

strcpy(seq4, &seq4[strlen(seq3)]),
word[j] = '\0',
if «(strstr(seq4, word) == seq4) && (lisdigit(seq4[strlen(word)]»)
('" check also last state "'

free (seq2) I
free (seq3) ,
free(seq4),
return(l),

)
word[j] = ' "
word[j+l] = '\0',

)
free(seq2)
free(seq3)
free(seq4)
return(O) ,

/ ••• ******* •••

"
" Function

"Description I

This function executes a next step in deriving data flow chains for the given flowstate, e.g. this
function calls step_seq for the flowstate for all variables defined in this flowstate that are
influenced by the start variable of the data flow chains.

" Arguments •
files_type
char
int

char

int

"files
"seq

fromstate
state
"start_varlab
"variab

maxstep
step

pointer to all files
present state sequence

, previous state of step
present state for step

I start variable for data flow chain
I present variable for data flow chain

maxlmul number of steps to be taken
I present step

• Returns : void

•••...•...•.........•.....,
static void
flow_step (files. seq, fromstate, state. start_variab, variab, maxstep, step)
files_type "files,
char "seq,
int fromstate,

state,
char "start_variab.

"variab,
int maxstep,

step;

static void

long

char

int

pos_state,
pos_trans.
pos_state2.
pos_t rans2,
line[80].
word[40].
inbuf [200].
new_variab(30],

trans;

Appendix L: Source code ProTeGe Page L-t,

'* check all calls for variable existence *'

,* go to outgoing trans of frcmstate *'

'* @FROM-line *'
'* @TO-line *'
'* @VAR-line *'

,* go to (to) state *'

,* F X-line *'
'* @ACT-line *'
,* 'lVAR-line *'

pos_state = ftell(files->state2fp)I
pos_trans = ftell(files->translfp)I

rewind(files->state2fp) I
sprintf(line, "@ST %d\n", fromstate);
fina-line(line, files->state2fp)I
sprintf[line, "@OUT\n"),
fina-line(line, files->state2fp)I
if (fscanf(files->state2fp, "%s". word) == EOF) err (gen_d. 29. 0),
trans = atoi(word);
rewind(files->translfp)I
sprintf(line, "@TR %d\n". trans),
fina-line(line, files->translfp)I
fgets(inbuf. 199, files->translfp);
fgets(inbuf. 199. files->translfp);
fgets(inbuf. 199, files->translfp);
rewind(files->state2fp)I
sprintf(line. "@ST %d\n", state);
fina-line(line, files->state2fp)I
fgets(inbuf. 199. files->state2fp);
fgets(inbuf. 199, files->state2fp);
fgets(inbuf. 199, files->state2fp)I

fgets(inbuf, 199, files->translfp)I
fscanf(files->state2fp, '%s', new_variab);
pos_state2 = ftell(files->state2fp) I
pos_trans2 = ftell(files->translfp);
while (strcmp(inbuf, '\n') != 0)
(

if (strstr(inbuf, variab) != NULL)
step_seq(files, seq, state, start_variab, new_variab, variab, maxstep. step);

fseek(files->state2fp, pos_state2, 0);
fseek(files->translfp, pos_trans2, 0);
fgets(inbuf, 199, files->translfp);
fscanf(files->state2fp, '%s', new_variab);
pos_state2 ftell(files->state2fp);
pos_trans2 = ftell(files->translfp);

fseek(files->state2fp, pos_state, 0),
fseek(files->translfp, pos_trans. 0);

I··***···**·**···***·····*·····***·*·······*·*··~··*··••••••..••.••.••••.••.••••
*
" Function

* Description r
This function finishes the given sequence to the first basic flowstate to be found.

r pointer to all files
state sequence to be finished

: start state for finishing

*files
"seq

state

* Arguments :
files_type
char
int

* Returns : void

static void
finish_seq(files. seq, state)
files_type *files;
char *seql
int state;
(

int

long

char

pos_state,
pos_trans;

1,
tmp_state,
trans1
word[801.
inbuf [801.
line[8011

pos_state ftell(files->state2fp);
pos_trans = ftell(files->translfp);

tmp_state = statel
rewind(files->state2fp);
sprintf(line, "@ST %d\n*, tmp_state);
fina-line(line. files->state2fp)1

while (!(is_basic(tmp_state. files) && is_flowstate(tmp_state. files»)
(

sprintf(line. "@OUT\n"),
fina-line(line, files->state2fp),
if (fscanf(files->state2fp, '%s'. word)
trans = atoi(word) I
rewind(files->translfp) I
sprintf(line, '@TR %d\n', trans),
fina-line(line. files->translfp),
fgets(inbuf. 79, files->translfp);
if (fscanf(files->trenslfp. '%s'. word)
if (fscanf(files->translfp. '%s'. word)

EOF) err (gen_d. 30. 0),

EOF) err (gen_d. 29, 0),
EOF) err (gen-d, 29. 0),

'* go to outgoing trans of state *'
,* @FROM-line *'
,* @TO *'
'* tostate *'

Appendix L: Source code ProTeGe Page L-49

tmp_state • atoi(word):

rewindlfiles->state2fpl,
sprintflline, "eST %d\n", tmp_state):
find-line(line, files->state2fp):

add-next_state(files, seq):

fseek(files->state2fp, pos_state, 0):
fseek(files->translfp, pos_trans, 0):

/************ •• ***** ••••• ******* ••••••• **** •••• *** •••• -**.-._---------_._._--_.­
"
" Function

"Description I

This function checks if the variable is used in the output to be checked upon.

" Arguments I

files_type
int
char

"files I pointer to all files
state I outputstate to be checked

"variab : variable to be checked if it is used in output

" Returns lint :
0: variable not in output
1: variable in output

-* ••• _----_ ••• __ •••••• _-------_ ••••• _••••••• -_ •••••••••••• _-_ ••••••••••••••••• /

static int
var_in_output(files, state, variab)
files_type "files:
int state:
char "variab:
(

long
char

pos_state:
11ne[80I,
inbuf[4001:

pos_state _ ftell(files->state2fp):

rewind(files->state2fp) ;
sprintf(line, "eST %d\n", state):
find-linelline, files->state2fp):
fgets(inbuf, 399, files->state2fp):

if (strstr(inbuf, variab) != NULL)
(

'" 0 X-line "'

fseek(files->state2fp, pos_state, 0);
return(l);

)
else
(

fseeklfiles->state2fp. pos_state, 0):
return(O) :

/* ••••• ****** ••••••• **** •••• ** ••••• ** ••••••• * •• * •••• **_ ••••••• __ •••••••• _-_ ••• _­

"
" Function

pointer to all files
sequence to be written
startvariable of data flow chain

I endvariable of data flow chain
: integer telling whether output is variable or constant

" files
"seq
"start_variab
"variab

output_sortint

"Description I

This function writes a line containing a data flow chain to DFLOW_FILE, starting with 'var_out' if the
output, is a variable output, 'const_out' if it is a chain for a constant output. Next the start
variable and the end variable of the data flow chain are written and the state sequence leading from
an input to an output starting and ending in a basic flowstate.

• Argument s I

files_type
char

" Returns : void

-----_ _ _ __ __ _------_ _-_ •.•.•..•.•.•..•....•...,
static void
write_seq(files, seq, start_variab, variab, output_sort)
files_type "files:
char "seq,

"start_variab,
"variab:

int output_sort;
{

if (output_sort =_ 1)
fprintflfiles->dflowfp, "var_out %s %s %s\n", start_variab, variab, seq):

else '" output_sort == 2 "'
fprlntf(files->dflowfp, "canst_out %s %s %s\n", start_variab, variab, seq):

Appendix L: Source code ProTeGe

I.e ••••••••••••••••••••••••••••••••••••••• _-_ ••••••••• tette* •••••••••• _ •••••••••

*

Page L-:

* Function

* Description :
This function returns the last state of a sequence with a space inserted. Also it returns the sequence
without this last state.

* Arguments I

char *seq I sequence to be cutted

* Returns I char * •
last sequence state with space inserted'

**** •••••• _•••••••••••••••• _•••••••••••••••••••••••••• te •••••••••••••••••••••• ,

static char *
cut_Iast_se~state(seq)

char ·seq;
(

int

char

i, j,
cut,
word[10l,

i = strlen(seq);
while (seq[il != ' ') && (i >= 0)) i--;
cut = i;

word[OI = seq[++i];
word[1] = ' '.
for (j = 2; i~alnum(seq[++il); j++)
(

word[jl = seq[il;

/* go to point before start of last state */

)
word[jl = '\0';
if (cut != -1) seq[cutl
ret urn (word) ;

, \0':
/* word becomes last state with space */
/* remove last state */

/*********.*********** •••••• *********** ••••••••••••• ***e.e ••••••••••••••••••••••
*
* Function

* Description •
This function returns the internal number, so the number of the @ST-line, of a sequence state returned
by cut_Iast_se~state.

* Arguments I

files_type
char

*files
*se~state

pointer to all files
sequence state to be checked

* Returns I int I

internal number of sequence state

••• * ••••••••••• -- ••• _••••••••••••••••••••••••••••••••• ******.********** ••••••• /

static int
intern_num(files. se~state)

files_type *files;
char *se~state;

(
long
char

pos_state;
line(200) ,
inbuCold[200l,
inbuCnew[200l,
word1[20l,
word2[201,

pos_state = ftell{files->state2fp),

sprintf(line, "'s\n", seQ-state);
rewind(files->state2fp) ;
fgets(inbuf_new, 199, files->state2fp);

do
(

strcpy(inbuf_old, inbuf_new);
fgets(inbuf_new, 199, files->state2fp);

) while (strcmp{line, inbuf_new) != 0);
if (feof(files->state2fp» err (gen_d. 30, 0);

sscanf(inbuf_old, "'s's", word1, word2);

fseek(files->state2fp, pos_state, 0);
return{atoi(word2»,

/* find seQ-state-line "/

/* inbuf_old is @ST-line */

I ••• ******* ••••• 0 •••• *** ••••••
*
* Function • pred...trans

* Description •
This function checks if the transition from the from-state to the to_state contains predicates.

* Arguments

Appendix L: Source code ProTeGe Page L-S1

·files I pointer to all files
from-state I fromstate of transition

to_state I tostate of transition

• Returns I int I

0: no predicate transition
1: predicate transition

._ _ --_ - •• *------_ ,
static int
predLtrans(files, fr~state, to_state)
files_type ·files;
int from-state,

to_statel

long

char

int

pos_state,
pos_transl
l1ne[2001,
inbuf [2001.
seQ-state [201 ,
word[SOl,
word2[SOII

transl

pos_state = ftell(files->state2fpl;
pos_trans = ftell(files->trans1fp);
rewind(files->state2fp);
sprintf(line, 'eST \d\n', from-statel;
findLline(line, files->state2fpl;
sprintf(line, 'eOUT\n');
findLline(line, files->state2fp);

if (fscanf(files->state2fp, '\s', word)
while (strcmp(word, 'eST') != 0)
(

EOF) strcpy(word, 'eST');
f· check all outgoing transitions of from_state ·f

trans = atoi(word);
rewind(files->trans1fp) ;
sprintf(line, 'eTR \d\n', trans);
findLline(line, files->trans1fp);
fgets(inbuf, 199, files->trans1fp)I
fgets(inbuf, 199, files->trans1fp);
sscanf(inbuf, '\s\s', word, word2);
if (atoi(word2) == to_state)
(

fgets(inbuf, 199, files->trans1fp);
sprintf(line, 'eVAR p\n');
if (strcmp(line, inbuf) == 0)
(

f· eFROM-line ·f
f· eTO-line • f

f· if to_state of trans is the right one ·f

f· eVAR-l1ne ·f

fseek(files->state2fp, pos_state, 0);
return(1) ;

)
else
(

fseek(files->state2fp, pos_state, 0);
fseek(files->trans1fp, pos_trans, 0);
return(O) I

if (fscanf(files->state2fp, '\s', word) EOFl strcpy(word. 'eST');

1-*-······---_·······_-----_····_··· __·····_·········· *_ ••••••• -_._--_ •••••••• _.·• Function

• Description I

This function checks if data flow chains can be written to the OFLOW_FILE because of the existence of
outputs influenced by an input in the present outputstate. If the output is a variable output it is
checked whether the variable in the output is the variable influenced by the input. If so, this data
flow chain is written. If the output is a constant output this function searches back for predicate
transitions with the influenced variable before a basic flow state is encountered. If this is the case.
the data flow chain is written.

• Arguments I
files_type
char
int
char

• files
·seq

state
·start_variab
·variab

pointer to all files
present state sequence

I outputstate
startvariable of data flow chain

I present variable of data flow chain

• Returns I void

*---_ ... _._._._. __ .. _--.-_-_._.- .. _.... __ ... __ ... -**********.*************,

static void
output_step (files, seq, state, start_variab, variab)
files_type ·filesl
char ·seq,
int state,
char ·start_variab,

*variab;

Appendix L: Source code ProTeGe Page L-

long

char

int

pos_state,
pos_transl
*seq2,
*seq3,
word(501.
selL-state (201 ,
new_variab(50ll

to_state,
frollLstate.
end:

pos_state a ftell(files->state2fp)I
pos_trans E ftell(files->translfp),

seq2 = (char *) malloc«strlen(seq) + 120) * sizeof(char)11
strcpy(seq2, seq) I
finish_seq(files, seq2. state),

if (var_in-output(files. state. variabll
(

write_seq(files. seq2. start_variab, variab, 1) I
I
else
(

'* variable in output *'

'* constant output or variable output without 'variab' *'

'* get number last state *'

seq3 = (char *) malloc«strlen(seq)) * sizeof(char)):
strcpy(seq3. seq) I

strcpy(selL-state, cut_last_selL-state(seq3));
frollLstate = intern_num(files, selL-state);
end a 01
do
(

to_state = from_state;
strcpy(selL-state, cut_last_selL-state(seq3») I
frollLstate = intern_num(files, selL-state);
if (pred-trans(files, frollLstate, to_state)
(

if (fscanf(files->translfp, "'s", new_variab)
while (strcmp(new_variab, "@TR") != 0)
(

if (strcmp(variab, new_variab) == 0)
(

'* get number last state *'
'* if transition contains predicates *'

EOF) strcpy(word, "@TR"I:
'* for each predicate use of new_variab *'

'* if variable is the influenced variable *'

write_seq(files, seq2. start_variab. new_variab, 2);
end = 1:

I
if (fscanf(files->translfp. "'s", new_variab) == EOF) strcpy(word, "@TR"),

I
) while «! (is_flowstate(from_state. files) && is_basic(frollLstate. files))) && (end
free(seq3):

fseek(files->state2fp. pos_state, 0):
fseek(files->translfp, pos_trans, 0);
free(seq2) ;

1*** **************************

*

0111

* Function

* Description
This function performs a next step in deriving data flow chains by getting the next state. Next, if this
state is a flowstate, flow_step is called. If the state is an outputstate output_step is called to
write possible data flow chains. after this the next step of step_seq is called. If the state is no
flowstate or outputstate the next step of step_seq is called.

* Arguments ,
files_type
char
int
char

int

*files
*seq

state
*start_variab
*variab
*prev_variab

maxstep
step

pointer to all files
present state sequence

, present state for step
I start variable of data flow chain

I present variable of data flow chain
I in case of new flowstate. variable used in last flowstate

maximal number of steps to be taken
I present step

* Returns , void

**/

static void
step_seq(files, seq, state. start_variab, variab. prev_variab. maxstep, step)
files_type *files;
char *seq1
int state,
char *start_variab,

*variab,
*prev_variab;

int maxstep,
stepl

long pos_state.
pos_trans.
pos_state2:

Appendix L: Source code ProTeGe Page L-53

char

int

*seq2,
'seq3,
line[2001,
word[5011

tostate,

printfC"\b\b\b\b'-4d", step) I
fflush(stdout) I

pos_state = ftell(files->state2fp)1
pos_trans = ftell(files->trans1fp)I
seq2 E Cchar .) malloc«strlen(seq)
seq3 = (char .) malloc«strlen(seq)
strcpy(seq2, seq),

6) • sizeof(char»,
6) • sizeof(char»I

/. if state contains no new defs influenced by variable or three loops in seq or maximum number of steps ./
/. reached. skip the sequence and return ./
if C«no_new_def(files, state, seq2, prev_variab» && (step IE 1» II (three_loops (seq2)) I I (step >= maxstep»),
else
(

rewind(files->state2fp) ,
sprintf(line, "QST 'd\n", state),
fin~line(line, files->state2fp)I
sprintfCline, "@OUT\n") I
fin~line(line, files->state2fp);

if (fscanfCfiles->state2fp, "'s", word)
pos_state2 = ftell(files->state2fp) I
strcpy(seq3, seq211
while (strcmp(word, "@ST") != 0)
(

EOF) strcpy(word, "@ST"),

/. for each outgoing trans ./

strcpy(seq2, seq3);
tostate = fin~st_line_next_state(files, word):
strcpy(word, ad~next_state(files, seq2» I

if (strcmp(word, "F") == 0)
(

flow_step(files, seq2, state, tostate, start_variab, variab, maxstep, step.111
I
else
(

if (strcmp(word, "0") == 0)
(

output_step (files, seq2, tostate, start_variab, variab),
step_seq(files, seq2, tostate, start_variab, variab, variab, maxstep, step.1),

)
else
(

step_seq(files, seq2, tostate, start_variab, variab, variab, maxstep, step.1),

fseekCfiles->state2fp, pos_state2, 0) I
if (fscanf(files->state2fp, "'s", word)
pos_state2 = ftell(files->state2fp),

fseek(files->state2fp, pos_state, 0),
fseek(files->trans1fp, pos_trans, 0),
free(seq2)I
free (seq3) I

EOF) strcpy(word, "@ST"),

/***·• Function

• Description I

This function calls var_input to get next variable inputs. Next, it calls start_seq to get an initial
sequence and it calls step_seq for the first step.

• Arguments •
files_type
efg_type
int

'files • pointer to all files
'efg : pointer to EFG

maxstep maximal number of steps to be taken

• Returns • void

******************.***/

static void
gen_for_inputs(files, efg, maxstep)
files_type 'filesl
efg_type 'efg,
int maxstepl
(

char
char
int

seq

'seq,
variab[5011

input_state,

(char .) malloc(120 • sizeof(char»I

rewind(files->sta te2fp)I

Appendix L: Source code ProTeGe

printf("\nCalculating Data Flow subsequences for real inputs ,length of sequence. none");
fprintf(files->dflowfp, "------------------ Real Inputs ------------------\n");

Page L-

while (var_input(files->state2fp, &input_state, variab»
(

start_seQ-inputs(files, seq, input_state);
step_seq(files, seq, input_state, variab, variab, variab, maxstep, 1);

free(seq) ;

/************ ••••• ***********.*****.****************** •• ---_._------------ ••••••

"

'* get next variable input *'

" Function

"Description •
This function calls const_call to get next variable constant calls. Next, it calls start_seQ-const_call
to construct a initial sequence and it calls step_seq for the first step.

" Arguments •
files_type
efg_type
int

"files • pointer to all files
"efg I pointer to EFG

maxstep • maximal number of steps to be taken

" Returns • void

...._---------_.._---_._-----_ .._--------__----------_._-_-----------/
static void
gen_for_const_callslfiles, efg, maxstep)
files_type *files;
efg_type *efg;
int maxstep;
(

char
char
int

-seq;
variab(50) ;

frollLstate,
to_state;

seq = (char *) malloc(120 * sizeof(charl);

rewind(files->trans1fp) ;

printf("\nCalculating Data Flow subsequences for constant calls, length of sequence none");
fprintflfiles->dflowfp, "------------------ Constant Calls ------------------\n"),

while (const_call(files, &frollLstate, &to_state, variab» '* get next variable in call *'
(

start_seQ-const_calls(files, seq, frollLstate, to_state);
step_seq(files, seq, to_state, variab, variab, variab, maxstep, 1);

free(seql;

le ••••••• _--------- ••••• _----------_.-._._----------_.**********~***************
"
* Function

* Description
This function is the main function of this module. It asks the maximal number of steps to be performed,
it asks is you want to derive data flow chains for variable inputs and constant calls and calls the
functions gen_for_inputs or gen_for_const_calls depending on the answer of this last question.

" Arguments •
efg_type
files_type

*efg
*files

pointer to EFG
• pointer to all files

" Returns • void

------_ _--------------.-.-------_._._----------_.*********** .. ***********/

extern void
gen_dflow(efg, files)
efg_type *efg,
files_type "files,
(

int
char
int

maxstep,
inbuf(80);

menu;

open-files_dflow(files) ,

do
(

printf("\nGive maximal length of sequences to look for (max 500 states) • 0),
gets(inbuf) ;
sscanflinbuf, "'dO, &maxstep),

while «maxstep < 1) II (maxstep> 500»,

printf("\nFOr
printf("\n\n1
print f ("\n2
print f ("\n3

which 'inputs' do you want to
Inputs of Variables and

Only Inputs of Variables");
only Constant Calls");

derive Data Flow testsubsequences?");
Constant Calls"),

Appendix L: Source code ProTeGe Page L-55

printf('\n\nO
do
(

No derivation Data Flow testsubsequences\n');

printf('\nYour choice? ');
gets(inbuf) ;
sscanf(inbuf, "d', 'menu);

while «menu < 0) II (menu> 3»);

if ((menu as 1) II (menu ss 2)
gen_for_inputs(files, efg, maxstep);

if «menu == 1) II (menu =a 3))
gen_for_const_calls(files. efg, maxstep);

close_files_dflow(files);

Appendix L: Source code ProTeGe

I •••• eeee ••••••••••••••••••••••••••••••••• _-_ •••••••••••••••• eeeee _

·

Page L-

• File • ttcn.c

• Description •
This module constructs TTCN test cases for the control flow and it transforms the UIO sequences and
the data flow sequences formed in makeuio.c and gendflow.c to TTCN. The transformation of link
sUbsequences is not yet implementated. The TTCN test cases for control flow are written, with a
header giving the purpose of the test case, its identifier and some comment lines giving information
about the test case, to CFLOW_TTCN_FILE. The algorithm to construct TTCN control flow test cases
is als follows.

port! fs
possible I's

-if reception before basic state
port?fr

possible I's
+UIO sequence basic flow state

port?other_frames
possible I's

+UIO sequences paths basic flow states
?OTHERWISE
?EXPlRATION OF TIMER

-if no reception and basic flow state is unstable
+UIO sequence basic flow state(s)

-if no reception and basic flow state is stable
START TIMER

?TIME_OUT
+UIO sequence basic flow state

?OTHERWISE

pass

pass
fail
fail

pass

pass
fail

The UIO sequences and data flow subsequences are read from DFLOW_FILE and UIO_FILE (only one UIO
sequence for each basic state) and transformed to TTCN and written. preceeded by a header and
followed by comment lines, to DFLOW_TTCN_FILE and UIO_TTCN_FILE. The following algorithm is used:

actions

-at any unstable flow state:
-for all paths leading to a reception (output in EFG)
possible I's

port?fr
?OTHERWISE
?EXPlRATION OF TIMER

-for all paths leading to a stable flow state via I's
possible I's, at least one

?EXPlRATION OF TIMER

actions

-for each intended reception
port?fr
?OTHERWISE
?EXPlRATION OF TIMER

inconclusive
fail
fail

inconclusive

pass

fail
fail

• Editor

* Version

M.F. van Opstal

• 30-7-1993
e e __ e_ee_ •••••••••••••••• • ***************** ••••• **/

,. INCLUDE FILES .,

'include <stdio.h>
'include "typedef.h"
'include "efghead.h"

,. FUNCTION DEFINITIONS .,
leeeee •••• e •••••• ••••• _ •••• ••••••••••••••• -. _

·• Function • open_files_ttcn

• Description :
This function opens the necessary files for this module

• Arguments •
files_type ·files • pointer to all files

• Returns • void
e. e ••••••••••••••••••••• __ •••••••••• ee e_e ._,

static void
open_files_ttcn(files)
files_type ·files;
{

if «files->state2fp m fopen(STATE_FILE_2, Or"»~ NULL)
err(ttcn, 6, 0);

if ((files->trans1fp fopen(TRANS_FILE_1, Or"»~ NULL)
err(ttcn, 2. 0);

if «(files->uiofp = fopen(UIO_FILE, Or"»~ == NULL)
err(ttcn, 27, 0);

if «files->dflowfp = fopen(DFLOW_FILE, Or"»~ == NULL)

Appendix L: Source code ProTeGe

err(ttcn, 31, 0)/
if «files->linkfp = fopen(LINK-FILE, ·r·» == NULL)

err(ttcn, 32, 0)/
if «files->cflowttcnfp = fopen(CFLOW_TTCN_FILE, ·w·» == NULL)

err(ttcn, 33, 0)/
if «files->uiottcnfp = fopen(UIO_TTCN_FILE, ·w·» == NULL)

err(ttcn, 34, 0)/
if «fi1es->dflowttcnfp = fopen(DFLOW_TTCN_FILE, ·w·» == NULL)

err(ttcn, 35, 0);
if «files->linkttcnfp = fopen(LINK-TTCN_FILE, ·w·» == NULL)

err(ttcn, 36, 0)/

/**.********* •••

"

Page 1.-57

" Function

"Description •
This function closes the necessary files in this module

" Arguments •
files_type "files • pointer to all files

" Returns • void

...•....•...........................•....••.........•••.....................•.,
static void
close_files_ttcn(files)
files_type "files;
(

fcloselfiles->state2fp) ;
fclose(files->trans1fp) ;
fclose(files->uiofp);
fclose(files->dflowfp);
fclose(files->linkfp) :
fclose(files->cflowttcnfp);
fclose(files->uiottcnfp);
fclose(files->dflowttcnfp);
fclose(files->linkttcnfp);

,•........................•....................•...............•••...•..........
"
" Function

"Description •
This function allocates memory for a ttcn element and resets all elements of it.

" Arguments none

" Returns I ttcn-el_type " I

pointer to initialized ttcn element

static ttcn_el_type"
init_ttcn_el ()
(

strcpy(elem->action,··) ;
strcpy(elem->comment,··);
elem->verdict = none;
elem->n1 = NULL;
elem->np = NULL:
elem->indent = 0;
elem->state = 0;
return (elem) ;

,•••.•..••..........••.•........................•.......•.....•••••••••.....•••.
"
" Function

"Description •
This function replaces '7' by 'I' and vice versa.

" Arguments •
char "action • pointer to action to be inverted

" Returns • void

..••.•••.....•......•.......••........•........•............•••....•..•••..•••,
static void
inv_inout(action)
char "action;
(

int i /

for (i=O; i<strlen(action); i++)
if (action!i) == '7') action!i) '&';

Appendix L: Source code ProTeGe

for li=O, i<strlen(action), i++)
if (action[i] == '!') action[i]

for (i=O; i<strlen(action); i++)
if (action[i] == '&') action[i]

, 1',

'!' ;

Page L-~

/*************************************** ••

*
* Function

* Description I

This function fills first element of cflow test case with info about the input to be tested.

* Arguments I

files_type
ttcn.-el_type
iot

*files I pointer to all files
*elem pointer to ttcn element to be updated

flowstate I number of flowstate as in F X
inputstate I intern number of inputstate

* Returns : void

••• *********************/

static void
fill_first_cflowlfiles, elem, flowstate, inputstate)
files_type *files;
ttcn.-el_type *elem;
int flowstate,

inputstate;

long

char

pos_state,
pos_trans;
l1ne[200],
inbuf[200];

pos_state = ftell(files->state2fp);
pos_trans = ftell(files->translfp);

rewind(files->state2fp) ;
sprintf(line, "@ST %d\n", inputstate);
fin~linelline, files->state2fp);
fgets(inbuf, 199, files->state2fp);
fgets(inbuf, 199, files->state2fp);
inbuf [strlenlinbufj-1] = '\0';
strcpy(elem->action, &inbuf[5]);
inv_inout(elem->action) ;

sprintflelem->comment, "Start in F%d, check input '%s'", flowstate, &inbuf[5]1;

elem->state = inputstate;

fseek(files->state2fp, pos_state, 0);
fseek Ifiles->trans1fp, pos_trans, 0);

/*** •• **--------_ •••• _._._--_ •••••

*

'* I X-line *'
'* 9ACT-l1ne *'
/* remove '\0' *'
'* remove @ACT *'
'* inverse 7! *'

* Function

* Description
This function creates if necessary and returns the last empty element of the present level of a
ttcn element if first is 1, else it creates if necessary and returns the last element of the next
level of the ttcn element.

* Arguments
ttcn_el_type
int

*elem
first

pointer to ttcn element to be expanded
I is 1 if elem is first element

* Returns I ttcn_el_type * I

pointer to created ttcn element

.. _-----------------_._---.-_ _----------------***** ******/

static ttcn_el_type *
create_next_elemlelem, first)
ttcn_e1_type *elem;
int first,
(

ttcn.-el_type *tmp,

if (first == 1) '* no previous element, so create on this lev.

*'
if Istrcmp(elem, "") == 0)

return(elem) ;
else
(

tmp = elem;
while (tmp->np != NULL)

tmp = tmp->np;
tmp->np = init_ttcn_el();
returnltmp->np);

'* elem not used *'

'* find last used next possibility *'

Appendix L: Source code ProTeGe Page L-59

else
(

j* elem is previous level *j

if (strcmp(elem, *") __ 0)
return(elem) I

if (elem->nl == NULL)
(

j* first next element is empty *j

elem->nl = init_ttcn-el()I
return(elem->nl)I

)
else
(

j* find last next possibility of next level *j

tmp = elem->nl,
while (tmp->np I. NULL)

tmp = tmp->np,
tmp->np - init_ttcn_el()1
return(tmp->np) I

, _----- _-----_ -- .._-----------_ _--------_ _------ _---
*
* Function

* Description
This function fills nelem with info about the internal event state 'state'.

* Arguments I

files_type
ttcn_el_type

int

*files
*elem
*nelem

state
sort
first

pointer to all files
pointer to ttcn element to be used for updating nelem
pointer to ttcn element to be filled

I internal number of internal event state
is 1 if state has to be searched else 0
is 1 if nelem is first element

* Returns : void

.... --------_ _-----------_ _-_ __ ...• --_ .. -----_ _ _---/
static void
intern_fill (files, elem, nelem, state, sort, first)
files_type *filesl
ttcn_el_type *elem,

*nelem:
int state,

sort,
first,

char

long

inbuf[200] ,
11ne[200],
pos_statel

if (sort == 1)
(

j* state has to be searched *j

pos_state = ftell(files->state2fp),

rewind(files->state2fp),
sprintf(line, "@ST %d\n", state),
find-line(line, files->state2fp),
fgets(inbuf, 199, files->state2fp)I

strcpy(nelem->action, *1*),

fgets(inbuf, 199, files->state2fpl,
inbuf[strlen(inbuf)-l] = '\0',
strcpy(inbuf, &inbuf[5]),
sprintf(nelem->comment, "Internal Event. %s", inbufll

j * @ACT-line * j
j* remove '\n' *j
j* remove @ACT *j

if (first _. 0)
nelem->indent = elem->indent + 11

nelem->state _ state,

if (sort _. 1)
fseek(files->state2fp, pos_state, 0),

, __ _------------_ _ _ _-_ _-_ .••••....• _---_ __ ----_ .
*
* Function

pointer to all files
pointer to ttcn element to be used for updating nelem
pointer to ttcn element to be filled

: internal number of outputstate
is 1 if state has to be searched, 2 if output is inconclusive sidepath, else 0

I is 1 if nelem is first element

*files
*elem
*nelem •

state
sort
first

int

* Description •
This function fills nelem with info about the output state 'state',

* Arguments I

files_type
ttcn_el_type

* Returns • void

Appendix L: Source code ProTeGe Page L-

**/

static void
output_fill (files, elem, nelem, state, sort, first)
files_type 'files;
ttcn-el_type 'elem,

*nelem;
int state,

sort,
first;

char

long

inbuf [2001,
line[2001;
pos_state;

if (sort .. 1)
(

/' state has to be searched '/

pos_state ~ ftell(files->state2fp);

rewind(files->state2fp);
sprintf(line, '@ST \d\n', state);
fin~line(line, files->state2fp);
fgets(inbuf, 199, files->state2fp);

fgets(inbuf, 199, files->state2fp);
inbuf[strlen(inbuf)-lj = '\0';
strcpy(nelem->action, &inbuf[5]);
inv_inout(nelem->action);

/' @ACT-line '/
/' remove '\n' '/
/' remove @ACT '/
/' inverse ?! '/

if (first == 0)
nelem->indent = elem->indent + I;

nelem->state = state;

if (sort == 2)
(

/' output is last element of possible sidepath from unstable state '/

sprintf(line, 'Possible sidepath to output');
strcpy(nelem->comment, line);
nelem->verdict = inconclusive;

if (sort == 1)
fseek(files->state2fp, pos_state, 0);

I**~********************~***************

*
* Function

* Description
This function fills nelem with info about the input state 'state'o

• pointer to all files
pointer to ttcn element to be used for updating nelem
pointer to ttcn element to be filled

: internal number of inputstate
is 1 if state has to be searched, else 0

• is 1 if nelem is first element

*files
'elem
*nelem z

state
sort
first

* Arguments •
files_type
ttcn-el_type

int

* Returns , void

**/

static void
input_fill (files, elem, nelem, state, sort, first)
files_type *files;
ttcn_el_type *elem,

*nelem;
int state,

sort,
first;

char

long

inbuf [2001,
line[2001/
pos_state;

if (sort ~~ 1)
(

/' state has to be searched '/

pos_state = ftell(files->state2fp);

rewind(files->state2fp)/
sprintf(line, '@ST \d\n', state);
fin~line(line, files->state2fp);
fgets(inbuf, 199, files->state2fp);

fgets(inbuf, 199, files->state2fp);
inbuf[strlen(inbuf)-11 = '\0';
strcpy(nelem->action, &inbuf[5J);
inv_inout(nelem->action)/

/' @ACT-line */
/* remove '\n' */
/* remove @ACT */

if (first == 0)

Appendix L: Source code ProTeGe

nelem->indent = elem->indent + 1,

nelem->state = state,

if (sort == 1)
fseek(fi1es->state2fp, pos_state, 0),

1---------_·_·_---_·_--------_·_-------_···· __ ·_·_---- ------_ _ _------
"

Page L-61

° Function

"Description I

This function fills nelem with info about the choice state 'state',

" Arguments I

files_type
ttcn.-el_type

int

" files
°elem
"nelem I

state
sort
first

pointer to all files
pointer to ttcn element to be used for updating nelem
pointer to ttcn element to be filled

I internal number of choice state
is 1 if state has to be searched. else 0
is 1 if nelem is first element

" Returns : void

..................... _ _ _..............................•,
static void
choice_fill (files, elem, nelem, state, sort, first)
files_type "files;
ttcn_el_type "elem,

*nelem:
int state,

sort,
first,

char

long

inbuf[2001.
line[2001,
pos_state;

if (sort == 1)
I

pos_state = ftell(files->state2fp);

rewind(files->state2fpl,
sprintf(line, "@ST 'd\n", state);
find-line(line, files->state2fp);
fgets(inbuf. 199. files->state2fp);

sprintf(nelem->action. "C");

fgets(inbuf. 199, files->state2fp);
fgets(inbuf, 199, files->state2fp);
fgets(inbuf, 199, files->state2fp);
inbuf[strlen(inbuf)-ll = '\0';
sprintf(nelem->comment. "Choicevar I 'so, inbuf);

if (first == 0)
nelem->indent =elem->indent + 1;

nelem->state = state,

if (sort == 1)
fseeklfiles->state2fp, pos_state, 0);

1--··········_··_·_--_································ _•...•
"

I" state has to be searched "I

I" @ACT-line "I
I" @VAR-line "I
I" choice variable-line "I
I" remove '\n' °1

" Function

"Description I

This function finishes elem for a stable flowstate if a reception has taken place. It adds at the next
level I

START TIMER
?TIME OUT

+UIO sequence state 'state'
?OTHERWISE

" Arguments I

files_type
ttcn_el_type
int

"files I pointer to all files
"elem I pointer to ttcn element to be filled

state I internal number of flowstate to be checked

" Returns I void
e ••• •• __ •• ••• ._ ••••••••••• ••••• ••••••• _/

static void
strec_flow_fillifiles. elem, state)
files_type "files;
ttcn_el_type "elem;
int state,
{

int flowstate;

Appendix L: Source code ProTeGe PageL

char line[200l;

flowstate = flownumber(state, files);

elem->nl = init_ttcn_el();
strcpy(elem->nl->action, "START TIMER");
sprintf(line, "Checking if state P%d is stable", flowstate);
strcpy(elem->nl->comment, line);
elem->nl->indent = elem->indent + 1;

elem->nl->nl = init_ttcn_el();
strcpy(elem->nl->nl->action, "?TIME OUT");
elem->nl->nl->indent =elem->indent + 2;

elem->nl->nl->nl = init_ttcn-el();
sprintf(line, "+UIO sequence state P%d", flowstate);
strcpy(elem->nl->nl->nl->action, line);
elem->nl->nl->nl->verdict = pass;
elem->nl->nl->nl->indent = elem->indent + 3;

elem->nl->nl->np = init_ttcn-el();
strcpy(elem->nl->nl->np->action, "?OTHERWISE");
elem->nl->nl->np->verdict = fail;
elem->nl->nl->np->indent = elem->indent + 2;

/***·• Function

• Description
This function finishes elem for a unstable flowstate or if no reception has taken place. Only the
UIO sequence is added at the next level.

I pointer to all files
pointer to ttcn element to be filled

I internal number of flowstate which UIO sequence has to be added

• files
·elem

state

• Arguments
files_type
ttcn_el_type
int

• Returns I void

~****************.**/

static void
unstrec_flow_fillCfiles, elem, state)
files_type ·files;
ttcn_el_type ·elem;
int state;
(

int
char

flowstate;
line[200l;

elem->nl = init_ttcn_el();
flowstate = flownumber(state, files);
sprintf(line, "+UIO sequence state P%d", flowstate);
strcpy(elem->nl->action, line);
elem->nl->verdict = pass;
elem->nl->indent = elem->indent + 1;

/***·• Function

• Description
This function makes a next step in forming a control flow test case for an input. If the next state
is no flowstate, an ttcn element will be filled with the appropiate info and added to elem.
If a basic flowstate is reached, the element elem will be finished in a way depending on whether
a stable flowstate is reached and a reception has taken place. If a not basic flowstate is reached,
a next step will be called. Next steps will be called for all possible states departing from the
present state.

• Arguments I

files_type
ttcn_el_type
int

• files
·elem

rec
state

pointer to all files
pointer to ttcn element to be updated

I is 1 if reception has taken place before this step
I internal number of state on which step takes place

• Returns : void

**/

static void
step_cflow(files, elem, rec, state)
files_type ·files;
ttcn_el_type ·elem;
int ree,

state;

long

char

int

pos_state.
pos_state2,
pos_trans;
line[2001,
word[50l;

tostate,

Appendix L: Source code ProTeGe

flowstate,
state2;
"neleull

pes_state = ftell(files->state2fp);
pes_trans = ftell(files->trans1fp);

rewind(files->state2fp);
sprintf(line, "@ST 'd\n", state);
findLline(line, files->state2fp);
sprintf(line, "@OUT\n");
findLline(line, files->state2fp);

if (fscanf(files->state2fp, "'s", word) == BOF) strcpy(word, "@ST");
pes_state2 • ftell(files->state2fp);
while (strcmp(werd, "@ST") I. 0)
(

tostate = findLst_line_next_state(files, word);
fgets(line, 199, files->state2fp);

switch(l1ne[OI)
(
case 'X':

nelem = create_next_elem(elem, 0);
intern_fill(files, elem, nelem, testate, 0, 0);
step_cflow(files, nelem, rec, tostate);
break;

case '0' I

nelem = create_next_elem(elem, 0);
output_fill (files, elem, nelem, testate, 0, 0);
step_cflow(files, nelem, 1, testate);
break;

case 'I':
nelem = create_next_elem(elem, 0);
input_fill(files, elem, nelem, tostate, 0, 0);
step_cflow(files, nelem, rec, testate);
break;

case 'e':
nelem = create_next_elem(elem, 0);
cheice_fill(files, elem, nelem, testate, 0, 0);
step_cflow(files, nelem, rec, tostate);
break;

case 'F':
if (is_basic(testate, files»
(

if «is_stable(tostate, files) && (ree == 1»
stree_flew_fill(files, elem, tostate);

else
unstrec_flew_fill(files, elem, tostate);

)
else

step_cflew(files, elem, ree, testate);

break;

Page L-63

/" for each outgoing trans "/

/" F/X/O/I/e X-line "/

/" basic: finish sequence "/

/" not basic: next step "/

fseek(files->state2fp, pes_state2, 0);
if (fscanf(files->state2fp, "'SO, word)
pos_state2 = ftell(files->state2fp);

fseek(files->state2fp, pos_state, 0);
fseek(files->state2fp, pos_trans, 0);

BOF) strcpy(word, "@ST");

1·_·····························_·····················•...................•.
"
" Functien

" Description
This function adds '7OTHERWISE FAIL' and 'EXPIRATION OF TIMER
for levels where an eutput from the IUT is expected.

FAIL' as a next possibility

" Arguments
ttcn_el_type "elem I pointer to ttcn element to be updated

" Returns I void

"tmp;

........-••....••....•••.••...••......•...............................•......• /

static void
a ddLotherw (elem)
ttc~el_type "elem;
(

if «strstr(elem->action, "7") 1= NULL) && (strcmp(elem->action, "7TIME OUT") I. 0»
(/" if output action en this level "/

tmp = elem;
while (tmp->np 1= NULL)
(

tmp = tmp->np; /" find last possibility "/

if «strcmpltmp->action, "7EXPlRATION OF TIMER") I. 0) && (strcmp(tmp->action, "70THERWISE") 1= 0»

Appendix L: Source code ProTeGe

,. not already added .,
tmp->np = init_ttcn_el();
strcpy(tmp->np->action, '?OTHERWISE');
tmp->np->indent • tmp->indent;
tmp->np->verdict = fail;

tmp->np->np = init_ttcn_el();
strcpy(tmp->np->np->action, '?EXPIRATION OF TIMER') ;
tmp->np->np->indent = tmp->indent;
tmp->np->np->verdict = fail;

if (elem->nl ! = NULL) ,. traverse depth first .,
(

add-otherw(elem->nl);

if (elem->np 1= NULL)
(

add-otherw(elem->npl;

/t •• *** ••••••••••••••••• _•••••••••••

·

Page L-6

• Function

• Description •
This function writes the test case header for a control flow test case.

• Returns • void

·files pointer to all files
flows tate I number of starting flowstate (as in F X)

inputstate internal number of inputstate whose action is basic part of test case
·cases I pointer to structure counting number of test cases

********.******************** •• 00**************.******.**************0 •• *** •• */

static void
write_head-cflow{files, flowstate, inputstate, cases)
files_type ·files;
int flowstate,

inputstate;
case_type ·cases;
(

long

char

pos_state,
pos_trans;
line[200l,
inbuf[2001;

,. I X-line .,
,. QACT-line .,
1* remove '\0' *'

Testing input '%s' from flowstate F%d\n', inbuf, flowstate);

pos_state = ftell(files->state2fp),
pos_trans = ftell(files->trans1fp);

fprintf (f iles->cflowt tcnfp, • \n') ;
fprintf(files->cflowttcnfp, .---\n·);
fprintf(files->cflowttcnfp, • Test Case Control Flow\n');
fprintf(files->cflowttcnfp, .---\n·);

rewind(files->state2fp);
sprintf(line, 'QST %d\n', inputstate);
find_line(line, files->state2fp);
fgets(inbuf, 199, files->state2fp),
fgets(inbuf, 199, files->state2fp);
inbuf[strlen(inbuf)-11 = '\0';
strcpy(inbuf, &inbuf[SI);
fprintf(files->cflowttcnfp, • Purpose.

fprintf(files->cflowttcnfp, 'Identifier. CFL_%d\n', ++(cases->num_cflow»;
fprintf(files->cflowttcnfp, .---\n·);

fseek{files->state2fp, pos_state, 0);
fseek(files->state2fp, pos_trans, 0);

,.**.***.**** •• **.*** •• **** •••••••••• ***.*** •••• **.***_ •••• _-- ••• ---_ •••••• __ •••·• Function • find-maxlen

• Description •
This function finds the maximal length necessary to write an action with indentations on a test case
body line.

• Arguments
ttcn_el_type
int

·elem • pointer to ttcn element to be traversed
·maxlength • maximal length of action part + indentations

• Returns • void
•• _-.----_. __ .-._._------ ••• _._._._---._._-_ •• _. __ .--- •• ****** •• ******••• ***.*,

static void
find-maxlen(elem, maxlength)

Appendix L: Source code ProTeGe Page L-65

*elem;
"maxlength,

int total..Jl\axl,
total..Jl\ax2,
local..Jl\ax,

total..Jl\ax1 = A,
total..Jl\ax2 • A,

ttcn-el_type
int
(

local..Jl\ax = strlen(elem->action) + (4 " elem->indent),

if (elem->nl J= NULL)
(

f" calculate local length "f

f" traverse depth first "f

find-maxlen(elem->nl, 'total-rnax1),

if (elem->np != NULL)
{

find-maxlen(elem->np, 'total_max2)I

if «total_max1 >= local_max) " (total..Jl\ax1 >= total..Jl\ax2))
"maxlength = total_max1,

if ((total_max2 >= local_max) " (total..Jl\ax2 >= total..Jl\ax1))
"maxlength = tota I_rna x2 ;

if «local_max >= total..Jl\axl) " (local_max >= total_max2»
"maxlength = local_max;

, _-_._----_ __ _--_ _.. ----_ _ _------
"
" Function

"Description I

This function writes a line, e.g. a next ttcn element, for the body of a test case to a file with
file pointer fp. It contains the line number, the indented action and the verdict. This function
writes all lines recursively.

" Arguments
FILE
ttcn_el_type
int

"fp
"elem ,

max length
"Une

, pointer to write file
pointer to element to be traversed

, maximal length of action part +
line number

indentations

" Returns • void

--------_ _----_ .. __ -- _---_ .. __ -_.--_ _ _ ,
static void
write_body_Iine(fp. elem, maxlength, line)
FILE "fp;
ttcn_el_type "elem;
int maxlength,

-line;

int spacelength,
spaces,
i;

fprintf(fp. " Ud I • ("Une)++); f" print line number "f
for (i=O; i < elem->indent; iu) fprintf(fp." ");
fprintf(fp. "'s", elem->action);
if (maxlength < 21) f" minimal necessary length of line (Behaviour description) "f

spacelength = 21;
else

spacelength = maxlength;
spaces = spacelength - (4 " elem->indent) - strlen(elem->action);
for (i=O; i < spaces; i++) fprintf(fp, " "); f* add until maxlength "f
fprintf(fp," I "I;

switch (elem->verdict)
(
case pass:

fprintf(fp, "PASS\n"I,
break,

case fail.
fprintf(fp, "FAIL\n");
break;

case inconclusive.
fprintf(fp, "INCONCLUSIVE\n");
break;

case none.
fprintf(fp, "\n"),
break,

default,
err(ttcn. 37, 0);

if (elem->nl != NULL)
(

f" traverse depth first "f

write_body_Iine(fp, elem->nl, maxlength, line),

if (elem->np != NULL)

Appendix L: Source code ProTeGe

write_body_line(fp, elem->np, maxlength, line),

/****.***** ••• _- •••••••••• _- ••

*

Page Lo(,

* Function

• Description •
This function writes the body of a test case, e.g. the first two standard lines and it calls the
recursive function write_body_line.

* Arguments •
FILE
ttcrLel_type

*fp
*elem

I pointer to write file
• pointer to ttcn element to be traversed

* Returns I void

_•...............•.........•.........••........................•..............,
static void
wri te_body (fp,
FILE
ttcn_el_type
(

elem)
* fp;
*elem,

int max length ,
div1,
div2,
L
line = 1;

fin~maxlen(elem, &maxlength);

div1 = maxlength , 2;
div2 = div1 + (maxlength , 2);
fprint f (fp, " Line I ") ;
for (i=O; i < div1-10; i++) fprintf(fp, " "J;
fprintf(fp, "Behaviour Description");
for (1=0; i < div2-11; i++) fprintf(fp, " ");
fprintf(fp," I Verdict\n"J;

fprint f (fp. "
if (max length

for (i=O;
else

for (i=O;
fprint f (fp, "

1 ") ;
> 21)
i < maxlength; i++) fprintf(fp,

i < 21; i++) fprintf(fp, " ");
I \n") ;

. .);

write_body_line(fp. elem, maxlength, &line) I

I····*·············*····*········***········*·~······· .* •••••••• *~ •••• * •• ~ ••••••
*
* Function

* Description •
This function writes recursively comment lines to fp.

* Arguments I

FILE
ttcn_el_type
int

*fp : pointer to write file
*elem : pointer to ttcn element to be traversed

*line • line number of element

* Returns : void

static void
write_comm-1ine(fp, elem, line)
FILE * fp,
ttcn_el_type *e1em,
int *line,
(

if (strcmp(elem->comment, "") !. 0)
(

fprintflfp, "Line '3d. 's\n", *line, elem->comment),

(·line)++,

if (elem->nl 1= NULL)
(

write_comm-line(fp, elem->nl, line),

if (e1em->np != NULL I
(

write_comm-line(fp, elem->np, line);

'* write comment, depth first *'

j ••• _--_ ••••••••••• _ ••••••••• - ••••••••• _ ••••••••••••• - •••••••••••• _-_ ••• _ •••••••

*
• Function

Appendix L: Source code ProTeGe

* Description I

This function writes the comment part of a test case to fp by writing the first to standard lines
and calling the recursive function write_comm-line.

Page L-67

* Arguments I

FILE
ttcn_el_type

*fp
*elem

: pointer to write file
• pointer to ttcn element to be traversed

• Returns I void

... _---_._-_ .. _---_ ... __ ._._----_ _----------*--_.----_._----_ ... _-_._-----/
static void
write_caoml fp.
FILE
ttcILel_type
(

int line. 11

fprintflfp, ,---\n') I
fprintflfp, 'COMMENTS.\n')I

write_cornm-line(fp. elem, &line)1

fprint! (fp, ' \n\n\n') I

1·_·_·--_· __ ···_-_···_-_······_----_·_----_······_---- e •• _ •••• __ • ••••• __ •• __·, Function

, Description
This function frees all elements of a ttcn test case.

• Arguments I

ttcn_el_type 'elem I pointer of ttcn element to be freed

, Returns : void

free_total(elem->nl);

••• __ ._ ••• __ e ••••• •• __ • • __ ••• •• _. •••••• _ •• /

static void
free_total (eleml
ttcILel_type 'elem;
(

if lelem->nl 1= NULL)
(

)

if (elem->np 1= NULL)
(

free_totallelem->np);

free(elem)I

1--·-------_·_·_--_·····--------_···_·_·_----_·_----_· __ ._.e. _.._.. _·

/* traverse depth first, free all */

, Function

• Description :
This function makes a control flow ttcn test case by filling the first element with the input state,
calling the recursive function step_cflow to make all elements, adding otherwise and expo of time and
calling the functions to write the test case to the appropiate file.

, Arguments
int

files_type
case_type

flowstate
inputstate
, files
·cases

: number of flowstate
internal number of input state
pointer to all files
pointer to structure counting number of test cases

• Returns I void

*elem;

.. -------_ _-------_ ... _-_._------------_. __ .. _------- _-------_ ... __ ._-/
static void
cflow_caselflowstate. inputstate, files, cases)
int flowstate.

inputstatel
files_type 'filesl
case_type 'casesl
(

elem = init_ttcILel();

fill_first_cflow(files, elem, flowstate, inputstate)1

step_cflowlfiles, elem. 0, elem->state);

add-otherwlelem);

Appendix L: Source code ProTeGe

write_headLcflow(files, flowstate. inputstate, cases);
write_body(files->cflowttcnfp, elem);
write_comm(files->cflowttcnfp, elem);

free_totallelem);

1----·········_----_···_-----_·········_-----_········ _. e_.
*

Page L~

* Function • ttclLcflow

* Description •
This function calls the function cflow_case for all inputs.

* Arguments •
files_type
efg_type

*files
*efg

pointer to all files
pointer to efg

* Returns I void

••••• ee ••• _ •• _ ••••• **** ••••• ******* ••••• ,

static void
ttcn_cflowlfiles, efg)
files_type *files;
efg_type *efg;
(

long
int

char

pos;
flowstate,

tostate.
state;
line[801,
word[SOl;
·cases;

cases = lcase_type *) callocll, sizeoflcase_type»;

printfl"\nTransformation of Control Flow subsequences to TTCN");

for lflowstate=l; flowstate != efg->num_flow+l; flowstate++)
(

state = statenumber(flowstate, files);
if lis_basiclstate, files»
(

/* for all basic flowstates */

rewindlfiles->state2fp) ;
sprintflline, "@ST 'd\n", state);
findLline(line, files->state2fp);
sprintflline, "@OUT\n");
findLlinelline, files->state2fp);

if Ifscanflfiles->state2fp, "'s", word)
pos = ftelllfiles->state2fp);
while (strcmplword, "@ST") != 0)
(

EOF) strcpYlword, "@ST");

/* for each outgoing trans */

tostate = findLst_line_next_statelfiles, word);
iflis_inputstate(tostate, files»
(

cflow_caselflowstate. tostate, files, cases);
)
fseeklfiles->state2fp, pos, 0);
if (fscanflfiles->state2fp, "\s", word) == EOF) strcpylword, "@ST");
pos = ftell(files->state2fp);

freelcasesj;

,...•.........•_.•...•••••..•... _.._ __ .•.•...•.•.•..•.••.......•..•...•••
*

/* if input from flowstate */

* Function

* Description I

This function tries to find the next state in seq. It will return in 'word' the type of the next state,
e.g. F or X or I or 0 or C and will return the internal number of this next state•

• Arguments I

files_type
char

*files
*seq
*word

I pointer to all files
sequence string
first letter of next state in seq

• Returns • int I

intern number of first state in seq

............•.•.•... __ -....•.•••.•..••........ _-_ •...••...•...,
static int
num-next_statelfiles, seq, word)
files_type *files;
char *seq,

*word;

long
char

pos_state;
line[801,

Appendix L: Source code ProTeGe

inbuf[80) ,
inbuCold[80) ,
word1[20J,
word2[20) ,

pos_state = ftell(files->state2fp);

if (strcmp(seq, ") == 0) return(O),

·word = seq[O);
line[O) • seq[O);
line[1) = ' ';
line(2) a '\0',
strcpy(seq, &seq(l),
sscanf(seq, "s', word1);
if (strcmp(seq, word1) aa 0)

strcpy(seq, "I,
else

strcpy(seq, &seq[strlen(word1) + 1]1,
sprintf(word2, "s\n', wordl),
strcat(line, word21,

rewind(files->state2fp) ,
strcpy(inbuf, "),
do
(

strcpy(inbuf_old, inbuf);
fgets(inbuf, 79, files->state2fpl;

I while (lfeof(files->state2fp) && lstrcmp(inbuf, line) 1= 0»;
if (feoflfiles->state2fp»)
(

printfl'\n's not found\n', line),
errlttcn, 30, 0);

sscanf(inbuf_old, "s's', word1, word2),

fseek(files->state2fp, pos_state, 0);

return (atoi (word2» ,

/**.**** ••••• ****** ••••• **** •• ***** ••••• ***** ••••••• ** ••••••••••••••••••••••••••·

Page L-69

/. all states removed ./

/. remove F/X/O/I/C ./
/. scan number of state ./
/. last state ./

/. find 'F/O/I/X/C state' ./

/. scan internal number state ./

• Function

• Description I

This function will add the element '?EXPIRATION OF TIMER INCONCLUSIVE' to elem. This takes
place at a stable flowstate in possible sidepaths from unstable flowstates.

• Arguments
files_type
ttcn_el_type
int

• files
·elem

state

pointer to all files
pointer to ttcn element to be updated

I internal number of flowstate to be checked

• Returns : void

..,
static void
stab_flow_fill(files, elem, state)
files_type ·files;
ttcn_el_type ·elem;
int state;
(

char
int

line[200) ;
flowstate;

elem->nl init_ttcn_el();
strcpy(elem->nl->action, '?EXPIRATION OF TIMER');
flowstate = flownumber(state, files),
sprintf(line, 'Checking stability of possible sidepath to stable flowstate F'd', flowstate);
strcpy(elem->nl->comment, line);
elem->nl->indent a elem->indent + 1,
elem->nl->verdict a inconclusive;
elem->nl->state a state;

, .
·• Function

• Description •
This function makes a next step in forming a UIO sequence test case for all outgoing states except
the intended one. The construction will be stopped at reaching an input, finished at reaching an
output or stable flowstate and continued in all other cases. This function takes place recursively
for not intended sidepaths from unstable flowstates of the UIO sequence.

• Arguments
files_type
ttcILel_type
char
int

·files I pointer to all files
·elem pointer to ttcn element to be updated
*seq2 I state sequence string

state • internal number of state to be expanded in this step
first is 1 if elem is first element, else 0

Appendix L' Source code ProTeGe Page L-

- Returns- • void

•• -.- ••••••••••• -._ ••• _._ •••••••••••••• --.-_ •••••••••••••• **.****** •••••• ****.,

static void
step_uio_flow[files, elem, seq2, state, first)
files_type *files;
ttcn-el_type *elem;
char *seq2,
int state,

first,

long

char

pos_state.
pos_state2.
pos_trans,
line[2001.
word[SOI.
wordl[101.
word2[101,

tostate,
*nelem,

pos_state ~ ftelllfiles->state2fp),
pos_trans = ftelllfiles->trans1fp),

rewind(files->state2fp),
sprintf[line, "@ST \d\n", state);
find_line(line, files->state2fp),
sprintf(line, "@OUT\n");
find-line(line, files->state2fp);

if [fscanflfiles->state2fp, "\s", word)
pos_state2 = ftell(files->state2fp);
while (strcmp(word, "@ST") 1= 0)
(

EOF) strcpylword, "@ST");

'* for each outgoing trans *'

tostate = find-st_line_next_state(files, word);
fgets(line, 199, files->state2fp),
sscanf(line, "\s \s", word!, word2);
strcat(word1, word2),

if «strstr(seq2, word1) != seq2) && [strcmp(seq2, "") 1= 0»
(

switch (line (01)
(
case 'X' J

nelem = create_next_elem(elem, first);
intern_fill [files, elem, nelem, tostate, 0, first);
step_uio_flow(files, nelem, seq2, tostate, 0);
break;

case '0'1
nelem = create_next_elem(elem, first);
output_fill (files, elem, nelem, tostate, 2. first),
break;

case 'I':
break;

case 'e':
nelem = create_next_elem(elem, first);
choice_fill (files, elem, nelem, tostate, 0, first);
step_uio_flow[files, nelem. seq2, tostate, 0);
break;

case 'F':
if llis_stableltostate, files»
(

step_uio_flow(files, elem, seq2. tostate, first),
)
else
(

stab_flow_fill(files, elem, tostate);
)
break;

)
fseek(files->state2fp. pos_state2. 0);
if (fscanf(files->state2fp, "\s", word) == EOF) strcpy[word, "@ST"),
pos_state2 = ftell(files->state2fp);

fseek(files->state2fp, pos_state, 0),
fseek(files->state2fp, pos_trans. 0),

, ••••••• ** •••••• ************.*********** •••••••• *******--------- ------_ ..-

'* F X-line *'

,e if not PASS-path *'

'* finish at output -,

'* wrong path -,

'* not stable. next step -,

'* stable. finish *'

- Function

- Description •
This function takes a next step in forming a test case for an UIO sequence. It takes the next state
of the sequence and fills a new element with the appropiate info. For instable flowstates it calls
the function step_uio_flow to form all possible inconclusive sidepaths.

- Arguments I
files_type
ttcn_el_type
char
int

*files
*elem
-seq I

state

pointer to all files
pointer to ttcn element to be updated in this step
state sequence string

• internal number of state to be expanded in this step

Appendix L: Source code ProTeGe Page L-71

first ,is 1 if elem is first element. else 0

* Returns , void
*.................................... _ - _----_ ••••.....•-..,

static void
step_uio(fi1es.
files_type
ttcn.-el_type
char
int

elem. seq.
*files;
*elem,
·seq;

state.
first,

state. first)

long

char

pos_state.
pos_trans,
word.
*seq2,

tostate,
*nelem,

pos_state = ftel1Ifiles->state2fp),
pos_trans = ftell(files->trans1fp),

seq2 = (char *) malloc«str1en(seq)+1) * sizeof(char»,

tostate = num_next_statelfiles. seq. &word) I

if ltostate != 0)
I

switch (word)
I
case 'X':

nelem = create_next_elemlelem. first);
intern_fill (files. e1em. nelem, tostate. 1. first);
step_uio(files. nelem. seq. tostate, 0);
break;

case '0' t

nelem = create_next_elemlelem, 0);
output_fililfiles. elem. ne1em, tostate. 1. first);
step_uiolfiles. nelem. seq. tostate. 0),
break;

case '1'1
nelem = create_next_elem(elem. 0) I
input_fililfiles. elem. nelem. tostate. 1. first);
step_uiolfiles. nelem. seq. tostate, 0),
break,

case 'e':
nelem = create_next_elemlelem. 0);
choice_fill (files. elem. nelem, tostate, 1. first);
step_uiolfiles. nelem. seq, tostate. 0),
break;

case 'F':
if lis_stableltostate. files»)

step_uio(files. elem. seq. tostate, first);
else
I

f* get next state of sequence *f

strcpYlseq2. seq),
step_uiolfiles. elem. seq. tostate. first);
step_uio_flowlfiles. elem. seq2. tostate. first),

)
break;

fseek I files->state2fp. pos_state. 0);
fseek(files->state2fp. pos_trans, 0),

f* not stable form possible sidepaths *f

, ••••• ****** •••••• ******* ••• ****** •••••••• ****** ••• *** ••••••••••••••••••••••••••
*
* Function , ad~ass

* Description ,
This function adds the verdict PASS at the last level of a ttcn element if there is not yet an
other verdict.

* Arguments ,
ttcn.-el_type *elem I pointer to ttcn element to be updated

* Returns , void

.-------_ _ _ /

static void
ad~asslelem)

ttcn_el_type *elem;
(

ttcn.-el_type *tmp;

if lelem->nl != NULL)
I

add-passle1em->nl),
)
else

f* traverse depth first *f

Appendix L: Source code ProTeGe Page L-j

if (elem->verdict == none)
elem->verdict = pass, /. add PASS at last level if no verdict ./

if (elem->np != NULL)
(

add-pass(elem->np),

,**** ••• ***-----_._.--*-------_ •••• *·• Function

• Description ,
This function writes the header for a UIO sequence test case to the appropiate file.

• Arguments ,
files_type
int
case_type

• files , pointer to all files
flowstate ,internal number of flowstate to be checked for uniqueness

·cases , pointer to structure counting number of test cases

• Returns • void
*. •• _._ •••• _••• •••• • • * __ *R.eeReee ••••• /

static void
write_head-uio(files, flowstate. cases)
files_type ·files;
int flowstate;
case_type ·cases;
(

int state;

state flownumber(flowstate, files);

fprintf(files->uiottcnfp. ' \n');
fprintf(files->uiottcnfp, ,---\n')'
fprintf(files->uiottcnfp, Test Case Part UIO Sequence\n');
fprintf(files->uiottcnfp, ,---\n'),

fprintf(files->uiottcnfp, 'Purpose. Testing uniqueness flowstate F\d\n', state);

fprintf(files->uiottcnfp, 'Identifier: UIO_\d\n'. ++(cases->num-uio»;
fprintf(files->uiottcnfp•• ---\n')'

/ ••• ****.********~*****************•• ***************** *---------- .. _._----_._--­·• Function

• Description ,
This function makes a UIO sequence test case by calling the recursive function step_uio to
make all elements, adding otherwise and expo of time, adding verdicts PASS where necessary and calling
the functions to write the test case to the appropiate file.

• Returns

• number of flows tate to be checked for uniqueness
state sequence string
pointer to all files

, pointer to structure counting number of test cases

flows tate
·seq
'files
·cases

• Arguments
int
char
files_type
case_type

• void

****.**** •• ********.* •••• ***** ••• ************ ••• ***R •• *. • __ ••• /

static void
uio_case(flowstate, seq. files, cases)
int flowstate;
char 'seq;
files_type 'files;
case_type 'cases,
(

elem = init_ttcn-el();

step_uio(files. elem, seq. flowstate. 1);

add-otherw(elem),

add-Passlelem);

wr1te_head-uiolfiles. flowstate. cases);
write_body(files->uiottcnfp. elem);
wr1te_comm(files->uiottcnfp. elem);

free_total(elem);

1····_·········_------------_····_····_··········_·_-- *----_._-_ ... _---- .. _.....·• Function

Appendix L: Source code ProTeGe

• Description •
This function calls the function uio_case for the first UIO sequence of all basic states containing
such a sequence.

• Arguments •
files_type ·filas I pointer to all files

Page L-73

• Returns I void

............ -._ _---------_ _ _-----_ _----/
static void
ttcn-uiol files)
files_type ·files;
(

char
int

line[30001;
c,

flowstate;
·cases;

cases. (case_type .) calloc(l. sizeof(case_type»;

printf("\nTransformation of UIO sequences to TTCN");

rewind{files->state2fp) ;
fgets(line, 2999, files->uiofp);
while (!feof(files->uiofp»
(

c = getc(files->uiofp);
fscanf(files->uiofp, "'d", &flowstate);
flowstate = statenumber(flowstate, files);
fgets(line, 2999, files->uiofp);
fgets(line, 2999, files->uiofp);
fgets(line, 2999, files->uiofp);
line[strlen(line)-ll = '\0';

if (strcmp (line. "NO UIO") ! = 0)
uio_case(flowstate, line, files, cases);

while «line[OI 1= '_') && (!feof{files->uiofp»)
(

1* 'F' *1

f· rest 1 ine • f
f· empty line ·f
f· sequence line or striped line ·f
f· remove '\n' ·f

f· goto next flowstate ·f

f· uio_case(flowstate, line, files); here if uiosequences for all basic flowstates necessary ·f

fgets(line, 2999, files->uiofp);
fgets(line, 2999, files->uiofp);
fgets(line, 2999, files->uiofp);

)
clearerr(files->uiofp);
free(cases) ;

/*********.*********** ••••••••• ************ •••••••• *** ••••••••• _•••••••• _••_••••

·

f· action line ·f
f· empty line ·f
f· sequence line or striped line ·f

• Function

• Description
This function makes a next step in forming a data flow test case for all outgoing states except
the intended one. The construction will be stopped at reaching an input, finished at reaching an
output or stable flowstate and continued in all other cases. This function takes place recursively
for not intended sidepaths from unstable flowstates of a data flow chain.

• Arguments
files_type
ttcn-el_type
char
int

·files pointer to all files
·elem pointer to ttcn element to be updated
·seq2 • state sequence string

state I internal number of state to be expanded in this step
first • is 1 if elem is first element. else 0

• Returns • void

_ _ _-._ _.. _ _._ _ _ __.. /

static void
step_dflow_flowlfiles, elem. seq2. state. first)
files_type ·files;
ttcn-el_type ·elem:
char ·seq2;
int state.

first;

long

char

pos_state,
pos_sta te2,
pos_trans;
line[2001.
word{SOI.
wcrdl[lOI.
wcrd2[lOI:

tostate;
·nelem;

pes_state. ftelllfiles->state2fp);
pos_trans = fteillfiles->translfp);

rewind(files->state2fpl;

Appendix L: Source code ProTeGe

sprintf(line, "@ST \d\n", state),
fin~line(line, files->state2fp),
sprintf(line, "@OUT\n"),
fin~line(line, files->state2fp);

Page L-.

if (fscanf(files->state2fp, "\s", word)
pos_state2 = ftell(files->state2fp):
while (strcmp(word, "@ST") 1= 0)
(

EOF) strcpy(word, "@ST");

f* for each outgoing trans *f

tostate = fin~st_Iine_next_state(files, word),
fgets(line, 199, files->state2fp);
sscanf(line, "\s \s", word1, word2),
strcat(word1, word2);

if Ilstrstr(seq2, word1) != seq2) && (strcmp(seq2, "") I- 0»
(

switch (1ine [0))
(
case 'X' I

nelem = create_next_elem(elem, first);
intern_fill (files, elem, nelem, tostate, 0, first),
step_dflow_flow(files, nelem, seq2, tostate, 0),
break;

case '0'1
nelem = create_next_elem(elem, first);
output_fill (files, elem, nelem, tostate, 2, first);
break;

case 'I':
break;

case 'e':
nelem = create_next_elem(elem, first);
choice_fill (files, elem, nelem, tostate, 0, first);
step_dflow_flowlfiles, nelem, seq2, tostate, 0);
break;

case 'F':
if (Iis_stable(tostate, files»
(

step_dflow_flow(files, elem, seq2, tostate, first);
)
else
I

stab_flow_fill(files, elem, tostate);
)
break;

f* F X-line *f

f" if not PASS-path "f

f* stop at output "f

f* wrong path "f

f" not stable. next step "f

f" stable • finish "f

)
fseeklfiles->state2fp, pos_state2, 0);
if Ifscanf(files->state2fp, "\s", word)
pos_state2 = ftell(files->state2fp);

fseek(files->state2fp, pos_state, 0),
fseek(files->state2fp, pos_trans, 0);

EOF) strcpy(word, "@ST"),

1··_-*---_·· .•.... * ••••••• ~* •••••••• ~*

"
" Function

"Description •
This function writes comment about a defined variable in a flowstate to elem->comment.

" Arguments •
ttcn_el_type
char

"elem
"inbuf
"variab

pointer to ttcn element to be updated
string containing call variables

: influenced variable

" Returns • void

•.••..••..••...•..... _---_ ...•......••..................•.•...................,
static void
write_calllelem, inbuf, variab)
ttcn-el_type "elem,
char "inbu f,

*variab;

char l1ne[80) ;

if (strstrlinbuf, "@CONST") == NULL)
I

f" variable defined by call with other variables "f

sprintf(line, " '\s' influenced by variable(s)", variab);
strcatlelem->comment, line),

while (sscanf(inbuf, "\s", variab) != BOF)
(

sprintflline, • '\s',", variab),
strcat(elem->comment, line);
strcpy(inbuf, &inbuf[strlen(variabl.1),

I
elem->comment[strlen(elem->comment») = '\0';
elem->eomment[strlen(elem->comment)-l) = '\n';

)
else
(

f" for every used variable "f

Appendix L: Source code ProTeGe Page L-75

sprintf(line, " "s' formed by constant call\n", variab);
strcatlelem->comment, line),

1-··················*----*·---*-**----*--····***--*··***----_.-*-*---*-***-**-.­
"
" Function

"Description I

This function adds comment about calls to flowstates to the comment part of a data flow test case.
This is done by calling the function add_calls for all defined variables in a flowstate.

• Arguments I
files_type
ttcn...el_type
int

"files I pointer to all files
"elem I pointer to ttcn element to be updated

from-state I state at which call starts
state , state at which call ends

• Returns • void
•................_.* _- *_ •••• * ••••••••••••••• **** •••• ,

static void
add_calls_comm(files, elem, from-state, state)
files_type "files;
ttc~el_type "elem;
int from-state,

state I

10llg

char

int

pos_state,
pos_trans,
pos_state2,
pos_trans2;
line(80l,
new_variab[30l,
word[40l,
inbuf[20011

trans,
flowstate;

pos_state = ftell(files->state2fp);
pos_trans = ftell(files->translfp);

if lfrom-state == 0) return;

/" go to outgoing trans of fromstate "/

/* go to (to)state "/

/" @FROM-line "/
/" @TO-line "/
/" @VAR-line "/

/" F X-line" /
/" @ACT-line "/
/" @VAR-line "/

£OF) errlttcn, 29, 0);

rewindlfiles->state2fp)I
sprintflline, "@ST 'd\n", from-state);
find_linelline, files->state2fp);
sprintflline, "@OUT\n");
find-line(line, files->state2fp);
if (fscanf(files->state2fp, "'s", word)
trans = atoi(word);
rewind(files->translfp);
sprintflline, "@TR 'd\n", trans);
find_linelline, files->translfp);
fgetslinbuf, 199, files->translfp)I
fgets(inbuf, 199, files->translfp);
fgetslinbuf, 199, files->translfp)I
rewindlfiles->state2fp) ;
sprintflline, "@ST 'd\n", state);
find_linelline, files->state2fp);
fgets(inbuf, 199, files->state2fp);
fgets(inbuf, 199, files->state2fp);
fgetslinbuf, 199, files->state2fp);

if (strcmp(inbuf, "@VAR d\n") == 0)
(

flowstate = flownumberlstate, files)/
if (strlen(elem->comment) > 0)

strcat(elem->comment, "\n "J;
sprintflline, "Call to flowstate 'd in which the following variables are defined,\n", flowstate) I
strcat(elem->comment, line),

fgets(inbuf, 199, files->trans1fp);
fscanf(files->state2fp, "'s", new_variab);
pos_state2 = ftelllfiles->state2fp) I
pos_trans2. ftell(files->trans1fp);
while (strcmplinbuf, "\n") 1= 0)
(

/" defined variable in flowstate "/

/" for all defined variable in flowstate "/

write_call (elem, inbuf, new_variab)1

fseek(files->state2fp, pos_state2, 0) I
fseeklfiles->trans1fp, pos_trans2, 0),
fgets(inbuf, 199, files->trans1fpl,
fscanf(files->state2fp, "'s", new_variab);
pos_state2 • ftell(files->state2fp);
pos_trans2 = ftelllfiles->trans1fp);

elem->comment[strlen(elem->comment)-ll '\0' I

fseek(files->state2fp, pos_state, 0);
fseek(files->trans1fp, pos_trans, 0);

Appendix L: Source code ProTeGe

1----····· __ ·····_·····_··_--------------------------- ---_ .. _-- •••• ------------­
*

Page L-

* Function

* Description
This function takes a next step in forming a test case for an data flow chain. It takes the next state
of the sequence and fills a new element with the appropiate info. For instable flowstates it calls
the function step_dflow_flow to form all possible inconclusive sidepaths.

* Arguments •
files_type
ttcn.-el_type
char
int

*files
*elem
*seq

state
first

pointer to all files
pointer to ttcn element to be updated in this step
state sequence string

I number of previous state
• is 1 if elem is first element, else 0

* Returns I void

----_ •••••• a_ •• -------------------------------_ •••••••••••• •• ,

static void
step_dflowlfiles, elem, seq, state, first)
files_type *files;
ttcn_el_type *elem;
char *seq;
int state,

first;

long

char

pos_state,
pos_trans;
word,
*seq2;

tostate;
*nelem;

pos_state = ftelllfiles->state2fp);
pos_trans = ftell(files->trans1fp);

seq2 = (char *) mallocllstrlen(seq)+1) * sizeoflchar»;

tostate = num_next_statelfiles, seq, &word);

if ltostate 1= 0)
I

switchlword)
I
case 'X':

nelem = create_next_elemlelem, first);
intern.-fill(files, elem, nelem, tostate, 1, first);
step_dflowlfiles, nelem, seq, tostate, 0);
break;

case '0':
nelem = create_next_elem(elem, 0);
output_filllfiles, elem, nelem, tostate, 1, first);
step_dflowlfiles, nelem, seq, tostate, 0);
break;

case 'I':
nelem = create_next_elem(elem, 0);
input_filllfiles, elem, nelem, tostate, 1, first);
step_dflowlfiles, nelem, seq, tostate, 0);
break;

case 'e':
nelem = create_next_elemlelem, 0);
choice_filllfiles, elem, nelem, tostate, 1, first);
step_dflowlfiles, nelem, seq, tostate, 0);
break;

case 'F':
if (first ! & 1)

add_calls_commlfiles, elem, state, tostate);

if (is_stableltostate, files)}
step_dflow(files, elem, seq, tostate, firstl;

else
I

/* get internal number next state of sequence */

/* if previous element alraedy exists *

strcpy(seq2, seq);
step_dflow(files, elem, seq, tostate, first);
step_dflow_flowlfiles, elem, seq2, tostate, first);

}
break;

fseeklfiles->state2fp, pos_state, 0);
fseek(files->state2fp, pos_trans, 0);

/* not stable. make possible sidepaths */

1-------------_····· __·_·_····_----------------------- --_ -.-._------------­
*
* Function I write_headLdflow

* Description I

This function writes the header part of a data flow test case to the appropiate file. The purpose
part depends on the type of 'input' (variable input or constant call) and the type of 'output'

Appendix L: Source code ProTeGe Page L-77

(constant or variable) •

pointer to all files
I internal number of flowstate at which case starts
I 1 if real input, 2 if constant call

type of output variable
'input· of data flow chain
'output' of data flow chain

I pointer to structure counting number of test cases

"files I

flowstate
type_in
"type_out
"start_var
·out_var
·cases

char

" Arguments I

files_type
int

" Returns I void

••• *** •• **/

static void
write_headLdflow(files, flowstate, type_in, type_out, start_var, out_var, cases)
files_type "files,
int flowstate,

type_in,
char "type_out,

"start_var,
"out_var,

case_type "cases,
(

int state,

state flownumber(flowstate, files),

fprintf(files->dflowttcnfp, " \n"),
fprintf(files->dflowttcnfp, "---\n")I
fprintf(files->dflowttcnfp, Test Case Data Flow\n"),
fprintf(files->dflowttcnfp, "---\n")'

if «type_in == 1) && (strcmp(type_out, "const_out") == 0»
(

fprintf(files->dflowttcnfp, "Purpose.
fprintf(files->dflowttcnfp, "

Testing Data Flow Chain from real input variable '%s'\n", start_var),
to predicate variable '%s' (constant output)\n", out_var),

if «type_in == 1) && (strcmp(type_out, "var_out") == 0)
(

fprintf(files->dflowttcnfp, "Purpose:
fprintf(files->dflowttcnfp, "

Testing Data Flow Chain from real input variable '%s'\n", start_var),
to output variable '%s' (variable output)\n", out_var),

if «type_in == 2) && (strcmp (type_out , "const_out") == 0»
(

fprintf(files->dflowttcnfp, "Purpose:
fprintf(files->dflowttcnfp,

Testing Data Flow Chain from constant call variable '%s'\n", start_var)I
to predicate variable '%s' (constant output)\n", out_var),

if «(type_in == 2) && (strcmp(type_out, "var_out") == 0»
(

fprintf(files->dflowttcnfp, "Purpose:
fprintf(files->dflowttcnfp,

Testing Data Flow Chain from constant call variable '%s'\n", start_var),
to output variable '%s' (variable output)\n", out_varl,

fprintf(files->dflowttcnfp, " Start in flowstate F%d\n", state),

fprintf(files->dflowttcnfp, "Identifier, DFL_%d\n" , ++(cases->num-dflowll,
fprintf(files->dflowttcnfp, "---\n"l'

, •••• ******_.********_.** •• ***************************-------------------------­

"
" Function

"Description I

This function makes a data flow sequence test case by calling the recursive function step_dflow to
make all elements, adding otherwise and expo of time, adding verdicts PASS where necessary and calling
the functions to write the test case to the appropiate file.

" Arguments
int
char
int
char

" Returns

files_type
case_type

I void

flows tate : internal number of flowstate at which case starts
"seq I state sequence string

type_in : 1 if real input, 2 if constant call
"type_out type of output variable
"start_var 'input' of data flow chain
"out_va r 'output' of data flow chain
"files pointer to all files
"cases pointer to structure counting number of test cases

-_ •••• ---_ ••••• _- ••••••••••• __ •••• _••• _----_ ••••• _----********************** •• ,

static void
dflow_case(flowstate, seq, type_in, type_out, start_var, out_var, files, cases)
int flowstate,
char "seq,
int type_in,
char "type_out,

·start_var,
"out_varl

Appendix L: Source code ProTeGe Page L-

files_type
case_type
(

• files;
·cases;

step_dflow(files, elem, seq, flowstate, II;

add_otherw(elem);

add-pass(elem) ;

write_headLdflow(files, flowstate, type_in, type_out, start_var, out_var, cases);
write_body(files->dflowttcnfp, elem);
write_comm(files->dflowttcnfp, elem);

free_total(elem);

,...••••..................
·• Function

• Description
This function calls the function dflow_case for all data flow chains in DFLOW_FILE.

• Returns I void

...........................••......................... ~..../

static void
ttcn-dflow(filesl
files_type ·files;
(

char

int

line[30001,
type_out [15] ,
start_var[501,
out_var[501,
word[lOl;

flowstate,
c;

case_type ·cases;

cases = (case_type .) calloc(l, sizeof(case_type»;

printf("\nTransformation of Data Flow subsequences to TTCN");

fgets(line, 2999, files->dflowfpl;
fscanf(files->dflowfp, "'s", type_out);
while (type_out [0] != '-')
(

fscanf(files->dflowfp, "'s", start_varl;
fscanf(files->dflowfp, "'s", out_var);
c = getc(files->dflowfp);
fgets(line, 2999, files->dflowfp);
line[strlen(line)-l] = '\0';

sscanf(line, "'s", word);
flowstate atoi(&word[lll;
flowstate = statenumber(flowstate, files);

I· --------Real Input--------- line ·1

I· for all real input lines ·1

I· space ·1

I· remove '\n' ·1

I· 'F' and number flowstate ·1

dflow_case(flowstate, line, I, type_out, start_var, out_var, files, cases);

fscanf(files->dflowfp, "'s", type_out);

fgets(line, 2999, files->dflowfp);
fscanf(files->dflowfp, "'s", type_out);
while (!feof(files->dflowfp)l
(

fscanf(files->dflowfp, "'s", start_varl;
fscanf(files->dflowfp, "'s", out_var);
c = getc(files->dflowfpl;
fgets(line, 2999, files->dflowfp);
line[strlen(line)-ll = '\0';

sscanf(line, "'s", word);
flowstate atoi(&word[ll);
flowstate = statenumber(flowstate, filesl;

I· rest ---------Constant Call--------- line ·1

I· for all constant call lines ·1

I· space ·1

'* remove '\n' *'
I· 'F' and number flowstate ·1

dflow_case(flowstate, line, 2, type_out, start_var, out_var. files, cases);

fscanf(files->dflowfp, "'s", type_out);
)
free(cases);

,.•.....•.....•....••.• _---------_... __ •..•...........•...•.•..• _-----_ •........
·* Function I ttcn-link

Appendix L: Source code ProTeGe

"Description I

This function should be the main function to transform link subsequences to TTCN.

" Arguments I

files_type "files I pointer to all files

Page L-79

" Returns : void

---------_.--------------.._------------_._-----------_... __ •.....•...........,
static void
ttcn-link(files)
files_type "filesl
(

printf("\nTransformation of link subsequences to TTCN not yet implemented")1

, ••••••••••••••••••••••••• *** ••••••••••••••• ** ••••••••••••••••••••••••••••••••••

"
" Function

"Description I

This function is the main function of this module. It asks if you want to transform control flow, data
flow or link subsequences (or all) to TTCN. If you choose control flow, also UIO sequence parts
will be automatically constructed.

Arguments I

efg_type
files_type

"efg
" files

pointer to efg
pointer to all files

" Returns I void

..,
extern void
to_ttcn(efg, files)
efg_type "efg,
files_type "filesl
(

char
int

inbuf[80l1
menu I

print f ("\nWhich
printf("\n\nl
printf ("\n2
print f ("\n3
print f ("\n4
printf("\n\nO
do
(

sequences do you want to have transformed to TTCN?") I
Control Flow, Data Flow and Link subsequences");

Only Control Flow subsequences") I
Only Data Flow subsequences");
Only Link subsequences") I

No transformation to TTCN\n");

printf("\nYour choice? ");
gets (inbuf) I
sscanf(inbuf, "'d", 'menu);

while «menu < 0) II (menu> 4)) I

if «menu == 1) II (menu == 2»
(

ttcn_cflow(files, efgl;
ttcn_uio(files);

if «menu == 1) II (menu zz 3) I
ttcn-dflow(files)I

if «menu == 1) II (menu == 4»)
ttcn_link(files);

close_files_ttcn(files)I

Appendix L: Source code ProTeGe

1*** **************************

"

Page L·

" File I linksubs.c

"Description I

This module ought to calculate link subsequences and write them to LINK-FILE, but is not yet
implemented.

" Editor

" Version

M.F. van Opstal

I 30-7-1993

******* •••••••••••••••••••• ** •• *******/

/" INCLUDE FILES "/

'include <stdio.h>
'include "typedef.h"
'include "efghead.h"

/" FUNCTION DEFINITIONS "/

/*************** ••••••• ***.*

"
" Function

" Description
This function opens the necessary files for this module

" Arguments I

files_type "files I pointer to all files

" Returns I void

*********************** ••••••••• ***.**/

static void
open_files_links(files)
files_type "filesl
{

if «files->state2fp = fopen(STATE_FILE_2, "r")) NULL)
err (link_ss, 6, 0);

if «files->trans1fp = fopen(TRANS_FILE_1, "r"») NULL)
err(link_ss, 2, 0)/

if «files->linkfp = fopen(LINK_FILE, Ow"»~ == NULL)
err(link_ss, 32, 0);

/************ •••••••• ***** ••••• **** •••• 0 •••••••••••• 0.************** ••• *.* •• ****
"
" Function

"Description I

This function closes the necessary files in this module

" Arguments •
files_type "files pointer to all files

" Returns • void

.. ························1
static void
close_files_links(files)
files_type "files;
{

fclose(files->state2fp) ;
fclose(files->trans1fp) ;
fclose(files->linkfp);

1*** **************************

"
" Function I 1in~subseq

" Description
This is the main function of this module.

" Arguments
efg_type
files_type

"efg
"files

pointer to EFG
pointer to all files

" Returns I void

** *********0**************1

extern void
link_subseq(efg, files)
efg_type "efg,
files_type "files;
{

open-files_links(files) ;

close_files_links(files)I

	Voorblad
	Summary
	Résumé
	Acknowledgements
	Contents
	1 Introduction
	2 Project specification and tools
	3 Conformance testing methods
	4 TRT and its test environment
	5 The used method(s)
	6 Implementation
	7 Conclusions
	Glossary
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	Appendix I
	Appendix J
	Appendix K
	Appendix L

