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ABSTRACT

The overhead crane is a nonlinear MIMO process. The control has to ensure that the load
follows some specified trajectory. One of the main problems is the swinging of the load
that has to be suppressed. In the experiments a computer simulation model of the crane is
used.

We wish to design a neural network controller that uses a nonlinear neural network as a
model of the crane. In this thesis the simulation experiments of the model neural network
are described. The neural network is trained in a black box configuration using a random
input- output data sequence, by minimizing the error between the system output and the
neural network output.

The first results after training the network show that the swinging of the load is not
represented by the neural network. During the training of the network different algorithms
are tried to put more weight on the frequency corresponding to the swinging.

For the dynamics of the neural network besides the ARMA representation the Delta
representation neural network model was tried.

It is shown that all the necessary information is contained in the dataset. We are
convinced that the neural network is able to map the input- output relations better, though
a full representation of the nonlinear behaviour requires a far more extensive neural net as
is analysed. We conclude that the minimization algorithms, stochastic and gradient
methods, are not powerful enough to find a proper neural network.
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CHAPTER 1
Introduction

In this Thesis we try to simulate an overhead crane with a neural network model. We
want to use this model in a neural network controller.

An overhead crane is an equipment for transport of heavy loads over short distances. A
trolley that moves along a rail hoists the cargo at one place and puts it on the end
position. In a harbour it’s usually applied to hoist containers from ships to trucks on the
quay. The control problem is that the load has to follow a specified trajectory. Because of
efficiency the transport has to be done in minimum time while at the end position the
swinging of the load will have to be suppressed to within certain bounds, to be able to
place the load accurately at the right place. Nowadays an overhead crane is usually
controlled by an operator who needs a lot of experience to handle it properly.

A pilot scale model of an overhead crane will soon be available to the "System
Identification for Control" (SIC) group of the measurement and control section. Until then
we’re still working with a computer simulation model of the crane. For the
implementation of this model we need the physical equations describing the system.

Most of the methods using models for control require linear equations and can be applied
only if the system to be controlled is linearized around some working point. Meanwhile
actually most of the complex dynamic industrial processes show non linearities. So does
the overhead crane. In recent years study has been done in the SIC group for non linear
models for control and particularly for control using neural networks. A few identification
experiments were done on relatively simple examples from the literature using neural
networks besides linear models (Pijnenburg[13]). The identification of the overhead crane
without hoisting was tried using the static back propagation algorithm (vdBeemt[1]). A
SISO acoustic process was identified using dynamic back propagation (Moonen[7]). After
that the software for dynamic back propagation was adapted to MIMO systems.

Algorithms that have been drafted and the conclusions that have been drawn from the
experiments so far will be applied for simulation of the MIMO overhead crane. The
system will be prestabilized with a linear controller leaving enough freedom for excitation
for the overall neural network controller.

We will start with simulation experiments to find a proper model. After this a controller
will have to be found.
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CHAPTER 2
Description

The physical system of the overhead crane or gantry crane is also described by
Schreppers[15] who applied a fuzzy logic controller to the same system. The formulas are
repeated here briefly, then the special configuration in which the system will be used in
our experiments is explained. But first attention is paid to controller configurations.

2.1 Controller Description

There are different configurations for control using a neural network as a model and also
a neural network as a controller. Also structures are known in which the linear part of the
system is represented by a linear model, see Narendra[10] and Youji[18]. This is used
parallel to the nonlinear neural network model. So the neural network only represents the
nonlinear terms. We are convinced that the neural network should be able to map both the
linear and the nonlinear behaviour as will be explained in chapter three. From
experiments we saw that the two descriptions were working against each other in the
training phase, see vdBeemt[1]. An overview of some well known controller structures is
given by Hunt [3]. Two possibilities are explained here.

2.1.1 Internal Model Control

Internal model control (IMC) is a well
known scheme from linear control theory. r e l » v Y
5 filter

It is explained by Morari[9]. Hunt[4] et
applies it for controllers using neural
networks. In figure 2.1 the IMC model
configuration is plotted. et

Two neural networks have to be found,
one describing the plant and one Fig.2.1 Internal Model Control

describing the controller. If the model is a

perfect representation of the plant and

both the plant and the controller are stable

then the closed loop system is stable. The control will be perfect (r=y) if the controller is
the inverse of the model describing the plant, and the closed loop system is stable. The
system must be invertable (for linear systems it may not contain unstable zero dynamics).
Exact setpoint following will be possible despite unmeasured disturbances. A two step
procedure is used to find both networks. The filter is introduced to reduce the gain of the
feedback system to increase robustness, because the model obtained will never be perfect.

In step one (fig. 2.2) the model neural network is trained on the error signal e,, the
difference between the plant output and the model neural network output. In the second
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step (fig. 2.3) the controller is trained on e,, the difference between the controller neural
network input and the model neural network output. During execution both networks can
be trained further on line.

17N

controlier | U

j nnet
T

Iearmngﬂ mode!

e1 proc. nnet
T
—

Fig.2.3 step 2
Controller training

learnming
proc.

Fig.2.2 Step 1
Model training

2.1.2 Model Reference Indirect Adaptive Control

Narendra [10] uses indirect adaptive
control (fig. 2.4). The designer is
supposed to be sufficiently familiar with
the plant under consideration to prescribe
a reference model which specifies the r
desired behaviour of the system. The
model is perceived in the same way as the
one for internal model control. The com,ouﬂu
controller will have to generate a plant J et |
input that satisfies some criterion for the *
output. It will be trained on ¢,, the
difference between the plant output and
the reference model output.

Fig.2.4 Indirect Adaptive Control

2.2 Process Description of the Overhead Crane

The derivation of formulas and the Simulink simulation model are also given by
Schreppers[15]. Simulink is a simulation program working with Matlab.

A two dimensional space is defined in which the load can be moved. The x-axis is
defined along the rail, the y-axis perpendicular to it. The position of the load is specified
in x_ and y,. These two parameters can be calculated from the three variables that are

3
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returned by the system; the length of the cable L, the position of the trolley x, and the
angle 6 between the normal of the rail and the cable by: x, =x +Lsin(f); y, =Lcos(f).

The physical equations of the overhead
crane could be obtained by defining a pole
coordinate system that moves with the
trolley along the x-axis. This is causing an
extra acceleration (like in a rotating
carroussel) according to the x,y system.
For the two accelerations in the tangential
direction and in the radial direction

this will be a, =L-L§’ ;a,=LO+2L. Now
with the force balances for the load and

for the trolley three system equations are
derived.

F, is the x-directional force on the trolley;
F, is the hoisting force; m, is the mass of
the trolley; m; is the mass of the load.
The d’s represent damping forces that
work opposite to the moving direction.
The system equations are:

Fig.2.5 Schematic

Representation of the Crane

mx, = F +F,;sin(0)-dgx,
m, L8 = -m,gsin(8)-m,xcos(0)-2m, LO-d,Lb
m, L = m, gcos(8)-F,+mLy*-mxsin(6)-d,L

2.1)

Some important simplifications were stated. The rope is always stiff, the damping forces
work linearly with the moving speed, the sensors and actuators of the system are ideal.

Not all of the constants in (2.1) are certain because the real system is not yet available.
We want the system to be able to handle all loadmasses within prescribed bounds. As this
mass will not change during the trajectory a constant is chosen for m;. The constants of

the system are chosen to be:

m, = 3.5 kg d = 0.10 kg/s
m, = 15 kg d, = 0.01 kg/s
g = 9.8 mis> d, = 10.0 kg/s
2.3 Prestabilization

(2.2)

The system described by the three formulas (2.1) contains one badly damped term in the
swing of the load and two integration terms, one for x, and one for L. These properties
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will make this system very hard to identify; it will be difficult to make a dataset using
white noise random input signals with the outputs in the operating range. A badly damped
term is very difficult to identify as it has a very long response so a very long dataset will
be necessary. To overcome these three problems the system is prestabilized by a linear
controller. The prestabilized system will be more linear than the original system.

2.3.1 Linearization of the Process

For implementation of an LQR controller, the system must be described by linear
equations so the process has to be linearized. The K- factors obtained will be
implemented directly on the nonlinear system. The linearization takes place around a
working point. The variables in the equations are replaced by

x=x, +Ax; 0=0,+A0; L=L,+AL; X=X +Ax; §=0,+A0; L=L +AL
the working point is chosen to be x, =0; , =0; §,=0; 6,=0; L,=1; L,=0.
These new variables are substituted in the system equations (2.1). The following

linearization rules are used:

= j =(): i = if x=0: ite: d(C+AX)= ¢
cos(x)=1 ifx=0; sinx)=x ifx=0; write: i AX; 2.3)

neglect 2™ order differences: AxAy=0; (Ax)*=0

The linearized equations describing the system are

m+AX, = F,+m,g0-d AX,
. m m, F m d ,
monb = -8 g T T B pg- DL avy-d, - 00 2.4)
LO LO ml m: ml
m,+AL = -F, -d,-AL where F, =F,-m,g

We see that there is no coupling between the third and the other two equations (2.4), so
the 8 and the x-position of the trolley are not dependent on the length of the cable and
vice versa. The nonlinearities of the system are apparent only if the angle 8 is large. So
we can only show the improvement by using a nonlinear method over linear methods if
this large 6 is happening.

2.3.2 LQR Controller

With the linear feedback parameters a new state space description of the system is
specified by:

X=Ax +Bu  => % =(A-BK Jx + B’ [x, y)T

y = Cx => y-a - 7, (2.5)
T

B =BK 100000

CMRl000010
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Here Ko is a matrix describing the LQR factors. For the linearized system the state
space matrices are specified by:

)_c=(x,x,09LL)T us=(FF)

C - 100000
“loooo010
(0 1 0 0 0 0 (0 o)
d m
0o - g 0 0 0 1
m, m, ml
0 0 0 1 0 0 0 0
A=1q 4 gy 4 o5 o] B=|_L 2.6)
mL, L, m, m, Lo
0 0 0 0 0 1 0 0
d 1
0 0 0 0o o0 -t 0 -—
m, | L)
{A,B} is controllable. The LQR routine will minimize this performance function:
Jiow = | _;-((tTmeTRu) dr 2.7

to

For Q the usual C'C doesn’t suffice because then the system still has a badly damped 6.
So for the term in Q for feedback on 6 the factor 10 is chosen. The R matrix determines
the maximum input signals. These depend on the maximum allowable actuator signals,
the maximum torques of the motors. The Q and R matrices are:

o O

000 |R-=
000
000
010
000

000)
0 0.01

0.01 0 ] (2.8)

S O © © © ©
—
o

o © O

S O O O O

The K, g-factors were found by solving a Riccati Equation resulting in:

_ | 10.0000 11.7675 -19.0059 -2.5225 0.0000  0.0000 2.9
Lok = 0.0000 0.0000 0.0000 0.0000 -10.0000 -1.3952

The pole zero plots of the MIMO linear system in open loop and closed loop (with the

6
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linear feedback) are plotted in fig. 2.6.

open loop system closed loop system

x x

o

] : a :

x . x .

< (3) : < x
g O._ ........... Kovevserroorovarnsavannons ?“.W g, O- ............ % .-..................);...:...T

g | E |

5 -

x x

-10 -9 0 -10 -5 0

Real Axis Real Axis

Fig.2.6 Pole Zero Plots Linear System,; Open Loop and with K, 4,

closed loop system; (K—LOOSE)
2.3.3 Loose Feedback o

The system with the LQR controller has
very short impulse responses, so it is :
controlled very tightly. What we would H
like to have is some freedom of excitation ‘
for the neural network controller so we -10 -5 0
release the feedback rates to K oge. The

pole zero plot of the closed loop linear Real Axis

system with Kyoose is plotted in figure Fig.2.7 PZ Plot Linear System with K,y
2.7. The values of Koo are:

Imag Axis
o
T
x
%x
i

X (1.0 2.0 00 -2.0 0.0 0.0 (2.10)
toost = | 0.0 0.0 0.0 0.0 -4.0 0.0

The outputs of the system that we really want to control are not the states but the two
outputs x, and y, that specify the trajectory. The new feedback variables are applied on
x, and y, in stead of x, and L, and the four other states.
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Fh nonlinear )): - X
> cystem 6

equations ﬁ_’“‘\

Ft L YL
R IS \j- &‘
. C +
i Lt </
: : O oy
; . yr.

m9 Ly

Fig.2.8 Set up for Identification

The responses of x, and y, to simultaneous impulses on x, and y, are plotted both for the

nonlinear system with the LQR feedback and the nonlinear system with the loose feedback
in fig.2.9.

0.05 xL; Loose fleedbock:— LOB:—— 1.04 yL; Loose fleedbock:— LQE?:——
E | E N
v i o 102} |
e 1 © v
2| E ‘
E ! E "
o ol D o TF -
0 100 200 0 100 200
samples samples

Fig.2.9 Nonlinear System Impulse Responses; K,z and K, os5: (sampling freq. 10 Hz)

The configuration that will be used for control is drawn in figure 2.8. This system will be
used in the identification experiments. It has two inputs x, and y, and two outputs x; and
y. that are not measured directly, but by means of three sensors for x, L and 6 (x, and y;
are calculated in the block ’conversion’ in fig.2.8). Be aware that for a large cable length
a small change in @ results in a big change in x,, so this will be less accurately measured.
The system with the feedback loop is implemented in the simulation program Simulink.
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A simulation has some advantages over a real system. We are able to work with
deterministic signals, noise can be added. The calculation is faster than real time. We’re
not bound to a physical implementation. As we want the crane to handle different load
masses we could use the mass as one of the random input signals in data retrieving. Two
disadvantages are that we don’t know whether the model is a good approximation of the
real system and how high the real noise levels of the system are.

2.6 Data Acquisition

For identification of the system we will produce a data set in which sufficient information
about the system is stored. For the input signals pseudo random binary noise sequences
that are often used in linear system identification are not proper, because it has only two
amplitude levels; also the amplitudes of the input signals determine the amount of
nonlinearity. A uniformly distributed white noise input signal was chosen, so all the
possible input situations have the same probability to occur. The maximum amplitudes of
the white noise signals are dependent on the maximum actuator signals. These were
chosen so that the whole operating range of the output space is covered and the angle 6 is
as big as possible (up to +0.5 rad). Only for a big angle § big nonlinearities occur, so
this is the way to show improvement over linear methods.

For complete reconstruction the sampling frequency should be at least twice the highest
system frequency. Usually at least ten times this frequency is chosen to allow data
preprocessing. The highest mode of the system is the swing frequency of the load which
is dependent on the length of the cable. In the working point it is determined from the
impulse response to be 0.6 Hz. Theoretically this pendulum frequency can be calculated

OY frons = 2_17r\/g/L, so if the length of the cable is chosen in the range 0.Im<L<1.9m it

should be less then 2 Hz. Also the sampling frequency should not be too high because
systems containing longer impulse responses are difficult to identify. The sampling
frequency of 10 Hz was chosen. Now the impulse response lengths for both outputs are
about 200 samples. In linear system identification the length of the data set is usually
chosen about ten times the maximum impulse response length (it depends on the
disturbance level that is unknown). In nonlinear system identification a longer dataset
might be necessary to map all the nonlinearities. We chose for a dataset of S000 samples,
which is about 25 times the maximum measured impulse response length. Actually it is
not certain that this is long enough but a longer dataset would lead to problems in the
processing software.

Simulink uses numerical integration of sets of ordinary differential equations. The user is
allowed to choose amongst different integration algorithms. The very accurate Adams
method was used which is said to be used for smooth and nonlinear systems with no
widely varying time constants. The user specifies the sampling time of the system, in this
case it is 0.1 s. To approach the continuous system an internal time step (that is much
smaller than the sampling time) is used in the integrations. The internal time step is
automatically adjusted to ensure that the signals are calculated accurately.

9
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2.5 Data Preprocessing

There is a delay of one sample for both outputs of the system because of the calculations;
the output is shifted one sampling time step.

It is allowed to use the linear transformations, scaling and offset correction on the input
and output signals if the proper inverse transformations are used on the neural network
output signals when applied. The nonlinearities of the system will still be learned by the
neural network.

Offset correction takes place to achieve that all the signals have mean amplitude zero. In
the system only the output y, is offset corrected by the linearization point Ly=1. The
input and output signals are scaled to make sure that all of these have as much weight in
the minimization criterion. This is achieved by making sure that:

e 1=y 0, A el = 1y, @.11)

This is done by multiplying the signal with the smaller norm with a constant factor bigger
than one.

10
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CHAPTER 3
Neural Nets

The field of neural networks in control systems has been steadily in progress for the last
Jfew years. There are high expectations because neural nerworks have some very attractive
qualities as will be explained in 3.1. In this chapter is explained what kind of neural
networks we use. Then the configuration that is used for the identification of the model is
shown and some neural network training routines are explained.

3.1 Fundamentals of Neural Nets

The first feature of neural nets (neural networks) is, that bounded sets of non linear
functions, if continuous and finite, can be approximated. In most of the more complex
real systems and processes nonlinear functions occur. The approximation level is related
to the complexity of the network. Also there are algorithms to train the network; a model
of the system can be made in black box configuration, using only input and output
signals.

In the field of pattern recognition (static neural networks) very good results have been
seen. This quality can also be applied in our situation. Think about the fact that external
matters like strong wind or the load mass have much influence on the system. Each
situation demands its own controller. Now there is a number of controllers amongst which
the right one will have to be chosen. The choice of the controller is a pattern recognition
problem and can be made by a neural network, see Narendra[12].

By using parallel hardware implementation the calculation can be made very fast. For on
line control a very fast calculation is necessary.

In Pijnenburg[13] more basic fundamentals

of neural networks are explained. We make

use of a completely connected multilayer neural
network as drawn in figure 3.1. Each node
represents a neuron that performs a (nonlinear)
function on the weighted inputs. The variables
describing the network are the weights on the
interconnections. For the neuron processing : :
function any shape can be chosen (except } h.dd layer-.
the output and input nodes that are chosen
linear). Frequently used are the sigmoid and the Fig.3.1 Static Neural Net

Gaussian function (fig.3.2) . The Gaussian has

the advantage that the offset in the saturation

region is zero, so this doesn’t have to be compensated by another node. The advantage of

the sigmoid, in this case 1/(1+exp(-x))(also the very similar tanh function was used), is
that it consists of a linear part around zero, a nonlinear part and a saturation. As there is

It
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a big linear part in the system we chose for the sigmoid function. We expect that this
facilitates the approximation of linear systems. A neuron is said to be in its linear region
if the sigmoid is operating in its linear part.

soturotion nonl. lineagr soturation active
1 . 1 . T 1 R : . :
1 - . 2 ! .
E] =
o o
o — o, : O . . .
-10 -5 0 L) 10 -5 0 o]
sigmoid in gaussion in

Fig.3.2 Processing Functions

Any static function can be approximated by this network up to some accuracy related to
the size of the network. There are freedoms in the number of hidden layers and the
number of nodes per hidden layer.

We represent a Neural Net by NN, , , where L is the number of layers, i, is the number

of inputs, i, is the number of nodes for the first hidden layer, i, , for the last hidden layer
and i, is the number of outputs. NN, , ; has one input, one hidden layer with 2 nodes and
3 outputs.

3.2 Dynamic Neural Networks

To bring in dynamics into the static neural
network shown in figure 3.1 some delayed

inputs and outputs are fed back to the ,

network (for linear systems the number of Ao 4 -

delayed outputs is proportional to the number of = T
states of the system). This is the ARMA E

dynamic neural network. It is plotted in figure 7 - Ul Lo

3.3. In stead of using basic shifts also other
filters (of McMillan degree one) can be used on
the delayed inputs. In fact the shift is a special
case. In fig. 3.3 A is the shift operator ¢ or z'.

Fig.3.3 Dynamic Neural Net

12
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3.2.1 Delta representation

Besides the shift operator three other possible delta filters are
.oA 2=l oA 2271, N
R I R = 6.1

T is the sampling time. The first filter is non causal so it cannot be implemented here.
The second filter creates an approximation of the derivatives of the input and output
signals:

_z-1 1 ol 1N
A,y(k)—sz(k)—?(y(k) yk-1))=y (3.2)

2 _ 1 _ _ —_
ByH)==( 8y R)-By(k-1) = (3.3)

The reason of implementing this filter is that the derivatives of the outputs contain more
evidently the information about the system than the shifted outputs, especially when there
is small change in the outputs during successive time steps.

A problem in the use of these filters is that | Ay| = |y . If for example for one of the

outputs ||A,y| > |ly|, say ten times as big, in the training much more weight is placed
on the derivatives of this signal, because of the higher amplitude of the derivatives. This
will make it very hard to identify the system, especially when higher derivatives are also
used as inputs (the fourth shifted output signal will have an amplitude that is 10000 times
bigger than the output). This effect can be counteracted by using a constant factor other

than 1/7 in the delta function. The neural network will take care of the effects of this
factor.

Another way to overcome this problem is to use the fourth filter for which goes

|A,(e™)|=1 V w€[-7,7]. So it is an all pass filter. Actually a special case of this filter
is the time shift.

3.3 Training Neural Networks

For the identification of the neural model the network is trained in the output error
configuration plotted in figure 3.4. With this configuration a model will be found that
only uses the inputs of the system to approach the system outputs. The performance J is
minimized (in the algorithms just the numerator in 3.4. is minimized).

E E [y i,modcl(k) 4 i,process(k)]z
J = k=1 i=1 (3.4)

E Z [y i,process (k)]2

k=1 i=1

N is the number of samples on which this criterion is minimized (typically 5000 samples)

13
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and p is the number of outputs of the system. We will have
to find the right weights describing the neural network in
an m-dimensional space, where m is the number of
weights. Because of the nonlinearities this is a nonconvex
problem. There is no guarantee for success to find the
global minimum. Besides the global minima some local
minima can exist and flat regions and saddle points appear.
Theoretically a neural network with more weights can
approximate the system better but the more weights the
slower is the convergence rate and the more difficult it is
to find the minimum. With these two facts the optimum Fig.3.4. Output
network size has to be found empirically. Error Method

nnet

There is no a priori indication of the value of the

performance in the global minimum. So if the neural network is in a minimum it is hard
to say whether it is a global one. We can only compare with the performance of models
obtained by linear identification experiments.

3.3.1 Gradient Methods

Some minimization routines use the gradients dJ/dw of the performance to the weights w.
It is not always possible to escape from a local minimum when a gradient method is used.
The gradients can be determined in two ways, analytically and numerically. In the
numerical calculation for each weight the performance has to be recalculated in a point
close to the current point. The analytical method is explained by Narendra[10] and is used
to save flops. Moonen[7] wrote a C-program for analytical determination of gradients for
the ARMA representation neural network. The gradients are calculated according to the
formula (3.5) where the output of the neural network is represented as follows:

'(k) -f(u(k) u(k 1), u(k 2),....9(k-1),9(k-2),...,w), k=1,2,

Z Z (k)—(k) where  e(k) = y(k)-J k) (3.5)
1 =] k=1

dy‘,. ay‘,(k) RS TON

@ Y Sanan -9

j is the number of weights and ndo the number of delayed outputs fed back.

This is the dynamic backpropagation algorithm, if the second term of formula 3.6 is
neglected it is called static back propagation. The neglection is allowed if there are no
lightly damped terms to be identified.
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In the second Delta representation (3,1:4,;) neural network the dynamic term is changed.
Writing A for A,:

k) = fuk),Auk),A%uk),....yk-1),A5k-1),A%k-1),...,w), k=12, ...

dy, 6y,(k) &y(k) dAy, &9, k)  dary,
Tiwy = S e D Sy « e 2 Ty 3.7
W, W, y(k-1) dw, 8A ) (k-1) dw,
So the analytical calculation takes extra flops.
dA™y. A9 (k-1)-A"2P (k-2 dar'y. darly.
Vig-1y = 4 Vik-1) *-2) _1 Vik-1)-22" Vi -2y (3.8)
dw; dw; T T| dw, aw,

The implementation of this in the software is very difficult (time consuming) and
relatively less time profit can be achieved in the calculation so we decided to calculate the
gradients numerically.

Steepest Descent

The basic gradient optimization method is steepest descent, that is used in pattern
recognition problems. The weights are adapted according to

w(k+1)=w(k)-aV J(W) (3.9)

w is the vector of weights. V J(w) is the gradient of the performance to the weights. A
proper learning velocity factor o has to be chosen; with a small « the convergency rate is
very small; with a large a there is less guarantee of convergence. The convergence rate
can be increased by making o adaptive. Increase o after a number of successful
iterations. Decrease o when the performance is worsening.

In Pijnenburg[13], Jacobs[S] and Qiu[l4] other methods to speed up the steepest descent
method are mentioned.

Quasi Newton

When we compare the gradient methods the steepest descent converges linearly, the Quasi
Newton converges quadratically. Quasi Newton can be used only if the values of the
parameters are close to the minimum. M is a positive definite approximation of the
Hessians, H in (3.10). M is obtained by updating the initial identity matrix.

w(k+1) = wk) - oMV J(w); H = [;Z;::)T:l (3.10)
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3.3.2 Nongradient methods

Stochastic search (Telkamp[16]) is an algorithm that determines a new point
stochastically. For each direction the mean of the random step is related to the success of
the search in that direction. The convergence rate of stochastic search is very small but it
can escape from local minima. In the experiments the results of stochastic search are used
as the initial weights for the gradient optimization programs.

wk+1) = wk)+P,; P, random standard deviation o(k)

o(k+1) = ao(k)+(1-a) ai(,k)3|Pk| (3.11)

if J(k+1) <J(K) then a(R)=1 else a(k)=0; 0<o <1

At each iteration a random vector P, with standard deviation o is created. In each
iteration o is adapted, decreased when not successive a(k)=0, increased when successive
a(k)=1. P, is a chosen constant. 8 is determined by the probability function. For a
complete description of this algorithm see Telkamp[16].

3.4 Minimization in Practice

In simple convex optimization problems the gradient algorithms have shown to be very
appropriate. Problems arise when there are flat regions and curved valleys. For the
minimization of our neural nets we start with small random initials, so all the nodes are
in the linear region. The convergence rate is decreased when some of the nodes are in the
saturation region. During the optimization there appears a big difference in the values of
the gradients of the network. Sometimes the biggest gradient is 1e10 times bigger than the
smallest gradient. Because of the small gradients the steps are small and the convergency
rate decreases. When also the derivatives of the gradients are small the Hessians become
ill-conditioned (close to singular) and the optimization using the Quasi Newton method
cannot be continued.
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The famous "banana function"(3.12) shows that already in a two-dimensional error
surface it can be very hard to find the global minimum using the gradient methods.

fx.y)

]
dy 1
i

il
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Fig. 3.5 The Banana Function

flxy) = 1000-x%-(1-y)* (3.12)
plotted: -2<x<2 0<y<1

In the minimization routine much more weight is put on the first term in formula (3.12).
It is no problem to reach the valley. Inside this valley, however, it takes a lot of iterations
to get closer to the minimum, because the gradients and the derivatives of the gradients
are very small.

In neural network training the dimension of the parameter space is the number of weights
(this can easily be 100 or more). Another property of neural networks that makes it more
difficult to train the network is the redundancy.

A procedure was set up in which only the weights of the neural network belonging to the
biggest gradients were allowed to change during optimization. Only in these few
directions was searched. As the gradients in the output layer are often big and this is a
linear layer, this tends to a more linear optimization problem. The problem is that after a
few iterations the gradients of the other weights are getting bigger. This procedure has to
be repeated many times to prove success.

Another procedure is indicated in (3.13). An extra term is introduced in the performance
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function J (3.4) leading to J,.,, to keep the weights small. With small weights the nodes
are in the linear range and the convergence rate is higher. t, is chosen close to one in the
beginning of the minimization and is slowly decreased to zero. Finally the performance
J..w €quals the original performance. In section 4.5 it is shown that this procedure proves
to be successful.

1
J., = A=t +1,* E,_zwrw

lim ¢, =0; eg. t, = (0.9
k —»oo

1>4>0 n:=dim(w)

(3.13)

The stochastic search algorithm is able to escape from local minima but practically there
is no guarantee that it will succeed. To increase this possibility the learning velocity
factor a has to be chosen close to one. Now after a successful iteration the standard
deviation of the random vector is increased and it takes a lot of iterations before there is a
substantial possibility of a new successful iteration to occur. In practice the convergence
rate of stochastic search is too small to find a global minimum of a complex neural
network.

As the size of the network is closely related to the convergence rate, the networks are
kept as small as possible.

The training of the neural network is started with random search taking small random
initial weights. After this the steepest descent is applied to get close to the minimum,
Then this minimum is found with Quasi Newton.

Experiment

In this experiment it will be shown that for a simple
example there is a minimum bound to the number of
hidden layers of the neural network.

The two input one output exclusive or function exor In
is simulated: y(0,0)=0; y@©O,1)=1; y(1,0)=1; Fig.3.6. Stepfunction
y(1,1)=0. The processing function of the neural

network is the step function (fig. 3.6).

With the neural network NN, , (no hidden layer) a decision boundary between y=0 and
y=1 in the two dimensional output space is a straight line. This can be shown because
with the three weights of the network, the switching of y occurs at:

wBias,+wx, +wyx, = 0  with inputs x,x,

With this network the exclusive or function cannot be simulated as shown in fig. 3.7.

With the neural network NN, ,, with nine weights the boundary is determined by two
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straight lines:

wBias,+wx, +wyx, = 0;  wBias+wx, +wgx, = 0

With these two straight lines the exclusive or function can be simulated.

y=1 y=0 y=1 y=0
)(2/[\ XET
(0,0 (1,0 (0,0) (1,0)
y=0 X —  y=1 y=0 X y=1
Fig.3.7. No hidden layer Fig.3.8. 1 hidden layer

It can be shown (see Minsky[6]) that with two
or more hidden layers arbitrary regions can be y=1 y=0
partitioned, the complexity of the regions is (0,10
determined by the number of nodes. Of course
this goes only for this simple two-dimensional
output space. XQT

(0,0)

y=C X —  y=1

Fig.3.9. 2 hidden layers
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CHAPTER 4
Simulation of the Overhead Crane

In this chapter all the neural network training experiments are the best from a range of
experiments with different random initials, different numbers of layers and numbers of
nodes per hidden layer. Sometimes different processing functions were tried, but all the
shown results are from neural networks with the sigmoid function. What is shown is the
validation, that means simulation on another dataset than the one the network was trained
on. The minimization of the performance is always started with stochastic search followed
by steepest descent to get close to the minimum. When the rate of convergence is getting
close to zero we switch to the Quasi Newton method. We only use deterministic signals.

4.1 Experiments Using ARMA Representation Neural Nets
We started with a MIMO simulation experiment of the overhead crane when the software
for training the neural network using dynamic backpropagation was available. The

software is described by Moonen[8]. It was already tested on a few simple systems.

MIMOQ simulation experiment

The system has two inputs, x, and y,, and two outputs, x, and y;, and is prestabilized

with the linear feedback K,qose. The linear system contains six states xl,x‘l,L,L,O,é, SO
totally at least six delayed outputs have to be fed back to the network. As the angle 6 is
mostly seen in the output x; for this output four delays should be fed back (8 is very
small so sin(8)=0; cos(§)=1). In each hidden layer the number of nodes should at least
be equal to the number of outputs of the system to enable it to map all the transfers. This
is because all the information has to be transferred through all the layers of the network.

Empirically we found out that with a neural network with two hidden layers a better
performance could be attained than with only one. See also the experiment in chapter 3.4.
With more than two hidden layers the network is very big and has a lot of redundancy.
The convergence rate is small.

The MIMO simulation experiment is started with the Neural network NN¢ ¢35, S0 it has
226 weights. For both inputs three delayed inputs and for each output four delayed
outputs are fed back to the network. The network is trained on a dataset of 5000 samples
with as inputs uniformly ditributed white noise . The minimization is stopped when no
improvement is seen in the performance. The method of only minimizing with the biggest
gradients as mentioned in section 3.3.1 is applied.

The performance of the neural network is 1.1% (see formula 3.4) (1.8% for output x;
and 0.4% for y,). In figure 4.1 the validation is plotted for both outputs and the error
signals. The output y, is better approximated than x,. The difference between the output
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errors becomes clear when we have a look at the simultaneous impulse responses; see
figure 4.1 e,f. The pendulum frequency in x; seems to be missing.

The impulse response x, of the system contains a low and a high frequency component.
The high frequency component is not represented by the neural network. Apparently this
component has less effect on the performance of the model than the low frequency one.

With this neural network model the system approximation is not good enough in order to
be used for controller design. The performance is bad. The amplitude of the error signal
of x, is up to 10 cm. The high frequency component corresponds to the swinging of the
load. Now the swinging of the load is an effect that we want to suppress with the
controller. This will not be possible if this frequency is not represented by the model.
Because the performance of the Neural Network has a very flat surface as function of the
weight parameters w, it could be due to a local minimum. Another strategy will have to
be applied to find a better neural network model.

1 ﬁARMA r}eural netwprk validatiﬁon output xL; system:- nnet;--
L T

amplitude (m)

- 1 1 1 . 1 1 i 1
0 50 100 150 200 250 300 350 400
a samples
0.1 . ARIrvIA neurall network v'glidation; error outpuf xLL

0.05 4

amplitude (m)
o

1 A

0 50 100 150 200 250 300 350 400
b samples

Fig.4.1 MIMO Simulation Experiment ARMA
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Fig.4.1 MIMO Simulation Experiment ARMA (cont.)
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4.2 Experiments Using Delta Representation Neural Nets

As explained in section 3.2.1 with the Delta representation method we expect that the
training of the neural network will be easier, because the information is more evident.

The delta representation method using the
second filter (4, in 3.2) is tested on a few
simple experiments. To our surprise the
trained network does not represent the
system but generates only constants as
outputs. This can be explained by what is
stated in section 3.2: there is very much
weight on the delayed outputs, that
contain less information than the real
outputs so a constant value is an important
local minimum. The problem can be
circumvented by changing the factor 1/T.
Another way to counteract this effect is to
start with the training of a neural network
with just one delayed output. When a
quite good performance is attained the
other outputs are added to the network
taking small random initials for the
weights on the extra interconnections.

Now the training of the network is
. ) Fig.4.2. Add Extra Delayed Output.
continued. This is illustrated in fig. 4.2. & ra Ledy uipuis

A MIMO neural network training experiment NN¢ g 5, With inputs x,, Ax,, A%X,, x., AX,
A%y, A%, A%y, y,, Ay, A%, yL, Ay, A%y, Ay, A%y, is carried out. The same dataset
was used as in the ARMA simulation experiment.

In figure 4.3 the results are shown. These are similar to those of the ARMA
representation neural network. The performance of the Delta representation model is
better: 0.8% (x, 1.4% y, .1%). This performance is attained with about half the number
of Quasi Newton iterations as used in the ARMA experiment. It was not necessary to
continue the minimization of the performance only with the weights belonging to the
biggest gradients. However one iteration takes more flops and it took more experiments
with different random initials before this neural network was adjusted. By the impulse
responses is shown that the frequency of the pendulum is not represented by the model. In
the spectrum of the error signal there is a peak for the high frequency term (indicated in
figure 4.3 g). The amplitude of this peak is still smaller than the amplitude of the error
signal for the low frequency, so when the minimization of the performance is continued
still more weight is put on this low frequency.

In all following experiments the ARMA representation is used.
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Fig.4.3 MIMO Simulation Experiment Delta
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Fig.4.3 MIMO Simulation Experiment Delta (cont.)
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SISO Simulation experiments

The MIMO linear system is completely
decoupled, so the coupling in the
nonlinear system is expected to be very
small. As indicated in figure 4.4 the
MIMO network can be split up into two
SISO networks that can be trained
separately. These can be combined to the
MIMO network by taking small random
initials on the interconnecting weights.
Now we can put more attention to training
the SISO system x, to x;. The
performance of the MIMO neural network
is exactly the summation of the
performances of the SISO networks. Next
the training is continued.

In our experiment the MIMO neural
network NN ¢35, with 226 weights is split
up into two SISO networks NNg,,, with

61 weights each. The convergence rates Fig.4.4. Coupling two SISO Neural
are increased drastically. Networks

Experiment

For the SISO system y, to y, four neural network training experiments are carried out
using 1 hidden layer with 10 nodes resp. 2 hidden layers with 5 nodes each, and two
resp. four delayed outputs fed back.

Starting with random initials for the weights (with the same distribution) 1000 iterations
of stochastic search are followed by 100 iterations of steepest descent and 1000 iterations
of Quasi Newton. For all experiments the error surface is very flat after the training
experiment. The performances that were attained are:

NN, 101 (2 delayed outputs; 1 hidden layer): 0.2%
NN, 55, (2 delayed outputs; 2 hidden layers): 0.1%
NN 101 (4 delayed outputs; 1 hidden layer): 4.1%
NNgss, (4 delayed outputs; 2 hidden layers): 3.0%

With this experiment it is shown that the redundancy (only two delayed outputs are
necessary) is a very important factor in making it difficult to train a neural network
sufficiently. With a neural network with two hidden layers (in this experiment) a better
approximation of the system is found.
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Low frequency experiments

A dataset of 1000 samples for the SISO system x, to x, is produced with the sampling
frequency of 1 Hz. The neural net NN, 4, could easily be trained up to a performance of
0.2%. The validation and impulse response are plotted in figure 4.5. With this network
the high frequency component (the swinging of the load) is not represented, so the
performance is not to be compared with previous performances. Two experiments are
performed making use of the knowledge that a good performance can be found using a
lower sampling frequency.

3 : ARMAI neural r}etwork }Hz valicliation output xL; lsystem:-Tnnet:-- .
E
(3}
=
=
g
_2 1 [ L 1 1 1 | L 1
0 20 40 60 80 100 120 140 160 180 200
a samples
0.2 : . ARMll\ neural petwork ‘le implulsresm'nse xL _ :
~ 0.15¢+
E
o 0.1
3 _
=
= 005+ -
g
0 =
_0.05 1 [ I 1 1 1 1 [ 1
5 10 15 20 25 30 35 40 45 50
b samples

Fig.4.5 SISO Simulation Experiment x;; 1Hz

In the first experiment (for the SISO system x, to x,)using 10 Hz sampling frequency we
take as delayed outputs fed back to the network in stead of: x,(k),x (k-1),x.(k-2),x (k-3),
the outputs x, (k),x,(k-1), for the high frequency component and x, (k-10),x,(k-20) for the
low frequency component.

The weights of this neural network are taken as initials for the network with other outputs
fed back for the low frequency term. In stead of x,(k-10),x,(k-20) the outputs x (k-
9),x.(k-18). By repeating this procedure for smaller delays (x (k-8),x,(k-16)) we could
finally find a sufficient minimum for the original network with four delayed outputs.
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Already in the first step no neural network representing both frequencies is found. So this
experiment is not continued.

The second method is to start with the neural network model of the 1 Hz sampling
frequency experiment and use the weights as initials for a 2 Hz experiment. In small steps
we would proceed to the 10 Hz experiment. The results show however that the higher the
sampling frequency the more difficult the learning of the network. Still the pendulum
frequency is not represented.

Linear Simulation Experiments

The SISO system (x, to x,) can be identified in output error configuration by the
MATLAB function OE that trains a linear model. This is carried out with a fourth order
model. From the impulse response fig.4.6 we see that the high frequency component is
represented by the model. The performance is 2% which is worse than the performance
of the ARMA neural network for this output. So it is shown that the information about
the higher frequency is contained in the dataset.

0.03 OE foxllrth order lineqr SISO simulaltion impulsrcslponse; system.- oe:—

amplitude (m)
© o
o o
= M)

(=4

-0.01 ! ' , .
0 50 100 150 200 250 300

samples

Fig.4.6 SISO Simulation Experiment x,; Linear

4.3 Filtering to put more Weight on a Particular Frequency Range

For the SISO system x, to x; still the pendulum frequency component is not represented
by a neural network. We will just have a look at the simulation of this SISO system. In
the experiments so far it became clear that not enough weight was put on the high
frequency component compared to the low frequency one, even if the performance is
better than one percent. The problem is that for a good controller the angle of the load
has to be identified in order to be able to suppress the swinging.

We will make sure that more weight is put on the frequency belonging to the swinging of
the load during the minimization procedure. Three experiments were proposed using low
pass or bandpass filters (the band around the frequency of interest).
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Filtering the Input Signal

The white noise input signal is filtered before it is
applied to the system. In this way the system is more "
excited with this particular frequency and therefore | —
there is more power in this frequency range in the
output, so more weight is put on it in the leaming
procedure. The neural net is trained with the filtered

white noise as input. Fig.4.7 Filtering the Input

filter

A data set is created with as input u a uniformly

distributed white noise filtered with a second order bandpass Butterworth filter; this is
created with the matlab function 'butter’. The frequency band is: [.6 1.2]JHz. The decay
outset the band is 20 dB/decade. No better performance than 36% for the neural network
was found. The validation is done with another data set with a filtered white noise input
signal (with the same filter). The output of the network is plotted in fig. 4.8. Apparently
only the bandfrequency was approximated.

4 _ simulatilon xL second order filter on input; system:- nnet:--
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Fig.4.8 SISO Simulation Experiment, Filtering the Input Signal
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Filtering the Output Signal

As indicated in figure 4.9 the outputs of the system
are filtered. Now the neural net has to approximate
the system including the filter. The poles of the filter
are added so a higher order system has to be
simulated. The neural network can be applied by
filtering its outputs with the inverse filter. A problem
that arises here is that the inverse filter might have
poles at minus one when the filter is chosen to have
zeros at minus one (low pass). Now the model might Fig.4.9 Filtering the Output
become unstable.

We try this method with a second and with a fourth order (decay 40 dB/decade) bandpass
Butterworth filter with the same band as in the previous experiment. The neural net is
NNy, 44, The results are plotted in figure 4.11. The validations are done on a dataset
with filtered outputs. Performances of the neural networks of 17% for the second order
and 16% for the fourth order system are attained. This is very bad.

The next experiment is done with the neural net from the experiment with the second
order filter. A data set is created which has an impulse as input signal. The minimization
of the performance is continued only using this data set. After 25 iterations of Quasi
Newton the performance is already le-6. The impulse response of this neural net contains
both the high frequency and the low frequency component. The validation of this network
on a data set with a white noise input is more than 50%. What is shown with this
experiment is that it must be possible with the neural network to also approximate the
high frequency component. The problem seems to be that the applied minimization
routines are not accurate enough.

Filtering the Error Signal

With the configuration plotted in figure 4.10 nothing
has to be changed to the data set however, the T
implementation of this however is very cumbersome, il 4
because back propagation has to be programmed
including the filter. Another problem is that also the
higher harmonics of the system would be filtered out
so this method has to be combined with the original
minimization routine. With the bad results of the
other filtering configurations and the limited time We gjo 410 Filering the Error
decided not to do this experiment.

filter | e

SR
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Fig.4.11 SISO Simulation Experiment; Filtering the Output Signal
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4.4 Simulation Experiments of the State Space System

L X
Still we didn’t manage to simulate the overhead crane |* nnet E)é
using the configuration with two inputs and two outputs. L

We release the wish to use just the two outputs x; and y,
and try to simulate it using the six states as plotted in
figure 4.12. The advantage is that in the states all the
necessary information about the system is directly available
to the neural net. Now we can put more weight on the
state § by simply scaling this output. The outputs have to
be fed back with only one delay.

The neural network NNy 106 is trained on a dataset of 5000 samples. # is calculated in
radians because then the amplitudes of the outputs are directly comparable. As we want to
put more weight on the swinging of the load in the training of the network the state 6 is
scaled with a factor 5 (scaling as in(2.11) is not applied). The performance of the neural
network for each of the six outputs is: x:18%; %:31%; 0:15%; 0:20%; L:35%; L:19%.
The outputs x; and y; can be calculated with the states. In figure 4.13 these outputs are
plotted and compared to the system outputs. The frequency spectrum of the output of the
model for each of the states is plotted in figure 4.14.

Fig.4.12 Sate Space Repr.

1.5 _ State Spac'e validation output xL; system:- nnet:--

- 1
E
2 0.5
2
% 0

-0.5

_1 1 1 —_ 1 [
0 50 100 150 200 250 300
a samples
15 _ State Spacle validation output yL; system:- nnet:--
E
Q
E
=
j=7
5
0 L 1 1 ] 1
0 50 100 150 200 250 300

b samples

Fig.4.13 State Space Simulation Experiment; Outputs after Conversion
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Fig.4.14 State Space Simulation Experiment,; Spectra States
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We would expect to find a better simulation model with the state space than with the 2-
input 2-output representation. Now the overall performance of the neural network using
the state space representation is worse, 25% against 1.1% for the ARMA 2-output neural
network (the comparance is not completely fair because another criterion was minimized).

There are three possibilities for the bad result:

1: The dataset does not contain sufficient information about the system
2: Because of the size of the neural network it cannot represent the system
3: The training methods of the neural network are not powerful enough

The first possibility we can exclude, because more information is available than for the 2-
input 2-output system. A fourth order linear simulation system even could represent both
frequencies appearing in x,.

For the second possibility we have a closer look at the number of nodes that is necessary
to approximate this MIMO six output system.

If for approximation of the SISO function y=f(x,0) we need n nodes (n is an integer).
The question is how many nodes we need to approximate the MIMO function f(x,,x,). If
the function is completely decoupled we need 2n nodes, but this is the absolute minimum.

If we want to be sure that the neural network 1is able to represent the MIMO state space
system exactly we need to know how many nodes there are necessary.

If the sampling frequency is high enough we can equate x(k)-x(k-1)=x. For calculation
of the six states x,,x,,e,é,L,L all the necessary information is included in

x,,Y,X,%,%,0,8,0,L,L,L. From the nonlinear system equations (2.1) we know that %,L,0
can be calculated, besides some linear functions, with the nonlinear functions

ysin(8), sin(9)/L, Xcos(9)/L, LO/L, cos(0), Lé’, xsin(f) (For convenience we neglected
the linear feedback that prestabilizes the system). Multiplications and divisions will have
to be done by the network.

For simulation of a multiplication the network needs at least two layers. This is because
the output of a multiplication has a saddle point, it is positive in the first and third
quadrant, negative in the second and fourth quadrant so we have the same problem as in
the experiment in section 3.4. With one layer only one straight line boundary between a
positive and a negative region can be determined. The divisions can be approximated with
a network with one layer because no saddle points are generated.

The most difficult term to be approximated is Xcos(d)/L for which %, is needed. Forx,
first ysin(d) is needed; see the equations (2.1). So the network needs one layer to
generate sin(d), followed by two layers for the multiplication with y,, two layers to
multiply Xcos(f) and one layer for division by L which makes 6 layers in total. Also each
layer needs a minimum number of nodes to transfer all the information through the
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network. When each layer has 10 nodes this leads to a gigantic network NNj 10101010 10106
with 704 weights. This is so big that it can hardly be trained with the training algorithms
that are used now.

On the other hand it would be easier to equate X=x(k)-x(k-1). If this difference is made
in the first layer the network would need two layers extra to make Xcos(f)/L (arbitrary
functions can be approximated). Now three layers are enough for the network, but in each
layer more difficult functions must be approximated so more nodes are necessary. When
we expect 16 nodes per hidden layer this leads to the network NNj 6 16 16 ¢ With 790
weights.

So when the number of layers is decreased the number of nodes per layer is increased and
the number of weights of the network doesn’t decrease.

To show that a better neural network approximation must be possible with the network
NN; 10 106 an experiment is set up with linear processing functions. With the neural
network with one hidden layer and six nodes NN 4, the performance for each output is:

x:13%; %:11%; 6:14%; 0:19%; L:0.1%; L:14% . With this experiment it is shown that a
network with one hidden layer with 6 nodes is not big enough, but already a better result
is obtained than with the network using sigmoids with 10 nodes; the performance is 8%
in stead of 25%, so certainly a better approximation must be possible with that network.
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4.5 Extra Experiment Using ARMA Representation Neural Nets

The approach mentioned in chapter 3, formula (3.13) is tested on an ARMA
representation neural net NNy 55 ,. The same dataset is used as in the experiment in
section 4.1. The method proves to be successful as can be seen from the improvement of
the performance: Here 0.2% (simulation; for the validation it is 0.8%) against 1.1%
(validation) in the original ARMA experiment. The problem remains that the high
frequency component is not represented, as can be seen in the impulse response plotted in
figure 4.15.b.

0.06 . ARMA neurallnetwork si|mulation; error output xL

. 004} =
E
o 0.02 .
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_0-04 1 1 ] H H 1 1
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Fig.4.15 Extra MIMO Simulation Experiment ARMA
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CHAPTER 5
Conclusions and Recommendations

Conclusions

The MIMO overhead crane is a complex rather nonlinear system. A simulation model of
it is created. The model is not validated because the real crane is not yet available.

It is attempted to simulate the system with a neural network model. After the training of
the network the output error performance of the model is bad and the model doesn’t
represent the swinging of the load. With this model no good controller can be built
because the error is too big and the very swinging of the load that is not represented has
to be suppressed by the controller.

The applied neural network gradient and stochastic training algorithms are not powerful
enough to find a network representing all the necessary information of this complex
nonlinear MIMO system. With different approaches we tried to speed up and facilitate the
training routines.

The training of the network is scarcely improved when the delta representation method is
applied. By using filtering of input- or output signals or by using the state space
representation of the system the training is more problematic.

To guarantee that the neural network can accurately approximate the system a very big
network is necessary. The size of the network has to be kept as small as possible to
increase the rate of convergence, because a smaller network has less redundancy. Doing
this the network is made smaller than allowed.

The problem is that we have to choose a size of the network that is not too small to make
sure that the network can represent the system up to a desired degree of accuracy. On the
other hand the size of the network has to be kept small, to increase the convergence rate
and the probability of success of the training algorithms. The minimization algorithms are
not powerful enough to guarantee that a complex nonlinear MIMO system can be
simulated sufficiently accurate with a neural network model.

Recommendations

With the applied algorithms we are not able to train a neural network that represents a
complex MIMO non linear system. In many directions study will have to be done.

Make sure that the neural network is able to represent the system. Find a guarantee that
the neural network has enough layers and nodes per hidden layer to represent the system.
Maybe this can be found analytically by splitting up the complex non linear system into
basic functions for which a minimum neural network size (to represent it) can be defined.
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Improve the training methods of the neural network. Both the rate of convergence and the
probability of success to find a proper neural network model must be increased. Use can
be made of the fact that the network can be composed of smaller neural networks (that
can be trained separately) for which the convergence rate is larger and that linear
functions can be better minimized with the optimization methods.

To create a simulation model more information is available about the system than applied
here. Try to make use of the extra information.

When a neural network model is obtained still a neural network controller will have to be
trained. It is also possible to use a neural network controller that does not make use of a
neural network simulation model. It could be trained on the Simulink simulation model of
the crane.

38



SIMULATION OF AN OVERHEAD CRANE USING NEURAL NETWORKS TUE 1993

REFERENCES

(1]

(2]

(31

(4]

(5]

(6]

(7]

(8]

9]

Beemt van den, B.J.M.

Nonlinear System Identification of a Gantry Crane Process Using Neural Networks
Department of Electrical Engineering, Measurement and Control Section,
Eindhoven University of Technology, december 1992

M.Sc. Thesis

Chen, S. et al.
Nonlinear System Identification Using Neural Networks
Int.J.Control, Vol.51(1990), no.6, pp.1191-14

Hunt, K.J. et al.
Neural Nerworks for Control Systems - A Survey
Automatica, Vol.28(1992), no.6, pp.1083-12

Hunt, K.J., Sbarbado, D.
Neural Nerworks for Nonlinear Internal Model Control
IEE Proceedings-D, Vol.138(1991), no.5, pp.431-38

Jacobs, R.A.
Increased Rates of Convergence Through Learning Rate Adaptation
Neural Networks, Vol.1(1988), no.1, pp.295-07

Minsky, M., Papert,S.
Perceptrons: An Introduction to Computational Geometry
MIT Press, 1969

Moonen, F.J.

Neural Nets in an Acoustic Application

Department of Electrical Engineering, Measurement and Control Section,
Eindhoven University of Technology, 1992

M.Sc. Thesis

Moonen, F.J.

Software Manual for MIMO Identification Using Artificial Neural Nets

Department of Electrical Engineering, Measurement and Control Section,
Eindhoven University of Technology, 1993

Morari, M., Zafiriou, E.
Robust Process Control
Prentice-Hall, 1989

39



SIMULATION OF AN OVERHEAD CRANE USING NEURAL NETWORKS TUE 1993

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Narendra, K.S., Parthasarathy, K.
Identification and Control of Dynamical Systems Using Neural Networks
IEEE Trans. on Neural Networks, Vol.1(1990), no.1, pp.4-27

Narendra, K.S., Parthasarathy, K.

Gradient Methods for the Optimization of Dynamical Systems Containing Neural
Networks

IEEE Trans. on Neural Networks, Vol.2(1991), no.2, pp.252-62

Narendra, K.S., Mukhopadhyay, S.
Intelligent Control Using Neural Networks
IEEE Control Systems, vol.12(1992), pp.11-18

Pijnenburg, J.L.C.M.

Nonlinear System Identification Using Neural Networks

Department of Electrical Engineering, Measurement and Control Section,
Eindhoven University of Technology, 1992

M.Sc. Thesis

Qiu, M. et al.

Accelerated Training of Backpropagation Networks by using Adaptive Momentum
Step

Electronics Letters, Vol.28(1992), no.4, pp.377-79

Schreppers, M.A.M.

Control of a Gantry Crane Process by a Fuzzy Logic Controller

Department of Electrical Engineering, Measurement and Control Section,
Eindhoven University of Technology, 1993

M.Sc. Thesis

Telkamp, H.J.M., Damen, A.A.H.
Neural Network Learning in Nonlinear System ldentification and Controller Design
European Control Conference 1993, Groningen, pp.798-04

Willis, M.J. et al.
Artificial Neural Networks in Process Estimation and Control
Automatica, Vol.28(1992), no.6, pp.1181-87

Youji, 1. et al.

A Nonlinear Regulator Design in the Presence of System Uncertainties Using
Multilayered Neural Networks

IEEE Trans. on Neural Networks, vol.2(1991), no.4, pp.410-17

40



SIMULATION OF AN OVERHEAD CRANE USING NEURAL NETWORKS

TUE 1993

LIST OF SYMBOLS

RNl
NS

EET 0w

=Nge]
(=S
o

R am
g
3

radial acceleration

tangential acceleration

L-directional damping constant
x-directional damping constant
6-directional damping constant
pendulum frequency

constant of gravity

hoisting force

x-directional force on the trolley
length of the cable

length of the cable in the linearization point
mass of the load

mass of the trolley

x-position of the load

reference input x position of the load
x-position of the trolley

y-position of the load

reference input y position of the load

state space matrices

LQR matrices

matrix containing LQR feedback variables
matrix containing loose feedback variables

neural network with i, inputs and i, outputs

number of samples

number of layers

performance of the neural network
LQR performance

system output

neural network output
system input

error signal

reference signal

vector of weights

j® weight

number of outputs

number of outputs fed back
Hessian

gradient of the performance to the weights
learnvelocity factor

shift operator
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