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Abstract

Abstract

This work concerns the implementation of the Back Propagation Algorithm (BPA) using a pulse
stream technique.

Among the existing pulse stream techniques, the Coherent Pulse Width Modulation (CPWM)
seems to be the best option. Using CPWM, the forward path has already been designed with
lower chip area and power consumption compared to other analogue realizations.

Implementation of the BPA on the chip is desired to speed up its training. The existing analogue
implementations of the BPA require a large chip area and have a high power consumption. One
should expect that the CPWM technique could bring the same good results for the implementation
of the backward path as for the forward path.

In this work, the structure of the MLP backward path has been investigated. A synapse unit, a
neuron unit for the hidden layers and an output neuron unit have been studied. For each of them,
circuits needed for the backward path are proposed with their characteristics. Simulations of the
complete backward path are presented.

It appears that the BPA suffers from non idealities introduced by the hardware. The dynamic
multipliers based on the CPWM technique introduce offsets which affect the performance of the
training algorithm. Also a number of problems with respect to the interface between the synapse
chip and the neuron chip still have to be solved.
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Introduction

Introduction

Work on Artificial Neural Net ( ANN ) began more than 40 years ago, with the works of
Mc Culloch and Pitts, Hebb, Rosenblatt, Widrow, and others.

More recent works of Hopfield, Rumelhart and Mc Clelland, Seijnowski, Feldena, Grossberg, and
others have led to the resurgence of the field.

This new interest is due to the development of new net topologies and algorithms, as well as by a
growing fascination with the functioning of the human brain. Recent interest has also been raised
by the realization that human-like performance in the areas of speech and image recognition
require enormous amounts of processing.

Since software simulations of neural networks are less attractive due to the limits of conventional
machines, researchers have been working on implementations that are more adapted to inherent
neural properties.

For hardware implementations, electronic and optical approaches have been proposed. Since the
optical approaches suffer from the absence of flexible optical devices, electronic approaches have
been more developed. In fact, several YLSI implementations can be found in literature, which use
a number of different working principles, implementation technologies and interconnection
architectures. These hardware implementations may use either digital, or analogue techniques or a
mixture of the two. Among the last technique, the so-called "pulse-stream technique” has been
steadily evolved and improved by several authors (Murray, Hinai and Meodor) since its inception
in 1986 . These pulse-stream techniques have been inspired by biology and borne out of a desire
to perform analogue computation with chips, produced by means of a digital fabrication process.

The most appealing feature of ANNs is their ability to learn. While it is trivial to implement
learning into digital circuits, only a number of analogue implementations (not based on the pulse
stream techniques), [11], [16], integrate learning into their systems. Without any doubt on chip
learning is desirable for large ANNs, but for analogue ANNs, on chip learning involves an
inevitable complexity of the hardware.

The different pulse-stream techniques have been analyzed in the work of T. Claasen-Vuj¢i¢ [6], in
which two approaches for the feedforward path have been proposed, using Coherent Pulse Width
Modulation. She concludes that using this technique, the feedforward path can be implemented
with less circuits compared to others pulse-stream techniques. One can assume that the implemen-
tation of the back propagation training algorithm can also be realized using the CPWM technique.

In chapter I, the background of the theory of the multi-layer perceptron is presented, while
chapter II deals with the electronic implementation of the MLP and the effects of the implemen-
tation on the backpropagation learning algorithm. In chapter III the existing hardware implemen-
tation techniques are briefly reviewed and the possibilities to encode the information are also
resumed. Chapter IV deals with the Synapse Unit. Since the normal Neuron Unit is different from
the Output Neuron Unit, they will be presented and analyzed in details in chapter V and VI
respectively. Finally in chapter VII a complete design for the backward path is proposed and
PSPICE simulation results are presented.
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Theory Multilayer Perceptron Chapter 1

1 Theory of the Multilayer Perceptron

This chapter presents the background of the theory of the Multi-Layer Perceptron (MLP) and of
the backpropagation training algorithm necessary to the general comprehension of this work. In
fact, much more detailed information concerning this theory can be found in literature [25] and
[29].

1.1 Introduction

Neural Networks consist of processing units called neurons. These neurons can be connected to
each other in different ways, by weighted connections. The weighting of these connections is
performed by the synapses, which multiply the propagating signal with the weight’s value (W).
The value of these weights can be positive or negative. Weights which are adjustable are set to
their definitive values after ’training’. The next figure shows a model of N synapses connected to
a neuron.

x1 SYNAPSE

NEURON

inputs

Fig. 1.1.1 Model of a neuron

The neuron adds the incoming signals from the synapses, after which the sum is fed to the a
function with saturating characteristic ( Fs() ).

Three kinds of non linearities [17],(25], step threshold, ramp threshold and sigmoid are usually
used, depending on the application of the neural networks.

From these three kinds of non linearities, a sigmoid or a sigmoid-like characteristic is the one
which is most frequently implemented in the analogue multilayer perceptron.

The sigmoid can be expressed as follows:

Fs (x) =1—K_ (1.1.1)

+ e-r(‘x—a)

where 7 represents the temperature factor (steepness) and « is an offset.
A plot of a sigmoid function corresponding to the mathematical expression (1.1.1) is presented in
fig.1.1.2.
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Fig. 1.1.2 Sigmoid function

The derivative of the sigmoid, which is needed in the backpropagation algorithm (see paragraph
1.3), is easy to calculate and can be expressed in the function itself:

Fi's (x) = 0 (lgvx(x)) _ 11+e;_<:=(; : =7 Fs (x) (1 - Fs (x)) (1.1.2)

Figure 1.1.3 presents a plot of the derivative of the sigmoid function as expressed above in
(1.1.2).
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Fig. 1.1.3 Derivative of the sigmoid function

1.2 Structure of a MLP

Using the so-called neuron units previously presented, different neural network structures can be
build. One of them is the multi-layer perceptron, in which the neurons are organized in layers.
The next figure represents the structure of a multi-layer perceptron with N inputs , M, outputs
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and L layers.
x1 v
x2 y2
xN yML

Fig. 1.2.1 Structure of a MLP

All the layers between the first layer (inputs) and the last layer (outputs) are called hidden layers.
The number of neurons can be different for each layer.

During the normal use of the neural networks, the signals propagate from the first layer (inputs)
to the last layer (output) through the so-called feedforward path. If the learning algorithm is
implemented on chip, then during the learning phase, a feedback path is present.

The number of layers and the number of neurons per layers are two parameters depending on the
kind of functions to be approximated. All the continuous functions can be approximated with a
two layers net [29].

1.3 Back Propagation Algorithm

In order to be able to approximate functions the MLP has to be trained. The first training
algorithm for Multilayer Perceptrons was the Backpropagation Algorithm which has a few draw-
backs. Today, variants of the Backpropagation or faster algorithms are being proposed {21], but
most of them are difficult to implement in hardware.

The Backpropagation Learning Algorithm is an iterative gradient algorithm designed to minimised
the mean squared difference between the actual output of a MLP and the desired pattern.

All the variables used in the following backpropagation formulas are listed below:

N : number of inputs of a layer

M : number of neurons in a layer
X : input i of a layer

w. . weight from input i to neuron j
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Theory Multilayer Perceptron Chapter 1

a; : activity of neuron j

Y; : output from neuron j in a layer

d, : desired output from neuron j

6f : error term for neuron j in output layer L
8/  : error from neuron in layer |

] : learning rate

S(.) : sigmoid threshold function of neuron

$/(.) : derivative of the sigmoid threshold function

Next, the back propagation algorithm is described step by step:

Step 1. Initialize weights
All the weights of the net are set to small random values

Step 2. Present inputs and desired outputs

Present an input vector  x,, x,, ... x, ,and specify thedesired outputs d,, 4,, ... d,,

Step 3. Calculate actual outputs

Starting with the first layer, the output of each layer is calculated until the actual
output of the net is obtained

The output of the neuron j of layer [ is:

N
y,=8(a) =8y wx ), with 1 <j<M (1.3.1

i=]
Step 4 . Updating the weights

Once the error is calculated as the difference between the actual output and the
desired output, it is propagated back through the neural net from the last layer to
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the first. From this the name “ backpropagation training algorithm " stems.

error term for the last layer: 5f = §8/( a,)(d-y;) (1.3.2)
M

error term for all the remaining layers: 6} = 8'( a, ) 26 i‘l w,i” (1.3.3)
k=1

weight correction: Witrl) =wi (®) +n6;x, (1.3.4)

where t is the iteration number

Step 5 . Repetition of the sequence

Steps 2 to 4 are repeated until the following condition is achieved,

M

) @ -y) <& where ¢ isthe maximum error allowed. (1.3.5)

J=1

The implementation of a nonlinear function with a variable offset o can improve the performances
of the net. This way the sigmoid function can be shifted over the total input range (see fig. 1.3.1).
The offset can be realized by adding an extra input common for all the neurons and a bias weight
per neuron. The input has a value equal to one while the bias weights are adjustable with the
backpropagation algorithm.

Fs (x)
K

Fig. 1.3.1 Sigmoid function shiftable

Page 6



Theory Multilayer Perceptron Chapter 1

In spite of its success and popularity, the implementation of the standard BP algorithm suffers
from many well known caveats [22]:

- it is heavily influenced by the values of the learning rate parameter 7
- it may converge very slowly

- it is heavily dependent on the size of the networks

- it is sensitive to some non idealities in hardware implementations

- it may require a high resolution for the weights

However, the on chip implementation is required for large neural nets with a high number of
interconnected neurons, in which it will speed up the training velocity with respect to software
implementations.
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2 Electronic Implementation

In this second chapter, after a brief review of the requirements considering electronic implemen-
tation of MLP, the synapse and neuron unit, which make up the synapse and neuron chip
respectively, are presented in detail. The electronic aspect of cascadability is discussed and some
considerations concerning the hardware implementation of the backpropagation training algorithm
are presented.

The following aspects are very important in view of any electronic implementation of a multi-
layer-perceptron. The number of neurons and synapses which can be accommodated per chip
depends on the following aspects:

- power dissipation (lower by using pulse-stream techniques)
- synapse and neuron implementation areas
- number of pins per neuron

The performance of the MLP depends on the following aspects:
- response time (this aspect plays a key role in the maximum speed of the total MLP)
- range of inputs, outputs and weights values

- flexibility and cascadability
- susceptibility to parameters variations and noise

2.1 Internal Organization of the Synapse and Neuron Chip

For the clarity of this report and for practical reasons, the mathematical terms used in paragraph
1.3 as well as the formulas of the training algorithm are translated in terms of electrical signals.

Forward Propagation Input . FPI = x, 2.1.1)
Forward Propagation Output : FPO, = Y; (2.1.2)
Backward Propagation Input  : BPI, = d -y, , for the last layer (2.1.3)

M
BPI! = Z;( 6, 'w, !t ), for the others layers (2.1.4)

M
Backward Propagation Output : BPO! = Y ( 8/w; ) (2.1.5)

j=1
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FPO, = S(4) 2.1.6)
N

4 = )'_1:( w, FPI, ) (2.1.7)
M

BPO, = Y ( §'(A) w, FPIL,) (2.1.8)
J=1

Aw, = 1 §'(4) BPI, FPI, 2.1.9)

BPIS, = S'(A) BPL (2.1.10)

Depending on their future applications as well as the manner of training and weight storage, the
electronic implementations of the MLP may differ. The idea developed in the previous works [6],
[28] which try to obtain the most flexible structure as possible, is also maintained for the
electronic implementation of the BPA. In order to be able to increase the number of neurons per
layer, by paralleling layers blocks and without changing the number of synapses, one layer has to
be split in a synapse and neuron chip [15]). The synapse and neuron part are shown in the next
figure.

LAYER L

—+A>{ FPI A - A FPO ——>

ni n2 nZ
</—{ BP0 BPIS e BPIS' BPI [&F—

Fig. 2.1.1 Synapse and neuron part in layer L

Not only for the feedforward path but also for the feedbackward path, distributed signals are
represented by voltages (see in fig. 2.1.1 FPI, FPO and BPIS’). Also for both paths, summed
signals are represented by currents (see in fig. 2.1.1 A, FPI and BPO ).

By cascading or paralleling synapse and neuron chips, it is possible to expand the number of
outputs (see fig. 2.1.2.a) or inputs (see fig. 2.1.2.b) of an ANN.
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FRY (V) A D FPO (V)
—> —> —
1 inputs outputs
i — 1
2 4
8 1
3 g — 2

neuron—chip neuron—chip
N

8 o
f’ 3 3 3
BPO (1) BPIS’ (V) BRI (1}
Fig. 2.1.2.a Expanding of the outputs
FPI (V) A (D FPO (V)
—_— — —
inputs outputs
2 | ¢ L
& S 2 1
3 4 & 5
L7 : O—1
h 4
b — e 5 2
5 | & 6
s — | & —
BPO (1) BPIS" (V) BRI (1)
- - -

Fig. 2.1.2.b Expanding of the inputs

The two next figures (fig. 2.1.3 and fig. 2.1.4) show the global structure of the synapse and
neuron unit; each of them is followed by a list of the operations and the range of the signals
present in it. Subscripts i and j refer to the & input and j* neuron. The letter V refers to voltage
signals and the letter I to current signals. The terms positive and negative refer either to the
direction in the case of the currents or to the values with respect to a reference voltage (Vref) in
the case of the voltage.
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\Y AW-I igh t
uD,; | Fetrean ana o
update
P | — Y
BPO; D= BPIS’
a)
FPI,
\%
Vv Aw weight storage, W
UDj x ! reef'resh Sc:md o ! \Y2
update
| A%
BPO, (=<—— BPIS’
b)

Fig. 2.1.3 a)Synapse unit, b)backward path

FPI, = positive signal

W, = positive or negative signal
A, =w, FPI, = two-quadrant multiplication
UD, = positive or negative signal
Aw, = UD, FPI, = two-quadrant multiplication
BPIS' = positive or negative signal
BPO, = BPIS, w, = four-quadrant multiplication
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— 1 1

A | \"
j 1 | FPO;
Vv weight storage, | v
n refresh and
updote /\
v I i
BPIS) o= BPI |
ad
Aj
\Vs weight storage. | v \1/ I
n refresh and =
update /\
\ |
BRIS;=— C)e— BPI |

)

Fig. 2.1.4 a)Neuron unit, b)backward path

N
A = E;Aﬁ = positive or negative signal
FPO, = S(A) = positive or negative signal
M
BPI, =Y FPO, = positive or negative signal
J=t

BPIS, = S'(4) FPI

i

two-quadrant multiplication

UD, = n BPIS, two-quadrant multiplication

The synapse and neuron units described above are placed in a synapse and neuron chip respective-
ly. The synapses are organized in array, see fig. 2.1.5.a, while the neurons are placed in layer,
see fig. 2.1.5.b.
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Fig. 2.1.5.a Synapse chip

The internal signal UD, is calculated for each column of synapses which are connected to the

same neuron in the next layer

r— - " - T - T T T = -=
1
] 1
A I I EE— N VA B o s o
,1 -l M | Neuron cell 1 L !
BPIS] | ! BPI ]
N — '
| !
Ap i ! — v v FPO 5
N
8PIS, i Neuron cell 2 Je_l—.—J:—_ BRI
i i
] 1 ]
] 1 ]
] 1 1
] } :
i |
AM———- v}liN g} Y L~ FPOmM
Bpls-'\/r:—:—— - euron ce M eg-—z—f_ Ble
| |
Ve ol e e e e e ]
v

Fig. 2.1.5.b Neuron chip
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2.2 Considerations of the hardware implementation of the
BPA

While it is easy to incorporate learning into digital implementations, only a number of analogue
implementations [11],[16],{17], integrate learning into their system.

In fact, in numeric implementations, the fine resolution is achieved using a very high number of
digits, which also produces also very high precision, with relatively low additional cost.

It can be assumed that the rareness of analogue implementations of the BPA is due to the high
accuracy and resolution demanded by this training algorithm. Analogue ANN circuits, generally
suffer from inherent non-idealities, which are:

- non linear analogue multiplication and addition

- non ideal activation (threshold) function of neurons

- decay of weights, weight update and backpropagation error due to charge leakage when
capacitors are being used for data storage.

This rareness of analogue implementations of the BPA is also due to a number of constraints
compared with the off chip learning implementations which are slower, yet more flexible and
accurate:

- resolution of mathematical calculation

- methods for modification and weight storage

- bounded weights with limited resolution (the resolution required depends on the desired
output RMS error )

All these points lead to a limited calculation precision, which affects the quality and speed of
training.

In literature [2], the influence of the cross talk effect is also discussed. The author concludes that
the cross talk effects affect the learning speed, but not the performance of the net.

Use of continuous variables is essential in neural computation, since the convergence of learning
depends on the ability to make very small changes on some variables.

However, the key question of how much precision is actually needed is still unsolved. The
required precision will not be the same for a net used for the solution of a classifier problem as
for the approximation of a sinus function.

2.3 Cascadibility

In theory, a fully flexible MLP topology is possible. In fact a flexible structure means that a layer
should work properly with one input as well as with a large number of inputs. However, due to
implementation dependant constraints, the maximum number of inputs is limited. As defined in
paragraph 2.1, the output of the synapses are weighted currents. This implies that the resulting
current for one input is different than for a hundred inputs. Assuming that the sigmoid function
saturates for the input range corresponding one input, the region within the sigmoid is not
saturated will represent less than 1% of the total input range in case of hundred inputs.

Therefore some authors [6],[20]} and [28] have proposed to apply an automatic normalization to
the sum.

Page 14



Electronic Implementation Chapter 2

The idea has also been developed in the work of T. Claasen-Vuj¢i¢ and implies that the resulting
sum always remains within a certain range and in fact results in a linear scaling (1/ N). For more
detailed information about the technigues used, see paragraph 2.1.2 in [6].

After simulations realized with the neural net simulator developed in the same group, it can be
assumed that it would be better to use the scaling function 1/ V'N. Such a scaling function seems
difficult to implement. But the problem can be overcome by implementing only one capacitor per
neuron and adjusting the steepness of the sigmoid function with a factor 1/ V'N.

In the feedback path, the output currents from the synapses are also summed. One could expect
that this sum should be also scaled according to 1/ V'N. It can be assumed that the error signal in
the feedback path is automatically scaled by tuning the steepness of the sigmoid function since the
steepness factor is also present in the derivative formula of the sigmoid function (1.1.2).

At the interface of the synapse chip and a neuron chip there will be a parasitic capacitor. This
parasistic capacitor is in parallel with the capacitor implemented in the synapse. It will affect the
value of the resulting capacitor voltage. This problem exists as well as for the feedforward path as
for the feedback path. A way to resolve it can be to use the circuit shown in fig. 2.3.1.

synapse

synopseaj::::>

synapse, —

0, e,

out
o Vout
+

oIl

I
|
|
!
|
)
|
I
|
P I
!
|
|
|
|
|
I
I

neuron chip

-

synapse chip
-<— T
[

Fig. 2.3.1 Input satge buffer of the neuron unit

The input range of the sigmoid is limited (0 - 3V). Due to the statical distribution of the synaptic
weights the chance that all the outputs of the synapses are maximum is very low. But since the
capacitor voltage boundaries are those of the power supply (0 - 5V), the capacitor voltage has to
be limited to 3V. This may be done by using an integrator clipping at 3V. However, this approach
implies that two large sized capacitors (forward and backward path) have to be integrated per
neuron unit.

An another possible approach should be to use the auto-scaling function proposed in [6]. In that
case a multiplication by V'N (N = number of synapses connected) has to be performed in the
neuron unit. The appropriate analog multiplier should be implemented just before the sigmoid
function. The problem of the connection of the sysnapses to the neuron unit is a complex problem
because scaling has to be carried out, the influence of the parasitic capacitor has to be reduced
and the size
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of the implementable capacitor is relatively small. However this problem has to be solved before
any implementation of the feedforward path can be done.

In this work the first approach is considered. However the problem of the size of the capacitor
and the way to limit its voltage have not been investigated.
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3 Information Representation

3.1 Review of the different techniques and circuits

The basic functions of computation, storage and communication usually present in Neural
Networks can use different representations of information, which are presented and detailed
below.

Time and Amplitude continuous:

Information is carried by voltage (or current) levels; there is no time sampling or quantization,
both for processing and communication. These are the fully analogue circuits.

Discrete time, Discrete amplitude:

Information is carried, stored and processed in binary form, using gates, registers and other logic
devices. These are fully digital circuits; In literature several diverse fully digital Neural Systems
can be found [1].

Discrete time, Continuous amplitude:
These are the so-called mixed circuits, or more precisely sampled data circuits. Information is
carried by voltage (currents) which are only valid on specific points of time.

For each of the three kinds of approaches, either positive or negative aspects are highlighted. This
work deals with the last approach, thus attention will be paid to this latter class of circuits in
particular.

Digital ANN’s:

The strenghts of the digital ANNs are almost evident:

. digital ANNs are flexible

. digital design techniques are automated and well known

. noise immunity is high

. resolution and precision can be high

. memory uses standard devices

. communication and computation can easily be multiplexed

. digital ANN can be directly integrated in a digital processing environment
e.g. a workstation)

However, for neural networks, they have some unattractive features:

. digital circuits of this complexity work mostly synchronuously while real neural nets are
asynchronuous

. all states, activities, etc are quantizied

. digital multipliers occupy large silicon area

. large power dissipation
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Analogue ANN’s:

The benefits of analogue networks are more subtle

. asynchronuous behavior is obtained automaticly
. smooth neural activities is obtained automaticly
. circuit elements can be small

While on the debit side

. noise immunity is low
. arbitrary high precision is not possible (offset, gain, non-linearity
bandwidth and slew rate)

Mixed ANN'’s:

The term mixed ANN is used when the neural system has internal information represented in
analog and/or numeric form. The system then contains a combination of analogue and digital
circuits with appropriate A/D/A converters. Another class of ANN hardware which is referred to
as mixed are pulse stream circuit which will be worked out in more detail below.

A pulse waveform is defined by three parameters: amplitude, width, rate and phase. Several forms
of pulsed modulations act on different parameters:

. Pulse Amplitude (PAM)

. Pulse Rate (PRM)
. Pulse Edge (PEM)
. Pulse Width (PWM)

PWM use binary signals and encode information in the time domain. A convenient variation of
PWM is Coherent Pulse Width Modulation (CPWM ) [24], with which no edge is constrained to a
fixed position, but there is a global time reference which defines a fixed frame of evaluation
cycles.

1
T,

For the CPWM, activation pulses have a constant frequency f, , while their width is

proportional to the activation value:

T =T_ .X ,where X € [0..1] and T < T

o

(see fig. 3.1.1.a below)

A reference clock (CCK) defines two phases: the CPWM signal is allowed to be "1" only during
the active phase, whereas it must always be "0" during the idle phase. An interesting advantage of
the CPWM signals is that they can be multiplexed more easily than analogue signals, due to their
digital nature and coherence (see fig. 3.1.1.b)
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Fig. 3.1.1 Timing diagram of a CPWM modulation

Coherent Pulse Width Modulation incorporates the main benefit of synchronous digital circuits;
new information can be transmitted or processed in each cycle. A benefit with respect to
synchronous circuits is that ground and power supply current spikes caused by state switching are
spread over the evaluation cycle, thus reducing crosstalk noise toward the analogue parts. CPWM
outperforms the other Pulse Stream techniques since it presents the lowest computation energy and
response time. Further, CPWM is not affected by any frequency error, nor any phase uncertainty.

3.2 Pulse Modulation Arithmetic

Multiplication, summation and other operations required in neural systems should be performed
preferably by simple circuits. In most cases, the circuits used to implement PRM, PWM, CPWM
and PEM are very similar and some of these functions can also be realized directly in the time
domain, using standard logic gates.

- Summation

- Digital summation of pulses can be performed using OR gates, but overlapping cause a
saturation effect.

- Analogue summation can be accomplished by feeding current pulses on a capacitor, or
by averaging the voltage on the current load.

- Multiplication
The multiplication circuits operate on a pair of pulse parameters.

- Rate * width circuits usually encode one input in the pulses repetition rate and stretch the
width according to the value of the other input.
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- Width * height circuits encode one input in the width of single pulse and modify the
amplitude according to the other input. They can use any type of analogue multiplier,
where one input is restricted to binary variables. This technique provides higher speed
than rate * width circuits.

3.3 Structure of the synapse and the neuron unit with
CPWM signals

Several authors in Europe [19],[23], have begun to confirm that Coherent Pulse Width Modulation
is the most adequate among all the different kinds of pulse modulation.

In fact this technique allows a fairly high integration density even though some compromises have
to be made in the network’s performances: either in speed, flexibility, computation accuracy or
weight resolution.

In figure 3.3.1.a and figure 3.3.1.b the general structure of the synapse and the neuron units
respectively, adjusted to the CPWM signals are shown. The pulsed signals are referred to with the
index p. On several places in both the Synapse and the Neuron unit, pulsed signals have to be
converted into continuous signals and vice-versa.

The two existing kinds of conversions are:

- pulsed current into continuous voltage (type 1)
- continuous voltage into pulsed voltage (type 2)

The circuits realizing these conversions will be elaborated in more detail in chapter 6.

uD v ID ¢ . v weight storage,
j olnveers;on refresh and v
w updote
| S v
p p
BPO; ~<— BPIS

Fig. 3.3.1.a Synapse unit with CPWM signals
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Fig. 3.3.1.b Neuron Unit with CPWM signals

In the backpropagation algorithm (see paragraph 1.3) step 4, the difference between the actual
output and the desired output is calculated for each neuron in the output layer before the weights
can be updated. In contrast to the idea of a fully flexible structure, a separate neuron chip has
been adopted for the output layer of the MLP. In this chip all the Neuron units will perform the
calculation of the error. These neuron units are almost similar to the ones shown in figure
3.3.1.b. The conversion type 2 placed after the sigmoid function is suppressed. The output of this
neuron unit is thus represented by a continuous voltage, simplifying the interface (also developed
in this group) between a PC and the ANN. The circuit performing the generation of the error
preceeds the conversion type 1 placed before the four-quadrant multiplier. This circuit has two
inputs. One is the output of the circuit realizing the sigmoid function and the other corresponds to
the desired pattern, which is also represented by a continuous voltage. Figure 3.3.1.c shows the
output neuron unit with CPWM signals.
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Fig. 3.3.1.c Output neuron unit with CPWM signals
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4 The Synapse Unit

The different parts consisting of the feedback path of the synapse unit are presented in this
chapter. When designing the synapse unit, several aspects such as the power dissipation and the
implementation area have to be considered. The number of synapses which has to be accom-
modated per Synapse chip is very large. In a MLP, the number of Synapses in one layer is N
times (N = number of the layer inputs) bigger than the number of neurons in the layer.

The feedback path of the synapse unit is presented in Figure 4.1

W

UDj v |D v weight storage,
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52
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Fig. 4.1 Feedback path of the synapse unit

Once the weights are determined by learning, they have to be used by the network to transform
the input vectors to the outputs. During this process the weights have to be stored in the
corresponding synapses and neurons. Several weight storage mechanisms exist:

- Digital (the weight is stored as a few bits in a register)
- analog EEPROM ( EEPROM is used to store the weights of an analog synapse)
- Capacitive storage ( the weight value is stored on a MOS capacitor)

In [15] an analogue weight storage circuit has been developed using the last technique. Since it
suffers from weight decay, a refresh circuit has also been proposed. But the weight storage circuit
should be redesigned since it has some drawbacks. One can expect that during the learning phase
the weights should be also refreshed, but it can be assumed that the refresh is not necessary if the
learning speed is high enough. One of the caveats of the hardware implementation of the back-
propagation algorithm is the limited dynamic weight range. Since the weight range adopted in [6]
of about 2V, corresponds to the maximum possible range with respect to simple circuits, it is thus
maintained in this work as well.

The feedback path of the synapse unit consists of two multipliers: multiplier S2 (see fig. 4.1), a
four-quadrant multiplier which affects the error signal in function of the weight values and
multiplier S1 (see fig. 4.1), a two-quadrant multiplier which multiplies the synapse input FPI by
the UD, value (see fig. 4.1). The output of multiplier S1 corresponds to the updated weight value.
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4.1 Two-quadrant Multiplier S1

In [6], many different kinds of dynamic multipliers have been proposed. Among all those, the
class of the dynamic transconductance multipliers seems to be the most adequate for the CPWM
technique. The multipliers of this class have good multiplying linearity and a low power con-
sumption. They function according to the following principle: a voltage-to-current converter is
made active or inactive by a CPWM voltage signal.

The functional specifications of the multiplier S1 are listed below:

- two-quadrant multiplier

- input #1: UD; = continuous voltage signal, positive / negative values
- input #2: FPI,= pulsed voltage signal, positive values

- output : pulsed current signal, positive / negative values

A structure similar to the one of the dynamic transconductance multiplier implemented in the
feedforward path, is applied in the feedback path to perform the multiplication described above. In
fig. 4.1.1 the transconductance multiplier S1 is shown with the size of the transistors.

Voo Voo
FPI _ m6 m7
i Tl 2ems2.4n 2.40/2. 45

Vi m5S :l m9
a "q 12u/2.4u Vo 2.4u/2. 4
IRE !
I's
Vref uD .
,q m1 2.4u/192x m?2 }g‘, ) lout ve

bnoond e
Jbe T
STIMSE M

4.8u/2.
-
Fig. 4.1.1 Transconductance multiplier S1

The bias voltages Va and Vb are already distributed per synapse chip for the multiplier of the
feedforward path. The circuits used to obtain the bias voltages Va and Vb, are described in [6],
which is why they are not presented here.

The resulting output current Iout corresponding to the difference between the bias current 16 and
the mirrored and scaled current I7 is fed into the capacitor C. This capacitor C is the input
capacitor of the conversion stage type 1 (see paragraph 6.2.1) which samples and holds the
capacitor voltage V. before the analogue weight storage stage (see fig. 4.1).

The bias current I6 is determined based on the fact that the output current Iout is equal to zero
when the voltage difference between the input voltages UD, and Vref is equal to zero.
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The transfer characteristic of the VCC is shown in figure 4.1.2
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Fig. 4.1.2 Transfer characteristic of the VCC

The sensitivity of the previous circuit to variations in threshold voltage V; has been checked with
the Monte-Carlo analysis in [6]. Variations of + 50mv for the same type of transistors between
different chips, and + 10mv between all transistors inside a same chip have been considered.

The multiplication graphs produced by multiplier S1 are printed in fig. 4.1.3. It shows that this
multiplier has an output voltage offset which represent 1% of the total output voltage range.
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Fig. 4.1.3 The multiplication graphs produced by multiplier S1

The previous multiplier has a good linear range (< 5% of non linearity) of multiplying, for a UD,
voltage range between 0.85 and 2.75 volts with the V., ,=1.8V. The power consumption of this
multiplier is very low, since it fluctuates between 4uW and 20uW.
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4.2 Four-quadrant Multiplier S2

Another important part of the feedbackward path of the Synapse unit (fig. 4.1) is the four-
quadrant multiplier S2. The multiplier performs the multiplication between the back propagated
error signal (FPIS’) and the weight values (w;). This multiplier also belongs to the class of the
dynamic multipliers, since one of its input is encoded by CPWM voltage (FPIS’). So it has the
same working principle as the one described previously in paragraph 4.1.

The functional specifications of the multiplier S2 are listed below:

- four-quadrant multiplier

- input #1: w; = continuous voltage signals, positive / negative values
- input #2: BPIS’ = pulsed voltage signal, positive / negative values

- output = pulsed output current, positive / negative values

Two different possible approaches for the dynamic multiplier S2 are proposed below, followed by
a summary of their respective characteristics.

4.2.1 Approach #1

This first approach consist of using the two-quadrant dynamic transconductance multiplier
presented in the previous paragraph 4.1 twice to realize a four-quadrant dynamic muiltiplier. The
principle of the four-quadrant multiplier is presented in figure 4.2.1.1

weight

Input CPWM l V Vrer
signal + - I
S ®

weight lout
) >
Vref
Reference \]/ l
CPWM signal + —
I ®
2

Fig. 4.2.1.1. Four quadrant multiplier §2

The output current I1 of the first two-quadrant multiplier is switched by the normal input CPWM
signal, whereas the output current I2 of the second two-quadrant multiplier is switched by a
reference CPWM signal. By inverting the reference voltage Vref and the weight voltage w; of the
second multiplier, its VCC characteristic is inverted compared to this of the first one. Since their
outputs are connected together, the resulting output current Iout is equal to the current difference
between the current I1 and the current I2. In figure 4.2.1.2 the two characteristics of the two
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VCCs are shown.
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Fig. 4.2.1.2. The two VCC characteristics

When the output weight voltage corresponds to the reference voltage Vref, the absolute value of
both currents I1 and 12 are equal to zero (fig. 4.2.1.2) and regardless of the active period of the
input signal (BPIS’), the final output current ( Iout ) is equal to zero. If the active period of the
input CPWM signal is the same as the on of the reference CPWM signal, the resulting output
current (Iout) is also equal to zero regardless of the voltage difference between Vin and Vref. If
two identical two-quadrant mulitiplier as shown in fig. 4.1.1, are used to obtain the muitiplier S2,
the latter has an offset voltage of 7% of the total output voltage range. This offset is caused by a
delay between the switched currents 17 and 16 of both two-quadrant multipliers. A way to reduce
this offset is switching the current 17 of both stages and not the bias current of each transconduc-
tance.
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Figure 4.2.1.3 shows the improved circuit of the multiplier S2.

Vdd Vdd

Fig. 4.2.1.3 Improved multiplier S2

In the case of the previous circuit the voltage offset can be reduced to 5 % of the total output
voltage range. This multiplier has a low power consumption about 100uW, and requires a large
number of transistors. A reference CPWM is needed and since the switches are pmos and nmos
transistors the inverted signals of both CPWM signals are required as well. Mismatching between
the transitors and treshold voltage variations increase the initial offset. However, a different
approach described below, provides a four dynamic multiplier with less transistors and less output
voltage offset.

4.2.2 Approach #2

With this second approach, a reference CPWM signal is not required any more, just the input
CPWM signal and its inverse. Figure 4.2.2.1.a shows the circuit of the multiplier S2 based on
this other principle.
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Fig. 4.2.2.1 Multiplier §2
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Compared to the circuit in figure 4.2.1.3, only one voltage-to-current converter is used here. The
input voltages V1 and V2 of the circuit in fig. 4.2.2.1.a are switched between the volatges UD,
and Vref (see fig. 4.2.2.1.b) in function of the input CPWM voltage FPIL, and its inverse. The
circuit has the same VCC characteristic as the one shown in fig. 4.1.2. Input voltages of the
tranconductance stage are switched according the CPWM signal and its inverse. The bias current
16 and I are switched by an external signal (Vin3) synchronized with the CPWM signal. This
external signal has an active period of 0.8us, corresponding to the maximum active period
possible.

The value of the current 16 is determined based on the fact that the output current Iout is equal to
zero when the gate voltages of the transistor ml and m2 are continuous and equal to the reference
voltage Vref. The logic circuitry required for controlling the four switches is presented in figure
42.2.1.b. When the active period of the input CWPM signal is 0.4us, the output current
integrated on the capacitor provides no voltage changes with respect to the reference voltage Vb.
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Fig. 4.2.2.2 Timing of the CPWM Fig. 4.2.2.3 The multiplication graphs
signals produced by multiplier §2

Figure 4.2.2.2 shows the timing of the different signals used in the latter approach. Figure 4.2.2.3
shows the graphs of the multiplication of the multiplier S2. In this figure, one can see that the
multiplier S2 has an voltage offset equal to approx. 2 to 3 % of the total output voltage range.
The power consumption is approx. S50uW.

Instead to switch the bias currents I and I6, two nmos transistors can be used to set the voltages
V1 and V2 during the idle period 0.45us. Simulations have shown that this solution is more
sensitive to mismatching between transistors than the previous soltution.
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Conclusions

From the two previous approaches proposed above, the dynamic multiplier of the second approach
seems to be the most performant. It has a lower offset and lower implementation area compared to
the first approach. It suffers less from mismatching between transistors. The power consumption
is also reduced considering the second approach. The results of Monte-Carlo analysis for both
solutions show that the second circuit is also less sensitive to variation in the threshold voltage.
One drawback of the second technique is that it requires an extra pin per chip for the external
signal (Vin3). For the first circuit, the reference CPWM signal needed in the forward path can be
used. The offset of both dynamic multipliers increases with the variations in the treshold voltage.
After simulations it can be assumed that offsets higher than 3% pertube the backpropagation
training algorithm. Further simulations should be done to see if the influence of these offsets on
the training algorithm can be decreased.
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5 The Neuron Unit

This chapter deals with the feedback path of the neuron unit for the hidden layers of the MLP.
This neuron unit is different from the output neuron unit presented in the following chapter. The
output neuron incorporates an extra circuit performing the error calculation. The feedforward path
of the neuron unit has been slightly modified. Therefore a sigmoid function with a variable
steepness is proposed below.

5.1 Sigmoid Function

It has been proved that the linear auto scaling function proposed in [6],[28], is not satisfying and
the forward path has been slightly modified to perform the new requirements. Figure 5.1.1 shows
the new feedforward path of the neuron unit.
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Fig. 5.1.1 Feedforward path of the neuron unit

In [6], two types of circuits performing the sigmoid function, have been proposed. The first one
has a fixed sigmoid function. The bias weight output voltage is converted into a current which can
shift the input range of the sigmoid function. The second circuit incorporates the shift into the
sigmoid function. In this circuit the bias weight output voltage can directly shift the sigmoid
function. The new scaling function depends on the square root of the number of synapses
connected to one neuron (see paragraph 2.3), and seems very difficult to implement. It seems
therefor easier to implement a sigmoid function with a variable steepness. Assuming that all the
neurons from one layer have the same number of inputs, the slope of the sigmoid function of all
the neurons placed in the same layer can be tuned by means of one voltage. This voltage is set to
a value proportional to the inverse of the square root of the number of synapses connected to the
neurons. In literature [12], several circuits performing the sigmoid function with a variable slope
have been proposed. They have all the same disadvantage: their large implementation area and
their complexity. The second sigmoid circuit designed in [6] has a low power consumption and a
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small implementation area, it seems therefore better to adapt this circuit to the new requirements.
Figure 5.1.2 shows the sigmoid circuit used in [6] with the dimensions of the transistors.
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Fig. 5.1.2 Sigmoid circuit

In the previous circuit, one can easily see that the slope of the sigmoid transfer function can be
changed by controlling the gain in the voltage difference Vd=V1-V2. A way to control the gain
in the differential input voltage of the sigmoid circuit is applying a transconductance stage with a
transistor connected between its two loads. This transistor works in the triode region and its gate
voltage allows the gain of differential output voltage of the stage to be controlled. Figure 5.1.3
shows the circuit used for controlling the gain in voltage difference V1-V2.
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Fig. 5.1.3 Transconductance amplifier with variable gain

The gate voltage V_ of the NMOS transistor m1 is tunable between 2V and 5V and the gain in
voltage difference V1-V2 can be changed within a factor 7. At least 64 synapses could be
connected to one neuron. It implies that the slope of the sigmoid function has to be tunable at
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minimum within a factor VV64=8, [6]. Therefore the voltage gain of the circuit of the figure 5.1.3
has to be increased. This can be achieved by adding four extra transistors working in saturation.
Figure 5.1.4 shows the improved circuit.
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Fig. 5.1.4 Improved transconductance amplifier with variable gain

In this stage, the voltage gain is tunable within a factor 11. Thus the slope of the sigmoid function
can be changed within a factor 11 as well. This means that a maximum of 121 synapses can be
connected to one neuron. In connecting the circuit in figure 5.1.4 to the one in figure 5.1.1, a
sigmoid unit incorporating a variable slope and a shift of the sigmoid function is obtained.
Sigmoid transfer functions with different slopes for a weight input voltage Vref=1.5V are printed
in figure 5.1.5. Different shifted sigmoid transfer characteristics for an input voltage V_ of 3V are
shown in figure 5.1.6. The nominal input range of this circuit is between 0 and 3V.
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Fig. 5.1.5 Different slope of the sigmoid Fig. 5.1.6 Shift of the sigmoid function

Monte-Carlo analysis has shown that the previous circuit is too sensitive to variation in the
threshold voltage V,. The output voltage range of the sigmoid is identical to that used in [6],
therefore the rest of the feedforward path is not modified.
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5.2 Feedback path

The feedback path of the neuron unit for the hidden layers is shown in fig 5.2.1
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Fig. 5.2.1 Feedback path

The implementation of the backpropagation learning algorithm has many advantages, see
paragraph 1.3, but it increases the implementation area of the neuron unit considerably. This
training algorithm requires the derivative of the sigmoid function and two multipliers. Two types
of converters are .present in different places in the path, which will be discussed briefly in
paragraph 6.2. The remark made in the previous chapter concerning the weight output voltage
range remains valuable for the bias weight of the neuron. One very important part of the feedback
path is the derivative of the sigmoid function.

5.2.1 Derivative of the Sigmoid Function

In the literature [I1],[16],[27], only few implementations of the backpropagation learning
algorithm exist. Most of them have a large implementation area and a large power consumption.
Two different approaches for implementing the derivative of sigmoid function are proposed in the
following paragraphs.

5.2.1.1 Approach #1

One way of obtaining the derivative of the sigmoid without performing the multiplication of the
terms S() and 1-S(, is to apply part of the sigmoid transfer characteristics S() and 1-S().
According to the weight output voltage is lower or larger than the Vref voltage either the sigmoid
characteristic SO or 1-S() is used. This approach provides a circuit with low power consumption
and a small implementation area, since the circuit of the sigmoid is implemented in the feedfor-
ward path. Figure 5.2.1.1.1 shows the circuit used to approximate the derivative of the sigmoid .

Page 33



The Neuron Unit Chapter 5

Voo

18.40 /2.4 18.442 /2.40

r':5' mS
18.4u /2.4u 18.41 /2.4p I - V|n

m7’ m7

———w
Vref
lbios
B.4uA | ms1

N/ Vout
Voioca2 m6
1.4V 4.8u/2.4 4

1 _|ms2

Fig. 5.2.1.1.1 Derivative circuit #1

The input voltage of the sigmoid unit Vin is compared with the weight output value Vref. The
output voltage of the comparator affects the position of the switches (ms1 and ms2). The NMOS
transistors (msl, ms2) used as switches, provide an output voltage equal to either V1 or V2. The
output voltage of the derivative circuit is plotted in figure 5.2.1.1.2 for a set of weight output
voltage Vref (1.1V, 1.5V, 1.9V). The nominal input voltage range Vin is between 0 and 3V.
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Fig. 5.2.1.1.2 Derivative transfer characteristic

The shape of the transfer function is similar to the one suggested in [29]. Simulations have to be
done on a neural net simulator to check if this approximated shape of the derivative of the sigmoid
can be used. A disadvantage of this circuit is its relatively small output voltage range of 0.8V.

Based on the same technique, the circuit of the figure 5.2.1.1.3 has a transfer function much
closer to the ideal derivative function and a larger output voltage range. In this circuit, two
sigmoid stages are used instead of one. They have two different reference voltages Vrefl and
Vref2 but have the same input voltage Vin. A part of their respective transfer functions are used
used, by switching transistors ms1 or ms2, i.e. S( of the sigmoid stage having Vrefl as reference
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voltage and 1-S() of the other sigmoid stage stage (Vref2).
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Fig. 5.2.1.1.3 Improved derivative circuit #1

The transfer function of this circuit shown in figure 5.2.1.1.4. has been obtained for an input
voltage range between 0 and 3V and two refrence voltages Vrefl and Vref2 equal to 1V and 2V
respectively.
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Fig. 5.2.1.1.4 Improved derivative transfer characteristic

This circuit has a large implementation area. It requires an extra circuit to keep Vrefl and Vref2
at + 2V of the reference voltage Vref over the total range of this voltage. In all the hardware
implementations of the derivative of the sigmoid function presented in the literature [11],{16] an
analogue multiplier is used. Therefore, the second approach presented below is based on this
technique.
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5.2.1.2 Approach #2

The mathematical formula of the derivative of the sigmoid function can be expressed as follows:

OFs(x) _ re7*"®

F's (x) =
'@ ox 1+e @9

=7Fs(x) 1 - Fs x)) (5.2.1.2.1)

where 7 is the steepness and « an offset. One can see in (5.2.1.2.1) that the derivative can be
expressed as a product of the sigmoid function itself.

This implies that the derivative of the sigmoid can be obtained by multiplying the two terms Fs
and (1 - Fs). The steepness factor 7 present in (5.2.1.2.1) has to be also multiplied with the
product of the two terms S() and 1-S(). This can be done without implementing an extra
multiplier, just by adapting the learning rate % in function of 7 before the learning is applied to the
neuron unit. This is possible because it affects the error signal as well (see the backward path in
figure 5.2.1). The two terms Fs and (1-Fs) are represented by the two output voltages at the two
nodes of the loads of the differential pair of transistors used in the sigmoid unit (see figure 5.1.1).
In the literature, an improved wide range Gilbert multiplier is often used to perform the mul-
tiplication. This circuit has an output current and required large bias currents implying a larger
power consumption. In figure 5.2.1, one can see that the output of the derivative stage is the input
of the analogue multiplier N2. Multiplier N2 has to have an output represented by a voltage (see
chapter 6.2.1). Four conversions take place in the feedbackward path, therefore it is better to
investigate an analogue multiplier with an output voltage in order to limit the number of
conversions as much as possible.

Several authors [14],[18],[26], have proposed a multiplication cell using four transistors working
in their triode regions. The two-quadrant multiplier N2 is also based on the same multiplication
cell, which is detailed in paragraph 5.2.3. Figure 5.2.1.2.1 shows the complete circuit performing
the derivative of the sigmoid function.

vdd X1 X2

Y
2u/ 4 Y1 - (v !

\ T II - I Vout
Y21 VAN t
ms4 —d— —— + |
Lyyzm | | | 1
| t | I
L L - J | I )

fig. 5.2.2.1 fig. 5.2.4.2.2

Fig. 5.2.1.2.1 The global derivative circuit

The differential voltage between the drain voltages of transistors m4 and mé6 of the circuit of the
sigmoid (fig. 5.1.2) is connected to the differential input X1 and X2 of the multiplication cell. The
input voltage Y2 is connected to a bias voltage, whereas Y1 corresponds with the shifted voltage
V., the latter is equal to the drain voltage of the transistor m3 of the sigmoid circuit (fig. 5.1.2).
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The bias voltage Y2 is equal to the minimum value of the voltage Y1.The four transistors msl to
ms4 introduce a voltage shift of 2V. An operational amplifier configured as a source follower,
plays the role of input buffer for the input Y1. The multiplier cell provides a differential output
voltage (V+ - V-). A transconductance amplifier stage (see figure 5.2.1.2.2) is used to obtain a
single output voltage. The output voltage can be expressed as follows:

Wl
#J%m I
V., =K(V'-v) where K=24 1 (5.2.1.2.2)

v IDS 01 +k3)

Vbnos‘l
hq 4#/2 4

V'_ VvV +
o m1 8u/2.4u m?2 F**

Vout

e I

4#/ 2.4u

Fig. 5.2.1.2.2 Gain Stage

By taking all the transistors of minimum length and a bias current I,;=10uA, a voltage gain of 30
can be achieved. PSPICE simulations have been done for different bias weight voltages, see figure
5.2.1.2.3. The results of the Monte-Carlo analysis presented in figure 5.2.1.2.4 shows that this
circuit is considerably less sensitive to variation into the threshold voltage Vi (£ 50mV between
chips and + 10mV within one chip). Although long transistors are used in the multiplier cell
(24um), the settling time of an impulse response is short i.e. 100ns.
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2.5v

Fig. 5.2.1.2.3 Derivative transfer Fig. 5.2.1.2.4 Monte-Carlo Analysis
characteristic

The shape of the derivative is not completely symmetrical and it is positively shifted of 0,1V. This
shift is due to the non-linearities introduced by the multiplier. Simulation of a MLP with such
derivative characteristic has shown that the performances of the neural net are not strongly
affected by the non ideal shape of this derivative function.

Conclusion:

Although the last circuit has a larger implementation area than the circuit proposed in figure
5.2.1.1.1, it provides better results. The two circuits proposed in the first approach (fig. 5.2.1.1.1
and 5.2.1.1.3) suffer from many drawbacks and the circuit in fig. 5.2.1.2.1 seems to be the best
option.

5.2.2 Two-quadrant Multiplier N2

In figure 5.2.1, the error incoming signals BPI; of the synapses are pulsed currents. A conversion
stage type 1 performs the conversion into a continuous voltage. Multiplier N2 multiplies this
voltage by the output voltage of the derivative circuit. The functional specifications of this
multiplier are listed below:

- two-quadrant multiplier

- input #1 BPIS”:continuous voltage signal positive / negative value
- input #2 §° :continuous voltage signal positive value

- output :continuous voltage signal positive / negative value

In literature [3},[5],{18] many analogue multipliers are presented. Most of them have a current
output and require large bias currents. A one-quadrant analogue multiplier is also used for the
derivative of the sigmoid and therefore the investigation of a small analogue multiplier having a
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voltage output is emphasized. In recent publications [14],[16], a four transistor continuous time
MOS transconductor has been proposed. Furthermore in [14], an analogue MOS implementation
of synapses has been developed using this circuit. The MOS transconductor shown in figure
5.2.2.1 can be made with four identical NMOS or PMOS transistors. These transistors function in
their triode region. Further the circuit of the figure 5.2.2.1 will be connected to an op-amp, see
figure 5.2.2.2.

X‘[ X 2
Y. ] D1 n
1 mi < < \%
*|—|_ D2
m2 -
1
-~ D3
m3 '
X4
_L D4 12
Y2 m4 - -+ v

Fig. 5.2.2.1 Four-Transistors MOS Transconductance

According to the current drain of a transistor working in triode region

W Vs
COXT[(VGS_VT)VDS_$] (5.2.2.1)
each current drain can be expressed as:
I, =1, -1, (5.2.2.2)
. . w Vos o W vy
where I, is a nonlinear term uC,, o 5 and 7, is a linear term ,uCoxT(VGs— Wos

in VDS

One can write the following formula for the nonlinear term of the current I1

(5.2.2.3)

C
vr,,= "*%"[(V-Yf + (V-Y)]

ND3 2

-1, =1

NI ND1

Since the non linear component IN2 of the current 12 is exactly equal to IN1 , a complete
cancellation of those non linear terms in the current difference I1-12 is realized. The linear
component of It is given by:

L, =1, +1I, OXL[(X =Y, -V )(V-Y) + (X,-Y,-V)(V-Y)] (5.2.2.4)

L LD}
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whereas that of I2 is given by
W
I,=1,+1, = pCOXT[(Xz—Yl—VT)(V-Yl) + (X,-Y,-V)(V-Y)] (5.2.2.5)

By making X1=X4 and X2=X3, the difference between the two output currents resuits in:
L-1 = ucoxva(yl—y)(xl-xz) where X,, X,2max [ Y,+V, , ¥,+V, ] (5.2.2.6)

to ensure the linear operation for all MOS transistors. Figure 5.2.2.2 shows the complete
multiplier N2 and figure 5.2.2.3 shows the op-amp used in the previous multiplier.

Vref
mri
x4 P“’ Ve2
1 r
Y2y r'n—zh
_LXW T
| ~ Vci
Y1 mb? vm Vout
mb2
TX2 > Ve2
1
2 mbj}_’ mr3
3 '“"1]’“ Vel
Vref
Fig. 5.2.2.2 Multiplier #1 Fig. 5.2.2.3 Op-Amp

The op-amp has a feedback composed of the same type of transistors as those used in the circuit
of the figure 5.2.2.1. They work also in their triode region. The following general formula can be
derived from the application of the Kirchoff current law to the two nodes of the input terminal of
the op-amp:

K (Y-Y,)(X-X,) W W
vV, = K,l( VCI—VC: : 22+ V,, where K, = uChy (T)b, and K = puC,y (T)55.2.2.7)

By adjusting the voltage VC1 and VC2 the dynamic output voltage range of Vm can be changed.
The four transistors used in the feedback of the op-amp work in the triode region under the
following conditions.

X-Y, <V. <0 (5.2.2.8)
Vi-Vr < me
The reference voltage Vref is 2.5V. The previous circuit can be used to realize either a one or a

two or four-quadrant multiplier. Figure 5.2.2.4 shows the multiplication graphs produced by the
multiplier #1.

and V.-V <V (5.2.2.9)
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vm

2.0v T — T v T
2.4V 2.6V 2.8v 3 av 3.2v 3. 4av 3.6V

Y1

Fig. 5.2.2.4 Multiplication graphs produced by the multiplier #1

The input range of X1 is between 0.V and 1.V, while this of the second input Y1 is between 2.5V
and 3.5V. The output voltage range is between 2.1V and 2.9V. Larger the open gain loop of the
op-amp, smaller the offest introduced by the multiplier. One major drawback of the previous
circuit is that it requires a large number of transistors and that it has a non negligible power con-
sumption. Further the complexity of the op-amp increases if multiplier has to receive high
frequency signals. Therefore this multiplier is not further investigated.

When the accuracy requirements are modest for the multiplication, an alternative circuit has been

proposed in [20]. Here, a simple transconductance operational amplifier without feedback is used.
The complete improved circuit is shown in figure 5.2.2.5. The transconductance amplifier is

presented in detail in figure 5.2.2.6.
vba?s_l(#i
4.8u/2.4u

Vboiase ° m1 74;1./18/.1, m2

"""""" A =TT T"
| ] )
Y1 vt o | r
5 —'w b I vm
vini i i LY Vm
1 - + ]
Vbasl ‘ " v t :
] 1 | i
S 4 S |
fig 5.2.21 g 5328 ‘ ma

mJ
18.4u/2.4u

+

Fig. 5.2.2.5 Improved multiplier #2 Fig. 5.2.2.6 Transconductance amplifier
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In figure 5.2.2.5, the output of the multiplier cell is connected to the input terminals of the op-
amp. This implies that the currents I1 and I2 of the muitiplication cell shown in fig. 5.2.2.1 are
equal to zero. The currents I1 and I2 can be expressed as follows:

I = 1,41, = 1+, .+, +l,, = 0 (5.2.2.10)

1

I

ND4

Iz = IDz+ID4 = ILD2+ILD4+ N'D2+ = 0 (5.2.2.11)

where I;p; are the linear terms and Ip; are the non linear terms

w
Lo = pCox 7 (Vs =VVis (5.2.2.12)
and
Cox W
I, = #_Z‘Efvgsi (5.2.2.13)

where 1 <i < 4

By replacing the terms (5.2.2.12) and (5.2.2.13) in the current I1 and 12, the following general
formula can be obtained:

X,-X)(¥,-Y)

V'-V- = (5.2.2.14)
(V*+V)-(X,+X,)+V,
where V; is the threshold voltage. Finally
V =K (V*-V) (5.2.2.15)
W L
where K = |1 2
L W

For a small dynamic input voltage range (Y1-Y2), the two terms (X1+X2) and (V+ - V-) in the
denominator of (5.2.2.14) are negligeable which results in:
X -X)(Y,-Y.
V =K X, - X)(¥,- ) (5.2.2.16)
(V*+V)-(X,+X)+V,

By using four PMOS transistors with the bulk connected to the source instead of four NMOS
transistors, the linearity of the multiplier can be increased.

The multiplication graphs produced by the improved multiplier #2 are printed in figure 5.2.2.7.
They have been obtained for

-0.6V < Y,-Y, < +0.6V where Y,=3V and

-1.2V < X -X, < 0V where X,=04V
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vm 2.

Fig. 5.2.2.7 The multiplication graphs produced by multiplier #2

Y2 = 16V

2.4V

1 6vY T T T T
2 av 2 BV 2.8v 3 ov 3 34V 3 6V

Y1

Fig. 5.2.2.8 Monte-Carlo Results

The results of the Monte-Carlo analysis are printed in figure 5.2.2.8. They show that the circuit in
figure 5.2.2.5 is less sensitive to threshold voltage variation. By using long transistors (L =
24um) for the multiplier cell, the currents can be decreased. Simulations for input impulses have
shown a settling time of approx. 150ns.
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5.2.3 Two-quadrant Multiplier N1

In figure 5.2.1, multiplier N1 performs the multiplication of the learning rate # by the error signal
BPIS’. Its result represent the updtate value of the weight. The functional specifications of the
multiplication are listed below.

- two-quadrant multiplication

- input #1: 5 continuous voltage positive value

- input #2: BPIS’ pulsed voltage positive / negative values
- output: pulsed output current positive / negative values

This multiplier is based on the same principle as the multiplier S2, only the characteristic of the
VCC is different. Therefore its functional behaviour will not be detailed here. A very important
aspect of this multiplier is its dynamic range of multiplying. In fact the learning rate may vary in
a range of 1 to 100. Figure 5.2.3.1 shows the circuit of the multiplier N1.

Voo Voo
12/2 40

m7k)-‘ gclms

12u/2.4u
{1 m91

fout

n 1 Cint
Vbb T
"_‘ mE1 Vref

2.4p/2.45

- Vbb
m61 |——-

oL
Fig. 5.2.3.1 Multiplier N1

The VCC characteristic of the multiplier N1 is shown in figure 5.2.3.2. The continuous input
voltage is between 1.5V an 3V. Figure 5.2.3.3 shows the multiplication graphs produced by
multiplier N1.
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Fig. 5.2.3.2 VCC characteristic
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Fig. 5.2.3.3 The multiplication
graphs produced by
multiplier N1

Similar to the multiplier S2, this circuit introduces an offset of 2 to 3% and has a low power con-

sumption. This multiplier has a good linearity.

The two kinds of converters present in the neuron unit for hidden layers are similar to
the ones present in the output neuron unit, which is why they will be briefly reviewed in the next

chapter.
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6 The Output Neuron Unit

In the backpropagation training algorithm presented in detail in paragraph 1.3, the error between
the actual output and the desired output is calculated in step 4. In the hardware implementations of
the backpropagation algorithm proposed in the literature , the error can be calculated either on
chip or off chip. On chip, this can be achieved by a logic gate (digital ANN), whereas with off
chip this can be achieved by a set of resistances (Analog ANN). The idea is to incorporate the
computation of the error part to the neuron chip. A special output neuron unit is therefore
developed. This output neuron unit differs from the neuron unit placed in the hidden layers since
it incorporates the error generation circuit and has different output signals representations. By
doing it this way the implementation area and power consumption of the output neuron unit is
similar to the ones of the normal neuron unit. Figure 6.1 shows the internal organization of the
output neuron unit.

A Ip—; Conversion | * [ .

o e JLL
—LAC

a

\Y} | P . v | weight storage,
n Conversion refresh ond

lw el updote

ve [ \L v
BPIS’ VP P Conversion <V—__®ev. Conversion ! Error d.
j type 2 type 1 Generation r_ ]

Fig. 6.1 Output neuron unit

In this case, the continuous output voltage of the sigmoid unit can be connected to the error
calculation stage. The interfacing board developed in the same department [30] has several con-
tinuous inputs and therefore the output signal ( d; )is not pulsed any more. So the converter type 2
taking place in the normal neuron unit (fig.5.1.1), can be suppressed.

6.1 Error Generation Stage

The functional specifications of this stage are listed below
- input #1: y; continuous voltage, positive value
- input #2: d; continuous voltage, positive value

- output : continuous output current, positive / negative values

The working principle of this stage is to perform the current difference Iout of two currents
I1 and I2. The two inputs voltage V1 and V2 can be converted into the two currents I1 and 12,
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respectively, by means of two VCCs. This can easily be implemented by using a differential pair
of transistors presented in figure 6.1.1.

VDD |
Vbioi_q m3
)

G

-
—
<

Fig. 6.1.1. Principle of error generation

All the transistors work in saturation region and therefore the following (simplified) relation
occurs between the current Iout and the voltage difference VD=V1-V2

W, 4l W
L, =1-1I = ,;.COXTVD(TS_—V;) where 8 = p,Cor - (6.1.1)

From equation (6.1.1), a linear relation can exist between the output current and the voltage
difference VD, if the following condition is taken into consideration:

4]
V, < | — 6.1.2)
i B

By connecting a current mirror as load to the previous differential pair of transistors (see fig.
6.1.2), the current difference can be performed. With a large bias current I, the condition (6.1.2)
is met but in that case a large capacitor C,, is required. By decreasing the bias current, a smaller
size capacitor can be used, but then the transistors m1 and m2 have to be very long, see condition
(6.1.2).
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lout

m4 FHE@ I Cint

Fig. 6.1.2 error generation circuit

By scaling the currents I1 and 12, the resulting output current Iout can be lowered and a smaller
capacitor can be used. Figure 6.1.3 shows the improved previous circuit.

Voo Voo Voo
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lout
llg l Cint
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i
Ry

Fig. 6.1.3 Improved circuit

The resulting output current is the difference of the scaled and mirrored currents I7 and 16. An
output voltage range of 1V with a reference voltage of 2.5V can be obtained for a capacitor
C..=0.6pF and a bias current I=5.5uA. The relation between the input and output current of a
current mirror shows that variation of the drain-source voltages of both transistors affect the
scaling factor.
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I 6.1.3)
7"

2

W, L, (1+\ V)

L, W, (T+\V,,)

where Vp; is the drain source voltage and X, is the channel length modulation
To prevent this variation, the current mirror (m7, m9) in the circuit of the figure 6.1.3 is replaced
by a cascode current mirror m7, m71, m9 and m91. Two other cascode transistors (m61 and
m81) are also added. The improved version of the error generation circuit is printed in figure
6.1.4

Vop Yoo
12u/2.4p

m7 —4 mg
12;1./2.4;1.

a1
m71 Voo ) —c1 m
18.4p/2.4p

18.4u/2.4u

Vbb
mGtH——4 "—{ m81 Vref

2.4u/2.4u

m8

Fig. 6.1.4 Error generation circuit

Figure 6.1.5 shows the variation of the output current Iout for variations of the input voltage V1
(output sigmoid) between 0.2 and 1V and variations of the input voltage V2 (desired output) in the
same range. The results of the Monte-Carlo analysis, which was conducted for variation of the
threshold voltage, are shown figure 6.1.6
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Fig. 6.1.5 Variations of the output current Fig. 6.1.6. Monte-Carlo results

The error calculation stage proposed above has a low power consumption (200uW). The desired
output (see the specifications of the interfacing board in [30]) has a dynamic range of minimum
2.5V. The two inputs of the error calculation have to have the same dynamic range, therefore a
buffer with a gain equal to 0.3 is used to reduce the input voltage range of the desired output of
2.5V to 0.8V. Figure 6.1.7.a shows the buffer circuit with the size of the transistors. Its transfer
characteristic is printed in figure 6.1.7.b. The Monte-Carlo analysis has shown that this circuit is
less sensitive to voltage threshold variations.
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Fig. 6.1.7.a Buffer Fig. 6.1.7.b Transfer Characteristic

The error generation circuit has an offset of about 3%, when there is mismatching between the
transistors. It decreases the performances of the training algorithm because the error calculated
can not be lower than a minimum. A way to reduce the influence of this offset will be to increase
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the gain of the error generation circuit. In that case the relation between the voltage difference
(V1-V2) and the output current Iout will be not linear any more. This solution has to be
investigated. It may be also a way to reduce the influence of all the offsets introduced by the
different dynamic multipliers present in the backward path.

6.2 Converters

Two kind of converters are present in the feedback path of the synapse and neuron unit. They also
introduce some non idealities which can affect the performances of the training algorithm.

6.2.1 Wave form driven Conversion

This converter type 2, used in the feedback path of both neuron units is based on the binary
comparison between an analogue input signal Vi and a triangular wave Vr synchronous with a
master clock CCK. The width of the output pulse is proportional to the input amplitude:

-1, Vi Vus 6.2.1.1)

t max Vm_Vmin

where Vmin and Vmax are the lowest as well as the highest values of the voltage Vr, within the
duration of the active phase. The input dynamic range can easily be adapted to the requirements
by tuning the amplitude of the triangular wave. The only limitations are due to input offset,
hysteresis and a conversion delay, which do not otherwise affect the converter transfer function.
Figure 6.2.1.a shows the circuit of this converter, while figure 6.2.1.b shows the timing of the
different signals.
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a) b)

Fig. 6.2.1.1 a) Converter Type 2 b) Timing of the signals

The triangular signal used in [12]} has a Vmax=1.5 and Vmin=0. In order to do not increase the
number of pins per chip, the same triangular wave is just shifted to be used in the feedbackward
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path. The two minimum sized transitors used to realise this level shifter are shown in figure
6.2.1.1.a. The triangular signal is shifted by 1.6V. In this way a minimum value of the input
voltage Vin corresponds to a minimum pulse width of Qus for the output pulsed voltage Vout. The
second approach of dynamic multiplier S2 (paragraph 4.2.2) and N1 (paragraph 5.2.3) is based on
the fact that the minimum width of the CPWM signals is Ous. The period of the master clock is
1.25us, but the maximum active period of the CPWM signals is 0.8us with an idle time of 0.45us.
This time is required to control all the switches in the sample and hold circuits and to synchronize
all the signals. Further this converter is the same as the one designed for the feedforward path and
the characteristics of the op-amp used in the converter can be found in paragraph 5.2.5 in [6].

6.2.2 Capacitor Charging Conversion

The converter type 1 is present on different places in the feedbackward path. A capacitor Ct is
charged with a constant current 1z for the entire duration of the input pulse (for CPWM). At the
end of the active phase, the capacitor voltage is sampled on the capacitor Cs and transferred to the
output. Ct is shunted during the idle phase, and loaded in the active phase. In practice, to ensure a
good conversion, sampling and discharging are two consecutive and non overlapping subphases of
the idle phase (see figure 6.2.2.1.b). The transfer function of the converter can be expressed as
follows:
& s

Vo=V, + -C_T (6.2.2.1)
where T; is the time of integration and V is the reference voltage usually equal to 2.5V.
Figure 6.2.2.1.a shows the converter type 1 and figure 6.2.2.1.b. shows the timing of the signals.
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Fig. 6.2.2.1 a) Converter type 1 b) Timing diagrams
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Depending of the place where converter type 1 is placed, the current Iz can be:

- a continuous current ( error generation circuit )
- a single pulsed current ( dynamic multipliers S1 and N1 )
- a sum of pulsed currents ( input of the neuron unit (BPI) )

This type of conversion suffers from several problems. The converter’s sensitivity depends heavily
on matching between a current and a capacitor which is poor for typical silicon VLSI technology.

An operational amplifier configurated as a voltage follower is used as a buffer in the circuit of the
figure 6.2.2.1.a. The characteristics of this circuit can be found in paragraph 5.2.3 of [12]. One
attractive aspect of this conversion is its very low power consumption. The signals of sampling
(V2) and discharging (V1) are synchronized with master clock and are active during the idle phase
(0.45us) of the CPWM signal (Vi).
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7 Backward Path and Simulation
Results

The different circuits consisting of the synapse unit and the two types of neuron units have been
presented in detail in the three previous chapters. The implementation of the backpropagation
algorithm has been done by using one of the pulse stream techniques - the Coherent Pulse Width
Modulation. The complete feedback path counts a lot of circuits (see fig. 4.1, 5.1 and 6.1).
Therefore two different circuits have been simulated. The first one corresponds to a neuron
connected with one synape, while the second circuit corresponds to the output neuron unit.

7.1 Normal Neuron Unit with one synapse Unit

One synapse has been connected to a normal neuron. Figure 7.1.1 shows the block scheme of the
backward path. Figure 7.1.2 shows the simulation of multiplier S1. The input pulsed voltage FPL
is active at low level and has a constant pulse width of 0.8us while the continuous input voltage
UD; has three different values. The voltage Aw; follows the variations of the voltage UD, with a
delay of 1,25us. This delay corresponds to the conversion time of converter type 1. Figure 7.1.3
shows the simulation of multiplier N1. In that case the input pulsed voltage BPIS’; is active at high
level and has a constant pulse width of 0.8us, while the continuous input voltage n changes from
its minimum to its maximum. It results that the voltage Ayw; changes also from its minimum to
its maximum with a delay of 1,25us (converter type 1).

o
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Fig. 7.1.1 Block scheme of the backward path
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Fig. 7.1.3 PSPICE simulation of the multiplier N1
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Figure 7.1.4.a and 7.1.4.b show the simulations of the complete backward path. In figure 7.1.4.a,
the synaptic weight value w; changes from its maximum to its minimum; the width of pulses of
signal BPIS’, is 0.8us. The derivative of the sigmoid S’(A)) is at its maximum level. The voltage
V., follows the variations of w; with a delay of 1.25us (conversion type 1). The width of pulses of
signal BPIS’, is 0.8us when the voltage w; is maximum. When the voltage w; is minimum then
the width of the pulses of the signal BPIS’; is Qus.

In figure 7.1.4.b, the synaptic weight value w; is at its minimum while the width of the pulses of
the signal BPIS’ is 0.8us. The derivative of the sigmoid changes from its maximum to its
minimum. The voltage V,, follows the variations of those of the derivative of the sigmoid. The
width of pulses of the signal BPIS’; is Qus when the voltage $°(A;) is maximum. When the voltage
$’(A)) is minimum then the width of the pulses of the signal BPIS’; is 0.4us, which is the
reference pulse width.

2.0V

i

Os 2us 4us Gus Bus t0us

Time

BPIS]
er g —10_
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Fig. 7.1.4.a,b PSPICE simulations of the complete backward path

7.2 Output Neuron Unit

Figure 7.2.1 shows the block scheme of the backward path of the output neuron unit. PSPICE
simulation are printed in figure 7.2.2.a and 7.2.2.b.

In figure 7.2.2.a, the desired output d, is at its minimum and the derivative of the sigmoid
function S°(A)) is at its maximum level. When the actual output y; is at its minimum level then the
width of the pulses of the signal BPIS’; is 0.4us. The width of the pulses of BPIS’; is Ous when the
actual output y; is at its maximum level.

In figure 7.2.2.b, the actual output y; is at its average level while the desired output d; changes
from its minimum to its maximum. The derivative of the sigmoid function is at its maximum.

The width of the pulses of the signal BPIS’; is either small or large considering that the desired
output d; is at its minimum or maximum level.
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LT I L g Jirrt

Os 2&? 4;15 Gus B;Js 10us
Time
BPIS;
b) o = d, desired output o = y, actual output A = V_ v = 10’

Fig. 7.2.2.a,b PSPICE simulations of the backward path

The circuit used to obtain the derivative of the sigmoid function is presented in paragraph 5.1 with
its PSPICE simulations. To keep the figures above simple, the signals of the circuit of the
derivative of the sigmoid have not been printed.

The characteristics of both synapse and neuron unit are listed below.

Synapse:
- Weight 0.85V - 2.75V
- UD; 0.85V - 2.75V
- FPI, 0V -5V /0.15us - 0.8us
- BPIS’ OV -5V / Ous - 0.8us
- BPO -200nA.. +200nA / Ous - 0.8us
- power dissipation 150uW
- response time min 1.25us
max 2.5us

Page 59



Backward Path and Simulation Results

Chapter7

Normal Neuron Unit:

- Weight
- BPL,

- BPIS’;
- FPO,
-7

- power dissipation

QOutput Neuron Unit:

- Weight

- BJPIS"l
- y]
-"

- power dissipation

0.85V - 2.75V

OV -5V / Ous - 0.8us
0V -5V / Ous - 0.8us
OV -5V /0.15us - 0.8us
1.5V -3V

758uW

0.85V -2.75V

oV -2.5v

0V -5V / Ous - 0.8us
0.2V -0.8V

1.5V -3V

865uW

For both neuron units the response time is:

min 2.5us
max 3.75us
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8 Conclusions and Recommen-
dations

Although it seems that the CPWM technique offers acceptable results considering the power
dissipation and chip area, it offers a limited precision. Especially the dynamic multipliers have a
limited precision due to some offsets.

It appears that the BPA is very sensitive to a number of non idealities introduced by the hardware,
the convergence speed and the miminum obtainable error are affected.

Mismatching between the transistors increases mainly the offsets introduced by the dynamic
multipliers. These dynamic multipliers use the difference of two currents to achieve positive and
negative values. Application of a symmetrical power supply might be a way to reduce this mis-
match. Simulations done on the ANN simulator of the departement have shown that these offsets
have to be (extremelly) small.

The rest of the feedback path introduces also some non negligible offsets. The influence of those
offsets on the BPA should be reduced by investigating one of the ideas proposed below:

- implementing an improved version of the BPA using less multipliers.

- controlling the gain of the error signal in each neuron chip to keep the error amplitude
larger than the offsets introduced by the hardware. (it leads to strong requirements
concerning the multiplier N1 and the weight update part).

- using the backward path to propagate back an error signal equal to zero which can be
used as a reference. This can be done during the time that the signal is propagating
through the network in the forward path. The corresponding offset can be saved into a
capacitor and then be substracted from the normal error signal (with offset). This approach
leads to a serious increase of complexity of the hardware.

In this work, it has been considered that the output currents of the synapses are integrated on a
single capacitor. This is an ideal case. Also the influence of parasitic capacitors has to be
considered. Therefore investigations should be done to resolve this important problem. Further-
more the limits of the capacitor voltage are those of the power supply i.e. 0-5V. Therefore it
should be kept within a certain range (minimum - maximum) for the proper functioning of the
sigmoid circuit.

The auto-scaling function (1/ N, N=number of synapses connected to a neuron) proposed in [6]
could be used if a multiplication by V'N is insert in the forward path to performe the required
scaling function 1/ V'N.

It can be concluded that the CPWM technique could be used to implement the backpropagation
learning algorithm. But since it has a limited precision, simulations should be done to determine
which precision is required.
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No real comparison with implementations on chip of the BPA using the CPWM technique is
possible. Although several groups in Europe are working on this subject, no results of this topic
have yet been published in the literature.
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