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Abstract

]'n this thesis report a method to solve general constrained discrete-time nonlinear optimal
control problems is discussed.

The method is based on a hybrid of the maximum-principle and mathematical program-
ming techniques. The idea is to convert the problem into a nonlinear programming problem
that can subsequently be solved by existing standard optimization software. Here, the recent
optimization package CFSQP! is used (C-code For Sequential Quadratic Programming).

The computational effort to solve constrained optimal control problems can greatly be
reduced by the constraint transcription method and the parametrization concept. The con-
straint transcription method allows problems with multiple constraints to be uniformly tack-
led. It is possible to transform all-time-step state constraints into one single nonlinear state
constraint. The parametrization concept is used to decrease the number of decision variables
of the programming problem. It is recommended to start an optimization using relatively few
control parameters. )

The constraint transcription method and the parametrization concept have successfully
been implemented in CFSQP. However, the transformation from optimal control problem to
mathematical programming problem is not a trivial issue. Although the method is applicable
for a wide range of problems, each individual problem still needs a specific approach. This is
the reason a user-friendly environment is difficult to develop.

The method works fine for relatively simple problems as well as for more difficult ones. In
every case, the calculated solution satisfies all the present hard state constraints.

The 2-link inverted pendulum problem is well known in the nonlinear control theory. A
successful attempt is made to solve this complex problem. It appears even possible to find
feasible solutions for the more difficult problem with three links.

When the terminal time is not fixed, it becomes a system parameter, which has to be
optimized at the same time with the cost functional. An example of such a terminal time free
optimal control problem is solved using a simple but effective heuristic.

Remark It must clearly be stated that the results of the optimization calculations must be
considered as simple feed-forward controllers from which the corresponding state trajectories
can possibly serve as reference signals in more sophisticated state-tracking controllers.

! Acknowledgement due to C.Lawrence, J.L.Zhou and A.L.Tits. Electrical Engineering Department and
Institute for System Research, University of Maryland '
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Chapter 1

Introduction

onlinear constrained discrete-time optimal control problems lately arise more often in

multistage control and scheduling problems. A typical example is the use of neural nets
in nonlinear control theory. In contrast with linear control problems, nonlinear problems
cannot be solved analytically. Therefore, efficient numerical methods are needed.

Some of the early methods were based on dynamic programming techniques and suffered
from limitations due to memory and computational requirements. These methods have been
extended and improved in various ways. There are still, however, limitations on their ability
to handle completely general constraints. One of the early approaches involved converting the
problem into a mathematical programming problem (MPP)in which all the states and controls
were decision variables and the dynamical equations formed part of the constrained set.
Generally, this leads to problems with a large number of variables and nonlinear constraints.
For example, an optimal control problem with 4 states, 1 control variable, 100 time steps
and 1 continuous state constraint would convert to a 500 variable MPP with 400 nonlinear
constraints and, if required, about 100 simple bounds on the variables. This approach was
greatly improved by combining it with the Maximum Principle, resulting in a MPP in which
only the controls were decision variables and the state variables were obtained from the
dynamical equations.

The different methods can be roughly partitioned into four main classes:

1. methods based on the maximum principle [12].
2. methods using mathematical programming techniques [13].

3. methods based on a hybrid of maximum-principle and mathematical programming tech-
niques [11].

4. methods using the dynamic-programming technique [15].

The first class of methods is based on the maximum principle. It can only be used to
obtain solutions for relatively simple problems in practise.

The classical mathematical-programming approach (2) considers all the state and control
variables as decision variables. Consequently, the difference equations governing the dynamics
of the system are treated as algebraic constraints. There are some disadvantages associated
with this approach. When the number of time steps or the dimension of the difference
equations increases, the corresponding number of decision variables and algebraic constraints
for the resulting mathematical programming problem becomes undesirably large. This is
further aggravated by the presence of hard constraints, such as all-time step constraints on
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the state and control variables. These are nonlinear inequality constraints that are required
to be satisfied for all the time steps M. Each of them gives rise to an additional M nonlinear
algebraic constraints for the corresponding MPP. Thus, a small optimal control problem can
end up with a very large set of decision variables and many constraints.

In the third class of methods, only the control variables are regarded as decision variables.
The state variables are obtained by solving the governing difference equations. Thus, the
cost and hard constraint functionals depend on the control variables only implicitly through
these difference equations. Nevertheless, their gradients are computable, although in a rather
roundabout way. So, the problems can also be viewed as MPP’s with much fewer decision
variables.

In the absence of hard constraints, differential dynamic programming (4) is an excellent
method for solving optimal control problems. This method is based on a combination of the
dynamic and mathematical programming technique.

The method used in this thesis project belongs to the third class of methods. It is based
on an algorithm that converts the original optimal control problem into a MPP in which
derivatives are computed from the Hamiltonian in the Maximum Principle [2]. The resulting
MPP is solved by the recent optimization software package CFSQP [1].

The most typical feature of the algorithm is the way in which constraints of a general
nature are converted into a canonical form using a simple constraint transcription method
that was first introduced for continuous-time problems [5]. This article also includes the idea of
control parametrization where individual controls over a number of time steps are represented
by a single parameter, resulting in a great reduction of decision variables in problems with a
large number of time steps.

The global construction of this thesis report is as follows:

In chapter 2, the computational procedure for solving a general class of constrained
discrete-time optimal control problems will be presented. The two main features of the algo-
rithm, the constraint transcription method and the parametrization concept will extensively
be handled.

A short description of the recent optimization package CFSQP is given in chapter 3. A
profound analysis is omitted.

The algorithm described in chapter 2 is tested on the basis of four general optimal control
problems in chapter 4.

In chapter 5, the 2-link inverted pendulum problem is tackled. This difficult nonlinear
problem is first extensively discussed and subsequently the optimization results will be pre-
sented.

The problem of terminal time-free optimization is discussed in chapter 6. A simple but
effective heuristic to find the time-optimal solution will be presented.

Conclusions and recommendations are given in chapter 7.

The appendix contains a summary of the source code of the 2-link inverted pendulum
problem.



Chapter 2

The discrete-time optimal control
problem

his chapter presents a computational procedure for solving a general class of constrained

discrete-time optimal control problems. The applied approach is to convert the problem
into a nonlinear programming problem that can be solved by existing nonlinear optimization
methods. The two main features of the proposed algorithm, the discrete version of the control
parametrization concept and the constraint transcription method are extensively handled.

2.1 Problem Definition

For p a positive integer, define

L={0,1,...,p}, IF={12,...,p} (2.1)

A form of the discrete-time optimal control problem is defined by

mjn Ga(u) = Oolz(M)] + 3 glt,a(t),u(t)] (2.2)

subject to the system dynamics
z(t+ 1) = f[t,z(¢),u(t)], t=0,1,...,.M -1 (2.3)
where M is a fixed positive integer, ¢ is the discrete time, and

[z1(t), za(2), - .., 2. (t)]T € R™, forte Iy
u = [uy(t),us(t), ..., un(®)]F € R™, fort€ In_, (2.4)

are respectively, the state and control vectors. The initial condition for the difference equation
(2.3) is supposed to be given by
z(0) =z € R". (2.5)

The control variables are subject to simple bounds:

wf <wu; <WY, i=1,...,m. (2.6)



The above described problem is subject to a variety of additional constraints:

1. Terminal state equality constraint.
Clz(M)]=0. (2.7)
2. Terminal state inequality constraint.
Clz(M)] > 0. (2.8)
3. Interior point state equality constraint.
Clz(§)]=0, £ € Iy (2.9)
4. Interior point state inequality constraint.
Clz(O]20, £ € Ly (2.10)
5. Continuous state and control equality constraint
Clt,z(t),u(t)] =0, V. € I, £ € I};_,. (2.11)
6. Continuous state and control inequality constraint
Clt,z(t),u(t)] >0, V. € I, £ € If;_,. (2.12)

The following conditions are assumed throughout:

o For each t € Iy_;, f[t,z(t),u(t)] is continuously differentiable with respect to each
component of z and u.

e O is continuously differentiable in IR™.
o foreacht =0,1,...,M — 1, go[t, z(¢),u(t)] is continuously differentiable in IR™ X IR™.

e foreachk =1,..., N, and for each t € I}y, C} is continuously differentiable in IR™ X IR™.

2.2 Constraint transcription

In the classical control literature, constraints of a different type are often treated differently.
In this formulation, different constraints are transformed into a standard canonical form

Tk—l

Oula(ro)l + X gelt,a(t),u()] =0 k=1,2,..., N,

Tk—l

Gr(u) = Oifz(m)]+ Z alt,z(t),u(t)] >0 k=N.+1,...,N (2.13)

t=0

Gk(u)

where N, is the number of equality constraints, N is the total number of constraints and
e € If; is teferred to as the characteristic time of the kth constraint. This constraint
transcription is the discrete analogue of that introduced for continuous-time systems [5]. Note
that the constraint canonical form is the same as that for the cost functional (2.2), where
T = M. This is intentional, as the formulation allows problems with multiple constraints to
be uniformly tackled. The constraints are converted to the canonical form by defining ©, ¢
and 7 for each constraint and saying whether G is an equality or inequality constraint.



The transcriptions for each of the different types of constraints are as follows:

1. Terminal state equality constraint. Clz(M)] = 0.
Set ©=C,g=0, 7= M, and put G = 0.

2. Terminal state inequality constraint. Clz(M)] > 0.
Set ©=C, g=0, 7=M,and put G > 0.

3. Interior point state equality constraint. C[z(£)]=10, £€ I#_,.
Set ®=C,g=0, 7=¢, and put G=0.

4. Interior point state inequality constraint. C[z(£)] >0, €€ Ij;_,.
Set ®=C, g=0, 7 =§, and put G > 0.

5. Continuous state and control equality constraint C[z(t),u(t)]=0,V, € I, £ € If;_,.
Set ® =0, g=C? 7=¢£ and put G=0.

6. Continuous state and control inequality constraint C[z(t),u(t)] > 0, V, € I, £ € If;_,.
Set ® =0, g = min{C,0}, 7 = £, and put G = 0.

Note that constraint of type 6 was originally of inequality type but becomes of equality type
in its canonical form. (2.12) is equivalent to

G= Tz—imin{C[t,z(t),u(t)],O} =0, (2.14)

which is, however, nonsmooth. Using the smoothing technique of Jennings and Teo [8], we
approximate the nonsmooth function g = min{C, 0} by the continuously differentiable! g.(C),
which is defined by

C if C < —e,
9.(C)=4 L if —e<C<e (2.15)
0 if C > e

Define U to be the class of all admissible controls:
U={v=[v,...,on]f € R™:uf <v; <4y, i=1,...,m} (2.16)

Let u denote a control sequence {u(t) : ¢t = 0,1,...,M — 1} in U. If u € U satisfies the
constraints (2.8) to (2.12), then it is called a feasible control.

Define

=

Guw)= 3 9.(C) (2.17)

T

I}
=}

and let
G (u)+6 >0, (2.18)

where § = 6(e). In [2] it is shown that if § is chosen as €/4 then, for any ¢ > 0, any
feasible solution of (2.18) is also a feasible solution of the original continuous state inequality
constraint (2.12). A typical value for € is 1072,

1of the 1st order



The constrained optimal control problem is now in the form
min Go(u) (2.19)
subject to N, canonical equality constraints:
Gir(u)=0 k=1,...,N,, (2.20)
and N — N, canonical inequality constraints
Gr(u) >0 k=N.+1,...,N, (2.21)

where each G} is defined on a set I,,, 7 € If;, and the decision variables are subject to
simple bounds
u{‘ <y < uf]

— —_ 9

i=1,...,m. (2.22)

2.3 Control Parametrization

In this section, the discrete version of the control parametrization concept is presented [2].
The continuous version was introduced by Goh and Teo in 1988 [5]. The idea of control
parametrization is to compute a suboptimal solution to a large problem by using relatively
few decision variables. The quality of the suboptimal solution is then improved by successive
refinement of the parametrization. In this way, control problems with a large number of time
steps, can be solved in less amount of time and computational effort.

The problem described in the previous section is converted to an optimization problem
over JR"», where n, represents the total number of parameters constructed from the control
variables. Let the set Ip;_;, be partitioned for the ¢th control function u;, ¢ = 1,...,m, into
k; disjoint subsets of the form

Pi={ti_,,ti i+ 1,8 +2,...,t -1} (2.23)
where t; € Iy, satisfying
0=t) <t) <otk =M (2.24)
are known as knots. Note that for each ¢
k; .
Ino = P (2.25)
i=1

The above is illustrated by the following example for u;:

P P; P
N N ——
0123456789 ...... M. (2.26)
th t t, t,

Note that an equal-partition parametrization is not a strict requirement but rather a compu-
tational convenience. At times for which it is known a priori that the control changes rapidly
during certain intervals and changes relatively little during others, it will be more effective to
use unequal parametrization.

For each set P; we associate a parameter a;: so that

u(t) = of, Vt € P}, (2.27)
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that is, u(t) is constant on each set P} and o; = [01,...,0},]7 is then a vector of parameters
describing u;.
If @ denotes the vector of all control parameters

0=[o],...,00,0%...,0%,...,00,...,00. ] (2.28)

then the combined optimal control problem becomes a MPP in the control vector § € IR"»,
where n, = Y70 k;. After the control parametrization, the cost functional as well as the
constraint functional can be regarded as implicit functions of the parameter vector §. More
precisely, the corresponding approximate problem may be written as

mein Go(9) (2.29)
subject to the constraints

Gi(6)=0, k=1,...,N,,
Gi(6)>0, k=N, +1,...,N

with the control parameters o being bounded by a set of upper and lower bounds:
uf’gajguf’, ji=1,..,k,1=1,...,m. (2.30)

This approximate problem can be regarded as a standard nonlinear constrained mathemat-
ical optimization problem which can be solved by a sequential quadratic programming tech-
nique. This technique requires the analytical gradients of the cost functional Gy as well as the
constraint functionals Gy, k = 1,2,..., N. However, because of the nonexplicit dependency
of G on u, the computation of the gradients of each canonical function Gy, k =0,1,..., N
has to be done in a somewhat roundabout way. Notice that only the controls are decision
variables and the state variables are obtained from the dynamical equations (2.3).

2.4 Derivation of the Gradient Formulae

In this section, the gradients for the canonical cost functional and the canonical constraints
are derived.

The discrete-time optimal control problem is concerned with the determination of a control
sequence for the system

z(t + 1) = ft, z(t), u()], t=0,1,...,.M -1 (2.31)
such that the cost functional
M-1
Go(u) = Oolz(M)] + 3 golt, z(t), u(t)] (232)
t=0
is minimized subject to the following constraints (in canonical form):
Tr—1
Gi(u) = Ofz(m)] + Z Gilt, z(t), w(t)] (2.33)
t=0

where

Gk(u) 0 k=1,2,...,Ne
Gk(u) Z 0 k:Ne-{—l,...,N.
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The functions 0;,Gi, £ = 0,1,..., N, are assumed to be continuously differentiable with
respect to each of their arguments. Note that the canonical constraints are expressed in a
similar form to the cost functional. This feature is to allow gradients of the cost functional
as well as the gradients of the constraints functionals to be computed in a unified way.

Let the control parameter vector 6 be perturbed by €p, where € > 0 is a small real number
and p is an arbitrary fixed perturbation of §. Then we have

6(e) = 6 + ep. (2.34)

Consequently, the system state will be perturbed as well as the cost functional and the
constraint functionals.

Define
z(t,€) = z[t|6(e)], t=1,2,..., M. (2.35)
Then
z(t+1,€) = flt+ 1,z(¢,¢€),0(e€)]. (2.36)
The variation of the statefort =0,1,...,M — 1is
B dz(t+ 1,¢)
A(E(t + 1) = T o
aflt,z(t),0] of[t,z(t),0]
—_— —_— 2.37
G Aa(t) + (2.37)
with
Az(0) = 0. (2.38)
For the ith constraint (¢ = 0 denotes the cost functional and 7, = M), we have
d Gi(u(t, €)) 3®k[a:(rk)]
VG Te oo™ Ba(m) 27
Te—1
L) [0G[L, (1), 6 OGy[t, z(t),0
+ Z [————k—[——:-t——)——]Az(t) + %p . (2.39)
t=0
Define the Hamiltonian sequence
Hilt, z(t), 0, \(t + 1)] = Gilt, 2(t), 0] + AL (¢ + 1) f[t, z(¢), 6]. (2.40)
where Ax(t) € R, k=0,1,...,N, t = 7%, % —1,...,0, are referred to as the costate sequence
for the kth canonical constraint. (2.39) becomes
3®k[z(rk)] =y {H ilt, z(1), 0, Ak(t + 1))
lp = ———= Az(t
(s 1)8f[t,w(t),0] Aoty 1 P20 00 1]
0z (t) 00
-2T(t+ 1)M } (2.41)
08
Let the costate Ax(t) be determined by the following system of difference equations:
OH;[t,z(t),0, A\e(t + 1)]
T _ ) y Yy
’\Ic (t) - az(t)
0G[t,z(1),0] o aflt, z(1),0)
- b At WA A 2.42
ao) T D50 (2.42)
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Ae(re) = (%)T (2.43)

for k =0,1,..., N. Hence on noting (2.37), equation (2.41) becomes

and

— kX-: OH.[t, :c(t)éz, Mt + 1)]p. (2.44)

t=0

Since p is arbitrary, the components of the gradients with respect to the control parameters
are:

8Gk ol OHk 6u,~
%

oo} Ou; 80;:
th—1 R i
21-1::;_1 %Ii:‘a lf t] S Tk
— =1 p i .
= e e, ifE <<, (2.45)
0 otherwise.

Note that, if no parametrization is applied, the components of the gradients with respect to
the individual control variables u(t), become

0Gy _ OH(t,o(t), u(t), Me(t + 1)

oui(t) Ouq(t) (2.46)

The gradient algorithm can be summarized as follows:

1. Given 8 and Gy, solve the system of the state difference equations forward from
t=0,1,...,7.— 1.

2. Solve the system of the costate difference equations Ax(t + 1) backward from ¢ = 7 —
L,—2,...,0for:=0,1,...,N

3. Compute the gradient of G;, £ =0,1,...,N

Note that the gradient algorithm is especially suitable for control problems, whose dy-
namics are described by ezplicit discretization schemes.



Chapter 3

CFSQP: A C-Code for Solving
Constrained Nonlinear
Optimization Problems

3.1 Introduction

[n the previous chapter a procedure was presented for converting a discrete time optimal
control problem into a constrained nonlinear mathematical programming problem. This
problem could then be solved by the recent optimization software package CFSQP. This thesis
report is not the right place to give an extensive description of all the complex procedures
used by CFSQP, and thus only a brief description will be given here to give the reader at least
some insight. It must clearly be said that CFSQP has only been applied and not thoroughly
analysed.

3.2 The programming problem

CFSQP is a set of C functions for the minimization of the maximum of a set of smooth ob jec-
tive functions (possible a single one) subject to (non)linear (in)equality constraints and simple
bounds on the variables. In mathematical terms, CFSQP tackles optimization problems of
the form

minimize rzré;};{{f,(z)} st. ze X

where I/ = {1,...,n;} and X is the set of points = € IR" satisfying

bl<z<bu

9;(z)<0,  j=1,...,m

gi(z)=<cj_n, x> —d;_,; <0, j=m;+1,...,t
hj(x):07 i=1,....n

hi(z) =< aj_n,, 2> =bj_,, =0, j=n.+1,...,t.

with bl € R"; bu € R"; f; : IR® — IR, = 1,...,n; smooth; g; : R — IR,j =1,...,n;
nonlinear and smooth; ¢; € R",d; € R",j = 1,...,t; —ni;h; : R* - R, =1,...,n,
nonlinear and smooth; a; € R*,b; € R",j =1,...,te — n...

The user has to provide an initial guess z, for the decision variables. If this initial guess
does not satisfy all the present constraints, CFSQP himself generates a point satisfying these

12
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constraints. After finding a feasible point, the minimization of the cost functional can start.
The user has the option of either requiring that this cost functional decreases at each iteration
or requiring a decrease within at most four iterations.

Besides the cost functional, the user has to provide functions that define the constraints
and may either provide functions to compute the gradients. It is also possible to let CFSQP
himself estimate the gradients by forward finite differences. However, in the case of an optimal
control problem, it is not recommended to use this method, as this could lead to convergence
problems [3].

Note that the designers of CFSQP speak of a feasible point, rather than a feasible control
sequence. This is because the software package has not specifically been made for solving
optimal control problems.

3.2.1 Relation between variables optimal control problem and parameters
optimization problem

The relation between the parameters of the optimization problem and the variables in a
general optimal control problem is made more clear on the basis of the following remarks:

e I’ is the set of objective functions and this set has in the case of a general optimal control
problem just one element: namely the cost functional. So I/ = {Gy} and ny = 1.

e The consequence of this set having only one element is that the problem of minimization
of the maximum of a set of objective functions is reduced to a problem of minimizing
Jjust one single cost functional.

e The parameter n stands for the number of variables in the programming problem.
Thus, in the case of an optimal control problem, this n denotes the number of decision
variables, which is equal to m x k; or m x M, if no parametrization is applied.

e the vectors bl and bu can be regarded as the upper and lower bounds on the control
(decision) variables.

o the inequalities g;(z) < 0 j = 1,...,n; and the equations h;(z) = 0j =1,...,n, can
respectively be considered as the nonlinear inequality constraints and nonlinear equality
constraints of the optimal control problem. the inequalities g;(z) <0j=n; +1,...,t
and the equations h;j(z) = 0j = n, 4+ 1,...,t, can respectively be considered as the
linear inequality constraints and linear equality constraints.

In the Appendix, a part of the source code for the 2-link inverted pendulum problem (see
Chapter 5) can be found. For a complete description of the algorithms used by CFSQP I
refer to the user’s Guide [1].



Chapter 4

Examples of Optimal Control
Problems

]n this chapter, four general optimal control problems, including a variety of different types
of constraints, will be solved using the algorithm described in Chapter 2. For problem 1,
the transformation from constrained optimal control problem to mathematical programming
problem will extensively be described.

4.1 Problem 1: A basic optimal control problem
We consider the following regular problem:
min J(u) = /1 z(t)? + u(t)? dt
v 0
z(t) u(t) (4.1)

z(0) = L
In the absence of constraints, the analytic solution is (without proof) given by
2e
* = ————sinh(1-1
u*(t) 1 sin ( )
z*(t) = 2 cosh(1 —t) (4.2)
T 14e? )
ef-1
J* = ——— =10.76159.
(14 €2)?
The system dynamics (4.1) are discretized using the Euler scheme, with time step h = 0.01:
z(t+ 1) = z(t) + hu(t) (4.3)
fort =0,1,...,M — 1, where M = 100. The continuous cost functional J is converted to a
discrete version G, where
M-1
Go= Y (t)® +u(t) (4.4)
t=0

An comparison with the optimal continuous cost functional J* can be made by using the
trapezoidal approximation R of J, where

M-1

R= g[z(oy + (0 + 2] + b Y (2t +u(t)] = . (4.5)

14
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Besides the unconstrained case, the following independent constrained problems are solved:

1. terminal state constraint: (M) = 1.
2. interior point constraint: z(7;) = @, where 7 = 50 and a = 0.5.

3. linear continuous state constraint: z(t) >=b, wheret=1,...,M — 1 and b = 0.75.

If we use the constraint transcription method we have to solve 3 optimization problems,
each involving 1 cost functional (Gy) and 1 canonical constraint functional. These canonical
constraint functionals have the following (unparametrized) form:

1. Gy(u) = (2[M]-1)=0
2. Gy(u) =(2[r] —a) =0
3. Gs(u) = (XM5gs) =0 where g3 = min{z(t) — b,0}

Note that, neither one of these functionals contains a control variable.

Before we can proceed with the calculation of the different gradient formulae, constraint
3 has to be rewritten into a differentiable form. Using the smoothing technique described in
the previous chapter we get:

Gs(u)+€¢/4>0 (4.6)
where
M-1
G3,e(u) = g3,¢ (47)
t=0
and
g3 lf g3 < —€,
g3e=12 —([ga—¢€*)/4e if —e<g3<k (4.8)
0 if gz > €.

The (unparametrized) Hamiltonian sequences H,[t,z(t),u(t), \i(t + 1)] for ¢ = 0,...,3 result
from (2.40):

Ho = go + Xo(t+1)[z(?) + hu(?)]
H = A1(t + 1)[z(2) + hu(t)] (4.9)
H, = Ao(t + 1){z(2) + hu(t)] )
Hy = g3 + As(t+1)[z(t)+ hu(t)].
where go = 2(t)? + u(t)®. The costates \;[t, z(t), u(t)] are defined by (2.42):
Ao(t) = 2hz(t) + Ao(t +1)-1
M) = A(t+1)-1
M) = Na(t+1)-1 (4.10)
A3(t) = 0gse/0z(t) + As(t+1)-1
where
1 if g3 < —¢,
0g3,e/0z(t) = < —(22(t) —2b—2¢)/4e if —e< g3<e,
0 if g3 > e.
and X(7;), ¢ =0,...,4 result from (2.43):
Ao(M) = 00o[z(M)]/0z(M) = 0
M(M) = 00,[z(M)]/0z(M) = 1 (4.11)
Ao(m2) = 00,z(m)]/0z() = 1 '
As(M) = 00s5[z(M)]/0z(M) = 0
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The gradient formulae are given by (2.45):

VoGolu(t)] = 2hu(t) 4+ Ao(t+1)-h
VuGilu(t) = M(t+1)-h
VuGlu(t)] = Xa(t+1)-h (4.12)

where
093,/0u(t) = 0.

With (4.12), all the necessary equations are now derived. They form a discrete constrained
nonlinear optimization problem which can be solved by CFSQP. Figure (4.1) shows the cal-

Unconstrained: x*[:], u*[.] x[—-], u[-] Fin. State Constraint.: x[:], u[-]

1

OB oo ‘ .....................

-0.5 i
0 50 100
discrete time discrete time
Int. State Constraint.: x[:], u[-] Cont. State Constraint: x[:], u[-], c[--]

1 7 1 :

discrete time discrete time

Figure 4.1: Calculation Results Problem 1: unconstrained vs exact, R = 0.759028; final state
constraint, B = 0.923457; interior point state constraint, R = 0.894566; continuous state
constraint, R = 0.776134.

culated solutions for the 4 different optimal control problems. For the unconstrained case,
the relative difference in the optimal objective function is less than 0.0035% using N, = 20.
The difference between the computed state and exact state is less than 0.4% at all points. In
the three other cases, the constraints are satisfied exactly.

4.2 Problem 2: A nonlinear-constrained optimal control prob-
lem

The problem is taken from [2]. The control process (discretized by the Euler scheme using

time step h = 0.02) is described by the following difference equations:

zi(t+ 1) z1(t) + 0.02z4(t)
za(t+ 1) 0.982,5(t) + 0.02u(t)

1

(4.13)
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where t = 0,1,...,M — 1 and M = 50. The initial state is:

z1(0) =0, z,(0) = —1. (4.14)
The problem is to minimize
M-1
Go = Y z1(t)* + z2(t)* + 0.005u(t)? (4.15)
1=0
subject to the non-linear continuous state inequality constraint:
C[t, z5(t)] = 8(0.02t — 0.5)2 — z4(t) —0.5> 0 fort=0,1,...,M - 1. (4.16)

Starting with N, = 5 and initial guess u(¢t) =0, ¢t =0,1,...,M — 1, improved solutions are
computed by increasing N, and by using the outcome of the previous run as the new initial
guess. For the constraint transcription is chosen ¢ = 1072,  Table (4.1) summarizes the

Optimal piecewise control Np=5, 25 [-] Np=50 [:]
15 T T T T T T 1 T 1

_5 ] 1 1 1 1 1 L 1 1
5 10 15 20 25 30 35 40 45 50
discrete time
Optimal constrained state 2: Np=5 [-—], Np=25 [-.], Np=50 [-], C [:]
T b T 1 T 1 V | . T L]
/R -
ol // \.\. -~ - -
/
/
/ B d
V4 s
05} ’ S o= == .
/
/
/
/
-1 1 1 2 ! 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50

discrete time

Figure 4.2: Calculation Results Problem 2.

Table 4.1: Optimization results problem 2

N, Go(M) €/4+ G, | constraint violation | iterations
5 | 11.3413650 | -7.96e—17 no 109
25 | 9.2251165 | -2.56e—17 no 351
50 | 9.1415505 | -2.71e—19 no 295

computed results

. These results are consistent with those in [2]. This is not really surprising
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because Teo and Liu implemented the optimization package NLPQL [16], which makes use
of the same kind of optimization methods as CFSQP does. Figure (4.2) shows plots of the
optimal control and optimal constrained state.

4.3 Problem 3: The vertical ascent of a rocket

This highly nonlinear problem concerns the vertical ascent of a rocket. The original formu-
lation (continuous-time version) is taken from [11]. A discrete version of the control process
is obtained by the Euler scheme to discretize the system equations, where the time step is
taken as one second:

oi(t+1) = z,(t) - u(t)
o(t+1) = z5(t) + z5(t) (4.17)
:E3(t+ 1) — :l:3(t) + Vu(t)z:(g[z(t)] ~g,

where z,(t) is the mass (10%kg) of the rocket, z,(¢) is the altitude (km) above the earth’s
surface, z3(t) is the rocket velocity (km/s), u(2) is the mass flow rate, V = 2 is the constant
gas nozzle velocity, g = 0.01 km/s? is the acceleration due to gravity (assumed constant), and
Q[z(%)] is the aerodynamic drag defined by the formula

Q[z(2)] = 0.05 [z5(t)]%exp[0.01z,(2)]. (4.18)

The initial state of the rocket is z,(0) = 1, z5(0) = z3(0) = 0. At the terminal time M = 100,
the final value of the mass is constrained to be 20% of the initial mass: z,;(M) = 0.2. The
bounds on the control are:

0<u(t)<004 fort=0,1,...,M—1. (4.19)

The control ob jective is to maximize the rocket’s peak altitude by suitable choice of the mass
flow rate. In other words, we want to minimize

Go = ~z5(M) (4.20)
subject to the terminal-state constraint
Gy = [z (M) - 0.2] = 0, (4.21)

Even partitions on the time interval are used for parametrizing the control. Starting with

Table 4.2: optimization results

N, | zi(M)| =zo(M) | iterations

0.200 | 34.710452 8
10 0.200 | 35.400736 5
20 0.200 | 35.888522 18
25 0.200 | 36.156419 2

none | 0.200 | 35.927147 29

N, = 5 and the initial guess for the optimal control u(¢) = 0.008, k¥ = 0,1,2,..., M — 1,
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mass flow rate [kg/s x10e3] rocket altitude [km]

0.04 : 40 :
0.03 SO ...................
0.02 OO v ....................
0'01 10 ................... , ....................

(0] i 0 H

o 50 100 (0] 50 100
time [s] time [s]

rocket mass [kg x10e3] rocket velocity [knm/s]

o] 50 100 0 50 100
time [s] time [s]

Figure 4.3: optimization results: Mass flow rate, Mass, Altitude and velocity of the rocket

improved solutions are obtained by increasing N, and using the results from the previous run
as the new initial guess. Table (4.2) shows the intermediate and final results. The last row
indicates the optimization result when no parametrization was applied. It turns out that the
result is consistent with that reported in [2]. Figure (4.3) shows the behaviour of the control
and state variables.

4.4 Problem 4: A Container crane optimal control problem

A very real and complex program of transferring containers from a ship to a cargo truck at
the port of Kobe was considered by Sakawa and Shondo [18]. The container crane is driven
by a hoist motor (ul) and a trolley drive motor (u2). For safety reasons, the objective is to
minimize the swing of the container during transfer as well as the swing at the end of transfer.
The states of the system consist of vertical motion (z1), horizontal motion (z2) and diagonal
motion (z3). The initial state is given while the terminal state is specified, thus posing a
terminal state constraint. In addition the maximum torque of the hoist motor and trolley
drive motor cannot be exceeded and thus the controls are bounded. Furthermore, continuous
state constraints are present in that the velocity of the trolley and of the hoist are bounded.
For brevity, the problem formulation in the various original physical coordinates is left out
here. Only the final formulation after appropriate transformation of coordinates will be given.

The container crane problem is defined by:

t)
m(lI)l J = %/ {w1z3(2)? + wyze(t)*}dt (4.22)
u- 4]
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subject to the dynamical equations

Ty = T4
.’1'32 = I5
(i:a = Tg
. 4.23
T, = u;+6,9z3 ( )
Ty = U
Tg = —;‘lg[ﬂq + (1 + 61)gz3 + 2z576]
with the initial condition for the state
z(0) = [0,1,,0,0, —zs___,0]7, (4.24)
terminal state constraint
.’E(tl) = [dl,l3,0,$4ma2,0, O]T, (425)
continuous state constraints
lza(t)] < 24
! maez fort € [0, 4.26
and control constraints
|'U,1(t)| S ulma:’ uzmin S uz S u2ma:’ (4'27)
where
ulma: = vlma: - 61/6max{v2maz7 _vzmin}
uzmln = vzmin + 62/6v1ma: (4'28)
uzma: = vzma: - 62/6v1ma:'
We use the following parameter values (the units are suppressed for brevity):
W) = Wy = ]., tl = 9
g = 9.81, I, =22, I3 =14, dy =10
6, = 1.76, 6, = 0.075, B8 =0.1 (4.29)
vy,,.. = 2.98, v2,... = —0.831, v2,.,. = 0.735
z4ma: = 2'5’ zsmaz = ]"

To adapt the problem to the unified framework, the terminal state constraints (4.25)
and continuous state constraints (4.26) are transformed into the following terminal state
constraints:

g1 = [zi(t1) — di]? + [z2(t1) — 16))° + zs(t1)*+

+ea(t) = 24,7 + 25(11)* + 26(11)* = 0 (4.30)
g2 = w [ min{z?  — z4(t)%,0}dt =0 '
gz = w [} min{z2_ — z5(¢)?,0}dt = 0.

During actual computation, w = 5 was used. After system discretization using the Euler
method, the optimal control problem was solved using M = 90 and N, = 15. The results are
shown in figure (4.4). The terminal state constraints (4.25) as well as the continuous state
constraints (4.26) are satisfied. Note that only the states z3 and z¢ contribute to the cost
functional. The shape of z3 and z¢ strongly resembles the solution found by Goh and Teo [5].
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Parametrized Control u1[-], u2[:] State variables x1[-], x2[:]

20k 0 : .‘. ......... .....

2 4 6 8

time [s] time [s]
State variables x4[-], x5[:] State variables x3[-], x6[:]
: : . 0.05 : . . :
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o ;
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time [s] time [s]

Figure 4.4: Calculation Results Problem 4

4.5 Intermediate Conclusions

At this moment, we can draw the conclusion that the method works correctly for relatively
simple problems. The constraint transcription method and the parametrization concept have
successfully been implemented in combination with CFSQP into one software package. All
the calculations led to feasible solutions, satisfying final state constraints, interior point state
constraints, as well as hard continuous state constraints. Besides, the computational effort to
solve the problems turned out to be negligible.

Up to here, nothing has been said about the difficulties encountered during the different
optimization calculations. Very often, we came upon numerical problems, which went most of
the time together with an unexpected termination of the optimization process. However, in a
later stage, these problems proved to deal with an inaccurate implementation of the gradient
method. So, provided the user operates very carefully, the proposed algorithm works fine.

In the following chapter, a much harder problem will be tackled. The difficulty with this
problem is mainly the dimension of the system dynamics and the strong nonlinearity.



Chapter 5

The 2-link inverted pendulum

5.1 Introduction

he optimal control problems discussed in the previous chapter were all taken from liter-

ature and served mostly as test-case for the algorithm described in Chapter 2.

In this chapter, a more complex optimal control problem is tackled. The problem is well
known in the optimal control theory and is called the 2-link inverted pendulum problem.
It will be solved using the same method as in the previous chapter. The 2-link inverted

Figure 5.1: The 2-link inverted pendulum

pendulum system consists of two links attached to a trolley, which can move horizontally in
one direction under influence of a force F. The angles between link 1 and link 2 and the
vertical axis are respectively denoted as 6, and #,. The mass of the trolley is m,; and the
masses and lengths of the two links are respectively denoted as m,,m; and [,,l,. The position
of the trolley along the horizontal axis is called z,;.The whole system is considered to be free
of any friction.

The goal is simply to swing the 2 links from the stable initial state to the unstable final
state. The initial state is defined by:

8,(0) = 6,(0) = . (5.1)
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In theory there is an infinite set of feasible final states defined by:

Sf = {Ol(tf) = TL27T, 02(tf) = m27 | T, M = —00,..., —1,0, 1, .o .,+OO}. (52)
However, the standard feasible final states are:

. Bi(ty) = By(t,) = 0

[y

2. 01(tf) = 02(tf) =27
3. 01(ty) = 0and 6,(t;) =27
4. 0,(t;) =27 and 6,(;) =0

Let this set of 4 standard feasible solutions be denoted as S;. (From this point on, we shall
use the word ”solutions” in stead of "feasible final states”). The first two possible solutions
are symmetric in terms of control. The only difference is the direction of the swing: left or
right. The same can be said for the last two possible solutions. So, we can define 2 different

types:
e Type 1: the two links go the same direction: 6,(t;) = 62(t;) = 0 or 2.

¢ Type 2: the two links go the opposite direction 6,(t;) = 0, 6;(t;) = 27 or O,(t;) =
0, ol(tf) = 2T.

Solutions which do not belong to S4 are considered to be alternative. (See section 5.4)

Besides the main goal (getting the two links upwards), we want to minimize the speed
(&) of the trolley and the movement (91,92) of the two links at the final time t;. On top of
that, the final position of the trolley (z,;) must be the same as the initial one.

5.2 State-Space Description of 2-link inverted pendulum

The dynamics of the 2-link inverted pendulum can be described by the following set of dif-
ferential equations [17]:

M(8) [ ”j; ] = N(6,0,F) (5.3)
where
my + my + my (%ml + my)l; cos(6) %mzlz cos(8)
M = | (3my + my)l; cos(6;) (3m1 + ma)l} +1il5 cos(6; — 6y)
%mzlz COS(Oz) %1112 COS(02 - 01) %mzlg
and
(%ml + mz)ll sin(01) ';'mzlz Sin(ez) 0'2 F
N = 0 2malyly sin(8; — 6,) [ 0; l + | (3mq + m2)ligsin(f;)
—3mali 1y sin(6, — 6,) 0 2 2mylygsin(8;)

where g = 10 is the gravitation constant.

In order to calculate a feasible control sequence we have to describe the system dynamics
in the state-space.

Define the control variable u = F' and the state vector:

T = [xla’ . '7$6]T = [zt,ol)obit)o’l’éz]’r (54)
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We can now write:

Tq
Ts
Te

M-IN

f(ou) =i = (55)

Now the dynamics of the inverted pendulum have been described by differential equations in
a state space notation. Note that equation (5.5) contains the inverted version of the 3 x 3
matrix M. The initial state of the process is now given by

z,, = [0,7,7,0,0,0]” (5.6)
and the desired final state is equal to
T, = [0,{0,27}, {0,27r},0,0,0]T. (5.7)

The control u(t) is bounded by —F,, .., < u(t) < Fj4z-

5.2.1 Derivation of the gradients

The derivation of the gradient formulae in the case of the inverted pendulum is not trivial
and deserves some extra consideration.

The Jacobian is the matrix describing the partial derivatives of the state space equations
with respect to the state variables:

[0 O 0 1 0 0 7
g& gﬁ 0 0 0 0 1 0
Q,'& Q,.& 0 Jaz Jaz 0 Jys Jgs
8xy, °°° Owze 0 Jsz J53 0 J55 J55

| 0 Je2 Joz 0 Jes Jes

where J,,,, denotes 0f,/0z,,. These Jacobian equations are far too big to calculate manually
and thus have been derived, transformed to C-code and optimized by the software-package
MapleV3. Optimizing means here: removing redundancy, which is greatly recommended in
this case.

V. f is the vector describing the partial derivatives of the state space equations with
respect to the single control variable u:

Lt

u u

Vufz[ ...%]:[000J4J5J6] (5.9)

where J,, denotes 9f,/0u. These equations have also been derived and transformed to C-code
by MapleV3. The gradients V. f and V, f have been checked against the second-order finite
difference approximation

0/(9) , fx+0) = fx=0Q)
ax 2(

+0(¢?) (5.10)

with the optimal (,,; being €!/3, where ¢ is ten times the machine precision [3]. There were
no significant differences noticeable between the Maple-supplied gradient formulae and the
second-order finite difference approximation.
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5.2.2 The cost functional

In order to satisfy the final state constraints as best as possible, we are going to minimize the
following cost functional:

Go(u) = rau(ty)’ +&:(ty) + 61(ts)” + 65(1,)° + ' (5.11)
cos[0y(ty)][:(t )01(ts) — g] + cos[B2(2)][2:(2 )02(ts) — 9]

subject to
|w(t)| < Umaz vt € [0,%;) (5.12)

The thought behind the cost functional is to minimize the kinetic energy and to maximize the
potential energy of the final state. To limit the final position of the trolley, the term rz.(t;)?
is incorporated. The weighting factor r was during optimization equal to 1. A more sensible
method is probably to start with r = 1 and step by step decrease the weighting factor to a
negligible value.

In the absence of hard state constraints, every admissible solution is also a feasible solution.
However, we consider a solution being feasible only if the cost functional is exactly -20. Note
that this value corresponds to a final state where there is no kinetic energy, the potential
energy is maximal and the position of the trolley is z;, = 0.

5.3 Calculation results
During calculation, the different system parameters had the following values:
my = 1kg. mi=my=0.1kg. Ly =l =1m. 1<t <2 (5.13)

The choice for ¢; is based upon the mass of the trolley, the mass and length of the two links
and the fact that the whole system is free of any friction.

By using the parametrization concept of Chapter 2, we can reduce the dimension of the
problem considerably, and at the same moment, restrict the amount of computational effort.
During most of the calculations, N, was 20.

Using the Euler scheme to discretize the system dynamics, we get the following set of
difference equations:

F(z,) = 2,41 = 2 + W f(z¢, u¢) (5.14)

where ¢ € R®, u € R and ¢t = 0,1,...,M — 1. h=0.005 denotes the discretization step and
M is the number of time steps.

The initial guess u;,;(t) for the control sequence is a pseudo-random sequence, where
|%ini(t)] < Umagzini < 40 Vi € Ip_;. There are three reasons to choose a random initial
control sequence:

¢ the lack of any information about a possible feasible control.

¢ repeated runs with different initial control sequences increases the chance to find a good
minimum in the N,-dimensional space we are dealing with.

¢ a random initial control sequence leads to different types of solutions, including alter-
native ones.

Figure (5.2) shows one of the many different solutions found for the 2-link inverted pendulum
problem. The final time ¢; = 1.6s. The number of time steps is M = 320 and N, = 20.
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parametrized control [N] phaseplot theta1 — theta2 [rad]

2 4 6
time [s]
position trolley [m]

0 0.5 1 1.5
time [s]

Figure 5.2: Calculation Results using N, = 20,t; = 1.65,6(t;) = (27,0)T: 1. Piecewise
Bounded Control 2. Phase plot 3. Trolley path 4. Derivatives

As we can see, the final state constraints are all satisfied. The maximum position of the
trolley is about 0.8m. This is quite acceptable, keeping in mind that the length of each of the
2 links is 1.0m. The total length the trolley travels is about 5.0m. Note that the direction of
the swing of the 2 links is reversed: 6(t;) = (2x,0)T. This means that the solution is of type
2.

At first sight, the relation between the parametrized control variable and the position of
the trolley, looks perhaps a bit questionable. Approximately, these two variables are related
by the formula F = m,Z,. The double integrator and the influence of the two links explain
the smoothly sinusoidal path of the trolley on the one side and the piecewise constant form
of the control variable F on the other side.

It stands out that the upper and lower bounds on the control variables are not continually
reached. This phenomenon implies that the calculated control sequence is not yet optimal
and thus that the final time ¢; = 1.6 is not severe enough: the control variables do not have
to be steered out completely to satisfy the final state constraints.

However, when we reduced the time interval [0,t;] further to 1.4s and 1.2s, the optimizer
did not reach the desired cost value of exactly -20. The solutions found with t; = 1.4s were
still quite acceptable (Gy = —19,99), but we decided to consider these solutions as being not
feasible.

Figure (5.3) shows a solution of type 1: 8(t;) = (27, 2m)7. The final time is here ¢; = 2.0s.
The number of time steps is M = 400 and N, = 20. Besides the direction of the swing and
the final time t;, there is another significant difference noticeable between this solution and
the above discussed solution. The maximum position of the trolley is about 1.5m, which is
considerably larger than the earlier mentioned 0.8m. The total length the trolley travels is
about 5.5m, which is slightly more than in the type 2 solution. To keep the position of the
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parametrized control [N] phaseplot thetal - theta2 [rad]

position trolley {m) derivatives x(-),th1(—),th2(:)

0.5 1 1.5 2
time [s] time [s]

Figure 5.3: Calculation Results using N, = 20,t; = 2.0s,0(t;) = (2r,2x)T: 1. Piecewise
Bounded Control 2. Phaseplot 3. Trolley path 4. Derivatives

trolley within reasonable bounds we added the following continuous state constraint to the
system:

|z.(0)]| €1 VtelTf. (5.15)

However, this more difficult control problem led only to feasible solutions of type 2. Our
conclusion is that there are no feasible solutions of type 1, satisfying constraint (5.15).

5.4 Alternative solutions

During the search for feasible solutions to the 2-link inverted problem, we sometimes found
solutions which did not belong to S;. There appeared to be a relation between the parameter
Umas,ini and the type of solution. When the maximum bound on the initial control was made
larger, more often an alternative solution was found. In these cases, one of the 2 links turns
£540° while the other link rotates the standard +180°. The price the system pays for this
rather wild behaviour is the maximum position of the trolley, which now goes beyond 2 metres.
Strikingly was the faster convergence of these alternative solutions. It remains the question
whether this better convergence behaviour also means that these ”alternative” solutions must
all the same be considered superior in terms of optimal control. Figure (5.4) shows one of the
alternative feasible solutions.

5.5 Rate of convergence

In the previous chapters no concrete remarks have been made about the rate of convergence.
In most cases, it took no longer than a few seconds to find the optimal solution. From
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parametrized control phaseplot thetal — theta2 [rad]

time [s]
position trolley [m] derivatives x(=),th1(—),th2(:)

time [s] " time [s]

Figure 5.4: Alternative Solution, 6(t;) = (0,47)T: 1. Piecewise Bounded Control 2. Phase-
plot 3. Trolley path 4. Derivatives

computational effort point of view, the 2-link inverted pendulum problem is more demanding
than the examples of Chapter 4. However, the duration to find a feasible solution is still
quite acceptable, especially when the number of parametrized control variables N, is kept
low. Most of the optimization runs have been made on a Alpha axp 175Mhz DEC3000 work
station. A few other on a 486DX2 66Mhz (8Mb) PC. The last machine could only be used
when N, was less than 30, because of limited memory allocation.

Table 5.1: Optimization figures inverted pendulum

N, | Tterations | Computation Time
LA | | |

20 1302 25s (7m)4ge
50 1351 95s

100 1873 7m438s
200 2794 1h48m46s

Table (5.1) shows some figures of optimization runs on the Alpha processor. The time in-
terval is t; = 2.0s, the number of time steps is M = 400 (h=0.005) and the stopping criterion
is eps=1e-10. (This means that the optimization stops when the difference between 2 con-
secutive iterations is less than eps). The figures are averaged values because the convergence
of the optimization depends on the initial control, which is a random sequence. The figures
of table (5.1) represent solutions of type 1.

Every optimization used the full amount of allowed working memory of 5Mb. For this
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reason, there are no specific allocation figures included.

It turns out that the computation time grows rapidly when the number of parametrized
control variables increases. Note that the computation time for IV, = 20 is about 300 times
less than for N, = 200. For N, = 20, a comparison between the Alpha processor and the
486 can be made. The workstation turns out be about 20 times faster than the PC for this
specific problem.

Parametrized Control [Np=20] Parametrized Control [Np=50]

time [s]
Parametrized Control [Np=100]

Figure 5.5: Parametrized Control versus N,.

It appeared that using NV, = 20, led to better results than using N, = 100 or N, = 200.
The solution found by using N, = 20 was superior because of the strict piecewise constant
path of the control sequence. By using N, = 100 or 200, one increases the number of degrees of
freedom. The unpleasant consequence of this apparent advantage is the wild "high frequency”
behaviour of the calculated control sequence.

Figure (5.5) shows the relation between N, and the calculated (feasible) control sequence.
The plots correspond to the figures depicted in table (5.1). Note that the control sequence for
N, = 200 is the mirrored version of the other three plots. This is because the final state of this
solution was 6(t;) = (0,0)T, while the other three control sequences led to 6(t;) = (2r,27)T.

An example of a typical convergence behaviour of the cost functional (5.11) for type 2
solutions is depicted in figure (5.6). The convergence looks quite sound, never appearing to
swim in a local minimum. Note that the number of iterations is less than the figures depicted

in table (5.1). This is because the curves in this plot correspond to the convergence of type
2 solutions.
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Examples of typical convergence cost functional [Np=20]
5 T T T L L] 1 ]

1 ] ) i 2 : 1
50 100 150 200 250 300 350 400
Number of iterations

Figure 5.6: Ezample of convergence cost functional (type 2 solution)

5.6 The 3-link inverted pendulum

After having found mathematical solutions for the 2-link inverted pendulum, a logical thing
to do is tackling the much harder problem with 3 links. As in many other problems, the
curse of dimension applies here. However, with the aid of MapleV3, it is possible to derive
the state-space dynamics and the necessary gradient formulae.

The dynamics of the 3-link inverted pendulum are taken from [17] and can be described
by:

M(6) [ ’;‘ ] = N(6,6,F) (5.16)

where the symmetric matrix M is defined by:

m, + Ei:l my  f(mq3)l; cos(6;) f(ma 3)l5 cos(8s) f(m3 3)l5 cos(83)
M= g(my 3)l? f(ma3)lilycos(8; — 61)  f(maz)lilscos(83 — 6;)
g(ma3)l3 f(m3 3)lsl5 cos(65 — 65)
9(ma3)l3
and
f(ma 3)l; sin(6;) f(ma 3)l3sin(6s,) f(ma 3)l3sin(d;) 42
N = 0 f(ma3)lilysin(6, — 6)  f(m33)lilssin(f3 — 6,) 0;
- —f(ma 3)lyl5sin(8; — 6,) 0 f(ma 3)lalssin(83 — 0,) 03
| —f(maga)lilssin(f3 — 6;) — f(ma3)lal3sin(6; — 6,) 0 3
[ F
f(mq,3)glysin(6,)
f(ma3)glasin(62)
| f(ms3)glssin(fs)
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where g = 10 is the gravitation constant and f(-), g(-), are functions of the link masses:

flmin) = i(l - %5:,)m, (5.17)
g(miy) = %i(l ~ gét,)m, (5.18)

with 6;; denoting the usual Delta function.

The applied method to solve the problem is analogous to the approach used with the 2-link
inverted pendulum. The only difference was the dimension of the problem: the data describing
the system dynamics, the Jacobian and the gradients of the 3-link inverted pendulum, became
10 times larger. The cost functional was of the same form as (5.11).

5.6.1 Calculation results
During calculation, the different system parameters had the following values:
my=1kg. mi=my=my3=0.1kg. |y =1, =103=0.6m. t;~2s (5.19)

Note that the total length of the links (1.8 m) is a little shorter than in the 2-link inverted
pendulum problem. The total mass is almost the same. For the above reasons, the guess for
the final time ¢; was once more 2s. With a discretization step of h=.005, the number of time
steps became M = 400. The number of parametrized control intervals was N, = 25 and the
initial guess was taken random.

Parametrized Control [N] th1[-], th2[-.],th3[:] [rad]

(o] 0.5 1 1.5 2

Trolley path [m)] derivatives x(—-), th1(-), th2(-.), th3()
r : : 20 : — .

0 0.5 1 1.5 2 (0] 0.5 1 1.5 2
time [s] time [s]

Figure 5.7: Calculation results 3-link inverted pendulum: 6(t;) = (2r,2r,2x)T:

Figure (5.7) shows the results of one of the optimizations. It turns out that the desired
final state is reached and that the 3 links all go the same direction.f(t;) = (2, 2r,2r)T. The
maximum position of the trolley is 1.2m and the total length it travels is about 5.0m.
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It stands out that the bounds on the control variables are very often reached. So, in terms
of optimal control, this solution is better than the former found control sequences for the

2-link inverted pendulum, where the control bounds were less often hit.

parametrized control [N]

.......... LY

1 1.5
time [s]
Trolley path [m]

0] 0.5 1 1.5
time [s]

th1[-], th2[-.], th3[:] [rad]

20

derivatives x(--), th1[-], th2[-.], th3][:]

10

0.5 1 1.5
time [s]

Figure 5.8: Calculation results 3-link inverted pendulum: 6(t;) = (0,2r,0)”

Another feasible solution is depicted in figure (5.8). Here, link 2 rotates +180° while
the other two links turn —180°. The final time ¢; = 1.625s. As in the case with the 2-link
pendulum, this type of solution is superior because, despite the shorter time interval, the
control variables do not have to be steered out completely to reach the desired final state.
Note that the maximum position of the trolley is merely 0.6m. and that the total length of

the trolley path is about 4.1m.



Chapter 6

Terminal time free optimization

n the previous chapters only fixed terminal time optimal control problems have been solved.
The goal was simply to minimize the cost functional for a specific number of time steps
M. In many cases, however, the terminal time is not fixed and becomes a system parameter,
which has to be optimized at the same time with the cost functional. It will be clear that
these terminal time free optimization problems are much harder to solve than the terminal
time fixed versions.
When the terminal time M is left free, we can distinguish 2 different kinds of problems:

o the time-optimal control problem
o the time-minimal control problem
Before we proceed, we make the following assumptions for time-optimal control problems:

e we only consider regular cost functionals of the form:

M-1

Go = [z(M)]["Rlz(M)] + 3 [=(0)]" Qlz(t)] + [u(t)]" Plu(t)] (6.1)

t=0

where Q > 0 or P > 0.

o the cost functional G, is a function of the number of time steps M.
Go=GM), M = Mp,...,Mp,...,00 where M,,;, is the minimal number of time
steps for which a feasible solution can be found and G(M,,) is the solution for the

time-optimal control problem. M,;n < Moy

o G(M)is convex. Thus there is only 1 global minimum. In this minimum M is equal to
M,p;.

This last assumption is based on 2 thoughts:

1. for M < M,,,, the system needs much energy to satisfy all the present state constraints,
yielding to a large X-term.

2. a regular cost functional has the property to grow when the number of time steps
increases.
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Note that M,,;, corresponds with the time-minimal problem and a much simpler cost

functional of the form:
M-1

CMpmin = 2 1 (6.2)
t=0

It is rather difficult to describe the concept time-optimal in a non-mathematical context.
We make the assumption that for each element in a given range of time steps the cost func-
tional has been minimized. So, we have a whole set of minimized cost functionals, each
belonging to a certain number of time steps M. The time-optimal solution is now the number
of time steps and the corresponding control and state sequence for which the minimized cost

functional is overall minimal.

G(M)

T
|
i
|
)
I

M min M opt M

Figure 6.1: Minimized Cost functional vs M

The above can perhaps be made more clear by figure (6.1). It turns out that the time-
optimal solution actually corresponds to the minimum of G(M). In other words, we are
looking for the number of time steps M, where

IG(M) _
= 0 (6.3)

One may ask whether it is possible to extend the method of Chapter 2 by incorporating the
extra gradient (6.3) into the gradient algorithm. Indeed, this is possible but, for adding this
feature, the algorithm should be converted drastically. What is left for us, is a repeatedly
optimization process, each time for a different number of time steps.

In this chapter, a simple but effective heuristic to find the time optimal solution will be
presented. No attention will be paid to the time-minimal problem.

6.1 Description of the time-optimal search algorithm

In this section the searching algorithm for the time-optimal solution will be explained. One of
the aspects with these terminal time-free optimization problems is that the user often does not
have knowledge about the minimal amount of time M,,;, a dynamical process needs to make
a specific state transition, satisfying all the present constraints. That is why the algorithm
has two stages. During the first stage the number of time steps is increased until a feasible
control sequence is found. Next, using a pseudo binary search heuristic, the optimizer tries
to find the optimal number of time steps M,,.
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During this first stage the number of time steps M is increased with a certain stepsize until
a feasible solution is found. Feasible means here: satisfying all the constraints with a precision
chosen by the user. The decision whether a control sequence generated by the optimization
software package CFSQP (1] is feasible is thus made by the user. This is because CFSQP
considers a control sequence only being feasible if an iteration process is ended successfully,
which means that there may not have been any irregularities during the iteration process. If
the final control sequence satisfies all the original constraints but the iteration process was
prematurely stopped, CFSQP considers the iteration as being unsuccessfully terminated.

The search for the optimal number of time-steps is a rather difficult task because during
the search there is no information available about the derivative of the cost functional with
respect to the number of time-steps. The number of optimization calculations is tried to
be kept as low as possible by using a pseudo ”binary-search” algorithm. One of the most
important requirements is to avoid double optimization, which means calculating the function
G(M) twice at the same number of time steps.

Assuming the cost functional (6.1) is a convex function of the number of time-steps, the
heuristic can roughly be summarized as follows:

1. M=MStart;
wvhile{(not feasible) {
M=M+Step;
Optimize G(M)

}

2. Mopt=M;
LM=Mopt-Step; /* lower bound M */
UM=MaxM; /* upper bound M */

3. M=(Mopt+LM)/2;
Optimize G(M);
if G(M) <= G(Mopt) {
UM=Mopt;
Mopt=M;
}

proceed with 3.
else LM=M;

4. M=(Mopt+UM)/2;
Optimize G(M);
if G(M) <= G(Mopt) {

LM=Mopt;
Mopt=M;
}
else UM=M;

proceed with 3.

The above algorithm can be considered as a moving M-window, getting smaller each time a
better solution has been found, eventually leading to the optimal number of time steps Mopt.
Note that no information is displayed about stopping criteria. This is left to the user.
When a better solution is found, the algorithm first tries to find a more optimal solution
at (Mopt+LM)/2. Only if this try turns out to be unsuccessful, a new optimization is done
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at (Mopt+UM)/2. Thus this algorithm has the preference to search in the negative direction
with respect to the number of time steps. This is because a standard cost functional usually
increases when the number of time-steps becomes larger.

An real example of the relation between M and Gy is calculated on the basis of the
following problem:

M-1
minGy = Y 2,(t)” + z5(¢)* + 0.005u(t)?, (6.4)
i=0
subject to
zo(t+1) = 0.98z,(t) + 0.02u(t) )
where the initial state is defined by
The terminal state and continuous control constraints are given by:
z(M) =0, zo(M)=-1 and |uw(t)|<5 Vi€ Iy, (6.7)

Minimized Cost Functional u(t) [-1, x1(t) [:] and x2(t) [——1]
100 T T T T T 6 T T

R

g5

90

85

80

75

70

65

60

e : ; :

i i i
50 100 150 200 250 10 20 30
M discrete time [M=37]}

55 i

Figure 6.2: left: Cost functional G(M). right: State and Control trajectories for M, = 37

The left plot in figure (6.2) shows the relation between the minimized cost functional (6.4)
and the number of time steps M. It turns out that, the assumption of the function G(M)
being convex, is correct for this specific control problem. The minimum value for (6.4) is
57.05 for M = 125. For M < 37, no feasible solutions were found.

In the right plot of figure (6.2), the control sequence u(t) and the feasible state trajectories
z1(t), z2(t), are depicted for M = M,,;, = 37. Note that the bounds on the control variables
are still not continually reached. This phenomenon implies that this control sequence is not
the solution for the time-minimal problem. This can probably explained by the presence of two
contradictorily purposes: the minimization of the cost functional (6.4) and the diminishing of
the number of time instants, resulting in an increase of (6.4). Besides, one must realize that
each optimization for a certain number of time steps, remains a non-convex problem.



Chapter 7

Conclusions & Recommendations

he following conclusions can be drawn:

o A general constrained optimal control problem can be transformed into a mathematical
nonlinear optimization problem. The gradients for this nonlinear optimization problem
are derived using the Hamiltonian for each canonical functional.

e The optimization package CFSQP appears to be suitable for solving the nonlinear op-
timization problems.

o Representing individual controls over a number of time steps by a single parameter
greatly reduces the number of decision variables in problems with a large number of
time steps. In this way, the computational effort to solve optimal control problems is
strongly restricted.

e It is sensible to start an optimization with a small number of parametrized control
variables and gradually refining the grid (if needed).

¢ The constraint transcription method makes it possible to handle continuous hard state
constraints quite easily.

e The implementation of the gradient formulae into the optimization package CFSQP
remains a non-trivial issue. Therefore, a user-friendly environment is difficult to develop:
each individual problem still needs a specific approach.

e A simple but effective terminal time free optimization heuristic has been developed.

¢ The software package MapleV3 proves to be useful for the derivation of the gradient
formulae in complex problems.

o For the N-link inverted pendulum problem, mathematical suboptimal solutions have
been found for N =2 and N = 3.
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The recommendations are:
s Development of an user-friendly environment for control optimization package.
¢ Incorporation of more accurate explicit discretization schemes like Adams-Bashforth.

¢ Improving the time-optimal search algorithm by using the Fibonacci search method.

Development of a more sophisticated terminal time free optimization algorithm. There-
fore, the extra necessary condition (6.3) for a time optimal solution must be incorpo-
rated.

Development of a continuous-time version.

Design of a state-tracking controller for the 2-link inverted pendulum problem. The
mathematical solutions presented in this report could possibly serve as reference signals.



Appendix A

CFSQP-implementation of the
inverted pendulum problem

This appendix contains the source code of the CFSQP-implementation of the 2-link inverted
pendulum problem discussed in Chapter 5. For brevity, only the most important declarations
and functions are given.

For further details of CFSQP I refer to the User’s Guide [1]

[H=mmmmmmmmm e User Supplied Constants---------=--=----- */
#define M 400 /* number of time steps */

#define h .005 /* discretization step */

#define Np 20 /* number of control parameters =

number of programming variables */

#define MaxIt 2000 /* maximum number of iterations */
#define Tries 10 /* number of optimizations =
number of random initial guesses */

#define e le-3 /% constraint transcription parameter */
#define Pi 3.14159265358979e0;

#define MaxF 40 /* maximum allowed force on trolley */
#define Maxx i /* maximum position”2 trolley */
[Hmmmm e Constants describing Cost functional--------- */
#define CON1 pow(x1[M],2)

#define CON2 cos (x2[M])* (x4 [M]*x5[M]-10)

#define CON3 cos(x3[M])* (x4 [M]*x6[M]-10)

#define CON4 pow(x4[M],2)

#define CONS pow(x5[M],2)

#define CONG6 pow(x6[M],2)
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#define COSTF CON1+CON2+CON3+CON4+CON5+CON6

[k m—m—— Partial derivatives dCost[M]/dx[M]------ */

#define CON1D 2%x1[M]

#define CON2D -sin(x2[M])*(x4[M]*x5[M]-10)

#define CON3D -sin(x3[M])*(x4[M]*x6[M]-10)

#define CON4D 2%x4 [M] +cos (x2[M]) *x5 [M] +cos (x3 [M] ) *x6 [M]
#define CONSD 2*x5[M] +cos (x2[M]) *x4 [M]

#define CON6D 2%x6 [M]+cos (x3[M] ) *x4 [M]

Y R CFSQP procedures--------=-====-=-=--—------- */

void cost();

void constr();
void gr_cost();
void gr_constr();

void Initial_Control();
void Initial_State();

void Set_Grid(); /* sets grid parameters */

void Dynamics(); /* discrete dynamics */

void Fx(); /* continuous dynamics */

A R Procedures concerning Gradients---------- */

void EvalGradients();
void Costates();
void Jacobian();

double *x1,*x2,%*x3,%*x4,*x5,*x6;
double *cl,*c2,*c3,%*c4,*c5,*c6;

[*-mmmmme- Grid vector------------- */
int Mp[Npl;
R Maple generated procedure variables------------ */



int
main() {
int i,nparam,nf,nineq,neq,mode,iprint,miter,neqn,nineqn,
ncsrl,ncsrn,nfsr,mesh_pts[1],inform;
double bigbnd,eps,epsneq,udelta;
double *x,*bl,*bu,*f,*g,*lambda;
void *cd;

mode=100;

iprint=52;

miter=MaxIt;

bigbnd=1.e10;

eps=1.e-10;

epsneq=0.e0;

udelta=0.e0;

nparam=Np;

nf=1;

neqn=0,;

nineqn=1;

nineq=1;

neq=0;

ncsrl=ncsrn=nfsr=mesh_pts[0]=0;

bl=(double *)calloc(nparam,sizeof(double));
bu=(double *)calloc(nparam,sizeof (double));
x=(double *)calloc(nparam,sizeof(double));
f=(double *)calloc(nf+1l,sizeof(double));
g=(double *)calloc(nineq+neq+1,sizeof (double));
lambda=(double *)calloc(nineq+neq+nf+nparam,sizeof(double));

----------

for(i=0;i<Np;i++) bl[i]=-MaxF; bl[Np-1]=-1e-6;
for(i=0;i<Np;i++) bul[i]= MaxF; bu[Np-1]=1e-6;
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Set_Grid();
Initial_State();

for(i=0;i<Tries;i++){

Initial_Control(x);

Dynamics(x);

cfsqp(nparam,nf,nfsr,nineqn,nineq,neqn,neq,ncsrl,
ncsrn,mesh_pts,mode, iprint,miter,&inform,
bigbnd,eps,epsneq,udelta,bl,bu,x,f,g,
1ambda,cost,constr,gr-cost,gr_constr,cd);

PrintInform(inform,i);

PrintDyn(x);

}

e End Calculation------------=------ */
free(bl);............ free(c6);

return 0;
}

e CFSQP functions-------------~---- */

void cost(nparam,j,x,fj,cd)
int nparam,j;
double *x,*fj;
void *cd;
{
int i;
if(x_is_new) { /* x_is_new is set by CFSQP whenever */
Dynamics(x); /* the decision variables change */
X_is_new=FALSE;
}
*£j=COSTF;
return;

}

void

gr_cost(nparam, j,x,gradfj,dummy,cd)
int nparam,j;

double *x,*gradfj;

void (* dummy)();

void *cd;

{

int i,1;
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double GCost[3];

if(x_is_new) {
Dynamics(x);
x_is_new=FALSE;
}

Costates(0,x); /* Calculate Costates Cost functional */

for(1=0;1<Np;1++) {

/*

Calculate Gradient Cost Functional for

each parametrized Control interval (= sum of individual gradients)
*/

}

return;

}

void constr(nparam,j,x,gj,cd)
int nparam,j;

double *x,*gj;

void *cd;

{

int i;

double C,Csum;

if(x_is_new) {
Dynamics(x) ;
x_is_new=FALSE;

}

/*
Define and Calculate continuous state inequality constraint.
(Transcripted and smoothed )

*/

return;

}

void

gr_constr(nparam, j,x,gradgj,dummy,cd)
int nparam,j;

double *x,*gradgj;

void (* dummy)();

void *cd;
{
int i,1;

double GCon[3];
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if(x_is_new) {
Dynamics(x);
X_is_new=FALSE;

Costates(1,x); /* Calculate Costates Constraint */

for(1=0;1<Np;1++) {
/*x

Calculate Gradient canonical Constraint Functional for
each parametrized Control interval (= sum of individual gradients)

*/
}

return;

void Initial_State()

{
x1[0]=x4[0]=x5[0]=x6[0]=0.000;
x2[0]=x3[0]=Pi;
return;

}

void Initial_Control(double *x)

{

int i;

randomize() ;

for(i=0;icNp;i++) {
x[i]=random{10000)MaxF;
if((random(2)¥%2)==1) x[i]=-x[i];

}

x[Np-1]=0;

return;

}

void Set_Grid()
{

int i;

for(i=0;i<Np;i++) Mp[i]l=(int)floor((M/Np)*(i+1));

return;

}

void Dynamics(double *x)



{
int i;
double k1[6];

for(i=0;i<M;i++) {
/* Calculate Continuous Dynamics */
Fx(k1,x2[i],x3[i],x4[i],x5[i],x6[i],x[(int)floor((i*Np)/M)]1);
/* Calculate Euler Discretized Dynamics */

x1[i+1]=x1[i]+h*k1[0];

x2[i+1]=x2[1]+h*k1[1];

x3[i+1]=x3[i]+h*k1[2];

x4[i+1]=x4[i]+h*k1[3];

x5[i+1]=x5[i] +h*k1[4];

x6[i+1]=x6[i]+h*k1[5];
}

return;

1

void Fx(F,s2,s3,s54,s85,s86,u)
double
Fl6],s2,s3,s4,85,s6,u;

{

/* Maple supplied differential equations */

¥

void EvalGradients{(Gradient,s2,s3)
double

Gradient[3],s2,s3;

{

/* Maple Supplied Gradients */

return;

void Costates(int cosn, double *x)
{

int i;

double C,smgr,J4[4],J5[4],J6[4];

/*
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Define terminal time Costates c1[M]..c6[M] for
Cost Functional (cosn=0)
Constraint Functional (cosn=1)

*/
for(i=M-1;i>=0;i--) {

/* Calculate Jacobian */

Jacobian(J4,735,36,x2[i],x3[i],x5[i],x6[i],x[(int)floor((ixNp)/M)]1);

/*
Calculate Costates for
Cost Functional (cosn=0)
Constraint functional (cosn=1)
x/
}
return;
}

void Jacobian(J4,J5,J6,82,s3,s5,86,u)
double

Ja[4],35(4],36[4],

s2,s3,s85,s86,u;

{
/* Maple supplied expressions concerning Jacobian. */

return;

}
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