
 Eindhoven University of Technology

MASTER

Method for optimisation of mobile and wireless transceiver design

Duric, H.

Award date:
2002

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/001286cf-3968-4f81-b81a-28791b1b7a62

TU/e technische universiteit eindhoven

Department of Electrical Engineering
Division of Telecommunication Technology and Electromagnetism

Method for Optimisatioll
of Mobile and Wireless

Transceiver Design

By Haris Durie

Master's thesis report
Master's thesis performed from
Master's thesis performed at
Master's thesis supervised by

February 4th to November 29th 2002
Philips Semiconductors Systems Lab Eindhoven
prof.dr.ir G. Brussaard, TU/e
ir. M. Vlemmings, PS-SLE

The department of Electrical Engineering of the Eindhoven University of Technology disclaims all responSibility
for the content of traineeship and graduation reports.

Summary

In recent years, number of devices incorporating a telecommunication link has increased
drastically. There is still an increase of mobile and wireless applications within new, dynamic,
telecommunication markets. At the moment, the development of a radio frequency integrated
circuit (RF-IC) can easily take up to two or three years, which has become unacceptable, both
in duration and expenses. Currently, at the Philips Semiconductors Systems Lab Eindhoven,
a new approach to the design of RF front-ends is being developed. Instead of making
dedicated solutions, as up to this moment was the case, a set of standardised and
configurable building blocks will be introduced. This will shorten the time-to-market and also
increase the reuse of the intellectual property (IP), however, at the cost of higher power
dissipation and larger chip areas. The targeted demonstrator is a transceiver compliant to the
IEEE 802.11a standard, a wireless local area network (WLAN) standard that is situated in 5 GHz
frequency band.

One of the first steps in the development of an RF platform is the choice of the transceiver
architecture and the building block partitioning. Each building block will have up to two
adjustment inputs, voltage or current controlled. By varying these inputs, the performance of
the building blocks can be changed. This performance will be fully characterised as function
of the adjustment inputs and stored in the measurement tables. For given product
specifications, an optimising routine will have to find the optimum composition of the
building blocks and their optimal adjustment settings.
The design of the optimisation method is the subject of this Master's thesis as a part of the
author's study at the Department of Electrical Engineering at the Eindhoven University of
Technology. During the Master's thesis the modem transceiver architectures and the system
design parameters have been studied. As a result, a number of the parameters quantifying
the amplification, noise, non-linearity and power dissipation have been identified as the
parameters to be used for the system optimisation.
Based on the system architecture, a system model has been determined. The relationship
between the performance of the individual building blocks and the total system performance
is defined by the system equations.
The cost function determines the optimum compromise between the system parameters. As a
result of this work, a cost function has been designed to translate the relative importance of
the system parameters into a mathematical function. To find the optimum system
performance, the cost function is minimised.
Several optimisation techniques have been studied, of which two were selected for
implementation and brief comparison: Genetic Algorithms and Differential Evolution (DE).
The DE has been improved for this problem and built into a RF system optimisation tool. The
experimental results in MATLAB have proven the feasibility of the optimisation of the
receiver chain of million operating points within a few seconds of calculation time.
In future, the system calculations could be further extended by using more advanced
modelling and including the effects of imperfections, such as the local oscillator (LO) phase
noise.

3

Preface

This report describes the work I performed during my Master's thesis at the Philips
Semiconductors Systems Lab Eindhoven (PS-SLE). A new approach to RF transceiver design
and the challenging optimisation tasks have appealed to me from the beginning. The mixture
of disciplines has offered me a chance to improve my abilities in conducting a project that
combines RF system design, telecommunications, optimisation techniques and computer
science.
I appreciate the support of many people without whose help I could have never finished this
thesis. First of all I would like to thank professor Brussaard for his frequent visits here at the
SLE and his interest in the work I was doing. Many thanks I own to Marc Vlemmings for his
excellent supervision and readiness to assist me whenever I encountered problems.
Furthermore, frequent discussions with Martin Bamasconi, Tom Buss and Amo Neelen have
lead to some fruitful ideas, which have helped me in determining the directions of the project.
Finally, I would like to thank all the other colleagues who have made my stay at the SLE a
pleasant time.

Haris Duric
Eindhoven, November 29th 2002

5

Contents

SUMMARy 3
PREFACE 5
CONTENTS 7
1 INTRODUCTION 9
2 MODERN TRANSCEIVER ARCHITECTURES 13

2.1 Heterodyne Receiver 13
2.2 Zero-IF Receiver 14
2.3 Near-Zero IF Receiver 14

3 BUILDING BLOCK PARTITION 15
3.1 Building Block Measurement Parameters 16

4 MODELS AND SYSTEM CALCULATIONS 19
4.1 Gain - Noise Model 19
4.2 Non-linearity Model 19

4.2.1 I-dB Compression Point (PIdB) 20
4.2.2 Second Order Intercept Point (IP2) 21
4.2.2 Third Order Intercept Point (IP3) 21

4.3 VCO-PLL Model. 22
5 OPTIMISATION PARAMETERS AND THE COST FUNCTION 25

5.1 Optimisation Parameters 25
5.2 Cost Function 26

5.2.1 Constraint Function 29
5.2.2 Cost Function Biasing and Normalising 30

6 TIME COMPLEXITY ESTIMATION 31
7 OPTIMISATION TECHNIQUES 35

7.1 Optimisation Basics 35
7.2 Classification ofTechniques 36

7.2.1 Algorithm Selection Criteria 36
8 GENETIC ALGORITHMS 37
9 DIFFERENTIAL EVOLUTION 43

9.1 Discrete Differential Evolution 44
9.1.1 Boundary Constraints Handling 46

10 IMPLEMENTATION 47
10.1 Implementation ofthe Genetic Algorithm 47

10.1.1 Reinsertion and Elitist Strategy 49
10.1.2 Termination of the GA 50

10.2 Implementation ofthe Differential Evolution Algorithm 50
10.2.1 Influence of the DE Control and Strategy Parameters 56
10.2.2 Termination of the DE 56

10.3 Discussion on GAs and DE 57
11 RF SYSTEM OPTIMISATION TOOL 59

11.1 Model ofthe Optimisation Tool.. 59
11.1.1 The User Input 60
11.1.2 The Optimiser 61
11.1.3 The Library 61
11.1.4 The Output. 62

11.2 An example: IEEE 802.11a Receiver Optimisation 62
11.3 Performance ofthe Method 64

7

8

12 CONCLUSIONS 65
12.1 Conclusions 65
12.2 Recommendations 66

APPENDIX A DERIVATION OF CASCADED I-DB COMPRESSION POINT, 2ND
_ AND 3RD

ORDER

INTERCEPT POINT 67
APPENDIx B FLOWCHARTS OF GENETIC ALGORITHM AND DISCRETE DIFFERENTIAL

EVOLUTION ALGORITHM 75
APPENDIx C SYSTEM CALCULATIONS 77
APPENDIX D GRAPHICAL OUTPUT 79
APPENDIX E REFERENCES 81

1
Introduction

Recently, much effort has been put on the integration of the telecommunication front-ends.
For a semiconductor company to follow the large market request in shortening the time-to
market constraint for new products, a systematic design methodology has to be followed,
starting form top-down design followed by a bottom-up verification [11].

At Systems Laboratory Eindhoven, department of Philips Semiconductors, a project
designated 'RF Platform' has been started to meet these needs. The idea is to define and make
a set of reusable building blocks, each representing a certain function. One should think of a
low noise amplifier (LNA), a mixer, a frequency synthesizer, a variable gain amplifier (VGA) or a
further integration of few of these functions as an example of a building block. A platform
will be defined where these building blocks are combined into a system at higher abstraction
leveL An RF front-end, which is a part of every transceiver, is an example of such a high-level
functionality. By introducing this platform, a generic front-end will be introduced.

The building blocks will be made such that it will be possible to tune their performance.
Instead of a dedicated solution, the building blocks will be adjustable, covering a range of
operating points.

The RF platforms project could be split into three major parts:
1. Mapping of the standard specifications to the building block specifications.

Specifications of popular wireless and mobile standards can be projected to a
multidimensional axis, where the extremes span the maximum design space. Examples of
the quantities among the axes are frequency, temperature, bit error rate, maximum
transmitter power, receiver sensitivity, etc. It will not be possible to cover this entire space
with one set of building blocks.

8 Building Block Partitioning and specification

BB subspace's BB spee's

~
~

IEEE 802.l1a ~

Platfonn Specification Cloud

Figure 1: From the 'Platform Specification Cloud' to the building block
specifications

9

Obviously, the different frequency allocations of different systems with their physical
bandwidth limitations would not allow for such a wideband operation. The challenge is
then to split the design space into a minimum number of building blocks that will be able
to cover the entire space.

Figure 1 depicts this process. The entire design space is split into building block
subspaces. Each subspace is than split into a number of different building block
specifications. The building blocs will be configurable so they will not represent one
solution, a point in space, but will be able to move within a subset of solutions.

2. Designing, manufacturing and characterising the building blocks.
Second trajectory is to actually design and manufacture the building blocks. The
performance of each building block will be made adjustable by two inputs. Afterwards,
the blocks will be measured and their performance will be fully characterised as a
function of the adjustment inputs.

o Circuit and Ie design, manufacturing and characterisation

ILNAMLXI I ~

l LNA_MIX2 1 Circuit and
IC Design

I LNA_MIX3[~

c:=J ~
Circuit and

8
IC Design

~

:. Production and
-~. Charactersation

~ Production and
-~,. Charactersation

RF Plattonn

I n

••••••I-••••••••••••••••

Figure 2: From the building block specifications to the building block die's

3. Optimisation of the system for a specific telecom standard and the verification of the
performance.
When a real-life system with defined specifications needs to be made, the optimum
composition of the building blocks for that particular system must be determined. The
building blocks are adjustable, so the optimum setting of the adjustment inputs has to be
found. This graduation project concentrates on the optimisation part of this third
trajectory, including the system modelling and system calculations. A time effective
method needs to be found for finding the optimum system and its optimum operating
point out of a huge number of alternative systems.
In a later stage, the system will need to be assembled and the performance, as predicted
by the optimisation method, needs to be verified.

10

oBuilding block selection, system optimisation and verification

RF." _'''M/ M,__,
Performance parameter

I Pl~t~~=___ :~"m,:: Gam NF IF3 etc

47.2 32 -13.2

0.2 04 47.7 32 -145••• / 0.2 0.6 494 3.3 -14.6••••I_
eto etc

•••• ~••••••••••• OPTIMISER

lr
System product specifications

~ RX--",,--UQ
T< ----H-.- UQ

Verification

Figure 3: From die's to the optimal front-ends

11

2
Modern Transceiver Architectures

The task of the radio frequency (RF) part of the transceiver is to convert the antenna radio
signals down to baseband and vice versa. The receiver part of the front-end is responsible for
filtering, amplification and down-conversion, where the unwanted signals are suppressed
and the wanted signals are amplified to a sufficient signal-to-interference (S/I) level and
converted to sufficiently low frequencies to be sampled by a AID converter.

Nowadays, most standards use digital modulation techniques where the actual modulation
and demodulation is carried out by means of digital signal processing. If a form of quadrature
modulation scheme is used, there is a need for distinguishing the in-phase (I) and quadrature (Q)
parts of the signal since they are carrying different information.

In this chapter, only the receivers will be described since the transmitters basically perform
the inverse operations.

2.1 Heterodyne Receiver

This classic receiver architecture is characterised by down-converting the signals in two steps;
first form RF to some convenient frequency band, called the in termediate frequency (IF) band,
and then from IF to baseband. This allows for extra filtering and amplification stages, which
improve the signal quality but also increase the receiver's complexity and costs.

RF input

RF-VCO

Figure 3: Heterodyne receiver architecture

I1Q down-mixer

The receiver can be operated in two modes: high-side and low-side injection, referring to the
position of the local oscillator (La) frequency with respect to the receive band. The principle of
the high-side injection is depicted in Figure 4.

The IF band is situated aroundjjF = !w,RF - !RF. The transfer, IHBPF(fJi, of the input band-pass
filter (BPF) is also shown in Figure 4. The wanted signal, atjjF, may be corrupted by the image
signal, tmag., if the image is not suppressed enough by the BPF. The down-converted part of
the image signal, conform jjF = tmage - !w,RF, is then superimposed on the down-converted
wanted signal.

13

PSD [dBlHz]

..... -
...........-....

fW,lF

Figure 4: Power spectrum of heterodyne receiver

2.2 Zero-IF Receiver

...
'"

fLO,RF image f [GHz]

This homodyne receiver architecture, shown in Figure 5, is basically the same as the
heterodyne receiver with the difference that the down-conversion is performed in one step
from RF to baseband. That is why it is often referred to as direct conversion receiver.

RF input

BPF LNA

Q

VGA LPF
IIQ down-mixer

Figure 5: Homodyne receiver architecture

The receiver principle is shown in Figure 6. The image frequencies are located at 2 . tw.
Usually, these frequencies are far in the spectrum and are suppressed enough by the BPF, so
they do not corrupt the wanted signaL

PSD [dB/Hz]

....... -_-_ .. --
--

......................
---- .. ------------

fLO

Figure 6: Spectrum of homodyne receiver

2.3 Near-Zero IF Receiver

f [GHz]

Another important direct conversion receiver also uses homodyne architecture [5], as shown
in Figure 5. The tw is generally slightly higher or lower than the RF band, which is converted
in one step to the baseband, asymmetrical to the DC. The frequency offset is compensated
and I/Q signals are restored by means of digital signal processing.

14

3
Building Block Partition

The architecture of choice for the RF-platforms project is the Zero-IF architecture for the
receiver and the transmitter. A study has been performed where decisions were made for the
architecture [17] and the building block partitioning. Both, they influence the modelling of the
receiver and the transmitter chains and therefore are of interest for this thesis.

The building blocks have been partitioned according to their functions, physical position,
semiconductor process technology, etc., basically using the following criteria [18]:

1. Full-duplex operation possibility.
2. Process technology aspects.
3. Reuse and flexibility.
4. Parasitic effects (crosstalk, pulling) and temperature effects.
5. Superheterodyne architecture should not be excluded.
6. Number of interconnections between blocks.

This has lead to division of the front-end into following five building blocks:

1. LNA - mixer
This building block will combine the LNA, frequency divider with 0° and 90° phase
outputs and the balanced I/Q mixer.

2. VeO-PLL
This building block includes the voltage-controlled oscillator (VeO) together with the
phase lock loop (PLL) circuitry.

3. IF - baseband
This building block contains the VGA and baseband filters in the receiver path and
amplifiers and filters in the transmitter path.

4. Upmixer - driver
This building block combines the up-mixer and the driver for the power amplifier (PA).

5. Power Amplifier
This building block contains the PA and the filter.

The transceiver architecture and building block partitioning are shown in Figure 7.

15

Rx

Ix

Q

Q

Figure 7: The RF-platform transceiver architecture

Each building block will have up to two adjustable inputs that can be used to tune the
performance (not shown in Figure 7). The IF-baseband building block will be physically one
block, but the receive-and transmit - circuitry will each have their own inputs.

In continuation of this thesis, the building blocks will be regarded as black boxes since their
specific content is not important for this work. Their performance will be measured and
therefore their behaviour will be known.

3.1 Building Block Measurement Parameters

After the specification, circuit design, Ie-layout and manufacturing steps, the building blocks
will be fully characterised and their performance will be stored in measurement tables. Since
there are two inputs per building block, denoted Xl and X2 in Figure 8, each varying in ten
steps, there will be 100 different operating points per building block. The RF in and RF out
simply indicate the signal flows and do not necessarily represent asymmetrical terminals. The
adjustment inputs can be either voltage or current controlled.

RFin Building
Block

RFout

Figure 8: Building block abstraction

16

The VCO-PLL building block is different in the way that it has DC-in and RF-out terminals.
What is of interest for this thesis is the influence of the building blocks in the signal path. In
section 4.3 it will be discussed that the VCO-PLL may as well be represented by Figure 8.

The choice of the measurement parameters has influence on the system optimisation. A
minimum set of mutually independent parameters is required. How the different parameters
influence the system performance and what their choice is based on, will be discussed in
chapters 4 and 5.

The parameters to be measured are (except VCO-PLL):
1. Gain (G)
2. Noise Figure (NF)
3. Input-referred I-dB compression point (IPIdE)

4. Input-referred 2nd order intercept point (IIP2)
5. Input-referred 3rd order intercept point (IIP3)
6. DC current consumption (IDe)

Figure 9 shows an illustration of the (hypothetical) building block parameters as a function of
the adjustment inputs Xl and x:.

Figure No. I ' :.~

Be ~dit Ilie'" Insert 10015 Wjndow t!.elp
~~r-;·

Figure 9: Example of the building block parameters as
function of adjustment pins (not to scale)

A unique combination of Xl and X2 denotes an operating point. So at each operating point, a
vector of nparam parameter values is appointed.

(1)

At the present there are six parameters to be measured. A vector, e.g. (2,5)T, as shown in
Figure 9, points to a 6-dimensional building block parameter vector, which describes the
performance at that operating point.

17

4
Models and System Calculations

A telecommunications system is often composed of several stages in cascade. To be able to
predict and analyse the total equivalent system behaviour, system calculations are done.

4.1 Gain - Noise Model

An RF component may be modelled as a black box with a certain power gain and circuit
generated noise density N, as shown in Figure 10.

Ni

Figure 10: The gain-noise model

No=Ga Ni +Nn

The total noise power density at the output of the component is the sum of the input noise
power density No multiplied by the power gain Ga, and the noise introduced by the circuit.

No = Ga . Ni + Nn [;:J (2)

The noise factor F is defined as the ratio of the input-referred noise density to the thermal
noise density at the input of the device, at temperature of 290 K.

No Nn
F= =1+

Ga·Ni Ga·Ni

Widely used is the noise figure, which is the noise factor in units of dB:

(3)

NF =10 ·log(F) [dB] (4)

The equivalent noise figure of N cascaded stages is given by the well-known Friis equation,

(5)

4.2 Non-linearity Model

A problem with wireless and mobile applications is when a link is calculated, the exact
magnitude of the signals is not known. Because the distance between the transceivers is
variable, the received power can vary strongly while the receiver should be able to handle all
these signal levels. If the receiver is too close to the signal source it could be driven into non
linear operation where harmonic distortion and intermodulation products are produced.

19

An RF component may be modelled by the following expression,

00

y[x(t)] = /31 .x(t) + 'LfJ; .[x(t)];
;=z

where x(t) is the input waveform and B; is the coefficient for the lh order non-linearity.

(6)

There are three commonly used linearity measures, I-dB compression point (P ldB), second order
intercept point (IP2) and the third order intercept point (IP3).

4.2.1 1-dB Com pression Point (P1dS)

The I-dB compression point of a gain stage is defined as the input power level at which the
power at the output of the stage, Po, has degraded by 1 dB respective to the linear output.
This is shown in Figure 11. PIdB is often used as a measure of maximum applicable input
signal.

Pou,[dBm]

()P
1dB ~------------~-~~~~~~~~~~~~~~~~~I~.l ci~

Po

Figure 11: I-dB compression point curve

It is desirable to predict the equivalent system P idB by using only the individual PidB'S of each
stage and their respective gains. The linear power level, i.e. not in dB, at the input of N stages
at which the system is at I-dB compression is given by

1 1 Gal Ga[Gaz GaIGaZ ..GaN _I-- = ----- + + + ... + --=----='"-----'''-'-

ipldB iPldB,1 iPldB,Z iPldB,3 iPldB,N
[~] (7)

were Ga is the small-signal gain (and not the large signal gain which is 1 dB lower at PidB).

For this thesis a convention is introduced: uppercase symbols, e.g. JP ldB, are used to denote
the values in dB's and lower case, ipldB, are representing the linear values. This is different for
the gain where the gain in dB is represented by symbol G, and its linear value by Ga. NF is the
noise figure in dB and F is the linear value. The relationships between the dB and the linear
values can be found in Appendix C.

The derivation of equation (7) is based on the assumption that all the individual building
blocks as well as the entire system can be modelled by the cubic non-linearity. The derivation
can be found in Appendix A.

20

The relationship between the input and the output PIdE is given by

0PldB = Ga . iPldB [W] (8)

4.2.2 Second Order Intercept Point (IP2)

The second-order intercept point is an imaginary point that is obtained by the extrapolation
of the second-order intermodulation curve to the point where it intercepts the linear curve,
shown in Figure 12.

P
OUI

[clBm]

DIP2

I "I ,
I ,
I'

t---------;1.'

IIP2 Pin [clBm]

Figure 12: Second order intercept point

The following relationship allows for predicting the magnitude of 2nd order intermodulation
products at the output of a stage for a given signal magnitude at the input.

OIM2 = 2 ·Po-OIP2 [dB] (9)

The equivalent system input-referred IP2 of N cascaded stages can be calculated from

The relationship between input and output IP2 is given by

(10)

oip2 = Ga· iip2 [W] (11)

4.2.2 Third Order Intercept Point (IP3)

The 3rd order intercept point is another linearity measure that is also obtained by
extrapolation, shown in Figure 13.

The relationship between the power of the fundamental at the output of the stage and the
power of the 3rd order intermodulation products is given by

OIM3 = 3 . Po - 2 ·OIP3 [dB] (12)

21

Pou, [dBm]

OIP3

IIP3 Pin [dBm]

Figure 13: Third order intercept point

The equivalent system input-referred IP3 of N cascaded stages is given by

1 1 Ga] Ga]Ga2 Ga]Ga2 .•GaN _]--=--+--+ +... + _....:..---=----'-'-~

Up3 Up3] iip3 2 iip33 iip3 N

and the relationship between input and output IP3 is given by

[~] (13)

oip3 = Ga .Up3 [W] (14)

From the derivation of the equations in Appendix A, the relationship between the IIP3 and
IPldB can be deduced. For the input voltages holds

which yields for powers

4.3 VCO-PLL Model

~(IO-~O -IJ:I
1----''--_---"-_3, ~ 0.3298

4 a j

3 a 3

Ip..dB ~ IIP3 -9.6dB

(15)

(16)

According to the current architecture choice and the building block partitioning there are
maximum three building blocks in a receiver or the transmitter signal path. The VCO-PLL
building block is not encountered directly in the signal path but does certainly influence the
system's performance and will have to be modelled.

22

xl x2 x3 x4 x5 x6

Figure 14: VeO-PLL modelling in the RF path

The conversion gain of the mixer depends on the output power of the Yeo. Then the veo
PLL building block may be modelled as an ideal gain stage between the LNA-mixer and the
IF-baseband. The gain of the grey block, in Figure 14, is a function of the adjustment inputs of
the VeO-PLL block.

According to [19], the oscillator phase noise causes the degradation of the SNR (hence BER) in
an OFDM system. The phase noise of the building block may vary with the variation of the
adjustment inputs and therefore could be used as a parameter for the optimisation. However,
these effects are presently not covered by this work.

There are also other effects, such as the interferers- and LO self-mixing due to imperfect
isolation [2]. This is described in Figure 15. These requirements are often specified in the
standard and need to be met on the building block level. The effects shown in Figure 15 are
determined by the physical positions and the geometry on the die itself. The physical
properties cannot be changed by the adjustment inputs and are fixed for a building block.
However, the effect on the signal could be modelled, which is not yet covered by this work.

LO
LeakageInterferers

Leakage

La La

Figure 15: Interferers- and LO self-mixing

23

5
Optimisation Parameters and the Cost Function

Which parameters will be used for the system optimisation and what this choice is based on
will be discussed in this chapter. A universal set of parameters, which are mutually as
independent as possible, needs to be chosen in order to provide the highest possible
flexibility.

5.1 Optimisation Parameters

Different standards use different parameters to describe the system requirements. One
standard could provide the spectral masks and the sensitivity levels whereas another could
demand, among others, some maximum bit error rate (BER) and minimum adjacent channel
power rejection (ACPR). This diversity of parameters describing a wide range of quantities can
be mapped to a basic set of system parameters.

Standard System
Building Circuit IC-Iayout

block
Sensitivity Gain Gain Capacitances Technologys
BER Noise Figure Noise Figure Inductances Layers
ACPR P ld• P ldS Resistances Geometry
LO leakage IP2 IP2 Currents Parasitics
RxSINAD IP3 IP3 Voltages etc.
RSSI Power dissipation Power dissipation Transconductance's
etc etc etc. etc.

Figure 16: System abstraction levels

Except for the frequency translation, a front-end performs the following operations on the
signal:

1. Amplifies the signal
2. Adds some noise
3. Adds distortion and intermodulation products

which are quantified by the following parameters:
1. Gain
2. Noise Figure
3. I-dB compression point, 2nd and 3rd order intercept points, etc.

Consider the hierarchical representation of different abstraction levels, shown in Figure 16.
The latter mentioned parameters are used to characterise the whole system and are also used
to characterise the individual building blocks. This is a strong argument to choose these
parameters as the parameters for the optimiser. The optimisation loop will circle between the
building block and the system level, as shown in Figure 16.

The gain and noise figure are needed for the basic link budget calculations when designing
the system.

25

The different linearity measures affect the system performance as follows. For Zero-IF
receivers, the presence of two strong interferers near the rec ive band, shown in Figure 17,
would result in an interfering signal, at Ifi -iii, in baseband. Iso a DC product is generated
as a result of 2nd order intermodulation. This can cause proble s if an interferer is switching
on and off, which would generate a spectrum of sin(x)!(x) form round the DC.

PSD [dBIHz]

f [GHz]

Figure 17: Influence of the IP2 in Zero-IF receivers

Similarly, the two strong interferes near the receive band would cause the in-band distortion
due to the 3rd order intermodulation, as shown in Figure 18. When down-converted, the
intermodulation product will be superimposed to the wanted baseband signal.

PSD [dBIHz]

f RF ~;;

2fd'2 2f2-h
f [GHz]

Figure 18: Influence of the IP3 in Zero-IF receivers

5.2 Cost Function

In general, an objective function is a function that is minimised or maximised. In this case the
'quality' of a system is measured by its performance and the objective function will be
defined as a cost function. Minimising the costs optimises the system performance. The
design of the cost function is described step-by-step.

Again, the cascaded noise factor is given by

F
_ D Fz -1 F3 -1 FN -l
-['I +--+ + ... +--.....:..:...---

Gal GalGaz GaIGaZ··GaN _1

and the cascaded linearity measure iip3

1 1 Gal GalGaz GaIGaZ ..GaN _I-- =--+--+ + ... + ---=----='------'''---'-

iip3 iip3 1 iip3 z iip3 3 iip3 N

26

(17)

(18)

(19)

To increase the total system noise and linearity performance, the noise factor, F, needs to be
minimised while simultaneously maximising the iip3. These are two contradictory demands,
which can be understood from equations (17) and (18):

• Minimum overall F requires minimising individual noise factors (especially F I) and
maximising individual gains (especially Gal)'

• Maximum overall iip3 requires maximising individual iip3's (especially iip3N) and
minimising individual gains (especially Gal)'

To quantify the trade-off between the noise and linearity performance, a figure of merit called
IP3-to-noise-figure ratio may be defined as [20]

IP3NR = iip3
F

There exists an optimal gain distribution that maximises IP3NR, which can be found by
solving

oj of oj
dj =-dx] +-dx2 +... +-dxn =0

ox] oX2 oXn

where f = IP3NR and Xl to Xn are Gal to GaN.

(20)

The IP3NR, as defined in equation (19), assumes the equal importance of the noise and the
linearity performance. In a real system this importance can be different. At instance, for the
receiver chain, where the signals are weak, the noise may be as important as the linearity. But
for a transmitter, when dealing with strong signals, the noise is of much less interest than the
linearity. To be able to perform this trade-off in a controlled manner the weighting factors are
introduced.

In units of dB, equation (19) is given by

IP3NRdB =10 loglO (iip3) -10 loglO (F)

which allows for weighting the noise figure and IIP3

(21)

(22)

Normally in a system, it is required to minimize the F and to maximise the IP3, which can be
combined in a single expression maximise(IP3NRdB,weighJ, since

maximise(j(x)) =minimise(-f(x)) minimise(j(x)) =maximise(-f(x)) (23)

The weighted IP3NRweight, again expressed as a linear factor yields

(24)

Since the optimisation statement will be defined as minimisation rather then maximisation, a
simple cost function is given by

27

1
feost = IP3NR

weight
(25)

which means that higher the value of the IP3NRweight, the lower the costs, so better the system.

The total cost function should include not just the non-linearity and noise, but also the gain
and the total power consumption. Some other cost-affecting parameters may also be
included, such as chip costs per mm2, but they are not relevant at this time. However, these
kind of parameters are constant and do not vary with the adjustment parameters.

The trade-off part of the cost function may be formulated as follows:

FW2.J W3

feosJg(h(X))) = (_)~c
b . iip3 + b . iPldB . iip2 W

4
• Ga W

s

where

g:P~Psys

X = (x1"",xn f
param

Ps = (p 1"'P fys sys, sys,n param

b=Ovl

(26)

The function h is defined by the measurements. For each vector from X there are six
performance parameter values from P. The function g is defined by the system equations. For
a building block performance parameter vector from P there is a system performance
parameter Psys.

Since there is a strict relationship between the IP3 and PJdB,

JP3 = ~dB +9.6dB (27)

there is no sense in including both the parameters. Their dependency is well defined. Using
the parameter b in equation (26) either one of two linearity measures can be selected for the
optimisation. Nevertheless, if the cubic non-linearity model shows not accurate enough for
modelling the PJdB and IP3, than the system equations need to be revised and the cost
function should be adapted to accommodate this.

The third important linearity measure, IP2, cannot strictly be related to IP3 and PIdB and is
therefore included as a separate parameter.

The DC current consumption, Irx;, is placed in the numerator indicating the higher costs for
the higher current.

28

The gain has been placed in the denominator, meaning the higher the gain, the lower the
costs. The gain is usually not a critical parameter in which case it could be specified as a
constraint and not as an optimisation parameter (by setting W5eqUal to zero).

5.2.1 Constraint Function

Very often, the actual value of a system parameter is not important as long as certain
constraint is satisfied. For example, a system may be optimised for the noise and linearity
performance while demanding that the total power consumption of the system stays below a
certain value.
In this investigation, a soft-constraint (penalty) approach will be followed. The constraint
function introduces a distance measure from the feasible region, but is not used to reject
unfeasible solutions, as it is in the case of hard-constraints.
The constraint function is given by:

for P ~ Pc

for P > Pc
(28)

where P is the parameter value and the Pc is the respective parameter constraint. Changing
the value of a allows for scaling of!cOllstr, as shown in Figure 19.

a=4 a=2 a==1

d

Figure 19: Squared distance penalty constraint

The total cost function consists of two parts:

• the trade-off section

• the constraints section

29

The cost function is defined as follows:

feast (g(h(X))) ~

where

g:P~PSYS

X = (Xl' ... ,XN)T

P = (Pl'· .. Pn f
param

F W2 • I W3 nparam

() DC + "a (Pc _ P) 2- w L...; l l r

b . iip3 + b . ipldB I. iip2 W4 • Ga Ws i=1

for P; > Pc;

b = Ov I

(29)

5.2.2 Cost Function Biasing and Normalising

In the trade-off section of the cost function the different quantities are traded. In order to
normalise for the units and compensate for the scale of the absolute value, the cost function is
biased.

For example, the IIP3 of a building block may vary as function of Xl and X2 between -30 and
-12 dBm whereas the NF of the same block may vary between 3 and 6 dB. The respective
mean values represented as linear factors are ~ 7.08 .10-3 mW and 2.82 (dimensionless). To let
both the parameters to have a comparable influence on the cost function given in equation
(20) and to normalise for the units, the weight factors are defined as

(30)

where Ai is in reciprocal units of the corresponding parameter.

30

(31)

6
Time Complexity Estimation

To find the optimal composition of the building blocks and the corresponding operating
point, the cost function needs to be minimised. Before the appropriate algorithm can be
proposed there should be insight in the complexity of the problem. Because the large
numbers are at stake, careful examination needs to be performed in order to neither
overestimate or to underestimate the problem.

Let's consider a system of k building blocks for deriving the equations. There is n number of
different operating points per building block

of operating points dOl d02_.:...-....:...-_-::::....:;.-- =a fJ . a fJ =n
building block

where adj] and adj2 are the number of steps per corresponding adjustable parameter. In
continuation of this chapter, n will be referred to as'adjust-product'.

For k number of building blocks, the number of different operating points is given by

k

of operating points =nni

i=!

where i is the index of a building block.

(32)

Equation (32) is plotted in Figure 20 on the logarithmic scale for different values of k and with
adjust-product as parameter. For example, if there are k=5 building blocks in a system and
each of the adjustment inputs is varied in 10 steps (adj] *acfj2 =]00), then there are 1010

different operating points.

Figure 20: Number of operating points as function of the number
of building blocks and with adjust-product as parameter

31

The next question is how long it would take to calculate the system performance for all the
operating points.

Now the number of different operating points is known and if the time to calculate the
system performance per operating point is also known, the total calculation time will be
known.
The number of operating points can be calculated exactly, the calculation time per operating
point is dependent on two quantities:

1. the number of the system parameters to be calculated and the system equations,
2. the operating system, CPU speed, used software, etc.

The number of the basic operations is counted for 5 system parameters: Gain, Noise Figure,
P ldB, IP2, and IP3. The basic operations that are counted are adding (or subtraction), and
multiplication (or dividing).

fb .T bl 1 N· fa e : Olse 19ure aSlC opera Ions
Noise Figure
k (building blocks) 2 3 4 5 6
M (multiplication) 1 3 5 7 9
A (adding) 2 4 6 8 10

b .T bl 2 1 dBa e : - compreSSIOn pomt aSlC operatIons
PldB
k (building blocks) 2 3 4 5 6
M (multiplication) 2 4 7 11 16

A (adding) 1 2 3 4 5

For IP2 en IP3 calculations is the same number of calculations needed as for P IdE• The Gain is
calculated in k multiplications. The IDe is calculated in k additions.

Table 3 shows the total number of basic operations per operating point for the different
number of building blocks.

Table 3: Number of basic operations per operating point
Operating point
k (building blocks) 2 3 4 5 6

M (multiplication) 9 18 30 45 63
A (adding) 7 12 19 25 31

Estimation of time it would take to perform an operation is a difficult task since it depends on
the number of factors such as the number format (integer, floating point), programming
language, CPU, operating system, etc. A pragmatic approach to this problem is to perform a
large number of basic operations on a real life machine and measure the elapsed time. For
this purpose the following MATLAB script is executed on a network server.

32

The script fills two 1000x1000 matrices (each 1 million elements) with random numbers, starts
a timer, multiplies the matrices and returns the elapsed time. The class of A and B is double
array.

A = rand(lOOO,lOOO);
B = rand(lOOO,lOOO);
Tie;
C = A*B;
Toe;

It takes around 10 seconds to execute this script on the respective server. Result is also a
matrix of 1000x1000 elements. There are in order of 103 of operations per element, multiplied
by 106 elements, yields 109 operations for the whole matrix. This results into 10-8 sec
calculation time per basic operation.

Figure 21 shows the expected calculation time for a different number of building blocks and
different adjust-products. For the case of 5 building blocs and adjust product of 100, it would
take, in baste case, almost two hours to calculate all the possibilities,

70.1010 .10-8

-----=1.9 hours
3600

Figure 21: Calculation time as function of the number of building
blocks and with adjust-product as parameter

(33)

One should be very careful with interpreting such a kind of graphs. If there were five
building blocks and about 15 measurement points per parameter, instead of 10, the
calculation time would be in order of days. But then, for five building blocks and the adjust
product of 1000 (approximately 33 measurement points per parameter) it would take more
than 21 years to calculate all the possibilities.

33

7
Optimisation Techniques

The number of operating points, i.e. the number of alternative systems that need to be
calculated, can easily become unmanageable, as shown in previous chapter. This holds for the
case that all possible combinations are calculated. But in fact, there will be one optimal
solution that has to be found in a minimum number of cost function (and thus also system)
calculations. In this chapter, a summary of the techniques to do this and the classification of
them will be given. At the end of the chapter, the choice of the most suitable technique for
this problem will be discussed.

7.1 Optimisation Basics

Optimisation problems are made up of three basic ingredients:

• An objective function that is to be minimised or maximised. Very often a cost
function is defined that incorporates the optimisation parameters, which is then
minimised. For instance, in a transceiver design it could be desirable to maximise the
linearity of the system and at the same time minimise the noise contribution.

• A set of unknowns or variables that affect the value of the objective function. These
variables could be, for instance, the gains, noise figures and the IP3's of the individual
stages in the system.

• A set of constraints that allow the unknowns to take on certain values but exclude
others. For example, when a system is optimised for the linearity and noise figure, the
limitation on maximum power dissipation of the total transceiver could be specified
as a constraint.

The optimisation problem is then:

Find values of the variables that minimise or maXImIse the objective function while
satisfying the constraints.

Mathematically we can write the constrained minimisation problem as follows [21],

minimise
subject to

f(X)

XE,{}

(34)

Where f I/(' ~ !R is a real valued function that is to be minimised, and is called objective

function or a cost function. The vector X is an n-dimensional vector of independent variables,
that is, X = (Xlh, ... ,xnf E 1/('. The variables Xj, ... ,Xn are often referred as decision variables. The

set n is a subset of 1/(', called feasible set.
The constraint set takes the form n = {x : h(X) =0, g(X) ::;; O}, where h and g are given

functions.

35

7.2 Classification of Techniques

The methods for function optimisation can be divided into three types:

1. Methods using only the function values
These methods, also known as direct search methods, use only the function values for
the optimisation. An example of this category of methods is the Simplex method,
which was first introduced in 1947 by Dantzig. Well-known variant is NeIder-Mead
method: the method is described for minimisation of a function of n variables, which
depends on the comparison of function values at the (n + 1) vertices of a general
simplex, followed by the replacement of the vertex with the highest value by another
point [22]. Evolutionary algorithms, including Genetic algorithms [15], and Simulated
Annealing [23] fall into this category.

2. Methods using first-order derivative
These methods, also known as gradient methods, are based on the principle of finding
the roots of the first derivative of the objective function. Well known are the Steepest
descent- and Newton-Raphson method [24]. Conjugate gradient methods, like
Fletcher-Reevs [25], are used for finding the minima in unconstrained optimisation
problems.

3. Methods that require knowledge of second-derivative
These methods, also known as Hessian methods, calculate (or approximate) the
Hessian matrix (second-order derivative determinant) to perform the extremum test
whether the function has a relative maximum or minimum at the stationary point for
which the Hessian is calculated [25].

7.2.1 Algorithm Selection Criteria

To select the appropriate method for this problem the following criteria were used:
1. No explicit knowledge of the optimisation functions needed.

This is crucial, since the functions describing the building block parameter
dependencies on the adjustment inputs are not know. Instead, discrete measurement
values are available.

2. Multidimensional search.
There will be, at the moment twelve, parameters that are simultaneously optimised so
the method should be time-efficient to support a multidimensional search.

Furthermore, the algorithm should be easy to implement.

Given the first requirement and the discrete measurement data, a direct search method will
be most appropriate choice. Two direct search methods will be compared: Genetic
Algorithms and Differential Evolution. Both methods use parallel search instead of single
point search, which is why they are preferred above the other direct search methods.

36

8
Genetic Algorithms

Genetic Algorithms (GAs) are search algorithms based on the mechanics of natural selection
and natural genetics, which were first introduced in 1975 by [15]. The applications of GAs are
numerous in fields of science, engineering and economy. GAs can be used to search for
(global) optima in constrained or unconstrained optimisation problems.

The next simple example, from [16], has been modified in some extent to demonstrate the
idea and working principle of GAs.

Consider the constrained optimisation problem of maximising the function f(x) = x2 on the
integer interval [0,31]. A traditional way to solve this problem would be to 'tum the x knob'
until the objective function is maximised (if f(x) was a cost function it would need to be
minimised). With GAs, the first step is to code the parameter x as a finite-length string. There
are many ways of coding the parameter x, however the most obvious way would be to use
the 5-bit binary coding.

The next step is to generate an initial population. Let's assume there is an initial population of
4 strings:

01100
11000
01000
10011

This population could have been chosen at random by tossing an impartial coin for 20 times
(4 x 5 bits).

In order to produce the next generation GAs use three main operators:
1. Reproduction
2. Crossover
3. Mutation

Reproduction is a process in which individual strings are copied according to their objective
function values (biologists call this function the fitness function). One can think of the
functionjas some measure of profit, utility, or goodness that is to be maximised. Copying the
strings according to their fitness values means that strings with a higher value have a higher
probability of contributing one of more offspring in the next generation. This operator is the
artificial version of natural selection, a Darwinian survival of the fittest.

In Table 4 the current population is evaluated. Summing the fitness over all four strings 1170
is obtained. The percentage of population total fitness is also shown in the table.

37

I .fT bl 4 E Ia e : va uatlon 0 a popu atlon
No. String Decimal Fitness f(x) % of total

string value
1 01101 13 169 14.4
2 11000 24 576 49.2
3 01000 8 64 5.5
4 10011 19 361 30.9
Total 1170 100

An easy way to implement the reproduction operator in an algorithm would be to create a
weighted roulette wheel as shown in Figure 22. For example, the string number 1 has a fitness
value of 169, which represents 14.4 percent of the total fitness, so the reproduction probability
is weighted with factor 0.144 each time the wheel is spun. To reproduce, the wheel is spun
four times.

Figure 22: Roulette wheel reproduction
operator implementation

After reproduction, simple crossover may proceed in two steps. First, members of the newly
reproduced strings are randomly grouped in pairs. Secondly, each pair undergoes crossing
over as follows: an integer position k along the string is selected uniformly at random
between 1 and the string length minus one [I, I-I]. Two new strings are created by swapping
all characters between positions k + 1 and I inclusively. For example, consider the first two
strings from the initial population with k = 4

Al = a11 a I 1
Az=110010

After crossover the new generation is represented by

A'1=01100
A'z = 110 a1

The mechanics of reproduction and crossover are surprisingly simple, involving random
number generation, string copies and some partial string exchange. Nevertheless, the
information exchange is one of the features that give the GAs their power.
For example, each bit position in the string could represent some key feature. If the most
significant bit is used to code the feature 'high gain' and least significant bit represents the
feature 'low noise figure' than just two offspring where created where A'z has both the
wanted qualities whereas A'l would probably fail to reproduce and die out because of the
relatively low fitness. Despite the fact of somewhat fuzzy definition of the properties, such as

38

'high gain' and 'low noise figure', the exchange and combination of the features (or the ideas)
is the basics of the innovation process where improvements are made regarding to the
existing state.

The third operator, mutation, does occur with low probability and is performed on bit-by-bit
basis. The effect of mutation is that some bits change from 0 to 1 (or vice versa) every now
and than. Analogous to the natural processes, the mutation occurs very less frequently as
reproduction and crossover.

Now all the operators are introduced, one step of genetic algorithm is simulated by hand to
illustrate the working principle.

Each successive generation of the genetic algorithm begins with reproduction. Spinning the
weighted roulette wheel generates the pool of mates, which are to be crossed over. Actual
simulation of this process using the weighted coin tosses has resulted in string 1 and string 4
receiving one copy, string 2 receiving two copies and string 3 receiving no copies, as shown
in Table 5. Comparing with the expected number of copies there is obtained exactly what is
expected: the best get more copies, the average stay even and the worst die off.

Table 5: The first population simulation

Initial x value Fitness Pj{select} Expected Actual
population count count

String (randomly (unsigned f(x)=r J; J; (from
No. generated) integer) "if f roulette

wheel)

1 01101 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 64 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Sum 1170 1.00 4.00 4
Average 293 0.25 1.00 1
Max 576 0.49 1.97 2

With an active pool of strings looking for mates, simple crossover proceeds in two steps: (1)
strings are mated randomly using coin tosses to pair the couples and (2) mated string couples
cross over using the coin tosses to select the crossing sites. This is shown in Table 6.

The probability of mutation is assumed to be 0.001 for this example. With 20 transferred bit
positions we should expect 20 . 0.001 = 0.02 bits to undergo mutation during a given
generation. As a result no bits have mutated in this generation.

It's clear that both in natural and GAs the mutation is a secondary effect whereas
reproduction and crossover form a bulk of the processing power. Nevertheless, the mutation
plays an important role for insuring that no valuable features ('good genes') are prematurely
lost.

39

fT bl 6 Th GA fta e : e a er one genera Ion
Mating pool Mate Crossover After Fitness

after site crossover
reproduction

String (crossover (randomly (randomly new x value f(x)=~

No. site shown) selected) selected) population
1 011011 2 4 01100 12 144
2 110010 1 4 11001 25 625
3 111000 4 2 11011 27 729
4 101011 3 2 10000 16 256
Sum 1754
Average 439
Max 729

The new population is now evaluated; notice how both the maximal and average
performance have improved. Although only one step of the algorithm is evaluated and it is
dangerous to conclude from this that the GAs are robust and always work, it clearly
illustrates the algorithm mechanics and potentials.

Considering the fittest strings in the latest population, it can be concluded that strings
beginning with two ones (1 1 '" '" "') perform the best. A schema [15] is a similarity template
describing a subset of strings with similarities at certain string positions. These highly fit,
short length schemas that are propagated generation to generation are called 'building
blocks'. This similarity information contained in building blocks can be used for searching the
solution space more efficiently.

Because the GAs are inspired by natural processes the terminology used is very often mixed
with the terminology that is used in natural systems. Table 7 gives the comparison of natural
and GAs terminology.

In natural systems, one or more chromosomes combine to form the total genetic prescription
for the construction and operation of some organism. The total genetic package is called
genotype. In artificial system the total package of strings is called structure (in this example the
structure consists of only one string). In natural systems, the organism formed by the
interaction of the total genetic package with its environment is called the phenotype. In
artificial genetic systems, the structures decode to form a particular parameter set, solution
alternative or point (in the solution space). In natural terminology, the chromosomes are
composed of genes, which may take on some number of values called alleles. The position of
the gene, its locus, is identified separately from the gene's function. For example, if we take
the animal eye colour gene, we can talk of its locus, position 10, and its allele value, blue eyes.
In artificial genetic search, the strings are composed of features or detectors, which can take on
different values and may be located at different positions on the string.

40

1f tu 1 d GA tT hI 7 Ca e : ompanson 0 na ra an s ermmo ogy
Natural Genetic Algorithms
chromosome string
gene feature, character or detector
allele feature value
locus string position
genotype structure
phenotype parameter set, alternative solution, a decoded structure
epistasis non-linearity

The GAs differ from traditional methods in several aspects [21]

• They work with an encoding of the feasible set rather then the set itself.
• They search from a set of points rather than a single point at each iteration.
• They do not use derivatives of the objective function.
• They use operations that are random within each iteration.

41

9
Differential Evolution

The Differential Evolution (DE) algorithm is a heuristic search method that can be categorised
into a class of floating-point encoded, evolutionary optimisation algorithms. It was

introduced in 1995 by [6] and was originally designed to work with continuous variables.

Generally, a function to be optimised, f, is of the form:

f(X) : /Rn ~ /R

The optimisation target is to minimise the value of this objective function

min(f(X))

by optimising the values of its parameters

(35)

(36)

x E/R (37)

where X denotes a vector composed of nparam objective function parameters. Usually, the
parameters of the objective function are subject to lower and upper boundary constraints, x(L)

and x(U), respectively:
. -1

) - , ... , nparam (38)

As with all evolutionary algorithms, DE works with a population of solutions, rather than a
single solution for the optimisation problem. Population P of generation G contains n pop

solution vectors called individuals of the population. Each vector represents a potential
solution for the optimisation problem.

peG) =X(G)
•

i =1, ... , n pop , G =1, ... , Gmax
(39)

So, the population P of generation G contains n pop individuals each containing nparam

parameters:
peG) = X(G) = x(G)

I ',J i = 1, ... , n pop , j = 1, ... , nparam (40)

In order to establish a starting point for optimisation, the population must be initialised.
Often there is no more knowledge available about the location of a global optimum than the
boundaries of the problem variables. In this case, a natural way to initialise the population prO)

(initial population) is to seed it with random values within the given boundary constrains

p(o) = x(O) = r .(x(V) _ X(L)) + X(L)
',J I,J J J J i = 1, ... ,npop , j = 1, ... ,nparam (41)

where r denotes a uniformly distributed random value within range [0,1].
The population reproduction scheme of DE is different from the other evolutionary
algorithms. From the first generation forward, the population of the following generation
p(G+l) is created in the following way on basis of the current populationp(G). First, a temporary
(trial) population for the subsequent generation, p/(G+l), is generated as follows:

43

{

X (G) + F . (x(G) - x(G»)
X:(G+l) = C"J A"J B"J

I,J (G)
X·I,J

where

if <C ·=Dr i ,} - r V } i

otherwise
(42)

i = I, ,npop , j = I, ... ,nparam

D = 1, , nparam

A = I, ,npop , B = I, ... ,npop , C = I, ... ,npop , A; ~ B; ~ C; ~ i

Cr E [0,1] , F E [0,1], r E [0,1]

A, B and C are randomly chosen indexes referring to three randomly chosen individuals of
the population. They are mutually different and also different from the running index i (for
each individual). A new value for random number r is assigned for each value of index}.
F and Cr are DE control parameters, together with the population size parameter, npop• All
three parameters stay constant during the search process. F is a real-valued factor that
controls the amplification of differential variations and Cr is a real-valued crossover factor
controlling the probability to choose the mutated value for x instead of the current value.
Both F and Cr affect the convergence velocity and robustness of the search process. Their
optimal value depends on objective function, f(X), characteristics and on the population size
npap- The selection scheme of DE is based on so called greedy criterion. On basis of the current
population p(G) and the temporary population p/(G), the population of the next generation
p(GTI) is created as follows:

otherwise{

X'(GT[)
X(G+l) = ;

1 X(G)
1

if J: (X:(G+l))<J: (X(G))
cost I cost I (43)

Thus each individual of the temporary population is compared with its counterpart in the
current population. The one with the lower value of cost function fcoslx) will survive to the
population of the next generation. As a result, all the individuals of the next generation are as
good as or better than their counterparts in the current generation.

9.1 Discrete Differential Evolution

As previously mentioned, the DE algorithm was originally designed to work with continuous
variables. In this project, the objective function parameters (the building block adjustment
parameters) will have, most probably, 10 discrete steps per each parameter. These vectors,
representing an operating point, are pointing to a building block parameter vector

i = I, ... , npop
(44)

where nparam is the number of measured parameters per operating point.
The values of PI to Pn will be obtained by measurements, which will always have some

param

limited accuracy. So it can be argued that, having discrete value steps with limited accuracy,
there is no need for continuous optimisation with a high precision.

44

Instead of working with real values of the adjustment parameters, the index (integer) values
can be used. For instance if Xl varies in 10 equidistant steps in the interval [0.2,2], the index
value could be used for the optimisation rather than the value itself:

i 1 2 3 4 5 6 7 8 9 10

Xl (i) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

The conversion from the index to the real value is trivially done by the multiplication of the
index value by the stepsize:

Xl (i) = i . stepsize (45)

When adapting the DE algorithm to work with integers, the first population is initialised with
the integer values (on the grid), but the subsequent trial vectors can assume real values. This
is caused by the real-valued amplification factor F, which can produce the vectors that point
in-between discrete measurement steps where no building block parameter values are
available, as shown in Figure 23.

~ ~ f ~ j : [[[;

..: _--: : : --: : : : ...: ~~i.r fgl : : ~

:" :. ...: ~ -\ ~ ~ ~ ~ '1

Figure 23: Real-valued vector coordinates

There are several possibilities for solving this problem:
1. The objective function can be made continuous by curve fitting.
2. The objective function can be made continuous by interpolating the in-between

values.
3. The DE algorithm could be made discrete.

The first two options are making the discrete measurement data appear continuous while
keeping the DE algorithm unchanged. The third option keeps the data discrete while the
algorithm needs to be modified to work with these data. Since the integer values are used
rather than their real-valued counterparts, the discretisation is easily realised by rounding-off
the values to the nearest integer

X(G) =round(x(G»)
.,J .,J

. 1 . 11 = ,... ,npop , } = ,... ,nparam (46)

where function round rounds a real value, either up or down, to the nearest integer.
However, doing so will limit the precision to the discrete steps of the adjustment parameters
whereas the optimisation method should be able to produce the optimum solution that lies
between the adjacent measurement steps.

45

To enhance the precision, the data can be interpolated prior to be fed to the optimiser. This
provides a significant time saving in comparison with the second option, where the CPU-time
consuming interpolation is performed within each iteration and for each trial vector.

9.1.1 Boundary Constraints Handling

It is important to notice that the reproduction operator is able to produce the vectors that fall
outside the valid range of the adjustment parameters. Figure 24 shows an example of how
such a vector can be constructed.

~ of····· .~ ··f····· .~ : ~ [~

:"·····r······~···· .. ~ ~ ~ ~ -~ ~ ~

: : : . : . : : : :: ·f······~······,·· '[X~J;""" ~ : [:

Figure 24: Out-of-range vector generation

A simple solution for this problem has been found: disregard these vectors. This is also the
most time effective solution since it is relatively cheep, in terms of consumed time, to
generate trial vectors. Another solutions, such as rounding-off the out-of-range coordinates to
the borderline would interfere with the normal course of the algorithm. In that case, the
values at the border would have a higher probability of being appointed which would affect
the random character of the algorithm.

Another thinkable solution is to flip the invalid coordinates around the crossed boundary so
the vector does not have to be thrown away. However, it would cost more time to correct for
this than to ignore the respective vector and generate a new one in the next iteration.

If more than, e.g. 3/4 of trial vectors, fall outside the valid range the miss-convergence would
become highly probable. A safeguard has been introduced to prevent this. It has been
implemented in the form of a simple counter that keeps up the number of the in-range
vectors. If the percentage of valid vectors is lower than, e.g. 20%, the value of F should be
decreased.

46

10
1mplementation

Several tools were explored for the possibilities of the implementation. Regarding to the
nature of the problem and the available data, the choice is made to embed the optimisation
method into MATLAB environment. MATLAB was selected because it offers a high
performance numerical computation and visualisation. It uses high-level programming
language and it offers many functions that are already implemented in different toolboxes.

Two algorithms were selected for the implementation and brief comparison: Genetic
Algorithms and Differential Evolution.

10.1 Implementation of the Genetic Algorithm

The Genetic Algorithm has been implemented in a MATLAB code according to the flow chart
in Appendix B. To make the start more fluent, the simple function f(x)=x2 on the integer
interval [0, 31] has been used as the objective function to be maximised. This function was
used in Chapter 8 to explain the working principle of GAs.

The parameter x is encoded with 5-bit binary coding. The algorithm has been implemented in
a graphical user interface (GUI). This makes it easy to monitor what is going on and to debug
the code.

As a result of the reproduction operator, which is the equivalent of the Darwinian model of
natural selection, the best (highly fit) members from the population receive the most copies.
In this way a mating pool is created were the mates are randomly paired and the crossover
site is randomly chosen. If the mates in a couple are identical, which is highly probable since
the fittest members get the most copies, the crossover operator has no effect on them. If all the
members of a given population are identical, the non-effectiveness of the crossover operator
causes the algorithm to halt at the value represented by these members. This situation is
shown in Figure 25. The stars mark the maximum value of the population fitness whereas the
continuous line shows the average fitness. All the members of the population have reached
the same value, decimal 19, and from 10th iteration the population does not evolve any
further.

47

Simple Geneteic Algorithm , " 'tf'

Siring Binary Decimal Fitness E~peded counl Maling pool Male
No.

1 I 10011 19 361 10011 2

2 I 10011 19 361 10011

3 1 10011 19 361 10011 4

4 l 10011 19 361 10011 3

Crossover site

3

3

4

4

Genefation

- ..·..· ··....····- ··-1
I 100 'L ~~~ J

Progress plol . New population Decimal

10011 19

10011 19

10011 19

10011 19

F~ness

361

361

361

361

Figure 25: Simple Genetic Algorithm screenshot

A way to sample a state away of the average of the population and to escape fram this miss
convergence is provided by the mutation operator. The mutation operator, occasionally
flipping random bits in the population, causes individuals to sample the search space with
the integer precision. The new states are typically sub-optimal relative to the population
average; such a mutation has occurred in Figure 26 at 4th generation. These random changes
can, though infrequently, increase the average fitness of the population, as shown in Figure
26 at 15th generation. From that point the population has evolved towards the global solution
by the normal repraduction and crossover processes.

Generation

..JDJ25J

Male Crossover site

3

4 4

1

2 4

population Decinal .Fitness

11111 I 31 I 961

11111 I 31 I 961

11111 I 31 I 961

11111 I 31 I .961

Siring Binary Decimal Fitness E~pected count Mating pool
No,

1] 11111 31 961 I 11111

2 1 11111 31 • 961 I 11111

3 1 11111 31 . 961 I 11111

4 11111

. SImple Geneteic Algorithm , '.

Figure 26: GA with mutation probability 0.01

48

The convergence is dependent on the algorithm control parameters: population size and
mutation probability, Pm. Increasing the population size increases the chance and speed of
finding the global optimum.

The mutation probability should be chosen carefully and remain low (e.g. 0.01) because the
high mutation rate introduces 'noise' into convergence process, which has the effect that no
steady state can be reached. This is shown in Figure 27, where the number of iterations is set
to 100 and Pm is set to 0.1. As a result, the population average shows large deviations and
does not converge.
For the case that Pm = 0.5, the GA becomes the simplest form of the evolutionary algorithms:
Random Walk.

.' SImple Geneteic Algorithm

3

2

2

3

Crossover site

Decimal Fitness

11101 29 I '841

·11111 31 I '961

111 7 I 49

11111 31 I "9~1

" Generation

I 1'00

EllPected count Mating pool Male

I
..

I'1.0322 I 1~ 111 ,.2

'lCl:~m33 I 11101 I 1

':.r.'l~22 I 11111 I 4

)1"'1,0322; I 11111 1 3

,>1
1000\

String BinalY llIecimal Fitness

No, ~',-:=,..,....-
1] 11111,,1 31 ,,; 1,961
2 J.l'~lO~", ":,\29'1841 .'

3 r':11111',; ?,!II:',., :"'~'.":·33"i":;'?,f ~,:961
4j.;'l;;, "ii;} ':?161 , ,

Figure 27: Screenshot of non-converging GA caused by high mutation rate

10.1.1 Reinsertion and Elitist Strategy

The mutation operator follows the crossover operator. It is possible that the fittest member
ever, that has just been created by the crossover operator, is lost due to the mutation operator.
This could happen if, e.g. the most significant bit were inverted.
To prevent this from happening a reinsertion can be performed. The best member ever is
stored after the crossover operator. After the mutation, the population is screened if it still
contains the best member. If not, it can be reinserted, so the J good genes' are not lost. In this
investigation, the best member is reinserted on the position of the member with the lowest
fitness. As a result, on average, the optimum value was quicker reached.

Another variant, found in literature [26], copies the best member a few times into each new
popUlation. This ensures its reproduction and propagation into subsequent generations. If
one or more of the fittest individuals are deterministically allowed to propagate through
successive generations than the GA is said to use the elitist strategy.

49

10.1.2 Termination ofthe GA

Because the GA is a stochastic search method, it is difficult to formally specify convergence
criteria. As the fitness of a population may remain static for a number of generations before a
superior individual is found, the application of conventional termination criteria becomes
problematic. A common practice is to terminate the GA after a pre-specified number of
generations and the best member should contain the optimum solution. This, however,
provides no certainty that the global optimum has been found.

10.2 Implementation of the Differential Evolution Algorithm

The Differential Evolution has also been implemented in a MATLAB code, whose basic code
has been made available through [27]. The GA and the DE differ in the way they generate
subsequent generations.
The GAs use the reproduction, crossover and the mutation operators to create the new
vectors. With DE, the weighted difference vector serves as the source of random variations
for a third vector

(47)

which has previously been formalised in equation (42).

Figure 28 depicts the process of differential evolution [27]. First, a target vector is chosen.
Second, two random vectors from the current population are selected. Subsequently, these
vectors are subtracted, amplified by the factor F, and are added to a third vector, as
prescribed by (47). The following operation is the crossover, where randomly chosen
coordinates of the newly created vector are exchanged with the coordinates of the target
vector, with the crossover probability Cr'

1) choose target vector representation of

x2 /"--...."".1"--....",...,'--~2_)ra_n7d""-om_C_ho7'i,,,-ce_O--:ftw,r-0----:;".e;-----7"'/parame}tervceuctrrOernt

population members

~ ~
xl ~""':"""'-----:"------:;~:"-"-----"'---=-'"""7"-"""7"--=::'"

x3/"'-----:,r-----:;".e;----,.~___"""-----".'''''--...."".''--....,,,...,'--7''

population

3) build weighted
difference vector

4) add a third randomly
chosen vector

5) do crossover with target
vector to get trial vector

+-__ trial vector

}

population for
next generatIOn

Figure 28: Generation of subsequent populations in DE
algorithm

50

The resulting trial vector is then compared with the target vector. If the cost value of the trial
vector is lower than the cost value of the target vector, the target is replaced by the trial in de
next generation. This selection is based on so-called greedy criterion; the vectors with low cost
value replace the vectors with a high cost value.

There are different strategies possible depending on the random vectors generation. If X3 in
equation (47) is the best member then the algorithm uses so called 'Best member' strategy.
The best member, i.e. vector with the lowest cost value so far, is copied npop times and each
difference vector is added to the best member.
If the third vector, X3, is randomly chosen out of the population members then the algorithm
uses the 'Random' strategy.

After DE successfully minimised f(x) = _x 2
, function 'Peaks', which is standard available in

MATLAB, was used as a test function. Function Peaks is defined as

FIgure No.1

~Ie l;,c1it 0ew Insert Iools ~indow tlelp

(48)

Figure 29: Screenshot of first population in Differential Evolution

51

Although the search space is relatively small and the function is dependent on a 2
dimensional parameter vector, a lot can be learned about the dependency of the convergence
process on the algorithm control parameters.

The upper subplot in Figure 29 shows the 'cost value' of function peaks in 3-dimensional
space. The blue dots on the surface represent the initial population of 20 randomly chosen
members. The magenta dot shows the position of the initial'best member', i.e. the vector with
the lowest cost value. This vector lies in the local minimum valley and is a nice test case of the
algorithm's ability to escape local minima.

The lower subplot shows the same function in a two-dimensional space where the cost value
is represented by the contour plot. The red vectors show the points that are sampled by the
initial population, pointing to the positions of blue dots in the upper subplot of Figure 29. The
black vectors represent the weighted difference vector from equation (47), pointing to the
new test points.

The algorithm control parameters in this example run are: npop = 20, F = 0.4, C = 0.6 (number
of population members, weight factor, crossover probability).

Figure 1'10. 1 .

Elle f;dit 'liew Insert Iools ~ndow !::!elp

Figure 30: Screenshot of a DE run after 3 iterations

52

When a new 'best member' is found during the optimisation, its position is plotted as a red
dot in the upper subplot. The blue dots of the initial population stay unchanged.
The lower subplot is updated each iteration with the current population vector field (red
vectors) and new weighted difference vectors (black vectors).

Figure 30 shows the state after 3 iterations. The current best member is already situated near
the global minimum. The figure also demonstrates a successful escape from the local
minimum.

Figure 31 shows the situation after 20 iterations. There are two cheap areas in the function
Peaks; those are the areas of the local and the global minima, the blue areas in the contour
plot. What can clearly be seen is that all 'expensive' vectors from Figure 30 are replaced by
the'cheaper' ones, so the complete population evolves towards the cheap areas.

FIgure No.1

Elle '~dit ~IeW [nsert ~ools ~indow tlelp

Figure 31: The population evolves towards the cheap areas

After 10 more iterations, the total population has evolved in the area of the global minimum,
as shown by Figure 32. So all the population members have concentrated in the close
proximity of each other within the area of the global minimum. One of the consequences of
this is that the magnitude of the difference vector gets increasingly smaller, which allows for
even finer search in the increasingly smaller area.

53

, FIgure fIIo. 1 '

Elle I;.dit Il!ew Insert Iools Window !:lelp

Figure 32: Whole population concentrates in the global
minimum area at 20th iteration

After in total 50 iterations the whole population converges to a single point, the global
minimum, as shown in Figure 33.

Except the graphical output, the numerical state is displayed each 10 iterations in the
MATLAB control window. The output of this example run is shown below. The cost value of
the best member is displayed in the field 'Best' and the vector coordinates are given by x (1)
and x (2).

Iteration: 10, Best: -6.113038, F: 0.400000, CR: 0.600000, NP: 20
x (1) = 0.447771
x (2) = -1.614524
Iteration: 20, Best: -6.467597, F: 0.400000, CR: 0.600000, NP: 20
x (1) = 0.287428
x (2) = -1. 678929
Iteration: 30, Best: -6.550152, F: 0.400000, CR: 0.600000, NP: 20
x (1) = 0.219107
x(2) = -1. 623089
Iteration: 40, Best: -6.551053, F: 0.400000, CR: 0.600000, NP: 20
x (1) 0.227819
x(2) = -1. 623274

54

Iteration: 50, Best: -6.551133, F: 0.400000, CR: 0.600000, NP: 20
x(l) = 0.228274
x(2) = -1.625775
Number of function evaluations: 1000

The function value at the global minimum is -6.551133. Within 50 iterations, i.e. 1000 function
evaluations, the algorithm has found this point with accuracy of 10-6.

If the accuracy of 10-1 were required, the algorithm would have stopped between 20 and 30
iterations.

. Figure No.1 I

Eile ~dlt ~ew Insert Iools ~ndow t!.elp

Figure 33: The whole population converges in the
global minimum

Since stochastic processes rule DE, there is a difference between single runs. On the average,
it takes around 800 function evaluations (Le. 40 iterations) to find the minimum of function
peaks with 10-6 precision, for this example.

55

10.2.1 Influence of the DE Control and Strategy Parameters

The DE has three control parameters that influence the speed and robustness of the
convergence process: population size npop, weight factor F and the crossover probability Cr.

Some rules of thumb for the choice of the control parameters, based on experience gathered
during different tests performed with DE, are given below. How the choice of the strategy
influences the convergence is discussed afterwards.

The reasonable choice for the population size is between npop = 3 . D and 8 . D, where D is the
dimension of the parameter vector. It is important to have enough mutually different vectors.
The larger the population, the higher the probability of finding the global minimum.
However, this is not always necessary and a large population implies large number of
function evaluations and longer calculation times.

The amplification factor F should not be smaller than a certain value to prevent premature
convergence. This value depends on the cost function and on the other DE control
parameters. A large F increases the chance of escaping the local minima. However, for F > 1
the convergence speed decreases [28]. A good initial value for the amplification factor is F =

0.6.

A large crossover constant, C, speeds up the convergence. However, from a certain value
upwards the convergence speed may decrease or the population may converge prematurely.
This value depends on the cost function and is located in the region C= 0.9...1.0.
A good choice for the initial crossover probability is a value between C = 0.3 and Cr = 0.9.

Two strategies have been evaluated: the 'Best member' and the 'Random' strategy. The
Random strategy is more robust and is preferred above the Best member because it is more
likely to lead to the global solution. The Best member, however, converges quicker and may
be used in combination with the initial guess, if the region of the global minimum is roughly
known.
With the Best member strategy and high crossover probability, the whole population tends to
move quickly to a (local) minimum. With low value of F, the chance of escaping this, possibly
local, minimum gets increasingly smaller.

10.2.2 Termination of the DE

In order to prevent a possible non-converging run to circle in an endless loop, the DE
algorithm can also be terminated after a pre-specified number of iterations.

In contrary to GAs, a trial vector could never get far away from the population average. The
largest distance is the maximum distance between two outermost vectors. As the population
converges, this distance gets smaller.

56

global minimum

Figure 34: The termination radius

If the total population has converged within certain error area around the best member, given
by radius r in Figure 34, the algorithm may be terminated. At that point, it is evident that
there is no possibility to find any new, better points.

10.3 Discussion on GAs and DE

The experimentation with the GAs has been abandoned after it has shown that many tricks
and work-arounds are needed to let the GA to run well. The basic idea, however, of the
reproduction, crossover and mutation has been proven to work, as clearly is illustrated by
Figure 26. If the mutation and crossover probabilities are well chosen, the population tends to
evolve towards the highest fitness. Nevertheless, the non-ergodic way of sampling the search
state [29] does not guarantee the global optimum.

GAs are concerned primitive, in comparison with the advanced search algorithms of today,
but still may lend themselves well for tackling some non-differentiable or discrete problems.
GAs are especially suited for use in self-learning systems and artificial intelligence.

The Differential Evolution algorithm showed better convergence properties than GAs, in this
investigation, as well as in the literature [6]. Important advantage of DE compared to GAs is
the termination criterion. The DE has been successfully used in some RF-engineering
problems, as reported in [1], [30]. The DE is also available through an add-on for the
renowned mathematical software package 'Mathematica'.

After the DE was made discrete, because a limited precision is needed and discrete data sets
are available, the convergence velocity increased even further. Fast convergence,
deterministic termination criterion and easy handling have lead to the discrete DE algorithm
being selected as the technique to proceed with.

57

11
RF System Optimisation Tool

In previous chapters, the optimisation parameters, the system calculations, the cost function,
the optimisation technique and the implementation tool have been defined. In this chapter,
all these topics are combined into the optimisation tool. The performance of the method will
be evaluated and handled through an example system.

11.1 Model of the Optimisation Tool

The optimiser with its environment is shown in Figure 35. There is user input at the one side
and the library at the other. The coupling between the two is the optimiser. Its task is to find
the optimum composition of the building blocks and the values of their adjustment inputs
based on the product specifications provided by the user and the available building blocks in
the library. The fourth block is the output block, where the results of the optimisation are
presented.

Between the measurement tables, at the building block level, and the product specifications,
at the system level, there are system calculations.

USER INPUT OPTIMISER LmRARY

System
¢: System ¢:

BB
level = = levelcalculations

Product +- - Measurement
spec's • tables-

Cost
function

•
Algorithm ~ Algorithm

control

..(7
OUTPUT

Building block Parameter

type no. Xl Xz
LNA-mix 5 0.27 0.74

IF-baseband 2 1.15 1.82

etc. etc. etc. etc.

Figure 35: Model of the optimisation tool

The method works as follows. The user fills in the product specifications that need to be
optimised, sets the algorithm control parameters and starts the procedure. Then the
algorithm generates the test vectors that are pointing to the specific operating points in the
measurement tables. The building block parameter values at these locations are entered in the
system equations where the system performance is calculated.

59

Subsequently, the cost function is built using the system performance values and the product
specifications. The algorithm evaluates the cost function value and uses this information to
determine the following test vectors, which closes the loop.
After the algorithm is terminated, the output is generated.

The implementation of the user input, the optimiser, the library and the output blocks form
Figure 35 will be discussed in the following sections. Also the interfaces between these blocks
will be discussed.

11.1.1 The User Input

The user input block from Figure 35 has been implemented in a graphical user interface. The
algorithm is controlled through the Algorithm control frame and the product specifications are
entered through the Weighting factors and the Constraints frames in Figure 36.

The Algorithm control frame contains the algorithm control parameter fields. These are, from
top to bottom, number of population members, amplification factor, the crossover constant,
convergence tolerance, maximum allowed number of iterations and the algorithm strategy.

RF SYSTEM OPTIMISATION - Control windo.. I

- Algorithm coni",. -I~ Weighting lacl...

NP I"4U Ga., NF I"P3 :.:J IIP2

~~ r ~ ~ ~Tolerance r-;-- I

uer~.~~ II

"... 1'-~ ! ~ ,;,- ,;-
IDC

~
- Optinn•

.

1Rece",", :.:J Sy,'em

r;; Sho", lJaphica outpo.t

r IritiallJAOSS

Opt;';.e I Abat I

~ (;on.lrainl.

I Frequency !:- :.:J ~ GHz

Gain I) :.:J r--oo- ell

NF I :.:J r-- ell

lP1e1l I :.:J r-- eIlm

UP2 I> :.:J~ eIlm

UP3 I :.:J r-- eIlm

IDC I(:.:J Ii'OO""" m<I.

Figure 36: The RF System Optimisation control window

The parameters to be optimised are entered in the weighting factor fields. Using the slide
bars, the relative importance of the parameters can be specified. Based on the position of the
slide bars the weighting factors are automatically calculated to satisfy

(49)

60

The parameters that are not optimised can be specified in the constraint fields, even though it
is possible to optimise a certain parameter and at the same time to specify the constraint for it.
A constraint can be specified as smaller than, <, or larger than, >. The frequency is specified as
equal to, =, and is used to pre-select the building blocks that can operate in the specified
frequency range.

Furthermore, three options can be chosen: Receiver (or Transmitter) system, Show graphical
output and Initial guess. From the graphical output, the dependency of the optimality on the
acljustment parameters and the locations of the possible local minima can be deduced. An
example of graphical output is shown in Appendix D.
A push on the Optimise button reads the values entered in the CUI fields, passes them to the
algorithm and starts the algorithm. The Abort button aborts the optimisation run.

11.1.2 The Optimiser

There are three sub-blocks within the Optimiser block: System calculations, Cost function and
Algorithm. System calculations are defined in Chapter 4 and are summarised in Appendix C.
The cost function is defined in equation (29). The core of the Algorithm is the Discrete
Differential Evolution as described in section 9.1.1.

Besides the DOE, the algorithm also checks for the convergence. It evaluates the following
MATLAB expression for each coordinate

max (pop) - min (pop) == Tolerance;

where pop is the population vector.
For Tolerance = I, the algorithm will terminate when the whole population of the
corresponding coordinate has converged within the range of one discrete step from each
other.
Increasing the value of the Tolerance parameter relaxes the termination criterion.

The flowchart of the algorithm is given in Appendix B.

11.1.3 The Library

The gain and the noise figure of the system will be measured in units of dB and the non
linearity measures in units of dBm. However, the system performance and the cost function
are calculated with the linear values instead of the dB's and dBm's. So the building block
tables will have to be presented to the optimiser containing the linear values.
The DC current consumption of a building block will be measured in rnA and does not need
to be converted.

Working with linear values provides significant time saving by avoiding the logarithm
calculations within the optimisation loop.

The building block measurement tables are defined as a 3-dimensional array. The first array
index is used to address the adjustment input Xl, the second the adjustment input Xl and the
third, the building block parameter. The order of the parameters is defined in section 3.1.

61

The format of the 'building block matrix', BBMTX, is 10xlOx6. So there are 6 ten-by-ten
matrices for each building block. For instance, BBMTX(4,S,2) addresses the element Xl = 4, X2 =

5 of the table 2 (Noise Factor) containing the value, e.g. 1.8603. For more building blocks of
the same type the matrix can be extended by a dimension. For instance, if there are three
LNA-mixer building blocks, the BBMTX format would be 10xlOx6x3.
If the pre-interpolation is used to enhance the precision, as discussed in section 9.1, the
BBMTX may be of other format, e.g. lOOxlOOx6.

11.1.4 The Output

A number of parameters can be monitored during an optimisation run in the output window.
An example is shown in Figure 37. In the first row the iteration number and the value of the
best member's cost function can be monitored. In the convergence field there are six
positions, corresponding with the index of the adjustment parameter. When the
corresponding parameter converges, a 1 is displayed.

J FigureNo.2' I ":,:r;;,"
Elle [dit ~iew Insert Iools :t[indow tlelp

Figure 37: An example of the output

In the following six rows the values of the adjustment parameters are displayed. In the
subsequent row the 'termination flag' is displayed. The possible flags are 'Function has
converged', 'Maximum number of iterations exceeded' and 'Aborted'.
Next, the real number of function evaluations, which usually differs from 'number of
iterations' multiplied by 'population count', is displayed. The elapsed time per optimisation
run is in seconds. The last row displays the system performance. The gain and NF are in units
of dB, the linearity measures in dBm and the current is in rnA.

11.2 An example: IEEE 802.11a Receiver Optimisation

The usage and the specifics of the optimisation tool are best described through an example.
For this, the demonstrator for the RF Platform project has been chosen. A system compliant to
the IEEE 802.11a WLAN standard will be optimised.

The receiver and the transmitter are independent systems and their signal paths are
separated by the baseband module. Therefore, they are optimised separately.

62

At present, the building blocks are not yet available, so neither are the measurement tables. A
set of hypothetical, though realistic, measurement tables for the receiver chain will be used
for the optimiser testing.
From the RF Platform study project the following receiver system specifications need to be
met to comply with the IEEE 802.11a standard.

'f t'T hI 8 IEEE 802 11a e : a receIver speci lca IOns
Gain > 80 dB
Noise Figure < 7dB
IPldB > -23 dBm
IIP2 > 34dBm
IIP3 > -17.5 dBm

Although it is possible to enter all the specifications in the optimiser at once, usually it is
better to split this into a number of steps where each time a parameter is added.
First of all, it is useful to know what are the extremes of the design space. One can find this
out by running an optimisation job each time on a single parameter. The results for this
example are shown in Table 9.

fT hI 9 Ba e : est system per ormance per parameter
Gain max. 86.80 dB
Noise Figure min. 3.64 dB
IPldB max. -16.38 dBm
IIP2 max. 42.34 dBm
IIP3 max. -12.66 dBm
IDe min. 108.37mA

This means, in theory, that the specifications of Table 8 can be met, but the question is if they
can be met simultaneously.
An optimisation could be started by setting the NF and lIP3 weighting factors to 0.5. The
resulting values of the adjustment inputs and the system performance are shown in Figure
38.

• Figure No.2

Ejle ~dit ~iew !nsert 1.ools Window !:;[elp

Figure 38: Output after first optimisation run

63

What can be seen in Figure 38 is that all the requirements are met, except for the gain. The
gain is not a critical parameter and does not need to be optimised, so a following step could
be to specify the gain as a constraint at> 80dB. The results of this run are shown in Table 10.

Table 10: The gain constraint at >80 dB

IXl I~2 IXl I~4 I~5 I~6
I10 10

Gain NF I IPldB IIIP2 IIIP3 IIDC I
80.0156 4.30631 I -19.7494 I 39.3120 I -14.7086 I 217.971 I

One of the system specifications could be that the DC current is not allowed to exceed the
value of 200 rnA. In that case, the following run could incorporate the DC current as a
constraint at 200 rnA, which is met after the optimisation run shown in Table 11.

Table 11: The DC current constraint at <200 rnA

ITh I: I~ If 1_~-"-5 1"':':~~6---

I Gain NF IPldB IIP2 IIP3 IDC

I 80.0001 4.30253 -20.1106 I 39.0868 -14.8515 195.862

This example has shown the optimisation of a system in just a few runs. If the linearity is
regarded more important than the noise performance, a further trade-off could be performed
interactively in a few subsequent optimisation runs. The relative position of the slide bars, in
Figure 36, could be used to specify the relative importance of these parameters.

11.3 Performance of the Method

The population of NP = 40 6-dimensional vectors converges within 100 iterations, for the
Tolerance = 1. Typically, there are less than 0.25% of all the possible operating points
evaluated.
The tool provides significant time saving in comparison with the Exhaustive search. For a
system consisting of three building blocks, the method is typically 70 times faster. This is for
the case that there is only one set of building blocks available per building block type. For
instance, if there were two alternatives for the first block, two different systems would have
to be calculated in case of the Exhaustive search. Then the method presented here would be
slightly less than twice, around 120 times faster. This is caused by the fact that the number of
points to be calculated is doubled in the case of the Exhaustive search whereas in the case of
the RF-optimisation tool de number of points to be evaluated will increase only by a few
percent. As larger the number of building blocks per type and as more measurement points,
the larger the time improvement.
In addition to this, the method offers great flexibility when new building blocks need to be
added to the library. For comparison, if a new block needs to be added for Exhaustive search,
all possible combinations with other building blocks will have to be calculated. For instance,
if a new LNA-mixer is developed, and there were already three VCO-PLLs and three IF
baseband blocks available, nine alternative systems would have to be calculated and stored in
the library. The RF system optimisation tool avoids this.

64

12
Conclusions

The major goal of this Master's thesis was to design an optimisation method that will select
the optimum composition of the building blocks and their optimal adjustment settings, based
on the measurement tables and the product specifications. The selection of the optimisation
parameters, system modelling and calculations, design of the cost function, implementation
of two minimisation algorithms and the implementation and performance of the RF system
optimisation tool have been discussed in previous chapters. This chapter presents the
conclusions derived during the Master's thesis and recommendations for further work.

12.1 Conclusions

An important conclusion of this Master's thesis is that the optimisation aspect of the RF
platform project is feasible. It has been proven that it is possible to optimise a system of three
building blocks, each having 100 different operating points, within a few seconds of
calculation time. This allows for acceptable calculation times for iterative optimisation runs
when the required performance is not met in a single run.
More than a factor 70 is gained in time in comparison with the Exhaustive search. The time
gain gets almost doubled each time a building block per type is added, and increases even
more when the number of measurement points is increased.

The definition of the measurement tables allows for a convenient extension of the
optimisation parameters or the number of measurement points. A better precision can be
achieved by interpolating the values from the measurement tables prior to feeding them to
the optimiser. In this way, a lot of time is saved by avoiding the interpolation within the
optimisation loop.

The choice for linear system calculations and cost function has significantly reduced the
calculation time compared with a situation when the parameters are in units of dB and time
costly logarithm calculations need to be performed within the optimisation loop.

The Differential Evolution minimisation technique does not guarantee the global minimum,
but will always lead to a good solution, if the algorithm control parameters are set well. If the
adjustment parameter functions are simple, which has been assumed, the algorithm control
parameters are already set well and do not have to be changed by the user.

The cost function definition in combination with the Differential Evolution algorithm leads to
a feasible solution for each optimisation run. Even if unfeasible performance is requested, the
method will provide the best feasible solution.

As a result of this Master's thesis, a model of the optimisation tool with its environment has
been defined, as shown in Figure 35. If another implementation for any of the blocks shown
in the figure may be chosen, the model can still offer a good starting point for this.

65

12.2 Recommendations

The described method offers a good starting point in the mobile and wireless transceiver
design. A following step could be to use a circuit simulator, such as Advanced Design System
(ADS), to include bond-wires, transmission lines, substrate and other effects. A commercially
available simulator could also be used to replace the custom made simulator, the System
calculations block in Figure 35.
In future, instead of using many measurement tables, a behavioural model of the building
blocks, based on the measurement tables, could be stored in the library. This would provide a
compact way of describing the building blocks.

Further improvement is possible on the system equations and the cost function definition. At
this moment, all system calculations on the non-linearity parameters (P IdB, IP2, IP3) are input
referred. This means that the gain of the latest stage in the cascade is not included in the
equations. Therefore, it is also not included in the optimisation and can assume an arbitrary
value. Further investigation is recommended to find a way to solve this.
The location of the optimum depends directly on the cost function. As a result of this work a
cost function has been derived. Basically, the gain distribution within a receiver or transmitter
chain is traded between the noise performance and the linearity performance. Further
investigation could reveal if more trade-offs are possible and how to incorporate this into a
mathematical description.

One of the advantages of the RF platform is the possibility to combine building blocks from
different technologies, which could imply different supply voltages. Instead of using the DC
current for the optimisation, power dissipation should be used in that case. No substantial
changes need to be conducted in order to implement this. A simple multiplication of the
building block table containing DC currents with the corresponding supply voltage will be
adequate.

At present, the method is implemented to optimise the receiver and the transmitter chains
separately. One of the arguments to optimise the transceiver as a whole could be the power
dissipation trade-off between the receiver and the transmitter. The VCO-PLL building block
is shared by the receiver and the transmitter, which could also plead for the simultaneous
optimisation. In future, the optimisation method could be extended to incorporate this,
however, at the cost of longer calculation times.

66

Appendix A
Derivation of cascaded 1-dB compression

point, 2nd
_ and 3rd order intercept point

Input-referred cascaded 1-dB compression point

Consider a memoryless non-linear system,

X(t)--1~__y(t_~

Figure 39: A non-linear system

which can be approximated with,

If x(t) = Acos(mt), then

using the relationships,

1
cos 2 (r) =-[1 + cos(2r)]

2

3 31
cos (r) =-cos(r) + -cos(3r)

4 4

yields,

1 1
y(t) =a j A cos(mt) +-a2A2[1 + cos(2mt)] +-a3A3[3 cos(mt) + cos(3mt)]

2 4
a A 2 (3a A 3 J a A 2 a A3=_2_+ ajA + 3 cos(mt) + _2-cos(2mt) + _3-cos(3mt)

2 4 2 4

(50)

At I-dB compression point the voltage magnitude of the fundamental at the system output
has dropped by 1 dB compared to the linear output1• The following equation is solved for the
input voltage magnitude at which this occurs,

1 occurs when a3 is negative, otherwise there is expansion instead of compression.

67

The voltage magnitude at the input of the system at which 1-dB compression occurs is,

Now, consider a cascade of two memoryless non-linear stages,

(51)

Ga J

IP,dB"
IIn,
IIP3,

Ga,
IP,dB"
IIP2,
IIP3,

x(t) y,(t)

Figure 40: Cascaded non-linear stages

Let,

YI (t) =alx(t) + a 2x 2(t) +a 3x
3(t)

Y2 (t) = PIYI (t) + P2YI
2
(t) + P3Y; (t)

then,

Y2 (t) = PI [alx(t) + a 2x
2(t) + a 3x

3(t)]+ P2 [alx(t) + a 2x
2(t) + a 3x

3(t)]2

+ P3 [a l x(t) + a 2x 2(t) + a 3x
3(t)]3

In accordance with (50), for the equivalent system only the effect of up to the third-order
terms is assumed while higher order terms are not considered, which yields,

and if x(t) = A cos(OJt) then,

68

(52)

Yz (t) =aJJ] A cos(OJt) + ladJ] A3cos(OJt) + la]az/3zA3 cos(OJt) +i a]3 /33A3 cos(O){)
4 2 4

+ constant term + harmonics

since we are interested only in the magnitude of the fundamental.

Again, the following equation is solved for the voltage magnitude at which I-dB compression
occurs,

]

10- zo -1 ·!a]/3]1

and using the rule la + hi ~ lal + Ihl we obtain for the worst case,

I

10 zo - 1 . laJ3] I

making the use of the results found for a single stage in equation (51), we may write,

69

The linear gain is in general much higher than the high-order gain, we may assume

IpII» la2P21, which yields,

Latter can be written in terms of linear powers, i.e. not in dB, and linear gains,

I I Gal
--=--+--
iPldB iPldB,1 ipldB,2

By nesting the previous equation, the equivalent linear power level at the input of N stages at
which the gain has degraded by 1 dB is given by,

I I Gal Ga1Ga2 Ga1Ga2 •••GaN _1--=--+--+ + ... + -~---=-_:..:........:..

ipldB iPldB,1 iPldB,2 iPldB,3 iPldB,N

70

Input-referred cascaded Z"d and 3rd order intercept points

Consider again a memoryless non-linear system, as shown in Figure 39, which can be
approximated with equation (50).

using the relationships,

1
cos 2 (y) =-[1+cos(2y)]

2

3 31
cos (y) = -cos(y) + -cos(3y)

4 4

yields,

The spectral components of y(t) are shown in Figure 41, with w = 2rcf

PSD [dBIHz]

DC h-h h1;
2fd2 2fd']

3f] 3f2 f [GHz]

2f]+1; 2f2+f]

Figure 41: Spectral components of y(t) with two-tone input

71

Input-referred 2'd order intercept point

Let's assume that Al = A2 = A. The 2nd order intercept point occurs (hypothetically) when the

voltage magnitude of one of the fundamentals at the output of the non-linear stage is equal to
the voltage magnitude of one of the 2nd order intermodulation products. For the voltage
magnitude of the fundamental at the input of the non-linear stage at which this would occur
holds

then let's assume that a j »2..a3A 2
, which yields

4

(53)

Now, consider again a cascade of two memoryless non-linear stages, as shown in Figure 40,

and if x(t) = Acos(wlt) + A cos(w2t) then,

Y2 (t) = aJJIA cos(wlt) + (a2pI A2+ a l
2fJ2A2)cos((wl -w2)t)

+ constant term + harmonics + other intermodulation products

since we are interested only in the magnitude of one of the fundamentals and one of the 2nd

order intermodulation products.

Then,

and using the rule la + bl ~ lal + Ibl we obtain for the worst case,

1 _la2pII + jal
2P21

A11P2 laipil

making the use of the results found for a single stage in equation (53), we may write,

72

1 1 a]--=--+---'---
A IIPZ AIIPZ,I AIIPZ,z

Latter can be written in terms of linear powers, Le. not in dB, and linear gains,

By nesting the previous equation, the equivalent input-referred 2nd order intercept point of N

stages is given by

Input-referred ~d order intercept point

Let's assume that A] =A z =A. The 3rd order intercept point occurs (hypothetically) when the

voltage magnitude of one of the fundamentals at the output of the non-linear stage is equal to
the voltage magnitude of one of the 3rd order intermodulation products. For the voltage
magnitude of the fundamental at the input of the non-linear stage at which this would occur
holds

then let's assume that a l » 9 a 3 A z , which yields
4

(54)

Now, consider a cascade of two memoryless non-linear stages, as shown in Figure 1.

Using the equivalent system equation (52) and the results for one stage found in equation (54)

we substitute for a] ~ aJ3], and for a 3~ a 3131 + 2a]az/3z + a]3 133, which yields

and again using the rule la + hi ~ lal + Ihl we obtain for the worst case,

73

1 _ 3IaJJII+12a]a2P21+laI3p31
A~P3 4 lalPII

making the use of the results found for a single stage in equation (54), we may write,

The linear gain is in general much higher than the high-order gain, we may assume

IpII » la2P21, which yields,

1 1 a 2

--=--+--)-
A~P3 A~P3,1 A~P3,2

Latter can be written in terms of linear powers, Le. not in dB, and linear gains,

1 1 Gal
--=--+--
iip3 iip3) iip3 2

Finally, by nesting the previous equation, the equivalent input-referred 3rd order intercept
point of N stages is given by

74

Appendix B
Flowcharts of Genetic Algorithm and

Discrete Differential Evolution Algorithm

Genetic Algorithm flowchart

1. Set k:=O; fonn initial population P(O)
2. Evaluate P(k)

3. If stopping criterion satisfied, then stop
4. Select M(k) from P(k)
5. Evolve M(k) to form P(k+1)
6. Set k:=k+1, go to step 2

k:=O
Form P(O)

,-------------------- ~---~---~

No

Fitness
~-------------------

M(k)

Mutation

Figure 42: Genetic Algorithm flowchart

STOP

75

iter:=1
conv:='no'

Shuffle
Build Intermediate pop

1:=1

i:=1
Evaluate pop(i)

Best Member:=pop(i)
Best Val:=value(pop(i))

i:=2

No
i<=NP

Temp Val <
Best Val

No

I<=NP

Yes

>-_N_O_~ Calculate convergence
iter:=iter+1

Yes

Evaluate pop(i)
nfeval:=nfeval+1

No TempVal<
Val popold

Yes Temp Val <
Best Val

No

Figure 43: Discrete Differential Evolution algorithm flowchart

76

Appendix C
System calculations

Linear factor system calculations

1 1 Gal GalGa2 GaIGa2..GaN_1__ =__ +__+ +... + _-'---=---_::.......0.-

iPldB iPldB,1 iPldB,2 iPldB,3 iPldB,N

dimensionless

dimensionless

[m~]

Ga IGa2·.GaN_1
iip2N [~]

I DC = IDC,1 + IDc ,2 +IDc,3 +,..+ IDc,N

[mlw]

[mA]

dB to linear and vice versa

G

[dB]
-

G =10 ·loglO (Ga) ~ Ga =10 10 dimensionless
NF

[dB]
-

NF =10 ·loglO (F) ~ F =10 10 dimensionless
IIP3

IIP3 =10 ·loglO (iip3) [dBm] ~ iip3=10 10 [mW]
IIP2

IIP2 =10 ·loglO (iip2) [dBm] ~ iip2 =10 10 [mW]

[dBm]
lfidE

[mW]I~dB =10 ·loglO (iPldB) ~
. 10 10lPldB =

77

Appendix D
Graphical Output

FIgure ~o. 1

Eile ~dit Iliew insert 10015 \I!Indow tielp

Figure 44: Two examples of graphical output of the RF system optimisation tool

79

Appendix E
References

[1] Vancorenland, P. and C. de Ranter, M. Steyaert, G. Gielen
Optimal RF design using smart evolutionary algorithms, IEEE Proceedings 2000: Design
Automation Conference, 2000, p.7-1O.

[2] Dermentzoglou, L. and A. Arapoyanni, A. Pneumatikakis
A direct conversion receiver analysis for muItistandard wireless applications, Proceedings on
10th Mediterranean Electrotechnical Conference, Information Technology and
Electrotechnology for the Mediterranean Countries, IEEE, 1998, VoLl, p.318-21.

[3] Crols, J. and S. Donnay, M. Steyaert, G. Gielen
A high-level design and optimization tool for analog RF receiver front-ends, 1995 IEEE/ACM
International Conference on Computer-Aided Design, Digest of Technical Papers,
IEEE Comput. Soc. Press, 1995, p.550-3.

[4] Veselinovic, P. and D. Leenaerts, W. van Bokhoven, F. Leyn, F. Proesmans, G. Gielen,
W. Sansen
A flexible topology selection program as part of an analog synthesis system, Proceedings on
the European Design and Test Conference, IEEE Comput. Soc. Press, 1995, p.119-23.

[5] Droinet, Y.
An innovative N-ZIF RFIC architecture for muItimode cellular handsets, Microwave
Engineering, Oct. 2001, p.33-7.

[6] Storn, R. and K. Price
Differential evolution - A simple and efficient adaptive scheme for global optimization over
continuous spaces, International Computer Science Institute, 1995, TR-95-012.

[7] Pennock, S.R. and M.H. Burchett, M.A. Redfern, X. Zhang
A building block approach to the design ofprototype RF systems, lEE Colloquium on The
RF Design Scene, 1996, p.7/1-5.

[8] Fang Wang and V.K. Devabhaktuni, Xi. Changgeng, Qi Jun Zhang
Neural network structures and training algorithms for RF and microwave applications,
International Journal of RF and Microwave Computer Aided Engineering, May 1999,
Vol.9, no.3, p.216-40.

[9] Alotto, P. and A. Caiti, G. Molinari, M. Repetto
A muItiquadrics-based algorithm for the acceleration ofsimulated annealing optimization
procedures, IEEE Transactions on Magnetics, May 1996, Vol.32, no.3, p.1198-201.

[10] Kundert, K.
Simulation of nonlinear circuits in the frequency domain, IEEE Transactions on Computer
Aided Design, 1986, Vol. 5, no. 4, p. 512-35.

81

[11] De Smedt, B. and G. Gielen
Models for systematic design and verification offrequency synthesizers, IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal Processing, Oct. 1999, Vol.46,
no.10, p.1301-8.

[12] Gielen, G and RRutenbar
Computer-Aided-Design ofAnalog and Mixed-Signal Integrated-Circuits, Proceedings of
the IEEE, 2000, Vol.88, no.12, pp 1825-1852..

[13] Kruiskamp, M.
Analog design automation using genetic algorithms and polytopes, Doctoral dissertation,
Eindhoven University of Technology, The Netherlands, 1996.

[14] Gielen, G. and J. Huijsing, R. van der Plassche and W. Sansen, Ed.
Top-Down Design ofMixed-Mode Systems: Challenges and Solutions, Kluwer, 1998.

[15] Holland, J.H.
Adaptation in natural and artificial systems, University of Michigan Press, 1975.

[16] Goldberg, D.E.
Genetic algorithms in search, optimization and machine learning, Addison-Weslay, 1989.

[17] Barnasconi, M.
Architecture comparison for RF platforms, Internal laboratory report, ERA/IR02016.01.

[18] Neelen, A.H.
Partition of the functional building blocks for the RF Platform, Internal laboratory report,
ERA/IR02019.l.

[19] Come, B. et al
Impact offront-end non-idealities on Bit Error Rate performances of WLAN-OFDM
transceivers, Microwave Journal, pp.126-140, February 2001.

[20] Soorapanth, T. and T.H. Lee
RF Linearity of Short-Channel MOSFETs, Stanford University,
http://www-smirc.stanford.edu/papers/cancun97p-chet.pdf

[21] Chong, E.K.P. and S.H. Zak
An Introduction to Optimisation, Wiley-Interscience Publication, New York, 1996.

[22] NeIder, J.A. and R. Mead
A simplex method for function minimisation, Computer Jurnal, Vol.7, Jan 1965, p308-313.

[23] Metropolis, N. et al
Equation of State Calculations by Fast Computing Machines, J. Chern. Phys., 21, 6, 1087
1092, 1953.

82

[24] Matteij, RM.M.
Inleiding Numerieke Methoden (2N21O), Course syllabus, Technische Universiteit
Eindhoven.

[25] Bliek, C. et al
Algorithms for solving Nonlinear Constrained an Optimisation Problems: The State of The
Art, June 8 2001, http://www.mat.univie.ac.at/-neum/glopt/coconut/StArt.html.

[26] Keane, AJ
A brief comparison of some evolutionary optimisation methods, pp. 255-272 in Modem
Heuristic Search Methods, ed. V. Rayward-Smith, I. Osman, C. Reeves and G. D.
Smith,J. Wiley, ISBN 0 471 962805, 1996.

[27] Storn, R
Differential Evolution Homepage, http://http.icsi.berkeley.edu/-stornlcode.html.

[28] Gfunperle, R et al
A Parameter Study for Differential Evolution, Institute of Compo Sciences, Switzerland,
http://www.icos.ethz.ch/research!wseas02.pdf.

[29] Ingber, L. and B. Rosen
Genetic Algorithms and Very Fast Reannealing: A comparison, Mathematical and
Computer Modelling, 16(11) 1992, 87-100.

[30] Storn, R
System Design by Constrain Adaptation and Differential Evolution, International
Computer Science Institute, TR-96-039, November 1996.

83

	Voorblad
	Summary
	Preface
	Contents
	1 Introduction
	2 Modern transceiver architectures
	3 Building block partition
	4 Models and system calculations
	5 Optimisation parameters and the cost function
	6 Time complexity estimation
	7 Optimisation techniques
	8 Genetic algorithms
	9 Differential evolution
	10 Implementation
	11 RF system optimisation tool
	12 Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

