
 Eindhoven University of Technology

MASTER

Design and implementation of location based services on a PDA with MIPv6

Vredeveld, D.

Award date:
2002

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/be4c52b6-c6a2-4a06-ad23-5a070913dc6b

Design and implementation of
location based services on a

PDA with MIPv6

M.Sc. thesis

By D. Vredeveld

...... W'
~~..."t/
.'" to'"

Dennis Vredeveld
IMST GmbH

Kamp-Lintfort, Germany, July 2001 - April 2002
Supervisors:

Ir. M.B. Hijdra (IMST GmbH)
Prof. ir. A.M.J. Koonen (TU/e)

Ir. J.J.B. Kwaaitaal (TU/e)

I
M

. S
'~T

Abstract

This report has been written to finish the activities performed as a graduation project at
IMST GmbH, located in Kamp-Lintfort, Germany. This nine-month project is the final part
of my study at the faculty of electrical engineering at the Eindhoven University of
Technology (TU/e). It has been performed under supervision of ir. M.B. Hijdra of the group
Communication Systems and Networks (CSN) of the Systems department of IMST. The
supervisors at the TU/e were prof. ir. A.M.J. Koonen and ir. J.J.B. Kwaaitaal of the
department Telecommunication Technology and Electromagnetism (TTE).

Future wireless networks are likely to offer high-bandwidth communication possibilities to
their users. In addition, it will become possible to determine the position of the user
accurately, either through network services, or by means of additional sensing devices.
These characteristics of future mobile environments will make it possible to cope with the
growing demand for location based services. The IMST ISIDOR project researches the
possibilities of this new type of service.

The assignment's main target is the design and implementation of location based
services, based on a Personal Digital Assistant (PDA). To achieve this, the PDA has to be
equipped with a suited operating system supporting mobile IPv6, as well as a suited
wireless access technology. The most suited operating system turns out to be the Linux
Familiar distribution. As wireless access technology, wireless LAN is chosen. Support for
Bluetooth is planned, but currently not yet feasible. Next step is to investigate a client
server implementation of location based services, based on the techniques stated above.
This requires three entities, each consisting of an application and an interface to the other
entities. These are the home agent, the database server and the mobile node. The
database server store all information available in the location based services network and
should be capable of handling multiple connections simultaneously. By monitoring packets
sent and received at the interfaces of the database server, information on its performance
can be acquired. To complete these measurements, the round trip delays between the
different entities have to be estimated first.

Throughout this report it becomes clear that the basic functionality of Linux with MIPv6 on
a PDA is good, as the essential requirements with respect to mobility and connectivity are
all met. The interaction between mobile nodes and the database server functions as
expected and generation of notifications and response messages by the database server
is fast, compared to the other two entities. However, there are a lot of recommendations to
improve speed and efficiency of the applications. Once these have been implemented,
scaling to a larger LBS network should be possible.

- iii -

Contents

Abstract iii

Contents iv

List of figures vii

List of tables ix

Preface x

Chapter 1. Introduction 1

Chapter 2. Project description and assignment. 3
2.1 The ISIDOR project : 3

2.1.1 Location based services 3
2.1.2 ISIDOR project background and requirements 4
2.1.3 Wireless network choice 7
2.1.4 ISIDOR project status 8
2.1.5 Summary 9

2.2 The assignment 9
2.2.1 Specific tasks 9
2.2.2 Possible extensions 10

Chapter 3. LBS concepts and requirements 11
3.1 Introduction 11

3.2 Service architecture 11
3.2.1 Stand-alone architecture 11
3.2.2 Client-server architecture 12
3.2.3 Peer-to-peer architecture 12

3.3 Network topology 13
3.3.1 Configuration 13
3.3.2 Addressing 14

3.4 Evaluation 15

3.5 Service mapping 16

Chapter 4. Overview of mobile IPv6 17
4.1 History of IPv6 17

4.2 Mobility support 18

4.3 Basic operation ofMIPv6 19

4.4 IPv6 destination options 20
4.4.1 Binding update 20
4.4.2 Binding acknowledgement. 20
4.4.3 Binding request. 21
4.4.4 Home address 21

Chapter 5. Mobile IPv6 for Linux 22
5.1 Introduction 22

- iv-

Contents

5.2 Linux system files and tools 22
5.2.1 Kernel system files 22
5.2.2 Network and IPv6 tools 23

5.3 Mobile node configuration 26
5.3.1 Requirements 26
5.3.2 Distributions 27
5.3.3 Evaluation and conclusions 28
5.3.4 Familiar installation 29
5.3.5 Java installation 29

Chapter 6. Implementation 31
6.1 Introduction 31

6.1.1 Home agent entity 32
6.1.2 Mobile node entity 32
6.1.3 Database server entity 33

6.2 . Location information retrieval 33

6.3 Message structure 34
6.3.1 XML language 34
6.3.2 XML validation: DTD 34

6.4 Defined messages 35
6.4.1 MessageHA2DB 36
6.4.2 MessageMN2DB 38
6.4.3 MessageDB2MN 42

6.5 Client-server communication 43
6.5.1 Set-up of a TCP connection 43
6.5.2 Multiple user connections 45

6.6 Database server application functioning 48
6.6.1 Parent/child functionality 48
6.6.2 Information storage and retrieval 50
6.6.3 Update considerations 51
6.6.4 Robustness 52

6.7 Mobile node application functioning 53

Chapter 7. Measurements 55
7.1 Introduction 55

7.2 Scenarios and measurements 56
7.2.1 Scenarios 56
7.2.2 Measurement method 57
7.2.3 Message sizes 58
7.2.4 Measurement set-up 59

7.3 Measurement results 60
7.3.1 Round trip estimations 60
7.3.2 Round trip conclusions 62
7.3.3 Scenario measurements 63

7.4 Measurement conclusions 68
7.4.1 Round trip measurement conclusions 68
7.4.2 Scenario measurement conclusions 69

Chapter 8. General conclusions and recommendations 70
8.1 General conclusions 70

8.1.1 Functionality 70
8.1.2 Performance 71

8.2 Recommendations 71
8.2.1 LBS and network related 71

-v-

Contents

8.2.2 Implementation related 72

Appendix A. Abbreviations and definitions 75
A.I Abbreviations 75

A.2 General terms 76

A.3 Mobile IPv6 terms 77

Appendix B. MIPv4 implementation information 78
B.l Windows implementation 78

B.2 Linux implementation 78

Appendix C. iPAQ Linux installation 80

Appendix D. XML protocol DTD 81

Appendix E. Defined XML messages 83
E.I MessageHA2DB 83

E.2 MessageMN2DB 84

E.3 MessageDB2MN 90

Appendix F.

Appendix G.

Flowchart of child function 91

References 92

- vi-

List of figures

Figure 2-1. The wishes of users of mobile services 4

Figure 2-2. The Compaq iPAQ 3630 with WLAN card 5

Figure 2-3. The different forms oflocation based services within IMST 7

Figure 3-1. Client-server architecture scenario 12

Figure 3-2. Peer-to-peer architecture scenario 13

Figure 3-3. IPv6 network topology 14

Figure 3-4. Mobile IPv6 LBS topology 16

Figure 4-1. IPv6 header compared to IPv4 header 18

Figure 4-2. IPv6 header extension format. 18

Figure 5-1. Screenshot ofEthereal. 25

Figure 5-2. Information displayed in the fIrst cell 30

Figure 5-3. Information displayed in the second cell 30

Figure 6-1. Logical entity overview 31

Figure 6-2. MessageHA2DB sequence chart 36

Figure 6-3. User registration messages sequence chart 38

Figure 6-4. Subscription messages sequence chart 40

Figure 6-5. Query messages sequence chart 41

Figure 6-6. NotifIcation messages sequence chart 43

Figure 6-7. Socket functions for elementary TCP client-server connection 44

Figure 6-8. TCP client-server model with two clients (from client's perspective) 45

Figure 6-9. Multiple threads vs. single threads across time 47

Figure 6-10. Schematical functioning of main loop 49

Figure 6-11. Mobile node application showing current cell information 53

Figure 6-12. Mobile node application showing network information 54

Figure 7-1. Example of delay measurement. 57

Figure 7-2. Message size differences 58

Figure 7-3. Round trip time between the home agent and the database server 61

Figure 7-4. Round trip time between the database server and a mobile node in cell 1. 61

Figure 7-5. Round trip time between the database server and a mobile node in cell 2 62

- vii -

List of figures

Figure 7-6. New mobile node startup scenario ,. 64

Figure 7-7. Results of the new mobile node startup scenario 64

Figure 7-8. Mobile node handover scenario without notifications 65

Figure 7-9. Results of the mobile node handover scenario without notifications 65

Figure 7-10. Mobile node handover scenario with a single notification 66

Figure 7-11. Results of the mobile node handover scenario with a single notification 67

Figure 7-12. Mobile node handover scenario with 5 notifications 67

Figure 7-13. Results of the mobile node handover scenario with 5 notifications 68

- viii -

List of tables

Table 5-1. Linux iPAQ distributions comparison 27

Table 7-1. IPv6 payload size of defined messages 59

Table 7-2. Calculated message delays 63

Table 7-3. Home agent and database delays for new mobile node startup scenario 64

Table 7-4. Database delay for mobile node handover scenario 65

Table 7-5. Database delays for mobile node handover scenario with a single notification 66

Table 7-6. Database delays for mobile node handover scenario with 5 notifications 67

- ix-

Preface

Completing a task like a graduation assignment is never easy. It is almost always the first
time one has to deal with an assignment of this magnitude, both in duration and
complexity. At first it is important to develop a general view on the assignment and the
work it involves. This stage is followed by a period where literature and other information
have to be gathered in order to successfully accomplish the rest of the assignment. The
final period is always more stressful than anticipated, but it is very satisfactory having
finished this period.

Working in an environment where both hardware and software configuration are
experimental is usually a guarantee for unknown and unexpected problems. This can be
both very educational and frustrating. Luckily, the first feeling has dominated during the
nine months of my assignment.

This would never have been the case without proper supervision. So, I would like to thank
the Communication Systems and Networks (CSN) group of the IMST for giving me the
opportunity to do my graduation project here and giving me an insight in their daily
business. In particular, my supervisor ir. Martijn Hijdra has done an excellent job in giving
me all the information I needed to complete my assignment and in assisting me whenever
there were problems I was not able to solve on my own. Finally, I would like to thank ir.
Kwaaitaal and prof. ir. Koonen for being my supervisors from the Eindhoven University of
Technology.

Kamp-Lintfort, Germany, April 2002.
Dennis Vredeveld.

- x-

Chapter 1. Introduction

This report is written to inform on the activities of my master's thesis, performed at IMST
GmbH, located in Kamp-Lintfort, Germany. IMST is a research institute on mobile and
satellite communication and was founded in 1992. At the department Communication
Systems and Networks (CSN) research on location based services (LBS1) and wireless
access technologies is done.

It is widely anticipated that future mobile users will have access to high-bandwidth
wireless communication systems. This can be realised in many forms, for instance by
means of third generation (3G) public networks or by means of private access points
based on technologies such as IEEE 802.11. Irrespective of the exact implementation, the
overall effect will be that new classes of communication-oriented mobile applications will
be enabled.

In parallel with the emergence of these high-bandwidth wireless communication systems,
there will be a growing demand for new types of services. Location based services form
such a new type of service. With LBS, the delivered content depends on the location of
the user. This can be, for instance, a guide through a museum. The user uses a wireless
and handheld device to retrieve and view this content. Depending on the user's location
within the museum, he receives information concerning his current position. This
information can also be used for navigation through the museum.

The ISIDOR project is one of the projects within the CSN group, in which LBS are
researched. ISIDOR stands for Information Systems Improved by location Dependent
Services Over Radio. The project's goal is to implement location based services. It uses
standards like mobile IPv6 (MIPv6) as network protocol and wireless LAN (WLAN2) and
Bluetooth for wireless communication. Applications are implemented in Java to ensure
portability.

In most LBS implementations presented so far, the mobile nodes have no knowledge of
the location of other mobile nodes. In the ISIDOR project, we want to provide this
information to all mobile nodes present in the network. This enables them to contact each
other based on their location. Different infrastructures can be used to implement this
functionality.

This report describes the most important aspects regarding location based services with
respect to the ISIDOR project's implementation. First, a closer look at the project's
background and the assignment are given, followed by the most important aspects of
location based services, as well as three possible service architectures to implement
these. Chapter 4 gives some background information on mobile IPv6. Next, the relevant

1 Instead of LBS, the terms 'Location Dependent Services' (LOS) and 'Location Aware Services' (LAS) are also used. They refer to the
same concepts. The term LBS is currently the most common one and will therefore be used throughout this document.

2 Wireless LAN (WLAN) cards are also known as WaveLAN cards. Strictly speaking, the last term is the name of a former Lucent
product line. However, both terms are used in this document.

-1 -

Preface

information of MIPv6 with respect to the Linux environment is given. The configuration of
the handheld devices is also discussed in this Chapter. In Chapter 6, the communication
protocol and the actual implementation are discussed. The measurements performed in
order to retrieve some information on the functionality of the implementation can be found
in Chapter 7. Finally, the general conclusions and recommendations are presented in
Chapter 8.

-2-

Chapter 2. Project description and assignment

This chapter gives a short description of the graduation assignment as it was mutually
agreed on before its start in July 2001, together with some information and the status of
the project it belongs to.

2.1 The ISIDOR project

This section describes the ISIDOR project and its status at the start of my graduation
project. All the work described in this section has been done before the start of my
assignment and serves as background information, as well as illustration of the project's
requirements. This information forms the starting point of my assignment, which will be
described in section 2.2.

2.1.1 Location based services

In the past few years, telecommunication has found its way into the mass market. The
enormous growth of mobile phone purchases illustrates this fact. Now that mobile speech
communication has become common wealth, the demand for data communication is also
likely to take a leap. This is already being indicated by the success of Short Message
Service (SMS). New techniques and protocols open the way to mobile multimedia
communication, for instance with the new Universal Mobile Telecommunication System
(UMTS). Location based services may be an important part of the newly developed
services and platforms for mobile multimedia communication [1].

The combination of wireless multimedia communication with a handheld device makes it
possible to receive any information at any place, on any time. Especially the services that
depend on the physical position of the user are believed to have great potential [1]. As can
be seen in Figure 2-1, three out of the four most wanted services by mobile customers are
location based.

-3 -

Section 2.1. The ISIDOR project

% 0 10 20 30 40 50

E-Mail ••••••••••••••••••

Route Informatio

Traffic Information ••••••••••••••

Weather•••••••••••••

o

Agenda

other local Information

Banking

Stock Information .---1Il
News •••••

Entertainment ••••

Ticketing __II

Sport Results •••

Local Based Services

Souree: Jupilcr

Figure 2-1. The wishes of users of mobile services.

2.1.2 ISIDOR project background and requirements

2.1.2.1 Project background

The aim of the ISIDOR project is the development of a scalable 'Information System
Improved by location Dependent services Over Radio' for different environments. The
project runs in the section Communication Systems and Networks (CSN) of IMST3. Its
target is the provision of location based information to spontaneous user groups, e.g. in
exhibitions. Instead of proprietary solutions, publicly available standards like mobile IPv6,
XML (Extensible Mark-up Language) and Java are used in the ISIDOR project.

To achieve this target, a demo application of location based services will be developed (in
Java). One of the project's innovative concepts is the support of distributed spontaneous
communities instead of centralised service providers. This enables every node to
exchange information with every other node, based on its position. Traditional centralised
concepts only offer information regarding the mobile node itself; no information on the
network structure and its users can be obtained. The location information and services run
on top of IP and are based on cell identifiers of the access technology used. The service
provisioning is also based on this identification. Connectivity must be guaranteed during a
change of cell (a hand over) and current connections should not be interrupted.

2.1.2.2 Mobile device requirements

Location based services are most valuable when the user and his communication device
are mobile. The communication device can be any portable, wireless and handheld
device, for instance a cell phone or notebook. For the ISIDOR project, a Personal Digital
Assistant (PDA) is used as mobile device. A PDA is, in general, smaller than a notebook
or laptop, but bigger than a mobile phone. It lacks a keyboard. Mostly, a touchscreen is

3 See www.imst.de/mobile/section/com-sys.htm for more information.

-4-

Chapter 2. Project description and assignment

used for input. Its display is considerably larger than that of a mobile phone and usually
displays an image at a higher resolution with more colours.

The PDA of our choice is the Compaq iPAQ 3630. It contains 16 MB of Flash ROM and
16 or 32 MB of RAM. Its 320*240 screen is capable of displaying 16 million colours. It can
be expanded by a (optional) sleeve (a so-called backpaq), which contains an extra battery
and a PCMCIA slot. This PCMCIA slot can be equipped with a wireless LAN (IEEE
802.11 b, to be more specific) or Bluetooth card. See Figure 2-2 for a picture of the iPAQ
3630 with a wireless LAN expansion card.

Figure 2-2. The Compaq iPAQ 3630 with WLAN card.

The iPAQ PDA is out of the box equipped with the Windows CE operating system (OS).
While this is sufficient for common applications, it is not the operating system of our
choice when it comes to implement and develop location based services. Main reason for
this is the fact that Windows CE is not open source software, restricting configuration
possibilities and collective development of, for instance, mobile IPv6 support. This leads to
the first task of the assignment, which consists of choosing, installing and configuring an
as (and possibly a special distribution) that supports mobile IPv6, combined with a suited
wireless technology. The choice of wireless technology will be discussed in 2.1.3. The
choice of the as is mostly hardware dependent. For that reason, every PDA with the
same hardware as the iPAQ 3630 can be used. In practice, the CPU (in case of the iPAQ
an Intel StrongARM at 206 MHz.) is the most important factor.

2.1.2.3 Java

The implementation of a location based service will be done in Java. Java is a
programming language expressly designed for use in the distributed environment of the
Internet. It was designed to have the "look and feel" of the C++ language, but it is simpler

- 5-

Section 2.1. The ISIDOR project

to use than C++ and enforces an object-oriented programming model. Java can be used
to create complete applications that may run on a single computer or be distributed
among servers and clients in a network. It can also be used to build a small application
module or applet for use as part of a Web page. Applets make it possible for a Web page
user to interact with the page. The following characteristics of Java are important for the
ISIDOR project:

• The created programs are portable in a network. The source program is compiled
into so-called bytecode , which can be run anywhere in a network on a server or
client that has a Java Virtual Machine (JVM). The JVM interprets the bytecode into
code that will run on the real computer hardware. This means that individual
computer platform differences such as instruction lengths can be recognized and
accommodated locally just as the program is being executed. Platform-specific
versions of program are no longer needed. This means no recompilation is
necessary to run a developed Java application on the iPAQ.

• In addition to being executed at the client rather than the server, a Java applet has
other characteristics designed to make it run fast. This is important, as the
hardware of a PDA is relatively slow compared to modern personal computers.

2.1.2.4 The WINEGLASS project

The ISIDOR project runs time wise concurrently with a bigger, European project called
WINEGLASS. This stands for Wireless IP Network as a Generic platform for Location
Aware Service Support. This project started in 1998 and is finished in Q1 2002. The
WINEGLASS project researches the possibilities of using IP-based wireless mobile
multimedia with UMTS and wireless LAN and involves several companies. The emphasis
lies on suitable (software) platforms for location based services. Mobile IPv6 is one of the
issues considered within this project.

The ISIDOR project only copes with the private or small area scope, while the
WINEGLASS project focuses on the bigger environment. The private scope means that
the location based services will only be meaningful in certain designated places, for
instance between the walls of a museum. The scope of the public area however, is often
only limited by the reach of the chosen transmission method, like the coverage of a GSM4
network. This can be seen in Figure 2-3, together with some examples of possible
applications.

In the case of the ISIDOR project, the term "location" has a geographical, as well as a
content-related meaning. It is geographical in the sense that it is only available in a certain
and fixed area, for instance a museum or exhibition. In that case, the content loses its
meaning once the user leaves the museum or exhibition. The term "location" is also
content-related, as it offers services that are only available within this area. In this case,
the location can be seen as a community, formed by a group of users using the same
services. Whenever the community physically moves, the area in which their services are
available moves as well.

4 Global system for mobile communication.

- 6-

Chapter 2. Project description and assignment

Figure 2-3. The different forms of location based services within IMST.

2.1.3 Wireless network choice

As the ISIDOR project is limited to a small and well-known area, location determination
will not be done by means of technologies used in wide-area networks (WANs) such as
GSM or the Global Positioning System (GPS). Instead, WLAN or Bluetooth is used to
determine the user's location. This has several reasons:

• First of all, the location determination of wide area networks is usually not as
accurate as in local area networks (LANs). The better the determination of location
takes place, the more the offered services can be focused on this location. With
WLAN the location can be determined with an accuracy of approximately 101\2
meter5; with Bluetooth 101\1 meter can be achieved. With GSM this kind of
accuracy is only possible with use of triangulation techniques. These techniques
are not part of the core network and have to be implemented by the user. GPS
does not have this limitation, but because of the large distance to the transmitter, it
is virtually impossible to determine locations in the z-direction. However, this can
be necessary to differentiate the floors of a building.

• Another disadvantage of wide area networks are the variable costs. As these
networks mostly have an operator, access is charged. This is done either by
connection time or by amount of transmitted data. With WLAN of Bluetooth, no
extra costs are involved once the private infrastructure is present.

• Finally, there is the problem of quality of services. Within a local LBS network, the
infrastructure can be adapted and extended to the amount of users to ensure
connectivity and bandwidth requirements. This is not possible with national or
global networks as the operators control their configuration and quality of service
offered. This may not be satisfactory for of the users of the LBS network.

However, there is one problem with the wireless technologies of our choice. The
development of Bluetooth implementations has not yet advanced enough to reliably
implement a network based on IPv6 with Bluetooth based access points. Therefore,

5 If location is determined on the basis of the access point the mobile device is communicating with. See section 6.2 for more details on
location determination.

- 7-

Section 2.1. The ISIDOR project

wireless LAN is the only wireless technology currently used. Bluetooth will be integrated in
a later stadium of the project. The much smaller power consumption of a Bluetooth
module, compared to a wireless LAN card, is one of the reasons that this delayed
implementation will still be feasible. Another reason is the higher accuracy of the location
determination of the Bluetooth technology.

2.1.4 ISIDOR project status

Different devices and operating systems have been used to verify the concept of mobility
using the WLAN technology. Three different combinations have been tested: an iPAQ with
Windows CE, and a Sony Vaio laptop with Linux and with Windows 98.

In the initial phase of the ISIDOR project, an attempt has been made to use the Dynamic
Host Configuration Protocol (DHCP) to develop a demonstration of a location based
application. DHCPv4 is used to centrally manage and automate the assignment of unique
IPv4 addresses in a network. The tests have been done as follows: the iPAQ or laptop is
started in cell one on the first floor. Next, the DHCP negotiation takes place, after which a
browser displays a web page containing information regarding the current location. This
page automatically refreshes every ten seconds. The next step is to take the device under
test to the other cell (the area covered by access point 2) and DHCP negotiation is started
again in the background. Normally, the browser times out and a new IP address is
assigned by means of DHCP.

The following conclusions can be drawn with respect to the different configurations and
operating systems:

• Sony Vaio with Windows 98:
Windows98 and DHCP with wireless LAN do not work properly. The DHCP
negotiation in cell two fails and stops. The only way to complete the DHCP IP
address configuration is to remove and insert the network card. This combination
is not suited to make a location based system, as there is no cell-change possible
without any user intervention;

• Sony Vaio with Linux:
Linux and DHCP with wireless LAN do not work properly either. Only by removing
the WLAN network card and inserting it again, the IP address configuration
finishes successfully. So, this combination is also not suited to make a location
based system as user intervention is again required for a cell change;

• Compaq iPAQ with Windows CE:
The basic functionality is working on the iPAQ, but the cell switch time is very poor
(over one minute). Good part is that the WLAN card does not have to be removed
from the iPAQ. The problem originates from the refresh mechanism: whilst moving
to a new cell the DHCP process starts and assign a new IP address to the PDA.
When the same page is refreshed from the new location it is not possible to track
the user easily because its IP number has changed;

This lead to the conclusion that mobile IP may be a better solution to offer location based
services whilst meeting the project's requirements. There are two different versions of
mobile IP: v4 and v6, also known as MIPv4 and MIPv6. A number of different
implementations of mobile IPv4 exist. They are all based on IPv4 tunnelling. Both
Windows and Linux are being used as OS. For links and abstracts of the documentation,
see Appendix B. Mobile IPv6 is the successor of mobile IPv4. It offers more functionality,
is better integrated with IP itself and is considered to be the mobile Internet protocol of the
future. Therefore, mobile IPv6 is chosen for use within the ISIDOR project. This choice is

- 8-

Chapter 2. Project description and assignment

the point where the first task of the graduation assignment comes in. The assignment will
be described in detail in 2.2.

Mobile IPv6 can be used both with Windows and Linux. Drawback of using Windows is
the fact that this OS is not open source and therefore no adaptations can be made to the
source code. Also, it is more expensive. Linux is freely available and can be customised to
one's own needs and wishes. So Linux is the OS of our choice. One of the first tasks to be
done is to choose the best Linux distribution to use on the iPAQ. This issue is dealt with in
section 5.3. For a more detailed overview of MIPv6, see Chapter 4 or [2].

2.1.5 Summary

In this section, the requirements and status of the ISIDOR project have been described.
Some experiments have already been done on various types of mobile devices (iPAQ
PDA and Sony Vaio laptop) combined with various operating systems (Windows CE,
Windows 98 and Linux). From these experiments can be concluded that a PDA together
with mobile IPv6 and the Linux operating system is the preferred way for use within the
(SIDOR project. WLAN is currently the wireless technology of our choice; in a later
stadium Bluetooth support can be added. Bluetooth has several advantages over WLAN,
but its implementations have not developed enough to use in this project from the
beginning.

From this point, the first step is to choose and install the most suited Linux distribution for
the iPAQ in order to have a mobile node running on MIPv6, with WLAN as wireless
technology. This will be described in Chapter 5.

2.2 The assignment

The main target of the assignment is the design and implementation of location based
services, based on a mobile device equipped with MIPv6. The mobile device is chosen to
be a Compaq iPAQ PDA. The PDA must be equipped with an operating system
supporting MlPv6 to develop these services. The choice has been made to use Linux for
this task. As a consequence, the iPAQ must be equipped with a Linux distribution
supporting MIPv6. This is currently not yet commercially available.

The impact on the Quality of Service (QoS) by scaling to a large network (QoS
negotiation) is another aspect that can be researched. In a further stage, integration with
the WINEGLASS project (see paragraph 2.1.2.4) can be researched.

2.2.1 Specific tasks

Specific tasks for this assignment are:
• Equip the Compaq iPAQ with Linux and IPv6;
• Extend the Linux kernel with mobile IPv6;
• Research a way to offer location information efficiently through an application

program interface (API);
• Research a client-server implementation of location based services. Which part

should run on the server and which part can run on the client? What does the data
traffic look like on large networks (congestion, traffic control, etcetera)?

·9-

Section 2.2. The assignment

• Implement a simple location based service in Java, e.g. a virtual guide through a
building or exposition;

• Research how to offer different types of media, for instance text, sound, images
and video, on this service platform and describe the so-called service classes;

• Research the hand-over performance;
• Research security aspects in wireless IPv6 networks;

2.2.2 Possible extensions

It may be desirable to expand and/or redirect the assignment. Possible ways to do this
are:

• Develop service concepts. How does an efficient location based service look like?
What about the decomposition in objects?

• Implement communication from PDA to PDA (peer-to-peer communication) or
voice over IP (VoIP). Determine who is at which location and who is registered on
the network?

• Integration with the WINEGLASS project;
• Optimise the MIPv6 implementation with, for instance, quick handovers or

broadcast timers;
• Research interoperability with other MIPv6 implementations;

-10-

Chapter 3. LBS concepts and requirements

3.1 Introduction
The LBS network has two major functions. The first and most essential function is the
provision of mobile communication. This requires a radio interface that ensures the
mobility of the user with as less user interaction as possible. For instance, aspects like
hand-over or roaming should be transparent to the user. A hand-over is the process
where a mobile node changes his point of attachment from one access router to another.
Additionally, there has to be a way to determine a mobile node's current location in a
sufficient accurate way. The amount of accuracy required depends on the size and scope
of the network. What this means for the ISIDOR project, has been explained in paragraph
2.1.3.

The second function is the provision of location based services. The service architecture
can be based on different concepts, for instance stand-alone, client-server or peer-to
peer. These concepts will be discussed in section 3.2. In section 3.4 will be evaluated
which service model is suited best to be used within the ISIDOR project.

3.2 .Service architecture

Three common service architectures (stand-alone, client-server and peer-to-peer) will be
explained in more detail in this section.

3.2.1 Stand-alone architecture

Within the stand-alone architecture, all information needed for an application (this means
all the required software plus all the data related to a certain location) is loaded once onto
the mobile node. This has the drawback that the content can easily get out of date, as the
information is stored locally. It is also more difficult to load new data into the mobile node.
Refreshing the data by means of a software update when the mobile node is at its base
location may compensate this shortcoming. A model where mobile devices are regularly
updated yields the client-server architecture, which will be discussed in the next
paragraph.

The clear advantage of the stand-alone architecture is that there is very little network
traffic, as no data has to be transported from a centralized server to the mobile node. A
drawback is that the data may not be very recent, thus reducing the use in a very dynamic
and content changing environment.

-11 -

Section 3.2. Service architecture

3.2.2 Client-server architecture

In the client-server architecture, the content providers distribute all content. The providers
act as servers and transfer all the data (content) needed for their services to the client.
The platform operator is connected to both the content providers and the clients to
administrate the content provision. It is also possible that the platform operator acts as its
own content provider. Note that there is no direct interaction between the individual users
possible. They may not even know of each other's presence in the same location. See
Figure 3-1 for an example of a client-server scenario.

_Administrative Relation

_ Content Relation

Figure 3-1. Client-server architecture scenario.

This architecture has a clear advantage: all the content is stored in one unique location,
making it very easy to maintain and update a service. The drawback is the increased
network traffic for transporting the content to the node. A way to reduce this is to cache
the content at the mobile node and only fetch data when it is newer or not available in the
local cache.

3.2.3 Peer-ta-peer architecture

The peer-to-peer architecture has a completely different approach. Within this
architecture, every user can interact directly with every other user. Services can be
exchanged, or a device may serve as a bridge to connect to other devices in a different
community. Communities are formed by a group of users and are separated by the size of
the radio cells. This way, two different communities can be connected through a common
user. The common user hereby acts as a service proxy between the two different
communities. In the peer-to-peer scenario, there are no dedicated content providers, nor
are there any platform operators. Content can be discovered by lookup actions between
two adjacent users. Figure 3-2 gives a graphical representation of a possible peer-to-peer
scenario.

- 12-

Chapter 3. LBS concepts and requirements

~ Service Relation

~. Bridged Service Relation

_ Lookup Database Binding

Figure 3-2. Peer-to-peer architecture scenario.

The peer-to-peer variant has currently riot yet been implemented in (global) mobile
networks, although it is highly flexible and scalable. But it is also more complex, due to its
distributed nature. It requires some kind of (automatic) configuration of the present mobile
devices. Another reason it is not commonly used, is that it is not as profitable as the c1ient
server model, as the network operator has no direct control over the distribution of the
content. Therefore, traffic cannot be billed by means of a central administration. The fact
that the amount of research in this area is small compared to the traditional client-server
model offers good opportunities to develop a product that is unlike any other seen so far.

3.3 Network topology

3.3.1 Configuration

To be able to test different scenarios regarding IPv6 networks, IMST has its own IPv6 test
network. It is used for different projects and purposes within the company:

• The ISIDOR project;
• The WINEGLASS project;
• Competence development within the CSN department;
• Investigation of UMTS IP core network mechanisms;

Figure 3-3 depicts the current configuration of the IPv6 test network. It consists of four
access points (that each cover one cell), a router rack and several other routers and
switches. The access points are placed on different floors of the building. The routers use
a set of protocols to discover and exchange routing information. For IPv4 intra-domain
routing, Open Shortest Path First (OSPF) [3] is used. With OSPF, every host obtains a
routing table. As soon as it detects a change in the table or in the network, it multicasts
this information to all other hosts in the network. This keeps every host's routing table up
to date. Unfortunately, OSPF does not work very well with IPv6 and the current router
configuration, so the Routing Information Protocol (RIP) [4] is used. Unlike the OSPF

- 13-

Section 3.3. Network topology

protocol, in which only the part of the routing table that has changed is sent, the RIP
sends the entire routing table to all other routers on its subnet on a regular basis.

Figure 3-3. IPv6 network topology.

For the IPv6 routers and hosts, the 2.4.0 Linux kernel with a mlPv6 patch has initially
been used. For the patch, the MIPL6 implementation, which is being developed at the
Helsinki University of Technology (HUT), is used. It is an implementation of MIPv6 as a
Linux kernel module. Kernel 2.4.0 with MPLS7 is used for the routers in the router rack.
Note that all work done on MIPL should be considered work in progress.

3.3.2 Addressing

To have a comfortable addressing scheme, the IPv4 addresses are mapped onto IPv6
addresses. The hexadecimal IPv6 addresses starting with "fecO:0:cO:a8xx:" are (local)
subnet prefixes. The 4-byte IPv4 address can be mapped onto the 16-byte IPv6 version in
the following way:

:2[1
192.168.XXX.YYY

6 More information on MIPL can be found on www.mipl.mediapoli.com.

7 Multiprotocollabel switching.

- 14-

Chapter 3. LBS concepts and requirements

Where XXX is the decimal equivalent of the hexadecimal digit xx. This number indicates
the cell. Likewise, YYY is the decimal equivalent of yy and is used to uniquely identify
each interface. For details on IPv6 addressing, see [5].

3.4 Evaluation

All the architectures described in paragraph 3.2.2 through 3.2.3 have advantages as well
as disadvantages. The stand-alone architecture is not flexible enough in a LBS network.
More frequent updates are required, which leads to the client-server architecture. Within
this architecture it is relatively easy to maintain and update the services and the contents,
depending on the amount of centralisation. Biggest disadvantage is the lack of direct
communication possibilities between the different mobile nodes, which is at its turn the
major advantage of the peer-to-peer architecture. One of the project's requirements was
that the user should be able to retrieve information on each other's presence. This makes
the traditional client-server architecture not suited for usage within ISIDOR project.

When we look at the network topology, we see that with WLAN it is not possible for a
node to communicate in two different cells simultaneously. Though a node can have one
primary and multiple other care-of addresses on the network layer, it can use only one
uplink at a time. So the concept of service proxy is therefore at a physical level not
possible. This may change when Bluetooth is used as access technology, because a
Bluetooth node is capable of joining different cells (called piconets) quasi-simultaneouslyB.
Connecting different piconets yields a so-called scatternet. With scatternets, one can
create a virtually unlimited network. However, this also introduces different routing
problems for which currently no standards are available. As concluded in 2.1.3, the
combination of Linux on an iPAQ, together with MIPv6 and Bluetooth support is not
feasible.

After evaluating the different approaches discussed in section 3.2, it is best to use some
aspects of all models. More specifically, this would look like a client-server model with
content distribution and with the possibility to retrieve information on the current network
topology and the other nodes in the network. The available information may be limited to
the users in their own cell and/or a fixed amount of users they are able to trace at any
moment and place. Due to the mentioned limitations of MIPv6 over wireless LAN, the
service proxy concept cannot be used to combine these wishes. So, what we eventually
need is a centralised entity (a server) that takes care of the distribution of all the mobile
node information. This information can be stored in a database on the server. Next step
may then be to extend the client-server implementation with peer-to-peer communication
possibilities between mobile nodes.

To develop and test such a concept, the IMST IPv6 network should be used. Therefore,
all needed elements have to be divided into essential building blocks. These are:

• Home agent(s), for a correct functioning of mobile IPv6;
• Mobile node(s), to ensure mobility of the user;
• A database server, to centrally store all relevant mobile node and network

information;
• A content server, to provide location based content to the mobile nodes;

B This is not completely simultaneous, as it only has certain time slots available for sending and receiving data in each cell it is a
member of. The master of the piconet manages the assigning of time slots among its slaves.

- 15-

Section 3.5. Service mapping

Each of these building blocks -or entities- consists of an application and an interface to
one or more of the other entities. The application will be implemented in software.
Because of the fact that the implementation of location based content is time-consuming
and beyond the scope of this thesis, it will not be discussed.

3.5 Service mapping

A mobile IPv6 LBS platform with different entities as described in 3.4 can be mapped on
the network topology in the way shown in Figure 3-4. The elements are connected to each
other by using the mobile IPv6 network and WLAN access points.

Mobile
Node

WaveLan AP-110

WaveLan AP-210

~I=.------------1. D
IOOIlDOI

Content
Server

----lID
Home Agent

"--------~ID
DB Server

Figure 3-4. Mobile IPv6 LBS topology.

The next Chapter provides more detailed information on the functioning of mobile IPv6.
The mobile node's configuration is explained in Chapter 5. Chapter 6 and Chapter 7
describe a way to implement and test the database server, as this is the most important
and complex entity. This is because of the fact it has to be able to interface with the other
entities simultaneously.

- 16-

Chapter 4. Overview of mobile IPv6

This section provides some background information on the working and origin of the
mobile IPv6 protocol. As it is still under development, most documentation on this protocol
is provided in so-called Request For Comment (RFC) documents9, implying that all
information regarding this topic is subject to change. However, it is quite safe to state that
the major concepts described in this Chapter are quite definite and only details will be
adjusted prior to the release of the final MIPv6 specification.

4.1 History of IPv6

IPv6 is the successor of IPv4, which is still widely used today. IPv4 was developed in a
time where the Internet was mainly used by universities, the military and the government.
But this group is getting bigger and bigger. More people make use of the Internet every
day and they have different needs compared to the early users. People want to be mobile
while being connected. And by the convergence between computer, amusement and
communication equipment, virtually every device may be an Internet node in the near
future. This varies from a cellular phone to a television and from a handheld PC to a
fridge. This means billions of new IP addresses, which is more than IPv4 can offer.

It is mainly because of these circumstances that IPv4 is not sufficient anymore. The IETF
got aware of these problems around 1990. They started to work on a newer version of IP.
Their targets were [6]:

1. Be able to work with billions of hosts, even with an inefficient addressing
technique. Therefore, an IPv6 address consists of 16 bytes, instead of 4 bytes in
the case of IPv4;

2. Reduce the size of the routing tables by using headers with a fixed size;
3. Make the protocol less complex, to enable routers to process packets faster. This

was, amongst others, achieved by reducing the number of fields in the header and
by offering more options;

4. Take better care of security (authentication and privacy) compared to IPv4;
5. Give more attention to service types, especially to real-time data;
6. Make multicasting easier by allowing scopes to be specified;
7. Make it possible for a host to travel without changing its address;
8. Allow the protocol to develop itself in the future;
9. Make it possible to co-exist with the previous version.

As stated in point 3, the header of IPv6 is less complex than its IPv4 predecessor, though
it is longer. One of the most important differences is that the options field is dropped in
IPv6. It is infrequently used in IPv4 because it introduces some complications. The options
field increases the packet's processing time, as each router must process all of the
options before forwarding the packet. Therefore, the extension header mechanism was
developed for IPv6 to satisfy the need to specify options more efficiently. Because of

9 RFC is a specification by the Internet Engineering Task Force (IETF).

-17 -

Section 4.2. Mobility support

these extension headers, only the IPv6 header with a fixed size of 320 bits (40 bytes) has
to be processed by routers. The routers consider the extension headers as part of the
packet payload and will therefore not analyse them. This improves forwarding
performance. See Figure 4-1 for a comparison between the header of IPv6 and IPv4.

IPv4

IPv6

4 bits I 4 bits

I
8 bits 16 bits

Version = 4 IHL Type of service Total length

16 bits 4 bits

I
12 bits

Identification Flags Fragment offset

8 bits

I
8 bits 16 bits

Time to live Protocol Header checksum

32 bits
Source address

32 bits
Destination address

oor more bits
IP options

4 bits 1 8 bits I 20 bits

I
16 bits I 8 bits I 8 bits

Version = Traffic
Flow label Payload length Next header Hop limit

6 class

128 bits
Sourece address

128 bits
Destination address

Figure 4-1. IPv6 header compared to IPv4 header.

In IPv6, each extension header start with a next header field to indicate which type of
extension header follows. This forms a so-called header-chain. These headers have a
fixed order, which can be seen in Figure 4-2. More information on extension headers can
be found in [7].

Figure 4-2. IPv6 header extension format.

4.2 Mobility support
As stated in the previous section, mobility support for Internet devices is important. This
will probably only become more important in the future [1]. But roaming with mobile
devices yields several complications. The problem lies in the current Internet routing
mechanisms. It starts when a mobile node is disconnected from the Internet and tries to
connect again in a different subnet. This is only possible after the user has configured the
system with a new IP address, the correct net mask and a new default router. There is,
more or less, a topological relation in the IP addresses of linked computers. It is implicitly
assumed that every node always has the same point of attachment to the Internet.
Furthermore, the node's IP address indicates the link on which the node resides. So, if a
node moves without changing its address, existing routing protocols will not be able to
deliver packets correctly. To solve this problem, mobile IP has been developed.

- 18-

Chapter 4. Overview of mobile IPv6

Both IPv4 and IPv6 have mobility support, but it in case of IPv4 it is not fully integrated
into the protocol itself. Mobility support for IPv4 is defined in [8]; for the IPv6 version, see
[2].

4.3 Basic operation of MIPv6

A mobile node is always addressable by its home address, whether it is currently attached
to its home link or is away from home. While a mobile node is at home, packets
addressed to its home address are routed using conventional Internet routing
mechanisms in the same way as if the node were never mobile.

While a mobile node is attached to a foreign link away from home, it is also addressable
by one or more care-of addresses, in addition to its home address. A care-of address is
an IP address associated with a mobile node while visiting a particular foreign link. The
subnet prefix of a mobile node's care-of address is the subnet prefix (or one of the subnet
prefixes) on the foreign link being visited by the mobile node. If the mobile node is
connected to this foreign link while using that care-of address, packets addressed to this
care-of address will be routed to the mobile node in its location away from home.

The association between a mobile node's home address and care-of address is known as
a binding for the mobile node. A mobile node typically acquires its care-of address through
either stateless [9] or stateful (e.g. DHCPv6) address auto configuration, according to the
methods of IPv6 Neighbour Discovery [10]. Other methods of acquiring a care-of address
are also possible, such as static pre-assignment by the owner or manager of a particular
foreign link, but details of such other methods are beyond the scope of this thesis.

While away from home, a mobile node registers one of its care-of addresses with a router
on its home link, requesting this router to function as the home agent for the mobile node.
This binding registration is done by sending a packet containing a binding update from the
mobile node to the home agent. The home agent replies to the mobile node by returning a
packet containing a binding acknowledgement. The care-of address in this binding,
registered with its home agent, is known as the mobile node's primary care-of address.
The mobile node's home agent thereafter uses proxy neighbour discovery [10] to intercept
any IPv6 packets addressed to the mobile node's home address on the home link. Next, it
tunnels each intercepted packet to the mobile node's primary care-of address. To do this,
the home agent encapsulates the packet using IPv6 encapsulation [11] with the outer IPv6
header addressed to the mobile node's primary care-of address.

When a mobile node changes from one care-of address to another on a new link, it is
desirable for packets arriving at the previous care-of address to be tunnelled to the mobile
node's new care-of address. Since the purpose of a binding update is to establish exactly
this kind of tunnelling, it is specified to be used (at least temporarily) for tunnels originating
at the mobile node's previous care-of address in exactly the same way that it is used for
establishing tunnels from the mobile node's home address to the mobile node's current
care-of address.

It may be desirable for a mobile node to use more than one care-of address at the same
time. However, a mobile node's primary care-of address is distinct among these in that the
home agent maintains only a single care-of address registered for each mobile node, and
always tunnels a mobile node's packets intercepted from its home link to this mobile

- 19-

Section 4.4. IPv6 destination options

node's registered primary care-of address. The home agent thus need not implement any
policy to determine the particular care-of address to which it tunnels each intercepted
packet. The mobile node alone controls the policy by which it selects the care-of
addresses to register with its home agent.

It is possible that while a mobile node is away from home, some nodes on its home link
may be reconfigured, such that the router that was operating as the mobile node's home
agent is replaced by a different router serving this role. In this case, the mobile node may
not know the IP address of its own home agent. Mobile IPv6 provides a mechanism,
known as Dynamic Home Agent Address Discovery (DHAAD) [7], that allows a mobile
node to dynamically discover the IP address of a home agent on its home link with which
it may register its (primary) care-of address while away from home. The mobile node
sends an Internet Control Message Protocol (ICMP) [12] "home agent address discovery
request" message to the mobile IPv6 home agents anycast address for its own home
subnet prefix [13] and thus reaches one of the (possibly many) routers on its home link
currently operating as a home agent. This home agent then returns an teMP "home agent
address discovery reply" message to the mobile node, including a list of home agents on
the home link. This list of home agents is maintained by each home agent on the home
link through use of the home agent (H) bit in each home agent's periodic unsolicited
multicast router advertisements.

4.4 IPv6 destination options

As mentioned before, new IPv6 destination options are defined for mobile IPv6. They will
be briefly described in this section.

4.4.1 Binding update

The mobile node uses a binding update option to notify a correspondent node or the
mobile node's home agent of its current binding. Together with the binding
acknowledgement and binding request options, it is used to allow IPv6 nodes
communicating with a mobile node, to dynamically learn and cache the mobile node's
binding. The binding update sent to the mobile node's home agent to register its primary
care-of address, is marked as a home registration. Any packet that includes a binding
update option MUST10 be protected by some authentication data to guard against
malicious binding updates. This is very important, as malicious binding updates could be
used to intercept packets meant for the mobile node.

4.4.2 Binding acknowledgement

The binding acknowledgement option is used to acknowledge receipt of a binding update,
if such an acknowledgement was requested in the binding update. Any packet that
includes a binding acknowledgement option MUST be protected by some authentication
data to guard against malicious binding acknowledgements.

10 Words in this document written in small caps are compliant to (14).

- 20-

Chapter 4. Overview of mobile IPv6

4.4.3 Binding request

The binding request option is used to request a mobile node to send to the requesting
node a binding update containing the mobile node's current binding. A correspondent
node typically uses this option to refresh a cached binding for a mobile node, when the
binding is in active use but its lifetime is close to expiration. No authentication is required
for the binding request option.

4.4.4 Home address

The home address option is used in a packet sent by a mobile node to inform the recipient
of that packet of the mobile node's home address. For packets sent by a mobile node
while away from home, the mobile node generally uses one of its care-of addresses as
the source address in the packet's IPv6 header. By including a home address option in the
packet, the correspondent node receiving the packet is able to substitute the mobile
node's home address for this care-of address when processing the packet, thus making
the use of the care-of address transparent to the correspondent node. If the IP header of a
packet carrying a home address option is covered by authentication, then the home
address option MUST also be covered by this authentication, but no other authentication is
required for the home address option.

One reason to use this option is that many routers implement security policies that do not
allow forwarding of packets that have a source address, which appears topologically
incorrect. By using the care-of address as the IPv6 header source address, the packet is
able to pass normally through such routers, yet filtering rules will still be able to locate the
true topological source of the packet in the same way as packets from non-mobile nodes.
By also including the home address option in each packet, the sending mobile node can
communicate its home address to the correspondent node receiving this packet, allowing
the use of the care-of address to be transparent above the mobile IPv6 support level (e.g.,
at the transport layer).

- 21 -

Chapter 5. Mobile IPv6 for Linux

5.1 Introduction

This Chapter explains important aspects of MIPv6 in Linux and describes some tools to
configure and monitor an IPv6 network. In contradiction to the iPAQ, a Linux MIPv6
distribution for desktop PC's and laptops is already available. For the iPAQ, a different
Linux distribution must be used, as will be described in 5.3. To make the choice for a
distribution, several aspects are considered, for instance Java and WLAN support.

5.2 Linux system files and tools

Based on this configuration, several tools and commands can be used to monitor the
existing links and to configure all the necessary IPv6 parameters of a node. The actual
MIPv6 configuration and status can be read from the Linux /proc file system. This section
discussed the most important files and tools for this purpose.

5.2.1 Kernel system files

For a home agent:
• /proc/net/rnip6_bcache contains the home agent's binding cache;
• /proc/net/rnip6_horne_agents contains the home agent's home agents list;
• /proc/net/rnip6_stat contains home agent statistics, like the number of

binding messages sent and acknowledged;

For a mobile node:
• /proc/net/rnip6_bcache

• /proc/net/rnip6_bul

• /proc/net/rnip6_stat

For a correspondent node:
• /proc/net/rnip6_bcache
• /proc/net/rnip6_stat

contains the mobile node's binding cache;
contains the mobile node's binding update list (see
end of paragraph for more information);
contains different mobile node statistics;

contains the correspondent node's binding cache;
contains different correspondent node statistics;

Configurable parameters for a home agent:
• /proc/sys/net/ipv6/rnobility/debuglevel

contains the home agent's debug level;

Configurable parameters for a mobile node:

-22 -

Chapter 5. Mobile IPv6 for Linux

• /proc/sys/net/ipv6/rnobility/debuglevel
contains the mobile node's debug level

• /proc/sys/net/ipv6/rnobility/horne_address
contains the mobile node's home address;

• /proc/sys/net/ipv6/rnobility/horne_agent_address
contains the mobile node's home agent's address;

Configurable parameters for a correspondent node:
• /proc/ sys/net/ ipv6/rnobility/ debuglevel

contains the correspondent node's debug level;

The binding cache list is maintained by each IPv6 node and contains bindings for other
nodes. It contains, amongst others, the following fields for each binding:

• The home address of the mobile node for which this is the binding cache entry.
This address is used as the key for searching the binding cache when routing
packets. If the destination address of a packet matches a home address in the
entry, this entry SHOULD be used whilst routing the packet. This means that the
corresponding care-of address is used in a routing header, as described in section
4.1;

• The care-of address of the mobile node with the home address of the previous
point;

• A lifetime value, indicating the remaining lifetime for this entry. When this lifetime
expires, the entry MUST be deleted from the binding cache, as this binding is not
valid anymore;

• Two flags, indicating whether or not this entry is a home registration entry, and
whether or not the entry represents a mobile node that should be advertised as a
router in proxy neighbour advertisements [10];

• The binding security association (BSA) to be used when: 1. Authenticating binding
updates that are received for this entry and 2. Calculating authentication data for
inclusion in binding acknowledgements in response to binding updates that are
received for this entry;

Each mobile node maintains a binding update list. It records information for each binding
update sent by this node, if and only if the lifetime has not yet expired. It is used by the
Mipdiag tool, which will be described in paragraph 5.2.2.1.

5.2.2 Network and IPv6 tools

The following tools can be used to configure and monitor the mobile IPv6 network.

5.2.2.1 Mobile IPv6 diagnostics and configuration tool

The mobile IPv6 diagnostics and configuration tool (Mipdiag) for the mobile IPv6 kernel
module gets statistics and state information and sets runtime parameters. It can also show
the binding cache of an IPv6 node and the binding update list of a mobile node.
Furthermore, it can be used to show and modify several mobile IP runtime parameters,
such as the mobile node's home (agent) address.

- 23-

Section 5.2. Linux system files and tools

Synopsis:
Mipdiag [-acls] [-M keymd5] [-8 keyshal]

[-h ipv6-address/prefix-length]
[-H ipv6-address/prefix length] [-d integer]

[-r access-control-rule] [-R file-name] [-t boolean] 11

5.2.2.2 IPv6 router advertisement daemon

The IPv6 router advertisement daemon (radvd) sends router advertisements as described
in [10]. With these advertisements, hosts can automatically configure their addresses and
some other parameters. They can also choose a default router, based on these
advertisements.

Synopsis:
Radvd [-vh] [-d debuglevel] [-C configfile] [-m method]

[-1 logfile] [-f facility]

5.2.2.3 IPv6 router advertisement trace tool

The IPv6 router advertisement trace tool (radvdump) is a tool to trace and dump router
advertisement packets.

Synopsis:
Radvdump [-vh] [-d debuglevel]

5.2.2.4 Network traffic monitoring (Ethereal)

Ethereal is used to interactively browse network traffic on any chosen network interface.
For instance, if we look at the interface of the router that is connected to the access point
of level 2 (this is eth1 of Router2, see Figure 3-3 for details), we can exactly monitor what
packets are between this AP and the router and who are the source and destination of
these packets. By applying a filter, only a distinct number of protocols can be made
visible. In the case of Figure 5-1, only IPv6 packets are shown. This can be seen by the
ipv6.version == 6 statement in the bottom of the screen. Furthermore, each shown packet
is automatically decomposed into the different parts (Le., headers and payload). Of each
part shown, the hex dump is made visible in the bottom window. This makes it very easy
to track what is happening on the link.

Synopsis:
ethereal [-B byte view height] [-c count]

[-f filter expression] [-h] [-i interface] [-k] [-m font]
[-n] [-0 preference setting] [-p] [-P packet list height]
[-Q] [-r infile] [-R filter expression] [-8] [-s snaplen]
[-T tree view height] [-t time stamp format] [-v]
[-w savefile]

See Figure 5-1 for a screenshot of Ethereal. This shows a trace of the eth1 interface of
Router 3, as the laptop was taken from level one to level two.

11 The -M and -S options may not be available in older versions of Mipdiag.

- 24-

Chapter 5. Mobile IPv6 for Linux

20 10:0'3;21.0144 f.BO::2eO;7d1f:f.91:4dbo
21 10:09:2••1524 fellO:;2eO:7d1f:f.91:4dJc
22 10:09:33.213 f.BO::2e0:7dff:f.91:4dbo
23 10:09:35.1502 feeO:0:cO:.Bd2:2.0:1d11:1.f1:dOl0
24 10:09:35.356. fecQ:0:cO:oBd2:2.0:1d1I:hll:dOl0
25 10:09:35.776. leeO:0:cO:aBd2:2b0:ld1l:feFl:d010
26 10;09:36.6167 lecO:0:cO:.Bd2:2bO:ldff:fef1:dOl0
27 10:09:38.2$7 leeO:0:cO:aBd2:2bO:ld1f:fell:dOl0
28 10:09:40.346. 1e80::2e0:7dH:I.91:4dbc
29 10:09:40.3544 lecO:O:cO:aB6e:260:1d1f:fefl:dOl0
30 10:09:40.3560 fellO::2.0:7dlf:le91:4dbo
31 10:09:40.6858 ••
32 10:09:40.8459 fecO:O:tO:.86e:260:1d11:1.ll:dOl0
33 10:09:41.3480 fellO::2oIl;7d11;1e91:4dJc
3' 10:09:41.6569 foeO:0:tO:_:260:1d11:1.f1:dOl0
35 10:09:41.8559

I±l Fral'le 19 CUO on wire, 110 eBPt~)

I!I Eu..met II
B Internet Pl"01:ocol ~E:rsuJ"I 6

','ersu:n: 6
Traffic CIMS: 0:-:00
FI...lobel: 0><00000
POlllood lengtM: 56
Ne:d Me.der: ICItP.6 (0):3.)
Hop holt: 255
Sourc••deross: 1.80: :2.0:7dfl:1e91:4dbc
Ileotlnotton address: H02::1

El Internet Ccrrtr<>l Hessage Protocol 116

COOe: 0><00
Check.,.,: 0...27 (clln"llCt)

Cur ~ h., t: 64
IE Flos., O,OOOOleOO

Router 11fet IIIlt: 30
Re.chabl. 0

H02::1
H02::1
H02: :1
l.cO: O:cO: o86li:2OO:48H:f...:.5ld
l.cO:0:cO:aIlQ;:280:48FI:f•••:.Sld
fecO: 0: to:aIlQ;:280:48H:f•••:.Sld
feeO: 0:cO:aQ;6: 280:48H: I•••:.Sld
feeO:0:cO:aQ;6: 280:48fI:h ••:.Sld
fI'02::1
feeO:0:cO:alIG6:280:48Ff:f•••:.51d
ff02::1 :ffll:dOl0
ff02::1 :fFfl;dOl0
lecO:0:cO:0865::14
Ff02: :l:Fff1:dOl0
IoeO:0:cO:.86.:200:481I: f •••: .5id

IC11Pv6
ICHPv6
lC1tP1I6
HTTP
HTTP
HTTP
HTTP
HTTP
ICHP.6
Etl1O!"net
ICltPII6
IC1tP116
EtteNlet
ICltPII6
HTTP

Router advertis8IlIent
Router ad...ertiselllel'lt
Router adYertlSePlerit
GET /lSldor/ HTTP/l.l
GET hs"lor"/ HTTP/l.1
GET hOld",,/ HTTP/l.l
GET /LOid""/ HTTP/l.1
GET /l"clor"/ HTTP/l.l
RtJIJter- ~Mrt18e1!lent

IPII6 no next I,eer
NeigltJcr 1obcltBtltll"l
Neighbor- sol ici t"tlCJ'l
IP....s nc next header
Ne1gl'lbor SOhClt"tiCJ'l
GET /lSldor/ HTTP/l.l
IP•• '"

.. 27 40 00 00 1. 00 00 ••••••i. .;i:::::
40 cO 00 27 Bd 00 00 09 •••••••• ~.: ••••
00 00 00 cO 08 60 00 00 : ••••••••••••n••
00 eO 7d 91 old be ••••••••••l.".

Figure 5-1. Screenshot of Ethereal.

5.2.2.5 Wireless networking configuration tool

A wireless networking configuration tool, called iwconfig, can be used to review and
configure parameters of the available wireless extensions (10, ethO, etc.). These
parameters include bit rate, sensitivity and the use of an encryption key. The default
values for these parameters are stored in the file /etc/pcmcia/wireless. opts. For
more information on this file, see Appendix C.

Synopsis:
rwconfig interface [essid {NNlonloff)] [nwid {NNlonloff)]

[freq {N.NNNNlkIMIG)] [channel N] [sens N] [nick N]
[rate {Nlautolfixed)] [rts {Nlautolfixedloff)]
[frag {Nlautolfixedloff)] [enc NNNN-NNNN]
[power {period Nltimeout N)] [txpower N {mWldBm)]

- 25-

Section 5.3. Mobile node configuration

5.3 Mobile node configuration12

The mobile node requires a special software configuration. The only test done so far with
the iPAQ was with Windows CE (see paragraph 2.1.4 for details). As concluded in that
paragraph, the DHCP solution does not work as required. And as stated in paragraph
2.1.5, MIPv6 combined with the Linux as is chosen in order to accomplish better results.
Until recently, this had to be done in two steps:

1. Equip the iPAQ with a suitable Linux distribution;
2. Expand this distribution with MIPv6;

Ad 1. Most of the mainstream Linux distributions are compiled for the Intel x86 processor
architecture. The iPAQ is based on an Intel StrongARM processor and therefore needs a
specialised distribution13• This will be discussed in detail in paragraph 5.3.1 and 5.3.2.

Ad 2. For this purpose, the MIPL implementation can be used, as has been done for PC's
in the IPv6 network. See section 3.3 for details.

5.3.1 Requirements

Several Linux distributions are available and suited to install on the iPAQ, each with their
own advantages and drawbacks. In our case, there are several requirements and wishes
that need to be considered. These are:

1. MIPv6 support;
2. WLAN and/or Bluetooth support;
3. Java support;

First of all, MIPv6 has to be integrated in the kernel, or it has to be possible to expand the
kernel with MIPv6. The integrated option is preferred, as this is less prone to errors and
requires less work. Secondly, there are two possibilities for wireless communication by
means of the included PCMCIA sleeve: WLAN and Bluetooth. But, as concluded in 2.1.3,
the combination of Bluetooth and MIPv6 is not yet possible. However, any information on
Bluetooth support is valuable, as it may be useful in the future. Furthermore, it is desirable
to have support for the Lucent WaveLAN cards, as these have already been purchased
for the IPv6 test network. This is not a problem for the majority of the distributions,
however. The last point of interest is the support for Java. As it is the intention to
implement a location based service in Java, the Java Runtime environment (JRE) is
required to achieve this task. The JRE contains the Java Virtual Machine, to interpret the
Java bytecode, as well as the necessary libraries.

All of the aspects mentioned above are to some degree kernel dependent. So, the kernel
version can already tell us a lot on which requirements it meets. The following table
summarizes the most important aspects of all freely available14 distributions found on the
Internet.

12 All infonnation in this paragraph is as of August 2001, unless otherwise stated.

13 See Halsall, C., Linux on an iPAQ, The O'Reilly Network, January 2001.

14 Except LISA, which is the only distribution found that is not freely available.

- 26-

Chapter 5. Mobile IPv6 for Linux

Table 5-1. Linux iPAQ distributions comparison.

5.3.2 Distributions

Compaq's own distribution has been the reference distribution since its release in May of
the year 2000. Because of the fact that it was a reference design, other distributions
based on Compaq's were developed shortly after.

After a year of improvement Compaq started to focus on the kernel and other critical
parts, and gradually Familiar became the new reference. The current, stable version of
Familiar is 0.4; version 0.5 is to be released soon. It is based on kernel 2.4.0, but can be
upgraded to 2.4.7. MIPv6 support is included in the most recent kernels, as well as
support for the Lucent WaveLAN card. The JVM is also part of this version; the complete
JRE is not natively supported, unfortunately. However, it is possible to install any
graphical user interface (GUI) on top of familiar-for instance PocketLinux- as long as it is
suited to run on the iPAQ together with Linux. Another advantage of Familiar is its good
support and documentation, compared to the other candidates. There are several
discussion boards and HOW-TO's available on the Internet that make debugging easier
and ensure a continuing development.

Intimate is an extension of Familiar. The major difference with Familiar is that Intimate
requires at least an extra 340 MB of storage space to be available, usually by means of a
Microdrive. In contradiction to Familiar, which is designed to fit in a standard iPAQ,
Intimate wants to offer a full-size iPAQ distribution. As IMST does not posses a Microdrive
and there is no clear advantage in the extra packages included in this distribution, there is
also no reason to prefer Intimate to Familiar.

Midori is a relatively new distribution available. Midori claims to promote the development
of low-cost, energy-efficient and small devices by using standard Linux open source
software. The current release (1.0.0-beta3) is based on kernel 2.4.8. Midori compiles on
Red Hat 7.1, which has the advantage that IPv6 has been included since v7.0. It also
supports PCMCIA cards. Java support is a problem, however. There still has to be a JVM

15 Upgrade to MIPv6 possible.

16 See Midori discuss digest mailing, volume 1 #65,09-082001 on www.geocrawler.com/archives/3/9297/2001/.

- 27-

Section 5.3. Mobile node configuration

embedded, though a lot of work on this topic is currently being done. Installation of a
complete JRE may be a good option.

LISA is another relatively new Linux distribution for mobile devices. It has been developed
specifically for the iPAQ. It claims to be the first fully Internet capable distribution for
handhelds, but there is nothing known on IPv6 support. As LISA uses GSM, GPRS or
HSCSD17 to achieve a mobile Internet connection, it is not likely that IPv6 is natively
supported. WaveLAN cards are fully supported, however. Support for the JVM is also
available; the complete JRE is not. Another drawback is that LISA is the only distribution
suited for a PDA that is not freely available for download. The complete software packet,
named "LISA mLinux 0.9 iPAQ Edition for IPAQ H36XX series", comes on one CD-ROM
and costs about € 40. This does not encourage the kind of public development that is so
successful with, for instance, Familiar. It could also be a problem if any kind of commercial
product, based on this distribution, would emerge from the ISIDOR project.

PocketLinux is also developed specially for mobile devices. Its main distinction compared
to the other distributions is that it is completely based on Java. This includes JRE support,
which is a big advantage during the development of location based services.
Unfortunately, there is nothing known on native IPv6 support in PocketLinux. As it lacks a
Linux runtime environment, almost nothing can be derived from the packages that usually
come with the kernel, either. WaveLAN support appears to be no problem, however.
Interesting aspect is that the PocketLinux GUI can also be installed on top of another
distribution. This would enable us to combine the best aspects of both preferred kernel
and GUI. This combination would yield a kernel with MIPv6 support and a graphical
environment based on Java; at before hand almost the ideal situation.

5.3.3 Evaluation and conclusions

The previous section discussed the most important aspects of each distribution
considered. Familiar offers a complete distribution, which currently only lacks the proper
Java support. An attempt can be made to solve this problem by installing the JRE of
PocketLinux or its complete graphical interface. As Familiar is still considered to be the
reference, support and development of Familiar is a big advantage.

Compared to Familiar, the Intimate distribution only has an additional disadvantage in the
form of the required extra space. Midori is also interesting as it offers roughly the same
support and features as Familiar, though not yet as far developed and debugged. LISA
possesses an up to date kernel with all its advantages, but the fact that it is not freely
available makes it not suited for our applications. PocketLinux, finally, offers excellent
Java support, which is a major advantage in developing location based services.
However, the other important aspects (such as IPv6 support) are somewhat unclear. The
fact that it is also possible to use only the most interesting part of this distribution (the JRE
or the complete graphical interface) makes the usage of the complete distribution less
interesting.

With respect to Bluetooth support, the most important aspect seems to be the frequency
of kernel upgrades or the possibility to compile a new kernel yourself, as this will probably
suffice to add support in the near future.

17 High Speed Circuit Switched Data (HSCSD) is a new technology now being implemented in several GSM cellular networks. HSCSD
makes it possible to use several time slots simultaneously when sending or receiving data. See
www.nokia.com/phones/cardphone2_0/hscsd.htmlfor details.

- 28-

Chapter 5. Mobile IPv6 for Linux

Considering these points, Familiar seems to be the best choice for our purposes. It is the
most complete and best-supported distribution currently available. The only difficult part
may be the installation and configuration of the JRE or the PocketLinux GUI. However, the
vast amount of developers of Familiar, may be of great help with this task.

5.3.4 Familiar installation

The installation of Familiar on the iPAQ consists of three parts. First, we back-up the
existing Windows CE Operating System. By doing this, it is at any point possible to restore
the original OS. Next, we have to install a bootloader. The bootloader is the program that
first gets control of the machine when it is powered on. It initialises and manages the raw
hardware. One of its main jobs is to copy the operating system from non-volatile memory
(Flash) to DRAM and pass control to the OS. The bootloader performs platform specific
hardware configuration for the operating system. In addition, the bootloader provides a
simple command-line interface that allows the user to download new versions of the
operating system, user code, and parameters into Flash via the Xmodem protocol. The
installation of the bootloader is the most critical step, as an installation failure at this point
could render the iPAQ (temporarily) unusable. Compaq Research ensures they can and
will fix a non-booting iPAQ, but this could take a while and should therefore be avoided.
The bootloader is being used to make the entire procedure more bullet proof.

The final step consists of the actual installation of Familiar into the Flash ROM of the
iPAQ. There is also an optional fourth step. This is a post-installation script that uses an
NTp18 server to adjust date and time and installs one or more true-type fronts from the
Microsoft website. The correct network and PCMCIA settings must have been applied to
complete this step. It is also possible to manually install and configure the elements of this
fourth step. The precise steps taken to complete the Familiar installation can be found in
Appendix C. This also includes the necessary steps to configure the iPAQ as mobile node
in the IPv6 test network

5.3.5 Java installation

The Java runtime environment was needed in order to develop an application that
demonstrates a location based service. As mentioned before, it is possible to use the Java
package that is also used in PocketLinux. This package is called tvt-kaffe-ipaq19. It
consists of all the Java packages used in the PocketLinux distribution. As the installation
is an additional task, the complete PocketLinux package can be uninstalled any time in
favour of another GUI. The extra installation steps for installing PocketLinux can also be
found in Appendix C.

A first test to verify the Java functionality is a small application that displays a different
page on the screen of the iPAQ, depending on its current care-of address. This
application is based on the stand-alone architecture discussed in paragraph 3.2.1. So,
effectively, entering a new cell displays new information on the screen. This information is
already stored on the iPAQ. See Figure 5-2 and Figure 5-3 for screenshots of the
information displayed in two different cells.

18 Network Time Protocol.

19 See www.transvirtual.com/ftp/pocketlinux/dists/.

- 29-

Section 5.3. Mobile node configuration

Figure 5-2. Information displayed in the first cell.

Pocketlsidor

* ~ST Bluetooth Development .*

Figure 5-3. Information displayed in the second cell.

- 30-

Chapter 6. Implementation

6.1 Introduction

This Chapter describes the implementation of the concepts of Chapter 3. This
implementation consists of three logical entities: the home agent(s), the mobile nodes and
the database server. Each entity consists of an application and an interface to the other
entities. There may be multiple home agents and mobile nodes in the LBS network, but
there should be only one database server to make sure all information is stored at a
central place. The database server application may run on the same host as a home
agent, but also on a separate host. It should be accessible through an IPv6 connection, as
the mobile nodes are configured to use only IPv6. However, the home agent and
database may also communicate through an IPv4 connection. See Figure 6-1 for an
overview.

Home agents Database Server Mobile nodes

Horne agent 1 Database - Mobile node 1 I1P,,4/
/proc/net/mip6 bcache 1Pv6 / +home address \

1P,,6

-I-read stats () +home agent I
I +care-of address

+lifetime

~~"",",o.,too.I'AA~O',"'" /
+cell
+name
+user o ... PI

I 1..n +binding_add(home address)

I
+bind~ng_update(home address) I+binding_delete(home address)
+register_user(narne,userJ

, Mobile node P IHome agent N ~change_user(name,user)

/proc/net/mip6 bcache
+delete_user(user)
+subscribe(cells)

+read stats () +unsubscribe(cells)
+query_cells(cells)
+query_horneaddress(home address!
+query_name(name)
+query_user(user)
+user notify (home address)

Figure 6-1. Logical entity overview.

Figure 6-1 shows each entity with its attributes and its operations. All attributes and
operations are public, except for the mip6_bcache file on the mobile nodes. This attribute
is private, which means it only has a meaning within the home agent entity. Public
attributes and operations also have a meaning outside the entity they belong to. The
working of the different entities and their operations will be explained in the following
paragraphs. Note that the mobile nodes also communicate with their home agent, but this
communication only takes place on the mobile IP-Ievel.

-31 -

Section 6.1. Introduction

6.1.1 Home agent entity

The first entity is the home agent. An application called HA_update runs on each home
agent. This application sends the information in its binding cache to the database server.
This information can be found in the local /proc/netl directory of the home agent, as
described in paragraph 5.2.1. The home agent's application contains a function
read_stats () to read this information. The information is sent to the database server by
means of binding add, binding delete and binding update messages. These messages
enable the database server to store the home address, home agent, care-of address and
binding lifetime of each mobile node present in the location based services network. See
paragraph 6.4.1 for details on these messages.

The messages between home agents and the database server can be triggered by
network events, for instance a new mobile node (causing a binding add message) or a
mobile node's cell change (binding update). Binding updates are also sent at regular
intervals without a trigger, to refresh the lifetimes of the bindings stored in the database.

6.1.2 Mobile node entity

The mobile node entity consists of the application that runs on the mobile node (called
MN_application, see Figure 6-1), together with its interface to the database server. The
interface is a mlPv6 connection between the mobile node and the database server. The
user is able to access all the information stored at the database server, either by his own
direct request or by an automated notification. The application running on the mobile node
has two major functions, which will be described in the following paragraphs.

6.1.2.1 Registration and subscription

First of all, the mobile node's application enables the user to register himself and to make
clear to the database in which information he is interested. This is called registration and
subscription, respectively. During the registration, a device and user name can be
entered. This information is bound to the home address of the mobile node, thus enabling
other nodes to use its name and user instead of the home address in their queries. The
user's name can be used in queries for a person, instead of a device. The mobile node's
user can change or delete the registration information. This method does not require the
mobile node to have any knowledge on a domain name server (DNS) and is also more
flexible. The exact details on the registration procedure can be found in paragraph 6.4.2.1.

By going through a subscription procedure, the mobile node's user indicates in which
information he is interested. In the first stage, this means the user is able to enter a
number of cells of interest (or all of them, indicated by a wildcard). From that moment on,
he receives notification messages from the database server for every event in a,
subscribed cell. Such an event can either be network triggered (for instance a new mobile
node enters a subscribed cell) or user triggered (name or user change of a mobile node
residing in a subscribed cell). Every subscription can be changed or undone afterwards.
The subscription procedure is described in more detail in paragraph 6.4.2.2.

- 32-

Chapter 6. Implementation

6.1.2.2 Information queries

The second function the mobile node's application implements, is a way to let the user
request information by sending instant queries to the database server. There are four
kinds of information available in the first stage of the program. These are:

• Query cells;
• Query home address;
• Query name;
• Query user;

The query cells option enables the user to collect information about one or more cells.
Either a number of cells, or the wildcard "*", indicating every cell, can be entered. In the
first case, the home addresses present in that particular cell are sent back for each
queried cell. In the second case, the home address of all known mobile nodes is returned
to the inquiring mobile node.

Query home address requires the user to enter one or more home addresses. The
database server returns the current name, user and cell prefix information for each home
address entered. Cell prefix information is available immediately after a binding add
message for this home address has been received by the database; name and user are
only available after a successful registration procedure.

The name and user queries basically have the same functionality as the home address
query, but based on mobile node's name and user, instead of its home address. More
details on the query functions can be found in paragraph 6.4.2.3.

6.1.3 Database server entity

The database server entity is the most complicated entity, as its application has to be able
to interface with both of the other applications. This implies multiple client-server
connections at the same time, as well as the possibility to both respond to clients'
requests and to send notifications itself. The available requests and notifications are
described in the previous paragraphs. How the database server handles the different
connections, will be explained in section 6.5.

The database server's application also stores all information it receives from the other two
entities in one database. The database is updated as new information arrives from a
home agent or mobile node. The mobile node is able to send queries to request certain
information stored in this database. A change in the database may lead to the sending of
notification messages to subscribed mobile nodes.

6.2 Location information retrieval
There are two ways of retrieving the location information for a mobile node in a LBS
network. They can be used simultaneously.

1. Every mobile node announces its current location to the home agent by means of
a binding update. This location changes whenever the mobile node moves to
another cell and is thus a valid way of determining its current position in the
network. This means the home agent's binding cache contains information of
every mobile node. The advantage of this method is that any node in a network
may contact the home agent to find the current location of a certain mobile node;

- 33-

Section 6.3. Message structure

2. The mobile node can also derive the subnet part of its primary care-of address
itself. This way, the mobile node does not need to contact the home agent to
retrieve its own location. However, it still relies on a home agent for the location
information of other mobile nodes;

6.3 Message structure

In order to send information between the entities in an efficient and unambiguous way, all
sides must use the same format in their messages. This requires a suited protocol, carried
by IPv6. Which protocol is used and how its correctness can be verified, will be discussed
in this section.

6.3.1 XML language

The structure of the protocol is based on the Extensible Mark-up Language (XML) [15].
XML is a flexible way to create and share common information formats between two
computers connected through the World Wide Web (WWW). It is similar to the language
of today's web pages, the Hypertext Mark-up Language (HTML). However, XML is
"extensible" because, unlike HTML, the mark-up symbols are unlimited and self-defining.
Mark-up is defined as everything in a document that is not content. Applications have to
use an XML-processor to read XML documents and provide access to their content and
structure. XML was formed under the auspices of the World Wide Web Consortium
(W3C)20 in 1996. XML and HTML are actually simpler and easier-to-use subsets of the
Standard Generalized Mark-up Language (SGML) [16], the standard for the creation of
structured documents. The characteristics of XML make it possible to quickly define
messages in a consistent way.

The mark-up indicators are usually called tags. A part of a message is called an element
and its boundaries are indicated by a begin and end tag. The begin tag is always of the
form <tag>, while an end tag always looks like <ltag>. An empty element <tag/> is also
allowed. This forms an empty element. In these examples, the text "tag" is the (obligatory)
name of the tag. Everything between tags is the element's content; empty elements have
no content. Elements can also be nested with other elements. This is used to reveal the
structure of the protocol.

An element can optionally have one or more attributes to provide extra information. An
attribute consists of a name, an equation and an attribute value, for instance: id="ceIl1". In
this case, "id" is the attribute name and "cell1" is the attribute value. Attributes are only
allowed in begin and empty tags and are placed just after the tag's name. An example of a
start tag with an attribute is <cell id="fecO:O:cO:a86e''>. In this case, the matching end tag
is <lcell>. This element can be used to query information on a cell denoted by the cell
prefix, in this case fecO:O:cO:a86e.

6.3.2 XML validation: DTD

A parser can be used to verify the correctness of the Document Type Definition (DTD) and
whether a document follows the rules of DTD. The DTD is the formal definition of the
elements, structures and rules for marking up a given type of SGML document [16]. Its
purpose is to define the legal building blocks of an XML document by defining each of its

20 See www.w3.org for details on the W3C.

- 34-

Chapter 6. Implementation

elements. These building blocks are the tagged elements described in the previous
paragraph

The verification by means of a DTD avoids ambiguity in XML documents. For instance,
every element can only be declared once. If one or more elements are nested, these sub
elements -called children- have to be defined as well. The children have to present in the
same order each time the element they belong to, is used. The declaration of an element
with one or more children always looks like this:

<!ELEMENT element-name (child-element-name,child-element-name, ... »

A child can occur more than one time within an element. The following signs are used to
indicate the number of occurrences of a child:

• No sign declares that the child element message can occur only one time inside
the element;

• The + sign declares that the child element message must occur one or more times
inside the element;

• The * sign declares that the child element message can occur zero or more times
inside the element;

• The? sign declares that the child element message can occur zero or one time
inside the element;

• The I sign declares that the child element message must either contain one or the
other element.

The declaration of attributes of an element has the following syntax:
<!ATTLIST element-name attribute-name attribute-type default-value>

The element-name indicates to which element this attribute belongs. It is followed by the
name of the attribute. Next is the attribute type, for instance character data (CDATA). The
default-value field can have the following values:

• #DEFAULT value: This declares the attribute's default value, which is value;
• #REQUIRED: This declares the attribute's value must be included in the

element, but no default value is given;
• #IMPLlED: This declares that the attribute does not have to be

included;
• #FIXED value: This declares the attribute's value is fixed at value.

The DTD for our protocol is listed in Appendix D. It defines the message elements that will
be explained in the next section.

6.4 Defined messages

We need the XML-based protocol to enable the applications of the three entities to
efficiently exchange their information. All messages that are being sent between the
applications start with the <protocol> tag and end with the </protocol> tag. The protocol's
messages are sent over an TCP connection, which is initiated by the client. Paragraph
6.5.1 explains how this connection is being set up in. Three different types of messages
are defined:

1. Messages initiated by a home agent and sent to the database server.
These can be either a binding update, binding add or binding delete message.
They are indicated by the term "messageHA2DB" and its corresponding begin and
end tags <messageHA2DB> and </messageHA2DB>.

- 35-

Section 6.4. Defined messages

2. Messages initiated by a mobile node and sent to the database server.
They consist of registration messages (user register, user change and user
delete), subscription messages (subscribe and unsubscribe to notifications) and
query messages (query cells, query home address, query name and query user).
This group of messages are indicated by "messageMN2DB" and its corresponding
begin and end tags are <messageMN2DB> and </messageMN2DB>.

3. Messages initiated by the database server and sent to mobile nodes.
This group consists of only one message and is triggered by a change in the
database server. It is a notification of a cell change, user change or name change
in a certain cell. The notifications are sent by the database server to all mobile
nodes subscribed to changes in the concerning cell. These messages are called
"messageDB2MN". They have the begin and end tags <messageDB2MN> and
</messageDB2MN>.

Each message is associated with an element that complies with the DTD rules described
in the previous section. The remainder of this section describes what these messages and
their corresponding elements look like.

6.4.1 MessageHA2DB

As mentioned above, there are three different elements in this category: binding add,
binding update and binding delete. An overview of these elements can be found in
Appendix E.1. Figure 6-2 shows the message sequence chart (MSC) for this category.

Home
agent

Database
server

Binding add

Bindin alYJd'l----
ackn/err

Binding update

Binding
update

Binding

ackn/err

Binding delete

Binding
delete

BindinlJO!.g.c!lde~1!lB---

~-- ackn/err

Figure 6-2. MessageHA2DB sequence chart.

Binding add element
The first element indicates the binding add message. This message is sent every time the
home agent's application detects a new mobile node in its binding cache. Its begin and

- 36-

Chapter 6. Implementation

end tags are <binding_add home_address="... "> and </binding_add> respectively. The
binding add element has a required attribute, which is the home address of the concerning
mobile node. There can be three different elements nested within the binding add
element, of which one and just one has to present. This can be binding information, the
acknowledgement or the error element.

The binding information is not an element itself, but consists of just the required elements
for a binding add message. These are the home agent, care-of address and lifetime of the
added mobile node. These terms have been explained in Chapter 4. The corresponding
tags are, respectively: <home_agent>, </home_agent>, <coa>, </coa>, <lifetime>, and
</lifetime>. The content of these elements is the actual information to be stored in the
database.

The acknowledgement element is an empty element and is used to acknowledge a
previously sent binding add message. It is sent from the database to a home agent in
response to each successful binding add. Its tag is <acknl>. This element is used in each
acknowledgement between the different entities.

The error element is used to notify the home agent that the database was unable to
process a previously sent binding add element. The error element has no attributes. It's
begin and end tag are <err> and </err>, respectively. The content of the error element is
the actual error message. This element is also used by each entity.

Binding update element
This element is sent in two cases. The first case is initiated by a change in care-of
address of the mobile node, which implies a cell change. The home agent notices this
change in its binding cache and sends a binding update message to the database. The
second case is triggered by the home agent application for each mobile node in its binding
cache, at a regular interval. Its purpose is to keep the lifetime information stored on the
database up to date.

The binding update element's begin and end tags are <binding_update
home_address=".. .''> and </binding_update>, respectively. The binding update element
consists of the same possible elements as the binding add element: binding information,
an acknowledgement, or an error element. It also has the same attribute as the binding
add element to indicate the home address for which it is an update.

The binding information can have the same elements as defined above (home agent,
care-of address and lifetime), with the difference that they are all optional. Currently, the
home agent's application is configured to send all binding info elements, but this is not
required for a correct functioning of the database application.

Binding delete element
The binding delete element is used to delete a binding from the database. This is
necessary when a node was present in the home agent's binding cache during a check of
the application, but is not present anymore during the next check. This can be due to, for
instance, an expired lifetime or a change of home agent. Its tags are <binding_delete
home_address=".. .''> and </binding_delete>. Again, this element has a required attribute
indicating the concerning home address.

The binding delete element may include the acknowledgement or error element to
acknowledge a previous binding delete sent by a home agent, or indicate its reason of

- 37-

Section 6.4. Defined messages

failure. The actual binding delete element is an empty element, as only the home address
is needed to remove the mobile node from the database.

Note that the presence of a mobile node's home address in the database does not
necessarily mean it is still present in the listed cell with the listed care-of address. For
instance, if a mobile node is suddenly powered off or out of reach of an access point, it is
not able to indicate this event. Therefore it is still listed in its home agent's binding cache
and no binding delete message will be generated. Only after expiration of its lifetime, a
binding delete is sent to the database server. However, this is a problem that should be
solved on the IP-Ievel and not on higher layers.

6.4.2 MessageMN2DB

This group consists of nine different messages in three categories: registration,
subscription and queries. An overview of these elements can be found in Appendix E.2.

6.4.2.1 Registration

This category contains messages that enable the mobile node to register itself. as well as
change and delete this registration. Registration of mobile nodes is useful to be able to
use name or user information instead of home address during the interaction with the
user. This name and user can then also be used in queries from other mobile nodes.
Therefore, this registration is automatically done as the mobile node application is started.
This application is described briefly in section 6.7. After registration, the user is able to
change or delete the registration by means of the user interface. Figure 6-3 displays the
MSC of the possible messages in the user registration process.

Database
server

User register

User
register

User change

-----l..!§!se~rchange
ackn/err

User delete

User
delete

ser delete

Mobile
node

ackn/err

Figure 6-3. User registration messages sequence charlo

- 38-

Chapter 6. Implementation

User register
The user register element contains one of the following elements: the (optional) user
information, the acknowledgement or error element. It can be recognised by its tags
<user_register home_address="... "> and </user_register>. Note that this element also
includes the sender's home address in the form of a required attribute.

As mentioned before, the registration procedure is automatically started upon launching of
the mobile node application by sending the mobile node's user info. This can be its name,
user and other relevant information. Currently, only the two first elements (name and user)
are defined. The begin and end tags for the name element are <name> and </name> ,
respectively. The content is the actual name of the node. The begin and end tags used for
the user are <user> and </user>; the user's name is stored in its contents.

The name element can be used as an alternative for the home address and should
therefore be unique when possible, at least within the LBS network. A way to achieve this
is to define the mobile node's name as hostname.domainname, for instance
ipaq1.isidor.net. The hostname can be found in /etc/hostname on the iPAO; the domain
can be obtained with the standard C-library function getdomainname () . However, the
user is free to alter this information and the database server currently does not check
name uniqueness.

The user element can be used to identify the current user of the mobile node. This name
only has to be unique for the mobile node, but is preferably also unique for the LBS
network. Uniqueness on node level can be achieved by using the login name as current
user. In that case, a user change message can be generated and sent automatically after
a login. However, the mobile node's application may not require users to log in. In that
case, the current user can only be obtained by means of the user interface of the mobile
node application. The added value of the user lies in the fact that one may be interested in
a person, regardless of the device he is currently using and his location in the LBS
network. This enables the development of ICO-Iike applications21 . The database server
only supports one name and user per home address.

The database server sends an acknowledgement upon each successfully processed
registration message. If an error occurs during processing, the error element is sent
instead. This can be the case for an attempted user registration for a home address that is
not known within the database (i.e., a home address for which either no binding add
message has been received from a home agent, or whose presence has been deleted by
means of a binding delete message). The acknowledgement and error element have been
defined in paragraph 6.4.1.

User change
The user change message has the tags <user_change home_address="... "> and
</user_change>. The mobile node's user can trigger it to change one or more of the
elements sent during the user registration procedure. Like the user register element, it
must consist of either user information, or an acknowledgement or error element. In the
first case, name and user are optional.

21 Ica ("I seek you") is an instant-messaging program, which allows its users to find other users on the Internet and receive
notifications as soon as they are connected.

- 39-

Section 6.4. Defined messages

An acknowledgement is sent back to the mobile upon each successful change. If the
database server cannot process a user change element, it sends an error element
containing the exact error message, instead.

User delete
If, for any reason, the mobile node's user wishes to withdraw the automatic or changed
user registration, he may do so by means of a user delete message. This can be done by
means of the empty element <user_delete home_address="... "/>. A successful user
deletion is followed by an acknowledgement from the database server. In all other cases
(for instance an attempted user delete for an unknown home address), the error element
is sent back. In case of an acknowledgment or error message, the user delete element is
not empty, but uses the tags <user_delete home_address="... "> and <luser_delete>.

6.4.2.2 Subscription

On of the most important goals of the applications is to enable the mobile nodes to gather
information on other mobile nodes present in the same LBS network. This can be done on
request (Le. user triggered), but a user may also subscribe itself to be notified in case
certain changes occur. Currently, two subscriptions are possible: to all known cells or to a
(limited) number of cells. Any subscription can be undone by a similar unsubscription
message. See Figure 6-4 for details.

Database
server

Subscribe changes

Subscrib

ubscribe
acknlerr

Unsubscribe changes

Unsubscri

Mobile
node

-_-,-,":subscribe
acknll"'errT---~1

Figure 6-4. Subscription messages sequence chart.

Subscribe
This element uses the <subscribe home_address="... "> and <lsubscribe> tags. It must
contain one and only one of these elements: one or more cell prefixes, an
acknowledgement or error element. The acknowledgement element is used to notify the
mobile node of a successful subscription. If there was an error processing the subscription
request, an error element is returned by the database. At the moment, this can only
happen in case of a subscription attempt for an unknown mobile node.

In case of a subscription, one or more cells have to be included in the subscription
element. It may contain two things: a query for all known cells or a query for a number of
cells. The cell element has the tags <ceIUd> and <lceIUd>. Its content is the actual cell
prefix or the wildcard II,"". The last case indicates the user is interested in all cells, without

- 40-

Chapter 6. Implementation

have to enter each cell's prefix. In the first case, a list of similar cell elements may follow.
Currently, there is no theoretical limit on the number of cells to enter in this query, but
there are practical limitations, however. This is because of the fixed memory allocations in
the database server and mobile node applications. The exact limitations are yet to be
researched, but allocations can easily be adjusted to solve possible storage problems.

Unsubscribe
The unsubscribe element has the tags <unsubscribe home_address="... "> and
</unsubscribe>. The elements that can be nested in the unsubscribe element are exactly
equal to the ones used in the subscribe element defined above.

6.4.2.3 Queries

As mentioned before, there are two ways for a mobile node to receive information on the
LBS network. The first one is by means of notifications of events in cells to which the
mobile node is subscribed. The subscription method is discussed in paragraph 6.4.2.2.
The other method is to submit a query directly to the database server. The database
processes this query and sends the required information to the mobile node in a query
response message. Currently, there are four queries specified: query cells, query home
address, query name and query user. The involved messages can be seen in Figure 6-5.

Database
server

Query cells

Que
cells

Mobile
node

--~:!,!!ue~f) cells
responsOAelAie'r-__ ~ I

Query home address

Query '.!!hO'!!!B'e---
I~__- address

Query home

response/err

Query name

Query user

Que
l...----~user

r--__uuery user
respsonseli>e/r--~I

Figure 6-5. Query messages sequence chart.

- 41 -

Section 6.4. Defined messages

Query cells
This query message is used to retrieve a list of all mobile nodes present in one or all
known cells. The corresponding (empty) tag is <query_cells ce/Ud="... ''/>. The required
attribute has a default value of "*", indicating all cells. Alternatively, it may contain the cell
prefix of a cell the user wishes to retrieve all list of all the present nodes of.

The response to this query cells message uses the <query_cells ce/Ud=".. .''> and
<Iquery_cel/s> tags. Its contents depends on the query message it is a response to. If one
cell was queried, it has just one element with the tags <cell id="... ''> and <Ice1/>. In the
case all the cells are queried, the response may contain more than one cell elements. The
contents of a cell element is a list of home address elements, one for each mobile node in
that cell. A mobile node element uses the tags <home_address> and </home_address>.

Query home address
This query is used to retrieve additional information on a known home address. The
information available for a mobile node is its name and user and the cell it is currently in.
Name and/or user are only available after a successful user registration as described in
6.4.2.1. Its current cell is derived from the mobile node's care-of address (and is therefore
available immediately after a binding add) and is updated with each successful binding
update. Home address queries use the tag <query_horne_address home_address=".. .''/>.

The response message uses the corresponding begin and end tags:
<query_horne_address home_address=".. ."> and <Iquery_home_address>. The
response contains the name, user and cell elements belonging to the queried home
address (if present in the database), as described in 6.4.2.1. In case of a failure in the
processing of the query, the well-known error element is returned instead.

Query name.
This query uses the empty tag <query_name name=".. .''/>. It is can be used by a mobile
node to gather additional information for a known name. Currently, this is information is
limited to home address, user and current cell. It is composed analogously to the query
home address with the terms "home address" and "name" switched.

Query user
This query is composed completely analogously to the query home address and query
name element. It sends a query for a certain user by means of a required attribute. This
yields the empty tag <query_user user="... ''/>. The response included the corresponding
home address, name (if known) and current cell. It uses the tags <query_user user=".. .">
and <Iquery_user> in a response.

6.4.3 MessageDB2MN

As mentioned before, there is just one message type in this category: the notification
message. It is sent by the database server to subscribed mobile nodes upon an event in a
certain cell. This can be a new mobile node entering the cell (triggered by a binding add or
a binding update with a changed care-of address), a node leaving the cell (triggered by a
binding delete message element or a binding update with a changed care-of address), or
a change in the node's registration (triggered by a user register, user change or user
delete message element). The notification message's tags are <user_notify
home_address=".. ."> and </user_notify>. See Appendix E.3 for an overview and Figure
6-6 for a MSC of the possible messages.

- 42-

Chapter 6. Implementation

The notification must contain either information on the home address that caused the
notification or an acknowledgement or error element, sent by the mobile node as a
response. The information that is sent depends on the trigger. In case of a cell change,
the cell element is included. In the case of user or name change, the corresponding
element(s) are included.

Home
agent

Binding

ackn

Database
server

Subscrib

ubscribe
ackn

Notificatio
ackn

otification

Mobile
node 1

Mobile
node 2

Figure 6-6. Notification messages sequence chart.

The mobile node acknowledges a successful notification by means of an acknowledgment
element as described in 6.4.1. An error element is returned in case of an erroneous
notification, as has been described in 6.4.1 as well.

6.5 Client-server communication

If the different entities in the network (home agent, database server and mobile node)
want to be able to exchange data, there has to be a connection on the TCP22 layer first.
This involves several compulsory steps, which will be described in this section. More
information on TCP/IP can be found in [6] and [17].

6.5.1 Set-up of a TCP connection

TCP uses connection-oriented sockets to allow data to flow back and forth. Each end
specifies the so-called socket pair for the connection. This consists of the local IP
address, local port, foreign IP address and foreign port. The client must specify the foreign
IP address and port in the call in order to connect.

TCP uses a set of elementary functions for client-server communication. These functions
can be seen in Figure 6-7. The server has to be started first; otherwise a client may not be
able to connect to it. We assume communication takes place with a request of the client to
the server. The server processes this request and sends back a reply. This continues until

22 The transmission control protocol (TCP) is a widely used transport layer protocol to release reliable transmission of network layer (IP)
packets. With respect to the ISIDOR requirements (see 2.1.2), the choice for this protocol is obvious.

- 43-

Section 6.5. Client-server communication

the client closes its end of the connection, after which the server does the same. When
the server has closed the connection, it is again able to accept incoming connections.

TCP Client:

connection establisment
(TCP three-way handshake)

~~,e",d-of·file

notificaTl'corr-~_

TCP Server:

blocks until connection
from client

Figure 6-7. Socket functions for elementary rep client-server connection.

The following functions are defined in Figure 6-7:
Socket () ;

Connect();

Bind () ;

Listen();

Accept();

this specifies the type of communication protocol desired, the
corresponding family and the socket type description;
the TCP client uses this function to establish the connection with the
TCP server;
bind() assigns a local protocol address to a socket. In IPv6 the
protocol address is the combination of a 128-bit IPv6 address, along
with a 16-bit TCP port number;
this function is called by the TCP server and performs two actions:
1. It converts an unconnected socket into a passive socket, indicating
that the host should accept incoming connection requests directed to
this socket;
2. It specifies the maximum number of connections that the kernel
should queue for this socket (the so-called backlog);
accept() is called by the TCP server to return the next completed
connection from the front of the completed connection queue. If this

- 44-

Write ();

Read () ;

Closet);

Chapter 6. Implementation

queue is empty, the process is put to sleep (assuming the default of
blocking a socket once the server is connected to a client);
this function sends a message to the peer connection;
this reads the message sent by the peer's write() function;
used by the client to close its end of the connection and send an end
of-file notification to the server. The server uses the close() function to
close its end of the connection and either terminates or returns to the
accept state;

These functions have an equivalent in the C programming language, so the same set-up
procedure can be used in the database server application. Their exact definitions can be
found in the corresponding manual pages.

6.5.2 Multiple user connections

As there may be more than one home agents and mobile nodes present in the LBS
network, the database server has to be able to maintain multiple client connections at the
same time, especially because the home agent's application has a continuous connection
with the database server to send its updates23 to. So, if a mobile node wants to send to or
receive anything from the database, multiple simultaneous connections have to be
possible. Figure 6-8 gives a graphical representation of a server connected to two clients.
The dots indicate the values needed for a socket pair, as described in the previous
paragraph.

SocketO
bindO

Return client's
port number

Return client's
IP address

connection connection

Figure 6-8. rep client-server model with two clients (from client's perspective).

6.5.2.1 Forks

The handling of multiple clients can be done with so-called forks: the server's parent
function accepts an incoming connection and forks a child. From here, the child handles

23 See section 6.6.3 for a more detailed evaluation of this choice.

- 45-

Section 6.5. Client-server communication

the client. Now there are two connected sockets which both have a socket receive buffer
on the server. However, using forks to handle multiple connections has two major
disadvantages:

• Forks are expensive with respect to memory and CPU usage. Memory is copied
from the parent to the child and all descriptors are duplicated in the child. Memory
usage would be way too high in case of multiple mobile nodes and home agent
connections.

• We need inter-process communication (IPC) to pass information between the
parent and child functions after the fork process. Sending information from parent
to child is easy, since the child starts with a copy of the parent's data space and all
its descriptors. However, this can only be done as the fork is formed. Furthermore,
returning information from the child to its parent takes far more work.

The next paragraph presents a solution for these problems in the form of so-called
threads.

6.5.2.2 Threads

Basically, a thread is the information needed to serve one individual user or a particular
service request. Threads are sometimes called lightweight processes since a thread is
"lighter weight" than a process. That is, a thread creation can be 10-100 times faster than
the process creation [18].

All threads within a process share the same global memory. This makes sharing of
information between threads easy. Not only the global variables are shared, all threads
within a process share:

• Process instructions;
• Most data;
• Open files (e.g. descriptors);
• Signal handlers and dispositions;
• Current working directory;
• User and group Ids;

But each thread has its own:
• Thread ID;
• Set of registers, including program counter and stack pointer;
• Stack (for local variables and return address);
• Error number for creation;
• Signal mask;
• Priority;

By using multi-threading we are able to save an enormous amount of time in the handling
of a large number of connections because we are able to handle them parallel. With this
solution it is possible for a large number of mobile nodes to connect to the database
simultaneously, without slowing down the processing of their individual requests. This
effect is shown in Figure 6-9.

As all of the development is done in a Linux environment, we use the so-called POSIX
(Portable operating system Unix) threads, also called pthreads. They are similar to the
non-POSIX cthreads. A pthread can be created with the pthread_create function, which
requires four arguments [19]: a thread variable or holder for the thread, a thread attribute,

- 46-

Chapter 6. Implementation

the function for the thread to call when it starts execution and finally an argument to that
function. An example of this creation is

pthread_create(&a_thread, a_thread_attribute, (void *)
&thread_function, (void *) &sorne_argurnent);

After creation, it has to be disassociated from its parent with the function:
pthread_detach(a_thread);

--- Cams
--- Conn6

---CoonS

---Com2

---Coon.
---Com1

.....-----_._--...---
C0l1I11 CoM 2 Conn 3 Com. Conn 5

Figure 6-9. Multiple threads vs. single threads across time.

A thread can be exited with the following command:
pthread_exit(void *retvalue);

Note that a thread can start with any function we like, in contrast to the fork's child, which
begins execution at the same point as its parent.

The creating of new threads in two steps (create and detach) works fine if the number of
new connections per second is low. However, if multiple clients attempt to connect to the
server in a short amount of time, the server may accept new incoming connection before
the previous one's detaching has completed. This results in the blocking of all threads
except for the last one. Detaching the thread automatically after its creation can solve this
problem. This can be achieved by setting an appropriate attribute:

pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

With this attribute, the pthread-detach statement is not necessary anymore, as the new
thread is automatically detached after its creation.

6.5.2.3 Mutexes

However, the big advantage of being able to run threads parallel yields a new problem:
that of synchronization. When all threads run concurrently and have access to shared
resources, this access must be controlled. Otherwise, all threads would be able to read
and write to these resources at the same time. This may cause problems. For instance, if
a mobile node sends a query message for a certain home address at the same time the
home agent sends a binding update for this home address, the database server does not
have a well-defined state anymore. So, only one thread at a time may be able to access
shared resources.

- 47-

Section 6.6. Database server application functioning

The simplest way to solve this problem is with the use of mutexes. Mutexes are simple
lock primitives that can be used to control access to shared resources. A mutex has only
two states: locked and unlocked. Whenever a thread wants to access a shared resource,
it locks the mutex first. When it is finished, the mutex is unlocked again. During a lock,
none of the other threads is able to lock or access the shared resources. They are
blocked until the mutex is unlocked again by the tread that originally placed the lock. A
mutex with name mutex can be declared in the same way a variable is declared:

pthread_ffiutex_t mutex;

Locking and unlocking of the mutex is done by the following functions:
pthread_ffiutex_lock(&mutex);
pthread_ffiutex_unlock(&mutex);

In the database server application, we want to use two different mutexes: one to control
the mobile node part of the database (filled and updated by the connected home agents)
and one to control the database's list of connected clients. The database server maintains
the client list to store which clients are connected on which ports. It needs this information
to send notifications to the right nodes. As these resources are independent of each other,
they can be blocked individually. Using one mutex for both resources would cause
unnecessary delays in the application. After all, there is no need for a thread wishing to
update a mobile node's lifetime to wait for another thread that is updating the client list,
because a new mobile node has connected. The exact structure of the database can be
found in paragraph 6.6.2.

6.6 Database server application functioning

6.6.1 ParenUchild functionality

All the concepts and functions explained in this Chapter have to be implemented in an
application. Considering the required functionality (speed is most important, no user
interface is required), the C-programming language has been chosen for this task. The
application can be divided into two parts: the parent (the main loop) and the child (all the
other functions). The main loop of the database application functions as can be seen in
Figure 6-10. It starts by preparing a new socket for an incoming connection. After this has
been done, it waits for an incoming connection. For every incoming connection, a new
threat is created. A successfully created thread is detached and the loop starts all over
again.

Every detached thread starts with the child function. See Appendix F for an overview of
the functioning of the child. The database server waits for data from the client and buffers
it until a complete message has been received. A complete message starts with the
<protocol> tag and ends with the </protocol> tag. In case more than one complete
message has been received, they are processed in succession. The handle_buffer
function first determines what type of message has been received (HA2DB, MN2DB or
DM2MN).

In case of a HA2DB message, the next step is to determine the actual binding message.
Binding messages are processed and an according response (either an acknowledgment
or error) is generated. For a binding update message, this step is followed by a check to
see if a cell change has occurred. If so, a notification message is generated and sent to all

- 48-

Chapter 6. Implementation

subscribed clients. In case of a binding add or binding delete message, a notification is
always generated. Only after all notifications have been sent, the response to the client
will be sent.

The child function does not wait for notification acknowledgement messages from the
mobile nodes. The reason for this choice is that the generation of such
acknowledgements by the mobile nodes is thought to be too slow compared to the speed
of the database server's application. This assumption will be verified in Chapter 7.

Set and bind
new socket

y

Create child

Figure 6-10. Schematical functioning ofmain loop.

In case of a MN2DB message, there are three possibilities: a registration, an
(un)subscribe or a query message. The messages are processed and a proper response
is generated. In case of an (un)subscription, this is either an acknowledgement or an error
message. In case of a query message, a query response or error message is generated.
The registration message also triggers the generation of a response message
(acknowledgment or error), but a notification message is generated and sent to
subscribed clients as well.

The last possible received message by the database server (messageDB2MN) can only
be the response to a previously sent notification. As this is either an error or an
acknowledgement, it does not require the generation of a response or new notification
message.

Finally, the response is sent to the client, if one is waiting in a buffer. After sending, the
child checks whether there are other received messages waiting to be processed. If not, it
starts all over again by waiting for new data from the client.

- 49-

remove)

Section 6.6. Database server application functioning

6.6.2 Information storage and retrieval

The information stored within the database consists of four parts:
1. Known home addresses;
2. Subscriptions for a certain home address;
3. Known cells in the LBS network;
4. Clients currently connected to the database server;

The first part -which is also the largest- contains all information on a certain mobile node.
This information is stored in a linked list, which is sorted by home address. The structure
contains the information retrieved from the home agent, as well as the information
retrieved from the mobile node itself. Its declaration looks like as follows:

struct address {
char home_addr[36]; II MN home address
char h_a[64]; II MN home agent
char co_addr[36]; II MN care-of address
char cell[18]; II MN cell prefix
char name[64]; II MN name
char user[64]; II MN current user
int lifetime; II MN lifetime
int flags; II MN flag (entry_valid or entry_remove)
int socket; II MN home address to sd link
struct subscription *subs; II Pointer to subscription struct
struct address *next; II Pointer to next struct address

} ;

The home address, home agent, care-of address and lifetime can be derived directly from
binding add and binding update messages received from the mobile node's home agent.
The cell prefix can be computed by simply taking the first 16 (= prefix size) characters of
the unformatted care-of address. The name and user fields are obtained from user
register and user change messages. The MN flag is used to indicate whether an entry is
valid (should be kept in the database) or invalid (should be removed). The socket field
contains the socket descriptor of the connection with this mobile node. This is the
descriptor that is used for sending notifications for cells listed in the linked list subscription.
Finally, there is a pointer to the next struct (or to NULL if no next struct is present).

The second part of the database is also part of the first structure. It is the linked list
subscription, which contains for each mobile node the cells it is currently subscribed to. If
the mobile node is subscribed to all notifications, it only contains a struct for the wildcard
u*". It is declared as follows:

struct subscription {
char cell[18]; II Subscribed cell's prefix
int flags; II Subscription flag (valid or
struct subscription *next; II Pointer to next struct

}; II subscription

The third part of the database is a linked list of all the cells that are currently known within
the network. Its main purpose is to have a sorted list of all present cells. This list is used to
loop through in case a response to a <celUd id="*"> tag is being generated. It is declared
like:

struct cells {
char cell[18];
int flags;

I I Cell prefix
II Cell flag (valid or remove)

- 50-

) ;

struct cells *next;

Chapter 6. Implementation

II Pointer to next struct cells

The first field is the actual information to be stored: the cell's prefix. Next is a flag
indicating the entry is valid or should be removed from the list. Finally, there is a pointer to
the next struct. The list is sorted on cell prefix and is being updated after every received
binding add and binding update message. As mentioned in 6.5.2.3, this struct is controlled
by the same mutex as the address struct. This is because a different care-of address may
indicate another cell prefix. Therefore, both structs are linked directly, and only one at a
time should be available for reading or writing.

The last part of the information database is a linked list containing the socket descriptors
of all currently connected clients. This list is used to loop through to make future
broadcasting functions easier. It can also be used to retrieve information on the current
number of connections. Its declaration looks as follows:

struct clients {
int socket; II Client's socket descriptor
char ip[40]; II Client's IP address (either IPv4 of IPv6)
int flags; II Client's flag (entry_valid or entry_remove)
struct clients *next; II Pointer to next struct clients

) ;

This struct is analogue to the cells struct but with an extra field. Instead of cell prefix, the
client's socket descriptor is stored in the first field. This is the same socket as is stored in
the address struct. The second field stores the IP-address of the connected client. This
can be either an IPv4 or an IPv6 address. Finally, there are a flag and a pointer to the next
struct. The list is being updated after each opened or closed connection. As this list has
no direct connection with the other information, it can use its own mutex to block threads.

6.6.3 Update considerations

The lifetime of each mobile node's binding is the absolute time to expiration of this
binding. It is stored statically in the database. The database does not compute new values
of the lifetime itself. Instead, it depends on the binding update messages from the mobile
node's home agent application for lifetime synchronization. There are several reasons for
this choice:

• The load on the database may influence its calculation speed, which may lead to
an incorrect lifetime calculation;

• In case of the expiration of a lifetime in the home agent's binding cache, its
application immediately sends a binding delete message to the database. This
means the validity of the mobile node's presence in the database is always
secured, though its lifetime may be stored with a small deviation;

• There is no advantage for a mobile node to be able to retrieve the exact value of
the lifetime of a binding, as long as the validity of this binding is guaranteed;

The updating of the lifetime values can be achieved in two ways: with a continuous
connection or with a connection that will be set-up for each message. Initially, the first
option is chosen because of the frequency of binding updates (every 3 seconds for every
mobile node) and the relative easy implementation. Drawback of this choice is that
unnecessary connections waste processing power and memory. However, considering
the relative low amount of home agents in an arbitrary LBS network (compared to mobile
nodes), this will not easily become significant. If so, the home agent's application can be

- 51 -

Section 6.6. Database server application functioning

adjusted to disconnect after each message. This leads to a recommendation that will be
described in section 8.2.

6.6.4 Robustness

In case the database is not able to properly process a received message, it returns an
error message containing the reason for the occurrence of the error. The more errors the
database server's application can handle, the more robust it functions. However, there are
other aspects that influence the robustness of the database application. For instance the
handling of the following events:

1. Disconnection from a client;
2. Not receiving a required response message;
3. Receiving an invalid message;

6.6.4.1 Client disconnection

Both sides can close the connection between the client and database server. In case the
database server closes the connection to a mobile node, the mobile node is removed from
the client list, its subscriptions are deleted and the corresponding thread is exited. The
database server closes the connection to a client in the following situations:

• The sending of a notification message to a mobile node fails. This is the case
when a mobile node disconnects unannounced;

• The database server detects an disconnection by receiving a trigger from the TCP
layer;

Currently, no measures are taken when the sending of a response message to a client
fails. However, as will be stated in 8.2, it is recommended to handle the occurrence of this
event more properly.

If the home agent's application initiates the disconnection, it sends a binding delete
message for all mobile nodes in its binding cache, prior to the disconnection itself. This
ensures there are no mobile nodes in the database, for which no binding update or
binding delete message will be received anymore. The implication of this measure is that
a possible registration and subscription for this mobile node are lost. Furthermore, no
information on this node can be queried anymore. The actual disconnection is detected
again by receiving a trigger from the TCP layer for the corresponding socket pair.

If the connection between home agent and database server gets disconnected
unintended, the home agent's application detects this event and automatically re-connects
to the database server. In the meantime, the database server does not update or delete
the mobile node bindings of this home agent. This means that during the reconnection
time the information in the database may be outdated. See section 8.2 for
recommendations regarding this topic.

6.6.4.2 No response message

As explained in 6.4.3, the notification message is the only message that is initiated by the
database server and responded to by a client. The notification acknowledgement
message indicates a proper delivery and processing of the notification. In case an error
message is returned, processing at the client yielded a problem. Currently, this error
information is only displayed on the screen. Depending on the error, the application either
continues without taking any action, or the connection causing the error is closed.

- 52-

Chapter 6. Implementation

A better way to handle the mobile node acknowledgement messages is to wait for them
before sending another message. In case there was an error, the entire message can be
sent again. But as will be shown in Chapter 7, this would cause a too large delay in the
database server's application.

6.6.4.3 Invalid message reception

Because it is very unlikely an invalid' message will be generated by an application once
they all function well, handling of such events is quite straightforward. The mobile node's
application, which will be discussed in 6.7, does not allow its user to enter any text,
thereby reducing the change of protocol violations. The mobile node's user can only use
predefined options or information retrieved from the database server to contact the
database server.

However, if the database application detects a violation of the messages as defined in
section 6.4, the corresponding thread is immediately exited and the corresponding
connection is closed. For debugging purposes, the tag that caused the violation and the
database's current contents are printed to the screen.

6.7 Mobile node application functioning

As stated in section 2.1 , the mobile node's application will be implemented in Java. Other
participants in the ISIDOR project have performed this task. The application consists of
two parts. The first part is based on the application described in paragraph 5.3.5. It can be
used to inform the user of his current location in the LBS network and to show some
information with respect to that location. Currently, this is a Bluetooth image in cell 2 and
an image of the iPAQ in cell 1. In case no cell is found and the mobile node is not able to
retrieve a care-of address, the ISIDOR logo is shown. See Figure 6-11 for a screenshot.

Figure 6-11. Mobile node application showing current cell information.

- 53-

Section 6.7. Mobile node application functioning

The second part displays the information obtained from the database server. After starting
the application, the mobile node first determines its current location as described in the
previous application. Next, it looks for a configuration file for to obtain its name and user to
register with. A successful registration is followed by a subscription for the cell the mobile
node is currently residing in.

Next, it sends a query cells message for the cell corresponding to this location. This yields
information on all other mobile nodes in this cell. The information is used to compose the
layout as can be seen in Figure 6-12.

Figure 6-12. Mobile node application showing network information.

The mobile node's home address is displayed in the centre, surrounded by the mobile
nodes listed in the query cells response message. In case of change in the cell, a
notification is received and the display is updated according to the changes. Clicking on a
home address triggers the sending of a query home address message for that address.
The returned information (name, user, cell and any other information available) is shown
in the bottom window. The button "Global" is meant to change the subscription type to, for
instance, all cells.

- 54-

Chapter 7. Measurements

7.1 Introduction
The work described in this Chapter serves two functions:

1. Verify the functionality of the database server as it has been described in Chapter
6;

2. Retrieve information on the reliability and the speed of the database server
application and determine whether it meets the requirements given in paragraph
2.1.2;

All communication between the mobile nodes, home agents and database server takes
place by means of the messages defined in the previous Chapter. Each of these
messages is answered by an acknowledgement, an error or a (query) response message.
The faster an answer arrives at its destination, the more up to date the information within
the LBS network will be. There are several factors that influence the delay between the
sending of a message and the delivery of its answer. These factors can be divided into
two categories. The first category contains factors that are network related, for instance:

• Configuration of the network: this includes many factors, such as routing and the
speed of the connections between the nodes;

• Load on the network: congestion, for instance, increases the time to deliver a
packet at its destination;

• Size of the network (number of hops): generally, the more hops a packet has to
travel, the more time it takes;

• Load on the database: the more home agents and mobile nodes communicate
with the database simultaneously, the slower a response will be generated;

The second category contains the factors that depend on the implementation as described
in Chapter 6. These are, for instance:

• Speed of the database server's implementation: the more time it takes for the
application to generate a single response or notification, the longer the total delay
will be;

• Efficiency of the database: the more efficient the parallel threads and the locking of
mutexes are handled, the faster the database server works;

As many factors in the first category are hard to measure in the relatively small network of
Figure 3-3 and are beyond the scope of this thesis, only some quantitative results for a
fixed configuration will be presented. The focus lies on the aspects of the second
category, thus trying to determine the quality of the implementation as described in the
previous Chapter. Section 7.2 presents different scenarios to measure the most important
delays caused by the database server's application. The results of these measurements
will be presented in section 7.3. The last section contains the conclusions that can be
drawn from the results.

-55 -

Section 7.2. Scenarios and measurements

7.2 Scenarios and measurements

7.2.1 Scenarios

Generally, there are two different types of delay, caused by the database server, to be
measured:

1. Delay between the reception of a message at its interface and the sending of a
corresponding response message. Each type of response has its own delay. The
response is unicasted back to the home agent or mobile node that sent the initial
message;

2. Delay between the reception of a message causing a notification and the sending
of this notification to the mobile nodes subscribed to the particular cell. The more
mobile nodes are subscribed to a cell, the more notifications will be sent. The set
of recipients does not necessarily have to include the client that triggered the
notification;

The three scenarios to measure the most important delays are:
1. A new mobile node enters the LBS network. The delay between a binding add and

response message will be measured (type 1 delay);
2. A handover for a mobile node, without notifications. The delay between a binding

update indicating a cell change and its response will be measured in the case no
mobile nodes are subscribed to the particular cell (type 1 delay);

3. A handover for a mobile node, with notifications. This scenario enables us to
measure the additional delay caused by the sending of notifications (type 2 delay);

Note that, strictly speaking, the term 'message' is not correct in this context, as it belongs
to the application layer, while we will be measuring delays at a lower layer. The
messages, as defined in the previous Chapter, are actually stored in the data part of a
TCP-segment. But as the TCP-term 'segment' is at least confusing and hardly used
outside the TCP-world in this context24 , we will use the term 'message' in this Chapter for
any protocol data unit (PDU) sent by a transport layer entity.

As stated in 7.1, there are multiple factors that influence the delays. By using different
scenarios, we will try to determine what factor is the bottleneck and how we can reduce
the delay it causes. See Figure 7-1 for a fictive example of a binding add message and its
response. At t =0 ms. a binding add message is sent from the home agent to the
database server. It takes 0.05 ms. for the message to arrive at the database. A 0.10 ms.
later an acknowledgement message has been generated by the database. This response
arrives at the home agent after an additional 0.06 ms. From this example we can conclude
that the total delay is 0.21 ms., of which the network causes 0.11 ms. and the database
server causes the remaining 0.10 ms.

24 According to [6), section 6.6, page 588.

- 56-

Home
agent

Database
server

Binding add

0.05

~Bi~nd~ina.;a~dll.-----I 0.15
ackn/err

Chapter 7. Measurements

Figure 7-1. Example of delay measurement.

7.2.2 Measurement method

To measure the delay between the deliveries of two corresponding messages, we need a
tool that can both visualise the messages sent and is, at the same time, able to measure
the elapsed time in a sufficient accurate way. The Ethereal tool, which has been described
in paragraph 5.2.2.4, satisfies these conditions. With Ethereal, we are able to see each
message and its arrival time at a node's interface. By measuring at multiple nodes at the
same time, the total delay can be divided in hop-by-hop delays. However, there is a
problem when using Ethereal on multiple nodes in the network simultaneously. Though
the accuracy of time measurement at each node is sufficient, the offset between the
clocks of the various nodes is in the same order of magnitude as the time it takes for a
message to arrive at the next node. Moreover, this offset has a drift (a so-called jitter), so
it cannot be accounted for by adding a constant factor. This means it is very hard to
measure the interval between the sending of a message at a hop and its arrival at the
next.

To solve this problem, we will estimate this interval, instead of measuring it directly. To be
more specific, the delay for sending a message between the home agent and the
database server, as well as between the database server and a mobile node are to be
estimated. These delays depend on two factors:

1. The chosen path between source and destination. Different paths can have
different connection speeds and a different number of hops. This aspect is only
network-related and therefore constant for a fixed source and destination25;

2. The size of the message sent. The larger the amount of bytes to process, the more
time it takes for a node to store and forward the message, especially when it is a
router. Of course, it also takes more time to send the message over the line;

To estimate these intervals, the following measurements have been done. First, 100
ping626 messages are sent from source to destination and the average round trip time is
calculated. To indicate the reliability of the average value, the standard deviation can be
calculated. The standard deviation cr is defined as:

a = (1)

25 Additional delays due to congestion or other unforeseen circumstances are not accounted for in these measurements.

26 This is a regular ping command (which sends ICMP ECHO_REQUEST packets to network hosts), but with an ICMPv6 header
instead of ICMPv4. Both ICMP headers have a fixed size of 8 bytes.

- 57-

Section 7.2. Scenarios and measurements

Where x is the measured value and n is the total number of measured values. We assume
a normal distribution of the measured values, which means that about 68 % of the values
lie within one standard deviation about the mean, and about 95 % of the values lie within
two standard deviations about the mean.

7.2.3 Message sizes

Next, this measurement is repeated for different ICMP data sizes to investigate the
influence of the message's size. The ICMP data size is the same as the packet size that
can be entered after a ping6 command. Measurements for packet sizes of 100, 200, 300,
400 and 500 bytes will be done. To be able to apply the results on the defined messages
of Appendix E, we have to account for the 8 byte ICMP header to obtain an expression
that is a function of the IPv6 payload size.

The defined messages are carried in TCP data instead of ICMP data. To compare both
forms of data, we will add the 20 bytes of the TCP header to the TCP data size of a
message to obtain the IPv6 payload size. This size can be used in the estimated round
trip value for the ping6 messages. See Figure 7-2 for details. The only possible inaccuracy
in this method is the implicit assumption that the processing of an ICMPv6 header of 8
bytes takes as much time as the processing of a 20-byte TCP header.

ICMP

IP

Variable size (ping6 packet) }

____________fC_M_PD_a_ta

ll

Ping6

40 bytes Variable size
IPv6 Header IPv6 payload

rcp

IP

20 bytes I Variable size (protocol message)
TCP Header TCP Data

I
40 bytes Variable size

IPv6 Header IPv6 payload
}

Protocol
HA· DB

TC

IP

P 20 bytes I Variable size (protocol message)
TCP Header TCP Data

I
40 bytes I 24 bytes Variable size

IPv6 Header
IPv6 Routing

IPv6 payload
Header

}

Protocol
DB-MN

IP 40 bytes
IPv6 Header

Home
registration

'---------oy-----------'
40 bytes

IPv6 payload

Figure 7-2. Message size differences.

- 58-

Chapter 7. Measurements

In case of the binding update destination option (a home registration), there is no TCP,
nor ICMP data present. This means we can use the IPv6 payload size of 40 bytes without
additional calculations. This yields the IPv6 payload sizes as listed in Table 7-1

Table 7-1. IPv6 payload size of defined messages.

We expect the round trip to increase linearly with increasing payload size, as processing
the double amount of data takes the double amount of time. As can be seen in paragraph
7.3.1, the measurements confirm this assumption. Therefore, a first order polynomial (a
so-called trend line) will be fitted through the five averaged values. This yields an
expression for the expected round trip delay as function of its size (in a multiple of 100
bytes). With this expression we are able to calculate the expected delay for a message if
its data size and route are known.

The R-squared value of the fitted polynomial is also computed. The R-squared value is an
indicator between 0 and 1, which reveals how well the estimated values of the trend line
correspond to the actual data. It is also known as the coefficient of determination and is
defined as:

R2 = 1_ Mean square error
Variance (2)

Where Yj is the measured value, YJ the approximated value and n the total number of

values. The closer R-squared is to 1, the better the trend line fits the averaged values.
Note that the variance in equation (2) is not equal to cr2 of equation (1), as it calculated for
the fitted curve instead of an averaged ping6 value.

7.2.4 Measurement set-up

The measurements will be done with the network configuration of Figure 3-3. In this
configuration, the Wine220 computer serves as home agent for all mobile nodes in the
LBS network. Router 5 is used as database server. Furthermore, cell 1 corresponds to the
area covered by access point 110 (AP11 0) and cell 2 corresponds to the area covered by
access point 210 (AP210). The areas overlap to be sure a cell change is possible.

In this configuration, messages sent from the home agent to the database server have to
travel only one hop, where messages from the database server to a mobile node have to
travel six hops. As messages for a mobile node in cell 2 follow a different route as
messages destined for a mobile node in cell 1, both values have to be estimated

- 59-

Section 7.3. Measurement results

separately. The response messages travel the same route with the hops in reverse order
and are considered to have the same delay. The exact routes are as follows (see Figure
3-3 for details):

• Home agent to database server: Wine220 - Router 5;
• Database server to mobile node in cell 1: Router 5 - RTC - RTD - Router 2

Switch 110 - AP110 - MN;
• Database server to mobile node in cell 2: Router 5 - RTC - RTB - Router 3

Switch 210 - AP 210 - MN;

In this configuration, all messages between the home agent, database server and the
mobile nodes go either to or through router 5. This allows us to run just one instance of
Ethereal on router 5 to monitor all the traffic we are interested in. Next, we use the
estimated round trip values to calculate the other delays in the scenario.

7.3 Measurement results
In this section the results of the scenarios and measurements described in 7.2 are
presented. First, the three round trips are estimated in paragraph 7.3.1. With these values,
the delays in the different scenarios are calculated in paragraph 7.3.3.

7.3.1 Round trip estimations

As explained in paragraph 7.2.4, three intervals have to be estimated:
1. Home agent to the database server, see 7.3.1.1;
2. Database server to a mobile node in cell 1, see 7.3.1.2;
3. Database server to a mobile node in cell 2, see 7.3.1.2;

7.3.1.1 Home agent to database server

The measured values and their fitted curve for messages between the home agent and
the database server can be seen in Figure 7-3. The standard deviation of each averaged
ping6 value is also plotted by means of five confidential intervals.

The trend line equation in this figure is a function of the ICMP data size in a multiple of
100 bytes. Note that to derive an expression for the round trip value as a function of the
IPv6 payload size in bytes, we will also have to account for the ICMP header size of 8
bytes. This yields the following expression:

t = 3,29.IQ-4.(x-S)+4,157.IQ-1 [ms] (3)

With x the IPv6 payload size in bytes.

- 60-

0,600

0,580

0,560

0,540

! 0,520

...
:E 0,500

"c
"0
II: 0,480

0,460

0,440

0,420

0,400
100 200 300

ICMP data size (bytes)

400

Chapter 7. Measurements

500

Figure 7-3. Round trip time between the home agent and the database server.

7.3.1.2 Database server to mobile nodes

The measured values for the round trip time between the database server and a mobile
node in cell 1 can be found in Figure 7-4.

7,000

6,500

6,000

15,500
...
:E
"c&5,000

4,500

4,000

3,500

100 200 300

ICMP dot. olzo (byteo)

400 500

Figure 7-4, Round trip time between the database server and a mobile node in eel/1.

In this figure we can see that the linear approximation for the round trip between the
database server and a mobile node in cell 1 is given by:

t = 7,163.10-3
• (x - 8) + 2,9482 [ms] (4)

- 61 -

Section 7.3. Measurement results

With x again the IPv6 payload size in bytes. As the number of hops is greater, equation
(4) yields a higher value than (3) for the same packet size. Probably due to this longer
delay, the standard deviations of the averaged values are smaller than the ones in Figure
7-4. This also results in a higher R-squared value (0,9999) for the curve of equation (4).
The same measurement results for a mobile node residing in cell 2 can be found in Figure
7-5.

7,000

6,500

6,000

15,500
a.
:E...
~&5,000

4,500

4,000

3,500

100 200 300

leMP data size (bytes)

400 SOD

Figure 7-5. Round trip time between the database server and a mobile node in cell 2.

This yields the following expression for round trip time from the database server to a
mobile node in cell 2:

t = 7,006.10-3
•(x - 8) + 2,8772 [ms] (5)

The R2 value of this measurement is 0,9973. This result is comparable to the one of
equation (4). Mainly due to the averaged value for an ICMP data size of 300 bytes, the R
squared value is somewhat lower.

7.3.2 Round trip conclusions

With equations (3) through (5), the delays of the messages of Table 7-1 can be
calculated. For example: to calculate the delay to send a binding update message of 169
bytes from home agent to the database server, we use the following expression:

t = (3,29.10-4.(169-8)+4,157.10-1)/2 = 0,234ms. (6)

Where 169 is the IPv6 payload size of a binding update message, as can be seen in
Table 7-1. Note that we have to divide the entire delay by 2 because equation (5) is a
round trip value.

The home registration message causes some difficulties. In paragraph 7.3.1, only the
round trip times between the database server and the home agent, and between the
database server and a mobile have been measured. However, the home registration

- 62-

Chapter 7. Measurements

message is being sent directly from mobile node to his home agent, but goes through
router 5. We can solve this problem by adding the delays from mobile node to database
server and database server to home agent, as well as the delay caused by passing router
5. The first two delays are known, the last can be calculated from an Ethereal trace on all
interfaces of router 5, while a home registration is monitored. We can simply subtract the
moment the home registration message is received on the ethO interface from the moment
it is seen as an outgoing message on eth1. The same procedure can be followed for the
corresponding acknowledgement message. The results of these calculations are the
values that can be found in Table 7-2.

Table 7-2. Calculated message delays.

7.3.3 Scenario measurements

This paragraph presents the results of the measurements for the scenarios as described
in 7.2.1. Together with the results of paragraph 7.3.2, all times within the different
scenarios are known.

7.3.3.1 New mobile node enters LBS network

Whenever a new mobile node enters the LBS network, it sends a MIPv6 binding update
destination option to its home agent first. This update is triggered by a router
advertisement. The broadcasting of these advertisements can be controlled with the
router advertisement daemon, as discussed in paragraph 5.2.2.2. The binding update
destination option is also known as a home registration and has been described in
paragraph 4.4.1. It serves as notification for the home agent of the mobile node's acquired
care-of address. In a home registration, the "acknowledge" bit is always set, indicating a
binding acknowledgement from the home agent is requested. Before sending this
acknowledgement, the home agent MUST multicast a "gratuitous" neighbour advertisement
with the new mobile node's home address as source address [10]. Any node receiving this
multicast will update its binding cache with the new information.

When the home registration has completed, the home agent's application generates and
sends a binding add message to the database server. The sequence chart of the
complete scenario can be seen in Figure 7-6.

- 63-

Section 7.3. Measurement results

The measurements have been done with just one mobile node that is powered on in cell
2, after the home agent and database server's applications have been started. The
measurements have been repeated 20 times after which they are averaged to increase
accuracy. The intervals (t1 - to), (4 - h), (ts -t5) and (t8 - tr) can be derived from Table 7-2.
The other intervals are determined by the measurements and can be found in Table 7-3.

Home
agent

Database
server

Mobile
node

14

1
Binding updale

1(ms) (Home r islralion)
I,

1,-- --a~;~~r:~~~I---.
t, 1-_-

Figure 7-6. New mobile node startup scenario.

Table 7-3. Home agent and database delays for new mobile node startup scenario.

This yields the scenario of Figure 7-7. Note that the interval (tr - t6) can be significantly
larger in case there are mobile nodes subscribed to cell 2, as the binding add
acknowledgement is only sent after the last notification. This effect will be examined in
more detail in paragraph 7.3.3.3.

Home
agent

Database
server

Mobile
node

l
l(ms)

1,88

2,03

2,15

55,94

59,18

Binding updale

islralion)

___~~!9~~O_LJ~ .__ •
advertismenl

Binding
add 56,18

Bindin a 58,95
ackn

4,03

Figure 7-7. Results of the new mobile node startup scenario.

- 64-

Chapter 7. Measurements

The longest delay in this process is caused by the generation of a binding add message
by the home agent's application. This is due to the fact the application sleeps for 100 ms
between checks of its binding cache. In case of a change other than the lifetime, a
message for the database server is generated and sent. If there have not been any
changes for 3 seconds, binding update messages for all mobile nodes in the binding
cache are generated. So, on the average, it takes the home agent's application 50 ms to
detect a new mobile node.

7.3.3.2 Mobile node handover without notifications

The mobile node handover time is an important aspect in the performance of the MIPv6
network, as well as in the performance of the database server's application. A cell change
is, on IP level, handled in the same way as described in the previous paragraph. Only the
neighbour advertisement multicast is left out, as the mobile node's home address is
already known within the network. This does not change the delays significantly, however.
Therefore, we limit ourselves to the delay caused by the database server's application.
This will be different from the previous scenario, as the mobile node does not have to be
added to the database anymore. Again there are no mobile nodes subscribed to the
concerning cells, so no notifications are sent. See Figure 7-8 for the scenario.

Home Database
agent server

1l(m:l
-
~update t1

Binding - ~

t3 ~ ackn

Figure 7-8. Mobile node handover scenario without notifications.

The measurements are done with the same set-up as in the previous scenario; but
instead of restarting the mobile node, it is repeatedly moved from one cell to cell the other.
The duration of the intervals (t1 - to) and (t3 - t2) can again be found in Table 7-2. The
delay the database causes is equal to (t2 - t1). The result of the measurements can be
found in Table 7-4. This result leads to the scenario of Figure 7-9.

Table 7-4. Database delay for mobile node handover scenario.

Home Database
agent server

t =0 - Binding

1, (m,)
updafe-------' 0,25

Binding - 2,38

2,61- ackn

Figure 7-9. Results of the mobile node handover scenario without notifications.

- 65-

Section 7.3. Measurement results

7.3.3.3 Mobile node handover with a single notification

The next scenario is the one of Figure 7-10. A mobile node changes its cell, which will be
detected by the database server by means of a received binding update message. This
event triggers the sending of a notification to all mobile nodes subscribed to the
concerning cells (one cell for the departure of the mobile node and the other cell for the
new mobile node).

The first measurements have been done with one mobile node subscribed to its own cell,
which is cell 2. Another mobile node changes repeatedly from this cell to cell 1, causing
notifications to be sent for each cell change. The mobile node's application, as described
in section 6.7, returns an acknowledgement message for each successfully received
notification.

Home
agent

Database
server

Mobile
node

Figure 7-10. Mobile node handover scenario with a single notification.

From the measurements, the intervals between receiving and sending a message at the
database server can be derived. These are the intervals between a binding update and
notification message (t2 - t,), as well as the interval between a notification and binding
update acknowledgement message (t5 - t2). The other intervals have already been
calculated in Table 7-2. With these values, we are also able to compute the time the
mobile node requires to generate a notification acknowledgement. This period
corresponds to (4 - t3) in Figure 7-10. This yields the database delays of Table 7-5.

Table 7-5. Database delays for mobile node handover scenario with a single notification.

In addition to the database delay values of Table 7-5, there is the delay between the
receiving of a notification and the sending of a notification acknowledgement by the
mobile node's application. This turns out to be, on the average, more than 500 ms.
Together with the results of Table 7-2, this yields the scenario that can be found in Figure
7-11.

- 66-

Chapter 7. Measurements

Home Database Mobile
agent server node

F: Binding
update 0.25

1,59 otitication

Binding u d 3,08 3,54

ackn3.31

508

Notiticalio
ackn

506

Figure 7-11. Results of the mobile node handover scenario with a single notification.

As the database server only returns a binding update acknowledgement message after all
notifications have been sent, we are also interested in the effect of the number of
subscribed mobile nodes. Therefore, the next scenario consists of 4 extra mobile nodes,
subscribed to their current cells (cell 2). So, in total five notifications will be sent for each
binding update that contains a cell change. See Figure 7-12 for the scenario.

Home Database Mobile
agent server node

l·,m:,
Binding
updale I,

t, liticalion 1

13

I. oliticalion 5
Binding l,; Is

17 ackn

Figure 7-12. Mobile node handover scenario with 5 notifications.

The notification acknowledgements sent by the mobile nodes are left out in this scenario,
as they do not influence the other results and it is already clear a mobile node's
application generates an answer much slower than the database server's application.

The intervals (t1 - to), (t3 - t2), (t5 - 4) and (h - 4) can again be derived from Table 7-2.
The others are derived from the measurements and can be found in Table 7-6.

Table 7-6. Database delays for mobile node handover scenario with 5 notifications.

The resulting scenario is the one of Figure 7-13.

- 67-

Section 7.4. Measurement conclusions

Home Database
agent server

F: Binding
update 0,25

1,56

1,92 ification 5

4,21

4,44

Mobile
node

3,51

3,87

Figure 7-13. Results of the mobile node handover scenario with 5 notifications.

7.4 Measurement conclusions

The conclusions that can be drawn from the results presented in this Chapter are divided
in the round trip estimations and the scenario measurements.

7.4.1 Round trip measurement conclusions

7.4.1.1 Linear round trip approximations

The assumption that there is a linear relation between packet size and round trip delay
seems to be justified by the different measurements presented in paragraph 7.3.1. The
trend line lies between the confidential intervals in every measurement. Only the
measurements for the delay between the home agent and the database server do not fully
satisfy the linear assumption. However, after two additional measurements and a
comparison with the other results, a linear approximation is still considered to be the most
applicable one. The deviation of this measurement is probably due to the fact that a low
number of hops decreases the accuracy of the measurements. This can also be seen in
the relatively large confidential intervals shown in Figure 7-3, compared to the other
measurements.

7.4.1.2 Inaccuracies

The only inaccuracies lie in the difference between the ICMPv6 header of a ping6
message and the TCP header of a message sent between the different entities, and in the
assumption that the routes will cause the same amount of delay in the reverse direction.
The first inaccuracy can -if required- be accounted for afterwards, by means of a constant
factor. The second inaccuracy is harder to compensate afterwards, but according to the
measurements it appears to be insignificant.

7.4.1.3 Differences between cell 1 and cell 2

Finally can be concluded that the delays for sending a message to a mobile node in cell 1
and cell 2 are almost equal. This is not surprising, as both routes completely consist of
comparable hops.

- 68-

Chapter 7. Measurements

7.4.2 Scenario measurement conclusions

7.4.2.1 New mobile node scenario

From Figure 7-7 we can conclude that a new mobile node knows in approximately 4 ms.
whether his home registration is successful. The bottleneck in this scenario is formed by
the detection mechanism of the home agent's application. Once a new mobile node is
detected and a binding add message is sent (after approximately 50 ms.), the processing
time of the database server is in the same order of magnitude as a home registration
message, received by the home agent.

Looking at Table 7-3 and Table 7-4, we can conclude that the delay caused by the
database server in case of a binding update message indicating a cell change, is smaller
than in case of binding add message, as expected: 2,131 vs. 2,768ms, a decrease of
about 23%. This value is still limited by the implementation of the database server. The
database server application always generates a notification message for each binding
update message where a cell change is involved. Only after this generation it looks in its
database to see whether there are nodes subscribed to the concerning cells. As binding
updates are likely to be received in greater numbers than binding add messages, it may
be worth the trouble to increase the speed of the database in this area. This can be done
by only generating notification messages in case there are mobile nodes subscribed to the
concerning cells.

7.4.2.2 Mobile node handover scenarios

From Figure 7-11 we can conclude it is a good decision that the database server does not
wait for a notification acknowledgement message, before returning a binding update
acknowledgement message to the home agent. After all, generation of the mobile node's
response takes more than 370 times as much time as the generation of the notification by
the database server. The effect of sending an acknowledgement before returning a
binding update acknowledgement to the home agent is also visible in this Figure. The
delay caused by the database before returning this binding acknowledgement has
increased by almost 33%. When 5 notifications are sent, the increase is about 85% (see
Figure 7-13), which is 0,79 ms. per notification. This means the delay per notification
decreases, as the total number of notifications sent gets larger. This is because of the fact
that the sending of a notification takes a relatively low amount of time compared to its
generation.

- 69-

Chapter 8. General conclusions and
recommendations

8.1 General conclusions

Looking back at the assignment and the corresponding work, several conclusions can be
drawn. They are divided into two groups: functionality of the concept of the entire project
and the performance of its implementation.

8.1.1 Functionality

General
From the previous Chapters can be concluded that the combination of mobile IPv6 with
Linux and wireless LAN meets the requirements of the ISIDOR project. The
implementation of the database server makes it possible for every mobile node in the LBS
network to retrieve information on both the network topology and its mobile nodes. The
information is graphically presented on the PDA and can be updated automatically. For
the user, no knowledge on MIPv6 is required for a correct functioning of the mobile node's
application.

Wireless access technology
However, the choice for wireless LAN also has some drawbacks. A mobile node cannot
communicate in two cells simultaneously, disabling the opportunities of a service proxy.
Furthermore, the size of the cells is quite large, which limits the accuracy of the location
determination. Only by reducing the transmitting power of the access points this problem
can be solved. Finally, the power consumption of the wireless LAN PCMCIA cards is still
too high to ensure long use of the mobile node. All the problems with respect to wireless
LAN can be solved or reduced by using Bluetooth as wireless access technology.
Unfortunately, this was not yet possible at the start of the project due to insufficient
support for usage on a PDA, combined mobile IPv6.

Linux distribution choice
The choice for the Familiar distribution has turned out to be a good one. Familiar has
proven to be the best documented iPAQ distribution available, with a lot of active
developers and debuggers. Frequent kernel updates implement new possibilities and
reduce the number of bugs. The number of Familiar users is still growing, in contradiction
to the other distributions considered in Section 5.3. For instance, the open source
development of PocketLinux has completely stopped as it is going to be a commercial
product.

Assignment
Looking back at the assignment, not all tasks have been fulfilled. There are two main
reasons for this. First of all, some elements of the assignment took more time than

-70 -

Chapter 8. General conclusions and recommendations

previously thought. Especially a reliable software implementation of the database server
took a large amount of time. This was mainly due to my limited experience in writing large
programs in the C-programming language, resulting a long debugging period. The
measurements described in Chapter 7 are only reliable in case the software
implementation is reliable as well.

Secondly, the scope of the ISIDOR project was slightly altered after the composition of the
assignment. For instance, less attention than expected was given to security and OoS
aspects of the IPv6 network. Furthermore, the development of the actual content for
location based services in Java was considered to be a too much time consuming task,
compared to the size of the project and its participants. For this reason the developed
demonstration applications are rather straightforward. However, this does not reduce their
usefulness, as the technological background and requirements are still unaltered.

8.1.2 Performance

The use of mobile IPv6 ensures quick and reliable hand-overs. Hand-overs are completed
well before a mobile user is likely to leave the cell again. The database server functions
properly and is able to handle simultaneous client connections. Generation of response
messages is fast, compared to the other two entities. Updating of its information roughly
takes the same amount of time as the change takes on mobile IP-Ievel.

It is hard to predict its performance in a much larger LBS networks, as no simulations on
this subject have been done yet. However, once the recommendations of section 8.2 are
implemented, it looks like scaling up to the size of the intended ISIDOR scenarios is
possible.

8.2 Recommendations

Based on the conclusions of section 8.1 and the report in general, several
recommendations for future work can be done. They are divided into two categories:
recommendations with respect to LBS network and recommendations with respect to the
implementation of the entities in the LBS network.

8.2.1 LBS and network related

The following recommendations can be made with respect to location based services and
the mobile Ipv6 network:

Development of applications using LBS concepts
As stated in 8.1, the task of implementing a location based service in Java has not been
completely fulfilled. Main reason for this is the fact it is a time-consuming task. However,
without the appropriate services implemented on the mobile nodes, the LBS network is of
no true use for its end users. The more services are implemented, the more valuable the
ISIDOR project will be for both IMST and potential costumers.

Perform research on QoS
As more location based services are going to be developed and used, the quality of these
services becomes more important. Available bandwidth becomes smaller and congestion
or latency may increase. This is undesirable for real-time applications as VolP and
unpleasant for all other applications, as a bigger much latency is generally allowed for

- 71 -

Section 8.2. Recommendations

data transfer. Defining and implementing OoS-parameters for each service may avoid or
reduce these problems. A good starting point may be found in [20].

Implementation of the fast hand-over algorithm
If services that require real-time data are implemented, the performance of the network is
important. One way to achieve this is by implementing so-call fast hand-over algorithm
[21]. During a hand-over, the mobile node may not be able to send or receive any IPv6
packets. This period is known as the handoff latency. The hand-off latency may be
unacceptable for certain types of real-time data. Implementing fast hand-over in the LBS
network may solve this problem.

Implementation of Bluetooth as wireless access technology
As concluded in paragraph 2.1.3, the use of Bluetooth as wireless access technology was
not feasible at the start of the ISIDOR project. But because of the facts that Bluetooth
allows a better location determination, uses less power, and allows the forming of ad-hoc
networks, it is still desired to implement this technology in the LBS network. This can be
either supplementary or as substitute for the wireless LAN access technology.

8.2.2 Implementation related

Extension of the database
The functionality of the available location based services largely depends on the amount
of information that is available for the mobile nodes. Because of the structures described
in 6.6.2, it is relatively easy to add information to the database. New messages can be
defined to store and retrieve this additional information. Note that for each new message
the DTD (see Appendix D) must be adapted. An example of this information could be the
services a mobile node offers. For instance, if a mobile node supports VoIP, it may be
interesting for the user to know which other mobile nodes also support this protocol.

Better error handling
As can be derived from sections 6.4 and 6.6.4, not all possible errors are properly handled
yet by the applications. Two aspects can be further improved in this area:

1. Provide feedback for the user with respect to the occurred error;
2. Define and process more error messages;

Ad 1. In case the mobile node receives an error message, the user should be notified of
this event through the GUI. This is important, as the user may be the cause of the error,
instead of the application. However, errors are currently only handled within the mobile
node's application itself. In case the home agent or database server's application receives
an error message, the situation is different as there is no direct user of these applications.
This means the application should be able to handle all possible errors internally.

Ad 2. Currently, just the errors that are most likely to occur return an error message with
an adequate description of the problem. The more different errors can be defined, the
better they can be handled. In case of the mobile node's application, it is also important to
present a sufficiently detailed error description to the user, so he can take appropriate
action, if necessary.

Better connection handling
In paragraph 6.6.3, the (initial) choice for continuous connections between home agents
and the database server has been argued. Drawback of this decision was the processing
power and memory usage wasted for unnecessary connections. This applies even more

- 72-

Chapter 8. General conclusions and recommendations

to the connections between the database server and the mobile nodes, as their number
will generally be greater and the amount of traffic per connection smaller. It would be best
if each connection were closed after a message or after a certain period of inactivity on
the connection. However, this means that the database server initiates one or more
connections for each notification. By doing this, the roles of the client and the server, as
described in paragraph 6.5.1, are changed. This is an undesired situation, as the
difference between the two roles has disappeared.

The behaviour ofthe entities when a connection is involuntarily lost can also be improved.
This behaviour has been described in paragraph 6.6.4.1. An improvement may be a
client's application that tries to re-connect whenever it detects a disconnection. This can,
for instance, be detected by using time-outs for responses to sent messages. Currently,
only the home agent's application is capable of reconnecting to the database server
automatically.

Peer-to-peer communication for mobile nodes
As indicated in paragraph 2.2.2, peer-to-peer communication between mobile nodes is a
desirable extension of the ISIDOR project. But as concluded in section 3.4, the peer-to
peer architecture is currently not possible due to hardware restrictions. However, as soon
as Bluetooth is implemented as wireless technology, these restrictions will no longer exist.

With the wireless LAN technology, it is also possible to implement peer-to-peer
communication for mobile nodes within the client-server architecture. In this architecture,
a mobile node can query the database server for a certain device of his interest.
Depending on the returned information on this device, the mobile node may decide to
communicate directly (peer-to-peer) with this device.

Increase database efficiency
As stated in Chapter 7, the efficiency of the database influences the amount of time
needed to generate response and notification messages. It should be possible to increase
the overall efficiency of the database application without too much effort, especially with
respect to the storage of and searching through the information in linked lists.

Better message response handling
All messages sent by on of the entities are replied to. This can either be a query
response, an error or acknowledgment message. Normally, a protocol would wait for such
a response before sending another message to the peer entity. However, as can be seen
in paragraph 7.3.3, the generation of a response message by the mobile node takes so
much time, it would drastically reduce the database performance if the latter were to wait
for a response to each notification sent. Instead, a binding update response is sent to the
home agent.

This raises the question whether the notification acknowledgement message has any
meaning. It is therefore recommended to review the protocol with respect to the client's
responses with the results of Chapter 7 in mind.

IP triggered updates for home agent's application
As stated in paragraph 7.3.3, on the average it takes about 50 ms before the database
server receives a binding add, binding delete of binding update message. This is due to
the fact that it is not possible to trigger the home agent's application in case of an event on
the IP-Ievel that result in a change in the home agent's binding cache. Therefore, the
application has to check for changes on regular intervals. The interval may be reduced to

- 73-

Section 8.2. Recommendations

detect a change quicker, but this is not an efficient solution. To reduce the delay and to
make the home agent's application more efficient, the MIPv6 stack may be altered, so that
it is able to send a trigger in case of certain events, for instance a cell change.

- 74-

Appendix A. Abbreviations and definitions

A.1 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AP
API
CN
COA
CPU
DB
DB2MN
DHAAD
DHCP
DNS
DTD
GPRS
GSM
GUI
HA
HA2DB
HSCSD
HTML
HTTP
ICMP
ID
IETF
IP
IPC
ISIDOR

JRE
JVM
LAN
LAS
LBS
LDS
MN
MN2DB
MPLS
MSC
NFS
NTP

access point;
application program interface;
correspondent node;
care-of address;
central processing unit;
database;
message from database to mobile node;
dynamic home agent address discovery;
dynamic host configuration protocol;
domain name system;
document type definition;
general packet radio services;
global system for mobile communication;
graphical user interface;
home agent;
message from home agent to database;
high-speed circuit switched data;
hypertext mark-up language;
hypertext transfer protocol;
Internet control message protocol;
identification;
Internet engineering task force;
Internet protocol;
inter-process communication;
information system improved by location dependant services
over radio;
Java runtime environment;
Java virtual machine;
local area network;
location aware services;
location based services;
location dependant services;
mobile node;
message from mobile node to database;
multiprotocol label switching;
message sequence chart;
network file system;
network time protocol;

-75 -

Section A.2 General terms

OS
OSPF
PCMCIA
PDA
PDU
POSIX
QoS
QPE
RFC
RIP
SGML
SMS
TCP
UMTS
VolP
W3C
WAN
WINEGLASS

WLAN
WWW
XML

operating system;
open shortest path first;
personal computer memory card international association;
personal digital assistant;
protocol data unit;
portable operating system Unix;
quality of service;
Qt palmtop environment;
request for comment;
routing information protocol;
standard generalized mark-up language;
short message service;
transmission control protocol;
universal mobile telecommunication system;
voice over IP;
world wide web consortium;
wide-area network;
wireless IP network as generic platform for location aware
service support;
wireless local area network;
world wide web;
extensible mark-up language;

A.2 General terms

IPvx
Link

Subnet prefix

Link-layer address

Node
Packet
Router

Security Association

Any node that is not a router;
A node's attachment to a link;
A number used to identify a node's interface on a link. The
interface identifier is the remaining low-order bits in the node's
IP address after the subnet prefix;
Internet Protocol Version x;
A communication facility or medium over which nodes can
communicate at the link layer, such as an Ethernet (simple or
bridged). A link is the layer immediately below IP;
A link-layer identifier for an interface, such as IEEE 802
addresses on Ethernet links;
A device that implements IP;
An IP header plus payload;
A node that forwards IP packets not explicitly addressed to
itself;
A security object shared between two nodes that includes the
data mutually agreed on for operation of some cryptographic
algorithm (typically including a key, as defined below);

Security Policy Database (SPD)
A database of security associations selectable by rule sets
(policies) that determine the packets for which each security
association is to be applied;
A bit string that consists of some number of initial bits of an IP
address;

Host
Interface
Interface identifier

- 76-

Appendix A. Abbreviations and definitions

A.3 Mobile IPv6 terms

Binding

Home link

Movement

Mobile node

Care-of address

Home address
Home agent

Home subnet prefix

Home registration

Foreign link
Foreign subnet prefix

Correspondent node

The association of the home address of a mobile node with a
care-of address for that mobile node, along with the remaining
lifetime of that association;

Binding key A key used for authenticating binding update messages;
Binding Security Association (BSA)

A security association established specifically for the purpose of
producing and verifying authentication data passed with a
binding update destination option;
An IP address associated with a mobile node while visiting a
foreign link; the subnet prefix of this IP address is a foreign
subnet prefix. Among the multiple care-of addresses that a
mobile node may have at a time (e.g., with different subnet
prefixes), the one registered with the mobile node's home agent
is called its primary care-of address;
A peer node with which a mobile node is communicating. The
correspondent node may be either mobile or stationary.
Any link other than the mobile node's home link;
Any IP subnet prefix other than the mobile node's home subnet
prefix;
An IP address assigned to a mobile node within its home link;
A router on a mobile node's home link with which the mobile
node has registered its current care-of address. While the
mobile node is away from home, the home agent intercepts
packets on the home link destined to the mobile node's home
address, encapsulates them, and tunnels them to the mobile
node's registered care-of address;
The link on which a mobile node's home subnet prefix is
defined. Standard IP routing mechanisms deliver packets
destined for a mobile node's home address to its home link;
The binding update sent to the mobile node's home agent to
register its primary care-of address;
The IP subnet prefix corresponding to a mobile node's home
address;
A node that can change its point of attachment from one link to
another, while still being reachable via its home address;
A change in a mobile node's point of attachment to the Internet
such that it is no longer connected to the same link as it was
previously. If a mobile node is not currently attached to its home
link, the mobile node is said to be away from home;

- 77-

Appendix B. MIPv4 implementation information

B.1 Windows implementation
National University of Singapore (NUS)
Abstract of the documentation27 :

The Centre for Wireless Communications, Singapore and the National University of
Singapore is pleased to announce the release of NUS WinMIP. NUS WinMIP is an
implementation of the mobile IP protocol on the Windows operating system. The MN
currently works on Windows 95, while the HA and the FA works on Windows NT 4.0
Workstation. NUS WinMIP is released under the GNU General Public License, the
whole package consisting of complete source code, binaries and documentation can
be obtained from our web site at http://mip.ee.nus.edu.sg/winmip/

B.2 Linux implementation
Hewlett Packard
See http://www.hpl.hp.comipersonallJean_TourrilheslMobileIP!index.html.

National University of Singapore
Abstract of the documentation28:

Version 3.0 beta release for our implementation of IETF mobile IPv4 is implemented
in Linux kernel version 2.0.34. (February 1999). Supported features of this version
are:

• Mobile IP base protocol,
• Route Optimisation,
• Bi-tunnelling,
• Multiple simultaneous mobility bindings,
• Regional Aware Foreign Agent (RAFA),
• Fast Handoff,
• Multicast support for MIP (bi-tunnel scheme),
• Providing mobile OoS support by interworking with RSVP,
• Mobile Middleware layer.

27 See http://opensource.nus.edu.sg/projects/mobileip/winrnip/.

28 See http://opensource.nus.edu.sg/projects/mobileip/v3.0beta/.

-78 -

Appendix B. MIPv4 implementation information

Dynamics
Abstract of the documentation29 :

The Dynamics solution runs entirely on user space, so no implementation specific
kernel patches are needed. In addition to the source package we provide compiled
versions of the software as Red Hat RPM packages and Debian deb packages.
Linux kernel version 2.2.x is required with following networking options in addition to
the default selection:

• Packet socket (CONFIG_PACKET)
• Kernel/User net/ink socket (CONFIG_NETLlNK)
• Routing messages (CONFIG_RTNETLlNK)
• IP: Socket Filtering (CONFIG_FIL TER) (for MNs; optional, but

recommended)
• IP: tunnelling (CONFIG_NET_IPIP)
• IP: advanced router (CONFIG_IP_ADVANCED_ROUTER) (for FAs)
• IP: policy routing (CONFIG_IP_MULTIPLE_TABLES) (for FAs)

MosquitoNet
Abstract of the documentation30:

The MosquitoNet mobile IP is an implementation of the mobile IP protocol as
specified in RFC 2002. It serves two purposes. One is to use it as a building block
for our mobile computing test bed, which supports transparent mobility ofportable
computers while moving between networks either wired or wireless (for example,
between Ethernet and Metricom radio). Two, and possibly more importantly, is to
explore the ways in which the mobile IP protocol can best be used. Toward this, we
have added a number of enhancements that we find are desirable for mobile hosts
from our daily experience. Some of the features are listed in the next section. We
have ported our mobile IP implementation to Linux 2.2.x kemels. MIP 2.O.2beta is
now available.

29 See www.cs.hut.filResearchlDynamics/.

30See http://gunpowder.stanford.edulmip/.

- 79-

Appendix C. iPAQ Linux installation

The following steps have to be followed to install Familiar 004 on the iPAQ H3600 series:

1. Install and configure the bootloader according to the document iPAQ H3600
Handhelds_org bootloader install instructions (The first part of Familiar vO_4
installation instructions can also be used.).

2. Load kernel 204.7-rmk3-np1-devfs;
3. Flash root file system bootstrap-204.7-rmk3-np1-devfs-hh2.jffs2. See Familiar vO_4

installation instructions";
4. Boot and login with user root and password rootme;
5. Install bash, libreadline, ftp and less with IPKG. Until there is a network connection,

you have to use 'rz -X filename.ipk' to get these;
6. Edit '/etc/pcmcia/network.opts' for current network settings;
7. Create '/etc/resolv.conf with DNS, if not yet present;
8. Install ntpdate and mipv6bits in order to use mipdiag;
9. Edit '/etc/pcmcia/wireless.opts' for current wireless LAN card;
10. Edit '/etc/sysconfig/network-mip6.conf for current network settings;

11. Copy file 'isidor.start'31 to /etc/init.d/ and type 'In -s /etc/init.d/isidor.start
/etc/rc2.d/S90inet6'. Check the permissions for this file, it should be executable for all;

12. Reboot;
13. Install ssh, procps and wireless tools (for iwconfig). If the network is up, 'ipkg install

'package.ipk" can be used;

Additional steps to install PocketLinux GUI for Java support (see comment for just Java/kaffe
support without GUI):

1. Add the following line to '/etc/ipkg.conf: 'src pocketlinux
http://www.pocketlinux.comlftp/dists/testing/ipkg-arm.;

2. Run 'ipkg update' and 'ipkg install task-pockelinux';
3. Calibrate the screen with '/opVtvt/bin/calibrate &'. If calibration still complains about

fonts after install: 'export FGL_FONTS=/opVtvVlib/fgl/fonts' and recalibrate;
4. Start the PocketLinux GUI with '/etc/init.d/pocketlinux start &' or add this line to the

'isidor.start' file;

31 Contents of the isidor.start file:

echo Loading module ipv6
/sbin/modprobe ipv6
sleep 3 # enable module to load before configuring address
echo configuring ipv6 address
/sbin/ifconfig ethO inet6 add fecO:O:cO:aB66::4b/64
echo starting mobile ipv6
/etc/init.d/mobile-ip6 start
echo isidor.start done

-80 -

Appendix D. XML protocol DTD

<!ELEMENT protocol (messageHA2DB I messageMN2DB I messageDB2MN»

<!ELEMENT messageHA2DB (binding_update I binding_add Ibinding_delete»
<!ELEMENT binding_add ((home_agent, coa, lifetime) I ackn I err»

<!ATTLIST binding_add home_address CDATA #REQUIRED>
<!ELEMENT binding_update ((home_agent?, coa?, lifetime?) I ackn I err»

<!ATTLIST binding_update home_address CDATA #REQUIRED>
<!ELEMENT binding_delete (EMPTY I (ackn Ierr)?»

<!ATTLIST binding_delete home_address CDATA #REQUIRED>

<!ELEMENT messageMN2DB (user_register I user_change I user_delete I subscribe I
unsubscribe Iquery_cells I query_home_address I query_name Iquery_user»

<!ELEMENT user_register ((name?, user?) I ackn I err»
<!ATTLIST user_register home_address CDATA #REQUIRED>

<!ELEMENT user_change ((name?, user?) I ackn I err»
<!ATTLIST user_change home_address CDATA #REQUIRED>

<!ELEMENT user_delete (EMPTY I (ackn I err)?»
<!ATTLIST user_delete home_address CDATA #REQUIRED>

<!ELEMENT subscribe (ceIUd+ I ackn I err»
<!ATTLIST subscribe home_address CDATA #REQUIRED>

<!ELEMENT unsubscribe (ceIUd+ Iackn I err»
<!ATTLIST unsubscribe home_address CDATA #REQUIRED>

<!ELEMENT query_cells (EMPTY I celUd* I err»
<!ATTLIST query_cells cell CDATA "*">

<!ELEMENT query_home_address (EMPTY I (name?, user?, ceIUd?) I err»
<!ATTLIST query_home_address home_address CDATA #REQUIRED>

<!ELEMENT query_name (EMPTY I (home_address?, user?, ceIUd?) I err»
<!ATTLIST query_name name CDATA #REQUIRED>

<!ELEMENT query_user (EMPTY I (home_address?, name?, ceIUd?) I err»
<!AITLIST query_user user CDATA #REQUIRED>

<!ELEMENT messageDB2MN (user_notify»
<!ELEMENT user_notify ((ceIUd?, name?, user?) I ackn I err»

<!ATTLIST notify home_address CDATA #REQUIRED>

<!ELEMENT lifetime (#PCDATA»
<!ELEMENT coa (#PCDATA»
<!ELEMENT home_address (#PCDATA»
<!ELEMENT home_agent (#PCDATA»

<!ELEMENT celUd (#PCDATA I EMPTY»
<!ELEMENT cell (home_address+»

<!ELEMENT name (#PCDATA»

-81 -

Appendix D. XML protocol DTD

<!ELEMENT user (#PCDATA»

<!ELEMENT ackn EMPTY>
<!ELEMENT err (#PCDATA»

- 82-

Appendix E.

E.1 MessageHA2DB

Defined XML messages

<protocol>
<messageHA2DB>

<binding_add home_address="... ">
<home_agent> ...</home_agent> }
<coa>...</coa> Required
<lifetime>...</Iifetime>

</binding_add>
</messageHA2DB>

</protocol>

<protocol>
<messageHA2DB>

<binding_add home_address=" ... ">
<ackn/>

</binding_add>
</messageHA2DB>

</protocol>

<protocol>
<messageHA2DB>

<binding_add home_address="... ">
<err>...</err>

</binding_add>
</messageHA2DB>

</protocol>

<protocol>
<messageHA2DB>

<binding_update home_address=".. .">
<home_agent>... </home_agent>
<coa>...</coa>
<lifetime>...</Iifetime>

</binding_update>
</messageHA2DB>

</protocol>

-83 -

} Optional

Section E.2 MessageMN2DB

<protocol>
<messageHA2DB>

<binding_update home_address=" ... n>
<ackn/>

</binding_update>
</messageHA2DB>

</protocol>

<protocol>
<messageHA2DB>

<binding_update home_address=".. .">
<err>... </err>

</binding_update>
</messageHA2DB>

</protocol>

<protocol>
<messageHA2DB>

<binding_delete home_address=" ..."1>
</messageHA2DB>

</protocol>

<protocol>
<messageHA2DB>

<binding_delete home_address="...n>
<ackn/>

</binding_delete>
</messageHA2DB>

</protocol>

<protocol>
<messageHA2DB>

<binding_delete home_address=".. .">
<err> ... </err>

</binding_delete>
</messageHA2DB>

</protocol>

E.2 MessageMN2DB

Register:

<protocol>
<messageMN2DB>

<user_register home_address="... ">
<name> </name> }
<user> </user> Optional
<other_user_info>...<Iother_user_info>

</user_register>
</messageMN2DB>

- 84-

Appendix E. Defined XML messages

</protocol>

<protocol>
<messageMN2DB>

<user_register home_address=" ... ">
<ackn/>

</user_register>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<user_register home_address="... ">
<err> ...</err>

</user_register>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<user_change home_address="... ">
<name> </name> }
<user> </user> Optional
<other_useUnfo>...<lother_useUnfo>

</user_change>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<user_change home_address="... ">
<ackn/>

</user_change>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<user_change home_address="... ">
<err>... </err>

</user_change>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<user_delete home_address="... "I>
</messageMN2DB>

</protocol>

- 85-

Section E.2 MessageMN2DB

<protocol>
<messageMN2DB>

<user_delete home_address="... ">
<ackn/>

</user_delete>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<user_delete home_address="... ">
<err>...</err>

</user_delete>
</messageMN2DB>

</protocol>

Subscribe:

<protocol>
<messageMN2DB>

<subscribe home_address=" ... ">
<ceIUd>*</ceIUd> <!-default*. Or: -->
<ceIUd>...</ceIUd>

<ceIlJd>...</ceIUd>
</subscribe>

</messageMN2DB>
</protocol>

<protocol>
<messageMN2DB>

<subscribe home_address="... ">
<ackn/>

</subscribe>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<subscribe home_address="... ">
<err> ...</err>

</subscribe>
</messageMN2DB>

</protocol>

- 86-

Appendix E. Defined XML messages

<protocol>
<messageMN2DB>

<unsubscribe home_address="... ">
<ceIUd>*</ceIUd> <!-- default: *. Or: -->
<ceIUd>...</ceIUd>

<ceIUd>...</ceIUd>
</unsubscribe>

</messageMN2DB>
</protocol>

<protocol>
<messageMN2DB>

<unsubscribe home_address=" ... ">
<ackn/>

</unsubscribe>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<unsubscribe home_address="... ">
<err> ... </err>

</unsubscribe>
</messageMN2DB>

</protocol>

Query:

<protocol>
<messageMN2DB>

<query_cells ceIUd="*"/>
</messageMN2DB>

</protocol>

- 87-

<1-- default :* -->

Section E.2 MessageMN2DB

<protocol>
<messageMN2DB>

<query_cells ceIUd=""">
<cell id="... ">

<home_address> </home_address> <!--Iist all MN in cell-->
<home_address> </home_address>

<home_address>.. ,</home_address>
</cell>

<cell id=".. .">
<home_address> </home_address>
<home_address> </home_address>

<home_address>...</home_address>
<IceII>

</query_cells>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<query_cells ceIlJd=""">
<err>...</err>

</query_cells>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<query_horne_address home_address=".. ."1>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<query_horne_address home_address=" ... ">
<name> <Iname> }
<user> </user> .
< II 'd> <I II 'd> Optionalcel ... cel
<other_info>... <lather_info>

</query_home_address>
</messageMN2DB>

</protocol>

- 88-

<protocol>
<messageMN2DB>

<query_home_address home_address=" ... ">
<err> ... </err>

</query_home_address>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<query_name name=".. ."/>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<query_name name=" ">
<home_address> </home_address>
<user> </user>
<cell> </ceIUd>
<other_info>...</other_info>

</query_name>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<query_name name="... ">
<err>...</err>

</query_name>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<query_user user="... "/>
</messageMN2DB>

</protocol>

<protocol>
<messageMN2DB>

<query_user user="... ">
<home_address>...<thome_address>
<name>...</name>
<cell> ...</ceIUd>
<other_info>...</otherjnfo>

</query_user>
</messageMN2DB>

</protocol>

- 89-

Appendix E. Defined XML messages

} Optional

} Optional

Section E.3 MessageDB2MN

<protocol>
<messageMN2DB>

<query_user user=" ... ">
<err>...</err>

</query_user>
</messageMN2DB>

</protocol>

E.3 MessageDB2MN

<protocol>
<messageDB2MN>

<user_notify home_address="... ">
<ceIUd> </ceIUd>
<name> <Iname>
<user> </user>
<other_info>... <Iotherjnfo>

</user_notify>
</messageDB2MN>

</protocol>

<protocol>
<messageDB2MN>

<user_notify home_address="... ">
<ackn/>

</user_notify>
</messageDB2MN>

</protocol>

<protocol>
<messageDB2MN>

<user_notify home_address="... ">
<err> ...</err>

</user_notify>
</messageDB2MN>

</protocol>

- 90-

} Optional

Appendix F. Flowchart of child function

y

r----------------------------y

Query

MN2DB
,-----------HA2DB---------.:~+=~-

.-. i f' I
I

'~
Generate

Bindinl delete
Generate sUbsIPlion

binding add
binding
update Generate Generate

response Generate N
response user

Generate
query

binding delete response
(un)subscribe

response
responsey

response

y Cell
change?

Use,'y
name

change?

Generate and

I
send N

notifications

j
Notification

N en-/ackn.

Ly 1
Send

response to
dient

.'More
messages
in buffer?

-91 -

Appendix G. References

[1] The Book of Visions 2000 - Visions of the Wireless World, Version 1.0, Wireless
World Research Forum, November 2000.

[2] Johnson, D.8. and C. Perkins.
Mobility support in IPv6, www.ietf.org/internet-drafts/draft-ietf-mobileip-ipv6-16.txt,
IETF Mobile IP Working Group Internet-Draft, March 2002.

[3] Moy, J.
The OSPF Specification Version 2, RFC 1247, www.ietf.org/rfc/rfc1247.txt, Proteon
Inc, January 1991.

[4] Hedrick, C.
Routing Information Protocol, RFC 1058, www.ietf.org/rfclrfc1058.txt, Rutgers
University, June 1988.

[5] Hinden, R. and S. Deering.
IP Version 6 Addressing Architecture, RFC 2373, www.ietf.org/rfc/rfc2373.txt, IETF
Network Working Group, July 1998.

[6] Tanenbaum, A.S.
Computer Netwerken, tweede herziene uitgave, Schoonhoven: Academic Service,
March 2000.

[7] Deering, S. and R. Hinden.
Intemet Protocol, Version 6 (lPv6) Specification, RFC 2460,
www.ietf.org/rfc/rfc2460.txt, IETF Network Working Group, December 1998.

[8] Perkins, C.
IP mobility support, RFC 2002, www.ietf.org/rfc/rfc2002.txt, IETF Network Working
Group, October 1996.

[9] Thomson, S. and T. Narten.
IPv6 Stateless Address Autoconfiguration, RFC 2462, www.ietf.org/rfc/rfc2462.txt,
IETF Network Working Group, December 1998.

[10] Narten, T. e.a.
Neighbor Discovery for IP Version 6 (IPv6), RFC 2461, www.ietf.org/rfc/rfc2461.txt,
IETF Network Working Group, December 1998.

[11] Conta, A. and S. Deering.
Generic Packet Tunneling in IPv6 - Specification, RFC 2473,
www.ietf.org/rfc/rfc2473.txt, IETF Network Working Group, December 1998.

-92 -

Appendix G. References

[12] Conta, A. and S. Deering.
Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) - Specification, RFC 2463, www.ietf.org/rfc/rfc2463.txt, IETF Network Working
Group, December 1998.

[13] Johnson, D. and S. Deering.
Reserved IPv6 Subnet Anycast Addresses, RFC 2526, www.ietf.org/rfc/rfc2526.txt,
IETF Network Working Group, March 1999.

[14] Bradner, S.
Key words for use in RFCs to Indicate Requirement Levels, RFC 2119,
www.ietf.org/rfc/rfc2119.txt, IETF Network Working Group, March 1997.

[15] Bray, T, Paoli, J, Sperberg-McQueen, C.M., Maler, C.
Extensible Markup Language (XML) 1.0 (Second Edition), www.w3.orgITRlREC
xml, W3C Recommendation, October 2000.

[16] Arbortext, Inc.
SGML: Getting Started. A Guide to SGML (Standard Generalized Markup
Language) and Its Role in Information Management, Arbortext SGML White Paper,
http://www.arbortext.com/data/getting_started_with_SGML/getting_started_with_sg
ml.html, 1995.

[17] Stevens, W. Richard,
TCPIIP Illustrated, Volume 1- The Protocols, Addison-Wesley, Reading,
Massachusetts, September 1998.

[18] Fang, X, Gu, Y, Tang, Y.
Distributed Object Systems and Technology. Socket Programming Overview,
University of New South Wales,
www.cse.unsw.edu.au/-cs4111/00s2/SocketProgram.html.

[19] Wagner, T. and D. Towsley.
Getting Started With POS/X Threads, Department of Computer Science, University
of Massachusetts at Amherst, July 1995.

[20] K. Zhigang e.a.
Mobile IPv6 and some issues for OoS, INET 2001 conference proceeding,
Stockholm, June 2001.

[21] G. Dommety e.a.
Fast Handovers for Mobile IPv6, IETF Internet-draft, www.ietf.org/internet
drafts/draft-ietf-mobileip-fast-mipv6-04.txt, March 2002.

- 93-

	Titlepage
	Abstract
	Contents
	List of figures
	List of tables
	Preface
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G

