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Abstract

With the increasing amount of bandwidth-hungry services like video on demand and video
conferencing, the need for broadband communication systems is obvious. Furthermore, with the
growing demand for flexible workplaces at the office (office hotelling) and university, wireless
broadband communication systems are no luxury anymore.

The main goals in developing new wireless communication systems are increasing the bit rate and
increasing system capacities. Because the available frequency spectrum is limited, this means that
future systems should be characterised by improved spectrum efficiency. Recent information
theory research has revealed that the multipath wireless channel is capable of enormous capacities,
provided that the multipath scattering is sufficiently rich and is properly exploited. A possible way
to exploit the multipath scattering properly is Space Division Multiplexing (SDM) or Space
Division Multiple Access (SDMA). Basically, these techniques transmit different signals
simultaneously on different transmit antennas. The parallel streams of data are mixed-up in the air,
but can be recovered at the receiver by using the SDM algorithms proposed in this report, like the
Zero Forcing or Minimum Mean Square Error method, with or without Decision Feedback
Decoding, or the Maximum Likelihood Decoding (MLD) technique. When the multipath is
exploited properly, both the data rate and the Signal-to-Noise Ratio performance can be increased.
For BLAST (Bell laboratories LAyered Space Time), a system based on Minimum Mean Square
Error decoding with Decision Feedback, it has be shown that spectrum efficiencies of 20 - 40
Bit/s/Hz can be achieved in an indoor propagation environment at realistic Signal-to-Noise Ratios
and error ratios.

In this report it is shown that Maximum Likelihood Decoding (based on detection) achieves a
diversity order equal to the number of receive antennas. This is (much) better than the diversity
order of Zero Forcing for which it is shown in literature that the diversity order equals the number
of receive antennas minus the number of transmit antennas plus one. The big disadvantage of MLD
is that its complexity grows exponentially with the number of transmit antennas. For a reasonable
number of transmit antennas (< 5), however, its complexity is shown to be comparable with other
Space Division Multiplexing methods.

Furthermore, in this thesis, single carrier Space Division Multiplexing based on MLD is combined
with the multicarrier technique Orthogonal Frequency Division Multiplexing (OFDM) to make the
system more robust against delay spread impairments. A basic introduction to OFDM is given and
it is described how to combine SDM with OFDM. This system is simulated in C++ using the
parameters of the new IEEE 802.11 OFDM standard for wireless LANs. The delay spread channel
is modelled by exponentially-decayed Rayleigh fading. By performing Monte Carlo simulations,
Bit Error Rate performances for different antenna configurations and different delay spreads are
shown in this report.

To achieve a better performance, forward error correction coding based on a convolutional code is
implemented. However, if a soft-decision input Viterbi decoder, which should get soft-decision
values from the receiver detection algorithm, is used to decode this convolutional code, an even
better performance is obtained. Therefore, the MLD algorithm is adapted in order to produce soft-
decision outputs. A simple intuitive adaptation and a complex adaptation based on the log-
likelihood ratio are proposed and their performance is compared. From all the results presented in
this report, it can be concluded that Space Division Multiplexing in combination with OFDM is a
promising solution for increasing the bit rate and system capacity.
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1 Introduction

It is a well-known fact that the amount of information transported over communication systems
grows rapidly. Not only the file sizes increase, but also bandwidth-hungry applications such as
video on demand and video conferencing require increasing data rates to transfer the information in
a reasonable amount of time or to establish real-time connections. To support this kind of services,
broadband communication systems are required.

Another well-known fact is that the mobility of communication systems is more and more
demanded. One example is the enormous increase of mobile phone users worldwide. Another
example is the trend of the work place becoming increasingly mobile. A term often used in this
context is office hotelling. Hotelling is a form of alternative officing in which employees who work
out of the office for significant periods of time can call ahead (just as they do in making hotel
reservations) and reserve workspace. They select an office from a specially-designated block of
workspaces when they come into the company’s office facilities. This allows organisations to
reduce space costs by relying on technology to create the appearance of a permanent office. Ideally,
the employee should be completely mobile within the office, and still be able to connect his
personal computer to the computer network. Thus, a wireless computer network is desirable.

Another place where wireless computer networking is in demand is -at the university campus. A
growing number of universities offer their students the possibility to buy a laptop from university.
The way of teaching is adapted to the availability of laptops. To make this kind of studying
efficient, students need to be able to connect to the computer network of the university in order to
download the study material that the professor offers. However, it 1s undoable to adapt the
computer network infrastructure in such a way that the students can plug-in in every (lecture-)room
at the university. Here too, it seems that wireless network access is essential. As an example where
a wireless network already is installed, the Carnegie Mellon University in Pittsburgh can be
mentioned [21].

The above considerations justify research into new broadband wireless communication systems.
Large-scale penetration of such systems into our daily lives will require significant reductions in
cost and increases in bit rate and/or system capacity. Recent information theoretical studies have
revealed that the multipath wireless channel is capable of huge capacities, provided that multipath
scattering (see Figure 1-1) is sufficiently rich and is properly exploited through the use of the
spatial dimension ([15] and [37]). Appropriate solutions for exploiting the multipath properly,
could be based on new techniques that recently appeared in literature, which are based on Space
Division Multiplexing (SDM). Basically, these techniques transmit different datastreams on
different transmit antennas simultaneously. By designing an appropriate processing architecture to
handle these parallel streams of data, the data rate and/or the Signal-to-Noise Ratio (SNR)
performance can be increased.

In this thesis, a number of Space Division Multiplexing algorithms will be compared. The one with
the best performance will be combined with a spectrally efficient transmission technique called
Orthogonal Frequency Division Multiplexing (OFDM) to avoid Inter Symbol Interference (ISD).

1.1 Receiver diversity techniques

Before SDM techniques were developed, receiver diversity was seen as a powerful communication
receiver technique that provided wireless link improvement at relatively low cost [36]. Diversity
techniques try to solve the problem that transmission errors occur when the transmission channel
attenuation is large, i.e., when the channel is in a deep fade. Diversity exploits the random nature of
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radio propagation by finding independent (or at least highly uncorrelated) signal channels for
communication. This concept can be explained in a simple way; if one radio channel undergoes a
deep fade, another independent channel may have a strong signal. By having multiple independent
channels to select from (or to combine), the Bit Error Rate performance in the presence of noise is
improved.
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Jl_/r"7 \\\\
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Figure 1-1: multipath fading.

There are several ways in which the receiver can be provided with a number of independently
fading channels (say L) that bear the same information signal ([34] and [36]):

e Frequency diversity. The same information-bearing signal is transmitted on L different
frequencies. At the receiver, the carrier frequency that has suffered least from fading is used to
estimate the transmitted signal, or the carrier frequencies are weighted (according to the fading
they have experienced) and combined and this combination of signals is used to recover the
transmitted signal.

e Time diversity. Time diversity transmits the signal in L different time slots to achieve L
independently fading versions of the same information-bearing signal. The time spacing
between two successive time slots must exceed the coherence ume of the channel, so that
multiple repetitions of the signal will be received with independent fading conditions.

On one hand the above techniques requires only a single antenna and a single receiver. On the other
hand their performance is inferior to techniques which use multiple antennas and radios, which will
be described below. This can be explained by the fact that frequency diversity uses an L times
larger bandwidth to transmit and time diversity uses L times more time slots to transmit a single
data symbol. Thus, the efficiency for both diversity types is reduced by a factor L compared to the
techniques described below.

¢ Polarisation diversity. At the transmitter, the same information signal can be transmitted on
two antennas, which polarise the radio wave differently. Due to the fact that the reflection
coefficient for each polarisation is different (which results in different amplitudes and phases
for each reflection), the measured horizontal and vertical polarisation paths between a mobile
terminal and an access point are assumed uncorrelated. At the receiver, the horizontal and
vertical polarised waves can be combined. While this only provides two diversity branches (L
= 2) it does allow the antenna elements to be co-located (i.e. less than half a radio wave length
apart). An important constraint is that the diversity gain might deteriorate when another type of
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diversity is applied at one end of the telecommunication link (e.g., mobile terminal) and dual
polarisation at the other end (e.g., access point).

* Space diversity. Space diversity, also known as antenna diversity, is one of the most popular
forms of diversity used in wireless systems. Space diversity is based on the fact that if a system
operates in multipath scattering that is sufficiently rich, the signals received by spatially
separated antennas are uncorrelated for antenna separations of half a radio wavelength or more.
If L antennas are used at the receiver, it can be assumed that L independently fading channels
are present. These L channels are combined at the receiver to improve the estimation of the
transmitted signal.

At the receiver, the L received signals can be combined in several ways, namely:

Antenna 1
Gy
Antenna 2 Switching
Logi
. and/or —>
. Demodulators
L]
Antenna L
G,

Figure 1-2: Block diagram for selection diversity.

¢ Selection diversity. A block diagram of the selection diversity method is shown in Figure 1-2.
For selection diversity, the gains of all L branches are adjusted to provide the same average
Signal-to-Noise Ration (SNR) for each branch. The receiver branch having the highest
instantaneous SNR is connected to the demodulator'. The antenna signals themselves could be
sampled and the best one sent to a single demodulator. In practice, the branch with the largest
(S + N)/N is used (where S represents the received signal power and N denotes the noise
power), since it is difficult to measure the SNR.

Antenna 1 t

Antenna 2 Y N :II Receiver
Antenna L f Control

Preset > ¢ Short-Term
Threshold Comparator Average

Figure 1-3: Block diagram of scanning diversity.

¢ TFeedback or scanning diversity. Scanning diversity is similar to selection diversity except
that instead of always using the best of the L signals, the L signals are scanned in a fixed
sequence until one is found with an SNR above a predetermined threshold. The scanning
process is resumed when this signal falls below the threshold. Until that time, it is selected and
routed to the receiver (see Figure 1-3). The other combination techniques have a (somewhat)

! Note that in case of frequency diversity and time diversity, the L received signals are not obtained from L
different antennas (as shown in Figure 1-2) but from L different frequencies and time slots, respectively.
Keeping this in mind, all the combining techniques described here are applicable to frequency diversity and
time diversity as well.
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better performance, but the advantage of this technique is that it has a very low implementation
complexity since only one receiver is required. For packet communications, another way of
scanning is to only initiate it at every packet preamble.

e Maximal Ratio Combining. In this method, the signals from the L branches are weighted with
the complex conjugate of the corresponding sub-channel and added (see Figure 1-4). This
procedure generally requires an individual receiver for each antenna element, which is a big
disadvantage compared to selection diversity. However, Maximal Ratio Combining (MRC)
produces an output SNR equal to the sum of the individual SNRs, thus, it has the advantage
that, when none of the individual signals have an acceptable SNR by themselves, it may
produce a combined output which does haven an acceptable SNR. This technique is optimal
because it can be seen as a special case of Maximum Likelihood Decoding which, under given
assumptions, is proven to be optimal in Section 2.6

Antenna 1 l Receiver
1
L - | G,

Antenna 2 Receiver

2
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Antenna L Receiver

L

Ge

Controller

Figure 1-4: Block diagram of Maximal Ratio Combining.

e Equal Gain Combining. An Equal Gain Combiner is obtained when the gains used in MRC
are all set to unity. The disadvantage is that (like MRC) an individual receiver for each antenna
element is needed. However, the possibility of producing an acceptable signal from a number
of unacceptable inputs is still retained, and the performance is only marginally inferior to MRC
and usually superior to selection diversity.

The above described diversity techniques are all based on the desire to provide wireless link
improvement. However, the bandwidth efficiency (i.e., the ratio between the effective bit rate and
the bandwidth), given in bps/Hz (bits per second per Hz), is not increased. For time diversity and
frequency diversity the bandwidth efficiency is even reduced. This can be easily seen, namely, for
time diversity, the bandwidth stays the same, but the effective bit rate in reduced by a factor L and -
for frequency diversity, the effective bit rate stays the same but the radio frequency bandwidth is L
times larger. If in addition to diversity we also want to obtain a more bandwidth efficient wireless
communication system, we have to find other techniques.

1.2 Space Division Multiplexing

A promising solution for significant increase of the bandwidth efficiency is the exploitation of the
spatial dimension. Recent information theory research has revealed that the multipath wireless
channel is capable of enormous capacities, provided that the multipath scattering is sufficiently rich
([14], [15], [37], [38], [41] and [58]). The multipath scattering can be properly exploited through
the use of an appropriate processing architecture. The diagonally-layered space-time architecture
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proposed in [14], known as diagonal BLAST (Bell Laboratories Layered Space Time) or D-
BLAST, is such an approach. However, the diagonal approach is very complex and hard to
implement. Therefore, a simplified version of BLAST, known as vertical BLAST or V-BLAST is
proposed in [60]. A prototype has been built by which it is demonstrated that bandwidth
efficiencies of 20 — 40 bps/Hz can be achieved in an indoor propagation environment at realistic
SNRs and error rates.

These techniques can be captured under the more general term Space Division Multiplexing (SDM)
or Space Division Multiple Access (SDMA). SDM techniques exploit the spatial dimension using
multiple antennas at receiver as well as at the transmitter. Basically, these techniques transmit
different signals on different transmit antennas simultaneously, with the goal of increasing the
capacity and the SNR performance. At the receiver these different signals can be recovered by the
Space Division Multiplexing techniques described in this report. For proper recovering of the
transmitted signals, multiple antennas are required at the receiver as well. The difference between
SDM and SDMA is that the latter allows different users to transmit simultaneously on a single
antenna each), whereas in SDM a single user transmits simultaneously on multiple antennas.
Hybrid schemes where several users transmit simultaneously on different antennas may also be
possible.

One can naturally ask in which way SDM(A) techniques differ from traditional multiple access
techniques. Some of these differences are worth pointing out {60]: First, unlike code-division or
other spread-spectrum multiple access techniques, the total channel bandwidth utilised by a
SDM(A) system is only a small fraction in excess of the symbol rate, i.e. similar to the excess
bandwidth required by a conventional transmission technique like Quadrature Amplitude
Modulation (QAM). Second, unlike Frequency Division Multiple Access (FDMA), each
transmitted signal occupies the entire system bandwidth. Finally, unlike Time Division Multiple
Access (TDMA), the entire system bandwidth is used simultaneously by all of the transmitters all
of the time. These differences together are precisely what give SDM(A) the potential to realise
higher bandwidth efficiencies than the other multiple-access techniques.

1.3 Target applications

One of the target areas we think will benefit from the research presented in this thesis is the area of
the wireless local area networks (WLANS). Since the beginning of the nineties, WLANs for the
900-MHz, 2.4-GHz and 5-GHz ISM (Industrial, Scientific and Medical) bands have been available,
based on a range of proprietary techniques [53]. In June 1997 the Institute of Electrical and
Electronics Engineers (IEEE) approved an international interoperability standard, called 1IEEE
802.11 [24]. This standard specifies a number of Medium Access Control (MAC) procedures and
three different Physical Layers (PHY). Two of these PHYs are radio-based and use the 2.4-GHz
band and the other PHY uses infrared light. All PHY's support a data rate of 1 Mbps and optionally
2 Mbps.

User demand for higher bit rates and the international availability of the 2.4-GHz band has spurred
the development of a higher speed extension to the 802.11 standard. In July 1998, a proposal was
selected for standardisation, which describes a PHY providing a basic rate of 11 Mbps and a fall
back rate of 5.5 Mbps. This PHY can be seen as a fourth option, to be used in conjunction with the
MAC that is already standardised. Practical products, however, are expected to support both the
high-speed 11 and 5.5 Mbit/s rate modes as well as the 1 and 2 Mbps modes. A product based on
this IEEE 802.11 standard is WaveLAN™ of Lucent Technologies (see www.wavelan.com). The
modem, that is implemented as PC card, is shown in Figure 1-5.




6 » Space Division Multiplexing for OFDM Systems

Figure 1-5: An IEEE 802.11 modem in the form of a PC card.

Since January 1997, in the United States 300 MHZ in the 5-GHz band came available for the use of
a new category of unlicensed equipment called Unlicensed National Information Infrastructure
(UNID) devices [13]. In July 1998, the IEEE 802.11 standardisation group selected Orthogonal
Frequency Division Multiplexing (OFDM) as transmission technique for the recently available
spectrum in the 5-GHz band. This adds a fifth PHY option to the 802.11 standard, with data rates
ranging from 6 up to 54 Mbps ([25] and [46]).

Besides IEEE 802.11, two other standardisation groups were formed. In Europe, the European
Telecommunication Standards Institute formed the standardisation group Broadband Radio Access
Networks (ETSI BRAN) [12] and in Japan equipment manufacturers, service providers and the
Ministry of Post and Telecommunications are co-operating in the Multimedia Mobile Access
Communication (MMAC) project [29]. ETSI BRAN is now working on extensions of the ETSI
HYPERLAN type 1 standard. Three extensions are under development: HIPERLLAN/2, a wireless
indoor LAN with a Quality of Service provision; Hiperlink, a wireless indoor backbone; and
HiperAccess, an outdoor, fixed wireless network providing access to a wired infrastructure. The
MMAC project is started to define new wireless standards similar to those of IEEE 802.11 and
ETSI BRAN. Additionally, MMAC is also looking into the possibility for ultra-high-speed wireless
indoor LANs supporting large-volume data transmission at speeds up to 156 Mbps using
frequencies in the 30- to 300-GHz band.

Following the IEEE 802.11 selection of OFDM as basis for transmission in the 5-GHz band, ETSI
BRAN and MMAC also adopted OFDM for their physical layer standards. The three
standardisation groups have worked in close co-operation since then to make sure that differences
among the various standards are kept to a minimum, thereby enabling the manufacturing of
equipment that can be used world-wide.

So, since there is a lot of effort going on to adopt OFDM as a world-wide standard for Wireless
LANS, the research to next generation WLANs with even higher data rates, but based on these
OFDM standards, is a logical consequence. In this thesis, a system is proposed that combines
Space Division Multiplexing with OFDM as a spectrum efficient transmission technique, to
achieve higher data rates and to obtain sufficient delay-spread robustness.

The rest of this thesis is organised as follows: in Chapter 2 a signal model for the wireless link is
given. Various Space Division Multiplexing techniques are described and their performance is
compared. In Chapter 3 the complexity of these Space Division Multiplexing techniques is
determined and compared. Chapter 4 gives a summary of the Orthogonal Frequency Division
Multiplexing transmission technique. In Chapter 5 this technique is extended with the SDM
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method with the best performance, i.e. Maximum Likelihood Decoding (MLD). In this chapter a
convolutional forward error correction code is applied to the data transmitted by the OFDM system
with SDM. A Viterbi decoder is used to decode the convolutional code. From [17] it can be
concluded that Viterbi decoders perform better if they get soft-decision values as input. Therefore,
the MLD method is somewhat adapted to provide soft-decision values as output, which again are
used as input for the soft-decision input Viterbi decoder. Finally, conclusions and future work are
discussed in Chapter 6.

1.4 Related work

As mentioned before, there are different ways to improve the performance and/or capacity of
wireless communication systems. Diversity is one of the techniques that is often used to improve
the system performance. There are two basic types of diversity, namely, receiver diversity and
transmitter diversity. The main difference is that for a well performing transmitter diversity system,
the transmitter needs some information about the radio channel, thus, if the downlink and uplink
carrier frequencies are different, feedback is required from the receiver. For receiver diversity, the
transmitter does not need any information about the radio channel, and no feedback is required.

There are many publications on receiver diversity for single-carrier wireless systems. An overview
of different receiver diversity techniques is given in Section 1.1. The reader is referred to the
literature mentioned in this section and the references therein. Furthermore, in [28] the feasibility of
polarisation equal gain combining and selection diversity in indoor cells at 1800 MHz is
investigated. The combination of selection diversity with Maximal Ratio Combining is given in
[39]. Other applications of receiver diversity are Smart Antenna Arrays ([43]). With an (adaptive)
antenna array at the receiver and additional processing it is possible to do beamforming, i.e.,
“listen” to the direction the (multipath) signals come from. An adaptive array is based on an
internal feedback control loop that updates the complex weight coefficients of the array. After
weighting the received signals, the output of each antenna element is combined in order to
minimise the variation in amplitude of the received signals. In this way beams are formed to
receive the desired signals. It is also possible to place nulls in the direction of interferers.
Beamforming algorithms (or direction of arrival (DOA) estimation algorithms) include the MUSIC
algorithm, ESPRIT algorithm and the MODE estimate algorithm. An extensive list of references on
DOA estimation is given in [38].

Transmitter diversity for single-carrier wireless systems has widely been researched. As indicated
in [59] and the references therein, transmitter diversity can be based on linear transforms. However,
neither transmitter diversity nor receiver diversity increase the system capacity, whereas the Space
Division Multiplexing techniques proposed in this report do. Furthermore, it will be shown in this
thesis that the latter techniques are, just like transmitter and receiver diversity, able to achieve
performance improvement by exploiting diversity.

Currently, a lot of research is ongoing to apply transmitter or receiver diversity to multi-carrier
techniques like Orthogonal Frequency Division Multiplexing (OFDM). The advantage of OFDM
over an equalised single carrier system is that, for a given delay spread and bit rate, the OFDM
receiver is less complex to implement [53]. The basic principles of OFDM are discussed in [6],
[44] and [56]. A number of transmitter diversity techniques for OFDM are proposed in [30], [42]
and [61]. Furthermore, research on applying receiver diversity techniques to OFDM is reported in
[4], [7], [18], [26] and [54]. In [4], a coherent diversity receiver for OFDM signals is presented.
The received signals are optimally combined using Maximal Ratio Combining. In [7] the OFDM
subchannels are spread over multiple transmit antennas to randomise the fading across the OFDM
bandwidth. At the receiver two branch antenna diversity is used. To realise the full potential of the
diversity, Reed-Solomon coding across subchannels is used. The error correction ability of this
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code benefits from the randomisation of the fading by spreading the OFDM subchannels across
multiple transmit antennas. In [26] this principle is extended with convolutional coding. In [18], at
the receiver the OFDM frequency band is divided in subbands (consisting of a multiple of
subcarriers) and Maximal Ratio Combining is performed on each subband. It is shown that the
Signal-to-Noise Ratio performance increases compared to using the same MRC weights for all
subcarriers of the OFDM signal. Ideally, MRC should be performed per subcarrier. In [54] a
method is described on how to combine adaptive antennas and OFDM for operation in a faded
delay-spread channel. All these techniques show (significant) SNR performance improvement, ail
without increasing the capacity. In this report OFDM is combined with Space Division
Multiplexing and it is shown that a system based on SDM is capable of high bandwidth
efficiencies, which allows the transmission of higher bit rates using the same bandwidth.

In [37] a method is described to extend multitone (i.e., multicarrier) systems like OFDM with
SDM. However, in this technique the singular value decomposition of the channel matrix is applied
which implies that, both the receiver and the transmitter need to know the channel. The advantage
of the SDM techniques, described in this thesis, is that the transmitter does not need to know the
channel.

Closely related to the Space Division Multiplexing techniques are the so-called Space-Time codes.
In Space-Time coding the design of channel codes is considered to improve the data rate and/or the
reliability of communications over fading channels using multiple transmit antennas. Data is
encoded by a channel code and the encoded data is split into a number of parallel streams that are
simultaneously transmitted on different transmit antennas ([1], [31] and [49]). The code words, that
have a space and time dimension, are chosen such that both the coding gain and diversity gain are
maximised. In [1] the application of Space-Time codes to an OFDM system is described and it is
shown that this combined system performs well at reasonable SNRs. The simple transmitter
diversity system proposed in [2] can be seen as a simple space-time code approach. A disadvantage
of Space-Time coding is that if the radio channel is changing, new Space-Time codes need to be
found for which, again, both the coding gain and diversity gain are maximised. This involves a lot
of processing and, therefore, we have looked to other methods to increase data-rates.



2 Multi-Antenna Link: Signal model and SDM techniques

One way to increase the capacity of wireless communication systems is by exploiting the spatial
dimension using multiple antennas at the receiver as well as at the transmitter ([15] and [37]). The
idea is to transmit several streams of data simultaneously over the air. Of course these parallel
streams of data get mixed up in the air. However, at the receiver it is possible to “decode” this
mixture of data. This type of transmission is called Space Division Multiplexing (SDM). In this
chapter, a number of different decoding algorithms for SDM will be discussed and their
performance will be compared. In order to describe the different decoding methods, first a signal
model for the multi-antenna link will be stated.
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Figure 2-1: The physical model of a system with Space Division Multiplexing (SDM).
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2.1 Signal model

We consider a communication system comprising &, transmit (TX) and N, receive (RX) antennas
that operates in a Rayleigh flat-fading environment and exploits the spatial dimension by using
Space Division Multiplexing (SDM) (see Figure 2-1, where MAPU stands for Multi Antenna
Processing Unit). A channel is said to be a Rayleigh fading channel when the channel impulse
response is modelled as a zero-mean complex-valued Gaussian process [34]. In this case, the
envelope of the channel impulse response at any time instant has a Rayleigh probability distribution
and the phase is uniformly distributed in the interval (0,2m). This can be shown as follows. Suppose
we model the channel impulse response H as a zero-mean complex Gaussian variable, like:

H=A+jB @1)

where A and B are zero-mean statistically independent real Gaussian variables, each having a
variance ¢’/2. The variance of the complex Gaussian variable H can be shown to be:

var(H)= E[H?]- E[HF = E[(A+ jBXA + jB)]

(2.2)
= E[A? +2jAB + B*| = E[A?]+ E[B?]= 62
Then, in order to find the distribution of the envelope we introduce a new variable:
Y=A*+B’ (2.3)

From the analysis of [34] it follows that Y is chi-square-distributed with two degrees of freedom.
Hence, the probability density function (pdf) of Y is:
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p,(y)=—=€"", y20 (24)

Now, suppose we define a random variable R to denote the envelope of the channel impulse
response:

R=+vA*+B> =Y (2.5)

In order to find the pdf of R, we need to make a change of variables in the Probability Distribution
Function (PDF) of Y (given by F(y)), to first find the PDF of R:

F,(r)= P{R< r}= PNY <r}= Pl <+*}=F, () 26)
where the fact is used that r > 0. Then the pdf of R is given by:

d d 2r
pR(r)=ZFR(r)=ZFy(r2)=2r'py(r2)=g_7e ", r20 27

This is the pdf of a Rayleigh-distributed random variable, thus the envelope of H has a Rayleigh
probability distribution. The fact that the phase of H is uniformly distributed in the interval (0,2m)
can be seen intuitively and will not be shown here.

Once the channel characteristics are specified, we can introduce the signal-model. Suppose that at
discrete times, the transmitter sends an N,-dimensional (complex) signal vector s (i.e., it transmits
N, parallel streams of data), and the receiver records an N,-dimensional complex vector x. Then the
following signal model describes the relation between s and x:

x=Hs+v (2.8)

where H is an N, x N, complex propagation matrix that is constant with respect to the symbol time
and assumed known at the receiver (e.g. via transmitting training sequences) and the vector v (N,-
dimensional) represents additive receiver noise. The vector s is assumed to have zero-mean,
uncorrelated random variables with variance equal to o’. The total power of s (i.e., E[s's]) is
assumed to be P. Thus, the covariance matrix of s equals:

Eps’]=071, = %IN' 29)

where ~ denotes the conjugate transpose of a vector or matrix and the matrix I with subscript N,
represents the identity matrix with dimension N, In the rest of this report ~ will be used to denote
the conjugate transpose of a vector or matrix, unless indicated otherwise. Note that the total
transmitted power does not depend on the number of transmit antennas but is assumed fixed at P.

As said before, the channel matrix is denoted by H. It is assumed the channel matrix H has
independently and identically distributed (i.i.d.), zero-mean, complex Gaussian, unit variance
entries (the variance of each entry is ¢;” = 1). In other words, each component has a Rayleigh
distribution (like H) with ¢ = ¢ = 1. Thus, the system operates in a Rayleigh flat-fading
environment.
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The vector v is N,-dimensional and represents additive receiver noise. The vector v is assumed o
have zero-mean, uncorrelated random variables with variance o, and a covariance matrix equal to:

Elw']=071, 2.10)

Furthermore, it is assumed that the vectors s and v are independent and thus the following holds:

E[sv']=0. With the above described assumptions about the power of the signal and the noise, the
expected Signal-to-Noise Ratio (SNR) per receiving antenna, i.e. the SNR for each component of x,
can be found and is equal to:

E, Nolo? P
pP= = —— = (21 1)
NO O-v GV

where E; stands for the signal power per receive antenna and N, denotes the noise power per
receive antenna.

In order to explain the different Space Division Multiplexing techniques, the following notations
will be used:

x=| ¢ |,s=| ¢ |anaH=| i [=h, .. hy] 2.12)

where x; and s; represent the i-th element of x and s respectively. H; and h; denote the i-th row and
i-th column of H, respectively.

In the following sections, a number of SDM decoding techniques for the receiver will be discussed
and compared. One way to compare the different techniques is by comparing their bit error rate
(BER) performance. The BER performance depends on the SNR and, thus, can be visualised by a
figure in which the BER is depicted against the SNR. Simulations are performed in order to obtain
these BER characteristics. Furthermore, for some SDM techniques, theoretical representations (or
upperbounds) of the BER characteristics will be deduced, in order to verify the simulation results.

2.2 The Zero Forcing Algorithm

The first decoding technique forms the basis of the following decoding algorithms to be described
in this report (except for the Maximum Likelihood Decoding): it is the so-called Zero Forcing (ZF)
algorithm. This algorithm is based on a conventional adaptive antenna array (AAA) technique,
namely, linear combinatorial nulling {60]. In this technique, each substream in turn is considered to
be the desired signal, and the remaining data streams are considered as “interferers”. Nulling of the
interferers is performed by linearly weighting the received signals so that all interfering terms are
cancelled. For Zero Forcing, nulling of the “interferers” can be performed by choosing weight
vectors d; (with i=1, 2, ..., Ny such that

0 ixi
d,.Thj={ I 2.13)
1, j=i
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where ” stands for the transpose of a vector or matrix and h; denotes the j-th column of the channel
matrix H. However, when we take a closer 1ook to this criterion, solving the weight vectors is equal
to finding a matrix D such that:

D-H=1I (2.14)

where D is a matrix that represents the linear processing in the receiver. The i-th row of D is equal
to the transpose of the i-th weight vector d; and I is the identity matrix. So, by forcing the
“interferers” to zero, each desired element of s can be estimated. If H is not square, D equals the
pseudo-inverse of H:

D=H'=(HH)'H 2.15)

where * represents the pseudo-inverse. In order for the pseudo-inverse 1o exist, N, must be less than
or equal to N,, because for N, larger than N,, H'H is singular and its inverse does not exist [45].
Furthermore, note that in order for the inverse to exist, the columns of H must be independent.
Regarding the i.i.d. assumption of the elements of H, independence is usually an approximation,
which is justifiable if the antenna spacing is chosen equal to or larger than A/2 [15] (where A
represents the wavelength of the transmission frequency) and if the system operates in a rich-
scattered environment, which can be modelled by Rayleigh flat-fading. Thus, for N, = N, and if the
inverse of H'H exists, the estimates of s (given by s.) can be found by:

S, =Dx
L -1 » (2a 16)
=(H"H) "H"x
or, equivalently:
Se =H'X 2.17)
Using Formula (2.17), (Ses)s, 1.€. the i-th component of s., can be written as:
(s..), =Hix (2.18)

where H[ represents the i-th row of H*, which, according to Formula (2.13), is equal to the

transpose of the i-th weight vector d;. Note that d, is a so-called nulling vector [60]. As a final step,
(ses): can be sliced to the nearest Quadrature Amplitude Modulation (QAM) constellation point,
these sliced signals are denoted by §. In this way, all N, elements of s can be decoded at the
receiver.

The in this sectton described ZF algorithm can be simulated and its BER performance can be
obtained (see Section 2.7). To verify the simulations it is useful to deduce a theoretical
representation of the BER performance of a system based on the ZF algorithm. A theoretical
representation can be obtained using the fact that the diversity order of the average error probability
of such a system with antenna configuration (N,N,), is equal to a system with Maximal Ratio
Combining (MRC), one transmitting (TX) antenna and N-N+1 receiving (RX) antennas [58]. Note
that a diversity order of one means that the BER improves by a factor of 10" if the SNR is increased
by 10 dB. In case of a diversity order of two, if the SNR is increased by 10 dB, the BER improves
10° times, etc. With the knowledge that the ZF algorithm can be compared with MRC, an exact
representation of the ZF solution can be deduced from the diversity analysis performed in [34].
Here, a summary will be given.
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Figure 2-2: Model of a digital communication system with diversity.

Suppose we have a system, based on MRC, comprising one transmit and L receive antennas (see
Figure 2-2) and assume that the system operates in a Raleigh flat-fading environment, then the
channel elements can be written as:

h, =a.e’ (2.19)

where h, represents the channel from the TX antenna to the k-th RX antenna, ¢; denotes the
channel attenuation factor and the phase shift is given by ¢,. Furthermore, we assume that the total
channel is perfectly known at the receiver. Now, let us consider the performance of BPSK with
Lth-order diversity. From Section 1.1 it is known that a MRC system combines the received signals
by multiplying them with the conjugate of the corresponding channel element. Thus, for a system
with MRC operating in a Raleigh flat-fading environment the output can be expressed as a single
decision variable in the form:

L L L
U= Re[z hx, J= Re[z ars+Y v, ] (2.20)
k=1 k=1 k=1

where Vv, denotes the complex Gaussian noise and s is the transmitted symbol that, for BSPK, is
equal to VE, or —VE,, where E, denotes the mean transmitted power. Thus, s only consists of one
element in case of MRC (i.e., the system has only one transmit antenna). The decision variable U is
used in the decoder to recover the transmitted s. If U > 0 then the decoder assumes that s = \/E,, is
transmitted and if U < 0 then it is assumed that s = —VE,, is transmitted. For a fixed set of { )} and
the assumption that s = VE, is transmitted, the decision variable U is Gaussian and with the mean
noise power per receive antenna equal to N, the probability that U is less than zero is:

P,(y,)=0l27,) 2.21)

where Q is the function that is frequently used for the area under the tail of the Gaussian pdf and
defined as:

1

Q(x) = m

je“”zdt and x>0 (2.22)
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The SNR per bit, %, is given as:

= iﬂ o —)i (2.23)
Ve N, & T If -

k=1

where % is the instantaneous SNR on the k-th channel. Because % can be seen as a chi-square-
distributed random variable with 2L degrees of freedom, the probability density function p(%) is
[34]:

1 _
p(y, )= m 7, e’ (2.24)

e

where ¥ is the average SNR per channel. In order to obtain the total BER, we need to average the
conditional error probability given by Formula (2.21) over the fading channel statistics:

P = J-Pz (7b )p(yb )d},b (2.25)

0
There is a closed-form solution for this integral, which can be expressed as:
1 el (L -1+ kY 1 *
P, =[—(1—u) ) =0+ p) (2.26)
2 pord k 2

where, by definition,

Ve
. , 2.27
M T+7. (2.27)

The conditional error probability in case s = —E, is transmitted is also equal to Formula (2.26),
thus, this leads to a total error probability of P,/2 + P,/2 = P,. When %. satisfies the condition % >>
1, the term (1 + )/2 = 1 and the term (1 - ©)/2 = 1/4%.. Furthermore,

Li(L-1+k) (2L-1
- 2.28
1) =

Therefore, when ¥ is sufficiently large (greater than 10 dB), the probability of error in Formula
(2.26) can be approximated as

» 1 “(2L-1 029
27 4y, L '

From, this formula we observe that the error rate decreases inversely with the L-th power of the
SNR, i.e., the error rate decreases with an L-th order of diversity.

Formula (2.26) can be extended to a multi-transmit antenna case as follows: as described before, in
[58] it is shown that the diversity order of an (N,,N,) system based on ZF is equal to N,-N+1. So,
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substituting L= N,—N+1 in Formula (2.26) gives the exact BER for a ZF solution of an (N,N,)
system with BPSK. Note that, if p represents the SNR per receiving antenna, the SNR per channel
equals;

P
=1 2.30
Ye=y (2.30)

r
The theoretical result, given in (2.26), will be used in Section 2.7 to verify the BER performance

that the simulation of the ZF algorithm gives as output.

2.3 The Minimum Mean Square Error solution

Another approach in estimation theory to the problem of estimating a random vector s on the basis
of observations x is to choose a function g(x) that minimises the Mean Square Error (MSE) [36]:

€ = Ells—5) (s -5, 1=[(s-g(x)) s ~g&x)) 231)

An exact function g(x) is usually hard to obtain, however, is we restrict this function to be a linear
function of the observations, an exact solution can be achieved. Using linear processing, the
estimates of s can be found by:

s, =Dx (2.32)

Now, to obtain the linear Minimum Mean Square Error (MMSE), D must be chosen such that the
Mean Square Error € is minimised:

J1= E[(s—Dx) (s —Dx)] (2.33)

est

e =El(s-s_,) (s—s
Since a'a = tr(aa”), where tr(-) stands for the trace of a matrix, the MSE can be rewritten as:

El(s - Dx)'(s - Dx)] = tr(EI(s - Dx)s - Dx)'1)

(2.34)
=t(Q, -Q.,D"-DQ,, +DQ,D’)

where, Q, = E[ss’], Qu = E[sx’], Q. = E[xs"] and Q, = E[xx]. In order to minimise this MSE over
D, we first need to make some remarks.

Remark that the covariance matrices are Hermitian: Q = Q” [45]. To prove this, suppose that Q =
E[aa] then:

Q" =(Efaa")) =Effaa") 1=Elfa’) a"]= Efaa’1=Q 2.35)

where the fact is used that (AB)" = B'A". Furthermore, remark that the covariance matrices are
nonnegative definite. A Hermitian matrix Q is said to be nonnegative definite if z2'Qz = 0 for all
nonzero complex vectors z. Suppose again that Q = E[aa ], then the proof goes as follows:

2'Qz=z"E[aa’ ]z = E[z"aa’z] = E[ya'z|2] >0 (2.36)
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Furthermore, remark that each eigenvalue of a nonnegative definite matrix is a nonnegative real
number [22]): let Q be nonnegative definite, let 4 be an eigenvalue of Q, let z be an eigenvector of
Q associated with A, and calculate z'Qz = z'Az = Alz’. Therefore, A = 2 Qz/lz\* is real and
nonnegative since it is a ratio of a real nonnegative and a real positive number.

Finally, remark that the eigenvectors of a Hermitian matrix Q, if they come from different
eigenvalues, are orthogonal to one another [45]. The proof of this remark starts with the
information given: Qx = A;x and Qy = 4,y and Q = Q’, where x and y are the eigenvectors for the
eigenvalues A, and A,, respectively. Then, it can be shown that:

(4x)'y =(Qx)'y =x"Qy =x"(4,y) (2.37)

The outside numbers are 4,X'y = A,xy, since the A’s are real. Now we use the assumption 4, # A,
which forces the conclusion that X'y = 0, which again shows that x and y are orthogonal. Note,
however, that any multiples x/a and y/b would be equally good as eigenvectors. Suppose we
choose a = Ixll and & = llyll, so that x/a and y/b are unit vectors; the eigenvectors have been
normalised to have length one. Since they were already orthogonal, they are now orthonormal. If
these orthonomal eigenvectors are chosen to be the columns of U, then we have U'QU = A, where

A is a diagonal matrix with the eigenvalues of Q on the diagonal and U is said to be a unitary
matrix. For unitary matrices the following condition holds: U'U = L.

Now, if we go back to the MMSE problem, we see that we may write Q, (because Q; is Hermitian
and nonnegative definite) as follows:

Q,=UA,U=UAPAYU=(AYUJAPU=A"A 2.38)

where AZZ is a diagonal matrix with the square-roots of the eigenvalues on the diagonal (this is

allowed because the eigenvalues are real and nonnegative) and A is said to be the “square-root” of
Q.. Finally, we can rewrite the MMSE problem to a form, from which a solution for D can be
obtained that minimises the Mean Square Error:

¢ =1(Q,-Q_D -DQ_ +DQ D’)
= tr(Qs -Q,AT"AD'-DA'AT'Q,, +DA'AD')
=tr(Q,-Q,ATATQ, +Q,ATATQ, (2.39)
-Q,A"AD'-DA'A™'Q_ +DA'AD")
= tr(Qs - QSXA—lA'—les + (DA' - stA—l XDA' _st‘A_1 )')
Because the first and the second term of this result do not depend on D, the result is minimised if’
DA"-Q,A"'=0 (2.40)

When this is worked out, finally, D is obtained:

DA =Q_A™

) (2.41)
D=Q,A"A™=Q, (A'A)' =Q.Q}
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where the fact is used that A"B™" = (BA)™. When we go back to our channel model (x = Hs + v)
and assume that Q, = E[ss'] = ¢,/ and Q, = E[vv'] = ¢,’I and that Q, = E[xx'] = HQ.H" + Q, is
invertible, then, with Q. = E[sx] = E[s(s H + v*)] = QH (s and v are assumed independent),
D becomes:

D=QH (HQH +Q,) =¢’H (¢’HH +021) =H'(HH" +a1)" (2.42)

where & = 6,%/0;°>. When we have a matrix of the form A + BCE, it is often useful to see what
happens when applying the Matrix Inversion Lemma [27], which is given by:

(A+BCE)" =A™ ~A"B(EA"B+C" JEA™ (2.43)
where, A and C are square invertible matrices. When using the Matrix Inversion Lemma and

demanding that Q, and Q, must be invertible (this is true if o> 0and 62> 0), D can be rewritten
as follows:

D=QH'(Q, +HQH)' =QH'(Q;' -Q; H{H'Q;'H +Q;') ' H'Q;')
= Q;H‘Q;l —QSH'Q;IH(H'QjH + Q:l )_lH‘Q;l

=(Q.(H'Q;'H+Q;')-Q,H'Q;'H)[H'Q;H+Q;'] H'Q}’ (2.44)
-1
=(H'Q;H+Q}]'H'Q; =[(—717H'H+%IJ %H _([@H+a)H

where @ = 6,6 > 0 because we have demanded that ¢ > 0 and o, > 0. However, a nice
consequence of the last result is that if we substitute @ = 0 in it, we obtain the Zero Forcing
solution.

So, to conclude, it can be said that in order to minimise the Mean Square Error (over D), the
processing at the receiver must be equal to:

D=(d+HH'H,a>0 (2.45)

where « is equal to 6,7/0;> = N, /p. From Formula (2.45) it becomes clear that the ZF solution
corresponds to an MMSE solution with @ = 0. On the other hand, the MMSE solution can be
considered to be a ZF solution with:

H H d X 2.46)
- \/EIN’ and X — 0 (2.

Notice that in practice it is hard to measure @, so, usually a fixed & that does not depend on the
Signal-to-Noise Ratio is used instead.

2.4 Zero Forcing with Decision Feedback Decoding

The linear nulling approach as described in Section 2.2 is viable, but as will become clear from the
results in Section 2.7, superior performance is obtained if non-linear techniques are used. One can
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imagine that if somehow first the most reliable element of the transmitted vector s could be
decoded and used to improve the decoding of the other elements of s, superior performance can be
achieved. This is called symbol cancellation [60] and it exploits the timing synchronism inherent in
the system model (the assumption of co-located transmitters makes this completely reasonable).
Furthermore, linear nulling (i.e., ZF) or MMSE is used to perform detection. In other words,
symbol cancellation is based on the subtraction of interference from already detected components
of s from the receiver signal vector x. This results in a modified receiver vector in which,
effectively, fewer interferers are present. Because this principle is somewhat analogous to decision
feedback equalisation, it is called Decision Feedback Decoding (DFB).

When symbol cancellation is used, the order in which the components of s are detected becomes
important to the overall performance of the system. To determine a good ordering of detection, the
covariance matrix of the estimation error s — s.; Will be used. For ZF, this covariance matrix can be
shown to be:

Els-s, ¥s-s..) |=E (s —(eH)" H*st ~(mH)" Hx}]

= Er(s-—s—(H‘H)*H'vxs—s—(H‘H)"H'v)'} 2.47)

= E:(H‘H)"‘H’W'H(H‘H)‘L]= cX(HH) 202P
or, using the pseudo-inverse:
p=H'H") (2.48)

Let (ses); be the i-th entry of s, then, the "best" estimate, (seq):, is the one for which P; (i.e., the i-
th diagonal element of P) is the smallest, because this is the estimate with the smallest error
covariance. From Formula (2.48) it becomes clear that P; is equal to the squared length of the i-th
row of the pseudo-inverse. So find the minimum squared length row of H" is equivalent. Suppose
that the order in the pseudo-inverse of H is arranged such that the row with the least squared length
becomes the last row (the i-th row of H* is permuted with the N,-th row), then the N,-th element of

Se: can be independently decoded. Let § N denote the decoded value, then this value can be used to

improve the estimate of the remaining N~1 signals (i.e., symbol cancellation). If this procedure to
find the “best” estimate is performed in a recursive way, the so-called Optimal Detection (OD)
method as described in [60] is obtained. Here it is called the Decision Feedback Decoding
algorithm with optimal detection. The recursive algorithm can be described as follows:

1. Compute H;

2. Find the minimum squared length row of H" and permute it to be the last row, permute the
columns of H accordingly;

3. Form the estimate of the last component of s. In case of ZF: (s =H;,'x, where the

est )N,

transpose of H‘;, is said to be the N,-th nulling vector [60];
4. Obtain §, (via slicing) from (s, )y s

5. (While N, -1>0) go back to step 1, but now with:
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HoH™=[h, - hy,].x>x-h,$, and N, > N,-1.

Note that in case step 2 is skipped, the DFB algorithm is performed without optimal detection and
the overall performance will be less, however, processing time is saved.

2.5 Minimum Mean Square Error with Decision Feedback Decoding

In order to perform Decision Feedback Decoding with Minimum Mean Square Error decoding, the
DFB algorithm of Section 2.4 has to be adapted somewhat. Again, the covariance matrix of the
estimation error s — S.,, Will be used to determine a good ordering of detection. For MMSE, this
covariance matrix can be shown to be:

El(s-s, Xs—s. ) 1= El(s—D(Hs+v){s—D(Hs+v)) ]
= E[((1-DH)~Dv)(I-DH)s - Dv)’]
=o2(I-DH-H'D’ +DHH'D)+ ¢2DD’
=(c{d+H'H-HH-(d+HH) H'H(d + H'H)
++H'H) ' HI'H)+ 0 2(dd+H'H) ' H'H)(d+ H'H)"
o (d+HH] 267P

(2.49)

Note that P is somewhat different from the case where ZF is used as detection. In order the do DFB
based on the MMSE algorithm, the DFB algorithm is adapted and becomes:

1. Compute D (P is obtained while computing D);

2. Find the smallest diagonal entry of P and suppose this is the i-th entry. Permute the i-th column
of H to be the last column and permute the rows of D accordingly;

3. Form the estimate of the “best” component of s: (sest )N =D ~, X, where D, represents the

last row of D and its transpose is the N,-th nulling vector [60];

4. Obtain §y (via slicing) from (s..) N,
S. (While N, —1> 0) go back to step 1, but now with:
H->H"™"=[h, - hy,],x—>x-h,$, and N, >N, -1.

The BER performance of DFB with ZF and DFB with MMSE will be compared in Section 2.7.

2.6 Maximum Likelihood Decoding

The only decoding method described in this report that is not based on calculation of matrix
inverses is the Maximum Likelihood Decoding (MLD) algorithm. MLD is a method that compares
the received signal with all possible transmitted signals and estimates s according to the Maximum
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Likelihood principle. Suppose a matrix C gives all possibilities in s that could occur (the
dimensions of C are N, XK, where K =M™ and M represents the number of constellation
points). Then, the receiver should store a matrix Y such that:

Y=H-C=[y, - y.] (2.50)

At the receiver, the most likely transmitted signal is determined, as the one for which
2
"" -y z” (2.51)
is minimal (with 1 <j < K), i.e., the signal s; that corresponds with the vector y; which lays closed
to the received vector is said to be the most likely signal to be transmitted. Thus, § is chosen to be

the j-th column of C. This can be rewritten to the following formula where s,y represents the
maximum likelihood detection of the transmitted signal s:

x—Hs | (2.52)

§=s,_, =arg min )]

S /€18 Sk

Note that in the case of MLD, it is not required that N, < N..

Another way to arrive at this result is saying that we want to find the vector s; for which the
probability P(s;jx) is maximal (with 1 < j < K). Note that according to [34], finding such a vector
leads to the minimisation of the probability of error.

Using Bayes’ rule, the probabilities may be expressed as:

P(s ‘x):M

(2.53)

plx)
where p(xls;) is the conditional probability density function of the observed vector given by s;, and
P(s)) is the probability of the j-th signal being transmitted. If the K signals are equally probable to
be transmitted, then P(s;) = 1/K. Furthermore, the denominator in (2.53) is independent of which
signal is transmitted. Consequently, the decision rule based on finding the signal that maximises
P(s;jlx) is equivalent to finding the signal that maximises p(xIs;).

The (conditional) probability density function p(xls;) is a multivariate normal distribution. The
multivariate normal distribution of a real Gaussian random vector x with a covariance matrix Q is
equal to [3] (where the denotes the fact that the elements of the vector/matrix are real):

p(x )= det(22Q ) exp[— %(x -p) Q7 (x —p )J 259

Following the same approach as in [47], this formula can be extended to the complex case. Here, a
summary will be given. A complex random vector x is said to be Gaussian if the real random
vector X :

Esgﬂ e RN (2.55)

X
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is Gaussian. We will say that a complex Gaussian random vector x is special if the covariance of
the corresponding x has the special structure

0 =l - e 7] 1[f€0) I

2.56
2 (2.56)

where Q represents the covariance matrix of the complex vector x. Note that the covariance matrix
Q is Hermitian: Q = Q" (see Formula (2.35)). To transform the real multivariate normal
distribution to the complex case, we need a number of properties that exist for the mapping:

o

These properties are:
C=ABC=AB
C=A"C=A"
det(A ) =|det(A)* = det(AA") 2.58)
Yy=Axey =AXx
Re(x'y)= x'y

The first, fourth and fifth property are straightforward. The second property follows from the first
and the fact that:

I, =I=1, 2.59)

The third property follows from:

det(A )=det[LI) ﬂA B _Iiln=det[[hn‘?A) :.D=det(A)det(A)' (2.60)

where, only in this case, the * stands for the conjugate of a vector/matrix (and not the transpose
conjugate of a vector/matrix).

Using Formula (2.56), we can say that Q = A /2 and that Q = A. Now, to make the transformation
more clear, we split the probability density function of the real multivariate normal distribution
given by Formula (2.54) in two terms. The first term to transform is the determinant and the second
is the exponent. The transformation of the determinant term is based on the third property of (2.58):

det(27Q ) ™* = det(mA )V = (jdet(er)‘zTV2 = det(7Q)™ 2.61)

where the last equality is obtained using the fact that Q is a nonnegative definite matrix (see
Formula (2.36)). Furthermore, it is shown below Formula (2.36) that the eigenvalues of a
nonnegative definite matrix are real and nonnegative. This again leads to the observation that the
determinant of a nonnegative definite matrix is also real and nonnegative, because the determinant
is equal to the product of the eigenvalues [45]. This justifies the last equality of the formula above.
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The second term of the probability density function given by Formula (2.54) (i.e., the exponent
term), can be transformed to the complex case by using the second, fourth and fifth property of
(2.58) and the substitutions a =x —p andz = A 'a:

expl-£(x —n)'Q (x —p))=exp(-a“A "a)
=exp(-a 'z )=exp(- Re(a'z))
= expl-Re((x- ) A" (x - p))
= expl-(x - p) Q7 (x~p))

(2.62)

where the last equality is obtained from the fact that, for a Hermitian matrix Q and for all complex
vectors z, the number z Qz is real [45]. As a proof, we can compute (z'Qz)". We expect to get the

conjugate of the 1 by 1 matrix z'Qz, but instead, we get the same number back: (z'Qz) = z'Q’(z")
=z Qz. So the number must be real.

Finally, if we combine the results, we get the complex form of the multivariate normal distribution:

px) = det(1Q)™ exp(- (x~u) Q' (x—p)) .63
This leads to the following probability density function p(xis;) for a specific H:

p(x|H,s ; )= det(nQ)™ exp(- (x - Hs ; JQ(x-Hs ; )) (2.64)
With Q equal to:

Q= E|(x-pYx-p)]

. . (2.65)
= E[(x—Hs].Xx—Hsj) ]= E[vv ]= o1,

this results in the conditional probability density function:

p(x|H,sj )= det(7Q)™ exp[— %(x -Hs, Jx—- Hs, )J (2.66)
Consequently, finding the maximum of the conditional probability P(s;x) leads to:

argsjengix} p(x|H,s ; ) = argsjenggsx)l X — Hsj"2 =s_ 2.67)

which equals Formula (2.52) and because finding the maximum of the conditional probability
P(s/x) leads to the minimisation of the error probability {34], MLD is optimal in terms of BER
performance. However, a major disadvantage is that the complexity of MLD is proportional to

M ", due to the fact that the size of Y grows exponentially with N, (see Section 3.5).

Another way to show the superiority in BER performance of MLLD over the other SDM techniques
is by checking its diversity order. Here, the diversity order of a MLD system, with an antenna
configuration of (N,N,) = (2,2) and with a BPSK modulation scheme, will be determined and
conclusions about the diversity order will be drawn. For a general proof of the diversity order of a
MLD system, one is referred to {51].
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We will use the union upperbound that provides a representative estimate for the average
probability of symbol errors for a particular modulation signal [36]:

d,
ij
(2.68)
= 2N,
J#i

g(gm,s,.)sfg[

where K =M " with M representing the number of constellation points and d; is the Euclidean
distance between the i-th and j-th signal point in the by the channel matrix adapted constellation.

Assuming a BSPK modulation scheme, there are four possible symbols to transmit:

— Eb/2 — Eb/2 = Eb/2 - Eb/2
S, —[ Eb/z}sz —[_ Eb/2]’53 —[ EJ2 ]ands4 —[_ Eb/zJ (2.69)

Furthermore, suppose that the channel matrix is given by:

H= by (2.70)
hy  hy

Now, we can determine the average probability of error on the condition that e.g. s, is transmitted.
In order to find P, (é‘lsl , H), we need to calculate three distances, namely, di,, di3 and d,4:

2h..JE, /2
dlZ:IIHSl_H52"=[2hlZ\/Eb—§2 =V2Eb |h12I2+|h22'2
2 b
2k \JE, /2 )
do =l =L | P T
ARVEST) .71
2hy,\[E, /2 +2h,E, ]2
d. =|Hs, —Hs | = 1L b 12 b
o = [Hs, ~Hs.| [2112l E,[2+2h,+E, /2

= 2B, |y + bl + |+ b < 2B | + ol + o+

When we fill in these results in the Q-function, we see a large resemblance to the diversity analysis
of Section 2.2. The distances d;, and d,; involve a chi-square-distributed random variable with 2x2
degrees of freedom, whereas, the distance d)4 involves a chi-square distribution with 2x4 degrees
of freedom. We can conclude that the Q-terms that contain the distances d), and di; result in a
second order of diversity and the Q-term of d,4 leads to a fourth order of diversity. Because the
different Q-terms are added according to (2.68), the Q-term that contains the distance di4 can be
neglected for high SNR due to its higher order of diversity. Because a BSPK modulation scheme is
used, we may use the diversity analysis performed in Section 2.2. Assuming that p(4,) and p(¥3)
are chi-squared probability density functions of variables with 2x2 degrees of freedom (L = 2),
gives us the result:



24 Space Division Multiplexing for OFDM Systems

oo

F, (£|Sl )S J-Q(M)p(%z )d712 + TQ(M)P(713 )d713

0

MWD

(2.72)

where,

_1ds oy, _1d;

= an ==
V2 22N, s 22N,

(2.73)

because, the SNR per bit, %, in case of two transmit antennas, is two times as small as % from
Formula (2.23).

Due to the assumption that the symbols given by (2.69) are equally likely to be transmitted and the
fact that for a given H the distances between the symbols stay the same when a different symbol
than s, is transmitted, the final average probability of error becomes P(€) = Py(ds,). So, a MLD
system with two receive antennas has a diversity order of two. When we repeat this analysis for
other antenna configurations (and other modulation schemes), we will find that the diversity order
of a MLD system with N, receive antennas is equal to N,. This can be explained as follows: if we
consider the general case with an H matrix with dimensions N, X N,, the distances between two
transmit vectors that only differ one symbol are the largest source for bit errors (e.g., dis is
neglected in the (2,2) case, because it is larger than d,; and d,3). So, for the general case, we find:

4
d, =”Hsl —H52”= i lh12|2 +|h22|2 +...+|th2 ? (2.74)
NI

where the vectors s; and s, are N x1 and given by,

E, /N, ) JE, /N,

E, /N, -JE, /N,
s,=| JE, /N, ands, = ,Eb /N, (2.75)

b/ t/ ‘\/Eb/Nt

We clearly see that d, is chi-square-distributed with 2xN, degrees of freedom. Using the diversity
analysis performed in Section 2.2 (in the same manner as is done for the (2,2) case), we find that
the diversity order of a MLD system with N, receive antennas is equal to N,.

o

try
2

2.7 Simulation results

The SDM techniques, which are described in the former sections, are programmed in Matlab (see
Appendix A) and some simulations are performed to obtain Bit Error Rate (BER) characteristics in
order to compare the performance of the different SDM techniques. In Figure 2-3 the BERSs for the
different SDM techniques are depicted against E,/N, per receiving antenna. An antenna
configuration of (N,N,) = (2,2) is simulated. Furthermore, a BPSK modulation scheme is used and
the data is transmitted without coding. Note that the signal model is based on the SNR (E/Ny) per
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receive antenna. So, if E,/N, per receiving antenna is given as input, this must be translated to E/Nj
per receive antenna. For an M-ary PSK modulation scheme or for M-ary QAM this is easily done
using the following equation:

E. E :
s ="Llog, M (2.76)
NO NO

BER

5 10 15 20 25
E,/N, per receive antenna (dB)

Figure 2-3: BER versus mean E,/N, per receiving antenna for antenna configuration (N,N,) = (2,2),
BPSK, no coding and with a) ZF, b) MMSE, ¢) ZF with DFB, d) MMSE with DFB, e¢) MLD, f)
theoretical curve of ZF and g) upperbound of MLD.

From Figure 2-3 it can be seen that MLLD has the best performance. Furthermore, it seems that the
slope of the MLD method falls off with a second order diversity, whereas, the slope of the other
methods tends to a curve with a first order of diversity. From the BER analysis given in Section 2.2
it can be deduced that the diversity order of the ZF algorithm for a system with two transmit and
two receive antennas is equal to N~N,+1 = 2-2+1 = 1. A first order diversity means that the BER
becomes 10 times smaller if the SNR increases by 10 dB. The theoretical curve for ZF (see
Formula (2.26)) is given by the dotted line (curve f) of Figure 2-3, but is hardly to see because the
simulation of the ZF solution (curve a) gives almost the same result. This shows the correctness of
the ZF simulation.

Furthermore, from Figure 2-3 it can be seen that the MLD curve (curve e) has a diversity of 2,
because the BER decreases 10 times with a 5 dB increase in SNR. This is in agreement with the
diversity analysis of Section 2.6, where it is said that the diversity order of a MLD system with 2
receive antennas is equal to 2. Despite the fact that the upperbound, for a MLD system with
antenna configuration (2,2) given by Formula (2.72), is an upperbound for the symbol error rate, we
will use it to verify the BER performance of this system. A MLD system that transmits BPSK
symbols on two transmit antennas sends two bits per symbol (one bit on each transmit antenna). A
symbol error occurs if one of these bits is decoded wrong or both bits are detected wrong.
Assuming that these three possibilities occur equally likely, the average number of bit errors per
symbol error is equal to 1/3 + 1/3 + 2/3 = 4/3. Because a symbol consists of 2 bits, the average bit
error rate in case of a symbol error equals 2/3. Multiplying Formula (2.72) by 2/3 results in the
dashed curve (curve g) of Figure 2-3. Thus, Formula (2.72), that has a diversity order of two, is
indeed an upperbound for the (2,2) MLD case.
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As observed before from Figure 2-3, the MLD method has the best performance. Its drawback,
however, is that a large matrix Y needs to be calculated and stored (see Section 2.6). Especially in
case of large constellation schemes and a large number of transmit antennas, this matrix becomes
extremely large, because the size of Y grows exponentially with N, This results in an exponential
growth of processing time and/or complexity in terms of increasing N, (see Section 3.5).

10

BER

5 1 0 15 20 25
E/N, per receive antenna (dB)
Figure 2-4: BER versus mean E,/N, per receiving antenna for antenna configuration (N,N,) = (2,2),

QPSK, no coding and with a) ZF, b) MMSE, ¢) ZF with DFB, d) MMSE with DFB, ¢) MLD and f)
theoretical curve of ZF.

Figure 2-4 shows the same results as Figure 2-3, only instead of a BSPK modulation scheme, a
QPSK modulation scheme is used. Curve f) shows the theoretical value, which again is obtained
from [34]. Here, it is shown that the BER for a system with Maximal Ratio Combining with a
QPSK modulation scheme and a L-th order of diversity is equal to:

k
1 u L1} 1—,[12
p=2l1- | =& 2.77
2 /2..#2;[1: 4-2u° @70

where, by definition,

U= /7’— (2.78)
I+y,

In this formula y represents the average received SNR per channel, thus, in case of multiple
transmitting antennas % is equal to E/N, divided by the number of transmit antennas »,.

The largest difference between the results of Figure 2-3 and Figure 2-4 is the performance
deterioration of the methods based on DFB in case of QPSK. Apparently, the DFB algorithm is
performing less in case of more complex modulation schemes. It seems that in this case it is more
difficult to find the “best estimate” in the DFB algorithm (see Section 2.4 and 2.5).



Chapter 2: Multi-Antenna Link: Signal model and SDM techniques 27

0 5 10 15 20 25 30
Ey/N, per receive antenna (dB)

Figure 2-5: BER versus mean E,/N, per receiving antenna for ZF, BPSK, no coding and for
antenna configuration (N,,N,) equal to a) (2,2), b) (2,3), ¢) (2,4) and d) (2,5).
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10%

%% 5 10 15 20 25 20
E,/N, per recelve antenna (dB)
Figure 2-6: BER versus mean E,/N, per receiving antenna for MLD, BPSK, no coding and for
antenna configuration (N,,V,) equal to a) (1,1), b) (2,2), ¢) (3,3) and d) (4,4).

In order to check the diversity analysis, some simulations are performed with the ZF algorithm and
with the MLD method, respectively, for different antenna configurations. The results are shown in
Figure 2-5 and Figure 2-6. When we compare these figures, the difference in diversity between
Zero Forcing and MLD becomes clear. A diversity order of one means that the BER decreases 10
times it the SNR increases by 10 dB. A diversity order of two implies a 10 times improvement of
the BER with an SNR increase of 10 dB, and so on. From Figure 2-5 in can be seen that the
diversity order of curve a), b), ¢) and d) is respectively equal to 1, 2, 3 and 4. Clearly, this diversity
order satisfies the rule that the diversity order of a system with N, transmit and N, receive antennas
based on ZF is equal to N—N,+1 (as described in Section 2.2).

From Figure 2-6 it can be seen that the diversity order of a system based on the MLD technique is
different from the diversity of ZF. The diversity of MLD is equal to the number of receive antennas
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(N,). So the diversity order of the curves a), b), ¢) and d) is respectively 1, 2, 3 and 4. It should be
noted that the BER performance of a MLD system does not lose its diversity order if the number of
transmitting antennas is increased, but the overall performance deteriorates (i.e., the curves of
Figure 2-6 shift to the right when more transmit antennas are added).

5 10 15 20 25 30
E,/N, per receive antenna (dB)

Figure 2-7: BER versus mean E,/N, per receiving antenna for MMSE with DFB, BPSK, no coding
and for antenna configurations (N,,N,): a) (1,1), b) (2,2), ¢) (3,3) and d) (4,4).

From Figure 2-3 it can be seen that the MMSE with DFB curve (curve d) follows the MLD curve
(curve e) for low SNR values. For higher SNR, curve d is bending towards a curve with a first
order of diversity and the difference in BER performance between MMSE with DFB and MLD
increases. Therefore, it may be interesting to compare the result of Figure 2-6 with simulations of a
system with MMSE and DFB and the same antenna configurations. These results are given in
Figure 2-7. We will use an example to compare the results of Figure 2-6 and Figure 2-7. If we
determine the SNR needed to achieve a BER of 10 for both systems with antenna configuration
(N,N;) = (4,4), then we see that the MLD system needs an SNR of approximately 13.5 dB, whereas
the system with MMSE and DFB needs an SNR of 14.5 dB. So, the difference is approximately 1
dB. However, if we make the same comparison for a lower BER, then the difference in SNR
increases due to the fact that all the curves of Figure 2-7 bend to a curve with first order of diversity
for higher SNR values. So, in the range of a BER performance of 10 to 10°, MMSE with DFB
has a slightly worse performance compared to MLD. But, the complexity of MMSE with DFB does
not grow exponentially with the number of transmit antennas and, thus, especially for a larger
number of transmit antennas, MMSE with DFB might be a good alternative.

Note that, when a more complex modulation scheme is chosen, the difference between MMSE with
DFB and MLD increases (compare Figure 2-8 and Figure 2-9), because it seems that DFB is
performing worse for more complex constellations.
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Figure 2-8: BER versus mean E,/N, per receiving antenna for MLD, QPSK, no coding and for
antenna configuration (N,A,) equal to a) (1,1), b) (2,2), ¢) (3,3) and d) (4,4).
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Figure 2-9: BER versus mean E,/N, per receiving antenna for MMSE with DFB, QPSK, no coding
and for antenna configurations (N,,N;): a) (1,1), b) (2,2), ¢) (3,3) and d) (4,4).



3 Complexity Analysis

Another way to compare the different SDM techniques is by determining the complexity of the
different algorithms in terms of number of additions and multiplications. Such a complexity
analysis is a good measure for the final complexity of the (receiver) hardware. However, it should
be noticed that nothing is done to optimise the algorithms (for special hardware architectures), so,
the results presented in this chapter are not binding.

The final result of the complexity analysis will be given in real additions (R_ADDs) and real
multiplications(R_MULSs). However, the signal model is complex and, thus, complex additions
(C_ADDs) and complex multiplications (C_MULSs) take place. Therefore, the complex calculations
will be written in terms of real calculations. It is easy to see that one C_ADD consists of two
R_ADDs (the real and the imaginary part of the two complex numbers are added). A complex
multiplication can be rewritten in the following two ways [33]:

(a+ibXc+id)=(ac—bd)+i(bc +ad) (3.1)
(a+ib)c+id) = (ac —bd) +i[(a +b)c+d)-ac —bd] (3.2)

The first option consists of 4 R_MULS (ac, bd, bc and ad) and 2 R_ADDs (ac - bd and bc + ad).
The subtraction is counted as an addition and the addition before the i does not count because the
real and imaginary parts are stored separately. The second option has only three real multiplications
(ac, bd, (a + b)(c + d), plus five real additions. Compared with the first case, the total operations
count is higher by two, but in some hardware architectures, multiplication is a more complex
operation. In the rest of this chapter we will use the first option.

Furthermore, in the following sections more than once the complexity of a matrix multiplication
needs to be determined. Therefore, the general case is considered here. Suppose two matrices A
and B (real or complex) with dimensions C x D and D x E are multiplied:

D
Aibj = Zaikbkj (3.3)
k=1

where A; represents the i-th row of matrix A, b; denotes the j-th column of B and a; and b; stand
for the k-th element of this row and column, respectively. Thus, in order to obtain one element of
the result matrix, D-1 additions and D multiplications need to be performed. The dimensions of the
result matrix are C x E and, therefore, a total of C(D-1)E additions and CDE multiplications (real
or complex) are needed to multiply the two matrices A and B.

The complexity of the SDM techniques described-in Chapter 2 can be divided in two parts: the
complexity of the training phase and the complexity of the data phase. It is assumed that for a
specific packet length the channel does not change. So, for each packet the channel matrix needs to
be estimated only once and can be performed in the training phase. Furthermore, some channel
matrix processing only depends on the channel matrix and, thus, also can be performed in the
training phase. The operations that are required to process the received data are of course
performed in the data phase. This processing needs to be carried out for each receiving vector x.

In this chapter we assume that the receiver already knows the channel matrix. Because the channel
estimation does not depend on the SDM technique that is used it is a constant offset to the
complexity results and, thus, the complexity of this part of the training is assumed known and will
not be taken into account.
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In the following sections the complexity of the Zero Forcing (ZF) algorithm, the Minimum Mean
Square Error (MMSE) technique, Zero Forcing with Decision Feedback (DFB), Minimum Mean
Square Error with Decision Feedback and Maximum Likelihood Decoding (MLD) will be
determined.

3.1 Zero Forcing

As described in Section 2.2, the Zero Forcing technique is based on calculation of the pseudo-
inverse of the channel matrix H. Because it is assumed that the channel matrix is constant for one
packet, it is possible to calculate the pseudo-inverse in the training phase. In the data phase, the
pseudo-inverse can be used during transmission of the whole packet to estimate the transmitted
vectors s. In this section the complexity of the training phase and the data phase of the ZF
algorithm will be determined.

3.1.1 The training phase

In the training phase, the pseudo-inverse of the channel matrix H is determined. For determining
the complexity of the calculation of the pseudo-inverse we will use the equality that can be deduced
from Section 2.2 and is given by:

H =(HH]'H (3.4)

where, again, * stands for the pseudo-inverse of the specific matrix. The dimensions of H*, H and
H’ are, respectively, N, x N,, N, x N, and N, X N,. Using the complexity analysis of a matrix product
at the beginning of this chapter, the complexity of the product H'H can be found and is equal to
NAN,~1) C_ADDs and NN, C_MULS. The result is a square matrix with dimensions N; X N,.

From this square matrix H'H, the inverse needs to be determined. It is known that the direct
inversion of a given square matrix A (with dimensions NxN) has a complexity in the order of N’
additions and N> multiplications in total [33]. So, inverting H'H has a complexity of N’ C_ADDs
and N’ C_MULSs.

Finally, the inverse of H'H (which is N, x N,) is multiplied by H'. The complexity of this last
multiplication is equal to N{N,~-1)N, C_ADDs and Nj2N, C_MULSs. This leads to a total complexity
of the training phase of N; + N (N,~1) + N{N~1)N, C_ADDs and N,> + 2NN, C_MULs. Or in
terms of real operations:

AN} +4N:N, +2N*(N, -1)+2N,(N, -1)N,
(3.5)
=4N? + N*(8N, -2)-2N,N, R_ADDs
and 4N,” + 8NN, R_MULs.

3.1.2 The data phase

The data phase consists of a matrix-vector multiplication in order to obtain the estimates of the
vector s and a slicing step to translate the estimated elements of s to the possible transmitted
symbols. The matrix-vector multiplication can be found in Section 2.2 and is given by:
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s =H'x (3.6)

est

The complexity of this product is equal to N(N,-1) complex additions and NN, complex
multiplications.

The complexity of a slicer is minimal in terms of additions and/or multiplications. For the most
modulation schemes only comparisons need to be made which have no or hardly any complexity in
terms of additions and/or multiplications. Besides, the slicing step is equally complex for all
demodulation schemes, and represents a constant offset to the complexity. Therefore, the
complexity of the slicing step will not be taken into account. For clarity, however, the complexity
of a BPSK slicer will be determined. In order to slice estimates of a BPSK modulation scheme, we
only need to determine whether the real part of every element of s is less or larger than zero. If the
real part of an element of s is larger than zero, most likely a 1 is transmitted, otherwise, -1 is
transmitted. And if it is assumed that a comparison has equal complexity as a real addition, then, to
slice N, symbols, this would hold a complexity of N, R_ADDs.

Summarising, the complexity of the data phase of the ZF algorithm is equal to N{N,—1) C_ADDs
and NN, C_MULs, or equivalently, 2NN, + 2N(N~-1) R_ADDs and 4NN, R_MULs per
transmitted vector s to decode, which is much less than the complexity of the training phase.

3.2 Minimum Mean Square Error

The complexity analysis of the Minimum Mean Square Error algorithm is almost equal to that of
the Zero Forcing method described in Section 3.1. The data phase of the MMSE technique also
consists of a matrix-vector product with the same dimensions and, thus, has equal complexity (see
Section 3.1.2), namely, 2N,N, + 2N(N,~1) R_ADDs and 4N,N, R_MULs for every transmitted
vector s to decode.

In the training phase, the following processing matrix needs to be determined (see Section 2.3):
- -1 *
D=(d+HH]'H 3.7)

The calculation of the processing matrix has almost the same complexity as the determination of
the pseudo-inverse in case of the ZF algorithm. Only a few extra additions need to be performed
due to the addition of al. Because « is real and I has dimensions N, x N, only N, extra real
additions need to be performed (i.e., the addition of & to the real part of the diagonal elements of
H'H). This leads to a total complexity of the training of 4N,* + N*(8N,~2) — 2NN, + N, R_ADDs
and 4N,” + 8N,’N, R_MULs.

3.3 Zero Forcing with Decision Feedback

The Decision Feedback algorithm (as described in Section 2.4) can also be divided in a training
phase and a data phase. The training consists of determining the nulling vectors (step 1, 2 and the
first part of step 5 of the algorithm described in Section 2.4), whereas the data phase consists of the
DFB algorithm (step 3, 4 and the second part of step 5). For both phases, the complexity in terms
of additions and multiplications will be analysed.
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3.3.1 The training phase

In order to find the nulling vectors, an iterative algorithm that consists of three steps can be
performed. First the steps are described and then the complexity will be determined:

1. Compute the pseudo-inverse of H;

2. Find the minimum squared length row of H*. This row is a nulling vector. Permute it to be the
last row and permute the columns of H accordingly;

3. (While N, —1>0) go back to step 1, but now with:
H—->H""=h, - h,_]and N,—>N,-1.

The complexity of step 1 (i.e., the calculation of the pseudo-inverse) is already determined in
Subsection 3.1.1. For a matrix H with dimensions NxN,, this complexity is equal to 4N} +
N*8N,-2) - 2N,N, R_ADDs and 4N;* + 8NN, R_MULSs.

Step 2 consists of two tasks: calculation of the squared length of all rows of H* and determination
of the minimum squared length row. The squared length of the i-th row of the pseudo-inverse of the
channel matrix can be derived by:
2 2
a, =|h| +..+ Ih,.N,|

(3.8)
= (Re(hn ))2 + (Im(hn ))2 ..t (Re(hw, ))2 + (Im(hw, ))2

Clearly, 2N, — 1 real additions and 2N, real multiplications have to be performed to calculate a;. If
H" has N, rows this leads to a total of (2N, — 1)N, R_ADDs and 2N,N, R_MULSs. However, from
Section 2.4 it can be concluded that finding the minimum squared length row of H is equal to
finding the minimum element P; on the diagonal of P. And due to the fact that P already is
determined (for calculating the pseudo-inverse) no calculations need to be performed, but a; can be
set equal to P;, where P is given by:

pP=(HH)" (3.9)

In order to find the minimum of two numbers in hardware, the easiest thing to do is subtract the
second number from the first and compare the result with zero. If the result is larger than zero, the
second number is the smallest, otherwise the first number is the smallest. So, finding the minimum
between two real numbers has the complexity of one real addition. To find the minimum of N,
values a, the following iterative process can be used:

a amn=a,i=2;

b.  Qmin = MIN(Qrin,Q:);

c¢. whilei<N,gotostepb, withi=i+1;

This iterative process has a complexity of N, — 1 real additions. The permutations of step 2 are
considered to have no complexity, the only thing that needs to be done is interchanging the

memory pointers that respectively point to the two rows of H* and the two columns of H that need
to be permuted.
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The third step of the algorithm to find the nulling vectors has hardly any complexity in terms of
additions and/or multiplications. Note that the algorithm is repeated but now with N, = N, - 1 and,
thus, the complexity of each iteration is reduced, because the dimensions of the matrices are
reduced. To take along this reduction in complexity during the iteration, the total complexity can be
written by using series. The total number of real additions becomes equal to:

4y +N, ZZn ~2N Zn+2(n 1)

n=l1 n=]
—4Zn +(8N, - ZZn +(1-2N, Zn—N

n=1 n=1 (3.10)
=N,2(N,+1)2+(8N,—2)N’(N’+16)(2N‘+1)+(1—2N,)—N’(A;+1)-N,

=%N,(6N,3 +8N?(1+ 2N, )+3N,(1+6N, )+2N, -5)

The total number of real multiplications of the training phase of ZF with DFB is equal to:

N, N,
4y n*+8N, Y n’
p= = ) 3.11)
= N2(N, +1)* +8N, N, +16X2N' *1

3.3.2 The data phase

During the data phase the nulling vectors are used to first estimate the best element of the
transmitted vector s. The result is sliced to find the most likely transmitted constellation symbol
and then, this symbol is used in the feedback loop in order to find the next best estimate. The
following steps represent this iterative process:

1. Form the estimate of the best component (i.e., the last component due to permutation) of s. In
case of ZF: (s esl) =Hj x

2. Obtain § v, (via slicing) from (ses‘)

3. (While N, —1> 0) go back to step 1, but now with:
x—x-h,$§, and N, >N, -1.

The complexity of the first step of this iterative algorithm equals N,-1 C_ADDs and N, C_MULs.
Step 2 is assumed to have no complexity in terms of additions and multiplications as is explained in
Subsection 3.1.2. Step 3 consists of a scalar-vector product and a vector subtraction. The scalar-
vector product has a complexity that is equal to N, C_MULs. The vector subtraction has, because
subtraction is of equal complexity as addition, a complexity equal to N, C_ADDs. These steps are
performed N, times.
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In summary, it can be said that the complexity of the data phase of Zero Forcing with Decision
Feedback equals 2N(4N,~1) R_ADDs and 8NN, R_MULS per transmitted vector s.

3.4 Minimum Mean Square Error with Decision Feedback

The complexity of Minimum Mean Square Error with Decision Feedback can be determined in the
same way as it is done for Zero Forcing with DFB (see Section 3.3). Compared to ZF with DFB,
there is a slight difference in the training phase in the way to obtain the nulling vectors. In case of
MMSE, the iterative process of the training is given by:

1. Compute matrix D =(ad+H H) 'H" (Note that P = (o1 +H H)" H’is also obtained);

2. Find the smallest diagonal entry of P and suppose this is the i-th entry. Permute the i-th row of
D to be the last row and permute the columns of H accordingly, the permuted row of D is a
nulling vector;

3. (While N, —=1>0) go back to step 1, but now with:
H—->H"" =[h, - h,_land N, >N, -1.

Compared to ZF with DFB, the complexity of step 1 of the algorithm given in Subsection 3.3.1 is
somewhat different. For a H matrix with dimensions NxN, the complexity for determining matrix
D is given in Section 3.2 and equals 4N, + N (8N,~2) — 2NN, + N, R_ADDs and 4N;’ + 8NN,
R_MULSs. Due to the iteration in the algorithm, this leads to a total complexity (including the
complexity of finding the minimal diagonal element of P) of:

4in3 +(8N, —2)%‘/12 +(1—2N,)in+i(ﬂ—1)

n=1 n=l el pry
N, N, N,
=4Y n*+(8N, -2)} n*+2(1-N,)) n-N,
- = i (3.12)
=NZ(N,+1) +(8N, -2) NN, +1Y2N, +1)+2(1—N, NN, +1) W, +1) ~N,

6
=%N, (3N? +4N*(1+2N,)+3N,(1+3N,)+ N, —1) R_ADDs

and

N, N,
4y n*+8N, Y n*’
n=l n=l

(3.13)
N, (N, +1)2N, +1)

=N*(N, +1)* +8N, R_MULs

For the Minimum Mean Square Error algorithm with Decision Feedback, the data phase is exactly
the same as the ZF technique with DFB, except that in this case the nulling vectors are rows of the
processing matrix D in stead of rows of the pseudo-inverse of H. The last fact is irrelevant for the
complexity, thus, the complexity of the data phase equals 2N,(4N,~1) R_ADDs and 8N,N, R_MULs
per transmitted vector s (see Subsection 3.3.2).
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3.5 Maximum Likelihood Decoding

The complexity of the Maximum Likelihood Decoding technique is largely dependent on the
amount of memory that is available or that one is willing to use. We will compare two situations.
Assume that in the first situation hardly any memory is available, but enough to store the products
of the columns of H times the constellation points, thus, e.g. for BPSK it should be able to store
(H,,-H,) for all 1 <i < N,. Note that it is not really necessary to store —H;, because it can easily be
deduced from H;, so, actually two times less memory is required. Assume that in the other situation
there is enough memory available to store all possibilities given by matrix Y = H-C (see Section
2.6) in the memory during the training phase. In this case the overhead of recalculations like in the
first situation is minimised, but matrix Y grows exponentially with the number of transmitting
antennas (NV,) and, thus, a large memory may be required. In the following subsections the two
situations will be compared.

3.5.1 Training phase (minimum amount of memory)

In the case that hardly any memory is used for Maximum Likelihood Decoding, a large part of the
processing takes place in the data phase. The only processing needed in the training phase is the
estimation of channel matrix H (which is assumed known) and the calculation of the product of the
constellation values with the columns of H. If there are M constellation points, then the complexity
of this product is MN,N, C_MULSs or 2MN,N, R_ADDs and 4MN,N,R_MULSs.

3.5.2 Data phase (minimum amount of memory)

As shown in Section 2.6 the maximum likelihood detection is given by:

2
(3.14)

XZH

S, =arg rmn)]

s e{s1 ..... Sy

x —Hs ; ” =arg min J
SESl wSg

where K =M™ and M represents the number of constellation points. Because H;s; is already
calculated in the training phase for every constellation point, only complex additions need to be
performed to find x — Hs;. This calculation can be represented by a tree as shown in Figure 3-1 and
its complexity is:

M”’
ZMN NM=—— L c_aDDs (3.15)

i=l

The squared norm of the result can be calculated as follows:

”x—Hsj"2 =)xl —Hlsj‘2 +...+’xN' —HN'SJ'IZ
= (Re(xl - Hlsj))2 +(Im(xl - Hlsj))2 +...+(Re(xN' - HN'sj))2 (3.16)
+(Ifn(x1v, _HN,sj))z

This formula consists of 2N, real multiplications and 2N,~1 real additions. The calculation of the
squared norm described above needs to be performed K times (namely, for all K branches of the
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tree shown in Figure 3-1) and finally, the minimum of the K possible squared norms must be
obtained which introduces K-1 extra real additions (see Subsection 3.3.1).

So, this yields a total complexity of 2KN, R_MULSs and

2N,.M A’; "_1 +2KN, —1 R_ADDs (3.17)
x-H;s5,-H;s,
Etc.
x-Hy8;-Hys0,
x-H;5)-Hss,
Eic.

x-HlsM-stM

Figure 3-1: All possible vectors x — Hs;.

3.5.3 Training phase (maximum amount of memory)

If there is enough memory available to store the whole matrix Y, this matrix can be determined in
the training phase and used during the data phase. The complexity of the matrix-vector product Hs;
can be obtained using the tree of Figure 3-2 that shows all possible columns of Y:

N,
y; =ZHi(si)j (3.18)

i=]

First the product of every column of H with every constellation point value should be determined.
This has a total complexity of 2MNN, R_ADDs and 4MNN, R_MULSs (see Subsection 3.5.1).
After that, the additions as shown in the tree have to be performed. The complexity equals:

N, . MN,-l -1
Y M'N, =M?N,——— C_ADDs (3.19)
i=2 M -l

This gives a total complexity of 4MNN, R_MULSs and

omry M1

r

+2MN N, R_ADDs (3.20)
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H,s,+H,s,+Hss,

Etc.
H,s, Hys+Hys+Hasy
Hs;+Hysp+Hss,;

Etc.
Hys,+H;sp+Hasy,

H18M+H2S1+H3S1

Etc.
Hisum HisatHosi+Hzsy
HISMFH;_SM'FHy,Sl

Etc.

HsprHosy+Hasy

Figure 3-2: Tree notation of the matrix-vector product Hs;.

3.5.4 Data phase (maximum amount of memory)

During the data phase the vector subtraction x — Hs; and the squared norm of the result have to be
determined for the K possible s vectors. The next step is to obtain the minimum of the squared
norms. The vector subtraction x — Hs; is performed for 1 < j < K and has complexity equal to KN,
C_ADDs. Next, the norms of the K results have to be determined. This has a complexity of K(2N,—
1) R_ADDs and 2KN, R_MULSs. After that the minimum of the K (real) norms must be obtained
which has a complexity equal to K~1 R_ADDs. So, this yields a total complexity of 4KN,-1
R_ADDs and 2KN, R_MULSs. Note that these complexity figures increase linearly with the number
of receiving antennas and they increase exponentially with the number of transmit antennas.

3.5.5 Less complex norm approximation

One of the significant terms in the complexity calculation for Maximum Likelihood Decoding is
the determination of the norm of x — Hs;. In Order to reduce the complexity, the following
approximation will be used:

”"‘HSJ'”z

(3.21)
)Re(x1 —Hlsj1+llm(x1 —Hlsj1+...+lRe(er —HN,sj]+|Irn(er —HN,S,-]

It consists only of real additions (and no multiplications) making the MLD algorithm less complex.
The drawback of MLD with the approximated norm is that the BER performance deteriorates by
approximately 0.5 dB (compare the curves a and b of Figure 3-3 which show, respectively, the

BER performance of MLD with the normal norm definition and MLD with the approximation of
the norm).
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BER

~6) N s N L . .
0y 6 8 10 12 14 16 18
E,/N, per receive antenna (dB)
Figure 3-3: BER versus mean E,/Ny per receiving antenna for antenna configuration (N,,N,) = (4,4),
QPSK, no coding and a) MLD with regular norm definition and b) MLD with the approximation of
the norm.

Now we will use this approximation of the norm in the situation of MLD with a minimum amount
of memory. The approximation of Formula (3.21) does not make any changes to the training phase,
so this complexity remains the same.

The data phase starts with the calculation of x — Hs; with complexity equal to (see Subsection
3.5.2):

& M" -1
Y M'N, =NM T C_ADDs (3.22)
i=1

After that, the approximation of the norm as defined by Formula (3.21) has to be calculated for the
K possible s vectors. This process has a complexity of K(2N,~1) real additions. Finally, finding the
minimum of the K (real) results has a complexity o