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Abstract

With the increasing amount of bandwidth-hungry services like video on demand and video
conferencing, the need for broadband communication systems is obvious. Furthermore, with the
growing demand for flexible workplaces at the office (office hotelling) and university, wireless
broadband communication systems are no luxury anymore.

The main goals in developing new wireless communication systems are increasing the bit rate and
increasing system capacities. Because the available frequency spectrum is limited, this means that
future systems should be characterised by improved spectrum efficiency. Recent information
theory research has revealed that the multipath wireles.s channel is capable of enormous capacities,
provided that the multipath scatterIng is sufficiently rich and is properly exploited. A possible way
to exploit the multipath scattering properly is Space Division Multiplexing (SDM) or Space
Division Multiple Access (SDMA). Basically, these techniques transmit different signals
simultaneously on different transmit antennas. The parallel streams of data are mixed-up in the air,
but can be recovered at the receiver by using the SDM algorithms proposed in this report, like the
Zero Forcing or Minimum Mean Square Error method, with or without Decision Feedback
Decoding, or the Maximum Likelihood Decoding (MLD) technique. When the multipath is
exploited properly, both the data rate and the Signal-to-Noise Ratio performance can be increased.
For BLAST (Bell laboratories LAyered Space Time), a system based on Minimum Mean Square
Error decoding with Decision Feedback, it has be shown that spectrum efficiencies of 20 - 40
Bit/slHz can be achieved in an indoor propagation environment at realistic Signal-to-Noise Ratios
and error ratios.

In this report it is shown that Maximum Likelihood Decoding (based on detection) achieves a
diversity order equal to the number of receive antennas. This is (much) better than the diversity
order of Zero Forcing for which it is shown in literature that the diversity order equals the number
of receive antennas minus the number of transmit antennas plus one. The big disadvantage ofMLD
is that its complexity grows exponentially with the number of transmit antennas. For a reasonable
number of transmit antennas (~ 5), however, its complexity is shown to be comparable with other
Space Division Multiplexing methods.

Furthermore, in this thesis, single carrier Space Division Multiplexing based on MLD is combined
with the multicarrier technique Orthogonal Frequency Division Multiplexing (OFDM) to make the
system more robust against delay spread impairments. A basic introduction to OFDM is given and
it is described how to combine SDM with OFDM. This system is simulated in C++ using the
parameters of the new IEEE 802.11 OFDM standard for wireless LANs. The delay spread channel
is modelled by exponentially-decayed Rayleigh fading. By performing Monte Carlo simulations,
Bit Error Rate performances for different antenna configurations and different delay spreads are
shown in this report.

To achieve a better performance, forward error correction coding based on a convolutional code is
implemented. However, if a soft-decision input Viterbi decoder, which should get soft-decision
values from the receiver detection algorithm, is used to decode this convolutional code, an even
better performance is obtained. Therefore, the MLD algorithm is adapted in order to produce soft­
decision outputs. A simple intuitive adaptation and a complex adaptation based on the log­
likelihood ratio are proposed and their performance is compared. From all the results presented in
this report, it can be concluded that Space Division Multiplexing in combination with OFDM is a
promising solution for increasing the bit rate and system capacity.
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1 Introduction

It is a well-known fact that the amount of information transported over communication systems
grows rapidly. Not only the file sizes increase, but also bandwidth-hungry applications such as
video on demand and video conferencing require increasing data rates to transfer the information in
a reasonable amount of time or to establish real-time connections. To support this kind of services,
broadband communication systems are required.

Another well-known fact is that the mobility of communication systems is more and more·
demanded. One example is the enormous increase of mobile phone users worldwide. Another
example is the trend of the work place becoming increasingly mobile. A term often used in this
context is office hotelling. Hotelling is a form of alternative officing in which employees who work
out of the office for significant periods of time can call ahead (just as they do in making hotel
reservations) and reserve workspace. They select an office from a specially-designated block of
workspaces when they come into the company's office facilities. This allows organisations to
reduce space costs by relying on technology to create the appearance of a permanent office. Ideally,
the employee should be completely mobile within the office, and still be able to connect his
personal computer to the computer network. Thus, a wireless computer network is desirable.

Another place where wireless computer networking is in demand is at the university campus. A
growing number of universities offer their students the possibility to buy a laptop from university.
The way of teaching is adapted to the availability of laptops. To make this kind of studying
efficient, students need to be able to connect to the computer network of the university in order to
download the study material that the professor offers. However, it is undoable to adapt the
computer network infrastructure in such a way that the students can plug-in in every (lecture-)room
at the university. Here too, it seems that wireless network access is essential. As an example where
a wireless network already is installed, the Carnegie Mellon University in Pittsburgh can be
mentioned [21].

The above considerations justify research into new broadband wireless communication systems.
Large-scale penetration of such systems into our daily lives will require significant reductions in
cost and increases in bit rate and/or system capacity. Recent information theoretical studies have
revealed that the multipath wireless channel is capable of huge capacities, provided that multipath
scattering (see Figure 1-1) is sufficiently rich and is properly exploited through the use of the
spatial dimension ([15] and [37]). Appropriate solutions for exploiting the multipath properly,
could be based on new techniques that recently appeared in literature, which are based on Space
Division Multiplexing (SDM). Basically, these techniques transmit different datastreams on
different transmit antennas simultaneously. By designing an appropriate processing architecture to
handle these parallel streams of data, the data rate and/or the Signal-to-Noise Ratio (SNR)
performance can be increased.

In this thesis, a number of Space Division Multiplexing algorithms will be compared. The one with
the best performance will be combined with a spectrally efficient transmission technique called
Orthogonal Frequency Division Multiplexing (OFDM) to avoid Inter Symbol Interference (lSI).

1.1 Receiver diversity techniques

Before SDM techniques were developed, receiver diversity was seen as a powerful communication
receiver technique that provided wireless link improvement at relatively low cost [36]. Diversity
techniques try to solve the problem that transmission errors occur when the transmission channel
attenuation is large, i.e., when the channel is in a deep fade. Diversity exploits the random nature of
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radio propagation by finding independent (or at least highly uncorrelated) signal channels for
communication. This concept can be explained in a simple way; if one radio channel undergoes a
deep fade, another independent channel may have a strong signal. By having multiple independent
channels to select from (or to combine), the Bit Error Rate performance in the presence of noise is
improved.
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Figure 1-1: multipath fading.

There are several ways in which the receiver can be provided with a number of independently
fading channels (say L) that bear the same information signal ([34] and [36]):

• Frequency diversity. The same information-bearing signal is transmitted on L different
frequencies. At the receiver, the carrier frequency that has suffered least from fading is used to
estimate the transmitted signal, or the carrier frequencies are weighted (according to the fading
they have experienced) and combined and this combination of signals is used to recover the
transmitted signal.

• Time diversity. Time diversity transmits the signal in L different time slots to achieve L
independently fading versions of the same information-bearing signal. The time spacing
between two successive time slots must exceed the coherence time of the channel, so that
multiple repetitions of the signal will be received with independent fading conditions.

On one hand the above techniques requires only a single antenna and a single receiver. On the other
hand their performance is inferior to techniques which use multiple antennas and radios, which will
be described below. This can be explained by the fact that frequency diversity uses an L times
larger bandwidth to transmit and time diversity uses L times more time slots to transmit a single
data symbol. Thus, the efficiency for both diversity types is reduced by a factor L compared to the
techniques described below.

• Polarisation diversity. At the transmitter, the same information signal can be transmitted on
two antennas, which polarise the radio wave differently. Due to the fact that the reflection
coefficient for each polarisation is different (which results in different amplitudes and phases
for each reflection), the measured horizontal and vertical polarisation paths between a mobile
terminal and an access point are assumed uncorrelated. At the receiver, the horizontal and
vertical polarised waves can be combined. While this only provides two diversity branches (L
= 2) it does allow the antenna elements to be co-located (i.e. less than half a radio wave length
apart). An important constraint is that the diversity gain might deteriorate when another type of
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diversity is applied at one end of the telecommunication link (e.g., mobile terminal) and dual
polarisation at the other end (e.g., access point).

• Space diversity. Space diversity, also known as antenna diversity, is one of the most popular
forms of diversity used in wireless systems. Space diversity is based on the fact that if a system
operates in multipath scattering that is sufficiently rich, the signals received by spatially
separated antennas are uncorrelated for antenna separations of half a radio wavelength or more.
If L antennas are used at the receiver, it can be assumed that L independently fading channels
are present. These L channels are combined at the receiver to improve the estimation of the
transmitted signal.

At the receiver, the L received signals can be combined in several ways, namely:

Antenna I

Antenna 2

Antenna L

Switching
Logic
and/or

Demodulators

Figure 1-2: Block diagram for selection diversity.

• Selection diversity. A block diagram of the selection diversity method is shown in Figure 1-2.
For selection diversity, the gains of all L branches are adjusted to provide the same average
Signal-to-Noise Ration (SNR) for each branch. The receiver branch having the highest
instantaneous SNR is connected to the demodulator l

. The antenna signals themselves could be
sampled and the best one sent to a single demodulator. In practice, the branch with the largest
(3 + N)IN is used (where 3 represents the received signal power and N denotes the noise
power), since it is difficult to measure the SNR.
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Figure 1-3: Block diagram of scanning diversity.

• Feedback or scanning diversity. Scanning diversity is similar to selection diversity except
that instead of always using the best of the L signals, the L signals are scanned in a fixed
sequence until one is found with an SNR above a predetermined threshold. The scanning
process is resumed when this signal falls below the threshold. Until that time, it is selected and
routed to the receiver (see Figure 1-3). The other combination techniques have a (somewhat)

1 Note that in case of frequency diversity and time diversity, the L received signals are not obtained from L
different antennas (as shown in Figure 1-2) but from L different frequencies and time slots, respectively.
Keeping this in mind, all the combining techniques described here are applicable to frequency diversity and
time diverSity as well.
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better performance, but the advantage of this technique is that it has a very low implementation
complexity since only one receiver is required. For packet communications, another way of
scanning is to only initiate it at every packet preamble.

• Maximal Ratio Combining. In this method, the signals from the L branches are weighted with
the complex conjugate of the corresponding sub-channel and added (see Figure 1-4). This
procedure generally requires an individual receiver for each antenna element, which is a big
disadvantage compared to selection diversity. However, Maximal Ratio Combining (MRC)
produces an output SNR equal to the sum of the individual SNRs, thus, it has the advantage
that, when none of the individual signals have an acceptable SNR by themselves, it may
produce a combined output which does haven an acceptable SNR. This technique is optimal
because it can be seen as a special case of Maximum Likelihood Decoding which, under given
assumptions, is proven to be optimal in Section 2.6

Antenna 1

Antenna 2

Antenna L

Figure 1-4: Block diagram of Maximal Ratio Combining.

• Equal Gain Combining. An Equal Gain Combiner is obtained when the gains used in MRC
are all set to unity. The disadvantage is that (like MRC) an individual receiver for each antenna
element is needed. However, the possibility of producing an acceptable signal from a number
of unacceptable inputs is still retained, and the performance is only marginally inferior to MRC
and usually superior to selection diversity.

The above described diversity techniques are all based on the desire to provide wireless link
improvement. However, the bandwidth efficiency (i.e., the ratio between the effective bit rate and
the bandwidth), given in bpslHz (bits per second per Hz), is not increased. For time diversity and
frequency diversity the bandwidth efficiency is even reduced. This can be easily seen, namely, for
time diversity, the bandwidth stays the same, but the effective bit rate in reduced by a factor Land
for frequency diversity, the effective bit rate stays the same but the radio frequency bandwidth is L
times larger. If in addition to diversity we also want to obtain a more bandwidth efficient wireless
communication system, we have to find other techniques.

1.2 Space Division Multiplexing

A promising solution for significant increase of the bandwidth efficiency is the exploitation of the
spatial dimension. Recent information theory research has revealed that the multipath wireless
channel is capable of enormous capacities, provided that the multipath scattering is sufficiently rich
([14], [15], [37], [38], [41] and [58]). The multipath scattering can be properly exploited through
the use of an appropriate processing architecture. The diagonally-layered space-time architecture
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proposed in [14], known as diagonal BLAST (Bell Laboratories Layered Space Time) or D­
BLAST, is such an approach. However, the diagonal approach is very complex and hard to
implement. Therefore, a simplified version of BLAST, known as vertical BLAST or V-BLAST is
proposed in [60]. A prototype has been built by which it is demonstrated that bandwidth
efficiencies of 20 - 40 bpslHz can be achieved in an indoor propagation environment at realistic
SNRs and error rates.

These techniques can be captured under the more general term Space Division Multiplexing (SDM)
or Space Division Multiple Access (SDMA). SDM techniques exploit the spatial dimension using
multiple antennas at receiver as well as at the transmitter. Basically, these techniques transmit
different signals on different transmit antennas simultaneously, with the goal of increasing the
capacity and the SNR performance. At the receiver these different signals can be recovered by the
Space Division Multiplexing techniques described in this report. For proper recovering of the
transmitted signals, multiple antennas are required at the receiver as well. The difference between
SDM and SDMA is that the latter allows different users to transmit simultaneously on a single
antenna each), whereas in SDM a single user transmits simultaneously on multiple antennas.
Hybrid schemes where several users transmit simultaneously on different antennas may also be
possible.

One can naturally ask in which way SDM(A) techniques differ from traditional multiple access
techniques. Some of these differences are worth pointing out [60]: First, unlike code-division or
other spread-spectrum multiple access techniques, the total channel bandwidth utilised by a
SDM(A) system is only a small fraction in excess of the symbol rate, i.e. similar to the excess
bandwidth required by a conventional transmission technique like Quadrature Amplitude
Modulation (QAM). Second, unlike Frequency Division Multiple Access (FDMA), each
transmitted signal occupies the entire system bandwidth. Finally, unlike Time Division Multiple
Access (TDMA), the entire system bandwidth is used simultaneously by all of the transmitters all
of the time. These differences together are precisely what give SDM(A) the potential to realise
higher bandwidth efficiencies than the other multiple-access techniques.

1.3 Target applications

One of the target areas we think will benefit from the research presented in this thesis is the area of
the wireless local area networks (WLANs). Since the beginning of the nineties, WLANs for the
900-MHz, 2.4-GHz and 5-GHz ISM (Industrial, Scientific and Medical) bands have been available,
based on a range of proprietary techniques [53]. In June 1997 the Institute of Electrical and
Electronics Engineers (IEEE) approved an international interoperability standard, called IEEE
802.11 [24]. This standard specifies a number of Medium Access Control (MAC) procedures and
three different Physical Layers (PHY). Two of these PHYs are radio-based and use the 2.4-GHz
band and the other PHY uses infrared light. All PHYs support a data rate of 1 Mbps and optionally
2 Mbps.

User demand for higher bit rates and the international availability of the 2.4-GHz band has spurred
the development of a higher speed extension to the 802.11 standard. In July 1998, a proposal was
selected for standardisation, which describes a PHY providing a basic rate of 11 Mbps and a fall
back rate of 5.5 Mbps. This PHY can be seen as a fourth option, to be used in conjunction with the
MAC that is already standardised. Practical products, however, are expected to support both the
high-speed 11 and 5.5 Mbit/s rate modes as well as the 1 and 2 Mbps modes. A product based on
this IEEE 802.11 standard is WaveLANTM of Lucent Technologies (see www.wavelan.com). The
modem, that is implemented as PC card, is shown in Figure 1-5.
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Figure 1-5: An IEEE 802.11 modem in the form of a PC card.

Since January 1997, in the United States 300 MHZ in the 5-GHz band came available for the use of
a new category of unlicensed equipment called Unlicensed National Information Infrastructure
(UNII) devices [13]. In July 1998, the IEEE 802.11 standardisation group selected Orthogonal
Frequency Division Multiplexing (OFDM) as transmission technique for the recently available
spectrum in the 5-GHz band. This adds a fifth PHY option to the 802.11 standard, with data rates
ranging from 6 up to 54 Mbps ([25] and [46]).

Besides IEEE 802.11, two other standardisation groups were formed. In Europe, the European
Telecommunication Standards Institute formed the standardisation group Broadband Radio Access
Networks (ETSI BRAN) [12] and in Japan equipment manufacturers, service providers and the
Ministry of Post and Telecommunications are co-operating in the Multimedia Mobile Access
Communication (MMAC) project [29]. ETSI BRAN is now working on extensions of the ETSI
HYPERLAN type 1 standard. Three extensions are under development: HIPERLAN/2, a wireless
indoor LAN with a Quality of Service provision; Hiperlink, a wireless indoor backbone; and
HiperAccess, an outdoor, fixed wireless network providing access to a wired infrastructure. The
MMAC project is started to define new wireless standards similar to those of IEEE 802.11 and
ETSI BRAN. Additionally, MMAC is also looking into the possibility for ultra-high-speed wireless
indoor LANs supporting large-volume data transmission at speeds up to 156 Mbps using
frequencies in the 30- to 300-GHz band.

Following the IEEE 802.11 selection of OFDM as basis for transmission in the 5-GHz band, ETSI
BRAN and MMAC also adopted OFDM for their physical layer standards. The three
standardisation groups have worked in close co-operation since then to make sure that differences
among the various standards are kept to a minimum, thereby enabling the manufacturing of
equipment that can be used world-wide.

So, since there is a lot of effort going on to adopt OFDM as a world-wide standard for Wireless
LANs, the research to next generation WLANs with even higher data rates, but based on these
OFDM standards, is a logical consequence. In this thesis, a system is proposed that combines
Space Division Multiplexing with OFDM as a spectrum efficient transmission technique, to
achieve higher data rates and to obtain sufficient delay-spread robustness.

The rest of this thesis is organised as follows: in Chapter 2 a signal model for the wireless link is
given. Various Space Division Multiplexing techniques are described and their performance is
compared. In Chapter 3 the complexity of these Space Division Multiplexing techniques is
determined and compared. Chapter 4 gives a summary of the Orthogonal Frequency Division
Multiplexing transmission technique. In Chapter 5 this technique is extended with the SDM
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method with the best performance, i.e. Maximum Likelihood Decoding (MLD). In this chapter a
convolutional forward error correction code is applied to the data transmitted by the OFDM system
with SDM. A Viterbi decoder is used to decode the convolutional code. From [17] it can be
concluded that Viterbi decoders perform better if they get soft-decision values as input. Therefore,
the MLD method is somewhat adapted to provide soft-decision values as output, which again are
used as input for the soft-decision input Viterbi decoder. Finally, conclusions and future work are
discussed in Chapter 6.

1.4 Related work

As mentioned before, there are different ways to improve the performance and/or capacity of
wireless communication systems. Diversity is one of the techniques that is often used to improve
the system performance. There are two basic types of diversity, namely, receiver diversity and
transmitter diversity. The main difference is that for a well performing transmitter diversity system,
the transmitter needs some information about the radio channel, thus, if the downlink and uplink
carrier frequencies are different, feedback is required from the receiver. For receiver diversity, the
transmitter does not need any information about the radio channel, and no feedback is required.

There are many publications on receiver diversity for single-carrier wireless systems. An overview
of different receiver diversity techniques is given in Section 1.1. The reader is referred to the
literature mentioned in this section and the references therein. Furthermore, in [28] the feasibility of
polarisation equal gain combining and selection diversity in indoor cells at 1800 MHz is
investigated. The combination of selection diversity with Maximal Ratio Combining is given in
[39]. Other applications of receiver diversity are Smart Antenna Arrays ([43]). With an (adaptive)
antenna array at the receiver and additional processing it is possible to do beamforming, i.e.,
"listen" to the direction the (multipath) signals come from. An adaptive array is based on an
internal feedback control loop that updates the complex weight coefficients of the array. After
weighting the received signals, the output of each antenna element is combined in order to
minimise the variation in amplitude of the received signals. In this way beams are formed to
receive the desired signals. It is also possible to place nulls in the direction of interferers.
Beamforming algorithms (or direction of arrival (DOA) estimation algorithms) include the MUSIC
algorithm, ESPRIT algorithm and the MODE estimate algorithm. An extensive list of references on
DOA estimation is given in [38].

Transmitter diversity for single-carrier wireless systems has widely been researched. As indicated
in [59] and the references therein, transmitter diversity can be based on linear transforms. However,
neither transmitter diversity nor receiver diversity increase the system capacity, whereas the Space
Division Multiplexing techniques proposed in this report do. Furthermore, it will be shown in this
thesis that the latter techniques are, just like transmitter and receiver diversity, able to achieve
performance improvement by exploiting diversity.

Currently, a lot of research is ongoing to apply transmitter or receiver diversity to multi-carrier
techniques like Orthogonal Frequency Division Multiplexing (OFDM). The advantage of OFDM
over an equalised single carrier system is that, for a given delay spread and bit rate, the OFDM
receiver is less complex to implement [53]. The basic principles of OFDM are discussed in [6],
[44] and [56]. A number of transmitter diversity techniques for OFDM are proposed in [30], [42]
and [61]. Furthermore, research on applying receiver diversity techniques to OFDM is reported in
[4], [7], [18], [26] and [54]. In [4], a coherent diversity receiver for OFDM signals is presented.
The received signals are optimally combined using Maximal Ratio Combining. In [7] the OFDM
subchannels are spread over multiple transmit antennas to randomise the fading across the OFDM
bandwidth. At the receiver two branch antenna diversity is used. To realise the full potential of the
diversity, Reed-Solomon coding across subchannels is used. The error correction ability of this
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code benefits from the randomisation of the fading by spreading the OFDM subchannels across
multiple transmit antennas. In [26] this principle is extended with convolutional coding. In [18], at
the receiver the OFDM frequency band is divided in subbands (consisting of a multiple of
subcarriers) and Maximal Ratio Combining is performed on each subband. It is shown that the
Signal-to-Noise Ratio performance increases compared to using the same MRC weights for all
subcarriers of the OFDM signal. Ideally, MRC should be performed per subcarrier. In [54] a
method is described on how to combine adaptive antennas and OFDM for operation in a faded
delay-spread channel. All these techniques show (significant) SNR performance improvement, all
without increasing the capacity. In this report OFDM is combined with Space Division
Multiplexing and it is shown that a system based on SDM is capable of high bandwidth
efficiencies, which allows the transmission of higher bit rates using the same bandwidth.

In [37] a method is described to extend multitone (i.e., multicarrier) systems like OFDM with
SDM. However, in this technique the singular value decomposition of the channel matrix is applied
which implies that, both the receiver and the transmitter need to know the channel. The advantage
of the SDM techniques, described in this thesis, is that the transmitter does not need to know the
channel.

Closely related to the Space Division Multiplexing techniques are the so-called Space-Time codes.
In Space-Time coding the design of channel codes is considered to improve the data rate and/or the
reliability of communications over fading channels using multiple transmit antennas. Data is
encoded by a channel code and the encoded data is split into a number of parallel streams that are
simultaneously transmitted on different transmit antennas ([1], [31] and [49]). The code words, that
have a space and time dimension, are chosen such that both the coding gain and diversity gain are
maximised. In [1] the application of Space-Time codes to an OFDM system is described and it is
shown that this combined system performs well at reasonable SNRs. The simple transmitter
diversity system proposed in [2] can be seen as a simple space-time code approach. A disadvantage
of Space-Time coding is that if the radio channel is changing, new Space-Time codes need to be
found for which, again, both the coding gain and diversity gain are maximised. This involves a lot
of processing and, therefore, we have looked to other methods to increase data-rates.



2 Multi-Antenna Link: Signal model and SDM techniques

One way to increase the capacity of wireless communication systems is by exploiting the spatial
dimension using multiple antennas at the receiver as well as at the transmitter ([15] and [37]). The
idea is to transmit several streams of data simultaneously over the air. Of course these parallel
streams of data get mixed up in the air. However, at the receiver it is possible to "decode" this
mixture of data. This type of transmission is called Space Division Multiplexing (SDM). In this
chapter, a number of different decoding algorithms for SDM will be discussed and their
perfonnance will be compared. In order to describe the different decoding methods, first a signal
model for the multi-antenna link will be stated.

SN,-i TXN,

Figure 2-1: The physical model of a system with Space Division Multiplexing (SDM).

2.1 Signal model

We consider a communication system comprising Nt transmit (TX) and N r receive (RX) antennas
that operates in a Rayleigh flat-fading environment and exploits the spatial dimension by using
Space Division Multiplexing (SDM) (see Figure 2-1, where MAPU stands for Multi Antenna
Processing Unit). A channel is said to be a Rayleigh jading channel when the channel impulse
response is modelled as a zero-mean complex-valued Gaussian process [34]. In this case, the
envelope of the channel impulse response at any time instant has a Rayleigh probability distribution
and the phase is uniformly distributed in the interval (O,21t). This can be shown as follows. Suppose
we model the channel impulse response H as a zero-mean complex Gaussian variable, like:

H =A+ jB (2.1)

where A and B are zero-mean statistically independent real Gaussian variables, each having a
variance d /2. The variance of the complex Gaussian variable H can be shown to be:

var(H) =E[H 2
]- E[H]2 =E[(A + jBXA + jB)]

=E[A 2 + 2jAB + B 2
] = E[A 2 ]+ E[B 2 ]= 0-

2

Then, in order to find the distribution of the envelope we introduce a new variable:

(2.2)

(2.3)

From the analysis of [34] it follows that Y is chi-square-distributed with two degrees of freedom.
Hence, the probability density function (pdt) of Y is:

,
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(2.4)

Now, suppose we define a random variable R to denote the envelope of the channel impulse
response:

(2.5)

In order to find the pdf of R, we need to make a change of variables in the Probability Distribution
Function (PDF) of Y (given by Fy(y)), to first find the PDF of R:

(2.6)

where the fact is used that r ~ O. Then the pdf of R is given by:

(2.7)

This is the pdf of a Rayleigh-distributed random variable, thus the envelope of H has a Rayleigh
probability distribution. The fact that the phase of H is uniformly distributed in the interval (O,21t)
can be seen intuitively and will not be shown here.

Once the channel characteristics are specified, we can introduce the signal-model. Suppose that at
discrete times, the transmitter sends an Nt-dimensional (complex) signal vector s (i.e., it transmits
Nt parallel streams of data), and the receiver records an Nr-dimensional complex vector x. Then the
following signal model describes the relation between 5 and x:

x=Hs+v (2.8)

where H is an Nr x Nt complex propagation matrix that is constant with respect to the symbol time
and assumed known at the receiver (e.g. via transmitting training sequences) and the vector v (Nr­

dimensional) represents additive receiver noise. The vector s is assumed to have zero-mean,
uncorrelated random variables with variance equal to 0-/. The total power of 5 (i.e., £[5·5]) is
assumed to be P. Thus, the covariance matrix of s equals:

(2.9)

where· denotes the conjugate transpose of a vector or matrix and the matrix I with subscript Nt
represents the identity matrix with dimension Nt. In the rest of this report· will be used to denote
the conjugate transpose of a vector or matrix, unless indicated otherwise. Note that the total
transmitted power does not depend on the number of transmit antennas but is assumed fixed at P.

As said before, the channel matrix is denoted by H. It is assumed the channel matrix H has
independently and identically distributed (ij.d.), zero-mean, complex Gaussian, unit variance
entries (the variance of each entry is 0/ = 1). In other words, each component has a Rayleigh
distribution (like H) with d = 0-/ = 1. Thus, the system operates in a Rayleigh flat-fading
environment.
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The vector v is Nr-dimensional and represents additive receiver noise. The vector v is assumed to
have zero-mean, uncorrelated random variables with variance a/ and a covariance matrix equal to:

(2.10)

Furthermore, it is assumed that the vectors s and v are independent and thus the following holds:

E[sv'] =0. With the above described assumptions about the power of the signal and the noise, the

expected Signal-to-Noise Ratio (SNR) per receiving antenna, i.e. the SNR for each component of x,
can be found and is equal to:

(2.11)

where Es stands for the signal power per receive antenna and No denotes the noise power per
receive antenna.

In order to explain the different Space Division Multiplexing techniques, the following notations
will be used:

(2.12)

where Xi and Sj represent the i-th element of x and s respectively. Hi and hi denote the i-th row and
i-th column of H, respectively.

In the following sections, a number of SDM decoding techniques for the receiver will be discussed
and compared. One way to compare the different techniques is by comparing their bit error rate
(BER) performance. The BER performance depends on the SNR and, thus, can be visualised by a
figure in which the BER is depicted against the SNR. Simulations are performed in order to obtain
these BER characteristics. Furthermore, for some SDM techniques, theoretical representations (or
upperbounds) of the BER characteristics will be deduced, in order to verify the simulation results.

2.2 The Zero Forcing Algorithm

The first decoding technique forms the basis of the following decoding algorithms to be described
in this report (except for the Maximum Likelihood Decoding): it is the so-called Zero Forcing (ZF)
algorithm. This algorithm is based on a conventional adaptive antenna array (AAA) technique,
namely, linear combinatorial nulling [60]. In this technique, each substream in turn is considered to
be the desired signal, and the remaining data streams are considered as "interferers". Nulling of the
interferers is performed by linearly weighting the received signals so that all interfering terms are
cancelled. For Zero Forcing, nulling of the "interferers" can be performed by choosing weight
vectors d i (with i =1,2, ... , Nt) such that

dTh. ={O, j::f:.i
I} 1 . ., ] =1

(2.13)
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where T stands for the transpose of a vector or matrix and hj denotes the j-th column of the channel
matrix H. However, when we take a closer look to this criterion, solving the weight vectors is equal
to finding a matrix D such that:

D·H=I (2.14)

where D is a matrix that represents the linear processing in the receiver. The i-th row of D is equal
to the transpose of the i-th weight vector d; and I is the identity matrix. So, by forcing the
"interferers" to zero, each desired element of s can be estimated. If H is not square, D equals the
pseudo-inverse of H:

(2.15)

where + represents the pseudo-inverse. In order for the pseudo-inverse to exist, Nt must be less than
or equal to N" because for Nt larger than N" H*H is singular and its inverse does not exist [45].
Furthermore, note that in order for the inverse to exist, the columns of H must be independent.
Regarding the i.i.d. assumption of the elements of H, independence is usually an approximation,
which is justifiable if the antenna spacing is chosen equal to or larger than }J2 [15] (where A
represents the wavelength of the transmission frequency) and if the system operates in a rich­
scattered environment, which can be modelled by Rayleigh flat-fading. Thus, for Nr~ Nt and if the
inverse of H*H exists, the estimates of s (given by Sest) can be found by:

Sest =Dx

= (H*HtH*x

or, equivalently:

Using Formula (2.17), (sesJ;, i.e. the i-th component of Sest, can be written as:

(2.16)

(2.17)

(2.18)

where H7 represents the i-th row of H+, which, according to Formula (2.13), is equal to the

transpose of the i-th weight vector d;. Note that dt is a so-called nulling vector [60]. As a final step,
(sest); can be sliced to the nearest Quadrature Amplitude Modulation (QAM) constellation point,
these sliced signals are denoted by S. In this way, all Nt elements of S can be decoded at the
receiver.

The in this section described ZF algorithm can be simulated and its BER performance can be
obtained (see Section 2.7). To verify the simulations it is useful to deduce a theoretical
representation of the BER performance of a system based on the ZF algorithm. A theoretical
representation can be obtained using the fact that the diversity order of the average error probability
of such a system with antenna configuration (Nt,Nr) , is equal to a system with Maximal Ratio
Combining (MRC), one transmitting (TX) antenna and Nr-Nt+1 receiving (RX) antennas [58]. Note
that a diversity order of one means that the BER improves by a factor of 101 if the SNR is increased
by 10 dB. In case of a diversity order of two, if the SNR is increased by 10 dB, the BER improves
102 times, etc. With the knowledge that the ZF algorithm can be compared with MRC, an exact
representation of the ZF solution can be deduced from the diversity analysis performed in [34].
Here, a summary will be given.
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Figure 2-2: Model of a digital communication system with diversity.

Suppose we have a system, based on MRC, comprising one transmit and L receive antennas (see
Figure 2-2) and assume that the system operates in a Raleigh flat-fading environment, then the
channel elements can be written as:

(2.19)

where hk represents the channel from the TX antenna to the k-th RX antenna, ak denotes the
channel attenuation factor and the phase shift is given by fA. Furthermore, we assume that the total
channel is perfectly known at the receiver. Now, let us consider the performance of BPSK with
Lth-order diversity. From Section 1.1 it is known that a MRC system combines the received signals
by multiplying them with the conjugate of the corresponding channel element. Thus, for a system
with MRC operating in a Raleigh flat-fading environment the output can be expressed as a single
decision variable in the form:

(2.20)

where Vk denotes the complex Gaussian noise and s is the transmitted symbol that, for BSPK, is
equal to "-JEb or -"-JEb, where Eb denotes the mean transmitted power. Thus, s only consists of one
element in case of MRC (i.e., the system has only one transmit antenna). The decision variable U is
used in the decoder to recover the transmitted s. If U> 0 then the decoder assumes that s = "-JEb is
transmitted and if U < 0 then it is assumed that s = -"-JEb is transmitted. For a fixed set of {~} and
the assumption that s = "-JEb is transmitted, the decision variable U is Gaussian and with the mean
noise power per receive antenna equal to No, the probability that U is less than zero is:

(2.21)

where Q is the function that is frequently used for the area under the tail of the Gaussian pdf and
defined as:

1 oc 2

Q(x)= ~ fe-I /2dt andx;:::O
v 2:Jr J:

(2.22)
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The SNR per bit, n, is given as:

L E L

Yb = E_ba; =EYk
k=l No k=l

Space Division Multiplexing for OFDM Systems

(2.23)

where '}{ is the instantaneous SNR on the k-th channel. Because n can be seen as a chi-square­
distributed random variable with 2L degrees of freedom, the probability density function p( n) is
[34]:

(2.24)

where rc is the average SNR per channel. In order to obtain the total BER, we need to average the
conditional error probability given by Formula (2.21) over the fading channel statistics:

..,

P2 =fP2(Yb )P(Yb )dYb
o

There is a closed-form solution for this integral, which can be expressed as:

[1 ]L L-l (L -1+kJ[1 ]kP2 = 2 (1-.u) ~ k . 2 (1 +.u)

where, by definition,

.u- u=-VI+Y:

(2.25)

(2.26)

(2.27)

The conditional error probability in case s = -;JEb is transmitted is also equal to Formula (2.26),
thus, this leads to a total error probability of P2/2 + P2/2 = P2. When rc satisfies the condition rc»
1, the term (l +11)/2;::: 1 and the term (l - 11)/2 .. 1I4rc. Furthermore,

(2.28)

Therefore, when rc is sufficiently large (greater than 10 dB), the probability of error in Formula
(2.26) can be approximated as

(2.29)

From, this formula we observe that the error rate decreases inversely with the L-th power of the
SNR, i.e., the error rate decreases with an L-th order of diversity.

Formula (2.26) can be extended to a multi-transmit antenna case as follows: as described before, in
[58] it is shown that the diversity order of an (Nt,Nr) system based on ZF is equal to Nr-N,+1. So,
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substituting L= Nr-Nr+l in Formula (2.26) gives the exact BER for a ZF solution of an (Nr,Nr)
system with BPSK. Note that, if p represents the SNR per receiving antenna, the SNR per channel
equals:

(2.30)

The theoretical result, given in (2.26), will be used in Section 2.7 to verify the BER performance
that the simulation of the ZF algorithm gives as output.

2.3 The Minimum Mean Square Error solution

Another approach in estimation theory to the problem of estimating a random vector s on the basis
of observations x is to choose a function g(x) that minimises the Mean Square Error (MSE) [36]:

e2 == E[(s - Sest r (s - Sest)] == [(s - g(x)r (s - g(x))] (2.31)

An exact function g(x) is usually hard to obtain, however, is we restrict this function to be a linear
function of the observations, an exact solution can be achieved. Using linear processing, the
estimates of s can be found by:

Sest == Dx (2.32)

Now, to obtain the linear Minimum Mean Square Error (MMSE), D must be chosen such that the
Mean Square Error i is minimised:

e2 == E[(s -Sest r (s -Sest)] == E[(s - Dxr (s - Dx)]

Since a"a == tr(aa"), where tr(·) stands for the trace of a matrix, the MSE can be rewritten as:

E[(s - Dx)* (s - Dx)] == tr(E[(s - DxXs - DxfJ)
== tr(Qs -QsxD" - DQ xs +DQxD")

(2.33)

(2.34)

where, Qs == E[ss"], Qs.r == E[sx"], Qxs == E[xs"] and Q.. == E[xx"]. In order to minimise this MSE over
D, we fIrst need to make some remarks.

Remark that the covariance matrices are Hermitian: Q == Q" [45]. To prove this, suppose that Q ==
E[aa"] then:

(2.35)

where the fact is used that (AB)" == B"A". Furthermore, remark that the covariance matrices are
nonnegative defInite. A Hermitian matrix Q is said to be nonnegative definite if z*Qz ~ 0 for all
nonzero complex vectors z. Suppose again that Q == E[aa"], then the proof goes as follows:

(2.36)
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Furthermore, remark that each eigenvalue of a nonnegative definite matrix is a nonnegative real
number [22]: let Q be nonnegative definite, let Abe an eigenvalue of Q, let z be an eigenvector of
Q associated with It, and calculate z'Qz = z'Il.z = Alzlz• Therefore, A = z'Qz/ld is real and
nonnegative since it is a ratio of a real nonnegative and a real positive number.

Finally, remark that the eigenvectors of a Hermitian matrix Q, if they come from different
eigenvalues, are orthogonal to one another [45]. The proof of this remark starts with the
information given: Qx =Alx and Qy =Itzy and Q =Q', where x and yare the eigenvectors for the
eigenvalues Al and Itz, respectively. Then, it can be shown that:

(~xf y = (Qxf y = x'Qy = x'(A.zy) (2.37)

The outside numbers are Alx*Y = Itzx'y, since the A's are real. Now we use the assumption Al '* Itz,
which forces the conclusion that x'y = 0, which again shows that x and y are orthogonal. Note,
however, that any multiples x/a and y/b would be equally good as eigenvectors. Suppose we
choose a = IIxli and b = lIyll, so that x/a and y/b are unit vectors; the eigenvectors have been
normalised to have length one. Since they were already orthogonal, they are now orthonormal. If
these orthonomal eigenvectors are chosen to be the columns of V, then we have V'QV = A, where
A is a diagonal matrix with the eigenvalues of Q on the diagonal and V is said to be a unitary
matrix. For unitary matrices the following condition holds: V'V = I.

Now, if we go back to the MMSE problem, we see that we may write Qx (because Q. is Hermitian
and nonnegative definite) as follows:

Q = U'A U = U'AI/z AI/zU = (A I/zU)' AI/zU = A'A
x x x x x x (2.38)

where A ~z is a diagonal matrix with the square-roots of the eigenvalues on the diagonal (this is

allowed because the eigenvalues are real and nonnegative) and A is said to be the "square-root" of
Q.. Finally, we can rewrite the MMSE problem to a form, from which a solution for D can be
obtained that minimises the Mean Square Error:

cZ = tr(Qs -QsxD' - DQ.o + DQxD')

= tr(Qs -QsxA -lAD' -DA'A'-lQxs +DA'AD')

=trCQ -Q A-lA'-lQ Q A-lA'-lQs u .0+ sx .0

-QsxA-lAD' -DA'A'-lQ.o +DA'AD')

=tr(Qs - QsxA-lA'-lQxs + (DA' - QuA-l XDA' -QuA-l r)

(2.39)

Because the first and the second term of this result do not depend on D, the result is minimised if:

DA' -Q A-l =0sx

When this is worked out, finally, D is obtained:

DA' =QuA-l

D = QuA-lA'-l = Qs,,(A'At = QsxQ~l

(2.40)

(2.41)
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where the fact is used that A-lB-l =(BArl. When we go back to our channel model (x =Hs + v)
and assume that Qs =E[ss"] =0/1 and Qv= E[vv"] =ail and that Qx =E[xx"] =HQsH" + Qvis
invertible, then, with Qsx =E[sx"] = E[s(s"H" + v")] =QsH" (s and v are assumed independent),
D becomes:

(2.42)

where a = a//a/. When we have a matrix of the form A + BCE, it is often useful to see what
happens when applying the Matrix Inversion Lemma [27], which is given by:

(2.43)

where, A and C are square invertible matrices. When using the Matrix Inversion Lemma and
demanding that Qs and Qv must be invertible (this is true if a/ > 0 and ai> 0), D can be rewritten
as follows:

D=QsH"(Qv +HQsH"t =QsH"(Q~l_Q~lH(H"Q~lH+Q~ltH"Q~l)

= QsH"Q~l -QsH"Q~lH(H"Q~lH +Q~l tH"Q~l

= (Qs (H"Q~lH +Q~l )-QsH"Q~lH)(H"Q~lH +Q~l tH"Q~l (2.44)

= (H"Q~lH +Q~l tH"Q~l = (~H"H+~IJ-l ~H" = (H"H +aItH"
a v ()s ()v

where a = ai/a/ > 0 because we have demanded that a/ > 0 and av
2 > O. However, a nice

consequence of the last result is that if we substitute a = 0 in it, we obtain the Zero Forcing
solution.

So, to conclude, it can be said that in order to minimise the Mean Square Error (over D), the
processing at the receiver must be equal to:

(2.45)

where a is equal to ai/a/ = Nt /p. From Formula (2.45) it becomes clear that the ZF solution
corresponds to an MMSE solution with a = O. On the other hand, the MMSE solution can be
considered to be a ZF solution with:

(2.46)

Notice that in practice it is hard to measure a, so, usually a fixed a that does not depend on the
Signal-to-Noise Ratio is used instead.

2.4 Zero Forcing with Decision Feedback Decoding

The linear nulling approach as described in Section 2.2 is viable, but as will become clear from the
results in Section 2.7, superior performance is obtained if non-linear techniques are used. One can
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imagine that if somehow first the most reliable element of the transmitted vector s could be
decoded and used to improve the decoding of the other elements of s, superior performance can be
achieved. This is called symbol cancellation [60] and it exploits the timing synchronism inherent in
the system model (the assumption of co-located transmitters makes this completely reasonable).
Furthermore, linear nulling (i.e., ZF) or MMSE is used to perform detection. In other words,
symbol cancellation is based on the subtraction of interference from already detected components
of S from the receiver signal vector x. This results in a modified receiver vector in which,
effectively, fewer interferers are present. Because this principle is somewhat analogous to decision
feedback equalisation, it is called Decision Feedback Decoding (DFB).

When symbol cancellation is used, the order in which the components of s are detected becomes
important to the overall performance of the system. To determine a good ordering of detection, the
covariance matrix of the estimation error s - Sest will be used. For ZF, this covariance matrix can be
shown to be:

E[(s -Sest Xs -Sest r]= E[~ -(H*HtH*X~ -(H*HtH*XJ]
=E[~-S-(H*HtH*V rS-S-(H*HtH*V)*]

= E[(H*HtH*vv*H(H*Ht]= a; (H*Ht == a;P

or, using the pseudo-inverse:

(2.47)

(2.48)

Let (Sest)i be the i-th entry of Sesh then, the "best" estimate, (Sest)i, is the one for which P ii (i.e., the i­
th diagonal element of P) is the smallest, because this is the estimate with the smallest error
covariance. From Formula (2.48) it becomes clear that P a is equal to the squared length of the i-th
row of the pseudo-inverse. So find the minimum squared length row of H+ is equivalent. Suppose
that the order in the pseudo-inverse of H is arranged such that the row with the least squared length
becomes the last row (the i-th row of H+ is permuted wiJh the Nt-th row), then the Nt-th element of
Sest can be independently decoded. Let SN, denote the decoded value, then this value can be used to

improve the estimate of the remaining N,1 signals (i.e., symbol cancellation). If this procedure to

find the "best" estimate is performed in a recursive way, the so-called Optimal Detection (OD)
method as described in [60] is obtained. Here it is called the Decision Feedback Decoding
algorithm with optimal detection. The recursive algorithm can be described as follows:

1. Compute H+ ;

2. Find the minimum squared length row of H+ and permute it to be the last row, permute the
columns of H accordingly;

3. Form the estimate of the last component of s. In case of ZF: (sest)N = H~ x, where the
, I

transpose of H~ is said to be the N,-th nulling vector [60];
t

4. Obtain SN, (via slicing) from (Sest)N,;

5. (While Nt -1> 0) go back to step 1, but now with:
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H ---7 H(N,-l) - [h
- 1

Note that in case step 2 is skipped, the DFB algorithm is performed without optimal detection and
the overall performance will be less, however, processing time is saved.

2.5 Minimum Mean Square Error with Decision Feedback Decoding

In order to perform Decision Feedback Decoding with Minimum Mean Square Error decoding, the
DFB algorithm of Section 2.4 has to be adapted somewhat. Again, the covariance matrix of the
estimation error S - SeSI will be used to determine a good ordering of detection. For MMSE, this
covariance matrix can be shown to be:

£[(s -SesJS-SesJJ = £[(S- D(Hs+ v)Xs -D(Hs+ v))*]

= £[((1 - DH)s - DvX(I - DH)s - Dv)*]

= a; (I - DH - H*D* + DHH*D)+ a;DD*

= (a;{aI+ H*H -H*H -(aI + H*HtH*H(aI + H*H)

+ (aI+ H*HtH*HH*H} + a;(aI+ H*HtH*H)(aI + H*Ht
l

=a;(aI +H*Ht == a;P

(2.49)

Note that P is somewhat different from the case where ZF is used as detection. In order the do DFB
based on the MMSE algorithm, the DFB algorithm is adapted and becomes:

1. Compute D (P is obtained while computing D);

2. Find the smallest diagonal entry of P and suppose this is the i-th entry. Pemmte the i-th column
of H to be the last column and permute the rows of D accordingly;

3. Form the estimate of the "best" component of s: (Se.JN =DN x, where D N represents the
" ,

last row ofD and its transpose is the Nt-th nulling vector [60];

4. Obtain SN, (via slicing) from (Se.JN, ;

5. (While Nt -1> 0) go back to step 1, but now with:

H ---7 H(N,-l) - [h
- 1

The BER performance of DFB with ZF and DFB with MMSE will be compared in Section 2.7.

2.6 Maximum Likelihood Decoding

The only decoding method described in this report that is not based on calculation of matrix
inverses is the Maximum Likelihood Decoding (MLD) algorithm. MLD is a method that compares
the received signal with all possible transmitted signals and estimates S according to the Maximum
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Likelihood principle. Suppose a matrix C gives all possibilities in S that could occur (the

dimensions of C are Nt x K, where K =M N, and M represents the number of constellation

points). Then, the receiver should store a matrix Y such that:

(2.50)

At the receiver, the most likely transmitted signal is determined, as the one for which

(2.51)

is minimal (with 1 5:,j 5:, K), i.e., the signal sJ that corresponds with the vector YJ which lays closed

to the received vector is said to be the most likely signal to be transmitted. Thus, S is chosen to be
the j-th column of C. This can be rewritten to the following formula where Sml represents the
maximum likelihood detection of the transmitted signal s:

(2.52)

Note that in the case of MLD, it is not required that NT 5:, NT'

Another way to arrive at this result is saying that we want to find the vector sJ for which the
probability P(s)x) is maximal (with 1 5:, j 5:, K). Note that according to [34], finding such a vector
leads to the minimisation of the probability of error.

Using Bayes' rule, the probabilities may be expressed as:

I I )_p(xls j )p(s j )

p\S j x - p(x) (2.53)

where p(xlsj) is the conditional probability density function of the observed vector given by Sj, and
pes) is the probability of the j-th signal being transmitted. If the K signals are equally probable to
be transmitted, then pes) = 11K. Furthermore, the denominator in (2.53) is independent of which
signal is transmitted. Consequently, the decision rule based on finding the signal that maximises
P(s)x) is equivalent to finding the signal that maximises p(xls).

The (conditional) probability density function p(xlsj) is a multivariate normal distribution. The
multivariate normal distribution of a real Gaussian random vector x with a covariance matrix Q is
equal to [3] (where the denotes the fact that the elements of the vector/matrix are real):

(2.54)

Following the same approach as in [47], this formula can be extended to the complex case. Here, a
summary will be given. A complex random vector x is said to be Gaussian if the real random
vector x:

x=[Re(x)] E 9\2N,
Irn(x)

(2.55)
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is Gaussian. We will say that a complex Gaussian random vector x is special if the covariance of
the corresponding x has the special structure

E[ .J 1[Re(Q) -Im(Q)]
Q = L(x -11 Xx -11) = 2 Irn(Q) Re(Q) (2.56)

where Q represents the covariance matrix of the complex vector x. Note that the covariance matrix
Q is Hermitian: Q = Q. (see Formula (2.35)). To transform the real multivariate normal
distribution to the complex case, we need a number of properties that exist for the mapping:

_ [Re(z)] _ [Re(A) - Irn(A)]
z ---7 z - () and A ---7 A - () ()Irnz ImA Re A

These properties are:

C = AB ¢:::} C = AB
C = A-1 ¢:::} C =A -1

det(A )= Idet(Ar = det{AA·)
y=Ax¢:::}y =Ax
Re{x·y)= x .y

(2.57)

(2.58)

The first, fourth and fifth property are straightforward. The second property follows from the first
and the fact that:

(2.59)

The third property follows from:

where, only in this case, the • stands for the conjugate of a vector/matrix (and not the transpose
conjugate of a vector/matrix).

Using Formula (2.56), we can say that Q =A /2 and that Q = A. Now, to make the transformation
more clear, we split the probability density function of the real multivariate normal distribution
given by Formula (2.54) in two terms. The first term to transform is the determinant and the second
is the exponent. The transformation of the determinant term is based on the third property of (2.58):

(2.61)

where the last equality is obtained using the fact that Q is a nonnegative definite matrix (see
Formula (2.36)). Furthermore, it is shown below Formula (2.36) that the eigenvalues of a
nonnegative definite matrix are real and nonnegative. This again leads to the observation that the
determinant of a nonnegative definite matrix is also real and nonnegative, because the determinant
is equal to the product of the eigenvalues [45]. This justifies the last equality of the formula above.
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The second term of the probability density function given by Formula (2.54) (i.e., the exponent
term), can be transformed to the complex case by using the second, fourth and fifth property of
(2.58) and the substitutions a =x - Ji and z =A -la :

exp(-+(x - Ji rQ -l(X - Ji ))= exp(-a *A -la )

=exp(-a *z )=exp(-Re(a'z))

= exp(- Re((x - Jir A-l(X - Ji)))

=exp(- (x - Jir Q-l(X - Ji))

(2.62)

where the last equality is obtained from the fact that, for a Hermitian matrix Q and for all complex
vectors z, the number z'Qz is real [45]. As a proof, we can compute (z'Qzr We expect to get the
conjugate of the 1 by 1 matrix z*Qz, but instead, we get the san1e number back: (z'Qz)" =z'Q'(z*)*
=z*Qz. So the number must be real.

Finally, if we combine the results, we get the complex form of the multivariate normal distribution:

p(x) =det(JZQt exp(- (x - Jir Q-l(X - Ji))

This leads to the following probability density function p(xlsj) for a specific H:

p(xIH,s j) = det(JZQt exp(- (x - Hs j)* Q-l (x - Hs j))

With Q equal to:

Q= E[(x - Ji Xx - Ji r ]

=E[(x - Hs j Xx - Hs j )* ]= E[vv' ]= a;I N,

this results in the conditional probability density function:

p(xIH,s j ) = det(7lQt' exp( - ~: (x - Hs j r(x - Hs j)J

Consequently, finding the maximum of the conditional probability P(s)x) leads to:

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

which equals Formula (2.52) and because finding the maximum of the conditional probability
P(sjlx) leads to the minimisation of the error probability [34], MLD is optimal in terms of BER
performance. However, a major disadvantage is that the complexity of MLD is proportional to

M N, , due to the fact that the size of Y grows exponentially with Nt (see Section 3.5).

Another way to show the superiority in BER performance of MLD over the other SDM techniques
is by checking its diversity order. Here, the diversity order of a MLD system, with an antenna
configuration of (Nt,Nr) = (2,2) and with a BPSK modulation scheme, will be determined and
conclusions about the diversity order will be drawn. For a general proof of the diversity order of a
MLD system, one is referred to [51].
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We will use the union upperbound that provides a representative estimate for the average
probability of symbol errors for a particular modulation signal [36]:

(2.68)

where K =M N, with M representing the number of constellation points and dij is the Euclidean
distance between the i-th andj-th signal point in the by the channel matrix adapted constellation.

Assuming a BSPK modulation scheme, there are four possible symbols to transmit:

S=[jEJ2J,s =( jEJ2 JS=[-jEJ2JandS =[-jEJ2J
1 ~Eb/2 Z -~Eb/2' 3 ~Eb/2 4 -~Eb/2

Furthermore, suppose that the channel matrix is given by:

(2.69)

(2.70)

Now, we can determine the average probability of error on the condition that e.g. 5l is transmitted.

In order to find ps(cls l ,H), we need to calculate three distances, namely, d l2, d 13 and d l4:

When we fill in these results in the Q-function, we see a large resemblance to the diversity analysis
of Section 2.2. The distances d l2 and d l3 involve a chi-square-distributed random variable with 2x2
degrees of freedom, whereas, the distance d l4 involves a chi-square distribution with 2x4 degrees
of freedom. We can conclude that the Q-terms that contain the distances d lZ and d 13 result in a
second order of diversity and the Q-term of dl4 leads to a fourth order of diversity. Because the
different Q-terms are added according to (2.68), the Q-term that contains the distance d l4 can be
neglected for high SNR due to its higher order of diversity. Because a BSPK modulation scheme is
used, we may use the diversity analysis performed in Section 2.2. Assuming that p('Ytz) and P(/b)
are chi-squared probability density functions of variables with 2x2 degrees of freedom (L = 2),
gives us the result:
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where,

(2.72)

(2.73)

because, the SNR per bit, ]1" in case of two transmit antennas, is two times as small as ]1, from
Formula (2.23).

Due to the assumption that the symbols given by (2.69) are equally likely to be transmitted and the
fact that for a given H the distances between the symbols stay the same when a different symbol
than 81 is transmitted, the final average probability of error becomes Ps(E) = Ps(a81)' So, a MLD
system with two receive antennas has a diversity order of two. When we repeat this analysis for
other antenna configurations (and other modulation schemes), we will find that the diversity order
of a MLD system with Nr receive antennas is equal to Nr• This can be explained as follows: if we
consider the general case with an H matrix with dimensions Nr x Nt. the distances between two
transmit vectors that only differ one symbol are the largest source for bit errors (e.g., d14 is
neglected in the (2,2) case, because it is larger than d12 and dI3). So, for the general case, we find:

where the vectors 81 and 82 are NiXl and given by,

(2.74)

s ­1-

~Eb / Nt

~Eb/ Nt

~Eb/ Nt ands ­1-

~Eb / Nt

-~Eb/ Nt

~Eb/ Nt (2.75)

We clearly see that d 12 is chi-square-distributed with 2xNr degrees of freedom. Using the diversity
analysis performed in Section 2.2 (in the same manner as is done for the (2,2) case), we find that
the diversity order of a MLD system with Nr receive antennas is equal to Nr•

2.7 Simulation results

The SDM techniques, which are described in the former sections, are programmed in Matlab (see
Appendix A) and some simulations are performed to obtain Bit Error Rate (BER) characteristics in
order to compare the performance of the different SDM techniques. In Figure 2-3 the BERs for the
different SDM techniques are depicted against EJNo per receiving antenna. An antenna
configuration of (Nt,Nr) = (2,2) is simulated. Furthermore, a BPSK modulation scheme is used and
the data is transmitted without coding. Note that the signal model is based on the SNR (EjNo) per
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receive antenna. So, if Et/Noper receiving antenna is given as input, this must be translated to E/No
per receive antenna. For an M-ary PSK modulation scheme or for M-ary QAM this is easily done
using the following equation:

E E
_s __b log M

- 2

No No

10° ,-----,---------,----~---_____,

(2.76)

a:
LJ.J
ttl

Hi

10 15 20 25
EtlNoper receive antenna (dB)

Figure 2-3: BER versus mean Eb/Noper receiving antenna for antenna configuration (Nt,Nr);;:: (2,2),
BPSK, no coding and with a) ZF, b) MMSE, c) ZF with DFB, d) MMSE with DFB, e) MLD, f)

theoretical curve of ZF and g) upperbound of MLD.

From Figure 2-3 it can be seen that MLD has the best performance. Furthermore, it seems that the
slope of the MLD method falls off with a second order diversity, whereas, the slope of the other
methods tends to a curve with a first order of diversity. From the BER analysis given in Section 2.2
it can be deduced that the diversity order of the ZF algorithm for a system with two transmit and
two receive antennas is equal to Nr-Nt+1 ;;:: 2-2+1 ;;:: 1. A first order diversity means that the BER
becomes 10 times smaller if the SNR increases by 10 dB. The theoretical curve for ZF (see
Formula (2.26)) is given by the dotted line (curve f) of Figure 2-3, but is hardly to see because the
simulation of the ZF solution (curve a) gives almost the same result. This shows the correctness of
the ZF simulation.

Furthermore, from Figure 2-3 it can be seen that the MLD curve (curve e) has a diversity of 2,
because the BER decreases 10 times with a 5 dB increase in SNR. This is in agreement with the
diversity analysis of Section 2.6, where it is said that the diversity order of a MLD system with 2
receive antennas is equal to 2. Despite the fact that the upperbound, for a MLD system with
antenna configuration (2,2) given by Formula (2.72), is an upperbound for the symbol error rate, we
will use it to verify the BER performance of this system. A MLD system that transmits BPSK
symbols on two transmit antennas sends two bits per symbol (one bit on each transmit antenna). A
symbol error occurs if one of these bits is decoded wrong or both bits are detected wrong.
Assuming that these three possibilities occur equally likely, the average number of bit errors per
symbol error is equal to 1/3 + 1/3 + 2/3 ;;:: 4/3. Because a symbol consists of 2 bits, the average bit
error rate in case of a symbol error equals 2/3. Multiplying Formula (2.72) by 2/3 results in the
dashed curve (curve g) of Figure 2-3. Thus, Formula (2.72), that has a diversity order of two, is
indeed an upperbound for the (2,2) MLD case.
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As observed before from Figure 2-3, the MLD method has the best performance. Its drawback,
however, is that a large matrix Y needs to be calculated and stored (see Section 2.6). Especially in
case of large constellation schemes and a large number of transmit antennas, this matrix becomes
extremely large, because the size of Y grows exponentially with Nt. This results in an exponential
growth of processing time and/or complexity in terms of increasing Nt (see Section 3.5).

100 r----~---_____,,_____---___,__---_____,

2510 15 20
E"INo per receive antenna (dB)

165'--------~--------'------'--------2!J"

5

a:
UJ
ll:l

10-4

Figure 2-4: BER versus mean EblNoper receiving antenna for antenna configuration (Nt,Nr) = (2,2),
QPSK, no coding and with a) ZF, b) MMSE, c) ZF with DFB, d) MMSE with DFB, e) MLD and f)

theoretical curve of ZF.

Figure 2-4 shows the same results as Figure 2-3, only instead of a BSPK modulation scheme, a
QPSK modulation scheme is used. Curve f) shows the theoretical value, which again is obtained
from [34]. Here, it is shown that the BER for a system with Maximal Ratio Combining with a
QPSK modulation scheme and a L-th order of diversity is equal to:

[ ( J( J
k]1 f.i L-l 2k 1- f.i2

P=-l- L'
• 2 ~2-f.i2 k=O k 4-2f.i2

(2.77)

where, by definition,

(2.78)

In this formula Yc represents the average received SNR per channel, thus, in case of multiple
transmitting antennas Yc is equal to EjNodivided by the number of transmit antennas Nt.

The largest difference between the results of Figure 2-3 and Figure 2-4 is the performance
deterioration of the methods based on DFB in case of QPSK. Apparently, the DFB algorithm is
performing less in case of more complex modulation schemes. It seems that in this case it is more
difficult to find the "best estimate" in the DFB algorithm (see Section 2.4 and 2.5).
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Figure 2-5: BER versus mean Eb/Noper receiving antenna for ZF, BPSK, no coding and for
antenna configuration (Nt,Nr) equal to a) (2,2), b) (2,3), c) (2,4) and d) (2,5).
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Figure 2-6: BER versus mean Eb/Noper receiving antenna for MLD, BPSK, no coding and for
antenna configuration (Nt,Nr) equal to a) (l,l), b) (2,2), c) (3,3) and d) (4,4).

In order to check the diversity analysis, some simulations are perfonned with the ZF algorithm and
with the MLD method, respectively, for different antenna configurations. The results are shown in
Figure 2-5 and Figure 2-6. When we compare these figures, the difference in diversity between
Zero Forcing and MLD becomes clear. A diversity order of one means that the BER decreases lOt
times it the SNR increases by 10 dB. A diversity order of two implies a 102 times improvement of
the BER with an SNR increase of 10 dB, and so on. From Figure 2-5 in can be seen that the
diversity order of curve a), b), c) and d) is respectively equal to 1,2,3 and 4. Clearly, this diversity
order satisfies the rule that the diversity order of a system with Nt transmit and Nr receive antennas
based on ZF is equal to Nr-Nt+1 (as described in Section 2.2).

From Figure 2-6 it can be seen that the diversity order of a system based on the MLD technique is
different from the diversity of ZF. The diversity ofMLD is equal to the number of receive antennas
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(Nr). So the diversity order of the curves a), b), c) and d) is respectively 1, 2, 3 and 4. It should be
noted that the BER performance of a MLD system does not lose its diversity order if the number of
transmitting antennas is increased, but the overall performance deteriorates (i.e., the curves of
Figure 2-6 shift to the right when more transmit antennas are added).

1Ci''-------~---~--~---"'-------J
5 10 15 20 25 30

E~No per receive antenna (dB)

Figure 2-7: BER versus mean EblNoper receiving antenna for MMSE with DFB, BPSK, no coding
and for antenna configurations (Nt,Nr): a) (1,1), b) (2,2), c) (3,3) and d) (4,4).

From Figure 2-3 it can be seen that the MMSE with DFB curve (curve d) follows the MLD curve
(curve e) for low SNR values. For higher SNR, curve d is bending towards a curve with a first
order of diversity and the difference in BER performance between MMSE with DFB and MLD
increases. Therefore, it may be interesting to compare the result of Figure 2-6 with simulations of a
system with MMSE and DFB and the same antenna configurations. These results are given in
Figure 2-7. We will use an example to compare the results of Figure 2-6 and Figure 2-7. If we
determine the SNR needed to achieve a BER of 10-4 for both systems with antenna configuration
(N"Nr) =(4,4), then we see that the MLD system needs an SNR of approximately 13.5 dB, whereas
the system with MMSE and DFB needs an SNR of 14.5 dB. So, the difference is approximately 1
dB. However, if we make the same comparison for a lower BER, then the difference in SNR
increases due to the fact that all the curves of Figure 2-7 bend to a curve with first order of diversity
for higher SNR values. So, in the range of a BER performance of 10-1 to 10-5

, MMSE with DFB
has a slightly worse performance compared to MLD. But, the complexity of MMSE with DFB does
not grow exponentially with the number of transmit antennas and, thus, especially for a larger
number of transmit antennas, MMSE with DFB might be a good alternative.

Note that, when a more complex modulation scheme is chosen, the difference between MMSE with
DFB and MLD increases (compare Figure 2-8 and Figure 2-9), because it seems that DFB is
performing worse for more complex constellations.
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Figure 2-8: BER versus mean EtJNo per receiving antenna for MLD, QPSK, no coding and for
antenna configuration (N"Nr) equal to a) (1,1), b) (2,2), c) (3,3) and d) (4,4).
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Figure 2-9: BER versus mean Eb/Noper receiving antenna for MMSE with DFB, QPSK, no coding
and for antenna configurations (N"Nr): a) (1,1), b) (2,2), c) (3,3) and d) (4,4).



3 Complexity Analysis

Another way to compare the different SDM techniques is by determining the complexity of the
different algorithms in terms of number of additions and multiplications. Such a complexity
analysis is a good measure for the final complexity of the (receiver) hardware. However, it should
be noticed that nothing is done to optimise the algorithms (for special hardware architectures), so,
the results presented in this chapter are not binding.

The final result of the complexity analysis will be given in real additions (R_ADDs) and real
multiplications(R_MULs). However, the signal model is complex and, thus, complex additions
(C_ADDs) and complex multiplications (C_MULs) take place. Therefore, the complex calculations
will be written in terms of real calculations. It is easy to see that one C_ADD consists of two
R_ADDs (the real and the imaginary part of the two complex numbers are added). A complex
multiplication can be rewritten in the following two ways [33]:

(a+ib Xe + id)= (ae-bd) +i(be +ad)

(a + ibXe + id) =(ae -bd) + i[(a +bXe +d)-ae -bd]

(3.1)

(3.2)

The first option consists of 4 R_MULs (ae, bd, be and ad) and 2 R_ADDs (ae - bd and be + ad).
The subtraction is counted as an addition and the addition before the i does not count because the
real and imaginary parts are stored separately. The second option has only three real multiplications
(ae, bd, (a + b)(e + d), plus five real additions. Compared with the first case, the total operations
count is higher by two, but in some hardware architectures, multiplication is a more complex
operation. In the rest of this chapter we will use the first option.

Furthermore, in the following sections more than once the complexity of a matrix multiplication
needs to be determined. Therefore, the general case is considered here. Suppose two matrices A
and B (real or complex) with dimensions C x D and D x E are multiplied:

D

Ajb j =[.ajkbkj
k=l

(3.3)

where A j represents the i-th row of matrix A, bj denotes the j-th column of B and ajk and bkj stand
for the k-th element of this row and column, respectively. Thus, in order to obtain one element of
the result matrix, D-1 additions and D multiplications need to be performed. The dimensions of the
result matrix are C x E and, therefore, a total of C(D-1)E additions and CDE multiplications (real
or complex) are needed to multiply the two matrices A and B.

The complexity of the SDM techniques described-in Chapter 2 can be divided in two parts: the
complexity of the training phase and the complexity of the data phase. It is assumed that for a
specific packet length the channel does not change. So, for each packet the channel matrix needs to
be estimated only once and can be performed in the training phase. Furthermore, some channel
matrix processing only depends on the channel matrix and, thus, also can be performed in the
training phase. The operations that are required to process the received data are of course
performed in the data phase. This processing needs to be carried out for each receiving vector x.

In this chapter we assume that the receiver already knows the channel matrix. Because the channel
estimation does not depend on the SDM technique that is used it is a constant offset to the
complexity results and, thus, the complexity of this part of the training is assumed known and will
not be taken into account.
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In the following sections the complexity of the Zero Forcing (ZF) algorithm, the Minimum Mean
Square Error (MMSE) technique, Zero Forcing with Decision Feedback (DFB), Minimum Mean
Square Error with Decision Feedback and Maximum Likelihood Decoding (MLD) will be
determined.

3.1 Zero Forcing

As described in Section 2.2, the Zero Forcing technique is based on calculation of the pseudo­
inverse of the channel matrix H. Because it is assumed that the channel matrix is constant for one
packet, it is possible to calculate the pseudo-inverse in the training phase. In the data phase, the
pseudo-inverse can be used during transmission of the whole packet to estimate the transmitted
vectors s. In this section the complexity of the training phase and the data phase of the ZF
algorithm will be determined.

3.1.1 The training phase

In the training phase, the pseudo-inverse of the channel matrix H is determined. For determining
the complexity of the calculation of the pseudo-inverse we will use the equality that can be deduced
from Section 2.2 and is given by:

(3.4)

where, again, +stands for the pseudo-inverse of the specific matrix. The dimensions of H+, Hand
H" are, respectively, Nt x N,., Nrx Nt and Nt x Nr. Using the complexity analysis of a matrix product
at the beginning of this chapter, the complexity of the product H"H can be found and is equal to
Nt

2(Nr-l) C_ADDs and N?Nr C_MULs. The result is a square matrix with dimensions Nt x N,.

From this square matrix H"H, the inverse needs to be determined. It is known that the direct
inversion of a given square matrix A (with dimensions NxN) has a complexity in the order of N3

additions and N3 multiplications in total [33]. So, inverting H"H has a complexity of N/ C_ADDs
and N/ C_MULs.

Finally, the inverse of H"H (which is Nt x Nt) is multiplied by H". The complexity of this last
multiplication is equal to N,(Nt-l)Nr C_ADDs and N?Nr C_MULs. This leads to a total complexity
of the training phase of N/ + Nt\Nr-l) + Nt(Nrl)Nr C_ADDs and N/ + 2N?Nr C_MULs. Or in
terms of real operations:

4N/ +4Nt
2N r +2Nt

2 (Nr -1)+2Nt (Nt -l)Nr

=4N,3 + N t
2 (SNr -2)-2N,Nr R_ADDs

3.1.2 The data phase

(3.5)

The data phase consists of a matrix-vector multiplication in order to obtain the estimates of the
vector s and a slicing step to translate the estimated elements of s to the possible transmitted
symbols. The matrix-vector multiplication can be found in Section 2.2 and is given by:
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(3.6)

The complexity of this product is equal to Nt(Nr-l) complex additions and N,Nr complex
multiplications.

The complexity of a slicer is minimal in terms of additions and/or multiplications. For the most
modulation schemes only comparisons need to be made which have no or hardly any complexity in
terms of additions and/or multiplications. Besides, the slicing step is equally complex for all
demodulation schemes, and represents a constant offset to the complexity. Therefore, the
complexity of the slicing step will not be taken into account. For clarity, however, the complexity
of a BPSK slicer will be determined. In order to slice estimates of a BPSK modulation scheme, we
only need to determine whether the real part of every element of s is less or larger than zero. If the
real part of an element of s is larger than zero, most likely a 1 is transmitted, otherwise, -1 is
transmitted. And if it is assumed that a comparison has equal complexity as a real addition, then, to
slice N, symbols, this would hold a complexity of N, R_ADDs.

Summarising, the complexity of the data phase of the ZF algorithm is equal to N,(Nr-l) C_ADDs
and N,Nr C_MULs, or equivalently, 2N,Nr + 2Nt(Nr-l) R_ADDs and 4N,Nr R_MULs per
transmitted vector S to decode, which is much less than the complexity of the training phase.

3.2 Minimum Mean Square Error

The complexity analysis of the Minimum Mean Square Error algorithm is almost equal to that of
the Zero Forcing method described in Section 3.1. The data phase of the MMSE technique also
consists of a matrix-vector product with the same dimensions and, thus, has equal complexity (see
Section 3.1.2), namely, 2N,Nr + 2Nt(Nr-l) R_ADDs and 4NtNr R_MULs for every transmitted
vector s to decode.

In the training phase, the following processing matrix needs to be determined (see Section 2.3):

(3.7)

The calculation of the processing matrix has almost the same complexity as the determination of
the pseudo-inverse in case of the ZF algorithm. Only a few extra additions need to be performed
due to the addition of aI. Because a is real and I has dimensions Nt x N" only Nt extra real
additions need to be performed (i.e., the addition of a to the real part of the diagonal elements of
H*H). This leads to a total complexity of the training of 4N/ + N,2(8Nr-2) - 2NtNr + Nt R_ADDs
and 4N/ + 8N,2Nr R_MULs.

3.3 Zero Forcing with Decision Feedback

The Decision Feedback algorithm (as described in Section 2.4) can also be divided in a training
phase and a data phase. The training consists of determining the nulling vectors (step 1, 2 and the
first part of step 5 of the algorithm described in Section 2.4), whereas the data phase consists of the
DFB algorithm (step 3, 4 and the second part of step 5). For both phases, the complexity in terms
of additions and multiplications will be analysed.



34 Space Division Multiplexing for OFDM Systems

3.3.1 The training phase

In order to find the nulling vectors, an iterative algorithm that consists of three steps can be
perfoffi1ed. First the steps are described and then the complexity will be detennined:

1. Compute the pseudo-inverse of H;

2. Find the minimum squared length row of H+. This row is a nulling vector. Pennute it to be the
last row and pennute the columns of H accordingly;

3. (While Nt -1 > 0) go back to step 1, but now with:

.. . h N -I] and Nt -7 Nt - 1.,

The complexity of step 1 (i.e., the calculation of the pseudo-inverse) is already detennined in
Subsection 3.1.1. For a matrix H with dimensions N,xN" this complexity is equal to 4N,3 +
N/(8Nr-2) - 2N,Nr R_ADDs and 4N,3 + 8Nt

2NrR_MULs.

Step 2 consists of two tasks: calculation of the squared length of all rows of H+ and detennination
of the minimum squared length row. The squared length of the i-th row of the pseudo-inverse of the
channel matrix can be derived by:

a j =/hil I
2 +·.. +lhiNJ

=(Re(hil W+ (Im(hil W+... + (Re(h jN, ))2 + (Im(hjN, W
(3.8)

Clearly, 2Nr - 1 real additions and 2Nr real multiplications have to be perfonned to calculate aj. If
H+ has Nt rows this leads to a total of (2Nr - 1)Nt R_ADDs and 2NrNt R_MULs. However, from
Section 2.4 it can be concluded that finding the minimum squared length row of H is equal to
finding the minimum element P jj on the diagonal of P. And due to the fact that P already is
detennined (for calculating the pseudo-inverse) no calculations need to be perfonned, but aj can be
set equal to P jj, where P is given by:

(3.9)

In order to find the minimum of two numbers in hardware, the easiest thing to do is subtract the
second number from the first and compare the result with zero. If the result is larger than zero, the
second number is the smallest, otherwise the first number is the smallest. So, finding the minimum
between two real numbers has the complexity of one real addition. To find the minimum of Nt
values a, the following iterative process can be used:

c. while i < Nt go to step b, with i = i + 1;

This iterative process has a complexity of Nt - 1 real additions. The pennutations of step 2 are
considered to have no complexity, the only thing that needs to be done is interchanging the
memory pointers that respectively point to the two rows of H+ and the two columns of H that need
to be pennuted.
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The third step of the algorithm to find the nulling vectors has hardly any complexity in terms of
additions and/or mUltiplications. Note that the algorithm is repeated but now with Nt =Nt - 1 and,
thus, the complexity of each iteration is reduced, because the dimensions of the matrices are
reduced. To take along this reduction in complexity during the iteration, the total complexity can be
written by using series. The total number of real additions becomes equal to:

4tn
3 + (8Nr -2)tn2-2Nrtn+ ten-I)

n=l n=l n=l n=l

N, N, N,

=4[n3 + {8Nr -2)[n2+{I-2Nr)[n-Nt
n=l n=l n=l

= Nt
2{Nt +1)2 +(8N

r
-2) N,{Nt + IX2Nt +1) +{I-2Nr)Nt(Nt +1) Nt

6 2

= ~ Nt (6N; +8Nt2{I+2N.}+3Nt{I+6Nr)+2Nr -5)

The total number of real multiplications of the training phase of ZF with DFB is equal to:

N, N,

4[n3 +8Nr[n2

n=l n=l

= N
t
2{Nt + 1)2 +8N

r
Nt (Nt + IX2Nt + 1)

6

3.3.2 The data phase

(3.10)

(3.11)

During the data phase the nulling vectors are used to first estimate the best element of the
transmitted vector s. The result is sliced to find the most likely transmitted constellation symbol
and then, this symbol is used in the feedback loop in order to find the next best estimate. The
following steps represent this iterative process:

1. Form the estimate of the best component (i.e., the last component due to permutation) of s. In

case of ZF: {sest)N =H~ x;
I I

2. Obtain SN (via slicing) from {SeJN ;, ,

3. (While Nt -1> 0) go back to step 1, but now with:

X ---7 X - h N SN and Nt ---7 Nt -1., ,

The complexity of the first step of this iterative algorithm equals Nr-1 C_ADDs and Nr C_MULs.
Step 2 is assumed to have no complexity in terms of additions and multiplications as is explained in
Subsection 3.1.2. Step 3 consists of a scalar-vector product and a vector subtraction. The scalar­
vector product has a complexity that is equal to Nr C_MULs. The vector subtraction has, because
subtraction is of equal complexity as addition, a complexity equal to Nr C_ADDs. These steps are
performed Nt times.
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In summary, it can be said that the complexity of the data phase of Zero Forcing with Decision
Feedback equals 2Nt(4N,-1) R_ADDs and 8N,N, R_MULs per transmitted vector s.

3.4 Minimum Mean Square Error with Decision Feedback

The complexity of Minimum Mean Square Error with Decision Feedback can be determined in the
same way as it is done for Zero Forcing with DFB (see Section 3.3). Compared to ZF with DFB,
there is a slight difference in the training phase in the way to obtain the nulling vectors. In case of
MMSE, the iterative process of the training is given by:

1. Compute matrix D =(aI +H*HtH* (Note that P =(aI +H*HtH* is also obtained);

2. Find the smallest diagonal entry of P and suppose this is the i-th entry. Permute the i-th row of
D to be the last row and permute the columns of H accordingly, the permuted row of D is a
nulling vector;

3. (While Nt -1 > 0) go back to step 1, but now with:

Compared to ZF with DFB, the complexity of step 1 of the algorithm given in Subsection 3.3.1 is
somewhat different. For a H matrix with dimensions N,xNt the complexity for determining matrix
D is given in Section 3.2 and equals 4Nt

3 + N/(8N,-2) - 2N,N, + Nt R_ADDs and 4N/ + 8Nt
2N,

R_MULs. Due to the iteration in the algorithm, this leads to a total complexity (including the
complexity of finding the minimal diagonal element of P) of:

Nt Nt Nt Nt

4['n3 + (8N, -2)['n2 +(1-2N,)[,n+ [,(n-1)
n=l n=l n=l n=l

Nt Nt Nt

=4['n 3 + (8N, - 2)['n 2 + 2(1- N, )['n -Nt
n=l n=l n=l (3.12)

= Nt
2 (Nt +1)2 + (8N, _ 2) Nt (Nt +1X2Nt +1) +2(1- N, )Nt(Nt +1) - Nt

6 2

=~Nt(3N; +4Nt
2 (1+2N,)+3Nt(1+3N,}+N, -1) R_ADDs

and

Nt Nt

4['n3 +8N,['n2
•

n=l n=l

=N t
2 (Nt +1)2 +8N, Nt (Nt +~X2Nt +1) R_MULs

(3.13)

For the Minimum Mean Square Error algorithm with Decision Feedback, the data phase is exactly
the same as the ZF technique with DFB, except that in this case the nulling vectors are rows of the
processing matrix D in stead of rows of the pseudo-inverse of H. The last fact is irrelevant for the
complexity, thus, the complexity of the data phase equals 2Nt(4N,-l) R_ADDs and 8N,N, R_MULs
per transmitted vector s (see Subsection 3.3.2).
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3.5 Maximum Likelihood Decoding
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The complexity of the Maximum Likelihood Decoding technique is largely dependent on the
amount of memory that is available or that one is willing to use. We will compare two situations.
Assume that in the first situation hardly any memory is available, but enough to store the products
of the columns of H times the constellation points, thus, e.g. for BPSK it should be able to store
(H;,-H i ) for all 1 ~ i ~ Nt. Note that it is not really necessary to store -Hi, because it can easily be
deduced from Hi, so, actually two times less memory is required. Assume that in the other situation
there is enough memory available to store all possibilities given by matrix Y = H·C (see Section
2.6) in the memory during the training phase. In this case the overhead of recalculations like in the
first situation is minimised, but matrix Y grows exponentially with the number of transmitting
antennas (Nt) and, thus, a large memory may be required. In the following subsections the two
situations will be compared.

3.5.1 Training phase (minimum amount of memory)

In the case that hardly any memory is used for Maximum Likelihood Decoding, a large part of the
processing takes place in the data phase. The only processing needed in the training phase is the
estimation of channel matrix H (which is assumed known) and the calculation of the product of the
constellation values with the columns of H. If there are M constellation points, then the complexity
of this product is MNrNt C_MULs or 2MN,Nt R_ADDs and 4MN,Nt R_MULs.

3.5.2 Data phase (minimum amount of memory)

As shown in Section 2.6 the maximum likelihood detection is given by:

(3.14)

where K =M N, and M represents the number of constellation points. Because H;s; is already
calculated in the training phase for every constellation point, only complex additions need to be
performed to find x - Hsj . This calculation can be represented by a tree as shown in Figure 3-1 and
its complexity is:

The squared norm of the result can be calculated as follows:

Ilx-HS j 11

2 =IXt -HtSl +···+lxN, -HN,sl

=(Re(xt -HtSJ)2 + (Im(xt -HtsjW +... +(Re(xN, -HN,sJY

+ (Im(X N, - H N, S j W

(3.15)

(3.16)

This formula consists of 2Nr real multiplications and 2Nr-l real additions. The calculation of the
squared norm described above needs to be performed K times (namely, for all K branches of the
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tree shown in Figure 3-1) and finally, the minimum of the K possible squared norms must be
obtained which introduces K-1 extra real additions (see Subsection 3.3.1).

So, this yields a total complexity of 2KN, R_MULs and

K-1
2N,M--+ 2KN, -1 R ADDs

M-l -

x-H j s j -H2SM

x-H j sM-H2s j

Etc.

Etc.

(3.17)

Figure 3-1: All possible vectors x - Hsj .

3.5.3 Training phase (maximum amount of memory)

If there is enough memory available to store the whole matrix Y, this matrix can be determined in
the training phase and used during the data phase. The complexity of the matrix-vector product HSj

can be obtained using the tree of Figure 3-2 that shows all possible columns of Y:

N,

Y j = LHi(sJ j
i=l

(3.18)

First the product of every column of H with every constellation point value should be determined.
This has a total complexity of 2MN,N, R_ADDs and 4MN,N, R_MULs (see Subsection 3.5.1).
After that, the additions as shown in the tree have to be performed. The complexity equals:

(3.19)

This gives a total complexity of 4MN,N, R_MULs and

(3.20)
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H Is I+H2s l +H3S1

Etc.

HIsI+H2s l+H3SM

H Is I+H2sM+H3S1

Etc.

H IsI+H2sM+H3SM

HIs~H2SI+H3S1

Etc.

HIS~H2SI+H3SM

HIS~H2SM+H3S1

Etc.

H IsM+H2sM+H3SM

Figure 3-2: Tree notation of the matrix-vector product Hsj .

3.5.4 Data phase (maximum amount of memory)

During the data phase the vector subtraction x - HSj and the squared norm of the result have to be
determined for the K possible S vectors. The next step is to obtain the minimum of the squared
norms. The vector subtraction x - Hsj is performed for 1 ~ j ~ K and has complexity equal to KNr

C_ADDs. Next, the norms of the K results have to be determined. This has a complexity of K(2Nr­

1) R_ADDs and 2KNr R_MULs. After that the minimum of the K (real) norms must be obtained
which has a complexity equal to K-1 R_ADDs. So, this yields a total complexity of 4KNr-1
R_ADDs and 2KNr R_MULs. Note that these complexity figures increase linearly with the number
of receiving antennas and they increase exponentially with the number of transmit antennas.

3.5.5 Less complex norm approximation

One of the significant terms in the complexity calculation for Maximum Likelihood Decoding is
the determination of the norm of x - Hsj . In Order to reduce the complexity, the following
approximation will be used:

Ilx - lis j II ==

IRe(xl - HIs j ~ + IIm(xl - HIs j ~ +... + IRe(xNr -HNrs j l+ IIm(xNr - HNrs j l (3.21)

It consists only of real additions (and no multiplications) making the MLD algorithm less complex.
The drawback of MLD with the approximated norm is that the BER performance deteriorates by
approximately 0.5 dB (compare the curves a and b of Figure 3-3 which show, respectively, the
BER performance of MLD with the normal norm definition and MLD with the approximation of
the norm).
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Figure 3-3: BER versus mean Eb/Noper receiving antenna for antenna configuration (N,,Nr) = (4,4),
QPSK, no coding and a) MLD with regular norm definition and b) MLD with the approximation of

the norm.

Now we will use this approximation of the norm in the situation of MLD with a minimum amount
of memory. The approximation of Formula (3.21) does not make any changes to the training phase,
so this complexity remains the same.

The data phase starts with the calculation of x - HSj with complexity equal to (see Subsection
3.5.2):

(3.22)

After that, the approximation of the norm as defined by Formula (3.21) has to be calculated for the
K possible S vectors. This process has a complexity of K(2Nr-1) real additions. Finally, finding the
minimum of the K (real) results has a complexity of K-1 R_ADDs.

This yields a total complexity of:

K-1
2NrM--+ 2KNr -1 R ADDs

M-1 -

Clearly, this is a reduction in complexity compared to the results of Subsection 3.5.2.

3.6 Comparison

(3.23)

With the complexity analysis of the previous sections it is possible to compare the complexity of
the different Space Division Multiplexing techniques. If we assume that the complexity of a real
multiplier is 10 times higher than that of a real adder, then the complexity can be expressed in one
term. Of course the complexity difference between a multiplier and an adder depends on the
hardware implementation, but a ratio of 10 is a reasonable one. If the complexity is expressed in
one term, we can display the complexity of the training phase versus the complexity of the data
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phase. Furthermore, we can show the complexity for different antenna configurations. For a BPSK
constellation scheme, the results are given in Figure 3-4 for antenna configurations (i,i) with 1 ::5 i ::5
10 (the complexity increases for increasing number of transmit and receive antennas).

~-

10' '--~~.u.L--~~.....-...L~~~..l...-~~......J..-~~~'--~~
1~ 1~ 1~ 1~ 1~ 1~ 1~

data phase complexity

Figure 3-4: Complexity of the training phase versus the complexity of the data phase for BPSK,
antenna configurations (NtNr) =(i,i) with 1 ::5 i::5 10 for a) ZF, b) MMSE, c) ZF with DFB, d)

MMSE with DFB, e) MLD with minimum amount of memory, f) MLD with maximum amount of
memory and g) MLD with nonn approximation and minimum amount of memory.

From Figure 3-4 it can be seen that the complexity of Zero Forcing (curve a) and Minimum Mean
Square Error (curve b) are almost equal, this is also true for ZF with Decision Feedback (curve c)
and MMSE with DFB (curve d). Comparing curve a with curve c shows that the complexity of the
training phase and the data phase increases when DFB is introduced. So, in order to achieve the
better BER performance of DFB, a more complex hardware architecture is required.

Furthennore, comparing curve e (Maximum Likelihood Decoding with minimum amount of
memory) and curve f (MLD with maximum amount of memory) we could draw some useful
conclusions. The complexity of the training phase of curve f increases exponentially, whereas the
training complexity of curve e increases only with P, where i =Nt =Nr (see Subsection 3.5.1).
However, in case of MLD with maximum amount of memory (curve f), the benefit of the pre­
calculations of al possible vectors Hsj in the training phase can almost be neglected compared to
the complexity of the data phase of curve e). This can be explained by the fact that the complexity
of the data phase of both situations are proportional to K (see Subsections 3.5.2 and 3.5.4). So, in
terms of complexity, MLD with minimum amount of memory is preferable.

Figure 3-4 also shows the complexity of MLD with a minimum amount of memory and with the
norm approximation of Formula (3.21) (curve g). The complexity of the data phase of curve g is
approximately 10 times less than that of curve e. A disadvantage is that the BER perfonnance of
MLD with the approximation of the norm is about 0.5 dB worse. However, even with this decrease
in BER perfonnance, it can be seen that for i ::5 5 the data phase of curve g is less complex than the
data phase of ZF and its performance is better (i-th order of diversity, whereas ZF only has a
perfonnance with a first order of diversity (if Nt =Nr)).
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Figure 3-5: Complexity of the training phase versus the complexity of the data phase for QPSK,
antenna configurations (Nt,Nr) =(i,i) with 1 ~ i ~ 10 for a) ZF, b) MMSE, c) ZF with DFB, d)

MMSE with DFB, e) MLD with minimum amount of memory, f) MLD with maximum amount of
memory and g) MLD with approximation of the nonn.

Because the complexity of the MLD algorithms depends on the constellation size (M), it is useful
to also compare the complexity for larger constellation schemes. In Figure 3-5 the result is given
for a QPSK constellation scheme, with antenna configurations (i,i), where 1 ~ i ~ 7 (the complexity
increases for increasing number of transmit and receive antennas). Again, the complexity is
expressed in one number by choosing the multiplications 10 times more complex than the additions
and the training phase complexity is depicted versus the data phase complexity.

From Figure 3-5 it can be concluded that MLD with the nonn approximation (curve g) is only
preferable in data phase complexity if i ~ 2 with i = Nt = N" compared to i ~ 5 for BPSK. So,
indeed, the complexity of the MLD techniques (strongly) depends on the size of the constellation
scheme.



4 Orthogonal Frequency Division Multiplexing (OFDM)

One way to increase system capacity is by transmitting data parallel on different frequencies. In
classical parallel data systems, the total signal frequency band is divided into N non-overlapping
frequency subchannels. In such systems, there is sufficient guard space between adjacent
subchannels to isolate them at the receiver with N demodulators, i.e., one per subchannel. This
solution, however, is very bandwidth inefficient. A more efficient use of bandwidth can be
obtained with a parallel system if the spectra of the individual subchannels are permitted to overlap,
with specific orthogonality constraints imposed to facilitate separation of the subchannels at the
receiver.

•••

Figure 4-1: basic structure of a multicarrier system.

In the nearby future, more and more applications that operate on carrier frequencies in the order of
several Giga-Hertz, like wireless LANs, will be based on multicarrier systems. Figure 4-1 shows
the general structure of a multicarrier system [44]. An example of a multicarrier technique that
operates with specific orthogonality constraints is Orthogonal Frequency Division Multiplexing
(OFDM).

4.1 The principle

In OFDM the subcarrier pulse used for transmission is chosen to be rectangular. This has the
advantage that the task of pulse forming and modulation can be performed by a simple Discrete
Fourier Transform (DFT) which results in a remarkable reduction in equipment complexity (filters,
modulators, etc.), as shown in [6] and [56]. In these references it is also shown that a multitone data
signal is effectively the Fourier transform of the original data stream, and that a bank of coherent
demodulators at the receiver is effectively an inverse Fourier transform. However, since definitions
have been changes afterwards, it is now said, that a multitone data signal is effectively the inverse
Fourier transform of the original data stream, and that a bank of demodulators is effectively a
Fourier transform. Note that the (Inverse) Discrete Fourier Transform ((I)DFT) can be
implemented very efficiently as a(n) (Inverse) Fast Fourier Transform ((I)FFT).

Consider the system shown in Figure 4-1. The input consists of a data symbol sequence dn that can
be represented as an + jbn (where an and bn are real sequences representing the in-phase and
quadrature components, respectively) and, using the Inverse Fourier Transform, the transmitted
waveform can be represented as:

N-l

D(t) = Ldne iCtJ
•

t

n=O

(4.1)
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However, for digital systems it is useful to consider the discrete case. In this case a Inverse Discrete
Fourier Transform (IDFT) is performed at the transmitter on a vector d =(do. db .... dN- z), the result
is a vector D =(Do. Dz, .... DN- Z) with:

N-l N-l

D
m

= Ld
n
ei (2nnmIN) =Ld

n
ei (21if.

tm
) with m =O,1, ...,N-1

n=O n=O

where

1f =n/).I , /).1 =- and tm =m/).t
n N/).t

(4.2)

(4.3)

and /).t =11 Is (wherefs is the symbol rate). Substituting t =mill in (4.1) and using (4.3) shows

that the sampled sequence D(m/).t) is in fact the IDFT of the sequence dn as shown in (4.2). Note
that usually the whole OFDM symbol is upconverted to a specific carrier frequency of the RF band.

If we again look to the OFDM symbol time it can be noticed that the signalling interval T has been
increased to NIJ..t, which makes the system less susceptible to delay spread impairments. Note that
the act of truncating the rectangular signal to the interval (0, N/).t ) in the time domain imposes a
sin(x) / x frequency response on each subchannel with zeros at multiples of liT, which is the

orthogonality principle of OFDM, as sketched in Figure 4-2.

lIT

Figure 4-2: OFDM and the orthogonality principle.

At the receiver, the transmitted signals are recovered using the Discrete Fourier Transform.
However, due to multipath distortion, the recovering of the transmitted signals brings some
problems along (see Section 4.2).

4.2 Multipath Distortion

The reason why the information transmitted over the carriers can still be separated at the receiver is
the so-called orthogonality relation giving OFDM its nanle. By using an IFFT for modulation, the
spacing of the subcarriers is implicitly chosen in such a way, that at the frequencies where the
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received signals are evaluated (indicated as arrows in Figure 4-2), all other signals are zero. In
order for this orthogonality to be preserved the following must be true [44]:

1. The receiver and the transmitter must be perfectly synchronised. This means they both must
assume exactly the same modulation frequency and the same time-scale for transmission
(which usually is not the case).

2. The analogue components, part of transmitter and receiver, must be of very high quality.

3. There should be no multipath channel.

Unfortunately multipath distortion is (almost) unavoidable in radio communication systems and,
thus, the received signal is affected. It is shown in [56] that the truncated subchannel sinusoids are
delayed by differing amounts (i.e. channel delays), however, the distortion is mainly concentrated
at the on-off transmissions of these waveforms. Hence a guard time and cyclic prefix (consisting of
a modest increase in the signal duration) that are chosen longer than the maximal delay spread, will
eliminate most interference among channels (Inter Carrier Interference (ICI» and between adjacent
transmission blocks (Inter Symbol Interference (IS!». The smoothing of the on-off transitions, to
avoid out of band radiation, can be implemented, e.g., by windowing each OFDM symbol by a
raised cosine window (see Figure 4-3).

Time ~

Figure 4-3: OFDM symbol structure showing guard time TG and FFT interval T.
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Figure 4-4: OFDM symbol with cyclic extension.
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The validity of windowing each OFDM symbol by a raised cosine window can be explained by
looking to the shapes of the subchannel sinusoids after the multipath-fading channel. An OFDM
receiver uses only a part of this signal to calculate the FFT. In the FFT interval T, every subcarrier
has an integer number of cycles, which ensures orthogonality. In the multipath-fading channel, the
receiver-input signal will be a sum of delayed and scaled replicas of the transmitted subcarriers
[52] (see Figure 4-4). Note that a sum of scaled and delayed sinusoids is again a sinusoid. So, as
long as the Guard Interval (GI) time TG is larger than the maximal channel delay there will still be
an integer number of cycles within the FFT interval for each multipath component and all
reflections of previous symbols are removed and the orthogonality is preserved. So, thanks to the
cyclic prefix and guard time, the wideband multipath fading is experienced in OFDM as a set of
narrowband fading subcarriers without leI and lSI. The only remaining effect of multipath is a
random phase and amplitude of each subcarrier. This effect can be minimised by adapting the
subcarriers of the received signal with channel estimates per subcarrier, which can be obtained
during a training phase. The only problem are the subcarriers in deep fades, in order to deal with
these weak subcarriers that have a large probability to be decoded wrong, forward error correction
across the subcarriers is applied.

4.3 Bandwidth Efficiency

From Figure 4-2 it becomes obvious that the spectrums of the subcarriers are not separated but
overlap. Due to this overlapping, the bandwidth is much more efficiently used than in the classical
multicarrier systems. Theoretically, M-ary digital modulation schemes using OFDM can achieve a
bandwidth efficiency, defined as bit rate per unit bandwidth, of 10g2 M bits/slHz [6]. Given the

symbol rate of the serial data stream is 1/ I1t , the bit rate for a corresponding M-ary system is
Rb =10g2 M / I1t , however, in case a guard time is added, the effective bit rate is equal to:

(4.4)

The Nyquist bandwidth of a subchannel is Ai Thus, the total bandwidth of the OFDM system is:

1
B =Nl1f =­

I1t

Therefore, the bandwidth efficiency becomes:

(4.5)

(4.6)

For an optimal system without guard time (i.e., TG = 0), the bandwidth efficiency becomes
f3 =log2 M bits/s/Hz. However, as follows from Section 4.2, the guard time is inserted in order
to make the system more robust against multipath distortion, so a practical system will not achieve
this optimal bandwidth efficiency. Furthennore, in reality, it is impossible to make an ideal band­
pass filter, so in order to pass all subcarriers, the bandwidth B will be larger, which implies another
decrease in bandwidth efficiency.
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4.4 Main reasons for using OFDM
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As mentioned before, one of the main reasons to use OFDM is its capability to deal with large
delay spreads. In [53] the implementation complexity of an OFDM system is compared with a
signal carrier system that is designed to deal with the same amount of delay spread. Here, a
summary will be given.

The implementation complexity of a single carrier system is dominated by equalisation, which is
necessary when the delay spread is larger than about 10% of the symbol duration. In an OFDM
system, however, equalisation is not required, but instead, the complexity of an OFDM system is
largely determined by the Fast Fourier Transfonn (FFT), which is used to demodulate the various
subcarriers. From references [48] and [55], it can be learned that at least 8 feedforward and 8
feedback taps are required to handle a delay spread of 100 ns for a Gaussian Minimum Shift
Keying (GMSK) modem at a data rate of 24 Mbps. To get the same delay spread perfonnance as
the 24 Mbps mode of the new IEEE 802.11 OFDM standard, which equals 250 ns using a 64-point
FFT, the number of equaliser taps has to be increased to 8*250/100 = 20. Fortunately, for GMSK,
only the real outputs of the complex multiplications are used, so each multiplier has to perfonn 2
real multiplications per sample (see Fonnula (3.1)). Hence, the number of real multiplications per
second becomes 2.20.24.106 = 960,106

, where only the feedforward taps have been counted since
the feedback taps have a much smaller implementation complexity. For the OFDM system, a 64­
point FFT has to be processed every OFDM symbol duration which is 4 ps. With a radix-4 FFT
algorithm, this requires 96 complex multiplications. One complex multiplication can be performed
with four real multiplications (see Fonnula (3.1)) and, thus, the processing load is equal to 4·96 /
(4 Jls) = 96.106 real multiplications per second. So, in tenns of multiplications per second, the
OFDM system has a processing advantage of a factor of 1O!

The other advantage of OFDM over single carrier systems with equalisers is that for the latter
systems, the perfonnance degrades abruptly if the delay spread exceeds the value for which the
equalisers are designed. Because of error propagation, the raw bit error probability increases so
quickly that introducing lower rate coding or a lower constellation size does not significantly
improve the delay spread robustness. For OFDM, however, there are no such non-linear effects as
error propagation, and coding and lower constellation sizes can be employed to provide fallback
rates that are significantly more robust against delay spread. This is an important consideration, as
it enhances the coverage area and avoids the situation that users in bad spots cannot get any
connection at all.

4.5 OFDM Transceiver

The general block diagram of the baseband processing of an OFDM transceiver is shown in Figure
4-5 [52]. The diagram will be briefly explained following the data-stream from transmitter to
receiver. In the transmitter, a convolutional encoder first encodes the binary input data. After
interleaving, the binary values are mapped on Quadrature Amplitude Modulation (QAM) values. In
order to correct the signal in the receiver for a possible phase drift, pilot carriers can be introduced,
but in this report we assume optimal timing and, thus, no pilot carriers will be used. In the Serial to
Parallel block, the serial QAM input symbol-stream is converted to a parallel stream with width
equal to the number of subcarriers. These parallel symbols are modulated onto the subcarriers by
applying the Inverse Fast Fourier Transform. Note that in order to get an output spectrum with a
relative low out-of-band radiation, the size of the IFFT can be chosen larger than the number of
subcarriers that is actually used to transmit the data. After the IFFT block, the parallel output is
converted back to serial. To make the system robust to multipath propagation (see Section 4.2), a
cyclic prefix is added. Further, windowing is applied to get a narrower output spectrum. After this
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step, the digital output signals are converted to analog signals. These analog signals are then
upconverted to the RF band, amplified and transmitted through an antenna.

~i4----------'
IIQ
signals

Frequency
corrected
input

Figure 4-5: Block diagram of an OFDM transceiver.

The OFDM receiver basically performs the reverse operations of the transmitter, together with
additional training tasks. First, the receiver has to estimate frequency offset and symbol timing,
using special training symbols in a preamble. Then, it can do a Fast Fourier Transform for every
symbol to recover the QAM values of all subcarriers. The training symbols and pilot subcarriers are
used to correct for the channel response as well as the remaining phase drift. The QAM values are
then demapped into binary values and de-interleaved, after which a Viterbi decoder can decode the
information bits.



5 OFDM with SDM using Maximum Likelihood Decoding

In this chapter, a system will be described that combines Space Division Multiplexing (SDM)
based on MLD with OFDM. First the system configuration will be proposed in such a way that the
system can be used both for Space Division Multiplexing or Space Division Multple Access. After
that it will be shown how the training, compared to that of the OFDM transceiver of Section 4.5,
needs to be adapted to distinguish the different transmitters at the receiver. After that the simulation
parameters and the channel model will be given and before the simulation results are given
different types of Maximum Likelihood Decoding algorithms will be discussed. It will be shown
that the soft-input Viterbi decoder that is used to decode the convolutional code performs the best
with a Maximum Likelihood Decoding algorithm that produces soft-output decisions. All these
options are implemented in C++, simulations are performed for different MLD algorithms,
different antenna configurations and a number of delay spreads and the results will be given and
compared.

5.1 System configuration

The SDM algorithms as described in Chapter 2 are single carrier algorithms. In order to combine
SDM with OFDM, a SDM algorithm has to be performed for each subcarrier. So, suppose the
transmitter consists of Nt transmit antennas, then every subcarrier carries Nt datastreams. At the Nr

receive antennas, the subcarrier information is separated by using FFTs. After that the Nr

information symbols belonging to subcarrier i are routed to the i-th Multi-Antenna Processing Unit
(MAPU) where the MLD algorithm is implemented to recover the transmitted data signals
(d1,i ,...,d N"i ). After that, the demapping, deinterleaving and the decoding is performed. This leads

to the configuration of the receiver as shown in Figure 5-1 where N Multi-Antenna Processing
Units (MAPUs) are introduced for the processing of the N subcarriers.

NMulti-Antenna
Processing Units

RF Receiver
1

RFReceiver
N,

Remove
Cyclic

Extension

Remove
Cyclic

Extension
MAPUN

Demapping
Deinterleaving

Decoding

Binary ,-------, d1,l

output Demapping ~-",,:,::...r---,
data Deinterleaving MAPU 1 14-----i

Decoding

Binary ,--__---,
output
data

Figure 5-1: Multi-antenna receiver using Multi-Antenna Processing Unit (MAPU) with OFDM.

The transmitting part can consist of different users (in the case of Space Division Multiple Access)
or of a multi-antenna transmitter (in the case of Space Division Multiplexing) or a combination of
both, that is why the transmitting chains should be separable. This is represented schematically in
Figure 5-2. The only disadvantage in case of SDMA is that the transmitters need to be
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synchronised because only in case the receiver receives synchronised signals, the MLD algorithm
can be properly executed.

RF
Transmitter

1
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IFFr
Coding

Interleaving
QAM mapping

Binary .---------,
input
data

RF
Transmitter

N,

Add Cyclic
Extension

IFFr
Coding
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Binary .--__-----,
input
data

Figure 5-2: Multi-antenna transmitter(s) using OFDM.

OFDM has as advantage that, if N subcarriers are used, the symbol duration is N times longer.
Thus, one MAPU is allowed to work N times slower than a MAPU for a single carrier system with
comparable data rate as the OFDM system. Lower speed usually reduces complexity, thus, one
MAPU in the OFDM system is not as complex as the MAPU in a single carrier system with
comparable rate.

5.2 Training

In order to perform a SDM algorithm per subcarrier, the effect of the channel on each subcarrier
has to be known at the receiver. Therefore, the channel effect per subcarrier has to be estimated.
This can be done in the training phase since we assume thai the channel is not changing during one
packet. So, every OFDM packet is preceded by training symbols. The training symbols are
designed in such a way that the peak-to-average power (PAP) ratio is approximately 3 dB, which is
significantly lower than the PAP ratio of random OFDM data symbols. This guarantees the training
degradation caused by non-linear amplifier distortion to be smaller than the distortion of the data
symbols, which again guarantees that the channel is estimated more accurate than the accuracy of
the general QAM signals that are received in the data phase. The result is a more accurate estimate
of the transmitted signals compared to a system in which the training symbols have a larger PAP
ratio. Note that one training symbol consists of N QAM values.

So, the channel is estimated per subcarrier. Actually, this is even necessary, because the bandwidth
of the OFDM system is not narrow enough that we can treat the channel frequency characteristic
flat across the whole OFDM band. However, we assume that the bandwidth per subchannel is
narrow enough to be treated as flat. So, by estimating the channel per subcarrier the system
becomes more robust against frequency selective fading, which of course is a big advantage.

If multiple transmit antennas are used, the training symbols for each transmit antenna must be
orthogonal in order to distinguish the different transmitters at the receiver. For instance, if we have
two transmit antennas and on the first one 8 8 and on the second one 8 -8 is transmitted (where
8 represents the OFDM training symbol), then every receiving antenna can distinguish both
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transmit antennas since the signals they receive from both transmitters are orthogonal to each other.
In this way, it is possible to estimate the channel from every transmit antenna to every receive
antenna.

One possible method to make the training symbols orthogonal is using Walsh codes. We have
chosen for a fixed training length of eight training symbols. An 8-bit Walsh code is used, that
allows us to construct eight orthogonal training codes. With this code, a maximum of eight transmit
antennas can be distinguished. If 8 is the training symbol of N QAM values, then the following
eight orthogonal training sequences can be constructed using the 8-bit Walsh code:

8 8 8 8 8 8 8 8
8 -8 8 -8 8 -8 8 -8
8 8 -8 -8 8 8 -8 -8
8 -8 -8 8 8 -8 -8 8
8 8 8 8 -8 -8 -8 -8
8 -8 8 -8 -8 8 -8 8
8 8 -8 -8 -8 -8 8 8
8 -8 -8 8 -8 8 8 -8

Note that a "power of two"-bit Walsh code can easily be obtained using the following algorithm:
Start with the basic matrix:

8 8
8 -8

Substitute for 8 the basic matrix. Now the 4-bit Walsh code is obtained:

888 8
8 -8 8 -8
8 8 -8 -8
8 -8 -8 8

The 8-bit Walsh code follows after the next step.

The channel estimates can be obtained by multiplying the symbols received during the training
period with the conjugated training sequences and dividing the result by the power of the training
symbol. This can be explained by looking to only one subcarrier. Suppose, the OFDM symbol
consists of only one subcarrier, then the training symbol 8 is one-dimensional and contains only
one QAM value. Now, suppose we have a system comprising four transmit antennas, then, by
choosing the first four 8-bit Walsh codes and denoting them by matrix A, the estimation of the
channel matrix is obtained by:

H~ =~: =~I:II' (HAA' +NA' )= H + 811:11' NA•
(5.1)

where X is the received matrix of 8 time instants and N is the receiver noise matrix. Note that the
channel estimation will be rather accurate, because after "decoding" the Walsh code, eight (almost
identical) samples are averaged to get the channel estimate.

5.3 Simulation parameters

The system proposed in Figure 5-1 and Figure 5-2 has been programmed in C++, in order to do
some simulations and tests. Furthermore, coding, interleaving and QAM mapping are implemented
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for every transmitting chain and at the receiver, the decoding, de-interleaving and QAM demapping
blocks are implemented after the MAPUs.

Table 5-1 lists the main parameters that are used for the simulation and are based on the draft
OFDM standard in the lEEE 802.11 standard [52]. A key parameter, which largely determines the
choice of the other parameters, is the guard interval of 800 ns. This guard interval provides
robustness to root-mean-squared delay spreads up to several hundreds of nanoseconds, depending
on the coding rate and modulation used. In practice, this means that the modulation is robust
enough to be used in any indoor environment, including large factory buildings (see Section 5.4). It
can also be used in outdoor environments, although directional antennas may be needed in this case
to reduce the delay spread to an acceptable amount and to increase the range.

Table 5-1: Main Parameters based on the OFDM standard in IEEE 802.11.

Modulation QPSK, 16-QAM, 64-QAM
Coding rate 1/2, 213, 3/4
Number of subcarriers 64
Number of subcarriers used 48
OFDM symbol duration 41ls
Guard interval 800 ns
Subcarrier spacing 312.5 kHz
-3 dB Bandwidth 16.56 MHz
Channel spacing 20 MHz

In order to limit the relative amount of IXlwer and time spent on the guard time to 1 dB, the symbol
duration was chosen to be 4 !J.s. This also determined the subcarrier spacing to be 312.5 kHz, which
is the inverse of the symbol duration minus the guard time. By using 48 data subcarriers, uncoded
data rates of 12 to 72 Mbps can be achieved by using variable modulation types from BPSK to 64­
QAM.

In order to correct for subcarriers in deep fades, forward error correction across the subcarriers is
used with variable coding rates, giving coded data rates from 6 up to 54 Mbps. Convolutional
coding is used with the industry standard rate 1/2, constraint length 7 code with generator
polynomials (133,171). Higher coding rates of 213 and 3/4 are obtained by puncturing the rate 1/2
code.

5.4 Indoor channel model

In order to obtain a reliable indoor channel model, it is useful to examine the types of multipath
impairments that the receiver must combat. The multipath is the dominant impairment for the
indoor wireless signal. The other impairment is thermal noise, which is established predominately
by the Low Noise Amplifier (LNA) in the receiver front end.

From the references [19] and [52], it can be deduced that the multipath for indoor WLANs tends to
falloff in time in an exponential way and it is often characterised by an exponentially-decayed
Rayleigh fading [36]. The physical mechanism driving this indoor characteristic is mainly based
on:

• the large number of reflectors within a typical building;
• the propagation loss characteristic, where longer propagation paths arriving linearly-later in

time have logarithmically-weaker energy.
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The Power Delay Profile (PDF) for the exponentially-decayed Rayleigh fading channel is shown in
Figure 5-3. The power delay profile (PDF) measures the mean signal power relative to its
dispersion across time. The mean power level establishes the variance of the corresponding
Rayleigh components. The chief feature one should note about exponentially-decayed multipath is
that on-average the strongest paths arrive earliest in time since propagation delay is proportional to
distance travelled as shown in Figure 5-3. Radiated power drops off logarithmically with respect to
distance. It could appear that weaker paths do precede the Channel Impulse Response (CIR) peak
on a particular stochastic realisation, but on average there number is small, compared to the number
of components which follow the CIR peak.
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Reflectors' ....
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Figure 5-3: Exponentially-decayed Power Delay Profile (PDF).

Table 5-2: Measured delay spreads in frequency range of 1.8 to 2.4 GHz.

Remarks Maximum Delay References
Spread [ns]

Large building (New York stock exchange) 120 [9]
Office buildim! 95 [10]
Office building 150 [11]
Office building 56 [5]

Table 5-3: Measured delay spreads in frequency range of 4 to 6 GHz.

Remarks Maximum Delay References
Spread [ns]

Large building (New York stock exchange) 120 [9]
Office building 60 [16]
Meeting room (5mx5m) with metal walls 55
Single room with stone walls 35
Office building 130 [11]
Indoor sports arena 120 [20]
Factory 125
Office building 65
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The Root Mean Square (RMS) delay spread of the multipath can range from 20-50 ns for small­
office and home-office environments, 50-100 nsec for commercial environments and 100-200 nsec
for factory environments. These figures are obtained from [50] and the main results are given in
Table 5-2, Table 5-3 and Table 5-4. Note that only the maximum delay spread is given, because
many references only give the maximum delay spread. This value is only a few percent larger than
the delay spread for which it can be guaranteed that the link works for at least 90% or 99% of all
channels, which is of interest for designing wireless links.

Table 5-4: Measured delay spreads in frequency range of 800 MHz to 1.5 GHz.

Remarks Maximum Delay References
Spread [ns]

Office building 50 [40]
Office building 56 [5]
Office building 43 [32]
Office building 58 [8]
Warehouse 129 [35]
Factory 300

For exponentially-faded channels, the exponential decay constant is equal to the RMS delay spread.
So, for simulations, it is convenient to use exponentially-decayed Rayleigh fading, because its
characteristics are fully defined by one single parameter, namely, the RMS delay spread.

5.5 Coding

Special attention should be paid to coding. As said before, forward error correction across the
subcarriers is used, in order to correct for subcarriers that are in deep fades. As forward error
correction coding, convolutional coding with the industry standard rate 1/2, constraint length 7
code with generator polynomials (133,171) is chosen and implemented in the G++ simulation code.
Higher coding rates of 2/3 and 3/4 are obtained by puncturing the rate 1/2 code. To decode this
convolutional code, a Viterbi decoder is used. From [17] it is known that a Viterbi decoder
performs better when soft-decisions are used as input. However, the MLD algorithm, as described
in Section 2.6, returns hard-decision outputs. So, in order to improve performance, we need to
adapt the MLD method in such a way that it will produce soft-decision outputs. Until now, we have
found two ways, a simple and a complex one. These two options will be described theoretically in
this section and the results of the hard- and soft-decision output MLD techniques will be compared
in the next sections.

5.5.1 Simple MLD algorithm with soft-decision outputs

The MLD technique is modified to deliver not only the most likely transmitted symbol, but also
reliability values, which are known as soft-decision outputs. The simple MLD algorithm with Soft­
decision outputs is based on the intuition that the data transmitted over antennas that are in a deep
fade (for a specific subcarrier) cannot be reliably received. In other words, if the column of H
corresponding to a certain transmit antenna has a weak power then this transmit antenna is said to
be in a deep fade. The soft-output decision of that panicular element of s should be low. Thus, if Sj

is the i-th element of s, where s is the output vector of the hard-decision MLD algorithm, and H is
the estimated channel matrix for a given subcarrier, then soft-decision outputs can be produced
according to:
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(5.2)

(5.3)

Note that this method produces soft-decision outputs per QAM symbol, i.e., per element of s.
However, soft-decision outputs per bit most likely will give better performance.

5.5.2 Complex MLD algorithm with soft-decision outputs

Another way to find soft-decision outputs is by using the same approach as [17]. There, the log
likelihood ratio is used as an indication for the reliability of a bit. If x denotes the received vector,
hi is the l-th bit to estimate, H is the estimated channel matrix for a given subcarrier and Sj is one of
the possible transmitted vectors (with 1 ::S j ::S K, where K = M N, and M represents the number of
constellation points), then the L-value of the estimated bit is:

(5.4)

Because the vectors Sj are equally likely to be transmitted, P(Sj) is equal for all vectors Sj' Using
Formula (2.66), we find the soft-output decisions:

(5.5)

Note that this type of decoding would involve an exhaustive search over all possible vectors s} per
hit to decode, making the decoding method even more complex than hard-decision output MLD
which requires an exhaustive search per transmitted vector s. Furthermore, it might be useful in the
simulations to detennine the effect of the approximation in Formula (5.5).

If we look more closely to Formula (5.5), we see that, for (very) high SNR, the L-values could
become (very) large. For a practical implementation, this is not very useful. We have chosen for an
8-bit quantiser to quantise the L-values in integer numbers from -128 to 127. If this quantiser is
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used to quantise Formula (5.5), for high SNR, the output would mainly consist of -128 for hi =-1
and 127 for hi = 1, resulting in hard-decision outputs. Thus, for high SNR values, this
implementation would achieve the same performance as MLD with hard-decision outputs. In order
to avoid this problem, the L-values must be kept in the range of -128 to 127. This can be done by
using a modified version of Formula (5.5). This modified version is found on a trail and error base
and is given by:

(5.6)

Furthermore, note that the Viterbi decoder sees a zero as a bit erasure, thus, if L is quantised (by
flooring it to an integer number) it could appear that, if 0 < L < 1, the quantised value of L is equal
to zero. To avoid this, the following adaptation is introduced:

(5.7)

After this, the quantised values can be obtained by flooring L .

5.6 Simulation and results

As said before, OFDM is combined with SDM. The system, as described in the former sections, is
simulated in C++ and in this section several simulation results will be given. The main goal is to
compare the performance of systems with different antenna configurations. Therefore, the
simulations are performed multiple times only with different number of transmitting and/or
receiving antennas. All simulations are performed with a QPSK modulation scheme. The training
length is chosen fixed at 8 OFDM symbols (see Section 5.2). We have implemented the SDM
technique based on MLD because it has the best BER performance as can be concluded from
Chapter 2 (we have not taken complexity into account). Furthermore, we will compare the
performance results of the following MLD decoding algorithms (see Section 5.5): hard-decision
output MLD (Subsection 5.6.1), simple MLD algorithm with soft-decision outputs (Subsection
5.6.2) and complex MLD algorithm with soft-decision outputs (Subsection 5.6.3).

5.6.1 Hard-decision output MLD

Figure 5-4 shows simulated Bit Error Ratios versus mean EtiNo for an Additive White Gaussian
Noise (AWGN) channel and an antenna configuration (N"N,) of 0,1) with hard-decision output
MLD (see Section 2.6). For the curves a and b, no coding is used, thus, these results will also hold
for the MLD algorithms with soft-decision outputs, because the Viterbi decoder is not activated.
For curve d, a 1/2 rate convolutional code is simulated. Furthermore, a QPSK modulation scheme
is used. The curves a and d are the results of simulations in which it is assumed that the channel is
perfectly known at the receiver and in which no guard time is considered, i.e. TG =0 (see Section
4.3). Curve b is the result of the simulation where the training (consisting of 8 OFDM symbols) is
used to estimate the channel and also a guard time of 800 ns is simulated. The dotted line
represents the theoretical value of the BER in AWGN for QPSK and is given by [36]:

(5.8)
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It can be concluded that, in case the channel is perfectly known at the receiver and no guard time is
simulated, the simulation results perfectly match the theoretical curve. Furthermore, it can be
noticed that in case channel estimation and guard time are simulated, the performance is
approximately 1.5 dB worse (i.e. the difference between curve a and curve b). Finally, it can be
concluded that when a rate 112 convolutional code is used, the BER performance increases (a lot)
(compare curve b and d). This can be explained by the error correcting ability of the Viterbi
decoder.
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Figure 5-4: Bit error ratios versus EilNoper receive channel in AWGN for QPSK, 64 byte packets,
no coding (except for curve d), antenna configuration (Nt,Nr) = (1,1) and a) perfect knowledge of
the channel and no guard time, b) channel estimation and a guard time of 800 ns, c) theoretical

value: Ph =Q(-.J(2EilNo)) and d) rate 112 convolutional code, perfect knowledge of the channel and
without guard time.

Figure 5-5: Bit Error Rate versus mean EtlNo per receive antenna in a flat fading channel for
QPSK, 64 byte packets, no coding, but with channel estimation and a guard time of 800 ns, with

different antenna configurations (NhNr ): a) (1,1), b) 0,2), c) 0,3), d) (1,4) and e) theoretical curves
(based on perfect knowledge of the channel and no guard time).



58 Space Division Multiplexing for OFDM Systems

Figure 5-5 shows the Bit Error Ratios for a different number of receiving antennas and one transmit
antenna versus the mean EtlNo per receive antenna in a flat Rayleigh fading channel. The flat
fading channel is a special case of the exponentially-decayed Rayleigh fading channel described in
Section 5.4: only the first pulse of the Channel Impulse Response is chosen unequal to zero and it
is assumed that this pulse does not introduce any delay (so '[I =ans in Figure 5-3). Furthermore, no
coding is used and it is assumed that the receiver estimates the channel using training. Again, the
training sequence has a length of 8 OFDM symbols. The guard time is chosen to be 800 ns. Curves
a), b), c) and d), respectively, give the simulation results for the antenna configurations (1,1), (1,2),
(1,3) and (1,4), where the first number represents the number of transmitting antennas (N,) and the
second number represents the number of receiving antennas (N,). If curves a), b), c) and d) are
considered, clearly the diversity (see Section 2.7) increases when the number of receiving antennas
is increased.

The theoretical curves e) are based on perfect knowledge of the channel at the receiver and no
guard time. These curves can be obtained by using Formula (2.77) with the diversity order L equal
to the number of receiving antennas (see the diversity analysis of Section 2.6). In order to illustrate
the correctness of using this formula., we need to show that MRC is a special case of MLD, i.e.,
MLD with antenna configuration (1,N,). MRC is a technique in which the received signals (from
the different receiving antennas) are added, each weighted by the complex conjugate of the
corresponding channel element and this sum is divided by the power of the channel vector. In
vector notation this sum equals h·xlllhl/z. After that, the most likely transmitted signal is sought.
Mathematically, this can be represented by:

(5.9)

where M corresponds to the number of constellation points, x is the received vector and h is the
channel vector. Rewriting this formula leads to:

(5.10)

On the other hand, MLD with an antenna configuration of (1,N,) can be rewritten as follows:
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(5.11)

where IIhl/ 2
is real, positive and constant for a specific h, which justifies the last equality.

Comparing both results shows the fact that MRC and MLD with antenna configuration (1,Nr)
indeed give the same result. When we compare the theoretical curves of Figure 5-5 with the
simulation results, again, it can be noticed that the BER performance deteriorates approximately
1.5 dB, when the channel is estimated (i.e., not perfectly known) and a guard time is simulated.

10"

"-

""- ....... .... --"' '- ""'-.a
-

'l> I" ......

" \.. "-
." ""-
\d c "-b

.
~ '"

5 10 15 20
E,jNo per receive anlenna (dB)

25 30

Figure 5-6: Bit Error Rate versus mean EJiNoper receive antenna in a Rayleigh fading channel for
QPSK, 64 byte packets, no coding, but with channel estimation and a guard time of 800 ns, with

different antenna configurations (Nt,Nr): a) (2,1), b) (2,2), c) (2,3) and d) (2,4).

The results that are depicted in Figure 5-6, are the results of almost the same simulation as the
previous one. The only difference is that in this case two transmit antennas are used. When
comparing Figure 5-5 and Figure 5-6, it can be concluded that introducing an extra transmitting
antenna, does not change the diversity order in case of the SDM technique MLD. However, in the
case of 2,3 and 4 receiving antennas, approximately a 4 dB increase in EtJNo is needed to achieve
the same BER perfonnance if Nt is upgraded from 1 to 2. So this is the cost for increasing the
capacity. If we change the antenna configuration from (Nt,Nr)=(l,l) to (Nt,Nr)=(2,1) even a 7.5 dB
increase in EblNo is needed. This can be explained with Figure 5-7. Suppose that the antenna
configuration is (Nt,Nr)=(2,1) and that the components of the channel matrix (in this case: channel
vector) are pointing in (almost) the same direction (see Figure 5-7b). Then it is difficult for the
decoder to successfully decode the following two transmitted signals (in case of BPSK): (1,-1) and
(-1,1) (See Figure 5-7c), which influences the BER perfonnance in a negative way.
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Figure 5-7: Example of system with (N"N,) = (2,1) in which decoding could go wrong, especially
for transmitted signals (-1,1) and (1,-1).

The most interesting conclusion is that if the antenna configuration is changed from (1,1) (see
Figure 5-5) to (2,2) (see Figure 5-6), the BER perfonnance becomes better and the capacity
increases (in case of MLD)! So, by introducing an extra transmit and an extra receive antenna, the
BER perfonnance and the capacity increase!

For the next simulations, the indoor channel model with exponential decaying power profile,
described in Section 5.4, is used. With this model, it is possible to look at the perfonnance of the
system under different delay spreads and with different antenna configurations. Figure 5-8 shows
the Packet Error Rate versus the mean EtJNoper receive antenna with the indoor channel model for
different delay spreads. The simulation is perfonned with an antenna configuration equal to (N/,N,)
=(1,1) and the data is coded with a rate 1/2 convolutional code. Note that in this case we always
use a guard time, because otherwise the system is not able to deal with delay spread.

The delay spread is nonnalised, because the perfonnance of the system under delay spread depends
on the length of the guard time interval. If the guard time is chosen larger, the system can handle
linearly higher delay spreads. So, in order to make the data of the simulations with delay spread
independent of the guard time, the nns value of the delay spread is divided by the guard time
length. From Figure 5-8 it can be concluded that at first the PER perfonnance increases when the
delay spread increases, but if the nonnalised delay spread exceeds 1/3, the perfonnance starts to
deteriorate again. This can be explained as follows. A small nonnalised delay spread is equivalent
to a small ratio of OFDM signal bandwidth and coherence bandwidth. In such a situation, the
channel frequency response is relatively flat within the OFDM signal bandwidth, so if there is a
deep fade, all of the subcarriers are significantly attenuated. In the case of a large nonnalised delay
spread, a fade only affects a few adjacent subcarriers. There can be several fades within the OFDM
signal bandwidth, with relatively strong subcarriers in between the fades. As a result, the average
signal power is much more constant over several channels than in the case of small delay spreads.
The coding benefits from this by using the stronger subcarriers to compensate for the attenuated
subcarriers. Finally, if the nonnalised delay spread becomes larger than 1/3, the perfonnance goes
down, because in this case the paths with a large delay cannot be resolved with the guard time and
will appear as Inter-Symbol Interference (lSI).
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Figure 5-8: Packet Error Ratio versus mean Ety/Noper receive antenna in a channel with an
exponential decaying power profile for QPSK, 64 byte packets, hard-decision MLD, rate 1/2

convolutional coding, antenna configuration (Nt,Nr) =(1,1), normalised delay spread -r,.,"/h =a)
1/48, b) 1/24, c) 1/12, d) 1/6, e) 1/3, f) 2/3.
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Figure 5-9: Packet Error Ratio versus mean Ety/Noper receive antenna in a channel with an
exponential decaying power profile for QPSK, 64 byte packets, hard-decision MLD, rate 1/2

convolutional coding, antenna configuration (Nt,Nr) =(1,2), normalised delayspread -r,.",/TG =a)
1/48, b) 1/24, c) 1/12, d) 1/6, e) 1/3, f) 2/3.

Figure 5-9 displays the results of a simulation that is almost the same as the previous one, only the
antenna configuration is changed to (Nt,Nr) = (1,2). In Section 2.7 it is found that the diversity
increases by one if an extra receiving antenna is introduced. When Figure 5-8 and Figure 5-9 are
compared, it becomes clear that introducing an extra receive antenna makes the system also more
robust against delay spread. This can be explained by the fact that a system with SDM becomes
more robust against Gaussian noise in case of introducing an extra receive antenna (the order of
diversity increases). Apparently, the delayed OFDM symbols have more or less that same



62 Space Division Multiplexing for OFDM Systems

characteristics as Gaussian noise and, thus, a system with an extra receiving antenna is more robust
against delay spread.

Figure 5-10: Packet Error Ratio versus mean EIiNoper receive antenna in a channel with an
exponential decaying power profile for QPSK, 64 byte packets, hard-decision MLD, rate 1/2

convolutional coding, antenna configuration (Nt,Nr) =(2,2), normalised delayspread 'r,.",/TG =a)
1/48, b) 1/24, c) 1/12, d) 1/6, e) 1/3, f) 2/3.

Figure 5-10 shows the results of almost the same simulation as the previous two, only in this case
the antenna configuration is (Nt,Nr) = (2,2). Again, it can be seen that the diversity order is
increased in comparison with Figure 5-8. However, when Figure 5-9 and Figure 5-10 are
compared, it can be noticed that, when an extra transmit antenna is introduced, more SNR per
receive antenna is needed to achieve the same PER. This is easily explained, namely, now two
parallel streams of data are received, both having half of the power of the single data stream of the
previous case. Thus, in order to separate these two streams and in order to get the same PER, a
higher SNR per receive antenna is needed. Furthermore, comparing Figure 5-9 and Figure 5-10
leads to the conclusion that introducing an extra transmit antenna makes the system less robust
against delay spread. This can be explained by the fact that an extra transmitter is seen as an extra
"interferer" while decoding one of the two streams of data. Clearly, a system is less robust against
delay spread if more interferers are present.

From Figure 5-8, Figure 5-9 and Figure 5-10 it can be noticed that, in case of a large delay spread,
the PER appears to have a floor, even for a high SNR value. This PER floor is the result of the
increasing influence of lSI in case the delay spread goes up. Furthermore, it seems that this PER
floor is dependent of the antenna configuration.

Figure 5-11 shows the PER floor versus the normalised delay spread for different antenna
configurations. The simulations are performed with a high SNR value of 80 dB. Curve a gives the
PER floor in case of antenna configuration (1,1) and no coding. The other curves are the result of
simulations in which the data is coded with a rate 1/2 convolutional code. If curve a and curve b are
compared, the effect of coding becomes clear. Furthermore, when we look at curves b, c and d,
(again) the conclusion can be drawn that an OFDM system becomes more robust against delay
spread when extra receiving antennas are introduced. However, if an extra transmit antenna is
introduced, the system becomes less robust against delay spread which can be explained by the fact
that, due to this extra transmitting antenna, an extra "interferer" is introduced and, thus, the
performance goes down. But, a system with a (2,2) antenna configuration (curve e) still performs
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better for low delay spreads than a system with antenna configuration (1,1) (curve b). So,
increasing the capacity, by going from an antenna configuration (1,1) to (2,2), does not have a
negative influence on the delay performance! Although this looks promising for designing a system
that is robust enough for a maximum delay spread of 300 ns (see Section 5.4), we should note that
the delay spread performance deteriorates when more complex constellation schemes like, 16­
QAM and 64-QAM, are used [53].
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Figure 5-11: Irreducible packet error ratios versus normalised delay spread T",./I'G for 64 byte
packets, QPSK, hard-decision MLD, rate 0.5 code (except for curve a) and antenna configuration

(Nt,Nr): a) (1,1), no coding, b) (1,1), c) (1,2), d) (1,3), e) (2,2), f) (2,3).

5.6.2 Simple MLD algorithm with soft-decision outputs

In this subsection the simulation results are given of the MLD algorithm which produces soft­
decision outputs according to the power of the columns of H as described in Subsection 5.5.1. For
the performance results under the condition of Additive White Gaussian Noise (AWGN), we can
simply refer to the results in AWGN of hard-decision output MLD given in Subsection 5.6.1
because for AWGN, the channel is equal to H = 1. So, the power of the channel is equal to 1,
which leads to equal outputs as MLD with hard-decision outputs. However, when the indoor
channel model with exponential decaying power profile, described in Section 5.4, is used, the
power of the channel columns is variable, leading to soft-decision outputs with the method of
Subsection 5.5.1. So, in this case we may expect a performance improvement.

Figure 5-12 shows the Packet Error Rate versus the mean EiJNo per receive antenna for different
delay spreads when the indoor channel model is used. The antenna configuration equals (Nr,Nr) =
(1,1) and a rate 1/2 convolutional code is used for coding the data. Again, the delay spread is
normalised, because the performance of the system under delay spread depends on the length of the
guard time. That is, the system can handle linearly higher delay spreads when the guard time is
increased. Therefore, the rms value of the delay spread (to normalise it) is divided by the guard
time length.

It is interesting to compare these results with the performance of the hard-decision output MLD
algorithm with the same configuration (see Figure 5-8). Clearly, the expected performance
improvement is true. What is also interesting is the increasing improvement, when the delay spread
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increases. Comparing the curves a of Figure 5-8 and Figure 5-12, we see an improvement of the
SNR of approximately 2 dB in the latter case. But when we compare the curves d, this
improvement increases to about 4.5 dB. So, it can be concluded that the simple MLD algorithm
with soft-decision outputs is more robust against delay spread than hard-decision output MLD,
which also can be seen from the lower PER floor of curve f of Figure 5-12 compared to that of
Figure 5-8. This can be explained by the fact that the Viterbi decoder performs better when
receiving soft-decision values as input, or in other words, the coding benefits even better from the
stronger subcarriers in between the fades (due to selective fading, see Subsection 5.6.1). Thus, it
can handle higher delay spreads, while achieving the same PER performance.
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Figure 5-12: Packet Error Ratio versus mean EtiNoper receive antenna in a channel with an
exponential decaying power profile for QPSK, 64 byte packets, simple MLD algorithm with soft­
decision outputs, rate 1/2 convolutional coding, antenna configuration (Nr.Nr) = (1,1), normalised

delayspread rrmlTG = a) 1/48, b) 1/24, c) 1/12, d) 1/6, e) 1/3, f) 2/3.

Figure 5-13 and Figure 5-14 show the results of the same simulation as that of Figure 5-12, only
now with antenna configuration (Nr.Nr) = (1,2), respectively, (Nr.Nr) = (2,2). Comparing these
results with the results of the simulations with hard-decision output MLD (Figure 5-9 and Figure
5-10, respectively) confirms the earlier drawn conclusions. Namely that the simple MLD algorithm
with soft-decision outputs performs better in combination with soft-decision input Viterbi decoding
than hard-decision output MLD and also that the former one is more robust against delay spread.

However, when we take a closer look to for instance Figure 5-10 and Figure 5-14, we can see that
the performance improvement deteriorates in case of larger antenna configurations. E.g., the curves
a of Figure 5-10 and Figure 5-14 show an improvement of only 0.75 dB, whereas the improvement
in the (Nr.Nr) = (1,1) case is shown to be 2 dB. Also the PER floor is not increasing that much
anymore for larger antenna configurations. An explanation for this is the fact that the chance that a
transmit antenna is in a fade for all receive antennas deteriorates when larger antenna
configurations are used, i.e., the columns of H have a less variable power for larger matrices of H.
Thus, for (very) large antenna configurations the performance of the simple MLD algorithm with
soft-decision outputs tends towards the performance of hard-decision output MLD.
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Figure 5-13: Packet Error Ratio versus mean EliNoper receive antenna in a channel with an
exponential decaying power profile for QPSK, 64 byte packets, simple MLD algorithm with soft­
decision outputs, rate 112 convolutional coding, antenna configuration (N"Nr) = (1,2), normalised
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Figure 5-14: Packet Error Ratio versus mean EliNoper receive antenna in a channel with an
exponential decaying power profile for QPSK, 64 byte packets, simple MLD algorithm with soft­
decision outputs, rate 112 convolutional coding, antenna configuration (N"Nr) = (2,2), normalised

delayspread -r",,/TG = a) 1/48, b) 1124, c) 1/12, d) 116, e) 113, f) 2/3.

This conclusion can also be drawn when we compare the irreducible packet error ratios of the
simple MLD method that produces soft-decision outputs (Figure 5-15) with the irreducible packet
error ratios of Figure 5-11. From the latter figure, it can clearly be seen that, for normalised delay
spread < 0.7, the (N"Nr) = (2,2) situation (curve e) has a lower irreducible PER floor than the
(Nt,Nr) = (1,1) case with coding (curve b). Comparing the curves a and d from Figure 5-15, it can
be seen that here, this crossing point (if it exists) must has a normalised delay spread lower than
0.5. So, the performance difference between the (Nt,Nr) = (1,1) situations is larger than between the
(Nr,Nr) = (2,2) situations, which indeed confirms the conclusion above.
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Figure 5-15: Irreducible packet error ratios versus normalised delay spread -r,.",/TG for 64 byte
packets, QPSK, simple MLD algorithm with soft-decision outputs, rate 0.5 code and antenna

configuration (Nt,N,): a) (1,1), b) (1,2), c) (1,3), d) (2,2), e) (2,3).

5.6.3 Complex MLD algorithm with soft-decision outputs
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Figure 5-16: Bit error ratios versus EJlNoper receive channel in AWGN for QPSK, 64 byte
packets, complex MLD algorithm with soft-decision outputs, rate 1/2 convolutional code, antenna

configuration (Nt,N,) =(1,1) with a) channel estimation and a guard time of 800 ns, b) perfect
knowledge of the channel and no guard time and c) results from [57] and d) same curve as b, only

for 512 byte packets.

The results of the Maximum Likelihood Decoding algorithm, producing soft-decision outputs
according to the log-likelihood ratio, will be discussed in this subsection. For this case, it is
interesting to look at the perfonnance in Additive White Gaussian Noise, because even for a
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channel H = 1, the complex MLD algorithm with soft-decision outputs is able to produce soft­
decision values.

In Figure 5-16 the Bit Error Ratio is depicted against Eb/Noper receive antenna for AWGN. Curve
a shows the result for rate 1/2 convolutional code, antenna configuration (Nt,Nr) = (1,1), with
channel estimation and a guard time. Curve b shows the same result only now the receiver has
perfect knowledge of the channel and no guard time is implemented. We (again) see a difference of
about 1.5 dB between the curves, because by estimating instead of knowing the channel the system
performance deteriorates and also introducing a guard time has a negative influence on the
performance. However, note that in case of delay spread a guard time is introduced to make the
system more robust against delay spread. Curve c of Figure 5-16 is obtained from [57] and shows
the results of a 64-state rate 1/2 convolutional code in AWGN for a 'regular' OFDM transmitting
system without guard time and with perfect knowledge by the receiver of the channel. Because our
convolutional code is also a 64-state code, the results can be compared. Clearly, our system
performs somewhat better. This can be explained by the fact that we use relative short packets of
64 bytes and in order to use a Viterbi decoder, every coded packet has to end with 8 bits of zero. In
case of short packets, this is some kind of coding overhead the Viterbi decoder benefits from. E.g.,
by using packets of 512 bytes (see curve d), the performance slightly deteriorates compared to
curve b.
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Figure 5-17: Packet Error Ratio versus mean EilNoper receive antenna in a channel with an
exponential decaying power profile for QPSK, 64 byte packets, complex MLD algorithm with soft­
decision outputs, rate 1/2 convolutional coding, antenna configuration (Nt,Nr) = (1,1), normalised

delayspread 'C,."./TG = a) 1/48, b) 1/24, c) 1/12, d) 1/6, e) 1/3, f) 2/3.

Figure 5-17, Figure 5-18 and Figure 5-19 show the PER performance under different delay spreads,
for the antenna configurations (N"Nr) = (1,1), (Nt,Nr) = (1,2) and (Nt,Nr) = (2,2), respectively. It
might be interesting to check the performance improvement compared to hard-decision output
MLD, e.g. for antenna configuration (Nt,Nr) = (1,1). Comparing the curves a of Figure 5-8 and
Figure 5-17 we see an improvement of 2 dB. This is equal to the improvement of the simple MLD
algorithm with soft-decision outputs (see Subsection 5.6.2). However, the improvement for curve d
is approximately 6.5 dB, which is larger than that of the simple MLD algorithm with soft-decision
outputs. Clearly, the MLD algorithm that produces soft-decision outputs according to the log­
likelihood ratio is more robust for higher delay spreads.
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In contrast to the simple MLD algorithm with soft-decision outputs, for the complex MLD with
soft-decision outputs we see a clear performance improvement for larger antenna configurations
(compare Figure 5-9, Figure 5-13 & Figure 5-18 and Figure 5-10, Figure 5-14 & Figure 5-19).
Thus, also for large antenna configurations, this method keeps performing better that hard-decision
output MLD. However, the main drawback of this method is that it requires a full search per bit to
decode (see Subsection 5.5.2), whereas, hard-decision output MLD requires a full search per
transmitted vector.
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Figure 5-18: Packet Error Ratio versus mean EtlNo per receive antenna in a channel with an
exponential decaying power profile for QPSK, 64 byte packets, complex MLD algorithm with soft­
decision outputs, rate 112 convolutional coding, antenna configuration (NhN,) = (l,2), normalised

delayspread 'rrm/TG = a) 1148, b) 1124, c) 1112, d) 116, e) 1/3, f) 2/3.
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Figure 5-19: Packet Error Ratio versus mean EII'Noper receive antenna in a channel with an
exponential decaying power profile for QPSK, 64 byte packets, complex MLD algorithm with soft­
decision outputs, rate 112 convolutional coding, antenna configuration (N"N,) =(2,2), normalised

delayspread 'rrm./TG = a) 1/48, b) 1124, c) 1112, d) 116, e) 1/3, f) 2/3 and g) 1148 with exact soft­
decision output MLD according to the beginning of Formula (5.5).
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Figure 5-20 shows the PER floor versus the normalised delay spread for different antenna
configurations and for a high SNR value of 80 dB. Comparing Figure 5-11, Figure 5-15 and Figure
5-20, we clearly see that the complex MLD algorithm with soft-decision outputs is the most robust
against delay spread impairments. So, overall it can be concluded that this algorithm has the best
PER performance and the best performance under delay spread.
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Figure 5-20: Irreducible packet error ratios versus normalised delay spread "Crm/TG for 64 byte
packets, QPSK, complex MLD algorithm with soft-decision outputs, rate 0.5 code and antenna

configuration (N,.Nr): a) 0,1), b) 0,2), c) 0,3), d) (2,2), e) (2,3).



6 Conclusions and future work

6.1 Conclusions

The main goals in developing new wireless communication systems are increasing the bit rate and
increasing system capacities. In literature ([15] and [37]), it has been shown that the multipath
wireless channel is capable of enormous capacities, provided that the multipath scattering is
sufficiently rich and is properly exploited. The Space Division Multiplexing (SDM) techniques
proposed in this report are promising solutions to properly exploit the multipath. Basically, these
techniques transmit different signals simultaneously on different transmit antennas. While these
parallel streams of data are mixed-up in the air, the transmitted signals still can be recovered at the
receiver.

The SDM techniques proposed in this report are called Zero Forcing (ZF), Minimum Mean Square
Error (MMSE), ZF with Decision Feedback Decoding (DFB), MMSE with DFB and Maximum
Likelihood Decoding (MLD) and are listed here in increasing performance. It can be shown that the
diversity order of ZF, in case of Rayleigh fading, equals the number of receive antennas minus the
number of transmit antennas plus one [58], whereas, in this thesis, the diversity order of MLD is
shown to be equal to the number of receive antennas. So, the Space Division Multiplexing
techniques not only provide an increase in capacity but also an improvement of the Bit Error Rate
(BER) performance due to diversity.

The major disadvantage of the MLD method is that its complexity grows exponentially with the
number of transmit antennas. But it is shown that for a reasonable number of transmit antennas
(less than 6 for BPSK) and a somewhat adapted and slightly less performing MLD algorithm the
complexity is comparable to or even less than the other methods.

To obtain sufficient delay spread robustness, the best performing SDM technique, namely, MLD is
applied to the spectrum efficient transmission technique called Orthogonal Frequency Division
Multiplexing (OFDM). The delay spread channel is modelled by exponentially-decayed Rayleigh
fading. From the results of Monte Carlo simulations, it can be concluded that, firstly, introducing
one extra transmit antenna does not change the diversity order of MLD, but the overall BER
performance and the delay spread performance deteriorate, because this extra transmit antenna can
be seen as an extra "interferer". Secondly, introducing one extra transmit and one extra receive
antenna not only increases the bit rate but also the BER performance improves due to diversity,
while the delay spread performance stays more or less the same. Thirdly, introducing only one
extra receive antenna makes the system more robust against delay spread and the BER performance
is increased.

When a forward error correction code, like a convolutional code, is used and decoded at the
receiver by, e.g., a Viterbi decoder, even better BER performances and delay spread performances
are achieved. If this Viterbi decoder is able to decode soft-decision values and the MLD algorithm
is adapted in such a way that it delivers soft-decision values, according to the log-likelihood ratio,
as output, superior BER performance and delay spread performance is obtained.

The overall conclusion is that Space Division Multiplexing techniques, especially the Maximum
Likelihood Decoding algorithm, are a promising solution for achieving spectrum efficient
transmission of data in a rich scattered environment. Because these techniques exploit the multipath
scattering properly, the data rate and the Signal-to-Noise performance can be increased.
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6.2 Future work

Space Division Multiplexing for OFDM Systems

As can be concluded from this thesis, Space Division Multiplexing is a promising technique to
increase bit rates and system capacities. However, there is still a lot of theoretical and practical
work to be done. Concerning the theoretical work, firstly, it would be of great use if exact
representations or tight upperbounds of the Bit Error Rate performance of the SDM techniques,
discussed in this report, are found. Secondly, the SDM techniques are all based on methods that
also appear in equalisation, remote sensing and image processing. So, it might be interesting to
define global algorithms, from which the methods of these different areas can be deduced. It should
be noted that in this report, only a one way communication link is described Thus, in order to
design a realistic (bi-directional) physical layer for a communication system like a wireless LAN,
still a lot of work needs to be done. As a solution, we are thinking of a Time Division Duplex
structure.

Considering more practical work, firstly, a lot of effort should be spent on trying to optimise the
SDM algorithms in order to reduce their complexity. Usually, a trade-off is involved here, ~ecause
in order to find a less complex algorithm, most likely a penalty has to be paid in performance.
Secondly, in this report it is shown that the BER performance improves if soft-decision values are
used as input for the soft-decision input Viterbi decoder. This states an interesting question,
namely, may we see SDM as a code (the 'inner' code) and is it possible to combine this in such a
way with a convolutional code (or another 'outer' code), that a form of turbo coding is achieved?
Of course, again, it should be tried to keep the complexity as low as possible. Thirdly, because a
practical system with SDM has a very high bit rate, the amount of overhead compared to the packet
duration increases. This makes the total system more inefficient than current wireless
communication systems. Therefore, in the future a more efficient transmission protocol must be
found to deal with this problem, e.g., by making the packet size larger, or reducing the overhead, or
both.

10 the nearby future, also practical work needs to be done, e.g., to check the assumptions we have
made about the channel. This can be done by using some kind of channel sounder to measure the
channel. If the channel indeed appears to be rich scattered (which seems logical) and if less
complex algorithms have been found for SDM, a prototype could be build in order to do practical
measurements on the system and prove the spectrum efficiency of Space Division Multiplexing.
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Appendix A

Zero Forcing algorithm

function
ber = ZF(nt,nr,snr,numsnr,packetlength,experiments,limit,numphases)

·~o sirn1..11at(.;~; m.ultiple antenrict .,system, Ylith }?s;~udo i.tT\.7(·::!:se .
.90 function call:

.~; ZOE (nt f n r.:, Sfl.l:" I .!ltJrnE.:n.l:." t :pa.cket J.eriqth j" expe::.'.irnent S J" 1 ,"Lrni t I" nUmr)l'la sef3)
·go l.."lher.:e:
5:0 nt = #TX ant.ennds;
% nr ::: IRX antennas;

o
~;

snr := SNR arr-ay (EbNO per RX antenna);
nlJffiSnr = tSNR values in SNR array;
limit = if bit errors > limit therl stop;
nurn:phc.~~.H~S :::: #phases of COl1st(-::llation; 2 foJ::.'

~; r(~turn:"3 rw~~an ):)it (-}r"I.'or rate.

numbitspersymbol=log(numphases)/log(2);

ps = zeros(size(snr));
outage=O;
snrlow = 1;
expnr=O;

BPSK anel ·1 for

while (expnr<experiments) & (ps(numsnr)<limit),
if (ps(snrlow»limit-l)

snrlow=snrlow+l;
end;
expnr=expnr+l;
dat=floor(numphases*rand(nt,packetlength)); % make random data
datest=O*dat;

H=(randn(nr,nt)+j*randn(nr,nt))/sqrt(2); % Make random channel matrix
PinvH = pinv (H) ;
N=(randn(nr,packetlength)+j*randn(nr,packetlength))/sqrt(2);

.£6 'I'.1:'ansrnit.teI:
x=exp(j*(dat*2*pi/numphases));
rsig = H*x;

for s = snrlow:numsnr,
exparray(s)=expnr;
alpha = nt/(lOA((snr(s)+lO*loglO(numbitspersymbol) )/10));

% alpha of Doi.se, corr~cted to get
% Eb!NO curve in stead of Es!NO curve

r=rsig+sqrt (alpha) *N; % r = received array
estimate = PinvH*r;

datest = round(angle(estimate)/(2*pi/numphases));
% Estintate rlt phases

datest = rem(datest + numphases,numphases);

errors=dat-datest; % calculat~ the BER
errors=errors(errors-=O);
errors=min(abs(errors),numphases-abs(errors));
ps(s)=ps(s)+sum(errors);

end; 9at3n.T." loop
end; % experiments loop
for s = l:numsnr,

bertemp(s) = ps(s)/(exparray(s)*packetlength*nt*numbitspersymbol);
end;
ber = bertemp;
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Minimum Mean Square Error algorithm
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functi.on
ber = LMS(nt,nr,snr,numsnr,packetlength,experiments,limit,numphases)

% sj.rnul.at~s muJ.tipl.e a,ntenrlB systern, with LM3*
~~ funct..1.on. ca1J:

%LMS(nt,nr,snr,numsnr,packetJ.ength,8xperi.ments,limi.t,Dumphases)
~~ \lJheI-e:
% lIt = #TX anterl!laS;
% nr ~ #RX antennas;
% snr ::: SNR array (SNR per RX ant8I1I1a);
% nunisnr = #SNR values in SNR aJ:ray;
% l.imit = i_t bi.t errors> l.i.niit tl1en stop;
S?6 nUlTi}"lha.ses = #ph,a.r:.:es o.f constel.1.atioDi ;: for. BPSf: and i1 fOJ.' Q.PSK.
~; ret.urns lY't'.~~[-in }').1.t. el:ror: l:at.e ..

numbitspersymbol=log(numphases)/log(2);

ps = zeros(size(snr));
snrlow = 1;
outage=O;
expnr=O;

while (expnr<experiments) & (ps(numsnr)<limit) ,
if (ps(snrlow»limit-1)

snrlow=snrlow+1;
end;
expnr=expnr+1;
dat=floor(numphases*rand(nt,packetlength)); % make rctrldoIT\ data
datest=O*dat;

H=(randn(nr,nt)+j*randn(nr,nt))/sqrt(2); % Make random charlIleJ. rnatri.x
N=(randn(nr,packetlength)+j*randn(nr,packetlength))/sqrt(2);

% T.ransrnit t.t.~r

x=exp(j*(dat*2*pi/numphases));
rsig = H*x;

for s = snrlow:numsnr,
exparray(s)=expnr;
alpha = nt/(lOA((snr(s)+10*log10(numbitspersymbol))/10));

% al.pha of noise, corrected to get
% Eb/NO CIJrVe i.n stead of Es/NO Cllrve

r=rsig+sqrt(alpha)*N; % r = rec€lved array

Htemp=[H;sqrt(alpha)*eye(nt)];
r=[r;zeros(nt,packetlength)];

estimate = pinv(Htemp)*r;

datest = round(angle(estimate)/(2*pi/numphases));
% Estlmate nt phases

datest = rem(datest+numphases,numphases);

errors=dat-datest; % calculate BER
errors=errors(errors-=O);
errors=min(abs(errors),numphases-abs(errors));
ps(s)=ps(s)+sum(errors);

end; .% fSl1Y loOl)
end; % experiments J.oop
for s = l:numsnr,

bertemp(s) = ps(s)/(exparray(s)*packetlength*nt*numbitspersymbol);
end;
ber = bertemp;
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function
ber=ZFwithOD(nt,nr,snr,numsnr,packetlength,experiments,limit,numphases)

~t si.m.1.1:Lr.i.tt:;s rnu1tit=:·1E;. a.nt.I.:::nna syrsLt.:;m' f ~\:.i-tl"1 :p;r;;eul1o .inv·t~rE';E':, DFD and opti.m.aJ
~.: clet(::ctlO!1
~}. func.tiGn ca.ll:

% ZFwlthOD(nt,nr,srlr,rlurr~snr,packetle!lg~htexperiments,lirrtitfrlun~hase9)

~; ,:..rhe.t~e ~

% Ylt = #TX arltennas;
% nr = iRX antennas;
% snr = SNR array (SNR per RX antenna);
% nurnsnr ::: #SNR val.ues in SNR array;
% li.rni.t = i.f bit errors > J.imit 'then stop;
% rlumphases = tphases of COIlstellation; 2 for BPSK and ~ for QPSK
% retlJrnS mean bit errc)! rate.

numbitspersymbol=log(numphases)/log(2);

ps = zeros(size(snr));
snrlow = 1;
outage=O;
expnr=O;

while (expnr<experiments) & (ps(numsnr)<limit),
if (ps(snrlow»limit-l)

snrlow=snrlow+l;
end;
expnr=expnr+l;
dat=floor (numphases*rand (nt, packet length) ) ; 9" mak.e random data
datest=O*dat;

H=(randn(nr,nt)+j*randn(nr,nt))/sqrt(2); % Make random channel matrlx
N=(randn(nr,packetlength)+j*randn(nr,packetlength))/sqrt(2);

i: T'r:E:I.J:lSrn.l.tte.r
x=exp(j*(dat*2*pi/numphases));
rsig=H*x;

for s = snrlow:numsnr,
exparray(s)=expnr;
alpha = nt/(lOA((snr(s)+lO*loglO(numbitspersymbol))/lO))

% alptla of floise, corrected to obtain Eb/NO
r=rsig+sqrt(alpha)*N; % r = received array

estimate = O*dat;
Htemp = H;
dattemp = dati
for i = nt:-l:l,

~; l.teration for: finding th(~ n~=~xt COltlmn with thi~ EJrnallt.:.:st po,;:~.r{-;r:

G = pinv(Htemp);
[Y,k] = min(sum(abs(G) .A2,2));

PER = eye(i); PER(k,k) = 0; PER(i,i) 0; ~:cr..·eate 1.\ !flatI.l.X to
PER(k,i) = 1; PER(i, k) = 1; %permute Hand pinv(R)
dattemp(l:i,:) = PER * dattemp(l:i, :);
G = PER * G;
Htemp = Htemp * PER;

esttemp = G(i,:) * r;
datest(i, :)=round(angle(esttemp)/(2*pi/numphases));

% Estiruate nt pha.ses
datest(i, :)=rem(datest(i, :)+numphases,numphases);
esttemp = exp(j*2*pi*datest(i, :)/numphases);
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r = r - Htemp(:,i)*esttemp;
Htemp Htemp(:,l:i-l);

end;
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errors=dattemp-datest; ~, caLcu:Late BER
errors=errors(errors-=O);
errors=min(abs(errors),numphases-abs(errors));
ps(s)=ps(s)+sum(errors);

encl; 5"5 snr loc!};)
end; % experiments loop
for s = l:numsnr,

bertemp(s) = ps(s)/(exparray(s)*packetlength*nt*numbitspersymbol);
end;
ber = bertemp;

Minimum Mean Square Error algorithm with Decision Feedback

function
ber=LMSwithOD(nt,nr,snr,numsnr,packetlength,experiments,limit,numphases)

~; ~) .i..rn'Ll:1 a t ~~s rnul.t. .1. f)} e a nt~E;n.na r3Y s t t:.:rn, {'V" 1. t:. h .Lr~:IS, DFD a no 01]"!.:.1. rna,l. det(;;ct 5.0fJ
~; funct~i.Gn ca..I.l.:

-% LI'1Sv.:i t.hOD (nt~ f nl: I Sflr, nurnsnr I ]!iic:k(-:;t length, :.:;-x:p(·:;r irn;:;~nt.s f 1 irni t f rnlrnphas,;;~s)

% v.rh':::re:
% Ilt = #TX antennas;
.'i; fir = #RX ant<2nnas;
% snr = SNR array (SNR per RX anterlIla);
% numsnr = #SNR va].u~s in SNR array;
% Ii.mit == i.f bit errors> limit then stop;
% Dllrnphases == #phases of constellati.on; 2 for BPSK and 4 for QPSK
% returns mean bl.t error rate~

numbitspersymbol=log(numphases)/log(2);

snrlow=li
ps=zeros(size(snr) );
outage=O;
expnr=O;

while (expnr<experiments) & (ps(numsnr)<limit),
if (ps(snrlow»limit-l)

snrlow=snrlow+l;
end;
expnr=expnr+l;
dat=floor (numphases *rand (nt, packet length) ) ; :~ make I.'i.H)dom d.ata
datest=O*dat;

H=(randn(nr,nt)+j*randn(nr,nt))/sqrt(2); % Make random channel matr~x

N= (randn (nr,packetlength) +j*randn (nr,packetlength) )/sqrt(2);

x=exp(j*(dat*2*pi/numphases)) ;
rsig = H*x;

% I~<2ce:i,ver

for s = snrlow:numsnr,
exparray(s)=expnr;
alpha = nt/(lOA((snr(s)+lO*loglO(numbitspersymbol))/lO));

% alpha of noise, corrected to obtain Eb!NO
r=rsig+sqrt(alpha)*N; % r = received array

Htemp=[Hisqrt(alpha)*eye(nt));
r=[r;zeros(nt,packetlength));

estimate = O*dat;
dattemp = dati
for i = nt:-l:l,
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~; iteration for £indinq th(·~ n\~~.~xt colUlnn y.:ith thf.~ t}rnallt-:;st l=)()""V'{-:;!

G = pinv (Htemp) ;
[Y,k] = min(sum(abs(G)."2,2));

PER = eye(i); PER(k,k) = 0; PER(i,i) 0; %create a matrix to
PER(k,i) = 1; PER(i, k) = 1; %permute Hand pinv(HI
dattemp(l:i,:) = PER * dattemp(l:i, :);
G = PER * G;
Htemp = Htemp * PER;

esttemp = G(i,:) * r;
datest(i, :)=round(angle(esttemp)!(2*pi!numphases));

% Estimate nt phases
datest(i, :)=rem(datest(i, :)+numphases,numphases);
esttemp = exp(j*2*pi*datest(i, :)!numphases);

r = r - Htemp(:,i)*esttemp;
Htemp Htemp(:,I:i-l);

end;

errors=dattemp-datest;% (:.s.lculate BEJ.::;'
errors=errors(errors-=O);
errors=min(abs(errors),numphases-abs(errors));
ps(s)=ps(s)+sum(errors);

end; % snr l.oop
end; % experiments lc)op
for s = l:numsnr,

bertemp(s) = ps(s)! (exparray(s) *packetlength*nt*numbitspersymbol);
end;
ber '= bertemp;

Maximum Likelihood Decoding algorithm

function
ber =

meamld(nt,nr,snr,numsnr,packetlength,experiments,limit,numphases)
S5 sirnulat{~.:s rnult~iple antc-?nrlCt ~3ystl~;rn, using a. rnaxirnurn likelihood decodf':I:
.96 funct i on ca 1.J., :

~; m.ea.rnl.d (nt, 1"1r J snr I nurnsn.r , I)o cket l.eng th t eXr~€.r. irn~n ts t 1. .irni t f nurn'pha S~,I::')

.% whe17 l::::

% nt = #TX alltennas;
~; nr = #I~X antenrlas,~

% snr = SNR array (31qR per RX antenna);
% numsnr = #SNR val.ues i.n SNR array;
% limit = if bit errors > limit then stop;
% nurr~hases = #pllases of COllstellation; 2 for BPSK aIl0 4 for QPSK
% ,t-l?t".Lirns mi.~a_n l)it. (-.;:C1.:017 rat.t~"

numbitspersymbol=log(numphases)!log(2);

snrlow=l;
ps=zeros(size(snr));

for i = l:numphases,
Constel(i)=exp(j*2*pi*(i-l)!numphases);

end;

% Main l.cop: varj.ous 3NR vaJ.ues
Carray = zeros (nt, numphases"nt); 'k det:ermi.ne all. pOl3si.ble c;Gnst.'~:llat:..l.ons
for i = l:nt, % ('11 nt transmlt anter1nas

for k = l:numphases"nt,
Carray(i,k) = Constel(floor(mod«k-l)!(numphases"(i-l)),numphases))+1);
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end;
end;

outage=O;
expnr=O;

Space Division Multiplexing for OFDM Systems

while (expnr<experiments) & (ps(numsnr)<limit),
if (ps(snrlow»limit-l)

snrlow=snrlow+l;
end;
expnr=expnr+l;
dat=floor(numphases*rand(nt,packetlength)); % make random data
datest=O*dat;

H=(randn(nr,nt)+j*randn(nr,nt))/sqrt(2); % Make random channel matrix
Darray = H*Carray; % determine all possible receiver vectors
N=(randn(nr,packetlength)+j*randn(nr,packetlength))/sqrt(2);

x=exp(j*(dat*2*pi/numphases)) ;
rsig = H*x;

for s = snrlow:numsnr,
exparray(s) = expnr;
alpha = nt/(lO~((snr(s)+lO*loglO(numbitspersymbol) )110));

% alpha of nC)iS8, corrected t() obtain Eb/NO
r=rsig+sqrt(alpha)*N; % r = received array
for i = l:packetlength,

ri=r ( : , i) ;
Rarray = ri(:,ones(numphasesAnt,l));
[Y,Imin] = min(sum((abs(Rarray - Darray)) .A2,1));

% find the max~ 1.i.keJ.i.hood esti.mate
estimate(:,i) = Carray(:,Imin);

end;

datest=round (angle (estimate) I (2*pi/numphases) ); %E;:,t.".l.ma.te nt phaS(-;E;
datest=rem(datest+numphases,numphases);

errors=dat-datest; % calculate BER
errors=errors(errors-=O);
errors=min(abs(errors),numphases-abs(errors));
ps(s)=ps(s)+sum(errors);

end; % sn.r. i.oop
end; % experiments lc)op
for s = l:numsnr,

bertemp(s) = ps(s)/(exparray(s)*packetlength*nt*numbitspersymbol);
end;
ber = bertemp;
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