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Summary

In the processing of video information, noise enters the system in almost every
part of the path of the video signal from the source, e.g. the video camera, to
the viewing system, e.g. television or computer screen. The two most impor
tant kinds of noise are Gaussian noise and impulse noise. Gaussian noise that
has a limited bandwidth is also called pink noise. Noise can be added to the
video signal (called additive noise) or it can be multiplied with the video signal
(multiplicative noise). In this report only additive Gaussian bandwidth limited
white noise will be considered. The aim of this report is to find noise reduction
algorithms that are suitable for TV-systems, evaluate the quality of these algo
rithms with existing evaluation measures and, hopefully, find a better quality
measure to describe the subjective performance of noise reduction algorithms.

Noise reduction algorithms

Noise reduction algorithms can be described by many characteristics, such as
filter support, support size, filter structure types, noise filter features, neigh
bourhood selection and adaptivity, statistics used in filtering and complexity
and hardware constraints. Not all noise reduction algorithms are suitable for
use in TV-systems. A selection of available filters is described and implemented.

Evaluation measures

Subsequently, noise reduction algorithm evaluation measures have been found.
There are basically three types: objective, hybrid and subjective evaluation
measures. While objective measures are measures that give arelation between
luminance properties of video sequences, hybrid measures try to incorporate hu
man vision characteristics. The objective evaluation measures used are: SNR,
PSNR, SNRI/PSNRI, MSE, MD, textitMB, ST, CPR, FFNSA and DPC. The
hybrid evaluation measures are: SDM, TDM, Mdis, Fujio SNR and PSNR,
CCIR 4211 SNR and PSNR and CCIR 5672 SNR and PSNR.
Subjective measures, also called subjective panel tests, gather opinions from
observers directly.
The objective and hybrid evaluation measures have been used to evaluate the
implemented noise reduction algorithms. Also two subjective panel tests have
been conducted in each of which five noise reduction algorithms were compared
among each other on quality perception and remaining noise in the filtered
video. Also information on the important parts that observers used to judge
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quality and noise was gathered.

Objective evaluation results

Summary

The noise algorithms are ranked on the overall performance for 26 and 32
dB PSNR sequences. The ranking of the algorithms is for the 26 dB PSNR
sequences, in order of goodness: SWAN-DNR, Siemens, DNR_mc, SWAN, Me
dian-Fuzzy, DNR and Falcon_mc_hp. For 32 dB PSNR sequences, the ranking,
in order of goodness, is: SWAN_DNR, SWAN, DNR_mc, Median-Fuzzy, DNR,
Siemens and Falcon_mc.1lp. From the results, it became clear that there was
a strong correlation among the SNR, PSNR, SNRI, MD, MSE and MB eval
uation measures for 26 dB PSNR sequences. For 32 dB PSNR sequences, the
same group of evaluation measures showed a correlation, only small differences
arose for the MSE evaluation measure, while the ranking of the noise reduction
algorithms with MB deviated heavily from the previously mentioned ones.
Another group ofevaluation measures that showed a highly consistent behaviour
is the group of the weighted SNR and PSNR evaluation measures. There were
only small deviations within this group.

Subjective evaluation results

The conducted subjective test containing two experiments gave results on qual
ity and noise performance of the noise reduction algorithms and on important
parts that observers use to evaluate quality and noise performance.

Overall in experiment 1, the Siemens algorithm was the best, for both qual
ity as noise performance. Next came SWAN_DNR together with Falcon_mc.1lp.
SWAN could not be distinguished on noise performance from Falcon_mchp. On
quality performance, SWAN was worse than SWAN-DNR and Falcon_mc.1lp.
The worst performing algorithm for both quality and noise performance was
the Median-Fuzzy algorithm.

Subsequently, the effect of noise strength on quality and noise performance
has been described. This is done by examining the quality and noise perfor
mance for 26 dB and for 32 dB PSNR sequences separately.
For 26 dB PSNR sequences, the Siemens algorithm performed the best, followed
by the SWAN-DNR algorithm, then came Falcon_mc.1lp and SWAN that were
comparably good. The worst algorithm was Median-Fuzzy.
For 32 dB PSNR sequences, the Siemens noise reduction algorithm was the
best perceived algorithm, next came the Falcon_mc_hp and the SWAN-DNR
algorithms and, finally, the SWAN_DNR and Median-Fuzzy algorithms. The
SWAN_DNR algorithm had a combined second and third rank, together with,
respectively, Falcon_mc_hp and Median-Fuzzy. Results for quality and noise
performance for the two different noise strengths were exactly the same.

In experiment 2, the SWAN-DNR, DNR_mc and Falcon_mc.1lp algorithms scored
the best. These algorithms were undistinguishable on basis of quality perfor-
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mance. Next came the SWAN algorithm, followed by the DNR noise reduction
algorithm that performed the worst on quality. The noise performance was
the same, only Falcon_mc_hp and SWAN algorithms could not be distinguished
from each other. For both noise and quality performance of noise reduction on
26 dB PSNR sequences, SWAN-DNR scored the best (on noise SWAN-DNR
was comparably good as DNR_mc). DNR performed the worst for both scores.
DNR_mc and Falcon_mc-hp scored comparably for both quality and noise per
formance and were better performing than DNR. For both quality and noise
performance for 32 dB PSNR sequences, DNRJllc, SWAN-DNR, FalconJllc-hp
and SWAN scored better than the DNR noise reduction algorithm. DNR scored
the worst for quality and noise.

The observers were also asked to indicate important areas for judgement of
quality and noise. Results showed that for the sequences Renata and Car fj

Gate no explicit preference can be given for detailed or undetailed parts. For
the Teeny sequence a clear preference is present for undetailed areas of the se
quence. These results are applicable for quality as weIl as noise judgement.

Regression model of subjective quality with objective and subjec
tive evaluation measures

The scores for quality and noise performance obtained from the two subjective
experiments have been averaged over the three sequences. It appeared from
a correlation analysis with SPSS that the averaged quality and noise scores
are highly correlated. The correlation coefficients of all objective and hybrid
evaluation measures with the quality performance have been calculated. The
results show that correlation in general of the objective and hybrid evaluation
measures with quality as measured in the two subjective experiments is very
low. The best correlating independent measures are CPRand MB. These eval
uation measures have been used for the two regression models of the results of
experiment separately, and for the regression model of the combined results of
the two experiments. The regression model of the first experiment gives a very
low explanatory power of 50% (R2 square value of 0.503) of the variance of the
subjective quality. The regression model of the second experiment gives a sat
isfactory explanatory power of 84% (R2 square value of 0.837). The regression
model for the combined results of experiment 1 and 2 gives a low explanatory
power of 60% (R2 square value of 0.593). The coefficents of the three regression
models are close together, which means that the model is consistent for the in
dividual experiments and the combined experimental results. The explanatory
power of the model for the combined experimental results is with 60% very low.
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Chapter 1

Introduction

In the processing of video information, noise enters the system in almost every
part of the path of the video signal from the source, e.g. the video camera, to
the viewing system, e.g. television or computer screen. The two most impor
tant kinds of noise are Gaussian noise and impulse noise. Gaussian noise that
has a limited handwidth is also called pink noise. Noise can he added to the
video signal (called additive noise) or it can he multiplied with the video signal
(multiplicative noise). In Figure 1.1 and Figure 1.2 a video image is shown with
and without pink! noise of different strengths, resulting in images with a PSNR
of 20 dB and a PSNR of 26 dB.

Figure 1.1: Teeny with a PSNR of 20 dB and noiseless Teeny

lBy pink noise is meant here: Gaussian white noise, filtered with a low-pass filter of 5MHz.

1



2 Chapter 1. Introduction

Figure 1.2: Teeny with a PSNR of 26 dB and noiseless Teeny

1.1 Sourees of noise

Almost in the whole path of the video signal, from the recording to the display
on the consumer TV-system, noise is added. The most important parts of the
video chain where noise is added, are the transmission path ofthe PAL-encoded
video signal and the recept ion of the video in the consumer TV-system.

1.2 Noise reduction

In addition to a very careful treatment of the video signal to avoid noise, filters
can be used to reduce the negative effect of noise on the quality of video. The
working principle of the noise filter is called the noise reduction algorithm2. Fil
ters are used among others inside the consumer application to reduce the noise
before the video appears to the user. The noise filter can enhance the video
quality considerably and is, therefore, an important feature of a consumer ap
plication.
The performance of a noise filter can be measured by applying noise reduc
tion quality measures. The purpose of a quality measure is twofold. Firstly,
the measure should facilitate an accurate evaluation of the quality of a noise
reduction algorithm. Secondly, it should be commonly used. Basically, two
approaches to assess noise reduction quality are in use:

• übjective measures. These measures describe the objective qualifications,
such as noise strength and (objective) differences between noise reduced
and noise-free images.

• Subjective measures. Quality of noise-reduced video as perceived by hu
mans. Quality is, in the case of relative small degradations of the video,
mostly described as a relative measure with respect to the noise-Iess video.

2In this report, no distinction is made between the terms 'noise filter' and 'noise reduction
algorithm' .
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Or, as used in this report (Chapter 5), quality can be described by compar
ing noise reduced video sequences, resulting from different noise reduction
algorithms, among each other.

1.3 Objective

The objective of this report is threefold:

1. Find noise reduction algorithms that are suitable for consumer applica
tions, given their complexity, architecture and performance.

2. Evaluate the noise reduction algorithms with the help of a subjective
quality experiment and try to correlate the results with objective quality
measures.

3. Recommend a video noise reduction quality measure to improve the ob
jective evaluation of video noise reduction algorithms.

1.4 Constraints

There are certain limitations that should be posed upon the subject of video
noise reduction to narrow the research topic to realistic proportions. Of course,
these constraints should be in accordance with the objectives of the report.
The limitations will limit the scope of this report further to noise reduction
in standard definition consumer systems. This constraint has the following
consequences:

• The noise is bandwidth limited from 0 to 5MHz.

• The noise is additive Gaussian white noise.

• The noise source is the transmission phase of the broadcasting path. This
means that the video signal is PAL encoded when noise is added.

• Algorithms are only considered if they are applicable in television systems.
This demand limits the maximum complexity and memory usage of the
algorithms that can be used.

• Only luminance filtering is taken into account.

The implemented algorithms are not real-time. They are tested in a simulation
environment. The focus of the implementation was on the correct processing,
rather than on efficient memory and CPU usage.

1.5 Organisation of this report

Chapter 2 gives a c1assification of noise reduction algorithms by examining the
different characteristics of the algorithms (objective 1). In addition, it gives
elaborate descriptions of seven different noise reduction algorithms. Chapter 3
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looks into ways to evaluate the quality of noise reduction algorithms. Objective,
perceptual and hybrid quality measures are introduced. Chapter 4 gives the
experimental set-up of the two subjective experiments that were conducted to
evaluate the perceived quality of seven noise reduction algorithms. All the
noise reductions used in the subjective experiments are described in the last
part of Chapter 23 . In addition to that, the results of the objective measures
and of the subjective experiments are given. The subjective and objective data
of Chapter 4 are analysed in Chapter 5 (objective 2), while in Chapter 6 an
attempt is made to derive an objective quality measure for perceptual quality
from the measurement results (objective 3) by means of a regression model
that describes subjective quality with objective evaluation measures. The last
Chapter contains the conclusions of the report.

3 All described algorithms are used, except the Recursive field and frame-based motion
compensated noise reduction algorithms



Chapter 2

Description of noise reduction
algorithms

The many noise reduction algorithms known from literature can be distin
guished from one another by making a differentiation of their specific properties.
The properties comprise for instance, choices of the pixels to use in the filtering
action and the number of pixels that are taken into account. The next list in
dicates the most important properties on which the noise reduction algorithms
can be distinguished [1]:

• Selection of the filter support.

• Selection of the support size.

• Noise reduction algorithm structure.

• Selection of the feature to be processed.

• Selection of the neighbourhood and adaptivity.

• Selection of statistics.

• Complexity and other hardware constraints.

In the next paragraphs, these characteristics will be explained in more detail.

2.1 Selection of filter support

The filter support is the set of pixels surrounding the pixel being filtered 1, that
are candidates for the neighbourhood selection (Section 2.5). Different choices
can be made on the number of dimensions along which the image is being
filtered (one, two or three), the type ofrelation within the filter support (spatial
or temporal) and the possible incorporation of motion trajectory information.
Figure 2.1 gives some typical examples of filter support choices. In this figure,
16 different pixel positions are given of two consecutive fields and some possible

1 In temporal filtering usually one other pixel is being selected for the filter support.

5
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filter support choices. The black square is the current pixel position and the
grey squares are the additional filter support pixels.

b.) c.)

Herizental positien

Figure 2.1: Three examples of filter support choices. Example a.) is 1
D temporal filter support, b.) is a 2-D spatial filter support
and c.) is a 3-D spatio-temporal filter support.

Motion trajectory information is velocity information of the pixel being filtered.
It indicates the x- and y-direction in which the information at a certain pixel
position is moving from one image to another. Motion trajectory information
incorporation is indicated as 'MC', meaning Motion Compensation. The result
ing possibilities are:

• I-D,

spatial, i.e. horizontal, or vertical filtering,

temporal, or field- or frame-based temporal filtering and

MC-temporal, which means field- or frame-based temporal filtering
along the motion trajectory.

• 2-D,

- spatial, i.e. combined horizontal and vertical filtering,

- spatio-temporal, i.e. combined horizontal or vertical and field- or
frame-based temporal filtering and

MC-spatio-temporal, or combined horizontal , or vertical, and field
or frame-based temporal filtering along the motion trajectory.

• 3-D,

- spatio-temporal, i.e. combined horizontal and vertical and field- or
frame-based temporal filtering and

- MC-spatio-temporal, i.e. combined horizontal and vertical and field
or frame-based temporal filtering along the motion trajectory
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In spatial noise reduction algorithms, mostly, the filter support is chosen sym
metrically around the pixel that is being filtered. This choice can be explained,
by comparing the correlation of pixels that are near to each other and to that of
more spread pixels. The correlation of the former is, in general, larger than that
of the latter. This property is also important in the selection of the support
size, as explained in Section 2.2.
In the case of recursive temporal filtering, only the current pixel and a time
delayed version of the pixel are being used (See a) in Figure 2.1). In temporal
filtering, motion is the main cause that the correlation among filter support
pixels decreases with larger time differences between pixels.

2.2 Selection of support size

The selection of the support size has a direct effect upon the effeetiveness of
the noise reduction filter. In general, a larger support size increases the noise
reduction rate. However, the distortion due to the noise filtering action is often
inversely correlated with the noise reduction power of the filter, i.e. when the
support size increases the potential distortion increases. This effect can be
explained by looking at the correlation of pixels with respect to the pixel that
is being processed. The larger the filter support, the farther away are the pixels
of the filter support (on average) from the pixel being processed and the less
the correlation becomes among the pixels used in the filter support. Preferably,
the statistical characteristics of the noise and the image pixels should differ as
much as possible in the filter support to have a maximum noise reduction effect.
The number of operations to filter an image using a spatiaI filter, where all filter
support pixels are averaged together is very large.

2.3 Noise reduction algorithm structure

Noise reduction algorithms can be built using two different kinds of structures:

• Finite impulse response (FIR), i.e. the filter inputs are only unfiltered
feature values.

• Infinite impulse response (IIR), i.e. among the filter inputs are also filtered
feature values.

FIR-type filters are mostly used for spatial filters, because FIR-filters have al
ways a finite impulse response and, therefore, do not visibly degrade the image
content. When using the same feature input values, the recursive filters or
IIR-filters have a better noise suppression than FIR-filters. This is the reason
that the recursive filter structure is often used for temporal filtering, where
expensive (frame or field) memory has to be used. Another reason is that
horizontal recursions needed for a spatial implementation are difficult to im
plement in hardware, because of pipelining constraints. The negative effects
of the long-tailed and asymmetrical impulse response of a recursive filter can
be avoided by special measures, such as motion detection (Section 2.8.3) and
motion compensation (Section 2.5).
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2.4 Selection of the feature to be processed

There are two features that are usually chosen for filtering, namely luminanee
(or grey-value) information and chrominance (or colour) information. As ex
plained earlier (Chapter 1), the most important noise type considered in this
report is white Gaussian noise. When the video signal arrives at the consumer
application, after being 'degraded' with noise (and possible other distortions),
noise is present over the full frequency spectrum of the video signal. This
means that noise is present in both luminance and chrominance information of
the signal. It has been found that the noise in the luminance signal is much
more annoying than the noise in the chrominance signal in PAL-signals (and
in NTSC-decoded video as weIl) [2]. This can be explained because the lumi
nance signal has a larger bandwidth than the chrominance signal. The total
noise power that is accumulated onto the luminance signal is larger than on the
chrominance signal. The inference is that white noise deteriorates the luminance
signal more. Furthermore, the human eye is less sensitive for chrominance in
formation, which was one of the reasons to use less bandwidth for chrominance
signal in the first place. Therefore, it is easier to remove the noise from the
chrominance signal, without the resulting filtering distortions being annoying
to the human eye.

2.5 Selection of neighbourhood and adaptivity

In many cases, it is advantageous to select a subset of the filter support to
improve the correlation among the pixels used for filtering. This subset is called
the neighbourhood. The number of pixels in the neighbourhood is, therefore,
smaller than or equal to the number of pixels in the filter support. The most
important neighbourhood selection methods are:

• Standard neighbourhood (Figure 2.2).

Feature values or rank number

Figure 2.2: The standard neighbourhood

The standard neighbourhood consists of all pixels of the filter support.
The grey pixels in Figure 2.2 are the pixels chosen for the neighbourhood.
The pixel with the dark edge is the pixel being filtered .

• K-nearest neighbourhood (Figure 2.3).
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o 000
Feature values or rank number

Figure 2.3: The K-nearest neighbourhood

In the K-nearest neighbourhood selection method, the pixel feature value
(i.e. luminanee or chrominance) is ranked by their difference with the
value of the pixel to be processed. The K pixels with the smallest dif
ferences are chosen for the neighbourhood. An example of the K-nearest
selection method with K = 4 is shown in Figure 2.3, where the grey pix
els are the neighbourhood selected pixels and the white pixels are the
remaining filter support pixels that are not selected.

• Sigma-nearest neighbourhood (Figure 2.4).

00
-sigma ...----------_

000
Feature values or rank number

Figure 2.4: The sigma-nearest neighbourhood

This neighbourhood consists of all the pixels that have a pixel feature
difference with respect to the value of the pixel being processed smaller
than a certain threshold, a. Sigma is correlated to some statistic property
of the image, mostly, the amount of noise in the image, which will be
explained in Section 2.6.

• Symmetrie nearest neighbourhood (Figure 2.5)
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spatial position

Figure 2.5: The symmetrie nearest neighbourhood

This neighbourhood selection method chooses from eaeh symmetrieally
oriented pair of neighbouring pixels in the filter support the pixel with a
value that is closest to the pixel being processed. This selection is done
for a number of pairs of pixels that is limited by the filter support size.

The difIerenee between the four kinds of neighbourhood selection mthods is that
the standard, the K-nearest neighbourhood and the symmetrie nearest neigh
bourhood selection methods always select a fixed number of pixels, whereas
in the sigma-nearest neighbourhood method the seleeted number of pixels ean
difIer depending on the characteristics of the feature values of the pixels in the
filter support. Apart from this adaptation of the filter to the loeal statistics,
the filter ean also be made adaptive to global statistics, sueh as the noise level
measured every one or two images.

2.6 Selection of statistics

While in the previous section neighbourhood selection methods were described,
here combination methods of the seleeted pixels of the neighbourhood are given.
The method most used to combine the seleeted pixels of the neighbourhood is,
taking the mean or weighted mean of the pixels. The weights in the weighted
mean ean, for instanee be used to include edge or distanee information in the
filtering. The most important methods in whieh weights are assigned to pixels
are:

• (Weighted) mean. (Figure 2.6)
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Figure 2.6: (Weighted) Mean statistics assignment

In this method the pixels are combined by multiplying the feature val
ues of the neighbourhood by weights. If the weights are the same, this
method takes the mean value of the feature values of the pixels in the
neighbourhood. Also a weighting can be applied which, for instanee gives
a larger weight to feature values of pixels that are near to the pixel that
is being filtered .

• Ordering of feature value. (Figure 2.7)

00 o
Feature values or rank number

Figure 2.7: Order statistics weights assignment

The pixels from the neighbourhood are ordered on feature value and con
secutively multiplied by certain weights that give a certain preferenee to
a certain rank of a pixel. The resulting filter is called an order statistical
(OS) filter. An important example is a median filter (Figure 2.8),

O.CIDOOO
X-Axis

Figure 2.8: Example of OS-filter: median filter

Feature va/ues or rank number

which assigns the unity weight to the pixel that has a feature value that
equals the median of the available feature values in the filter support.

• Ordering of differences. The difference with the OS-filter lies in the fact
that the pixels in the neighbourhood are ordered by the absolute differ
ence of the feature value with that of the pixel being filtered, instead of
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the feature value itself. The resulting filter is ealled a differential order
statistical (DOS) filter. (Figure 2.9)

00 o cao
Feature values or rank numbar

Figure 2.9: The ordering of differences statistics

2.7 Complexity and other hardware constraints

Noise filters in eonsumer applieations usually have to meet severe demands in
terms of eost-effeetiveness. There are certain generally applicable rules that can
be used to increase the cost-effectiveness of noise reduction algorithms.

• The use of the reeursive filter structure can reduce the use of memory.
This is because the reeursive filter has a better noise suppression than the
FIR filter structure (with the same number of delayjmemory elements).
Therefore, the support size can be chosen smaller, while maintaining the
same noise reduction. This is especially advantageous in the filtering in
the temporal dimension. The field or frame memory used here is quite
expensive. In the filtering of the spatial dimensions, the memory demands
are less stringent.

• The use of filter coefficients that are integer powers of two. Using these
eoeffieients will speed up the processing speed, because slow multiplica
tions ean be substituted by fast shift operations. In the case of coefficients
that are one, no multiplications are necessary. This property can be used
in a spatial averaging filter.

2.8 Noise reduction used in consumer applications

In the following paragraphs, a selection of the most relevant consumer video
noise reduction algorithms is described that filter noise from luminance in
format ion. The presented filters are suitable for implementation in consumer
TV-applications. They can comply to the earlier posed demands on complexity
and memory usage, because all presented filters are actually implemented in
TV-systems or are suitable for TV-implementation. It has to be noted here,
that the perception adaptive temporal TV-noise reduction algorithm and the
recursive temporal frame-based motion compensated noise reduction algorithm
need two field memories, or one frame memory. This, in contrast to the other
temporal filters that need only one field memory. In terms of memory usage,
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these demands can be too high if no significant additional subjective improve
ment can be obtained and if no other (more stringent) demands are posed on
memory by other parts of the TV-system. The presented algorithms can be
divided into three categories:

1. Spatial noise reduction algorithms. The filters that are described, are the
edge preserving spatial noise reduction algorithm [3-6] and the Spatial
Weighted Aperture Noise reduction algorithm (SWAN) [7].

2. Temporal noise reduction algorithms. Discussed are the recursive tem
poral field-based motion compensated noise reduction algorithm, the re
cursive temporal frame-based motion compensated noise reduction algo
rithm, the perception adaptive temporal TV-noise reduction algorithm
[3-6], the Dynamic Noise Reduction (DNR) algorithm [1] and the SGS
Thomson fuzzy temporal noise reduction algorithm [8,9].

3. Combined (spatial and temporal) noise reduction algorithms. The SGS
Thomson temporal median filter [8,9] is the only filter that falls into this
category.

All filters are characterised by giving the details with respect to the filter char
acterisation chokes as described in the previous paragraphs.

2.8.1 Edge preserving spatial noise reduction algorithm

This noise reduction algorithm [3-6] uses a filter support of nine pixels centred
around the pixel being processed.

mask 1 mask2 mask3 mask4

maskS mask6 mask 7 maske

Figure 2.10: The eight potential neighbourhoods used in the edge preserv
ing spatial noise filter

The filter chooses from eight different potential neighbourhoods within this
support. Each potential neighbourhood consists of three pixels. In Figure 2.10
the used potential neighbourhoods are shown. The black pixels are the ones
chosen for the potential neighbourhood, while the white pixels are neglected.
The selection of the neighbourhood from the eight possible ones is done by
using the following procedure:
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l. Calculate for all eight potential neighbourhoods the high-pass output.
The high-pass output is obtained by using a high-pass filter with coeffi
cients (-1, 0, -1), where the weight 0 is assigned to the center pixel and
the weight -I to the other pixels in eight different ways (Figure 2.10).

2. Select the neighbourhood with the minimum high-pass output. This se
lection is very likely to be the neighbourhood that distorts the details of
the image the least and attenuates the noise the most.

3. Low-pass filter the pixel with its selected neighbourhood. The filter coef
ficients are cl-, ~, t)2, with a filter weight ~ for the center pixel and t for
the other two pixels of the selected negihbourhood.

The high-pass filtering and subsequent selection of the neighbourhood are a
selection of statistics method, that is used to select pixels for filtering in such
a way that the maximum amount of detail is preserved, at a certain noise sup
pression rate. The number of potential neighbourhoods that is used adjusts
the trade-off of the filter between two properties. First, large noise reduction
(achieved with few filter masks) and, second, large detail-preservation abil
ity (achieved with many filter masks) in structured areas of an image. The
most effective noise reduction in homogeneous areas can be obtained by using
a standard neighbourhood (of three pixels), while the best detail-preservation
in structured areas can be obtained with a K-nearest neighbourhood selection
method (with K=2), which has 28, i.e. (~), possible filter-configurations for a
3x3 filter support. The number of masks chosen leads to a theoretical noise
reduction of 2 dB in homogeneous areas. It has been found in simulations that
the overall noise reduction was about 1 to 2 dB, as explained in [3]. The per
formance of this filter is adjusted to be used in cascade with the subband based
temporal noise reduction filter of Section 2.8.6. This temporal filter has mo
tion detection that causes the filter to switch off on edges in structured areas.
In these areas the filter performance is, therefore, worse than in homogeneous
areas. The spatial filter is adjusted to compensate for this lack of performance
in structured areas. Where the temporal filter lacks in performance, the spatial
filter gives some extra noise reduction. The spatial filter has an extra beneficial
effect, namely that the motion detector of the temporal filter is more accurate
because the input is less noisy, resulting in an extra gain in noise suppression.
In [3] the noise reduction has been tested in simulations and the results are
given in Table 2.1. In this tabIe, the noise evaluation measures SNR and SNRI
used that will be explained in Chapter 3.

2.8.2 Spatial Weighted Aperture Noise reduction algorithm

The SWAN algorithm [7] is a spatial filter which integrates both noise reduc
tion and peaking. Cascading of noise reduction and peaking has not an optimal
effect [7], due to the contradictory nature of these two actions. Noise filtering
is, namely, a low-pass filtering operation, while peaking is in general a high-pass

2In the high-pass filter only the relative output is of importance, while in the low-pass filter
normalisation needs to he done.
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Table 2.1: Performance results of the edge preserving spatial noise fil
ter [3J

Kind of sequence Noise improvement [dB 8NRI]
Zoom 25 dB SNR 1.69(2.55)
Zoom 30 dB SNR 1.43(0.99)
Statie sequence 25 dB SNR 1.71(2.3)
Natural sequence 25 dB SNR 1.63(1.23)
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Between brackets in the right colomn is the noise reduction added to the per
formance of the spatial filter when comparing temporal filtering only, and the
cascaded filtering of the spatial filter and the subband based temporal noise re
duction filter of S ection 2.8.6.

filtering operation. SWAN separates the pixels of the neighbourhood into three
categories, i.e. pixels that are used for the noise filtering action, pixels that
are used for the peaking operation and pixels that are not used to determine
a filtering action. The filtering operations are assigned in a mutually exclusive
way and, thus, inefficiency due to cascading is avoided.
The SWAN algorithm uses a 2-D window of five lines by 17 pixels (Figure 2.11).
From every line of this window, five pixels are selected for the filter support.
In total 25 pixels are used in the filter support (the selection method will be
described further in this section). The distance, both horizontal and vertical,
between the pixels influences the frequency response of the filter: a larger dis
tance between the pixels increases the low-frequency noise suppression, while
it lets the high-frequencies pass better (viee versa for a smaller pixel distance).
A horizontal distance of 4 pixels was found to give acceptable results [7]. Fur
thermore, an increasing positive horizontal offset from the (horizontal) position
of the center pixel is chosen for the two upper and bottom lines of pixels to
prevent ringing effects in the filtered video, as is indieated in Figure 2.11.

or- -'-'H0.::.:c"=..::zo-"'nta.::::'p"-"o.::::sil::=ion-'----- _

Figure 2.11: The filter support of the SWAN algorithm
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For all 25 pixels the luminance difference of the pixel to the central pixel is
calculated. The calculation of the pixel weights is done using five thresholds.
The assignment of the weights is visualised in Figure 2.12. As can be seen in
this figure, positive (levelIto 3), negative (level -1) and zero weights can be
assigned to the pixels. Smalliuminance differences probably result from noise
and need to be noise filtered, while large pixel differences more likely result from
spatial detail and are used as candidates for peaking. The pixel differences that
are used for peaking can be adjusted in a more elaborate way. This has been
found useful to prevent the amplification of impulse noise. The thresholds thr4
and thr5 can be used to select the right peaking range for the pixel differences.
Threshold thr4 is used to have an offset between the noise reduction range and
the peaking range. This can be helpful to prevent the amplification of peaks
of noise. Threshold thr5 is used to prevent the amplification of peaks resulting
from impulse noise.

I
nce

Pixel
weight

level 3

level 2

level 1

I thr4 thr5
0 I I I Pixe

level-1 thr1 thr2 thr3 differe

Figure 2.12: The calculation of weights assigned to the pixel differences

The thresholds are changed in accordance with the noise variance of the video.
The noise level is automatically measured by using a noise estimator, as de
scribed for instance in [1, 10, 1l]. SWAN can be seen as a combination of a
DOS-filter (different rankings are assigned different values) and a sigma-filter
(noise variance is the measure that is used to select the pixels that are used
as the neighbourhood). Statistical selection in the SWAN filter is used in the
way that weights are assigned to the pixel value differences (and corresponding
pixels): small to middle large (positive) weights are assigned to large to middle
large pixel differences, while fixed (negative) values are assigned to large pixel
differences. The sum of the weighted pixels represents the combined effect of
noise reduction and peaking in a mutually exclusive way for all pixels of the
filter support. The discrimination between the three different kinds of pixels is
done in the Discriminating Averaging Filter (DAF), that is shown in the SWAN
diagram in Figure 2.13.
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input (field)

-1 -2 -1
-212 -2
-1 -2 -1

Figure 2.13: Block diagram of SWAN

output
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The output of DAF is the weighted sum of pixels and the number of pixels
(smaller or equal to 25) that have been assigned positive weights (i.e. that
are used for noise reduction). This last number is used to adjust the amount
of high-frequency bypass through the use of the HF-fader. The more pixels
are used for noise reduction, the larger the gain of the high frequencies in the
HF fader. The high frequencies are obtained by using a high-pass filter on the
video signal before it enters the DAF. The high-frequency signal is processed
subsequently by using peaking and coring. The DAF output and the high
frequency signal are added to get the output of the SWAN filter. The limiter
assures that the output of SWAN is within the correct boundaries.
The performance in SNRI of the SWAN filter is given in Table 2.2 for four
different sequences (Renata, Circle, Teenyand Car & Gate). Especially in very
noisy video with large homogenous areas (for instance in the sequence Teeny
that has an unweighted SNR of 26 dB), the performance is exceptionally good.

2.8.3 Recursive temporal field-based motion compensated noise
reduction algorithm

The recursive temporal field-based motion compensated noise reduction algo
rithm uses a two pixel motion compensated filter support (Figure 2.14).
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Table 2.2: Performance results of the SWAN filter [7]

Sequence [dB SNR] Noise improvement [dB SNRI]
Renata

38 0
32 0.7
26 1.8
20 3.2

Circle
38 1.8
32 2.8
26 3.8
20 4.1

Teeny
38 1.0
32 2.8
26 4.2
20 5.4

Car & Gate
38 0
32 0.7
26 1.8
20 3.2
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Figure 2.14: Recursive temporal field-based motion compensated noise re
duction algorithm. LPF stands for low-pass filtering, ABS
stands for the absolute value operation, MAX stands for
the maximum operation, LUT stand for look-up-table, Me
means motion compensation and Tfield is a field-time delay.

It uses motion detection as an adaptive neighbourhood selection method to
prevent loss of detail in moving areas of an image. The motion compensation
uses sub-pixel accuracy in both the horizontal and the vertical domain. Sub
pixel accuracy means that when a motion vector points at a position in between
pixel positions the luminance value is calculated from the weighted average of
the surrounding four pixels, with weights inversely relative to the distance of
these pixels to the true motion vector position. High video frequencies are more
susceptible to distortion artefacts caused by the noise filter. As will be seen in
Chapter 3 of this report, the high noise frequencies are much less annoying
than low noise frequencies. The high-frequency bypass, therefore, can give a
perceptive improvement. The diagram of the filter is given in Figure 2.14.
The input field is low-pass filtered in LPFI and the high-pass frequencies are
obtained by subtracting the low-frequency components from the original field.
The motion detection part is shown in the upper part of Figure 2.14. First,
the input field is subtracted from the output signalof the temporal filter. This
result is low-pass filtered by LFP2, the absolute value is taken and the maximum
value is taken over a 3x3 window. Finally, the look-up-table (LUT) translates
the maximised value into the k value. The k value is used as the coefficient in
the recursive temporal filter, according to Equation 2.1.

Gp(x, n)LF = (1 - k)GF(X, n - I)LF + kG(x, n)LF (2.1)

where G(x, n) is the unfiltered input field at field number n, GF(X, n)LF is the
low-pass component of the filtered field and k is the coefficient that adjusts the
noise suppression rate of the filter.
The frequency response characteristics of a field-based recursive filter as a func
tion of k can be found in Figure 2.15. In this figure, deinterlacing effects3 have

3Deinterlacing effects have a low-pass effect on the vertical frequency content of an image,
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not been taken into account and no high-frequency bypass is used.
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Figure 2.15: Amplitude-frequency response of a field-based recursive filter
as function of k without high-frequency bypass

LUT can be used to adjust the filtering action to the noise strength and the
motion content. Typical LUT characteristics are given in Figure 2.16. In Fig
ure 2.16, characteristic a) is very sensitive for input changes, it switches the
noise filter quickly off, while the b)-labelled characteristic is much more grad
ual in reducing the noise filter's effectiveness. The values for k of 0 and 1 have
a special meaning: k = 0 means that the previous field pixel information is the
output, k = 1, means that the current field information is passed to the output
and the filter is switched off. The choice for aspecific characteristic depends
on the properties of the motion detector and the video that is being filtered.
In general, a few specific curves are chosen that are found to be the best from
perception tests or the experience of the designer. The consumer can select one
curve, taking into account the noise and movement properties of the video.

which could result visually in loss of vertical detail. See for instanee [1] for an example of the
effects of a simple line-averaging deinterlacing on the vertical frequency response.
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Figure 2.16: Examples of k-characteristics

The total output GF(X, n) of the filter can be written as

GF(X, n) = (1 - k)GF(x, n - l)LF + kG(x, n)LF + G(x, n)HF (2.2)

where G(x, n) is the field at field time position n and GF(X, n)LF and GF(x, n)HF
are the low-pass and the high-pass component of the filtered field.
The value of k determines the noise suppression rate, which can be ca1culated
from the total noise varianee resulting from two independent noise sources, as
in Equation 2.3.

(2.3)

Assuming that the two noise inputs of the recursive filter act as two independent
noise sources, it follows that:

Rewriting this equation gives the noise suppression rate, defined as:

(2.4)

(J ' 2
ln

--2
(Jout

(2.5)

In the case of a high-frequency bypass, only the low-frequency video input is
filtered by the recursive filter, inputs to the filter are GF(x, nhF and G(x, n)LF.
The output noise varianee can be divided into low and high frequencies, where
the low-frequency part of the video is filtered according to Equation 2.4. The
total noise varianee, (Jout 2 , can be written as:

2 k2 2 (1 k)2 2 2(Jout = (JLFin + - (JLFaut + (JHF (2.6)

The high frequencies are a part of the total noise varianee, (Jin 2, and can,
therefore, be written as:

where c is defined as

2 2(JHF = C (Jin

(JHF 2

c:=--2-' CE{O,l}
(Jin

(2.7)

(2.8)
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Table 2.3: Noise reduetion gain in a first order reeursive temporal filter
as function of eoefficient k with no high-bypass

k 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
SNRI [dB] 0.87 1.76 2.69 3.68 4.77 6.02 7.53 10.0 12.79
SNRI(HF-bypass) [dB] 0.46 0.97 1.55 2.22 3.01 3.98 5.23 6.99 10.0

(2.9)
(1 - eHl - (1 - k)2) + e k2

k 2
O'in

2

--2
O'out

The noise suppression rate including the high-frequency bypass can be written
as:

Taking a simpIe, but often used, high-pass filter with coefficients (-!,!,-!),
then c is approximately 0.5. In this case, the noise reduction rate becomes

1 (1 - (1 - k)2) + k2

2 k 2
(2.10)

In Table 2.3, the SNRI in dB is given as function of k for the two important
cases: high-frequency (HF) bypass and no HF-bypass.

2.8.4 Recursive temporal frame-based motion compensated noise
reduction algorithm

The recursive temporal frame-based motion compensated noise reduction al
gorithm (Figure 2.17) uses the same principles as the field-based version. The
only difference of the filter is that the two pixels of the filter support are a frame
time apart, rather than a field time. The total output GF (x, n) of the filter can
be written as

GF(x,n) = (1- k)GF(x,n - 2)LF + kG(x,n)LF + G(x,n)HF (2.11)

where G(x, n) is the unfiltered input field at field number n and GF(X, n)LF
and GF(x,n)HF are the low-pass and high-pass components, respecively, ofthe
filtered field.
The amplitude-frequency response of a frame-based recursive filter as function
of k can be seen in Figure 2.18. This characteristic can be deducted from
the amplitude-frequency characteristic of the field-based filter by considering
the frame-based filter as a down-sampled version of the field-based filter (Fig
ure 2.15) with a factor two. The main difference between the two filter charac
teristics is that the frame-based recursive filter has a steeper fall-off frequency
for the low-frequency range, while it passes high frequencies that are blocked
by the field-based filter.
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Figure 2.17: Recursive tempoml fmme-based motion compensated noise
reduction algorithm. LPF stands for low-pass filtering, ABS
stands for the absolute value opemtion, MAX stands for
the maximum opemtion, L UT stand for look-up-table, Me
means motion compensation and Tframe is a fmme-time de
lay.

Figure 2.18: Amplitude-frequency response of fmme-based recursive filter
as function of k
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2.8.5 Dynamic Noise Reduction

The Dynamic Noise Reduction (DNR) algorithm [1] uses a two pixel horizontal
and vertical motion compensated filter support with a temporal field-based
recursive filter. It uses motion detection as a form of adaptive neighbourhood
selection. The DNR algorithm had been implemented earlier also in the Falcon
IC that is used in the current generation televisions, and will be referred to
in this report as Falcon. Before Falcon, the algorithm was also used simply
under the name DNR. This first DNR did not have a high-frequency bypass
nor motion compensation. In the more recent Falcon implementation horizontal
motion compensation was added to DNR as weIl as a high-frequency bypass.
Condor is a software simulation model that simulates part of the new IC for
video processing that will, among others, be used in the next generation Philips
televisions. The SWAN and DNR algorithms are implemented in this software
platform. The DNR version that is used in Condor is shown in Figure 2.19.

~----

previous field
T....

-1 '~'l{ '"j{~l[ un ~
~.---'

k-

input +
LPF x + -iJ--- Limiler
3><3 -.r 0

(current field)
'---T~

hp-fader - high·pass
+

utpul

Figure 2.19: Dynamic Noise Reduetion (DNR) algorithm as used in Con
dor

From this figure the working of the DNR algorithm can be explained. The
output signalof the Condor DNR with a delay of one field time is subtracted
from the input signal and low-pass filtered in the 3x3 low-pass filter (LPF). The
low-pass signal is subtracted from the input signal to LPFI to obtain the high
frequency components. The amount of high-pass frequencies can be adjusted
with the HP fader. The motion detection is done by low-pass filtering the input
signal to LPF by using LPFl. From the output of LPFI the absolute value is
taken. This signal is filtered again in LPF2 and by using a look-up table (LUT)
the value for k is obtained. After adding all the intermediate results that are
indicated in Figure 2.19, the filter output GF(n) can be written as

GF(x,n) = (1 - k)GF(x,n - I)LF + kG(x,n)LF + G(x,n)HF (2.12)

where G(x,n) is the field at field time position n and GF(x,n)LF is the low
pass component of the filtered field, GF (x, n)HF the high-pass part of the filter
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input field and k is used to set the noise suppression rate.
The size of the low-pass filters in the motion detection path and the size of
the low-pass filter in the signal path might seem odd at first sight, however,
they have been carefully matched for time delays and operation in accordance
with motion estimation blocks that are calculated in other parts of the Condor
software platform.

2.8.6 Perception adaptive temporal TV-noise reduction

This filter [3-6] uses a three pixel filter support. It has a recursive field-based
filtering structure, with a motion detector, as a means of adaptive neighbour
hood selection to prevent loss of detail in moving image areas. In the filter
both temporal filtering on field and frame basis is used. Recursive temporal
filtering on field-basis has the disadvantage that in consecutive fields the same
pixel-line positions are not available, due to interlacing. In Figure 2.20, this
property of interlaced video is shown. It shows four consecutive fields of video,
where the current field is represented by the dark blocked lines, whereas the
white lines contain the pixels that are unavailable. When looking at a certain
pixel position, for instance the black pixel, no video information is available in
the adjacent fields. The adjacent field pixel can only be approximated, e.g. by
using interpolation techniques on the previous field pixels. Due to this effect,
the use of a field based recursive temporal filter results in a loss of vertical
resolution.
The frame based recursive temporal filter has the advantage that pixels are
available at exact the right position in the video, and consequently, no loss of
resolution will occur here (See again Figure 2.20). However, the time difference
between frames is twice as large as the time difference between fields, i.e. 40
ms instead of 20 ms. This means that moving objects can be displaced consid
erably in consecutive frames. The result is that the recursive filtering between
two adjacent frames will be partly switched off by the motion detector in non
matching areas. This problem can be overcome by using motion compensation.
One problem, however, can not be solved by motion compensation. When an
object is occluded by another moving object, new image parts will appear that
can not be filtered because the image information is not available in previous
images (yet).

n-3
(t-60 [ms])

n-2
(t-40 [ms])

n-1
(t-20 [ms])

n
(t [ms])

Figure 2.20: Consecutive fields with field numbers n [-] and time t [ms]
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The disadvantages of both time basis methods can be reduced by using a sub
band based processing, whieh is adapted to perception properties of the human
eye. In accordance with human perception one can divide video into two sub
bands: a low frequency band and a high frequency band. Processing for the
low- and for the high-frequency band has distinct properties. The human eye
has better spatial accuracy for high-frequency content, while the human eye is
in the low-frequency part more accurate for temporal differences [4]. In case of
non-moving areas for low frequencies the spatial accuracy is the most impor
tant, thus, in that case a frame-based filter is preferred. This induces the choiee
for a recursive temporal filter on field basis in the low-frequency spectrum with
the special ability to preserve the spatial content in non-moving areas. This
last property can be assured by adding a median-based deinterlacing to the
low-frequency processing.
In the high frequency part of the video, recursive temporal filtering on a frame
basis is used in order to preserve the full spatial resolution. Because, the tem
poral field-based filter only has loss of accuracy in vertical frequencies, only a
division of the video spectrum into vertieallow and high frequencies has to be
considered. The division of the video spectrum into two subbands has the added
advantage that the two filters can be individually adjusted (to comply for in
stance, to the weighted noise spectrum of [12-14]), so that maximum subjective
gain can be reached.
The recursive filtering on field basis is described by Equation 2.13.

(2.13)

where G(i, n)LF is the low vertieal-frequency content of the nth unfiltered in
put field and GF(i, nhF are the low vertical frequencies of the nth output field
and kLF sets the noise suppression rate.

The medianO operation is used to enhance the noise reduction in non-structured
areas; low noise-frequencies that are important for human perception quality.
In addition, the spatial accuracy is improved for statie image content.
The frame based recursive filtering for the high-frequency part is described in
Equation 2.14.

(2.14)

where G(i,n)HF is the high-frequency part of the nth unfiltered input field,
GF(i,n)HF is the high-frequency part ofthe nth output field and kLF sets the
noise suppression rate.

The diagram of the total filter can be seen in Figure 2.21.
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Figure 2.21: Perception adaptive temporal TV-noise reduction algorithm

In the upper part of the diagram, the input video signal is first split into the
high vertical-frequency part and the low vertical-frequency part (in the lower
part) by using a simple 3-taps LPF-filter with coefficients (1,2,1) and an orthog
onal HPF-filter. In the (vertical) high-frequency processing part of the diagram
of Figure 2.21, the Motion Adaptive Control unit for high vertical frequencies,
MACHF, is shown. This motion detector uses an absolute value operation, a
3x3 averaging filter, a 3x3 maximum operator and a LUT for the kHF calcu
lation, in a similar way as for the version of DNR that is implemented in the
Condor software platform and was described in Figure 2.19. Control param
eter kHF is used in the recursive filter to calculate GF(x,n)HF, as found in
Equation 2.14. A similar process is used for the low vertical-frequency part.
Here, the median-based deinterlacing is added with help of the line alternator
TL. The output of the low vertical-frequency part, GF(X, n)LF, is calculated
according to Equation 2.13. The two filter outputs GF(X, n)LF and GF(X, n)HF
are summed to obtain the total output of the filter.

2.8.7 Fuzzy temporal noise reduction algorithm

The filter [8,9J uses a seven pixel filter support in a field based temporal recursive
filter structure (See Example c) in Figure 2.1 and Figure 2.22.).
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Figure 2.22: The filter support of the spatio-temporal median filter of
SGS Thomson

In this figure the previous field lines and the current field lines are shown at the
same time. Pixel x is filtered with the six different pixels numbered PI, P2 , P3 ,

P4 , P5 and P6 •

It uses two adaptive statistical neighbourhood methods:

• motion correlation (CorrMot), to preserve detail in areas with motion.

• (inversed) spatial correlation (Corr), to preserve areas with detail.

The motion correlation (CorrMot) is calculated by looking at the difference
between the average spatial feature value of the previous field and the feature
values of the current field x (Equation 2.15). The averaging operation I(Pi +
Pj )/2, interpolates the missing feature value on the position of x.
The spatial correlation (Corr) is defined as the spatial difference of luminance
values, as indicated in Equation 2.15.

CorrMot = I(Pi + Pj)/2 - xl
Corr = !Pi - Pjl

(2.15)

The filter uses fuzzy logic in its processing. Fuzzy logic is basically a superset of
the Boolean arithmetic, in which besides the values 0 and 1, also all intermediate
values are possible and can be used in calculations. This means that Corr
and CorrMot can have any value in between the predefined minimum (LüW)
and maximum (HIGH) values, which are in Boolean arithmetic, respectively, 0
and 1. In addition, logical operators, like the AND-operator, can be used on
these operators. The fuzzy AND-operator has one special characteristic that
distinguishes its operation from the operation of the logical AND-operation:

If Corr € {HIGH,LOW}, CorrMot € {HIGH, LOW},
(2.16)

then (Corr AND CorrMot) € {HIGH, LOW}

The fuzzy AND-operation is also defined for intermediate values, and it converts
its parameters according to a certain translation table into an (fuzzy) AND
value. The conversion table is very important to get the right characteristic for
the AND-operation.
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The fuzzy temporal filter uses Corr and CorrMot to ca1culate the recursive filter
coefficient, in such a way that a low value for Corr and a low value for CorrMot
results in a high value for knr , the filter coefficient that determines the noise
suppression rate. This property is written in the fuzzy mIe (Equation 2.17)

IF Corr E (LOW, HIGH) AND CorrMot E (LOW,HIGH),
(2.17)

THEN knr E (HIGH, LOW)

This mIe is applied in the three directions which are possible for the three com
binations of Pi and Pj, namely PI P4 , P2Ps and P3P6. From the three ca1culated
values the maximum value for knr is selected, i.e. the maximum possible noise
reduction rate. This is the direct ion in which (Corr AND CorrMot) is mini
mal. The coefficient knr is used in Equation 2.18 to calculate the output pixel.
This procedure is used for all pixels x of the unfiltered input field.

p+p.
Ynr = knr ~ 2 J + (1 - knr)x (2.18)

where Ynr is the output of the filter, Pi and Pj are the pixels, that give the max
imum knr value and x is the luminance value of the center pixel (Figure 2.22).
Loss of horizontal detail can occur when the processed pixel lies on the border
of two regions with different luminance values. In this case, Pi might differ
much from Pj and the fuzzy process will detect a moving pixel erroneously
and introduces an edge-smoothing effect. This can be avoided by introducing
a deinterlacing effect for x. The feature value x will be substituted by the
weighted sum of Pi~Pj and median(P2 , Ps, xf depending on the value of ksm .

The coefficient ksm is determined by CorrMot by a fuzzy rule (Equation 2.19).

IF CorrMot is HIGH, THEN ksm is HIGH

The substitute value for x is ca1culated by Equation 2.20.

p +p. (P2 )
Xsubstitute = ksm ~ 2 J + (1 - ksm)median :s

(2.19)

(2.20)

with P2 and Ps the luminance values of the pixels near the position of x in the
vertical direct ion and x the luminance pixel of the center pixel (Figure 2.22).
The output of the filter can be ca1culated by using Equation 2.18 with the new
value for x substituted, found from Equation 2.20.

2.8.8 Combined spatia1 and tempora1 median filtering

The median filtering algorithm [8,9] uses a filter support of seven pixels, with
the center pixel as the pixel being filtered (See Figure 2.22 and Figure 2.1,
example c).). The pixels PI, P2, P3 , P4 , Ps and P6 are used in an OS-filter
with weights two and pixel x is given the weight five. The current pixel is only
substituted with the output value of the OS-filter, if this output differs much
from the current luminance value of x.
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2.9 Conclusions

Different characteristics of noise reduction algorithms have been described. A
description of filter support, support size, filter structure types, noise filter
features, neighbourhood selection and adaptivity, statistics sued in filtering and
complexity and hardware constraints has been given. Furthermore, spatial and
temporal filters have been given and one combined spatial-temporal filter has
been described. Many of these filters will be used in the objective and subjective
performance evaluation described in the next chapters. The filters have been
used with the settings given in Appendix D.



Chapter 3

N oise filter algorithm
evaluation methods

In all phases of the design of video noise filters, information is needed to de
termine whether certain design choices will result in an improvement of the
noise reduction algorithms. In the quality assessment of noise reduction filters,
a distinction can be made between

• objective,

• subjective and

• hybrid quality measures.

While the objective measures are made up of afigure obtained from some
formula describing luminance characteristics or signal characteristics, the sub
jective quality measures are figures that describe opinions of observers about
quality of noise-reduced sequences and are obtained from a viewing experi
ment, called a panel test. The subjective quality measures are in general more
reliable than objective measures, because they measure quality directly by gath
ering opinions from human observers. Although the opinion of a single human
observer can be less precise, through the use of statistical methods, panel tests
with a number of subjects can provide precise and reliable results. Some ob
jective measures that describe luminance characteristics of the video, try to
incorporate human perception characteristics. We shall call these measures
hybrid quality measures. There have been numerous attempts to make such
hybrid qualifiers for the assessment of images (See for instance [15]). Recently,
more attempts have been made to make such quality figures for video sequences,
mostly for the quality assessment of new technologies, for instance of the use
of MPEG streams for video purposes [16,17].

In the real-time use of noise reduction algorithms, a difficulty arises when one
wants to evaluate the performance of such an algorithm: only the noisy (unfil
tered) video and the filtered video are available. The original noise-free video
is in generaI not available. Many objeetive and hybrid performance measures,
however, use the original video in the calculation of the quality figure. To

31
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overcome this problem, noise is added (Figure 4.2) to recorded noise-free video
sequences (F) and these noisy sequences (G) are subsequently filtered by a cer
tain filter, resulting in noise-filtered video (GF ). In this way, all three variants
of a video sequence are present for the performance evaluation.

In this chapter, several objective, subjective and hybrid quality measures are
introduced for the evaluation of video noise reduction algorithms. The selection
is based on a combination of commonly known quality measures and some
alternatives that are expected to correlate better with subjective quality.

3.1 Objective quality measures

3.1.1 Signal-to-Noise Ratio and Signal-to-Noise Ratio Improve
ment

The Signal-to-Noise Ratio (SNR) [18J is one of the most commonly used noise
figures in different engineering disciplines. It gives the relation of signal strength
to noise strength. The more noise is present compared to the signal strength,
the lower the ratio is. Preferably, SNR should be as high as possible. SNR of
a filtered video sequence is defined as:

(3.1)

where n is a given image.
The SNR Improvement (SNRI) [18J gives the improvement in SNR by the noise
filtering of the image. The definition is given as:

(
Lx(F(x, n) - G(x, n))2 )

SNRI(n) = lüloglO Lx(F(x,n) _ GF(x,n))2

where n is a given image.

(3.2)

3.1.2 Peak-Signal-to-Noise Ratio and Peak-Signal-to-Noise Ratio
Improvement

The Peak-Signal-to-Noise Ratio (PSNR) [18J is related to SNR. Where in SNR
the actual signaI strength of the video is used, in PSNR the maximum or peak
signal strength is used. This measure, therefore, takes into account only the
amount of noise and is unrelated to the video content. Because of that reason,
PSNR of different video images can be better compared to one another than
SNR. PSNR of a filtered video sequence is defined as:

( ) (
NFmax2 )

PSNR n = 1OloglO Lx(F(x,n) _ GF(x,n))2 (3.3)

where Fmax = 255 in the case of an 8-bits feature value format, Nis the number
of pixels per image and n is the image number. PSNR can also be rewritten to
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compare the improvement in noise reduction, as PSNRI. PSNRJl is defined as:

(
Lx(F(x, n) - G(x, n))2 )

PSNRI(n) = 1010glo Lx(F(x,n) _ GF(x,n))2

where n is the image under consideration.

(3.4)

3.1.3 Mean Distortion or Mean Average Error

Noise reduction algorithms tend to, apart from reducing the noise strength,
distort the content of the video as weIl. This is sometimes visible, for instance
as a loss of sharpness or blur. The Mean Distortion (MD) [1] aims at measuring
this effect. Tt evaluates the differences between the noise filtered image and the
original noise-free image. MD should ideally be zero. The MD is equal to the
Mean Average Error (MAE) [18]. MD of a filtered video sequence is defined
as:

MD(n) = ~:L IF(x,n) - GF(x,n)1
x

where N is the number of pixels per image n.

(3.5)

3.1.4 Mean Square Error

The Mean Square Error (MSE) [18] is measuring the same property as MD, Le.
the distortion of a noise filtered image with respect to the original one. MSE
of a filtered video sequence is defined as:

MSE(n) = ~ :L(F(x,n) - GF(x,n))2
x

(3.6)

where N is the number of pixels in the image n.
Like MD and MAE, MSE should be zero in the ideal case. MSE can also be
used in the calculation of SNRI. The following relation exists between SNRI
and MSE [1]:

(
MSEG(x)(n) )

SNRI(n) = 1010glo MSE _ ( )
GF(x) n

where n is a given image.

(3.7)

3.1.5 Mean Busyness

The Busyness of each pixel in an image is defined as the median of the abso
lute vertical and horizontal luminance differences in a 3x3 mask, as defined in
Equation 3.8.

Busyness = median {ldj(i)1} (3.8)

where dj (x) is the jth vertical and horizontal spatial luminance difference in
a 3x3 mask, centered around position X. The median value of the set {a,b, ..}

1 As can he seen, SNRI and PSNRI have the same definition.
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(3.9)

(3.10)

is notated as median{a, b, ....} and N represents the number of pixels in the
image n.

These Busyness figures per pixel are averaged for the entire image and the
resulting figure is ealled the Mean Busyness (MB) [1,18].

1
MB(n) = - L BusynessN _

x

where the Busyness is defined in Equation 3.8. The figure indicates the amount
of spatial variation in an image and ean be eompared with the spatial varia
tion in other images, that are for instanee filtered by another noise reduetion
algorithm. The lower the MB, the larger the smoothing of the noise reduetion
algorithm.

3.1.6 Stability

When images are impaired by different noise sourees with the same eharaeter
isties (noise power, noise bandwidth), noise reduetion algorithms ean still have
different output images. This effect is undesired, beeause noise reduetion should
be independent of the way noise with the same eharacteristics impairs video.
The Stability measure (ST) [1,18] gives the average eonsisteney for images fil
tered after being degraded with different noise sourees that have the same noise
strength and type. ST is defined as:

ST(n) = ~ ~ LL {IAj(i)}
j :i

where M is the number of pairs of images proeessed with different noise sourees,
n is the image under eonsideration, N is the number of pixels per image and
IAj(i) is an indicator function defined as:

I .(i) = {1 ,(91 j (i) = 92
j
(i) )

AJ 0 ,(otherwise)
(3.11)

where 91 j (i) and 92 j (i) is a pair of eonseeutively filtered images, impaired by
noise souree 1 and noise souree 2, respeetively.

3.1.7 Correct Processing Ratio

A noisy image consists in general of two different types of pixels, i.e. the
noise degraded pixels and the pixels that have not been degraded by noise
(original image pixels). It is desirabie that the video noise reduetion algorithm
modifies only the pixels that are degraded by the noise, while it does not modify
the original image pixels. Knowing this, four kinds of filter aetions ean be
distinguished [1]:

1. Pixels that have been affeeted by the noise are modified2•

2It is assumed in the measure that a modification of a noisy pixel always result in IF(x) 
GF(x)lx:. < W(x) - G(x) Ix:. for i = 0, 1, ...N.
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2. Pixels that have not been affected by the noise, i.e. original image pixels,
are modified.

3. Pixels that have been affected by the noise are not modified.

4. Pixels that have not been affected by the noise are not modified.

Of these filter actions, the first and the fourth ones are correct behaviour of the
algorithm, while the second and the third ones are incorrect behaviour of the
algorithm.
The mean ratio of correct processed pixels to all processed pixels (both correct
and incorrect processed ones) is called the Correct Processing Ratio (CPR)
[1,18], which has the following definition:

CPR(n) = ~ L {IB(X) + Ic(x)}
x

(3.12)

where N is the number of pixels per image n and IB(x) and Ic(x) are indicator
functions defined as:

IB(x) = {

Ic(x) = {

1 ,(G(x,n) = F(x,n) t\ GF(x,n) = G(x,n))
Ü ,(otherwise)

1 ,(G(x,n) -=I F(x,n) t\ GF(x,n) -=I G(x,n))
Ü ,(otherwise)

(3.13)

(3.14)

3.1.8 Flat Field Noise Smoothing Ability

The Flat Field Noise Smoothing Ability (FFNSA) [19] is a measure for the
maximum reachable noise removal capability. In the fiat fields, which are the
parts of an image with no detail and no motion neighbourhood adaptivity,
the maximum noise removal of the noise reduction algorithm can be reached.
The FFNSA measure can be implemented using the SNR or PSNR. A simple
approximating measurement of the FFNSA can be done by measuring the noise
reduction for a sequence with a constant luminance value that is degraded with
noise resulting, for instance, in a 26 or 32 dB PSNR sequence and subsequently
filtered by different noise reduction algorithms. The definition for FFNSA is:

(
Ex(F(X,n) - GN(X,n))2)

FFNSAPSNRI(n) = lülog1o E-(FC ) _ G C ))2
x x, n F x, n flat fields

(3.15)

where n is the image under consideration, N is the number of pixels per image
and fiat fields are the regions of the image with little or no high-frequency
spatial content.

3.1.9 Detail-Preservation Capability

The Detail-Preservation Capability (DPC) [19] measures the amount of image
detail that is retained after filtering. Noise filters, in general, have a smoothing
or low-pass character [7]. This means that details like edges and textures are



36 Chapter 3. Noise filter algorithm evaluation methods

likely to be degraded by the filtering process. DPC can be implemented by using
distortion measures, such as PSNR, MAE or MD. Because detail is mainly made
up of high frequency image content, the following definition for DPC can be
given, here based on PSNR3 :

( ) (
NFmax2 )

DPCPSNR(n) n = 10log10 L-(F(x n) _ G (x n))2 .
x , F, htgh-pass

(3.16)

where Fmax is 255 for an 8-bit feature value format, N is the number of pixels
per image and n is the image number. The cut-off frequency for the high-pass
operation can be deducted from several weighting curves [12-14] described in
the last part of this chapter (Section 3.3) to calculate weighted SNR and PSNR
measures.

Detail-preservation should ideally be as large as possible. This means that DPC
should be ideally infinite, if based on the PSNR evaluation measure.

3.2 Subjective quality measures

The subjective quality can be measured directly with the help of observers in
a viewing experiment with still images or a video sequence. When taking into
account the three available video categories for the evaluation, namely noise
free original video F, noise-impaired video G and noise-filtered video GF, there
are three approaches to evaluate the quality of the noise reduction algorithms:

• Positive approach. Assess the quality improvement of filtered noisy
video sequences GF compared to the noise-impaired video G.

• Negative approach. Assess the impairments of filtered noisy video
sequences GF compared to the noise-free original video F.

• Multiple comparison. Assess the quality of filtered noisy video se
quences GF resulting from different noise reduction algorithms. Here a
ranking of observed quality of the noise algorithms can be obtained.

Different scales to measure subjective quality have been proposed by several
research institutions, notably the European Broadcasting Union (EBU), Inter
national Telecommunications Union (ITU) and the British Telecom Research
Laboratories. Apart from the type of rating scale a scale can be chosen to be
continuous or discrete. The latter scale type is also called a grading scale. With
the continuous scale the total range of the scale can be used to vote, whereas
with the grading scale only the mentioned grades can be used. The continuous
scale has the advantage that observer errors due to rounding of voting scores
are avoided. There are basically three types of scales [2,20]:

1. Quality scale (Figure 3.1). This continuous scale describes directly the
quality of a certain video sequence. Data can be obtained for the perceived

3Similar definitions for MAE, MD, MSE and SNR can he given.
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quality of noisy video sequenees or for noise-filtered video sequenees or for
both at the same time. ITU reeommends the use of the double stimulus
eontinuous quality seale method, in which an image or video sequenee is
eompared to a referenee image or video sequenee, and both are seored
on image quality. The images are shown one after the other on a single
display with a short time interval between the test and the referenee
image. The referenee and the test image are eaeh shown during 10 seeonds,
with a three seeonds interval. Then, there is a period of 10 seeonds for
the subjeets to make their quality decision (voting).

2. Impairment scale (TabIe 3.1). This grading seale deseribes the amount
of apparent degradation in a video sequenee. It ean be used to measure the
amount of pereeived annoyanee of eertain noise strengths or the annoyanee
of artefaets in noise-filtered video sequenees. ITU reeommends the use
of the double stimulus impairment seale method (also ealled the EBU
method) in whieh an image is eompared with an unimpaired referenee
image. The same experiment timing as deseribed for the double stimulus
eontinuous quality seale method is being used.

3. Paired comparison method. This grading method is used to eompare
the differenee in quality between all possible eonditions of a proeessed
video sequenee, sueh as e.g. the mutual eomparison of different noise
reduetion algorithms. ITU has paired eomparison methods under study,
and eurrently advises the seale as shown in Table 3.2.

Excellent Good Fair Poor Bad

f- -----+------+-------+-------+------1

Figure 3.1: Quality scale recommended by [TU

3.3 Hybrid quality measures

3.3.1 Weighted SNR and Weighted PSNR

From several studies about the objeetionability of noise for human pereeption
(see for instanee [12], it has been found that low noise frequencies are far more
annoying than high noise frequencies in luminanee values. Several attempts
have been made to deseribe the relationship between the noise frequeney and
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Table 3.1: Impairment Beale reeommended by ITU

5 Imperceptible
4 Perceptible, but not annoying
3 Slightly annoying
2 Annoying
1 Very annoying

Table 3.2: CompariBon Beale reeommended by ITU

+3 Much better
+2 Better
+1 Slightly better

0 The same
-1 Slightly worse
-2 Worse
-3 Much worse

human perception of noise [12-14]. It has been found that subjectively weighted
SNR and PSNR can give a better representation of the subjective quality of
noise reduction algorithms than unweighted SNR and PSNR.
The general relationship between the normal noise power spectrum No(jx, fy),
where fx and fy are the frequencies in the horizontal and vertical direction,
respectively, and the weighted noise power N w is:

Nw = 10log10 (~ fo~fsx fo~fSY IW(jx, fy)1 2No(jx, fy)dfxdfY) (3.17)

where W(jx, fy) is the weighting function, No(jx, fy) is the normal noise power
and fs is the sampling frequency of the video signal. The weighting factor is
defined as [1]:

(3.18)

where fox is 0.5 MHz and foY is 20 cph. The normalising constant Nis defined
as

r~fsx rVSY 2
N = Jo Jo IW(jx, fy)1 dfxdfy (3.19)

In [12-14] alternative weighting functions W(jx, fy) are given. These measures
are: Fujio SNRjPSNR, CCIR 4211 SNRjPSNR and CCIR 5672 SNRjPSNR.

3.3.2 Spatial Distortion Measure

The Spatial Distortion Measure (SDM) [16,17] is a spatial measure that indi
cates the amount of high frequencies that is affected.
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First, the Sobel4 filtering operation, S, is applied to Dn , that refers to the nth
image of the degraded video sequence and On which refers to the nth image of
the original video sequence. From the result after this filtering, the standard
deviation over all pixel values, stdspace, is taken. Then, the Root Mean Square,
RMStime, is taken over time, which is used to combine the n values (for the n

images) to one value. The constant C serves to normalise the variance of this
measurement.
The definition of this measure is as follows:

SDM = RMStime (c 1stdspace(S(On)) - stdspace(S(Dn)) I)
stdspace (S(On))

(3.20)

3.3.3 Time-Distortion Measure

The Time-Distortion Measure (TDM) [16,17J indicates how the video sequence
is distorted in time and is, therefore, a measure for the amount of distortion
in motion. TDM is a time-averaged measure. To compute the TDM, first,
the frame difference of the current frame with the previous frame is calculated
for the original video, i.e. 6.0 = On - On-l and the same difference is deter
mined for the distorted video, i.e. 6.D = Dn - Dn- 1 both on pixel basis for
the whole frame. Secondly, the Root Mean Square, RMS, is taken of the two
calculated differences. Finally, the resulting values are high-pass filtered with
a filter with coefficients (-1,2,-1) and the standard deviation of this sequence is
the resulting T DM measure. These last operations are summarised in Equa
tion 3.21 as !time ( . ), which means stdtime(Jilter ( . )). As a consequence, the
Time-Distortion Measure (TDM) is defined as:

TDM = ftime (C (RMS(6.0) - RMS(6.D)))

3.3.4 Maximum Distortion

(3.21 )

The Maximum Distortion (Mdis) [16, 17J of the video sequence is an important
measure for perceived quality because the human perception is believed to work
on a worst case basis (at least for short video sequences).
To compute the Mdis, we again calculate 6.0 = On - On-l and 6.D = Dn 
D n- 1 as for TDM. Then, the standard deviation over pixel values, stdspace, is
taken for 6.0 and 6.D. The loglO and the maximum value are then taken over
the quotient of these values. The result is normalised with the constant C.
This leads to the definition for Mdis as:

Md · - (Cl (stdspace(6.D)))zs - maxn ogIO ( "0)stdspace u..
(3.22)

4Sobel filtering is a weil known high-pass filtering method that passes spatial edges of video.
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3.4 Conclusions

Several objective, hybrid and subjective evaluation measures have been ex
plained in detail. These measures will be used in Chapter 5 for the objective,
hybrid and subjective evaluation of seven noise reduction algorithms.



Chapter 4

Experimental set-up

During two weeks two experiments were conducted to measure the subjective
quality of three different sequences degraded with two grades of noise and fil
tered with seven different noise reduction algorithms. Each experiment was
divided into two sessions of about 30-40 minutes. During these sessions, the
subjects was asked to score the overall quality of the sequences and the amount
of noise that was visible to them, relative to a reference video sequence. In this
chapter, the experimental set-up of the two experiments will be described in
detail.

4.1 Goal of the experiments

The goal of the panel test was to compare the subjective quality of seven noise
reduction algorithms. The subjective quality evaluation results were, subse
quently, used to find out if there was a correlation between objective quality
measures and the perceived quality of noise reduced video, and if so, what this
correlation was. The results of the two experiments, and their relation with
objective and hybrid quality measures will be given in Chapter 5.

4.2 Experimental set-up

4.2.1 Noise reduction algorithms

Seven algorithms were evaluated in the panel test. The algorithms used have
been described in detail in Chapter 2 and are summarised in Table 4.1.
All algorithms have been used as specified by the designers in the corresponding
articles where the algorithms have been described (See Chapter 2.). The Fuzzy
(Subsection 2.8.7) and Perception adaptive algorithms (Subsection 2.8.6) addi
tionally have motion compensation with sub-pixel accuracy in both horizontal
and vertical direction. The DNR-lllc and Falcon_mcj}p algorithms have addi
tionally sub-pixel accuracy for the (standard) horizontal motion compensation.
All the noise settings of the algorithms have been determined after intensive
simulations on the same monitor as was used in the panel test and also on an
other monitor. The settings were found by trying different settings and judging

41
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Table 4.1: Noise reduction algorithms used in the experiments1

Algorithm Type Specifics Subsection:
FalconJllc-hp temporal HP + hor. MC 2.8.5
Siemens (spat+temp) spatio-temporal MC 2.8.1+2.8.6
SWAN + DNR spatio-temporal HP +MC 2.8.2+2.8.5
Median + Fuzzy spatio-temporal MC 2.8.8+2.8.7
SWAN spatial HP 2.8.2
DNR temporal - 2.8.5
DNR_mc temporal horizontal MC 2.8.5

the resulting filtered sequences on possible artefacts, such as blurring and dis
tortions. Settings were adjusted so that maximum noise removal and minimal
distortion of the image content occurred. An expert viewer checked almost all
noise settings. The settings can be found in Tables D.l and D.2 of Appendix D.

4.2.2 Selected sequences

The three test-sequences that were selected for the panel test, were: Renata,
Car fj Gate and Teeny. One image of the test sequences is shown in Figure 4.1.
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Figure 4.1: The selected sequences lor the panel test are, on the lelt:
Renata, on the right: Car & Gate and under: Teeny

These sequences have been chosen, because they were used in [7J to evaluate the
performance of the SWAN algorithm. It was assumed that these test sequences
offer a good variety of critical sequences to test the performance of the noise
reduction algorithms. Of the three sequences only a selection of the total frames
could be shown, due to hard disk limitations (1.5 Gb) of the video simulator.
The frames that were used for the experiment are shown in Table 4.2. AIso, only
a part of the fuU screen could be shown because of the use of the split-screen.
The part of the sequence that was most interesting for testing the quality and
the noise removal ability of the noise reduction algorithms has been selected.
In Renata, the moving woman and the almost still tapestry with much detail
were the most important. In Car & Gate, the moving car and the background
bush with much detail were selected. In Teeny, the face and the hair were the
parts that were considered to be the most important.

4.2.3 Preparation of the noise-files

The selected sequences were first PAL-encoded, then degraded with white Gaus
sian noise, low-pass filtered with a cut-off frequency of 5MHz and PAL-decoded
again. The procedure is described in Figure 4.2. Two different noise strengths
have been used, resulting in sequences with an PSNR of 26 dB and 32 dB (both
unweighted PSNR). Figure 4.2 also indicates how an original noise-free sequence
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Table 4.2: Frames of the sequences used in the experiment

Sequence Frames
Renata 10-60
Car & Gate 10-29
Teeny 25-56

can be generated to calculate the amount of noise present in the (un)filtered
sequences. Each of the noisy sequences G have been processed with one of the
filtering algorithms of Table 4.1, yielding the noise-filtered sequences GF. The
latter were used as stimuli in the panel test.

PAL

Encoder J
LPF PAL I------,j~ Noise filter

(O-5MHz) Decoder

r Gaussian 'I
whlte
noise

~

Clean video input

PAL
Encoder

LPF
(O-5MHz)

:l
Decoder

Origina!
'--------' sequence

(F)

Noisy
sequence

(G)

Filtered
sequence

(GF)

Figure 4.2: Procedure to make noise files and to prepare noise-free se
quences

4.2.4 Viewing conditions

The tests were conducted in a special viewing room at the Philips Research
Laboratories, Eindhoven, The Netherlands. The background illumination and
overalllighting was at a rather dimmed setting, that had the same fixed value for
every subject. The background illumination2 was measured to be 13.1 cd/m2 .

The viewing distance was 6 times the height of the screen, or about 1.8m. The
subjects could sit in a comfortable chair.

The panel test was conducted in a special viewing room under controlled illu
mination conditions that comply to a large extent to the ITU recommended
viewing conditions [20]. The split-screen of the display that was used in the
panel test is shown in Figure 4.3.

2Background colour temperature was not considered important in the experiment [2].
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Table 4.3: Details of the test monitor

Brand Sony
Type BVM-D24E1WE
Serial no. 2000015
Screen height 0.30 m
Screen 625 lines, 50 Hz

Figure 4.3: The test monitor set-up of the subjective experiment
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The test monitor was a special Sony Multiformat test monitor, that could dis
play different formats of interlaced video. The shown sequences were all 625
lines/50 Hz interlaced video. The details are given in Table 4.3. The monitor
has been adjusted using luminance and contrast controls. The luminance con
trol has been used to adjust the peaking luminance to a value of 180 cd/m2 •

The contrast control has been used to adjust the black level with the help of
a PLUGE- variant test image. The black level (in a viewing room with no
illumination) was 0.2 cd/m2 . The monitor has been tested for homogeneity
of the luminance and white-Ievel over the CRT-screen. To this purpose, nine
test images have been made all with one small white square at nine different
positions and black everywhere else (Figure 4.4.). The luminance level and
colour temperature at the positions of the white squares have been measured.
The results are given in Table 4.4. It can be seen that the measurement values
differ considerably in vertical direction, but only slightly in horizontal direc
tion. Whether the sequence is shown left or right on the CRT-screen makes no
difference in the way the sequence is displayed.
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Table 4.4: Luminanee and white-level measurement results of monitor

Square Luminance [cd/m:.lJ Colour temperature [KJ
L 313 6048
2. 326 6368
3. 282 6735
4. 316 6457
5. 309 6515
6. 267 6714
7. 308 6341
8. 305 6509
9. 268 6710

Figure 4.4: Measurement of luminanee and white-level divided over the
display

4.3 Protocol

For the panel test seven algorithms were used in combination with three dif
ferent sequences and two types of noise. The intention was to let the subject
compare filtered sequences generated by different noise reduction algorithms
with each other on the split screen. In the first test, five different algorithms
were used, of which four algorithms were tested on the two noise degradation
levels. The SWAN algorithm was tested only with 26 dB unweighted PSNR
sequences. The other noise reduction algorithms used in the first experiment
were: Falcon_hpJllc, Siemens, SWAN_DNR and Median-Fuzzy.
To compare the SWAN algorithm with the four other algorithms with three
sequences on one noise strength, necessitates 4x3 equals 12 stimuli. The com
parison of four algorithms with three sequences and two noise strengths leads
to (3+2+1) x3x2 equals 36 stimuli. This leads to a total of 48 stimuli for
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experiment 1. The accuracy of the experiment has been improved by repeat
ing the stimuli, leading to a total of 96 stimuli. The experiment has been
divided into two sessions to obtain areasonabie amount of stimuli per session
that could be conducted within 30-40 minutes. During the sessions half of all
stimuli were tested and the same stimuli were repeated. In the repetition, the
left-right position was switched to average out left- or right-preferences of the
subjects. In the second test, five algorithms were used, namely Falcon_hpJllc,
DNR, SWANJ)NR, DNRJllc and SWAN. The first four were tested with both
noise levels, while the SWAN algorithm was only tested with 32 dB unweighted
PSNR sequences in the second experiment. This leads to the same amount of
stimuli, a total of 96 stimuli with repetitions, that has been divided into two
sessions. The algorithms were split in such a way that in experiment 1 com
plete noise reduction systems were compared, while in experiment 2 different
variants of the DNR algorithm were used. Apart from the different noise re
duction algorithms and the fact that different subjects participated in the two
experiments, each experiment consisted of the same two functional parts: the
noise and quality evaluation and the identification of the important parts of the
video sequence for the judgement of the amount of noise and quality evaluation.

4.3.1 Experiment

Each experiment contained two separate sessions that were mostly conducted
on different days. During the two sessions, all subjects was asked one time to
do a Snellen eye-test. Each subjects got a verbal instruction at the start of the
first session. In addition, six training sequences were shown to train the subject
on the use of the scale. The training sequences contained the believed extreme
values on the quality and noise scale. After the training part, the stimuli were
shown on the split screen in a different random series per subject. Each stimulus
was displayed as long as the subject needed to make his or her evaluation of the
stimulus. The subject had to make an evaluation of the right part of the split
screen (Figure 4.3.) with respect to the left part of the screen, showing stimuli
generated by different noise reduction algorithms. During the first experiment,
a blue screen with an average luminance level was shown after each stimulus.
During the second experiment, no blue screen was shown, because in the first
experiment some observers complained about it. Before every second session
the verbal instruction was repeated. The subject was asked during the second
session to fill in test form B.
Each of the two experiments was conducted using the same procedure.

4.3.2 Subjects

For the first experiment 17 subjects have entered the experiment, while in
the second experiment 15 subjects participated. In the first experiment, 8
subjects had expertise on video processing, the rest (9) had no expertise on
video processing. In the second experiment, there were 4 viewers with video
processing experience and the rest (ll) had no experience in this area. This
information is not used in the statistical analysis.
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4.3.3 Test form

Two test forms were used in the two experiments: test forms A and B. The fiTSt
test form (Figure 4.5.) was used for scoring the questions about the quality and
noise perception. On the second test form (Figure 4.6.), the questions about
the specific part of the sequences that were considered to be the most important
for the noise and quality evaluation could be described.

Quality
worse better
-5 -4 -3 -2 -1 0 2 3 4 5
t--~--+ I I I I I I I

Noise
Iess more
-5 -4 -3 -2 -1 0 1 2 3 4 5
t- I -+- I I I -+---- I I I -----1

Figure 4.5: Sample of questions on test form A

We want to get more information on how you judge each of the sequences. Therefore, we
would like to ask you to fiJl in the foJlowing tabie:

What part of each scene did you use for your judgement?

_ sequenC~ I~ uality Noise

Renata
---_._----_._._--------

Car & Gate I

--1
Figure 4.6: Contents of test form B

4.4 Analysis

All scores of the two experiments have been used as data input in the statistical
analysis package SPSS, version 10.0. The scores of the subjects have first been
averaged over the two repetitive stimuli. Furthermore, these averaged scores
have been normalised per subject by using Equation 4.1.

(
score - av. score )

avo scorenorm =
. std.dev.persubject

(4.1 )
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Before input to SPSS, fi.rst, the data had to be changed from differential values
(scores of the difference between the reference and the stimulus) to scores per
stimulus (See Appendix E.). The data analysis with SPSS itself is described
in more detail in Chapter 5. The scores have been analysed per noise strength
and, also a combined analysis by using both noise strengths has been done. The
interaction between subject and the quality and the noise scores has not been
taken into account. The analysis in SPSS was an ANOVA on both quality and
noise as dependent variables, noise reduction algorithms and test sequences as
fixed factors and noise strength as mentioned earlier (either 26 dB, 32 dB or
both 26 and 32 dB P8NR). As a post-hoc analysis, Tukey's algorithm was used.

4.5 Conclusions

In this chapter, the goal of the conducted experiments has been described. Also
a description of the experimental set-up is given with an elaboration on the
used noise reduction algorithms, selected sequences, used preparation method
for the noise-files and viewing condtions. After that, the protocol is given in
detail. Finally, the analysis method of the results is explained.
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Evaluation results

Seven noise reduction algorithms have been elaborately described in Chapter 2.
These algorithms have been evaluated using the objective evaluations measures
described earlier in Chapter 3. The objective evaluation measures that are used
for the evaluation are: SNR, PSNR, SNRI, PNRI, MD, MSE and MB, ST,
CPR, FFNSA and DPC. The hybrid evaluation measures that are used are:
Fujio SNR and PSNR [12], CCIR 4211 SNR and PSNR [13], CCIR 56721 SNR
and PSNR [14), SDM, TDM and Mdis. In this chapter, first, an overview of the
ranking results of the objective and hybrid evaluation measures are presented
(Section 5.1). Secondly, the subjective test results are given in Section 5.2.

5.1 Objective and hybrid evaluation results

All objective evaluation results are given in Appendix A. The hybrid evaluation
measures are given in Appendix B. In this section, only an overview of these
results will be given.
In Table 5.1 and Table 5.2 are all objective and hybrid evaluation measure
results summarised. The tables give the rank number of the noise reduction
algorithm obtained by ranking the averaged evaluation measure results for the
three test sequences Renata, Car fj Gate and Teeny. The noise reduction al
gorithms have been ordered from left to right by overall rank number. From
this tables, it is easier to make a comparison of the consistency of the different
evaluation measures. The SNR, PSNR, SNRI, MD, MSE and MB evaluation
measures have the same results for the 26 dB PSNR sequences. Also for 32 dB
PSNR sequences have the mentioned evaluation measures a similar behaviour,
although this similarity shows some small deviations for the MSE evaluation
measure, while the ranking of the noise reduction algorithms with the MB
evaluation measure deviates heavily from the others. For the MSE evaluation
measure the rankings of SWAN and DNR-Illc have been switched as compared
to the ranking of the other members of the earlier mentioned group of consistent
evaluation measures.

1 SNR and PSNR in combination with Fujio, CCIR 4211 and CCIR 5672 weighting will be
calIed, respectively, WSNRl and WPSNR1, WSNR2 and WPSNR2 and WSNR3 and WP
SNR3.
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Table 5.1: Ranking of noise reduction algorithms by performance mea
sured by all noise reduction evaluation measures 26 dB
PSNR sequences

SWANDNR Siemens DNRmc SWAN Med.Fuzzy DNR Falconmchp
SNR 1 2 3 4 5 6 7
PSNR 1 2 3 4 5 6 7
(P)SNRI 1 2 3 4 5 6 7
MD 1 2 3 4 5 6 7
MSE 1 2 3 4 5 6 7
MB 1 2 3 4 5 6 7
ST 2 1 6 4 5 3 7
CPR 3 4 1 5 7 6 2
FFNSA 2 3 1 7 6 4 5
DPC 1 2 3 4 6 5 7
WSNRI 1 4 3 2 5 6 7
WPSNRI 1 4 3 2 5 6 7
WSNR2 1 4 3 2 6 5 7
WPSNR2 1 4 3 2 5 6 7
WSNR3 1 4 3 2 6 5 7
WPSNR3 1 4 3 2 5 6 7
SDM 1 3 4 2 5 6 7
TDM 4 1 5 6 3 7 2
Mdis 3 2 1 5 7 6 7

Another group of evaluation measures that show a highly consistent behaviour
is the group of the weighted SNR and PSNR evaluation measures. All of these
measures show a highly consistent ranking of the algorithms for 26 dB PSNR
sequences. A small difference exists the ranking of the Median...Fuzzy and the
DNR noise reduction algorithm with WSNR2 and WSNR3 evaluation mea
sures. These rankings have been switched as compared with the other weighted
SNR and PSNR measures. For the 32 dB PSNR sequences, a highly consistent
ranking results with the weighted SNR and PSNR evaluation measures. Only
the WSNRl and WPSNRl evaluation measures show a different ranking for
the Median...Fuzzy, DNR and Siemens noise reduction algorithms, as compared
to the other weighted SNR and PSNR evaluation measures.

5.2 Subjective evaluation results

5.2.1 Analysis of panel test

The raw scores obtained from the subjects have been manipulated using the
procedures described in Chapter 4 and Appendix E. The resulting data have
been analysed with the statistical package SPSS, version 10.0. The results will
be described in the following paragraphs.
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Table 5.2: Ranking of noise reduetion algorithms by performance mea
sured by all noise reduction evaluation measures 32 dB
PSNR sequences

53

SWANDNR SWAN DNRmc Med.Fuzzy DNR Siemens Falconmchp
SNR 1 5 3 2 4 6 7
PSNR I 5 3 2 4 6 7
(P)SNRI 1 5 3 2 4 6 7
MD 1 5 3 2 4 6 7
MSE 1 3 5 2 4 6 7
MB 4 5 2 3 7 1 7
ST 3 7 5 4 2 1 6
CPR 4 5 3 6 7 2 1
FFNSA 1 5 4 2 7 6 3
DPC 2 6 3 4 5 1 7
WSNRI I 2 3 5 6 4 7
WPSNRI 1 2 3 5 6 4 7
WSNR2 1 2 5 4 3 6 7
WPSNR2 1 2 5 4 3 6 7
WSNR3 1 2 5 4 3 6 7
WPSNR3 1 2 5 4 3 6 7
SDM 3 4 2 5 6 1 7
TDM 5 6 3 4 7 I 2
Mdis 4 6 5 3 1 2 7
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5.2.2 Experiment 1

A two-tailed Pearson's bivariate correlation analysis has been conducted on
the Quality and Noise scores. The correlation between the Quality and Noise
scores was -0.665 with significance level < 0.01. From this analysis, it can be
conc1uded that Quality and Noise are not highly correlated. Therefore, the re
sults for both Quality score and the results for the Noise score will be described
separately.

An ANOVA on the data of experiment 1 has been conducted with Quality as
dependent variabie and Sequence, Algorithm and Noise_type as fixed variables.
The outcome showed that there is an effect of the variabie Algorithm on Qual
ity at significance level < 0.001 (F = 183.861, df = 4). There is an interaction
between the variabie Sequence and the variabie Algorithm at significance level
< 0.001 (F = 9.371, df = 8). Furthermore, the variabie Noise_type has an effect
on Quality at significance level = 0.009 (F = 6.804, df = 1).
The ranking of the algorithms used in experiment 1 on basis of the Quality
scores using Tukey's algorithm is shown in Figure 5.1. In this figure the un
derlining of the SWAN-DNR and Falcon_mc-hp algorithms means that these
algorithms could not be distinguished by Tukey's algorithm and these algo
rithms score comparably good.

Siemens > SWAN-DNR > Falcon_mc-hp > SWAN > MedianYuzzy

Figure 5.1: Ranking of the jive noise reduetion algorithms on basis of
the Quality score

The Siemens algorithm scores the best, next best are the SWAN-DNR and
Falcon_mc-hp algorithms that are undistinguishable from each other, followed
by the SWAN algorithm and the worst is the MedianYuzzy noise reduction
algorithm. In Figure 5.2 the five algorithms of the first experiment are ranked
by quality perception. The figure gives the combined result for both noise
degradations.
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Figure 5.2: Quality ranking of five noise reduction algorithms of exper
iment 1

An ANOVA on the Noise score from experiment 1 has been conducted with
Noise as dependent variabIe and Sequence, Algorithm and Noise_type as fixed
variables. The results showed that there is an effect of the Algorithm variabIe on
Noise at significance level < 0.001 (F = 59.871, df = 4). Furthermore, there is
an interaction between the Sequence and the Algorithm variabIe at significance
level < 0.001 (F = 5.324, df = 8). The ranking of the algorithms used in
experiment 1 on basis of the Noise scores using Tukey's algorithm is shown in
Figure 5.3. There is no meaningful difference between the algorithms that are
underlined and no difference between the algorithms that are overlined. The
Falcon_mc-hp algorithm belongs to both subsets, distinguished by respectively,
underlining and overlining. The Siemens algorithm performs the best, while
the Median-Fuzzy algorithm performs the worst.

Siemens > SWAN-DNR > Falcon...me-hp > SWAN > Median_Fuzzy

Figure 5.3: Ranking of the five noise reduction algorithms on basis of
the Noise score

In Figure 5.4, the five algorithms of the first experiment are ranked by the Noise
scores.
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Figure 5.4: Noise ranking of jive noise reduetion algorithms of experi
ment 1

The Siemens noise reduction algorithm performs for both Quality as Noise
scores the best. Next come SWAN-DNR together with FalconJllc.J1p. SWAN
could not be distinguished on Noise performance from Falcon_mc_hp. On Qual
ity performance, SWAN was worse than SWAN_DNR and Falcon_mc.J1p. The
worst performing algorithm for both Quality and Noise scores was the Me
dian-Fuzzy algorithm.

Effect of noise type

In the earlier performed multivariate analysis, it was found that the Noise_type
has a significant influence on the Quality score. Therefore, an analysis per
Noise_type is necessary.
The Quality ranking of the five algorithms with 26 dB PSNR sequences is
given in Figure 5.5. The Siemens algorithm performs the best, followed by the
SWAN_DNR algorithm, then come FalconJllc_hp and SWAN that are compa
rably good. The worst algorithm is Median-Fuzzy.

Siemens > SWAN_DNR > Falcon_me-hp > SWAN > Median-Fuzzy

Figure 5.5: Ranking of the jive noise reduction algorithms on basis of
the Quality score for 26 dB PSNR sequences
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The Noise ranking of the five algorithms is given in Figure 5.6. The result of
this ranking is exactly the same as the ranking based on Quality.

Siemens > SWAN_DNR > Falcon-lllc..hp > SWAN > Median-.Fuzzy

Figure 5.6: Ranking of the five noise reduction algorithms on basis of
the Noise score for 26 dB PSNR sequences

Therefore, it can be conc1uded that the Quality and Noise ranking have exactly
the same outcome for the 26 dB PSNR sequences.
The Quality ranking of the four algorithms with sequences of 32 dB PSNR
is given in Figure 5.7. The Siemens noise reduction algorithm is the best per
ceived algorithm, next come the Falcon_mc..hp and the SWAN...DNR algorithms
and, final1y, the SWAN...DNR and Median..Fuzzy algorithms. The SWAN...DNR
algorithm has a combined second and third rank, together with, respectively,
Falcon_mc..hp and Median..Fuzzy.

Siemens > Falcon_mc..hp > SWAN_DNR > Median-.Fuzzy

Figure 5.7: Ranking of the four noise reduction algorithms on basis of
the Quality score for 32 dB PSNR sequences

The Noise performance ranking is shown in Figure 5.8. This ranking is the
same as the Quality ranking.

Siemens > Falcon_mc..hp > SWAN...DNR > Median_Fuzzy

Figure 5.8: Ranking of the four noise reduction algorithms on basis of
the Noise score with 32 dB PSNR sequences

Both Quality and Noise performance result in the same ranking for 32 dB PSNR
sequences.

5.2.3 Experiment 2

As for experiment 1, a two-tailed Pearson's bivariate correlation analysis has
been conducted on the Quality and Noise scores for experiment 2. The corre
lation between the Quality and Noise scores was -0.707 with significance level
< 0.01. From this analysis, it can be conc1uded that Quality and Noise are not
highly correlated. Therefore, the results for the Quality score as wel1 as the
results for the Noise score will be described.

An ANOVA on the data of experiment 2 has been conducted with Quality as
dependent variabIe and Sequence, Algorithm and Noise_type as fixed variables.
The results showed that there is an effect of the variabIe Algorithm on Quality



58 Chapter 5. Evaluation results

at significance level < 0.001 (F = 30.981, df = 4). There is an interaction be
tween the variabie Sequence and the variabie Algorithm at significance level <
0.001 (F = 6.317, df = 8).
The ranking of the algorithms used in experiment 2 on basis of the Quality
scores using Thkey's algorithm is shown in Figure 5.9. In this figure the hori
zontalline over the SWAN-DNR and Falcon_me-hp means that these algorithms
could not be distinguished by the Thkey's algorithm and these algorithms score
comparably good or bad.

SWAN_DNR > DNR_mc > Falcon_mc-hp > SWAN > DNR

Figure 5.9: Ranking of the jive noise reduction algorithms on basis of
the Quality score

The SWAN-DNR, DNR_mc and Falcon_mc_hp algorithms score the best. These
algorithms are undistinguishable on basis of the Quality performance. Next
comes the SWAN, followed by the DNR noise reduction algorithm that per
forms the worst on Quality. In Figure 5.10 the five algorithms of the second
experiment are ranked by Quality score.

Error Bars show 95.0'11. Cl of Mea"
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Figure 5.10: Quality ranking of jive noise reduction algorithms of exper
iment 2
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An ANOVA on the Noise scores of experiment 2 has been condueted with
Noise as dependent variabIe and Sequence, Algorithm and Noise_type as fixed
variables. The results showed that there is an effect of the Algorithm variabIe
on Noise at significance level < 0.001 (F = 29.004, df = 4). Furthermore,
there is an interaction between the Sequence and the Algorithm variabIe at
significance level = 0.002 (F = 3.098, df = 8). The ranking of the algorithms
used in experiment 1 on basis of the Noise scores using Tukey's algorithm is
shown in Figure 5.11. The DNR.mc, SWAN.DNR and FalconJIlchp noise
reduction algorithms are undistinguishable and the best performing algorithms.
The Falcon_mchp and the SWAN algorithms are equally good performing and
the DNR algorithm is the worst performing.

DNRJIlc > SWAN.DNR > FalconJIlc-hp > SWAN > DNR

Figure 5.11: Ranking of the jive noise reduction algorithms on basis of
the Noise score

In Figure 5.12, the five algorithms of the second experiment are ranked by the
Noise score.
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Figure 5.12: Noise ranking of jive noise reduction algorithms of experi
ment 2
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The performance on Quality and Noise was the same. The only difference was
that Fakon_mc-hp and SWAN algorithms could not be distinguished by the
Noise scores.

Effect of noise type

Because the multivariate analysis could not give a conclusive judgement about
the effect of the variabIe Noise_type on the Noise and Quality scores, individual
results per Noise_type are given in this subsection.
The Quality performance ranking of the four algorithms with 26 dB PSNR
sequences is shown in Figure 5.13. The SWAN-.DNR algorithm performs the
best, after this come the Fakon_mc-hp and DNR_mc algorithms. The DNR
algorithm performs the worst.

SWAN_DNR > Fakon_mc-hp > DNRJIlc > DNR

Figure 5.13: Ranking of the four noise reduction algorithms on basis of
the Quality score with 26 dB PSNR sequences

The Noise performance ranking is shown in Figure 5.14. The SWAN-.DNR algo
rithm and the DNR_mc algorithm perform the best and are the same perform
ing, next come the DNR_mc and Fakon_mchp algorithms that are comparabIe
in performance and last comes the DNR algorithm.

SWAN_DNR > DNR_mc > FakonJIlc-hp > DNR

Figure 5.14: Ranking of the four noise reduction algorithms on basis of
the Noise score with 26 dB PSNR sequences

On both Noise and Quality scores for 26 dB PSNR sequences, SWAN-.DNR
performs the best (on Noise together with DNR_mc). DNR performs the worst
for both scores. DNR_mc and Fakon_mchp score comparably for both scores
and are better performing than DNR.
The Quality performance ranking with 32 dB PSNR sequences is shown in
Figure 5.15. The DNR_mc, Fakon_mc-hp and SWAN_DNR algorithms perform
the best and are comparably good, next come SWAN-.DNR and SWAN that
have a similar performance and the worst algorithm is DNR.

DNR_mc > Fakon_mchp > SWAN-.DNR > SWAN > DNR

Figure 5.15: Ranking of the jive noise reduction algorithms on basis of
the Quality score with 32 dB PSNR sequences

The Noise performance ranking with 32 dB PSNR sequences is shown in Fig
ure 5.16. The DNR_mc, SWAN_DNR and FakonJIlchp perform the best after
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Table 5.3: Percentage of subjeets that use detailed or undetailed parts
of the sequences for the judgement of quality

Renata Car& Gate Teeny
Detailed parts 60% 60% 26%
Undetailed parts 40% 40% 74%

Table 5.4: Percentage of subjeets that use detailed or undetailed parts
of the sequences for the judgement of the amount of noise

Renata Car& Gate Teeny
Detailed parts 50% 45% 10%
Undetailed parts 50% 55% 90%
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that come SWAN_DNR, Falcon_mc.1lp and SWAN and last is the DNR algo
rithm.

DNR...mc > SWARDNR > Falcon...mc.1lp > SWAN > DNR

Figure 5.16: Ranking of the four noise reduction algorithms on basis of
the Noise score with 32 dB PSNR sequences

For both Quality and Noise scores with 32 dB PSNR sequences, DNR_mc,
SWAN_DNR, Falcon_mc.1lp and SWAN scored better than the DNR noise re
duction algorithm. DNR scored the worst for both scores.

5.2.4 Important parts of the sequences used for the Quality and
Noise evaluation

Table 5.3 summarises the results of the second part of the subjective test of
experiment 1 and 2. The table gives the percentage of subjects that uses the
detailed or the undetailed parts of the sequences for the Quality and Noise
evaluation in the fi.rst part of the test. For the sequences Renata and Car fj

Gate no explicit preference can be given for detailed or undetailed parts. For
the Teeny sequence a clear preference is present for undetailed areas of the
sequence. The results of Table 5.4 leads in a similar way to the conclusion that
only for the Teeny sequence a clear preference for undetailed areas was present.
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5.3 Conclusions

Results have been given of the objective and hybrid evaluation measures. The
noise algorithms are ranked on the overall performance for 26 and 32 dB PSNR
sequences. Also an overview has been given of all objective and hybrid eval
uation measures (Tabie 5.1 and Table 5.2). The ranking of the algorithms is
for the 26 dB PSNR, in order of goodness: SWAN-DNR, Siemens, DNR_mc,
SWAN, Median...Fuzzy, DNR and FalconJIlc...hp. For 32 dB PSNR sequences,
in order of goodness: SWAN-DNR, SWAN, DNR_mc, Median...Fuzzy, DNR,
Siemens and FalconJIlc...hp.
From this table it became clear that there was astrong consistency for SNR,
PSNR, SNRI, MD, MSE and MB evaluation measures on 26 dB PSNR se
quences. For 32 dB PSNR sequences the same group of evaluation measures
was consistent, only small differences arose for the MSE evaluation measure,
while the ranking of the noise reduction algorithms of the MB evaluation mea
sure deviated heavily. Another group of evaluation measures that show a highly
consistent behaviour is the group of the weighted SNR and PSNR evaluation
measures. There were only small deviations within this group.
Results for the subjective test show different rankings for the noise reduction
algorithms.
Overall in experiment 1, the Siemens algorithm was the best, for both quality
as noise performance. Next comes SWAN-DNR together with Falcon_me-hp.
SWAN could not be distinguished on noise performance from Falcon_me-hp.
On quality perfomance, SWAN was worse than SWAN-DNR and Falcon_me-hp.
The worst performing algorithm for both quality and noise performance was the
Median...Fuzzy algorithm.
Subsequently, the effect of noise strength on quality and noise performance has
been described. This is done by examining the quality and noise performance
for 26 dB and for 32 dB PSNR sequences individually. For 26 dB PSNR se
quences, the Siemens algorithm performs the best, followed by the SWAN-DNR
algorithm, then come FalconJIle-hp and SWAN that are comparably good. The
worst algorithm is Median...Fuzzy. For 32 dB PSNR sequences, the Siemens
noise reduction algorithm is the best perceived algorithm, next come the Fal
con_me-hp and the SWAN-DNR algorithms and, finally, the SWAN-DNR and
Median...Fuzzyalgorithms. The SWAN-DNR algorithm has a combined second
and third rank, together with respectively, FalconJIle-hp and Median...Fuzzy.
Results for quality and noise performance for the two different noise strengths
are exactly the same.
In experiment 2, the SWAN-DNR, DNRJIlc and Falcon_mc...hp algorithms score
the best. These algorithms are undistinguishable on basis of the quality per
formance. Next comes the SWAN, followed by the DNR noise reduction al
gorithm that performs the worst on quality. The noise performance was the
same, only Falcon_mc...hp and SWAN algorithms could not be distinguished
from each other. For both noise and quality performance of noise reduction
on 26 dB PSNR sequences, SWAN-DNR scored the best (for noise together
with DNR_mc). DNR performs the worst for both scores. DNR_mc and Fal
conJIle-hp score comparably for both quality and noise performance and are
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better performing than DNR. For both quality and noise performance on 32
dB PSNR sequences, DNR-lllc, SWAN...DNR, Fa1con-lllcJ1p and SWAN scored
better than the DNR noise reduction algorithm. DNR scored the worst for
quality and noise.
The observers were also asked to indicate important areas for judgement of
quality and noise. Results showed that for the sequences Renata and Car &
Gate no explicit preference can be given for detailed or undetailed parts. For
the Teeny sequence a c1ear preference is present for undetailed areas of the
sequence. These results are applicable for quality as weIl as noise judgement.



Chapter 6

Towards an objective measure
for subjective quality

In this chapter, the evaluation data of the objective and hybrid measures will be
used to try to find a linear combination of these measures that approximates the
data obtained from the subjective test. In this way, the results obtained from
the subjective experiment could be repeated by applying a certain weighted
combination of objective and hybrid evaluation measures for similar noise se
quences.

6.1 Correlation between averaged Quality and Noise
scores in the subjective test

Since the effect of the variabie Sequence on the Quality and Noise scores was not
statistically significant (Section 5.2), the Quality and Noise scores have been
averaged over the three different sequences (Renata, Car & Gate and Teeny).
These averaged scores have been used as input for a two-tailed Pearson's cor
relation analysis between Quality and Noise variables. For experiment 1, the
outcome of this analysis showed that there was a correlation of -0.988 at a sig
nificance level of 0.01. For experiment 2, the correlation was found to have a
value of -0.993 at a significance level of 0.01. Because of this high correlation
between Quality and Noise scores, only the Quality scores have been used in
the subsequent analysis.
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Table 6.1: Correlation between Quality and selected evaluation mea
sures

Corr. experiment 1 Corr. experiment 2
CPR 0.610 0.789
MB -0.509 -0.375
SDM 0.453 0.498
Mdis -0.432 0.001
ST 0.27 0.296
(P)SNRI 0.258 0.152
DPC -0.254 0.068
TDM 0.239 0.275
MSE -0.161 -0.09
FFNSA -0.15 0.086
MD -0.133 -0.095
PSNR 0.103 -0.082
SNR 0.091 0.048
WSNR2 -0.082 -0.078
WPSNR2 -0.062 -0.082
WSNRl -0.044 -0.046
WSNR3 -0.044 -0.052
WPSNR3 -0.027 -0.053
WPSNRl -0.022 -0.046

6.2 Evaluation measures that correlate with quality

The correlation between the selected objective and hybrid evaluation measures
has been analysed by calculating the Pearson (2-tailed) correlation between the
averaged Quality score and the evaluation measures. The results for experiment
1 and 2 are given in Table 6.1. Only the objective measures are selected that
have a correlation coefficient in excess of 0.40. Thus, the CPR, MB and SDM
evaluation measures were selected. From the tabIe, it is clear that the Mdis
evaluation measure almost does not correlate with Quality in experiment 2.
This evaluation measure is, therefore, discarded for the rest of the analysis.

6.3 Correlation among the selected evaluation mea
sures

The correlation among the evaluation measures that were selected in the pre
vious paragraph has been calculated with a Pearson's (2-tailed) correlation
analysis. Results were for experiment 1 and 2, that the MB evaluation measure
correlates highly with the SDM evaluation measure, with correlation coeffi
cient -0.917 at significance level < 0.01. For the other evaluation measures a
correlation could not be determined at a significant level. Therefore, the SDM
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evaluation measure has been removed from the analysis.

6.4 Regression model of subjective quality
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With the two remaing evaluation measures, that both correlated with Quality
and are not highly correlated with each other, two regression models have been
calculated using SPSS. The averaged Quality score of experiment lover the
three sequences was used as dependent variabie and the (normalised)l CPR
and MB evaluation measures were used as independent variables. The model,
with standardised coefficients, for experiment 1 was (Equation 6.1)

Subjective quality = 0.607 *CPRnorm. - 0.505 * M B norm. (6.1)

The adjusted R 2 is 0.503 and the F-test shows a significance level of 0.052
(F = 5.052, df = 2). The Durbin-Watson test for serial correlation of the resid
uals is 2.528, meaning that the residuals are almost uncorrelated.

For experiment 2, the same regression analysis has been performed with the
averaged Quality score over the three sequences as dependent variabie and the
(normalised) CPR and MB evaluation measures as independent variables. The
model, with standardised coefficients, for experiment 2 was (Equation 6.2)

Subjective quality = 0.870 *CPRnorm. - 0.511 * MBnorm. (6.2)

The adjusted R 2 is 0.837 and the F-test shows a significance level of 0.002
(F = 21.547, df = 2). The Durbin-Watson test for serial correlation of the
residuals is 2.692, which shows that the residuals are almost uncorrelated.

For experiment 1 and 2, the data files have been merged casewise. On these
data, a combined regression analysis has been performed with the averaged
Quality score over the three sequences as dependent variabie and the (nor
malised) CPR and MB evaluation measures as independent variables. The
model, with standardised coefficients, for experiment 1 and 2 together was
(Equation 6.3)

Subjective quality = 0.664 * CPRnorm. - 0.497 * MBnorm. (6.3)

The adjusted R 2 is 0.593 and the F-test shows a significance level of < 0.001
(F = 13.395, df = 2). The Durbin-Watson test for serial correlation of the
residuals is 2.305, so the residuals are almost uncorrelated.

6.5 Conclusions

The scores for Quality and Noise have been averaged over the three sequences.
It appeared from a correlation analysis with SPSS that the averaged Quality

lNormalisation of the evaluation score means calculating ev.score-av.sc~re .
std.dev. per expertment
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and Noise scores are highly correlated. The correlation coefficients of all objec
tive and hybrid evaluation measures with Quality have been calculated. The
results show that correlation in general of the objective and hybrid evaluation
measures with quality as measured in the two subjective experiments is very
low. The best correlating independent measures are CPR and MB. These eval
uation measures have been used for the two regression models of the results of
experiment separately, and for the regression model of the combined results of
the two experiments. The regression model of the first experiment gives a very
low explanatory power of 50% (R2 square value of 0.503) of the variance of the
subjective quality. The regression model of the second experiment gives a sat
isfactory explanatory power of 84% (R2 square value of 0.837). The regression
model for the combined results of experiment 1 and 2 gives a low explanatory
power of 60% (R2 square value of 0.593). The coefficients of the three regression
models are close together, which means that the model is consistent for the in
dividual experiments and the combined experimental results. The explanatory
power of the model for the combined experimental results is with 60% very
low.
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Conclusions

In this report, three assignments needed to be completed. First, noise reduction
algorithms that are suitable for consumer applications, given their complexity,
architecture and performance had to be found. Second, the noise reduction al
gorithms had to be evaluated with the help of a subjective quality experiment
and a correlation of the results with objective quality measures had to be ex
plored. Finally, recommendations for a video noise reduction quality measure
to improve the objective evaluation of video noise reduction algorithms had to
be given.
To comply to these assignments, different characteristics of noise reduction algo
rithms have been described to find suitable noise algorithms. A description of fil
ter support, support size, filter structure types, noise filter features, neighbour
hood selection and adaptivity, statistics used in filtering and complexity and
hardware constraints has been given. Furthermore, different spatial and tempo
ral filters have been described. In addition, one combined spatial-temporal filter
has been described too. Subsequently, seven (combinations of) noise reduction
algorithms have been selected for evaluation. These filters are: Falcon_mc_hp,
Siemens, SWAN_DNR, Median_Fuzzy, SWAN, DNR and DNRJllc.
These algorithms have been implemented and used in three different evalu
ation methods. The results of these methods will be given in the following
paragraphs. The results have been analysed thoroughly, among others the cor
relation among objective and hybrid evaluation measures has been considered.
Also, the correlation between subjective and objective and hybrid evaluation
measures has been investigated. Thus, the second assignment is fulfilled.
In the end of this chapter, results to obtain a better noise evaluation measure
have been given.

7.1 Evaluation methods

The evaluation of the selected noise reduction algorithms has been done by
objective, hybrid and subjective evaluation measures. Several objective, hybrid
and subjective evaluation measures have been explained in detail. The objective
measures are: SNR, PSNR, SNRI/PSNRI, MSE, MD, MB, ST, CPR, FFNSA
and DPC. The hybrid evaluation measures are: Fujio SNR and PSNR, CCIR
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4211 SNR and PSNR, CCIR 5672 SNR and PSNR, SDM, TDM and Mdis.
These measures have been used for the objective (and hybrid) evaluation of
seven noise reduction algorithms.

7.2 Objective and hybrid evaluation results

The noise algorithms are ranked on the overall performance for 26 and 32 dB
PSNR sequences. Also an overview has been given of all objective and hybrid
evaluation measures (TabIe 5.1 and Table 5.2). The ranking of the algorithms
is for the 26 dB PSNR sequences, in order of goodness: SWAN...DNR, Siemens,
DNRJIlc, SWAN, Median-Fuzzy, DNR and Falcon_mc_hp. For 32 dB PSNR
sequences, in order of goodness, the ranking is: SWAN...DNR, SWAN, DNR_mc,
Median..Fuzzy, DNR, Siemens and FalconJIlc-hp. From the results, it became
clear that there was a strong consistency for SNR, PSNR, SNRI, MD, MSE
and MB evaluation measures on 26 dB PSNR sequences. For 32 dB PSNR
sequences, the same group of evaluation measures was consistent among each
other, only small differences arose for the MSE evaluation measure, while the
ranking of the noise reduction algorithms of the MB evaluation measure devi
ated heavily.
Another group of evaluation measures that shows a highly consistent behaviour
is the group of the weighted SNR and PSNR evaluation measures. There were
only small deviations within this group.

7.3 Subjective evaluation results

The conducted subjective test containing two experiments gave results on qual
ity and noise performance of the noise reduction algorithms and on important
parts that observers use to evaluate quality and noise performance.

Overall in experiment 1, the Siemens algorithm was the best, for both qual
ity as noise performance. Next came SWAN...DNR together with Falcon_mc-hp.
SWAN could not be distinguished on noise performance from Falcon_mc-hp. On
quality performance, SWAN was worse than SWAN_DNR and Falcon_mc-hp.
The worst performing algorithm for both quality and noise performance was
the Median-Fuzzy algorithm.

Subsequently, the effect of noise strength on quality and noise performance
has been described. This is done by examining the quality and noise perfor
mance for 26 dB and for 32 dB PSNR sequences separately.
For 26 dB PSNR sequences, the Siemens algorithm performed the best, followed
by the SWAN_DNR algorithm, then came Falcon_mc-hp and SWAN that were
comparably good. The worst algorithm was Median..Fuzzy.
For 32 dB PSNR sequences, the Siemens noise reduction algorithm was the
best perceived algorithm, next came the Falcon_mc-hp and the SWAN...DNR
algorithms and, finally, the SWAN_DNR and Median-Fuzzy algorithms. The
SWAN_DNR algorithm had a combined second and third rank, together with,
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respectively, Fa1conJllc.1lp and Median-Fuzzy. Results for quality and noise
performance for the two different noise strengths were exactly the same.

In experiment 2, the SWAN_DNR, DNR_mc and Fa1conJllc.1lp algorithms scored
the best. These algorithms were undistinguishable on basis of quality perfor
mance. Next came the SWAN algorithm, followed by the DNR noise reduction
algorithm that performed the worst on quality. The noise performance was
the same, only Fa1con_mc.1lp and SWAN algorithms could not be distinguished
from each other. For both noise and quality performance of noise reduction on
26 dB PSNR sequences, SWAN_DNR scored the best (on noise SWANJ)NR
was comparably good as DNR_mc). DNR performed the worst for both scores.
DNRJllc and Fa1con_mc.1lp scored comparably for both quality and noise per
formance and were better performing than DNR. For both quality and noise
performance for 32 dB PSNR sequences, DNRJllc, SWANJ)NR, Fa1conJllc.1lp
and SWAN scored better than the DNR noise reduction algorithm. DNR scored
the worst for quality and noise.

The observers were also asked to indicate important areas for judgement of
quality and noise. Results showed that for the sequences Renata and Car fj

Gate no explicit preference can be given for detailed or undetailed parts. For
the Teeny sequence a clear preference is present for undetailed areas of the
sequence. These results are applicabie for quality as well as noise judgement.

7.4 Regression model of subjective quality

The scores for quality and noise performance obtained from the two subjective
experiments have been averaged over the three sequences. It appeared from
a correlation analysis with SPSS that the averaged quality and noise scores
are highly correlated. The correlation coefficients of all objective and hybrid
evaluation measures with the quality performance have been ca1culated. The
results show that correlation in general of the objective and hybrid evaluation
measures with quality as measured in the two subjective experiments is very
low. The best correlating independent measures are CPR and MB. These eval
uation measures have been used for the two regression models of the results of
experiment separately, and for the regression model of the combined results of
the two experiments. The regression model of the first experiment gives a very
low explanatory power of 50% (R2 square value of 0.503) of the variance of the
subjective quality. The regression model of the second experiment gives a sat
isfactory explanatory power of 84% (R2 square value of 0.837). The regression
model for the combined results of experiment 1 and 2 gives a low explanatory
power of 60% (R2 square value of 0.593). The coefficents of the three regression
models are close together, which means that the model is consistent for the in
dividual experiments and the combined experimental results. The explanatory
power of the model for the combined experimental results is with 60% very low.
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Appendix A

Objective measurement
results

The results of the SNR measure are given in Figure A.I and Figure A.2. It
is seen, that results for SNR and PSNR are almast the same. The results of
the SWAN and DNR_mc algorithms in the 32 dB PSNR sequences are slightly
different.
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Figure A.I: SNR measure evaluation lor seven algorithms on 26 dB
PSNR sequences
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Figure A.2: SNR measure evaluation for seven algorithms on 32 dB
PSNR sequences

In Figure A.3 and Figure AA, the results are given of the PSNR measure for,
26 dB and 32 PSNR noise degradations, respectively. It can be seen that the
SWAN-DNR algorithm performs the best, while the Falcon-lIlchp algorithm
performs the worst. The PSNRI/SNRI evaluation measure gives the same
results, as can be seen in Figures A.5 and Figure A.6.
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Figure A.3: PSNR measure evaluation for seven algorithms on 26 dB
PSNR sequences
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Figure AA: PSNR measure evaluation for seven algorithms on 32 dB
PSNR sequences
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Figure A.6: PSNRI measure evaluation lor seven algorithms on 32 dB
PSNR sequences

In Figure A.7 and Figure A.8, the evaluation results for the MD / MAE measures
is given. The results are exactly the same as the PSNR evaluation measure.
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Figure A.7: MD/MAE measure evaluation lor seven algorithms on 26
dB PSNR sequences
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Figure A.8: MD/MAE measure evaluation lor seven algorithms on 32
dB PSNR sequences

In Figure A.9 and Figure A.lO, the MSE evaluation results are summarised.
Results are the same as the SNR evaluation measure, only the results for the
DNR, DNR-lIlc and SWAN algorithms differ in ranking.
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Figure A.9: MSE measure evaluation lor seven algorithms on 26 dB
PSNR sequences
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Figure A.IO: MSE measure evaluation lor seven algorithms on 32 dB
PSNR sequences

The MB evaluation results are given in Figure A.ll and Figure A.12. The
Siemens algorithm has the lowest Mean Busyness value for both noise degra
dations, while the DNR and Fa1con_me-hp algorithms have the highest MB
values.
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Figure A.ll: MB measure evaluation lor seven algorithms on 26 dB
PSNR sequences
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Figure A.12: MB measure evaluation for seven algorithms on 32 dB
PSNR sequences

The stability (ST) results in Figure A.13 and Figure A.14 show that algorithm
Siemens scores good in both noise degradations, number two and one respec
tively, while the FalconJIlcJ1p algorithm has low ST scores, last place and sixth
place, respectively.
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Figure A.13: ST measure evaluation for seven algorithms on 26 dB PSNR
sequences
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Figure A.I4: ST measure evaluation lor seven algorithms on 32 dB PSNR
sequences
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Correct processing ratio measures (CPR) are given in Figure A.I5 and Fig
ure A.I6. Falcon_mc-.hp, DNR_mc, SWAN_DNR and Siemens algorithms score
all high for both noise degradations. The Median-Fuzzy and DNR algorithms
score low for both noise degradations. SWAN is somewhere in between these
two groups.
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Figure A.I5: CPR measure evaluation lor seven algorithms on 26 dB
PSNR sequences
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Figure A.16: CPR measure evaluation lor seven algorithms on 32 dB
PSNR sequences

The Flat Field Noise Smoothing Ability is deseribed in Figure A.17 and Fig
ure A.18. It ean be seen that for 26 dB (PSNR) sequenees, the DNRJlle
algorithm performs the best and the SWAN algorithm the worst. For 32 dB
(PSNR) sequenees, the SWAN.J)NR algorithm was the best and the Siemens
algorithm the worst.
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Figure A.17: FFNSA measure evaluation lor seven algorithms on 26 dB
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Figure A.I8: FFNSA measure evaluation lor seven algorithms on 32 dB
PSNR sequences

The Detail-Preservation Capability is described in Figure A.19 and Figure A.2ü
for the two noise strengths. For the 26 dB (PSNR) sequences, the SWAR.DNR
algorithm performs the best and the Falcon_mc-hp the worst. For 32 dB
(PSNR) sequences, the Siemens algorithm was the best and the Falcon_me-hp
the worst.
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Figure A.I9: DPC measure evaluation lor seven algorithms on 26 dB
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Appendix B

Hybrid measurement results

In Figure B.l and B.2, the results of the Fujio PSNR evaluation measure are
given. It ean be seen that the SWANJ)NR and the SWAN algorithm perform
the best and Falcon_me.l1p performs the least good.
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Figure B.I: Fujio PSNR measure evaluation lor seven algorithms on 26
dB PSNR sequences
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Figure B.2: Fujio PSNR measure evaluation lor seven algorithms on 32
dB PSNR sequences

28

In Figure B.3 and BA, the Fujio SNR evaluation measure gives the same results,
as the Fujio PSNR evaluation measure.
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Figure B.3: Fujio SNR measure evaluation lor seven algorithms on 26
dB PSNR sequences
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Figure B.4: Fujio SNR measure evaluation lor seven algorithms on 32
dB PSNR sequences

In Figure B.5 and B.6, the results of the CCIR 4211 PSNR evaluation measure
are given. The results are the same as the Fujio PSNR and SNR evaluation
results.

37.5
37.00

iD 37
~
IX: 36.5
z
In 36Do

3: 35.5........
N 35'<t

IX:
0 34.5
0

34

~Q:- "?-~ ~v 1::'''' ~1:-\
c:;~

0~ ~Q:-/ '0~~/ «
~"?- ~ c:;" .~<::-/

~c:;
~~

Figure B.5: CCIR 4211 PSNR measure evaluation lor seven algorithms
on 26 dB PSNR sequences
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Figure B.6: CCIR 4211 PSNR measure evaluation lor seven algorithms
on 32 dB PSNR sequences

In Figure B.7 and B.8, the results of the CCIR 4211 SNR evaluation measure are
given. The results are similar to the results of the Fujio PSNR, Fujio SNR and
CCIR 4211 PSNR results, apart from the results for the 26 dB PSNR sequences
where different rankings occur for the Median-.Fuzzy and DNR algorithms. The
evaluation measures values for these algorithms are very close together.
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Figure B.7: CCIR 4211 SNR measure evaluation lor seven algorithms
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Figure B.8: CCIR 4211 SNR measure evaluation for seven algorithms
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In Figure B.9, Figure B.IO, Figure B.ll and Figure B.12, the CCIR 5672 PSNR
and SNR measures evaluation results are given. Results are very similar to the
previous given weighted PSNR and SNR measures.
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Figure B.9: CCIR 5672 PSNR measure evaluation for seven algorithms
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Figure B.10: CCIR 5672 PSNR measure evaluation for seven algorithms
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Figure B.12: CCIR 5672 SNR measure evaluation lor seven algorithms
on 32 dB PSNR sequences

In Figure B.13 and Figure B.14, the SDM evaluation measure results are
given. For 26 dB PSNR sequences, SWAN...DNR performs the best, while Fal
con_mc_hp performs the worst for 26 dB PSNR sequences. For the 32 dB PSNR
sequences, the Siemens algorithm performs the best and the FalconJllc_hp al
gorithm the worst.
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Figure B.13: SDM measure evaluation lor seven algorithms on 26 dB
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Figure B.14: SDM measure evaluation lor seven algorithms on 32 dB
PSNR sequences

In Figure B.l5 and Figure B.l6, the TDM measure results are given. The
Siemens algorithm performs the best for both the 26 dB as the 32 dB PSNR
sequences. The DNR algorithm performs the worst for both noise levels.
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Figure B.15: TDM measure evaluation lor seven algorithms on 26 dB
PSNR sequences
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Figure B.16: TDM measure evaluation for seven algorithms on 32 dB
PSNR sequences

In Figure B.17 and Figure B.18, the Mdis measure results are given. The
algorithms DNR_mc and Siemens perform the best for the 26 dB PSNR noise
degradation, while the Median-Fuzzy algorithm performs the worst. The DNR
and Siemens algorithms perform the best for 32 dB PSNR noise degradation
and Falcon_mc-hp performs the worst for this noise degradation.
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Figure B.17: Mdis measure evaluation for seven algorithms on 26 dB
PSNR sequences
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Appendix C

Subjective measurement
results

C.l Experiment 1

In Figure C.l, the five algorithms of the first test are ranked by the quality
perception. The figure takes both noise degradations into account. The Siemens
algorithm performed the best and the Median...Fuzzy performed the worst.
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Figure C.l: Quality ranking of five noise reduction algorithms of test 1

In Figure C.2, the five algorithms of the first test are ranked by the noise
removal performance.
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Figure C.2: Noise ranking of jive noise reduction algorithms of test 1

In Figure C.3, the quality perception of the algorithms in experiment 1 is shown
for sequences of 26 dB PSNR. Siemens has the best performing on the field of
quality. The MedianYuzzy algorithm gives the worst quality.
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Figure C.3: Quality ranking of jive noise reduetion algorithms of exper
iment 1 with 26 dB PSNR sequences
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In Figure CA, the Noise scores of the algorithms in experiment 1 is shown with
26 dB PSNR sequences.
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Figure C.4: Noise ranking of jive noise reduction algorithms of experi
ment 1 with 26 dB PSNR sequences
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In Figure C.5, the quality perception of the algorithms in experiment 1 is shown
with 32 dB PSNR sequences.
In Figure C.6, the noise removal performance of the algorithms in experiment 1
is shown with 32 dB PSNR sequences. The Siemens algorithm removes the most
noise, while the Median...Fuzzy algorithm performs the worst at noise removal
ability.
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Figure C.6: Noise ranking of four noise reduction algorithms of experi
ment 1 with 32 dB PSNR sequences

C.2 Experiment 2

In Figure C.7, the five algorithms of the second test are ranked by Quality
score.
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Figure C.7: Quality ranking of Jive noise reduction algorithms of test 2

In Figure C.8, the five algorithms of the second experiment are ranked by the
Noise score.
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Figure C.S: Noise ranking of Jive noise reduction algorithms of experi
ment 2

In Figure C.g, the quality perception of the algorithms in experiment 2 is shown
with 26 dB PSNR sequences.
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Figure C.9: Quality ranking of four noise reduction algorithms of exper
iment 2 with 26 dB PSNR sequences

In Figure C.lO, the noise removal performance of the algorithms in experiment
2 is shown with 26 dB PSNR sequences. In Figure C.ll the quality perception
of the algorithms in experiment 2 is shown for 32 dB PSNR sequences.
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Figure C.lO: Noise ranking of four noise reduction algorithms of experi
ment 2 with 26 dB PSNR sequences
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Figure C.l1: Quality ranking of five noise reduction algorithms of exper
iment 2 with 32 dB PSNR sequences

In Figure C.12 the noise removal performance of the algorithms in experiment
2 is shown with 32 dB PSNR sequences.
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Appendix D

Settings of the noise reduction
algorithms

Table D.l: Settings of the noise reduction algorithms for 26 dB PSNR
sequences

Filter Spatial setting Temporal setting
Falcon_mcJlp n.a. 11
Siemens n.a. H=2, L=8
SWAN + DNR 12 8
Median + Fuzzy n.a. 4
SWAN 15 n.a.
DNR n.a. 5
DNR_mc n.a. 8

Table D.2: Settings of the noise reduction algorithms for 32 dB PSNR
sequences

Filter Spatial setting Temporal setting
Falcon_mcJlp n.a. 8
Siemens n.a. H=2, L=6
SWAN + DNR 5 5
Median + Fuzzy n.a. 3
SWAN 7 n.a.
DNR n.a. 3
DNR_mc n.a. 6
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Appendix E

Data conversion differential to
individual scores

D is the differential score of the difference between two algorithms, as directly
obtained from the voting of the observers in the two experiments. The columns
contain the scores per observer per sequence. Sis the row matrix with individual
scores for each algorithm. X is the transistion matrix, such that:

(E.1)

Then, Scan be obtained from D and X, by [21]:

(E.2)
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