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JOJO

An Interactive Domain and Terminal Generator

by

B. W. N. Kumeling

This report describes the .....ork of the final project for the

electrical-engineer degree of the University of Technology of Eindhoven,

the Netherlands. The .....ork was done in the period of september 1983 to july

1984 at the PHILIPS Research Laboratories. The work was done in the VOILA

project, in which an interactive and hierarchical design-methodology is

implemented. 1·1y task in the project was the investigation and

implementation of methods, that can be used to make an abstraction of large

amounts of layout-data. The abstraction is described as a simplified area,

in VOILA called domain, and an interface, in VOILA called terminals. A

study of hierarchies and existing methods of abstraction was made. An

inventory of user requirements was made. An interactive approach l·laS

chosen to demonstrate the concepts of domain and terRinal generation. A

program was written in PASCAL on a VAX 11-780. It is er.1bedded in the VOILA

graphics editor.
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1 .1 THE PROBLEM

CHAPTER 1

INTRODUCTION

10 MILLION TRANSISTORS

VLSI technologies are so pO'Jerful that it is possible to integrate, in

1984, 1 million transistors on one single chip. For example the dense 1

r:bit dynamic RAI·!s, that were presented at the IEEE International Solid

State Conference in february 1984 (ISC 84]. The design time of these

memories is relatively short due to their extremely regular patterns.

The design time of cOI:lplex signal- and micro-processors may be an order

of magnitude larger. It is reported in [WEI 79] that the design time of

the 16 bit microprocessor M68000 required 52 man-years for 68000

transistors. Lattin reports in [LAT 79] that the average productivity of a

designer within a project, implementing random logic on a chip, is 10

transistors a day. A productivity of 6 transistors a day is reached in the

design and layout of the H68000 project.

It is expected that an upper bound on the number of transistors on a

VLSI chip will be 10 million. This means, that by an optimistic linear

extrapolation, a team of 13 designers should have started a design near

1584; the year of the murder of Willem van Oranje!

The main problem with VLSI is the integrety of the design. Even the

most talented and competent people make mistakes. TIle problem with errors

is that they escalate in time; its recovery requires weeks or even months.

A correction of an error may cause ne\v errors elsey/here in the design. In
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INTRODUCTION Page 1-2

a complex design, more and more design-time is spent on the recovery of

errors. Less time is available for the actual understanding of the

inter-dependencies between the several parts of a system.

1 .2 HOW COMPLEX IS COMPLEX?

P. Losleben gives in [LOS 80] an analogy of the increase in

circuit complexity of 2 or 3 orders of magnitude. It is shmm that, in the

ultimate situation of 0.4 micron design rules, the area needed to draw the

layout on a scale of 12500:1, will be equivalent to the size of 2 football

fields! The idea of a team of designers, crawling about on the millimeter

paper, indicates tlaat different layout methods have to be found to master

this complexity.

h'hy has this VLSI complexity problem and its management become so

popular? Very complex systems are built routin~ly: examples are operating.

systems or airplanes; mankind is even capable of putting men ( and women )

on the moon! He have to make a historical review of the design of

integrated circuits. LSI circuits were the result of a physical

partitioning process: only a limited number of transistors could he placed

on a single chip. The designer was forced to decide which sub-functions

could be realized on a single chip. With VLSI technologies however, it is

possible to integrate whole systems instead of sets of single transistors.

The necessity for partitioning is no longer obligatory. The disappearance

of off-chip drivers, the reduction of parasitic wiring capacitances and the

decrease of the device-size has led to an enormous gain in performance. On

the other hand, a complex and unstructured domain of silicon is created in

which a designer has total freedom.

- 7 -
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1 .3 THE SOFTWARE CRISIS ANALOGY

Page 1-3

There is a striking analogy with the development of large software

systems in the 1960's. Hammoth systems were built, without knowledge of

the applications. Requirements for the systems changed regularly. As a

result, time-limits were exceeded and the costs were a multiple of what was

planned. The performance of the first release was very poor. The proble~

was not the size of the program, but the programming discipline. The

discipl ine of Software Engineering arose in the 1970' s; it deals with the

systematic approach of the development of large complex software systems.

The accent is shifted away from the actual coding to the design of

software. Structured methods are used to achieve complexity control and,

requirements are 'frozen' at a certain stage. Documentation and top-down

implementation play an important role in software engineering.

There are many lessons, that can be learned from this Software crisis.

C. Sequin explores in [SEQ 83] the nature of complexity in general and

analyzes methods to deal with this complexity. In structured systems,

modules have a stron8 internal cohesion, while the coupling between modules

is as loosely as possible. In this way, complexity can be controlled;

self-contained modules are easier to specify. These general techniques are

also applicable to the design of co~plex VLSI systems. There are, however,

a few extra problems:

* Instances of modules have to be placed in the 2-dimensional silicon

plane. There is no procedure- or recursion mechanism that can be used.

* The number of pins to a chip is strictly limited. As an analogy, this

would mean that a software module is only allowed to have two or three

floating-point variables for input or output.

- 8 -
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* Communication to other chips on a circuit board gives loss of bandwidth

and requires extra power.

* A layout module has only a restricted number of neighbours. For

software modules, the sequence and definition of procedures is of none

concern.

Structuring in VLS1 implies a good partitioning of the system. Systems

should have a well-defined independent function with only a few exit

points. They must consist of a limited nunber of sub-modules, that obey

the same criteria. Clean and precise specification is necessary at all

levels.

VLSI has a big advantage in comparison with software systems:

systems can be designed for as much concurrent action as is possible.

VLS1

Concurrency problems are not entirely solved; not even in software

systems. Concurrency is a fast evolving research topic.

1.4 STRUCTURED DESIGN AND VLSI ENGINEERING

Hierarchical decomposition is the major tool in the design of complex

systems [S1M 62]. A complex function is decomposed in less complex

sub-functions. This process can be repeated several times until an

elementary level of basic functions is reached.

mller showed [MIL 56] that the number of elements on a hierarchical

level should be no more than 7. This is due to the physiological fact that

the short-term memory of a human being can hold 7 to 9 items at a time.

TIlis gives an indication of a good decomposition of a complex problem.

There should not be less than 2 or 3 items on a hierarchical level: this

resul ts in a very deep and stiff hierarchy. ~lore than 7 to 9 items lead to

very complex inter-relationships and a flat hierarchy.

- 9 -
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This decompositon process is often called the top-down approach of

tackling the problem. The actual implementation occurs in the opposite

direction: elementary functions are placed first and they are

interconnected to make larger functions. This implementation process is

also repeated several times until the complete function is built. This

process is called bottom-up implementation

Ideally, tasks such as: specification, simulation and test preparation

are handled in a top-down manner. Tasks like partitioning, placement,

routing and topological analysl~ are handled in a bottom-up manner. The

top-do\m approach is called functional design and deals with design on a

logical level. Bottom-up implementation is called structural design.

Systems are actually built in a physical medium.

The problem with pure top-do\.Jn rlesign is that it is not known a priori

how problems will be solved in sub functions. It is possible that sirr.ilar

problems arise in different sub-functions. In an early stage of design,

this knowledge could have led to a different decomposition of the system.

This means, that a good design travels several times up and down a

hierarchical tree. With this insight, I decided to call my program JOJO

The structured design is the natural evolution of an engineering

discipline. Losleben writes:

"The imposition of reduced freedom in the design process •••• can no

longer be avoided. most engineering disciplines involving the

design of complex systems have seen a metamorphosis from a highly

individualistic

profession."

art form to a structured, highly disciplined,

As an example: a space shuttle is made hy a design-team and not by one

single designer. The design-team works with well-defined interfaces and

- 10 -
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uses a modular approach for solving the problem.

engineering is also evolving to such profession.

1.5 HARDWARE DESIGN VS. VLSI LAYOUT

Page 1-6

In my opinion, VLSI

In hard\vare (printed circuit) design, systems are built with 'discrete'

components. VLSI layout is an activity in which Hhole systems are

integrated in silicon. These different approaches have different

optimization criteria. In hardware design, a cost-function is used to

minimize the num"ber of gates (or active devices). ':'his cost-function is

very well suited for the design with standard MSI and LSI (TTL) components.

In VLSI layout, a different cost-function is used. As the number of

components on a chip increases and the device-size decreases, the lenght

and the number of interconnection wires will be the limiting factor; NOT

the number of active devices! There are t\o,'O main cost-functions in VLSI:

area and speed. Long interconnect-wires result either in much power or

slow operating speeds; both are not acceptable. The length of a wire

determines how much time is needed to transfer data between two points.

The [;lost important problem is to find architectures, that need a minimal

set of interconnect. When the design is finished, the most important

optimization is the placement of modules in the layout, to achieve a

minimal lenght of the wires.

Disital hardware design relies on standardization a designer picks

the exact pieces he needs from a catalog to implement a particular

function. In VLSI, a library of standard functions can be used. The

life-time of this library is very short; it has the same duration as a

technological process (2-3 years). Technological changes, for instance,

may lead to a complete re-implementation of the library ( as happened in

the change-over from N}10S to Cr-;OS).

- 11 -
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INTRODUCTION Page 1-7

functions however, loose efficiency in either speed or area. Parametrized

functions, that can be "adjusted to either area or speed, may give a

solution. It is a powerful tool in combination with symbolic layout and

compaction techniques [ELL 83].

In resemblance with hardware design, more and more irregular control

functions are replaced by regular counterparts, as ROB or PLA.

1.6 THE DESIGN PROCESS OF AN INTEGRATED CIRCUIT

The design process of an integrated circuit is divided in several

stages. In the first stage, a functional specification is Made. This

specification is a compromise between wild ideas and system demands. The

behavior to the outside world and the internal operation are described in

terms like: maximum power dissipation, minimum guaranteed access-time,

number and assignment of pins of the package, kind and sequence of the

operations, size of the operands, etc. etc. In this first stage, a

decision has to be made in which technology the integrated circuit will be

processed and which design method will be used. The first decomposition in

smaller blocks is made and the functional specification is often

accompanied by a, loosely drawn, schematic diagram of the system.

In the second stage, a transformation to a logical description is made.

The large functions of the first stage are further decomposed in

sub-functions. This process is repeated until the most elementary level of

boolean gates or library functions is reached. Verification can be done

either by bread-boarding (the actual implementation in hardware) or by

computer simulation. The advantage of bread-boarding is the availability

of a working prototype. It is however not applicable to VLSI circuits due

to speed considerations: parasitic wire-capacitances cause reduced

operating speeds. Furtherrr:ore, the documentation of changes

- 12 -
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INTRODUCTION Page 1-8

bread-board circuit demands a very severe (self-)discipline.

The most critical phase in the design of integrated circuits is the

layout-phase: the drawing t digitizing and checking of the circuits in the

different mask- or process layers. The layout phase is very costly: a

huge investment in computer aids and in human interaction is required.

Many methods are developed to help the designer with the drawing and

checking of a layout. Generally spoken t a coopromise is made between costs

of production and costs of design. The most important criterion is the

expected volume of production. For large production volumes it is

desirable that the layout is as compact as possible. In this waYt a

maxirnwJ number of good chips on a wafer can be expected at a given process

yield. An other criterion is the time to finish the design. As stated

before t the design of complex signal- and microprocessors demands tens of

man-years. Structured design methodologies are the key skills for future

designs.

The last phase in the design of an integrated circuit is the production

of the physical masks that are used in the \.;afer processing. The number of

masks is dependent of the complexity of the technological process: this

nuober can vary from 7 t for a metal gate Ptl0S process t to 17 for an

advanced CrIOS process.

In summary: the design process of an integrated circuit can be split

up in several phases:

idea -) functional

specification

-) network

description

-) layout -) masks -) IC t

in which the layout phase is the most cri tical one.

- 13 -
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1.7 THE VOILA APPROACH

Page 1-9

The structured-design approach is adopted in VOILA (acronym for VLSI

Oriented Interactive Layout Aid). It creates an environment for the

structured design of VLSI circuits and comprises the traject of:

network

description

--) layout --) mask

data

In VOILA, the method of hierarchical abstraction is used as a way to

control the complexity of a VLSI circuit.

abstraction as:

Niessen [NIL 83J defines

"The method in which an object is replaced by a simplified one, that

only defines the interactions of the object with its environment, while

deleting the internal organization of the object. "

Hierarchical abstraction means that more than one level of abstraction is

needed to achieve a reduction of the araount of data. The number of levels

in a hierarchy is often called the" cardinality of that hierarchy.

Hierarchical ahstraction is the impleI:\entation of the

divide and conquer principle. This well-known principle is applied in Qany

human cultures; the organization of the Roman Warriors is a historical

are independent of

example. Division means that a problem is delegated to subprobleras, that

each other. Division implies formal methods for

guaranteeing the locality of a module. Conquering means that the solutions

of the sub tasks are gathered by the next higher level in hierarchy. This

implies, that there must be ways for modules to communicate with the

'outside world'.

VOILA does not assume a specific layout style. It has its main emphasis

on interactive layout-design. Special care is given to an efficient

- 14 -



INTRODUCTION Page 1-10

man-machine interface. Both top-down (floorplannin~) and bottom-up layout

design is possible. The modularity of the programs enables efficient

isA layout editorapplicaton-program development (as \vith JOJO).

available in the VOILA tool-set.

The textual constructs for the description of layouts are formalized in

a layout-language: VLDL, for VOILA Layout Description Language [BER 83].

To get an impression of the definition of VLDL and a description of an

actual module, see appendices A and E.

All programs operate on one standardized datastructure: VIC (VOILA

Intermediate Code). The VIC is a one-to-one projection on the memory of

the computer of the textual constructs of the description of a module.

This means that modules are described only once; instantiated modules are

not expanded, as is the case in present-day layout programs. In this way,

it is possible to store the whole data-structure of a VLSI chip in the

memory of the computer. This enables fast search and display algorithms.

Real-time editing is also possible. The standardized data-structure has an

other advantage: no data-conversion is necessary for e.g. design-rule

checking. Some design-automation tools are planned as well. Examples are

cell-placement, channel-routing and PLA generation. The concept of VOILA,

its features and its hardware requirements are described in a prospect [Val

84] •

The basic layout-unit in VOILA is the module. Both geometric and

symbolic layout modules can be described in VOILA. Geometric modules are

called patterns. Their geometric primitives consist of line-segments that

have angles of multiples of 45 deErees, relative to x- or y-axis. Synbolic

modules are called cells On a symbolic level, only placements of

suhcells and their interconnect is relevant. Shapes are restricted to 90

degrees. Symbolic layout enables a considerahle degree of abstraction from

the technological details. A limited set of masks is used; it contains

- 15 -



INTRODUCTION Page 1-11

e.g. no implantation masks. A symbol can hide a very complex subcell. On

the other hand, symbolic layout gives a reduced degree in

layout-flexibility.

In VOILA, the conquering principle is formalized in the terminals of a

module. Terminals define all possible ways of communication with the

environment. The division principle is implemented in the domains of a

module. Domains claim layout-areas in the different process masks and

shield the contents of a module from its environment. An other abstraction

mechanism in VOILA are the drawings. Drawings allow the user to place

graphical comnent in the layout. They arE: described in color-masks, that

will not be converted to process-masks.

Domains, terminals and dra\>Jings are the abstraction of a module. They

are the means for hierarchical abstraction. Terminals and contents data

are the realization of a module. Layout-elements of both types will appear

on silicon.

The abstraction of a module has its greatest benefit in a hierarchical

description of a system. When a module is designed, tested, and proven to

be correct, only the abstraction of the modules is needed in the next

higher level of hierarchy. In this way, laq:;e systeMs can be built with a

minimuD amount of detail to be considered at any time.

1.8 THE LINK OF DOMAIN AND TERMINAL GENERATION WITH VOILA

In VOILA, the description of the abstraction of a module requires an

extra amount of work by the designer. In present-day layout-design, the

designer has to define the contents ( or realization) of a module. The

question arose if it was possible in VOILA, to derive this abstraction data

from already existing layout- and network data. Domains and terminals are

in fact hidden in the contents of a mouule. This observation hits the

- 16 -
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heart of the matter. A re-definition of my work is:

!~ke a description of the domains and terminals of a Module from

already existing layout and network-data. The abstraction should he as

simple as possible and should give as little as possible loss in

flexibility.

This report gives an overview of some abstraction mechanisms. The

properties of the VOILA domains, terminals and drawings are high-lighted

and further explored from the syntax of VLDL. These properties are the

boundary conditions for this work; they are the semantics of VLDL.

An interactive language is introduced for the generation of domains and

terminals and some implementation aspects will be treated. TIle algorithms

are embedded in the standard VOILA editor. They are \"ri tten in PASCAL [\.,EL

82] on a VAX 11-780. Finally, some conclusions are ura\vn and directions

for future investigations will be given.

- 17 -



CHAPTER 2

ABSTRACTION AND HIERARCHY CONCEPTS

2 .1 PRESENT-DAY ABSTRACTION

Present-day CAD for layout-design already uses hie ra rchical

layout-description languages (e.g. Circuitmask (CMSK) at Philips).

Geometrical patterns can be nested in geometrical patterns. So what is the

problem?

CMS~ programs make no use of this hierarchical description, because they

do not work with abstraction. C}JSI~ expands all layout data up to the

highest level in hierarchy. This is the reason that mask manipulation

programs and design-rule checkers are the fastest growing group of

consumers of available processing power. The next sections contain some

case-studies of present-day ways of making abstractions.

2.1.1 Abstraction By Using Macros

In the so called Nat.Lab. LSI shop, synchronous NHOS circuits are

developed with scannable delay flip-flops. At the input of each flip-flop,

a logical and-to-or function is connected. Data is latched in a flip-flop

at one edge of the global clock. Output data is available at the other

edge of the clock. The flip-flops are placed row-wise to enable connection

of power supplies etc. by abutment. The lo~ical and-to-or function is

placed in a wiring channel underneath that row of flip-flops. Fig 2.1

- 18 -



ABSTRACTION AND HIERARCHY CONCEPTS Page 2-2

shows how a symbolic layout looks like. Wiring is placed on a coarse grid

and is described in symbolic wires.
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Fig. 2.1. Example of a layout in the LSI-shop.

In a testmode, the logic and-to-or circuit is disconnected and the input is

connected to the adjacent output. All flip-flops are chained in this way

to enable scanpath testing.

For geometrical checking, the following abstraction is applied: dummy

cells are created manually to replace (checked) flip-flops. Only the

peripheral of the dummy cell is identical with the flip-flop. Its content

is less detailed.

A number of flip-flops (say 20) represent a subfunction \mich is fully

checked with all detailed layout-rule checks. However, the detailed

flip-flop was replaced by a dummy cell. Also for this subfunction, a dummy

cell is created. This dummy cell contains only the area, occupied by this

subfunction and connection-points on the edge of this area. The occupied

area lies one gridpoint around the actual details and should be as

rectangular as possible. The connection-points are situated in this grown

area and they are represented by small rectangles. The area and the

- 19 -



ABSTRACTION AND HIERARCHY CONCEPTS Page 2-3

connection-points are placed by hand (Fig. 2.2).

coarse grid distance
- - - - - - - - - - - - - - - -.., domain

I
I

I

I
L. __ ,

layout
module

connection
: rectangle
I

I I
L J

Fig. 2.2. Nacro description of a module in the LSI-shop.

In the next step, only the 'grown' area is taken; the inner part in fig.

2.2 is empty. Ensuring correctness of the duomy cells is a designer's

responsibility for which no CAD checks are available. The conventional

design-rule checker only checks environment-details against the small

connection-rectangles of the dummy pattern. Intrusion of wires in the

occupied area is inspected on a plot of the layout, by eye.

In this way, a reduction of CPU-hours is achieved. At mask-generation

time however, no more gain is achieved. The dummy patterns are replaced by

the original ones and DISK expands all the layout data. All problems are

in fact shifted to the end of the design traject! This macro design method

demands a very large self-discipline of the designer. It was used until

august 1983.

DELILA is used.

In current designs, which also contains oms, the program

2.1.2 Abstraction With Respect To Layout-verification.

In the Nat. Lab. research group Digital Circuitry and nemories, a CAD

tool-set has been developed to assist a designer in hierarchical

verification of CMOS layouts. It also helps the designer in placing and

checking of interconnection fields. With the help of a layout-extraction
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program, a net description is made out of an interconnection field and a

placement of submodules, in the description l"anguage of SIrJON. The

terminals in the layout have a one-to-one relationship with the inputs and

outputs of a networkdescription of the same module, and of power-supply

lines. The areas of submodules are recognised by tlie program with the help

of a mask ZD, that is not projected on silicon. It covers most of the

details of the module, except for a, on purpose, selected set of external

areas. TIle external areas are used to generate the terminals of the module

in an automatic way. External areas in the interconnection-masks IN, PS

and OD are grOl'1fl by a small factor and 'anded' with the domain description

in ZD. With this overlap area, a terminal is made in the helpmasks ZI, ZP

and ZO (Fig. 2.3).

domain in ZO ZO ZD

external IN
area
~

grow
and

"AND"

~

terminal
assignment

terminal
in ZI

Fig. 2.3. Generation of terminal-points in ZI, ZP or 20

from domain (ZD) and overlap areas in Termdef.

The next step is the assignment of a name to these terminals. In an

interactive session with the designer, a cursor is automatically adjusted

on top of the generated terminals. The designer is asked to assign a name

to that terminal, that is selected from the existing network-description.

Terminals can be defined of type input, output or power. Input and output

terrni nals are read from the i/o list of the network description.

Power-supply terminals can also be named and declared of type power.

The placement of the domain area in mask ZD is, in this approach, seen

as an intelligent action. Terminal generation in masks ZI, ZP and ZO is
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done in an automatic way. Name assignment to ter~inals is also

straightforward: only names from a network-description and power-supply

lines have to be selected. An additional feature of the program is the

placement of information in the plot of the module. This gives better

readable plots and serves as a documentation aid.

2.1.3 Abstraction In DELILA

The program Delila is a CAD tool for the generation of symbolic layouts

and is described in [STR 81]. The basic design module in Delila is the

UNIT. Within a unit, free layout is possible and is checked with detailed

layout-rule checks. The connection points to the unit have to be placed on

coarse grid. A symbolic representation of the unit is made when the layout

is finished. A chip is composed of ( up to 200 ) units, interconnected by

wires in maximal 3 connection layers. Wires, vias and active devices are

represented as stick-diagrams on a coarse grid. Fig 2.4 shows a layout of

a unit.

'--- ,---
I I

~-!--

1
I
I
I --- ----------

I

I
I

I
~

I
I
I
I
I
I
I
I

----~

Fig. 2.4. Example of a Delila UNIT.

Both mws (interlace dynamically-latched logic) and Bipolar (IlL) layouts

can be made with this CAD tool. A large library of standard functions is

available.

The abstraction is described by so-called protective outlines. These

are fences around a unit in the 3 connection layers, and in a special mask
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XG. Connection to a unit is made to contact-points on the edge of a

protective outline. In Delila t it is essential that every design unit has

a network-description in SIMON and a CMSK layout-description of the same

name. Units are not allowed to overlap. There ~ust always be one grid

distance between two adjacent cells. This is a simplified check compared

to the check of all layout-details. Global wires can be placed by using

through-routes or throuts. Contacts are placed on hoth sides of a unit.

They may be internally interconnected when no protective outline between

these 2 points is specified. The interlace logic is placed on coarse grid

and is (logically) checked.

An interesting utility in Delila is the automatic generation of

SUPER-UNITS Its protective outlines are generated from the outlines of

sub-uni ts t the interconnect t the ac tive devices and the vias. The

information for the contacts to a super-unit is derived from the

network-description. The algorithm for outline generation is

straightforward. An inventory of occupied grid-points is made t followed by

some operations. At built-in t parameter is used to smooth ~le edges of the

protective outline by searching indentations. E.g. t the indentation area

between 2 grid-points is assigned to the outline area. An other control

parameter is the number of edges t that may appear in the outline

description.

2.1.4 Some Observations

From this review of abstraction mechanisms in existing CAD toolst we can

state that there are two general principles used in abstraction:
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o The fi rst one is a fence around the module, that may not be crossed by

elements from the environment. In literature, many exotic names are

given to this fence:

domain

protective outline

bounding box

protective frame

shadO\-l

bounded cell representation

Voila and Termdef

Delila

hierarchical design-rule

checker [WHI 81]

Berkeley [ELL 83]

HDS (IBt'1) nVOL 81]

IlP [TUC 82]

o The second abstraction principle is the existance of openings in the

fences. They enable the module to communicate with the 'outside

world'. An other anthology:

terminal Voila and Termdef

port

connection point

contacts

pins

REST [i'IOS 81]

Hulga [HES 81] and at liP [TUC 82]

Delila

2.2 AN OTHER HIERARCHICAL CONCEPT

Rowson [ROW 80] reports a different

hierarchies at Caltech University.

approach for the description of

A separated hierarchy is used, that

consists of leaf-cells and composition-cells. Leaf-cells are the 'atomic'

units, that contain real mask-data; they contain no copies of other

leaf-cells. Composition-cells only contain names of leaf-cells and other

composition-cells. The composition-cells contain no mask-data for the
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interconnection of subcells. Instead, they contain an

Page 2-8

algorithmic

description for the interconnection, that is called a composition rule.

Rowson shows that hierarchies (and thus composition rules) can be described

mathematically by using Lambda calculus. Their philosophy is to make VLSI

chips by construction and not by afterwards-testing (as is the case in many

American Industries).

2.3 EQUIVALENCES BETWEEN HIERARCHIES

\:hen two persons are decomposing a complex problem, it is very unlikely

that they will produce the same hierarchies. ~~'hen layout and network are

decomposed in different hierarchies, consistency checking can only be done

when the two hierarchies are equivalent. Rowson distinguishes three types

of equivalences between hierarchies: identical, functional and

topological.

Identical: "Two systems are equivalent only if every cell in every

level of the hierarchical tree composes the same instances of the same

cells with the same interconnection."

This is the strictest definition and is applied in VOILA. The hierarchical

description of the layout-modules must be the same as the hierarchical

'description of the network. This is a necessary condition for incremental

connectivity-checking.

Functional: "Two systems are equivalent if, given the same input

sequences, they produce identical output sequences."

This definition is too unrestrictive.

implemented on silicon in two ways.

As an example, a CPU can be

The first one is the result of a

functional decomposition. The CPU is suhdivided in ALU, HHU, Registers
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etc. and these functions are mutually interconnected by busses. The

second implementation is the result of a decomposition per bit. A

bit-slice is made in which the functions of the ALU etc. are distribed to

each bit. Slices are connected by abutment. Both hierarchies are

fundamentally different, but not according to the second definition.

Topological: "Two hierarchies are equivalent if the hierarchies that

define them result in identical compositions of the identical leaves."

This means that the systems can be compared with each other, \.;hen the t\.m

hierarchies are "flattened-out"; i.e. described on one level with no

hierarchy at all. The "flattening-out" process is inplemented e.g. in

layout-extraction programs.
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CHAPTER 3

SEMANTICS OF THE VOILA ABSTRACTION

This chapter gives an overview of the properties of the VOILA

abstraction: domains. terminals and drawings. The syntax definition of

VLDL. that is necessary for the definition of the abstraction of a module.

is drawn in graphs in appendix A. In this chapter. the VLDL syntax is

interpreted and further explored.

abstraction will be given.

3.1 PROPERTIES OF DOMAINS

Some applications of the use of

The function of domains can be summarized as:

"Domains claim an area in the layout".

Domains can be defined in any process-mask with aI~ geomerric primitive.

The set of areas in all these masks defines a 3-dimensional surface, in

which the local subtask of the module is executed. Within each mask, a

domain is described as a 2-dimensional area (Fig. 3.1). The domain area.

in e.g. the PS mask, is called: "Domain in PS".

Domains of 2 separate modules may touch, hut NOT overlap.

The use of domains requires 2 extra sets of design rules. They are

called modular design-rules and can he 2erived from one set of

technological rules. As an example, the modular design-rules for a
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1 N "--_...."....-..J

CO
PS
00

Fig. 3.1. A 3-dimensional representation of a domain in the

several masks of an NHOS process.

clearance of 4 urn between 2 IK elements are (Fig. 3.2):

1. IN detail to IN detail = 4 urn.

2. IN detail to IN domain 2 urn.

3. IN domain to In domain = 0 urn.

Page 3-2

( IN r >{ IN ( detai I Y5. detail
4 }Jm

I-

I

( IN r • 1 IN ? detail Y5. doma.inI

2)..Im2)..1mL ___

~ - - -, r ---,
\ I ,

'I N I ,
, t4 " IN r domain Ys. domain
( I I

I

'____ 1 O}Jm
L

_ \

- - -'
Fig. 3.2. A raodular set of design-rules can be derived from one

technological design-rule.

(vhen the domain border is chosen as half the minimum cleo rance-dis tance,

the minimum clearance rules are always obeyed. (Fig. 3.3).
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- -----..,
I I

:---~~--l

II V~V2 IN detail I
r--, I

I I I I
I I I IL -J L -J

domain of cell A domain of cell 8

domain In IN

Pare 3-3

Fig. 3.3. Touching domains guarantee Mininl~ clearance-distances

(d) between two layout-elements.

Domains serve as an ahstraction mechanism: they are never printed on

silicon. It is even possible to define no domain at all for a module. The

technological structures on the chip will remain the same, with or without

a domain. The contents data of such module is no longer protected and is

considered as global or common to the environment. The efficiency of the

hierarchical verification-tools will decrease (and the necessary CPU-hours

increase) due to expansion of all instances of the module.

Domains ensure that no elements from the environment intrude in the

module. There is, hmlever, one exception to this rule. A layout element

is allowed to cross a domain border when a terminal lies near this border

(Fig. 3.4).

I terminal In 00I
I

I
domain 00I In

I
I,
I

'- - - -- .I

00 interconnect

Fig. 3.4. Interconnection wires are allowed to cross a domain

boundary at the place of a terminal.
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Every domain border must have a Hanhattan (or orthogonal) boundary.

This eases the transformation of a geometrical pattern to a symbolical

cell. The size of the dOlT'ain area remains the sane for both descriptions.

Slanted boundaries in the contents part must be made orthogonal.

Domains may be non-connected. TIl is means that unused areas can be

filled by the environment. More specifically, this area can be used by the

next higher module in hierarchy for interconnection purposes. Vias and

wires can be placed in this area (Fig. 3.5), and this leads to dense

PS

interconnect
r-----,
I
I
I
I
I

I I I

inOlin IN-_...J 7-.--- J

~domom in IN of cell A

r----
I
I
I
I
I
L__

ter

packed circuits.

Fig. 3.5. Non-connected domain-areas allow ease of interconnect.

There are 2 extremes in the definition of a domain:

1. The most simple domain is a bounding box. This is a rectangle, that

encloses all layout elements with a distance of 0.5*d. (d is the

minimal, technological, spacing between 2 elements). A maximum level

of abstraction is reached, resultins in a huge data-reduction and high

efficiency of checking tools. TI~ price to be paid is a considerable

loss of layout area.
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2. The most complex domain is built from the set of all layout details of

a module in the following way. All details are approximated by

Manhattan counterparts and expanded (grown) with a factor O.5*d. This

domain description gives no loss of silicon area, but no data-reduction

is achieved. Data is in fact copied to another place. TIle price to be

paid this time is a decrease of efficiency of CAD-tools and an enornous

claim on computer menory.

Both alternatives are not acceptable; a compromise is somewhere in the

middle and is the subject of this work.

3.2 PROPERTIES OF TERMINALS

The function of terminals can be summarized as:

"Terminals give all possibilities for a module to communicate with its

environment."

Parasitic couplings are not taken into account. In contrast with

domains, terainals are a part of the realization of a module and will be

printed on silicon. This means that they don't have to be redeclared in

the contents part of a module. They can be defined in any mask and with

any geometric primitive. Terminals in VOILA are restricted to have

Hanhattan boundaries. Terminals can be regarded as 2 or 3-dimensional

areas, that are shared by the module and its environment.

Terminals of a module can have their counterparts in the inputs and

outputs of a network-description or in global power-supply lines. The

location of terminals may be anywhere in the layout, relative to the domain

border. This means that they are even allowed to cross that border. A

useful terminal however, must be connectable from its environment. It is

connectable if it is located on less than O.5*d distance within a domain
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-----.
I
I
I
I
I
I
I
J
J_ __ -J

4

3
2

--~-
1

r---------------
I
I
I
I
I
I
I
I
L_

area (Fig. 3.6).

Fig. 3.6. Terminals may be defined anywhere, relative to the

domain boundary.

This observation enables a large freedom in the definition of domains

and terminals. Terminals can be defined before or after domains. The

shapes of domains however, will be different in both cases. Domains

protect the contents data of the module; not the terminals. Fig. 3.7

gives some exanples.

--.... - - - - --

b)~ ~O!"Ei~ _I

t . f Iermlnals

~: :
r---...J J

J I II L..-- ---I

--_J

Fig. 3.7. Domain generation before terminal generation (a) leads

to different domain shapes than domain generation after

terminal generation (b).

When a terminal is fully surrounded by a domain area, and the distance

to the domain boundary is greater than O.5*d, it is not connectable in that

mask. As an example, Fig. 3.8 shows that such terminal can only be
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connected via the third dimension. TIle PS terminal ~akes contact with a

metal wire via a contact-hole.

Fig. 3.8. The terminal in PS can only be connected via the

third dimension ( via CO and IN ).

The terminal part of a module may be empty. In this way, the contents

of a module can be fully isolated from the environment. Alignment and

identification patterns are examples of modules without terminals. When no

domains and no terminals are defined, all data of a module is considered as

global.

Two applications can be given for terminals.

1. Terminals are means for the connection of a module

2. Terminals can be used as a geometrical coupling of common areas.

Examples are the buried layer in IlL, that is used as ground, and the

p- or n-well in eNOS; they must be connec ted to ground or VDn. In

these applications, the use of terminals leads to dense packed

circuits. Fig. 3.9 gives an example of conventional connection and

connection with terminals.
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r - - - - - - - - -. 1- - - - - - II I
II

-ld/2
~

I I

I I I

I 1 1 I
I I I I I
L_ - -- - - _1- - - - -- _I L_ --- - - - -'

Fig. 3.9. Terminals, used as a geometric coupling, lead to

dense packed circuits.

Two extremes can be distinguished in the definition of terminals.

1. The most simple terminal is a contact-point on the edge of a domain

border.

2. The most complex terminal is the set of layout-elements, that belongs

to one equipotential net. For deriving such terminal, knowledge of the

connectivity of the technological process is indispensable.

Terminals should be as simple as possible to achieve a maximum of

abstraction.

Terminals, connected to the same net are called electrical equivalent.

They can be grouped in a signal. Terminals in a signal may be interchanged

in the layout. The designer has the responsibility for the mutual

interconnection of the terminals within a module. Signal terminals are

called subcell-connected. Single terminals of the same name must be

interconnected in the environment of the module; they are

supercell-connected (Fig. 3.10).
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signal
dot( ps; xl, y1);
dot( ps; x2, y2)

end: input;

dot( ps; xl, y1)
dot( ps; x2, y2)

input;
input;

Page 3-9

terminals are
subcell-connected

module

terminals are
supercell-connected

module

Fig. 3.10. Terminals can be subcell or supercell connected.

The freedom of making contact to .a terminal can be restricted by

assigning a class to a certain terminal. It can be conpared with the TYPE

mechanism of a variable in Pascal. Terminals of the same class may only be

connected to each other. As an example, a terminal of class VDn may not he

connected to a terminal of class VSS. A connectivity-checl~er can detect

this catastrophic short-circuit long before a simulation of the circuit,

that is fed with data from a layout-extraction progran.

3.3 PROPERTIES OF DRAWINGS

Drawings present a module in a graphical way. Layout-primitives are

described in color-masks, that will not be printed on silicon. Drawings

allow the designer to place graphical comment in the layout; e.g. the

names of interconnect wires. TIle identification of a module can also take

place in the drawing part. Hhat kind of information is necessary?

1. Information about the function of a module. The name of the module

should appear in the drawing part.
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2. Information ahout the placement of a module in the layout. The

designer should have mirroring and rotation information at a first

glance. A non-syrnmet rical symbol can be used for this purpose.

3. Information about the abstraction of a module. Domain and terminal

data can be usedas graphical comment or car~ful selected symbols can be

defined. E. g., in bipolar layouts, it is tradition to indicate a

collector with a plus, an emitter with a small rectangle and the base

with a cross.

In summary, the properties of the abstraction of modules in VOILA are

the boundary conditions for the generation of domains, terminals and

drawings of a module.
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CHAPTER 4

SOME THOUGHTS ON ABSTRACTION

This chapter gives some indications of how domains and ter~inals can be

generated. It is shown that the knowledge of the designer is

indispensable. This leads to an interactive approach of assigning domains

and terminals to a module. Finally, some user requirements are drafted.

4 • 1 THE SHAPE OF DOMAINS

Three criteria can be distinguished in the assignment of a domain to a

module.

The first criterion is based on economical reasons. The shape of a

domain area is dependent of the expected volume of production: large

production-volumes require a dense packed chip-area. The domains of all

modules must be placed tight around the modules. The shape of a domain is

also dependent of the speed of introduction of an IC to the market. Fast

market-introduction implies a short design-time. This means that

floorplanning techniques must be used, in which the, rectangular, shape of

domains is determined beforehand.

The second criterion is based on the number of layout-elements in a

module. The shape of the domains of complex modules must be more

rectangular than those of primitive modules, to achieve any data-reduction.

The place of the module in the layout is also of interest. Modules, placed
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in a regular matrix must have a more tight domain. Hodules on the edge of

a chip can have a more rectangular domain.

The third criterion is the the design-style (gate-array, standard-cell

etc •• ) that is used. Standard-cell design e.g., requires a uniform height

of the layout-modules. The domain shape must be rectangular.

In general, the description of the abstraction of a module should be as

simple as possible. Holes and indentations in the domain description are

not forbidden, but should be avoided. A good measure of the complexity of

a domain is the number of edges of the domain area.

4.2 DOMAINS OF COMPLEX MODULES

For complex modules, manual generation of domain boundaries is a tedious

job. A domain boundary can also be generated from existing mask-details.

Layout-elements are 'grown' in size, merged and 'shrunk' back. The grow

and merge operation have the effect that holes in the domain description

are filled. The shrink operat:ion takes care for a tight boundary around

mask-details, at O.5*d distance. A large value of the grow factor has the

effect that a boundary polygon is generated. A small value of the grow

factor will result in a more complex description. It will give the

designer more flexibility in using unused areas in a mask.

Automatic generation of domains has a d rat.J-back: it is possible that

some terminals cannot be connected anymore in the sar.1e r.1ask. The algorithm

should only be applied in an interactive environment, in which the designer

can choose an optimal shape of the domain.
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4.3 GEOMETRIC AND SYMBOLIC DOMAINS

A domain is, according to its definition, an area, that is occupied by a

layout-module and guarantees the locality of a module. This is the

definition of a geometric domain and is a minimal definition. In the

layout, there exist areas that may not be occupied by elements in a certain

mask. Fig. 4.1 shm"s the situation, in which the OD-area is

l
J

I
I

_-J

am

,
I

r­
I

r--

I I - -I,
00 I PS I

I
L.- - --- - -forbidden area dom

for PS

forbidden area for PS interconnect.

Fig. 4.1. A domain in PS should also contain forbidden areas

for interconnect in PS.

PS details would disturb the structure within the module by creating a

parasitic capacitor or transistor. A design-rule checker will give us a

\varning, but it would be convenient if this forbidden OD-area was visible

in the PS domain. In this way, the designer only has to pay attention to

PS interconnect and PS domains. Knowledge of possible interconnection

areas can be achieved without knowledge of details in other mask-layers.

The chance of making errors can be reduced. The domain area, that contains

also forbidden areas of related masks, is called symbolic domain. In my

restricted time, I have chosen to implement only the geometric domain

generation.
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4.3.1 Estimation Of Forbidden Areas

Page 4-4

The forbidden areas can be derived from a design-rule matrix. The

diagonal elements in this matrix indicate the minimum clearance between two

elements in one mask-layer. The existance of an off-diagonal position

indicates that a relationship exists between two elements in different

mask-layers (Fig. 4.2.).

aD

PS

IN

aD

*

*

PS

*

*

I ,·
"

*

Fig. 4.2. Example of a design rule matrix

The off-diagonal positions indicate forbidden areas for both masks. For

example, a relation between aD and PS means that OD is forbidden area for

PS interconnect, and PS is forbidden area for aD interconnect. The

following algorithm can be used for the determination of a symbolic domain

in e.g. the PS mask.

1. }~ke a geometric domain as mentioned in the previous chapters. The

domain boundary lies at 0.5* distance(PS-PS) from the PS details.

2. As can be derived from Fig. 4.2, the PS mask has a relation to the aD

mask. Generate a geometric domain of the OD mask with a domain

boundary at 0.5* distance(OD-PS) from the aD details.

3. Merge the two areas. The result is a symbolic domain in PS, that

covers all PS details plus the forbidden areas for PS.
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4.4 DOMAINS OF CONTACT-HOLE AND INVERSELY PROGRAMMED ~~SKS

Page 4-5

To ensure the locality of a module, all layout details should be covered

with a domain area. Contact-holes are placed very sparse in the layout. A

bounding box description as a domain, can give too much loss of layout

area. A small value of the grow factor gives us a grown copy of all

details. He have not achieved any data-reduction. The best alternative is

to apply the grow/merge/shrink operation with a very large grow factor.

This results in a bounding polygon description as domain for the

contact-hole masks.

Domains of contact-hole and implantation nasks can he grouped in a

mask-list, to achieve more data-reduction. It contains, in fact, the

logical OR of the domains of non-metallization masks.

Both in HOS and in Bipolar processes, it is common use that masks are

used to define areas, where no implantation or diffusion l'1ay take place.

Fig. 4.3 shows an example of a polysilicon area, in which a low-doped

resistor area is connected with two low-ohmic contact-heads.

SP

pi-head p-resistor p-+head PS

Fig. 4.3. Definition of a p-type resistor in polysilicon

with a normal and an inverse programmed mask.

It can also happen that the, inversely programmed, masks are used to reduce

the amount of layout-details. At mask-generation time, a negat.ive exposed

process-mask can be obtained. These two inversions give us the mask, that

was originally intended.

The domains of inversely programmed masks are treated in the same way as
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normally programmed Masks. The absence of an implantation step determines

the internal structure of a module and must hence be kept local to the

module!

4.5 AUTOMATIC VS. INTERACTIVE TERMINAL GENERATION

As stated before, terminals are hidden in the contents part of a module.

If the positions of the terminals have to be generated in an automatic way,

knmvledge of the internal structure of a module is necessary. The

structure of a module can be captured in a network graph. Two graphs are

needed; one is derived from the network description, and another is

derived from the actual layout of the circuit. The graph from the layout

is derived from a hierarchical desc~iption of the layout-module. For

primitive patterns, the graph is constructed from a transistor description

of the module, that is made by a layout-extraction program. A cOI:1parison

of both network topologies is necessary to search for possible terminal

locations. Topologies, dedved from layout and network, can differ; one

or more topology-transformations may be needed. Some class of circuits can

only be compared by computer simulation. Examples are ci~cuits with analog

tricks: driver-circuits in NMOS a~e described as inve~ting (or

non-inverting) gates. The actual implementation in the layout can contain

up to 10 transistors.

Suppose that the topologies are the same. The question arises which

part of the equipotential net should be declared as terminal? This problem

is very complex and can only be solved in some cases with rigid

assumptions. Terminals could, for instance, be chosen as contact-points on

the edge of a domain houndary. This means that a subset of a net is

declared as terminal. For primitive patterns, small rectangles can be

used, as in the LSI-shop. Terminals are often used to share busses and
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global power-supply lines. Lines, running across a domain boundary, from

one end to another can be used.· In standard cell design, with a uniform

height of the modules, it is known in advance where connection is made to a

module. Contact to another module is made by abutment. This knowledge can

only be applied in this special case, but no general statements can be

derived from it.

It is clear that the knowledge of a designer is necessary. He has, in

fact, the whole connectivity of the module in his mind. He knows exactly

the posi tions, where a module will be connected. In contrast to a

designer, a computer program only knows the interior of a module and is

forced to use brute computing-power to get insight in its structure.

Terminal generation should be done in an interactive way; the computer

program asks the designer the right data at the right moment. The designer

however, holds full responsibility for making the terminals. The program

can only give warnings and directions.

4.6 STANDARD CONTACT PATTERNS (OR VIAS)

A commonly used layout-practice is the use of standard contact-patterns

(or via cells). Within such pattern, all layout-details satisfy the

design-rules. This has to be checked only once. All instanciated patterns

are correct. In VOILA, a connection to a terminal can also be made with a

via r.lOdule. Tbis is a special module, that contains no contents part. All

layout-data is placed in the terminal-part and is, according to the

definition, part of the realization of a module. It is not advisable to

specify a domain for a via module. The domain of the via module and the

domain of the module to be connected are not allowed to overlap.

Furthen::ore, this would prohibit domain generation before terminal

generation. A disadvantage could be that no slanted houndaries may appear
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in the terminal part.

4.7 THE USER REQUIREMENTS

Page 4-8

As can be summarized, both domains and terminals must be made in an

interactive way. The designer knows the internal structure of a module and

knows how the module will be connected to the 'outside-world'. This

knowledge is very difficult to forMalize and would require a large

overhead. At all stages, the user must have full control over the

generation process. The computer program can only give directions and

propositions. The propositions can he changed by giving extra information.

When the user asks for a tight domain, all areas, that can be used for

interconnection purposes may not be joined to the domain area. On the

other extreme, it must also be possible to make a bounding box in a certain

mask.

In case of terminal generation, existing layout-elements frOIn the

contents part must be selected. These elements must be named and declared

as terminal. It must also be possible that terminals can be generated

without the existance of a network description.

responsihility for generating domains and terminals.
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CHAPTER 5

SPECIFICATION OF DOMAIN AND TERMINAL GENERATION

This chapter gives an overview of the environment, in which JOJO is

The interfaces to both VOILA programs and the users areembedded.

described. But first, a specification of the domain and terminal

generation is given.

5.1 SPECIFICATION FOR THE DOMAIN GENERATION

Domains of modules must be defined mask-by-mask. Only those masks can

be selected, that have not yet a domain description. The shape of the

domain boundary can vary from a minimum- circumscribing rectangle ( or

bounding box ) to a, Manhattan shaped, boundary polygon. The polygon is

generated by a 'breath' operation: all relevant layout-details are made

orthogonal first, then 'grown' in size, merged and 'shrunk' back. The user

has a free choice for the value of the grow factor.

A lower bound on the value of the grow factor is estimated b~ the

following reasoning:

All areas, that cannot be used for interconnection purposes, must be

joined to the domain area of that module.

The minimum distance between t~JO layout-elements, that allows the placement

of an interconnect wire of minimum width is: two times the clearance

distance plus the minimal width of that wire.
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minimal grow-factor must be half this distance.

-;Jt:Jf---:~~ minimum width

Page 5-2

gap gap

Fig. 5.1. A lower bound on the value of y? is determined

by the gap-distance plus half the minimal-width.

The values of clearance distance and minimal width are derived from the

design-rules of a technological process. These design-rules must also be

available in the program. There is no limit on the upper bound of the

value of the grow-factor. The shrink value is related to the grow value:

the difference is always O.5*d. In this \.,;ay, domains are always placed on

a minimal distance from the layout-elements, regardless of the value of the

grow factor.

Special care must be given to the shrink operation. The grow and merge

operation take care of an overlap of mask-details. This new, connected

area must stay connected in the shrink operation.

The designer is also able to alter the domain description, that is a

result of a 'breath' (grow-merge-shrink) operation. The domain description

can be made more abstract (or rectangular) by adding rectangles. Eoles can

be filled and indentations can be smoothed (Fig. 5.2).

The last part of the generation of a domain area in a mas~ is an update

of the VIC data-structure.
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r --

:Ihole I
L __

indentat ion

domain
boundary

Fig. 5.2. Addition of rectangles after a 'breath' operation

increases the abstraction-level.

5.2 SPECIFICATION FOR THE TERMINAL GENERATION

The terminals of a module are, in essence, made by pointing them out in

the layout. Layout-data is moved from the contents part of a module to the

terminal part. The user can help the program in two ways: he can give a

network-description of the Dodule and he can give layout-elements the name

of a terminal. A network-description gives the names of the inputs and

outputs of a module. Names of power-supply lines must be added to the i/o

list; they are not enlmerated in the network-description. Only those

terminals can be defined, that have not yet a terminal description. All

orthogonal layout-elements. with the same name as the terminal, are

possible candidates for the terminal-assignment. unnamed layout-elements

with orthogonal shape can also be selected. ~.Jhen no netHork-description is

available, the user can also define a new terminal name. It is treated in

the same way as a terminal name from the i/o list.

After this object-selection, a simple edit session, consisting of

creation and deletion of elements, can be started. In some cases, only a

part of a polygon is sufficient as terminal description. The designer can

add rectangles and dots to the terminal description. In this way, the

realization of a module can be altered. ~his gives no loss of generality;

wires and polygons are in fact built with sets of rectangles. Superfluous
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eleQents can also be deleted.

At lasts the set of selected and created elements can be made permanent

by an update of the VIC data-structure. Elements, that were originally

selected from the contents part of a module» must. be deleted to avoid

multiple declaration.

5.3 INTERFACE TO VOILA

The environment for the interactive generation of domains and terminals

is depicted in fig. 5.3.

keyboard tablet display

VIC SP
scratchpad

interface

wi ndow

interface

soHwer e layou t
defined data
sy mbFls~_.%- ~l-- ~L.-_----,

JOJO

modu lar
design-rules

designer

Fig. 5.3. Relation of JOJO with other VOILA programs.

The next sections describes the relevant VLILA data-structures and

interface programs.
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5.3.1 The VIC Data Structure

Page 5-5

The layout-data is stored in the VIC nata-Structure. The VIC is defined

recursively, as can be seen in the syntax diagrams in appendix A.

Recursion does not occur by accident: a hierarchical defined layout

contains modules, that are nested in modules etc ••• Recursion allows us

to write very compact search algorithms. There are many utilities in the

VIC for creatiori and deletion of records, and for the implementation of

fast search algorithms, by using hash-tables and circumscribing rectan~les.

5.3.2 The Scratchpad Interface

The update of the VIC is controlled by the scratchpad interface. The

scratchpad is an intermediate storage-medium for layout elements. The

contents of the scratchpad is high-lighted on the layout screen of the

editor for direct user-feedback. A set of utilities is available for

copyine data from VIC to scratchpad, for modification of objects in the

scratchpad and for storing updates back to the VIC. Using these utilities

guarantees a correct VIC and supports the integrety of the design.

Real-time pictures are possible.

5.3.3 The Window Interface

This interface makes the interpretation of comMands independent of the

hardware. Command-menus and layout windows can be created and displayed

automatically. COmMands are translated to software-defined symbols. These

symbols are interpreted by a command interpreter , according to a command

language definition. The interpretation of cOMmands results in operations

on the VIC; possible commands are create, delete, copy, move etc •••

Selected commands on the menu-screen are
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user-feedback.

5.3.4 The INIF Data Structure

Page 5-6

The logical description of a module is also translated to a binary

data-structure, called INIF for Inverted Network Intermediate Form. This

data-structure is needed for the nanes of the inputs and outputs of a

layout module. The INIF is not a one-to-one translation of the

network-description. It is net-oriented, which means that inputs and

outputs of nodules of the same net are grouped. As with the VIC, a set of

utilities is available to create and delete records, and to implement fast

search-algorithms.

5.3.5 The Modular Design Rules

An internal data-structure is built by JOJO, that contains the

technological design-rules. Two functions operate on this data-structure:

the first one is called WIDTH, that computes the minimal allowable width of

an element in a certain mask. The second function is called DISTANCE; it

computes the minimal clearance between two elements in the same and in

different masks.

5.4 INTERFACE TO THE USER

To give the user a guide for the generation of domains and terminals, an

interactive language is developed. Its syntax and semantics are described

in the next chapter. It contains some recepies in which the user can give

commands and point to existing layout eler.lents. The commands are entered

\vith a mouse on a graphical tablet. The input data from the tablet is

translated by the window-interface program to software-defined symbols,
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that are interpreted according to the syntax of the interactive language.

A screen is reserved for command-menu display and selected commands are

high-lighted on the screen. A second screen is reserved for display of the

layout and of a real-time cursor. The input from braphical tablet is also

translated to coordinate values in the layout. The user must start JOJO

from the VOILA graphics editor.

5.5 PROPERTIES OF THE INTERACTIVE I.ANGUAGE

The language, for the definition of domains and terminals, is defined as

an LL( 1) lan8uage. A parser of this language is based on the principle of

one symbol lookahead without backtracking. This weans, that the next

symbol to be read, gives enough information to determine the next state of

analysis. I~one of the steps have to be revoked later on. The parsing of

an LL(l) language is straight-forward and is described in full detail in

[\'JIR 76].

The parser of this language can be generated in a stepwise-refinement

way. A procedure is made for every production rule. In an interactive

design-enviromaent, a syntax violation may never lead to a stop of the

analysis of the language. An error-recovery mechanism is implemented in

the parser. Parsing constructs are embedded in while loops that will be

executed until the right alternative is chosen by the designer. In the

mean time, an overview is given of the possible alternatives of the

language.

As an example, the parsing of the follo\-ling syntax description:

:== SCRATCH< Command >

is given by :

PROCEDURE Command;

KEEP

VAR
oke boolean;
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BEGIN
oke := false;
WHILE not oke DO
BEGIN

IF sym = SCRATCH THEN
BEGIN

oke := true;
writeln('Scratch comnand accepted');
Getsym;

END
ELSE

IF sym = KEEP THEN
BEGIN

oke := true;
writeln( 'Keep cOlT'.mand accepted');
Getsym

END
ELSE
BEGIN

writeln(' Please give SC}~\TCH or KEFP:');
Getsym

n:D
{while}
{Command };

Page 5-8

The procedure Getsym reads the next input symbol. It is available in the

variable sym.
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CHAPTER 6

IMPLEMENTATION ASPECTS

This chapter contains a description of the syntax and semantics of the

interactive domain and terminal generation language. It gives, in the mean

time, a short description of JOJO.

6.1 IMPLEMENTATION OF THE DOMAIN GENERATION

oom~Ge,neration~ ---.,-~ • ~ •• ;t >---0--->
Oom_Operation ~

Before the domain generation is started, some preprocessing work must be

done. An overview of the masks, that have no domain description, is given

on the menu-screen (1). Already existing domains must be mod Hied in the

VOILA graphics editor. The layout-rules are read from an external

disk-file. In the next step, zero or more domains can be generated for one

of the listed masks on the menu-screen. IJhen the domain generation is

left, an EXIT comT:land must be given. A \larning is generated, when some

masks have no domain description (2).

oom_Opera t ion

~ mask~ Generate_Operation H Commandj---+

The actual domain-generation operation consists of the selection of a

mask on the menu-screen (l!ASK). The internal book-keeping is updated in
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(3). It is followed by a part, in \vhich the user can define which kind of

domain shape must be generated. It is finished with a part in which a

command must be given.

breath

create

>--~ 4 )------------~---.,

Generate_Operat ion

mer

The generate operation is started by giving the comQands }lCR or BREATH.

They generate a minimum circumscribing rectangle or a, more tight fitting,

set of rectangles. The set of rectangles defines the contents of a

polygon.

Starting with an HCR command, a scanner of the VIC is started in (4).

It expands wires, polygons, array constructs and instantiated sub-modules.

The two diagonal edge-points of the bouding box are estimated and the

resulting rectangle is expanded with a factor of O.5*d. It is writteq to

the scratchpad and is automatically high-lighted.

Hhen the user gives a BREATH command, a scanner is started, that selects

all relevant layout-data from the VIC (5). The layout-elements are made

orthogonal first. Appendix D contains the source listing in pseudo-code of

the implementation of the scanner. The contents-data of sub-modules, that

have a domain description, does not have to be expanded. Expansion of the

terminals of the sub-modules is however necessary; terminals are a part of

the realization of a sub-module that must be protected by the domain of the

next higher module in hierarchy. The contents-data of sub-modules must be

expanded when no domains are specified. This process must be repeated

until a, deeper nested, module with a domain description is found.
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Domains of sub-modules must be treated in a different w,ay than elements

from the contents part. The grmoJ and shrink values must be the same. ~fuen

the two values are not the same. a nested set of hierarchical defined

domain areas would result in non-connectable terminals (Fig 6.1).

grow value =
shrink value

r--- -
I r----
I I

~?-~ - ~-~terminal
-------I I I

I L_ - - - domain of submodul~
I
L -domain of main module

wire

r----

I grow value =
wi_re ~ !i-~ terminal shrink value =

~ domain of submodule
and main module

Fig. 6.1. Different grow- and shrink-values of domains

may lead to non-connectable terminals.

After a BREATH operation. the designer is also able to add rectangles to

the domain description. by giving a CREATE command. Rec tangles are

displayed real-time (RTPOINT) and are. when finished. moved to scratchpad

(6). Addition of rectangles alloys the generation of a more abstract (or

more rectangular) domain shape.

Command

s''---------'scrOlch~

~keep)~~

The description of the domain area is now stored in an intermediate

data-structure: the scrathpad (SP). It can be made permanent by an update

of the VIC with a KEEP command (8). The name of the mask is removed from

the menu-screen. A SCRATCH command will clear the contents of the
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scratchpad (7).

As an example, the following picture was taktn from the menu-screen at

domain generation time.

Exit

vvvvvv
Dot Domain 1
Lp Terminal 1 M PS
Ra Drawing I M 00
R~ Content~ I M II'l
Wire I MCO

REATE Poly I MCS
Text I MI'll

CRATCH Extobl I MDI
Extob2 1

EEP Extob3 I I
Call 1--------------------

XIT Cmpdef I
Arrdef 1 Setbegin - Setend

1
I ® Area
1
I
1
1

vvvvvvvvvvvvvvvvvvv

~ l t • t.'1 II I ,.<1 j j.

value
425El PS

00

-~8
CS
DI

Origin
Deta i I
Ab~tr.

Su~p

Su~p~p

Grid

roo: eel: origin: eur~or:----
in window out •

W « »
1

Min. PHI

Di~play: _ ••••••
Give GRO~): .~ - ..-~~

Three main parts can be distinguished in this picture:

1. The part, marked with 1 gives an overview of the VOILA display

facilities. Coordinates of the origin of layout-modules and of the

cursor are displayed. Furthermore, window and zoom facilities are

available.

2. The second part gives an overview of the context setting. Operations

on layout objects can be restricted to domain, terminal, drawing or

contents part or a combination of the four parts. The same counts for

mask-selection, although this is not used in the domain generation. At

las t, a set of objec t kinds can be defined on v.'hich operations must

occur.
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3. The third part shows the si tuation, in which for the IN mask, a

bounding polygon had to be generated. This was done via the BREATH

command. The minimum allowable grow factor is derived from the

layout-rules (4250 nm or 4.25 Ul;)) and is displayed in the upper lekt

corner of the screen. \I'e have reached the situation, in which the user

has entered a grow-value of 8.25 urn via the key-board.

6.2 DOMAIN GENERATION ALGORITHM

The comnands l'!CR and EREATH start a scanner of the VIC data-structure.

In appendix D, a source listing in pseudo-code is given to illustrate the

operations, that must be performed. It also shows the recursive structurt:!

of the scanner.

The algorithm for the determination of a domain area of module 11 in nask

l~ uses two lists (A and B) for the storage of layout-data. The two lists

are filled in the following way:

1. Take the contents-part of module H. Expand array-constructs, wires and

polygons. Slanted boundaries must be made orthogonal. Assign these

elements to list A.

2. In case of an instantiated sub-module, check for the existance of a

domain area of this sub-module. If it exists, add dooain-data to list

B.

3. Expand all terminals of the sub-module. Terminals are a part of the

realization of a sub-module and oust be expanded. Add this data to

list A.
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4. If there is no domain-description of a sub-module, expand all

contents-data of this module and add it to list A.

At point 4, we have reached in fact the situation of point 1. We have

created a recursive algorithm for the determination of domain-areas. The

scanner for the domain-generation uses global variables to keep books of

which layout part has to be expanded and to which list the data must be

sent. The next table shows a hierarchical defined module ft, in which three

sub-levels can be distinguished. An overview is given of the two lists, to

which the domain, terminal and contents data must be sent.

part

domain

terminals

contents

module
H

list A

sub
module

list A

list A

sub-sub
module

list B

list A

sub-sub-sub
module

The 'breath' operation is implemented as:

1. Grow data from list A with a factor PHI

2. Grow data from list B with a factor PHI - O.5*d

3. Merge the two lists

4. Shrink the data of the resulting list with a factor PHI - O.5*d

A grow operation can be done without knowledge of layout-details in the

environment. This operation results in overlapping rectangles. A merge

operation is, in this algorithm, not more than a concatenation of lists A

and B. A shrink operation cannot be done without knowledge of

environment-details. A shrink operation is a local operation that is even

capable of deleting some layout-data (Fig. ~.2).
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Fig. 6.2. A shrink operation on mask-data is a local operation

and can let some areas disappear.

Page 6-7

Fortunately, the shrink operation is a standard VOILA utility, that is

also used in the extension of mask-lists. The standard shrink-utility can

only handle orthogonal data, but this ~vas obligatory in the definition of

the abstraction of a module.

6.3 IMPLEMENTATION OF THE TERMINAL GENERATION

The syntax and semantics of the terminal generation language are

described in this section.

Some preprocessing work must be done before the actual teril'inal

generation is started (1). The names of input and output terminals are

read from a network description, if it is specified by the user. l';ames of

power supply lines are added to the list. The names of those terminals,

that have not yet a terminal description, are listed on the Menu-screen.

In the next step, zero or more terminals can be generated. An EXIT command

must be given when the terminal generation is left. A warning is

generated, when there are still some terminals not defined (2).

Term_Operation

--1~N-a-m-e-_-s-e-le-c-t---H Operation H Command ~
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The actual terminal assignment consists of the selection of a terminal

name, followed by an operation, that allows simple editing on selected

layout-data. It is finished with a section where a comnand must be given.

The selection of a terminal name can be made in two ways:

1. A SIr.~AL command allows the selection of a name from the list on the

menu-screen. It originated from either network description or

power-supply lines. Layout-elements, with the same name as the

selected terminal, are moved to the scratchpad (3). The user can also

point to zero or more layout-elements in the layout.

2. A NAME command reads a terminal name from the keyboard, in case of a

non-existing or non-complete network-description (4). The user must

select one or more layout-elements on the layout-screen. They are also

copied to the scratchpad.

The selection of layout-elements requires a context, that defines the

kind of element, that must be selected. The context consists of a mask,

the object-kind and a layout-point. Only one single mask can be selected

from the menu-screen. From the layout-element types, available in VOILA,

the following five types are allowed: dot, line-piece, rectangle, wire and

poly. The user must give a layout-point to start a scanner of the VIC (6).

Only elements, with orthogonal boundaries are moved to the scratchpad. The

name of the actual terminal is assigned to all scratchpad elements.

After the element selection, zero or more edit-sessions can be started.
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SeLectE Lemen ts

L(ma:k ~;bLkind iIl®=<;oint)T

Operation

-y E~t ~

ObLkind
,..----,.

An edit-session consists of a simple creation or deletion of orthogonal

elements in the scratchpad.

Create_Obj
)<":"~-re-a-t-e""">-rr-- ~---+

y Object ~

Object
dot

The creation mode of the edit-session is started with a CREATE command.

Zero or objects can be created in a certain HASK. The designer has the

ability to alter the realization of a module by creatin rectangles (RA) ,or

dots (DOT). The newly created elements are displayed real-time (RTPOINT)

an finally written to scratchpad (7 and 8).
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Select SP Data

L(m~::~"";)""'O-b-1-k-in-d--~;oint)J~

Page 6-10

A delete command allows the user to remove superfluous elements from the

sratchpad. The selection of elements from the scratchpad requires a

similar context as the selection from the VIC (Select Elements).

Command

The scratchpad data can be made permanent by an update of the VIC with a

KEEP comoand (ll). The number of elements in scratchpad is counted. i,'hen

there is more than one element, a signal compound is built around all

elements. This indicates subcell-connectedness. Terminal elements are

'denamed' first, and the name of the actual terminal is assigned to the

signal compound. Selected elements from tlle contents part will be deleted

to avoid multiple declarations. The terminal name is repoved from the

menu-screen.

The SCRATCH command clears the contents of the scratchpad (10).

As an example, the next picture was copied from the menu-screen at

terminal generation time.

The picture shows the situation, in which a SIGNAL command was given and

the terminal name VDD was selected. Layout-elements were moved to

scratchpad and the designer decided to start a CREATE session.

(RA) in mask IN can be added to the contents of the scratchpad.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

* The layout-phase is the most critical phas~ in the design of integrated

circuits. Hierarchical layout-methodologies must be applied to tackle

the VLSI complexity problem and to reduce the desi8n time.

Hierarchical abstraction t as is supported by VOILA t reduces the amount

of detail t that must be handled at any time. Many lessons can be

learned from the Software-Crisis in the 1960's. VLSI layout has a few

extra problems due to the two-dimensional character of the silicon

medium t in which the circuits have to be realized.
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* In traditional hanh"are design, a minimization of the number of active

devices is made. In VLSI layout, an optimization of area and speed is

necessary; interconnect is I:lore expensive than a few extra devices.

* The domains and terminals are hidden in the contents description of a

module. Automatic terminal assignment is a very complex problem and

can only be applied in some special cases. Automatic domain generation

can lead to non-connectable terminals. The generation of domains and

terminals should be done in a combination of an interactive and

automatic wav'. , the program gives propositions an the designer can

*

alter these propositions by giving more information. The designer must

have full control over the generation process.

A language is developed for the interactive generation of domains and

terminals. It contains some recepies, that must be applied and leads

to an update of the VIC data-structure. The user can enter commands on

a graphical tablet with a mouse and point to existing layout-data.

The interactive domain generation allows the generation of a minimun

circumscribing rectangle (bounding box) and a bounding polygon. The

bounding polygon is made with a 'breath' algorithm: layout-elements

are made orthogonal first, then' grown' in size, Tl'erged and ' shrunk'

back. The designer can choose the shape of the domain by giving a

value for the grow factor and by adding rectangles to the result of the

'breath' operation.

* The terminals are generated, in essence, by selecting existing

layout-elenents from the contents part and moving them to the terminal

part of a module. The user can help the program by giving a

network-description of a module, in \l1hich the names of input and output

terminals are comprised. tJames of power-supply lines must be added to
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tbe lis t; they do not appear in the i/o list of the

network-description. The user can alHo help by assigning names of

terminals to existinE layout-details.

* The domain and terminal generation languages are defined as LL(1)

languages. The parsers of these languages are equiped with an

error-recovery mechanism. This is indispensable in an interactive

design environment; syntax errors r.1ay not lead to a stop of the syntax

analysis. Parsing constructs are embedded in \Jhile loops, that will be

executed until the right alternative is chosen.

* The domain and terminal generation are started from the VOILA layout

editor. In this way, standard utilities could be used; e.g.

definition of commands on the menu-screen, hardware independent input

and output of menus and layout data and the use of an intern.ediate

storage medium, the scratchpad.

* The perforoance of JOJO, in case of the domai:l generation is hard to

measure. This is due to circumstances, that cannot be controlled by

JOJO. The first one is the existance of ciomains of sub-modules: they

determine if the details from the contents part of these sub-nodule

have to be expanded or not. The second one is the nUfl1her of elements (

or conplexity ) of the domain description of sub-modules. A

bounding-box description greatly speecs up the generation process. The

performance of JOJO, in case of the terminal generation, cannot be

measured at all, because it is a completely interactive process.
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7.2 RECOMMENDATIONS

Page 7-4

* It seems convenient to me that a utility should be provided, for the

selection of terminals and interconnect-wires by name. The selection

by context ( ~ask plus object-kind) is in some cases insufficient. At

the same time, an overview of existing terminal-names should be given

with an indication of sub- or supercell connectedness.

* In the ter~inal generation, an extension of the names of the i/o list

from the network-description with 'VGP' and 'vss' is implemented.

There is however, in the VIC a technology record, in which all global

signals are enumerated. The extension of the terminal list could in

fact be copied from this global signal-list.

* It is very difficult to deter~ine the terminals of a PLA module in

retrospect. A PLA contains no hierarchy at all: all standard library

patterns are placed in two 2-dimensional planes; the AIW and the OR

plane. It would be convenient for the terminal generation if the

coordinates of the inputs and outputs \oJere output of the PLA generator.

The designer has in fact put this information a priori in the PLA

generator.

* The terndnal-class concept is not implemented in the first version

terminal generation. It was not implemented in the first version of

VOILA. TIlis powerful concept, and possible extensions should also be

ir.1plemented in the next versions of the terminal generation. The

designer must have the possibility to enter terminal-class names on the

keyboard and assign them to previously defined terminals.
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* A lot of effort is put in the sr.wothing of indentations in the

domain-boundary.

It is, with a 'breath' algorithm, impossible to assign area 2 to the

domain area. A large value of the grow factor will result in the

disappearance of area 1 but not of area 2. A possible answer to this

probler.l is the estimation of a circuDscribing rectangle and the

percentage of area 2 in regard to the circu~scribing rectangle.

Surfaces, below a certain percentage, could be assigned to the do~ain

area.

* To enahle the generation of symbolic domains, it must be possihle to

perform some boolean operations on the mask-data first, before a

'breath' algorithm is started. It seems also convenient to me to

define an area, in which a certain grow-operation could take place. In

this \"ay, the user can trim the domain boundary locally, e.g. the

right side of the domain can be rectangular and the upper side must be

made with a 'breath' algorithm with a small grO\I factor.

* In the actual inplementation of JUJU, an ad-hoc solution for the

object-selection is chosen. The object-selection has difficulties with

the selection of elements, that are described in an array construct.

Elements are in fact copied to the terminal part, so in some cases a

double declaration of elements is made. The powerful object-selection

mechanism from the VOILA editor should be used instead. The problem of

array-splitting is solved here. An other advantage is that a user does

not has to work with a different object selection rechanisl1l in domain
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and terminal generation.

Page 7-6

* Hierarchical defined layouts have also a dra\v-back: a module must

always be connected via the next higher module in hierarchy. This is

quite reasonable for input and output terminals. For global

power-supply lines, it is not. If the power-supply line of a primitive

module in level n, must be connected to a ~odu1e in level ill, all

interconnect elements have to be copied in the intermediate n-n levels!

level n

This restriction in VOILA does not occur in programming languages. The

scope of global variables covers an unnumerab1e number of sub-levels,

if the variable has not been redec1ared in ~le mean time. It seems

convenient to me that a hierarchical scope of a terminal or global

signal could be defined to overcome the m-n Du1tip1e declaration.

* Wires, polygons and slanted rectangles are 'rounded' to a single

rectangle. ,\n other approach could be the approximation by an

orthogonal polygon, in which the sides have a staircase shape.

* Ko attention is given to the interactive drawing generation. The user

should have possibilities to place graphical cooment in the layout of a

module. Some utilities of adding information about a function of a

Dodu1e, about the placement in the' layout and perhaps about the

abstraction should be provided.
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* This report contains no contributions to increase the

Page 7-7

design

testability in hierarchical defined systems. This is perhaps a nice

subject for further investigations.

* In case of the automatic terminal assignment, knowledge of the internal

structure, and hence the connectivity within a I:..odule, is necessary.

The connectivity is different in different technological processes. In

JOJO, the terminal generation is implemented in a pure interactive \-Jay.

There r,lUst also be ways to apply some automation in this area. This is

perhaps also a subject for further investigations.

Eindhoven, 23 DUEust 19R4
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APPENDIX A

SIMPLIFIED VLDL SYNTAX GRAPHS

This appendix contains a selection of those VLDL constructs, that are
necessary for the generation of domains and terminals. At some points,
some simplifications were made. So these syntax diagrams should not be
regarded as official VLDL syntax diagrams.

identifier

object declaration partl--~~ domain part

terminal part

contents part

drawing par t

'-- .J>--.-........ object declaration

objec t declara::..:t:..:..io::..:n..;...-._~ _

~ mOdu~e declaratiod"=L

- 72 -
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7 domain stalemont~

-~0)E----J

domain part
---~

~domain

domain statement

---4--.....,...l simple domain statement I~_....ll~~_.....

array prefix domain statement t--

simple domain statement

-e-r-:-~y-ta-n-g-Ie----'~

array prefrix~_~

arra

coordinate pair

( offset)

terminal partr-------'\
terminals terminal statement

terminal statementr--------------,
signal statement

equivalence declaration

equivalence declaration

--..,(eqUiV~logical "",-n_a_m_e_~
0-
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signal statement

unnamed si

unnamed signal
r----------,

...----'--71 array prefix terminal

~-,,~~~r-T~Jt~e~r~m~i.!:!n~a~l..rI-""end }------.I

array prefix

terminal

~--S-im-p-le-'»f>-t-l?-rm-'-Jn-a-l-~

simple terminal,------.,
dot • • only in cells

line piece"

rectangle

wire

(all manhattan - shaped)
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drawing part

4drowin9rydraWin~l.m~

drawing statemElnt

drawing statementarray prefix

-"'T'""-~ simple drawing statement

simple drawing statement

do t 4'

line piece· • only in cells

rectangle

wire

poly

text

unnamed call
(all manhattan-shaped l
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contents part

--(be9;nT

statement

statement~

(}

Page A-5

--'-~ unnamed statement logical name

unnamed statement

simple statement

array pref ix unnamed statement

simple statement
r-----:-----~dot it

line piece ...

rectangle

wire

poly

text

unnamed call

compound statement

- 7(, -

.. only in cells

(arbitrarily shaped)
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r--'-~coordinate pair

(placement modifier)

Page A-6

compound statement

----.( beg;n~ stQt.m.nt~

O~

coordinate pair

----1 number t-------0---1 number~

logical name
----ir--j-d-e-n-ti-f-ie-r-~

number
}---."'--....unsigned integer unsigned integer t-&-->

- 77 -
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d~com. id.t--G-1coordinat'" pair~

Line piece
~ com. id. t--0---1coord. pairt--0-1coord. pai1--0--

~com. id. ~coord.pai~rd.pailt---:{D-

coord. pair

number

mask id.
com.

id.
--+-7l color id.

mask-list id.

unsi gned number
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APPENDIX B

JOJO SYNTAX DEFINITION AND GRAPHS

The syntax definition of the terminal ~eneration is defined as:

< Term Generation > :== < Term Operation> } EXIT-
< Term Operation > :== < Name Select > < Operation> < Command >- -
< Name Select > :== SIGNAL { < Select EleLlents > } I-

NN-tE < Select Elements > { < Selec t Elements > }-
< Select Elements > :== { HASK } { < Obj_Kind > } { POINT }

< Obj_Kind > :== DOT I RA I LP I WIRE I POLY

< Operation > :== < Edit > }

< Edit > :== < Create Obj > I < Delete Obj >- -

< Create Obj > .-- CREATE < Object > }-
< Delete Ob' > .-- DELETE < Select SP Data > }- J

< Objec t > :== { HASK } [ DOT { POgT } I

RA { POIf.:T RTPOUTT } POU-'T } ]

< Select SP Data > :== { tlASK } { < Obj_.l(ind > } { POINT }

< Command > :== SC1<ATCH I KEEP
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Term_Operat ion
--1r--N-a-m-e-_s-el-e-c-t-....H Operation H Command ~

SeLectELements

L<ma:k ~;bLkind ~;oint):J

ObLkind ---

Page B-2

Operation

y Ed~t ~

Edit

- 80 -



JOJO SYNTAX DEFINITION AND GRAPHS

Create_Obj
.)(""~-r-ea-t-e"""">-r ) ~

yr--Ob-j-ec-t-~

Object

Page B-3

dot

Select SP Data

L(m~::)J~~ObLkind

Command

keep
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The nUlilbers 1 to 11 in the syntax-diazrams relate to the
implementation of the terminal-generation programs.

Overview of actual procedures:

1. Initialize Term Gen

Page R-4

actual

This procedure initializes the global data and reads a fi le with the
network-description of the layout-module. The inputs and outputs arc
read and the power-supply names VDD and VSS are added to this list. A
comparison with the existing terminal-names is made. Only those masks
are sent to the menu-screen, that have not yet a terminal-description.
A list of named layout-elements is made for internal book-keeping.

2. Tern~Close_And_Stop

Generates a warning on the menu-screen \<;hen there are still some
terminal-names left, that have not yet a terminal description.

?-Joves layout-elenents, with the same name
terminal, to the scratchpad. It is
automatically.

4. Get r':ame

as the name of
displayed and

the selected
high-lighted

Reads a terminal-name from key-board
non-complete network-description.
field is created on the menu-screen

in case of a non-existing
The name is added to the VIC.

and is high-lighted.

or
A

Adjusts the internal
object-kind is a
object-creation.

book-keeping with the
part of the context

actual
for

object-kind. This
object-selection or

Starts the scanner of

coincidence with a
actual terminal ) and

7. Add Point To SP

the VIC data-structure.
given layout-point are
moved to scratchpad.

Contents- details, that
named ( the name of the

In the creation mode, a terminal point in a symbolic cell is created,
naDed and moved to scratchpad.

8. Hake RA And Add To SP

A rectangle is created as terminal. Its size is displayeJ real-time.
When the second diagonal point is given, the rectangle is named and
Iiloved to scratchpad.
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Selected and created objects can also be deleted from scratchpad. A
context of object-kind, mask and layout-point must be given.

10. Clear SP

Executes the 'scratch' cornnand. The scratcpad is cleared and the
internal book-keeping is adjusted.

11. Move Contents Data To Term Part

Checks for the number of elements in the scratchpad. A signal-compound
(signal end;) is generated \vhen there is more than one element.
Data, that originally resided in the contents-part is removed from this
part. Scratchpad data is moved to the VIC data-structure. The actual
terminal-name is removed from the screen.
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The syntax definition of the domain generation is defined as:

< Dom Generation > :== { < Dom Operation > } EXIT-
< Dam Operation > .-- NAS1~ < Generate Operation > < Cornmand >- -

< Generate Operation > :== riCR-

Page 5-6

BREATH CREATE { POINT { RTPOINT } POIXT } J

< Command > .-- SCRATCH I KIEP

The numbers 1 to 8 in the next syntax diagrams refer to the
places in the language, in which the actual domain-generation
programs are implemented.

DOm~Ge1neration _
• ~ .xit >--<D---

Dam _Operat ion ~

Dam_Opera t ion

~ mask~ Generate_Operation H Command f----+

Generate_Operat ion

mer

breath

)--~ 4 }-----------~---....

Command

S-<---scratch~

~keep)~
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OVt!rview of actual procedures in the domain-generation

1. Initialize Dom Gen

Page 13-7

This procedure initializes ~le global data. It rrakes a list of masks
on the menu-screen t that are present in the contents-part t but NOT in
the domain-part of the module. An internal representation of the
design-rules is made. Symbols for the domain generation are created on
the menu-screen.

Generates an error message on the screen when there are still some
masks t that have not recieved a domain area. o

3. Find Ordinal Number

!'Iakes a transformation of the symbol to the internal VIC ~ask-number.

4. Search ~'iCR And Add To SP

Starts the VIC-scanner t tlIat adjusts the two diagonal edge-points of a
miniI:Jum circumscribing rectangle. 'Ihe resulting bounding-box is moved
to sc ratc hpad •

5. Breath And Add To SP

Starts the same VIC-scanner t but makes now two lists. The first one
contains the layout-details and the terminals. TIlli second one contains
the domains of sub-modules. It calculates and displays the lower-bound
value of the grow factor PHI and asks for an actual grow factor on the
terminal. The tiVO lists are grown ( with different grow-factors) t

merged and shrunk ( with the same factor). The last operation is done
with a standard shrink-algorithm. Data is moved to scratchpad and is
high-lighted.

6. }'a ke RA And Add To SP

Displays newly created rectangles on a real time base. ~hen the second
diagonal point is given t the rectangle is moved to scratclIpad.

7. Clear SP

Executes the 'scratch' comnand. The scratchpad is cleared.

8. Store SP To VIC

Executes the ' keep' command. The scratchpad data is Dade permanent by
writing the domai.n data to the VIC. The mask-name is deleted from the
menu-screen.
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EXAMPLE OF A DOMAIN-GENERATION PARSER

This appendix gives an example of the parsing procedurtos for t]le
domain-generation. They were uHed for testing purposes with input and
output from keyboard-terminal. The actual programs interface \,lith a
window-manager program, that takes care of the autorr,atic translation of
coordinates on the tablet to .layout-coordinates and symbols on the
menu-screen. !iumbers, placed in brackets, indicate the places in the
parser in \-lbich the ac tual procedures are called. The numbers are the same
as indicated in the syntax diagrams in the previous appendix.
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The next program parses the domain-generation lan8uage.

PROGRAH Dom_Generation( input .output);

{ This prograI:l parses the domain generation language }

Page C-2

symtype;
integer;

TYPE
symtype

VAR
sym
PHI

(SCRATCH .KEEP. EXIT .;'lASK .IlCI~. BREATH.
CREATE.POINT.UnDO);

PROCEDURE Getsym;

BEGIl';
write('Give symbol:');
readln(input.syI:l)

n:D;

PROCEDUI~E Command;

VAR
oke boolean;

EEGIt-;
oke := false;
WHILE not oke DO
BEGIN

IF sym = SCRATCH 111m
BEGIN

oke := true;
writeln(' Scratch command accepted');
Clear_SP; {7}
GetsyrJ.;

END
ELSE

IF sym = KEEP TFEN
BEGm

oke := true;
writeln('Keep command accepted');
Store SP To VIC; {8}
Getsym - -

n:D
ELSE
IF sym = urmo THEN

oke .- true
ELSE
BEGIN

writeln(' Please zive SCI~TCH or KEEP:');
Getsym

Elm
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EXAMPLE OF A DO~~IN-GENERATION PARSER Page C-3

END
END

{while}
{Command };

PROCEDURE Generate_Operation;

VAR
oke boolean;

BEGIN
oke := false;
WHILE not oke DO
BEGI!\"

IF sym = NCP. THEN
BEGIN

oke := true;
wri teln( 'i-leR command accepted');
Search_i-1CI~And_Add_To_SP; {4}
Getsym

am
f.LSE

IF sym = BIlEATH TUn!
BEGn;

oke := true;
writeln('BREATH command accepted');
writeln(' Give GROW factor PliI: ');
readln(PHI) ;
Breath And Add_To_SP; {5}

writeln('you can give CREATE to add rectangles');
Getsym;
IF sym = CP.EATE THEN
BEGIN

Getsym ;
REPEAT

Gt=tsym;
writeln('Rectangle will be generated');
t-lake RA And Add To SP; {6}
Getsym

ur~TIL sym <> POINT
Er:D

EHD
H:D;

END
ELSE

IF sym = m~DO THn~ oke := true
ELSE
BEGn~

writeln(' please give llCR or BREATH');
Getsym

END
{while}
{Generate_Operation}

PROCEDURE Dow~Operation;
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VAR
oke boolean;

BEGIn
oke := false;
WHILE not oke DO
BEGIN

IF sym = HAS!: THEtl
BEGIN

oke := true;
Find Ordinal_Number; {3}
GetsYm;
Generate Operation;
Command -

END
ELSE
bEGIN

writeln('Give }~SK to enter domain generation or EXIT');
Getsym

Er~D

nm {while}
END; {Do!':':....Opera t ion}

BEGIlJ
Initialize_Dom_Cen; {l}
Cetsym;
\ffiILE sym <> EXIT DO
BEGIN

IF s ym = UNDO THEN
HEGIN

writeln(' a uuro operation could be performed now');
Cetsym

END
ELSE
BEGIN

Do~Operation;

Getsym
END

END;
Dom Close And Stop {2}

Erm. {Dom Gen}
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APPENDIX D

EXAMPLE OF A SCANNER OF THE VIC DATA-STRUCTURE

This appendix contains a scanner of the VIC data-structure, that can handle
recursively defined layout-modules. The scanner itself is a recursive
algorithm, that is used in the genera tioo of domains. Both bounding-boxes and
boundary-polygons can be handled by setting the global variable 'breath' to
false or true. The scanner is \.Jritten in pseudo-code. The actual scanner is
somewhat larger.

PROCEDURE Search VIC Data(pntr :pointer;
- - transform :modifier);

pntr
transform

module begin pointer
basic transformation vector}

Search VIC Data uses the following recursive
calling scheme:
Search_VIC_Data calls Analyze_VIC_Record and
this procedure calls either Analyze VIC P.ecord,
Seard~VIC_Data or it processes a ieaf record.

This recursive search-procedure uses three boolean variables
to keep books of which part of the VIC has to be expanded.
The next diagram gives an overview of which parts have
to be expanded in a hierarchical description of the layout.

sub-sub-sub
module

*
*

sub-sub
module

*
*

sub
module

*

part

domain
terminals
contents

I main
I module

-------------------------------------------------------
I
I
I
I
I

The terminal-part of the last sub-module in which a domain
is found has to be expanded.
Boolean variables:

submodule indicates that we are in the main module
or in sub ••• modules.

- domain indicates that a domain in a sub module
is found

- last module: indicates that no further sub module
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has to be expanded.
The boolean variable breath indicates if a minimun circum­
scribing rectangle must be made (false) or if a
grow/merge/shrink operation has to be executed (true) }

PROCEDURE Estimate_MCR(rect : rectangle);

{ This procedure examines the rectangle and adjusts the minimum
circumscribing rectangle of the module. }

BEGU; E~D;

PROCEDURE Add_Rectangle_To_List(rect : rectangle);

This procedure adds an orthogonal rectangle to a list.
This list is used for the grow operation on cask-data }

BEGIN END;

PROCEDURE Analyze_VIC_Record(VAR pntr : pointer);

{ This procedure analyzes an actual VIC record

Page D-2

PROCEDURE Analyze_Dot(pntr

VAR

pointer);

p
delta
rect

point;
integer;
rectangle;

BEGIN
Ge t_Do t (p) ;
IF correct mask THEN
BEGn:

delta := width(mask) div 2;
Grow Point(p,delta,rect);
Transform Point(p);
IF breath-THEN

Add_Rectangle_To_List(rect)
ELSE

Es timate_HCR( rec t)
DiD

En);

PROCEDUIX Analyze_Rectangle (pntr

VA?
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rect
delta

rectangle;
integer;

BEGIH
Get_Rectangle(rect);
IF correct mask THEN
BEGIN

IF slanted rectangle TEEN
Orthogonal Rectangle(rect);

IF line piece-THEN
BEGIN

delta := width(mask) div 2;
Expand Line Piece(r~ct,delta);

END; - -

Transform Rectangle(rect);
IF brea th-THEt-:

Add Rectangle To List(rect)
ELSE - {}:CR}- -

Estimate_NCR(rect)
[ND

nm; { Analyze_Rectangle

PROCECURE Analyze_Polygon (pntr pointer);

VAR
deltaw
rect
pI,p2
pol

integer;
rectangle;
point;
polygon;

BEGIN
Get Polygon(pol);
IF correct mask THEN
BEGIN

width(mask) div 2;
:= begin point;
:= pI; -

endpoint DO

{ test for wire
{ the hartline is traced and is blown up }

IF wire THEN
BEGIN

del taw .­
pI
p2
\mILI: not
BEGIN

pI := p2;
Transform Point(pI);
p2 := next point;
Transform Point(p2);
Expan~Line_Piece(pI,p2,rect,deltaw);

IF breath THEN
Add Rectangle To List(rect)

ELSE - - -
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Estiw.ate_HCIZ( rect);
D;D;

END { wire };

{ test for polygon }
{ the boundary of the polgon is scanned }

IF polygon THEN
BEGIN

pI := first boundary point;
Transform Point(pI);­
Find_tlCK_Of_Polygon( pI, rec t) ;
\lEILE not endpoint DC
BEGIN

pI := next point;
Transform point(pI);
Find MCR~f Polygon(pI,rect)

END; - --

IF breath TEEN
Add Rectangle To List(rect)

ELSE - - -

Estimate liCR(rect)
END {polyson-}

Et;'D

Page D-4

END; Analyze_polygon

PROCEDURE Analyze_Part ( VAR pntr

BEGn;
CASE part OF

pointer);

domain_pa rt
RECIN

IF submodule and not domain THEN
HGIr\"

domain := true;
\lHILE not endpoint~r DO
BEGIN

Get Kext Record(pntr);
Analyze VIC Record(pntr)

Et~D --

n:n
ELSE

pntr .- endpointer;
n:D;

terminal_part :
BEGIN

IF submodule and not last module TREK
BEGIN

IF domain THEU last module := true;
WHILE not endpointer DO
BEGH;'
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EXAMPLE OF A SCANNER OF THE VIC DATA-STRUCTURE

Get Kext Record(pnLr);
Analyze_VIC_Record(pntr)

END
nm
ELSE

pntr := endpointer
END;

contents_part or compound_part
BEGIN

If not last module THEN
BEGIK

I'HilLE not endpointer DO
BEGIN

Get r:ext Record(pntr);
Analyze VIC Record (pntr)

U;D --

END
ELSE
BECn:

pntr := endpointer;
domain .- false;
last module .- false

END
END;

END; { CASE }
END; { Analyze_Part

Page D-5

PROCEDURE Analyze_Instance (pnt r pointer);

VAR
copysubmodule
copydomain
copylastmodule
q
trans

boolean;
boolean;
boolean;
pointer;
modifier;

BEGIN
IF not last module THLK
BEGIN

{ save global data }
trans := transform;
q := pntr;
Accumulate ~lodifier(transform);
copysubrnod~le := submodule;
copydomain := domain;
copylastcodule := last module;
submodule := true; -

Search VIC Data(q,transform);
{-restore global data}

submodule .- copysubmodule;
domain := copydomain;
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last module := copylastmodule;
transform := trans;

DID
END; { Analyze_Instance

PROCEDURE Analyze_Array (VAR patr pointer);

VAR
q
count
first,
second
trans
offset

pointer;
integ~r;

integer;
modifier;
point;

BEGn:
{ save modifier

.- transform;

.- first_bound;
:= second_bound;
:= array pitch;
:= first;
:= array_pointer;

count (= second DO
q
~JHILE

BEGIN
pntr := q;
Analyze VIC Record(pntr);
AccuQulate_Modifier(transforo);
count := count + 1

END;

trans
first
second
offset
count

restore modifier }
transform := trans

END { Analyze_Array};

CASE record_type OF
dot Analyze Dot
rectangle Analyze-Rectangle
polygon Analyze=Polygon
part Analyze Part
instance Analyze-Instance
array Analyze-Array

EKD { CASE -

(pntr) ;
(pntr);
(pntr);
(pntr);
(pntr);
(pntr);

END { Analyze_VIC Record };

BEGI~ Search VIC Data
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w~IL£ not endpointer DO
BEGIn

Get_Next_Record(pntr);
Analyze VIC Record(pntr)

END --
END; Search VIC Data

This procedure is initialized and called from a main program by

{ gro\oo"/merge/shrink }
{ minimun circuDscribing rectangle

.- false;
:= false;

false;
:= true

or false;

domain
submodule
last rr:odule .­
breath

Search VIC Data ( pointer_to_module , null modifier );
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APPENDIX r:

SOME EXAMPLES OF DOMAIN- AND TERMINAL-GENERATION

This appendix contains the VLDL descri?tion of an ~[Os layout-module,
called IXO~ (Inverting eXclusive OR). Examples of domain-generation before
terr.Jinal-generation, and terr.Jinal-generation ,hefore domain-generation will
be given for the process mask rs. But first an example of module IXOR in
VLDL format without any definition of domains and terminals:

pattern ixor;
begin

ra(ps; 7,5; 30,7.5): inp1;
poly(ps; 40,5; 51,5; 51,21; 48.5,21; 48.5,7.5; 40,

7.5): inp2;
ra(ps; 17, 12; 45, 14.5);
ra(ps; 3,22.5; 8,33.5): out;
ra(ps; 7, 31.5; 13.5, 33.5): out;
ra(ps; 11.5, 27.5; 13.5, 33.5): out;
ra(ps; 3, 10; 9, 20);
ra(ps; 12.5, 11; 14.5, 20);
ra(ps; 40, 23.5; 49, 29.5);
ra(ps; 35,24.5; 41,26.5);
wire(ps; w = 2; 9, 19; 17.5, 19; 17.5, 25);
ra(ps; 16.5, 23.5; 28, 26);
ra(ps; 25.5, 18.5; 28, 26);
ra(ps; 25.5, 18.5; 40, 21);
ra(od; -3, 24.5; 15.5, 30.5);
ra(od; 9.5, 21.5; 15.5, 30.5);
ra(od; -3, 12; 15.5, 17);
ra(od; la, 10; 15.5, 14);
ra(od; 10, -0.5; 28, 4);
poly(od; 42, -0.5; 42,35; 47,35; 47, 18; 56.5,18; 56.5,

-0.5);
ra(od; 10, 3; 28, 11);
ra ( od ; 20, 8.5; 38, 29.5);
ra(in; -3.5,11; 2.5,37): vdd;
ra(in; 8.5, 21; 16, 27);
ra(in; 16, 17.5; 19.5, 24);
ra(in; 31,21; 41+,24);
ra(in; -3.5, 34; 48,37): vdd;
ra(in; 9, -1.5; 57.5,4.5): vss;
ra(in; 51.5, -1.5; 57.5,20): vss;
array(O •• 1; 0, 15) of
beein
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19.5);
27.5);
26.5);

19, 15; 25, 21);
20,16; 24,20);
20.5, 16.5; 23.5,
28.5, 21.5; 34.5,
29.5, 22.5; 33.5,
30, 23; 33, 26);
-2, 12.5; 1, 16.5);
-2,25; 1,30);
10, 22.5; 14.5, 25.5);
11,0; 27,3);
43, 0; 52, 3);
53, 7; 56, 17);
11, 9.5; 16.5, lR.5);
10,26; 15,32);
33.5, 23; 3Q.5, 28);
40.5, 10.5; 46.5, 16);
1,10.5; 11,32);
40.5, 21.5; 4~.5, 31.5)

ra(in; 41, 15; 48, 21);
ra(co; 42.5, 16.5; 46.5, 19.5)

end;
ra(in;
ra(od;
ra(co;
ra(in;
ra(od;
ra(co;
ra(co;
ra(co;
ra(co;
ra(co;
ra(co;
ra(co;
ra(cs;
ra(cs;
ra(cs;
ra(cs;
ra(di;
ra(di;

end;
comr;len t ' ixor'

end;
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network graph of IXOR

A network description of tlte module in i-:DL is:

macro

Page E-3

macro
out

ixor
flog
mend

i(inpl,inp2) o(out)
i(inplHnp2)

A layout of this module is

I

I

I-

The next example is the result of the generation of dooains before the
assignment of terminals in the PS mask of module IXUR.
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l:t-:~ =: :~i! ....te.~.mi~.~~ ...-L.: dO!.':Oi~" 1
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The next example is the result of opposite operation:
assigned before the generation of domains.

terr:linals are

L .J

I

I

I
I

L

-u =~ I

: ~~f·~~·i.':'~...-C90f1!rrL~-"'-··I·l
J: :g ':.' ·--"·---f- "'_."--'--'-"'-

:"'-"'I-"'-~ I I I •

~ . I.
. ! I I! :
1:t:=::~~:::l=: ~:..- ...- ..._ ..._ ..._ ...-_.._: I

_I I
L I

The next listing gives an example of result of the generation of domains
before the assignment of terminals.

pattern ixor;
domain

ra(di; 0, 9.5; 49.5, 33);
ra(cs; 9, 8.5; 47.5, 33);
ra(co; -3, -1; 57,35.5);
ra(in; -4.9, 9.6; 5f,.9, 21.4);
ra(in; 7.6, -2.9; 58.9, 9.6);
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ra(in; -4.9, 36.6; 49.4, 38.4);
ra(in; -4.9, 21.4; 49.4, 36.6);
ra(od; 7.B5, -2.65; 58.65, 20.15);
ra(od; -5.15, 9.85; 7.85, 20.15);
ra(od; 39.85, 20.15; 49.15, 37.15);
ra(od; -5.15, 20.15; 39.85, 31.65);
ra(od; -5.15, 31.65; 17.65, 32.65);
ra(ps; 1.75, 8.75; 52.25, 22.25);
ra(ps; 5.75, 3.75; 52.25, 8.75);
ra(ps; 38.75, 22.25; 50.25, 30.75);
ra(ps; 33.75, 22.25; 38.75, 27.75);
ra(ps; 1.75, 22.25; 33.75, 27.25);
ra(ps; 1.75, 27.25; 14.75, 34.75)

end;
terminals

ra(ps; 7, 5; 30, 7.5): inpl;
signal

ra(in; 51.5, -1.5; 57.5, 20);
ra(in; 9, -1.5; 57.5, 4.5)

end: vss;
signal

ra(in; -3.5, 34; 48, 37);
ra(in; -3.5, 11; 2.5, 37)

end: vdd;
signal

ra(ps; 11.5, 27.5; 13.5, 33.5);
ra(ps; 7,31.5; 13.5,33.5);
ra(ps; 3, 22.5; 3, 33.5)

end: out;
poly(ps; 40,5; 51,5; 51,21; 48.5, 21; 48.5,7.5; 40,

7.5): inp2
end;
drawing

ra(bb; -3.5, -1.5; 57.5,37);
text 'IXOR'(dr; -3.5, -1.5; size 14)

end;
begin

ra(ps; 17,12; 45,14.5);
ra(ps; 3, 10; 9, 20);
ra(ps; 12.5, 11; 14.5, 20);
ra(ps; 40, 23.5; 49, 29.5);
ra(ps; 35, 24.5; 41, 26.5);
wire(ps; .v = 2; 9,19; 17.5,19; 17.5,25);
ra(ps; 16.5, 23.5; 28, 26);
ra(ps; 25.5, 18.5; 28, 26);
ra(ps; 25.5, 18.5; 40, 21);
ra(od; -3, 24.5; 15.5, 30.5);
ra(od; 9.5, 21.5; 15.5, 30.5);
ra(od; -3, 12; 15.5, 17);
ra(od; 10, 10; 15.5, 14);
ra(od; 10, -0.5; 28, 4);
poly(od; 42, -0.5; 42, 35; 47,35; 47, 18; 56.5, 18; 56.5,

-0.5);
ra(od; 10, 3; 28, 11);
ra(od; 20, P..5; 32" 29.5);
ra(in; 8.5, 21; 16, 27);
ra(in; 16, 17.5; 19.5, 24);
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19.5);
27.5);
26.5);

19, 15; 25, 21);
20, 16; 24, 20);
20.5, 16.5; 23.5,
28.5, 21.5; 34.5,
29.5, 22.5; 33.5,
30, 23;- 33, 26);
-2, 12.5; 1, 16.5);
-2,25; 1,30);
10, 22.5; 14.5, 25.5);
11,0; 27, 3);
43, 0; 52, 3);
53, 7; 56, 17);
11, 9.5; 16.5, 18.5);
10,26; 15,32);
33.5, 23; 39.5, 2H);
40.5, In.5; 46.5, 16);
1, In.5; 11, 32);
40.5, 21.5; lf8. 5, 31.5)

ra(in; 31,21; 44,24);
array(O •• 1; 0, 15) of
begin

ra(in; 41, 15; 48, 21);
ra(co; 42.5, 16.5; 46.5, 19.5)

end;
ra(in;
ra(od;
ra(co;
ra(in;
ra(od;
ra(co;
ra(co;
ra(co;
ra(co;
ra(co;
ra(co;
ra(co;
ra(cs;
ra(cs;
ra( cs;
ra(cs;
ra(di;
ra(di;

end;
comment 'ixor'

end;
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VOILA

APPEtiDIX F

EXPLANATION OF ABBREVIATIONS

VLSI Oriented Interactive Layout Aic1.
Nane of the Philips project for the creation of a new
VLSI design environment.

VIC VOILA Internal Code. TIle one-to-one translation of the
textual layout-description to a binary data-format, that is
kept in core.

VLDL VOILA Layout Definition Language. Defines the
constructs for the de8cription of a VLSI layout.

textual

DISK

JOJO

Inverted Network Interface Format. Contains the
net-oriented description, in binary forE~t, of the network­
description of a layout-module.

Network Description Language. Defines the textual constructs
for the logical description of a r.1odule, e.g. swm: [Snr 84] •

Circuitmask. Name of the existing layout description and
manipulation program.

t-:ame of the program for the interactive generation of comains
and terminals.
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Abstraction of a module.

Bottom-up implementation •

Bounding box.

Bread-boarding •

Cardinality

Cells

Circuit cowplexity •

Command interpreter

Contact-points •

Delila •

Design-rule matrix.

Divide and conquer principle.

I;omains

Drawings

Error-recovery mechanism •

Forbidden area

Functional design

Functional specification.

Geometric domain •

INDEX OF KEY\·;ORLJS

• 1-11

• 1-5

• 3-4

• 1-7'

• 1-9

• 1-10

• 1-2

• 5-5

• 2-6

• 2-5

• 4-4

• 1-9

• 1-11, 3-1

• 1-11, 3-9

• 5-7

• 4-3

• 1-5

• 1-7

• 4-3
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Hardware design

Hierarchical abstraction •

Hierarchical decomposition

Jo jo • • •

Layout-phase ••

Logical description

}finimum circuTIlscribing rectangle •

1-!odular design-rules •

Hodule.

• 1-6

1-1)

• 1-4

• 1-5

• 1-8

1-7

• 5-1

3-1

• 1-10

Page Index-2

One symhol lookahead without bilCk tracl;ing 5-7

Parser •

Patterns ••

Protective outlines.

Realization of a module.

Schematic diagrarr,

Separated hierarchy

Signal.

Software crisis

Soft~are engineering

Standardization

Structural design ••

Super-units

• 5-7

1-10

• 2-5

• • 1-11

• 1-7

• 2-7

• 3-8

1-3

1-3

1-6

• 1-5

2-6
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Symbolic Joraain.

Terminals

Top-down approach

Unit.

Vldl

Vlsi complexity problec

Vlsi layout,

Voila

4-3

1-11, 3-5

1-5

2-5

1-10

1-2

1-6

1-9
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