EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

JOJO : an Interactive Domain and Terminal Generator

Kumeling, B.W.M.

Award date:
1984

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/23550879-798a-41a0-b1c9-41012ee38f31

/ .
UNIVERSITY OF TECHNOLOGY EINDHOVEN L/yj? ECB ?zya.

DEPARTMENT OF ELECTRICAL ENGINEERING

Group Digital Systems

Graduation Report:

JOoJo

An Interactive Domain and Terminal Generator

by

B.W.M. Kumeling

Coach: Ir. M. Stevens

Ir. C. Niessen (Natuurkundig Laboratorium N.V.Philips'Gloeilampenfabrieken

Period: september 1983 - augustus 1984

The DEPARTMENT of ELECTRICAL ENGINEERING of the UNIVERSITY of TECHNOLOGY EINDHOVEN
does not accept any responsibility for the contents of graduation reports.

JCcJo

An Interactive Domain and Terminal Generator

by

B. W. M. Fumeling

TN
| ! t : S e —]
| Lrterminal »domain :
o | | 10 |
L -4 ooy N RS N m—
' [1 | i
| s N
(I
T T T T b
__________ - —_—_ -1
L e - - - - _ A L~ -

JOJo

An Interactive Domain and Terminal Generator

by

B. W. M. Kumeling

This report describes the work of the final project for the
electrical-engineer degree of the University of Technology of Eindhoven,
the Netherlands. The work was done in the period of september 1583 to july
1984 at the PHILIPS Research Laboratories. The work was done in the VOILA
project, in which an interactive and hierarchical design-methodology is
implemented. My task in the project was the investigation and
implementation of methods, that can be used to make ar abstraction of large
amounts of layout-data. The abstraction is described as a simplified area,
in VOILA called domain, and an interface, in VOQILA called terminals. A
study of hierarchies and existing methods of abstraction was made. An
inventory of user requirements was made. An interactive approach was
chosen to demonstrate the concepts of domain and terminal generation. A

program was written in PASCAL on a VAX 11—780. It is embedded in the VOILA

graphics editor.

Page 2

Acknowledgement

The development of this report was greatly aided by C. Niessen, His
careful reading and suggestions for revisions were thankful accepted. I
also thank the menbers of the Mat. Lab. Voila-team: ¥. van Eerkel, J.
Engelen, ¥. Kuiper, B. Steinnueller, J. Walkier, and my TE-coach M.

Stevens. Their patience in answering my questions greatly enhanced the

progress of my work.

CHAPTER

CHAPTER

CHAPTER

1

1.1

1.2

1.3

l.[‘

1.5

l.6

l.7

o

3.2

3.3

Page 3

INTRODUCTION

THE PROBLEM : 10 MILLION TRANSISTCRS « & ¢ & & « o 1-1
HOW COMPLEX IS COMPLEX? « ¢ o o o o s o o o o o o 1=2
THE SOFTWARE CRISIS ANALCGY o ¢ o o o o o o & o o« 1=3
STRUCTURED DESIGN AND VLSI ENGINEERING N £
HARDWARE DESIGN VS. VLSI LAYOUT =« ¢ « o o o o o o« 1-6
THE DESIGN PROCESS COF AN INTEGRATED CIRCUIT .+ + « 1-7
THE VOILA APPROACH ¢ & ¢ ¢ ¢ ¢ ¢ o o o o s o o« o o 1=9
THE LINK OF DOMAIN AND TERMINAL GENERATION WITH

VOILA ® & & 2 e 6 e & 2 e e & e+ a3 3 9 s e * s o I—ll

ABSTRACTION AND HIERARCHY CONCEPTS

PRESENT-DAY ABSTRACTION & & o o ¢ o o o o« o o o o 2-1
Abstraction By Using Macros .« ¢« « ¢ ¢ o o « o o 2-1
Abstraction With Respect To Layout-verification, 2-3
Abstraction In DELILA . ¢ ¢ o o o« o ¢ o ¢ o o o 2=5
Some Observations =« « ¢« o ¢ o o ¢ ¢ ¢ o o+ o o o 2-6

AN OTHER HIERARCHICAL CCONCEPT 4 o o o o s o o o« o 2-7

EQUIVALENCES BETWEEN HIERARCHIES o & ¢ o ¢ o o o o 2=-8

SEMANTICS OF THE VOILA ABSTRACTICN

PROPERTIES OF DOMAINS ¢ ¢ o o o o o o o o o o » o 3-1
PROPEP\TIES OF TERI\]II\IALS ® o o & e e e & o e o o o 3—5

PROPERTIES OF DPAWINGS . e o o 8 o o e e ¢ o o o o 3-9

CHAPTER

CHAPTER

CHAPTER

4

4.6

4.7

5.2

5.3

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.4

S.S

6.1

SOME THOUGHTS ON ABSTRACTION

THE SHAPE OF DOMAINS ¢ o ¢ ¢ ¢ o o o o o o o o o
DOMAINS OF COMPLEX MODULES ¢ « ¢ ¢ o o o o o o«
GEOMETRIC AND SYMBOLIC DOMAINS o o & o « o o o o

Estimation Of Forbidden Areas « o« o ¢ o o & &
DOMAINS OF CONTACT-HOLE AND INVERSELY PROCRAMMED
MASKS ¢ ¢« v o o @ o 6 o o 5 o s o o 5 s o 5o o s
AUTOMATIC VS. INTERACTIVE TERMINAL GENERATION .
STANDARD CONTACT PATTERNS (OR VIAS) .« &+ « o & &

THE USER REQUIREMIENRTS .+ ¢ o o o o o o » o o o @

SPECIFICATICN OF DCHMAIN AND TERMINAL GENERATION

SPECIFICATION FOR THE DOMAIN GENERATION
SPECIFICATICON FCR THE TERMINAL GENERATION . . .
INTERFACE TO VOILA « & o o o o o 5 o o o o o o
The VIC Data Structure =+ o« + s o « o o o » &
The Scratchpad Interface .+ . « ¢ ¢« & & ¢ » &
The Window Interface . ¢« o ¢« o o o &+ ¢ o o &
The INIF Data Structure + o« « o o o » o o o
The Modular Design Rules . ¢ o ¢ « o o o « o«
INTERFACE TO THE USER « & o o o o o = o o o o

PROPERTIES OF THE INTERACTIVE LANGUAGE

IMPLEMENTATION ASPECTS

IMPLEMENTATION OF THE DCMAIN GENERATION

. 6-1

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

Index

6.2

6.3

7

7'1

7'2

Page 5

DOMAIN GENERATION ALGORITHM T

IMPLEMENTATICH OF THE TERMINAL GENERATION . « « « 6=7

CONCLUSIONS AND RECOMMENDATIONS

COPICLUSIO‘NS e & 8 8 & s & & & & e s o s o+ s o v o 7_1

RECO){ME}:DATIOI\iS s o e & e e+ 8 e e s e 8 3 s o s o 7-4

REFERENCES

SIMPLIFIED VLDL SYNTAX GRAPHS

JOJO SYNTAX DEFINITION AND GRAPUS

EXAMPLE OF A DOMAIKN-GENERATION PARSER

EXAMPLE OF A SCANNER OF THE VIC DATA-STRUCTURE

SOME EXAMPLES OF DOMAIN~- AND TERMINAL-GENERATION

EXPLANATION OF ABBREVIATIOKNS

1.1

CHAPTER 1

INTRODUCTION

THE PROBLEM : 10 MILLION TRANSISTORS

VLSI technologies are so powerful that it is possible to integrate, in
1984, 1 million transistors on one single chip. For example the dense |
¥bit dynamic RAls, that were presented at the IEEE International Solid
State Conference in february 1984 ([ISC 84]. The design time of these
memories is relatively short due to their extremely regular patterns.

The design time of conplex signal~ and micro-processors may be an order
of magnitude larger. It is reported in [WEI 79] that the design time of
the 16 bit microprocessor 68000 required 52 man=-years for 68000
transistors. Lattin reports in [LAT 79] that the average productivity of a
designer within a project, implementing random logic on a chip, 1is 10
transistors a day. A productivity of 6 transistors a day is reached in the
design and layout of the M68000 project.

It is expected that an upper bound on the number of transistors on a
VLSI chip will be 10 million. This means, that by an optimistic linear
extrapolation, a team of 13 designers should have started a design near
1584; the year of the murder of Willem van Oranje!

The main problem with VLSI is the integrety of the design. Even the
most talented and competent people make mistakes. The problem with errors
is that they escalate in time; its recovery requires weeks or even months.
A correction of an error may cause new errors elsewhere in the design. In

-6 -

INTRODUCTION Page 1-2

a complex design, more and more design-time is spent on the recovery of
errors. Less time is available for the actual understanding of the

inter-dependencies between the several parts of a system.

1.2 HOW COMPLEX IS COMPLEX?

P. Losleben gives in [L0S 80] an analogy of the increase in
circuit complexity of 2 or 3 orders of magnitude. It is shown that, in the
ultimate situation of 0.4 micron design rules, the area needed to draw the
layout on a scale of 12500:1, will be equivalent to the size of 2 football
fields! The idea of a team of designers, crawling about on the millimeter
paper, indicates that different layout methods have to be found to master
this complexity.

Why has this VLSI complexity problem and 1its management become so
popular? Very complex systems are built routinely: examples are operating
systems or airplanes; mankind is even capable of putting men (and women)
on the moon! We have to make a historical review of the design of
integrated circuits. LSI «circuits were the result of a physical
partitioning process: only a limited number of transistors could he placed
on a single chip. The designer was forced to decide which sub-functions
could be realized on a single chip. With VLSI technologies however, it is
possible to integrate whole systems instead of sets of single transistors.
The necessity for partitioning is no longer obligatory. The disappearance
of off-chip drivers, the reduction of parasitic wiring capacitances and the
decrease of the device~size has led to an enormous gain in performance. Cn
the other hand, a complex and unstructured domain of silicon is created in

which a designer has total freedom.

INTRODUCTION Page 1-3

1.3 THE SOFTWARE CRISIS ANALOGY

There is a striking analogy with the development of large software
systems in the 1Y60°s. Mammoth systems were built, without knowledge of
the applications. Requirements for the systems changed regularly. As a
result, time-limits were exceeded and the costs were a multiple of what was
planned. The performance of the first release was very poor. The problen
was not the size of the program, but the programming discipline. The
discipline of Software Engineering arose in the 1970°s; it deals with the
systematic approach of the development of large complex software systems.
The accent is shifted away from the actual coding to the design of
software. Structured methods are used to achieve complexity control and.
requirements are ‘frozen’ at a certain stage. Documentation and top-down
implementation play an important role in software engineering.

There are many lessons, that can be learned from this Software crisis.,
c. Sequin explores in [SEQ 83] the nature of complexity in general and
analyzes methods to deal with this complexity. In structured systems,
modules have a strong internal cohesion, while the coupling between modules
is as loosely as possible. 1In this way, complexity can be controlled;
self-contained modules are easier to specify. These general techniques are
also applicable to the design of complex VLSI systems. There are, however,

a few extra problems:

* Instances of modules have to be placed in the 2-dimensional silicon

plane. There is no procedure~ or recursion mechanism that can be used.

*# The number of pins to a chip is strictly limited. As an analogy, this
would mean that a software module is only allowed to have two or three

floating-point variables for input or output.

INTRODUCTION Page 1-4

* Communication to other chips on a circuit board gives loss of bandwidth

and requires extra power,

* A layout module has only a restricted number of neighbours. For
software modules, the sequence and definition of procedures is of none

concern.

Structuring in VLSI implies a good partitioning of the system. Systems
should have a well-defined independent function with only a few exit
points. They must consist of a limited number of sub-modules, that obey
the same criteria. Clean and precise specification is necessary at all
levels.

VLSI has a big advantage in comparison with software systems: VLSI
systems can be designed for as much concurrent action as is possible.

Concurrency problems are not entirely solved; not even 1in software

systems. Concurrency is a fast evolving research topic.

1.4 STRUCTURED DESIGN AND VLSI ENGINEERING

Hierarchical decomposition is the major tool in the design of complex
systems [SIM 62]. A complex function 1is decomposed 1in less complex
sub-functions. This process can be repeated several times until an
elementary level of basic functions is reached.

Miller showed [MIL 56] that the number of elements on a hierarchical
level should be no more than 7. This is due to the physiological fact that
the short-term memory of a human being can hold 7 to 9 items at a time.
This gives an indication of a good decomposition of a complex problem.
There should not be less than 2 or 3 items on a hierarchical level: this
results in a very deep and stiff hierarchy. More than 7 to 9 items lead to

very complex inter-relationships and a flat tiierarchy.

INTRODUCTION Page 1-5

This decompositon process is often called the top-down approach of
tackling the problem. The actual implementation occurs in the opposite
direction: elementary functions are placed first and they are
interconnected to make larger functions. This implementation process is
also repeated several times until the complete function is built, This
process is called bottom-up implementation .

Ideally, tasks such as: specification, simulation and test preparation
are handled in a top-down manner., Tasks like partitioning, placement,
routing and topological analysis are handled in a bottom—up manner. The
top-down approach 1is called functional design and deals with design on a
logical level. Bottom—~up 1implementation 1is called structural design.
Systems are actually built in a physical medium.

The problem with pure top-down design is that it is not known a priori
how problems will be solved in sub functions. It is possible that similar
problems arise in different sub-functions. In an early stage of design,
this knowledge could have led to a different decomposition of the system.
This means, that a good design travels several times up and down a

hierarchical tree. With this insight, I decided to call my program : JOJO

The structured design 1is the natural evolution of an engineering

discipline., Losleben writes:

"The imposition of reduced freedom in the design process ... can no

longer be avoided. ces most engineering disciplines involving the
design of complex systems have seen a metamorphosis from a bhighly
individualistic art form to a structured, highly disciplined,

profession."”

As an example : a space shuttle is made by a design-team and not by ome
single designer. The design-team works with well-defined interfaces and

- 10 -

INTRODUCTION Page 1-6

uses a modular approach for solving the problem. In my opinion, VLSI

engineering is also evolving to such profession.

1.5 HARDWARE DESIGN VS. VLSI LAYOQOUT

In hardware (printed circuit) design, systems are built with ‘discrete’
components., VLSI 1layout 1is an activity in which whole systems are
integrated in silicon. These different approaches have different
optimization criteria. In hardware design, a cost-function is used to
minimize the number of gates (or active devices). This cost=function 1is
very well suited for the design with standard MSI and LSI (TTL) components.

In VLSI layout, a different cost-function is used. As the number of
components on a chip increases and the device-size decreases, the lenght
and the number of interconnection wires will be the limiting factor; NOT
the number of active devices! There are two main cost-functions in VLSI:
area and speed. Long interconnect-wires result either in much power or
slow operating speeds; both are not acceptable. The length of a wire
determines how much time is needed to transfer data between two points.
The most important problem is to find architectures, that need a minimal
set of interconnect. When the design 1is finished, the most inmportant
optimization 1is the placement of modules in the layout, to achieve a
minimal lenght of the wires.

Digital hardware design relies on standardization : a designer picks
the exact pieces he needs from a catalog to implement a particular
function. 1In VLSI, a library of standard functions can be used. The
life-time of this 1library is very short; it has the same duration as a
techinological process (2-3 years). Technological changes, for instance,
may lead to a complete re-implementation of the library (as happened in

the change-~over from NMOS to CMOS). Technological-independent library

- 11 -

INTRODUCTION Page 1-7

functions however, loose efficiency in either speed or area. Parametrized
functions, that can be ‘adjusted to either area or speed, may give a
solution, It 1is a powerful tool in combination with symbolic layout and
compaction techniques [ELL 83].

In resemblance with hardware design, more and more irregular control

functions are replaced by regular counterparts, as RCM or PLA.

1.6 THE DESIGN PROCESS OF AN INTEGRATED CIRCUIT

The design process of an integrated circuit 1is divided 1in several
stages. In the first stage, a functional specification is made. This
specification is a compromise between wild ideas and system demands. The
behavior to the outside world and the internal operation are described in
terms like: maximum power dissipation, minimum guaranteed access-time,
number and assignment of pins of the package, kind and sequence of the
operations, size of the operands, etc. etc. In this first stage, a
decision has to be made in which technology the integrated circuit will be
processed and which design method will be used. The first decomposition in
smaller blocks is made and the functional specification 1is often

accompanied by a, loosely drawn, schematic diagram of the system.

In the second stage, a transformation to a logical description is made.
The large functions of the first stage are further decomposed in
sub-functions. This process is repeated until the most elementary level of
boolean gates or library functions is reached. Verification can be done
either by bread-boarding (the actual implementation in hardware) or by
computer simulation. The advantage of bread-boarding is the availability
of a working prototype. It is however not applicable to VLSI circuits due
to speed considerations: parasitic wire-capacitances cause reduced
operating speeds. Furtherrore, the documentation of changes in a

- 12 -

INTRODUCTION Page 1-8

bread-board circuit demands a very severe (self-)discipline.

The most critical phase in the design of integrated circuits 1is the
layout=-phase : the drawing, digitizing and checking of the circuits in the
different mask- or process layers. The layout phase 1is very costly: a
huge investment in computer aids and in human interaction is required.
Many methods are developed to help the designer with the drawing and
checking of a layout. Generally spoken, a coupromise is made between costs
of production and costs of design. The most important criterion is the
expected volume of production. For 1large production volumes it is
desirable that the layout is as compact as possible. In this way, a
maximum number of good chips on a wafer can be expected at a given process
yield . An other criterion is the time to finish the design. As stated
before, the design of complex signal- and microprocessors demands tens of
man-years. Structured design methodologies are the key skills for future

desigus.

The last phase in the design of an integrated circuit is the production
of the physical masks that are used in the wafer processing. The number of
masks is dependent of the complexity of the technological process: this
nunber can vary from 7, for a metal gate PMOS process, to 17 for an

advanced CMOS process.

In summary: the design process of an integrated circuit can be split
up in several phases:
idea ~> functional -> network -> layout -> masks -> IC,

specification description

in which the layout phase is the most critical one.

. - 13 -

INTRODUCTION Page 1-9
1.7 THE VOILA APPROACH

The structured-design approach is adopted in VOILA (acronym for VLSI
Oriented Interactive Layout Aid). It creates an environment for the

structured design of VLSI circuits and comprises the traject of:

network -—> layout -—> mask

description data

In VOILA, the method of hierarchical abstractiom is used as a way to
control the complexity of a VLSI circuit. Niessen ([NIL 83] defines

abstraction as:

“"The method in which an object is replaced by a simplified one, that
only defines the interactions of the object with its environment, while

deleting the internal organization of the object. "

Hierarchical abstraction means that more than one level of abstraction is
needed to achieve a reduction of the amount of data. The number of levels
in a hierarchy is often called the cardinality of that hierarchy.

Hierarchical abstraction is the implementation of the
divide and conquer principle. This well-known principle is applied in many
human cultures; the organization of the Roman Warriors 1is a historical
example. Division means that a problem is delegated to subproblems, that
are independent of each other. Division implies formal methods for
guaranteeing the locality of a module. Conquering means that the solutions
of the subtasks are gathered by the next higher level in hierarchy. This
implies, that thére must be ways for modules to communicate with the
“outside world’.

VOILA does not assume a specific layout style. It has its main emphasis

on interactive layout-design. Special care is given to an efficient

- 14 -

INTRODUCTION Page 1-10

man-machine interface. Both top-down (floorplanning) and bottom-up layout
design 1is possible. The modularity of the programs enables efficient
applicaton-program development (as with J0JO). A layout editor is
available in the VGILA tool-set.

The textual constructs for the description of layouts are formalized in
a layout-language: VLDL , for VOILA Layout Description Language [BER 83].
To get an impression of the definition of VLDL and a description of an
actual module, see appendices A and E.

All programs operate on one standardized datastructure: VIC (VOILA
Intermediate Code). The VIC is a one-to-one projection on the memory of
the computer of the textual constructs of the description of a module.
This means that modules are described only once; instantiated modules are
not expanded, as is the case in present-day lavout programs. In this way,
it is possible to store the whole data-structure of a VLSI chip in the
memory of the computer. This enables fast search and display algorithms.
Real-time editing is also possible. The standardized data-structure has an
other advantage: no data-conversion is necessary for e.g. design-rule
checking. Some design-automation tools are planned as well., Examples are
cell-placement, channel~routing and PLA generation. The concept of VOILA,
its features and its hardware requirements are described in a prospect [VOI
84].

The basic layout-unit in VOILA is the module. Both geometric and
symbolic layout modules can be described in VOILA. GCeometric modules are
called patterns . Their geometric primitives consist of line-segments that
have angles of multiples of 45 degrees, relative to x~ or y-axis. Symbolic
modules are called cells . On a symbolic level, only placements of
subcells and their interconnect is relevant. Shapes are restricted to 90
degrees. Symbolic layout enables a considerable degree of abstraction from
the technological details. A limited set of masks is used; it contains

- 15 -

INTRODUCTION Page 1-11

e.g. no implantation masks., A symbol can hide a very complex subcell. On

the other hand, symbolic layout gives a reduced degree in

layout-flexibility.

In VOILA, the conquering principle is formalized in the terminals of a
module. Terminals define all possible ways of communication with the
environment. The division principle is implemented in the domains of a
module. Domains claim layout-areas in the different process masks and
shield the contents of a module frcm its environment. An other abstraction
mechanism in VCILA are the drawings . Drawings allow the user to place
graphical comment in the layout. They are described in color-masks, that
will not be converted to process-masks.

Domains, terminals and drawings are the abstraction of a module. They
are the means for hierarchical abstraction. Terminals and contents data
are the realization of a module. lLayout-elements of both types will appear
on silicon.

The abstraction of a module has its greatest benefit in a hierarchical
description of a system. When a module is designed, tested, and proven to
be correct, only the abstraction of the mwodules is needed 1in the next
higher 1level of hierarchy. 1In this way, large systems can be built with a

minimun amount of detall to be considered at any time.

1.2 THE LINK OF DOMAIN AND TERMINAL GENERATION WITH VOILA

In VOILA, the description of the abstraction of a module requires an
extra amount of work by the designer. In present-day layout-design, the
designer has to define the contents (or realization) of a module, The
question arose if it was possible in VOILA, to derive this abstraction data
from already existing layout- and network data. Domains and terminals are
in fact hidden in the contents of a module. This observation hits the

- 16 -

INTRODUCTION Page 1-12

heart of the matter. A re-definition of my work is:

Make a description of the domains and terminals of a module from
already existing layout and network-data., The abstraction should be as
simple as possible and should give as little as possible loss in

flexibility.

This report gives an overview of some abstraction mechanisms. The
properties of the VOILA domains, terminals and drawings are high-lighted
and further explored from the syntax of VLDL. These properties are the
boundary conditions for this work; they are the semantics of VLDL.

An interactive language is introduced for the generation of domains and
terminals and some implementation aspects will be treated. The algorithms
are embedded in the standard VOILA editor. They are written in PASCAL [WEL
§2] on a VAX 11-7t0. Finally, some conclusions are drawn and directions

for future investigations will be given.

- 17 -

CHAPTER 2

ABSTRACTION AND HIERARCHY CONCEPTS

PRESENT-DAY ABSTRACTION

Present-day CAD for layout~design already uses hierarchical
layout-description languages (e.g. Circuitmask (CMSK) at Philips).
Geometrical patterns can be nested in geometrical patterns. So what is the
problem?

CMSK programs make no use of this hierarchical description, because they
do not work with abstraction. CMSK. expands all layout data up to the
highest level in hierarchy. This is the reason that mask manipulation
programs and design-rule checkers are the fastest growing group of
consuners of available processing power. The next sections contain some

case-studies of present-day ways of making abstractions.

2.1.1 Abstraction By Using Macros

In the so called Nat.lLab. LSI shop, synclironous NMOS circuits are
developed with scannable delay flip-flops. At the input of each flip-flop,
a logical and-to-or function is connected. Data is latched in a flip-flop
at one edge of the global clock. Output data is available at the other
edge of the clock. The flip-flops are placed row-wise to enable connection

of power supplies etc. by abutment., The logical and-to-or function is

placed in a wiring channel underneath that row of flip-flops. Fig 2.1

-]8 -

ABSTRACTION AND HIERARCHY CONCEPTS Pape 2-2

shows how a symbolic layout looks like. Wiring is placed on a coarse grid

and is described in symbolic wires.

b ¢ X X X vdd

X X X X Vss

X FF X FF X FF Xclock
testinx X X X testout

iLo iLo ié}o__’

>——o
A J

v

® . — & Vss

Fig. 2.1. Fxample of a layout in the LSI-shop.
In a testmode, the logic and-to-or circuit is disconnected and the input is
connected to the adjacent output. All flip-flops are chained in this way
to enable scanpath testing.

For geometrical checking, the following abstraction is applied: dummy
cells are created manually to replace (checked) flip-flops. Only the
peripheral of the dummy cell is identical with the flip-flop. 1Its content
is less detailed.

A number of flip-flops (say 20) represent a subfunction which 1is fully
checked with all detailed 1layout-rule checks. lowever, the detailed
flip-flop was replaced by a dummy cell. Also for this subfunction, a dummy
cell 1is created. This dugmy cell contains only the area, occupied by this
subfunction and comnection-points on the edge of this area. The occupied
area lies one gridpoint around the actual details and should be as
rectangular as possible. The connection-points are situated in this grown

area and they are represented by small rectangles. The area and the

- 19 -

ABSTRACTION AND HIERARCHY CONCEPTS Page 2-3

connection-points are placed by hand (Fig. 2.2).

coarse grid distance

H—x .
p-e--—----------=-=-=-"7domain
]
|
@ connection
l layout , rectangle
]
! module ;
| S -1 i
[}
| [
U J

Fig. 2.2. Macro description of a module in the LSI-shop.
In the next step, only the ‘grown’ area is taken; the inner part in fig.
2.2 1is empty. Fnsuring correctness of the dunmy cells is a designer’s
responsibility for which no CAD checks are available. The conventional
design-rule checker only checks environment-details against the small
connection-rectangles of the dummy pattern. Intrusion of wires in the
occupied area is inspected on a plot of the layout, by eye.

In this way, a reduction of CPU-hours is achieved. At mask~generation
time however, no more gain is achieved. The dummy patterns are replaced by
the original ones and CMSK expands all the layout data. All problems are
in fact shifted to the end of the design traject! This macro design method
demands a very large self-discipline of the designer. It was used until
august 1983. In current designs, which also contains CMOS, the program

DELILA is used.

2.1.2 Abstraction With Respect To Layout-verification.

In the Mat. Lab., research group Digital Circuitry and lemories, a CAD
tool-set has been developed to assist a designer 1in hierarchical
verification of CMOS layouts. It also helps the designer in placing and

checking of interconnection fields. With the help of a layout-extraction

- 20 -

ABSTRACTION AND HIERARCHY CONCEPTS Page 2-4

program, a net description is made out of an interconnection field and a
placement of submodules, in the description language of SIMCN. The
terminals in the layout have a one-to-one relationship with the inputs and
outputs of a networkdescription of the same module, and of power-supply
lines. The areas of submodules are recognised by the program with the help
of a mask 2D, that 1is not projected on silicon. It covers most of the
details of the module, except for a, on purpose, selected set of external
areas. The external areas are used to generate the terminals of the module
in an automatic way. External areas in the interconnection-masks 1IN, PS
and OD are grown by a small factor and ‘anded’ with the domain description
in ZD. With this overlap area, a terminal is made in the helpmasks ZI, ZP
and 20 (Fig. 2.3).

domain in ZD ZD ZD

external IN | 1 terminal
/] area v ' in ZI
Z =, 4 1
grow =-f----' terminal
and assignment

Fig. 2.3. Generation of terminal-points in ZI, ZP or ZO
from domain (ZD) and overlap areas in Termdef.

The next step is the assignment of a name to these terminals. In an
interactive session with the designer, a cursor is automatically adjusted
on top of the generated terminals. The designer is asked to assign a name
to that terminal, that is selected from the existing network-description.
Terminals can be defined of type input, output or power. Input and output
terminals are read from the 1/o 1list of the network description.
Power-supply terminals can alsc be named and declared of type power.

The placement of the domain area in mask 2D is, in this approach, seen
as an intelligent action. Terminal generation in masks ZI, ZP and 70 is

- 2] -

ABSTRACTION AND HIERARCHY CONCEPTS Page 2-5

done in an automatic way. Name assignment to terminals is also
straightforward: only names from a network-description and power-supply
lines have to be selected. An additional feature of the program 1is the
placement of information in the plot of the module. This gives better

readable plots and serves as a documentation aid.

2.1.3 Abstraction In DELILA

The program Delila is a CAD tool for the generation of symbolic layouts
and 1is described in [STR 81]. The basic design module in Delila is the
UNIT. Within a unit, free layout is possible and is checked with detailed
layout-rule checks. The connection points to the unit have to be placed cn
coarse grid. A symbolic representation of the unit is made when the layout
is finished. A chip is composed of (up to 200) units, interconnected by
wires in maximal 3 connection layers. Wires, vias and active devices are

represented as stick-diagrams on a coarse grid. Fig 2.4 shows a layout of

a unit, A ®

A
o - o - = i
) |
! t
I' ?
| =

&

Fig. 2.4. Example of a Delila UNIT.

Both NMOS (interlace dynamically-latched logic) and Bipolar (IIL) layouts

can be made with this CAD tool. A large library of standard functions is

available.

The abstraction is described by so-called protective outlines. These

are fences around a unit in the 3 connection layers, and in a special mask

ABSTRACTION AND HIERARCHY CONCEPTS Page 2-6

XG. Connection to a unit is made to contact-points on the edge of a
protective outline. In Delila, it is essential that every design unit has
a network-~description in SIMON and a CMSK layout-description of the same
nane. Units are not allowed to overlap. There must always be one grid
distance between two adjacent cells. This is a simplified check compared
to the check of all layout-details. Global wires can be placed by using
through-routes or throuts. Contacts are placed on hoth sides of a unit.
They may be internally interconnected when no protective outline between
these 2 points is specified. The interlace logic is placed on coarse grid
and is (logically) checked.

An interesting wutility in Delila is the automatic generation of
SUPER-UNITS . Its protective outlines are generated from the outlines of
sub-units, the interconnect, the active devices and the wvias. The
information for the contacts to a super-unit is derived from the
network-description. The algorithm for outline generation is
straightforwérd. An inventory of occupied grid-points is made, followed by
some operations. A, built-in, parameter is used to smooth the edges of the
protective outline by searching indentations. E.g., the indentation area
between 2 grid-points is assigned to the outline area. An other control
parameter is the number of edges, that may appear in the outline

description.

2.1.4 Some Observations

From this review of abstraction mechanisms in existing CAD tools, we can

state that there are two general principles used in abstraction:

- 23 -

ABSTRACTION AND HIERARCHY CONCEPTS Page 2-7

o The first one is a fence around the module, that may not be crossed by
elements from the environment. In literature, many exotic names are

given to this fence:

domain Voila and Termdef
protective outline Delila
bounding box hierarchical design-rule

checker [WHI 31]
protective frame Berkeley [ELL 83]
shadow MDS (IBM) [WOL 81]

bounded cell representation 1iP [TUC 82]

o The second abstraction principle is the existance of openings 1in the
fences., They enable the module to communicate with the ‘outside

world’. An other anthology:

terminal Voila and Termdef

port REST [MOS 81]

connection point Mulga [WES 81] and at 1P [TUC 82]
contacts Delila

pins

2.2 AN OTHER HIERARCHICAL CONCEPT

Rowson [ROW 80] reports a different approach for the description of
hierarchies at Caltech University. A separated hierarchy is used, that
consists of leaf-cells and composition-cells . Leaf-cells are the ‘atomic’
units, that contain real mask-data; they contain no copies of other
leaf-cells. Composition-cells only contain names of leaf-cells and other

composition-cells. The composition~cells contain no mask-data for the

- 24 -

ABSTRACTION AND HIERARCHY CONCEPTS Page 2-8

interconnection of subcells. Instead, they contain an algorithmic
description for the interconnection, that is called a composition rule.
Rowson shows that hierarchies (and thus composition rules) can be described
mathematically by using Lambda calculus. Their philosophy is to make VLSI
chips by construction and not by afterwards-testing (as is the case in many

American Industries).

2.3 EQUIVALENCES BETWEEN HIERARCHIES

When two persons are decomposing a complex problem, it is very unlikely
that they will produce the same hierarchies. When layout and network are
decomposed in different hierarchies, consistency checking can only be done
when the two hierarchies are equivalent. Rowson distinguishes three types
of equivalences between hierarchies: identical, functional and

topological.

Identical: "Two systems are equivalent only if every cell in every
level of the hierarchical tree composes the same instances of the same

cells with the same interconnection."

This is the strictest definition and is applied in VOILA. The hierarchical
description of the layout-modules must be the same as the hierarchical

’
description of the network., This is a necessary condition for incremental

connectivity-checking.

Functional: "Two systems are equivalent if, given the same input

sequences, they produce identical output sequences."

This definition is too wunrestrictive. As an example, a CPU can be
implemented on silicon in two ways. The first one is the result of a

functional decomposition. The CPU is subdivided in ALU, MMU, Registers

ABSTRACTION AND HIERARCHY CONCEPTS Page 2-9

etc. and these functions are mutually interconnected by busses. The
second implementation is the result of a decomposition per bhit. A
bit-slice 1is made in which the functions of the ALU etc. are distribed to
each bit. Slices are connected by abutment. Both hierarchies are

fundamentally different, but not according to the second definition.

Topological: "Two hierarchies are equivalent if the hierarchies that

define them result in identical compositions of the identical leaves."

This means that the systems can be compared with each other, when the two
hierarchies are '"flattened-out"; i.e. described on one level with no
hierarchy at all. The "flattening-out" process is implemented e.g. in

layout—-extraction programs.

- 26 -

CHAPTER 3

SEMANTICS OF THE VOILA ABSTRACTION

This chapter gives an overview of the properties of the VOILA
abstraction: domains, terminals and drawings. The syntax definition of
VLDL, that is necessary for the definition of the abstraction of a module,
is drawn in graphs 1in appendix A. In this chapter, the VLDL syntax is
interpreted and further explored. Some applications of the use of

abstraction will be given,

3.1 PROPERTIES OF DOMAINS
The function of domains can be summarized as:
"Domains claim an area in the layout".

Domains can be defined in any process-mask with any geometric primitive.
The set of areas 1in all these masks defines a 3-dimensional surface, in
which the local subtask of the module is executed. Within each mask, a
domain 1is described as a 2-dimensional area (Fig. 3.1). The domain area,
in e.g. the PS mask, is called: "Domain in PS".

Domains of 2 separate modules may touch, but NOT overlap.

The usé of domains requires 2 extra sets of design rules. They are
called modular design-rules and can be derived from one set of

technological rules. As an example, the modular design-rules for a

- 27 -

SEMANTICS OF THE VOILA ABSTRACTION Page 3-2

Yy

IN
Co

s
SD/

Fig. 3.1. A 3-dimensional representation of a domain in the

several masks of an NMOS process.

- clearance of 4 um between 2 IN elements are (Fig. 3.2

l. IW detail to IN detail = 4 um.
2. IN detail to IN domain = 2 um.
3. 1IN domain to In domain = 0 um.

eIN IN detail vs. detail

ZIN > INE‘ detail vs. domain

\
1
¢ . .
+IN > IN'r domain vs. domain
|
‘\————.! OPmIl_ ‘\
Fig. 3.2. A modular set of design-rules can be derived from one

technological design~-rule.

When the domain border is chosen as half the minimum c¢learance-distance,

the minimum clearance rules are always obeyed. (Fig. 3.3).

- 28 -

SEMANTICS OF THE VOILA ABSTRACTION Page 3-3

P T T T 1

—_———— e —— “——— domaininIN
r d/7 i |
| ' |
: 5|4/ |

21772 : I
| - IN detail |
| | [|
I I ' |
L e -
domain of cell A domain of cell B

Fig. 3.3. Touching domains guarantee mininum clearance-distances

(d) between two layout-elements,

Domains serve as an abstraction mechanism: they are never printed on
silicon. It is even possible to define no domain at all for a module. The
technological structures on the chip will remain the same, with or without
a domain. The contents data of such module is no longer protected and is
considered as global or common to the environment. The efficiency of the
hierarchical verification-tools will decrease (and the necessary CPl-hours
increase) due to expansion of all instances of the module.

Domains ensure that no elements from the environment intrude in the
module, There 1is, however, one exception to this rule. A layout element

is allowed to cross a domain border when a terminal lies near this Dborder

(Fig. 3.4).

terminal in OD

B
: (////J

— e e e = — -

domain in 0D

) OD interconnect

Fig. 3.4. Interconnection wires are allowed to cross a domain

boundary at the place of a terminal.

- 29 -

SEMANTICS OF THE VOILA ABSTRACTION Page 3-4

Every domain border must have a Manhattan (or orthogonal) boundary.
This eases the transformation of a geometrical pattern to a symbolical
cell. The size of the dormain area remains the same for both descriptions,
Slanted boundaries in the contents part must be made orthogonal.

Domains may be non-connected. This means that wunused areas can be
filled by the environment. MNMore specifically, this area can be uged by the
next higher module in hierarchy for interconnection purposes. Vias and

wires can be placed in this area (Fig. 3.5), and this leads to dense

packed circuits. .
IN[]interconnect

r—————1 e |
[I | !
[l PS g |
I . . | |
| L ___’VIU | |
| | | |

| | |

i
L___é ______ J Lf___.__.J
terminal |
inal in IN \\/’\J,domain in IN of cell A

Fig. 3.5. Non-connected domain-areas allow ease of interconnect.

There are 2 extremes in the definition of a domain:

l. The most simple domain is a bounding box. This is a rectangle, that
encloses all layout elements with a distance of 0.5%d. (d is the
minimal, technological, spacing between 2 elements). A maximum Ilevel
of abstraction is reached, resulting in a huge data-reduction and high
efficiency of checking tools. The price to be paid is a considerable

loss of lavout area.

- 30 -

SEMANTICS OF THE VOILA ABSTRACTION Page 3-5

2. The most complex domain is built from the set of all layout details of
a module in the following way. All details are approximated by
Manhattan counterparts and expanded (grown) with a factor 0.5%*d. This
domain description gives no loss of silicon area, but no data-reduction
is achieved. Data is in fact copied to another place. The price to be
paid this time is a decrease of efficiency of CAD-tools and an enornous

claim on computer menmory.

Both altermatives are not acceptable; a compromise 1is somewhere in the

middle and is the subject of this work.

3.2 PROPERTIES OF TERMINALS

The function of terminals can be summarized as:

"Terminals give all possibilities for a module to communicate with its

environment."

Parasitic couplings are not taken into account. In contrast with
domains, terminals are a part of the realization of a module and will be
printed on silicon. This means that they don’t have to be redeclared in
the contents part of a module. They can be defined in any mask and with
any geometric primitive, Terminals in VOILA are restricted to have
Manhattan boundaries. Terminals can be regarded as 2 or 3-dimensional
areas, that are shared by the module and its environment.

Terminals of a module can have their counterparts 1in the inputs and
outputs of a network-description or in global power-supply lines. The
location of terminals may be anywhere in the layout, relative to the domain
border. This means that they are even allowed to cross that border. A
useful terminal however, must be connectable from its environment. It 1is
connectable 1if it is located on less than 0.5*d distance within a domain

- 31 -

SEMANTICS OF THE VOILA ABSTRACTION Page 3-6

Fig. 3.6. Terminals may be defined anywhere, relative to the

domain boundary.

This observation enables a large freedom in the definition of domains
and terminals. Terminals can be defined before or after domains. The
shapes of domains however, will be different 1in both cases. Domains
protect the contents data of the module; not the terminals. Fig. 3.7

gives some examples.

aji omain b
t//L_—‘“l)/ 7 ’d_oinc_u_r___'
| .
terminals ' terminols: '
l ' 2 I
NS, | R ,
I i r— - -]
| l | |
’ |

Fig. 3.7. Domain generation before terminal generation (a) leads

to different domain shapes than domain generation after

terminal generation (b).

When a terminal is fully surrounded by a domain area, and the distance
to the domain boundary is greater than 0.5%d, it is not connectable in that

mask. As an example, Fig. 3.8 shows that such terminal can only be

SEMANTICS OF THE VOILA ABSTRACTION Page 3-7

connected via the third dimension. The PS terminal makes contact with a

metal wire via a contact-hole.

Z IN ¢ /

CO >

4 7/

e terminal 7
7 . Ve
¢l _domaininPS __ 7

Fig. 3.8. The terminal in PS can only be connected via the

third dimension (via CO and IN).

The terminal part of a module may be emptv. In this way, the contents
of a module can be fully isolated from the environment. Alignment and
identification patterns are examples of modules without terminals. When no

domains and no terminals are defined, all data of a module is considered as

global.

Two applications can be given for terminals.

l. Terminals are means for the connection of a module

2. Terminals can be used as a geometrical coupling of common areas.
Examples are the buried layer in IIL, that is used as ground, and the
p— or n-well in CMOS; they must be connected to ground or VDD. In
these applications, the wuse of terminals leads to dense packed

circuits. Fig. 3.9 gives an example of conventional connection and

connection with terminals.

- 33 -

SEMANTICS OF THE VOILA ABSTRACTION Page 3-8

Fig. 3.9. Terminals, used as a geometric coupling, lead to

dense packed circuits.

Two extremes can be distinguished in the definition of terminals.

l. The most simple terminal is a contact-point on the edge of a domain

border.

2. The most complex terminal is the set of layout-elements, that belongs
to one equipotential net. For deriving such terminal, knowledge of the

connectivity of the technological process is indispensable.

Terminals should be as simple as possible to achieve a maximum of
abstraction.

Terminals, connected to the same net are called electrical equivalent.
They can be grouped in a signal. Terminals in a signal may be interchanged
in the lavout. The designer has the responsibility for the nmnutual
interconnection of the terminals within a module. Signal terminals are
called subcell-connected. Single terminals of the same name must be
interconnected in the environment of the module; they are

supercell-connected (Fig. 3.10).

- 34 -

SEMANTICS OF THE VOILA ABSTRACTION Page 3-9

signal

dot(ps; x1, yl); dot(ps; x1, yl) : input;

dot(ps; x2, y2) dot(ps; x2, y2) : input;
end : input;

terminals are terminals are
subcell=-connected supercell-connected

..4

X X pa

module A_ module

Fig. 3.10. Terminals can be subcell or supercell connected.

The freedom of making contact to .a terminal can Dbe restricted by
assigning a class to a certain terminal. It can be compared with the TYPE
mechanism of a variable in Pascal. Terminals of the same class may only be
connected to each other. As an example, a terminal of class VDD may not be
connected to a terminal of class VSS. A connectivity-checker can detect
this catastrophic short-circuit long»before a simulation of the circuit,

that is fed with data from a layout-extraction progran.

3.3 ©PROPERTIES OF DRAWINGS

Drawings present a module in a graphical way. Layout-primitives are
described in color-masks, that will not be printed on silicon. Drawings
allow the designer to place graphical comment in the layout; e.g. the
names of interconnect wires. The identification of a module can also take

place in the drawing part. What kind of information is necessary?

1. Information about the function of a module. The name of the module

should appear in the drawing part.

- 35 -

SEMANTICS OF THE VOILA ABSTRACTION Page 3-10

2.

the

Information about the placement of a module 1in the layout. The

designer should have mirroring and rotation information at a first

glance. A non-symmetrical symbol can be used for this purpose.

Information about the abstraction of a module. Domain and terminal
data can be usedas graphical comment or careful selected symbols can be
defined. E. g., in bipolar layouts, it is tradition to indicate a
collector with a plus, an emitter with a small rectangle and the base

with a cross.

In summary, the properties of the abstraction of modules in VOILA are

boundary conditions for the generation of domains, terminals and

drawings of a module.

- 36 -

CHAPTER 4

SOME THOUGHTS ON ABSTRACTION

This chapter gives some indications of how domains and terminals can be
generated. It is shown that the knowledge of the designer Iis
indispensable. This leads to an interactive approach of assigning domains

and terminals to a module. Finally, some user requirements are drafted.

4.1 THE SHAPE OF DOMAINS

Three criteria can be distinguished in the assignment of a domain to a
module.

The first criterion is based on economical reasons., The shape of a
domain area 1is dependent of the expected volume of production: large
production-volumes require a dense packed chip-area. The domains of all
modules must be placed tight around the modules. The shape of a domain is
also dependent of the speed of introduction of an IC to the market. Fast
market=introduction implies a short design-tine. This means that
floorplanning techniques must be used, in which the, rectangular, shape of
domains is determined beforehand. |

The second criterion is based on the number of layout-elements in a
module. The shape of the domains of complex modules mnust be more
rectangular than those of primitive modules, to achieve any data-reduction.

The place of the module in the layout is also of interest. Modules, placed

- 37 -

SOME THOUGHTS ON ABSTRACTION Page 4-2

in a regular matrix must have a more tight domain. Modules on the edge of
a chip can have a more rectangular domain.

The third criterion is the the design-style (gate-array, standard-cell
etc..) that is used. Standard-cell design e.g., requires a uniform height
of the layout-modules. The domain shape must be rectangular.

In general, the description of the abstraction of a module should be as
simple as possible. Holes and indentations in the domain description are
not forbidden, but should be avoided. A good measure of the complexity of

a domain is the number of edges of the domain area.

4.2 DOMAINS OF COMPLEX MODULES

For complex modules, manual generation of domain boundaries is a tédious
job. A domain boundary can also be generated from existing mask-details.
Layout-elements are ‘grown’ in size, merged and ‘shrunk’ back. The grow
and merge operation have the effect that holes in the domain description
are filled. The shrink operarion takes care for a tight boundary around
mask-details, at 0.5%d distance. A large value of the grow factor has the
effect that a boundary polygon is generated. A small value of the grow
factor will result in a more complex description. It will give the
designer more flexibility in using unused areas in a mask.

Automatic generation of domains has a draw-back: it is possible that
some terminals cannot be connected anymore in the same mask. The algorithm
should only be applied in an interactive environment, in which the designer

can choose an optimal shape of the domain.

- 38 -

SOME THOUGHTS ON ABSTRACTION Page 4-3
4.3 GEOMETRIC AND SYMBOLIC DOMAINS

A domain is, according to its definition, an area, that is occupied by a
layout-module and guarantees the locality of a mwodule. This is the
definition of a geometric domaim and is a minimal definition. In the
layout, there exist areas that may not be occupied by elements in a certain

mask. Fig. 4.1 shows the situation, in which the OD-area is

[=]

forbidden area for PS interconnect.
=
! 1
| l
] - T T
I I
oD | PS |
| |

o .

forbidden are? domain

for PS

Fig. 4.1. A domain in PS should also contain forbidden areas

for interconnect in PS.

PS details would disturb the structure within the module by creating a
parasitic capacitor or transistor. A design-rule checker will give us a
warning, but it would be convenient if this forbidden OD-area was visible
in the PS domain. 1In this way, the designer only has to pay attention to
PS interconnect and PS5 domains. ¥nowledge of possiblé interconnection
areas can be achieved without knowledge of details in other mask-layers.
The chance of making errors can be reduced. The domain area, that contains
also forbidden areas of related masks, is called symbolic domain. In my
restricted time, I have chosen to implement only the geometric domain

generation,

- 39 -

SOME THOUGHTS ON ABSTRACTION Page 4-4
4.,3.1 Estimation Of Forbidden Areas

The forbidden areas can be derived from a design-rule matrix. The
diagonal elements in this matrix indicate the minimum clearance between two
elements in one mask-layer. The existance of an off-diagonal position
indicates that a relationship exists between two elements in different

mask-layers (Fig. 4.2.).

| 0D | PS | IN
I i |

op | * | * | -
| | I

PS | % | * | -
| | I

N - | - | *
| |

Fig. 4.2. Example of a design rule matrix

The off-diagonal positions indicate forbidden areas for both masks. For
example, a relation between 0D and PS means that OD is forbidden area for
PS interconnect, and PS 1is forbidden area for OD interconnect. The
following algorithm can be used for the determination of a symbolic domain

in e.g. the PS mask.

l. Make a geometric domain as mentioned in the previous chapters. The

domain boundary lies at 0.5% distance(PS-PS) from the PS details.

2. As can be derived from Fig. 4.2, the PS mask has a relation to the 0D
mask. Generate a geometric domain of the OD mask with a domain

boundary at (.5*% distance(OD-PS) from the OD details.

3. Merge the two areas. The result is a symbolic domain in PS, that

covers all PS details plus the forbidden areas for PS.

- 40 -

SOME THOUGHTS ON ABSTRACTION Page 4-5
4.4 DOMAINS OF CONTACT-HOLE AND INVERSELY PROGRAMMED MASKS

To ensure the locality of a module, all layout details should be covered
with a domain area. Contact-holes are placed very sparse in the layout. A
bounding box description as a domain, can give too mwnuch 1loss of layout
area. A small value of the grow factor gives us a grown copy of all
details. We have not achieved any data-reduction. The best alternative is
to apply the grow/merge/shrink operation with a very large grow factor.
This results in a bounding polygon description as domain for the
contact-hole masks.

Domains of contact-hole and implantation masks can be grouped in a
mask-list, to achieve more data-reduction. It contains, in fact, the
logical OR of thé domains of non-metallization masks.

Both im MOS and in Bipolar processes, it is common use that masks are
used to define areas, where no implantation or diffusion may take place.
Fig. 4.3 shows an example of a polysilicon area, in which a low-doped

resistor area is connected with two low-ohmic contact-heads.,

SP

p'head |presistor| p'head| PS

Fig. 4.3. Definition of a p-type resistor in polysilicon

with a normal and an inverse programmed mask.

It can also happen that the, inversely programmed, masks are used to reduce
the amount of layout-details. At mask-generation time, a negative exposed
process-mésk can be obtained. These two inversions give us the mask, that
was originally intended.

The domains of inversely programmed masks are treated in the same way as

- 41 -

SOME THOUGHTS ON ABSTRACTION Page 4-6

normally programmed masks. The absence of an implantation step determines

the internal structure of a module and must hence be kept 1local to the

module!

4.5 AUTOMATIC VS. INTERACTIVE TERMINAL GENERATION

As stated before, terminals are hidden in the contents part of a module.
If the positions of the terminals have to be generated in an automatic way,
knowledge of the internal structure of a module 1is necessary. The
structure of a module can be captured in a network graph. Two graphs are
needed; one is derived from the network description, and another is
derived from the actual layout of the circuit. The graph from the layout
is derived from a hierarchical description of the layout-module. For
primitive patterns, the graph is construéted from a transistor description
of the module, that is made by a layout-extraction program. A comparison
of both network topologies 1is necessary to search for possible terminal
locations. Topologies, derived from layout and network, can differ; one
or more topology-transformations may be needed. Some class of circuits can
only be compared by computer simulation. Examples are circuits with analog
tricks: driver—~circuits in MOS are described as inverting (or
non-inverting) gates. The actual implementation in the layout can contain
up to 10 transistors.

Suppose that the topologies are the same. The question arises which
part of the equipotential net should be declared as terminal? This problem
is very complex and can only be solved in some cases with rigid
assunptions. Terminals could, for instance, be chosen as contact-points on
the edge of a domain boundary. This means that a subset of a net is
declared as terminal. For primitive patterns, small rectangles can be

used, as in the LSI-shop. Terminals are often used to share busses aund

- 42 -

SOME THOUGHTS ON ABSTRACTION Page 4-7

global power-supply lines. Lines, running across a domain boundary, from
one end to another can be used. In standard cell design, with a wuniform
height of the modules, it is known in advance where connection is made to a
module. Contact to another module is made by abutment. This knowledge can
only be applied in this special case, but no general statements can be
derived from it.

It is clear that the knowledge of a designer is necessary. He has, in
fact, the whole connectivity of the module in his mind. le knows exactly
the positions, where a module will be connected. In contrast to a
designer, a computer program only knows the interior of a module and is
forced to use brute computing-power to get 1insight in 1its structure.
Terminal generation should be done in an interactive way; tlie computer
program asks the designer the right data at the right moment. The designer
however, holds full responsibility for making the terminals. The program

can only give warnings and directions.

4.6 STANDARD CONTACT PATTERNS (OR VIAS)

A commonly used layout-practice is the use of standard contact-patterns
(or via cells). Within such pattern, all layout~details satisfy the
design-rules. This has to be checked only once. All instanciated patterus
are correct. In VOILA, a connection to a terminal can also be made with a
via rodule. This is a special module, that contains no contents part. All
layout-data 1is placed in the terminal-part and 1is, according to the
definition, part of the realization of a module. It is not advisable to

!
specify a domain for a via module. The domain of the via module and the
domain of the module to be connected are not allowed to overlap.

Furthernore, this would prohibit domain generation before terminal

generation. A disadvantage could be that no slanted boundaries may appear

- 43 -

SOME THOUGHTS ON ABSTRACTION Page 4-8

in the terminal part.

4.7 THE USER REQUIREMENTS

As can be summarized, both domains and terminals must be made 1in an
interactive way. The designer knows the internal structure of a module and
knows how the module will be connected to the ‘outside-world”, This
knowledge 1is very difficult to formalize and would require a large
overhead. At all stages, the user must have full control over the
generation process., The computer program can only give directions and
propositions. The propositions can be changed by giving extra information.

When the user asks for a tight domain, all areas, that can be wused for
interconnection purposes may not be joined to the domain area. On the
other extreme, it must also be possible to make a bounding box in a certain
mask.

In case of terminal generation, existing lavout-elements from the
contents part must be selected. These elements must be named and declared
as terminal. It must also be possible that terminals can be generated
without the existance of a network description, The wuser has the

responsihility for generating domains and terminals,

- 44 -

CHAPTER 5

SPECIFICATION OF DOMAIN AND TERMINAL GENERATION

This chapter gives an overview of the envirooment, in which JOJO is
embedded. The interfaces to both VOILA programs and the users are
described, But first, a specification of the domain and terminal

generation is given.

5.1 SPECIFICATION FOR THE DOMAIN GENERATION

Domains of modules must be defined mask-by-mask. Only those masks can
be selected, that have not vet a domaiﬁ description. The shape of the
domain boundary can vary from a minimum'éircumscribing rectangle (or
bounding box) to a, Manhattan shaped, boundary polygon. The polygon is
generated by a “breath’ operation: all relevant layout-details are made
orthogonal first, then ’grown’ in size, merged and ‘shrunk’ back. The user
has a free choice for the value of the grow factor.

A lower bound on the value of the grow factor is estimated by the
following reasoning:

All areas, that cannot be used for interconnection purposes, must be
joined to the domain area of that module.
The minimum distance between two layout-elements, that allows the placement
of an intercomnect wire of wminimum width is: two times the clearance

distance plus the minimal width of that wire. Fig 5.1 shews that the

- 45 -

SPECIFICATION OF DOMAIN AND TERMINAL GENERATION Page 5-2

minimal grow-factor must be half this distance.

»*—¢ minimum width

e——>
gap gap

NG

Fig. 5.1. A lower bound on the value of qo is determined

by the gap-distance plus half the minimal-width.

The values of clearance distance and minimal width are derived from the
design-rules of a technological process. These design-rules must also be
available in the program. There is no limit on the wupper bound of the
value of the grow-factor. The shrink value is related to the grow value:
the difference is always 0.5%d. 1In this way, domains are always placed on
a minimal distance from the layout-elements, regardless of the value of the
grow factor.

Special care must be given to the shrink operation. The grow and merge
operation take care of an overlap of mask-details. This new, connected
area must stay connected in the shrink operation.

The designer is also able to alter the domain description, that is a
result of a ‘breath’ (grow-merge-shrink) operation., The domain description
can be made more abstract (or rectangular) by adding rectangles. lioles can
be filled and indentations can be smoothed (Fig. 5.2).

The last part of the generation of a domain area in a mask is an update

of the VIC data-structure.

- 48 -

SPECIFICATION OF DOMAIN AND TERMINAL GENERATION Page 5-3

- — 7 [:
| l e — - — _
hole | | -
| indentation
A
domain

boundary

Fig. 5.2, Addition of rectangles after a ‘breath’ operation

increases the abstraction-level.

5.2 SPECIFICATION FOR THE TERMINAL GENERATION

The terminals of a module are, in essence, made by pointing them out in
the layout. Layout-data is moved from the contents part of a module to the
terminal part. The user can help the program in two ways: he can give a
network-description of the nodule and he can give layout—-elements the name
of a terminal. A network-description gives the names of the inputs and
outputs of a module., Names of power-supply lines must be added to the i/o
list; they are not enumerated in the network-description. Cnly those
terminals can be defined, that have not yet a terminal description. All
orthogonal layout-elements, with the same name as the terminal, are
possible candidates for the terminal-assignment. Unnamed layout-elements
with orthogonal shape can also be selected. When no network-description is
available, the user can also define a new terminal name. It is treated in
the same way as a terminal name from the i/o list.

After this object-selection, a simple edit session, consisting of
creation and deletion of elements, can be started. In some cases, only a
part of a polygon is sufficient as terminal description. The designer can
add recténgles and dots to the terminal description. In this way, the
realization of a module can be altered. This gives no loss of generality;

wires and polygons are in fact built with sets of rectangles. Superfluous

- 47 -

SPECIFICATION OF DOMAIN AND TERMINAL GENERATION Page 5-4

elenents can also be deleted.

At last, the set of selected and created elements can be made permanent

by an update of the VIC data-structure. Elements, that were originally

selected from the contents part of a module, must. be deleted to

multiple declaration.

5.3 INTERFACE TO VOILA

avoid

The environment for the interactive generation of domains and terminals

is depicted in fig. 5.3.

keyboard tablet display

N) S

VIC

window scratchpad

interface : interface
software layout
defined
symbols data

JOJO
INIF modular designer

design-rules

Fig. 5.3. Relation of JOJO with other VOILA programs.

The next sections describes the relevant VCILA data-structures

interface programs,

48

SP

and

SPECIFICATION OF DOMAIN AND TERMINAL GENERATION Page 5-5
5.3.1 The VIC Data Structure

The layout-~data 1is stored in the VIC Nata-Structure. The VIC is defined
recursively, as can be seen in the syntax diagrams in appendix A.
Recursion does not occur by accident: a hierarchical defined layout
contains modules, that are nested in modules etc... . Recursion allows us
to write very compact search algorithms. There are many utilities in the
VIC for creation and deletion of records, and for the implementation of

fast search algorithms, by using hash-tables and circumscribing rectangles.

5.3.2 The Scratchpad Interface

The update of the VIC is controlled by the scratchpad interface. The
scratchpad 1is an intermediate storage-medium for layout elements. The
contents of the scratchpad is high-lighted on the layout screen of the
editor for Airect user-feedback. A set of utilities is available for
copying data from VIC to scratclipad, for modification of objects in the
scratchpad and for storing updates back to the VIC. Using these utilities
guarantees a correct VIC and supports the integrety of the design.

Real-time pictures are possible.

5.3.3 The Window Interface

This interface makes the interpretation of commands independent of the
hardware. Command-menus and layout windows can be created and displayed
automatically. Commands are translated to software-defined symbols. These
symbols are interpreted by a command interpreter , according to a cormand
language definition. The interpretation of commands results in operations
on the VIC; possible commands are create, delete, copy, move etcC...

Selected commands on the menu-screen are high-lighted for direct

- 49 -

SPECIFICATION OF DOMAIN AND TERMINAL GENERATION Page

user-feedback.

5.3.4 The INIF Data Structure

5-6

The logical description of a module is also translated to a binary

data=-structure, called INIF for Inverted Network Intermediate Form.

This

data-structure is needed for the names of the inputs and outputs of a

layout module. The 1INIF is not a one-~to-one translation of

network-description. It is net-oriented, which means that inputs

the

and

outputs of modules of the same net are grouped. As with the VIC, a set of

utilities is available to create and delete records, and to implement

search-algorithms.

5.3.5 The Modular Design Rules

An internal data-structure is built by J0OJO, that contains

fast

the

technological design-rules. Two functions operate on this data-structure:

the first one is called WIDTE, that computes the minimal allowable width of

an element in a certain mask. The second function is called DISTANCE;
computes the minimal clearance between two elements in the same and

different masks.

5.4 INTERFACE TO THE USER

To give the user a guide for tlie generation of domains and terminals

it

in

, an

interactive language is developed. Its syntax and semantics are described

in the next chapter. It contains some recepies in which the user can
commands and point to existing layout elements. The commands are ent

with a mouse on a graphical tablet. The input data from the tablet

give
ered

is

translated by the window-interface program to software-defined symbols,

- 50 -

SPECIFICATION OF DOMAIN AND TERMINAL GENERATION Page 5-7

that are interpreted according to the syntax of the interactive language.
A screen 1is reserved for command-menu display and selected commands are
high-lighted on the screen. A second screen is reserved for display of the
layout and of a real-time cursor. The input from graphical tablet is also
translated to coordinate values in the layout. The user must start JO0OJO

from the VOILA graphics editor.

5.5 PROPERTIES OF THE INTERACTIVE LANGUAGE

The language, for the definition of domains and terminals, is defined as
an LL(l) language. A parser of this language is based on the principle of
one symbol lookahead without backtracking . This weans, that the next
symbol to be read, gives enough information to determine the next state of
analysis. None of the steps have to be revoked later on. The parsing of
an LL(l) language 1is straight-forward and is described in full detail in
[WIR 76].

The parser of this language can be generated 1in a stepwise-refinement
way. A procedure 1is made for every production rule. In an interactive
design—-environment, a syntax violation may never lead to a stop of the
analysis of the language. An error-recovery mechanism is implemented in
the parser. Parsing constructs are embedded in while loops that will be
executed until the right alternative is chosen by the designer. In the
mean time, an overview 1is given of the possible alternatives of the
language.

As an example, the parsing of the following syntax description:

< Command > :== SCRATCH | KEEP

is given by
PROCEDURE Command;

VAR
oke : boolean;

- 5] -

SPECIFICATION OF DOMAIN AND TERMINAL GENERATION Page 5-8

BEGIN
oke := false;
WHILE not oke DO

BEGIN
IF sym = SCRATCH THEN
BEGIN
oke := true;
writeln(" Scratch command accepted’);
Getsym;
END
ELSE
IF sym = KEEP TIEN
BEGIN
oke := true;
writeln(‘Keep command accepted’);
Getsym
END
ELSE
BEGIN
writeln(’ Please give SCRATCH or KEFP:);
Getsym
EXD
EXD {while}
END {Command };

The procedure Getsym reads the next input symbol. It is available in the

variable sym.

CIIAPTER 6

IMPLEMENTATION ASPECTS

This chapter contains a description of the syntax and semantics of the
interactive domain and terminal generation language. It gives, in the mean

time, a short description of JOJO.

6.1 IMPLEMENTATION OF THE DOMAIN GENERATION

Dom_Generation

—(1) > m’@"’
T—‘ Dom _Operation l‘—]

Before the domain generation is started, some preprocessing work must be
done. An overview of the masks, that have no domain description, is given
on the menu-screen (1). Already existing domains must be modified in the
VOILA graphics editor. The layout-rules are read from an external
disk-file. 1In the next step, zero or more domains can be generated for one
of the 1listed masks on the menu~screen. When the domain generation is
left, an EXIT command must be given. A warning 1is generated, when some

masks have no domain description (2).

Dom_Operation

Generate_Operation i———v{Command}—>

The actual domain-generation operation consists of the selection of a

N

mask on the menu-screen (1fASK). The internal book~keeping is updated in

- 53 -

IMPLEMENTATION ASPECTS Page 6-2

(3). 1t is followed by a part, in which the user can define which kind of
domain shape must be generated. It is finished with a part in which a

command must be given.

Generate_Operation

mcr 4 —>

La<creote >

The generate operation is started by giving the commands MCR or BRFATH.
They generate a minimum circumscribing recténgle or a, more tight fitting,
set of rectangles. The set of rectangles defines the contents of a
polygon.

Starting with an MCR command, a scanner of the VIC is started in (4).
It expands wires, polygons, array constructs and instantiated sub-modules.
The two diagonal edge-points of the bouding box are estimated and the
resulting rectangle 1is expanded with a factor of (0.5*%*d. It is written to
the scratchpad and is automatically high-lighted.

When the user gives a BREATH command, a scanner is started, that selects
all relevant layout-data from the VIC (5). The layout-elements are made
orthogonal first. Appendix D contains the source listing in pseudo-code of
the implementation of the scanner. The contents-data of sub-modules, that
have a domain description, does not have to be expanded. Expansion of the
terminals of the sub-modules is however necessary; terminals are a part of
the realization of a sub-module that must be protected by the domain of the
next higher module in hierarchy. The contents-data of sub-modules must be
expanded when no domains are specified. This process must be repeated

until a, deeper neéted, module with a domain description is found.

~ 54 -

IMPLEMENTATION ASPECTS Page 6-3

Domains of sub-modules must be treated in a different way than elements
from the contents part. The grow and shrink values must be the same. When
the two values are not the same, a nested set of hierarchical defined

domain areas would result in non—connectable terminals (Fig 6.1).

f————
|
| FTTTT
| : grow value = ¢
wire ~?~t - r-@termincl shrink value = ‘f- zd
o
: L— - ——domain of submodule

L — —~——domain of main module

f——
! = Y
grow value =
wire - !-}—% terminal shrink value = ¥ - id

!_____ domain of submodule
and main module

Fig. 6.1, Different grow- and shrink-values of domains

may lead to non-connectable terminals.

After a BPEATH operation, the designer is also able to add rectangles to
the domain description, by giving a CRFATE command. Rectangles are
displayed real-time (RTPOINT) and are, when finished, moved to scratchpad
(6). Addition of rectangles allows the generation of a more abstract (or

more rectangular) domain shape.

Command

3§ (scrateh)

The description of the domain area is now stored in an intermediate

® Q

data-structure: the scrathpad (SP). It can be made permanent by an update
of the VIC with a KEEP command (8). The name of the mask is removed from

the menu-screen. A SCRATCH command will clear the contents of the

- 55 -

IMPLEMENTATION ASPECTS Page 6-4

scratchpad (7).

As an example, the following picture was taken from the menu-screen at

domain generation time,

oisploy: NGNS NUNY LIS
Give GRO actor PHI (um): ==3%,

VUUUUYUVUULUYUUUUUY

Min. PHI value [VINTSIVINIY]

4258 PS Dot | Domain
ad Lp | Terminal M PS
_ Ra | Drawing M 0D
- Contents M IN
@ s

DI

root:
S
d BTNy

Arrdef | Setbegin - Setend

i
|
|
: @ Areoc
|
I
|

Origin
Detail
Abstr. in window out
Susp

Suspsp "~ WK

Grid o

Three main parts can be distinguished in this picture:

1.

The part, marked with 1 gives an overview of the VCILA display
facilities. Coordinates of the origin of layout-modules and of the
cursor are displayed. Furthermore, window and 2zoom facilities are

available.

The second part gives an overview of the context setting. Operations
on layout objects can be restricted to domain, terminal, drawing or
contents part or a combination of the four parts. The same counts for
mask-selection, although this is not used in the domain generation. At
last, a set of object kinds can be defined on which operations must

occur.

IMPLEMENTATION ASPECTS Page 6-5

3. The third part shows the situation, in which for the IN mask, a
bounding polygon had to be generated. This was done via the BREATH
command. The minimum allowable grow factor 1is derived from the
layout=-rules (4250 nm or 4.25 un) and is displayed in the upper lekt
corner of the screen. We have reached the situation, in which the user

has entered a grow-value of 8,25 um via the key-board.

6.2 DOMAIN GENERATION ALGORITHM

The commands MCR and BREATH start a scanner of the VIC data-structure.
In appendix DI, a source listing in pseudo-code is given to illustrate the
operations, that must be performed. It also shows the recursive structure
of the scanner.

The algorithm for the determination of a domain area of module ! in mask
N wuses two lists (A and B) for the storage of layout-data. The two lists

are filled in the following way:

1. Take the contents-part of module M., Expand array-constructs, wires and
polygons. Slanted boundaries mnust be made orthogonal. Assign these

elements to list A,

2. In case of an instantiated sub-module, check for the existance of a

domain area of this sub-module. If it exists, add domain-~data to list

B.

3. Expand all terminals of the sub-module. Terminals are a part of the
realization of a sub-module and nust be expanded. Add this data to

list A.

- 57 -

IMPLEMENTATION ASPECTS Page 6-6

4., If there 1s no domain-description of a sub-module, expand all

contents-data of this module and add it to list A.

At point 4, we have reached in fact the situation of point 1. We have
created a recursive algorithm for the determination of domain-areas. The
scanner for the domain-generation uses global variables to keep books of
which layout part has to be expanded and to which list the data must be
sent, The next table shows a hierarchical defined module !}, in which three
sub-levels can be distinguished. An overview is given of the two lists, to

which the domain, terminal and contents data must be sent.

part | module sub sub=-sub sub—sub-sub

| M module module module
|

domain | - - list B -
l

terminals | - list A list A -
|

contents | 1list A list A - -

The ‘breath’ operation is implemented as:

l. Grow data from list A with a factor PHI

2. GCrow data from list B with a factor PHI - 0.5%d

3. Merge the two lists

4. Shrink the data of the resulting list with a factor PHI - 0.5%*d

A grow operation can be done without knowledge of layout-details in the
environment. This operation results in overlapping rectangles. A merge
operation is, in this algorithm, not more than a concatenation of lists A
and B. A shrink operation cannot be done without knowledge of
environment—~details. A shrink operation is a local operation that is even
capable of deleting some layout-data (Fig. 6.2).

- 58 -

IMPLEMENTATION ASPECTS Page 6-7

1

Fig. 6.2. A shrink operation on mask-data is a local operation

and can let some areas disappear.

Fortunately, the shrink operation is a standard VOILA utility, that is
also wused in the extension of mask-lists. The standard shrink-utility can
only handle orthogonal data, but this was obligatory in the definition of

the abstraction of a module.

6.3 IMPLEMENTATION OF THE TERMINAL GENERATION

The syntax and semantics of the terminal generation language are

described in this section.

Term_Generation

LLTerm_Operotion 1‘—]

Some preprocessing work must be done before the actual terminal
generation is started (1). The names of input and output terminals are
read from a network description, if it is specified by tle user. UNames of
power supply 1lines are added to the list. The names of those terminals,
that have not yet a terminal description, are listed on the menu-screen,
In the next step, zero or more terminals can be generated. An EXIT command
must be given when the terminal generation is left. A warning is
generated, when there are still some terminals not defined (2).

Term_Operation

—’{ Name _Select H Operation l—’{ Command }—7

- 50 -

IMPLEMENTATION ASPECTS Page 6-8

The actual terminal assignment consists of the selection of a terminal
name, followed by an operation, that allows simple editing on selected

layout~data. It is finished with a section where a command must be given.

Name_Select

:
Select_Elementth—J :
-] —

—name)—+(L)—r—Select Elements |

&

The selection of a terminal name can be made in two ways:

1. A SIGNAL command allows the selection of a name from the list on the
menu-screen. It originated from either network description or
power-supply lines. Layout-elements, with the same name as the
selected terminal, are moved to the scratchpad (3). The user can also

point to zero or more layout-elements in the lavout.

2. A NAME command reads a terminal name from the keyboard, in case of a
non-existing or non-complete network-description (4). The user must
select one or more layout—elements on the layout-screen. They are also

copied to the scratchpad.

The selection of layout-elements requires a context, that defines the
kind of element, that must be selected. The context consists of a mask,
the object-kind and a layout-point. OCnly one single mask can be selected
from the menu-screen., From the layout-element types, available in VOILA,
the following five types are allowed: dot, line-piece, rectangle, wire and
poly. The user must give a layout-point to start a scanner of the VIC (6).
Only elements, with orthogonal boundaries are moved to the scratchpad. The
name of the actual terminal is assigned to all scratchpad elements.

After the element selection, zero or more edit-sessions can be started.

- 60 -

IMPLEMENTATION ASPECTS Page 6-9

Select, Elements

i

Obj_kind

Operation

T

‘—’[C reate_Obj
L Delete_Obj

éé##ﬁ

An edit-session consists of a simple creation or deletion of orthogonal

elements in the scratchpad.

Create_Obj

2

r——' Object lﬂ—l

The creation mode of the edit-session is stérted with a CREATE command.
Zero or objects can be created in a certain MASK. The designer has the
ability to alter the realization of a module by creatin rectangles (RA) or
dots (DOT). The newly created elements are displayed real-time (RTPOINT)
an finally written to scratchpad (7 and 8).

- §] -

IMPLEMENTATION ASPECTS Page 6-10

Delete_Obj

—aetete D) —

Select_SP_Data

3

Select_S\P_Datc >
® -G

A delete command allows the user to remove superfluous elements from the

[N

A 4

sratchpad. The selection of elements from the scratchpad requires a

similar context as the selection from the VIC (SelecQ_Elements).

Command

G @
e

The scratchpad data can be made permanent by an update of the VIC with a

KEEP comnand (ll). The number of elements in scratchpad is counted. When
there is more than one element, a signal compound is built around all
elements. This 1indicates subcell-connectedness. Terminal elements are
‘denamed’ first, and the name of the actual terminal is assigned to the
signal compound. Selected elements from the contents part will be deleted
to avoid multiple declarations. The terminal name is removed from the
menu-screen,

The SCRATCH command clears the contents of the scratchpad (10).

As an example, the next picture was copied from the menu-screen at
terminal generation time.

The picture shows the situation, in which a SIGNAL command was given and
the terminal name VDD was selected. Layout—elements were moved to
scratchpad and the designer decided to start a CREATE session. Rectangles

(RA) in mask IN can be added to the contents of the scratchpad.

- 62 -

7.1

Exit

Display: |

VUUUUULUUUUYUUUUULUUY

vyvvuY

selected mask

InN INP1 | Domain
INP2 I Terminal M PS
ouT RSO 00T ! Drawing M 0D
I Contents M IN

AAAAAAAAAAAAAAAAAAA

......

origin: cursor:

ERTAE BSCRATCH POLY | —eem—mmmcmcmcccmmeem
Far ;

Setbegin - Setend

Origin
Datoil
Abstr. in window out
Susp

Suspsp " W (M
Grid

Area

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The layout-phase is tne most critical phase in the design of integrated
circuits., Hierarchical layout-methodologies must be applied to tackle
the VLSI complexity problem and to reduce the design time.
Hierarchical abstraction, as is supported by VOILA, reduces the amount
of detail, that must be handled at any time. Many lessons can be
learned from the Software-Crisis in the 1960“s. VLSI layout has a few
extra problems due to the two-dimensional character of the silicon

medium, in which the circuits have to be realized.

CONCLUSIONS AND RECOMMENDATIONS ' Page 7-2

*

In traditional hardware design, a minimization of the number of active
devices 1s made. In VLSI layout, an optimization of area and speed is

necessary; interconnect is more expensive than a few extra devices.

The domains and terminals are hidden in the contents description of a
module. Automatic terminal assignment is a very complex problem and
can only be applied in some special cases. Automatic domain generation
can lead to non-connectable terminals. The generation of domains and
terminals should be done in a combination of an interactive and
automatic way; the program gives propositions an the designer can
alter these propositions by giving more information. The designer nust

have full control over the generation process.

A language is developed for the interactive generation of domains and
terminals, It contains some recepies, that must be applied and leads
to an update of the VIC data-structure. The user can enter commands on
a graphical tablet with a mouse and point to existing layout-data.

The interactive domain generation allows the generation of a minimum
circumscribing rectangle (bounding box) and a bounding polygon. The
bounding polygon is made with a ‘breath’ algorithm: layout-elerments
are made orthogonal first, then ‘grown’ in size, merged and ‘shrunk’
back. The designer can choose the shape of the domain by giving a
value for the grow factor and by adding rectangles to the result of the

‘breath’ operation.

The terminals are generated, in essence, by selecting existing
layout-elements from the contents part and moving them to the terminal
part of a module. The wuser can help the program by giving a
network-description of a wmodule, in which the names of input and output

terminals are comprised. MNames of power-supply lines must be added to

- 64 -

CONCLUSIONS AND RECOMMENDATIONS Page 7-3

the list; they do not appear in the i/o 1list of the
network-description., The user can also help by assigning names of

terminals to existing layout-details.

* The domain and terminal generation languages are defined as LL{1)
languages. The parsers of these languages are equiped with an
error-recovery nechanism. This 1is indispensable 1in an interactive
design environment; syntax errors may not lead to a stop of the syntax
analysis. Parsing constructs are embedded in while loops, that wi;l be

executed until the right alternative is chosen.

* The domain and terminal generation are started from the VOILA layout
editor. In this way, standard wutilities could be used; €.3.
definition of commands on tle menu-screen, hardware independent input
and output of menus and layout data and the use of an intermediate

storage medium, the scratchpad.

* The performance of J0OJ0O, in case of the domain generation is hard to
measure. This 1is due to circumstances, that cannot be controlled by
JOJO. The first one is the existaunce of domains of sub-modules: they
determine if the details from the contents part of these sub-module
have to be expanded or not. The second one is the number of elements (
or complexity) of the domain description of sub-modules., A
bounding~box description greatly speecs up the generation process. The
performance of J0OJO, 1in case of the terminal generation, cannot be

measured at all, because it is a completely interactive process.,

- 65 -

CONCLUSIONS AND RECOMMENDATIONS Page 7-4

7.2

*

RECOMMENDATIONS

It seems convenient to me that a utility should be provided, for the
selection of terminals and interconnect~wires by name. The selection
by context (mask plus object-kind) is in some cases insufficient., At
the same time, an overview cof existing terminal-names should be given

with an indication of sub- or supercell counnectedness.

In the terminal generation, an extension of the names of the i/o list
from the network-description with ‘YLD’ and “VSS’ is implemented.
There is however, in the VIC a technology record, in which all global
signals are enumerated. The extension of the terminal list could in

fact be copied from this global signal-list.

It is very difficult to determine the terminals of a PLA module in
retrospect. A PLA contains no hierarchy at all: all standard library
patterns are placed in two 2-dimensional planes; the AND and the OR
plane. It would be convenient for the terminal generation if the
coordinates of the inputs and outputs were output of the PLA generator.
The designer has in fact put this information a priori in the PLA

generator,

The terminal-class concept is not implemented in the first version
terminal generation, It was not implemented in the first version of
VOILA. This powerful concept, and possible extensions should also be
implemented 1in the next versions of the terminal generation. The
designer must have the possibility to enter terminal-class names on the

keyboard and assign them to previously defined terminals.

- H6H -

CONCLUSIONS AND RECOMMENDATIONS Page 7-5

*

A lot of effort is put 1in the smoothing of indentations in the

domain-boundary.

_________ - - - - -17
L
2A

7 A

It is, with a “breath’ algorithm, impossible to assign area 2 to the

domain area. A large wvalue of the grow factor will result in the
disappearance of area | but not of area 2. A possible answer to this
problem 1is the estimation of a circumscribing rectangle and the
percentage of area 2 in regard to the circunscribing rectangle.

Surfaces, below a certain percentage, could be assigned to the domain

area.

To enable the generation of symbolic domains, it must be possible to
perform some boolean operations on the mask-data first, before a
‘breath’ algorithm is started. It seems also convenient to me to
define an area, in which a certain grow-operation could take place. In
this way, the user can trim the domain boundary locally, e.g. the
right side of the domain can be rectangular and the upper side must be

made with a ‘breath’ algorithm with a small grow factor.

In the actual implementation of JOJO, an ad-hoc solution for the
object-selection is chosen. The object-selection has difficulties with
the selection of elements, that are described in an array construct.
Elements are in fact copied to the terminal part, so in some cases a
double declaration of elements is made. The powerful object-selection

mechanism from the VOILA editor should be used instead. The problem of

array-splitting is solved here. An other advantage is that a user does

not has to work with a different object selection pechanism in domain

- 67 -

CONCLUSIONS AND RECOMMENDATIONS Page 7-6

and terminal generation.

* Hierarchical defined layouts have also a draw-back: a mnmodule must
always be connected via the next higher module in hierarchy. This is
quite reasonable for input and output terminals. For global
power-supply lines, it is not. If the power-supply line of a primitive
module in level n, must be connected to a module in level m, all

interconnect elements have to be copied in the intermediate m-n levels!

Level n

This restriction in VOILA does not occur in programming languages. The
scope of global variables covers an unnumerable number of sub-levels,
if the variable has not been redeclared in the mean time. It seens
convenient to me that a hierarchical scope of a terminal or global

signal could be defined to overcome the m-n multiple declaration.

* Wires, polygons and slanted rectangles are ‘rounded’ to a single
rectangle} An other approach could be the approximation by an

orthogonal polygon, in which the sides have a staircase shape.

*# No attention is given to the interactive drawing generation. The user
should have possibilities to place graphical comment in the layout of a
module. Some utilities of adding information about a functien of a
rodule, about the placement in the " layout and perhaps about the

abstraction should be provided.

CONCLUSIONS AND RECOMMENDATIONS Page 7-7

ol
=

This report contains no contributions to increase the design
testability in hierarchical defined systems. This is perhaps a nice

subject for further investigations.

In case of the automatic terminal assignment, knowledge of the internal
structure, and hence the coonectivity within a module, is necessary.
The connectivity is different in different technological processes. In
JOJO, the terminal generation is implemented in a pure interactive way.
There nust also be ways to apply some automation in this area. This is

perhaps also a subject for further investigations,

Eindhoven, 23 august 1984

1
Ol

- 69 -

[BER

[ELL

[IsC

[LAT

{LOS

[MIL

[0S

[NIE

[ROW

[SEG

83]

83]

84]

791

80]

56]

81]

83]

80]

23]

: Rowson, J.A., "Understanding Hierarchical Design ",

REFERENCES

: van Berkel, K., "VLSI-layout TLesign requires a New

Language", Proceedings ICCD 1983/ VLSI in Computers,
Hov. 1983.

Ellis, S.A. et al., "A Symbolic Lavout Desizn System",
Proceeding of the International Symposium on Circuits
and Systems (ISCAS), 1982, pp 670-€75

Suzuki, S. et al., "A 128 k VWord * 8 b DRAM", IEEE Int.
Solid State Circuits Conference, Feh. 1984, pp 106-107.
Yamada, J. et al., "A Submicron VLSI llemory with a
4b-~at-a-Time ECC circuit", ISSCC Feb. 1084, pp 104-105.

¢ Lattin, W., "VLSI Design Methodology, the Problem of

the 80’s for Microprocessor Design", 1lAth Design
Automation Conference Proceedings, San liego,

June 1979, pp 548,9.

: Losleben, P., Chapter 4: Computer Aided Design for

VLSI , in Very lLarge Scale Integration (VLSI): funda-
mentals and applications, ed. Barbe, D.F., Springer
Berlin 1980, Springer Series in Flectrophysics, 5.

Miller, G. A., '"The magical number seven, plus or
minus two : Some Limitations on our capacity for
processing information", Psychol. Review, Vol. 63,
1956, pp 81-97.

Mosteller, R. C., "REST, A Leaf Cell Desinn System'",
in VLSI 81, pp 163-172.

Niessen, C., "Hierarchical Tesign lethodologies and
Tools for VLSI Chips", Proceedings of the IEEE,
Vol. 71, No. 1, January 1983, pp 66-75.

Technical keport (Ph. D. Thesis), April 1980, Computer
Science Department, California Institute of Technology

Sequin, C., "Managing VLSI Complexitv", Proceedings of
the IEEE, Vol. 71, lo. 1, January 1983, pp 149-166.

7()

i

REFERENCES

[SIM

[SIM

[STR

[TUC

[vor

[WEI

[WEL

[WES

[WHI

[WIR

[woL

62]

84]

81]

82]

84]

7¢]

82]

76]

81]

Simon, M. J., "The Architecture of Complexity",
Procedure of the American Philosoptiical Society,
Vol, 106, Ko. &, Dec. 1962.

SIMON Usermanual 1984, Rel. 2.20 March 1984,
Philips-Elcoma Nijmegen, Valvo RFW Hamburg.

Stratford, R.I., "Delila - Design of Large Integrated
Circuits", European Conference on Electronic Design
Automation, Sept. 1981, pp 106-109,

Tucker, M. and Scheffer, L., "A Counstrainted DPesign
Methodology for VLSI", VLSI Design, May/June 1982,

pp 60-65.

Niessen, C. et al., "CAD for VLSI layout becomes reality"
PHILIPS internal prospect.

Losleben, P., "Computer Aided Design for VLSI", Chapter &4
in VLSI, ed. Barbe 1980, ref. 2:

Weimann, W., "VLSI Design at Motorola', 1979 Design
Automation Workshop.

: Welsh, J. and Elder, J.: Introduction to Pascal, second

edition, Prentice-Hall 1982.

: Weste, N. and Ackland, B., "A Pragmatic Approach to

Topological Symbolic Design', in VLSI 81, pp 117- 129,

Whitvey, T., "A Hierarchical Design Analysis Front End",
in VLSI 81, pp 217-225.

Wirth, N., chapter 5 in Algorithms + Data Structures =
Programs, Prentice-Hall, New Jersey, 1976.

Wolff,J.A. and Farr, E.C., "MDS - A Design Automation
System based on Macros'", European Conference on Electronic
Design Automation, Sept 1981, pp 272-276.

- 71 -

APPENDIX A

SIMPLIFIED VLDL SYNTAX GRAPHS

This appendix contains a selection of those VLDL constructs, that are
necessary for the generation of domains and terminals. At some points,
some simplifications were made. So these syntax ‘diagrams should not be
regarded as official VLDL syntax diagrams.

module declaration

——Km——;[identifier—)—-[body HenL}—-
—-»(patteMntifieM body end

body

—-——-)@—{object declaration part— @—n{domoin portj—‘l'j

-

—J-Q—r{ terminal port‘I———]'—[v@—-{ drawing part 1——1———
—-L@—»{contents part l—l—»

object declaration part

__,<dec_[qre >—-rﬁbject declaration H

C e
—U/t

object declaration

>

——— module declorctigl’;L—)

- 72 -

SIMPLIFIED VLDL SYNTAX GRAPHS

domain part

—-{gomqin stutementj—
e
NS

Y
>

J . .
7 simple domain statement 1,—

—{a rray prefixi—jdomain statement |—

domain statement

simple domain statement

|

F—
poly
array prefix
(array <) (> Linteger <)
(bound1) - . bound?)

‘-—{coordinate pair
(otfset)

terminal part

—(termino%r{ terminal stotementh%(engf*

e
A\ 4

terminal statement
LA signal statement | ——
'L equivalence declaration

equivalence declaration

(e)y—D)

—A logical numejF@—*
EgaV

a2/

- 73 -

Page A-2

Page A-3
SIMPLIFIED VLDL SYNTAX GRAPHS

signal statement —
—{ unnamed 559"‘“‘%?{ logical no@—i—*

ALV

unnamed signal

4’{0”0)‘ prefix J—’LiLterminaL}
—— signal)~ terminal | end)}————

L——»(gaigrucnl)——;r-!h'xrrcq/ prefix Hterminoﬂ—r—*{ end}-——-

AW
N/

terminal

reareie

.

———L—{;imple terminal - —s

simple terminal

dot * = only in cells
line piece”
rectangle

wire

Ji

{all manhattan-shaped)

- 74 -

SIMPLIFIED VLDL SYNTAX GRAPHS

drawing part
H drawing stoteme?ti—

 \
i/

drawing statement

7

—:{simple drawing statement ', —
—L{orroy prefixH drawing statement |———

simple drawing statement

—{ dot * T
—| line piece® — ¥ only in cells
-—){ rectangle *}——

— text T
—){unnomed call —

(all manhattan-shaped)

- 75 -

SIMPLIFIED VLDL SYNTAX CRAPHS Page A-5

contents part

—(begﬂ—,r—’r stotement1——

VAV
LS

statement .

\(\L

——{ unnamed statement logical name | >

¢ M
N2/

unnamed statement
—_simple _ statement |

-—-{arrcy prefix Hunncmed statement]-J

simple statement

—y{ dot *

—{ line piece *
— rectangle
L wire

—{ poly

—1 text

—> unnamed call

L compound statementt—! (arbitrarily shaped)

+ only in cells

fTTTTWJT

- 76 -

SIMPLIFIED VLDL SYNTAX GRAPHS Page A-6

mx
unnamed call

—call >—fidentitier = >—+my 3

(reflection modifier)

£

7

rot > integer]—@J coordinate pair }——-)@——v

{ rotation modifier) { placement modifier)

compound statement

coordinate pair

number () number

logical name

number > - i
3 unsigned integer unsigned integer

unsigned integer »—

digit o digit]-L

identifier >
. —>
H (max.15 letters
[digit | or digits)

——

- 77 -

SIMPLIFIED VLDL SYNTAX GRAPHS Page A-7

dat @ “ m 0 coordinate pcirJ—@—’

line piece

(o)D) s par+() 0

(G~ D—feom-ia]—)—fosrdpait—D—erapat—)

wire —
m “ o W = unsigned mmbi}]——’
o —D—

coord. pair

T D

text
—(text y-{string o, o,
~ (text pos.)
size =>—’[unsigned number o 0
{character pitch)

— mask id. |}—
cqm.
-m;——{color id. }————9
L3 mask-list id. !

- 78 ~

APPENDIX B

JOJO SYNTAX DEFINITION AND GRAPHS

The syntax definition of the terminal generation is defined as:

Term Generation > :== { < Term Operation > } EXIT

Term Operation > < Name_Select > < Operation > < Command >

Name_Select > SIGNAL { < Select_ Elements > } |

NAME

N

Select Elements > { < Select Elements > }

Select Elements > { MASK } { < Obj Kind > } { POINT }

Obj Kind > DOT | RA | LP | WIRE | POLY

Operation > { < Edit > }

Edit >

< Create 0bj > | < Delete Obj >

Create Obj > CREATE { < Object > }

Delete Obj > DELETE { < Select SP Data > }

Object > :== { MASK } [DOT { POINT } |

RA { POINT { RTPOINT } POINT } |

Select SP Data > { MASK } { < obj Xind > } { POINT }

Command > SCRATCH | KEEP

- 79 =

JOJO SYNTAX DEFINITION AND GRAPHS Page B-2

Term_Generation

L—{Term,Operotion It—-]

Term_Operation

——-{Name_Select HOperation H Commantﬂ——’

Name_Select

I—{Select_ElementL}i-J ¢

'F{Select_Elements T

-
3

Select Elements

L] Coomme 3 (o]

Obj_kind

Operation

|
Edit

r—’lgreote_ogl
L—{ Delete_Obj

JOJO SYNTAX DEFINITION AND GRAPHS Page E-3

Create_Obj

l.—i Object |l—|

—
>

Object

> ¥ dot > >
—
ra >

———Caamt

L

rtpoint

Delete Obj

delete s > >
Select_SP_Data

Select_§EDoto

L] Lerfommm + L@@

Command

> serateh >—(0—
— keep >——()—

JOJO SYNTAX DEFINITION AND GRAPHS Page B-4

The

numbers 1 to 11 in the syntax-diagrams relate to the actual

implementation of the terminal-generation programs.

Overview of actual procedures:

Initialize Term Gen

This procedure initializes the global data and reads a file with the
network-description of the layout-module. The inputs and outputs are
read and the power-supply names VDD and VSS are added to this list. A
comparison with the existing terminal-names is made. Only those masks
are sent to the menu~screen, that have not yet a terminal-description.
A list of named layout-elements is made for internal book-keeping.

Term_Close And Stop

Cenerates a warning on the menu-screen when there are still some
terminal-names left, that have not yet a terminal description.

Move Signals To SP

Moves layout-elements, with the same name as the name of the selected
terminal, to the scratchpad. It 1is displayed and high-lighted
automatically.

Get Name

RPeads a terminal-name from key-board in case of a non-existing or
non-complete network-description. The name 1is added to the VIC. A

field is created on the menu-screen and is high-lighted.

Set_Object Kind

Adjusts the internal book-keeping with the actual object-kind. This
object=kind is a part of the context for object-selection or
object=-creation.

Search Object And_Add To_SP

Starts the scanner of the VIC data-structure. Contents- details, that
coincidence with a given layout-point are named (the name of the
actual terminal) and moved to scratchpad.

Adq_Poinq_Tq_SP

In the creation mode, a terminal point in a symbolic cell 1is created,
nared and moved to scratchpad.

Makg_RA_Anq_Add To SP

A rectangle is created as terminal. Its size is displayed real-time.
When the second diagonal point is given, the rectangle is named and
moved to scratchpad.

JOJO SYNTAX DEFINITION AND GRAPHS Page B-5

10.

11.

Delete SP_Object

Selected and created objects can also be deleted from scratchpad. A
context of object-kind, mask and layout-point must be given.

Clea{_SP

Executes the ‘scratch’ command. The scratcpad 1is cleared and the
internal book-keeping is adjusted.

Movq_Contents Data To Term Part

Checks for the number of elements in the scratchpad. A signal-compound
(signal ... end;) is generated when there is more than one element,
Data, that originally resided in the contents-part is removed from this
part. Scratchpad data is moved to the VIC data-structure. The actual
terminal-name 1s removed from the screen,

JOJO SYNTAX DEFINITION AND GRAPHS Page B-6

The syntax definition of the domain generation is defined as:

< Dom Generation >

{ < Dom Operation > } EXIT

< Dom Operation >

MASK < Generate Operation > < Command >

< Generate Operation > :=

NCR |
BREATE [CREATE { POINT { RTPCINT } POINT }]

< Command > :== SCRATCH | KEEP

The numbers 1 to 8 in the next syntax diagrams refer to the
places in the language, in which the actual domain-generation
programs are implemented,

Dom Generctnon
:(:D—*@-—'
LrDom 0perot|o_|‘J

Dom_Operation

Generate_Operation }—-—’l Commund]——»

Generate_Operation

mcr 4

y
[a(create >

Y

\
z

Command

—serateh >—7)—
——keep >——(B)—

JOJO SYNTAX DEFINITION AND GRAPHS Page B-7

Overview of actual procedures in the domain-generation
Initialize Dom Gen

This procedure initializes the global data. It makes a list of masks
on the menu-screen, that are present in the contents-—part, but NOT in
the domain-part of the module. An internal representation of the
design-rules is made. Symbols for the domain generation are created on
the menu-screen.

Com _Close_And Stop

Generates an error message on the screen when there are still some
masks, that have not recieved a domain area.-

Find Ordinal Number

Makes a transformation of the symbol to the internal VIC mask-number.
Search MCR _And Add To_ SP

Starts the VIC-scanner, that adjusts the two diagonal edge-points of a
minimum circumscribing rectangle. The resulting bounding-box is moved

to scratchpad.

Breath_Anq_Adq_To SpP

Starts the same VIC-scanner, but makes now two lists. The first one
contains the layout-details and the terminals. The second one contains
the domains of sub-modules. It calculates and displays the lower-bound
value of the grow factor PHI and asks for an actual grow factor on the
terminal. The two lists are grown (with different grow-factors),
merged and shrunk (with the same factor). The last operation is done
with a standard shrink-algorithm. Data is moved to scratchpad and is
high-lighted.

Make RA And_Add_To_SP

Displays newly created rectangles on a real time base. When the second
diagonal point is given, the rectangle is moved to scratchpad.

Clear_SP

Executes the “scratch’ command. The scratchpad is cleared.
Store_SP_To VIC

Executes the “keep’ command. The scratchpad data is made permanent by

writing the domain data to the VIC. The mask-name is deleted from the
menu-screen.,

- 85 -

APPENDIX C

EXAMPLE OF A DOMAIN-GENERATION PARSER

This appendix gives an example of the parsing procedures for the
domain-generation. They were used for testing purposes with input and
output from keyboard-terminal. The actual programs interface with a
window-manager program, that takes care of the automatic translation of
coordinates on the tablet to layout-coordinates and syumbols on the
menu-screen. Kumbers, placed in brackets, indicate the places in the
parser in which the actual procedures are called. The numbers are the same
as indicated in the syntax diagrams in the previous appendix.

- 86 -

EXAMPLE OF A DOMAIN-GENERATION PARSER

The next program parses the domain-generation language.

PROGRAM Dom Generation(input,output);
{ This program parses the domain generation language }

TYPE
symtype = (SCRATCH,KEEP,EXIT,MASK,MNCR,BEREATH,
CREATE,POINT,UNDO);
VAR
sym : symtype;
PHI : integer;

PROCEDURE Getsym;

EEGIN
write(’Give symbol:");
readln(input,synm)

EXD;

PRCCEDURE Command;

VAR
oke : boolean;

BEGIN
oke := false;
WHILE not oke DO
BEGIN
IF sym = SCRATCH THEN
BEGIN
oke := true;
writeln(‘Scratch command accepted’);
Clear_ SP; {7}

Getsyr;
END
ELSE
IF sym = KEEP THEN
BEGIN
oke := true;

writeln(’Keep command accepted’);
Store SP To VIC; {8}
Getsym

EXD

ELSE

IF sym = UKDO THEN
oke := true

ELSE

BEGIN
writeln(’ Please give SCRATCE or KEEP:’);
Cetsynm

ERD

Page C-2

EXAMPLE OF A DOMAIN-GENERATION PARSER Page C-3

END {while}
END {Command };

PROCEDURE Generate Operation;

VAR
oke : boolean;

BEGIN
oke := false;
WHILE not oke DO
BEGIN
IF sym = MCR THEN
BECIN
oke := true;
writeln(MCR command accepted’);
Search MCR And Add To SP; {4}
Getsym— - - - 7
END
FLSE
IF sym = BREATH TLEN
BEGIKN
oke := true;
writeln(’BREATH command accepted’);
writeln(’ Give GROW factor PIil: “);
readln(PHI); .
Breath And Add_To SP; {5}

writeln(’You can give CRFEATE to add rectangles’);
Getsym;
IF sym = CREATE THEN
BEGIN
Getsym;
REPEAT
Getsym;
writeln(’Rectangle will bte generated’);
Make RA And_Add To_ SP; {6}

GCetsym
UNTIL sym <> POINT
END
END
ELSE
IF sym = UNDO THEN oke := true
FLSE
BEGIN
writeln(’ please give MNCR or BRLATH’);
Getsym
END
END {while}
END; {Generate Operation}

PROCEDURE Dom Operation;

- 88 -

EXAMPLE OF A DOMAIN~-GENERATION PARSER

VAR
oke : boolean;

BECGIN
oke := false;
WHILE not oke DO
BEGIN
IF sym = MASK THEN
BEGIN
oke := true;
Find Ordinal Number;
Cetsym; -
Generate Operation;
Command
EN
ELSE
LEGIN

{3}

Page C-4

writeln(’Give MASY. to enter domain generation or EYIT’);

Getsym
EXD
END {while}
FND; {Dom_Operation}

writeln(’ a UNDO operation could be performed now’);

BEGIN
Initialize Dom Cen; {1}
Cetsym; -7
WHILE sym <> EXIT DC
BEGIN
IF sym = UNDO THEN
BEGIN
Getsym
EN
ELSE
BEGIN
Doq_Operation;
Getsym
END
END;

ro

Dom Close And Stop {2}

END. Tnom_c'én} -

jois]
¥ol

APPENDIX D

EXAMPLE OF A SCANNER OF THE VIC DATA-STRUCTURE

This appendix contains a scanner of the VIC data-structure, that can handle
recursively defined layout-modules. The scanner itself 1s a recursive
algorithm, that is used in the generation of domains. Both bounding~boxes and
boundary-polygons can be handled by setting the global variable ‘breath’ to
false or true. The scanner is written in pseudo-code. The actual scanner 1is
somewhat larger.

PROCEDURE Search VIC Data(pntr tpointer;
transform :modifier);

{ pntr : module begin pointer
transform : basic transformation vector}

{ Search VIC Data uses the following recursive
callidg scheme:
Search VIC Data calls Analyze VIC Record and
this procedure calls either Analyze VIC Record,
Search_VIC Data or it processes a lTeaf Trecord.

This recursive search-procedure uses three boolean variables
to keep books of which part of the VIC has to be expanded.
The next diagram gives an overview of which parts have

to be expanded in a hierarchical description of the layout.

part | main sub sub~-sub sub-sub-sub
| module module module module
[l | |
domain | - | - | * | -
terminals | - | * | % | -
contents | * | * | - | -
| |

The terminal-part of the last sub-module in which a domain
is found has to be expanded.
Boolean variables:
- submodule : indicates that we are in the main module
or in sub... modules.
- domain ¢ indicates that a domain in a sub module
is found
- last module: indicates that no further sub module

- 90 -~

EXAMPLE OF A SCANNER OF THE VIC DATA-STRUCTURE

has to be expanded.
The boolean variable breath indicates if a mininmun circum-

scribing rectangle must be made (false) or if a
grow/merge/shrink operation has to be executed (true) }

PROCEDURE Estimate MCR(rect : rectangle);

{ This procedure examines the rectangle and adjusts the minimum
circumscribing rectangle of the module. }

BEGIN END;

PROCEDURE Add_Rectangle To List(rect : rectangle);

{ This procedure adds an orthogonal rectangle to a list.
This list is used for the grow operation on mask-data }

BEGIN END;

PROCEDURE Analyze VIC Record(VAR pmtr : pointer);

{ This procedure analyzes an actual VIC record }

PRCCEDURE Analyze Dot(pntr : pointer);

VAR
P : point;
delta : integer;
rect : rectangle;

BECIN
GeQ_Dot(p);
IF correct mask THEN
BEGIN
delta := width(mask) div 2
Grow Point(p,delta,rect);
Transform Point(p);
IF breath THEN
Add Rectangle To List(rect)
ELSE -7
Estimate MCR(rect)
END -
EMD; { Analyze Dot }

PROCEDURE Analyze Rectangle (pntr : pointer);

VAR

- 9] -

Page D-2

EXAMPLE OF A SCANNER OF THE VIC DATA-STRUCTURE Page D-3

rect : rectangle;
delta : integer;
BEGIN

GeQ_Rectangle(rect);
IF correct mask THEN
BEGIN
IF slanted rectangle THEN
Orthogonal Rectangle(rect);
IF line piece THEN
BEGIN
delta := width(mask) div 2;
FExpand Line Piece(rect,delta);
END; -7
Transform Rectangle(rect);
IF breath THEN
Add Rectangle To List(rect)
ELSE ~ { MCR }
Fstimate MCR{rect)
END -
EXD; { Analyze PRectangle }

PROCELURE Analyze Polygon (pntr : pointer);

VAR
deltaw : integer;
rect : rectangle;
pl,p2 ¢ point;
pol : polygon;
RECIN

Get_Polygon(pol);
IF correct mask THEN
BEGIN
{ test for wire }
{ the hartline is traced and is blown up }
IF wire THEN

BEGIN
deltaw := width(mask) div 2;
pl := begin point; _
P2 = pl;
WHILE not endpoint DO
BEGIN
pl := p2;

Transform Point(pl);
p2 := next point;
Transform Point(p2);
Expand_Line Piece(pl,p2,rect,deltaw);
IF breath THEN
Add Rectangle To List(rect)
ELSE -7

- 92 -

EXAMPLE OF A SCANNER OF THE VIC DATA-STRUCTURE

Estimatq_MCR(rect);
END;
END { wire };

{ test for polygon }
{ the boundary of the polgon is scanned
IF polygon THEN
BEGIN
pl := first boundary point;
Transform Point(pl);
Find MCR Of Polygon(pl,rect);
WHILE not endpoint DC
BEGIN
pl := next poiat;
Transform point(pl);
Find MCR Of Polygon(pl,rect)
ENp; T T
IF breath TEEN
Add Rectangle To List{rect)
ELSE T
Estimate lNCR(rect)
END { polygon }
ERD
END; { Analyze polygon }

PROCEDURE Analyze Part (VAR pntr : pointer);

BEGIN
CASE part OF

domain part
BECIN
IF submodule and not domain THEN
BEEGIN
domain := true;
WHILE not endpointer DO
BEGIN
Get Next Record(pntr);
AndTyze VIC Record(pntr)
END -
END
ELSE
pntr := endpointer;

terminal part
BEGIN
IF submodule and not last module THEN
BEGIN -
IT domain THEN last module := true;
WHILE not endpointé? £o
BEGIN

- 93 -

Page D-4

EXAMPLE OF A SCANNER OF THE VIC DATA-STRUCTURE Page D-5

Ceg_Ner_Record(anr);
Analyze VIC Record(pntr)
END -7
END
ELSE
pntr := endpointer
END;

contents part or compound part

BEGIN
IF not last module THEN
BEGIN
WHILE not endpointer LO
BEGIN
Get MNext Record(pntr);
Analyze VIC Record (pntr)
END -
END
ELSE { restore global variables }
BECIN
pntr = endpointer;
domain = false;
last module := false
END

END;

END; { CASE }
END; { Analyze Part }

PRGCEDURE Analyze Instance (pntr : pointer);

VAR
copysubmodule : boolean;
copydomain : boolean;
copylastmodule : boolean;
q : pointer;
trans : modifier;
BEGIN
IF not last module THLN
BEGIN -

{ save global data }
trans := transform;

q = pntr;

Accumulate Modifier(transform);
copysubmodule = submodule;
copydomain = domain;

copylastrnodule := last module;
submodule := true;

Search VIC Data(q,transform);
{ restore global data }

submodule i= copysubmodule;
domain t= copydomainj;

- 94 -

EXAMPLE OF A SCANNER OF THE VIC DATA-STRUCTURE

BEGIN

END

PROCEDURE Analyze Array (VAR pntr : pointer);

VAR

BEG

il

last module copvlastmodule;
transform := trans;

END

; { Analyze Instance }

q : pointer;
count : integer;
first,

second : integer;
trans : modifier;

offset : point;

I

{ save modifier }
trans := transform;
first := first bound;
second := second bound;
offset := array pitch;
count := first;

q := array pointer;
WHILE count <= second DO
BEGIN

pntr := q;

Analyze VIC Record(pntr);
Accumulate Modifier(transforn);
count := count + 1
END;
{ restore modifier }
transform := trans

END { Amalyze Array };

BECIN

{ Analyze VIC Record }

CASE record type OF

dot : Analyze Dot (pntr);
rectangle : Analyze Rectangle (pntr);
polygon : Analyze Polygon (pntr);

part : Analyzé:Part (pntr);
instance : Analyze Instance (prtr);
array ! Analyze Array (pntr);

EXD { CASE }

END {

Analyzq_VIq_Record }s;

{ Search VIC Data }

- 95 -

Page D-h

EXAMPLE OF A SCANNER OF THE VIC DATA-STRUCTURE

WHILE not endpointer DO

BEGIXN

Geg_Ner_Record(pntr);
Analyzq_VIQ_Record(pntr)

END

END; { Search _VIC Data }

This procedure is

domain =
submodule

lasg_module
breath

initialized and called from a main program by

false;
false;
false;

= true { grow/merge/shrink }

or false; { minimum circunscribing rectangle }

Search VIC Data (pointer_to module , null modifier)3

SOME EXAMPLES OF DOMAIN- AND TERMINAL-GENERATION

APPENDIX E

(R4 X4

This appendix contains the VLDL description of an KM

called IXOR (Inverting eXclusive CR).
terminal-generation, and terminal-generation before domain-generation
be given for the process mask PS.
VLDPL format without any definition of domains and terminals:

pattern ixor;

begin
ra(ps;

poly(ps; 40, 5; 51, 5; 51, 21; 48.5, 21; 48.5, 7.5; 40,

ra(ps;
ra(ps;
ra(ps;
ra(ps;
ra(ps;
ra(ps;
ra(ps;
ra(ps;

7, 5; 30, 7.5): inpl;

7.5): inp2;
17, 12; 45, 14.5);
3, 22.5; 8, 33.5): out;
7, 31.5; 13.5, 33.5): out;
11.5, 27.5; 13.5, 33.5): out;
3, 10; 9, 20);
12.5, 11; 14.5, 20);
40, 23.5; 49, 29.5);
35, 24.5; 41, 26.5);

wire(ps; w = 23 9, 19; 17.5, 19; 17.5, 25);

ra(ps;
ra(ps;
ra(ps;
ra(od;
ra(od;
ra(od;
ra(od;
ra(od;

poly(od; 42, -0.5; 42, 35; 47, 35; 47, 18; 56.5, 18; 56.5,

ra(od;
ra(od;
ra(in;
ra(in;
ra(ing
ra(in;
ra(in;
ra(in;
ra(in;

16.5, 23.5; 28, 26);
25.5, 18.5; 28, 20);
25.5, 18.5; 40, 21);
-3, 24.5; 15.5, 30.5);
9.5, 21.5; 15.5, 30.5);
-3, 12; 15.5, 17);

10, 10; 15.5, 14);

106, ~0.5; 28, 4);

-0.5);
10, 3; 28, 11);
20, 8.5; 38, 29.5);
~-3.5, 11; 2.5, 37): vdd;
8.5, 21; 16, 27);
16, 17.5; 19.5, 24);
31, 21; 44, 24);
-3.5, 34; 48, 37): vdd;
2, =1.5; 57.5, 4.5): vss;
51.5, =1.5; 57.5, 20): vss;

array(Q .. 1; 0, 15) of

begin

- 97 -

layout-rnodule,
Examples of domain-generation before

But first an example of module IXCR in

SOME EXAMPLES OF DOMAIN- AND TERMINAL-GENERATION

end;

ra(iny 41, 15; 48, 21);
ra(co; 42.5, 16.5; 46.5, 19.5)

end;

ra(in;
ra(od;
ra(co;
ra(ing
ra(od;
ra(co;
ra(co;
ra(co;
ra(co;
ra(co;
ra(co;
ra(co;
ra(cs;
ra{cs;
ra(cs;
ra(cs;
ra(di;
ra(di;

’

comment

end;

19, 15; 25, 21);

20, 165 24, 20);

20.5, 16.5; 23.5, 19.5);
28.5, 21.5; 34.5, 27.5);
29.5, 22.5; 33.5, 26.5);
30, 23; 33, 26);

-2, 12.5; 1, 16.5);

-2, 25; 1, 30);

10, 22.5; 14.5, 25.5);
11, 03 27, 3);

43, 0; 52, 3);

53, 73 56, 17);

11, 9.5; 16.5, 18.5);
10, 26; 15, 32);

33.5, 23; 39.5, 28);
40.5, 10.5; 46.5, 16);
1, 10.5; 11, 32);

40.5, 21.5; 4%.5, 31.5)

‘ixor’

Page E-2

SOME EXAMPLES OF DOMAIN- AND TERMINAL-GENERATION Page E-3

network graph of IXOR

A network description of tlie module in NDL is:
macro

macro ixor i(inpl,inp2) o(out)

out flog i(inpl#inp2)

mend

A layout of this module is

The next example is the result of the generation of domains before the
assignment of terminals in the PS mask of module IXCR.

- 99 - -

SOME EXAMPLES OF DOMAIN- AND TERMINAL~-GENERATION Page E-4

—
N

| —_—— e - - - - —_ - — - |
N .| IR I
The next example is the result of opposite operation: terminals are

assigned before the generation of domains.

R
! cprterminal — »dom

_______________ ,.qi.a_.!

| |10
L - 8 N E— S SRS S —

entibt———] . |
|] e
: . .
| N 3l
T = e — Lo
"""" o e e e . - _— -l

L e e e e - = - Lom e =

The next listing gives an example of result of the generation of domains
before the assignment of terminals.

pattern ixor;
domain
ra(di; 0, 9.5; 49.5, 33);
ra(es; 9, 5.5; 47.5, 33);
ra(co; =3, =-1; 57, 35.5);
ra(in; =4.9, 9.6; 55.9, 21l.4);
ra(in; 7.6, -2.9; 58.9, 9.6);

- 100 -

SOME EXAMPLES OF DOMAIN- AND TERMINAL-GENERATION

ra(ing =4.9, 36.6; 49.4, 38.4);
ra(in; -4.9, 21.4; 49.4, 36.6);
rafod; 7.85, =2.65; 58.65, 20.15);
ra(od; =5.15, 9.85; 7.85, 20.15);
ra(od; 39.85, 20.15; 49.15, 37.15);
ra(od; =5.15, 20.15; 39.85, 31.65);
ra(od; -5.15, 31.65; 17.65, 32.65);
ra(ps; 1.75, 8.75; 52.25, 22.25);
ra(ps; 5.75, 3.75; 52.25, 8.75);
ra(ps; 38.75, 22.25; 50.25, 30.75);
ra(ps; 33.75, 22.25; 38.75, 27.75);
ra(ps; 1.75, 22.25; 33.75, 27.25);
ra(ps; 1.75, 27.25; 14.75, 34.75)
end;
terminals
ra(ps; 7, 5; 30, 7.5): inpl;
signal
ra(in; 51.5, -1.5; 57.5, 20);
ra(in; 9, =-1.5; 57.5, 4.5)

end: vss;

signal
ra(iny -3.5, 34; 48, 37);
ra(in; -3.5, 11; 2.5, 37)
end: vdd;
signal

ra(ps; 11.5, 27.5; 13.5, 33.5);
ra(ps; 7, 31.5; 13.5, 33.5);
ra(ps; 3, 22.5; 8, 33.5)
end: out;
poly(ps; 40, 5; 51, 5; 51, 21; 48.5, 21; 48.5, 7.5; 40,
7.5): inp2
end;
drawing
ra(bb; =3.5, -1.5; 57.5, 37);
text “IXOR’(dr; -3.5, =1.5; size = 14)
end;
begin
ra(ps; 17, 12; 45, 14.5);
ra(ps; 3, 10; 9, 20);
ra(ps; 12.5, 11; 14.5, 20);
ra(ps; 40, 23.5; 49, 29.5);
ra(ps; 35, 24.5; 41, 26.5);
wire(ps; w= 2; 9, 19; 17.5, 19; 17.5, 25);
ra(ps; 16.5, 23.5; 28, 26);
ra(ps; 25.5, 18.5; 28, 26);
ra(ps; 25.5, 18.5; 40, 21);
ra(od; =3, 24.5; 15.5, 30.5);
ra(od; $.5, 21.5; 15.5, 3C.5);
ra(od; -3, 12; 15.5, 17);
ra(od; 10, 10; 15.5, 14);
ra(od; 10, =0.5; 28, 4);
poly(od; 42, -0.5; 42, 35; 47, 35; 47, 18; 56.5, 18; 56.5,
-0.5);
ra(od; 10, 3; 28, 11);
ra(od; 20, 2.5; 38, 29.5);
ra(in; 8.5, 21; 16, 27);
ra(in; 16, 17.5; 19.5, 24);

- 101 -

Page E~5

SOME EXAMPLES OF DOMAIN- AND TERMINAL-GENERATION

ra(ing 31, 21; 44, 24);
array(0 .. 1; 0, 15) of

begin

ra(in; 41, 15; 48, 21);
ra(co; 42.5, 16.5; 46.5, 19.5)

end;

ra(in;
ra(od;
ra(co;
ra(in;
ra(od;
ra(co;
ra(co;
ra(co;
ra(co;
ra(co;
ra(co;
ra(co;
ra(cs;
ra(cs;
ra(cs;
ra(cs;
ra(di;

end;
comment
end;

19,
20,

15; 25, 21);
165 24, 20);

20.5, 16.5; 23.5, 19.5);
28.5, 21.5; 34.5, 27.5);
29.5, 22.5; 33.5, 26.5);

30,
-2,
-2,
10,
11,
43,
53,
11,
10,

23; 33, 26);

12.5: 1, 16.5);
25; 1, 30);

22.5; 14,5, 25.5);
0; 27, 3);

0; 52, 3):

75 56, 17);

9.5; 16.5, 18.5);
26; 15, 32);

33.5, 23; 39.5, 28);
40.5, 10.5; 46,5, 16);
1, 10.5; 11, 32);
ra(di; 40.5, 21.5; 48.5, 31.5)

“ixor”’

Page

n

6

VOILA

VIC

VLDL

INIF

NDL

CMSK

JOJO

APPENDIX F

EXPLANATION OF ABBREVIATIONS

: VLSI Oriented Interactive Layout Aid.

Name of the Philips project for the creation of a new
VLSI design environment.,

¢ VOILA Internal Code. The one-to-one translation of the

textual layout-description to a binary data-format, that is
kept in core.

: VOILA Layout Definition Language. Pefines the textual

constructs for the description of a VLSI layout.

Inverted Network Interface TFormat. Contains the
net-oriented description, in binary format, of the network-
description of a layout-module.

Network Description Language. Tefines the textual constructs
for the logical description of a module, e.g. SIMON [SIM &4].

Circuitmask. Name of the existing layout description and
manipulation program.

: Name of the program for the interactive generation of cdomains

and terminals.

- 103 -

Abstraction of a module.

Bottom—up implementation

Bounding box. . .

Bread-boarding . .

Cardinality . . .
Cells & & o o & &
Circuit complexity
Command interpreter

Contact=-points . .

Pelila &« &« & « +

Design=-rule matrix.

bivide and conquer principle.

Comains « « o« o «

Drawings « « « « &

Error-recovery mechanism

Forbidden area . .

Functional design

Functional specification

Ceometric domain .

INDEX

OF KEYWORDS

Page Index-1

Eardware design « « « « .« o«
Hierarchical abstraction . .

Hierarchical decomposition .

Lavout-phase + « « « o & ¢ &

Logical description

Minimum circumscribing rectangle 5-1

Modular design-rules . . +

I‘Iodule » s & & & & 8 s 8 &

One symbol lookahead without

PAarser « o« o« o o o o o o o o

PAatterns « o« o o o o o o o o

Protective outlines, « « o &

Realization of a module. . .

Schematic diagram . « « « &
Separated hierarchy
Signale o o o o o o o s o
Software crisis .« ¢« « o . &
Software engineering . « . .
Standardization <« « « & ¢ &
Structural designe « « o «

Super-units .+ ¢« « ¢« ¢ o . .

backtracling 5-7

s » & o o o 1_1()

e o o o« o 3-8

Page Index-2

Symbolic domain.

Terminals

Top-down approach

Unit.

vldl .

Vlsi complexity problen

Vlsi layout,

Voila

. . 1-11, 3=5

.« o 1-5
« o 2=5
o« o 110

- 106 -

Page Index-3

	Voorblad
	Summary
	Acknowledgement
	Contents
	1 Introduction
	2 Abstraction and hierarchy concepts
	3 Semantics of the voila abstraction
	4 Some thoughts on abstraction
	5 Specification of domain and terminal generation
	6 Implementation aspects
	7 Conclusions and recommendations
	References
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Index

