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SUMMARY

The model of a Multi-Input/Multi-Qutput (MIMO) system can be based on
the multivariable impulse responses: the Markov parameters.

The realizability criterion can be used to describe the linear
dependences of the Markov parameters on a number of preceding Markov
parameters. This expression is called the MINIMAL POLYNOMIAL relation.
In this report two methods are derived for the estimation of the
coefficients of this linear relation (the so called minimal polynomial
coefficients) and the start sequence of Markov parameters. Both
methods are based on the Least Squares principle.

The first method tries to find the minimum of a quadratic loss
function (being the squared distance of the estimated Markov parame-
ters to the available noise corrupted set of parameters)by means of an
iteration process.

The second algorithm uses a hill c¢limbing procedure to find the
optimum of the error function (in this case the squares of the
differences between the estimated output signals and the measured
signals).

Both procedures are compared with each other by performing many tests
on simulated data. The comparison of the described methods with an
explicit iterative algorithm that estimates truncated impulse respon-

ses is also presented.
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1 INTRODUCTION.

During the last twenty years, there has been a progressive increase of
the interest in the control of complicated systems. Especially optimal
(in some way) control systems have become more and more important, not
only in technical systems but also for example in economical and
biomedical applications.

Most of those systems have in common to be “multivariable” and
“dynamical”. In this case, “multivariable” means that the systems have
several inputs and several outputs. Further the inputs may influence
more than one output at one time (see fig. 1). Systems with these

properties are called MIMO systems (Multi Input, Multi Output).
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fig. 1l: The black box representation of a MIMO system.

Starting point in the design of a control system usually is some model
that describes the behaviour of the system under consideration.

The problem of finding some mathematical description of the system is
called SYSTEM IDENTIFICATION.

Information that can be used to solve this problem is a priori
knowledge of the system and measurements of the input and output
signals.

In practice, we always deal with measurements, corrupted with some
kind of noise. So, based on these observations, we will try to
estimate a model for the system.

When applying estimated models in control techniques, we will usually
consider a system in a “black box” approach; this means that we are

not interested in the intermal physical structure but only in the



2 THE GERTH APPROACH WITH SUCCESSIVE SUBSTITUTION.

In this report we will only discuss linear, time invariant, time
discrete stable systems. The Markov parameters of such a system
represent the sampled impulse response of the system. Because of the
uniqueness of the impulse response of a system, Markov parameters give
a unique representation of the system. And thus this way of modelling
is very attractive for estimation purposes. A great disadvantage of
the description in Markov parameters 1is that the number of the
parameters needed in general, is infinite. But for a finite dimensio-
nal system in general, we can find some scalars r and a; (i=1,2.. r),
in a such way that the following recurrent relation holds

[ 7 : theorem 1]:

r

M(r+j)= ) a  M(r-i+j) ix1 2.1
i=1

This implies that the impulse response of a finite dimensional system
can be described completely by {ai, M(i)}i=l,2..r° We can find a value
of r, in such a way that the first r Markov parameters are independent
and that all other parameters can be computed from of these start
parameters and the coefficients of the recurrent relation. In this way
a finite number of parameters can give a description of the infinite
impulse response (r is less then or equal to the minimal dimension n
of the system, see appendix B).

The minimal value of r, such that relation 2.l is valid, is called the
degree of the minimal polynomial. In case we deal with noise corrupted
Markov parameters, the system 1s not of a finite dimension and thus we
cannot find scalars r and a of a recurrent relation. We will try to
construct a finite dimensional realization from of a finite number of
noise corrupted Markov parameters, M(i). We assume to know the degree
of the minimal polynomial beforehand. Sé we compute an approximated
sequence of Markov parameters which satisfies equation 2.1 and which
is a best fit , in a certain way, on the given sequence. This fit we
are looking for, implies that we minimize a loss function S, which is

defined in eq. 2.2:



k
S= § trace [{M(1)-M(i)}T. {(M(1)=M(1)}] 2.2

i=]l

“k” is the number of given Markov parameters.
Because ﬁ(i) is not linear in the ai parameters, the loss function
will not be a simple quadratic function. Hence, it will, in general,
not be possible to find the minimum of S in a closed form. So we will
need some iterative (hill-climbing) procedure to determine the minimum
of S by varying‘ {ﬁ(i),ai}ial..r. Using the GERTH method [ 4 ] an
estimation {ai, M(i)}i=1..r’ will be found in two steps. First we will
minimizing S with respect to 31, and dur%Pg the second part we will
find the optimal set of start parameters M(i) by the computed &
the given M(j) ( for i=1,2.. r and j=1,2.. k).

{ and

2.1 Estimation of the coefficients of the minimal polynomial.

The recursive properties of the Markov parameters ( eq. 2.l1) can be
formulated in a matrix equation. As we deal with noise corrupted
Markov parameters, we would like to find minimal polynomial coeffi-

clents such that equation 2.3 is true:

" M(L) M(2) .« . .. oMo 1 T aT, | i ﬁ(r—i—l)w
: ) . : - ) 2.3
| M(ker) ... (KoL) | a1, | M)

Ip is a pxp identity matrix {(p is the number of inputs of the

system under consideration).



1f we want to use standard routines of the NAG-library for the
computation of the least squares “solution”, eq. 2.3 is not suited for
the estimation of the coefficients a,. These routines all expect, at

i
least if we want to find one value for ai, i=1:r, equations of the

form like eq. 2.4:

Ha=y 2.4

So we introduce a (pxqx(k-r),r) matrix H and a (pxqx(k-r) vector v ( ¢
is the number of outputs of the system). The matrix H and the vector v
are composed from the givén noise corrupted Markov parameters. This
composition can be done in several ways; the one we are going to
apply, is not the composition suggested by W. GERTH [ 4 : page 48],
but one that is better suited for our representation of the noise
corrupted parameters. In fact by changing the rows, the GERTH

composition can be found from the form suggested by eq. 2.5.

'%1,1(1) C e My () ] " M) 1(o+L)]

My, 2(1) « oo 00 e My oo(T) Ml’z(r‘i'l)

Mp,q(1) Mp,q(r) Mp,q(r+1)
Hrk= . . Yok = . 2.5

Fil l(k—r) ;11’1(1(-1) il,l(k)

Ep g(E )+ .. .b‘}.p,q(k—l)‘ _ﬁp,q(k) )

Ml,k(i) is the (1,k) element of the ith noise corrupted Markov
parameter.



The estimation of the minimal polymomial coefficients uses a weighted

least squares method considering the loss function in eq. 2.6.

J=@a-v) B@Ea-v) 2.6

with B0 = cov (v)
By minimizing J with respect to a, we will find the estimation of a in

eq. 2.7 :

_§_=(HTBH)—1HTBXT 2.7

If we suppose to deal with white noise corrupted Markov parameters,
this implies that cov(v)=I1, we will find a simplified expression for
the optimal values 8 in eq. 2.8:
T T

y

a=@ B a -

Instead of solving equation 2.8, we have used a standard routine for
finding the least squares solution of eq. 2.4. This routine, FO4AMF of
the NAG-library [ 9 ], reduces matrix H to upper right triangular
form, R, by applying Householder transformations, Q, with pivoting so
that Q H=R. The right hand side vector V is transformed into vector C
by applying the same transformation matrix Q, Q V=C, and an approxi-
mate solution X is found by back subsitution in the equation R X=C.
The residual vector P=V-H X is computed and a correction D to X is
found by solving the linear least squares problem H D=P, i.e. R D = QP,
X is replaced by ( X+D ) and the correction process 1s repeated
until full machine acchracy is obtained. Additional precision accumu-

lation of inner products is used throughout the calculation.



2.2 The estimation of the start sequence { M(i)}i,l 2 r’
’ > e

The estimation of the start sequence { M(i)} will have a

i=1,2.. r’
great deal in common with the estimation of the minimal polynomial

coefficients. We will minimize the loss function (eq. 2.9):

k

S’f X trace {M(i)-M(i)}T. {M(1)-M(1)} 2.9
i=1

M(i)i L2,k is the reconstructed sequence of Markov parameters,
= 1] - e

based on the already estimated minimal polynomial coeffients

and the requested start sequence of Markov parameters.

To simplify the procedure, we define a partial loss function according

to eq. 2.10, where we assume to deal with white noise corrupted Markov

parameters.
L. - 2
i=1

If we have wminimized all partial loss functions, we also have
minimized the loss function of eq. 2.9, because all partial systems

are mutual independent. Like eq. 2.4 we define eq. 2.1l1:

<Ejh is a vector with length r and consisting of the (j,h) elements

of the requested start series of Markov parameters.

Ejh is a vector with length k and consisting of the (j,h) elements
of the given white noise corrupted Markov parameters.



G is a (k,r) matrix, consisting of polynomials of ai ( i=1,2.. 1):

T: IZ 1 ,k‘l‘
G [;I’r:REr,REr,......,R E_]
2.12
0 b a 0
y T
with: R= e o e e i . and Er =].
]
Lty 1 0
12y 1

We mention here, that the expression for matrix G in eq.2.12 is not
used during the composition of the matrix in the GERTH algorithm (in
[ 12 : subroutine SOL] the implemented composition of matrix G is
shown). It is easy to see that the calculation of the required powers
of the matrix R, will cause large numerical errors (because RT is a
matrix in a companion form). Like equatiom 2.6, the expression for the

partial loss function §7,

jh can be formulated as eq. 2.13:

=1

T g (€ By " Byp) - (Cmyy —ngp) 2.13

jh jh

By minimizing this loss function with respect to m,

3h’ we will find

the estimation in eq. 2.14:

LI

T -1 T T
Bp=(6 © G oy 2.14

We notice that solving this least squares problem by computing eq.
2.14, seems to be more efficient than using a standard routine. This
because the matrix (GT G)-1 GT can be used during the estimation of
all pxq partial systems.

But the matrix G can be 111 conditioned and so the computation of ed.
2.14 can lead to large numerical errors. So instead of solving eq.
2.14, we have used a standard routine for finding the least squares
estimation of the set equations (eq 2.11). This is the same procedure
as used for the estimation of the coefficients of the minimal

polynomial.



2.3 The iteration process.

The original GERTH algorithm executes both estimation procedures for
a and ﬁ(i) only once. If the loss function would be quadratic in both
a and M(i), applying the algorithm one time would lead to the optimum
(i.e. the least squares "solution™ of ai and M(i)) As the 1loss
function is not quadratic in ai, we are not able to find the minimum
by applying the orginal GERTH algorithm, and using an iteration
process can bring a solution. The design of a suited iteration scheme
is the next subject in this report.

A possible iteration scheme, according to the successive substitution

method, is to compose the matrix H . of eq. 2.5 from a sequence of

Markov parameters, MJ(l)( M(1i) eq. 2;, consisting of start sequence of
M(i) and the expanded sequence of Markov parameters, by using the
recurrent relation 2.1 and the estimated coefficients of the minimal
polynontal a].

In the used notations, the number of j“s in the superscripts
3", "33", "ij..3" indicate the number of the iteration cycle during
which the estimates have been computed.

( see eq. 2.11) out of ajJ and we can choose to use the already

After computing new estimates of we can compose a new matrix G

existing nJ (with the elements M. l(i)) or compose a new n
the series MJ(i)

L] out of
According to J.B. KORTAS [ 8 ], who has implemented the GERTH
algorithm for SISO systems, the composition of n,. out of MJ(i) is not
a very stable method, because the start series M % J(1) can drift away
from the optimal estimates very easy. We can explain this by
considering ngi - as a reference to the given noise corrupted Markov

parameters.

So we have implemented the iteration scheme in which only the H_, and

rk
G are adapted during each iteration cycle:



START: a noise corrupted
sequence with Markov parameters

{M D) }i=1,2..k is available.

A

Initialize matrix H and
rk
vectors v and_g

A 4

Estimate 8 by using H
and v and initialize matrix

G with the elements of &

h 4

Estimate { M(i) },_
by using G and_Eji 1,2..r

Refill matrix Hr with Markov
parameters calcukated by using

the minimal polynomial relatiomn

More iterations ?

READY

fig. 2: Implemented scheme of the iterative GERTH algorithme.
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3 THE DIRECT METHOD.

3.1 An introduction to the DIRECT Method.

In the previous chapter, the GERTH method has been described. This
procedure estimates a set of minimal polynomial coefficients and a
start series of Markov parameters out of another set of Markov
parameters. This last set usually will consist of the samples of
estimated, truncated impulse responses.

The GERTH algorithm optimizes the fit of the (reconstructed) Markov
parameters (calculated by extension with the coefficients of the
minimal polynomial) on the truncated impulse responses. During this
optimization we do not reconstruct any output samples from the input
measurements, so no reference is made with input and output measure-
ments of the system under consideration.

This means that the result of the GERTH estimation totally depends

upon the quality of the already estimated Markov parameters!

In the next section we will derive a method, so called DIRECT method,
which estimates minimal polynomial coefficients and a minimal set of

Markov parameters from input and output data of the system.
3.2 Derivation of the DIRECT method.

We will use a model in describing the behaviour of the MIMO system
that is called the HANKEL model [7: definition 12], which is based on
the impulse response of the system. Out of the state space notation,
we derive equation 3.1. (c.f. [1l1l: chapter 2]).
k k i-1
y(k)=C A x(0) + 2 CA B u(k=i) + D u(k)
i=1 3.1

where: x(0) is the initial state of the system.
u(k) is the (pxl) input vector u at time instant k
y(k) is the (gxl) output vector y at time instant k

A is the (nxn) system matrix, where n is the
dimension of the system.

B is the (nxp) distribution matrix.

c is the (qxn) output matrix.

D is the (qxp) input,output matrix.

The matrix products C.Ai—l.B are the multivariable impulse responses

of our system. The part of equation 3.1 containing the summation may

11



be regarded as a convolution sum of impulse response and all previous

and Ppresent input signals.

These samples of the multivariable impulse response are called Markov

parameters, defined as:

Markov parameter at time instant i:

M(i) =D 3.2

e
v oA
oo o

If we suppose that the initial conditions of the system are zero
(E(O)ég) and we use the definitions of equation 3.2, we can rewrite
eq. 3.1 to the form of eq. 3.3 .
k
y(k) = L M(1) . u(k-1i) K=0, Lyeeeans
i=0 3.3

We can rewrite expression 3.3 into a matrix notation:

y1(0) u(0) 0 . . . .0 M(0)
. . 0. . 0 .
. . 0....0 .
. - . 0...0 ) 3.4
. . 0..0 .
T T .= TO T,
y (k) WK o ... u(0) M (k)

Normally (for stable systems) impulse responses always will decrease
to zero, if sufficient sample intervals are taken into account. Using
this property, we can abstract part of matrices of equation 3.4 and

rewrite this like eq. 3.5 ( so we will neglect the influence of markov
parameters M(1i) for 1 > m ).

Z?(h) E?<h) o« . e E?(h—m) MT(O)
.| - Z I Z 3.5
Z?(h+m) E?(h+m) o o e 2?(h) MT(m)

If we use the minimal polynomial expansion instead of the Markov
parameters M(1) (i>r where r is the degree of the minimal polynomial),
and rename these parameters to functions of the set {ai,M(i)}

i=l,2...r
(eq. 3.6: we use a recurrent relation), we will find the wmatrix

12



expression of eq. 3.7.

r
Fi(l) = ) a,- MY (r=i+1) = M (r+l)
{=l
-1 r 3.6
Fi(§) = ) 3. Fl(i-1) + ) a- M (r-1+7) = M (r+j)
{=1 1=] ¢ <
(for 1 L J r)
T T T T
Fi(D = 1 a« F (1) =M (r+))
{=1
(for j > 1)
v (h) u'(h) . .. u(h-m) M,?(O)
. ) . MI(1)
. = . . Mg(r) 3.7
) . . Fr(1l)
' (irtm) ul(htm) . . . ul(h) F(mr)
S S— ——) (== =
Y sT M
m

The problem we deal with is the estimation of minimal polynomial
coefficients and the first r+l Markov parameters (M(0) is the input/
output matrix). We suppose that we have given a set of input/output
data, that may be corrupted with measurement noise, that is not
correlated with the input signals and which is assumed to be white and

channel independent. So:

Y = ST «. M +E 3.8
m

How can we find an estimate ﬁ which is as close as possible to the

real parameters M ? This M will satisfy the expression in eq. 3.9

(Y consists of the reconstructed output data).

Y =sI. M
m

M 3.9

~

Our target now is to find a matrix M which minimizes the error ¥ - Y

(in some chosen sense). We will use the least squares criterion to

find the minimum.

13



The idea behind this criterion is that the projection § of the noise
corrupted vectdrlz on the Euclidean space formed by the input vectors
u is the best approximation to the vector y (the parameter vector M is
mapped into this space by the transformation by Si)-

This means that the Euclidean distance between y and $ is minimized.
In case of a single output system, the loss function would be given by
eq. 3.10.

m 2 T
V=] (y(1)-9l)° = (y-2) - (yx - 2)

i=1 3.10

But in the multi-input multi-output case, Y and Y are matrices built

up out of “q” output signals y , so the loss function will be:

4 7 T
V=y ] e, "(1+i) = trace(E" . E) =
j=1 1=1 J 3.11

-~ -~

trace[( Y - Y )T (Y - Y )]

Thus to find the least squares estimate of the Matrix M , it is
necessary to minimize the loss function V with respect to M ,
containing Markov parameters and higher order functions of Markov
parameters and minimal polynomial coefficients.

If we subsitute equation 3.9 into eq. 3.11, we will find:
V = trace[ (Y -Sz.M )T.(Y —Sz.M Y] =

trace[YT.Y] - 2.trace[YT.S$.M] + trace[MT.Sm.gm.M )| 3.12

In Appendix A the loss function of eq. 3.12 is rewrittem to an
expression, which can be computed very easily.

The equation error E = Y - Siﬁ is not linear in a;, so V is not square
in parameters a . This means that we have to apply an optimization
method to estimate a; and M(1i).

Most of these methods need at the least first derivatives of the
object function (few even ask for second derivatives or calculate
estimates of them).

The first partial derivatives of the loss function to the parameters

a, and M(1) have also been derived in Appendix A.

14



4 SIMULATIONS FOR TESTING THE PROPERTIES OF THE GERTH ALGORITHM.

In order to test the properties of the iterative GERTH algorithm,
different systems have been simulated under several conditions.
Simulations show the advantage of giving the freedom to influence

certain quantities relevant for the GERTH algorithm, such as:

1. The number of estimated Markov parameters {M(i)}.
2. The level and the kind of the noise disturbances.
3. The eigenvalues of the system.

Fig. 3 shows a block diagram of the operations. Before the GERTH
algorithm can be run, we have to estimate a sequence of Markov
parameters {ﬁ(i)}. The program EXACTMARK [ 11 : section 4.2] , an
explicit iterative algorithm for the estimation of Markov parameters,
is used to find this sequence {ﬁ(i)}.

The input of the estimation program is a sequence of input and output
samples of the system under consideration. This sequence can be
constructed out of measurements, but in this case, the samples have
been generated by a simulation program called SYSSIMUL [ 10 ].

In figure 3 we see that we can generate a sequence of output samples
with a certain signal-to-noise ratio (the user can select this SN-
ratio)., We can also define an output noise system {F, G, H}, so the
output samples can be corrupted by coloured Gaussian additive noise
instead of by white noise.

The input signal is also a white noise sequence (normal-distribution)
with a zero mean value and a standard deviation of 1. The output noise
has the same characteristics, but 1is not correlated with the input
noise. During our analysis, we have generated sequences of 1000

samples for each input and output of the system.

15



Gaussian white noise

nolise system

{F, G H}
Gaussian white noise
+
system Yk Tk estimation of
5 {A, B, C} 9 2 finite number
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+ parameters
i " D)
k
{M(1)} -~
M({
{M(1)} i
GERTH <
algorithm
M(1 .
{M(1), al}i=l,2..r

-—.—Q+
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ERRO
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- ¥
ABS1 ABS2
ERR1 ERR2
AVR1 AVR2
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fig 3. Simulation, processing of Markov parameters and repro-
cessing of minimal polynomial coefficients and a start sequence
of Markov parameters.
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4.1 Systems and parameter values, used during the tests of the GERTH algorithm.

The results for two systems will be presented, both having 3 inputs, 2
outputs and dimension 4. The state space descriptions of both systems
are given in eq. 4.1, eq. 4.2 and eq. 4.3 These systems are also used
by VAESSEN [ 11 ]. For a clear view on the eigenvalues of the systems,
the A matrices are chosen in a diagonal way. The applied noise system
is presented in-eq. 4.4. Both input—output Matrices D and DN are equal
to zero, this means that we have restricted ourselves to strictly

proper systems.

1.0 0.0 1.0
-1.0 0.5 0.5 [ 0.5 0.0 1.0 1.0 ]
C=

B=l 0.0 1.0 -0.5 1.0 =0.5 0.5 =0.5 4.1
0.0 005 _100

SYSTEM 2: A = diag( 0.7, 0.6, 0.2, 0.1) 4.2

SYSTEM 3: A = diag( 0.9, 0.8, 0.3, 0.2) 4.3
0.85 0.0 1.0 0.0

F=1 0.0 0.75 G=H=1 0.0 1.0 4.4

For both systems we have chosen 2 large and 2 small eigenvalues to be
able to look what happens to the smallest eigenvalues after estimation
and applying the GERTH algorithm. The largest eigenvalues of SYSTEM 3
are so large that we deal with a very slowly decreasing impulse
response.

This implies that we should take into consideration many Markov
parameters to avoid any influence of the neglection of the “tail” of
the truncated impulse response. So the number of 8 Markov parameters
will be too small to guaranty a neglectible truncation error. We will
estimate this value 1in case of system 3 in appendix D. We will check
whether the GERTH algorithm can improve the effects of the truncation.

The noise system is a combination of 2 decoupled SISO systems in

17



parallel and is used in both test cases.
Further we have constructed sequences with output signal—-to-noise

ratio”s (SN) of:

1. 30 dB.
2. 10 dB.
3. 0 dB.

Out of thesesequences, EXACTMARK has estimated 8 Markov parameters
(M(1)}

The GERTH algoritlm estimates an optimal(in least squares sense) set
of startparameters of the Markov series and a optimal set of minimal
polynomial coefficients. Out of these parameters, the algorithm
calculates a certain number of reconstructed Markov parameters {ﬁ(i)}.
In our simulation, we have chosen a number of 30 parameters, so the
most significant part of the tail of the impulse responses will bhe
described. The number of iterations in the GERTH algorithm has also
been varied during our reprocessing of the Markov parameters and the
minimal polynomial coefficients.

We will examine the behaviour of the algorithm by calculating the
relative errors ERRO, ERRl and ERR2. ERRO and ERR1l are defined as the
quotients of the maximal values of the energy in the equation error
and the deterministic sequence of Markov parameters (see eq. 4.5 and
eq. 4.6). ERR2 is the quotient of the maximal energy in the error and
the available (noise corrupted) sequence of Markov parameters {ﬁ(i)}
(see eq. 4.7.). We mention that ERRO is a measure for the maximal
disturbance of the available Markov parameters, ERRl is a measure for
the largest error in the results of the iterative GERTH algoritim.

The deterministic sequence {M(i)} has been calculated from the state
space description presented by matrices {A, B, C, D}. In eq. 4.5, 4.6,

4.7, 4.8, 4.9 and 4.10, | | stands for the maximum norm.

18



N
1 ~
17| @) - u) |2
i=l
FRRO = . 4.5
Iy |
i=l
N2 .
17w - u@) |3
i=l
ERR] = - 4.6
2
LYy |
i=l
N1 . -
1| n) - m@E) |4
i=l
ERR2 = 4.7
N
Il oM A
i=l

We mention that ERR2 shows the maximal distance between the noise
corrupted sequence of Markov parameters of EXACTMARK {i(i)} and the
extended series of Markov parameters of the GERTH algorithm {ﬁ(i)}.
This is the error value we want to minimize during the iterations in
the GERTH algorithm, but minimizing ERR2 does not mean that we also
minimize the distance between the sequence of exact Markov parameters
and the GERTH extension (= ERK1)!

We also will calculated a number of absolute error values over a

constant number of parameters N so that we will be able to compare

’
the results of the GERTH algorlithm {M(1)} with the output of the
estimation algorithm EXACTMARK {ﬁ(i)}. The definitions of these
absolute error values are given in eq. 4.8, eq. 4.9 and eq. 4.10, and
are according to the definitions in Van den HOF [ 16 ], but Van den
HOF has used the Euclidean norm and we have calculated the maximum
norm! By using the maximum norm we will get an idea of the worst case

situation, instead of the mean distance.
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1 ~ .
AVRO = § | M(1) - M(4) Izm 4.8
i=1
o 2 4.9
AVRL = ) | M(1) - M) [% ’
i=1
N _
AR = 5 | ML) - H(D) |3 4.10
i=1

4.2 The results of the simulations on the GERTH algorithm.

During the simulations, we have generated 20 different input noise
data sets. In the GERTH algorithm a test is executed to check whether
one more iteration still improved the fit of the extended sequence
Markov parameters on the estimated set (out of EXACTMARK). We have
calculated the average values of the error taking the error values of
the results of equivalent tests with different input data. During the
calculation of the average values of the errors only the useful
results have been used.

If all twenty runs take place, the mean error value in the next tables
will be followed by a “*” notation.

In these tables, a “-" notation indicates that during all calculations
on a system, the desired number of iterations of the GERTH algorithm
did not reduce the value of the error function ERR2 any further.

The notation ERRO30 indicates the mean value of ERRQO during simula-
tions with signals with signal-to-noise ratio SN of 30 dB.

As mentioned in previous chapter: N1=8 and N2=30!
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4.2.1 The results of the simulations, using System 2.

DEGREE=2 DEGREE=3 DEGREE=4
ERR1 ERR2 ERR1 ERR2 ERR1 ERR2
2 |[.12 E-1* .24 E-1% .15 E-1* .17 E-1%* .19 E-1* .12 E-1%
SN=00 3 |.10 E~1 .22 E-1 .24 E-1 .17 E-1 .92 E+0 .12 E-1
4 |.10 E-1 .22 E-1 .22 E-1 .15 E-1 .23 E-1 .11 E-1
it=1 [.20 E=2*% .29 E-2%* .18 E-2*% ,20 E=-2% .20 E=2*% .15 E-=2%*
2 |.21 E-2 .29 E-2 .19 E=-2*% ,20 E-2%* .21 E=2*% 14 E-2*
SN=10 3 1.19 E=2 .29 E-2 .19 E-2 .20 E-2 .23 E-2 .14 E=2
4 |.18 E-2 .28 E=2 .18 E-2 .18 E-2 .30 E-2 .14 E=2
5 1.18 E=2 .28 E-2 .19 E-2 .18 E-2 .26 E=2 .16 E-2
it=1 (.89 E-3* 77 E-3% .14 E=-3*% .90 E-4* .10 E-3*% 40 E-4*
2 |.86 E=3*% .74 E-3%* .84 E-3 .73 E-3 .11 E-3*% .44 E-4%
SN=30 3 |.85 E=3*% .74 E-3%* - - .82 E-4 .23 E-4
4 |.85 E-3* ,74 E-=-3%* - - - -
5 |.84 E-3 .73 E-3 - - - -
Remarks: * tall 20 different runs make sense.

- ‘no runs make sense.

table 1: Relative errors ERR1 and ERR2 during simulations on SYSTEM 2

and no noise-colouring:

ERRO39 10
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= 0.87 E-4 ERRO, .= 0.30 E-2 ERRO

00

= 0.29 E-1




DEGREE=2 DEGREE=3 DEGREE=4
AVR1 AVR1 AVR1
it=l 0.52 E-1* 0.57 E-1* 0.70 E-1%*
2 0.45 E-1%* 0.53 E-1* 0.67 E-1*
4 0.39 E-1 0.52 E-1 0.63 E-1
5 0.38 E-1 0.52 E-1 0.58 E-1
it=l 0.76 E-2*% 0.70 E-2* 0.78 E-2*
2 0.78 E-2 0.70 E-2% 0.76 E-2%
SN=10 3 0.70 E-2 0.71 E-2 0.78 E-2
4 0.68 E-2 0.69 E-2 0.85 E-2
5 0.69 E-2 0.72 E-2 0.91 E-2
it=l 0.33 E-2* 0.45 E-3% 0.33 E-3*
2 0.32 E-2% 0.52 E-3 0.34 E-3%
4 0-32 E-Z* - -
5 0.31 E-2 - -
Remarks: :all 20 different runs make sense.
:no runs make sense.
table 2: Absolute error AVR1 during simulations on SYSTEM 2
and no noise colouring:
AVRO, = 0.35 E-3 AVRO = 0.12 E+0

= 0.12 E-1 AVRO0
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DEGREE=2 DEGREE=3 DEGREE=4

ERR1 ERR2 ERR1 ERR2 ERR1 ERR2

it=1 |.24 E-2* .15 E-2%* .21 E-2* .80 E-3* «23 E=-2* .49 E-3%*
2 |.24 E-2 .15 E-2 .21 E-2 .84 E-3 .23 E-2 .50 E-3
.24 E-2 .14 E-2 .22 E-2 .62 E-3 .13 E-1 .42 E-3
.23 E-2 .14 E-2 .23 E-2 .49 E-3 .29 E-2 .40 E-3
.23 E-2 .14 E-2 .24 E-2 .36 E-3 .95 E-2 .32 E-3

SN=10

(S, I N VS ]

it=l |.91 E-3*% .75 E-3%* .14 E-3*% .50 E-4%* .93 E-4* .18 E-4*
2 |.88 E-3* .73 E-3* .15 E-3 .66 E-4 .10 E-3 .22 E-4

SN=30 3 1.87 E-3* ,72 E-3% - - .13 E-3 .25 E=4
4 |.86 E-3*% ,72 E-3* - - - -
51].8 E=-3* 71 E-3 - - - -
Remarks: * tall 20 different runs make sense.

- :no runs make sense.

table 3: Relative errors ERRl and ERR2 during simulations on SYSTEM 2 and

NOISE SYSTEM 1: ERR03O= 0.81 E-4 ERR010= 0.26 E-2
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DEGREE=2 DEGREE=3 DEGREE=4

AVR1 AVR1 AVR1
it=1 0.94 E-2% 0.80 E-2% 0.86 E-2%
2 . 0.93 E=2 0.80 E-2 0.84 E-2
SN=10 3 0.94 E-2 0.83 E-2 0.81 E-2
5 0.90 E-2 0.85 E-2 0.90 E-2
it=1 0.33 E=-2% 0.43 E-3% 0.32 E-3%
2 0.33 E=-2% 0.50 E-3 0.33 E-3
SN=30 3 0.33 E=-2% - 0.42 E-3
4 0.32 E=-2% - -
5 0.32 E-2* - -
Remarks: * tall 20 different runs make sense.

- :no runs make sense.

table 4: Absolute error AVRl during simulations on SYSTEM 2 and NOISE

SYSTEM 1: = 0. - =0. -
AVRO30 0.33 E-3 AVRO10 0.10 E-2
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4.2.2 The results of the simulations, using System 3.

DEGREE=2 DEGREE=3 DEGREE=4
ERR1 ERR2 ERR1 ERR2 ERR1 ERR2
it=1 |.53 EHO* .28 E-1%* .66 E+0* .18 E-1%* .69 E+0* .12 E-1%*
2 |.66 E+0* ,25 E-1%* .72 E+0* 18 E-1* .71 E+0* .12 E-1%*
SN=00 3 (.70 E+0 .24 E-1 .71 EHO .17 E-1 .75 E+0 .12 E-1
4 .73 EH0 .24 E~-1 .76 E+O .17 E-1 .73 E+O .10 E-1
5 |.67 EHO .22 E-1 .84 E+0 .16 E-1 .71 EHO .10 E-1
2 |.69 E+O .42 E-2 .68 E+0 .31 E-2 .66 E+HO* .21 E-2*
4 |.73 EHO .38 E-2 .71 E+0 .35 E-2 .72 EH0 .21 E-2
5 |.66 E+0 .40 E-2 .76 E+0 .29 E-2 .73 EH0 .21 E-2
2 |.69 E+HO* .16 E-2%* .67 EH0 .10 E-2 .66 E+0 .52 E-3
4 |.57 EHO .20 E-2 - - .66 E+0 .40 E-3
5 |.57 E+O .19 E-2 - - .66.EH0 .40 E-3
Remarks: * :all 20 different runs make sense.

‘no runs make sense.

table 5: Relative errors ERRl and ERR2 during simulations on SYSTEM 3

and no noise colouring:
ERR030= 0.43 E+0 ERRO
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= 0.43 E+0 ERRO

00

= 0.47 EHO




DEGREE=2 DEGREE=3 DEGREE =4
AVR1 AVR1 AVR1
it=] 0.17 E+1* 0.18 E+1* 0.19 E+1*
2 0.18 E+1* 0.19 E+1%* 0.19 E+1*
SN=00 3 0.18 E+1 0.18 E+1 0.19 E+1
4 "~ 0.18 E+1 0.19 E+1 0.20 E+1
5 0.17 E+1 0.19 E+1 0.20 E+1
it=l 0.18 E+1% 0.18 E+1%* 0.18 E+1%*
2 0.18 E+1 0.18 E+1 0.18 E+1%
SN=10 3 0.19 E+1 0.18 E+1 0.17 E+1
4 0.19 E+l 0.19 E+1 0.20 E+1
5 0.17 E+1 0.20 E+1 0.20 E+1
it=] 0.18 E+1#* 0.18 E+l1* 0.18 E+1*
2 0.18 E+1%* 0.18 E+1 0.18 E+1
SN=30 3 0.17 E+1 0.17 E+1 0.17 E+1
4 0.15 E+1 - 0.17 E+1
5 0.15 E+1 - 0.17 E+1
Remarks: * tall 20 different runs make sense.
- tno runs make sense.
table 6: Absolute error AVRL during simulations on SYSTEM 3
and no noise colouring:
AVRO3O= 0.18 E+1 AVR010=0.17 E+1l AVRO 0= 0.19 E+1
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DEGREE=2 DEGREE=3 DEGREE=4
ERR1 ERR2 ERR1 ERR2 ERR1 ERR2
it=1 |[.66 E+0* .38 E-2* .67 E+0* .29 E-2% .67 E+0* ,22 E-2%
2 |.68 EHO .38 E-2 .68 E+0 29 E-2 .68 E+0* .21 E-2%
SN=10 3 .69 E+O0 .37 E=2 .73 E+0 .28 E-2 .13 E+1 .23 E-2
4 .59 E+O 45 E=-2 «76 E+0 .21 E-2 .76 E+0 .21 E-2
it=1 |.78 E+0* .22 E-2% .74 E+0* .16 E=-2%* .72 E+0* .83 E-3%*
SN=30 3 |.13 E+1 .21 E-2 .70 E+0 .19 E-2 - -
4 ]1.68 E+O .21 E=2 .66 E+0 .22 E=2 - -
5 1.70 E+0 .16 E=2 .66 E+O .20 E=-2 - -
Remarks: * tall 20 different runs make sense.

:no runs make sense.

table 7: Absolute error AVRl during simulations on SYSTEM 3 and NOISE
= 0.43 E+0 ERRO

SYSTEM 1: ERRO

30
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DEGREE=2 DEGREE=3 DEGREE=4

AVR1 AVR1 . AVR1
1t=1 0.18 E+1%* 0.18 E+1* 0.18 E+1*
2 0.18 E+1 0.18 E+1 0.18 E+1*
SN=10 3 0.18 E+1 0.19 E+1 0.19 E+1
4 0.16 E+1 0.20 E+1 0.18 E+1
5 0.14 E+1 0.20 E+1 0.18 E+1
it=1 0.19 E+1* 0.19 E+1* 0.19 E+1%*
2 0.19 E+1 0.19 E+1 0.19 E+1
4 0.17 E+1 - 0.20 E+1
Remarks: * tall 20 different runs make sense.

- :no runs make sense.

table 8: Absolute error AVR1 during simulations on SYSTEM 3 and NOISE

SYSTEM 1: AVR030= 0.19 E+1 AVR010=0.17 E+1
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4.2.3 Some remarks on the results of all simulations.

A general remark we can make, based on these tests, is that applying
the implemented iteration process, does not make any sense! In fact,
we do not know what happens during the substitutions of the estimated
values {ai,ﬁ(i)}igl,..r
by using the iteration process. .

It is quite obvious that the best fit of {&(i)} on {M(i)} is found by
increasing the degree of the minimal polynomial because by increasing

. Some times a very small improvement is found

this degree we will introduce a larger space for all possible
solutions.

If we compare the deviations of the tests using system 2, we see that
the noise colouring of the additive output noise has a neglectible
influence on the results of the GERTH algorithm as well as ou the
results of the estimation program, EXACTMARK (we compare the situa-
tions of white output noise and coloured output noise). We will
confine ourselves by examining the results of the simulations without
noise colouring (we did not execute the simulations with output noise
colouring during the tests with signals with SN = O dB).

Comparing the measurements of the fit of {ﬁ(i)} and {ﬁ(i)} on the
exact values of the Markov parameters, we have to mnote that the
relative error values ERRO and ERR2 are calculated out of the first 8
Markov parameters, while the calculations of ERR1l take the first 30
parameters in consideration. The computation of the absolute error
value is executed by using only eight parameters, so we can use these
error values to compare the output of the GERTH algorithm with the
results of the estimation program EXACTMARK.

The choice of the degree of the minimal polynomial of SYSTEM 2 (tabel
1 and tabel 2).

As we have said before, increasing the degree of the minimal
polynomial implies a better fit of {ﬁ(i)} on {ﬁ(i)}, expressed by ERR2
and AVR2. But this does not automatically implies a better fit of
{ﬁ(i)} on the exact parameters {M(i)}.

In case of well conditioned measurements (high values of the signal--
to~-noise ratio), the distance between {ﬁ(i)} and {M(i)} is rather
small, so the deviation between {ﬁ(i)} and {M(i)} will also be rather
small in this case. In the results of the tests with SN = 30 dB, we
find indeed that the minimal value of ERRl and AVR1 will occur im the
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cases with a minimal polynomial of degree=4. The order of both systems
under consideration is 4!

By applying output noise with a higher energy contents (SN = 10 dB and

SN = 0 dB), the optimal fit on the exact parameters has occurred in

simulations with degree = 3.

The results of SYSTEM 2 presented in tabel 1 and tabel 2.

In the situation with SN = 30 dB, we have registrated (taken the mean
value over 20 different simulations) AVRO = 0.35 10-3 and AVR1l =
0.33 1073

polynomial r=4). This implies that we have found only a small

(number of i1iterations 1t=1 and degree of the minimal

improvement of the absolute error value over the first eight Markov
parameters.

In cases of SN = 10 dB, we have found values AVRO = (0.12 10~
= 0.76 10-2 (1t=1, r=2), this implies an error reduction of almost
40%. During the simulations with SN = O dB, the value AVRL = 0.52 107"
(it=1, r=1) has been calculated. AVRO is 0.12 during these tests. So

1 and AVR1

we have found a large improvement (50%Z !) by executing the GERTH
algorithm on the results of the estimation program EXACTMARK.

We also mention that we have calculated mean values ERRO = 0.30 10-2
and ERR1 = 0.20 10-2 during the simulations with SN = 10 dB (and
it=1, r=2), and values ERRO = 0.29 10—l and ERR1l =0.13 10-1 for SN = 0
dB (it=1, r=2). So the relative error of {i(i)}, over 8 Markov
parameters 1s much higher than the relative error in {ﬁ(i)}, computed
over 30 parameters. In case of SN = 30 dB, we found the following
values: ERRO = 0.87 10™* and ERRL = 1.03 10~ (it=1, r=4).

The choice of the degree of the minimal polynomial of SYSTEM 3 (tabel
5 and tabel 6).

Now we will have a look on the results of simulations with SYSTEM 3.
The placed remark on the output nolse colouring can also be placed in
these situations: we will only consider white noise corrupted measure-
ments.

As we have fgund during simulations with SYSTEM 2, the best fit of
{ﬁ(i)} on {M(1)} will occur in the situations with a minimal
polynomial of degree 4. In case of SN = 30 dB, this choice of the
degree of the minimal polynomial also proved to be the best fit of

{M(1i)} on the exact Markov parameters.
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We remark that in these cases (SN = 30 dB), allowing one extra
iteration the values ERR1 and ERR2 are still improving!

During the simulations with an output SN-ratio of 10 dB and 0 dB, we
have computed the smallest deviation between {ﬁ(i)} and {M(i)} 1if
degree has been chosen 2. However the differences between ERR1(r=2),
ERR1(r=3) and ERR1(r=4) are very small.

The results of SYSTEM 3 presented in tabel 5 and tabel 6.

Comparing the various values of the relative and absolute errors

during the tests with SN = 30 dB with the corresponding values from of
the simulations with SN = 10 dB and O 4B, we note that there are only
small deviations between the error values. This property occures
during simulations with white output noise as well as with output
nolse colouring.

In appendix D, we will compare the influence of the additive output
noise with the effects of the truncation of the impulse response
during the execution of EXACTMARK by estimating only 8 Markov
parameters.

If we have a look at the absolute error values, we will find in case
of SN = 30 dB an AVRO value of 1.75, while the optimal value of AVR1
is 1.76 (it=1, r=4).

If SN = 10 dB, AVRO = 1.74 and AVRL = 1.75 (it=1l, r=4) are
registrated.

In both situations applying the GERTH algorithm reduces the fit of the
first eight estimated Markov parameters on the exact values!

Despite of this slight worsening, it still is wuseful to apply the
GERTH algorithm. If we do not use this algorithm, we have at our
disposal only an finite number of Markov parameters ( 8 in this case).
This means that the middle and low frequency responses of a system
under consideration can not or hardly be expressed. If the GERTH
algorithm can make an extension of the finite set of parameters
without a substantial reduction of the accuracy of the original finite
set, we have gained a lot: we are able to make an reasonable
estimation for the tail of the impulse response of a system.

During the simulations with SN = Q0 dB, the mean values AVRO = 1.91 and
AVRl = 1.67 (it=l) are found while the degree of the minimal
polynomial has been taken 2. In this situation a improvement of = 20%
has taken place.
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CONCLUSION:

In general, by applying the GERTH algorithm we are able to make a
reasonable estimation of the complete impulse response of a system. If
the start series {i(i)} have a good fit on the exact values, we can
use a degree of the minimal polynomial which 1s nearby the real order
of the system. In cases with a low signal-to-noise ratio, it {is
Eecommended to use a lower order system to estimate the values {ai,
M(i)}i=1,..r’ Also if makes no_sense to apply more than one iteration,
because the fit of {M(1)} on {M(1)} is mostly reducing although the
fit of {ﬁ(i)} on the exact parameters is sometimes improving. In noisy
situations, the GERTH estimation 1is also smoothing the somewhat
stochastic pattern of the estimated Markov parameters. This can be
explained by the fact that during the estimation of the parameters in
EXACTMARK (or any other estimation program implemented by J.VAESSEN
[ 11 ]) all entries of Markov parameters are considered as independent
parameters (so no attention 1s paid to the mutual relation of the

Markov parameters of a certain system).

32



5 SIMULATIONS FOR TESTING THE DIRECT METHOD.

During the tests on the properties of the DIRECT method several
systems have been taken under consideration. Some tests on SYSTEM 2
and 3 (see chapter 4) have been performed. The DIRECT method estimates
the output signals by convolving preceding and actual input measure-
ments with a sequence of Markov parameters, calculated by applying the
minimal polynomial relation with estimates of {ai,M(i)}igl’z..r.
The number of measurements in the past that should be taken into
account, depends upon the eigenvalues of the system (so on the rate of
decrease of the impulse response).

Using systems like SYSTEM 3 with the largest eigenvalue of about 0.9,
the impulse responses will decrease slowly. Almost 400 samples will be
needed to have a “"truncation” error of the same order as the accuracy
of the computer.

The optimization methods also ask for the partial derivatives of the
loss function to the minimal polynomial coefficients and to the start
sequence of Markov parameters. During these calculations the whole
data set has to be used so the iterations will need a lot of
computational efforts. For example the process time needed to execute
only one iteration (with 500 preceding input signal samples) is almost
15 minutes. The average value of the number of iterations during ome
minimization is = 400. So the total process time will be almost 4
days!

It will not be possible (using this algorithm) to execute a lot of
tests on systems with large eigenvalues.

We also want to test the properties of the DIRECT method on systems
with eigenvalues that lie close to each other, and that represent an

equal part of energy in the impulse response. We have chosen SYSTEM 4:

A = diag(0.08, 0.60, 0.10, 0.55, 0.50)
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1.0 0.0 =-1.0
1.0 1.7 0.0
B = 0.0 1.0 =-l.5
7.0 0.0 8.0
0.0 7.0 5.0

5.1
4.0 3.0 0.0 0.0 0.0
9-0 100 8-0 -'005 005

0.0 0.0 0.0
0.0 0.0 0.0

The largest eigenvalues of this (strictly proper) system are rather
small; we will only need 200 Markov parameters to have a truncation
error of the same order as the accuracy of the VAX-computer. Using
this system one iteration takes about 20 seconds processor time, so
for one minimization run the computer will need about one hour.

We have used two minimization methods:
l. Conjugate gradient method [ 20 ]
2. Comprehensive quasi Newton method [ 21 ]

The loss function (the trace of the output error matrix) will decrease
very slowly and can have several areas with a small gradient. In most
tests the conjugate gradient method has not been able to exceed these
"terraces”. The comprehensive quasi Newton method will perform a local
search if the conditions for an optimum have been met (or almost met).
The term “"comprehensive” implies in this case that the second
derivatives have been estimated instead of calculated. The Newton
minimization could reach the global minimimum in most of the performed
tests. So we will only discuss tests using the comprehensive quasi
Newton method.

We want to compare the results of the test of the DIRECT method with
the results of the estimation method EXACTMARK [ 11 ] and the GERTH
algorithm. We have used the estimates {ai, ﬁ(i)}i=l,2..r of the GERTH
method as start parameters in the DIRECT method. By inserting these

start parameters we will reduce the time needed.
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So the "flow chart” of fig. 4.1 (chapter 4) will be extended with an
extra block containing the DIRECT method (simplified):

system

SYSSIMUL -———QiEXACTMARK

GERTH » DIRECT

~ ' ~
M(1)ia1,2..x {a, %:i)}i=l,2..r

minimal polynomial expansion

]

M(D)jay, 2.0 M(1) a1, 2..
(GERTH) (DIRECT)

~

Fig.5.1 Simulations, processing of nolse corrupted Markov parameters M(i),
the GERTH approximation and the DIRECT estimation of the minimal polynomial
coefficlents and the start sequence of Markov parameters.

We have used data sequences corrupted with additive output noise

consisting of white channel independent noise samples and output

signal-to—noise ratio”s (SN) of:

1. 100 dB.
2. 80 dB.
3. 60 dB. 5.2
4. 40 dB.
5. 20 dB.

During our tests with the GERTH algorithm we also have used data with
SN less than 20 dB. But during these tests the data set consisted of
1000 measurements instead of 400 samples during the tests with the
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DIRECT method.
Using data sets of different SN”s we have calculated the energies of
the additive output noise. These energies will be the minima of the
trace of the output error matrix. In case of SN is 20 dB, the optimal
value of the trace almost has been found during the first iteration of
the DIRECT method (so by applying the GERTH estimates in the
calculation of the trace of the output error matrix). So it makes no
sense (using SYSTEM 4) to apply the DIRECT method (as it is
implemented here!) on data sets with signal-to-noise ratios less than
20 dB. ‘
Like we have done in chapter 4, we will calculate the relative squared
distance between the deterministic and the estimated Markov parame-
ters. So we have calculated ERRO (eq. 4.5), ERRl (eq. 4.6) with ﬂ(i)
from the GERTH algorithm and ERR1l with ﬁ(i) from the DIRECT
method. :
In appendix F the error values of the same tests will be presented but
then we will use the Euclidean norm instead of the Maximum norm, so
these values can be used in the comparison with other estimation
methods. We have to remark that the differences between the results
expressed in Maximum norm and the results in Euclidean norm are rather
small. ‘
During our tests the estimation algorithm EXACTMARK has been used to
calculate only the first 8 Markov parameters (M(0) has not being taken
in account). First we will present the error values of the results
with Nl (number of Markov parameters in ERRO) and N2 (number of Markov
parameters in ERR1l) of 8.
The order of SYSTEM 4 is 5 so we have to apply a minimal polynomial
extension to calculate Markov parameter 6,7 and 8 by using the

estimates {gi’M(i)}r=l of the GERTH algorithm and the DIRECT

R
estimation.

In the second part we will present the error values of the results
with Nl and N2 both 50 (after 50 samples the impulse response of
SYSTEM 4 is = 10-6)- The estimates of minimal polynomial coefficilents
and start sequence of Markov parameters of the GERTH method and the
DIRECT estimation will be used to calculate these 45 Markov parameters
(50 - the degree of the minimal polynomial). But in EXACTMARK we have
estimated only 8 Markov parameters, so the impulse response has been

truncated after 8 samples. So in the calculation of ERRO we will have

to assume that the Markov parameters "9" till "50" are zero!
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Remark: The degree of the minimal polynomial of SYSTEM 4 is 5 and this
value has been used during all tests and in the GERTH algorithm only
one iteration has been made.

Like the tests on the GERTH algorithm during the simulations we have
generated 20 different noise data sets (for the excitating input noise
and for the additive output noise) for the tests with the same
signal-to-noise ratio.

In the following bar graphs we will present the mean value of the
error values ERRO, ERR1 (GERTH) and ERR1 (DIRECT), averaged over the
results of all 20 tests with different excitation and additive output
noise corruption. The standard deviation of the error signals also
will be presented in the same graphs!

During the calculation of the mean values and standard deviations of
the error values, the standard deviation of the results of the
simulations on signals with signal-to-noise ratios of 20 dB , 100 dB
(DIRECT method) and 20 dB (GERTH algorithm) was very large. During the
DIRECT estimation (and both noise 1levels) the trace after onme
minimization was significant larger ( x 10+5 !) than the trace values
of the other ( 19 ) minimizations. The GERTH method (SN = 20 dB)
proposes a set of minimal polynomial coefficients belonging to a
system that 1s not stable!

The reason of this deviation during the test with SN = 100dB can be
the restart of the minimization after the restart of the computer
system after a "lock™ situation. In case of a noise corruption of
20 4B the deviationshave been found during the estimations on the same
data set!

In the calculation of the mean values and the standard deviations,
these 3 "bad" cases have not been considered so the statistic
calculations have been executed over the results of 19 minimizations.
Remark: the DIRECT method only uses the second half of the output
signals while EXACTMARK (and so GERTH algorithm) examines the complete
set of output measurements. The noise reduction during the DIRECT
estimation will be less than during simular tests with both other
methods. During tests with much noise corruption on the data, the
variances of the error values of the DIRECT method will be greater
.than the variances of the error in the results of EXACTMARK and GERTH
algorithm.

We will present the results of minimization on data sequences with a

signal-to-noise ratio of 20 dB first, because the results of EXACTMARK
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(and so the results of the GERTH method) on signals with SN = 60dB,
SN = 80dB and SN = 100dB will remain the same, while the results of
the DIRECT méthod will still decrease very much by increasing SN”s.

If we want to present these small error values, the errors of
EXACTMARK and the GERTH method will exceed the plots!

In the legends on the bar graphs “s" indicates the standard deviation.
5.1 Results of the tests on signals with SN = 20 dB.
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Fig. 5.2 : Estimation results of SYSTEM 4 ( 8 Markov parameters)

From the results presented in fig. 5.2, we can conclude that the first
8 Markov parameters estimated by EXACTMARK and the GERTH algorithm are
simular, while the relative error of the results of the DIRECT method

is almost twice the deviation of the estimates of the other methods.
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ESTIMATION RESULTS ON SIMULATED SIGNALS

Results ever 80 Markov parameterw

G, I

mE .o - — . — - - —— > - G G G R D mE mh G SR Wn WD WD e mn EE mm = e -

B, § el oo oo )
4
: Bl Ly o o e e Ny DN\ = e e e e an = e tw e e e e wn —n - - -
s

VT,
WY

Fig. 5.3 : Estimation results of SYSTEM 4 ( 50 Markov parameters)

If we take a look at the results on fig. 5.3, we mention that the
error of the complete estimated impulse response (--> 50 Markov
parameters) of the DIRECT method is almost 40% lower than the error in
the estimates of EXACTMARK.

The GERTH method will result in estimates that have a much better
performance ( 60% ) than the results of the DIRECT estimation.
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5.2 Results of the tests on signals with SN = 40 dB.
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Fig. 5.4 : Estimation results of SYSTEM & ( 8 Markov parameters)

In fig. 5.4 we have presented the results of the different methods by

a signal-to-noise ratio of 40 dB. All error values are of the order
~5 . -

10 © while we have found values of about 10 3 during the tests on data

with SN = 20dB, but the differences between the methods -are the same.
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ESTIMATION RESULTS ON SIMULATED SIGNALS
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Fig. 5.5 : Estimation results of SYSTEM & ( 50 Markov parameters)

The bars belonging to the results of EXACTMARK exceed the upperbound
of the plot: ERROAO = 2.2 10-3. This wvalue 1is large due to the
truncation of the impulse response after 8 samples.

The GERTH algorithm estimates the Markov parameters much better than
the DIRECT method.
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3 .3 Results of the tests on signals with SN = 60 dB.

ESTIMATION RESULTS ON SIMULATED SIGNALS

Results ever § Markev parameters
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Fig. 5.6 : Estimation results of SYSTEM 4 ( 8 Markov parameters)

The information presented in fig. 5.6 shows that the application of
the GERTH algorithm improves the relative error over the start samples
of the impulse response (an improvement of about 20%).

The fit of the estimates of the DIRECT method even improves the
results of EXACTMARK even with a factor of 30%!
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ESTIMATION RESULTS ON SIMULATED SIGNALS
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Fig. 5.7 : Estimation results of SYSTEM 4 ( 50 Markov parameters)

If we take a look at fig. 5.7, we see that the accurcy of the "whole"
impulse response (--=> 50 Markov parameters) of the DIRECT estimation
is almost 90% better then the fit of the expanded sequence of Markov
parameters on the deterministic sequence using the minimal polynomial
coefficients and start Markov parameters of the GERTH method.

In the following paragraphs the results will be presented of the
estimations based on data sets with SN“s of 80 and 100 dB.

The quality of the first 8 Markov parameters estimated by EXACTMARK
remains the same as during the tests with SN = 60dB (the results
presented in fig. 5.6 and fig. 5.7). The GERTH algorithm only uses the

output data of EXACTMARK, so the results of the GERTH method will not
change either.

43



5.4 Results of the tests on signals with SN = 80 dB.

ESTI“ATION RESULTS ON SIMULATED SIGNALS
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Fig. 5.8 : Estimation results of SYSTEM 4 ( 8 Markov parameters)

The mean value of the error of the results of the DIRECT estimation is
= 0.9 10.9 while the corresponding error value of the GERTH algorithm
- -6
=1.110 !
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ESTIMATION RESULTS ON SIMULATED SIGNALS
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Fig. 5.9 : Estimation results of SYSTEM 4 ( 50 Markov parameters)

In the preceding figure we see that the ratio of the error (over 50

Markov parameters) of the GERTH method and the error value of the

+
DIRECT estimation is almost 10 3!. This ratio also has been found from
the results in fig. 5.8.
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55 Results of the tests on signals with SN = 100 dB.
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Fig. 5.10 : Estimation results of SYSTEM & ( 8 Markov parameters)

As mentioned before the relative errors of the results of the GERTH

method and EXACTMARK are the same as during the tests with signal-to-
noise ratios of 60 and 80 dB.

The average value of the error of the DIRECT estimation decreases to
= ~11
=0.9 10

by taking 8 Markov parameters into conéideration and

~ -11
1.0 10 if we look at the "whole" impulse response (see fig. 5.11).
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ESTIMATION RESU’LTS ON SIMULATED SIGNALS
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Fig. 5.11 : Estimation results of SYSTEM 4 ( 50 Markov parameters)

5.6 conclusions

As we mentioned before the DIRECT method needs a lot of computational
effort, especially if many input samples of the past should be taken
into consideration (so if the impulse response is decreasing slowly).

The loss—function is not a very pleasant one: the trace decreases
little by little and can have several "flat” areas that could be seen
as local optima. So we will have to use a robust minimization method
that passes these flat areas!

We mention that the loss—function in the minimization process is the
squared distance between the measured output signals (noise corrupted
data) and the reconstructed outputs (by using the estimated model).
But during'the comparison with other methods we have used the distance

of the estimated impulse respons to the deterministic impulse response

of the system.
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The minimal value of the trace will be the total energy in the
additive output noise. The DIRECT method is able to estimate the model
in such a way that this minimal trace will be found during all test on
SYSTEM 4.

The number of Markov parameters estimated with EXACTMARK has been
chosen the sam as during our tests on the GERTH algorithm. By applying
the derivation of appendix D we can calculate how many Markov
parameters should be estimated to make the truncation error less than
the influence of the additive output noise.

The number of parameters in EXACTMARK is (8 x 3 x 2 =) 48 while the
number of parameters in the DIRECT estimation is the number of minimal
polynomial coefficients r plus (r+l) times the entries of Markov
parameters (we also will estimate M(0) in the DIRECT method). So this
last number has been 41 during our tests on SYSTEM 4.

"Summary"” of the results of the several tests:

If we deal with bad conditioned signals (a-lot of noise), the GERTH
algorithm smoothes the impulse response (see chapter 4) and will give
good results. The output equation error expressed by the trace of the
error matrix still will be improved by the DIRECT estimation but the
improvement is rather small.

With increasing signal-to-noise ratio”s the results of the DIRECT
method will exceed the GERTH estimates rather fast (starting at about
50 dB).

100dB) the

estimates of the minimal polynomial coefficients and the start

In case of very well conditioned measurements (SN

sequence of Markov parameters is very good (an improvement of a factor
10+5 in comparison with the results of the GERTH algorithm). The
reconstructed eigenvalues calculated by using the estimated wminimal

polynomial coefficients will very well approximate the exact values.
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6 CONCLUSIONS.

In this report two methods have been developed for the estimation of
minimal polynomial coefficients and a start squence of Markov parame-
ters. The problem during the estimation of these parameters
{ai’ﬂ(i)}i=l,2..r is. that the extended sequence of Markov parameters,
calculated by applying the minimal polynomial, is not linear in the
minimal polynomial coefficients.

The iterative GERTH algorithm will lead to an approximate solution
while the DIRECT method will find the exact solution using hill
climbing techniques.

The properties of both algorithms have been investigated by performing

tests with simulations of several systems. From the results of these

tests we can summarise the following conclusions:

~-The implemented iterative GERTH algorithm minimizes the squared

distance of a sequence of Markov parameters {M(i)} ( calcula-

i=1,2..k
ted by applying the minimal polynomial expression) to the noise

corrupted set {M(i)} During the execution of several itera-

tions this distance 3Ij£2gékreduced in most of the tests. But only if
the estimated (noise corrupted) Markov parameters are close to the
deterministic Markov parameters (no truncation effects and well
conditioned signals) the distance between the extended sequence and
the deterministic set will be minimized by executing more than one

iteration.

~-If we deal with estimates of {ﬁ(i)}i=l,2,..k based on data with a
rather small signal-to-noise ratio, it 1s very useful to decrease the
estimated degree of the minimal polynomial (in the GERTH algorithm as
well as in DIRECT method). So we will “"reduce™” the image of the
input/output projection. We have used only short data sets and so

parts of process dynamics will get lost by noise corruption.

-The DIRECT method needs a lot of computational effort, especially if
many Markov parameters have to be taken into consideration. In those
cases the calculation of the output signals will be based on many
input samples in the past.

The calculation of the partial derivatives of the loss function will
use the same number of data samples. The time needed for the
calculation of these derivatives is = 0.9 of the total processor time.

So if we can estimate the partial derivatives the minimization process
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will ask less computational efforts. The properties of an estimation

have to be investigated.

-Dealing with signals with large signal-to-noise ratios ( z 50 dB) the
DIRECT method will lead to estimates of minimal polynomial coeffi-
cients and a start sequence of Markov parameters that are much better

than the estimates found with the GERTH algorithm.

=During all tests on SYSTEM &4 the DIRECT estimation minimizes the
reconstruction error almost to the theorictical lowest bound, being
the energy of the additive output noise. During the tests on data with
a high noise corruption, these bounds almost have been reached by
applying the GERTH method only . The DIRECT method is able to reduce
the trace of the output error matrix to this lowest bound, but this

reduction is not substantial.

-It is very useful to take the GERTH estimates as start parameters of
the DIRECT method. This way it is possible to reduce the number of

iterations during the minimization process.

-In the minimal polynomial description the order of the model will be
min(p,q)xr. The extra model space compared to the input (output—-)
companian form will lead to multiple eigenvalues (see Appendix B). In
case of large SN ratios we easily can extract the eigenvalues with
substantial influence from the complete set by applying a singular
value decomposition of the Hankel matrix, composed out of the extended
sequence of Markov parameters. By neglecting the multiple eigenvalues
with a relative low energy contents, we can make an exact realization
of the system (from the impulse response model to a state space

representation).

The DIRECT method calculates the output signals based on “mw—1 prece-
ding and one actual value of the input samples. In our implementation
“‘m” has be chosen half the number of samples in the available file
with the measurements. So we will use only the second half of the
output measurements. EXACTMARK uses the complete set of measurements
so the noise reduction during the estimation with this method (and so
with the GERTH method) will be better than during the DIRECT
estimation. Especially during estimations on data sets with a lot of

noise corruption this property will be shown.
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Appendix A DERIVATION OF THE EQUATIONS FOR THE DIRECT METHOD.

In this appendix, belonging to the chapter 3 we will derive expres—
sions for the minimization of a loss function with respect to a set of
Markov parameters and the series expansion of this set by means of the
minimal polynomial. In the chapter “DIRECT METHOD” we have found a
expression for the loss—function. We will recall these equations (eq.
A.1-3). -

Y =S .M+E Al
Y = sI . M A.2
or:
"y (h) | '_3?(h) c. . _E?(h-m)ﬂ FMT(0)

. ) ) MT(1)

. = . . . + E
BRGNP CTS WY I YETE)

We define an equation—error:

- A3
Eey-sIl.Mm=yv-y
Then the loss function will be:
v =trace(ET « E) = trace[( Y - Y )T (Y =-Y )] =
A.4

trace[Yl.Y] - 2 crace[YT.si.M] + trace[MT.Sm.Si.M]
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The matrix M will consist of Markov parameters (see eq. A.l). We will
use a series expansion by the minimal polynomial for the Markov
parameters M(i) ( i>r : r is the degree of the minimal polynomial), and
we will rename these parameters to functions (eq. A.6: we use a

recurrent relation), we will find the matrix-expression of eq. A.5.

Ty ] [ui ... wTem)] M) ]
. . : uT(1)
. = . . Mi(r) A.5
. . . FL(1)
| 5" (betm) | ul(htm) « .« . ul(h) | | Fi(mr),
R S— ——> K— =D
Y ST M
m
where:
r
Fi(l) = § a . M (r-1+1)
1=1
j-1 r A.6
FT(j) = 3 a, . FT(j—i) + ) a, - MT(r—i+j)
i=1 i=] (for 2 : j': r)
r
FI(3) = ] . FI(j-4)

i=l (for j > )
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We will derive reccurent-expressions for all three parts of eq. A.4,

starting with first taking h=0:

- yl(O) P e e o s ety (m)]

= . D e e e s e 3 . A.7

0) ¢ ¢ ¢ ¢ 0 .
yq( ) Yq(m) )

So it is easy to see that:

q n
trace { V' b= 3 ¥ yn(k)}2 A.8
n=1 k=0
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The second part

will now be derived:

uZ( 0) .
uZ( 1) ..

u2( m) « o«

A.9
u( 0): « « & & ul(-m) u (-m)
u (1) . . . ul(l—m) u (1-m)
u(m):. .. 2 ul( Q) u ( 0)
Mll(o) . e Mql(o)
0
M _(0) M (0)
Mll(r) Mql(r)
Ml () . qu(r)
Fll(l) Fql(l)
F 1 ¥ 1
D oV
Fll(m-r) F l(m—r)
Flp(m-r) qu(m—r)i
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" r p m p :
) ui(‘j)-Mli(j) + ) ) ui(-j). Fli(j—r) e

J=0 i=1 jer+l i=1 :

r p m p :
D) w (@M D)+ ] ) w (). F (D)t .

j=0 i=l jer+l i=1 .

r p m P b
cor Ll wepag@ o+ D uens By
e o 3 j=0 i=1 jer+l i=l

r p m P

DD wapa @+ I ] e, Fuomn
. ot §=0i=1 j=r+l i=1 ]
with:

T 7,0 = .oty () N
T o o e e st .
Y = . $ e e e e w0 . A.10
0) : .+ . .+ . 4
v yq( ) yq(m) J
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then: YT.Si.M - A.11

m r P m P *
Ly ] [ uGenM H+ [ [ uGDF, G0}
k=0 j=0 i=1 j=r+l i=1 :
m r P m P .
Ly 0] ] etena @+ 11w enF Gl
k=0 =0 i=1 j=r+l i=1
tm T P m P
PDy 00 T ] wGenM D+ 1] w ki) ()
:k=0 =0 i=l j=r+l i=1
:m r P m P
BEACIEENE R IE AN & D)
k=0 j=0 i=1 j=r+l i=1
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So the trace [YT\.Sz.M] can be expressed by:
AI 12

9 m r p
I 19,01 ] w9+
n=1 k=0 j=0 1=l

m P
I I uGe9).F (50}
j=r+l i=1

From matrix equation A.8, we calculate the third part of the loss-

function:

M.S .SE.M(1,1)= A.13
m m

m r p m P

Dol D owenam, p+ D] w e FLGenp

k=0 §=0 i=l jer+l 1i=1

T T

M".S .S_-M(q,q)= A.14

m r P o P

DT T wGenu, @+ I ] uten. Fimni

k=0 4=0 1=l jer+l i=1
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M'.S LS. .M(s,t)= A.15
r P m P
(DI wena )+ I ] w9 F (D} .
j=0 i=1 j=r+l 1=l
r P m P
(7 o GDM D+ 1)1 oED-F @D+, ..
j=0 1=l jer+l i=l
r p m p
(L) @M D+ 11 w@d F GD}.
j=0 i=1 j=r+l i=1
T p m P
(I D w@pu n+ L1 w@pn. F )=
j=0 {=1 j=r+l i=1
m r p m p
J UL L Dy D+ I D e e F GO}
k=0 j=0 i=1 jer+l i=1
r p m P
(1 1 w@enM D+ ] ] vk=i) F LD}
j=0 i=1 j=r+l 1=l

(We can use this last general expression if we have to’ calculate the

determinant instead of the trace). So:

trace {MT.S .ST.M } = A.l6
m m
q m r p m P
VI LT woenm n+ DL wen. Fn)?
n=l k=0 j=0 1=l j=r+l i=1
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Now we are able to give an expression for the loss—=function V:

trace { ET.E } = A.l7
qQ m r p
2 ! -
Ity + 2y o+ [ ] upM )+
n=1 k=0 j=0 i=1

m P
) u (k=3). F_ (D)) -

jmr+l i=1
T P a P
(L1 weepy i+ 11 ued. FGmD}
3=0 1=l jer+l 1=1

The partial derivatives of the loss function with respect to the

Markov parameters will be:

d(trace { ET.E b

= A.18
d(M .. (37))
m r P
D U2y ) +2 0 [ uGeg)M (5 +
k=0 §=0 i=1
m P
2 ) 1 w (k9. F_ (D))
j=r+l i=1
m d( F_,.(j-r))
{ ui'(k-j’) + E ui'(k-j)' }]
j=r+l d( M, (i)
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M(0) has no contribution to the minimal polynomial expansion, so :

d(Mhi,(J'#O)) d(F (3"
= ———— = Q

d(M_,-(0)) d(M 4 -(0))

Applying this in eq. A.l8 than:

d(trace { ET.E b
If j°=0 then: = A.19
d(Mni,(j'))

m r p
JL =2y (k) +2 ) u, (k=3) M (§) +
k=0 4=0 1=1
m P
2§ 5 w(eD.F_ (0} . {u ()}
j=r+l i=1

The partial derivatives of the loss function with respect to the

minimal polynomial coefficients will be:

d(trace { ET.E b

= A.20
d(aj,)
qQ m r p
I Ity +2 0 1 w(e=pu () +
n=l k=0 j=0 i=1

m  p
2 17 u (k=3). F_ (D)} .
j=r+l i=1

d( F,(31))

P m
(Il oy —— 1
i=l j=r+l d( ay- )
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For the calculation of A.18, A.19 and A.20, we need expressions for:

d( Fni,(j—r) ) d( Fni,(j-r) )
and
d( Mni,(j‘)) d( aj,)

Note that:

d( M-

=0
d
( aj,)

61



We are going to use the expressions of eq. A.6 for the calculation of

the partial derivatives. We can derive that:

A.Zl
d( F_ (D)

4, . (37))

l. If j=1 then:

——D

2r+l-§

2. If 2 h| i r and j : j : r then:

3. 1If 2 o J_rad 1 _ j°< j then:

4. If j > r then:

r o d(F_(50)

t=1 d( Mni,(J )
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And for the partial derivatives to minimal polynomial coefficients:
A.22

d( F_ ()

d
( aj,)

l. If j =1 then:

——> M (r+l-§")

2. If 2 i j : r and J : j’: r then:
j}1 d( Fni,(j-t))
—_— a_. + Mni,(r+j-3 )
t=1 d .-
( a; )
3. If 2 i j: rand 1 : j°_ 31 then:
F1 dCF_ (5t
—> [ a. +F_,.(33)
t=1 d( aj,)

4. If j > r then:

r d( F i,(j‘t))
Z n » > »
-—D a, . + Fni,(J—J )
t=1 d( aj,)

Now we are able to compute equations A.18 and A.19 by using the
expressions of equations A.2l1. By substituting A.22 in equation A.20,
it is possible to calculate the partial derivatives of the loss-
function with respect to the minimal polynomial coefficients.
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Appendix B THE DIMENSION VERSUS THE DEGREE OF THE MINIMAL POLYNOMIAL

We will look for the dimension of a MIMO system, identified using a
model consisting of coefficients of the minimal polynomial and a start
sequence of Markov parameters, {ai’M(i)}ial,Z,..r’

The number of parameters of this model Nm is given by expression B.l
(M(0) is not included):

Nm =r (pxq+ 1) B.l

The dimension of this model 1is not known in advance: the description
allows models with minimal dimension n=r, r+l, ... .

Can we find an upperbound for the minimal dimension of the model?

If we will extend the Hankel matrix Hr (definition eq. 2.1), with
Markov parameters calculated by applying the minimal polynomial
relation, to Hankel matrices Hr+j (3>0), it is easy to see that:

rank{ Hr+j } = rank{ Hr } (§50) ‘ B.2

because the extension will depend linearly on the original part Hr of
Hr+j.
So we have found an upperbound of the minimal dimension of a model

{ai’M(i)} , given in equation B.3 [ 7: theorem 2].

i=1,2,..r

n = max(rank{ B }) = r x min(p,q) B.3
max r
where r x min(p,q) is the minimum of the number of columns and

rows of the Hankel matrix Hr.

A parametrization {ai’M(i)}i=l,2..r includes models with minimal
dimension n = r, r+l, .. r x min(p,q).

During an identification based on the minimal polynomial model, the
parameters will be estimated independently, without any restrictions.
This means that the identified system will have the highest rank
possible due to errors during the calculations and/or due to noise
corruption of the measurements. The dimension of the model during the

identification will therefore always be the upperbound of eq. B.3!
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The number of independent parameters in a canonical state space

description N will be [ 5 ]:
c
Nc =n (p+q) B.4

with n = r, r+l, .. r x min(p,q) we will find that the number of

parameters will be:

(p+aq)

"

1. 1f p > q then N | = ( r x min(p,q)
= c'max

Q
~r

=rxqx(p+
=rxpxq+rzxgq
B.5
2. 1f q¢ > p then Nclmax = (rxmin(p,q) x (p+q)

Q
~r

=rxpx(p+

=rxpxq+rxp

So in both situations the number of independent parameters of the
minimal polynomial model Nm is less than or equal to the number of
parameters in the canonical state space representation Nc. This

implies that the model {ai,M(i)} can not represent all

i=l,2..r
possible systems of order r x min(p,q): the minimal polynomial has to

be of degree r.

What will be the restrictions on these systems?

For n>r, the model will have multiple poles (“distinct” poles). We
will prove this for n = r x min(p,q).

This last situation will generally occur during an identification. So

the Hankel matrix Hr will be of full rank; we can look at two cases

(as done in eq. B.5)(c.f. [ 2 ] and [ 7 : pep. 36 = 45 ]):

1. if p : q ==> rank{ Hr } =r xq: we will find

partial Kronecker row indices n,

n , =r for all i=1,2 .. q
ri

B.6
2. if q > p ==> rank{ Hr } =r xp: we will find partial

Kronecker column indices nc

~ nci = r for all i1=1,2 .. p
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In the second situation, there have to be static dependencies between
the outputs, so the question is why the model is chosen that way. We
will only take a look at situation 1.

In the situation that the number of inputs of the system is greater
than or equal to the number of outputs (p : q), we can transform the
model in the canonical observable form with a system matrix A of a
known structures

The first block part (with “r” rows) of this matrix A is given in eq.
B.7.

0 - . 0 -* e [ ] 0
0 0 e e e
Al = * e * * * * [ ] .
o 0 0 .. . 0 0
L X 0 F*ri2 P Yo Fr2e 0 0 *r22 Fi2tt
B.7
o . . 0 e .0 . . 0 7
: 0 . . 0 - N ¢ . . 0
Xpgp @ 0 Xygp foeoe s PXpe . X ]

This block part structure can be derived from the Hankel matrix Hr+1

(see [ 2 ]). The x parameters (eq. B.7)indicate the linear dependence
between the first row of the last block part (with “r” rows) of Hr+l
and the preceding rows of Hr.

The dependence of the first row of the 1last part with the rows
excisting of corresponding entries of Markov parameters is expressed
by the parameters X1e0 0 X120 Xy the dependences with the
remaining entries are shown by x

u.u’x ,..X

1202 *121° lqr 1q1°
The degree of the minimal polynomial is “r”, so the row “q x r + 1°
will depend only on the corresponding entries of the Markov parameters

M(1i) in Hr. This means that:

i=1,2..r
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xljs =0 for all j=?,3.. q and s=1,2.. r 3.8
A same derivation can also be made for the entries 2,3 .. q. So:
xijs =0 for all {i=1,2.. q, j=1,2.. q}i#j and
s=1,2.. r B.9

These structural zero”s, q x [(q~1) x r] = (n-r) X q in number, are

restrictions and so the number of degrees of freedom will be:
Nc =nx (phq) ~qxXx(n-r) *=nxp+rxgq B.10
Using the parameter values of equation B.8, we will find a system

matrix A in canonical observable state space notation of the following

form:

'Al o 0 . 0 A
0 4, 0 . 0
A = L] L] L] L] L] Btll
0O 0 . 0 A, \
d mm(p,q)J '
[ 0o . . 0 )
0 o .

. . . . . .

with Ai = . . . . . .
0 0 o . . 1

L X340 0 0 0 Fy42 %i41 J

The matrix A has to have a minimal polynomial of degree “r”, so:

Ar - a Ar-l - a Ar-zo =

1 2 NULL

12

al.x min(p,q) rx min(p,q)B°
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where: I is a identity matrix with dimension
r x min(p,q)

[ r x min(p,q) , r x min(p,q)]

NULL is a square zero matrix with dimension
r x min(p,q)

[ r x min(p,q) , T x min(p,q)]

If we calculate powers of a block diagonal matrix, the results will
also be of a block diagonal structure. This implies that the minimal
polynomial of equation B.1l0 can also be applied to Ai instead of A!

So each part Ai will have the same parameters Xig10 Xi420 ¢ ¢ Xy4pe

see [ 2 ] and these parameters will be the coefficients of the minimal
polynomial:

= aj for all i=1,2.. min(p,q) and for all j=1,2.. r .13

X
113

The block matrices on the diagonal of A will have to be the same and
so we have proven that the roots of the minimal polynomial will form a
set of q multiple (“distinct”) eigenvalues of system matrix A.

Another consequence of eq. B.12 is that there are not left “q x r”
degrees of freedom in the canonical observable system matrix A but

P

only “r“. So the last expression of eq. B.10 is “r” instead of “q x

“1

r .

The remaining number of parameters will be:

Nc = nxp+r=rx(pxq+1l)s= Nm ! B.14
An equivalent derivation can be made if @ p; in that case we should
use a canonical controlable state space notation.

We will illustrate the previous theoretical part by an example (worked

out by P. Van den Hof in a summary of a MIMO meeting).

B.l Example to illustrate Appendix B.

Given 2 Markov parameters of a “27input = “27output system:

10 23
M(1l) = [ ] M(2) = [ ] B.15
' 01 14

and the degree of the minimal polynomial is 2 (r=2).

A model {ai’M(i)}i=l with random M(i) and a, can have a minimal

»2
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dimension n=2, 3 or 4 (according to the previous theory).
The information about the dimension of the model 1is contained in {ai,
MDY

avajlable parameters. The rank of the Hankel matrix expresses the

the Hankel matrix can be filled in an unique way using the

dimension of the model.
We will take a look at several possibilities:

a. A second order representation.
b« A third order representation.

¢. A fourth order representation.

B.1l.1 A second order representation.

The number of parameters in the minimal polynomial model is

Nm-r(p x q +1)=10. A second order model with Markov parameters as

presented in equation B.l5 will be represented in a unique way by
<

M k k n + = = = = ] 2 «
{ [1( )) { n .}[ 1’2 . 1’2 with n 1 n 2<n 1 n 2 [ ]
ThiS

So we have a unique representation {Mij(k)’ k 2]»1=1’2 5=1,2°
means that M(l) and M(2) are necessary and sufficient to represent a
second order model. The a, parameters will depend on the Markov
parameters!

The number of independent parameters in the minimal polynomial model
will be leindep = Nm - 2 = 8; the same number of parameters as needed
in the canonical state space description (Nc = n(ptq) = 8).

We will calculate the minimal polynomial coefficients from the partial
behaviour matrix [ 3 ], (-=> “incomplete Hankel matrix” in [ 2 ]):

"1 0: 237
01:14%
B, =] -==--- B.16
23:177?
1477

The rank of the Hankel matrix H2 has to be 2, so by applying the Main

lemma [ 3 ] we can find an unique solution for M(3):
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718
M(3) = B.17
S [ 6 19 ] _

Now the ai parameters can be calculated by means of the minimal

polynomial. We will find the unique values a, = 6 and a, = =-5. 1In

1
cases where the minimal polynomial coefficients will be known, we will
find two constraints om the entries of M(l) and/or M(2) to guarantee a

dimension 2 of the model.
B.1.2 A third order representation.

In the given situation and a third order model, the Kronecker row
indices will be:

= 2 =1 B.18
o or na

nr2 = ] an = 2

We will take a look at the situation with nrl=2 and nr2=1.
With the Markov parameters M(l) and M(2) (eq. B.l1l5) and wminimal
polynomial coefficients. a, and a, we can make a minimal realization

(in a canonical observable form!):

O 1 : o0 b, b,  B.19
A= x09 %11 F X1 B= Dby by | C= [ 100 ]
------ --- by, Byy 001

X212 ¥211 ' *221

We mention that there are still 12 parameters in this realization
(while in the minimal polynomial model there are only 10 degrees of
freedom!).

We will construct the partial behaviour matrix (eq. B.16) and we will

determine the x parameters.
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1 0 : 2 3 : M11(3) M12(3)
0 1 : 1 4 : M21(3) M22(3)
B, =]~~~ = R R B.20
2 3 : M11(3) M12(3) :
: M21(3) M22(3) :

- e - e e e ww * = s > = = = - 4

L%, (3) M ,03) ¢

In [ 2] and [ 7 : par. 2.2 | we have found that that the X

parameters express the linear dependence:

M, 5(3) =X | o | YR |4 | YR | B.21

But we have also stated that the degree of the minimal polynomial is

2! So:
M. (3 1 2
[11()]-32[ ]+a1 ] B.22
My ,(3) 0 3

The restrictions B.21 and B.22 indicate that the parameter x121 is a

structural 2zero and X112 and X)11 are uniquely determined by resp.a,

and al.

Now we are looking for the remaining x parameters. We will start with

a partial behaviour matrix B._:

3
i 1 : + ]
0 2 3 Za1 a2 3a
0 1 1 4 : a, bal+a2
B, = .
3 2 3 2a1+a2 3a B.23
1 4 a1 4a1+a2
2a1+aZ 3a1
X a1 4a1+a2 J

And with the definition of the x parameters:
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1 1 0
& 0 + + L B.24
= X X X -
a 212 2 211 231+32 221 1
+ 4
4al a2 3 331

So we have found 4 equations with 3 unknowns. We will have to show

that there 1s one dependent relation so we will have to prove that:

1 1 2 0
4 0 3 1 0
DET( =0 B.25
al 2 2a 1""82 1
+
_481 a, 3 3al 4

We have assumed that the order of the model is 3, so (using eq. B.l6,
B.23):

1 0 2 3
0 1 4
DET(BZ) = DET( ) 1= 0 B.26
2 3 2a1+a2 3a1
X 1 a1 4a1+a2 )
== 532 + 6a.,a, + a2 - 30a, - 26a, + 25 =0
1 172 2 1 2 B.27

This restriction automatically implies that equality B.25 is true (for
the determinant of a matrix is equal to or only of different sign as
the determinant of a transposed matrix with some rows changed!).

The set of linear equations (expression B.24) will have a unique

solution 1f and only if the rank of matrix B, is 3. This implies that

2
the determinants of all minors of B2 are not equal to =zero (see

GANTMACHER [l14 : p.p.239, def.4]):
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DET([ 1L ]) =1

"1 0
DET( y=1
‘ 01 B.28
1 0 2
DET(| O. 1 1 ) = 2al + a2 =7 #0 (M)
| 2 3 2a1+a2
By substituting a2 =7 - 2al in equation B.27, we will see that:
a, + 2al -7 =0 <K== al = 6§ and a, = -5 B.29

So the determinant of the third minor of B2 will only be O if a1=6 and

a2=-5: this. is the wunique set of minimal polynomial coefficients
belonging to the second order model!

The unique solution of the set of linear equations B.24 will be:

. _ 2a2 + 5
212
4+ -
2al a2 7
x = al _° B.30
211 2a. +a_ -7 a
1 2
. ) 5a1 + 4a2 - 10
221 2 +a_ -7
1 2

Does this mean that the x parameters in eq. B.30 are independent? We

did not yet use the minimal polynomial restriction r=2.

"0 1 0

A= a2 al 0
| *212 *211 *221
B.31
, a2 a12 0
A=
ala2 a2-+a1 g

L %1122 %221%212 %2121 %1121 211%221 %221
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By applying the minimal polynomial relation (see eq. B.l2), we will

find the next restrictions:

Xo11%2 T F10%001 T Fa121 =0 D)
X519 + X511%291 =0 (2) B.32
2 - - =
%221 T *221%1 T % 0 )
Out of eq. B.32 (3) we will calculate a value for x (two

221
possibilities!).

By substituting B.32 (2) x, in B.32 (1):

12 T Fa11%221

2
> %ypp (Xgp) T Xgpy3p T 3) =0
B.33
With B.32 (3): ==> x211 can be chosen at random and x212
is linearly dependent on x211!

This means that the number of parameters in the canonical state space
description Nc is equal to the number of parameters in the minimal

polynomial description Nm (=10), for x is a structural zero and

121

x212 depends on X511
An equivalent derivation can be made for the situation with Kronecker

row indices n =1 and n _=2!
rl r2
B.1.3 A fourth order representation.

In the given situation and a fourth order model, the Kronecker row

indices will always be (see equation B.6):

= 2 .34
nrl B.3

nr2 = 2

The canonical observable state space description will be:

B.35
0 1 0 0 by, by
X112 *111 ° *122 ¥121 591 P22 [ 1000 ]
As | -cecec:ooa-o B=[ by, by, | C=[ 0010
o o 0o 1 b1 bus
L %212 %211 ¢ *222 *221 J
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Applying the restriction of the minimal polynomial with degree 2 (see
eq. B.9):

= 0 ( 4 restrictions!)

21 T *122
X211 T *212

Using matrix A in expression B.35:

, | Mz 111, B.37
A™= X X +x 0
11112 *112™121
0 0 X922 *221,
0 0

X921%222  ¥2221%221

And by using the expression of eq. B.37 in the winimal polynomial
(seeeq. B.12):

2 .
A alA aZI4 NULL4 B.38

Substituting the expressions for A and A2 (of B.36 and B.37) in eq.

B.38, we will find the next restrictions and conditions for the

Kronecker indices:

11 T %21 T A B.39

%112 T %222 T ¥4

Generally the parametrization of a fourth order model (2 inputs and 2
outputs!) in a canonical observable form consist of 16 parameters.

We have proven that there are 6 restrictions on the parameter choice,
so there are only 10 independent parameters left: the number of
parameters in the canonical state space description 1s equal to the
number of parameters in the minimal polynomial model!

These results are according to the previous theoretical part of this

appendix.
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Appendix C OVERRATING THE DEGREE OF THE MINIMAL POLYNOMIAL.

For real systems the degree of the minimal polynomial r will be

unequal to minimal order of the system n. If the r’ of the estimation
model will be put equal to this n, the final dimension of the model

woll be n x min(p,q), but no extra poles will be added: the existing
poles will become multiple distinct.

Now the question arises, what happens if the r’ of the estimation
model is chosen too high.

Let the actual r of the system be 2 and the r’ of the estimation model
be 3 then:
So in this case we will find relation C.l for this situation (r=2):

M(1i) = alM(i-l) + aZM(i-Z) c.1

But we have forced a degree of the minimal polynomial equal to 3
(r’=3):

M(1i) = alM(i-l) + aZM(i-Z) + a3M(i-3) c.2

By applying eq. C.l once again (with a delay of one sample), we can
find an expression for M(1i-3):

1 ay
M(i-3) = M(i-1) - M(1-2) c.3
%2 )
Substituting C.3 in equation C.2:
8 2
M(1) = ( ai + w— )M(i-1) + (aé = — al)M(i-Z)
a, a, C.4

So the a’-parameters can not be chosen arbitrarily: A combination of

equation C.1 and C.4 results in the restrictions in eq. C.5.

a) b
ai'+--—z =a, aé - -22 a, =a,
a2 a2 C.5
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This third order polynomial can be divided in a second order part and
a first order part:

23 -’a’z2 -az-a.s=
1 32 T 33

9 a’ C.6
(z -alz-az)(z+_.§-)
a
2
This means that by overrating the degree of the minimal polynomial as
3 instead of 2, an extra root will be introduced:

Z = = o C-7

In eq. C.5 we have stated restrictions on ai, ai and aé, but the

choice of one minimal polynomial coefficient ai can be chosen at
random. So the place of the introduced extra root will also be

arbitrary!
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Appendix D COMPARISON OF THE NOISE INFLUENCE AND THE TRUNCATION ERROR.

In section 2.2 of [ 11 ], a model has been derived from the Hankel
model which is suited for the estimation of Markov parameters.
If we suppose that the initial conditions of the system are zero i.e.

X(@0) = 9) we can represent the system with the matrix equation D.l

"y (h) ] u) e . . ) ] MO ]
o ul () . .o . .

. = . . . . . . . + N D.1l
Ly ] a0 L Fw ] L |

So the output measurements are corrupted with noise. If we want to
truncate the impulse response after k samples, we can rewrite equatiom

D.1 in a different form, shown in eq. Df2.

[ zT(h) ] 'ET(h) ET(h-l) . . ET(h-k) 1 T MT(0)
. ul (k) . ... .
. = . . . . . . . +
| " (rm) | T () . = 3] B BT ES
D.2
'l (h=k-1) ul(h-k-2) . u (hm) ] [ MT(k+D)) {f(h) 1
u¥ (h-k) . . . . , .
. . . . . . + .
| (k1) cuty ) [ | L eTowm)

T T
r: Y=S M +8 + N
° Mt Y

In equation D.2, Sf Mi represents the influence of what is called the
"tail” of the Markov parameters, so the part of the impulse response
that represents the middle and low frequency behaviour. If we estimate
only k Markov parameters, the contribution of the latter part causes a

truncation error.
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We are looking for an estimate of Mk in such a way that the equation

error E is minimal (in least squares sence) with E :

T = D.3
E=Y - Sk,Mk

A brief review on least squares solutions has been given in chapter 3.

Using these results we find following expression:

~ T -1
M= (S, S, ) S ¥
D.4

T,-1 T T
= (Sk Sk) Sk (Sk Mk + Si Mi + N)

T,-1 T
= Mk + (Sk Sk) Sk {(Si Mi) + N)}

2 Mk +>Gi

The error Gi indicates the difference between the expression Mk with
exact Markov parameters and an estimate of Mk' During our simulations
we have used a noise input signal from a Gaussian white noise source
with 2ero mean value and a standard deviation of du (a normal
distribution!). The additive output noise is also assumed to be white
and channel independent with zero mean value and standard deviation
S

We will compare the part of @i caused by the truncation of the Markov
parameters with the contribution of the output noise to the error Oi.
So zs will have to compare elements of the products of matrices

S .
K Si Mi and Sk N

We will first take a look at the the elements of Sk SE Mi'
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Part of the first matrix multiplication is shown in eq. 3.17:

T
S S, =
. 4 ¢ .T T, .-
uh) .+ . . u(im) u (h-k-1) . u” (h-m)
. - o . L] T - . . i
| utk) + . . u(mwek)) | uf (hktmel) . ut(h) |
D.5
i m m
] u(brks)u” (h-k-1+s) ] u(trks)u” (h=k=2+s) .
s=0 : s=0
m
I u(tbs-1)u’ (h-k-1+s) : : .
s=0
m
J u(trks=k)u® (h=k=-1+s) : . .
| s=0
m h
. : 2 3(h+s)2T(h—m+s)
: s=0
m
. : X 3(h+s-k)3T(h-m+s)
=0 o
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m ¢ m

Xul(h-i-s)ul(h-k-us) ) a, (Ir+s)u, (h-k-1+s)
s=0 : s=0
m H m
zuz(h-i-s)ul(h-k-l+s) ) u,(Ir+s)u, (h-k~1+s)
s=0 : s=0
m M m
Y u (i), (hoke=lts) ) u (Irts)u, (h=k=1+s)
s=0 : s=0
m H m

) u (hekts)u, (hok-L+s): ) u (hek+s)u, (hok=1+s)

| s=0 : s=0

m . M m

) u (wrs)u (b-wbs) : . . @ L u (i¥s)u, (hms)
: s=0 : : s=0

m M H m

z u2(h+s)u1(h-m+s) : . . : z u2(h+s)uq(h-m+s)
: s=0 : : s=0

m H : m

) u (h-k+s)u_ (h-mr+s): . . : L u (h-k+s)u (h-mts)

q 1 q q

: s=0 : : s=0
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As mentioned before {u } has anr standard normal distribution.

i'i=1,2..p
The probability density function is expressed by equation D.6:
1 - u2
Y ZRQh z:u

We will try to find the expectation and the mean value of the
multiplication z, , = u, uj, so we will have to derive the distribution

ij
function of zij' Suppose that uy and uj (with i=1,2..p, j=1,2..p and
i#j, for all t)are independent and also that ui(tl) and ui(tz) (with

i=1,2..p and tl#tz) are independent.
This means that the probability of zij is:

P(z;,) = PCuy(t)) uy(ey) ) = B(ug(£))) B(u(E,))

h|
D.7
1 ui(tl) + u%(tz)
= ——5 exp( 5 . ) with i=1,2.. p, j=1,2..p
21to'u —20’u
and £ # t, if 1= j
The expectation of zij will be (by using eq. D.7):
E(zij) = | 2% P(zij) dzij
D.8
= [ u, (£)) uj(tz) P(u,(t))) P(uj(tz)) du, duj
= [ () BCu(e))] fuj(tz) P(uy(ty)) du} du

=/ u(e) PQu (e ECuy(e)))} duy = 0
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So the standard deviation of zij will be (by using eq. D.7 and eq.
D.8):

2 2 2 2
6213 E( zij ) + [E( zij )]T = E( zzij )
2
= | zij P(zij) dzij
D.9
= [ ui(tl) u?(tZ)P(ui(tl)) B(uy(t,)) dugdu,
= (e BCuy () [ ue,) PCuy(ey))du b,

[ ugce)) BCu (e )0 EC uie,))) duy

-

ci Ii uf(cl) P(u,(t])) du

-~

2 2 4
g, E( ui(tl) ) 9,

Now we are able to compute the standard deviation of a summation of

o+l independent z_ , values:
1]

m m
EC( L zij(s))z) =E(( . ui(t1+s)uj(t2+s))2)
s=0 s=0

D.10
2
= (mt+l) E(zij)

83



Inr the simulations during the tests of the GERTH algorithm we have
used data files with 1000 samples, so in those cases mt+l = 1000.
But after all we are interested in the standard deviation of the

elements of the matrix multiplication Sk Sf Mi' The upperbound will
be:
1 1 . 1 M Gerl) My (kL) o M) (k)
= 1 [ 3 »> » MlZ(Hl) L] L] L
e e e o M. (ktl . .« M (ktl)
lp( ) qp
o2vw000 | . . . . |. . . . . =
u
S . . . Mll(m) le(m) . Mql(m)
3 3 [ 2 . Mlz(m) . . ) .
1 . . 1 M. (m . . M (m)
lp( ) qp
D.1l1
m P m P
DDA O L MO]
s=k+l i=1 s=kt+l i=l
02 Y1000 . . . .
u
m P m P
M . . - M
I M ] Ik
s=k+1l i=1 s=k+l i=1

Output noise matrix N also consists of white noise samples with zero

mean value and standard deviation cn. So the preceding derivation (eq.

D.6 till eq. D.1l) of the standard deviation of the elements of matrix

SK Sg can also be applied to find the standard deviation of the
elements of matrix SK N.
It is easy to see that the mean value of these elements is also zero

and the variance will be (mtl) 02 02.
n u

84



By inserting the standard deviatiom du of the input signals and taking
the Markov parameters of a certain system in eq. D.ll, we can estimate
the value of ¢ in such a way that the standard deviation of the
elements of matrices Sk Sf Mi and Sk N are the same. In the following
example we will estimate this value of o,

In that case the contribution of the output noise to error @i will
have the same value as the part due to truncation of the impulse
response. -

We mention that in the case of rather slowly decreasing impulse
responses the output signal to noise ratio has to be substantial to

exceed the effects of the truncation error.
D.l Example of the estimation of the standard deviation of the output

We will excite SYSTEM 3 (see chapter 4), a 3-input/2—-output system
with inputsignals consisting of white noise with a standard normal
distribution (so the average is 0 and the standard deviation oh is 1).
By truncating the impulse response after k=8 Markov parameters (M(O0)
has not been considered!) and 1000 measurements (m+1=1000) we will
find:

1000 3
M = 4.
D ENONETE
s=k+l i=l
D.12
1000 3
s=k+l i=1
or:
D.13
output 1: 4.3 o2 = g a
Yy n u
output 2: 9.0 =0 ¢
u n u

So we will compare the "cross—powers”™ of the truncation noise and the
additive output noise with the energy of the truncation noise weighed
by the Markov parameters.

So with a maximal standard deviation of the additive output noise is

about 9 the contribution of the truncation will be comparible with the
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7 part due to the output noise corruptiom.

In this particular case (using SYSTEM 3) the standard deviation of 9
will be found if the output signal to noise ratio is about 10 dB.

If we take a look at the results of the tests of the GERTH algorithm
(tabel 5) we find:

ERR030 = 0.43 ERROlO = 0.43 ERROOO = 0.47 D.l6

The results are according to our estimation: the contribution of the

additive output noise on the equation error® becomes significant

i
during simulations with an output signal to noise ratio less or equal

to 10 dB.
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Appendix E ESTIMATION OF THE ORDER OF A SYSTEM

In the preceding part of this report, we have assumed that a finite
set of noise corrupted Markov parameters 1is available. We also have
assumed to know the degree of the minimal polynomial of the system
under consideration. In general however, we do not know this degree
and we have to estimate it. It is not possible to find the degree of
the minimal polynomial from of a sequence of estimated Markov
parameters. We only can estimate the order of the system from an
available set of estimated Markov parameters {ii}isl,z..k'
In recent publications several estimation methods for the order of the
system have been described ([ 17 ], [ 18 ].

The order n of the system can be greater than the degree of the
minimal polynomial r ( see appendix B). Now we assume that this degree
is equal to the order of the system. In case the order n is not equal
to the degree r extra meaningless eigenvalues will be introduced (see
appendix C).

First we will take a look at the deterministic situation (no noise on
the available set of Markov parameters). We will compose a Hankel
matrix from this set of Markov parameters.

The definition of the block Hankel matrix Hst is given in eq. E.l.

" M(L) M(2) . . . . M(S)
M(2) .

H = . . E.l
ts

M) . ... M(t+sel) |

Schwarz [ 19 ] has stated that in the deterministic case:
rank { H } =n E.2
ts

We have assumed that the order of the system is equal to the degree of
the minimal polynomial. So by calculating the rank of the Hankel
matrix, we can determine the order of the system and the degree of the
minimal polynomial.

In noisy situations we assume that the Markov parameters are corrupted
with white "entry independent” noise. In appendix B has been stated

that in those cases the Hankel matrices always will be of full rank
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(the rank of the Hankel matrices will be equal to the wminimal
dimension of the matrix):

rank { Hts } = min( ps , qt ) E.3

The problem will be to determine the dimension of the space that is
significant above the space (image) spanned by the noise.

One method to test the order of a system is based on a comparison of
the energy of the additive noise to the energy of the basis of the
Hankel matrix

We only will take a brief look at an order test based on the
examination of the singular values of the Hankel matrix.

E.1 The Singular Value Decomposition of the Hankel matrix.

The Singular Value Decomposition (SVD) of the Hankel matrix can be
used for a test of the order of a system. The SVD is an eigenvalue
like concept with remarkable numerical qualities, that is based on the
following theorem (c.f. [ 18 : eq.13]):

Theorem 1 For any gxh matrix A with rank{A} = n, there exists a
factorization:

A=W.D.VE E.4

where:
j=min(g,h),
W is a orthonormal matrix (i.e. WT.Walj),
V is a orthonormal matrix (i.e. VT.V=Ij),
Dadiag(él, 52, . o e .,6j) with:

Z.... 26n>0 and

6n+l - 6n+2 ToeeeeT 6j =0
The diagonal elements 51 are called the singular values of A and the
columns of W and the columns of V, respectively are the left and the
right singﬁlar vectors of A.
Because W and V are non—-singular matrices, the rank of A is equal to
the rank of D. This implies that the rank of A is equal to the number

of non-zero singular values. We can rewrite this as:
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T
n

A=A =W .D .V E.5
n n n

where for A.n only the first n nonzero singular values are used in Dn.

We also mention that the sum of the squares of all singular values of

matrix A represents the total energy in the set of column vectors of A

(see J. STAAR and J.VANDEWALLE [ 16 ]: eq. (13)).

In the noisy cases the Hankel matrix will be of full rank, so all

singular values of this matrix will be unequal to O.

We will think the noise corrupted Hankel matrix being divided in a

deterministic and a part containing the noise (for illustration).

H = H | + B | E.6
ts ts det ts noise

Although the Markov parameters appear repeatedly in the Hankel marix,
we assume that the noise on the elements of matrix Hst consists of
white noise samples (mean value is 0 and standard deviatioan is cn).
This means that the noise power in each direction will be the same and

equal to the square of the standard deviation cn.

We are interested in the distribution of the energy in the Hankel

matrix, so we will take a look at H .HT if qt < ps or at HT JH_ _ if
< ts ts - ts ts
pPs gt .

By using the singular value decomposition of Hts = V.D.WT then

Idet
[ 18: appendix]:

~ o~ 2 - <
E{H .H } =V (D+o psl )W if qt ps
ts ts n qt -
E.7
Y 2 2 <
E{H .H }=V(D+0 qtl )W if ps qt
ts ts n ps -
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~ L e ﬂT
Or generally {f H =V DW:
ts

~2 2 2
E{D}=D + 0 max(qt,ps) L E.8
n min(qt,ps)

So the expectation of the squared singular values of Hts will be equal
to the sum of the expection of the squares of the singular values in
the deterministic case and max(qt,ps) x cﬁ.

So only the singular values 61 of the noise corrupted matrix Hst
satisfying expression E.7 are significant for the energy in the

"signal" (without any noise).

> 2
61 - max(ps,qt) 9 RO E.9

In expression E.7 RO is a measure for the "distance” between the noise

level and the smallest singular value taken into account (see further
[ 16 : chapter 7.2]).
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Appendix F THE RESULTS OF THE TESTS ON THE DIRECT METHOD IN EUCLIDEAN
AND MAXTMUM NORM.

F.l The results of the simulations on SYSTEM 4 with SN = 20 dB.

EXACTMARK

GERTH ALGORITHM

DIRECT METHOD

table 9 : The results of the simulations on SYSTEM 4

Remark: “av” indicates the average while “sd” stands

8 Markov parameters

50 Markov parameters

maximum norm |euclidean norm| maximum norm |euclidean norm
av= .687 E-3 av= .684 E-3 av= .287 E=2 av= .287 E-2
sd= .215 E~3 sd= .157 E-3 sd= .022 E-2 sd= .0l6 E=-2
av= .559 E-3 av= .551 E-3 av= .601 E-3 av= ,592 E-3
sd= .203 E-3 sd= .128 E-3 sd= .214 E-3 sd= .147 E-3
av= .112 E-2 | av= .105 E-2 | av= .178 E-2 | av= .168 E-2
sd= .043 E-2 sd= .032 E-2 sd= .065 E-2 sd= .054 E-2
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F.2 The results of the simulations on SYSTEM 4 with SN = 40 dB.

-

8 Markov parameters

50 Markov parameters

maximum norm |euclidean norm| maximum norm {euclidean norm

av= ,751 E=5 av= .824 E-5 av= .219 E-2 av= .219 E-2
EXACTMARK

sd= .225 E-5 sd= .158 E-5 sd= .002 E-2 sd= .002 E-2

: av= ,617 E=5 av= .670 E=5 av= .659 E-5 av= .716 E-5

GERTH ALGORITHM

sd= .200 E-5 sd= .l44 E=5 sd= .216 E-5 sd= .16l E-5

av= ,l11 E-4 av= .106 E-4 av= .170 E-4 av= .l6l E-4
DIRECT METHOD

sd= .047 E-4 sd= .035 E-4 sd= .065 E-4 sd= .054 E-4

table 10 : The results of the simulations on SYSTEM 4 with SN = 40 dB.
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F.4 The results of the simulations on SYSTEM 4 with SN = 80 dB.

8 Markov parameters 50 Markov parameters

maximum norm |euclidean norm| maximum norm }euclidean norm

.141 E-5 av= .145 E-5 av
sd= .069 E-5 sd= .145 E-5 sd

«219 E-2 ] av= .219 E-2
.069 E-5 sd= .145 E-5

av
EXACTMARK

av= ,114 E-5 av= .120 E-5 av= .124 E-5 av= .,133 E-3
GERTH ALGORITHM
. sd= .056 E-5 sd= .056 E-5 sd= 0.56 E-2 sd= .056 E-5
av= .924 E-9 av= .914 E- av= .106 E-10| av= .107 E-10
DIRECT METHOD
sd= .310 E-9 sd= .280 E-9 sd= .04 E-10 | sd= .04 E-10

table 12 : The results of the simulations on SYSTEM 4 with SN = 80 dB.
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