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SUMMARY

The model of a Multi-Input/Multi-output (MIMO) system can be based on

the multivariable impulse responses: the Markov parameters.

The realizability criterion can be used to describe the linear

dependences of the Markov parameters on a number of preceding Markov

parameters. This expression is called the MINIMAL POLYNOMIAL relation.

In this report two methods are derived for the estimation of the

coefficients of this linear relation (the so called minimal polynomial

coefficients) and the start sequence of Markov parameters. Both

methods are based on the Least Squares principle.

The first method tries to find the minimum of a quadratic loss

function (being the squared distance of the estimated Markov parame­

ters to the available noise corrupted set of parameters)by means of an

iteration process.

The second algorithm uses a hill climbing procedure to find the

optimum of the error function (in this case the squares of the

differences between the estimated output signals and the measured

signals).

Both procedures are compared with each other by performing many tests

on simulated data. The comparison of the described methods with an

explicit iterative algorithm that estimates truncated impulse respon­

ses is also presented.
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1 INTRODUCTION.

During the last twenty years, there has been a progressive increase of

the interest in the control of complicated systems. Especially optimal

(in some way) control systems have become more and more important, not

only in technical systems but also for example in economical and

biomedical applications.

Most of those- systems have in common to be 'multivariable' and

'dynamical'. In this case, 'multivariable' means that the systems have

several inputs and several outputs. Further the inputs may influence

more than one output at one time (see fig. 1). Systems with these

properties are called MIMO systems (Multi Input, Multi Output).
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fig. 1: The black box representation of a MIMO system.

Starting point in the design of a control system usualLy is some model

that describes the behaviour of the system under consideration.

The problem of finding some mathematical description of the system is

called SYSTEM IDENTIFICATION.

Information that can be used to solve this problem is a priori

knowledge of the system and measurements of the input and output

signals.

In practice, we always deal with measurements, corrupted with some

kind of noise. So, based on these observations, we will try to

estimate a model for the system.

When applying estimated models in control techniques, we will usually

consider a system in a 'black box' approach; this means that we are

not interested in the internal physical structure but only in the
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2 THE GERTH APPROACH WITH SUCCESSIVE SUBSTITUTION.

In this report we will only discuss linear, time invariant, time

discrete stable systems. The Markov parameters of such a system

represent the sampled impulse response of the system. Because of the

uniqueness of the impulse response of a system, Markov parameters give

a unique representation of the system. And thus this way of modelling

is very attractive for estimation purposes. A great disadvantage of

the description in Markov parameters is that the number of the

parameters needed in general, is infinite. But for a finite dimensio­

nal system in general, we can find some scalars r and ai' (i=l,2 •• r),

in a such way that the following recurrent relation holds

[ 7 : theorem 1]:

r

M(r+j)= I a
i

M(r-i+j)
i=l

j > 1
=

2.1

This implies that the impulse response of a finite dimensional system

can be described completely by {ai' M(i)}'_l 2 • We can find a value
~- , ••r

of r, in such a way that the first r Markov parameters are independent

and that all other parameters can be computed from of these start

parameters and the coefficients of the recurrent relation. In this way

a finite number of parameters can give a description of the infinite

impulse response (r is less then or equal to the minimal dimension n

of the system, see appendix B).

The minimal value of r, such that relation 2.1 is valid, is called the

degree of the minimal polynomial. In case we deal with noise corrupted

Markov parameters, the system is not of a finite dimension and thus we

cannot find scalars rand a
i

of a recurrent relation. We will try to

construct a finite dimensional realization from of a finite number of

noise corrupted Markov parameters, M(i). We assume to know the degree

of the minimal polynomial beforehand. So we compute an approximated

sequence of Markov parameters which satisfies equation 2.1 and which

is a best fit , in a certain way, on the given sequence. This fit we

are looking for, implies that we minimize a loss function S, which is

defined in eq. 2.2:

3



k
Sa ~ trace [{M(i)-M(i)}T. {M(i)-M(i)}]

i a 1

2.2

[ 4 ] an

will

'k' is the number of given Markov parameters.
'"Because M(i) is not linear in the ai parameters, the loss function

will not be a simple' quadratic function. Hence, it will, in general,

not be possible to find the minimum of 5 in a closed form. 50 we will

need some iterative (hill-climbing) procedure to determine the minimum..
of 5 by varying' {M( i) ,ai }· 1 r. Using the GERTH method

..... 1.= ••

estimation {a., M(i)}i 1 ' will be found in two steps. First we
~ =:I •• r

minimizing 5 with respect to ai' and during the second part we will
'"find the o!timal set of start parameters M( i) by the computed ai and

the given M(j) ( for i a 1,2 •• rand j a 1,2 •• k).

2.1 Estimation of the coefficients of the minimal polynomial.

The recursive properties of the Markov parameters ( eq. 2.1) can be

formulated in a matrix equation. As we deal with noise corrupted

Markov parameters, we would like to find minimal polynomial coeffi-

cients such that equation 2.3 is true:

M(l) M(2) . . . M(r) ~Ip M(r+1)

= 2.3

_.
M(k-r) . . . . . . M(k-1) a1lp M(k)

I p is a pxp identity matrix (~ is the number of inputs of the

system under consideration).
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If we want to use standard routines of the NAG-library for the

computation of the least squares 'solution', eq. 2.3 is not suited for

the estimation of the coefficients ai • These routines all expect, at

least if we want to find one value for a., i=1: r, equations of the
~

form like eq. 2.4:

2.4

So we introduce a (pxqx(k-r),r) matrix H and a (pxqx(k-r) vector ~ ( q

is the number of outputs of the system). The matrix H and the vector v

are composed from the given noise corrupted Markov parameters. This

composition can be done in several ways; the one we are going to

apply, is not the composition suggested by W. GERTH [ 4 : page 48],

but one that is better suited for our representation of the noise

corrupted parameters. In fact by changing the rows, the GERTH

composition can be found from the form suggested by eq. 2.5 •

H =rk

• • • • M1 1(r)- '
•••••• M1,2(r)

v =-rk
2.5

~,q(k-r) •••••• ~,q(k-1)

M1,k(i) is the (l,k) element of the i th noise corrupted Markov

parameter.
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The estimation of the minimal polynomial coefficients uses a weighted

least squares method considering the loss function in eq. 2.6.

T
J - (H ~ - ~) B (H ~ - v ) 2.6

with B-1 = cov (~)

By minimizing J with respect to ~, we will find the estimation of a in

eq. 2.7 :

2.7

If we suppose to deal with white noise corrupted Markov parameters,

this implies that cov(~)-I, we will find a simplified expression for

the optimal values a in eq. 2.8:

2.8

Instead of solving equation 2.8, we have used a standard routine for

finding the least squares solution of eq. 2.4. This routine, F04AMF of

the NAG-library [ 9 ], reduces matrix H to upper right triangular

form, R, by applying Householder transformations, Q, with pivoting so

that Q H-R. The right hand side vector V is transformed into vector G

by applying the same transformation matrix Q, Q V=G, and an approxi­

mate solution X is found by back subsitution in the equation R X-c.

The residual vector P-V-H X is computed and a correction D to X is

found by solving the linear least squares problem H Dap, i.e. R D = QP.

X is replaced by ( X+D ) and the correction process is repeated

until full machine accuracy is obtained. Additional precision accumu­

lation of inner products is used throughout the calculation.
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2..2. The estimation of the start sequence { M(i)}i a l,2 •• r

...
The estimation of the start sequence { M(i)}i_l,2 •• r' will have a

great deal in common with the estimation of the minimal polynomial

coefficients. We will minimize the loss function (eq. 2.9):

k

s~· I trace {M(i)-M(i)}T. {M(i)-M(i)}
ial

M(i) is the reconstructed sequence of Markov parameters,
i=1,2•• k

based on the already estimated minimal polynomial coeffients

and the requested start sequence of Markov parameters.

To simplify the procedure, we define a partial loss function according

to eq. 2.10, where we assume to deal with white noise corrupted Markov

parameters.

2.10

If we have minimized all partial loss functions, we also have

minimized the loss function of eq. 2.9, because all partial systems

are mutual independent. Like eq. 2.4 we define eq. 2.11:

G m'h - n' h-J -J
2.11

m'h is a vector with length r and consisting of the (j,h) elements
-J
of the requested start series of Markoy parameters.

n is a vector with length k and consisting of the (J',h) elements-jh
of the given white noise corrupted Markov parameters.
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G is a (k,r) matrix, consisting of polynomials of a
i

( i a 1,2 •• r):

R E
r

. . . . . .
2.12

0 a 0
r

with: R" . . . . and E ..
r

I r-1,r-1 0

a 1 1

We mention here, that the expression for matrix G in eq.2.12 is not

used during the composition of the matrix in the GERTH algorithm (in

[ 12 : subroutine SOL] the implemented composition of matrix G is

shown). It is easy to see that the calculation of the required powers

of the matrix R, will cause large numerical errors (because R
T

is a

matrix in a companion form). Like equation 2.6, the expression for the

partial loss function S'jh can be formulated as eq. 2.13:

2.13

By minimizing this loss function with respect to moh , we will find
-J

the estimation mh in eq. 2.14:
-j

2.14

We notice that solving this least squares problem by computing eq.

2.14, seems to be more efficient than using a standard routine. This
T -1 Tbecause the matrix (G G) G can be used during the estimation of

all pxq partial systems.

But the matrix G can be ill conditioned and so the computation of eq.

2.14 can lead to large numerical errors. So instead of solving eq.

2.14, we have used a standard routine for finding the least squares

estimation of the set equations (eq 2.11). This is the same procedure

as used for the estimation of the coefficients of the minimal

polynomial.
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2.3 The iteration process.

The original GERTH algorithm executes both estimation procedures for
A

a
i

anq. ~(i) only once. If the loss function would be quadratic in both

ai and M(i), applying the algorithm one time would "lead to the optimum

(i.e. the least squares "solution" of a
i

and M(i)). As the loss

function is not quadratic in ai' we are not able to find the minimum

by applying the orginal GERTH algorithm, and using an iteration

process can bring a solution. The design of a suited iteration scheme

is the next subject in this report.

A possible iteration scheme, according to the successive substitution

method, is to compose the matrix H k of eq. 2.5 from a sequence of
, r

Markov parameters, MJ(i)( M(i) eq. 2), consisting of start sequence of

M( i) and the expanded sequence of Markov parameters, by using the

recurrent relation 2.1 and the estimated coefficients of the minimal

polynomial a~.
~

In the used notations, the number of j's in the superscripts

"j'", "jj", "jj •• j" indicate the number of the iteration cycle during

which the estimates have been computed.

After computing new estimates of a jj , we can compose a new matrix G
j' i

( see eq. 2.11) out of ~i J and we can choose to use the already

existing n "l(with the elements M, l(i)) or compose a new n'l out of
-J ' J, -J

the series MJ(i).

According to J.B. KORTAS [8], who has implemented the GERTH

algorithm for SISO systems, the composition of n, out of Mj(i) is not

a very stable method, because the start series Mj~·j(i) can drift away

from the optimal estimates very easy. We can exp~ain this by

considering n3i·
j

as a reference to the given noise corrupted Markov

parameters.

So we have implemented the iteration scheme in which only the Hrk and

G are adapted during each iteration cycle:
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START: a noise corrupted
sequence with Markov parameters
{ M (i) }i=l

J
2•• k is available.

,
Initialize matrix H

rk
and

vectors v and n- -

,
Estimate! by using Hrkand v and initialize matrix-G with the elements of a-

1

Estimate { M(i) } 0 1 2
by using G d ].= J •• ran nO l-J

Refill matrix H with Markov
parameters calcfifated by using
the minimal polynomial relation

Y
More iterations ?

N

READY

fig. 2: Implemented scheme of the iterative GERTH algorithme.
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3 THE DIRECT METHOD.

3.1 An introduction to the DIRECT Method.

In the previous chapter, the GERTH method has been described. This

procedure estimates a set of minimal polynomial coefficients and a

start series of Markov parameters out of another set of Markov

parameters. This last set usually will consist of the samples of

estimated, truncated impulse responses.

The GERTH algorithm optimizes the fit of the (reconstructed) Markov

parameters (calculated by extension with the coefficients of the

minimal polynomial) on the truncated impulse responses. During this

optimization we do not reconstruct any output samples from the input

measurements, so no reference is made with input and output measure­

ments of the system under consideration.

This means that the result of the GERTH estimation totally depends

upon the quality of the already estimated Markov parameters!

In the next section we will derive a method, so called DIRECT method,

which estimates minimal polynomial coefficients and a minimal set of

Markov parameters from input and output data of the system.

3.2 Derivation of the DIRECT method.

We will use a model in describing the behaviour of the MIMO system

that is called the HANKEL model [7: definition 12], which is based on

the impulse response of the system. Out of the state space notation,

we derive equation 3.1. (c.f. [11: chapter 2]).

k
k i-l

1.(k)- C A ~(O) + I CAB u(k-i) + D ~(k)

i=l 3.1

where: ~(O) is the initial state of the system.
~(k) is the (pxl) input vector u at time instant k-
1.(k) is the (qxl) output vector 1. at time instant k
A is the (nxn) system matrix, where n is the

dimension of the system.
B is the (nxp) distribution matrix.
C is the (qxn) output matrix.
D is the (qxp) input,output matrix.

i-lThe matrix products C.A .B are the multivariable impulse responses

of our system. -The part of equation 3.1 containing the summation may

11



be regarded as a convolution sum of impulse response and all previous

and present input signals.

These samples of the multivariable impulse response are called Markov

parameters, defined as:

Markov parameter at time instant i:

M(i) -~ i-I"1 A B

i < 0
i = 0

, i ) 0
3.2

If we suppose that the initial conditions of the system are zero

(.!(O)=O) and we use the definitions of equation 3.2, we can rewrite

eq. 3.1 to the form of eq. 3.3 •

k
y(k) "" I M(i) • u(k-i)

i-O
k·O,l, .

3.3

We can rewrite expression 3.3 into a matrix notation:

yT(O) uT(O) 0 . 0
0 . · · · · 0

0 · 0

"" 0 · · · 0
0 · · 0

yT(k) uT(~)
0

. . . · · uT(O)

3.4

Normally (for stable systems) impulse responses always will decrease

to zero, if sufficient sample intervals are taken into account. Using

this property, we can abstract part of matrices of equation 3.4 and

rewrite this like eq. 3.5 ( so we will neglect the influence of markov

parameters M(i) for i ) m ).

T MT(O)~ (h-m)

3.5

uT(h) MT(m)

expansion instead of the MarkovIf we use the minimal polynomial

parameters M(i) (i)r where r is the degree of the minimal polynomial),

and rename these parameters to functions of the set {ai,M(i)}. 1 2
1- ) ••• r

(eq. 3.6: we use a recurrent relation), we will find the matrix

12



expression of eq. 3.7.

r T TI ai • M (r-i+l) • M (r+1)
i·1

FT(j) ...
j-1

T .
r

MT(r-i+j) = MT(r+j)I ai • F (J-i) + I a i •
i:001 i:ooj

< . < )(for 1 _ J ... r

T
r

I T T
F (j) - a

i
• F (j-i) ... M (r+j)

i-1
(for j ) r)

<- -)
Y

,.

uT(h)

<-------

T
~ (h-m)

----)

M~(O)
M (1)

T(r)
ir(l)

T·
F (m-r)

<-- -)
M

3.7

The problem we deal with is the estimation of minimal polynomial

coefficients and the first r+1 Markov parameters (M(O) is the input/

output matrix). We suppose that we have given a set of input/output

data, that may be corrupted with measurement noise, that is not

correlated with the input signals and which is assumed to be white and

channel independent. 50:

Y
T

- 5 • M + E
m

3.8

....
How can we find an estimate M which is as close as possible to the

real parameters M ? This M will satisfy the expression in eq. 3.9

(Y consists of the reconstructed output data).

Y
T ....

- 5 • Mm
3.9

Our target now is to find a matrix M which minimizes the error Y - Y

(in some chosen sense). We will use the least squares criterion to

find the minimum.

13



The idea behind this criterion is that the projection , of the noise

corrupted vecto'r y on the Euclidean space formed by the input vectors

~ is the best approximation to the vector Z (the parameter vector M is
T

mapped into this space by the transformation by S ).
m

This means that the Euclidean distance between y and , is minimized.

In case of a single output system, the loss function would be given by

eq. 3.10.

m 2 T
V - L (y(i)-'(i)) - (y - ,) • ( Y

i-1 3.10

But in the multi-input multi-output case, Y and Yare matrices built

up out of 'q' output signals y , so the loss function will be:

q m
V - L L e.

j-1 i-1 J

2 T
(l+i) - trace(E • E) •

trace[( Y - y)T • ( Y Y )]

3.11

Thus to find the least squares estimate of the Matrix M it is

necessary to minimize the loss function V with respect to M

containing Markov parameters and higher order functions of Markov

parameters and minimal polynomial coefficients.

If we subsitute equation 3.9 into eq. 3.11, we will find:

TAT T A
V • trace[ (Y -S .M ) .(Y -S .M )] =m m

In Appendix A the loss function of eq. 3.12 is rewritten to an

expression, which can be computed very easily.
TA

The equation error E • Y - S M is not linear in ~, so V is not square
m

in parameters ai • This means that we have to apply an optimization

method to estimate ai and M(i).

Most of these methods need at the least first derivatives of the

object function (few even ask for second derivatives or calculate

estimates of them).

The first partial derivatives of the loss function to the parameters

a
i

and M(i) have also been derived in Appendix A.
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~ SIMULATIONS FOR TESTING THE PROPERTIES OF THE GERTH ALGORITHM.

In order to test the properties of the iterative GERTH algorithm,

different systems have been simulated under several conditions.

Simulations show the advantage of giving the freedom to influence

certain quantities relevant for the GERTH algorithm, such as:

1. The number of estimated Markov parameters {M(i)}.

2. The level and the kind of the noise disturbances.

3. The eigenvalues of the system.

Fig. 3 shows a block diagram of the operations. Before the GERTH

algoritlun can be run, we have to estimate a sequence of Markov-parameters {M(i)}. The program EXACTMARK [ 11 : section 4.2] an

explicit iterative algorithm for the estimation of Markov parameters,

is used to find this sequence {M(i)}.

The input of the estimation program is a sequence of input and output

samples of the system under consideration. This sequence can be

constructed out of measurements, but in this case, the samples have

been generated by a simulation program called SYSSIMUL [ 10 ].

In figure 3 we see that we can generate a sequence of output samples

with a certain signal-to-noise ratio (the user can select this SN­

ratio). We can also define an output noise system {F, G, H}, so the

output samples can be corrupted by coloured Gaussian additive noise

instead of by white noise.

The input signal is also a white noise sequence (normal distribution)

with a zero mean value and a standard deviation of 1. The output noise

has the same c_haracteristics, but is not correlated with the input

noise. During our analysis, we have generated sequences of 1000

samples for each input and output of the system.

15



Gaussian white noise

noise system
{ F, G, H }

Gaussian white noise L- ...-__--l

- +
system Yk If Yk estimation of

r) { A, B, C }
-' a finite number,

of Markov
+ parameters

'-

{M(i)}
uk

-
{M(i) }

i=1, •• k

GERTH
r-

algorithm

'"
{M(i), a· }

~ i=1,2 •• r

r-O\,,-+-~------1
+ +'

ABSO ABS1 ABS2
ERRO ERRl ERR2

I 1 1
AVRO AVRl AVR2
ERRO ERRl ERR2

fig 3. Simulation, processing of Markov parameters and repro­
cessing of minimal polynomial coefficients and a start sequence
of Markov parameters.
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4.1 Systems and parameter values, used during the tests of the GERTH algorithm.

The results for two systems will be presented, both having 3 inputs, 2

outputs and dimension 4. The state space descriptions of both systems

are given in eq. 4.1, eq. 4.2 and eq. 4.3 These systems are also used

by VAESSEN [ 11 ]. For a clear view on the eigenvalues of the systems,

the A matrices are chosen in a diagonal way. The applied noise system

is presented in-eq. 4.4. Both input-output Matrices D and DN are equal

to zero, this means that we have restricted ourselves to strictly

proper systems.

1.0 0.0 1.0

-1.0 0.5 0.5
C~[

0.5 0.0 1.0 1.0 ]B== 0.0 1.0 -0.5 1.0 -0.5 0.5 -0.5 4.1

0.0 0.5 -1.0

SYSTEM 2: A ... diag( 0.7, 0.6, 0.2, 0.1)

SYSTEM 3: A'" diag( 0.9, 0.8, 0.3, 0.2)

4.2

4.3

[
0.85

F... 0.0
0.0 ]
0.75 [

1.0
GaH'" 0.0

0.0 ]
1.0 4.4

For both systems we have chosen 2 large and 2 small eigenvalues to be

able to look what happens to the smallest eigenvalues after estimation

and applying the GERTH algorithm. The largest eigenvalues of SYSTEM 3

are so large that we deal with a very slowly decreasing impulse

response.

This implies that we should take into consideration many Markov

parameters to avoid any influence of the neglection of the 'tail' of

the truncated impulse response. So the number of 8 Markov parameters

will be too small to guaranty a neglectible truncation error. We will

estimate this value in case of system 3 in appendix D. We will check

whether the GERTh algorithm can improve the effects of the truncation.

The noise system is a combination of 2 decoupled S1S0 systems in

17



parallel and is used in both test cases.

Further we have constructed sequences with output signal-to-noise

ratio's (SN) of:

1. 30 dB.

2. 10 dB.

3. 0 dB.

Out of thes e sequences, EXACTMARK has estimated 8 Markov parameters

{M(i)}.

The GERTH algorithm estimates an optimal(in least squares sense) set

of startparameters of the Markov series and a optimal set of minimal

polynomial coefficients. Out of these parameters, the algorithm
A

calculates a certain number of reconstructed Markov parameters {M(i)}.

In our simulation, we have chosen a number of 30 parameters, so the

most significant part of the tail of the impulse responses will be

described. The number of iterations in the GERTH algorithm has also

been varied during our reprocessing of the Markov parameters and the

minimal polynomial coefficients.

We will examine the behaviour of the algorithm by calculating the

relative errors ERRO, ERRl and ERR2. ERRO and ERRI are defined as the

quotients of the maximal values of the energy in the equation error

and the deterministic sequence of Markov parameters (see eq. 4.5 and

eq. 4.6). ERR2 is the quotient of the maximal energy in the error and

the available (noise corrupted) sequence of Markov parameters {M(i)}

(see eq. 4.7.). We mention that ERRO is a measure for the maximal

disturbance of the available Markov parameters, ERRI is a measure for

the largest error in the results of the iterative GERTH algorithm.

The deterministic sequence {M(i)} has been calculated from the state

space description presented by matrices {A, B, C, D}. In eq. 4.5, 4.6,

4.7, 4.8, 4.9 and 4.10, I I stands for the maximum norm.
a>
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N

I
1

I - I:M(i) - M(i)
i-1

ERRO -
4.5

N
1

2

I I M(i)
lex>

i-1

N
2

I M(i) - M(i) 1
2

ex>I
i-1

ERR1 -
4.6

N
2

2

I I M(i) lex>

i-1

N
1 ... -

1
2

ex>I M(i) - M(i)
i-1

ERR2
4.7

= N1
1
2

ex>I M(i)

i-1

We mention that ERR2 shows the maximal distance between the noise

corrupted sequence of Markov parameters of EXACTMARK {M(i)} and the,.
extended series of Markov parameters of the GERTH algorithm {M(i)}.

This is the error value we want to minimize during the iterations in

the GERTH algorithm, but minimizing ERR2 does not mean that we also

minimize the distance between the sequence of exact Markov parameters

and the GERTH extension (- ERR1)!

We also will calculated a number of absol:ute error values over a

constant number of parameters N
1

, so that we will be able to compare
,.

the results of the GERTH algorithm {M(i)} with the output of the

estimation algorithm EXACTMARK {M(i)}. The definitions of these

absolute error values are given in eq. 4.8, eq. 4.9 and eq. 4.10, and

are according to the definitions in Van den HOF [ 16 ], but Van den

HOF has used the Euclidean norm and we have calculated the maximum

norm! By using the maximum norm we will get an idea of the worst case

situation,'instead of the mean distance.
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N
l

AVRO - I I M(i) - M(i) 12
a>

i:al

N
1

AVRl - I M(i) - M(i) 12
a>

i:al

N
1

AVR2 =0 L M(i) - M(i) I~

i=l

4.2 The results of the simulations on the GERTH algorithm.

4.8

4.9

4.10

During the simulations, we have generated 20 different input noise

data sets. In the GERTH algorithm a test is executed to check whether

one more iteration still improved the fit of the extended sequence

Markov parameters on the estimated set (out of EXACTMARK). We have

calculated the average values of the error taking the error values of

the results of equivalent tests with different input data. During the

calculation of the average values of the errors only the useful

results have been used.

If all twenty runs take place, the mean error value in the next tables

will be followed by a '*' notation.

In these tables, a '-' notation indicates that during all calculations

on a system, the desired number of iterations of the GERTH algorithm

did not reduce the value of the error function ERR2 any further.

The notation ERR030 indicates the mean value of ERRO during simula-

tions with signals with signal-to-noise ratio SN of 30 dB.

As mentioned in previous chapter: N
l

=8 and N
2

=301
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4.2.1 The results of the simulations, using System 2.

DEGREE=-2 DEGREE =-3 DEGREEa4

ERR1 ERR2 ERR1 ERR2 ERR1 ERR2

it-1 .13 E-1* .25 E-1* .14 E-1* .17 E-1* .18 E-1* .13 E-1*

2 .12 E-1* .24 E-1* .15 E-1* .17 E-1* .19 E-1* .12 E-1*

SN·OO 3 .10 E-1 .22 E-1 .24 E-1 .17 E-1 .92 E+O .12 E-1

4 .10 E-1 .22 E-1 .22 E-1 .15 E-1 .23 E-1 .11 E-1

5 .97 E-2 .21 E-1 .15 E-1 .15 E-1 .30 E-1 .11 E-1

it=-l .20 E-2* .29 E-2* .18 E-2* .20 E-2* .20 E-2* .15 E-2*

2 .21 E-2 .29 E-2 .19 E-2* .20 E-2* .21 E-2* .14 E-2*

SN=10 3 .19 E-2 .29 E-2 .19 E-2 .20 E-2 .23 E-2 .14 E-2

4 .18 E-2 .28 E-2 .18 E-2 .18 E-2 .30 E-2 .14 E-2

5 .18 E-2 .28 E-2 .19 E-2 .18 E-2 .26 E-2 .16 E-2

it-1 .89 E-3* .77 E-3* .14 E-3* .90 E-4* .10 E-3* .40 E-4*

2 .86 E-3* .74 E-3* .84 E-3 .73 E-3 .11 E-3* .44 E-4*

SN=30 3 .85 E-3* .74 E-3* - - .82 E-4 .23 E-4

4 .85 E-3* .74 E-3* - - - -
5 .84 E-3 .73 E-3 - - - -

Remarks: * :all 20 different runs make sense.

:no runs make sense.

table 1: Relative errors ERR1 and ERR2 during simulations on SYSTEM 2

and no noise-colouring:

ERR030- 0.87 E-4 ERR0 10• 0.30 E-2 ERROOO= 0.29 E-1
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DEGREE-2 DEGREE-3 DEGREE-4

AVR1 AVR1 AVR1

it-1 0.52 E-1* 0.57 E-1* 0.70 E-1*

2 0.45 E-1* 0.53 E-1* 0.67 E-1*

SN=OO 3 -0.39 E-l 0.52 E-1 0.64 E-1

4 0.39 E-1 0.52 E-l 0.63 E-1

5 0.38 E-l 0.52 E-1 0.58 E-1

it-1 0.76 E-2* 0.70 E-2* 0.78 E-2*

2 0.78 E-2 0.70 E-2* 0.76 E-2*

SN=10 3 0.70 E-2 0.71 E-2 0.78 E-2

4 0.68 E-2 0.69 E-2 0.85 E-2

5 0.69 E-2 0.72 E-2 0.91 E-2

it=l 0.33 E-2* 0.45 E-3* 0.33 E-3*

2 0.32 E-2* 0.52 E-3 0.34 E-3*

SN=30 3 0.32 E-2* - 0.24 E-3

4 0.32 E-2* - -
5 0.31 E-2 - -

Remarks: * :all 20 different runs make sense.

:no runs make sense.

table 2: Absolute error AVR1 during simulations on SYSTEM 2

and no noise colouring:

AVR030• 0.35 E-3 AVR010= 0.12 E-1 AVRO OO= 0.12 E+O
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DEGREE-2 DEGREE-3 DEGREE-4

ERRl ERR2 ERR1 ERR2 ERR1 ERR2

it-1 .24 E-2* .15 E-2* .21 E-2* .80 E-3* .23 E-2* .49 E-3*

2 .24 E-2 .15 E-2 .21 E-2 .84 E-3 .23 E-2 .50 E-3

SN-10 3 .24 E-2 .14 E-2 .22 E-2 .62 E-3 .13 E-1 .42 E-3

4 .23 E-2 .14 E-2 .23 E-2 .49 E-3 .29 E-2 .40 E-3

5 .23 E-2 .14 E-2 .24 E-2 .36 E-3 .95 E-2 .32 E-3

it-1 .91 E-3* .75 E-3* .14 E-3* .50 E-4* .93 E-4* .18 E-4*

2 .88 E-3* .73 E-3* .15 E-3 .66 E-4 .10 E-3 .22 E-4

SN=30 3 .87 E-3* .72 E-3* - - .13 E-3 .25 E-4

4 .86 E-3* .72 E-3* - - - -
5 .86 E-3* .71 E-3 - - - -

Remarks: * :all 20 different runs make sense.

:no runs make sense.

table 3: Relative errors ERR1 and ERR2 during simulations on SYSTEM 2 and

NOISE SYSTEM 1: ERR0
30

• 0.81 E-4 ERR0
10

• 0.26 E-2
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DEGREE-2 DEGREE-3 DEGREE-4

AVRl AVRl AVRl

it-l 0.94 E-2* 0.80 E-2* 0.86 E-2*

2 - 0.93 E-2 0.80 E-2 0.84 E-2

SN-lO 3 0.94 E-2 0.83 E-2 0.81 E-2

4 0.89 E-2 0.84 E-2 0.83 E-2

5 0.90 E-2 0.85 E-2 0.90 E-2

it-l 0.33 E-2* 0.43 E-3* 0.32 E-3*

2 0.33 E-2* 0.50 E-3 0.33 E-3

SN-30 3 0.33 E-2* - 0.42 E-3

4 0.32 E-2* - -
5 0.32 E-2* - -

Remarks: * :a11 20 different runs make sense.

:no runs make sense.

table 4: Absolute error AVRl during simulations on SYSTEM 2 and NOISE

SYSTEM 1: AVR0
30

• 0.33 E-3 AVR010·0.10 E-2
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4.2.2 The results. of the simulations, using System 3.

DEGREE-2 DEGREE-3 DEGREE~

ERR1 ERR2 ERR1 ERR2 ERR1 ERR2

-

it-1 .53 E+O* .28 E-1* .66 E+O* .18 E-1* .69 E+O* .12 E-1*

2 .66 E+O* .25 E-1* .72 E+O* .18 E-1* .71 E+O* .12 E-1*

SN-OO 3 .70 E+O .24 E-1 .71 E+O .17 E-1 .75 E+O .12 E-1

4 .73 E+O .24 E-1 .76 E+O .17 E-1 .73 E+O .10 E-1

5 .67 E+O .22 E-1 .84 E+O .16 E-1 .71 E+O .10 E-1

it-1 .66 E+O* .41 E-2* .66 E+O* .31 E-2* .65 E+O* .22 E-2*

2 .69 E+O .42 E-2 .68 E+O .31 E-2 .66 E+O* .21 E-2*

SN-10 3 .73 E+O .43 E-2 .67 E+O .33 E-2 .12 E+2 .23 E-2

4 .73 E+O .38 E-2 .71 E+O .35 E-2 .72 E+O .21 E-2

5 .66 E+O .40 E-2 .76 E+O .29 E-2 .73 E+O .21 E-2
"

it-1 .68 E+O* .16 E-2* .67 E+O* .84 E-3* .66 E+O* .46 E-3*

2 .69 E+O* .16 E-2* .67 E+O .10 E-2 .66 E+O .52 E-3

SN=30 3 .63 E+O .13 E-2 .63 E+O .31 E-3 .66 E+O .41 E-3

4 .57 E+O .20 E-2 - - .66 E+O .40 E-3

5 .57 E+O .19 E-2 - - .66.E+O .40 E-3

*Remarks: :all 20 different runs make sense.

:no runs make sense.

table 5: Relative errors ERR1 and ERR2 during simulations on SYSTEM 3

and no noise colouring:

ERR030• 0.43 E+O ERR0 10= 0.43 E+O ERRO OO= 0.47 E+O
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DEGREE-2- DEGREE=3 DEGREE-4

AVRl AVRl AVR1

it-l 0.17 E+l* 0.18 E+1* 0.19 E+1*

2 0.18 E+1* 0.19 E+1* 0.19 E+1*

SN=OO 3 0.18 E+1 0.18 E+1 0.19 E+1

4 -
0.18 E+1 0.19 E+1 0.20 E+1

5 0.17 E+l 0.19 E+1 0.20 E+l

it-1 0.18 E+l* 0.18 E+1* 0.18 E+1*

2 0.18 E+1 0.18 E+1 0.18 E+1*

SN=lO 3 0.19 E+1 0.18 E+1 0.17 E+1

4 0.19 E+1 0.19 E+1 0.20 E+1

5 0.17 E+1 0.20 E+1 0.20 E+1

it-1 0.18 E+1* 0.18 E+1* 0.18 E+1*

2 0.18 E+1* 0.18 E+1 0.18 E+1

SN=30 3 0.17 E+1 0.17 E+1 0.17 E+1

4 0.15 E+1 - 0.17 E+1

5 0.15 E+1 - 0.17 E+1

Remarks: * :all 20 different runs make sense.

:no runs make sense.

table 6: Absolute error AVR1 during simulations on SYSTEM 3

and no noise colouring:

AVR030= 0.18 E+1 AVR0 10·O.17 E+1 AVRO OO• 0.19 E+1
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DEGREE-3 DEGREE-4

ERR1 ERR2 ERR1 ERR2 ERR1 ERR2

it-l .66 E+O* .38 E-2* .67 E+O* .29 E-2* .67 E+O* .22 E-2*

2 .68 E+O .38 E-2 .68 E+O .29 E-2 .68 E+O* .21 E-2*

SN-10 3 .69 E+O .37 E-2 .73 E+O .28 E-2 .13 E+1 .23 E-2

4 .59 E+O .45 E-2 .76 E+O .21 E-2 .76 E+O .21 E-2

5 .50 E+O .41 E-2 .76 E+O .21 E-2 .77 E+O .21 E-2

it-1 .78 E+O* .22 E-2* .74 E+O* .16 E-2* .72 E+O* .83 E-3*

2 .68 E+O .21 E-2 .74 E+O .17 E-2 .73 E+O .11 E-2

SN=30 3 .13 E+1 .21 E-2 .70 E+O .19 E-2 - -
4 .68 E+O .21 E-2 .66 E+O .22 E-2 - -
5 .70 E+o .16 E-2 .66 E+o .20 E-2 - -

*Remarks: :a11 20 different runs make sense.

:no runs make sense.

table 7: Absolute error AVR1 during simulations on SYSTEM 3 and NOISE

SYSTEM 1: ERR0
30

= 0.43 E+O ERR0
10

• 0.43 E+O
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DEGREE-2 DEGREE-3 DEGREE-4

AVRl AVR1 AVR1

it-1 0.18 E+1* 0.18 E+1* 0.18 E+1*

2 0.18 E+1 0.18 E+1 0.18 E+1*

SN-10 3 0.18 E+1 0.19 E+1 0.19 E+1

4 0.16 E+1 0.20 E+1 0.18 E+1

5 0.14 E+l 0.20 E+1 0.18 E+1

it-1 0.19 E+1* 0.19 E+1* 0.19 E+1*

2 0.19 E+1 0.19 E+1 0.19 E+1

SN=30 3 0.18 E+1 - 0.20 E+1

4 0.17 E+1 - 0.20 E+1

5 0.17 E+1 - 0.20 E+1

Remarks: * :all 20 different runs make sense.

:no runs make sense.

table 8: Absolute error AVR1 during simulations on SYSTEM 3 and NOISE

SYSTEM 1: AVR0
30

= 0.19 E+1 AVR0
10

-0.17 E+1
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4.Z.3 Some remarks on the. results 0·£ all simulations.

A general remark we can make, based on these tests, is that applying

the tmplemented iteration process, does not make any sense! In fact,

we do not know what happens during the substitutions of the estimated
A

values {ai,M(i)}i_l, •• r. Some times a very small improvement is found

by using the iteration process.

It is quite obvious that the best fit of {M(i)} on {M(i)} is found by

increasing the degree of the minimal polynomial because by increasing

this degree we will introduce a larger space for all possible

solutions.

If we compare the deviations of the tests using system 2, we see that

the noise colouring of the additive output noise has a neglectible

influence on the results of the GERTH algorithm as well as on the

results of the estimation program, EXACTMARK (we compare the situa­

tions of white output noise and coloured output noise). We will

confine ourselves by examining the results of the simulations without

noise colouring (we did not execute the simulations with output noise

colouring during the tests with signals with SN - 0 dB).
~

Comparing the measurements of the fit of {M(i)} and {M(i)} on the

exact values of the Markov parameters, we have to note that the

relative error values ERRO and ERR2 are calculated out of the first 8

Markov parameters, while the calculations of ERRl take the first 30

parameters in consideration. The computation of the absolute error

value is executed by using only eight parameters, so we can use these

error values to compare the output of the GERTH algorithm with the

results of the estimation program EXACTMARK.

The choice of the degree of the minimal polynomial of SYSTEM 2 (tabel

1 and tabel 2).

As we have said before, increasing the degree of the minimal
~

polynomial implies a better fit of {M(i)} on tM(i)}, expressed by ERR2

and AVR2. But this does not automatically implies a better fit of

{M(i)} on the exact parameters {M(i)}.

In case of well conditioned measurements (high values of the signal--
~

to-noise ratio), the distance between tM( i)} and {M( i)} is rather
,.

small, so the deviation between {M(i)} and {M(i)} will also be rather

small in this case. In the results of the tests with SN - 30 dB, we

find indeed that the minimal value of ERRl and AVRl will occur in the
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cases with a minimal polynomial of degree-4. The order of both systems

under consideration is 41

By applying output noise with a higher energy contents (SN ,. 10 dB and

SN ,. 0 dB), the optimal fit on the exact parameters has occurred in

simulations with degree - 3.

The results of SYSTEM 2 presented in tabel 1 and tabel 2.

In the situatioq with SN = 30 dB, we have registrated (taken the mean
-3value over 20 different simulations) AVRO = 0.35 10 and AVR1 =

0.33 10-3 (number of iterations it-l and degree of the minimal

polynomial r=4). This implies that we have found only a small

improvement of the absolute error value over the first eight Markov

parameters.

In cases of SN = 10 dB, we have found values AVRO - 0.12 10-1 and AVR1

= 0.76 10-2 (i t=l, r-2), this implies an error reduction of almost
-140%. During the simulations with SN = 0 dB, the value AVR1 =0.52 10

(it=l, r-1) has been calculated. AVRO is 0.12 during these tests. So

we have found a large improvement (50% I) by executing the GERTH

algorithm on the results of the estimation program EXACTMARK.

We also mention that we have calculated mean values ERRO = 0.30 10-
2

and ERR1 = 0.20 10-2 during the simulations with SN = 10 dB (and

it-1, r-2), and values ERRO • 0.29 10-1 and ERR1 =0.13 10-1 for SN = 0

dB (i t=l, r-2). So the relative error of tM( i)}, over 8 Markov
....

parameters is much higher than the relative error in {M(i)}, computed

over 30 parameters. In case of SN = 30 dB, we found the following

values: ERRO = 0.87 10-4 and ERR1 - 1.03 10-4 (it=l, r=4).

The choice of the degree of the minimal polynomial of SYSTEM 3 (tabel

5 and tabel 6).

Now we will have a look on the results of simulations with SYSTEM 3.

The placed remark on the output noise colouring can also be placed in

these situations: we will only consider white noise corrupted measure­

ments.

As we have f2und during simulations with SYSTEM 2, the best fit of
....

{M(i)} on {M(i)} will occur in the situations with a minimal

polynomial of degree 4. In case of SN = 30 dB, this choice of the

degree of the minimal polynomial also proved to be the best fit of...
{M(i)} on the exact Markov parameters.
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We remark that in these cases (SN = 30 dB), allowing one extra

iteration the values ERRl and ERR2 are still improving!

During the simulations with an output SN-ratio of 10 dB and 0 dB, we
,.

have computed the smallest deviation between {M(i)} and {M(i)} if

degree has been chosen 2. However the differences between ERR1(r=2),

ERR1(r-3) and ERR1(r-4) are very small.

The results. of S¥STEM 3 presented in tabel 5 and tabel 6.

Comparing the various values of the relative and absolute errors

during the tests with SN • 30 dB with the corresponding values from of

the simulations with SN = 10 dB and 0 dB, we note that there are only

small deviations between the error values. This property occures

during simulations with white output noise as well as with output

noise colouring.

In appendix D, we will compare the influence of the additive output

noise with the effects of the truncation of the impulse response

during the execution of EXACTMARK by estimating only 8 Markov

parameters.

If we have a look at the absolute error values, we will find in case

of SN • 30 dB an AVRO value of 1.75, while the optimal value of AVR1

is 1.76 (it-l, r-4).

If SN • 10 dB, AVRO • 1.74 and AVRl - 1.75 (it-l, r=4) are

registrated.

In both situations applying the GERTH algorithm reduces the fit of the

first eight estimated Markov parameters on the exact values!

Despite of this slight worsening, it still is useful to apply the

GERTH algorithm. If we do not use this algorithm, we have at our

disposal only an finite number of Markov parameters ( 8 in this case).

This means that the middle and low frequency responses of a system

under consideration can not or hardly be expressed. If the GERTH

algorithm can make an extension of the finite set of parameters

without a substantial reduction of the accuracy of the original finite

set, we have gained a lot: we are able to make an reasonable

estimation for the tail of the impulse response of a system.

During the simulations with SN - 0 dB, the mean values AVRO = 1.91 and

AVRl - 1.67 (it-1) are found while the degree of the minimal

polynomial has been taken 2. In this situation a improvement of = 20%

has taken place.
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CONCLUSION:

In general, by applying the GERTH algorithm we are able to make a

reasonable estimation of the complete impulse response of a system. If

the start series {M(i)} have a good fit on the exact values, we can

use a degree of the minimal polynomial which is nearby the real order

of the system_ In cases with a low signal-to-noise ratio, it is

recommended to use a lower order system to estimate the values {ai'
'"
M(i)}i 1 • Also it makes no sense to apply more than one iteration,

::::I , •• r At. _

because the fit of {M(i)} on {M(i)} is mostly reducing although the
"fit of {M(i)} on the exact parameters is sometimes improving. In noisy

situations, the GERTH estimation is also smoothing the somewhat

stochastic pattern of the estimated Markov parameters. This can be

explained by the fact that during the estimation of the parameters in

EXACTMARK (or any other estimation program implemented by J. VAESSEN

[ 11 ]) all entries of Markov parameters are considered as independent

parameters (so no attention is paid to the mutual relation of the

Markov parameters of a certain system).
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5 SIMULATIONS FOR TESTING THE DIRECT METHOD.

During the tests on the properties of the DIRECT method several

systems have been taken under consideration. Some tests on SYSTEM Z

and 3 (see chapter 4) have been performed. The DIRECT method estimates

the output signals by convolving preceding and actual input measure­

ments with a sequence of Markov parameters, calculated by applying the

minimal polynomial relation with estimates of {ai ,M(i)}i=l,Z •• r·

The number of measurements in the past that should be taken into

account, depends upon the eigenvalues of the system (so on the rate of

decrease of the impulse response).

Using systems like SYSTEM 3 with the largest eigenvalue of about 0.9,

the impulse responses will decrease slowly. Almost 400 samples will be

needed to have a "truncation" error of the same order as the accuracy

of the computer.

The optimization methods also ask for the partial derivatives of the

loss function to the minimal polynomial coefficients and to the start

sequence of Markov parameters. During these calculations the whole

data set has to be used so the iterations will need a lot of

computational efforts. For example the process time needed to execute

only~ iteration (With 500 preceding input signal samples) is almost

15 minutes. The average value of the number of iterations during one

minimization is = 400. So the total process time will be almost 4

days!

It will not be possible (using this algorithm) to execute a lot of

tests on systems with large eigenvalues.

We also want to test the properties of the DIRECT method on systems

with eigenvalues that lie close to each other, and that represent an

equal part of energy in the impulse response. We have chosen SYSTEM 4:

A = diag(0.08, 0.60, 0.10, 0.55, 0.50)
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1.0 0.0 -1.0

1.0 1.7 0.0

B - 0.0 1.0 -1.5

7.0 0.0 8.0

0.0 7.0 5.0

5.1

4.0 3.0 0.0 0.0 0.0
C ..

9.0 1.0 8.0 -0.5 0.5

D -I 0.0 0.0 0.0

0.0 0.0 0.0

The largest eigenvalues of this (strictly proper) system are rather

small; we will only need 200 Markov parameters to have a truncation

error of the same order as the accuracy of the VAX-computer. Using

this system one iteration takes about 20 seconds processor time, so

for one minimization run the computer will need about one hour.

We have used two minimization methods:

1. Conjugate gradient method [ 20 ]

2. Comprehensive quasi Newton method [ 21 ]

The loss function (the trace of the output error matrix) will decrease

very slowly and can have several areas with a small gradient. In most

tests the conjugate gradient method has not been able to exceed these

"terraces". The comprehensive quasi Newton method will perform a local

search if the conditions for an optimum have been met (or almost met).

The term "comprehensive" implies in this case that the second

derivatives have been estimated instead of calculated. The Newton

minimization could reach the global minimimum in most of the performed

tests. So we will only discuss tests using the comprehensive quasi

Newton method.

We want to compare the results of the test of the DIRECT method with

the results of the estimation method EXACTMARK [ 11 ] and the GERTH
A

algorithm. We have used the estimates {ai' M(i)}. 1 2 of the GERTH
1= , •• r

method as start parameters in the DIRECT method. By inserting these

start parameters we will reduce the time needed.
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So the "flow chart" of fig. 4.1 (chapter 4) will. be extended with an

extra block containing the DIRECT method (simplified):

system

~ SYSSIMUL EXACTMARK GERTH DIRECTr .. r

-

- ~. A

M(i)i=l 2•• k {ai' ~i)}i=-1,2•• r,
~.

minimal polynomial expansion

A H A ~

M(i)i=1,2 ••
(GERTH)

M(i)i=-1,2 ••
(DIRECT)

Fig.5.l Simulations, processing of noise corrupted Markov parameters M(i),

the GERTH approximation and the DIRECT estimation of the minimal polynomial

coefficients and the start sequence of Markov parameters.

We have used data sequences corrupted with additive output noise

consisting of white channel independent noise samples and output

signal-to-noise ratio's (SN) of:

1. 100 dB.

2. 80 dB.

3. 60 dB. 5.2

4. 40 dB.

5. 20 dB.

During our tests with the GERTH algorithm we also have used data with

SN less than 20 dB. But during these tests the data set consisted of

1000 measurements instead of 400 samples during the tests with the
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DIRECT met hod.

Using data sets of different SN"s' we have calculated the energies of

the additive output noise. These energies will be the minima of the

trace of the output error matrix. In case of SN is 20 dB, the optimal

value of the trace almost has been found during the first iteration of

the DIRECT method (so by applying the GERTH estimates in the

calculation of the trace of the output error matrix). So it makes no

sense (using SYSTEM 4) to apply the DIRECT method (as it is

implemented here!) on data sets with signal-to-noise ratios less than

20 dB.

Like we have done in chapter 4, we will calculate the relative squared

distance between the deterministic and the estimated Markov parame-
A

terse So we have calculated ERRO (eq. 4.5), ERRl (eq. 4.6) with M(i)

from the GERTH algorithm and ERRl with M(i) from the DIRECT

method.

polynomial

using the

the DIRECT

apply a minimal

6,7 and 8 by

algori thm and

In appendix F the error values of the same tests will be presented but

then we will use the Euclidean norm instead of the Maximum norm, so

these values can be used in the comparison with other estimation

methods. We have to remark that the differences between the results

expressed in Maximum norm and the results in Euclidean norm are rather

small.

During our tests the estimation algorithm EXACTMARK has been used to

calculate only the first 8 Markov parameters (M(O) has not being taken

in account). First we will present the error values of the results

with Nl (number of Markov parameters in ERRO) and N
2

(number of Markov

parameters in ERR1) of 8.

The order of SYSTEM 4 is 5 so we have to

extension to calculate Markov parameter

estimates {~i,M(i)} 12 of the GERTH
r= J •• r

estimation.

In the second part we will present the error values of the results,

with Nl and N2 both 50 (after 50 samples the impulse response of
-6

SYSTEM 4 is = 10 ). The estimates of minimal polynomial coefficients

and start sequence of Markov parameters of the GERTH method and the

DIRECT estimation will be used to calculate these 45 Markov parameters

(50 - the degree of the minimal polynomial). But in EXACTMARK we have

estimated only 8 Markov parameters, so the impulse response has been

truncated after 8 samples. So in the calculation of ERRO we will have

to assume that the Markov parameters "9" till "50" are zero!
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Remark: The degree of the minimal polynomial of SYSTEM 4 is 5 and this

value has been used during all tests and in the GERTH algorithm only

one iteration has been made.

Like the tests on the GERTH algorithm during the simulations we have

generated 20 different noise data sets (for the excitating input,noise

and for the additive output noise) for the tests with the same

signal-to-noise ratio.

In the following bar graphs we will present the mean value of the

error values ERRp, ERR1 (GERTH) and ERR1 (DIRECT), averaged over the

results of all 20 tests with different excitation and additive output

noise corruption. The standard deviation of the error signals also

will be presented in the same graphs!

During the calculation of the mean values and standard deviations of

the error values, the standard deviation of the results of the

simulations on signals with signal-to-noise ratios of 20 dB , 100 dB

(DIRECT method) and 20 dB (GERTH algorithm) was very large. During the

DIRECT estimation (and both noise levels) the trace after one
+5minimization was significant larger ( x 10 !) than the trace values

of the other (19 ) minimizations. The GERTH method (SN '"' 20 dB)

proposes a set of minimal polynomial coefficients belonging to a

system that is not stable!

The reason of this deviation during the test with SN =' 100dB can be

the restart ,of the minimization after the restart of the computer

system after a "lock" situation. In case of a noise corruption of

20 dB the deviations have been found during the estimations on the same

data set!

In the calculation of the mean values and the standard deviations,

these 3 "bad" cases have not been considered so the statistic

calculations have been executed over the results of 19 minimizations.

Remark: the DIRECT method only uses the second half of the output

signals while EXACTMARK (and so GERTH algorithm) examines the complete

set of output measurements. The noise reduction during the DIRECT

estimation will be less than during simular tests with both other

methods. During tests with much noise corruption on the data, the

variances of the error values of the DIRECT method will be greater

,than the variances of the error in the results of EXACTMARK and GERTH

algorithm.

We will present the results of minimization on data sequences with a

signal-to-noise ratio of 20 dB first, because the results of EXACTMARK
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(and so the results of the GERTH method) on signals with SN = 60dB,

SN - SOda and SN - 100da will remain the same, while the results of

the DIRECT method will still decrease very much by increasing SN's.

If we want to present these small error values, the errors of

EXACTMARK and the GERTH method will exceed the plots!

In the legends on the bar graphs "s" indicates the standard deviation.

5.1 Results of the tests on signals with SN = 20 dB.
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Fig. 5.2 Estimation results of SYSTEM 4 ( 8 Markov parameters)

From the results presented in fig. 5.2, we can conclude that the first

8 Markov parameters estimated by EXACTMARK and the GERTH algorithm are

simular, while the relative error of the results of the DIRECT method

is almost twice the deviation of the estimates of the other methods.
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Estimation results of SYSTEM 4 ( 50 Markov parameters)

If we take a look at the results on fig. 5.3, we mention that the

error of the complete estimated impulse response (--> 50 Markov

parameters) of the DIRECT method is almost 40% lower than the error in

the estimates of EXACTMARK.

The GERTH method will result in estimates that have a much better

performance ( 60% ) than the results of the DIRECT estimation.
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S:.2 Results of the tests on signals with SN - 40 dB.

B:STIKATION RBSt1LTS ON SIKULATBD SIGNALS••••~ x_ --. .

...

...

....

~.

--------------------------------...,.

~.. - - - - - - - - - - - - - - - - - - - - - - - - - - -
~.• ---------------------------

"~ P.. - - - - - - _. - - - - - - - - - - - - - - - - - - - - -r-=:..,-~.""T
•

..• -------------------------------

~

r· ...
1•!
r

CI:J
..... - e·

~
~
..... e

eXeTeR 4' $N - 40 48

Fig. 5.4 Estimation results of SYSTEM 4 ( 8 Markov parameters)

In fig. 5.4 we have presented the results of the different methods by

a signal-to-noise ratio of 40 dB. All error values are of the order
-5 -310 while we have found values of about 10 during the tests on data

with SN = 20dB. but the differences between the methods ·are the same.
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Fig. 5.5 Estimation results of SYSTEM 4 ( 50 Markov parameters)

The bars belonging to the results of EXACTMARK exceed the upperbound
_ -3

of the plot: ERR040 - 2.2 10 • This value is large due to the

truncation of the impulse response after 8 samples.

The GERTH algorithm estimates the Markov parameters much better than
the DIRECT method.
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5.3 Results of the' tests on signals with SN .. 60 dB.
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Estimation results of SYSTEM 4 ( 8 Markov parameters)

The information presented in fig. 5.6 shows that the application of

the GERTH algorithm improves the relative error over the start samples

of the impulse response (an improvement of about 20%).

The fit of the estimates of the DIRECT method even improves the

results of EXACTMARK even with a factor of 30%!
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Fig. 5.7 Estimation results of SYSTEM 4 ( 50 Markov parameters)

If we take a look at fig. 5.7, we see that the accurcy of the "whole"

impulse response (--> 50 Markov parameters) of the DIRECT estimation

is almost 90% better then the fit of the expanded sequence of Markov

parameters on the deterministic sequence using the minimal polynomial

coefficients and start Markov parameters of the GERTH method.

In the following paragraphs the resul ts will be presented of the

estimations based on data sets with SN's of 80 and 100 dB.

The quality of the first 8 Markov parameters estimated by EXACTMARK

remains the same as during the tests with SN = 60dB (the results

presented in fig. 5.6 and fig. 5.7). The GERTH algorithm only uses the

output data of EXACTMARK, so the results of the GERTH method will not
change either.
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5.4c Results of the tests on signals with SN =0 80 dB.
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Fig. 5.8 Estimation results of SYSTEM 4 ( 8 Markov parameters)

The mean value of the error of the results of the DIRECT estimation is

=0.9 10-9 while the corresponding error value of the GERTH algorithm

is =1.1 10-6 ,
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Fig. 5.9 Estimation results of SYSTEM 4 ( 50 Markov parameters)

In the preceding figure we see that the ratio of the error (over 50

Markov parameters) of the GERTH method and the error value of the

DIRECT estimation is almost 10+
3

!. This ratio also has been found from

the results in fig. 5.8.
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5~5 Results of the tests on signals with SN ~ 100 dB.
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Fig. 5.10 Estimation results of SYSTEM 4 ( 8 Markov parameters)

As mentioned before the relative errors of the results of the GERTH

method and EXACTMARK are the same as during the tests with signal-to­
noise ratios of 60 and 80 dB.

The average value of the error of the DIRECT estimation decreases to
-11

=0.9 10 by taking 8 Markov parameters into consideration and

=1.0 10-
11

if we look at the "whole" impulse response (see fig. 5.11).
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Estimation results of SYSTEM 4 ( 50 Markov parameters)

As we mentioned before the DIRECT method needs a lot of computational

effort, especially if many input samples of the past should be taken

into consideration (so if the impulse response is decreasing slowly).

The loss-function is not a very pleasant one: the trace decreases

little by little and can have several "flat" areas that could be seen

as local optima. So we will have to use a robust minimization method

that passes these flat areas!

We mention that the loss-function in the minimization process is the

squared distance between the measured output signals (noise corrupted

data) and the reconstructed outputs (by using the estimated model).

But during the comparison with other methods we have used the distance

of the estimated impulse respons to the deterministic impulse response

of the system.
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The minimal value of the trace will be the total energy in the

additive output noise. The DIRECT method is able to estimate the model

in such a way that this minimal trace will be found during all test on

SYSTEM 4.

The number of Markov parameters estimated with EXACTMARK has been

chosen the sam as during our tests on the GERTH algorithm. By applying

the derivation of appendix D we can calculate how many Markov

parameters should be estimated to make the truncation error less than

the influence of the additive output noise.

The number of parameters in EXACTMARK is (8 x 3 x 2 =) 48 while the

number of parameters in the DIRECT estimation is the number of minimal

polynomial coefficients r plus (r+1) times the entries of Markov

parameters (we also will estimate M(O) in the DIRECT method). So this

last number has been 41 during our tests on SYSTEM 4.

"Summary" of the results of the several tests:

If we deal with bad conditioned signals (a-lot of noise), the GERTH

algorithm smoothes the impulse response (see chapter 4) and will give

good results. The output equation error expressed by the trace of the

error matrix still will be improved by the DIRECT estimation but the

improvement is rather small.

With increasing signal-to-noise ratio~s the results of the DIRECT

method will exceed the GERTH estimates rather fast (starting at about

50 dB).

In case of very well conditioned measurements (SN = 100dB) the

estimates of the minimal polynomial coefficients and the start

sequence of Markov parameters is very good (an improvement of a factor

10+5 in comparison with the results of the GERTH algorithm). The

reconstructed eigenvalues calculated by using the estimated minimal

polynomial coefficients will very well approximate the exact values.
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6 CONCLUSIONS.

In this report two methods have been developed for the estimation of

minimal polynomial coefficients and a start squence of Markov parame­

ters. The problem during the estimation of these parameters...
{! ,M(i)} is that the extended sequence of Markov parameters,

i i a 1,2•• r
calculated by applying the minimal polynomial, is not linear in the

minimal polynomial coefficients.

The iterative GERTH algorithm will lead to an approximate solution

while the DIRECT method will find the exac t solution using hill

climbing techniques.

The properties of both algorithms have been investigated by performing

tests with simulations of several systems. From the results of these

tests we can summarise the following conclusions:

-The implemented iterative GERTH algorithm minimizes the squared

distance of a sequence of Markov parameters {M(i)}i=1,2 •• k ( calcula­

ted by applying the minimal polynomial expression) to the noise-corrupted set {M(i)}i=1,2 ••k. During the execution of several itera-

tions this distance will be reduced in most of the tests. But only if

the estimated (noise corrupted) Markov parameters are close to the

deterministic Markov parameters (no truncation effects and well

conditioned signals) the distance between the extended sequence and

the deterministic set will be minimized by executing more than one

iteration.

-If we deal with estimates of {M(i)}i=1,2, •• k based on data with a

rather small signal-to-noise ratio, it is very useful to decrease the

estimated degree of the minimal polynomial (in the GERTH algorithm as

well as in DIRECT method). So we will "reduce" the image of the

input/output projection. We have used only short data sets and so

parts of process dynamics will get lost by noise corruption.

-The DIRECT method needs a lot of computational effort, especially if

many Markov parameters have to be taken into consideration. In those

cases the calculation of the output signals will be based on many

input samples in the past.

The calculation of the partial derivatives of the loss function will

use the same number of data samples. The time needed for the

calculation of these derivatives is =0.9 of the total processor time.

So if we can estimate the partial derivatives the minimization process
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will ask less computational efforts. The properties of an estimation

have to be investigated.

)
-Dealing with signals with large signal-to-noise ratios ( = 50 dB) the

DIRECT method will lead to estimates of minimal polynomial coeffi­

cients and a start sequence of Markov parameters that are much better

than the estimates found with the GERTH algorithm.

-During all tests on SYSTEM 4 the DIRECT estimation minimizes the

reconstruction error almost to the theorictical lowest bound, being

the energy of the additive output noise. During the tests on data with

a high noise corruption, these bounds almost have been reached by

applying the GERTH method only • The DIRECT method is able to reduce

the trace of the output error matrix to this lowest bound, but this

reduction is not substantial.

-It is very useful to take the GERTH estimates as start parameters of

the DIRECT method. This way it is possible to reduce the number of

iterations during the minimization process.

-In the minimal polynomial description the order of the model will be

min(p,q)xr. The extra model space compared to the input (output-)

companian form will lead to multiple eigenvalues (see Appendix B). In

case of large SN ratios we easily can extract the eigenvalues with

substantial influence from the complete set by applying a singular

value decomposition of the Hankel matrix, composed out of the extended

sequence of ~~rkov parameters. By neglecting the multiple eigenvalues

with a relative low energy contents, we can make an exact realization

of the system (from the impulse response model to a state space

representation).

The DIRECT method calculates the output signals based on 'm-l'prece­

ding and one actual value of the input samples. In our implementation

'm' has be chosen half the number of samples in the available file

with the measurements. So we will use only the second half of the

output measurements. EXACTMARK uses the complete set of measurements

so the noise reduction during the estimation with this method (and so

with the GERTH method) will be better than during the DIRECT

estimation. Especially during estimations on data sets with a lot of

noise corruption this property will be shown.
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Appendix A DERIVATION OF THE EQUATIONS FOR THE DIRECT METHOD.

In this appendix, belonging to the chapter 3 we will derive expres­

sions for the minimization of a loss function with respect to a set of

Markov parameters and the series expansion of this set by means of the

minimal polynomial. In the chapter 'DIRECT METHOD' we have found a

expression for the loss-function. We will recall these equations (eq.

A.1-3).

Y .. ST • M + E
m

Y .. s;i . M

or:

..

T
u (h-m)

A.l

A.2

+ E

We define an equation-error:

E a Y - s;i . M .. Y - Y

Then the loss function will be:

V ..trace(ET • E) .. trace[( Y - Y )T • ( Y - Y )] ..

T T T T Ttrace[Y .Y] - 2 trace[Y .S .M] + trace[M .5 .5 .M]
m m m
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The matrix M will consist of Markov parameters (see eq. A.1). We will

use a series expansion by the minimal polynomial for the Markov

parameters M(i) ( i)r : r is the degree of the minimal polynomial), and

we will rename these parameters to functions (eq. A.6: we use a

recurrent relation), we will find the matrix-expression of eq. A.5.

T
Y (h)_

=

T
~ (h-m)

uT(h) T
F (m-r)

A.5

<--
y

where:

--) <------ ----) <--
M

-)

i=l

Tai • M (r-i+1)

a .•
~

+

r

I a
i

• MT(r-i+j)

i= j (for 2 < j. < r)
= =

A.6

a .• FT(j-i)
~

(for j ) r)
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We" will derive reccurent-expressions for all three parts of eq. A. 4 t

starting with first taking h-O:

Y1(0) . . . : Y
1

(m)

. . .
yr.

Y (0) . : Y (m)
q q

So it is easy to see that:

q m

trace { yT.y } = L L { Y
n

(k)}2

n-1 k-O
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The second part will now be derived:

T
S oM •m

Ao9

u
1

( 0) u
2

( 0)

u1( 1) u 2( 1)

u ( 0) : 0 0 0 0 : u 1(-m)
p

u ( 1): 0 0 0 0 u 1(1-m)
p

0 0 0 0 :

0 0 0 0 :

u ( m) : 0 : u1( 0)
p

M
11

(0)

M (r)
11

F (m-r) 0

11

54

u (-m)
p

u (1-m)
p

u ( 0)
p

o M
q1

(0)

o M (0)
qp

o M
q1

(r)

o M (r)
qp

o F
q1

(1)

o of (1)
qp

• F (m-r)
q1

o F (m-r)
qp



rpm p

1: L ui(-j)·Mli(j) + 1: L ui(-j)· Fli(j-r)

j=O t-1 j=r+1 i=l

r p m p

1: L ui(m-j)·Mli(j) + L L ui(m- j )· Fu(j-r):

j=O i-1 j-r+1 i-1

with:

Y1 (0) Y
1

(m)

· :
T

y - . . . . · : A.10

Y (0) . · : Y (m)
q q
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then:
T T

Y .S .M ...
m

A.ll

m r p

I y
1

(k){ I L ui(k-j).Mli(j) +

k-O j-O i·1

m r p

LY (k){ L L u. (k-j).M (j) +
q 1 li

k-O j-O i·1

: m r p

: L Y
1

(k){ L L U
i
(k-j) .M

qi
(j) +

:k·O j·O i·1

m r p

L Yq(k){ L L ui(k-j).Mqi(j) +

:k·O j·O i·1
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m p

L L u
i
(k-j).F

1i
(j-r)}:

j-r+1 i-1

m p

L L U (k-j).F (j-r)}:
i 11

j·r+1 i=l

m p

L L ui(k-j).Fqi(j-r)}

j·r+1 i=l

m p

L L U.(m-j).F i(j-r)}
1 q

j·r+1 i=l



So the trace lyT.ST .M] can be expressed by:
m

A.12

q m r p

LLYn(k){ L L U
l
(k-j) .M

ni
(j) +

n-1 k~O j=O 1-1

m p

L L ui(k-j).Fni(j-r)}

j=r+1 i=l

From matrix equation A.8, we calculate the third part of the 10ss­

function:

T TM .S .S .M(l,l)= A.13
m m

m r p

L { L L u
i
(k-j) .M

U
(j) +

k~O j=O i-1

T TM .S .S .M(q,q)~
m m

m r p

L { L L ui (k-j) .M
qi

(j) +
k-O j=O i~l

m p

L L ui(k-j). F
1i

(j-r)}2

j=r+1 1=1

A.14

m p

ui(k-j). F .(j_r)}2
q~

j=r+1 i-1
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T. T·M .S .S .M(s,t)­
m m

r p

{ I r U
i
(-j) .M

si
(j) +

j-O i-1

A.15

m p

I I ui(-j)· Fsi(j-r)} •

j-r+1 i-1

r p

{ I -I ui(-j)·Mti(j) +
j-O i=l

m p

I I ui(-j)·

j=r+1 i=l

F (j-r)} +. . .
ti

r p

{ I I U (m-j).M (j) +
i si

j-O i=l

m p

I I ui(m- j )· Fsi(j-r)} •

j=r+1 i=l

r p

{ I I ui(m-j)·Mti(j) +
j=O i-1

m p

I I ui(m-j).

j=r+1 i=l

F (j-r)} ""ti

m r p m p

I {{ I I u (k-j).M (j) + I I ui(k-j). F (j-r)}.
i si si

k-O j=O i=l j=r+1 i-1

r p m p

{ I I u.(k-j).M i(j) + I I ui(k-j). Fti(j-r)}}
~ t

j=O i=l j=r+1 i=l

(We can use this last general expression if we have to· calculate the

determinant instead of the trace). So:

T Ttrace {M .s .s .M } =
m m

A.16

q m

L I {
n=l k=O

r p

I I ui(k-j).Mni(j) +
j=O i=l
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Now we are able to give an expression for the loss-function V:

trace { ET.E } = A.17

r p

{ I I ui(k-j).M .(j) +
n~

j=O i-l

q m

I I [
r p

{ y (k)}2 + {-2 y (k)' + I I ui(k-j).M i(j) +
n n n

j=O i=l

m p

I lUi (k-j ). Fni ( j-r)} •

j=r+l i=l

m p

I I ui(k-j). Fni(j-r)}]

j=r+l i=l

The partial derivatives of the loss function with respect to the

Markov parameters will be:

d(trace { ET.E })

--------= A.18

m

k=O

r p

{-2 y (k) + 2 I I ui(k-j).M .(j) +
n n~

j=O i=l

m p

2 I I u.(k-j). F (j-r)}.
~ ni

j=r+l i=l

m d( F .,(j-r))
n~

{ui,(k-j') + I ui,(k-j). }]

j-r+l d( Mni,(j'))
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M(O) has no contribution to the minimal polynomial expansion, so

d(Mni,(j'~O)) d(Fni,(j'))
_ a 0

Applying this in eq. A.18 than:

d(trace { ET.E })

If j'-O then: A.19

m

k""O

r p

{-2 y (k) + 2 L L u (k-j).M .(j) +
n i n~

j-O i-1

m p

2 L LUi(k- j ). Fni (j-r)} • { Ui' (k) }]

j a r+1 i-1

The partial derivatives of the loss function with respect to the

minimal polynomial coefficients will be:

d(trace { ET.E })

--------
d(a.,)

J

q m r p

L L {-2 Yn(k) + 2 L L ui(k-j).Mni(j) +
n-1 k=O j=O i=l

A.20

m p

2 I I U
i
(k-j). F

ni
(j-r)} •

j-r+1 i=l

d( a., )
J

p m d( Fni(j-r))

I I ui(k-j). ---­

i-1 j=r+1
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For the calculation of A.1S, A.19 and A.20, we need expressions for:

and

d( M ... (j"'))
ni

Note that:

d( M
ni

... (j-r) )

------- 0

d( a .... )
J
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We are going to use the expressions of eq. A.6 for the calculation of

the partial derivatives. We can derive that:

A.21

-------

1. If j" 1 then:

-) ar+1_j'

2. If 2 < j < r and j < .... < then:- .. .. J '"' r

j-1 d( Fni,(j-t»

--) I at· + ar+j_j'"
t-1 d( Mni... U"')

3. If 2 < j < r and 1 < ....< j then:.. - _ J

j-1 d( Fni ... (j-t»
----) I at·

t ..1 d( Mni ... (j')

4. If j ) r then:

r

I at· ----­

t-1

---)
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And for the partial derivatives to minimal polynomial coefficients:

A.22

-------

1. If j" 1 then:

----> M (r+l-j')
ni'

2. If 2 < j < rand j < .,< r then:,. ,. ,. J ,.

j-l d( Fni' (j-t))

---> I at· + Mni' (r+j-j' )

t-l d( a.,)
J

3. If 2 < j< rand
,. =

-->
j-l

I
d( Fni' (j-t))

at· ----- + Fni,(j-j')

tal d( a.,)
J

4. If j > r then:

--->
r d( F , (j-t) )

ni
at. ----- + F .,(j-j')n1

tal d( a.,)
J

Now we are able to compute equations A.18 and A.19 by using the

expressions of equations A.21. By substituting A.22 in equation A.20,

it is possible to calculate the partial derivatives of the loss­

function with respect to the minimal polynomial coefficients.
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Appendix B THE' DIMENSION VERSUS THE DEGREE OF THE MINIMAL POLYNOMIAL

We will look for the dimension of a MIMO system, identified using a

model consisting of coefficients of the minimal polynomial and a start

sequence of Markov parameters, {ai,M(i)}i 1 2 •
- , , .. r

The number of parameters of this model N is given by expression B.1
m

(M(O) is not included):

N -r(pxq+1)
m

B.l

The dimension of this model is not known in advance: the description

Markov parameters calculated

relation, to Hankel matrices H
r+j

allows models with minimal dimension n-r, r+1, ••••

Can we find an upperbound for the minimal dimension of the model?

If we will extend the Hankel matrix H (definition eq. 2.1), with
r

by applying the minimal polynomial

(j>O), it is easy to see that:

rank{ H .} = rank{ H }
r+J r

(j>O)

because the extension will depend linearly on the original part H of
r

Hr+j'
So we have found an upperbound of the minimal dimension of a model

{ai,M(i)}i=l 2 ,given in equation B.3 [ 7: theorem 2].
, , ..r

n = max(rank{ H }) = r x min(p,q) B.3
max r

where r x min(p,q) is the minimum of the number of columns and

rows of the Hankel matrix H •
r

A parametrization {ai ,M(i)}i=1,2 •• r includes models with minimal

dimension n = r, r+l, •• r x min(p,q).

During an identification based on the minimal polynomial model, the

parameters will be estimated independently, without any restrictions.

This means that the identified system will have the highest rank

possible due to errors during the calculations and/or due to noise

corruption of the measurements. The dimension of the model during the

identification will therefore always be the upperbound of eq. B.3!
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The number of independent parameters in a canonical state space

description N will be [ 5 ]:
c

N - n ( p + q)
c

B.4

wi t h n -- r, r+1 , r x min(p,q) we will find that the number of

parameters will be:

L if P > q then N I -- ( r x min(p,q) x ( p + q )
-- c max

-- r x q x ( p + q )
2-- r x p x q + r x q

B.5

2. if q > p then N I -- ( r x min(p,q) x ( p + q )
c max

-- r x p x ( p + q )
2- r x p x q + r x p

all

ThisN •
c

represent

So in both situations the number of independent parameters of the

minimal polynomial model N is less than or equal to the m.unber of
m

parameters in the canonical state space representation

implies that the model {ai ,M('i)}. 1 2 can not
~- , •• r

possible systems of order r x min(p,q): the minimal polynomial has to

be of degree r.

What will be the restrictions on these systems?

For n>r, the model will have multiple poles ('distinct' poles). We

will prove this for n - r x min(p,q).

This last situation will generally occur during an identification. So

the Hankel matrix H will be of full rank; we can look at two cases
r

(as done in eq. B.5)(c.f. [ 2 ] and [ 7 : p.p. 36 - 45 ]):

1. if p > q --> rank{ H } -- r x q : we will find
- r

partial Kronecker row indices nr

n -- r for all i=1,2 •• q
ri

B.6

2~ if q > p --> rank{ H } = r x p : we will find partial
r

Kronecker column indices nc

n -- r for all i-1,2 •• P
ci
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In the second situation, there have to be static dependencies between

the outputs, so the question is why the model is chosen that way. We

will only take a look at situation 1.

In the situation that the Dumber of inputs of the system is greater

than or equal to the number of outputs (p > q), we can transform the..
model in the canonical observable form with a system matrix A of a

known structure~

The first block part (with 'r' rows) of this matrix A is given in eq.

B.7.

0 1 0 0 0 0

0 0 1 0 0

A ..
1

0 0 0 1 0 0

x
11r

x
112 xl 11 x

12r
. x

122
x

121
:

B.7

0 0 0 0

: · . . . : ·
: · : ."
: · : ·
: · : ·

0 0 . . . : 0 0

x
13r

x
131

x . x
1q11qr

This block part structure can be derived from the Hankel matrix Hr+1

(see [ 2 ]). The x parameters (eq. B.7)indicate the linear dependence

between the first row of the last block part (with 'r' rows) of Hr+1
and the preceding rows of H •

r
The dependence of the first row of the last part with the rows

excisting of corresponding entries of Markov parameters is expressed

by the parameters x11r ' x112 ' x111 ; the dependences with the

remaining entries are shown by x12r '·· x121 ' ••• , x1qr '·· x1q1 •

The degree of the minimal polynomial is 'r', so the row 'q x r + l'

will depend only on the corresponding entries of the Markov parameters

M(i)i 1 2 in H • This means that:.. , •• r r
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x -0
1js

for all j=2, 3•• q and s-l, 2•• r B.B

A same derivation can also be made for the entries 2,3 •• q. So:

x "" 0
ijs

for all {i=-1,2 •• q, j-1,2 •• q} i"j and

s-1,2 •• r B.9

These structural zero's, q x [(q-1) x r] =- (n-r) x q in number,

restrictions and so the number of degrees of freedom will be:

N - n x (P+q) - q x (n-r) - n x p + r x q
c

are

B.10

Using the parameter values of equation B.B, we will find a system

matrix A in canonical observable state space notation of the following

form:

A
1

0 0 0

0 A2 0 0

A =- B.ll

0 0 0 Amin(p,q)

0 1 0 0

0 0 1 0 0

with A -i
0 0 0 1

xiir xii2 xii 1

The matrix A has to have a minimal polynomial of degree 'r', so:
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where: I
r x min(p,q)

NULL
r

is a identity matrix with dimension

[ r x min(p,q) , r x min(p,q)]

( )
is a square zero matrix with dimension

x min p,q
[ r x min(p,q) , r x min(p,q)]

If we calculate powers of a block diagonal matrix, the results will

also be of a block diagonal structure. This implies that the minimal

polynomial of equation B.10 can also be applied to Ai instead of A!

So each part Ai will have the same parameters xiil ' xii2 ' •• xiir~

see [ 2 J and these parameters will be the coefficients of the minimal

polynomial:

xiij = a
j

for all i-l,2•• min(p,q) and for all j=1,2 •• r B.13

The block matrices on the diagonal of A will have to be the same and

so we have proven that the roots of the minimal polynomial will form a

set of q multiple ('distinct') eigenvalues of system matrix A.

Another consequence of eq. B.12 is that there are not left ' q x r'

degrees of freedom in the canonical observable system matrix A but

only 'r'. So the last expression of eq. B.10 is 'r' instead of 'q x

r'!

The remaining number of parameters will be:

N - n x p + r = r x (p x q + 1) = N
c m

B.14

An equivalent derivation can be made if q)p; in that case we should

use a canonical controlable state space notation.

We will illustrate the previous theoretical part by an example (worked

out by P. Van den Hof in a summary of a MIMO meeting).

B.l Example to illustrate Appendix B.

Given 2 Markov parameters of a '2'input - '2'output system:

[ 0
1 01 ]M(l) -

[
21 3

4
]M(2) = B.1S

and the degree of the minimal polynomial is 2 (r=2).

A model {ai ,M(i)}i"1,2 with random M(i) and a
i

can have a minimal
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dimension n-2, 3 or 4 (according to the previous theory).

The information about the dimension of the model is contained in {ai'

M(i)}i_1,2; the Hankel matrix can be filled in an unique way using the

available parameters. The rank of the Hankel matrix expresses the

dimension of the model.

We will take a look at several possibilities:

a. A second order representation.

b. A third order representation.

c. A fourth order representation.

B.1.1 A second order representation.

The n\DDber of parameters in the minimal polynomial model is

N -r( p x q +1 )-10. A second order model with Markov parameters as
m

presented in equation B.15 will be represented in a unique way by

{Mij(k), k < n i + n ·}i 1 2 . 1 2 with n 1= n 2= n 1"" n 2= 1 [ 2 ].- r CJ -, J-, r r < c c
So we have a unique representation {Mij (k), k = 2} i-1, 2 j""l, 2. This

means that M(l) and M(2) are necessary and sufficient to represent a

second order model. The a
i

parameters will depend on the Markov

parameter s!

The n\DDber of independent parameters in the minimal polynomial model

will be N I. d = N - 2 = 8; the same n\DDber of parameters as neededm 1.n ep m
in the canonical state space description (N = n(p+q) "" 8).

c
We will calculate the minimal polynomial coefficients from the partial

behaviour matrix [ 3 ], (--> 'incomplete Hankel matrix' in [ 2 ]):

1 0 2 3

o 1 1 4

B "" B.16
2

2 3 ? ?

1 4 ? ?

The rank of the Hankel matrix H2 has to be 2, so by applying the Main

lemma [ 3 ] we can find an unique solution for M(3):
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M(3) • [
7 18 ]
6 19

B.17

Now the a parameters can be calculated by means of the minimal
i

polynomial. We will find the unique values a1 .. 6 and a2 = -5. In

cases where the minimal polynomial coefficients will be known, we will

find two constraints on the entries of M(l) and/or M(2) to guarantee a

dimension 2 of the model.

B.1.2 A third order representation.

In the given situation and a, third order model, the Kronecker row

indices will be:

n :::I: 2
r1

n
r2

.. 1

or n :::I: 1
r1

n
r2

.. 2

B.18

We will take a look at the situation with n
r1

=2 and n
r2

s 1.

With the Markov parameters M(l) and M(2) (eq. B.15) and minimal

polynomial coefficients a1 and a 2 we can make a minimal realization

(in a canonical observable form!):

A ..

o 1 o
C :::I:

[
1 0 0 ]
001

B.19

We mention that there are still 12 parameters in this realization

(while in the minimal polynomial model there are only 10 degrees of

freedom!) •

We will construct the partial behaviour matrix (eq. B.16) and we will

determine the x parameters.
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In [2] and [7: par. 2.2 J we have found that that the xl ••

parameters express the linear dependence:

B.21

But we have also stated that the degree of the minimal polynomial is

2! So:

B.22

The restrictions B.21 and B.22 indicate that the parameter x
121

is a

structural zero and xU2 and xU1 are uniquely determined by resp .a2
and a1 •

Now we are looking for the remaining x parameters. We will start with

a partial behaviour matrix B
3

:

1 0 2 3 2a
1
+a

2 3a1 10 1 1 4 a1
4a1+a

2
- -:- - - -:- - -------

B
3

:a 2 3 2a
1
+a

2
3a

1
B.23

1 4 a
1

4a
1
+a

2
:

- - - - -:- - -:

2a
1
+a

2
3a

1
a1 4a1+a2 :

And with the definition of the x parameters:
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1 1 2 0

4- 0 3 1
,.. x

212 + x211
+ x221 B.24

a1 2 2a1+a2 1

4a
1
+a

2
3 3a

1
4

So we have foun-d 4 equations with 3 unknowns. We will have to show

that there is one dependent relation so we will have to prove that:

1 1 2 0

4 0 3 1 ?DET( ) 0 B.25,.
a1 2 2a1+a2 1

. 4a
1
+a

2
3 3a

1
4

We have assumed that the order of the model is 3, so (using eq. B.16,

B.23):

1 0 2 ....
.J

0 1 1 4
DET(B

2
) .. DET( ) ::::a 0 B.26

2 3 2a
1
+a

2
3a

1
1 4 a1

4a1+a
2

B.27

This restriction automatically implies that equality B.25 is true (for

the determinant of a matrix is equal to or only of different sign as

the determinant of a transposed matrix with some rows changed!).

The set of linear equations (expression B. 24) will have a unique

solution if and only if the rank of matrix B
2

is 3. This implies that

the determinants of all minors of B2 are not equal to zero (see

GANTMACHER [14 : p.p.239, def.4]):
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DET( [ 1 1) ,. 1

DET( [ 1 0 I) -1
. 0 1 B.28

By substituting a
2

~ 7 - 2a
1

in equation B.27, we will see that:

a + 2a - 7 = 0 <==) a = 6 and a ~-5
2 1 1 2

B.29

So the determinant of the third minor of B
2

will only be 0 if a
1
=6 and

a 2--5: this is the unique set of minimal polynomial coefficients

belonging to the second order model!

The unique solution of the set of linear equations B.24 will be:

2a
2

+ 5
x

212
~

2a
1

+ a
2 - 7

a - 6
1

B.30x
211

,.

2a
1

+ a - 7
2

5a
1

+ 4a
2

- 10
x

221 -
2a + a - 7

1 2

Does this mean that the x parameters in eq. B.30 are independent? We

did not yet use the minimal polynomial restriction r-2.

A ~

B.31
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By applying the minimal polynomial relation (see eq. B.12), we will

find the next restrictions:

,. 0 (2)

= 0 (3)

B.32

Out of eq. B.32 (3) we will calculate a value for x221 (two

possibilitiesl).

B.33

With B.32 (3): ..) x
211

can be chosen at random and x
212

is linearly dependent on x
211

!

This means that the number of parameters in the canonical state space

description N is equal to the number of parameters in the minimal
c

polynomial description N
m

(=10), for x
121

is a structural zero and

x212 depends on x211 •

An equivalent derivation can be made for the situation with Kronecker

row indices n
r1

=1 and n
r2

=2!

B.1.3 A fourth order representation.

In the given situation and a fourth order model, the Kronecker row

indices will always be (see equation B.6):

n = 2
r1

n
r2

= 2

B.34

The canonical observable state space description will be:

B.35

0 1 0 0 b
U

b
12

xU2 xU1 x122 x121 b21 b22 C~[ ~
o 0

~JA ::iI B= b31 b32
o 1

0 0 0 1 b41 b42

Xz12 x211 x222 x221
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Applying the restriction of the minimal polynomial with degree 2 (see

eq. B.. 9):

~2i :10 x 122 :10 0

x21i - x 212 ,. 0 ( 4 restrictions!)

B.36

Using matrix A in expression B.35:

~12 xl11 0 0

A2• 2
0 0

~llx112 xU2+x121
0 0 x222

x2212
0 0 x221x222 x222+x221

B.37

And by using the expression of eq. B.37 in the minimal polynomial

(seeoeq. B.12):

B.38

Substituting the expressions for A and A2 (of B.36 and B.37) in eq.

B.38, we will find the next restrictions and conditions for the

Kronecker indices:

x • x • a111 221 1
x1l2 .. x222 '"" a 2

B.39

Generally the parametrization of a fourth order model (2 inputs and 2

outputs!) in a canonical observable form consist of 16 parameters.

We have proven that there are 6 restrictions on the parameter choice,

so there are only 10 independent parameters left: the number of

parameters in the canonical state space description is equal to the

number of parameters in the minimal polynomial model!

These results are according to the previous theoretical part of this

appendix.
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~ppendix C OVERRATING THE DEGREE OF THE MINIMAL POLYNOMIAL~

For real systems the degree of the minimal polynomial r will be

unequal to minimal order of the system n. If the r' of the estimation

model will be put equal to this n, the final dimension of the model

woll be nxmin(p,q), but no extra poles will be added: the existing

poles will become multiple distinct.

Now the question arises, what happens if the r' of the estimation

model is chosen too high.

Let the actual r of the system be 2 and the r' of the estimation model

be 3 then:

So in this case we will find relation C.l for this situation (r=2):

C.l

But we have forced a degree of the minimal polynomial equal to 3

(r'=3):

M(i) = a{M(i-l) + a~M(i-2) + a~M(i-3) C.2

By applying eq. C.l once again (with a delay of one sample), we can

find an expression for M(i-3):

1
M(i-3) = ---- M(i-l)

a 2

C.3

Substituting C.3 in equation C.2:

M(i) = ( a' +
1 C.4

So the a'-parameters can not be chosen arbitrarily: A combination of

equation C.l and C.4 results in the restrictions in eq. C.S.

a' -
2
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This third order polynomial can be divided in a second order part and

a first order part:

3
z t

a -3

C.6

This means that by overrating the degree of the minimal polynomial as

3 instead of 2~ an extra root will be introduced:

C.7

In eq. C.S we have stated restrictions on ai t ai and a3t but the

choice of one minimal polynomial coefficient a~ can be chosen at

random. So the place of the introduced extra root will also be

arbitrary!
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Appendix D COMPARISON OF THE NOISE INFLUENCE AND THE TRUNCATION ERROR.

In section 2-.2 of [ 11 ], a model has been derived from the Hankel

model which is suited for the estimation of Markov parameters.

If we suppose that the initial conditions of the system are zero i.e.

X(O) - £' we can represent the system with the matrix equation 0.1

-

T T
~ (h) u (h-l) •

T
~ (h+l) •

uT(h+m)

T
~ (h-m)

+N 0.1

So the output measurements are corrupted with noise. If we want to

truncate the impulse response after k samples, we can rewrite equation

0.1 in a different form, shown in eq. 0.2.

T T
~ (h) u (h-l) •

T
~ (h+l) •

T
~(h+m) •

T
• ~ (h-k)

T
• ~ (h+m-k)

+

0.2
T T T
~ (h-k-l) ~ (h-k-2) • ~ (h-m)

uT(h-k)

+

T
~ (h+m-k-l)

T .
• ~ (h)

TIn equation 0.2, Si M
i

represents the influence of what is called the

"tail" of the Markov parameters, so the part of the impulse response

that represents the middle and low frequency behaviour. If we estimate

only k Markov parameters, the contribution of the latter part causes a

truncation error.
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We are looking for an estimate of ~ in such a way that the equation

error E is minimal (in least squares sence) with E :

D.3

A brief review on least squares solutions has been given in chapter 3.

Using these res~ts we find following expression:

D.4

The error 9
i

indicates the difference between the expression M
k

with

exact Markov parameters and an estimate of ~. During our simulations

we have used a noise input signal from a Gaussian white noise source

with zero mean value and a standard deviation of a (a normal
u

distribution!). The additive output noise is also assumed to be white

and channel independent with zero mean value and standard deviation

a •
n

We will compare the part of ei caused by the truncation of the Markov

parameters with the contribution of the output noise to the error e.•
~

So we will have to compare elements of the products of matrices
T

Sk Si Mi and Sk N.
T

We will first take a look at the the elements of Sk Si Mi.
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Part of the first matrix multiplication is shown in eq. 3.17:

~(h)

~(h-k) ..

~(h+m)

~(h+m-k)

T
~ (h-k-l)

T
~ (h-k+m-l) •

T
~ (h-m)

0.5

m

l ~(h+s)uT (h-k-l+s)

s-O

m
. TI ~(h+s-l)~ (h-k-l+s)

saO

m

I ~(h+s-k)uT(h-k-l+s)

s=-o

m

l ~(h+s)uT(h-k-2+s)

s"O

m

I ~(h+s)uT (h-m+s)

s=O

m

l u(h+s-k)uT(h-m+s)

s=O
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m m

I u
1

(h+s)u
1

(h-k-1+s) I u1(~s)u2(h-k-1+s)

s-o s-o
m m

I u (h+s)u (h-k-1+s) I u
2
(h+s)u

2
(h-k-1+s)

2 1
s-o s=o

m m

I u
q

(h+s)u
1
(h-k-1+s) I u

q
(h+s)u2(h-k-1+s)

s...o s=o

m

I u (h-k+s)u (h-k-l+s):
q 1

saO

m

I u1(h+s)u1(h-m+s)

S"'O

m

I u
2

(h+s)u
1

(h-m+s)

s=o

m

I u (h-k+s)u (h-k-1+s)
q 2

s=o

m

I u1(h+s)u
q

(h-m+s)

s=o

m

I u
2

(h+s)u
q

(h-m+s)

s=o

m

I u (h-k+s)u (h-m+s):
q 1

saO
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As mentioned before {u } has an standard normal distribution.
i i-1,2 •• p

The probability density function is expressed by equation 0.6:

1--f21la·u

2
- uiexp(--)

2a 2
u

with i-1,2 •• p 0.6

We will try to find the expectation and the mean value of the

multiplication Z~j - u
i

u
j

' so we will have to derive the distribution

function of Zij. Suppose that ui and u j (with i-1,2 ••p, j=1,2 ••p and

i~j, for all t)are independent and also that u
i
(t1) and u

i
(t2) (with

i-1,2 •• p and t1~t2) are independent.

This means that the probability of z.. is:
~J

0.7

1
with i-1,2 •• p, j-1,2 •• p

The expectation of z will be (by using eq. 0.7):
ij

0.8
a>

- co _CZ)

-
-<Xl

CD

-CD

-..,
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So the standard deviation of Zij will be (by using eq. D.7 and eq.

D.8) :

2
E(

2 ) + 2 2
)rJ - Zij [E( Zij)] • E( Z i'Zij Z J

CD

- J 2
P(zij) dz ..Zij

~J

-CD

D.9

.... ao

f J 2 2
P(u/t 2 )) du.du.= u

i
(t

l
) u/t

2
)P(u

i
(t l ))

~ J
-ao -CD

"" ""
J 2 J U~(t2) P(u j (t2 ))du j }dui• ui(t l ) P(ui(t l )){

-ao -""

-
CD

CD

4
"" (j

u

Now we are able to compute the standard deviation of a summation of

m+l independent Z values:
ij

m m

5=0 5=0

= (m+l) E(z7J
~J
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In the simulations during the tests of the GERTH algorithm we have

used data files with 1000 samples, so in those cases m+1 ,. 1000.

But after all we are interested in the standard deviation of the
T

elements of the matrix multiplication 5k. 5i Mi. The upperbound will

be:

0
2 .; 1000
u

1 1

- 1

1 M11(k.+l) M21 (k.+1)

M
12

(k+1)

M (k+1)
1p

Mq1 (k+1)

M (1<.+1)
qp

1 1 M (m)
qp

0.11

m p

I I
s-k+l i-1

m p

I I
s-k+1 i-1

m

s=k+1

m

s=k+1

p

I· 1M (s) Iqi
i-1

Output noise matrix N also consists of white noise samples with zero

mean value and standard deviation 0 • 50 the preceding derivation (eq.
n

0.6 till eq. 0.11) of the standard deviation of the elements of matrix
T5K 5i can also be applied to find the standard deviation of the

elements of matrix 5
K

N.

It is easy to see that the mean value of these elements is also zero
2 2and the variance will be (m+1) 0 o.
n u
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By inserting the standard deviation (J of the input signals and taking
u

the Markov parameters of a certain system in eq. 0.11, we can estimate

the value of (J in such a way that the standard deviation of the
• n T

elements of matrices Sk Si M
i

and Sk N are the same. In the following

example we will estimate this value of (J •
n

In that case the contribution of the output noise to error 0 i will

have the same value as the part due to truncation of the impulse

response.

We mention that in the case of rather slowly decreasing impulse

responses the output signal to noise ratio has to be substantial to

exceed the effects of the truncation error.

0.1 Example of the estimation of the standard deviation of the output noise.

We will excite SYSTEM 3 (see chapter 4), a 3-input/2-output system

with inputsignals consisting of white noise with a standard normal

distribution (so the average is 0 and the standard deviation (J is 1).
u

By truncating the impulse response after k~8 Markov parameters (M(O)

has not been considered!) and 1000 measurements (m+1~1000) we will

find:

1000 3

L L I M (s) I - 4.3
11

s~k+1 i-1

0.12

1000 3

L L I M2i (s) I =9.0

s=k.+1 i=l

or:

0.13

output 1: 4.3 (J 2 = (J (J

~
n u

output 2: 9.0 (J = (J (J

u n u

So we will compare the "cross-powers" of the truncation noise and the

additive output noise with the energy of the truncation noise weighed

by the Markov parameters.

So with a maximal standard deviation of the additive output noise is

about 9 the contribution of the truncation will be comparible with the
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part due to the output noise corruption.

In this particular case (using SYSTEM 3) the standard deviation of 9

will be found if the output signal to noise ratio is about 10 dB.

If we take a look at the results of the tests of the GERTH algorithm

(tabel 5) we find:

ERR030 - 0.43 ERR0 10 - 0.43 ERROOO - 0.47 D.16

The results are according to our estimation: the contribution of the

additive output noise on the equation error e becomes significant
i

during simulations with an output signal to noise ratio less or equal

to 10 dB.
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Appendix E ESTIMATION OF THE ORDER OF A SYSTEM

In the- preceding part of this report t we have assumed that a finite

set of noise corrupted Markov parameters is available. We also have

assumed to know the degree of the minimal polynomial of the system

under consideration. In general however, we do not know this degree

and we have to estimate it. It is not possible to find the degree of

the minimal polynomial from of a sequence of estimated Markov

parameters. We only can estimate the order of the system from an-available set of estimated Markov parameters {M} 12k.
i i- t ••

In recent publications several estimation methods for the order of the

system have been described ([ 17 ], [ 18 ].

The order n of the system can be greater than the degree of the

minimal polynomial r ( see appendix B). Now we assume that this degree

is equal to the order of the system. In case the order n is not equal

to the degree r extra meaningless eigenvalues will be introduced (see

appendix C).

First we will take a look at the deterministic situation (no noise on

the available set of Markov parameters). We will compose a Hankel

matrix from this set of Markov parameters.

The definition of the block Hankel matrix H is given in eq. E.l.
st

H ­ts

M(l) M(2)
M(2)

M(s)

E.l

M(t) • • • • M(t+s-1)

Schwarz [ 19 ] has stated that in the deterministic case:

rank {H } = n
ts

E.2

We have assumed that the order of the system is equal to the degree of

the minimal polynomial. So by calculating the rank of the Hankel

matrix, we can determine the order of the system and the degree of the

minimal polynomial.

In noisy situations we assume that the Markov parameters are corrupted

with white "entry independent" noise. In appendix B has been stated

that in those cases the Hankel matrices always will be of full rank
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(the rank of' the Hankel matrices will be equal to the minimal

dimension of the matrix):

rank {H } a mine ps , qt ) E.3
ts

The problem will be to determine the dimension of the space that is

significant above the space (image) spanned by the noise.

One method to test the order of a system is based on a comparison of

the energy of the additive noise to the energy of the basis of the

Hankel matrix

We only will take a brief look at an order test based on the

examination of the singular values of the Hankel matrix.

E.l The Singular Value Decomposition of the Hankel matrix.

The Singular Value Decomposition (SVD) of the Hankel matrix can be

used for a test of the order of a system. The SVD is an eigenvalue

like concept with remarkable numerical qualities, that is based on the

following theorem (c.f. [ 18 : eq.13]):

Theorem 1 For any gxh matrix A with railk{A} =- n, there exists a

factorization:

TAaW.D.V

where:

j=min(g,h),

W is a orthonormal matrix (i.e~ WT.W=-I .),
T j

V is a orthonormal matrix (i.e. V .V=I.),
J

D-diag(ol' 02' •• ,OJ) with:

E.4

01 > 02 > •••• >° > 0= = = n

0n+l • 0n+2 = •••• = OJ • 0

and

The diagonal elements 01 are called the singular values of A and the

columns of Wand the columns of V, respectively are the left and the

right singular vectors of A.

Because Wand V are non-singular matrices, the rank of A is equal to

the rank of D. This implies that the rank of A is equal to the number

of non-zero singular values. We can rewrite this as:
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A - A - W • D • V
T

n. n 0. 0.
E.5

where for A only the first n nonzero singular values are used in D •
n 0.

We also mention that the sum of the squares of all singular values of

matrix A represents the total energy in. the set of column vectors of A

(see J. STAAR and J.VANDEWALLE [ 16 ]: eq. (13».

In the noisy cases the Hankel matrix will be of full rank, so all

singular values of this matrix will be unequal to o.
We will think the noise corrupted Hankel matrix being divided in a

deterministic and a part containing the noise (for illustration).

E.6

Although the Markov parameters appear repeatedly in the Hankel marix,

we assume that the noise on the elements of matrix H consists of
st

whi te noise samples (mean value is 0 and standard deviation is a ).
0.

This means that the noise power in each direction will be the same and

equal to the square of the

We are interested in the

matrix, so we will take a
<ps _ qt •

standard deviation a •
n

distribution of the energy in the Hankel
T < Tlook at H .H if qt ps or at H .H if

t s ts - ts ts

T
By using the singular value decomposition of H ld = V.D.W thents et
[ 18: appendix]:

-r 2 <E { H • H } = V ( D + a ps I ) W if qt ps
ts ts 0. qt

E.7
-T 2 2 <E { H • H } = V ( D + a qt I ) W if ps qt
ts ts 0. ps
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- - -r
Or generally if H - V D W :

ts

2
+a

n
max(qt,ps) I

min(qt,ps)
E.8

corrupted matrix Hst
the energy in the

So the expectation of the squared singular values of H will be equal
ts

to the sum of the expection of the squares of the singular values in
2the deterministic case and max(qt,ps) x a •) n

So only the singular values <5 i of the noise

satisfying expression E.7 are significant for

"signal" (without any noise).

E.9

In expression E.? R
O

is a measure for the "distance" between the noise

level and the smallest singular value taken into account (see further

[ 16 : chapter 7.2]).
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Appendix F THE RESULTS OF THE TESTS ON THE DIRECT METHOD IN EUCLIDEAN
AND MAXIMUM NORM.

F.1 The results of the simulations on SYSTEM 4 with SN - 20 dB.

8 Markov parameters 50 Markov parameters

-------------- -------------- ------------- --------------

maximum norm euclidean norm maximum norm euclidean norm

-------------- ------------ -------------- --------------

EXACTMARK

GERTH ALGORITHM

DIRECT METHOD

av= .687 E-3

sd- .215 E-3

av= .559 E-3

sd- .203 E-3

av= .112 E-2

sd= .043 E-2

av= .684 E-3

sd- .157 E-3

av- .551 E-3

sd= .128 E-3

av= .105 E-2

sd= .032 E-2

av= .287 E-2

sd- .022 E-2

av= .601 E-3

sd- .214 E-3

av= .178 E-2

sd- .065 E-2

av= .287 E-2

sd- .016 E-2

av= .592 E-3

sd= .147 E-3

av= .168 E-2

sd= .054 E-2

table 9 : The results of the simulations on SYSTEM 4 with SN = 20 dB.

Remark: 'av' indicates the average while 'sd' stands for standard deviation.
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F.2 The results of the simulations on SYSTEM 4 with SN = 40 dB.

8 Markov parameters 50 Markov parameters

maximum norm euclidean norm maximum norm euclidean norm

EXACTMARK

GERTH ALGORITHM

DIRECT METHOD

av'" .751 E-5

sd=- .225 E-5

av= .617 E-5

sd=- .200 E-5

av=- .111 E-4

sd= .047 E-4

av= .824 E-5

sd- .158 E-5

av= .670 E-5

sd= .144 E-5

av= .106 E-4

sd=- .035 E-4

av= .219 E-2

sd= .002 E-2

av= .659 E-5

sd- .216 E-5

av= .170 E-4

sd= .065 E-4

av= .219 E-2

sd= .002 E-2

av· .716 E-5

sd- .161 E-5

av- .161 E-4

sd- .054 E-4

table 10 The results of the simulations on SYSTEM 4 with SN = 40 dB.
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F.4- The results of the simulations on SYSTEM 4 with SN :lL 80 dB.

8 Markov parameters 50 Markov parameters

maximum norm euclidean norm maximum norm euclidean norm

EXACTMARK

GERTH ALGORITHM

DIRECT METHOD

av= .141 E-5

sd'" .069 E-5

ava .114 E-5

sd'" .056 E-5

av'" .924 E-9

sd'" .310 E-9

ava .145 E-5

sd" .145 E-5

ava .120 E-5

sd'" .056 E-5

av= .914 E-9

sd'" .280 E-9

av" .219 E-2

sd'" .069 E-5

ava .124 E-5

sd= 0.56 E-2

av'" .106 E-10

sd= .04 E-10

av" .219 E-2

sd- .145 E-5

av= .133 E-3

sd= .056 E-5

av= .107 E-10

sd= .04 E-10

table 12 The results of the simulations on SYSTEM 4 with SN = 80 dB.
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