

MASTER

Een vergelijkend onderzoek naar vier parametervrije k-steekproeventoetsen

de Boo, T.M.

Award date: 1973

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain

ARC 01 WSK

AFSTUDEERVERSLAG

Een vergelijkend onderzoek naar vier parametervrije k-steekproeventoetsen

door

Th.M. de Boo

Afstudeerhoogleraar:

Prof.dr. R. Doornbos

juni 1973

Technische Hogeschool Eindhoven Onderafdeling der Wiskunde

Inhoudsopgave.

I. Inleiding

II. Toetsprocedures

III. Verdelingen

IV. Onderscheidingsvermogens

V. Over simultane uitspraken

VI. Het asymptotisch onderscheidingsvermogen

VII. Samenvatting der resultaten en conclusies

VIII. Tabellen

Literatuurverwijzingen

I. Inleiding.

1.1. Algemene achtergrond.

In dit verslag worden vier parametervrije k-steekproeventoetsen met elkaar vergeleken. Een parametervrije toets is een toets waarvan de verdeling van de toetsingsgrootheid onder H_0 niet afhangt van de vorm van de verdelingen waaruit de steekproeven worden getrokken. Onze H_0 is: $F_i(x) = F(x)$, i = 1, ..., k, waarbij $F_i(x)$ de verdelingsfunctie is van de verdeling waaruit de i-de steekproef wordt getrokken. Een speciale vorm van een parametervrije toets is de zg. rangtoets. De toetsingsgrootheid van zo'n toets is gebaseerd op rangnummers, die aan de waarnemingen worden toegekend. We onderscheiden twee soorten rangtoetsen:

- a) Toetsen, waarbij <u>alle</u> waarnemingen, bestaande uit de k steekproeven, als één geheel worden behandeld, d.w.z. de rangnummertoekenning gebeurt onafhankelijk van de steekproef waaruit een waarneming komt.
- b) Toetsen, die gebaseerd zijn op het <u>paarsgewijs</u> vergelijken van de k steekproeven.

Van de toetsen die wij gaan vergelijken behoren er twee tot groep a), nl. de toets van Kruskal-Wallis (toetsingsgrootheid <u>H</u>) en de toets van Mood-Brown (toetsingsgrootheid <u>M</u>); de andere twee behoren tot de groep b), nl. de toets van Steel (toetsingsgrootheid <u>R</u>) en de toets van Terpstra (toetsingsgrootheid <u>Q</u>).

We hebben de volgende alternatieven beschouwd:

$$\begin{split} H_{1}: F_{i}(x) &= F(x), \ i = 1, \dots, k-1; \ F_{k}(x) = F(x-a); \ a > 0. \\ H_{2}: F_{i}(x) &= F(x), \ i = 1, \dots, k-2; \ F_{k-1}(x) = F_{k}(x) = F(x-a); \ a > 0. \\ H_{3}: F_{1}(x) &= F(x+a); \ F_{i}(x) = F(x), \ i = 2, \dots, k-1; \ F_{k}(x) = F(x-a); \ a > 0. \end{split}$$

De algemene voorwaarden, waar we gedurende het gehele onderzoek vanuit zijn gegaan, zijn:

De verdelingsfuncties F(x) en $F_i(x)$, i = 1, ..., k, zijn continu en de k aselecte steekproeven zijn onafhankelijk.

1.2. Samenvatting van de inhoud.

Hoofdstuk II geeft de procedures van de toetsen van Kruskal-Wallis, Mood-Brown, Steel en Terpstra. In hoofdstuk III wordt onderzocht wat bekend is van de exacte en asymptotische verdelingen van <u>H</u>, <u>M</u>, <u>R</u> en <u>Q</u> onder H_0 , H_1 , H_2 en H_3 . De verdeling van <u>M</u> onder H_0 wordt bepaald in de gevallen k = 5, $n_i = 3(1)5$, waarbij n_i de steekproefgrootte van de i-de steekproef is. De verdelingen van <u>M</u> en <u>R</u> onder H₁, H₂ en H₃ worden gegeven voor k = 5, n_i = 5 als de verschuiving a extreem is. Kritieke gebieden en bijbehorende onbetrouwbaarheden worden gegeven, voor het geval k = 5, $n_i = 5$. In hoofdstuk IV wordt het onderscheidingsvermogen van de vier toetsen berekend voor het geval k = 5, $n_i = 5$, bij de in hoofdstuk III gevonden onbetrouwbaarheden, onder H_1 , H_2 en H_3 , voor $F(x) \sim$ uniform op [0,1] en $F(x) \sim N(0,1)$ en bij verschillende verschuivingen a. Van een speciale tabel worden 95%-onbetrouwbaarheidsintervallen voor het onderscheidingsvermogen gegeven. Hoofdstuk V behandelt het doen van simultane uitspraken bij de toetsen van Kruskal-Wallis en Steel. In het geval k = 5, $n_i = 5$ worden tabellen gegeven met aantallen significante kontrasten, in dezelfde gevallen als in hoofdstuk IV (op kleine verschillen na). Tot slot wordt het onderscheidingsvermogen van de speciale uitschietertoets van Doornbos-Prins onder H, vergeleken met dat van de toetsen van Kruskal-Wallis en Steel als $k = n_i = 5$. In hoofdstuk VI wordt onderzocht onder welke voorwaarden de vier toetsen asymptotisch onderscheidend (consistent) zijn. Een voldoende voorwaarde wordt afgeleid, waaronder de toets van Mood-Brown - en een nodige en voldoende voorwaarde waaronder de toets van Steel - asymptotisch onderscheidend is. Hoofdstuk VII geeft een samenvatting der resultaten en hoofdstuk VIII tenslotte bevat tabellen.

1.3. Gebruikte notaties en afkortingen.

 \underline{x}_{ij} : j-de waarneming uit de i-de steekproef.

n_i : grootte van de i-de steekproef (= n indien alle n_i gelijk zijn).

k : aantal steekproeven.

- F_i(x) : continue verdelingsfunctie, waaruit de i-de steekproef wordt getrokken.
- N : totaal aantal waarnemingen (= $\sum_{i=1}^{k} n_i$).

α : onbetrouwbaarheid.

0.V. : onderscheidingsvermogen.

 $\widehat{O.V.}$: schatting van het onderscheidingsvermogen.

- #(...): het aantal keren, dat (...).
- s.k. : significant(e) kontrast(en).

II. Toetsprocedures.

2.1. Inleiding.

In dit hoofdstuk geven we een korte beschrijving van de toetsen van Kruskal-Wallis, Mood-Brown, Steel en Terpstra.

Laat de verzameling $\{\underline{x}_{ij} \mid i = 1, ..., k; j = 1, ..., n_i\}$ k onafhankelijke steekproeven voorstellen, die bestaan uit resp. $n_1, ..., n_k$ onafhankelijke waarnemingen. Zij $F_i(x)$ de continue verdelingsfunctie van de i-de steekproef en laat N gedefinieerd zijn door N := $\sum_{i=1}^{k} n_i$.

2.2. Procedure van Kruskal-Wallis ([6], [8]).

Rangschik de N waarnemingen van de kleinste tot de grootste. Ken rangnummer 1 toe aan de kleinste, rangnummer 2 aan de op één na kleinste en zo verder in opklimmende volgorde. Zij nu \underline{R}_{ij} het rangnummer van \underline{x}_{ij} . Definieer:

$$\underline{R}_{i} := \sum_{j=1}^{n_{i}} \underline{R}_{ij} ; \quad \overline{\underline{R}}_{i} := \frac{1}{n_{i}} \underline{R}_{i} ; \quad \overline{R} := \frac{1}{k} \sum_{i=1}^{k} \frac{\overline{R}_{i}}{L_{i}} = \frac{N+1}{2}.$$

De toetsingsgrootheid van Kruskal-Wallis is dan:

$$\underline{H} = \frac{12}{N(N+1)} \sum_{i=1}^{k} n_i (\bar{\underline{R}}_i - \bar{\underline{R}})^2 = \frac{12}{N(N+1)} \sum_{i=1}^{k} n_i (\bar{\underline{R}}_i^2 - 3(N+1))$$

Het kritieke gebied van de toets is van de vorm $\{H > h_{\alpha}\}$.

2.3. Procedure van Mood-Brown ([9]).

De rangschikking en rangnummering van de waarnemingen geschiedt op dezelfde manier als bij de toets van Kruskal-Wallis. Definieer b door:

b :=
$$\begin{cases} \frac{N}{2} & \text{als N even is} \\ \frac{1}{2}(N-1) & \text{als N oneven is} \end{cases}$$

en zij m_i het aantal rangnummers van de i-de steekproef, kleiner dan $b + \frac{1}{2}$. Dan is de toetsingsgrootheid van Mood-Brown:

$$\underline{\mathbf{M}} = \frac{\mathbf{N}(\mathbf{N}-\mathbf{1})}{\mathbf{b}(\mathbf{N}-\mathbf{b})} \sum_{i=1}^{k} \frac{1}{n_i} \left(\underline{\mathbf{m}}_i - \frac{\mathbf{b}n_i}{\mathbf{N}}\right)^2.$$

Het kritieke gebied van deze toets is van de vorm $\{M > m_{\chi}\}$.

<u>Opmerking</u>. In het oorspronkelijke artikel is m_i het aantal waarnemingen van de i-de steekproef, kleiner dan de steekproefmediaan van de gecombineerde k steekproeven. Onze definitie benadrukt het rangtoets-aspekt van deze zogenaamde mediaantoets.

2.4. Procedure van Steel ([11], [7]).

Beschouw de $\binom{k}{2}$ paren (i,j) met i < j, voorstellende de steekproeven i en j en volg voor ieder van deze paren de volgende subprocedure:

Rangschik de waarnemingen van de gecombineerde 2 steekproeven van de kleinste tot de grootste en ken rangnummers toe, beginnend met 1 en zo verder oplopend.

Zij $\underline{\mathbf{r}}_{i_k}$ het rangnummer van de k-de waarneming uit de i-de steekproef. Definieer nu: $\underline{\mathbf{r}}_{i,j} := \sum_{k} \underline{\mathbf{r}}_{i_k}$ en $\underline{\mathbf{r}}_{i,j}^* := \max(\underline{\mathbf{r}}_{i,j}, \underline{\mathbf{r}}_{j,i})$.

De toetsingsgrootheid van Steel's toets is dan:

$$\frac{R}{(i,j)} = \max_{\substack{(i,j)\\i < j}} r_{i,j}^{*}$$

Ook het kritieke gebied van deze toets is van de vorm $\{R > r_{\alpha}\}$.

2.5. Procedure van Terpstra ([12]).

Evenals Steel beschouwt Terpstra de $\binom{k}{2}$ paren (i,j) met i < j, voorstellende de steekproeven i en j.

Voor ieder van die paren worden de volgende twee variabelen berekend:

$$\underbrace{U}_{i,j} := \frac{1}{2} \sum_{k,\ell} \operatorname{sgn}(\underline{x}_{ik} - \underline{x}_{j\ell}) \quad (k = 1, \dots, n_i; \ell = 1, \dots, n_j)$$

en

$$\underline{\underline{U}}_i := \sum_j \underline{\underline{U}}_{i,j}$$
 .

III. Verdelingen.

3.1. Inleiding.

In dit hoofdstuk zullen we ons bezighouden met de verdelingen van de grootheden <u>H</u>, <u>M</u>, <u>R</u> en <u>Q</u> onder de nulhypothese H_0 : $F_i(x) = F(x)$, i = 1, ..., k, en onder drie bepaalde alternatieve hypothesen H_1 , H_2 en H_3 , die we nu eerst zullen aanduiden:

(3.1)
$$\begin{cases} H_1: F_i(x) = F(x); i = 1, \dots, k-1; F_k(x) = F(x-a); a > 0. \\ H_2: F_i(x) = F(x); i = 1, \dots, k-2; F_{k-1}(x) = F_k(x) = F(x-a); a > 0. \\ H_3: F_i(x) = F(x); i = 2, \dots, k-1; F_1(x) = F(x+a); F_k(x) = F(x-a); a > 0. \end{cases}$$

In § 3.2 zullen we nagaan wat bekend is over de verdelingen en hun asymptotisch gedrag onder H_0 en we zullen de exacte verdeling van <u>M</u> onder H_0 berekenen in de gevallen k = 5, $n_i = 3(1)5$, $i = 1, \dots, 5$.

Er is niets bekend over de verdelingen onder de alternatieven H_1 , H_2 en H_3 , maar we zullen in § 3.3 wel de exacte verdeling van <u>M</u> en <u>R</u> berekenen onder deze alternatieven, indien de verschuiving extreem wordt ("a $\rightarrow \infty$ ") en als k = 5, n_i = 5, i = 1,...,5.

Tenslotte zullen we, weer in het geval dat k = 5, $n_i = 5$, in § 3.4 voor ieder van de grootheden <u>H</u>, <u>M</u>, <u>R</u>, en <u>Q</u> een kritiek gebied met een daarbij behorende onbetrouwbaarheid bepalen, waarvan we in het volgende hoofdstuk gebruik zullen maken.

3.2. Verdelingen en asymptotische verdelingen onder H_0 .

3.2.1. Indien alle F_i's gelijk zijn, kunnen we de gecombineerde k steekproeven beschouwen als één steekproef, getrokken uit een populatie met continue verdelingsfunctie F. Na rangnummering der waarnemingen hebben we dan een ordening van de getallen 1 t/m N. Het is duidelijk dat er in totaal N! mogelijke ordeningen bestaan, ieder met gelijke kans op realisatie. Om nu de verdelingen van <u>H</u>, <u>R</u> en <u>Q</u> te vinden moeten we in principe de waarden H, R en Q bij ieder van die ordeningen berekenen. Als N niet al te klein is, kost dit enorm veel rekenwerk, zelfs al kunnen we uit symmetrie-overwegingen dit werk in meer of mindere mate beperken. Waarschijnlijk is dit de reden, dat er niet veel tabellen van deze verdelingen beschikbaar zijn.

Kruskal en Wallis [6] hebben de (rechter)staart van de verdeling van <u>H</u> getabelleerd in de gevallen k = 3, $n_i = 1(1)5$, i = 1,2,3. Steel [11] geeft tabellen voor de verdeling van <u>R</u> in de gevallen k = 3, $n_i = n(1)4$ en de (linker)staart van de verdelingen k = 3, n = 5,6. (De <u>linkerstaart</u> omdat Steel als toetsingsgrootheid gebruikt:

$$\frac{R}{\underset{\substack{i,j\\i < j}}{R}} = \min \left\{ \min(\underline{r}_{i,j}, \underline{r}_{j,i}) \right\} .)$$

Van Terpstra's <u>Q</u> is geen enkele verdeling getabelleerd. Hetzelfde geldt voor Mood-Brown's <u>M</u>, maar Mood [9] geeft wel de dichtheidsfunctie $g(m_1, m_2, \dots, m_k) = P(m_1 = m_1, m_2 = m_2, \dots, m_k = m_k)$, en wel

(3.2)
$$g(m_1, m_2, \dots, m_k) = \begin{cases} \frac{k}{\prod i} {\binom{n_i}{m_i}} & \text{als } \sum_{i=1}^k m_i = b \\ 0 & \text{anders.} \end{cases}$$

Bij gegeven n_i 's kunnen we eerst b bepalen, waarna we al die combinaties (m_1, \ldots, m_k) zoeken, waarvoor $\sum_{i=1}^k m_i = b$. Voor die combinaties kunnen we dan de waarde M van <u>M</u> berekenen en $P(\underline{M} = M; \underline{H}_0)$ volgt dan direkt. Op deze wijze hebben we de verdeling van M getabelleerd voor k = 5, $n_i = 3(1)5$, $i = 1, \ldots, 5$, en de resultaten staan vermeld in hoofdstuk VIII.

3.2.2. Asymptotische verdelingen.

De asymptotische verdeling van een statistische grootheid is van belang om te kunnen nagaan voor welke waarden van n_i deze verdeling de werkelijke verdeling "goed genoeg" benadert. Dat bespaart dan, in het geval dat de asymptotische verdeling een bekende (getabelleerde) verdeling is, een hoop rekenwerk.

Indien we nu als algemene voorwaarde stellen, dat $\forall_i \frac{n_i}{N} \rightarrow k_i \in \mathbb{R}$ als $N \rightarrow \infty$, dan geldt:

- a) <u>H</u> is asymptotisch verdeeld als χ^2 met k 1 vrijheidsgraden (Kruskal [5]). Kruskal en Wallis [6] bevelen aan deze χ^2 -benadering te gebruiken, indien $\bigvee_i n_i \ge 5$ (zie ook 3.4.b).
- b) \underline{M} is asymptotisch verdeeld als χ^2 met k-1 vrijheidsgraden (Mood-Brown [9]). Mood en Brown veronderstelden dat, indien $\forall_i n \ge 5$, deze χ^2 -verdeling een goede benadering zou zijn. Hun veronderstelling was te optimistisch, wat mag blijken uit tabel 3.1, waar de exacte verdeling van \underline{M} voor k = 5, $n_i = 5$, vergeleken wordt met de χ_4^2 -verdeling.

<u>Tabel 3.1</u>. Vergelijking van exacte verdeling van <u>M</u> onder H₀ voor k = 5, $n_i = 5 \text{ met } \chi_4^2$ -benadering.

Waarden M van <u>M</u>	$P(\underline{M} \leq M; H_0)$	$P(\chi_4^2 \le M)$
0.924	0.192297	-
2.462	0.432667	-
4.000	0.721112	-
5.539	0.802838	-
7.077	0.915813	0.86
8.616	0.959079	0.928
10.154	0.985039	0.962
11.693	0.993212	0.980
13.231	0.998981	0.989
14.770	0.999221	0.9947
16.308	0.999798	0.9973
17.847	0.999942	0.9987
19.385	1.000000	0.9993

De χ_4^2 -verdeling heeft een duidelijk dikkere staart. We hebben niet onderzocht vanaf welke waarden van de n_i's de χ^2 -benadering wél goed is.

c) De asymptotische verdeling van <u>R</u> is nog niet bekend, maar Miller [7] heeft een grote-steekproeven benadering gevonden, in het geval dat alle steekproeven van dezelfde grootte zijn (\forall_i n_i = n). Met behulp daarvan heeft hij de kritieke waarden van <u>R</u> getabelleerd voor $\alpha = 0.05$ en $\alpha = 0.01$ en voor k = 2(1)10; n = 6(1)20, 25(5)50, 100. d) De asymptotische verdeling van <u>Q</u> is vermoedelijk een χ^2 -verdeling met $\binom{k}{2}$ vrijheidsgraden (Terpstra [12]). Het is niet bekend, vanaf welke waarden van de n_i's deze benadering goed is.

3.3. Verdelingen onder H_1 , H_2 en H_3 .

Er is niets bekend over verdelingen, noch over asymptotische verdelingen van <u>H</u>, <u>M</u>, <u>R</u> en <u>Q</u> onder de (verschuivings)alternatieven H₁, H₂ en H₃ (zie (3.1)). We gaan nu onderzoeken wat er gebeurt indien de verschuiving(en) extreem wordt (worden). Notatie: "a $\rightarrow \infty$ ". (We gebruiken deze notatie om aan te geven dat het niet in alle gevallen nodig is dat a $\rightarrow \infty$ (bijv. als F(x) uniform verdeeld is).)

a) Onder H₁ zullen nu alle waarnemingen van de k-de steekproef groter zijn dan de overige, hetgeen inhoudt dat we voor de bepaling van de verdeling van <u>H</u> en <u>Q</u> slechts de mogelijke ordeningen van de rangnummers $1 t/m (N-n_k)$ hoeven te bepalen.

De dichtheidsfunctie g₁ van Mood (zie (3.2)) wordt nu:

(3.3)
$$g_1(m_1, \dots, m_k; H_1; "a \to \infty") = \begin{cases} \frac{k-1}{1} \begin{pmatrix} n_i \\ m_i \end{pmatrix} \cdot i \\ \frac{i=1}{2} \begin{pmatrix} N-n_k \\ b \end{pmatrix} \end{pmatrix} \text{ als } (N-n_k) \ge b \text{ en } \sum_{i=1}^{k-1} m_i = b \\ 1 \text{ als } (N-n_k) < b, m_i = n_i \quad (i = 1, \dots, k-1) \\ en \sum m_i = b \\ 0 \text{ anders} \end{cases}$$

(b gedefinieerd volgens § 2.3).

Ten aanzien van Steel's <u>R</u> beschouwen we alleen het geval dat alle steekproeven even groot zijn ($n_i = n$, i = 1,...,k). De maximale waarde van R (zie § 2.4) is dan $\frac{1}{2}n(3n + 1)$. Het zal duidelijk zijn dat, als " $a \rightarrow \infty$ ", geldt: $P(\underline{R} = \frac{1}{2}n(3n + 1)) = 1$. We beschouwen nu het geval k = 5, $n_i = 5$, i = 1,...,5. De verdelingen van <u>H</u> en <u>Q</u> hebben we niet bepaald (te veel werk). De verdeling van <u>M</u> werd met behulp van (3.3) op dezelfde manier als onder H₀ bepaald (zie § 3.2.1) en volgt hierna.

Waarde M van <u>M</u>	$P(\underline{M} \leq M; H_1; "a \rightarrow \infty")$
5.539	0.079384
7.077	0.555688
8.616	0.674764
10.154	0.889101
11.693	0.936731
13.231	0.984361
14.770	0.988331
16.308	0.997857
17.847	0.999047
19.385	1.000000

<u>Tabel 3.2</u>. Verdeling van <u>M</u> onder H₁ als k = 5, n_i = 5 en "a $\rightarrow \infty$ ".

Over de verdeling van <u>R</u> merken we op dat de maximale waarde van R in dit geval 40 is en, zoals we hierboven zagen, geldt P(R = 40) = 1.

b) Onder H_2 zijn alle waarnemingen van de (k-1)-de en k-de steekproef groter dan de overige. Voor de bepaling van de verdeling van <u>H</u> en <u>Q</u> geldt, dat we alle combinaties van de mogelijke ordeningen van de rangnummers 1 t/m $(N-n_{k-1}-n_k)$ en de mogelijke ordeningen van de rangnummers $(N-n_{k-1}-n_k+1)$ t/m N moeten bepalen.

De dichtheidsfunctie g₂ van Mood wordt nu:

$$(3.4) \quad g_{2}(m_{1}, \dots, m_{k}; H_{2}; "a \to \infty") = \begin{cases} \begin{pmatrix} k-2 & n_{i} \\ m_{i} \end{pmatrix} \cdot 1 \cdot 1 \\ \frac{i=1}{m_{i}} \begin{pmatrix} m_{i} \\ m_{i} \end{pmatrix} \cdot 1 \cdot 1 \\ \frac{i=1}{m_{i}} \end{pmatrix} \quad \text{als } (N - n_{k-1} - n_{k}) \geq b \\ en & \sum_{i=1}^{k-2} m_{i} = b \\ i = 1 \end{pmatrix} \quad \text{in } i = b \\ 1 \quad als \ (N - n_{k-1} - n_{k}) < b, \ m_{i} = n_{i} \\ (i = 1, \dots, k-2) \ en \ \Sigma \ m_{i} = b \\ 0 \quad anders. \end{cases}$$

Voor de verdeling van <u>R</u> geldt weer (als $\forall_i n_i = n$): $P(\underline{R} = \frac{n}{2} (3n + 1)) = 1$. We bekijken weer het geval k = 5, $n_i = 5$, $i = 1, \dots, 5$. De verdelingen van <u>H</u> en <u>Q</u> hebben we niet bepaald. De verdeling van <u>M</u> werd m.b.v. (3.4) bepaald en volgt hierna.

Waarde M van <u>M</u>	$P(\underline{M} \leq M; H_2; "a \rightarrow \infty")$
14.770	0.274725
16.308	0.934066
19.385	1.000000

Tabel 3.3. Verdeling van M onder H₂ als k = 5, n_i = 5 en "a $\rightarrow \infty$ ".

Voor Steel's <u>R</u> geldt: P(R = 40) = 1.

c) Onder H_3 geldt, dat alle waarnemingen van de le steekproef kleiner – en alle waarnemingen van de k-de steekproef groter zijn dat de overige. Voor de verdeling van <u>H</u> en <u>Q</u> hebben we de mogelijke ordeningen van de rangnummers $(n_1 + 1) t/m (N - n_k)$ nodig.

De dichtheidsfunctie g_3 van Mood wordt:

$$(3.5) \quad g_{3}(m_{1}, \dots, m_{k}; H_{3}; "a \to \infty") = \begin{cases} \begin{pmatrix} k-1 & \binom{n}{i} \\ m_{1} \end{pmatrix} \cdot l \\ \frac{i=2}{\binom{N-n_{1}-n_{k}}{k}} \\ b-n_{1} \end{pmatrix} & als & (N-n_{k}) \ge b, \ b \ge n_{1} \\ m_{1} = b-n_{1} \\ i=2 \end{cases}$$

$$(1 \quad als & (N-n_{k}) < b, \ m_{1} = n_{1} \\ (i = 1, \dots, k-1) & en \ \Sigma m_{1} = b \\ en & als & (N-n_{k}) \ge b, \ b \le n_{1}, \ m_{1} = 0 \\ (i = 2, \dots, k) & en \ m_{1} = b \\ 0 & anders \end{cases}$$

Voor Steel's toetsingsgrootheid geldt weer: $P(\underline{R} = \frac{n}{2} (3n + 1)) = 1$ als $n_i = n$. Laten we nogmaals het geval k = 5, $n_i = 5$ beschouwen. De verdelingen van <u>H</u> en <u>Q</u> hebben we niet berekend. De verdeling van <u>M</u> volgt m.b.v. (3.5) hierna.

Waarde M van <u>M</u>	$P(\underline{M} \leq M; H_3; "a \rightarrow \infty")$
10.154	0.466200
11.693	0.699301
13.231	0.932401
16.308	0.979021
17.847	0.990676
19,385	1.000000

<u>Tabel 3.4</u>. Verdeling van <u>M</u> onder H₃ als k = 5, $n_1 = 5$ en "a $\rightarrow \infty$ ".

En voor <u>R</u> geldt weer: P(R = 40) = 1.

3.4. Bepaling van onbetrouwbaarheden en kritieke waarden voor k = 5, $n_i = 5$.

In hoofdstuk IV gaan we voor een aantal gevallen het onderscheidingsvermogen van de vier toetsen uitrekenen. Om de toetsen met elkaar te kunnen vergelijken is het nodig dat ze dezelfde onbetrouwbaarheid hebben; wij kiezen $\alpha = 0.05$. In deze paragraaf zullen we nagaan in hoeverre we die onbetrouwbaarheid kunnen bereiken.

a) Mood-Brown.

Omdat alleen de verdeling van <u>M</u> voor k = 5, $n_i = 5$ bekend is, ligt het voor de hand om eerst deze verdeling te bekijken.

Uit tabel 3.1 volgt, dat er géén waarde M bestaat, waarvoor geldt dat $P(\underline{M} \ge M; H_0) = 0.05$. De twee dichtstbij gelegen waarden zijn 8.616 (met $P(\underline{M} \ge 8.616; H_0) = 0.084187$) en 10.154 (met $P(\underline{M} \ge 10.154; H_0) = 0.040921$). Om nu toch een onbetrouwbaarheid van 0.05 te bereiken gebruiken we een gerandomiseerde M-toets en wel de volgende:

Indien M \geq 10.154: verwerp H₀ en

indien M = 8.616: verwerp H_0 met kans w, waarbij w wordt gevonden uit: w.P(<u>M</u> = 8.616) + P(M \ge 10.154) = 0.05 \implies w = 0.2098445.

In het volgende hoofdstuk zullen we deze toets met onbetrouwbaarheid 0.05 ook gebruiken.

Aangezien we van <u>H</u>, <u>R</u> en <u>Q</u> de verdelingen niet kennen, moeten we m.b.v. een schatting $\hat{\alpha}$ een onbetrouwbaarheid van 0.05 zo dicht mogelijk zien te benaderen, m.a.w. we moeten een waarde k_a zien te vinden zodanig dat bijv. $\hat{P}(\underline{H} > k_{\alpha}) = \hat{\alpha}$ dichtbij 0.05 ligt. We doen dit m.b.v. een simulatieprocedure op een computer als volgt: stel dat we in totaal L simulaties uitvoeren, dan telt de computer het aantal keren (onder H_0) dat bijv. <u>H</u> k_{α} overschrijdt. Stel dat dat aantal ℓ is. Dan is $\hat{\alpha} = \ell/L$ een zuivere schatter voor de overschrijdingskans α van k_{α} , immers ℓ is binomiaal verdeeld met als parameters L en α en dus geldt $\xi(\ell/L) = \alpha$.

b) Kruskal-Wallis.

Als waarde voor k_{α} zouden we het grootste 5% punt van de χ_4^2 -verdeling kunnen nemen (zie § 3.2.2.a), maar we kunnen aan de hand van de bestaande tabel van de verdeling van <u>H</u> voor k = 3, n_i = 5 (Owen [13]) eerst kijken hoe goed de χ_2^2 -benadering is. (Dit heeft zin omdat in ons geval k = 5, n_i = 5, de steekproefgroottes ook alle 5 zijn.) Uit die vergelijking blijkt dan, dat de staart van de χ_2^2 -verdeling dikker is dan die van de <u>H</u> verdeling (bijv. P(<u>H</u> > 5.66;H₀) = 0.049 en P(χ_2^2 > 5.6) = 0.6081). Als waarden voor k_a hebben we toen genomen waarden die in de buurt van het 6% punt van de χ_4^2 -verdeling liggen.

Resultaat (aantal simulaties 5000):

kα	$\hat{\alpha} = \hat{P}(\underline{H} > k_{\alpha}; \underline{H}_{0})$	$P(\chi_4^2 > k_{\alpha})$
9.0	0.0448	0.0611
8.9	0.0514	-
8.8	0.0574	0.0663

Uitgaande van deze gegevens hebben we als definitieve waarde voor k_{α} genomen 8.915 en bij 25000 simulaties leverde dat als resultaat: $\hat{P}(\underline{H} > 8.915; \underline{H}_0) = 0.051$. Een 95% betrouwbaarheidsinterval om $P(\underline{H} > 8.915; \underline{H}_0)$ wordt dan: 0.048 $\leq P(\underline{H} > 8.915) \leq 0.054$.

c) Steel.

In § 3.3.a zagen we al dat de maximale waarde van R 40 is. Op een totaal aantal simulaties van 25000 bleek toen, dat $\hat{P}(\underline{R} = 40; \underline{H}_0) = 0.063$. Een 95% betrouwbaarheidsinterval om $P(\underline{R} = 40; \underline{H}_0)$ wordt dan: $0.060 \le P(\underline{R} = 40; \underline{H}_0) \le 0.066$.

We ontkomen er niet aan, dat in dit geval ($k = n_i = 5$) de onbetrouwbaarheid van Steels toets groter is dan die van Mood-Brown, Kruskal-Wallis en Terpstra (zie d). d) Terpstra's toets: Een voorlopige eerste schatting (we hebben onder H_0 1000 waarden van Q door de computer laten uitrekenen) bracht aan het licht dat de kritieke grens van de verdeling van <u>Q</u> bij α = 0.05 rond Q = 22 moest liggen. We hebben toen 25000 maal gesimuleerd en dit waren de resultaten:

kα	$\hat{\alpha} = \hat{P}(\underline{Q} \ge k_{\alpha}; H_0)$
21.6	0.05344
21.7	0.05240
21.8	0.05120
21.9	0.05088
22.0	0.05020
22.1	0.04968
22.2	0.04844
22.3	0.04800
22.4	0.04700

Gevolg: we nemen $k_{\alpha} = 22$; met een 95% betrouwbaarheidsinterval om $P(\underline{Q} \ge 22; H_0)$ krijgen we dan: 0.047 $\le P(\underline{Q} \ge 22; H_0) \le 0.053$.

We merken nog op, dat de χ_{10}^2 -benadering voor de verdeling van <u>Q</u> in dit geval (k = 5, n_i = 5) in de staart slecht is, want het grootste 5% punt van de χ_{10}^2 -verdeling is 18.307.

IV. Onderscheidingsvermogen

4.1. Inleiding.

Onder het onderscheidingsvermogen (0.V.) van een toets bij een gegeven alternatief H_a en bij gegeven onbetrouwbaarheid α verstaat men: $P_{\alpha}(H_0 \text{ wordt}$ verworpen; H_a geldt). Het 0.V. is dus een functie van het alternatief H_a en van α . Zo zal een toets die gevoelig is voor kleine afwijkingen van H_0 een groter 0.V. voor die afwijkingen hebben dan een toets die daar niet zo gevoelig voor is. Verder zal het duidelijk zijn dat het 0.V. als functie van α monotoon niet-dalend is.

Indien nu bij onbetrouwbaarheid α het kritieke gebied van bijv. <u>H</u> {H > h_{α}} is, dan is het O.V. van de toets van Kruskal-Wallis voor alternatief H₁: P(<u>H</u> > h_{α};H₁).

4.2. <u>Het O.V. van de toetsen van Kruskal-Wallis, Mood-Brown, Steel en Terpstra</u> voor de alternatieven H_1 , H_2 en H_3 in het geval k = 5, $n_i = 5$ (i = 1, ..., 5).

We willen nu het 0.V. van deze toetsen in de gegeven gevallen met elkaar gaan vergelijken. Daartoe is in principe noodzakelijk dat de vier toetsprocedures een zelfde onbetrouwbaarheid hebben, hier $\alpha = 0.05$. Dit is praktisch onmogelijk, omdat we in § 3.4 al gevonden hadden, dat in ons geval de minimale onbetrouwbaarheid bij Steel 0.063 is. We hebben echter gemeend, dat de verschillen in onbetrouwbaarheid dermate klein zijn dat vergelijken van de vier toetsen toch nuttig zou zijn.

De schattingen 0.V. voor het onderscheidingsvermogen 0.V. zijn aldus uitgerekend bij de volgende onbetrouwbaarheden:

Voor de toets van Kruskal-Wallis: $\alpha = 0.051$ Voor de toets van Mood-Brown : $\alpha = 0.05$ Voor de toets van Steel : $\alpha = 0.063$ Voor de toets van Terpstra : $\alpha = 0.050$

<u>Opmerking</u>. Theoretisch is het wel mogelijk een onbetrouwbaarheid van 0.05 voor de toets van Steel te bereiken, nl. door met kans 50/63 H_0 te verwerpen als R = 40. De onbetrouwbaarheid is dan $\frac{50}{63} P(R = 40; H_0) = 0.050$ (zie 3.4). Dit is echter niet verstandig, omdat dan ook het 0.V. met een factor $\frac{50}{63}$ verkleind wordt (en dus bijv. nooit één kan worden). Het $\hat{0.V}$. is in alle gevallen door middel van simulaties op een computer berekend voor de alternatieven H₁, H₂ en H₃ (zie (3.1)) in het geval k = 5, n_i = 5 en: le. Als F(x) ~ uniform op [0,1], a = 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9. 2e. Als F(x) ~ N(0,1), a = 0.1, 0.3, 0.5, 1.0, 1.5, 2.0. Zij nu A het totale aantal simulaties in een simulatieblok, dan is de zuivere schatting $\widehat{0.V}$. voor het 0.V. als volgt berekend: Voor de toets van Kruskal-Wallis: $\widehat{0.V} = \frac{1}{A} \{ \# (H > 8.915) \}$. Voor de toets van Mood-Brown : $\widehat{0.V} = \frac{1}{A} \{ w.(\# (M = 8.616)) + \#(M \ge 10.154) \}$. Voor de toets van Steel : $\widehat{0.V} = \frac{1}{A} \{ \# (R = 40) \}$. Voor de toets van Terpstra : $\widehat{0.V} = \frac{1}{A} \{ \# (Q \ge 22) \}$.

Ieder simulatieblok omvat 5000 simulaties. De resultaten staan vermeld in de tabellen 4.1 t/m 4.6. We kunnen nog enkele theoretische uitspraken doen over het 0.V. van de toetsen van Mood-Brown en Steel in het geval "a $\rightarrow \infty$ ". Omdat in dat geval de verdelingen van <u>M</u> en <u>R</u> onder H₁, H₂ en H₃ bekend zijn (zie 3.3) kunnen we de verschillende 0.V.'s direkt berekenen, nl.

Onder H₁; Mood-Brown:
$$O.V_1(M) = w \cdot P(\underline{M} = 8.616) + P(\underline{M} \ge 10.154)$$

= 0.3502 (m.b.v. tabel 3.2)
Steel : $O.V_1(R) = P(\underline{R} = 40) = 1$

Onder H₂; Mood Brown: $0.V_2(M) = 0.w + 1 = 1$ (m.b.v. tabel 3.3) Steel : $0.V_2(R) = 1$ (m.b.v. tabel 3.3)

Onder H₃; Mood-Brown: $0.V_3(M) = 0.w + 1 = 1$ (m.b.v. tabel 3.4) Steel : $0.V_3(R) = 1$ $\begin{cases} zie tabel \\ 4.5 en 4.6 \end{cases}$

a = Toets van	0.1	0.2	0.3	0.4	0.5	0.7	0.9
Kruskal-Wallis	0.065	0.121	.0.221	0.357	0.538	0.900	0.999
Mood-Brown	0.059	0.079	0.119	0.184	0.257	0.354	0.352
Steel	0.076	0.102	0.171	0.286	0.453	0.831	0.996
Terpstra	0.052	0.069	0.110	0.170	0.252	0.449	0.603

<u>Tabel 4.1.</u> Onderscheidingsvermogens als $k = n_i = 5$, F(x) uniform op [0,1] verdeeld is onder alternatief H₁.

<u>Tabel 4.2</u>. Onderscheidingsvermogens als $k = n_i = 5$, $F(x) \sim N(0,1)$ onder alternatief H_1 .

a = Toets van	0.1	0.3	0.5	1.0	1.5	2.0
Kruskal-Wallis	0.057	0.065	0.086	0.226	0.489	0.756
Mood-Brown	0.049	0.061	0.075	0.151	0.235	0.298
Steel	0.064	0.077	0.097	0.224	0.451	0.679
Terpstra	0.052	0.054	0.070	0.129	0.244	0.369

<u>Tabel 4.3</u>. Onderscheidingsvermogens als $k = n_i = 5$, F(x) is uniform verdeeld op [0,1], onder H₂.

a = Toets van	0.1	0.2	0.3	0.4	0.5	0.7	0.9
Kruskal-Wallis	0.074	0.161	0.337	0.593	0.822	0.994	1.000
Mood-Brown	0.061	0.098	0.182	0.319	0.528	0.923	0.999
Steel	0.069	0.117	0.210	0.350	0.529	0.881	0.998
Terpstra	0.057	0.084	0.148	0.248	0.385	0.691	0.851

<u>Tabel 4.4</u>. Onderscheidingsvermogens als $k = n_i = 5$, $F(x) \sim N(0,1)$ onder H_2 .

a = Toets van	0.1	0.3	0.5	1.0	1.5	2.0
Kruskal-Wallis	0.051	0.073	0.121	0.361	0.741	0.949
Mood-Brown	0.056	0.062	0.100	0.272	0.559	0.835
Steel	0.061	0.093	0.114	0.297	0.558	0.811
Terpstra	0.046	0.056	0.074	0.179	0.382	0.582

Tabel 4.5. Onderscheidingsvermogens als $k = n_i = 5$, F(x) is uniform verdeeld op [0,1], onder H₃.

a = Toets van	0.1	0.2	0.3	0.4	0.5	0.7	0.9
Kruskal-Wallis	0.097	0.254	0.531	0.831	0.979	1.000	1.000
Mood-Brown	0.068	0.131	0.285	0.543	0.812	0.990	1.000
Steel	0.085	0.180	0.397	0.745	1.000	1.000	1.000
Terpstra	0.061	0.114	0.243	0.476	0.751	0.994	1.000

Tabel 4.6. Onderscheidingsvermogens als $k = n_1 = 5$, $F(x) \sim N(0,1)$, onder H_3 .

a = Toets van	0.1	0.3	0.5	1.0	1.5	2.0
Kruskal-Wallis	0.055	0.079	0.161	0.571	0.906	0.994
Mood-Brown	0.054	0.078	0.124	0.358	0.645	0.849
Steel	0.065	0.091	0.166	0.474	0.820	0.965
Terpstra	0.055	0.064	0.096	0.299	0.693	0.937

Voorlopige conclusies:

- Onder H₁: Voor het verwerpen van H₀ is Kruskal-Wallis het meest onderscheidend. Steel is goede tweede. (Dat het O.V. van Steel voor lage waarden van a iets groter is dan dat van Kruskal-Wallis wijten we aan de grotere onbetrouwbaarheid van Steel.) Dat Mood-Brown slecht is hadden we al aangetoond. Hetzelfde lijkt het geval te zijn bij Terpstra: we hebben dit echter niet verder onderzocht.
- Onder H₂: Ook hier is Kruskal-Wallis veruit de beste toets. Steel en Mood-Brown ontlopen elkaar niet veel, maar wederom lijkt de steekproefgrootte zo klein dat Terpstra geen goede resultaten kan behalen.
- Onder H₃: Kruskal-Wallis geeft weer de beste resultaten te zien, gevolgd door Steel. Mood-Brown en Terpstra zijn duidelijk slechter, maar ontlopen elkaar niet veel. Voor kleine verschuivingen is Mood-Brown iets beter, voor grotere Terpstra.

4.3. Betrouwbaarheidsintervallen voor het O.V.

Om een indruk te krijgen van de betrouwbaarheid van onze schatting van het O.V. geven we tot slot van dit hoofdstuk betrouwbaarheidsintervallen voor het O.V. We hebben gekozen dit te doen voor tabel 4.3. Voor de toetsen van Kruskal-Wallis, Steel en Terpstra geldt, dat we als schatting voor het O.V. gebruiken: $\widehat{O.V.} = \frac{1}{A} \{ \neq (X \ge k_{\alpha}) \}$, waarbij X de toetsingsgrootheid, k_{α} de kritieke waarde bij onbetrouwbaarheid α en A het totale aantal simulaties is, hier: A = 5000. Nu is $\widehat{O.V.}$ een binomiaal verdeelde grootheid met parameters O.V. en 5000. We kunnen deze verdeling benaderen door een normale verdeling, nl. door N(O.V., $\frac{O.V.(1 - O.V.)}{5000}$). Het 95% betrouwbaarheidsinterval voor het O.V. wordt dan:

$$\widehat{0.V.} - 1.96\sqrt{\frac{\widehat{0.V.(1 - 0.V.)}}{5000}} \le 0.V. \le \widehat{0.V.} + 1.96\sqrt{\frac{\widehat{0.V.(1 - 0.V.)}}{5000}}$$

Voor de toets van Mood-Brown gebruiken we als schatting: $\widehat{0.V} = \frac{1}{A} \{wn_1 + n_2\}$ met $n_1 = #$ (M = 8.616) en $n_2 = #$ (M ≥ 10.154).

 $\frac{\underline{n}_{1}}{5000} \text{ en } \frac{\underline{n}_{2}}{5000} \text{ zijn dan binomiaal verdeelde grootheden met parameters 5000 en resp. } p_{1} = P(\underline{M} = 8.616; \text{ alternatief } \underline{H}_{a}) \text{ en } p_{2} = P(\underline{M} \ge 10.154; \text{ alternatief } \underline{H}_{a}) \text{ (H}_{a} = \underline{H}_{1}, \underline{H}_{2} \text{ of } \underline{H}_{3}). \text{ We benaderen deze verdelingen door respectievelijk} N(p_{1}, \frac{p_{1}(1-p_{1})}{5000}) \text{ en } N(p_{2}, \frac{p_{2}(1-p_{2})}{5000}). \quad \underbrace{O.V.}_{O.V.} \text{ is dan de som van 2 onafhankelij-ke, normaal verdeelde grootheden en is dus weer normaal verdeeld en wel:}$

$$\underline{0.v.} \sim N(wp_1 + p_2, \frac{1}{5000} [w^2p_1(1-p_1) + p_2(1-p_2)])$$

en het 95% betrouwbaarheidsinterval voor het 0.V. wordt dan:

$$\frac{wn_1 + n_2}{5000} - \frac{1.96}{5000} \sqrt{w^2 n_1 (1 - \frac{n_1}{5000}) + n_2 (1 - \frac{n_2}{5000})} \le 0.V. \le$$
$$\le \frac{wn_1 + n_2}{5000} + \frac{1.96}{5000} \sqrt{w^2 n_1 (1 - \frac{n_1}{5000}) + n_2 (1 - \frac{n_2}{5000})} .$$

De 95% betrouwbaarheidsintervallen voor het onderscheidingsvermogen zijn in alle voorkomende gevallen van tabel 4.3 berekend en de resultaten staan vermeld in tabel 4.7.

Toets a van	Kruskal Wallis	Mood-Brown	Steel	Terpstra
0.1	[0.067,0.081]	[0.055,0.067]	[0.062,0.076]	[0.051,0.063]
0.2	[0.051,0.171]	[0.090,0.106]	[0.108,0.126]	[0.076,0.092]
0.3	[0.324,0.350]	[0.172,0.192]	[0.199,0.221]	[0.138,0.158]
0.4	[0.579,0.607]	[0.306,0.332]	[0.337,0.363]	[0.236,0.260]
0.5	[0.811,0.833]	[0.514,0.542]	[0.515,0.543]	[0.372,0.398]
0.7	[0.992,0.996]	[0.916,0.931]	[0.872,0.890]	[0.678,0.704]
0.9	-	[0.9986,0.9994]	[0.997,0.999]	[0.841,0.861]

V. Over simultane uitspraken.

5.1. Inleiding.

Indien we nogmaals de resultaten van hoofdstuk IV bekijken (zie tabellen 4.1 t/m 4.6), zien we dat alleen het O.V. van de toetsen van Kruskal-Wallis en Steel naar één nadert voor ieder der alternatieven H₁, H₂ en H₃, indien a groot wordt. Beide toetsen zijn dus voor grote verschuivingen goed onder-scheidend wat het verwerpen van H₀ betreft. In dit hoofdstuk zullen we nu deze twee toetsen verdergaand vergelijken.

In 5.2 zullen we voor de toets van Kruskal-Wallis (zie 2.2) onderzoeken of we - indien H_0 wordt verworpen - iets kunnen zeggen over welke kontrasten significant worden. (Onder een kontrast verstaan we een uitdrukking van de vorm $|\sum_{i=1}^{k} \beta_i \overline{R_i}| \mod \sum_{i=1}^{k} \beta_i = 0.$) Verder zullen we voor het geval dat "a $\rightarrow \infty$ " en $\forall_i n_i = n$, minimale steekproefgroottes bepalen, waarvoor de eerder gegeven kontrasten significant kunnen worden.

In 5.3 zullen we voor de toets van Steel (zie 2.4) onderzoeken - indien H_0 wordt verworpen - welke van de grootheden $r_{i,j}^*$ significant worden onder H_1 , H_2 en H_3 .

In 5.4 tenslotte zullen we de speciale uitschietertoets van Doornbos-Prins [14] vergelijken met de toetsen van Kruskal-Wallis en Steel, d.m.v. het vergelijken van het 0.V. van de toetsen onder H_1 , in het geval k = 5, $n_i = 5$.

5.2. Toets van Kruskal-Wallis (zie 2.2).

We gaan er vanuit dat H_0 wordt verworpen met onbetrouwbaarheid α als $H > h_{\alpha}$. Miller [8] toont dan aan dat de $\binom{k}{2}$ ongelijkheden:

(5.1)
$$|\underline{\tilde{R}}_{i} - \underline{\tilde{R}}_{j}| \leq \sqrt{\frac{h_{\alpha}N(N+1)}{12}} (\frac{1}{n_{i}} + \frac{1}{n_{j}})$$

onder H_O simultaan gelden met kans > (1-α). Hij bewijst dit m.b.v. het volgende lemma, dat wij ook zullen gebruiken:

Lemma. Indien c > 0, geldt $|\sum_{i=1}^{k} a_i y_i| \le c(\sum_{i=1}^{k} a_i^2)^{\frac{1}{2}}$ voor alle (a_1, \dots, a_k) dan en slechts dan als $\sum_{i=1}^{k} y_i^2 \le c^2$.

5.2.1. Kontrasten, behorend bij alternatief H₁ (zie (3.1)).

Behalve de kontrasten (5.1) die we op significantie gaan onderzoeken, kunnen we nog een kontrast opstellen, waarin het verschil tussen de groep van de eerste (k-1) verdelingen en de k-de verdeling tot uiting komt, nl. het kontrast $|\overline{\mathbb{R}}_k - \frac{1}{(k-1)} \sum_{i=1}^{k-1} \overline{\mathbb{R}}_i|$. Op het eerste gezicht lijkt het wel wat geflatteerd om ook dit kontrast op significantie te onderzoeken, omdat we immers weten dat we de k-de verdeling (naar rechts) hebben verschoven. Het grote voordeel echter van simultane uitspraken bij Kruskal-Wallis is, dat ze alle tegelijk gelden met kans > $(1 - \alpha)$ (we zullen dit nog bewijzen) en dat houdt in dat we, nadat H₀ is verworpen, elk willekeurig kontrast nog op significantie kunnen onderzoeken, <u>binnen</u> onbetrouwbaarheid α . Praktisch houdt dat dan in, dat, als we aan de hand van de waarnemingen vermoeden dat de k-de verdeling is verschoven (en bij grote a kan dat gebeuren), we alsnog het betreffende kontrast op significantie kunnen onderzoeken, zonder de onbetrouwbaarheid α te overschrijden. We zullen nu voor het gegeven kontrast een ongelijkheid onder H₀ afleiden.

Onder H_O geldt:

(5.2)
$$|\bar{\underline{R}}_{k} - \frac{1}{(k-1)} \sum_{i=1}^{k-1} \bar{\underline{R}}_{i}| \leq \sqrt{\frac{h_{\alpha}N(N+1)}{12}} \{\frac{1}{(k-1)^{2}} \sum_{i=1}^{k-1} \frac{1}{n_{i}} + \frac{1}{n_{k}}\}$$

simultaan met (5.1), met kans > $(1 - \alpha)$. Bewijs. Onder H₀ geldt <u>H</u> \leq h_a met kans > $(1 - \alpha)$, ofwel

$$\frac{12}{N(N+1)} \sum_{i=1}^{k} (\overline{R}_{i} - \overline{R})^{2} \le h_{\alpha} \quad (\text{zie } 2.2)$$
$$\implies \sum_{i=1}^{k} (\overline{R}_{i} - \overline{R})^{2} \le \frac{h_{\alpha}N(N+1)}{12} .$$

Neem nu in het lemma van Miller: $\underline{y}_i = \sqrt{n_i}(\overline{\underline{R}}_i - \overline{\underline{R}})$ en $c^2 = \frac{h_\alpha N(N+1)}{12}$, dan volgt $\sum_{i=1}^k \underline{y}_i^2 \le c^2$ en met $\underline{a}_i = \frac{-1}{(k-1)\sqrt{n_i}}$, $i = 1, \dots, k-1$; $\underline{a}_k = \frac{1}{\sqrt{n_k}}$, volgt het gestelde.

Omdat $\underline{H} \leq h_{\alpha}$ met kans > $(1 - \alpha)$ optrad en we slechts een beperkte keuze gedaan hebben uit alle mogelijke (a_1, \dots, a_k) (nl. die combinaties die (5.1) en (5.2) opleverden), is de kans op (5.1) en (5.2) ook > $(1 - \alpha)$.

5.2.2. Kontrasten bij alternatief H_2 (zie (3.1)).

Van alle kontrasten (5.1) zijn hier van belang de kontrasten $|\overline{\underline{R}}_i - \overline{\underline{R}}_{k-1}|$, $|\overline{\underline{R}}_i - \overline{\underline{R}}_k|$, i = 1,...,k-2. Ook nu kunnen we weer speciale kontrasten opstellen en wel kontrasten die resp. het verschil aangeven tussen:

- de groep van de eerste (k-2) verdelingen en de (k-1)-de verdeling;
- de groep van de eerste (k-2) verdelingen en de k-de verdeling, en
- de groep van de eerste (k-2) verdelingen en de groep van de laatste 2 verdelingen.

We geven nu die kontrasten en de ongelijkheden waar ze (onder H_0) aan voldoen.

Onder H_O gelden de volgende ongelijkheden

(5.3)
$$\left| \overline{\underline{R}}_{k-1} - \frac{1}{k-2} \sum_{i=1}^{k-2} \overline{\underline{R}}_{i} \right| \leq \left\{ \frac{h_{\alpha} N(N+1)}{12} \left[\frac{1}{(k-2)^{2}} \sum_{i=1}^{k-2} \frac{1}{n_{i}} + \frac{1}{n_{k-1}} \right] \right\}^{\frac{1}{2}},$$

(5.4)
$$\left| \overline{\underline{R}}_{k} - \frac{1}{k-2} \sum_{i=1}^{k-2} \overline{\underline{R}}_{i} \right| \leq \left\{ \frac{h_{\alpha}^{N(N+1)}}{12} \left[\frac{1}{(k-2)^{2}} \sum_{i=1}^{k-2} \frac{1}{n_{i}} + \frac{1}{n_{k}} \right] \right\}^{\frac{1}{2}},$$

(5.5)
$$\left|\frac{1}{2}\left(\overline{R}_{k-1} + \overline{R}_{k}\right) - \frac{1}{k-2}\sum_{i=1}^{k-2}\overline{R}_{i}\right| \leq \left\{\frac{h_{\alpha}N(N+1)}{12}\left[\frac{1}{(k-2)^{2}}\sum_{i=1}^{k-2}\frac{1}{n_{i}} + \frac{1}{4}\left(\frac{1}{n_{k-1}} + \frac{1}{n_{k}}\right)\right]\right\}^{\frac{1}{2}}$$

simultaan met (5.1) (en (5.2)) en met kans > $(1 - \alpha)$. <u>Bewijs</u>. Analoog aan het bewijs voor (5.2), met y_i en c^2 hetzelfde en: voor (5.3): $a_i = \frac{-1}{(k-2)\sqrt{n_i}}$, $i = 1, \dots, k-2$; $a_{k-1} = \frac{1}{\sqrt{n_{k-1}}}$; $a_k = 0$;

voor (5.4):
$$a_i = \frac{-1}{(k-2)\sqrt{n_i}}$$
, $i = 1, \dots, k-2$; $a_{k-1} = 0$; $a_k = \frac{1}{\sqrt{n_k}}$;

voor (5.5):
$$a_i = \frac{-1}{(k-2)\sqrt{n_i}}$$
, $i = 1, \dots, k-2$; $a_{k-1} = \frac{1}{2\sqrt{n_{k-1}}}$; $a_k = \frac{1}{2\sqrt{n_k}}$.

5.2.3. Kontrasten bij alternatief H_3 (zie (3.1)).

Van de kontrasten (5.1) onderzoeken we nu de significantie van $|\overline{R}_i - \overline{R}_1|$, $|\overline{R}_k - \overline{R}_i|$, i = 2, ..., k-1 en van $|\overline{R}_1 - \overline{R}_k|$. Het kontrast (5.4) onderzoeken we ook, plus nog de hieronder te definiëren kontrasten (5.6) en (5.7). Onder H₀ gelden de volgende ongelijkheden:

(5.6)
$$\left| \overline{R}_{1} - \frac{1}{k-2} \sum_{i=2}^{k-1} \overline{R}_{i} \right| \leq \left\{ \frac{h_{\alpha} N(N+1)}{12} \left[\frac{1}{(k-2)^{2}} \sum_{i=2}^{k-1} \frac{1}{n_{i}} + \frac{1}{n_{1}} \right] \right\}^{\frac{1}{2}}$$

(5.7)
$$\left|\frac{1}{2}\left(\overline{\underline{R}}_{1} + \overline{\underline{R}}_{k}\right) - \frac{1}{k-2}\sum_{i=2}^{k-1}\overline{\underline{R}}_{i}\right| \leq$$

$$\leq \left\{ \frac{\prod_{\alpha \in \mathcal{N}}^{n} (n+1)}{12} \left[\frac{1}{(k-2)^{2}} \sum_{i=2}^{k-1} \frac{1}{n_{i}} + \frac{1}{4} \left(\frac{1}{n_{1}} + \frac{1}{n_{k}} \right) \right] \right\}^{\frac{1}{2}}$$

simultaan met (5.1) t/m (5.5) en met kans > $(1 - \alpha)$. <u>Bewijs</u>. Analoog aan het bewijs voor (5.2) met \underline{y}_i en c² hetzelfde, en: voor (5.6): $a_1 = \frac{1}{\sqrt{n_1}}$; $a_i = \frac{-1}{(k-2)\sqrt{n_i}}$, $i = 2, \dots, k-1$; $a_k = 0$;

voor (5.7):
$$a_1 = \frac{1}{2\sqrt{n_1}}$$
; $a_i = \frac{-1}{(k-2)\sqrt{n_i}}$, $i = 2, \dots, k-1$; $a_k = \frac{1}{2\sqrt{n_k}}$.

We hebben de beschreven kontrasten d.m.v. simulaties op significantie onderzocht in de volgende gevallen (k = 5, n_i = 5, i = 1,...,5; α = 0.051; h_{α} = 8.915 (zie 3.4)):

Onder
$$H_1$$
 en H_2 : F ~ uniform op [0,1]; a = 0.3, 0.4, 0.5, 0.7, 0.9;
F ~ N(0,1); a = 1.0, 1.5, 2.0;

Onder H_3 : F ~ uniform op [0,1]; a = 0.2, 0.3, 0.4, 0.5, 0.7; F ~ N(0,1); a = 0.5, 1.0, 1.5, 2.0.

Ieder simulatieblok bevatte 2000 simulaties. De resultaten staan vermeld in de tabellen 5.2.1 t/m 5.2.6. 5.2.4. Berekening van de minimale steekproefgroottes waarvoor de gegeven kontrasten significant kunnen worden, als "a $\rightarrow \infty$ " en \forall_i n_i = n.

We beschouwen voor de rest van deze paragraaf weer het geval van extreme verschuiving, dus "a $\rightarrow \infty$ ".

Voor het geval dat alle steekproeven van gelijke grootte zijn (waaronder het geval k = 5, $n_i = 5$), zeg n, kunnen we de minimale waarde van n berekenen, waarvoor de verschillende kontrasten significant kunnen worden.

5.2.4.a. Alternatief H₁.

<u>Kontrasten (5.1)</u>. We zouden graag zien dat alle (k-1) kontrasten $|\overline{R}_i - \overline{R}_k|$, i = 1, ..., k-1, significant worden. Welnu, onder H_1 en met " $a \rightarrow \infty$ " geldt, dat $\overline{R}_k = (k-1)n + \frac{1}{2}(n+1)$ en ook: $\overline{E}_1 = \frac{1}{2}[(k-1)n+1]$. Dan geldt: $|\overline{R}_k - \overline{E}_i| = \frac{1}{2}kn$ en een <u>nodige</u> voorwaarde opdat alle (k-1) kontrasten significant worden is dus:

$$\frac{1}{2}$$
kn > $\sqrt{\frac{1}{12}} h_{\alpha} kn(kn+1) \frac{2}{n}$ (zie (5.1)),

immers als $\exists_i \ \overline{\underline{R}}_i < \mathcal{E}_{\overline{\underline{R}}_i} \implies \exists_j \ \overline{\underline{R}}_j > \mathcal{E}_{\overline{\underline{R}}_i} \text{ omdat } \sum_{i=1}^{k-1} \overline{\underline{R}}_i = \text{konstant.}$ Indien we nu de nodige voorwaarde verder uitwerken, krijgen we:

$$\frac{1}{4} k^2 n^2 > \frac{1}{6} h_{\alpha} k (kn+1) \implies kn^2 - \frac{2}{3} h_{\alpha} kn - \frac{2}{3} h_{\alpha} > 0 \implies$$

(5.8)
$$n > \frac{1}{3} h_{\alpha} + \frac{1}{2} \sqrt{h_{\alpha} (\frac{4}{9} h_{\alpha} + \frac{8}{3k})}$$

In het geval k = 5, n = 5, $h_{\alpha} = 8.915$, krijgen we dan $n > 6.137 \implies n \ge 7$. Het is dus theoretisch niet mogelijk in dit geval vier significante kontrasten te vinden (zie tabel 5.2.1 en 5.2.2).

<u>Kontrast (5.2)</u>. Voor " $a \rightarrow \infty$ " geldt: $\overline{R}_k = (k-1)n + \frac{1}{2}(n+1)$ en $\frac{1}{(k-1)}\sum_{i=1}^{k-1} \overline{R}_i = \frac{1}{2}[(k-1)n+1]$. Nodige voorwaarde voor significantie:

$$\frac{1}{2}kn > \sqrt{\frac{1}{12} h_{\alpha}kn(kn+1) \left\{ \frac{1}{(k-1)n} + \frac{1}{n} \right\}} \Longrightarrow$$

(5.9)
$$n > \frac{1}{6} h_{\alpha}(\frac{k}{k-1}) + \frac{1}{2} \sqrt{h_{\alpha}(\frac{1}{9} h_{\alpha} \frac{k^2}{(k-1)^2} + \frac{4}{3(k-1)}}$$

Voor het geval k = 5, n = 5 is h_{α} = 8.915 en wordt de nodige voorwaarde n > 3.905 \Longrightarrow <u>n > 4</u>. Theoretisch kan dit kontrast dus significant worden (zie tabel 5.2.1 en 5.2.2).

5.2.4.b. Alternatief H₂.

Kontrasten (5.1). We willen graag dat de drie kontrasten $|\overline{R}_{i} - \overline{R}_{k-1}|$, $i = 1, \dots, k-2$ en de drie kontrasten $|\overline{R}_{i} - \overline{R}_{k}|$, $i = 1, \dots, k-2$, alle significant worden. Welnu, $\xi \overline{R}_{k-1} = \xi \overline{R}_{k} = (k-2)n + \frac{1}{2}(2n+1)$ en $\xi \overline{R}_{i} = \frac{1}{2}[(k-2)n+1]$, i = 1, 2, 3. Dus $\xi(\overline{R}_{k-1} - \overline{R}_{i}) = \xi(\overline{R}_{k} - \overline{R}_{i}) = \frac{1}{2}kn$. Nodige voorwaarde: $\frac{1}{2}kn > \sqrt{\frac{1}{12}h_{\alpha}kn(kn+1)\frac{2}{n}}$. Dit levert weer (5.8). In het geval k = 5, n = 5, $h_{\alpha} = 8.915$ levert dit weer $\underline{n \ge 7}$ (zie tabel 5.2.3 en 5.2.4).

Kontrast (5.3).
$$\mathcal{E}(\overline{\underline{R}}_{k-1}) = (k-2)n + \frac{1}{2}(2n+1); \frac{1}{(k-2)}\sum_{i=1}^{k-2} \overline{\underline{R}}_i = \frac{1}{2}[(k-2)n+1].$$

Nodige voorwaarde voor significantie van dit kontrast is dus

(5.10)
$$\frac{1}{2}kn > \sqrt{\frac{1}{12}} h_{\alpha}kn(kn+1) \frac{k-1}{k-2} \frac{1}{n} \Rightarrow$$
$$n > \frac{1}{6} h_{\alpha}(\frac{k-1}{k-2}) + \frac{1}{2}\sqrt{h_{\alpha}\{\frac{1}{9}h_{\alpha}(\frac{k-1}{k-2})^{2} + \frac{4}{3}\frac{(k-1)}{k(k-2)}\}}$$

Voor k = 5, n = 5, h_{α} = 8.915 levert dit n > 4.153 \Rightarrow <u>n ≥ 5</u>. Dit kontrast kan dus significant worden (zie tabel 5.2.3 en 5.2.4).

Kontrast (5.4). Levert exact dezelfde voorwaarde op als kontrast (5.3).

<u>Kontrast (5.5)</u>. Er geldt: $\frac{1}{2}(\overline{R}_{k-1} + \overline{R}_{k}) = (k-2)n + \frac{1}{2}(2n+1); \frac{1}{k-2}\sum_{i=1}^{k-2} \overline{\underline{R}}_{i} = \frac{1}{2}[(k-2)n+1]$. Nodige voorwaarde:

$$\frac{1}{2}kn > \sqrt{\frac{1}{12} h_{\alpha}kn(kn+1)} \frac{k}{(k-2)n} \Rightarrow$$

(5.11)
$$n > \frac{1}{12} h_{\alpha}(\frac{k}{k-2}) + \frac{1}{2} \sqrt{h_{\alpha} (\frac{1}{36} h_{\alpha}(\frac{k}{k-2})^{2} + \frac{2}{3(k-2)})}$$

Voor k = 5, n = 5, h_{α} = 8.915 levert dit n > 2.662 \Rightarrow <u>n ≥ 3</u>. Dit kontrast kan dus significant worden (zie tabel 5.2.3 en 5.2.4).

5.2.4.c. Alternatief H₃.

Kontrasten (5.1). We gaan weer kijken of we alle kontrasten $|\bar{R}_1 - \bar{R}_1|$ en $|\bar{R}_k - \bar{R}_1|$, i = 2,...,k-1, simultaan significant kunnen krijgen. Er geldt: $\bar{R}_1 = \frac{1}{2}(n+1)$, $\bar{R}_k = (k-1)n + \frac{1}{2}(n+1)$, $\xi \bar{R}_1 = \frac{1}{2}(kn+1)$, i = 2,...,k-1. En $\xi \bar{R}_1 - \bar{R}_1 = \bar{R}_k - \xi \bar{R}_1 = \frac{1}{2}(k-1)n$ zodat we als nodige voorwaarde krijgen:

$$\frac{1}{2}(k-1)n > \sqrt{\frac{1}{12}h_{\alpha}kn(kn+1)\frac{2}{n}} \Rightarrow$$

(5.12)
$$n > \frac{1}{3} h_{\alpha} \left(\frac{k}{k-1}\right)^2 + \frac{1}{2} \sqrt{h_{\alpha} \left(\frac{4}{9} h_{\alpha} \left(\frac{k}{k-1}\right)^4 + \frac{8}{3} \frac{k}{(k-1)^2}\right)^2}$$

In het geval k = n = 5, h_{α} = 8.915 wordt dat: n > 9.482 \Rightarrow <u>n > 10</u>.

Voor het speciale kontrast $\overline{R}_k - \overline{R}_l = (k-1)n$ geldt als voorwaarde (op analoge wijze afgeleid):

(5.13)
$$n > \frac{1}{12} h_{\alpha} \frac{k^2}{(k-1)^2} + \frac{1}{2} \sqrt{h_{\alpha} \{\frac{1}{36} h_{\alpha} (\frac{k}{k-1})^4 + \frac{2}{3} \frac{k}{(k-1)^2}\}}.$$

Voor het geval k = n = 5, h_{α} = 8.915 wordt dat n > 2.507 \Rightarrow <u>n ≥ 3</u> (zie tabel 5.2.5 en 5.2.6).

Kontrast (5.4).
$$\overline{R}_{k} = (k-1)n + \frac{1}{2}(n+1)$$
 en $\frac{1}{(k-2)}\sum_{2}^{k-2} \overline{R}_{i} = \frac{1}{2}(kn+1)$, zodat:

$$\frac{1}{2}(k-1)n > \sqrt{\frac{1}{12} h_{\alpha} N(N+1) \left\{ \frac{k-1}{(k-2)n} \right\}} =$$

(5.14)
$$n > \frac{1}{6} h_{\alpha} \frac{k^2}{(k-1)(k-2)} + \frac{1}{2} \sqrt{h_{\alpha} \{\frac{1}{9} h_{\alpha} \frac{k^4}{(k-1)^2(k-2)^2} + \frac{4k}{3(k-1)(k-2)}\}}$$

Voor k = n = 5, h_a = 8.915 wordt dit: n > 6.385 \Rightarrow <u>n > 7</u> (zie tabel 5.1.5 en 5.1.6).

Kontrast (5.6). Dit kontrast levert exact hetzelfde resultaat als voor kontrast (5.4).

<u>Kontrast (5.7)</u>. $\frac{1}{2}(\bar{R}_1 + \bar{R}_k) = \frac{1}{2}(k-1)n + \frac{1}{2}(n+1); \frac{1}{k-2}\sum_{j=1}^{k-2} \bar{R}_i = \frac{1}{2}(kn+1).$ Dus: $\frac{1}{2}(\bar{R}_1 + \bar{R}_k) - \frac{1}{k-2}\sum_{j=1}^{k-2} \bar{R}_i = 0.$ Nodige voorwaarde:

(5.15)
$$0 > \sqrt{\frac{h_{\alpha}N(N+1)}{12}} \left[\frac{1}{(k-2)^2} \sum_{i=2}^{k-1} \frac{1}{n_i} + \frac{1}{4}\left(\frac{1}{n_1} + \frac{1}{n_k}\right)\right].$$

Voor geen enkele n (zie tabel 5.2.5 en 5.2.6).

<u>Tabel 5.2.1</u>. Significante kontrasten (s.k.) van de toets van Kruskal-Wallis bij alternatief H_1 ; $k = n_1 = 5$; $F(x) \sim$ uniform op [0,1]; aantal simulaties = 2000.

			а	0.3	0.4	0.5	0.7	0.9
₩ (Verwerping	g van H _O)			444	742	1114	1827	1999
样 (Géén s.k.	$ \bar{R}_i - \bar{R}_5 $,	i = 1,	,4)	293	410	559	603	325
₩ (Eén "	11	**)	145	301	492	1026	1245
₩ (Twee "	**	11)	6	31	63	198	422
₩ (Drie "	11	**)	0	0	0	0	7
₩ (Vier "	11	11)	0	0	0	0	0
\neq $(\bar{R}_5 - \frac{1}{4}\sum_{1}^{4})$	R _i ∣ is sig	nificant)	83	266 -	534	1494	1996

	a	1.0	1.5	2.0
₩ (Verwerping van H _O)		472	956	1472
# (Géén s.k. $ \bar{R}_i - \bar{R}_5 $, i = 1,.	,4)	293	476	594
🚧 (Eén '' '' '')	168	433	747
₩ (Twee " ")	11	47	130
# (Drie " " ")	0	0	1
# (Vier " " ")	0	0	0
$\neq (\bar{R}_5 - \frac{1}{4} \sum_{1}^{4} \bar{R}_i \text{ is significa})$	nt)	110	459	969

<u>Tabel 5.2.2</u>. Significante kontrasten (s.k.) van de toets van Kruskal-Wallis bij alternatief H_1 ; k = n_i = 5; F(x) ~ N(0,1); aantal simulaties = 2000.

<u>Tabel 5.2.3</u>. Significante kontrasten (s.k.) van de toets van Kruskal-Wallis bij alternatief H_2 ; k = n_i = 5; F(x) ~ uniform op [0,1]; aantal simulaties = 2000.

								a	0.3	0.4	0.5	0.7	0.9
#	(Verwe	rpir	ng van H	H ₀)					663	1227	1630	1985	2000
Ħ	(Géén :	s.k.	$ \overline{R}_{4} - \overline{R}_{1} $	of	$\overline{R}_5 - \overline{R}$; ,	i=1,2	,3)	462	776	945	748	324
#	(Eén	11		- 11	11	-	11)	179	383	536	744	688
#	(Twee	11	"	**	"		11)	22	66	145	474	917
#	(Drie	н	*1	"	н		")	0	2	4	17	58
#	(Vier	11		"	"		**)	0	0	0	2	13
++	(Vijf	"	**	"	н		11)	0	0	0	0	0
//	(R ₄ -	$\frac{1}{3}\sum_{1}^{3}$	R _i ∣is	s sign	ifica	nt)			80	233	412	1067	1666
++	(R 5 -	$\frac{1}{3}\sum_{1}^{3}$	R _i "		11)			76	232	462	1103	1668
++	(¹ / ₂ (R ₄	+ R ₅	$-\frac{1}{3}\sum_{1}^{3}$, R _i	is si	gnif	icant)		255	779	1322	1953	2000

- 5.9 -

·		-						a	1.0	1.5	2.0
#	(Verwe	rpin	g van H	۱ ₀)					722	1467	1899
#	(Géén s	.k.	$ \bar{R}_4 - \bar{R}_i $	of	$\overline{R}_5 - \overline{R}_1$, i=	= 1,2,	,3)	476	911	931
#	(Eén	11		11	11	-	11)	218	435	630
\neq	(Twee	11	**	11	11		11)	27	119	322
#	(Drie	11	11	11	11		11)	1	2	15
#	(Vier	"	11	"	11		11)	0	0	1
#	(Vijf	11	**	11	**		11)	0	0	0
#	(Ē ₄ -	$\frac{1}{3}\sum_{1}^{3}$	$\bar{R}_i $ is	sign	nificar	it)			102	331	729
#	(Ē ₅ -	$\frac{1}{3} \sum_{1}^{3}$	₽ _i "		11)			92	329	769
#	(<u>1</u> (R ₄	+ R ₅	$-\frac{1}{3}\sum_{1}^{3}$	$\bar{\mathbf{R}}_{i} $	is sig	nific	ant)		316	1076	1730

<u>Tabel 5.2.4</u>. Significante kontrasten (s.k.) van de toets van Kruskal-Wallis bij alternatief H_2 ; k = n_i = 5; F(x) ~ N(0,1); aantal simulaties = 2000.

<u>Tabel 5.2.5</u>. Significante kontrasten (s.k.) van de toets van Kruskal-Wallis bij alternatief H_3 ; k = n_1 = 5; F(x) ~ uniform op [0,1]; aantal simulaties = 2000.

								а	,	0.2	0.3	0.4	0.5	0.7
#	(Verwe	rpin	g van H	H ₀)	_					491	1022	1658	1956	2000
#	(Gếến s	s.k.	$ \bar{\mathbf{R}}_1 - \bar{\mathbf{R}}_i $	of	$\bar{R}_5 - \bar{R}_i$,i=2,3,4	4 of	$\overline{R}_1 - \overline{R}_5$)	300	460	383	126	0
#	(Eén	11	H	**	11	11	11)	179	522	1187	1686	1881
#	(Twee	"	11	11	11	11	"	11)	12	40	87	142	118
#	(Drie	f1	11	**	f1	11	н	11)	0	0	1	2	1
#	(Vier	11	11	"	11	**	11	11)	0	0	0	0	0
#	(R ₁ -	$\frac{1}{3}\sum_{2}^{4}$	R₁ is	s sig	nifica	nt)				10	17	23	9	0
#	(R ₅ -	$\frac{1}{3}\sum_{2}^{4}$	₹ _i "		11)				8	13	27	16	0
#	(<u>1</u> (R ₁	+ R ₅	$-\frac{1}{3}\sum_{2}^{4}$	Ē, R _i	is si	gnifica	nt)			1	1	0	0	0

								а		0.5	1.0	1.5	2.0
#	(Verwe	rpin,	g van H	ι ⁰)			-			322	1123	1827	1995
#	(Géén s	.k.	R ₁ -R _i	of	$\bar{R}_5 - \bar{R}_i$,i=2,3,4	of	R ₁ -R	5)	208	477	209	26
Ħ	(Eén	11	11	**	11	**	11	11)	106	594	1476	1802
Ħ	(Twee	11	**	11	11	11	н	11)	8	52	142	163
Ħ	(Drie	11	11	11	11	"	11	11)	0	0	0	4
#	(Vier	11	11	11	11		**	11)	0	0	0	0
#	(R ₁ -	$\frac{1}{3}\sum_{2}^{4}$	₽ _i is	s sig	nificar	nt)				8	16	17	4
#	(R ₅ -	$\frac{1}{3}\sum_{2}^{4}$	R _i "		")				9	23	9	16
#	(<u>1</u> (R ₁	+ R ₅	$-\sum_{2}^{4}$	₹i¦is	s signif	ficant)				2	0	0	0

<u>Tabel 5.2.6</u>. Significante kontrasten (s.k.) van de toets van Kruskal-Wallis bij alternatief H_3 ; k = n; = 5; F(x) ~ N(0,1); aantal simulaties = 2000.

We geven wat opmerkingen over het verkregen cijfermateriaal.

a) Alternatief H₁ (tabellen 5.1.1 en 5.1.2).

Met behulp van kontrasten $|\bar{R}_i - \bar{R}_5|$ zijn we niet goed in staat om $F_5(x)$ als uitschieter aan te wijzen (zie ook (5.8)). Opvallend is het grote aantal verwerpingen van H_0 zonder dat er een significant kontrast $|\bar{R}_i - \bar{R}_5|$ optreedt, zelfs bij grote verschuivingen. Het kontrast $|\bar{R}_5 - \frac{1}{4} \int_1^4 \bar{R}_i|$ komt, vooral bij grotere verschuivingen, goed naar voren.

b) Alternatief H₂ (tabellen 5.1.3 en 5.1.4). Ook hier geven de kontrasten $|\bar{R}_i - \bar{R}_4|$ en $|\bar{R}_i - \bar{R}_5|$ niet veel inzicht in de verschuivingen van \bar{R}_4 en \bar{R}_5 . De kontrasten $|\bar{R}_5 - \frac{1}{3}\sum_{1}^{3}\bar{R}_i|$ komen bij grotere verschuivingen redelijk naar voren, en dat geldt in hoge mate voor het kontrast. $|\frac{1}{2}(\bar{R}_4 + \bar{R}_5) - \frac{1}{3}\sum_{1}^{3}\bar{R}_i|$.

c) Alternatief H₃ (tabellen 5.1.5 en 5.1.6). Het hoge aantal keren met één significant verschil wordt in hoofdzaak veroorzaakt door het kontrast $|\bar{R}_1 - \bar{R}_5|$ (zie ook (5.13)).

5.3. Toets van Steel.

Indien H₀ wordt verworpen als $R \ge r_{\alpha}$, dan verklaart Steels toets al die $\underline{r}_{i,i}^{*}$ significant (zie 2.4) waarvoor geldt dat $\underline{r}_{i,j}^* \ge r_{\alpha}$. Onder H₁ zijn we dan geinteresseerd in de $\underline{r}_{i,5}^*$ (i = 1,...,4). Onder H₂ onderzoeken we de significantie van $\underline{r}_{i,4}^{*}$ en $\underline{r}_{i,5}^{*}$ (i = 1,2,3). (Tijdens het simulatieproces wordt ook $\underline{r}_{4,5}^{\star}$ onderzocht.) Onder H₃ tenslotte bekijken we de $\underline{r}_{1,i}^{*}$, $\underline{r}_{5,i}^{*}$ (i = 2,3,4) en $\underline{r}_{1,5}^{*}$. Bovenstaande $\underline{r}_{i,1}^{\star}$'s zijn door middel van simulaties op significantie onderzocht in de volgende gevallen: k = 5, $n_i = 5$, $\alpha = 0.063$. Onder H_1 en H_2 : F ~ uniform op [0,1]; a = 0.3, 0.4, 0.5, 0.7, 0.9 ; a = 1.0, 1.5, 2.0. $F \sim N(0,1)$ Onder H₂ : F ~ uniform op [0,1]; a = 0.2, 0.3, 0.4, 0.5, 0.7; ; a = 0.5, 1.0, 1.5, 2.0. $F \sim N(0.1)$ Ieder simulatieblok bevatte 2000 simulaties. $r_{\alpha} = 40$ (zie 3.4). Resultaten worden gegeven in de volgende tabellen.

<u>Tabel 5.3.1</u>. Significante $r_{i,j}^{\star}$'s van de toets van Steel onder alternatief H_1 ; k = 5, $n_i = 5$; $F(x) \sim uniform op [0,1]$; aantal simulaties = 2000.

					a	0.3	0.4	0.5	0.7	0.9
#	(Verwer	ping van 1	н _о)			335	553	911	1655	1996
#	(Géén s:	ignifican	te r [*] _{1.5} ,	i = 1,	,4)	44	24	9	0	0
#	(Eén	11	11	11)	196	356	525	498	53
#	(Twee	11	**	11)	59	95	198	419	139
#	(Drie	11	**	11)	25	44	74	251	276
#	(Vier	11	11	11)	11	34	105	487	1528

_				a	1.0	1.5	2.0
₩ (Verwerp	ing van	н _о)			434	867	1385
₩ (Géén si	gnificar	ite r [*] _{1.5} , :	i = 1,	,4)	35	20	9
Ħ (Eén	**	11	11)	256	428	428
样 (Twee	11	**	11)	100	252	417
₩ (Drie	**	11	11)	32	122	333
₩ (Vier	11	11	11)	11	45	198

<u>Tabel 5.3.2</u>. Significante $r_{i,j}^*$'s van de toets van Steel bij alternatief H_1 ; k = 5, $n_i = 5$; $F(x) \sim N(0,1)$; aantal simulaties = 2000.

<u>Tabel 5.3.3</u>. Significante $r_{i,j}^{\star}$'s van de toets van Steel bij alternatief H_2 ; k = 5, $n_i = 5$; F(x) ~ uniform op [0,1]; aantal simulaties = 2000.

								a		0.3	0.4	0.5	0.7	0.9
#	(Verwe	rping van H ₍)							448	699	1051	1751	1996
#	(Géén	significante	r* 1.	4 of	r.,,	i=1,2,3	8 of	r ₄ .	₅)	21	5	1	0	0
#	(Eén	11	11	11	11	11	**	11)	243	293	295	128	3
#	(Twee	11	11	"	11	11	n	")	126	245	404	340	32
#	(Drie	11	11	11	"	п	11	11)	46	100	207	430	44
#	(Vier	**	**	11	f1	11	11	**)	10	47	110	441	217
#	(Vijf	"	11	11	11		11	11)	2	9	21	230	433
#	(Zes	11	11	"	f1	11	89	**)	0	0	13	182	1252
#	(Zeven	**	11	"	"	11	11	11)	0	0	0	0	15

~								a		1.0	1.5	2.0
Ħ	(Verwe	erping van H _O)							614	1113	1608
#	(Géén	significante	r* i.4	of	r [*] i.5'	i = 1,2,3	of	r [*] 4.	₅)	18	2	2
#	(Eén	11	11	11	11	11	**	11)	332	405	325
Ħ	(Twee	tt	**	"	11	11	11	11)	181	395	433
#	(Drie	**	11	11	17	11	**	*1)	66	168	382
Ħ	(Vier	8 8	11	11	11	11	"	**)	13	104	278
#	(Vijf	12	11	11	"	11	**	11)	4	27	98
#	(Zes	91	11	11	11	11	"	11)	0	12	90
#	(Zeven	L "	11	11	п	11	**	11)	0	0	0

Tabel 5.3.4. Significante $r_{i,j}^*$'s van de toets van Steel bij alternatief H_2 ; k = 5, $n_i = 5$; $F(x) \sim N(0,1)$; aantal simulaties = 2000.

<u>Tabel 5.3.5</u>. Significante $r_{i,j}^{\star}$'s van de toets van Steel bij alternatief H_3 ; k = 5, $n_i = 5$; F(x) ~ uniform op [0,1]; aantal simulaties = 2000.

				A (0 A 33				a		0.2	0.3	0.4	0.5	0.7
#	(Verwerpin	ig van H _O)				_			368	793	1508	2000	2000
#	(Géén sign	ificante	r [*] 1.i	of	r [*] i.5'	i=2,3,4	of	r_{1}^{*} .	₅)	19	11	1	0	0
#	(Eén	11	11	11	11	11	51	")	244	445	786	752	102
#	(Twee	11	11	11	11	FT.	11)	73	222	423	629	268
#	(Drie	11	*1	11	11	11	11	11)	26	68	174	282	378
#	(Vier	11	"	"	11	11	11	11)	6	46	102	240	500
#	(Vijf	19	11	*1	11	11	п	11)	0	0	13	68	401
#	(Zes	11	11	11	"	11	11	**)	0	1	5	20	210
#	(Zeven	11	11	tt	"	"	11	f†)	0	0	4	9	141

								a		0.5	1.0	1.5	2.0
#	(Verwerpin	ig van H	_n)							328	959	1630	1943
#	(Géén sign	ificant	e r*	of	r*,	i=2,3,4	of	r_1^*	₅)	25	.8	2	0
#	(Eén	11	"	- 11	11	11	11	")	207	451	444	205
#	(Twee	11	11	11	11	11	11	11)	72	301	501	388
#	(Drie	11	**		"	11	"	11)	22	144	387	482
#	(Vier	11	11	н	11	11	11	11)	2	48	217	472
#	(Vijf	"		"	"	11	**	11)	0	6	58	250
#	(Zes	11	"	11	"	٩r	11	**)	0	1	15	109
#	(Zeven	11	11	11	11	11	11	11)	0	0	6	37

<u>Tabel 5.3.6</u>. Significante $r_{i,j}^*$'s van de toets van Steel bij alternatief H_3 ; k = 5, n_i = 5; F(x) ~ N(0,1); aantal simulaties = 2000.

We geven weer wat opmerkingen over het verkregen cijfermateriaal. Zowel bij alternatief H_1 (tabellen 5.3.1 en 5.3.2) als bij alternatief H_2 (tabellen 5.3.3 en 5.3.4) zien we aan de resultaten dat voor grote verschuivingen Steel's toets de juiste (verschoven) verdeling aanwijst (hoewel voor het geval F(x) ~ N(0,1) het resultaat beduidend slechter is). Bij alternatief H_3 (tabellen 5.3.5 en 5.3.6) komt dit niet zo goed naar voren. In tabel 5.3.5 zien we verder dat H_0 vanaf a = 0.5 in alle gevallen wordt verworpen, maar tevens dat dan nog niet alle (zeven) kontrasten significant geworden zijn (dat is pas het geval als a > 1).

5.4. <u>Vergelijking van de toetsen van Kruskal-Wallis en Steel met een uitschieter-</u>toets (van Doornbos-Prins).

Zoals wij (in 5.2.1 t/m 5.2.3) speciale kontrasten hebben gemaakt om een uitschietende verdeling op te sporen, zo is het ook mogelijk om speciale toetsen te ontwerpen die bijzonder onderscheidend zijn als één van de verdelingen een uitschieter is. Eén zo'n toets is die van Doornbos-Prins [14]. De toetsprocedure zullen we hier nu niet beschrijven; we willen alleen het 0.V. van deze toets in het geval k = 5, $n_i = 5$, $\alpha = 0.05$, H_1 , vergelijken met het 0.V. van de toetsen van Kruskal-Wallis en Steel. Resultaten staan in de volgende tabellen: 1)

<u>Tabel 5.4.1</u>. Onderscheidingsvermogens in het geval $k = n_i = 5$ onder H_1 ; F(x) ~ uniform op [0,1].

a Toets	0.1	0.2	0.3	0.4	0.5	0.7	0.9
Doornbos-Prins	0.070	0.142	0.283	0.497	0.700	0.983	1.000
Kruskal-Wallis	0.065	0.121	0.221	0.357	0.538	0.900	0.999
Steel	0.076	0.102	0.171	0.286	0.453	0.831	0.996

<u>Tabel 5.4.2</u>. Onderscheidingsvermogens in het geval $k = n_i = 5$, onder H_1 ; F(x) ~ N(0,1).

a Toets	0.1	0.3	0.5	1.0	1.5	2.0
Doornbos-Prins	0.047	-	0.119	0.320	0.666	0.893
Kruskal-Wallis	0.057	0.065	0.086	0.226	0.489	0.756
Stee1	0.064	0.077	0.097	0.224	0.451	0.679

Uit beide tabellen blijkt, dat de toets van Doornbos-Prins de beste is. Zo zien we, dat een toets die speciaal is opgesteld om een uitschieter te lokaliseren een groter O.V. kan hebben in het geval dat er een uitschieter is dan een algemene toets. Ter vergelijking: een kontrast dat speciaal is gemaakt om een uitschieter te lokaliseren (zie (5.2)) kan - in het geval dat er een uitschieter is - vaker significant zijn dan een algemeen kontrast (zie (5.1) en tabel 5.2.1 en 5.2.2).

Samenvattend kunnen we dit hoofdstuk besluiten met te stellen dat voor het doen van simultane uitspraken de toets van Steel i.h.a. beter is dan die van Kruskal-Wallis (in de onderzochte gevallen). Voor de toets van Kruskal-Wallis geldt echter nog, dat we aan de hand van de waarnemingen kontrasten kunnen opstellen, die goede resultaten geven. Tenslotte bleek dat het O.V. van de toetsen van Kruskal-Wallis en Steel onder H₁ niet opgewassen bleek te zijn tegen het O.V. van een speciale uitschietertoets (hier die van Doornbos-Prins).

De berekeningen voor het O.V. van de toets van Doornbos-Prins zijn hoofdzakelijk uitgevoerd in [2]. We danken Doornbos en Senden voor het welwillend ter beschikking stellen van aanvullend cijfermateriaal.

VI. Het asymptotisch onderscheidingsvermogen.

6.1. Inleiding.

Veronderstel dat we een toets hebben met toetsingsgrootheid X en dat we H_0 verwerpen met onbetrouwbaarheid α als $X \ge x_{\alpha}(N)$. We noemen deze toets dan asymptotisch onderscheidend (consistent) voor een gegeven alternatief H_a , als

(6.1)
$$\forall_{\alpha \in (0,1)} \lim_{N \to \infty} P(\underline{X} \ge x_{\alpha}(N); H_{a}) = 1.$$

We zullen onderzoeken onder welke voorwaarde(n) onze toetsen asymptotisch onderscheidend zijn. Daartoe geven we eerst enkele algemene voorwaarden:

Alle \underline{x}_{ij} 's zijn onderling onafhankelijk en de alternatieve (6.2) verdelingsfunctie F_i van \underline{x}_{ij} is continu.

$$\forall_i n_i / N = v_i + o(N^{-\frac{1}{2}}), v_i > 0 \text{ indien } N \rightarrow \infty.$$

6.2. Toets van Kruskal-Wallis.

Kruskal [5] bewijst de volgende:

<u>Stelling</u>. Onder de voorwaarden (6.2) is de toets van Kruskal-Wallis asymptotisch onderscheidend voor een gegeven alternatief $\{F_1, \ldots, F_k\}$, dan en slechts dan indien er een i is, waarvoor $\sum_{j=1}^{k} v_j P\{y_i > y_j\} \neq \frac{1}{2}$, waarbij P genomen is onder het alternatief en waarbij de y_i 's k onafhankelijke stochastische grootheden zijn met verdelingsfuncties F_i (voor de v_i 's zie (6.2)).

Met behulp van deze stelling toont Kruskal verder aan, dat zijn toets asymtotisch onderscheidend is voor alternatieven van de vorm $\{F_i(x) = F(x - \theta_i); \exists_{(i,j)} \theta_i \neq \theta_j\}$ en daaruit kunnen wij concluderen dat deze toets asymptotisch onderscheidend is voor onze alternatieven H_1 , H_2 en H_3 (zie (3.1)). Zij M_i de mediaan van de i-de (alternatieve) verdeling. Zij G(x) de verdelingsfunctie van de gemengde verdeling (d.w.z. $G(x) = \sum_{i=1}^{k} \frac{n_i}{N} F_i(x)$), g(x)zijn dichtheidsfunctie en zij M_p de mediaan van de gemengde verdeling.

(6.3) Laat $\forall_i F_i$ monotoon stijgen in een omgeving van M_i en zij $g(M_p) \neq 0$. Dan geldt de volgende

<u>Stelling</u>. Onder de voorwaarden (6.2) en (6.3) geldt dat de toets van Mood-Brown asymptotisch onderscheidend is voor elk alternatief, waarbij niet alle medianen M; samenvallen.

<u>Bewijs</u>. We moeten bewijzen dat $\forall_{\alpha \in (0,1)} \lim_{N \to \infty} P(\underline{M} \ge m_{\alpha}(N)) = 1$, maar omdat $m_{\alpha}(N)$ voor gegeven α als limiet het grootste 100. α -procents punt van de χ^2_{k-1} -verdeling heeft, is het voldoende te bewijzen dat $\forall_{t \ge 0} \lim_{N \to \infty} P(\underline{M} > t) = 1$. We kunnen M schrijven als (zie 2.3)

$$\begin{cases} M = \frac{4N}{N+1} \sum_{i=1}^{k} u_i^2 & \text{met } u_i = \frac{1}{\sqrt{n_i}} (m_i - \frac{1}{2}n_i(1 - \frac{1}{N})) \text{ als N oneven is,} \\ \\ M = \frac{4(N-1)}{N} \sum_{i=1}^{k} v_i^2 & \text{met } v_i = \frac{1}{\sqrt{n_i}} (m_i - \frac{1}{2}n_i) & \text{als N even is.} \end{cases}$$

Stel nu, dat $M_1 \neq M_p$ en wel $M_1 < M_p$ (zonder beperking mogelijk). Definieer:

 $c := \frac{1}{2}(M_{p} + M_{1})$ $\underline{z}_{ij} := \begin{cases} 1 & \text{als } \underline{x}_{ij} < c \\ 0 & \text{als } \underline{x}_{ij} \ge c \end{cases} \quad i = 1, \dots, k; \ j = 1, \dots, n_{i} .$ $\forall_{i} : \{\underline{m}_{i}^{c} := \int_{j=1}^{n_{i}} \underline{z}_{ij}; \ \underline{u}_{i}^{c} := \frac{1}{\sqrt{n_{i}}} (\underline{m}_{i}^{c} - \frac{1}{2}n_{i}(1 - \frac{1}{N})); \ \underline{v}_{i}^{c} := \frac{1}{\sqrt{n_{i}}} (\underline{m}_{i}^{c} - \frac{1}{2}n_{i})\} .$

Het verdere verloop van het bewijs valt nu in drie delen te splitsen:

(i) We bewijzen:
$$\forall_{t \ge 0} \{ \lim_{N \to \infty} P(\underline{u}_1^c > t) = \lim_{N \to \infty} P(\underline{v}_1^c > t) = 1 \}.$$

- (ii) We bewijzen: $\lim_{N\to\infty} P(\underline{u}_1 \ge \underline{u}_1^C) = \lim_{N\to\infty} P(\underline{v}_1 \ge \underline{v}_1^C) = 1$ (m.b.v. een hulp-stelling).
- (iii) Tenslotte: $\forall_{t \ge 0} \lim_{N \to \infty} P(\underline{M} > t) = 1.$

(i) Definieer: $\forall_i p_i^c := P(\underline{x}_{ij} < c)$ onder het gegeven alternatief. Dan geldt:

$$\begin{split} & \{ \underline{\mathbf{m}}_{1}^{c} = \sum_{j=1}^{n_{1}} \{ \underline{z}_{1j} = n_{1} \mathbf{p}_{1}^{c} \} \\ & \text{var } \underline{\mathbf{m}}_{1}^{c} = \sum_{j}^{c} \text{var } \underline{z}_{1j} + \sum_{i \neq j}^{c} \text{covar}(\underline{z}_{1i}, \underline{z}_{1j}) \\ & = \sum_{j}^{c} \text{var } \underline{z}_{1j} \text{, wegens onderlinge obafhankelijkheid van } z_{1i} \text{ en } z_{1i} \\ & = n_{1} \mathbf{p}_{1}^{c}(1 - \mathbf{p}_{1}^{c}) \text{.} \end{split}$$

Vervolgens:

$$\xi \underline{u}_{1}^{c} = \frac{1}{\sqrt{n_{1}}} \left(\xi \underline{m}_{1}^{c} - \frac{1}{2}n_{1}(1 - \frac{1}{N}) \right) = \sqrt{n_{1}} \left(p_{1}^{c} - \frac{1}{2}(1 - \frac{1}{N}) \right)$$

en

$$\mathcal{E}_{\underline{v}_1}^c = \sqrt{n_1}(p_1^c - \frac{1}{2})$$
,

en dus (zie (6.2)):

$$\lim_{N \to \infty} \underbrace{\xi_{u_1}^{c}}_{N \to \infty} = \lim_{N \to \infty} \underbrace{\xi_{v_1}^{c}}_{1} = \begin{cases} +\infty & \text{als } p_1^{c} > \frac{1}{2} \\ 0 & \text{als } p_1^{c} = \frac{1}{2} \\ -\infty & \text{als } p_1^{c} < \frac{1}{2} \end{cases}$$

Verder: var $\underline{u}_1^c = var \ \underline{v}_1^c = \frac{1}{n_1}$ var $\underline{m}_1^c = p_1^c(1 - p_1^c)$, dus begrensd. In ons geval geldt $p_1^c > \frac{1}{2}$, immers $P(\underline{x}_{1j} < M_1) = \frac{1}{2}$ en uit $c > M_1$ volgt, met (6.3): $p_1^c = P(\underline{x}_{1j} < c) > \frac{1}{2}$ (stel $p_1^c \neq 1$). Uit lim $\underline{u}_1^c = +\infty$ volgt: $N \rightarrow \infty$

$$\forall_{t\geq 0} \forall_{k>0, k\in \mathbb{R}} \exists_{N_0 \in \mathbb{N}t} \forall_{N>N_0} a_N := \frac{\varepsilon \underline{u}_1^c - t}{\sigma} > k$$

en dus $\forall_{t\geq 0} \lim_{N\to\infty} a_N = +\infty$. Nu passen we de ongelijkheid van Chebyshev toe:

$$\forall_{t\geq 0} \forall_{N>N_0} \{ \mathbb{P}(\underline{u}_1^c > t) \geq \mathbb{P}(|\mathcal{E}\underline{u}_1^c - \underline{u}_1^c| \leq a_N^{\sigma}\underline{u}_1^c) \geq 1 - \frac{1}{a_N^2} \}$$

en dus

(6.4)
$$\forall_{t\geq 0} \lim_{N\to\infty} P(\underline{u}_1^c > t) = 1$$
 (en analoog $\forall_{t\geq 0} \lim_{N\to\infty} P(\underline{v}_1^c > t) = 1$).

(ii) Om te bewijzen dat $\lim_{N\to\infty} P(\underline{u}_1 \ge \underline{u}_1^c) = 1$ en $\lim_{N\to\infty} P(\underline{v}_1 \ge \underline{v}_1^c) = 1$ maken we gebruik van de volgende

<u>Hulpstelling</u>. Zij \underline{M}_{G} de <u>steekproef</u>mediaan van een aselecte steekproef ter grootte N uit de verdeling $G(x) = \sum_{i=1}^{k} \frac{n_{i}}{N} F_{i}(x)$ en \underline{M}_{s} de <u>steekproef</u>mediaan van de k gecombineerde steekproeven. Dan geldt:

a) $\forall_{\epsilon>0} \lim_{N \to \infty} P(|\underline{M}_{G} - \underline{M}_{p}| \le \epsilon) = 1$ en

b)
$$\forall_{\varepsilon \geq 0} [\lim_{N \to \infty} P(|\underline{M}_s - \underline{M}_p| \leq \varepsilon) = 1]$$
.

Bewijs.

a) Kendall [4] toont aan dat de variantie van
$$\underline{M}_{G}$$
 asymptotisch gelijk is aan

$$\frac{1}{4Ng^{2}(M_{p})} (g(M_{p}) \neq 0; zie (6.3)).$$
Gumbel [3] toont aan dat de m-de orderstatistic \underline{q}_{m} asymptotisch normaal ver-
deeld is, indien $\frac{m}{N+1} = \frac{1}{2} \pm 0(\frac{1}{N})$, met $\underline{\xi}(\underline{q}_{m})$ op te lossen uit: $G(\underline{\xi}\underline{q}_{m}) = \frac{m}{N+1}$
Indien nu N oneven is, zeg N = 2r - 1, dan is $\underline{M}_{G} = \underline{q}_{r}$ en indien N = 2r, dan
is $\underline{M}_{G} = \frac{1}{2}(\underline{q}_{r} + \underline{q}_{r+1}).$
In beide gevallen geldt: $\lim_{N \to \infty} G(\underline{\xi}\underline{M}_{G}) = G(\lim_{N \to \infty} \underline{\xi}\underline{M}_{G}) = \frac{1}{2} = G(\underline{M}_{p})$ en er volgt:
 $\lim_{N \to \infty} \underline{K}\underline{M}_{G} = \underline{M}_{p}.$
Hieruit volgt:
(6.5) $\underline{\Psi}_{\varepsilon>0} = \underline{J}_{N_{1}} = \underline{\Psi}_{N>N_{1}}$ $|\underline{\xi}\underline{M}_{G} - \underline{M}_{p}| < \frac{1}{2}\varepsilon$.

Ook geldt:

$$(6.6) \qquad \left|\underline{M}_{G} - \underline{M}_{p}\right| \leq \left|\underline{M}_{G} - \underline{\mathcal{E}}_{\underline{M}_{G}}\right| + \left|\underline{\mathcal{E}}_{\underline{M}_{G}} - \underline{M}_{p}\right|$$

(6.5) en (6.6)
$$\Rightarrow \forall_{\varepsilon>0} \exists_{N_1} \forall_{N>N_1} \{ | M_G - M_p | - \frac{1}{2}\varepsilon < |M_G - \mathcal{E}\underline{M}_G | \} .$$

Nu gebruiken we weer Chebyshev's ongelijkheid:

$$\forall_{\varepsilon>0} \exists_{N_1} \forall_{N>N_1} \{ \mathbb{P}(|\underline{\mathbb{M}}_{G} - \underline{\mathbb{M}}_{p}| - \frac{1}{2}\varepsilon \leq \frac{1}{2}\varepsilon) \geq \mathbb{P}(|\underline{\mathbb{M}}_{G} - \mathcal{E}\underline{\mathbb{M}}_{G}| \leq \frac{1}{2}\varepsilon) \geq 1 - \frac{1}{\varepsilon^{2} \operatorname{Ng}^{2}(\underline{\mathbb{M}}_{p})} \},$$

en dus

$$\forall_{\varepsilon>0} \lim_{N\to\infty} P(|\underline{M}_{G} - \underline{M}_{p}| \le \varepsilon) = 1.$$

b) Zij {y_i | i = 1,...,N} een aselecte steekproef ter grootte N uit G. Definieer:

$$\forall_{\varepsilon>0} p := P(\underline{y}_i < \underline{M}_p - \varepsilon)$$
, $i = 1, \dots, N$, $en \quad \underline{Y} := #(\underline{y}_i < \underline{M}_p - \varepsilon)$,

dan is <u>Y</u> binomiaal verdeeld met parameters N en p. Definieer voor de k gecombineerde steekproeven (trekkingen \underline{x}_{ij} , i = 1, ..., k; $j = 1, ..., n_i$):

en

$$\underline{\mathbf{x}} := \sum_{i=1}^{k} \underline{\mathbf{x}}_{i} .$$

Dan is x. binomiaal verdeeld met parameters n_i en p_i en X is de som van k onafhankelijke, binomiaal verdeelde grootheden.

Het verband tussen p en de p_i 's is: $p = \sum_{i=1}^{k} \frac{n_i p_i}{N}$ en verder zien we dat $p < \frac{1}{2}$ (zie ook (6.3)). De verwachting en variantie van <u>Y</u> en <u>X</u> zijn:

$$\mathcal{E}\underline{Y} = Np = \sum_{i=1}^{k} n_i p_i = \sum_{i=1}^{k} \mathcal{E}\underline{x}_i = \mathcal{E}\underline{X}$$

en

$$var Y = Np(1-p) = Np - Np^2$$
,

$$\operatorname{var} \underline{X} = \sum_{i=1}^{k} \operatorname{var} \underline{x}_{i} = \sum_{i=1}^{k} n_{i} p_{i} (1-p_{i}) = \sum_{i=1}^{k} n_{i} p_{i} - \sum_{i=1}^{k} n_{i} p_{i}^{2} = Np - \sum_{i=1}^{k} n_{i} p_{i}^{2} \leq \operatorname{var} \underline{Y},$$

immers:

$$(\sum_{i} \sqrt{n_{i}} \sqrt{n_{i}} p_{i})^{2} \leq \sum_{i} (\sqrt{n_{i}})^{2} \sum_{i} (\sqrt{n_{i}} p_{i})^{2} \quad (Cauchy-Schwartz)$$

$$\Rightarrow (\sum_{i} n_{i} p_{i})^{2} \leq \sum_{i} n_{i} \sum_{i} n_{i} p_{i}^{2} \implies Np^{2} \leq \sum_{i} n_{i} p_{i}^{2} \quad .$$

Asymptotisch zijn nu zowel X als Y normaal verdeeld, met $\mu = Np \text{ en } \sigma^2 \text{ resp.}$ $(Np - \sum_{i} n_i p_i^2) \text{ en } (Np - Np^2).$ Met $p < \frac{1}{2} \implies \mu = Np < \frac{1}{2}N \text{ volgt dan:}$

$$\forall_{\varepsilon>0} \quad \{\lim_{N\to\infty} P(\underline{M}_{s} < \underline{M}_{p} - \varepsilon) = \lim_{N\to\infty} P(\underline{X} > \frac{1}{2}N) \leq \lim_{N\to\infty} P(\underline{Y} > \frac{1}{2}N) = \lim_{N\to\infty} P(\underline{M}_{G} < \underline{M}_{p} - \varepsilon)\}$$

Op analoge wijze volgt:

$$\forall_{\epsilon \geq 0} \{ \lim_{N \to \infty} \mathbb{P}(\underline{M}_{s} \geq M_{p} + \epsilon) \leq \lim_{N \to \infty} \mathbb{P}(\underline{M}_{G} \geq M_{p} + \epsilon) \}$$

en dus

$$\forall_{\varepsilon \geq 0} \quad \{\lim_{N \to \infty} P(|\underline{M}_{s} - \underline{M}_{p}| \leq \varepsilon) \geq \lim_{N \to \infty} P(|\underline{M}_{G} - \underline{M}_{p}| \leq \varepsilon) = 1\} .$$

Gevolg:

(6.7)
$$\forall_{\delta \in (0,1)} \exists_{N_2} \forall_{N>N_2} P(|\underline{M}_s - \underline{M}_p| \le \underline{M}_p - c) > 1 - \delta$$
.

Omdat m_1^c een niet-dalende functie van c is en u_1^c en v_1^c niet-dalende functies van m_1^c zijn, geldt:

$$M_{s} \geq c \implies m_{1} \geq m_{1}^{c} \iff \begin{cases} u_{1} \geq u_{1}^{c} & P(\underline{u}_{1} \geq \underline{u}_{1}^{c}) \\ u_{1} \geq v_{1}^{c} & en \ dus \\ v_{1} \geq v_{1}^{c} & P(\underline{v}_{1} \geq \underline{v}_{1}^{c}) \end{cases} \geq P(\underline{M}_{s} \geq c) .$$

Met (6.7) volgt nu

$$\forall_{\delta \in \{0,1\}} \exists_{N_2} \forall_{N > N_2} \{ P(\underline{u}_1 \ge \underline{u}_1^c) \ge P(\underline{M}_s \ge c) \ge P(|\underline{M}_s - \underline{M}_p| \le \underline{M}_p - c) > 1 - \delta \}$$

en dus

(6.8)
$$\lim_{N\to\infty} P(\underline{u}_1 \ge \underline{u}_1^c) = 1 \quad \text{en} \quad \lim_{N\to\infty} P(\underline{v}_1 \ge \underline{v}_1^c) = 1 .$$

(iii) We hadden al (zie (6.4)): $\forall_{t \ge 0} \left\{ \lim_{N \to \infty} P(\underline{u}_1^C > t) = 1 \text{ en } \lim_{N \to \infty} P(\underline{v}_1^C > t) = 1 \right\}.$ Zij nu A := {(u_1, u_1^C) | $u_1^C > t$ }; B := {(u_1, u_1^C) | $u_1 \ge u_1^C$ }; C := {(u_1, u_1^C) | $u_1 > t$ }, dan volgt: A \cap B \subset C ofwel $\overline{C} \subset \overline{A \cap B} = \overline{A} \cup \overline{B}$, dus P(\overline{C}) $\le P(\overline{A}) + P(\overline{B})$ en lim P(\overline{C}) $\le \lim_{N \to \infty} P(\overline{A}) + \lim_{N \to \infty} P(\overline{B})$ en dus ((6.4) en (6.8)) lim P(\overline{C}) = 0. Gevolg: N+ ∞ N+ ∞ N+ ∞ N+ ∞ V_{t \ge 0} {lim P($\underline{u}_1 > t$) = 1 en lim P($\underline{v}_1 > t$) = 1} V_{t \ge 0} {lim P($\underline{u}_1 > t$) = 1 \Longrightarrow lim P($\underline{u}_1^2 > t$) = 1} V_{t \ge 0} { $\exists_i \lim_{N \to \infty} P(\underline{u}_1^2 > t) = 1 \implies \lim_{N \to \infty} P(\sum_{i=1}^{k} u_i^2 > t) = 1$ } en analoog lim P($\sum_{i=1}^{k} u_i^2 > t$) = 1) \Rightarrow

Het is duidelijk dat onder onze alternatieve hypothesen H_1 , H_2 en H_3 de medianen van de (alternatieve) verdelingen F_1, \ldots, F_k niet samenvallen en dus dat de toets van Mood-Brown asymptotisch onderscheidend is voor deze alternatieven.

6.4. Toets van Steel.

We willen weten onder welke alternatieven H_a geldt:

$$\forall_{\alpha \in (0,1)} \lim_{N \to \infty} P(\underline{R} \ge r_{\alpha}(N); H_{a}) = 1$$
 (zie 2.4).

(6.9)

) We beperken ons tot het geval dat alle steekproeven van grootte n zijn.

Stel nu dat \underline{y}_i een trekking is uit de i-de en \underline{y}_j een trekking uit de j-de verdeling, dan geldt de volgende

<u>Stelling</u>. Onder de voorwaarden (6.2) en (6.9) geldt, dat de toets van Steel dan en slechts dan asymptotisch onderscheidend is, als voor het gegeven alternatief H_a geldt dat voor minstens één paar (i,j) (i < j, i = 1,...,k-l, j = 2,...,k) geldt: p := P($\underline{y}_i > \underline{y}_i$; H_a) $\neq \frac{1}{2}$.

<u>Bewijs</u>. De grootheid $\underline{r}_{i,j}$ van Steel is een toetsingsgrootheid behorend bij Wilcoxon's twee-steekproeventoets. (Er zijn meer manieren om Wilcoxon's toetsingsgrootheid aan te geven.) Steel's grootheid $r_{i,j}^{\star}$ is dan een toetsingsgrootheid behorend bij de tweezijdige Wilcoxontoets (te weten: verwerp $H_0': F_i(x) = F_j(x)$ met onbetrouwbaarheid α , als $r_{i,j}^{\star} \ge r_{\alpha,n,n}$). Van Dantzig [1] heeft nu aangetoond dat deze toets dan en slechts dan asymptotisch onderscheidend voor alternatief H_a is, als geldt: $P_{ij} = P(\underline{y}_i > \underline{y}_j; H_a) \neq \frac{1}{2}$ (onder voorwaarde (6.2)). Terugkerend naar de k-steekproeventoets van Steel gaan we nu het bewijs naar twee kanten afmaken.

Stel dat (l,m) een paar is waarvoor $p_{l,m} \neq \frac{1}{2}$. Dan geldt volgens Van Dantzig:

(6.10)
$$\forall_{\alpha \in (0,1)} \lim_{n \to \infty} P(\underline{r}_{\ell,m}^* \ge r_{\alpha,n,n}; p_{\ell m} \neq \frac{1}{2}) = 1.$$

De toetsingsgrootheid van Steel is $\underline{R} = \max_{i,j} r_{i,j}^{*}$ (kritiek gebied: $\{R \ge r_{\alpha}(N)\}$). Stel nu s = r dan geldt onder H₀: $\alpha/{\binom{k}{2}}, n, n$

$$\left. \begin{array}{l} \forall_{j \geq i} \ P(\underline{r}_{i,j}^{*} \geq s) \leq \frac{\alpha}{\binom{k}{2}} \quad \text{en dus } P(\underline{R} \geq s; \ H_{0}) \leq \alpha \\ \text{Nu is } r_{\alpha}(N) \text{ de kleinste waarde van Rwaarvoor } P(\underline{R} \geq r_{\alpha}(N); H_{0}) \leq \alpha \end{array} \right\} \implies s \geq r_{\alpha}(N)$$

Vervolgens kijken we weer naar het alternatief H_a:

$$\forall_{\alpha \in \{0,1\}} \{ \lim_{N \to \infty} P(\underline{R} \ge r_{\alpha}(N); H_{a}) \ge \lim_{N \to \infty} P(\underline{R} \ge s; H_{a})$$

$$= \lim_{n \to \infty} P(\underline{r}_{1,2}^{\star} \ge s \lor \ldots \lor \underline{r}_{\ell,m}^{\star} \ge s \lor \ldots \lor \underline{r}_{k-1,k}^{\star} \ge s; H_{a})$$

$$\ge \lim_{n \to \infty} P(\underline{r}_{\ell,m}^{\star} \ge s; H_{a}) = 1 \text{ wegens } (6.10) \} .$$

<==

Gegeven is nu dat $p_{ij} = \frac{1}{2}$ (i = 1,...,k-1, j = 2,...,k, j > i). We moeten nu bewijzen:

$$\exists_{\alpha_0} \bigvee_{\alpha < \alpha_0} \lim_{N \to \infty} P(\underline{R} \ge r_{\alpha}(N); p_{ij} = \frac{1}{2}) \neq 1$$
.

Welnu, uit de stelling van Van Dantzig volgt:

$$\forall_{(i,j)} \forall_{\varepsilon>0} \exists_{\alpha_0} \forall_{\alpha<\alpha_0} \lim_{n\to\infty} P(\underline{r}_{i,j}^* \geq r_{\alpha,n,n}; p_{ij}=\frac{1}{2}) < \varepsilon$$

Bepaal nu die α_0 waarvoor

(6.11)
$$\forall_{(i,j)} \lim_{n \to \infty} P(\underline{r}_{i,j}^* \ge r_{\alpha_0,n,n}; p_{ij} = \frac{1}{2}) < \frac{1}{\binom{k}{2}}$$
.

Nu geldt $\lim_{n\to\infty} r_{\alpha,n,n} \leq \lim_{n\to\infty} r_{\alpha}(N)$, immers:

$$\alpha = \lim_{N \to \infty} P(\underline{R} \ge r_{\alpha}(N); H_{0}) = \lim_{n \to \infty} P(\underline{r}_{i,j}^{*} \ge r_{\alpha,n,n}; H_{0}) \le \lim_{n \to \infty} P(\underline{R} \ge r_{\alpha,n,n}; H_{0}),$$

en dan volgt:

$$\forall_{\alpha \leq \alpha_0} \lim_{N \to \infty} P(\underline{R} \geq r_{\alpha}(N); \forall_{(i,j)} p_{ij} = \frac{1}{2}) \leq \lim_{N \to \infty} P(\underline{R} \geq r_{\alpha,n,n}; \forall_{(i,j)} p_{ij} = \frac{1}{2})$$

$$\leq \sum_{\substack{(i,j) \\ n \to \infty}} \lim P(\underline{r}_{i,j}^* \geq r_{\alpha,n,n}; p_{ij} = \frac{1}{2}) < 1 \text{ wegens (6.11)} \qquad \square$$

Het is duidelijk dat ook Steel's toets asymptotisch onderscheidend is voor translatie-alternatieven en dus voor onze H_1 , H_2 en H_3 .

6.5. Toets van Terpstra.

Voor welke alternatieven de toets van Terpstra asymptotisch onderscheidend is, is niet bekend en we hebben hierover niets onderzocht. VII. Samenvatting der resultaten en conclusies.

- 7.1. Dit verslag omvat de resultaten van een onderzoek naar verschillende eigenschappen van vier parametervrije k-steekproeventoetsen, te weten de toets van Kruskal-Wallis (toetsingsgrootheid <u>H</u>), de toets van Mood-Brown (toetsingsgrootheid <u>M</u>), de toets van Steel (toetsingsgrootheid <u>R</u>) en de toets van Terpstra (toetsingsgrootheid Q). Het onderzoek omvatte:
 - a) Het onderzoek naar de verdelingen en asymptotische verdelingen van \underline{H} , \underline{M} , <u>R</u> en <u>Q</u> onder de nulhypothese:

$$\begin{split} H_{0}: \ F_{i}(x) &= F(x), \ i = 1, \dots, k \quad \text{en onder de alternatieve hypothesen:} \\ H_{1}: \ F_{i}(x) &= F(x); \ i = 1, \dots, k-1; \ F_{k}(x) = F(x-a); \ a > 0; \\ H_{2}: \ F_{i}(x) &= F(x); \ i = 1, \dots, k-2; \ F_{k-1}(x) = F_{k}(x) = F(x-a); \ a > 0; \\ H_{3}: \ F_{1}(x) &= F(x+a); \ F_{i}(x) = F(x); \ i = 2, \dots, k-1; \ F_{k}(x) = F(x-a); \ a > 0. \end{split}$$

- b) Het vergelijken van het onderscheidingsvermogen van de vier toetsen onder de alternatieven H_1 , H_2 en H_3 in bepaalde gevallen, bij k = 5, $n_i = 5$ $(n_i = \text{grootte van de i-de steekproef}).$
- c) Het doen van simultane uitspraken bij de toetsen van Kruskal-Wallis en Steel.
- d) Het onderzoeken voor welke alternatieven de toetsen van Kruskal-Wallis, Mood-Brown en Steel asymptotisch onderscheidend (consistent) zijn.

Algemene resultaten worden nu per hoofdstuk gegeven.

7.2. In hoofdstuk III hebben we onderzocht wat bekend was over de verdelingen van \underline{H} , \underline{M} , \underline{R} en \underline{Q} onder \underline{H}_0 , \underline{H}_1 , \underline{H}_2 en \underline{H}_3 . Het bleek dat onder \underline{H}_0 de verdelingen van \underline{H} en \underline{R} voor k = 3 en kleine \underline{n}_i 's getabelleerd waren; noch van de verdeling van \underline{Q} , noch van die van \underline{M} was iets getabelleerd. Voor M hebben wij de verdelingen bepaald in de gevallen k = 5, $\underline{n}_i = 3(1)5$ (zie hoofdstuk VIII). De asymptotische verdelingen onder \underline{H}_0 zijn bekend voor \underline{H} en \underline{M} ; voor \underline{R} is een grote-steekproevenbenadering gevonden en voor \underline{Q} bestaat een vermoeden omtrent de aard van de asymptotische verdeling. Noch over verdelingen, noch over asymptotische verdelingen onder \underline{H}_1 , \underline{H}_2 of \underline{H}_3 is iets bekend. We hebben de verdeling van \underline{M} en \underline{R} bepaald in het geval "a $\rightarrow \infty$ " en uitgerekend voor

k = 5, $n_i = 5$. Tot slot van dit hoofdstuk hebben we onbetrouwbaarheden en kritieke waarden bepaald voor ieder van de verdelingen <u>H</u>, <u>M</u>, <u>R</u> en <u>Q</u> in het geval k = 5, $n_i = 5$.

- 7.3. In hoofdstuk IV hebben we, m.b.v. de hierboven genoemde kritieke waarden, schattingen van het onderscheidingsvermogen bepaald, voor ieder van de vier toetsen, in het geval dat $k = n_i = 5$, onder de alternatieven H_1 , H_2 en H_3 , bij twee verdelingen F(x) (uniform en normaal) en bij verschillende groottes van a (de verschuivingsafstand). Daarbij bleek, dat de toets van Kruskal-Wallis in dat geval ($k = n_i = 5$) duidelijk de beste was. De toets van Steel is ook goed. De toets van Mood-Brown is vooral onder H_1 erg slecht, maar theoretisch toonden we aan dat dat kwam door de te kleine steekproefgroottes. De toets van Terpstra tenslotte, bleek zowel onder H_1 als onder H_2 slecht te zijn; we hebben niet onderzocht waarom. In de laatste paragraaf hebben we voor een speciaal alternatief (H_2 ; $F(x) \sim$ uniform) een tabel opgesteld met 95%-betrouwbaarheidsintervallen voor het onderscheidingsvermogen.
- 7.4. Hoofdstuk V behandelde simultane uitspraken bij de toets van Kruskal-Wallis en Steel. Bij de toets van Kruskal-Wallis hebben we voor ieder van de alternatieven H_1 , H_2 en H_3 passende kontrasten opgesteld en ongelijkheden afgeleid waaraan ze onder H_0 simultaan voldoen met kans > (1- α). We hebben formules gegeven voor de minimale steekproefgroottes, waarvoor de gegeven kontrasten significant kunnen worden, in het geval $\forall_i n_i = n \text{ en } "a \rightarrow \infty"$. M.b.v. een computer hebben we in een aantal gevallen gesimuleerd en tabellen opgesteld voor de aantallen significante kontrasten. De gevallen zijn dezelfde (op kleine verschuivingen na) als waarvoor we het O.V. hebben berekend in hoofdstuk IV. In dezelfde gevallen hebben we onderzocht welke $r_{i,i}^{\star}$'s van Steel (zie 2.4) significant werden en ook die waarden hebben we getabelleerd. Vergelijkenderwijs concludeerden we dat de toets van Steel i.h.a. beter is voor het doen van simultane uitspraken dan die van Kruskal-Wallis (in het geval k = 5, $n_i = 5$). In de laatste paragraaf hebben we het 0.V. van de twee bovenstaande toetsen onder \mathbf{H}_1 vergeleken met het O.V. van de speciale uitschietertoets van Doornbos-Prins en we constateerden dat deze laatste een groter O.V. heeft.

7.5. In hoofdstuk VI introduceerden we het begrip asymptotisch onderscheidend. We zagen dat Kruskal een nodige en voldoende voorwaarde heeft gevonden, waaronder de toets van Kruskal-Wallis asymptotisch onderscheidend is. We hebben bewezen dat - onder bepaalde voorwaarden - de toets van Mood-Brown asymptotisch onderscheidend is voor elk alternatief, waarbij niet alle populatiemedianen M_i samenvallen. Voor de toets van Steel hebben we een stelling bewezen, waarin een nodige en voldoende voorwaarde staat, waaronder deze toets asymptotisch onderscheidend is. Verder hebben we nog geconstateerd dat voor ieder van de alternatieven H_1 , H_2 en H_3 de toetsen van Kruskal-Wallis, Mood-Brown en Steel asymptotisch onderscheidend zijn. We hebben niet onderzocht voor welke alternatieven de toets van Terpstra asymptotisch onderscheidend is.

VIII. Tabellen

Tabellen voor de verdelingen van Mood's toetsingsgrootheid \underline{M} onder H_0 in de gevallen k = 5; $n_i = 3(1)5$, i = 1,...,5.

Steekproef- groottes	M	$P(\underline{M} \leq M)$	Steekproef- groottes	М	$P(\underline{M} \leq M)$
(n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅)			(n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅)		
	1.500	0.377622		0.889	0.119951
	4.000	0.692308		1.834	0.333196
(3,3,3,3,3)	6.500	0.944056		2.778	0.457589
	9.000	0.986014		3.408	0.497573
	11.500	1.000000		4.352	0.657507
₩××				4.667	0.670835
	1.250	0.226573		5.297	0.759687
	2.188	0.427972		5.389	0.786343
	3.750	0.528671		5.612	0.795228
	4.688	0.730070		5.926	0.821884
`	5.000	0.742657	(3,3,3,4,4)	6.871	0.857425
(3,3,3,3,4)	6.250	0.843356		7.186	0.897408
	7.188	0.910489		7.815	0.927026
	7.500	0.960839		8.130	0.962567
	9.688	0.983217		8.445	0.969231
	10.000	0.991608		9.389	0.975154
	11.250	0.994405		9.704	0.979597
	12.500	1.000000		10.334	0.981571
				10.649	0.993418
				10.963	0.995639
				12.223	0.997120
	I			13.167	0.998108
				13.482	0.999959
				16.000	1.000000

Steekproef- groottes	м	$P(\underline{M} \leq M)$	Steekproef- groottes	М	$P(\underline{M} \leq M)$
(n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅)			(n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅)		
	0.630	0.079967		0.267	0.042088
	1.575	0.239901		1.217	0.154322
	2.519	0.453147		2.167	0.378791
	3.463	0.524229		3.117	0.528437
	4.093	0.630851		3.750	0.565849
	5.038	0.701933		4.067	0.615731
	5.352	0.755245		4.700	0.653143
	5.667	0.764130		5.017	0.709260
i -	5.982	0.811518		5.650	0.759142
(3,3,4,4,4)	6.297	0.847059		5.967	0.833965
	6.926	0.873715	(3,4,4,4,4)	6.600	0.854403
	7.556	0.897408		6.917	0.887657
	7.871	0.932949		7.550	0.906363
	8.186	0.946277		7.867	0.920392
	8.500	0.948910		8.500	0.945333
	8.815	0.972604		8.817	0.964039
,	9.130	0.981489		9.450	0.975124
	10.389	0.987413		9.767	0.987594
	11.334	0.991362		11.350	0.993830
	11.649	0.997285		12.300	0.996947
	13.223	0.998766		12.617	0.998506
	14.167	0.999260		14.200	0.999286
	14.482	1.000000		15.150	0.999805
			_	15.467	1.000000

Steekproef groottes	м	P(<u>M</u> ≤ M)	
(n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅)			
	1.134	0.199918	
	2.078	0.377622	
	2.645	0.410942	
	3.589	0.477581	
	3.652	0.544220	
	4.597	0.677499	1
	4.912	0.688606	
	5.163	0.755245	
	6.108	0.799671	
	6.171	0.844097	
	6.423	0.860757	
(3,3,3,4,5)	6.612	0.865200	
	7.115	0.894817	
	7.430	0.928137	
	8.186	0.934800	
	8.626	0.957014	
	8.941	0.962567	
	9.130	0.971452	
	9.445	0.974784	
	9.634	0.979720	
	9.949	0.983422	
	10.200	0.987125	
	10.704	0.989346	
	11.460	0.994899	
	11.649	0.996380	
	11.963	0.997491	
	12.467	0.998725	
	14.167	0.999218	
	14.482	0.999959	
	17.000	1.000000	

Steekproef-	M	D(M < M)	м	D(M < M)
	P1	$\Gamma(\underline{\mathbf{H}} \ge \mathbf{M})$	P1	
("1 ^{, "2} , "3 ^{, "4} , "5 ⁾				
	0.774	0.105220	9.134	0.963433
	1.724	0.292277	9.260	0.966031
	2.674	0.401394	9.577	0.976423
	2.294	0.418931	9.641	0.977722
	3.244	0.489077	9.767	0.980840
	3.307	0.512460	9.894	0.981814
	4.194	0.551430	10.084	0.984931
	4.257	0.644959	10.400	0.985321
	4.574	0.656650	10.590	0.988785
	4.827	0.680032	10.907	0.990084
	5.207	0.731992	11.160	0.992033
(3,3,4,4,5)	5.524	0.763169	11.350	0.992552
	5.777	0.794345	11.667	0.993332
	5.840	0.802139	12.110	0.994631
	6.094	0.819676	12.300	0.995324
	6.284	0.824352	12.427	0.996947
	6.727	0.850332	12.617	0.998506
	6.790	0.860724	12.934	0.998604
	7.044	0.876313	13.440	0.999145
	7.107	0.899695	14.200	0.999405
	7.234	0.904371	14.960	0.999459
	7.740	0.913031	15.150	0.999719
	7.867	0.915369	15.467	0.999978
	8.057	0.936154	18.000	1.000000
	8.311	0.943948		
	8.374	0.949793		
	8.627	0.953690		
	8.817	0.959926		

Steekproef- groottes	М	$P(\underline{M} \leq M)$	М	$P(\underline{M} \leq M)$
("1 ^{, n} 2 ^{, n} 3 ^{, n} 4 ^{, n} 5)				
	0.507	0.070147	8.107	0.937842
	1.457	0.210440	8,550	0.942519
	2.407	0.397497	8.740	0.952911
	2.977	0.467644	8.867	0.956418
	3.357	0.529996	9.057	0.964212
	3.927	0.576761	9.310	0.972006
	3.990	0.623525	9.817	0.976683
	4.560	0.635216	10.260	0.981879
	4.877	0.666392	10.450	0.983957
(3,4,4,4,5)	4.940	0.697569	10.577	0,987854
	5.257	0.744333	10.767	0.990972
	5.827	0.761870	11.590	0.993570
	5.890	0.782654	12.160	0.995518
	6.207	0.813830	12.350	0.997077
	6.460	0.845006	13.110	0.997727
	6.777	0.868389	13.300	0.998246
	6.840	0.880080	13.427	0.998733
	6.967	0.889433	13.617	0.999123
	7.410	0.892897	14.440	0.999448
	7.727	0.908485	15.200	0.999643
	7.790	0.924073	16.150	0.999903
	7.917	0.926151	16.467	1.000000

Steekproef- groottes	М	$P(\underline{M} \leq M)$	М	$P(\underline{M} \leq M)$
	1.014	0.175366	9.057	0.963270
	1.964	0.331248	9.120	0.967330
	2.534	0.389703	9.374	0.973175
	3.484	0.506614	9.627	0.977072
	3.547	0.545584	9.880	0.978155
	4.054	0.574812	10.134	0.979324
	4.497	0.652753	10.387	0.984195
	4.814	0.662495	10.577	0.986793
	5.004	0.681981	10.640	0.988092
(3,3,4,5,5)	5.067	0.759921	10.894	0.989067
	6.017	0.811882	11.084	0.989846
	6.080	0.824872	11.400	0.993094
	6.334	0.854099	11.590	0.993960
	6.524	0.861894	11.907	0.995259
	7.030	0.870554	12.160	0.996070
	7.094	0.876399	13.110	0.997370
	7.347	0.895884	13.427	0.998669
	7.537	0.915369	13.617	0.999188
	7.854	0.917805	14.440	0.999621
	8.044	0.925599	15.200	0.999751
	8.107	0.933393	15.960	0.999859
	8.550	0.946383	16.467	0.999989
	8.867	0.952878	19.000	1.000000

•

Steekproef- groottes	м	$P(\underline{M} \leq M)$	M	$P(\underline{M} \leq M)$	
$(n_1, n_2, n_3, n_4, n_5)$					
	0.655	0.091859	9.310	0.960603	
	1.610	0.255163	9.501	0.969675	
	2.182	0.285782	9.691	0.972397	
	2.564	0.381043	9.819	0.974711	
	3.137	0.503521	10.010	0.980154	
	3.201	0.513728	10.073	0.982706	
	3.710	0.529038	10.264	0.984067	
	4.010	0.597081	10.582	0.985087	
	4.155	0.637907	10.773	0.985904	
	4.473	0.648113	10.837	0.986471	
	4.664	0.668527	11.028	0.988172	
(3,4,4,5,5)	4.728	0.688940	11.219	0.989986	
	5.110	0.711621	11.346	0.991049	
	5.428	0.738838	11.537	0.993091	
	5.619	0.755849	11.600	0.993771	
	5.682	0.783066	11.728	0.994316	
	6.000	0.793273	12.364	0.995733	
	6.001	0.813686	12.555	0.997094	
	6.191	0.821851	12.873	0.997264	
	6.637	0.844532	13.128	0.997945	
	6.764	0.847594	13.319	0.998217	
	6.955	0.874811	13.891	0.998288	
	7.019	0.885018	14.082	0.998968	
	7.146	0.893183	14.273	0.999059	
	7.210	0.903390	14.400	0.999399	
	7.528	0.905941	14.591	0.999535	
	7.719	0.914107	15.419	0.999762	
	7.782	0.916148	16.182	0.999830	
	7.973	0.925250	16.946	0.999887	
	8.164	0.928622	17.137	0.999955	
	8.291	0.933726	17.455	0.999997	
	8.482	0.940530	20.000	1.000000	
	8.546	0.943932			
	8.673	0.948015			
	8.737	0.953458			
	9.055	0.959582			

Steekproef- groottes (n ₂ ,n ₂ ,n ₃ ,n ₄ ,n ₅)	М	P(<u>M</u> ≤ M)	М	P(<u>M</u> ≤ M)
(3,4,5,5,5)	0.891 1.846 2.419 3.373 3.437 3.946 4.391 4.710 4.901 4.964 5.919 6.237 6.428 7.000 7.255 7.446 7.764 7.955 8.019 8.528 8.782	0.153098 0.289184 0.365733 0.518831 0.535842 0.612391 0.646412 0.654918 0.705950 0.756983 0.791005 0.829279 0.852244 0.867554 0.876059 0.901575 0.907954 0.928367 0.939850 0.943677 0.947930	9.291 9.482 9.546 10.055 10.310 10.500 10.819 11.010 11.837 12.028 12.346 12.537 13.364 13.555 14.128 14.891 15.400 16.419 17.946 18.137 18.455	0.965579 0.968130 0.973233 0.976295 0.982674 0.986077 0.988628 0.990670 0.991520 0.994072 0.995348 0.996368 0.998069 0.998750 0.9998750 0.999260 0.999473 0.999728 0.999940 0.999974 1.000000
	8.973	0.954734		

Steekproef- groottes	м	$P(M \leq M)$	Steekproef- groottes	M	$P(M \leq M)$
(n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅)			(n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅)		
	1.393	0.333196		1.280	0.292277
	2.904	0.416495		2.800	0.438416
	3.912	0.638626		3.814	0.584555
	5.423	0.771904		4.320	0.628396
	5.926	0.775237		5.334	0.803763
	6.430	0.908515		5.840	0.809608
(3,3,3,3,5)	7.941	0.941834		6.347	0.868064
	8.445	0.959605		6.854	0.889985
	8.949	0.974414		7.360	0.901676
	10.460	0.989223	(3,3,3,5,5)	7.867	0.930903
	10.963	0.995886		8.374	0.954286
	11.467	0.998355		8.880	0.957533
	13.482	0.999835		9.387	0.972147
	16.000	1.000000		9.894	0.980915
				10.400	0.989164
				10.907	0.995100
				12.427	0.997932
		x		12.934	0.998517
				13.440	0.999166
				14.960	0.999599
				15.467	0.999989
				18.000	1.000000

Steekproef- groottes	M	$P(\underline{M} \leq M)$	Steekproef- groottes	М	$P(\underline{M} \leq M)$
(n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅)			(n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅)		
	1.164	0.255163		1.045	0.211881
	2.691	0.446535		2.578	0.443761
	3.710	0.531589		3.600	0.480741
	4.219	0.646412		4.112	0.680434
	5.237	0.799509		5.134	0.769186
	5.746	0.816733		5.645	0.811344
	6.255	0.833744		6.667	0.844626
	6.764	0.872018		7.178	0.906198
	7.273	0.902638		8.200	0.940219
	7.782	0.915396		8.712	0.960189
	8.291	0.948567	(3,5,5,5,5)	9.734	0.973502
(3,3,5,5,5)	8.800	0.954308		10.245	0.984817
	9.310	0.967066		11.267	0.991474
	9.819	0.982376		11.778	0.994136
	10.328	0.986969		12.800	0.996503
	10.837	0.989521		13.312	0.997834
	11.346	0.993348		14.334	0.999609
×	11.855	0.994113		15.867	0.999720
	12.364	0.996665		16.378	0.999854
	12.873	0.997688		17.400	0.999942
	13.891	0.998336		18.934	0.999987
	14.400	0.999557		19.445	1.000000
	15.419	0.999897			
	16.946	0.999940			

17.455

20.000

0.999991

1.000000

Steekproef- groottes	М	$P(M \leq M)$	Steekproef- groottes	М	$P(M \leq M)$
(n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅)		-	(n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅)		_
	0.000	0.042088		0.146	0.036743
	1.900	0.416203		1.100	0.134726
	3.800	0.665613		2.055	0.330691
(4,4,4,4,4)	5.700	0.852670		2.628	0.379682
	7.600	0.931477		3.010	0.510326
	9.500	0.993830		3.582	0.559317
	13.300	0.999026		3.964	0.602865
	15.200	1.000000		4.537	0.668186
•				4.919	0.717178
	0.924	0.192297		5.491	0.743941
	2.462	0.432667		5.873	0.809263
	4.000	0.721112		6.446	0.833759
	5.539	0.802838		6.637	0.843557
	7.077	0.915813		6.828	0.872589
(5,5,5,5,5)	8.616	0.959079	(4,4,4,4,5)	7.400	0.905250
	10.154	0.985039		7.591	0.909604
	11.693	0.993212		7.782	0.921852
	13.231	0.998981		8.355	0.936368
	14.770	0.999221		8.546	0.941721
	16.308	0.999798		8.737	0.958051
	17.847	0.999942		9.500	0.962950
	19.385	1.000000		9.691	0.973837
l <u></u>			4	10.264	0.982003
				10.455	0.988535
				11.219	0.992617
				11.410	0.994795
				12.555	0.996156
				13.128	0.997176
				13.319	0.997993
				14.082	0.998673
				14.273 r	0.999490
				15.419	0.999660
				16.182	0.999864
				17.137	1.000000

•

Steekproef- groottes	М	$P(\underline{M} \leq M)$	М	$P(\underline{M} \leq M)$
⁽ⁿ 1, ⁿ 2, ⁿ 3, ⁿ 4, ⁿ 5)				
	0.382	0.061239	8.973	0.952948
	1.337	0.183717	9.164	0.959752
	2.291	0.347021	9.355	0.965196
	2.864	0.469500	9.546	0.965808
	3.246	0.523934	9.737	0.973973
	3.437	0.539244	10.500	0.980778
	3.819	0.620896	10.691	0.986221
	4.773	0.675331	11.073	0.988773
	5.155	0.716157	11.264	0.992855
(4,4,4,5,5)	5.346	0.756983	11.455	0.994488
	5.728	0.787602	12.028	0.995339
	6.110	0.814820	12.219	0.996700
	6.300	0.819356	13.364	0.997550
	6.682	0.860182	13.555	0.998231
	6.873	0.876513	14.128	0.998741
	7.446	0.888760	15.082	0.999422
	7.637	0.915978	15.273	0.999694
	7.823	0.919607	16.419	0.999864
	8.019	0.929813	17.182	0.999966
	8.210	0.940020	18.137	1.000000
,	8.782	0.946144		

.

Steekproef- groottes	М	$P(\underline{M} \leq M)$	М	$P(\underline{M} \leq M)$
⁽ⁿ 1, ⁿ 2, ⁿ 3, ⁿ 4, ⁿ 5)				
	0.534	0.079877	10.117	0.979204
	1.492	0.221881	10.500	0.981866
	2.067	0.261819	10.692	0.983996
	2.450	0.344655	11.267	0.986770
	3.025	0.504409	11.459	0.992095
	3.600	0.544347	11.650	0.993515
	3.984	0.633100	12.034	0.994846
	4.367	0.641975	12.225	0.995911
	4.559	0.695226	12,800	0.996226
(4,4,5,5,5)	5.325	0.718893	12.992	0.997557
	5.517	0.763270	13.184	0.997912
	5.900	0.803208	14.334	0.998800
	6.092	0.827171	14.525	0.999155
	6.667	0.835159	15.100	0.999421
	6.859	0.870660	15.867	0.999532
	7.050	0.885748	16.059	0.999798
	7.434	0.892404	16.250	0.999834
	7.625	0.913705	17.400	0.999945
	8.200	0.920139	18.167	0.999971
	8.392	0.937890	18.934	0.999982
	8.584	0.948540	19.125	1.000000
	8.967	0.959856		
	9.159	0.962518		
	9.734	0.966335		
	9.925	0.975654		

Steekproef groottes	М	$P(\underline{M} \leq M)$
(n ₁ ,n ₂ ,n ₃ ,n ₄ ,n ₅)		
	0.767	0.133128
	1.725	0.251465
	2.300	0.340217
	3.259	0.517722
	3.834	0.650850
	4.600	0.658246
	4.792	0.746998
	6.134	0.791374
	6.325	0.847584
	6.900	0.882530
	7.667	0.893624
(4,5,5,5,5)	7.859	0.929125
	8.434	0.942438
	9.200	0.962407
	9.392	0.971283
	9.967	0.976608
	10.734	0.981045
	10.925	0.989033
	12.267	0.993471
	12.459	0.997021
	13.034	0.998352
	13.800	0.998722
	15.334	0.999609
	16.867	0.999720
	17.059	0.999898
	18.400	0.999987
	19.167	1.000000

Literatuurverwijzingen.

- [1] Van Dantzig, D.: On the consistency and power of Wilcoxon's two-sample test. Proc. Kon. Ned. Ac. Wet. A 54, 1951, pp. 1-8.
- [2] Doornbos, R., Senden, W.L.M.M.: Comparison of two nonparametric k-sample slippage tests. Statistica Neerlandica, <u>26</u>, 1972, no. 3, pp. 145H-154H.
- [3] Gumbel, E.J.: Statistics of extremes. Columbia University Press, 1960, § 2.1.4.
- [4] Kendall, M.G., Stuart, A.: The advanced theory of statistics, Vol. I, Charles Griffin & Company Ltd, 1958, pp. 236-237.
- [5] Kruskal, W.H.: Nonparametric test for the several sample problem. Annals of Math. Stat. 23, 1954, pp. 505-512.
- [6] Kruskal, W.H., Wallis, W.A.: Use of ranks in one criterion analysis of variance. J. Am. Stat. Ass. 47, 1952, pp. 584-621.
- [7] Miller, R.G.: Simultaneous statistical inference. McGraw-Hill, 1966, § 4.4.
- [8] Miller, R.G.: Simultaneous statistical inference. McGraw-Hill, 1966, § 4.6.
- [9] Mood, A.M.: Introduction to the theory of statistics; First edition. McGraw-Hill, 1950, § 16.5.
- [10] Mood, A.M., Graybill, F.A.: Introduction to the theory of statistics; second edition. McGraw-Hill, 1963, § 16.6.
- [11] Steel, R.G.D.: A rank sum test for comparing all pairs of treatments. Technometrics 2, 1960, pp. 197-207.
- [12] Terpstra, T.J.: A nonparametric test for the problem of k-samples. Proc. Kon. Ned. Ac. Wet. 57, 1954, pp. 505-512.
- [13] Owen, D.B.: Handbook of statistical tables. Addison-Wesley, 1962, pp. 420-422.
- [14] Doornbos, R., Prins, H.J.: On slippage tests I, II and III. Indagationes Mathematicae 20, 1958, pp. 38-55 en 438-447.

Errata

1

pag.	Omschrijving	Verbetering
2.1	§ 2.2, regel 4	$\dots \ \overline{R} := \frac{N+1}{2} \ .$
4.5	§ 4.3, regel 7	Nu is $\widehat{0.V.}$ * A een binomiaal
	§ 4.3, regel 14	<u>n</u> ₁ en <u>n</u> ₂ zijn dan
4.6	Tabel 4.7	
	a = 0.2; Kruskal-Wallis	[0.151,0.171]
6.1	§ 6.1, regel 1	met toetsingsgrootheid X en dat
	Formule (6.2)	$\forall_i n_i / N = v_i, v_i > 0 \text{ indien } N \to \infty.$
6.3	Op één na laatste regel	Uit $\lim_{N \to \infty} \mathcal{E}_{\underline{u}_1}^c = +\infty$ volgt: