EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Remarks on a few concepts in artificial intelligence . KNOWBODE : a case study in
knowledge engineering

van Liempd, Gidi

Award date:
1985

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/186b286f-e2af-4131-9602-c548d9d0faf7

PART 92
KNOWBODE: a.case study in
knowledge engineering

Gidi van Liempd

f eerversi

Afstudeerhoogleraren: prof. ir. 0. Rademaker
prof. ir. F.J. Kylstra

Afdeling der Technische Natuurkunde TH Eindhoven

Contents
po 1 Introduction

Chapter 1. What does SAGE do?

81. The SAGE expert systems package
o. §2. The SAGE medelling language

oot §3. The SAGE executive

0 g4 The SAGE interactive command Tsnguage

0. 14 Chapter 2: KNOWBODE: an expert system for making Bode plots
p. 14 g1 The task

p. 4
]
0.5

p.ld 82. The expert knowledge
16 83 The expert system
p 17 Chapter 3: A few dislogues with KNOWBGDE
p“lﬁ g1. Dialogue |
n2% 82 Dislogue 2
p.26 83. Dialogue 3
n3z 54. Dislogue 4
p.35 Chapter 4: Analysis of KNOWEBODE
n.35 g1. The structure of dialogues in the SAGE system
[.36 g2. The modei
p.40 83, The interface and external environment
n.42 g4. Speed and size
p.dd Chapter 5: The representation problem
p.4b 81. Design Criteris
p.d6 g2 Performance
n.46 83. Understandability
n.47 g4. Flexibility
.49 Chapter 6 How to solve & probilem using the SAGE buiiding blocks
na0 §1. How to make a Bode piot
p51 32 Interacting subproblems
033 83 How to transiate the flowchart into the SAGE building
bocks
n.94 §4. Brief summary
.95 Chapter 7: AREAS and ACT!DNS
p.56 §1. Example: initialization of bac=kground memary
p.59 gZ2. ACTI0ONs which should not appear in the flowchart

p.62 Chapter 8: How to make a goal tree in SAGE

n.62 &1. Investigation will lead to evaluation
p.63 82 Evaluated facts will not be reinvestigated
9.66 83 The order of appiicable RULES
p.6 84 How to make an understandable tree
r2 Chapter 9 Design of the Interface and the external environment
cx.u 81. Historical account of the design
p.7o 82. Grey 2one
p.80 Chapter 10: Multipie use of knowledge
p.a0 81. In what kind of situations do we encounter sequences of
similar x:«ppraﬁnm’?
pat 82 What possibilities are there in SAGE for loops and

qut‘mutmps
p.83 §3. Then how should we hendle situations with loops?

Introduction

This report is the result of research done by Gidi van Liempd, as part of a
research project on the use of Al (Artificial Intelligence) in control

engineering. This project is under the supervision of the group.S&RT of the

department of Physical Engineering, Eindhoven University of Technology.

The report is divided into three parts, of which this is the second. .
In the first part, remarks on a few concepts in Artificial Intelligence are
made.)

This part contains a description of a program called "KNOWBODE" made by -

the author, on the expert system generator SAGE (by SPL). The purpose of
that part of the report is to gain insight on how SAGE works, which may be
useful for designers of expert systems (in SAGE), the so-called "knowledge
engineers”.

The third part only contains the source listings of the KNOWBODE program
and associated programs necessary to run it, if desired, on any SAGE
system. : '

This part of the report was written with one type of reader primarily in
mind: a knowledge engineer (or actually, someone who wants to become
one). What is a "knowledge engineer”? According to Feigenbaum, quoted in
[17] (p. 140):

"The knowledge engineer practices the art of bringing the principles and
tools of Al research to bear on difficult applications problems requiring
experts’ knowledge for their solution. The technical issues of acquiring
this knowledge, representing it, and using it appropriately to construct
and explain lines-of-reasoning, are important problems in the design of
knowledge-based systems...The art of constructing intelligent agents is
both part of and an extension of the programming art. It is the art of
building complex computer programs that represent and reason with
knowledge of the world.”

An “expert system” is such a complex computer program which contains
expert knowledge. Or, in the words of the SAGE manuals: ([20]SAGO1, p.6:)
"An expert system is a computer program which reflects the
decision-making process of a human specialist. It embodies organised
knowledge containing a defined area of expertise, and frequently operates
as a skilful, cost-effective consultant.” SAGE is an "empty” expert system,
in which knowledge for various tasks may be encoded.

However, since the author is aiming at knowledge engineers, he thinks it is
better to stress the fact that expert systems are programs, not just
(static) bodies of knowledge, but structured sequences of actions with a
goal (like making a Bode plot). And it are the knowledge engineers who
must make such programs!

In the first chapter | shall describe the components of SAGE, i.e. the
building blocks of the structure which embodies the program. This whole
report is an attempt to show the reader how those basic components may
be put together to create the effects desired in some program (written in

-y -
the SAGE modelling 1anguage).
These effects have three aspects (which are briefly discussed-in Chapter
5): performance (a construction should do something), understandability.
(the user or designer must be able to understand the construction) and
flexibility (constructions should match with other constructions, and
preferably be general enough to be used in other sections of the program as
well). Various aspects of this problem are discussed in Chapters 6 through
10.
Most of these aspects are illustrated by examples from the program
KNOWBODE, an expert system in SAGE which is able to describe some
features of Bode plots (a graphical means of expressing the
frequency-transfer function of a system). in Chapter 2 the necessary
expert knowledge is briefly described, and in Chapter 3 several dialogues .
with the program are displayed, illuminating some of the possibilities of
the SAGE system. Chapter 4 contains an analysis of a few quantitative -
aspects of the KNOWBODE program, and Chapter 10 some conclusions.

| shall not refrain from attributing SAGE humanoid qualities, because |
think they give an easy and useful description of the behavior of the
program, which is aiso easily remembered. Naturally, such a description
will give rise to errors for those working with it, since SAGE is not
exactly humanoid, but such an error may possibly be treated as another
trait of character, and does not outweigh the advantages of the method.

Sometimes concepts or guidelines for working with SAGE could be better
explained by using examples from another program by the author, called
MOVER.

This program, which operates in a "blocks world" and is able to describe
how it would put one block on top of another one (if it was connected to a
robot), is based on a procedure mentioned in [19] p.35-41.

Since the examples used are intended mostly to convey a general flavor of
working in SAGE, and do pot rely heavily on some (possibly suggested)
performance, it was not deemed necessary to include the source listing of
this program in part 3 of this report.

Probably not enough stress has been put in this report on the fact that all
examples from SAGE can be made visible during interactive sessions. The
format chosen to display Lhe examples in this report is usually the format
in the source listings. This is done for a more uniform approach of the
texts taken from KNOWBODE. See Chapter 3 on how it looks in an
interactive session.

it may be clear that this report may be regarded as an extension of the
SAGE manuals. There, it was discussed what the basic components do.
Here, how to make constructions with them, to realize (pieces of) program
for some (high-level) task.

As most manuals, it will probably be very boring to read. Any sensible
reader should skip the parts he probably knows (readers familiar with
SAGE may skip Chapter !, readers familiar with control engineering the
first two sections in Chapter 2).

-5 -

I'd 1ike to thank Hans Canters, for being a very friendly representative of
SPL.

Chapter 1
What does SAGE do?

In this report we are investigating SAGE, an example of a working expert
system.

What is an "expert system“? To quote from [1] the (slightly modified)
description given by the British Computer Society's Committee of the
Specialist Group on Expert Systems: ‘

"An "Expert System" is regarded as the embodiment within

a computer of a knowledge-based component from an
expert skill in such a form that the machine can offer
intelligent advice or take an intelligent decision about a
processing function. A desirable additional characteristic,
which many would regard as fundamental, is the capability
of the system on demand to justify its own line of
reasoning in a manner directly intelligible to an
anticipated enquxrer The style adopted to attam these
characteristics is rule-based programmmg*

| shall not discuss here the implications of this description, but do point
out that because of the rule-based programming and the.system's
explanation capabilities, the advice given or the decision taken is regarded
as "intelligent” rather than (just) the output of a complex program. (See
part 1 of this report).

On working with an expert system, we are considering the following
situation:

" the universe 3

(l the user ’

computer

(expert syst.]l—-

\, _/

fig. 1 global situation

The shaded box represents a part of the universe, in which the user is
interested, and on which he and/or the expert system can act.

Physical instances of this shaded box could be almost any system: ranging
from a "blocks world” + a robot-arm and eye + computer programs to
control that arm and eye, to just another computer program (maybe even a
copy of the expert system itself). A part common to all such systems, can
be a system supplementing the possibilities of the expert system (e.g. in
the case of SAGE it may provide a "long-term memory” function by storing
results in files).

By which is meant that the expert knowledge is encoded in rules essentially based on the structure “F
condition THEN action”™.

~

We will call this part of the shaded box the "External Environment” with

respect to the expert system.

This report, which discusses the expert system SAGE, may therefore also
contain a discussion on suitable forms of the environment external to
SAGE (Chapter 9). '

S1. The SAGE expert systems package

SAGE is an expert systems package, which has two major'componen}tsz the -
Compiler and the Executive. It also provides the SAGE modelling language,
in which models (='programs’) may be written, and the SAGE command
language, for user interaction with the Executive.

The solution of some (expert) task may be encoded in a MODEL using the

SAGE modelling language. The compiler must then be used to translate the -

source form of this program (off-line) into a representation suitable for
the executive. The executive controls the interaction between a user and a
model, hence controls execution of the model, including the mteractton of
the model with its external environment.

Since the model can represent all kinds of expert tasks SAGE is often
referred to as an "expert system generator” rather than an "expert system".
It's like EMYCIN (or empty MYCIN), which can be employed with various
information for different applications, but which derived from MYCIN, an
expert system which advises on the diagnosis and treatment of bacterial
infections (see 1], § 3.4).

fig. 2 a SAGE MODEL

§2. The SAGE modelling language

One way of describing a SAGE model is to say that it consists of a
hierarchy of AREAs, which is able to do something because it governs a
forest of (goal)trees. The basic components of AREAs are called
"ACTIONS", those of the goal trees "RULES". We shall now descibe the two
parts:

1. ACTION-based part,

2. RULE-based or goal tree part.

-b -
§2.1. The ACTION-based part

The basic building blocks of the ACTION-based part are called "AREA" and
"ACTION".

As we shall see later, AREAs may embody functional entities, chunks of -
program to achieve a high-level goal, like "getting the FTF". An executable
SAGE model consists of a non-empty AREA designated "FIRSTAREA" (which
is where the program normally would start running), and (optionally)
several other AREASs. |
An area is introduced by a declaration:

AREA areaname : string

where "areaname" identifies this area within the model, and the string
should describe the purpose of this area. (Such kind of strings are attached -
to most SAGE building blocks.)

The ACTIONs (and the assertions, objects, rules and questlons which we
shall describe in the RULE-based part) following this area declaration and
preceding the next area declaration are said to belong to this area.

When an area is being investigated, the actions belonging to it are
processed in the order of their declaration in the model source.

An ACTION is a basic program unit. It can in some ways be compared to a
sequence of a few statements in a programming language like FORTRAN.
Each action, like an area, has an identifying name and defining (and
optional explanatory) text. It has an optional precondition whether or not
to execute the actionbody. This body of the action declaration specifies
the effects the action is to have; actions may roughly be divided into two
(interdependent) classes:

1. those concerning the explicit flow of control

2. those concerning program output.

S2. 1.1, action effects concerning the flow of control:

STOP

RESTART

REASK questionlist
CONSIDER goallist
FORGET goallist

are action effects with the primary aim to control explicitly the flow of
the program. We will elaborate on them in Chapter 7 and 9, but for the
moment only illustrate the general idea by an example:

ACTION Bode_plot :
“I will now calculate a Bode plot™
CONSIDER user_wishes
ALSO
CONSIDER get_FTF, prep_low_freq\break,
xmine_low_freq\break, xmine_intervals
PROYIDED Bode_plot_wanted

The action effects in <Bodeplot> will (all) be executed when the
precondition, the statement <Bodeplot_wanted> (associated string: “the-
user wants me to calculate a Bode plot”) has been evaluated and found to
be true.

An action effect like "CONSIDER user_wishes” will transfer control to the
AREA user_wishes, a chunk of program for determining more precisely
what kind of results the user wants. The ACTIONS in that area will then be
processed (in the course of which again other AREAs may be entered), and
afterwards control is returned to <Bodeplot> where the next action effect
("CONSIDER get_FTF") will be executed. | '
As you can see, "CONSIDER area” is in some ways equivalent to calhng a
subroutine in a FORTRAN statement.

But "CONSIDER" can also be used to start investigation of an assertion or
object, which in SAGE means trying to get a (truth or certainty) value for
some statement. This means investigating a goal tree, where the rooft or
top node is formed by the assertion/object to be CONSIDERed. This is done..
in the RULE-based part of the model, which we will consider in a moment.

ADVISE [LATER] advisebody (,advisebody)
CALL [LATER] procedurename parameterlist

are action effects which take care of output of the program.

An ADVISE action is analogous to a print statement in conventional
programming languages. ADVISE is followed by a list of strings, assertion
names, object names or constant names. When the action takes effect the
strings and the values of the specified assertions, objects or constants
are displayed in the order specified.

Assertions or objects in the advise list which have not yet been
investigated are all investigated, in advise order, before any of the advice
is given. This means that ADVISE, like CONSIDER, can aiso start the
evaluation of facts (i.e. ASSERTIONs or OBJECTS).

SCALES can be attached to assertions/objects to convert numerical values
into strings, thus allowing a more understandable presentation of resuits.
An example:

(an action effect from ACTION <advice_about_{HI>)

ADYISE
“IN", behavior_|H|, “represents a ", kind_of_line

can produce as output (depending on the actual values of <behavior_{H|> and
<kind_of_line>):

For all frequencies, logHl vs log(w) represents a horizontal
line.

Here the actual values have been converted using SCALES.

User-defined PROCEDURES and FUNCTIONs (see Chapter 9) are the means by
which the model may communicate with the outside world other than
through the terminal (sensors, actuators, files, databases etc.)

FUNCTIONs may act upon this external environment and retrieve values
from it. They are part of the leaves of the goal trees. |
PROCEDURES only act upon the outside world, and are executed by using the'
CALL action effect. The parameters to be used as input for the procedure =
will be evaluated upon CALL. This means again that "CALL", like
"CONSIDER", implicitly can start the evaluation of facts. ‘ a '
AS an example examine

ACTION add_break_point :

“finding the break point of a factor {if possible)

“and adding it with the factor to a list”
CALL add{ break_point, cause_factor , list)
PROYIDED break_point_exists

This action will do as the associated text says. The list is stored in the
external environment, so a procedure (<add>) must be used to put the
values there. Notice that it works without the programmer explicitly
having had to mention something like "now you must investigate what
value <breakpoint> has”. It is as if <breakpoint> is a call to a subroutine to
compute that value, but actually this is done in a goal tree.

§2.2. The RULE-based or goal tree part

S0 on the one hand we have AREAS and ACTIONs, to be regarded as
subroutines and statements respectively, and on the other we have goal
trees. What are those goal trees made of 7

The main component in the reasoning structure in a SAGE model is the
ASSERTION. An ASSERTION should be associated with a statement whose
truth is to be determined in a certain situation. An example of an
ASSERTION declaration is:

ASSERTION read_FTF :
"I read the FTF which you gave me”
DEFAULT FALSE

("I" is meant to be SAGE, "you" the user).

in the SAGE structure the likelihood of an assertion must be expressed by
a real number associated with that assertion. This real number always lies
in the range -100.0 to 100.0, the latter representing TRUE and -100.0
representing FALSE. Numbers with absolute values less than 1000
represent degrees of belief which are not absolutely certain. Zero
represents complete uncertainty. Apart from that, an assertion may also
have an “unknown” likelihood, if all available methods of establishing it
fail.

The degree of belief of an assertion is connected to the probability that
the assertion is true via a logarithmic scaling function (see [22]SAGO3,
p.59).

- 9 -
Before we discuss the means to establish the value of an assertion, let us
first consider another component of SAGE, quite similar to the ASSERTION.
SAGE atlows the use of entities which have associated with them real
numbers which can lie in any range. These entities are called OBJECTS.
They are declared in a similar way as assertions, but must contain a

specification of the range within which their numerical value lies. For
instance:

OBJECT break_point :
"the break frequency”
MORE
“the frequency where one region of asymptotic *
“behavior of gain |H| and phese arg(H) meets
“another”

0.0, maximum_real)

As mentioned, the ASSERTIONs and OBJECTs can get a value depending on
the actual situation. Let "fact” mean either assertion or object, then

investigating a fact means the.program tries to establish a value for it.
How does the program go about doing that?

RULESs are the means to establish the value of a fact by using the values of
other facts, or by using FUNCTIONS to get a value from the external
environment.
For instance:

RULE calc_bresk_point_2 :
“below the break point frequency, a type 3 (="
"2nd order) system has a horizontel asymptote -
*in JH| and tends towards O in arg{H), above it
“arg(H) tends towards + or - 180 degrees, and "
“log]H| vs log w has an asymptote sloping with "
“tangent + or - 2. The break frequency is “
“multiplied by 1 /T if there is a time constant T *
"in this type 3 system”

break_point IS square_root{al pha*alpha +

beta*beta)
PROYIDED type(factor) = second_order

This rule can be used to establish a value for <break_point>. There can be
several different rules for different situations.

The facts in the precondition (only <factor>, second_order is a CONSTANT)
and the rule body (<alpha> and <beta>) have values which also depend on
rules and questions. So if the program investigates <break_point> by using
rule <calc_break_point_2> it will have to suspend that investigation to
examine the values of the facts in the precondition first. When the
precondition expression has been evaluated to a value between 0.0 and
100.0 (TRUE), the facts <alpha> and <beta> must be investigated.

Similarly, a DEFAULT for a fact can be the name of another fact which
needs investigating.

.
The procedure for investigating a fact is as follows:
a) If it is marked ASKABLE (in the source text) it is asked; if .
the user does not reply "UNKNOWN®, its value is determined .
from the user reply and the investigation of that fact is
completed.

b) If the fact is askable but the user answers "UNKNOWN", or -
not ASKABLE, then each QUESTION and each RULE which givesa
value to the fact is tried, in the order in which they occur in
the mode! source text, until one succeeds.

For a QUESTION to succeed, the question precondltlons must bei
met, and the user must not reply "UNKNOWN".

For a RULE to succeed, the rule precondltlons must be met and »- |
the rule body must not evaluate to "UNKNOWN". | '

c) If all questions and rules defining the value of a fact fail,
the value taken for the fact is the DEFAULT value if one is
specified, otherwise the value is deemed "UNKNOWN".

Once the program has found a value for a fact, it will not (easily) forget or
change that value. This is called “truth maintenance”. A direct effect is
that the program won't ask any question more than once.

The whole structure of facts, associated with rules to link them to other
facts, which in turn are linked to yet other facts (or to the outside world
via questions or functions), can be compared to a tree (Winston,[19] p.33).
The tree has nodes, corresponding to ASSERTIONs and OBJECTs. The top
node, the one being investigated in the course of some ACTION, may also be
considered the root node, in SAGE called the goal*.

Nodes are connected to other nodes by branches, corresponding to RULES.
The leaves, the points where the tree receives its light and carbon-
dioxide, correspond to the points where the facts get values from the
outside world: the ends of QUESTIONs, the ends of RULES (CONSTANT
values, FUNCTION values).

Investigating a yet unevaluated node means, in this analogy, finding paths
to the leaves which will provide the node with sufficient oxygen.

And since the investigation begins at the goal and works its way
backwards towards the things which may already be known, it is called

backwards chaining (Hofstadter [4], p.618).

* Notice that 1) this top node can be an intermediate node in another tree!, and 2) the user can make aW
node a goal in an interactive session using the command “CONSIDER". By the way, it is not true that the
top node is called “goal” in general in SAGE: only when it is a precondition of an ACTION or explicitly
CONSIDERed. | prefer to use the word "goal” whenever a faot appears in an ACTION, even as a
parameter in a function call.

§3. The SAGE Executive

“Running a SAGE model” must in my opinion be regarded as running a
program in a special environment. This environment is called the "SAGE
executive”, and it is special because it allows a richer interaction than a
“normal” program environment would do. .

The SAGE executive controls the interaction betweén auser (a person at a

terminal, or other software systems) and a model (program). The user can .

conduct his part of the interaction by means of the ﬁAﬁE_mlecac_tuﬁ
command language The design of the model must be‘such, that the
interaction of the model and the user is as good as p035161e in terms of the
design criteria (performance, understandability and flex1bmty see

Chapter 5). L
/L the uzer - ')&“ |
i N
computer
4 SAGE executive "i
[\ (iMODEL)'
-
: \\ ' T\
{QUESTIONS + ADYISE text \ [FONCTioWG /PROCEDURES | direct input |
{answers to questions + commands| [FUNCTION va]uesxi

fig. 3 Interaction between parts

=
74:

In the SAGE terminology, the executive can be in one of four states or
"modes”:

1. pre-model mode

2. questioning mode

3. (user) command mode

4. done mode.

Pre-model mode is the initial state of the executive before a model is
loaded.

Questioning mode is the state during a consultation with a model, when
the executive is evaluating the model, asking the model's questions and
giving model-defined output. This is the "program-running” mode.

In this state the user can ask for some explanation of the system, e.g. ask
for a model question to be explained ("?" command) or ask for the reason
(context) why the system asked a particular question ("WHY" command).
Further explanation can be obtained when the user interrupts the program,
i.e. changes the state to command mode. Then, the user can ask for more
types of information, but also influence the sequencing of the consultation

[A

session. He can for instance leave certain parts of the medel out of the run
("FORGET"), or concentrate the investigation on one or more partlcular
goals.

Running the program can then be resumed, until the user interrupts it again
or the evaluation of goals is finished. The latter is called the "done mode”,
which again allows for various kinds of explanation (e.g. "FACTORS", "LIST
DONE GOALS" etc.).

S4. The SAGE interactive command language @ -

The SAGE interactive command language consists of seyeral'comm'ands the
user can type in on the terminal, in order to mteract effectwely w:th a-
model.
A more detailed description is included in Appendix B [21]SAGO2 and
[22]SAGO3.
For the moment it suffices to list the commands in classes which | will
divide in two groups:

1. Sequence commands

2. Explanation commands.

§4.1, Sequence commands

Sequence commands are all commands which will directly or indirectly
influence the course the program takes.

They can be subdivided into 5 classes:

_basit _pure sequence concentrate skip questions_
MODEL BEGIN CONSIDER SET
I (hreakin) FORGET EVALUATE

DO RESUME

, quiT _
OVERFLOW FYhatif ..
BREAKIM INVESTIGATE
SCREEN Sequence commands REINSTATE

fig. 4 Sequence commands

More information about each command can be found in Appendix B.
Examples of the use of these commands can be found in the dialogues in
Chapter 3.

§42. Explanation commands

Explanation commands are all commands which may help the user
understand (parts of) the program and its execution, and the commands to
record consultation sessions.

They can be subdivided into 4 classes (see fig. on next page):

ks

_whatis ... ?2___ how/why...? show me __remember_ﬁ
HELP FACTORS {TRACE SAVE
7 wWHY RESTORE
LIST LOG
SUMMARISE , CLOSELOG
HISTDGRAJM Explanation commands '
fig. 3 Explanation commands -

Explanation commands may be used both by the user and the designer, i.e.
to test a certain consultation session (a run of the program), or to test the
model used in that session. More information about these commands can
also be found in Appendix B, and the dialogues will provide many examples
on their use.

Chapter 2
KNOWBODE : an expert system for making Bode plots.

S1. The task

Since my work on the SAGE expert system represents part.of a research
project on the use of Al in control engineering, it was decided that an
example expert task to be implemented should be selected from that field .

A task that according to many students requires considerable expert
knowledge in control engineering is passing a test in “Dynamische
Systemen” (i.e. "Dynamic Systems”, an elementary ’course in control
engineering)

The expected size of this task* plus the fact that a pmmary aim of the
research is the investigation of the possibilities of the expert system
made me choose a much smaller task: how to make a Bode plot. ,
| expected SAGE to be good at purely consultational tasks (evaluating

statements in terms of other statements) possibly supported by some
numerical procedures in the external environment, but | decided to test its
limits. (Simon,[15] p.13:) In a taxing [task] environment we would learn
something about its internal structure, specifically about those aspects of
the internal structure that are chiefly instrumental” in limiting
performance.

In making a Bode plot calculations are essential: if SAGE was to be a
consultant on this, the "numerical” part (as opposed to the "symbolical”
part) could not be placed external to the expert system, but should be a
central part in it. Will this create any special problems (and why), in
addition to the central problem: how to make an expert system in SAGE?

§2. The expert knowledge

The domain specific knowledge needed to compute a Bode plot can be found
in "Dynamische Systemen” [12] p., but also in books like [3],8 6-4.2. From
this book | will reproduce a small part giving an impression what a Bode
plot is, for those not familiar with the term. Notice that this text, from
which the knowledge needed in the system can be taken, could also be part
of the introductory text of the expert system.

in control engineering, the frequency-transfer function (FTF) of a system
is very useful as a means of predicting (control) system response and
specifying performance ([3], p.140).

The FTF of a system is a complex frequency function T(jw) which tells us
that a stable linear time-invariant system subject to a harmonic input
signal of frequency w will, in steady state, have a harmonic output signal
of the same frequency as the input but with the amplitude magnified in the
ratio IT(jw)l and with the phase advanced with the amount /I(jw). ([3], p.
140).

* The textbook "Dynamische Systemen” ([12]) contains 250 pages. If we roughly equate the knowledge
oontained in one sentence with the knowledge in one RULE, several thousand rules would be necessary.
In chapter 4("analysis™) we will discuss the size of the KNOWBODE system.

[V

Bode suggested a practical plotting method of the FTF, which is
particularly suited to those cases where the FTF appears in the form

(T+jw Tyl +jwTa)

T(jwd = K — N : :
w1+ Jw Ty 0+ jw Ty)

By taking the logarithm of this equation, and comparing the real and
imaginary parts of it, we obtain the following two expressions for the
gain of FTF, expressed in db, and the pAase, expressed in radians : '
Gain:

20 log [Tl =20 log K + 10 log[1 + (WT,] + .

- 20N log w - 10 Tog[1 + (WT] - ..

Phase:

(T =tan" (WT)+ .. -N7/2 - tan™H(wT,) - ..

It is particularly simple to plot these functions on a semiiog plotting
paper (see fig. 6). On such a paper, the function -20N log w will simply be
a straight line with a negative slope of -20N log 2 = -6N db per octave,
The terms of the form +10 log[! + (wT)2] are also handled very
conveniently. We note that if wT > 1, that is, w > 1/T, then this term
approaches the asymptote +20 log(wT). This is obviously a straight line
with the slope 6 db per octave intersecting the O-db level at the
frequency w = 1/T, referred to as the break rrequency .

If wT << 1, that is , w << 1/T, then the term approaches the asymptote +10
log 1, which is obviously the abscissa axis. Right at the break frequency,
the term equals +10 log 2 = +3 db. The total plot is shown in fig. 6. To
obtain the overall gain, one only has to add up terms which consist
basically of straight-line segments. The phase angles of these terms,
itan"(wT), are also plotted in the graph. /¢ /s important to note that
the total gain and the total phase of T(jw) are obtained simply
by summing up terms of the basic lypes shown in rigé6.

T »
+ 7iz4 12 % w"'fﬁ
1) i
1 mnd ¢ 10 log[1+(wT)*] - ___
® o l A7
1 L.
,..:; D,.-:, 0 _%""'4 = 5 S > W
8 = "'"--...,_" Break frequency
£ Q \\Ew =1/7
< "'n'-‘}4"" -6 1\]
tan ™' (wT)
h‘ﬁ-_-l!-
+ -miz4-12
-200 log w
+-37/44-18

fig. 6. example of a Bode plot

§3. The expert system

KNOWBODE is a computer program describing some features- of the Bode
plot corresponding to a frequency-transfer function conmstmg of several
(up to 10) factors. |
Description of the plot is necessary, because only an “expert” on Bode plots
needs the mere picture to see all features. Non-experts need to be toid
what they see.)
By the way, KNOWBODE does not draw the actual Bode plot, because we are
mainly working on a (simple) video terminal, and SAGE itself has limited
graphical abilities*. But it is possible to add an external FUNCTION to the
program for drawing the plot on some plotter or video screen.

KNOWBODE can handle only a small portion of the complete task "making a
Bode plot”. It can interpret only frequency-transfer functions provided in -

factorised form. It has limited capacities for interpreting symbolic- B

variables (like "tau-1"). It will describe features concerning the gain ITI,
but not yet those concerning the phase /1. It does not descrlbe (or detect)
extremum points in the gain.

Some of these limitations may probably be overcome by adding more
ACTIONS/RULES etc. Others are more fundamental due to limitations in
SAGE and the representation chosen for the problem. In the following
chapters, describing the design of KNOWBODE, | shall also try to indicate
the nature of some of these constraints.

¥ In our case study "the introduction of variables” (Appendix D) we will briefly disouss a possibilityfor
graphical output.

Chapter 3
A few dialogues with KNOWBODE

This rather long chapter may give you some idea of the possibilities of
working with SAGE.

in the first dialogue, we show a run of the program KNOWBODE which is
deliberately kept as simple as possible. It may give you an idea of the
questions which are usually asked by this program, and show the usual
output.

in the second dialogue, we shall deal with a few generai features. The
conversation shows that the user can ask "why”, "what is.”,"what if." and .
related questions, and inspect parts of the program.

In the third dialogue, we are witnesses of the execution of the: prog'rém on
a few levels, and use the question possibilities the user has to get some
task-specific information.

in the l1ast dialogue, the user takes over control of the program, and meets
a few limits.

All dialogues are done under the assumption that the user is rather
familiar with the SAGE system, but not with KNOWBODE. Other users
however will probably have to make frequent use of the HELP option.
Readers of this report can use Chapter 1, Appendix A and B and the HELP
files included in part 3.

To distinguish the user's answers and commands from the system output,
we asked the user to type in capitals.

Everything in the dialogues in a font like this should be regarded as the
remarks of an observer, who has a rather detailed picture of both
KNOWBODE and the user's mind. Remarks between string quotes “like this”
should be regarded as an approximation of the user's thoughts on some
decision. N.B. this observer is not part of SAGE, nor is it a computer
program.

Superscript numbers, like this'!?, used in the first dialogue, are added in
this report to mark certain points. Between those points, the response
time of SAGE was measured: see fig. 11 onp. 42.

§1. Dialogue 1

(Inwhich a user familiar with SAGE runs KNOWBODE just to get an .
answer. It may give you an idea of the normal run of the program.)

>RUN SAGEE

SAGE Expert System Executive, version 1.3
Copyright (C) SPL International 1981,
Licensed Site: University of Eindhoven, on PDP 11/34

If you do not know what to do at any time, type HELP
Please type a command : MODEL KNOWBODE

Current model is <Dynamic_Systems> - Version 2. 28-September-84.
Author: Gidi P. van Liempd '
Compiled at 16:51:00 19-De9784

Type BEGIN to begin.

Please type a command : BEGIN'
(Now the program to compute a Bode plot will start running)

@1n this version of <Dynamic_Systems> the only thing | can do is
calculate a Bode plot.

-~ more (Y/N) ? NO®
(the user doesn't want the extra introductorytext)

Do you want me to calculate a Bode plot?
(You may answer yes or no) : YES™

) Are you familiar with me?
(Range is -5 -> 5) : YES
(however, if you (the reader) are not familiar, see the next dialogue)

®when | give you the Bode plot, do you wish me to explain in more detail
the contribution of each factor?
(You may answer yes or no) : NO*¥)

(100At what points during the process of calculating the Bode plot do you
wish to have the opportunity to interrupt me :

1. at all possible points

2. 1 don't care, just give me the Bode plot

3. | want to have the opportunity to interrupt you at the point where
you examine individual factors for their interesting frequencies

4. | want to have the opportunity to interrupt you when there is more
than one factor causing the same break point

5. | want to have the opportunity to interrupt you when you are about

to examine a new break frequency
Make a choice : 211

(12)i5 there anything you want to ask?
(You may answer yes or no) : NO''®

(14))5 the frequency-transfer function available?
(You may answer yes or no) : YESUY

(1€)you may now type in the frequency-transfer function (FTF)
1701 + jw 3y
(4 simple £TF. The '?’ is necessary to mark the end)

(18)For low frequencies, the asymptote of IH in a loglHl vs log(w) plot
represents {'9a horizontal line..For decreasing frequency, logiHl will
approach the @asymptote from below.

Above w = 0.33 the behavior of the asymptotes of [H| and arg(H) changes
due to @Vractor FACTOR-1. The previous asymptote intersected the break
point frequency at [Hl = 1.00, but the actual value of |H| at the break point
is:

0.71.

The effect from this break point on the total asymptote of [Hl is, that the
(2s]0pe changes to -1.00.

* % ¥ That concludes the consultation. % %
Type QUIT to quit.

Please type a command : QUIT
>

§2. Dialogue 2

(In which an inquisitive user, who is familiar with SAGE is having a go at
KNOW BODE. It will demonstrate a few of the possibilites in mferacﬂve
sessions.)

>RUN SAGEE

SAGE Expert System Executive, version 1.3
Copyright (C) SPL International 1981. :
Licensed Site: University of Eindhoven, on PDP 11/34 _' "

If you do not know what to do at any time, type HELP '
Please type a command : MODEL KNOWBODE

Current model is <Dynamic_Systems> - Version 2. 28- September-84
Author: Gidi P. van Liempd .
Compiled at 16:51:00 19- Dec-84

Type BEGIN to begin.
Please type a command : BEGIN

In this version of <Dynamic_Systems> the only thing | can do is calculate a
Bode plot.

-- more (Y/N) ? YES
(the user: “Yes, let me see some more text on this")

This Bode plot is calculated using a frequency-transfer function, which in
this version | can only use if it is given in factorised form. | mean, if the
FTF is not available, but e.g. a differential equation on the system, there is
not much | can do in this version.

Do you want me to calculate a Bode plot?
(You may answer yes or no) : WHY
("Why? What are the consequences of my answer?”)

Your answer supplies a value for the assertion <Bode_plot_wanted>
the user wants me to calculate a Bode plot

Please reply : WHY LEVELS 3
(“Your explanation was not enough. Please give me a few more levels of
explanation on the consequences”)

Your answer supplies a value for the assertion <Bode_plot_wanted>
the user wants me to calculate a Bode plot

The assertion <Bode_plot_wanted> is a precondition of the action
<Bode_plot>

| will now calculate a Bode plot
in consultation area <control>
the overall sequencing

Please reply : LIST BODE_PLOT
(“Well then, what does this action <Bode_piot> do?")

Action <Bode_plot>:
| will now calculate a Bode plot
Effects are: S
CONSIDER what advice the user expects from me <user_wishes>»
CONSIDER how to obtain the frequency-transfer function (FTF) -
<get_FTF> -
CONSIDER initialization of increments and background memory
space necessary for area <xmine_low_freg\break> <prep_low_freq\break>
CONSIDER investigation of the low frequency behavior of the
gain |H| and phase arg(H) for the.FTF H, and preparation of a list of
frequencies where a change in the behavior of |H| or arg(H) will occur
<xmine_low_freq\break>
CONGIDER the initialization of increments in background
memory necessary for AREA <body_xmine_intervais> and start of the
actual calculation <examine_intervals>
Provided the given precondition is fulfilled.

Please reply : 77
(“Could you please repeat the question for me?")

Do you want me to calculate a Bode plot?
(You may answer yes or no) : YES
("Okay, I'll give the program a chance")

Are you familiar with me?

(Range is-5->5): ?

("What do you mean by that?” By the way, do you see that there is a
certainty range (instead of “YES or NO") connected to this question!)

| mean, have you worked with me (SAGE) before, do you know some of the
commands available to you etc.

Please reply : YES

(This is the same as answering “S", i.e. “I am certain on this")

When | give you the Bode plot, do you wish me to explain in more detail the
contribution of each factor?

(You may answer yes or no) : NO

(“Let’s say no. But maybe I'lf change my mind later...”)

At what points during the process of caiculating the Bode plot do you wish
to have the opportunity to interrupt me :

ZZ

1. at all possible points

2. L don't care, just give me the Bode plot

3. | want to have the opportunity to interrupt you at the point where -
you examine individual factors for their interesting frequencies -

4. | want to have the opportunity to interrupt you when there is more
than one factor causing the same break point

S. | want to have the opportunity to interrupt you when you are about
to examine a new break freguency

Make a choice: 2
Is there anything you want to ask?

(You may answer yes or no) : WHY LEVELS 3
("What do you mean, and where are we in the program?")

Your answer supplies a value for the assertion <any__questlons>
the user wants to ask questions-

The assertion <any_questions> is a precondition of the action
<interrupt_process»

| am about to proceed on the instructions you gave me. As long as you do
not answer this question, you can interrupt my line of thought, e.g. for
asking 7<name> questions.

in consultation area <get_FTF>

how to obtain the frequency-transfer function (FTF)

Please reply : 77
("What was the question again?)

Is there anything you want to ask?
(You may answer yes or no) : ?

| mean, is there anything you want to ask before | go on trying to get the
FTF

Please reply : ?

(“can you give me even more informationon this question?”)

Is there anything you want to ask?

(You may answer yes or no) : NO

(By asking the same question again, the program shows it has no more
information)

(In the mean time, the user has changed his mind about not wanting extra
explanation on the factors of the fTF. He'll use the next question as an
interrupt point to change his answer.)

Is the frequency-transfer function available?

s

(You may answer yes or no) : LIST GOALS
(“Let me see what the program has done, and what it is.doing right now")

FEHHEI 2 HHIHIHHHIEIHHIEHIEIHIEIHIIEIH I I M HHIHIEN IR IHIMIIHHIHIH AN

The following goals are under consideration :

Assertion <FTF_given> Not evaluated
Prior Value : -100.0
the frequency-transfer function is given

which is being considered because it is the precondition for action
<read_given_FTF> ~—-----~-—-----

Area <get_FTF>: Status: now being investigated
how to obtain the frequency-transfer function (FTF)_,
contains the actions: , S

1/ -
| am about to proceed on the instructions you gave me. As long as you do
not answer this question, you can interrupt my line of thought, e.g. for
asking 7<name> questions. <interrupt_process>

2/ if the FTF is given, | will now read it <read_given_FTF>

3/
I am sorry, but | could not correctly interpret the FTF you gave me. Please
try again and make sure it is in the right form. If you do not know what the
right form is, examine FACTORS how_to_read_FTF <failure_to_read_FTF>

4/ if | had the knowledge, | would get the FTF in other ways when it is
not directly available <more_actions_get_FTF>

which is being considered because it appears in action <Bode_plot>

Area <control> : Status : to be investigated
the overall sequencing
contains the actions:
1/ | will now calculate a Bode plot <Bode_plot>
which is being considered because it is the model's FIRST AREA.
HFEHIEIEIE N IHAIIIEIE I IEIE NI HI NN IIIEIIENN I I INIIEIIEIIN I NI
The following goals have been completed :
Area <user_wishes» : Status : investigated
what advice the user expects from me

contains the actions:

1/ | give the inexperienced user some advice <familiar_with_SAGE>

- -
2/ | set some of the features which will be used during the
calculation of a Bode plot, if wanted <help_Bode_plot>

Assertion <xtra_xplanation_want> Current Value : ~t-_00._00
Prior Value : -100.00 -
you want extra explanation - -

Assertion <interrupts_possible> Current Value : -1+00.00 . -

Prior Value : -100.00

the user has the opportunity to interrupt the thought process at -
appropriate moments T

FEIEIEHIIEIEHIIEIEIEIE I IEIII I IHIEHIHIIEIEIIEIIIEIIIEIEIHIEIEIHIIEIEIIEIEIIHIEHHIEIEIHN
Please reply : !

(“I will interrupt the normal course of the program, because | want to
change the value of <xtra_xplanation_want>,which is how FALSE")

Please type a command : SET XTRA_XPLANATION_WANT

How certain are you that you want extra exptanation?
(Range is-5->5): 5

<xtra_xplanation_want> has been SET to 100.00
(Notice how the certainty value “S" has been transformedinto “100.00",
which is "TRUE")

Please type a command : RESUME
("You may now continue with the normal course of the program”)

Is the frequency-transfer function available?

(You may answer yes or no) : INVESTIGATE

("1 wonder what happens if | give some answer rather than another. Let me
INVESTIGATE that”)

That command is not currently allowed

- type HELP for legal functions.

(“Onh well, it seems | have to change to command mode again”)

Please reply : |

Please type a command : INVESTIGATE

Is the frequency-transfer function available?
(You may answer yes or no) : NO

("Let's see what happens if | say NO". Notice how the same questionis
asked)

-—

Since | do not yet have the knowledge to obtain the FTF in other w'ays’,‘e.g.)
when the differential equation of the system is known, there is not much I‘
can do.

For all frequencies, loglH| vs log(w) represents a straight line w1th slope
UNKNOWN. |H| has the value 1.00 forw = 1.

* % % That concludes the consultation. * *
Type QUIT to quit.

Please type a command : REINSTATE ‘
(Notice how the program’s answer didn't tell very much, m facf was
completely wrong. Let's REINSTATE the old situation.) '

Please type a command : RESUME
(RESUME the normal course of the program)

Is the frequency-transfer functiﬂon available?
(You may answer yes or no) : YES

You may now type in the frequency-transfer function (FTF):
17w + jw)?

For low frequencies, the asymptote of {H| in a loglH| vs log(w) plot
represents a straight line with slope -1.00. For decreasing frequency,
loglHl will approach the asymptote from below.

Above w = 1.00 the behavior of the asymptotes of |H| and arg(H) changes
due to factor FACTOR-2. This factor, which is in the denominator of the
FTF, represents a normal first order system. Below the break frequency,
the gain of this factor has a horizontal asymptote and the phase tends to
0.00 degrees, above it the gain has an asymptote in a direction with
tangent -1.00 in a loglHl vs log(w) plot, and the phase tends to -90.00
degrees. The previous asymptote intersected the break point frequency at
[Hl = 1.00, but the actual value of |H| at the break point is:

0.71.

The effect from this break point on the total asymptote of [H| is, that the
slope changes to -2.00.

* %% That concludes the consultation. % % %

(Well? Did you see the extra explanation?)

—

§3. Dialogue 3

(In which the user from dialogue 2 continues, but now probes for the
deeper levels of the program and more task-specific information).

Please type a command : BEGIN
(Now the program will start running again)

In this version of <Dynamic_Systems> the only thing | can do is calculate a
Bode piot.
--more (Y/N) ? NO

Do you want me to calculate a Bode piot?
(You may answer yes or no) : TRACE 1 : -
(Now the program will show when it enters or leaves an area in fhe model) -

. 6:"-- :
.

Tracing level is now |

Please reply : YES
(This is the answer on the last question)

We are considering what advice the user expects from me
(Intelligent readers of this report remember from the previous dialogue
that this is the first action effect of ACTION <Bode.plots!)

Are you familiar..(We will skip printing the next three questionsin this
dialogue, since they are not interesting any more. See dialogue 1 if you
want. Here the user will give the same answers as in that dialogue. We pick
up the conversationon:)

Make a choice: 1
(“1'd like to be able to interrupt the program at all possible points”)

We have completed considering what advice the user expects from me
We are considering how to obtain the frequency-transfer function (FTF)

Is there anything you want to ask?
(You may answer yes or no) : NO

Is the frequency-transfer function available?
(You may answer yes or no) : YES

You may now type in the frequency-transfer function (FTF):
(1 + jw tau)/[(jw tau -4)**2 + 3%%2]?
(Notice that we use a variable “tau” in this FTf!)

We have completed considering how to obtain the frequency-transfer
function (FTF)

- 27_
We are considering initialization of increments and background memory
space necessary for area <xmine_low_freq\break>

We are considering investigation of the low frequency behayior of the gain
IHl and phase arg(H) for the FTF H, and preparation of a list of frequencies
where a change in the behavior of [H| or arg(H) will occur

| have just completed investigating the first factor.

Is there anything you want to ask?

(You may answer yes or no) : TRACE 3

(“Well apparently this is the first interrupt point in the area where the
program investigates the low frequency behavior. Please g:ve me full’
details on how you will go on: tracing level 3) :

Tracing level is now 3

Please reply : NO
(“1 have no more questions, thank you. Please continue”)

Node <ask_any_questions_4> evaluated to -100.00

Node <any_questions_4> evaluated to -100.00
FEIEHEIE I I IE IEIEIEIEIEIEIIEIE I I IEFEIEIEIE W WEIIEHIEHIEIEIENIEIEIEIIEI I I WA I HIEH I

Result for <any_questions_4>:
The likelihood that the user wants to ask questions is -100.00

FEIEIEHIEIE I I I I I I HEHEIEIEHIIEIEIE I I HEIEIEHIIEIEH I IEH I I I IIEIEIHIEII NI IHIIN

The goal we are considering is : there is another factor of the total FTF to
be investigated

Node <another_factor> is not yet evaluated
Node <check_next_factor> is not yet evaluated
Node <not_finished> evaluated to 100.00

Node <check_next_factor> evaluated too 100.00

Node <another_factor> evaluated to 100.00
FEHHIEIEIEIEIEIEIEIEIEIEIE I IEIEIIEIE I ICHIEIEIIEIE I IEFEIIIEIEHIEIEIEIEIIEIEIEIEIEIE I I HIEIEIEHIEIEHE

Result for <another_factor>:
The likelihood that there is another factor of the total FTF to be
investigated is 100.00

FEIEIEHHIEIIEAIEIIEIIEIEHIIEH I IIEIEHIEH I I IEF I IIIIOIIIEIIEIEHIIEIEIEIIEWIE NI

(Aha! Notice how the result of goals is put between those stars)

The goal being investigated is unnamed (it is a parameter or a precondition
of an action)
(This is not very clear. But now the user unfortunately has noway to

-— 2&—
interrupt the program to ask what is meant by this!)

Node <trivial_factor> is not yet evaluated

Node <check_trivial_factor> is not yet evaluated

Node <type> is not yet evaluated

Node <factor> is not yet evaluated

Node <obtain_factor> is not yet evaluated

Node <next_factor> is not yet evaluated

Node <FTF> evaluated to position POLYNOMIAL-1 (71.00)
Node <next_factor> is not yet evaluated

Node <factor_cycle> evaluated to position CYCLE-3 (3.00)
Node <next_factor> evaluated to 17.00

Node <obtain_factor> evaluated to 17.00 -
Node <factor> evaluated to FACTOR-2 (17.00)

Node <type> evaluated to 3.00

Node <check_trivial_factor> is Not Evaluable

Node <trivial_factor> evaluated to -100.00)
FEIEIEFEIEIEIEIEIEIEIEIEIE I IEIEIEIIEHIE I IEIEIEIE I IEIEIEIHEIIEIIEIEIE I HIEIEIEIEIEHEIEIEIEIEIEIIEIH K

-

Result for the unnamed goal is -100.00

696363636 I I IEIEIHIIEHH I I IEIEIEIE T I I I IEIEIIEIEHIEIEIHIEIEIEIEFEIE I T IIEHMFEHHHH MMM

The goal being considered...(This monologue by the program will go on for
several pages, until the next interrupt point, which is when the program
has finished investigating the second factor of the FTF for its low
frequency behavior. We will not print all, but pick up on:)

FHIHHIIIEIEIEIIIEININHH N W NIIHIEIEN I I NN IO HIIIIIIIIIIINIIIIHIEHHHH K

Result for <value_factor_cycle>:
the number of factor cycles examined sofar is second (2.00)

FEAH IR HIIIININNIIIIEIIIEIEIIIIENIIOIIAHAH NI IIOIIIIENHMIIFOIIIOIENH AR

having examined a factor | allow the user to interrupt my line of thought,
if wanted

| have just completed investigating the second (2.00) factor.having
examined a factor | allow the user to interrupt my line of thought, if
wanted (This is again a point where SAGE is not very clear, | think. But do
you notice that this text “I have just." is almost identical to the output
text just before we changed the TRACE level?)

The goal we are considering is : the user wants to ask questions
Node <any_questions_4> s not yet evaluated

Is there anything you want to ask?
(You may answer yes or no) : TRACE O

e

("How strange! | have seen the same question and node <any_quesﬁonsf‘f?
before! The area <xmine_low_freq\break> probably uses RESTART to
examine each new factor. But now | shall put the tracing level back to -
normal.”) -

Tracing level is now 0O

Please reply : NO -

For low frequencies, the asymptote of [Hl in a loglHl vs tog(w) plot

represents a horizontal line. For decreasing frequency,]ogIHI will approach o

the asymptote from below.

Above w = 1.00% 1/tau the behavior of the asymptotes of IH and arg(H)
changes due to factor FACTOR-1. The previous asymptote intersected the
break point frequency at |Hl = 0.04, but the actual value*of IH| at-the break

point ioa:

1.00SQRT[1 +1.00 tau**2]/SQRT[(25.00 -1.00 tau**2)**2 + 64 00tau**2]

The effect from this break point on the total asymptote of IHI is, that the
slope changes to 1.00.

| have just completed investigating the first break point.

Is there anything you want to ask?

(You may answer yes or no) : NO

("Again an interrupt point!”)

| will now examine the next interesting frequency.

Above w = 5.00% 1/tau the behavior of the asymptotes of [H| and arg(H)
changes due to factor FACTOR-2. The previous asymptote intersected the
break point frequency at [H| = 0.20, but the actual value of |H| at the break
point is:

1.00SQRT(1 + 25.00 tau**2]/SQRTI(25.00 - 25.00 tau**2)**2 + 1600.00
taux*2],

The effect from this break point on the total asymptote of [H| is, that the
slope changes to -1.00.

| have just completed investigating the second break point.

Is there anything you want to ask?

(You may answer yes or no) : NO

(Notice that here also the text is almost the same.)

¥ %% That concludes the consultation. %
Type QUIT to quit.

(Instead of quitting, the user wants to know, why log{H| will approach the
asymptote from above. By doing LIST DONE GOALS and L1ST DONE

OBJECTS, which are similar to the LIST GOAL from the previous dialogue,
he finds out that OBJECT <relative_position> is what he wants to see. We

- Su-
left out that LIST commands in this dialogue, because their oufpuf needs
a lot of space)

Please type a command : LIST RELATIVE_POSITION

Object <relative_position> Current value : above ,
Range (-10000.00E30 to 10000.00E30) Scale: <p031tlon_scale>)
relative position of |H with respect to the asymptote of |H|

(Notice that no numerical value is visible, only the scale value “above”!)

Please type a command : FACTORS RELATIVE_POSITION
("How did you get the value "above” for <relative_position>?")

The object: T
relative position of |H| with respect to the asymptote of IHI

<relative_position» :

may be determined by:

*x% 1. using the rule <calc_rel_position>

(The 2 stars in front indicate that the rule has been used)

Please type a command : FACTORS CALC_REL_POSITION
("What does this rule do?")

By rule <calc_rel_position> the conclusion:

relative position of |Hl with respect to the asymptote of |H|
<relative_position>
is:

coeff_1st_term_IHl * coeff_2nd_term_[H|
(because this product of coefficients is the actual coefficient of w**2 in
the expansion of IHl for low frequencies, and therefore it determines the
upward or downward parabolic direction)

Please type a command : FACTORS COEFF_1ST_TERM_|H|

The object:
the coefficient of the first term of the expansion of the total IH|
<coeff_1st_term_{H}>
may be determined by:
1. using the rule <calc_coeff_1Ist_term1>
2. using the rule <caic_coeff_ist_term2>
falal 3. using the rule <calc_coeff_1st_term3>
4. taking the default <1.00>

(Now the user can go on asking what this rule <calc_coeff_| st_term3;
does or why the others failed, but we'll leave that to you. Let’s examine
another ab ject, whose name you have already seen several times:)

Please type a command : FACTORS BREAK_FREQUENCY LEVELS 2

The object:

-y-
the break frequency <break_frequency>

may be determined by:

*x 1. using the rule <get_breakfrequency>

By rule <get_breakfrequency> the conclusion:
the break frequency <break_frequency>
is:
current_element(list, break_point_cycie)
(we take an interesting frequency from our list of interesting frequencies) _

Please type a command : 7list '
(instead of asking how you should determine <list> or the afher argumenf
of the FUNCTION <current_elementy,we ask what it :s) :

the position of a list of all break points
Please type a command : 7
(“Have you got more informationon that?”)

a list of all the points where a change in the behavior of ga'i'n |Hl and phase
arg(H) will occur.
Please type a command : ?

The actual value indicates the first position in background memory where
the list is kept.
Please type a command : 7

Sorry - no further explanation available.

(Readers who are wondering how this break frequency got into that list,
are advised to do HELP BREAK FREQUENCY.

But seriously, this is done in area <xmine_low_freq\break>).

Please type a command : QUIT
(This is the end of this dialogue)

QUIT - are you sure 7 (Y or N) YES

¥ % % SAGE consultation finished, %%

§$4. Dialogue 4

(Suppose the user fromdialogue | decides not to quit, but to find out
what would happen if he continues, and introduces a variable in the FTF).

Please type a command : BEGIN _
(Now the program will start running again, but background memory is
unchanged)

In this version of <Dynamic_Systems> the only thing l.can do is calculate a
Bode piot. :

-- more (Y/N) ? NO

Do you want me to calcuiate a Bode plot?

(You may answer yes or no) : | :
(Since part of the work has already been done in dialogue. l like getting the -
FTF, the user will now take control of the course of the pfogram by
changing to command mode “1”

Please type a command : FORGET ALL
(The program should forget the normal course of events)

All goals forgotten.
Please type a command : CONSIDER EXAMINE_INTERVALS

The area <examine_intervals> will be considered immediately.
(However, the program will do nothing until its course is RESUMEd)

Please type a command : CONSIDER XMINE_LOW_FREQ\BREAK

The area <xmine_low_freq\break> will be considered immediately.
(And after that, <examine—_intervaisy!)

Please type a command : CONSIDER PREP_LOW_FREQ\BREAK
The area <prep_low_freq\break> will be considered immediately.
Please type a command : SET VARIABLE

Is the variable of a factor

tau
tau_1
tau_2
tau_3
t

(R

t 2

ONOUDAUWDN —

g9 t3
10. unknown

Make a choice: 3
" <variable> has been set to tau_1

Please type a command : RESUME
(Now the program should execute the areas in the order specified) .

At what points during the process of calculating the Bode blot do you wish
to have the opportunity to interrupt me: :

1. at all possible points

2. 1 don't care, just give me the Bode plot :

3. | want to have the opportunity to interrupt you at the point where
you examine individual factors for their interesting frequencies &

4. | want to have the opportunity to interrupt you when there is more
than one factor causing the same break point

5. | want to have the opportunity to interrupt you when you are about
to examine a new break frequency

Make a choice: 2

(Notice that this questionis part of the area <user—_wishess, which has
been set to unevaluated by the BEGIN command. This area is hot among
the ones the user orderedto CONSIDER, so assertions (and questions) from
this area will be examined only if, and when they are needed by the other
areas)

For low frequencies, the asymptote of |H| in a loglH| vs log(w) plot
represents a horizontal line. For decreasing frequency, loglHl will approach
the asymptote from below.

Above w = 0.33% 1/tau_1 the behavior of the asymptotes of |H| and arg(H)
changes due to factor FACTOR-1.

when | give you the Bode plot, do you wish me to explain in more detail the
contribution of each factor?

(you may answer yes or no) : NO

(Notice again, that now this question is asked when it is needed!)

The previous asymptote intersected the break point frequency at |H| = 1.00,
but the actual value of |H| at the break point is:

0.71.

(This is wrong. It should be 1 .00/SQRT(! + 1.00 tau_I **2]. This erroris
due to the fact that in the background memory the variable has not been
set, but only in the SAGE model part)

The effect from this break point on the total asymptote of |H| is, that the
slope changes to -1.00.

* %% That concludes the consultation. X * %
Type QUIT to quit.

Please type a command : SET VARIABLE
(“What if | set <variable> to another value?")

is the variable of a factor

1.

2. tau
3. tau_1
4 tau_2

S. tau_3

6. t

7. t1

8 t 2

9 t.3

10. unknown

Make a choice: 4

<variable> has been SET to tau_2
BRECORD ACCESS ERROR 2 (type mismatch) 142346 1 0

Fatal error number 13 GETACS/AxsErr
>

(“Hm, | seem to have hit a sore spot. Well, that's the end of our
conversation.”)

Chapter 4
Analysis of KNOWBODE

This chapter may supplement the knowledge on "what KNOWBODE does"
gained in the last chapter, with knowledge "how KNOWBODE does it". This
is a very tedious chapter.

It just provides you with some figures on the details of KNOWBODE, which
is necessary because in subsequent chapters design problems are
itlustrated using examples from KNOWBODE, and you may need this
background information. ‘

| suggest you glance through this chapter, and return to it when needed.

A slight attempt is made to compare KNOWBODE with R1 (currently called
XCON) by McDermott ([7]), an attempt doomed from the start because
KNOWBODE is too small. ' :

§1. The structure of dialogues in the SAGE system

The greatest part of the dialogues with the SAGE system is a
program-initiated question answering process. This is often considered
too rigid a structure (see [6]), and that was in fact one of the reasons why
| decided to make a FUNCTION to take care of direct input (<read>, see
Appendix C). But the fact that SAGE is a backwards chaining system makes
sure that focused questions are asked: see for example dialogue 4, where
SAGE asks the questions when they are needed (see also Winston, [19]
p.199). Since SAGE is based on goal trees (and AREAs and ACTIONs also
form a strict hierarchy), "how" and “why" questions are possible ([19],
p.41).

When giving answers and explanation to the user, SAGE uses canned
sentence fragments, and the text associated (by the designer) with the
elements of the model. SCALEs may be used to transform numerical output
- into words, and allow the user to make a choice between words on input
(see dialogue 4 on SET <variable>). However, there again it is the system
which must name the objects. Since the user must find out what a certain
object is called by the system, the program should sometimes identify it
in the dialogue: “ ...due to factor FACTOR-2" This was also observed on
MYCIN ([19],p.197).

More advanced types of discourse in SAGE are theoretically possible, but
they would require expert knowledge on the rule systems that govern
person-person communication (see [13]) and would probably obscure the
(actual) expert task.

One may add, that due to truth-maintenance (the value of
ASSERTIONS/OBJECTS remains unchanged when evaluated) coherence
throughout the dialogue is maintained. In a normal run, SAGE will not ask
the same question twice.

See also Chapter 8, §4.4 (QUESTIONS).

82. The model

As described in Chapter 1, a model consists of an ACTION-based part and a
RULE-based part. We shall describe both of them in the case of KNOWBODE.

36

$2.1. The ACTION-based part of KNOWBODE

The ACTION-based part consists of a hierarchy of AREAS (see fig. 7). These
AREAs contain ACTIONs that may call other AREAs, initiate investigation
of goal trees and take care of output. In fig. 8 we indicated for all AREAs
the number of ACTIONs, action effects, the number of different
ASSERTIONs/OBJECTs which appear in the ACTIONs of that AREA (even as
part of a function/procedure call) and we indicated the number of

RULES/ASSERTIONs/OBJECTs/QUESTIONs declared in that AREA.

fig. 7 a hierarchy of subtasks

L
¢y} o]
e =
m —
& |z ® 2 "
- 124 - o
2| 2 lEE c @ S
(] o [o0 X4 3 —
— e} [5% 2N w it o w0
— por Uy = -1 RS L
o o 0w | ST Niw] =
< c |0l 4 (o |G
control 1 2 i Z 2 2 1
user_wishes 2 4 4 - 6 - 3
get_FTF 4 S 2 1 3 - 2
arep_low_freq\break 21 2 1 i 1 1] -
smine_low_freghbreak] 11 16 | 22 28| 9231 1
examine_intervals 2 3 2 - - 1 -
body_»mine_intervais| 9y 16 23 {29 4125 2
211 48 ({49) | 61|25 |52 g

fig. 8 first 3 columns indicate ACTIONs, action effects and (different)
facts investigated in AREAs, last 4 columns indicate RULEs, QUESTIONS,

ASSERTIONs and OBJECTs declared in the AREA.

The total number of ACTIONs + RULEs (92) may be taken as a measure of
the size of the task. Compared with other expert systems, like R1 ([7]),
which has 772 rules, KNOWBODE is small (which was to be expected).
There is not much more to say.

Of the 48 action effects, 16 take care of output (ADVISE) and 11 of the
explicit flow of control in and between AREAS (RESTART REASK, CONSIDER
<area> and FORGET <area>).

49 different ASSERTIONs and OBJUECTs appear in the ACTIONs. As already
stated in the footnote on p. 10, | would like to call these facts goals.
Viewed from the AREAs, the RULE based part consists of a forest of 49
goal trees.

Comparing this number with the total number of facts (77), creates the
suspicion that there is a shallow forest (i.e. a forest where the root nodes
are only a few branches away from the external environment) or a very
bushy forest (there is a tangled structure among the trees) but in any case,
the AREAs are not far from the external environment.

The fact that the number of OBJECTs is twice as large as the number of
ASSERTIONs indicates that this is a numerical task.

If you investigate the nature of the questions asked in the dialogues, you
see that they are only concerned with what kind of output the user wants.
Apart from the FTF, no additional (domain-specific) information has to be
specified by the user.

522 The RULE-based part of KNOWBODE

If we examine the RULEs of KNOWBODE in terms of the functions that they
perform and the extent to which they embody domain-specific knowledge,
we find that only approximately 27 RULEs (of the 61) may be considered
directly reiated to knowledge about Bode plots. An example of such a RULE
may be found on p. 9: RULE <calc_break_point_2>.

24 RULEs are concerned with retrieving data from the external
environment, or storing data there. An example is <get_break_frequency>
onp. 31.

The rest (10 RULEsS) may be considered "neutral” and have a function
somewhere in between* Only one of them is considered a pure
computational rule:

RULE convert_ta_|H| :
“conversion of log(|H}) back to |H}"
intersect_asym_|[H| IS
expon(10., log_intersect_|H|)

Comparing the number of storage/retrieval RULES with domain-specific
ones indicates that KNOWBODE relies heavily on data from the external

* | shall not print them here, but e.g. RULE <check_horizontal> and RULE <check_1_break_point> are
both considered neutral RULES by me.

o

_38-
environment, which is also confirmed by the fact that only ll RULES
contain no FUNCTION whatsoever.
By the way, in R1 the number of domain-specific rules is 480 opposed to
292 more general ones.

That part of a goail tree which is not domain-specific | shall call the "grey
zone" (or "twilight zone"?). It may be called grey, because it is not
interesting to the end-user (and should therefore be invisible), but is to
the designer (who must be able to inspect and understand it). It -is
somewhere in between the external environment (obscured, black) and the
high-level part of the model (visible, white). In Chapter 9 | shall say some
more on this. .

If we examine the numb_ec_QLBULES_QLQUESII_QNS_aMaJ.LabJﬂQ_QSLabJJﬁM
single fact, we find:

2 OBJECTS (<IHI> and <arg(H)>) which cannot be evaluated because there are
no DEFAULT values, RULES or QUESTIONS to establish them. They are used
only as a "hidden HELP option®, for the user may ask their associated text
(explanation) by using the “?" command.

15 OBJECTS which have only a DEFAULT value and no RULES or QUESTIONS
to establish them. They are used to indicate memory positions in
background memory, necessary as arguments in FUNCTIONS and
PROCEDURES. Since they are OBJECTS rather than CONSTANTS, they may
have (explanatory) text associated with them. An example: <list>.

S50 ASSERTIONS or OBJECTS have only 1 RULE or QUESTION to establish a
value for them, and possibly a DEFAULT value. Only one of these 50 is
ASKABLE.

7 ASSERTIONS or OBJECTS have 2 RULES or QUESTIONS to establish a value
for them (and possibly a DEFAULT value).

2 ASSERTIONS or OBJECTS have 3 RULES or QUESTIONS to establish a value
for them (and possibly a DEFAULT value).

1 OBJUECT (<slope_IHI>) has 4 RULES to establish a value for it.

There are no ASSERTIONS or OBJECTS which have more than 4 RULES or
QUESTIONS to establish a value for them.

The measures of performance for searching a goal tree, as mentioned in
[9], p.91-94, cannot be properly used for evaluating SAGE.
However, | shall try to give a few criteria which indicate something of the
nature of the KNOWBODE task.
1) The number of branches at each fact node in the tree may be considered
a measure of the difficulty of the task*. This number is determined by 2
aspects:
a) the number of RULES or QUESTIONS available to establish a
single fact. As you have seen above, this is about 1 RULE or
QUESTION per fact: this means that usually the situation is
specific** enough to determine the value of that fact.
b) the number of different ASSERTIONS or OBJECTS in the

* See [7]: The VAX configuration task, which is performed by the expert system R1 is nontrivial
because the number of system variations is so large.

39
preconditions or body of the RULES (or in the preconditions of
QUESTIONS). This is an indication how “specialized” the
situation is in which the fact may be evaluated by that RULE.
Varying over all RULES, we find an average of 1.7 different
ASSERTIONS or OBJECTS in the preconditions or body of RULES.
If we include in the calculation the number of FUNCTIONS with
different arguments appearing in the RULES, we find an average
of 2.8 nodes per RULE. Actually, this number should be
considered higher, because so many of the RULES only serve to
retrieve a value from the external environment. in [7] (p.65) a
somewhat similar measure for the expert system R1 is
mentioned, ("fan-out™), with a vaiue of 8.
2) the "bushiness" of the trees may be considered a measure of the
difference in knowledge needed to establish a fact. It is determined by the
number of RULES that use the same fact (or the same call of situation of a
FUNCTION), averaged over all facts. | did not compute that, but do mention
that the node “type(factor)” {’is used in 17 different places in the
KNOWBODE model. SAGE is well equipped to handle multiple calls on tthe
same node, because it will compute such a node only once!
3) the depth of the goal tree may, in combination with the number of
branches on each node, be considered a measure for the amount of effort a
program has to spend before it will attain a goal. But if there is a very
bushy forest, one shouldn't forget that SAGE needs not examine a (partial)
tree twice.
An upper bound of the minimum "distance” of a fact to the external
environment in KNOWBODE is 6 RULES, (for <slope_[HI>). This means that, if
they were ordered properly, SAGE would have to examine a sequence of 6
RULES before it retrieved any value for a precondition from the external
environment. Usually, the forest is much shallower: every node needs to be
expanded only a few levels before any of its preconditions is evaluated.

/In KNOWBODE we have a shallow, bushy but simple roresi,
corresponding to a task which depends heavily on the fxternal
Environment, Is based on a small amount of relatead knowledge
and considers only simple situations.

- 40_
§3. The interface and external environment

§3.1. The interface: FUNCTIONs and PROCEDURES

The FUNCTIONs and PROCEDUREs which make up KNOWBODE's interface to
the external environment may be divided into 4 classes: |

{_{_storage! retrieval y . -direct infoutput_.
first_element 2 || type 2 ||| value_JH| 1
current_element |2 || get_alpha 1|jjresd -1
next_factor 1 || get_beta L o)
not_finished 3 1iget_x 1 || ~computation
cause 1 get_num_or_denn_nj 2 ||| square_root 1
; ower 1 |]| expon a2
(examine 1)|° hor ’
) mu 1]|l10g 3
put_in_memory 2 : \ —
add ; get_variable 2 internal
. — / |(remove 1)
increase 3 : .
\ / rename_factorsi
recorded 10 delete 1
put_on_record 5 clean 1
L s y
- sort 1)

fig. 9 FUNCTIONs /PROCEDURES in KNOWBODE. Figure indicates number of different
call situations (a situation with different call parameters) in KNOWBODE.

N.B. The number behind the FUNCTION or PROCEDURE does not indicate how
many times the FUNCTION or PROCEDURE was called, since due to RESTART
any function or procedure may possibly be called as many times as there
are factors in the FTF, to get new data from the external environment. It is
more an indication of how general they are.

Functions which take care of storage or retrieva/ are abundant in
KNOWBODE. The most basic storage/retrieval functions are <recorded> and
<put_on_record>. As you can see, they are called in several situations (i.e.
calls with different parameters) which means they are the most general
functions.

The FUNCTIONs <type>...<get_variable> all retrieve a different aspect of a
factor of the FTF. The fact that <type>, <get_num_or_denom> and
<get_variable> have 2 call situations is a result of the fact that
ASSERTIONS/OBJECTS declared in an AREA different from the AREA in
which they are used, are not set to unevaluated when the AREA in which
they are used is RESTARTed. Thus, both in AREA <xmine_low_freg\break>
and <body_xmine_intervals> "type(factor)” should be called, but we need to
introduce an extra object <factorX> in one AREA to make that possible.

The FUNCTIONSs <first_element>..<cause> retrieve elements from a list (i.e.
a polynomial or a list of break frequencies). They keep track of the
elements either by an increment (one of the calling parameters indicating
a memory position where this increment is stored) or by comparing the
argument with elements in the first column of a two-dimensional list and
returning an associated parameter from the second column of that list
(<cause»).

“ti
<examine>...<increase> are FUNCTIONs and PROCEDURES which take care of
storing or adding elements to a list or a specific memory position. Memory
positions may either be explicitly mentioned in the arguments (used in
<add>, <put_in_memory> and <increase>) or implicitly: used in <examine>.
(The use of different memory positions explains why there are different
call situations).

<current_element>/<next_factor> and <get_num_or_denom>/<power> are
FUNCTION pairs which act on the same external routine. Use of different
names was made for better understandability : see Chapter 9.

Direct input and output,i.e. directly from the terminal to the external
environment is performed by <read> and <value_[Hl>.

Computational proceaures are used very little in KNOWBODE:
<square_root>, <log> and <expon> are the only ones. -

/nternal procedures are PROCEDURES which have only effects inside the
external environment (mostly clearing memory positions).

§53.2. The External Environment.

The actual routines which realize the FUNCTIONs and PROCEDURES, are
FORTRAN programs. A functional dependency scheme of those routines is
included in part 3. <value_|H]> and <read> call upon a tree of FORTRAN
routines, but most other functions and procedures are small and simple
pieces of program included in a FORTRAN routine called XXSWIF (which is
the basic external program called by SAGE).

The memory function of the external environment, or background memory
as | call it, is realized by a single REAL ARRAY which currently has 200
positions. The virtual organization may be considered as in the following
figure:

// 7 ;:"{/zﬂist—l// % 7 /

' % cause arrays //
7191

7

T /7//%;/2,2/

fig. 10 (Virtual) organization of background memory.

00

Background memory contains 4 types of data:

1) increments (in CYCLE-1 through 3), necessary to keep track of cycles
executed, see Chapter 10.

2) intermediate results of calculations (BUFFER-X, Y and Z), see also
Chapter 10.

3) data on the FTF (in POLYNOMIAL-1 and the FACTOR arrays). Elements of
POLYNOMIAL-1 are first positions of factor arrays.

4) data on the break points of the FTF, and the factors that caused them (in
LIST-1 and the CAUSE arrays). The first row of LIST-1 contains break
frequency values, the second row first positions of cause arrays where the
factors causing a break point are stored. In the cause arrays, first
positions of factor arrays are stored (see [11] and Appendix D). -

§4. Speed and size

In the next figure the measured time span between a user's answer and the
subsequent question of KNOWBODE is displayed for dialogue 1. Figures -
between brackets correspond to points in the conversation. At point (18)
KNOWBODE starts the output on the Bode plot. Points (18) to (22)
correspond with the beginning of lines displayed on the terminal¥*. At
those points in time a few new lines of output were presented.

(1))] (13
BEGIN YES MO
(rf—“ .8__) ré;__g' .4_J Ui_{)___z .0___)
in this... 23 Twhen .. Is the... .
HU NO(SJ YES (13)
1 4_) 1".8___) i".2__)
e .
(4) (10} (16) '
Do you... At what... You may...
ves® 290 e U7
1 9__J r,_z".s_) ',_1 36”1
)Are you... (12) Is there... (1!8) For low...
6".0!
- A S, 20" e 42
22 21 20 19
(22 stope... 21) factor... 20 asumptote..(.) a horizontal...

fig. 11 time span between user’'s answers and KNOWBODE's questions in
dialogue 1

We may use the data in this figure to give a rough estimate of the speed of
KNOWBODE**, In the next figure | have indicated the number of AREAS
entered, ACTIONs entered (i.e. where preconditions succeeded) and RULES
and QUESTIONS processed®** in each time span. Since the inner
mechanisms of SAGE are unknown to me, | am not sure these are the

Due to technicalities it was not possible to type the lines in the dialogues in this report in the same
length as in reality.

#¥ KNOWBODE is run on a PDP-11/34 under RSX-11M, with the details (pages of core etc.) as indicated
in file SAGEE.CMD which is included in part 3 of this report

*#¥¥ Since a lot of work in investigating a RULE is done in investigating the preconditions | treated
RULES that failed or succeeded in the same way.

43

factors that determine the speed of the program. Using the data between
point (5) and point (16) from these two figures, we may roughly calculate
that the time SAGE needs to enter an AREA is + | sec., to enter an ACTION
also + 1 sec. and the time to process a RULE or QUESTION + 2 seconds.
Using this as a prediction for the time needed between (17) and {(18) we
would find + 47 sec., whereas the actual duration is twice as large! As a
possible explanation | point out that RESTART is used in this interval,
which in TRACE 3 mode consultations was observed to take a long time.

As a general conclusion | may add that the system response is acceptable
in a "conversation”, when the number of RULES to be used is small, but
slow when more RULEs or QUESTIONS have to be processed.

mlole|olokihistiskig

L]

(2 aeEy[1oK12X 14X 16X 18)

AREAS entered - trir-1-111-1-12
z

ACTIONs entered Z1- 1121 -1-1-1116

QUESTIONS/RULES >

b TN - INEEEEEREREREEERE

processed

fig. 12 Notice that 1) the AREA entered in (3) -> (4) is FIRSTAREA (and therefore
left out of the caloulation) 2) times are not interesting above point
(18), because SAGE waits till an output buffer is filled. See part 3,
*direct input/output™.

The size of the SAGE Executive is 31,456 words, which is quite large. The
compiled version of the model KNOWBODE is 415 blocks, about 104 K,
which doesn't tell me much because | don't know how SAGE encodes the
model (e.g. is the heavy use of RESTART, which KNOWBODE makes, a
problem?). But compared to the total number of RULES and ACTIONS it
seems quite 1arge. The size of the external environment is also large, and
FUNCTIONs and PROCEDURESs had to be put in an overlay structure (see part
3).

Chapter 5
The representation problem

A representation is a set of syntactic and semantic conventions that
make it possible to describe things. The syniax of a representation
specifies the symbols that may be used and the ways those symbois may
be arranged. The semantics of arepresentation specifies how meaning is
embodied in the symbols and the symbol arrangements-allowed by the
syntax. (Winston,[19] p.254). '

The SAGE modelling language is part of a representation for expert tasks.
The syntax of that representation is described in [21]SAG02, [22]SAGO3
and Appendix A of this report*. As far as the semantics is concerned, the
naive user might get the idea that it is almost the same as the semantics
of some subset of a natural language: ([20]SAGO1 p.12:) "SAGE offers a
simple but powerful language in which the knowledge of the expert can be
encoded. It is not a programming language - for we are creating data and
not programs - but more like stylised English.”

However, this is not quite true. Knowledge, encoded in natural language (as
in "The Expert Knowledge" on p.14) is usually enough for human beings to
be able to solve questions in a specific problem area. How is that
possible? What happens when we see or hear text in a familiar natural
language? "We can think of all language use as a way of activating
procedures within the hearer, any utterance as a program - one that
indirectly causes a set of operations to be carried out within the hearer’s
cognitive system." (Terry Winograd, quoted by Hofstadter [4], p. 629).In
terms of knowledge, we may say that implicit in the encoded knowledge is
the knowledge that human beings have such and such capabilities, enough
to make some sense of the words and sentences.

Compared to human beings SAGE has very limited capabilities. The SAGE
modelling language syntax must help us to stylize our English into a form
understandable for the SAGE system. But the syntax is "not restrictive
enough” to permit only useful encoding of knowledge.

As an illustration of this, let us examine how a naive user might encode
the following sentence: "We note that if wT » 1, that is w » 1/T, then
this term [i.e. of the form +10 logl! + (WT)?]] approaches the asymptote
+20 log(wT)."(p.15).

He might encode it as

ACTION advice_term_type_4:
“Adviceontermsoftheform+or -10"~
“ogl 1 + {wT)*#2]"
ADYISE "We note that if wT >> 1, thatisw » 1/T,"
“then terms of the form + or - 10log[1 + (wT)#*2] -
“approach the asymptote + or - 20 log(wT)."

% Notice that syntax description may already include some semantics: eg. using words as
“AREA","ADVISE","actionname ™ tell you something of the purpose of the symbols.

Or as

ACTION advice_term_type_4:
“Advice on terms of the form + or - 10~
“logl1 + (wT)#*2] for high frequencies”
ADYISE "This term will approach the asymptote *
“+ or - 20 log{wT)"
PROYIDED type_of_term = plus_min_10_log_etc
AND wT_much_larger_thant

(plus appropriate encodings for assertions as <wT_;rnuch;larger_than_l >,
and rules to establish those assertions)

or he might encode the knowledge in a RULE:

RULE check_bhav_trm_type4 :
“checks behavior for type 4 terms for high frequencies”
trm_appr—asym_20_log IS TRUE
PROYIDED type_of_term = plus_min_10_log_etc
AND wT_much_larger_than1 '

(again plus appropriate encodings for the assertions named, and rules to
establish those assertions, e.g.)

ASSERTION wT_much._Jarger_thant :
“ wT is much larger than 1~

RULE check_wT_much_larger :

“a simple test: depending on the constant <many_times>

"the assertion is either true or false™
wi_much_larger_thant 1S TRUE
PROY¥IDED frequency_w > many_times #1 / T

It 1s obvious that there are many more ways to encode the same knowledge
in the SAGE building blocks. Less obvious is the fact that most of those
ways will yield useless programs, which at best give some advice on
details of the problem, but do not solve the overall problem. Those
programs lack a “sense of direction™: they do not know what is "fmportant”,
what the user wants.

We may say that the SAGE modelling language (as the naturai languages in
general) has not the right structure to force us to encode that sense of
direction into the model. Also, the SAGE system is not powerful enough to
generate that sense itself. | therefore propose to treat the SAGE modeliing
language as a programming language, to make us aware that the knowledge
engineers, who put the knowledge into the program, must put more
structure into that knowledge than they would when talking to some human
being*.

»

*Consider Simon [16] p.27 : " in assessing problem solving procedures we must consider not only their
performance in solving problems once these problems have been represented, but also their adequacy in
representing problems when those problems are presented initially in natural-language prose”. The term
“problem solving” is used twice in this sentence: we can infer that people sometimes find it hard to
distinguish between making+using a representation, and just using a representation. (Or, in terms of
knowledge : between the knowledge needed to create a certain problem representation and the knowledge
stored in that representation). See also part 1 of this report.

At the most abstract level the representation problem is in fact the design
problem: how to make a good expert system that will do what we want it

to do. Which brings us on the design criteria.

S1. Design Criteria

During the design of the expert system, | came to the conclusion that the.
design criteria may be more or less divided in three classes, which | will
name

{1] performance

[2] understandability

[3] flexibility.

| am aware that in several publications (other) criteria for program design
have been formulated. The division which | describe here is an attempt to
clarify the specific needs on designing a (SAGE) expert system.

§2. Performance

The most important criterion in designing a program is : when | take this
piece of program, and put it into the program I'm trying to build, (how
good) will it do the job? This is what | call the "performance” criterion.
“Performance” has to do with the details of how a procedure realizes a
piece of knowledge.

For a procedure to be a good performance procedure, there must be a
demonstration that competence (expert knowledge) has been put to use
effectively ([19] Winston, p.295). This means, that | test whether the
program does what | want it to do. And | test in what situations it does
that.

During development of a program, the designer should test the performance
by running the program, either in his mind or (actually) on the computer.

§3. Understandability

A second design criterion is the requirement that the expert system (as
any computer program) must be as understandable as desired by two kinds
of (intelligent) systems:

1. (anticipated) end-users. By "anticipated" we mean that the
expert system can expect the user to have some knowledge of
the subject on which he wants advice from the system. For
instance, in KNOWBODE we expect the user to understand

* Although it proved possible to make the system without explicit formulation of the criteria, it may
speed up design. But see also p for similar situations in designing dialogues. What is expressed here
does not contradict my conclusion that design by prototyping is very useful when the necessary
knowledge is not explicit.

46

i/
english, and expect him to be able to give the
frequency-transfer function. The designer of the system must
decide what to expect from the end-user.
2. those who wish to (further) develop this program or a
similar one, the designers.

Good understandability can be achieved by the following principle: "show
the observer what he wants to see, hide from him what he doesn't want to
see”. Well, what does a user want to see? Results. But in order to reach
those results, the system needs information from the user. However the
user usually does not know what information the system wants and why it
wants that, because an expert system is generally based on knowledge
which the user lacks. But if it is possible for the system to show what it
is trying to do, then maybe, if the user understands enough of it, it may
provide some information, and together they can conduct some sort of
"dialogue” to get the resuits.

In a "normal” computer program.the user must try to understand what the
program does by the output it gives. The designer may look at the listing.
But what we actually want is, that what is visibie of the program to be in
"human” terms, on a level of abstraction which is common for people. Since
the "human level” is not a fixed level of abstraction, there must also be a
possibility to “translate” higher order concepts or descriptions into lower
ones. As will be shown, the goal trees that SAGE provides allow such a
chunked description, and allow introspective question answering ([19],
p.40).

The procedure which SAGE uses to examine facts incorporates gearch
Different parts of the model will be used in several places of the program.
It is therefore not very easy for the designer to inspect the model by
looking at the listing! The designer must be regarded as a special kind of
user, with different interests, and his primary means of testing the
program is actually running it.

SAGE is not perfect. Sometimes the designer is forced to use certain
constructions to realize a procedure which are not “proper”, which are not
as people would do. These constructions must be hidden from the user, but
should be visible to the designer.

S4. Flexibility

In particular during design, (when you do not yet know what you're going to
need) it is important that the way you represent your problem is flexible.
By "flexible” | mean easily changeable (when additional knowledge is
incorporated).

For instance, the "flexibility" criterion is a reason why the knowledge
encoded in AREA <user_wishes> (examination of the results the user
wants) is not directly included in AREA <control> : in this way, an extended
version of KNOWBODE which will be able to compute polar plots as well as

- 4o-
Bode plots, may use this AREA as an independent module*.

“Flexibility" may conflict with understandability: making ever more
general structures to perform some task creates a haze about what is

actually happening. In my treatment of the design of the External
Environment, in Chapter 9, | will clarify this. In the end the performance
of a program is determined by the flexibility of the representation-(see
Hofstadter, [4], p.296-302).

* Another argument is e.g. the “understandability” oriterion : the purpose and functioning of
<user_wishes? will be clearer if it is in a separate area instesd of tangled up in <control>.

Chapter 6
How to solve a problem using the SAGE building blocks.

Here we will deal with the question on how to get good “performance” of
the expert system. In our case, how can we let the system describe a Bode
plot?

A powerful technique which was developed for converting global goals,
like "making a Bode plot”, into local strategies is called problem reduction
(Hofstadter [4] p.609/610, Simon [15] p.73, Winston [19] p.33) or goal
reduction. it is based on the idea that whenever one has a long-range goal,
there are usually subgoals whose attainment will aid in the attainment of
the main goal. Therefore if one breaks up a given problem into a series of
new subproblems, and so on, in a recursive fashion, one eventually comes
down to very modest goals which can presumably be attained in a couple of
steps.

At this point | want to make two remarks. First, it may be clear that what
human beings call "a very modest goal” may still be very difficult for a
computer. And what some people call a very modest goal may be very
difficult for others. There is not really a clear division. We will see that
the backwards chaining that SAGE does will allow the user to find where
his own "modest goals” lie. Maybe you saw that already in dialogue 3: if a
user knows what “a coefficient of the first term of the expansion of the
total |H" is, he need not ask further questions. But if he doesn't know, he
may ask them!

Second, there is no reason to expect that the decomposition of the
complete problem into subproblems will be unique. The usefulness and
understandability of "good” representations (i.e. structures (=programs)
and processes (=SAGE) in which the problem can be solved) may vary
enormously. When searching for a good representation, we should keep the
specific strengths and weaknesses of SAGE in mind. What those strengths
and weaknesses are, we will find out soon enough.

Let us* try to use problem reduction to make a structure in the SAGE
modelling language, in which the problem may be solved. From what source
do we get ideas on which subgoals may aid in attaining the main goal?
This is where the expert comes in. At some time in the past he/she has
learned what steps to take in order to achieve the goal. The expert may not
be able to teil you how to do it, but that's another thing entirely. By
confronting a working system and an expert with real problem situations,
we may remedy differences in performance, just as we may change the
vocabulary and explianation used in confrontations with a real end-user
(this is called design by prototyping).

In the KNOWBODE case the designer had to become an "expert” himself, by
reading books like [3] and [12], and solving example probiems.

People have proved to be able to solve problems (sometimes). At present, there are a few Al
programs lke "ISAAC™ and “UNDERSTAND™ which can translate (a few) problems posed in natural
language into formal state-space representations (brief desoription included in [16] p. 23-25). Notice
the difference with SAGE: at best you may say that SAGE is not an expert, but may become one
(KNOWBODE), whereas those programs are experts in representing things, but cannot become experts in
making a Bode plot.

§1. How to make a Bode plot

As the last sentence of "the expert knowledge" (p.15) suggested, it seems
a good idea if we could split the FTF into factors of some basic types, then
examine the gain and phase for those types, and obtain the total gain and
phase by simply summing up the parts. This would mean some
decomposition like in this figure:

{,__making a Bode p?nt
4 A
get FTF in factorised form
\),
d
I “\l :
get gain and phase for each factor
4
o ‘\,'
get total gain and phase
" By

7

fig. 13 first decornposition of the problem

But the actual problem is not a matter of simple calculation. we are
interested in the pehavior of gain and phase. We want to see things like
"[..] this plot approaches the asymptote ¢+ 20 log(wT); which is a straight
line with slope [..]"(etc.). The question is, whether this information may be
“summed up” more or less in the same way the values for gain and phase
are summed up.

If we know the break points of individual factors, i.e. the frequencies
where there is a change in the slope of their asymptotes, we may calculate
the total asymptote of |H| (in a logarithmic plot) in an interval between
break points, by simply adding the slopes of all (individual) asymptotes in
that interval. We cannot examine the break points in increasing order, if
we don't know that order first. Therefore we may now give a possible
decompositon of the subtask "get gain (and phase) for each factor™:

/_get gain and phase for each factor
#

(get faitur froni F:TF
[determine tgpe:(i.le_ (jw), (1+jwT) etc))
(exﬂmi:e behavi\g]r!{including break point)
) a8
(i1 broak point éxi;ts, put into list
_geSxf"jﬁnnther fﬂcltur‘?

T J

¥

NOLICe Lhal we nave INUroaucea a 100p Lo examine atl 1aclors. ine {151t wdas
necessary, because we first had to put the break points in the right order
to be able to examine them for the behavior of the total plot. A part of the
decomposition of the subtask that examines the total behavior of the Bode

plot may now be:
& T,

(" sort 1ist j

.,

% §

3

(take break point from list
examine slope factor above break point
add slope to togal slope

. - p

'.-"‘\.
yes~" another factor?
R -
T -J__.-""r
¥ no .
(“announce” slope in interval
. v
—yes~~" another break point?
.___‘\-.- .__,,.f"'f.

¥
fig. 15 (part of) decomposition of the third subtask

Now we have two loops, one nested in the other. For every interval
between break points, we have to examine the slope of all factors, and add
them together. It took me quite some time to realize that this is not
necessary! Since the asymptotes are all straight line segments, | only have
to examine in each frequency interval factors for which the slope has
changed, and only add the slope of the asymptotes of those factors to the
total slope¥,

The factors for which the slope has changed, are the factors that "caused”
a new frequency interval (another break point) in the first placel So, if |
remember which factor caused which break point in the list, | only have to
take that factor into account when calculating the new siope. There still
will be two loops, because it is possible that more than one factor caused
a break point at the same frequency.

Why did | include the last part of this example? Because now it seems so
simple, but during design it took me a long time. | think, | was probably so
fixed on using loops, that | failed to consider whether those loops should
examine all elements.

This last paragraph already indicates that design is not a straightforward
process, but depends upon search and backtracking by the designer. The
next section is another illustration of problems that may arise during
design.

§2. Interacting subproblems

If | would look only at the problem of a Bode plot for one factor, | would

Actually we should add the amount by which the slope of the asymptote of the individual factor has
changed. But since all types of systems which we considered have a horizontal asymptote for low
frequencies (if they have a break point), the result ts the same.

say it was clear from the descriptions included in "the expert knowledge",
on p. 14-15, that the behavior of Bode plots for single factors is almost
completely characterised by a description of their low and high frequency
behavior. However, if more than one factor is present in the FTF, these
descriptions will have to include a range in which they are valid. As | said
before, in a logarithmic plot of loglHl versus log(w) break frequencies are
easy points of reference for the behavior of loglH| and allow calculation of
the resulting asymptote in various frequency ranges.

A description using break frequencies is easy for terms of the form

(1 +jwT) in a FTF. But terms of the form [(jw - a)*¥*2 + b**2] which also
occur, cannot be handled so easily. This kind of terms may have an
extremum point, see the following figure:

Y
-2 12 \\
. 'g\ B
4 6 ; jf'\
Sm————
15 2 4 \& g

L
©T
L. W
£
3 A \Y\
1+ -&

fig. 16 Bode plot with extremum point

If we take as break point the intersection of the asymptotes (point B),
near the extremum point it does not seem correct to say that loglH|
approaches the horizontal asymptote (the asymptote for low frequencies).
If we take point A as break point, the asymptote for high frequencies
cannot be calculated very easily (the slope is known, but not the
intersection point with the previous asymptote). Since | wanted to make a
list of break points for all factors, and use that list to compute the
overall behavior in various frequency ranges, | had to make a decision. |
decided to take point B as the break point (because that is according to the
definition) and kept in mind that the program would have to check between
break points whether an extremum point is present.*

The fact that | had to solve this problem, cannot be attributed to the rigid
nature of ACTIONS alone (i.e. the fact that advice always must be given in
canned sentences, like “Above w = .."), but is also a problem connected
with the nature of Bode plots: something has to be said about the behavior
near an extremum point.

The fact that | could not easily take point A as break point has to do with
the fact that | have to use those break points in another (sub)task as well.
in this way, this problem interacted with the problem in the other subtask.

Checking for extremum points is not yet implemented in KNOWBODE.

§3. How to transiate the flowchart into the SAGE building blocks

Now that | have made sufficiently clear that it is possible to decompose
the problem, let us examine how we should translate the flowchart into
the SAGE building blocks (AREAS, ACTIONS, RULES, ASSERTIONS, OBJECTS
etc.). This is actually not a process which begins when you have a
completely finished flowchart, but is done during its design. Not waiting
ubtil the flowchart is finished is more or less necessary, because there
are limits on the possibilities of SAGE, and also because several choices
have different effects on what the user may see when the program is being
run. First a few constraints:

1) Loops can only be executed in AREAS or in the external environment.
Nested loops in AREAs are only possible under certain conditions (see
chapter 10).

2) Output has to be done in ACTIONSs.

3) Only RULES and QUESTIONS can give ASSERTIONs or OBJECTS a value.

Now if you take care of these constraints, you may transiate the flowchart
into AREAs and ACTIONS. For instance, we try to put every element in the
decomposition of the second subtask (which has now become investigation
of the low frequency behavior and the break points) into an ACTION. All
the ACTIONs together form the AREA <xmine_low_freg\break>. If we
should need more ACTIONs to realize a single element in the flowchart, we
may consider to form a separate AREA, and just have an ACTION which
CONSIDERs that AREA (just as ACTION <Bode_plot> CONSIDERs the subtasks
<get_FTF>, <xmine_low_freq\break> etc.). Whether we do this splitting up
into AREAs depends on what we want the user to see.

AREAS and ACTIONs form a hierarchy of tasks. But below this are the goal
trees. Maybe it is a good idea to say that goal trees should take care of
things which the user should not see immediately. An example: the second
“action” in what we previously called "get gain and phase for each factor”
is "determine type (of factor)". It might be decomposed as:

B

<7 type=typei _no

\T’__ -

yes

determine typ=

BN

< type=ty peg)
\'-. . _ﬂ_,__;-"
T-"‘

es

1

-

< type=ty pe_§ el
-

1

—~

&

t

f“

{_\g\pf—tgpe‘l
T

'\T.

?ES

Fa

no

»

{succeed)

fig. 17 possible decomposition of “determine type”

(fail)

- 54-

There are several situations possible in the type of the factor. This may
easily be captured in different RULES, and the user need only see the
ACTION <determine_type> (not implemented):

ACTION deter mine_type :
“determines the type of a factor™
CONSIDER type

RULES lake care or the wariely in situations, ACTIONS or the
common parts.

You may wonder why this ACTION is not implemented. Because it is not
necessary! If | examine the break point of a factor (examine whether it is
there) naturally, | have to examine what type of factor | am examining.
Thus, | moved both the element "get factor from FTF" and "determine type”
to the RULE-based part, where they will be called when necessary. In this
way, the user will only be confronted (on the ACTION level in
<xmine_low_freg\break>) with

ACTION add_break_point :

“finding the break point of a factor (if possible) "

"and adding it with the factor to a list™
CALL add{ break_point, cause_factor, list)
PROYIDED break_point_exists

which is in my opinion what is most essential in this AREA. Notice that
<determine_type> could have been programmed in ACTIONs, where it would
be more explicit, but the designer did not think it necessary.

§4. Brief summary

Let me briefly summarise this chapter.

Design is a cyclic process, where you may

1) try to break up the task into smali steps, and make a flowchart.

2) translate (during design) this flowchart into the SAGE building blocks.
Depending on the possibilities of SAGE and the design criteria, you may use
- AREAS as functional entities corresponding with (high-level) (sub)tasks.
- ACTIONS as the "basic” routines in the task, easily visible to the user
and which put a stress on the common elements in a task.

- RULES as "basic" routines which are adapted to specific situations.

Chapter 7
AREAs and ACTIONs

Suppose there is a task, which may be divided into several subtasks which
can be arranged into a certain sequence. There are several ways of dealing
with the investigation of such a sequence*. For instance, we may try to
attain the goals as if they are part of a SAGE RULE: -

RULE execute_task :
“one way to deal with a tesk having several subtasks”
you_accomplished_your_task IS TRUE
PROYIDED you_accomplished_1st_subtask
AND you_accomplished_2nd_subtask
AND ..(etc.)

But what if you fail to attain the first subtask? In the next chapter we
shall see that in such a case, in a RULE like this, the other preconditions
are not examined, and the next RULE to attain <you_accomplished—
your_task> is investigated. By choosing a structure for the execution of
the sequence of subgoals as represented in the RULE above, it is as if the
designer says: "I consider the attainment of a subtask so vital, that it's no
use going on if you fail in accomplishing it". This indicates that failure is
considered a serious event, and that while you're working on some goal you
should try hard to reach it. But this "attitude” may be considered a built~in
feature of the SAGE system: it is implicitly determined by the procedure
that SAGE uses to examine facts, and here used by the designer to execute
the sequence of subgoals as desired.

The procedure used to execute the ACTIONs in an AREA is different.
Whereas SAGE in goal trees uses a procedure of which one of the
characteristics is "I shall examine RULEs to attain a goal uptil | have
evaluated the goal or there are no RULES left”, in AREAS it roams about,
saying "I shall process all ACTIONs in this AREA, unless | am explicitly
told to FORGET it".

This means that /mn AREAs, (premature) termination of an
investigation must be made expliclt, whereas in goal lrees this
/s implicit.

But also: /nvestigation of a goal tree from an AREA will only
occur at the time it is explicitly mentioned in an ACT/ON.

Should the goal fail to be attained, then it is not possible in SAGE to use
the well-known implicit procedure, which people use: when they find they
cannot reach a goal, they divert their attention elsewhere and more or less
"forget” the goal, but if they notice that the situation has changed, the
goal pops back to mind again. Naturally, in SAGE one may try a goal tree
later again (actually, not the same but a similar one) but this second
attempt has to be explicitly encoded in an ACTION.

Notice that here we do something of which | said in the previous chapter that it should be implemented
in AREAs and ACTIONs. That still remains true if you ;¢ considering "major™ tasks, which should be
“close to the surface”, easily risible to the user.

It may not seem clear, but this is one of the basic limitations of SAGE.
However, it is possible to remedy it: see Appendix E.

The means which an ACTION has to direct the flow of control explicitly,
were already mentioned in Chapter 1: they are "STOP", "RESTART", "REASK",
"CONSIDER" and "FORGET".

We will not deal with STOP. It simply haits the execution of the program,
and may be resumed by RESUME.

"RESTART"/("REASK") will be considered in Chapter 10, where we talk
about mulitiple use of knowledge in SAGE.

Here we will say only a few words on CONSIDER and FORGET.

CONSIDER should be regarded as a subroutine call (with
constraints) ‘
FORGET works only on racts or areas which have been considered,
or which are preseplly upder copsideration ™ /t should be
regarded as a command to make racts invisible (not
unevaluated) and when = applied to AREAS yet under
CONSIDERation, as an explicit RETURN statement.

I shall now demonstrate some features of CONSIDER and FORGET on a small
probiem: initialization of background memory.

S1. Example: initialization of background memory

As we shall see in chapter 10 we may use the procedure encoded in an
AREA several times using RESTART. In order to use resuits from previous
cycles of a loop, an AREA can store some results in background memory.
And for keeping track of the number of executed cycies we use increments
which are also stored in the external environment.

The buffers where data will be stored or retrieved from during the cycles
must be properly initialized, e.g. increments must be set to 1. This is
definitely a low-level task, which we want to hide from the user.

We cannot put all the necessary operations in an ACTION and RULES in the
AREA itself, because then it would be executed every time the AREA has
been restarted. It must be encoded in a seperate AREA.

There are a few possibilities to connect the AREAs necessary for the

preparation and the body of the loop:

1] See fig. 18 on the next page. This possibility was used for the AREA
<xmine_low_freq\break>. Both this AREA and the AREA
<prep_low_fregq\break> used for the initialization are CONSIDERED in AREA
<control>. When <prep_low_freg\break> is done, it may be forgotten
because it is not interesting to the user (only the state of background

% N.B. when you have an action effect like

CONSDER A, B, C
(as for instance in ACTION Bode_plot>) then AREAS and <C> are not under consideration yet when
A is being considered and can therefore not be forgotten!

prep_low_freq\break
control

——

==

H

—

xmine_low_freq\break

. e e o e e e

fig. 18 flow of control between areas. Solid tines indicate explicit direction of the
flow of control, dashed lines implicit transfer.

memory is altered). Therefore the last ACTION of this area is:

ACTION forget_this_ares :
“when done, | forget this area, because itis "
“not very important with respect to the actual ~
"calculation of the Bode plot”

FORGET prep_low_freq\break

Notice that this ACTION may aiso be part of <examine_low_freg\break>
because the preparation AREA must (naturally) be considered first. But |
try to keep "the knowledge" of <prep_low_freq\break> all in one area.
Disadvantages of this method are

1) as far as the user is concerned, the AREA <prep_low_freq\break> and
<xmine_low_freg\break> are on the same level of abstraction: because if
he lTooks at LIST Bode_plot (in dialogue 2), both are named as areas to be
considered.

2) in an interactive session where the user takes control, he may very well
forget to use the area <prep_low_freq\break> and thus not properly
initialize the loop.

3) Notice that in dialogue 3 we see that the area <prep_low_freq_break> is
entered : "We are considering initialization of..." but we do not see that it
ends : there is no message “We have completed considering
initialization...". This is due to the use of FORGET.

2] By containing the body of the loop in the execution of the area that
initializes it, we give the user less chance of forgetting preparation of
background memory. See fig. 19 on the next page.

This possibility was used for AREA <examine_intervals>. Now the AREAs
no longer are on the same level of abstraction, no, we pushed the body one
level deeper! The AREA which initializes and executes the loop must now
have a name and associated text to express that it contains both. As you
can see from dialogue 2, the user sees on the highest level only that AREA.
A disadvantage of this method which is not visible in dialogue 3, is: since

examine_intervals
control

body _xmine_intervals

4:.
€
Ly

L)

-

bt

fig. 19 flow of control between areas. Solid lines indicate explicit direction of the
flow of control, dashed tines implicit transfer.

the body is now contained in another area, you will see when this area is
finished (in TRACE1 or higher levels) something like ’

We have completed’considering execution of the bddy of the
l100p.

We have completed considering initialization of the loop and
execution of the body.

Which is a bit confusing because it looks like a strange way to order the
areas.

3] A third method, which does not have this disadvantage nor the
disadvantages of the first method, but which was probably too obvious to
be visible since | didn't discover it until | was writing this report is

body
preparation

R

— = :@ﬂ

fig. 20 flow of control between areas. Solid tines indicate explicit direction of the
flow of control, dashed lines implicit transfer.

This method gives the preparation of background memory its full due: it is
a procedure on a lower level then the execution of the body. The method is
based on the fact that the ASSERTIONs and OBJECTs in an AREA are
examined only once, thus when you CONSIDER the AREA for the second
time, no goal tree will be investigated and hence nothing will happen.*

* See first footnote next page.

(o

§2. ACTIONs which should not appear in the flowchart

AREAs consist of a number of ACTIONS. 7he ACT/ONs in a single AREA
should all be ‘of the same (human) size**", by which | mean that
they should deal with the task at hand on the same level of abstraction: in
AREA <control> all ACTIONs deal with the task on a subtask level, in AREA
<get_FTF>, a subtask, ACTIONs deal with aspects of getting the FTF (like
reading it), but they should not deal with aspects as scanning or parsing. It
is rather confusing when somebody who is explaining a difficuit equation
in which among other things multiplications occur, all of a sudden starts
explaining how to multiply.

Unfortunately, SAGE is not compietely transparent, i.e. | am sometimes
forced to use extra ACTIONs in an AREA to realize a certain desired result.
| shall now discuss a few cases.

1) ACTIONSs to provide interrupt possibilities:

ACTION interrupt_process :
"INl am about to proceed on the instructions you *
"gave me. As long as you do not answer this "
“question, you can interrupt my line of thought, *
“e.9. for asking 7<name> questions.”

RESTART

PROYIDED any_questions

When the program is running, the only way the user may interrupt it is by
waiting for a question. Since KNOWBODE does not have a great deal of
QUESTIONS, there are only a few points available where the user may break
in.

But the program does make extensive use of RESTART. This means that the
program uses certain sections several times, and every time it executes a
section again, it will discard all resuits from the previous cycle.

Which means, that if we want the user to be able to inspect the state of
the model, ask questions perhaps, we shall have to provide him with
(dummy) questions at appropriate points in order to temporarily halt the
program. Such appropriate points are either the first ACTION in an AREA,
as in this case, or the ACTION where RESTART is going to occur.

The first ACTION in an AREA might be a good point for the user to change
the TRACE level, in order to see the process on a specific factor in more
detail.

The 1ast ACTION in a cycle allows him to inspect the evaluated facts
before they are returned to the unevaluated state.

Notice how <interrupt_process> creates a small loop to the top of the
AREA by using RESTART.

¥ | am not absoltely sure whether ACTIONs in an AREA which contain no facts, but only ADVISE or
CONSIDER <area> effects will not be executed a second time. It is not clear from the manuals (see
[22]SAGO3 p. 84, for instance). Results of a test | conducted are lost. But also the fact that in LIST
AREAS SAGE denotes the status of AREAS as “investigated” does not give much hope of being able to use
it again. In the rest of this report, | will take as an assumption that AREAS cannot be reopened.

* ¥ or put differently, “fhars should be no mixing of favels”.

v

2) ACTIONs to store intermediate results:

ACTION memorize_part_result
"1 will store some of the results in order to ~
“remember them in the next frequency interval”
CALL put_in_memory([bufferX],
new_slope_{H|,
intersect_asym_|H|,
bresk_frequency)

As noted in 1), programs which use part of an AREA several times with the
help of the RESTART command, return all facts evaluated in that AREA to

unevaluated before they begin again at the first ACTION. If you will need
any rooulto from tho cycle juet finished in the next cycle, you will have to
store those in background memory.

3) ACTIONSs providing a more ﬂgxmle output:

ACTION advice_about_slope :

"I give the value of the slope in the above-"

“mentioned advice about the behavior of |H|"
ADYISE

slope_begin_{H|,"."
PROYIDED kind_of_line = NOT horizontsl

This ACTION is following ACTION <advice_about_|Hl>, which gives an
advice as indicated in the example on p. 7. The ACTION is necessary,
because the advice given is either

[...Irepresents a horizontal line.
in which case there is no value needed for the slope, or
[...Irepresents a straight line with slope <slope_begin_|H}>.

where there is an actual value for the siope.

The ACTION is therefore necessary as a result of the rigidity in the output
format SAGE provides. See Appendix D, where a similar situation may be
found when the program either has to include "1/<variable>” in the output
text or not. In that case | could attach a SCALE to <inverse_var> which has
the "value” " (dummy string) when there is no variable.

4) ACTIONs which must RESTART, but not display text.

ACTION trivial_factor_2: "
RESTART
PROYIDED trivial _factor
AND (another_factor OR
{value_factor_cycle > 1.))

A side-effect of RESTART is, that the action text of the ACTION which

RESTARTs the AREA, is printed. If | don't want that, as in this case, | am
forced to split the ACTION in two ACTIONs, with the same preconditions
(and preferably related names), where the last one, which contains the
RESTART has only a dummy string " as action text. Unfortunately this
dummy string will still be a dummy string when the user does a LIST

ACTIONS or LIST AREA, in which case it is not very clear to the user why -
there is no action text.

62
Chapter 8
How to make a goal tree in SAGE

Making a tree is not as easy as it may look.
In @ SAGE expert system, statements and numerical entities can be
considered as nodes in a{goal) tree. In Chapter 1 (p. 10) a description was
given of the rather simple procedure SAGE uses to climb the tree, i.e. to
examine facte But maybe the consequences of this procedure for the
designer can be better explained by summarizing the unusual parts in two
slogans:

Investigation will lead to evaluation

Evaluated facts will pot be reinvestigated*

We shall deal with these statements in the first two sections of this
chapter. The last two sections are devoted to the questions in what order
the RULEs in your model should-be, and how to make an understandable
tree. All the examples in this chapter (in fact in the whole report) are on
RULEs which equate the value of the conclusion with the resulting value of
the rule body (in Appendix A called “equivrules”). Probably no expansion is
needed to apply the methods described in this chapter on RULES where the
resulting value depends on several factors ("cumulrules”).

§1. Investigation will lead to evaluation

If SAGE starts investigating a fact (as part of an ACTION, or in the course
of the investigation of other facts) it will eventually come up with a value
for that fact. "SAGE won't take no for an answer"**,

This means, that in a program you should aveld a ract being
investigated as long as it is unknown whether userul evaluation
1s possible. An example:

RULE calc_break_point_2:

- LTEER

break_point IS square_root{alpha*slpha +
beta beta)

PROYIDED type(factor) = second_order

Had the precondition ("type(factor) = second_order”) not been present and
investigated before the execution of the rule body, the objects <alpha> and
<beta> would have to be investigated by SAGE. However, these objects only
have significance for second order systems, so SAGE would probably find
their values to be "unknown" (worse, since | happen to know that they get
their values simply by retrieving a value from the external environment:

]
¥ except through RESTART/REASK, or explicit use of commands by the user. See “multiple use of
knowledge”.
*% In fact, SAGE will. But it won't gladly take “unknown™ for an answer, and in that case will keep on
trying other RULEs for a better answer.
¥%% gee p. 9 for the associated strings.

A A

RULE obtain_alphe :
“gets the value alpha of the factor we're discussing ~

alpha IS get_al pha(factor)

and similarly for <beta>, SAGE will probably come up with some
meaningless value). It is clear that such a investigation should have been
avoided.)
Here we have seen a first means of preventing the investigation:
preconditions. Preconditions can prevent iavestigation oOf 1he
LRULEZACTIONAQUESTION) bogy. They can postpone, but not prevent the
evaluation of the conlusion of arule: if the precondition fails, <breakpoint>
will still get a value, but not by this rule, '

Another situation where it is very useful to prevent investigation of a
(rule) body is if the (rule) body contains functions which have effects on
the outside world:

RULE GRASP_block_Z :*
“arasps block 2"
|grasped_block_2Z IS
grasp(block_Z2)
PROYIDED Z_has_a_clear_top
AND my_hand_is_empty
AND my_hand_is_over.Z

The FUNCTION <grasp>, which results in the actual grasping, should not be
activated unless all preconditions are met.

We may use this example to illustrate a second means of preventing
investigation: operators like "AND" and "OR". Unlike in “ordinary” logic, we
can say that these operators have several functions:
[1] They stand for their "logical” definitions (adapted to the
fuzzy logic which can be employed in SAGE, see [22] SAGO3
p.65):
<X> AND <Y> = min(<X>, <Y>)
<X> OR «<Y> max(<X>, <Y>)
[2] They determine the order of investigation: (see example)
<Z_has_a_clear_top> is investigated before the assertion
<my_hand_is_empty>.
[3] They can prevent the investigation of facts ([22]ISAGO3
p.81):
If "<X> AND <Y>" is encountered and either factor is aiready
evaluated to FALSE, then the other factor will not be
investigated.
If "<X> OR <Y>" is encountered and either factor is aiready
evaluated to TRUE, then the other factor will not be
investigated.

H

So, inour 'example, if <my_hand_is_empty> turns out to be FALSE (for

* Example taken from "MOYER" a program in SAGE made by the author, to move blocks.

A
some reason or other the robot couldn't get his hands free*) then the next
assertion, <my_hand_is_over_2>, is not investigated. This is fortunate,
because accidents might happen if the hand is moved over to Z still holding
some, possibly large, object.

Inshort, operators like "AND" and ‘OR" may prevent investigation
or racts following the operator. ' ‘

The built-in function "KNOWN" is a third means of preventing investigation
in SAGE. We will illustrate it in an example which uses also the previous
means:
ACTION help_Bode_plot :
“1 set some of the features which will be used *
“during the calculation of a Bode plot, if wanted”
CONSIDER xtra_xplanation_want -
aLS0
CONSIDER interrupts_possible
PROYIDED KNOWN{ Bodeplot_wanted)
AND Bodeplot_wanted

This action is part of the AREA <user_wishes>. This AREA, which tries to
determine what amount of advice the user wants or needs, is entered as a
result of the first action effect in ACTION <Bode_ploT> from AREA
<control:
ACTION Bode_plot :
“1 will now calculate & Bode plot”
CONSIDER user_wishes
ALSO
CONSIDER get_FTF, prep_low_freg\break,
xmine_low._freq\break,
examine_intervals
PROYIDED Bode_plot_wanted

But suppose that a future version of KNOWBODE also allows polar plots to
be made. For such a version, the existing AREAs <get_FTF> and
<user_wishes> need little change: perhaps a few extra ACTIONs to take
care of specific user wishes associated with polar plots. The actual
(overall) calculation of the polar plot may be directed by an ACTION very
similar to <Bode_plot>. Suppose such an ACTION (i.e. <polar_plot>) was
positioned in <control> in front of <Bode_plot>.

Now if a user wants a polar plot, then as a first action effect the flow of
control of the program will be directed to AREA <user_wishes>. In this
area, the program will encounter <help_Bode_plot>. Had its precondition
been:

PROYIDED Bode_plot_wanted

the program would reason as follows: "here we have an ACTION with as a

]

#% Ye don't just investigate <my_hand_is_empty>, we want it to be TRUE. See the next paragraph: this
is an example of the slogan “You don't want to come back empty-handed to the top of the (goal) tree”.

precondition a yet uninvestigated* ASSERTION. Let's examine it". Meaning,
that the user having just answered "yes, | want to see a polar plot®, all of
a sudden is confronted with a question whether he wants to see a Bode
plot! As a designer | chose to postpone that question until the (second) -
ACTION in <control> is investigated, and so | used the function KNOWN.%¥*
KNOWN may test whether a ract has been evaluated without
causing 1ts investigation (and subsequent evaluation) |f
<Bode_plot_wanted> has been evaluated before, KNOWN will return TRUE
and then we can check what value it has (true or false) in the second part
of the precondition of <help_Bode_plot>. If it has not yet been evaluated,
KNOWN will be FALSE, and thanks to the AND operator (prevrous method')
no further investigation will ensue ***

- -

§2. Evaluated facts will pot be reinvestigated

This has a very positive effect, especially on consultational programs:
SAGE will investigate a fact only once and then cemember the value, so the
user will not be confronted with;the same questions over and over.

But there are also negative effects. If a fact has been given a value which
you don't like, it will cost you extra work to improve the situation. See for
an example Appendix C on <read_FTF>. This means that /»n designing a
program you should aveld a ract being evaluated (getting a
value) as long as the (expectea) valuve is not what you want. Or as
a slogan:

"When you come back to the top of the tree, you don't

want to come empty-handed.”

ITlustrated by the example a few pages back (GRASP_block_Z): when
investigating <Z_has_a_clear_top>, we don't want to see the current value,
we try to make sure that it's TRUE. Here we have a real goal, not just an
unexamined fact.

{n programs both real goals and unexamined facts will appear. Look sharply
what you want.

What means does a programmer have to effect this avoidance of
evaluation?

We have already seen, that preconditions on a RULE or a QUESTION
can prevent that some fact (conclusion) will get a valuve by Lhal
RULE or QUEST/ON. SAGE will then try another rule or question to give
that fact a value.

A similar effect can be obtained by having the RULE- or QUESTION body
evaluate to UNKNOWN. As long as other means of establishing a value for
that fact are available, SAGE will treat an UNKNOWN fact as “not yet

* Because in a normal course of the program this assertion will be investigated as a precondition of
ACTION Bode_plot>, which has a position after <polar_plot> in AREA <control>, and is therefore not
yet under investigation.

*£ A possbly better solution is to use an option question like <ask_interrupts>, which can give valkwes
to several facts at the same time!

¥ Notice that people use the word “known" usually in the sense "known to be true”. SPL might think
of preventing confusion by changing the name to "EVALUATED".

v

evaluated” and will go on investigating it.
A RULE- or QUESTION boay which evaluates to UNKNOWN,

transrers evaluation of the (conclusion) ract to other RULES or
QUESTIONS. See also Appendix C for an example.

§3. The order of applicable RULES

In what order should the set of RULES which may establish a value for the
same fact be put into the model's source listing?

A first approach, which is very well applicable in the KNOWBODE case, is
to use no particular order. It is as if the designer thinks: "I know that SAGE
will try all applicable rules until it finds an answer. If there is more than
one "good" answer for a fact, | don't care which one he takes. But by using
preconditions on the rules | shall limit the situations in which they can
come up with a "good" answer”. This approach makes it very simple to add
new RULES to the model.

But it is not always desirable to use this approach. Consider for instance
the case from a few pages back, where there was a RULE to establish the
goal "I have grasped block Z"(<I_grasped_block_Z>). in the same model
there is another RULE to establish that goal:

RULE obvious GRASP_Z :

“when | am holding block Z, it is"

" pretty obvious | have grasped 2."
|grasped_block_Z iS TRUE
PROYIDED | am holding({block_2)

Most people would probably agree that the program is downright stupid if
it doesn't test this rule before rule <GRASP_block_2>. It saves a lot of
useless effort (attaining all goals in the preconditions and rule body of
<GRASP_block_2>) on the side of the program, so why not make use of the
fact that the order in which SAGE examines RULES is fixed, and put this
one in front of the other?

Since | was talking about useless effort on the side of the program: what
makes me so sure that evaluating the FUNCTION <holding> costs
considerably less effort than evaluating the preconditions and rule body of
<GRASP_block_2>? It may be that <holding>, which represents a
subprogram in the external environment, involves the execution of
thousands of FORTRAN statements, and not so little effort after all.

Be warned. Every RULE to establish a fact connects that fact to a tree of
other facts. /f you have knowledge on the effort It costs (o
investigate some lree, or on the importance of the situation in
which a certain tree is applicable, use that knowledge while
designing the program. "Effort” naturally also includes effort on the
part of the user: if in a consultational program a fact may be established
by two RULES, of which one involves asking the user one simple question,
and the other involves asking a lot of difficult ones, which RULE should the
program try first?

This knowledge on what 1s "simple” and "aiTTIcuit 1S part of tne Knowleage
the expert on the problem shouid provide.

Concerning the order of RULES, I'd like to discuss two more “"slogans”
which are the implied result of the procedure SAGE uses to investigate
facts. The first one is. /nvestigating a RULE/QUESTION for some
rfact, implicitly means that préeceding RULES/QUESTIONS have
railea! :
Consider the following two RULES from KNOWBODE:

RULE calc_prev_point :

"if this is not the first break point, we can "

"take the value of the previous break point *
previous_point IS recorded(prev_break_freq).
PROVIDED NOT first_break_freq

RULE calc_prev_point2 :
"if there is no previous break point, we can take “
"w = 1. as a frequency for which we know the *
“value of the asymptote of |H|"

previous_point IS 1.

PROVIDED first_break_freq

Since <recorded> is a simple FUNCTION to retrieve a value from background
memory, and <prev_break_freq> merely indicates the position in this
memory, we know that the second rule is activated (only) when we are
dealing with the first break frequency (<first_break_freq> = TRUE). we
may leave this second rule out and make 1. simply the DEFAULT value of
<previous_point>. In this case, it is perfectly valid, but in general | would
suggest against using that kind of knowledge, because it is not explicit
and may therefore be overlooked by future designers who wish to add
rules.

The second, related, slogan is: /nvestigating some [ract implicitly
means that there Is a situation which justiries this
investigation/*

In the first section of this chapter we discussed what would happen if the
precondition “"type(factor) = second_order” was not present in RULE
<calc_break_point_2>. It would mean that RULE <obtain_alpha> could be
activated in situations for which it is useless, i.e. when there is no
<alpha> for the factor under investigation. We can also state that
otherwise: since the precondition is there, we know that when the RULE
<obtain_alpha> is activated, it is activated in a context that there is an
<alpha> present. This justifies the fact that the same precondition was not
added to rule <obtain_alpha>.

T

¥ You might try to encode “The order of looking for things” ([8] p.39) into SAGE RULES

- 68_
S4. How to make an understandable tree

It is good to realize that “understandable” means “"understandable for the
user”, because SAGE will ‘understand’ anything as long as it is
syntactically correct.

As said before, KNOWBODE is not a perfect expert system. The suggestions
given below are certainly not followed precisely in the model. But during
design one should reach for performance rather than. for easy
understandability. "Understandable” will do. Also, if any of the suggestions
given below may seem unnatural to a designer in SAGE who reads this, | -
advise him/her pot to feel obliged to adopt my conventions but-to use his
or her own, because those are the ones that will be used most easily.

The exact text associated with the elements in the tree has to be adapted
through series of consultations with an actual end-user. This is. also
"design by prototyping". B

In KNOWBODE, the program refers to the user as "you’, to itself as "|" and
(in the standard SAGE sentence fragments) to the parties involved in the
dialogue as "we".

S4.1. ASSERTIONS

ASSERTIONS should describe relations between objects (in reality).

The name should be the shortest expression of the statement made in the
assertion. The first level of associated text should present the statement,
preferably very short. Extra information can be buried in deeper levels.
Don't rorget that the user will encounter this assertion as part
orf a whole tree: when going through the tree (with FACTORS or WHY
command) he doesn't want to be flooded with the same information over
and over again.

SCALES attached to ASSERTIONS are useful for output in ACTIONs, but on
lower levels (i.e. in TRACE 2 or 3) they may create confusion. An example:

ASSERTION behavior_JH| :
“there is no break point, log|H| vs log{w) isa "
“straight line everywhere”

DEFAULT FALSE

USING range_scale

1) the name <behavior_{Hl> does not express the statement. However if it
had done so, it would have created confusion in the listing of ACTION
<advice_about_IHD (see p. 7).

2) the expression of the statement is correct.

3) Use of the SCALE <range_scale> provides flexible output in ACTION
<advice_about_|HI>. But on TRACE 3 level the user may encounter things
like:

Result for behavior_{Hi :

The likelihood that there is no break point, loglHl vs log(w) is a
straight line everywhere is For low frequencies, the asymptote
of |Hl in a loglH| vs log(w) plot (-100.00)

69
842 OBJECTS

For OBJECTS, almost the same recommendations apply as for ASSERTIONS.
OBJECTS do not express relations, but denote entities. The first associated
level of text should be a (short) noun phrase (whereas with ASSERTIONS it
is a sentence).

SCALES may produce both readable output and better understandable traces
at deeper levels.

A good example of an OBJECT is <list>, with three levels of associated text
(see dialogue 3) and an associated SCALE <memory_scaley, which in TRACE
3 will display as

Node <list> evaluated to position LIST-1 (81.00)
Another example is <break_point>:

OBJECT break_point :
“the bresk frequency”
MORE
“the frequency where one region of asymptotic ~
“behavior of gain |H| and phase arg{H} meets "
“another”

¢ 0.0, maximum_real)

which has a neat division between text in the first level and deeper ievels,
but which lacks a clear definition on how to compute the break point (“it is
defined as the frequency where one asymptote intersects another”).

543 RULES

RULES are the means by which a fact may obtain a value.

In SAGE a RULE can only establish a value for one fact (although during the
process of their execution other facts may be evaluated). Therefore the
name of the RULE should express for which fact the RULE is meant, which
s useful e.g. 1f you LIST all RULES in a certain AREA, or it should express
in what respect this rule is different from other rules to establish the
same fact. This is useful when you ask for the FACTORS which may
establiish some fact. See dialogue 3: <calc_coeff_1ist_term1> etc. display
in their name only for which fact they are meant. There are no good
examples in KNOWBODE of the other kind of names, but RULE
<judge_by_credibility> from the Appendix in part 1 seems to express what
| mean.

In the names | used “get” or "obtain” to indicate simple retrieval of values,
“calc” to indicate that some kind of "calculation” was involved, whereas
“check” is more an indication that we are trying to confirm some
assertion.

In the first associated level of text of the RULE the procedure encoded in
this RULE should be described. However, | don't think you have to repeat
everything that you see in the rule body in this text, If you want to keep it
short. This means that | think the text should support the rule body. An

- Ju-
example of this may also be found in dialogue 3: RULE <calc_rel_position>
-"because this product of ...".

But if you use LIST RULES you will not see the rule body and be confused if
the associated text does not contain a description of the actual
calculation. Well, you can't win them all. | think FACTORS RULE + a short
description is more important than LIST RULE.

Deeper levels of associated text are syntactically possible, but | never
succeeded in making them visible in an actual session. | don't know why.

Another aspect which | would like to stress in RULES is, that because the
actual procedure which calculates the conclusion in the RULE is a whole
tree of RULES rather than the topmost branch (RULE)which | called "the"
procedure, you should "keep your knowledge local” and “there should be no
mixing of levels”. This is already implicit in the previous section and
chapter 7, but | will discuss it here in the light of understandability.

When there are RULES in a model of a type like this:

AlS ..

PRO¥IDED B
ANDC
AND D

i.e. RULES with more than one precondition (and there are other RULES to
obtain B, C and D), it is possible to move the preconditions between rules
like this:

AlS ..

PROYIDED D

DIS..
PROYIDED B
ANDC

(there are a few other ways possibie). This reminds me of the remark in
the previous section: investigating some fact implicitly means there is a
situation which justifies this investigation. But you should be very careful
to see if you are doing the right thing:

1) the RULE to attain <D> has been specialized to a case where and <C>
are preconditions. Are there any situations in which you need <D> but
where the goals and <C> cannot be attained? In that case the second
way of encoding the knowledge into RULES forces you to use an extra RULE.
2) In the second version preconditions and <C> have been moved to
deeper Tevels and on the level of the first RULE they are implicit.

Consider for instance a new (not implemented) version of RULE
<GRASP_block_2Z> (see p. ©63), where <Z_has_a_clear_top> and
<my_hand_is_over_Z> have been added as preconditions to the RULE to
obtain <my_hand_is_over_2>:

RULE GRASP_block_Z :
“grasps block Z”
|_grasped_block_2Z IS
grasp{block_2)
PROYIDED my_hand_is_over_2Z

i1

Now it is taken as implicit that <my_hand_is_empty> is true etc. The user
may find this in the deeper levels, but how deep does he want to dig and
what does he understand from the top level?

The converse may also happen, when you add preconditions from the rule to
attain in the first rule, before precondition , which may give you
too much detail visible in the first RULE. What you should do is "keep your
knowledge local” where it is needed, in chunks of about the same "human”
size. A bit vague, but you'll manage. .

S§44 QUESTIONS

The name associated with the question should express for which fact the
question is intended, or the specific nature of the QUESTION (see RULES;
this is a similar case). | used "ask” as in <ask_Bode_plot> to indicate for
which fact the question is intended.

The associated text of the QUESTION should naturally be the question that
needs to be asked to give a certain fact a value. Deeper levels of
associated text can elaborate or rephrase the question.

Although a human-1like outlook of the question answering behavior may
tempt the user to overestimate the program and consequently leads to
disappointment ([6]) | think it is the best way yet to use in questions,
because | rather have a disappointed user of an expert system than a
confused one.

A neutral question like

Is the frequency-transfer function available?
(currently in use in KNOWBODE) proved to be not as clear as
Can you give me the frequency-transfer function?
But another version, which stiil directly addresses the user
Can you give the program the frequency-transfer function?

introduces (in my opinion) a mysterious third party: there is you (the user),
there is the program, and then there is a "thing" feeding the program.
(Although this does shed some light on the parties involved in the standard
SAGE sentence fragment "we are considering...).

If you don't know which approach to choose, put the alternatives in deeper
levels of text associated with the QUESTION.

§45 FUNCTIONS

in the next chapter (section “grey zone") | shall elaborate on the name and
associated text of FUNCTIONs. For the moment it suffices to say that
although it is syntactically correct to associate more levels of text with
FUNCTIONS, | never managed to make them visible in a consuitation
session.

_ .-
Chapter 9
Design of the Interface and External Environment

In chapter 1 | mentioned that there is a possibility to connect SAGE to
other computer programs.

These programs may be used to supplement the features of SAGE, e.g.
provide it with access (other than by terminal) to the world outside the
computer, by programs to handle robot hands and eyes.

We will call the user defined system containing all these programs "the
External Environment”. SAGE can have access to this environment through
FUNCTIONS and PROCEDURES. A CALL to a procedure in an ACTION, or the
investigation of some function in an expression, will cause the value of
the arguments to be transferred to a specific external program. The
arguments, i.e. ASSERTIONs, OBJECTs or CONSTANTs will be evaluated by
SAGE before the actual call is made.

FUNCTIONs return a numerical value from the external environment, or
return UNKNOWN. :

SAGE can identify which part of the external environment to use by a
system key, a numerical value attached (by the designer) to each function
or procedure in the introductory block of a model. In the rest of the model,
the designer may call functions/procedures by pame, but SAGE will use the
value to call the right spot in a program named XXSWIF ("SWitch to
Xternal”, the "F" denotes that it is a FORTRAN program, in our case). From
then on, it is up to the external program, until it returns to SAGE. See
[24]SAG04 and part 3 of this report.

From the analysis in chapter 4 of the external environment used for
KNOWBODE, we may derive that here the extensions of the possibilities of
SAGE are:
1) Allowing the user to enter several data elements in one
chunk (the FTF), in the function <read>. See Appendix C.
2) providing a memory function for AREAs which are
RESTARTed. In this memory, intermediate results of
calculations and increments are kept.
3) providing a much simpler means of carrying out simple sort
& search tasks than SAGE does. An example: the function <sort>.
oee Chapter 10 "Multiple use of knowledge”.
4) providing a possibility to use loops in output routines,
which can easily be used time and again at different spots in
the model: see procedure <value_|H|> (Appendix D).
5) a (future) possibility of carrying out calculations on several
(semantically related) pieces of data at the same time. See
Appendix D.

These extended possibilities are the result of the environment designed.
The peed for these extensions came from the task at hand and the given
features of SAGE: a task like making a Bode plot from an FTF consisting of
several factors seems to elicit the use of loops , sequences of

calculations which are repeated several times and which possibly use the
results of previous cycles. The extensions 2), 3) and 4) just mentioned are
all related to this multiple use of knowledge.

I would therefore prefer not to speak of the extension of possibilities of
SAGE, but rather of using the external environment to ease constraints.
Comparing programs with SAGE, one shouldn’t forget that although these
external programs win on some points, they loose on others.

tn order to give a more general idea of how to use the External
Environment when designing an expert system in SAGE, | think it will be
better to leave the functional description and consider (paradoxically*) an
historical account of the design.

S1. Historical account of part of the design

Naturally, when designing KNOWBODE | did not start on the external
environment, but on the model. .

Originally, | intended the .model to obtain the data on the
frequency-transfer function (i.e. AREA <get_FTF>) by asking a series of
questions from the user (see Appendix C for an example). Soon | was
confronted with problems which were related to the facts that an FTF
consists of a variable number of factors which may be of several types,
and may easily contain two or more factors of the same type.

In the flowchart | devised of the problem | simply created a loop:
KNOWBODE should use part of its questions and facts again. This proved to
be not very easy. This, and the fact that it would take the user quite a long
time to enter an FTF by answering questions, made me decide to use a
FUNCTION (or PROCEDURE) to read the FTF.

Such a function will load data into the external environment. This means
that this data must be stored there until the model needs it and takes it
out. This "must be" is not true: external programs may also “offer the data
at their own initiative"- but not in SAGE, because SAGE is a backwards
chaining system , i.e. a system which hypothesizes a conclusion and uses
rules to work backward toward the hypothesis-supporting facts (Winston,
[19] p.185).

If | let the data stay in background memory, making multiple use of the
procedures (AREAs and RULE trees) just means functions must pick up
their data from different positions in memory (see Chapter 8).

Having decided to put the data in background memory, | began thinking how
| should represent this data in there. There are several strategies to
represent rational polynomial expressions like the FTF is in a computer
(see [11] Pavelle p. 110). Choosing a suitable representation depends
critically on what you want to do with the data in it. For instance,

* Paradoxically, because it woulkd seem that if you want to know how you may use the External
Environment, it is better to consider what it does than to consider how you made it. However, since the
constraints on the problem were not easily visible at the beginning, and a lot of different
implementations of the external environment and its interface are possible, and these are conditions
which ar: probably very common in design, it seems worthwile to examine why this particular
oonfiguration was ohosen.

14
representing a first order system like “(1 + jw 3)" in this way:

type
oW er

coefficient
yariable

i S / /
11310 -V 7 %
f,,»,’/ T !I/// 7 /5,‘5:’4’ ‘?7

fig. 21 possible implementation in background memory

enables functions like <type> (retrieving the type of a factor) to be very
simple, whereas

largest power

coefficient
coetticient
R '?/ ,w
~:f.5:fféff .
/'/.-".f',"/ f "q‘“f. i 1S _:__

%”/_(33\? e rw!

AT, z’?’/x?f/-%if' /// //A /; ’//

fig. 22 possible implementation in baockground memory

is easier for functions which add polynomiatls. At the time | was designing
the system it was unclear which functions were to be used, and since | did
not want to choose a representation which would have to be altered
completely in the future (flexibility criterion of design!) | decided to wait
and work on the model.

| shall now dicuss the design of two different FUNCTIONs, <type> and
<current_element>, which are repesentative for the majority of interface
routines.

At some point or other during design of the model | needed the type of the
factor the rules were investigating, e.g. in a RULE like

RULE check_break_point :
“a break point will occur if the factor(partial -
“system) being invesatigated is type 3or 4, "
“that is, a first-order or a second-order system”
break_point_exists {3 TRUE
PROYIDED {type{factor) = first_order)
OR (type(factor) = second_order)

At first it may seem not clear why the tree structure ends in a function
<type> here: the FTF the user types in is examined by a scanner and a
parser program, which determine the type of a factor in terms like "if the
first symbol is a left parenthesis (', and the second symbol an integer
equal 1, and the third.. .. then the type of this factor is type 4"*. But

¥ Notice that | use an IF-THEN structure to describe this procedure! N.B. the parser used in the external
environment of KNOWBODE, is not based on such rules.

people need only to be told "factors of the form (1+ jw <x><T>), where <x>
is, i.e. first order systems, are called type 4 systems” as is done in
several rules in the model. .
In the previous chapter | already mentioned that the point where we stop
putting knowledge in facts and rules (and continue in normal programming
languages) depends on the performance the program must be able to reach,
and on what we want to be visible to the user. There is no clear dividing
line, because designers are another kind of users than end-users of an
expert system, and have different wishes on what should be visible, but in
this case the balance swung in favor of the end-users.

Notice that, once | have decided to use a function <type’ (o
retrieve the type of a ractor from background memory, [can go
on designing the model (in ract, even running it to check simple
explanation capabilities) without having to know how this
function should be implemented! *

Somewhere in the future | will have to come up with a program which can
perform that function.

In a similar way, when during aesign | needed the current element from a
list of break points, | figured that this would be easier to implement in a
"normal” computer program than to go on in RULES for a few levels, and |
decided that some FUNCTION should come up with that value:

RULE get_break_frequency :
“we take an interesting frequency from our list ”
“of interesting frequencies”
break_frequency IS current_element(list,
break_point_cycle)

<break_point_cycle> was a CONSTANT, indicating a position in background
memory where the number of break frequencies examined is stored.
According to my opinion (as expressed in dialogue 3) the user aiso is not
interested in how you take this element out of the list, but more in the
process as a result of which it was put into the list.

Looking at this function, the reader may wonder why the result desired in
the construction, which is actually

break_frequency IS current_element_list{)
is not generalized to
break_frequency IS element{current_position, list)

where <current_position> is an OBJECT which directly hoids the number of
break frequencies examined, instead of just indicating a position where
this value is stored, like <break_factor_cycle>.

Naturally, | generalized <current_element_list> to <current_element>, to
be able to use the same function on possible other lists, like

* But, as we will presently discuss, the design may have effects on the implementation needed.

- 76_
<cause_break_point>, a list of all factors causing a certain break point. It
seems such a waste to use a program in the external environment only
once. But if | used an OBJECT <current_position> to keep track of the
desired element of the list, | would have to introduce also a RULE like this:

current_position IS recorded{ break_point_cycle)

| would still have to store the value in background memory, because in
order to change it, it will have to be returned to unevaluated by RESTART
and will then be forgotten by the model (see Chapter 8). But | think that
this RULE is hardly interesting to the user, and should therefore better be
included in the function itself.

This does not explain why <break_point_cycle> is present among the
arguments of <current_element>. If | let the function take care of the
value of the current position in the list, why not also let it take care of
where that value is stored?

If the function is applied to a list other than <list>, the function should be
able to recognize that this is a different 1ist, and keep track of the current
element for that list. This is rather easy to do if you know the possible
lists in advance. But if we go on to consider how the function will do it,
we see a problem: the function will probably keep different increments in
store for all its possible arguments. But where are these increments
initialized? When do they need to be initialized? How can the function do
that (in advance of the actual function call)? This depends on the specific
argument lists concerned and the structure of the model.

To deal with this problem in an easy way | added the extra argument,
visible to the designer, as a reminder "this is the location where the
function keeps track of the current element in the list named in the first

argument. | (the designer) must take care that this location contains the
right value”.

Notice that our desire to generalize the function (i.e. not making
<current_element_list> but <current_element>) now forces us to be more
specific on the function calll And notice that this was the result of a
“bottom-up” process: it was found when | was thinking of how the function
could be implemented in the external environment.

By the way, why didn't | generalize the function <type>? It is easy to make
a function and rules like

type_of_factor IS get_from_array(factor, type_element)

We can then use this same function in

variable IS get_from_array(factor, variable_element)

But these calls which look very similar on the model side, are only similar
on the exiernal side if type_element and variable_element are quantities
actually stored in a listl See the pictures a few pages back: both types of
backaround memorv can be called bv these functions. but onlv in the first

kind can a single type of routines handle both calls.

Here we see that generalizing functions on the model side imposes
restrictions on the structure and functions (if we want to keep them
simple) in the external environment. But the converse is also true: if we
want to have a simple kind of background memory, e.g. a single real array,
and allow only a few generalized FUNCTIONS, as in

RULE get_value
“retrieves a value from some memory position”
value IS recorded{ position)

RULE do_store_a_value :
“you store a value somewhere in memory”
store_a_value IS put_on_record(position, value)

(these RULEs are taken from AREA <control>, but are not used in the
program). As | mentioned earlier, a function like <current_element> can be
realized using only these FUNCTIONS, but it will take a number of RULES.
The functioning of these rules:is only interesting to the designer, and
probably it could have been done easier in a program on the external side.

Let me summarise this proces of design of the interface and external
environment.

when, auring design of the moael, | adecide [need a FUNCTION or
PROCEDURE (i e. access to and use of the External Environment),

! have a wish in aspecific situation. (As said before, the need to use
the external environment is caused by the wish to ease the constraints on
SAGE).

Instead of a FUNCTION/PROCEDURE [Tt for the specific situation,

/ can use a more general one (using arguments In the function or
proceaure call), thereby aiming at easier Implementation on the
external side. (see fig 23)

”’”//x"’}”///" T 4////"'
“"s node MODEL Xt/g’/ﬁn 9)///8 /9/0/9‘ f;',ﬂ};, f/}

_ ! /.-"" /.v‘/ /a j/f
7 ﬁ/fxg////’% /,;ap/ s Afy ;
fig.23 FUNCTION calls using the same FORTRAN program

However, if you generalise on the model side, without looking at possible
implementations, it is possible that an extra level of programs will have
to be introduced at the external side. (see fig. 24).

I
o’N»nh C

=
AN / "’% i)
— (:} .{,

\ / _ %/,7';»,«.;?;;,;.;{,.;{/,7//,¢¢77;7<}¢4,7,¢,¢4%%¢/ s
MODEL [External environment’;
0 .

A
07 x:f///
v 4%»’%2” " "/’ﬁ/’ o

fig. 24 same FUNCT ION calls use different programs

If there is an actual inplementation on the external side, it may determine

whether it is useful to generalize function calls on the model side. (see
fig. 25)

:f;'fiExternal environment 77
1 :f’{;//'f/f///{.{}/’? FARLRILIRILIISELP SRR G
a:_.-

character arra ﬁ}/’ff

A
- é/’y/ﬁ/ﬁ'%%ﬁ%/%/%f//f {:
I

e : ter 4

- . @ % f%/f/?/ /fif-xx i SIS I %

~ 2 W20
~ " Y 4 oy & K

generalization g retrieval type very specific
not desirable

.—j.v'}f'{_’x’f,r" ‘,;'//‘}':-’ A {;i' LELSELTE L, "
* : Mf/’%’/fff% t e{//f”///’frariahle//%’;
N YPEY / e
O—3@B o
P i IR 7 %
i / T o
/ T
. I i,
gener alization = retrieval type rather general
possible
fig. 25 different implementations

S$2. grey zone

In view of flexibility* and easy visibility for the designer,r there will

always be (partial) goal trees on the model side, which must realize the
specific wishes in terms of the available FUNCTIONs. This is what | called
the "grey zone” in Chapter 4.

When the model is (almost) ready to run, we know the specific situations
in which functions are called, and we may try to restore the specificness

of the call. This is necessary, as you may see from the following example:
in KNOWBODE there is an ACTION <clean_and_calc_2>:

ACTION clean_and_calc_2 :

"clean the list necessary in beckground memory”™
CONSIDER |_cleaned_list
PROYIDED | did put_on_record{cycle_3, 1.0)

% if you “ave the right basic functions, design i< easier on the model side than on the external side.

- 79 -
Now if the user runs the model in TRACE 2 or 3 mode, he may be confronted
with a message like:

“The goal we are considering is: | put the given value (2nd argument) in the
indicated position in background memory (1st argument)”

You'il probably agree that this is not very understandable. Here we see the
"grey zone" quite close to the surface. What | should have done here was
make the specificness of the situation visible There are a few means to
do that:
1) Change the name and associated text of the FUNCTION. This is a good
idea, because it has no effects as far as extra external programs, extra
RULES etc.
However, this is only applicable if the text associated with the FUNCTION
may be used in all call situations. But notice from Chapter 4, that
<current_element> and <next_factor> use the same external routine! So it
is possible to make use of it.
2) Change all CONSTANTs in the arguments to OBJECTs. In this way, an
extra layer of associated text may be introduced. <break_point_cycle> is
such an OBJECT, with only a CONSTANT as its DEFAULT value.
3) | may also introduce an extra layer of of RULEs: instead of using the
FUNCTIONSs directly in ACTIONs and (some) RULEs, | put a RULE in between,
like in

variable IS get_variable{factor)

This allows me a specific explanatory text with <variable>, and other
features, like use of the SET command (see axalogue 4). A disadvantage is,
that if a FUNCTION is used in more than one AREA which are possibly
RESTARTed, | have to introduce an OBJECT+ RULE for each AREA.

Y
hGDELf,/f:’f 0 7 :/Externai eg/g: rnnm&enti/;
ij;/qr// z;n;f y 4’ / Q'Z/Z/fﬁz,/

=z, ﬁ, / L) i 4”/‘} 7 ”/// ”&ack roumi %
oY @ wuwm

N A A " / " /f/ / memor}/ %
"f*/ // f’/fj/ /,/?:, %

/ 7

G .f/;zii,x 97 v”f /,f;“/ ,z,’;cf;f’// 7
K_) / o S slmple funchons ‘%/
\ ,w' 7/ /’f f,;f/// W) / 7

.....

™,
‘\'\
,
.

." ‘. o M I .’/ ,.,(/:
Af / /’.@{(;f:'(:_,""' 7 2

f“)"%”",//? / /? - % f}/?

o ..
......... / s /’fr / ,u,«;,// T

1ig. 26 grey zone

- 80_
Chapter 10
Multiple use of knowledge

When designing a flowchart for a program, there usually are sequences of
many similar operations to be carried out one after another. Even a
computer programmer with little experience will not write them all out,
but writes a loop, which tells the computer to perform a fixed set of
operations and then loop back and perform them again, over and over, until
some condition is satisfied ([4] p.149). And the body of the Toop - the fixed
set of instructions to be repeated - need not actually be completely fixed.
It may vary in some predictable way.

Because of the structure of SAGE, it is worthwile to devote an entire
chapter to the gquestion how a designer should handle 1oops. | hope that this
will be clear at the end of this chapter. However, it should be noted that in
consultational programs the similarity in the instructions is usually not
high enough to use loops effectively.

S1. In what kind of situations do we encounter sequences of
similar operations?

I will discuss 4 kinds:

1) Search: until you find the thing you want, you carry out a series of
operations. Those operations are usually the ones needed to determine
whether you found what you want. The loop is aborted upon success or
when there are no things left to examine. Usually, we are not interested in
the results of the unsuccessful executions of the loop, we just want to
find something.

2) lterative use of knowledge, (very similar to 1)) when we have a data
structure composed of several elements, which should all be processed in
about the same way. The loop is aborted when there are no more elements
to process. An example in KNOWBODE: we have a frequency-transfer
function composed of several factors, which should all be examined for
their break points, asymptotes etc.

Usually, we are interested in the results of every execution of the loop.

3) Recursive use of knowledge: loops may be nested; a special kind of
nested loop occurs when an inner loop is quite similar to the outer loop.
Thus, execution of the instructions in the outer loop will involve execution
of a similar set of instructions which again can involve execution of such
a set, etc. etc.

This is called recursion. Such program structures are typical - in fact they
are deemed to be good programming style ([4] p.149, see also Hofstadter
[5] (March 1983) p. 16). An example on the use of such recursive procedures
is the execution of this goal tree (on the next page) (Winston [19] p.39):

- e
Getspace A B Putat 4 B iz

_'-"'-—.\'- i - ":v:;h—#
T N, ‘ e e T
L ", o - T
Findspace 4,5 Makespace A B Grasp & Moveobject A,E:X Ungrasp A
" T gz
_..-"" e) "-___\
-’_.___.,-':___ﬂ______\\\ ~
Betridof D Findspace & B Cleartop A
. .
T |
'.._o'j- — '-—.,___- 2
-~ \._ A
Findspace [Table Puytat D Table - Gatridof
e, ez Ca
N, P

e -] ", e,
...-—_.o-""-— _-r-“'" “‘-«——-_'*‘-., e S - ¥
- “ -

Gras;—[r M,J.,e,_,b_ie;{[-, Table Ungr;sp D Findspace C,Table Putat-}_'f,ht-le
" ! Uz xyz

fig. 27 goal tree. Branches joined by arcs are under AND nodes,
other branches under OR nodes.

In order to PUT block A AT the position on top of block B, the set of
instructions needs to invoke a similar procedure, PUT block C AT the
position on the table. (And if there were any blocks on top of block C, again
similar procedures would have to be called).

Notice that 1. execution of the outer loop cannot be compieted until the
inner loops are finished, and 2. in order to work, the recursion has to
bottom out somewhere.

4) Situations similar to 1) and 2): there is a sequence of operations which
we want to use a number of times, but not in one loop. We want to use the
sequence of operations, then do something else, and then do the specified
sequence of operations again.

In computer programming we speak of a subroutine, a more general notion
than 1oop ([4] p.150). Subroutines can call each other by name, and thereby
express very concisely sequences of operations to be carried out. This is
the essence of modularity in programming (compare this with the use of
RULES in SAGEY).

§2. What possibilities are there in SAGE for loops and
subroutines?

ARFAs may be processed more than once in a program run, by using the the
action effects RESTART or REASK. There are a few problems however.
Thece nneratinng onlv have an effert on the area within which they are

- 82_
used: other AREAs which are CONSIDERed by ACTIONs in this area will pot

be reexamined. Which means that AREAS cannot be used in the same way
most subroutines can.

b
lﬁlll 3 N %D NN ED u BN
=,

fig. 28 AREA CONSIDERed inside an AREA containing Toop

See fig. 28 : if the procedure contained in AREA B is also to be used again
in the second or later executions of AREA A, it cannot be a separate area
but should be included in AREA A,

Also, nested loops of this kind:

4)

fig. 29 nested loops

cannot easily be contained in an AREA. Loops always start at the first
ACTION.

One may however use preconditions on the ACTIONS in part 1, which will
prevent their execution in case they are processed in the course of the
inner loop (difficult! and not understandable to the user).

what about the elements of the RULE-based part?

ASSERTIONs and OBJECTs are investigated only once: when facts have been
given a value, they keep that value ("truth maintenance”, p. 10). But if the
AREA to which they belong (i.e. in which they are declared in the source
listing) is restarted, they are returned to an unevaluated state.

You might wonder how facts can get a different value upon reinvestigation,
since the procedure to examine them is deterministic and not dependent on
the fact that they have been returned to an unevaluated state. This is
possible because the leaves of the goal tree, where the tree receives
values, are made of QUESTIONs and FUNCTIONs. Questions may be answered

- 83_
differently by the user and the calculation of functions can depend on what
happened in the past.
RULES are custom-made (by the programmer) for every OBJECT or
ASSERTION*. Since facts retain their values, RULES to establish them
need to be used only once in the investigation process.

S0 in SAGE our only** means of creating loops is to use RESTART or REASK
in the program.

But all kinds of loops can be created in the external environment, tsing
normal programming techniques. These loops unfortunately are not visible
to the user. Unfortunately? Sometimes it is not necessary or desirable
that the user should see everything, so we still have several possiblities.

§3. Then how should we handle situations with loops?

1) Avoid the need to use Joops If possible, in SAGE.

We can avoid search situations if we have the knowledge where to look
(this is obvious). An example: by putting all break points in a list in the
external environment in size order, we know that the first break point
which is larger than the current one is the next in the list. Sorting the
break points (uninteresting to the user), has been done by a PROCEDURE
(<sort>) in the external environment**x

Sometimes we can avoid the need to use recursion by rearranging the

sequence of operations, but then there will still be (nested) loops. See an
example .

2) Don't use loops.

(Why go through a lot of trouble, if not using them is easier?) When you are
working in the RULE-based part of the model, you must realize that if you
want the program to use part of the goal tree again, you're asking for
trouble. See also chapter 8 where you were advised to avoid evaluation of
the facts in a goal tree until you are sure that they have the desired value.
Usually, the easiest thing to do is just to program another similar tree
(with slightly different names, like <factorX> instead of <factor).

For AREAs the situation is somewhat different. First, it is rather easy to
use RESTART to introduce loops, and second, let us see what happens if you
don't use them: suppose | had "folded out” AREA <examine_intervals into
AREAs for every interval, | would have 10%***AREAs of about the same
size as <examine_intervals> plus the associated facts and rules! The
model's source listing is a lot bigger, but maybe the program is faster

* One might argue, as in the beginning of this chapter, that in consultational programs the rules are too
specific to be generalized very much.

*% The user has, in a dialogue with the program, explicit commands available to reinvestigate an AREA!
This means that it is also possible to make a command file which contains these instructions. Such a file
could then be started by the user through “DO filename"”, upon a request by the program! This is not an
elegant solution.

*2% Ye could also have the break points in a list unsorted, and use a FUNCTION to search for the next
break point and retrieve its valve.

*¥22% because | allow the FTF to contain up to 10 factors, which gives at most 10 intervals between
break points.

- 84_

(RESTART seems to slow him down). But what is really a problem is the
fact that when the user asks for "LIST DONE GOALS" or "SUMMARISE" he
will see 10 times the text associated with the area <examine_intervals>
plus all the actions with their associated text The user 1) will be flooded
with text (which he can't interrupt! and 2) will probably not understand
why the program doesn’t simply say "I did this (10) times”. | think that for

AREAs the use of loops is not very bad. '

3) Use RESTART/REASK and the external environment

| already pointed out some restrictions on the use of loops through
RESTART/REASK (reference to AREAS outside the loop can be made only
once, loops always begin at the first ACTION in the AREA). | also
mentioned that the model does not remember that that it has executed a
loop before (after the RESTART or REASK command). If a loop is restarted,
it is the user who must notice that the same questions are asked again,
and who may then give different answers (by using "REASK" the questions
which are reasked are restricted to explicitly mentioned ones only). Or,
the mode! should inform the external environment that it is going to
restart an area, and there this information can be held in memory.

An easy way to do this, is to store the number of executed cycles of a
certain loop in background memory. This is the way used in KNOWBODE: for
instance, in AREA <xmine_low_freq\break> the number of factors
examined (the number of executed cycles of the Joop) is stored in position
<factor_cycle> in memory. Such a position must be initialized properly: we
already discussed that in Chapter 7.

It can be used by FUNCTIONs to figure out what factor to examine next:

RULE obtain_factor :
“takes a factor out of the FTF"
factor IS next_factor{ FTF,
factor_cycle)*

when the AREA 1s restarted, the number of cycles must be increased by
one:

ACTION test_next_factor ;: == **
CALL increase(factor_cycle, 1.0}
ALSO
RESTART
PROYIDED another__factor

The results of the execution of a loop which must be remembered, possibly
intermediate results of calculations, must also be stored in the external
environment. This is done in

ACTION add_break_point

“finding the break point of a factor (if possible) "

"and adding it with the factor to a list”
CALL add{ break_point, cause_factor, list)
PROYIDED break_point_exists

there is no explicit need to show <factor_cycle> in the argument of the FUNCTION. This was done so
tha dacianar minht axcilie cea whors tha numher of cucles is storad

-85_

and

ACTION memorize_partresuit2 :

"putting some results in background memoryin ™
“order to be able to remember them in the next *
“cycle in this AREA”

CALL put_in_memory([bufferY],
order_lowest_term_H,
coeff_1st_term_|{H],
coeff_2nd_term_|H|)

This way €an ha summarized as:
1) execute the sequence of aperations

necessary for future cycles in background memory and/or
produce output
3) erase everything in the AREA (RESTART)
4) and start again (using stored results).
It is a method which is very suitable for iterative use of procedures.

However, in the case of recyrsion as demonstrated by fig. 27 onp. 81 this
method is not applicable, if we were to encode this goal tree into RULES
for SAGE and make use of recursion for the procedure PUTAT. The
“high-level” goal (PUTAT A,Bxyz) cannot be reached until the "lower-level”

goal (PUTAT C,Tablexyz) has been attained. But this lower-level goal

wants to use the same procedure (RULES) as the high-level goal and has to
wait until the AREA is cleared. This will not happen as long as
<PUT_A_AT_B> has not been evaluated. Here we have a definite deadlock
situation.
One might argue that reordering could solve the case:
1) first investigate and evaluate <PUT_C_AT_Table>
2) then clear the area, but retain the results (in the real world)
3) then investigate and evaluate <PUT_A_AT_B>.

This is a good solution, but | am not sure that it is always possible to
order the steps of the solution in advance. What can you do in such a case?
For the sake of completeness, | will discuss a solution in Appendix E.

4) Use Jogps Iin the external environment

We have already seen an example of loops in the external environment:
sorting all break points in a list requires loops, which are easily encoded
in FORTRAN or other computer languages.

| will discuss here another example, which is not implemented, but has
interesting features.

If there was a FUNCTION <make_list>, which could act on lists of factors
("polynomials" like FTF) and make new lists of all factors which had a
certain feature to be specified in the arguments, and which would return
TRUE if there was at least one element in that list, then { could make
ACTIONS like

- 5o~
ACTION xmine_trivial _factrs :
“does ... to trivial factors”
(actionbody)
PROYIDED | did make_list{of_factors_from FTF, with type_feature,
equals, order_0_or_time_lag, and_put_into list_2)
AND | did make_list{of_factors_from list_2, with x_feature,
equels, 0.0, and_put_into list_3)
AND | did make_list{of_factors_fromlist_3,
with variable_feature, equals, no_variable ,
and_put_into list_4)
AND | did make_list{of_factors_from list_4, with mu_feature,
equals, 1.0, and_put_into list_5)

‘where "I", “did", "of _factors_from", "with" and "and_put_into" are NOISE
words, and "type_feature”, "x_feature”, "variable_feature”, "mu_feature”,
“equals”, "order_O_or_time_lag® and “no_variable” are CONSTANTs to
indicate to the function what should happen.

What is the advantage of doing it this way? Well, now the program can
select all trivial factors in the course of one ACTION, use only one kind of
FUNCTION to do it and will stop-if there are no elements left to examine
(see Chapter 8).

I don't even have to know how many trivial factors there are, it will work
for any number (up to the length of the lists). Compare this with the use of

algebraic expressions in the external environment, in Appendix D. There
also, operations for more than a sinige entity are done at the same time.

This whole chapter was about loops in a single program. We can also think
of loops consisting of programs: a program is used on some data, and then
it is used again on other data etc. Or a program is used on some data and
then a slightly different (improved) program is used again on the same
data, etc. etc.

Here the external environment can also be used to store “intermediate
results”. | shall not discuss this any further, but just notice that in this
way the external environment may be used to incorporate “experience” into
the program.

- 8+
References

[1] d'Agapeyeff, A.
‘Expert systems, [ifth generation and UK suppliers”, published by
the National Computing Centre Limited, 1683.

[2] Cordier, Marie-Odile
‘Les systémes experts”, (general article about expert systems) La
Recherche vol. 15 no. 151, January 1984, p. 60-70. (in French)

(31 Elgerd, Olle |I.
‘Contro/ Systems Theory’, McGraw-Hill Kogakusha Ltd, Tokyo 1967.

[4] Hofstadter, Douglas R.
‘Godel, £scher, Bach: an Eternal Golden Braid”, New York Basic
Books 1979. :

[S] Hofstadter, Douglas R.
‘Metamagical themas" (about Lisp), Scientific American, February,
March and April 1983.

[6] Kobashi, Y. and Kumar, A.
Model mismatches in decision making by an expert system’,
Proceedings of the NGI-SION Symposion 2, 16/17 April 1984

[7] McDermott, John
K. A Rule-Based Configurer of Computer Systems”, Artificial
Intelligence, 19 (1982) 39-88.

[8] Milne, AA.
“The House at Pooh Corner”, printed in Great Britain by Richard Clay
(The Chaucer Press) Ltd, Bungay, Suffolk (1982).

[9] Nilsson, Nils J.
‘Principles of Artiricial Intelligence”, Palo Alto, CA: Tioga
Publishing Company, 1980.

[10] Newell, Allen
“The Kknowledge Level", Artificial Intelligence 18 (1982) 87-127.

[11] Pavelle, Richard., Rothstein, Michael. and Fitch, John
‘Computer Algebra”, Scientific American, December 1981, 102-113.

[12] Rademaker, O.

‘Dynamische Systemen”, dictaat bij het college 3.720.0, dictaatnr.
3.316,

Technische Hogeschool Eindhoven (1978) (/n Dutch).

- 86

[13] Reichman-Adar, Rache!
Extenaged Person-fachine /Interrace”, Artificial Intelligence, 22
(1984) 157-218.

[14] Ritchie, 6.D. and Hanna, F K.
AN A Case Stuay in Al Methodology ™, Artificial Intelligence 23
(1984) 249-268.

[15] Simon, Herbert A.
‘The Sciences of the Artificial” MIT Press, Cambridge, MA, 1969.

[16] Simon, Herbert A.
‘Search and Reasoning in Problem Solving”, Artificial Intelligence
21 (1983) 7-29.

[17] Stefik, Mark et al.
“The Organization of Expert Sysz‘ems A Tutorial”, Artificial
Inteiligence, 18 (1982) 135-173.

(18] waltz, David L.
‘Artificial Intelligence”, Scientific American, Oct. 1982, p.101-122.

[19] Winston, Patrick Henry
"Artiricial Intelligence”, (2nd edition) Addison-Wesley Publishing
Company, 1984.

[201 SAGO1, “An /ntroduction to the SAGE' Expert System”,
Knowledge Engineering Group, Systems Programming International (1982).

[211 SAGO2, "SAGE expert system Language Specification”,
Knowledge Engineering Group, Systems Programming International (1982).

[22] SAGQ3, "SAGE User Manual (for SAGE version 1.3)",
Knowledge Engineering Group, Systems Programming International (1982).

[24] SAG04, "SAGE Installation Guide (for the PDP /1! range of
machines operating unaer KSX-177/1)", Knowledge Engineering Group,
Systems Programming International (1982).

