
 Eindhoven University of Technology

MASTER

Remarks on a few concepts in artificial intelligence . KNOWBODE : a case study in
knowledge engineering

van Liempd, Gidi

Award date:
1985

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/186b286f-e2af-4131-9602-c548d9d0faf7

PART 2 .
KNOWBODE: a~çase studyin
knowledge engineering

Gidi van Liempd

Afstudeerverslag

Afstudeerhoogleraren: prof. ir. 0. Rademaker
prof. ir. F.J. Kylstra

Afdeling der Technische Natuurkunde TH Eindhoven

Contents

p 1 I ntroducti on

p. 4 Chepter 1: 'w'het does SAGE do?
p. 5 § 1. The SAGE expert systerns peckege
p. 5 §2. The SAGE rnadelling lenguege
p. 11 §3. The SAGE execut. i ve
p. 12 §4 The SAGE i nterect i ve c:omrnend i enguage
p. 14 Chapter 2: KNOV-/BODE: en expert systern for rnaking Bode plots
p. 14 § 1. The tesk
p.14 §2. Tr1e expert knowledge
p. 16 §3. Tr1e expert systern
p.17 Chepter 3: A few diölogues with KNOlriBODE
p.18 § 1. Diölogue 1
p.20 §2. Dielogue 2
p.26 §3. Dialogue 3
p.32 §4. Dielogue 4
p.35 Chapter 4: Anelysis of KNOWBOÖE
p.35 § 1. The structure of di e!l ogues in tt·!e SAGE systern
p.36 §2. Tt·te tYIO,jei

p.40 §3. The interf ace eltid externe l environment
p.42 §4. Speed end si ze
p.44 Chepter 5: The representet i on prob i ern
p.46 §1. Design Criterie
p.46 §2. Performance
p.46 §3. Understendabil ity
p.47 §4. Flexitlility
p.49 Chapter 6: How· to solvee problern using U"1e SAGE buiiding tdocks
p.50 §i. How to rneke a Bode plot
p.51 §2. lnterecting subprottlerns
p.53 §3. How to trenslete the flowchart into the SAGE building

td ocks
p.54 §4. Brief surnmary
p.55 Cheipter 7: AREAs and ACTIONs
p.56 § 1. Example: inltialization of bac=kground memory
p.59 §2. ACTIONs which should not appeer in the flowchart
p.62 Chapter 8: How to make a goal tree in SAGE
p.62 § 1. lnvestigation *lill leed to eveluation
p.65 §2. Eveluated fac:ts will not be reinvestigated
p.66 §3. The order of tjpp"iiceble RULEs
p.68 §4. How to make an understendable tree
p.72 Crtepter 9: Design of the lnterfece end the externel environment
p.73 § 1. Historical account of ttle design
p. 78 §2. Grey zone
p.80 Ct"ïapter 10: Multiple use of knowledge
p.80 § 1. In what kind of situations do we encounter sequences of
si mi 1 ar operat i ons?
p.81 §2. 'Wrtat possi bi 1 i ti es are there in SAGE f or loops end
sut,rout i nes?
~t.83 §3. Ttlen how shouid we t"1endïe situetlons with loops'?

Introduetion

This report is the result of research done by Gidi van Liempd, as part of a ·
research project on the use of Al (Artif1cial lnte111gence) in control
engineering. Th1s project 1s under the supervision of the group.S&RT of the
department of Physical Engineering, Eindhoven University of Technology.

The report is divided into three parts, of which this is the second.
In the first part, remarks on a few concepts in Artificial Intenigenee are
made. ·
This part contains a description of a program called "KNOWBODE" made by ·
the author, on the expert system generator SAGE (by SPU. The purpose of
that part of the report is to gain insight on how SAGE works, which may be
useful for designers of expert systems (in SAGE), the so-called "knowledge
engineers".
The third part only contains the souree listings of the KNOWBODE program
and associated programs nece~sary to run it, if desired, on any SAGE
system. .-

Th is part of the report was written with one type of reader primari ly in
mind: a knowledge engineer (or actually, someone who wants to become
one). What is a "knowledge engineer"? According to Feigenbaum, quoted in
[17J(p. 140):

"The knowledge engineer practices the art of brtnging the principles and
tools of Al research to bear on difficuJt appJications problems requiring
experts' knowledge for their solution. The technica! issues of acquiring
this knowledge, representing it, and using it appropriately to construct
and explain Jines-of-reasoning, are important problems in the design of
knowiedge-based systems The art of constructfng intelligent agents is
both part of and an extension of the programming art. lt is the art of
building complex computer programs that represent and reason with
knowledge of the world."
An "expert system" is such a complex computer program which contains
expert knowledge. Or, in the words of the SAGE manuals: ([20]SAGO 1, p.6:)
"An expert system is a computer program which reflects the
decision-making process of a human specialist. lt embodies organised
knowledge containing a defined area of expertise, and frequently operates
as a sl<llful, cost-effective consultant." SAGE is an "empty" expert system,
in which l<nowledge for various tasl<s may be encoded.
However, since the author is aiming at knowledge engineers, he thinl<s it is
better to stress the fact that expert systems are programs, not just
(statie) bodies of l<nowledge, but structured sequences of actions with a
goal Oil<e mal<ing a Bode plot). And it are the l<nowledge engineers who
must make such programs!

In the first chapter I shall describe the components of SAGE, i.e. the
building blocks of the structure which embodies the program. This whole
report is an attempt to show the reader how those basic components may
be put tagether to create the effects desired in some program (written in

- L -

the SAGE modelling language).
These effects have three aspects (which are briefly discussed in Chapter
5): performance (a construction should do something), understandability:
(the user or designer must be able to onderstand the construction) and
flexibility (constructions should match with other constructions, and
preferably begeneral enough to be used in other sections of the program as
well). Various aspectsof this problem are discussed in Chapters 6 through
10.
Most of these aspects are illustrated by examples from the program
KNOWBODE, an expert system in SAGE which is able ~o describe some
features of Bode plots (a graphical means of expressing the
frequency-transfer function of a system). In Chapter 2 the necessary
expert knowledge is briefly described, and in Chapter 3 several dialogues
with the program are displayed, illuminating some of the possibiUties of
the SAGE system. Chapter 4 contains an analysis of a fèw quantitative ·
aspectsof the KNOWBODE program, and Chapter 10 some conclusions.

I shall not refrain from attributing SAGE humanoid qualities, because I
think they give an easy and useful description of the behavtor of the
program, which is also easily remembered. Naturally, such a description
wiJl give rise to errors for those working with it, sinee SAGE .is not
exactly humanoid, but such an error may possibly be treated as another
trait of character, and does not outweigh the advantages of the method.

Sametimes concepts or guidelines for working with SAGE could be better
explained by using examples from another program by the author, called
MOVER.
This program, which operates in a "blocks world" and is able to describe
how it would put one blockon top of another one (jf it was connected to a
robot), is basedon a procedure mentioned in [19] p.35-41.
Since the examples used are intended mostly to convey a general flavor of
working in SAGE, and do illl1 rely heavily on some (possibly suggested)
performance, it was not deemed necessary to include the souree listing of
this program in part 3 of this report.

Probably not enough stress has been put in this report on the fact that all
examples from SAGE can be made visible during interactive sessions. The
format chosen to display lhe examples in this report is usually the format
in the souree listings. This is done for a more uniform approach of the
texts taken from KNOWBODE. See Chapter 3 on how it looks in an
interact ive session.

lt may be clear that this report may be regarded as an extension of the
SAGE manuals. There, it was discussed .what the basic components do.
Here, ho.W. to make construct i ons with them, to realize (pieces of) program
forsome (high-level) task.
As most manuals, it wiJJ probably be very boring to read. Any sensible
reader should skip the parts he probably knows (readers familiar with
SAGE may skip Chapter 1, readers familiar with control engineering the
first two sections in Chapter 2).

- " -

l'd 11ke to thank Hans Canters, for being a very friendly representative of
SPL.

Chapter 1
What does SAGE do?

In th1s report we are 1nvest1gat1ng SAGE, an example of a work1ng expert
system.
What is an "expert system"? To quote from [1] the (sllghtly modifted)
description given by the British Computer Society's Committee of -the
Specialist Group on Expert Systems:

"An "Expert System" is regarded as the embodiment within
a computer of a knowledge-based component ftom an_
expert skill in such a form that the machine can offer
intelligent advice or take an intelligent deèision about a
processing function. A desirable additional cháracteristic,
which many would regard as fundamental, is the capability
of the system on demand to justify its qwn line of
reasoning in a manner directly intelltgible to an
anticipated enquire(The style adopted to ~ttain these
characteristics is rule-based programming*." .-- -

I shall not discuss here the implications of this description, but do point
out that because of the rule-based programming and the. system's
explanation capabilities, the advice given or the decision taken is regarded
as "intelligent" rather than (just) the output of a complex program. (See
part 1 of this report).

On working with an expert system, we are considering the following
situation:

the universe

fig. 1 91obal situation

The shaded box represents a part of the un1verse. 1n wh1ch the user 1s
1nterested. and on wh1ch he and/or the expert system can act.
Physical instances of this shaded box could be almost any system: rang1ng
from a "blocks world" + a robot-arm and eye + computer programs to
control that arm and eye. to just another computer program (maybe even a
copy of the expert system ttself). A part common to all such systems. can
be a system supplementing the possibilities of the expert system (e.g. in
the case of SAGE it may provide a "long-term memory" function by storing
results in files).

* Bv wlrich is mNnt that tht txptrtlcno'l'ltdgt is tnCOdtcl m rults esstntiallv bastel on tht strucbn •J
condition TIEN .mon·.

We will call this part of the shaded box the "Extemal Environment" with
respect to the expert system. .
This report, which discusses the expert system SAGE, may therefore also
contain a discussion on suttable forms of the environment external to
SAGE (Chapter 9).

S 1. The SAGE expert systems package

SAGE is an expert systems package, which has two major components: the ·
Compiler and the Executive. lt a lso provides the SAGE moèJelling language,
in which models (='programs') may be written, and the SAGE command
language, for user interaction with the Executive.
The solution of some (expert) task may be encoded in a MODEL us1ng the
SAGE modeHing language. The compiler must then be used to translate the
souree form of this program (off-line) into a represenfation suitable for
the executive. The executive controls the interaction between a user and a
model, hence controls execution of the model, including th~Jnter~cUon of
the model with its external environment. ·
Since the model can represent all kinds of expert tasks, SAGE is often
referred to as an "expert system generator" rather than an"expert system".
lt's like EMYCIN (or empty MYCIN), which can be employed with various
information for different applications, but which derived from MYCIN, an
expert system which advises on the diagnosis and treatment of bacterial
infections (see [1], S 3.4).

ftg. 2 a SAGE ttl)[l.

S2. The SAGE modelling Janguage

One way of describing a SAGE model is to say that it consists of a
hierarchy of AREAs, which is able to do something because it governs a
forest of (goal)trees. The basic components of AREAs are called
"ACTIONS", those of the goal trees "RULES". We shall now descibe the two
parts:

1. ACTION-based part,
2. RULE -based or goa 1 tree part.

-0 -

S2.1. The ACTION-based part

The basic building blocks of the ACTION-based part are called "AREA" and
"ACT ION".
As we shall see later, AREAs may embody functional entities, chunks of
program to achieve a high-level goal, like "getting the FTF". An executable
SAGE model consistsof a non-empty AREA designated "FIRST AREA" <which
is where the program normally would start running), and (optionally)
severa 1 other ARE As.
An area is introduced by a declaration:

AREA areaname: string

where "areaname" identifies this area within the model, and the string
should describe the purpose of this area. (Such kind of strings are attached ·
to most SAGE building blocks.)
The ACTIONs (and the assertions, objects, rules and qu~stions which we
shall describe in the RULE-based part) following this ·area declaration and
preceding the next area declaration are said to belong to this area.
When an area is being investigated, the actions betonging to it are
processed in the order of their declaration in the model so.urce.

An ACTION is a basic program unit. lt cao in some ways be compared to a
sequence of a few statements in a programming language like FORTRAN.
Each action, like an area, has an identtfying name and defining (and
optional explanatory) text. lt has an optional precondition whether or not
to execute the actionbody. This body of the action declaration specifies
the effects the action is to have; actions may roughly be divided into two
(interdependent) classes:

1. those concerning the explicit flow of control
2. those concerning program output.

S2.1. 1. action effects concernjog the flow of control:

STOP
RESTART
REASK questionlist
CONSIDER goallist
FORGET goallist

are action effects with the primary aim to control explicitly the flow of
the program. We will elaborate on them in Chapter 7 and 9, but for the
moment only illustrate the general idea by an example:

ACTION Bode-plot :
·1 Yi11 ncN ca1cu1ate a Bode plot•

CONSIDER user _Yishes
ALSO
CONSI DER QILFTF 1 prep.JwJreq\break 1

xm1 ne.JwJreq\break~ xm1 nu nterva1s
PROVI DED Bode_p1Gt_wnted

The action effects in <Bodeplot> will (all) be executed when the
precondltion, the statement <Bodeplot_wanted> (associated string: "the
user wants me to calculate a Bode plot") has been evaluated and found to
be true.
An action effect llke "CONSIDER user _wishes" will transfer control to the
AREA user _wishes, a chunk of program for determining more precisely
what kind of results the user wants. The ACTIONsin that area will then be
processed (in the course of which again other AREAs may be _entered), and
afterwards control is returned to <Bodeplot> where the next action effect
("CONSIDER geUTF") wiJl be executed.
As you can see, "CONSIDER area" is in some ways ~quivalent to calling a
subroutine in a FORTRAN statement.
But "CONSIDER" can also be used to start investigation of an assertiol') or
object, which in SAGE means trying to get a (truth or certainty) value for
some statement. This means investigating a goal tree, where the roof or
top node is formed by the assertion/object to be CONSIDERèd. This is done"
in the RULE-based part of the model, which we will consider in a moment

S2.1 2 actjoneffects concernjng output of the program:

ADVISE [LATER] advisebody (,advisebody}
CALL [LATER] procedurename parameterlist

are action effects which take care of output of the program.
An ADVISE action is analogous to a print statement in conventional
programming languages. ADVISE is followed by a list of strings, assertion
names, object narnes or constant names. When the action takes effect the
strings and the values of the specified assertions, objects or constants
are displayed in the order specified.
Assertions or objects in the advise llst which have not yet been
investigated are all investigated, in advise order, before any of the advice
is given. This means that ADVISE, like CONSIDER, can also start the
evaluation of facts (i.e. ASSERTIONs or OBJECTs).
SCALES can be attached to assertions/objects to convert numerical values
into strings, thus allowing a more understandable presentation of results.
An example:
(an action effect from ACTION <advice_abouUHI>)

ADYISE
• !N., behavier -1 Hl, ·represents a ·, ki nd....oL1i ne

can produce as output (depending on the actual va lues of <behavior JHI> and
<k ind_of _l ine>):

For all frequencies, logiHI vs log(w) represents a horizontal
line.

Here the actual va lues have been converted using SCALES.

User-defined PROCEDUREs and FUNCTIONs (see Chapter 9) are the means by
which the model may communicate wlth the outside world other than
through the terminal (sensors, actuators, files, databases etc.)
FUNCTIONs may act upon this external environment aru1 retrieve values
from it. They are part of the leaves of the goal trees.
PROCEDUREs only act upon the outside world, and are executed by using the
CALL action effect. The parameters to be used as input fór the procedure ··
will be evaluated upon CALL. This means again that "CALL", Jike
"CONSIDER", implicltly can start the evaluation of facts. -
As an example, examine

ACTION adcLbreaLpoi nt :
"findinothe break pointofefector (ifpossible) •
·and adding it Yith the feetortoa list•

CALL add(breaLpoint, causeJactor, list)
PROVI DED breeLpol nL.exists

This action will do as the associated text says. The list is stored in the
external environment, so a prQcedure (<add>) must be used to put the
values there. Notice that it works without the programmer explicitly
having had to mention something like "now you must investigate what
value <breakpoint> has". lt is as if <breakpoint> is a call to a subroutine to
compute that value, but actually this is done in a goal tree.

S2.2. The RULE-based or goal tree part

So on the one hand we have AREAS and ACTIONs, to be regarded as
subroutines and statements respectively, and on the other we have goal
trees. What are those goa 1 trees made of?

The main component in the reasoning structure in a SAGE model is the
ASSERTION. An ASSERTION should be associated with a statement whose
truth is to be determined in a certain situation. An example of an
ASSERTION declaration is:

ASSERTION readJTf :
•1 reed the FTF yhich IJOU geve me·

DEFAULT FALSE

('ï" is meant to be SAGE, "you" the user).
In the SAGE structure the 11ke11hood of an assertion must be expressed by
a real number associated w1th that assert1on. This real number always lies
in the range -100.0 to 1 00.0, the latter repcesenting TRUE and -1 oo.o
represent1ng FALSE. Numbers w1th absolute va lues less than 1 oo.o
represent degrees of belief wh1ch are not absolutely certa1n. zero
represents complete uncerta1nty. Apart from that, an assert1on may also
have an "unknown" 11ke11hood, 1f all ava11able methods of estab11sh1ng 1t
fa11.
The degree of belief of an assert1on 1s connected to the probab111ty that
the assert1on 1s true v1a a logar1thm1c sealing funct1on (see [22]SAG03,
p.59).

-9 -
Before we discuss the means to establish the value of an assertion, let us
first consider another component of SAGE, quite similar to the ASSERTION.
SAGE allows the use of entities which have associated with them real
numbers which can He in any range. These entities are called OBJECTs.
They are declared in a similar way as assertions, but must contain a
specification of the range within which their numerical value lies. For
instance:

OBJECT breaLpoi nt :
,he breek frequencu·
ttlRE
,he frequency \o'here one regton of 88ymptotic •
·behavtor of oat n I Hl 8nd phese 8rQ(H) meets •
·another·

(0.0, meximuiTLJ881)

As ment1oned, the ASSERTIONs and OBJECTs cao get a value depehd1ng on
the actual s1tuat1on. Let "facr: meao elther assertion or object, then
1nvest1gat1ng a ract means the :.program tri es to establ1sh a value for it.
How does the program go about do1ng that?

RULEs are the means to establish the value of a fact by us1ng the va lues of
other facts, or by us1ng FUNCTIONs to get a value from the external
env 1 ronmen t.
F or 1 nstance:

RULE celureeLpoi nL2 :
·belo... the breek po1nt frequencu, 8 type 3 (= •
·2nc1 order) sijStem hes 8 horizontel esymptote •
, n I Hl 8nd tenels to...enls 0 in arv(H) , above it •
·arv(H) tenels to...anls + or - 180 degrees, and •
1ogl Hl va log ._. hes an asymptote sloping \o'ith •
1angent + or - 2. The breek frequencu 1s •
·multi plied by 1/T if there is a ti me constant T •
•tn this type 3 sustem•

breaLpo1nt IS square_root(alpha*alpha +
beta*beta)

PROVIDEO tvpe(factor) = seconcl..order

This rule cao be used to establish a value for <break_point>. There cao be
several different rules for different situations.
The facts in the precond1tion (only <factor>, secon<Lorder is a CONSTANT)
and the rule body (<alpha> and <beta>) have va lues wh1ch a lso depend on
rules and quest1ons. So 1f the program 1nvestigates <break_po1nt> by us1ng
rule <calureak_po1nL2> it will have to suspend that 1nvestigation to
examine the values of the facts in the precondition first. When the
precondition expression has been evaluated to a value between 0.0 and
100.0 (TRUE), the facts <alpha> and <beta> must be investigated.
Similarly, a DEFAULT for a fact cao be the name of another fact which
needs investigating.

- tv-

The procedure for investigating a fact is as follows:
a) lf it is marked ASKABLE (in the souree text) 1t is asked; if _
the user does oot reply "UNKNOWN", its value is determined ·­
from the user reply and the investigation of that fact is
completed.

b) lf the fact ts askable but the user answers "UNKNOWN", or
oot ASKABLE, then each QUESTION and ea_cn RULE whtch gtves a
value to the fact is tried, in the order tn whi~h they occur in
the model souree text, until one succeeds.

Fora QUESTION to succeed, the question preconditions must be
met, and the user must oot reply "UNKNOWN".

·. ··-.;,...-

Fora RULE to succeed, the rule preconditions must be met, and
the rule body must oot evaluate to "UNKNOWN". ·

c) lf all questions and rules defining the value of a fact fail,
the value taken for the fact is the DEFAULT value if one is
specified, otherwise the value is deemed "UNKNOWN".

Once the program has found a value fora fact, it will oot (eastly) forget or
change that value. This is called "truth maintenance". A direct effect is
that the program won't ask any quest ion more than once.

The whole structure of facts, associated with rules to link them to other
facts, which in turn are 11nked to yet other facts (or to the outside world
via questions or functions), cao be compared toa~ (Winston,[19] p.33).
The tree has nodes, corresponding to ASSERTIONs and OBJECTs. The top
node, the one being investigated in the course of some ACT ION, maya lso be
considered the root node, tn SAGE called the g.o,al*.
Nodes are connected to other nodes by branches, corresponding to RULEs.
The leaves, the points where the tree receives lts light and carbon­
dioxide, correspond to the points where the facts get values from the
outside world: the ends of QUESTIONs, the eods of RULES (CONSTANT
va lues, FUNCTION va lues).
lnvestigating a yet unevaluated node means, in this analogy, finding paths
to the leaves which will provide the node with sufficient oxygen.
And since the investigation begins at the goal and works its way
backwards towards the things which may already be known, it is called
backwards chajoing (Hofstadter [4], p.618).

* ~ 1hat 1) tlris top nodt 01n bt an ~ nodt tn anothtr 1rtt!, and 2) tht user 01n mab !!l.
nodt a goal tn an inttractW. HSSion umg iht oommand "CCHSI)ER•. By iht wag, it is not trut 1hat tht
top nodt is ca11td ·goa1· tn gtntral tn SAGE: onlg whfn it is a pnconditiol• of an M:TDt or txplicttlg
CQNSURM. I ."-.ftr to UH tM word •goal" 'lthentnr a faot iiiPNf"S tn in ACTION, •vtn u a
pararMter tn a~ can.

S3. The SAGE Executive

"Running a SAGE model" must in my opinion be regarded a$ running a
program in a special environment. This environment is called the "SAGE
executive", and it is special because it allows a richer interactton than a
"normal" program environment would do. ··

-
The SAGE execut1ve controls the interaction between a user (a person at a
terminal, or other software systems) and a model (program). The us~r can .
conduct his part of the interaction by means of the SAGE iÓteractive
command language. The design of the model must be ~sûch:· that thè
interaction of the model and the user is as good as posstble itl terros of the_
design criteria (performance, understandabllity an.d:·nexibiHty: see
Chapter 5).

.-' .. ~ .

i heuser-~- ~~

c ompiJ"tE'r

OLIE ST IONS + ADV ISE text

answers 1o questions + c:ommands FUNCTION va lues

In the SAGE terminology, the execut1ve can be in one of four states or
"modes":

1. pre-model mode
2. questioning mode
3. (user) command mode
4. done mode.

Pre-model mode is the initia! state of the executive before a model is
loaded.
Questjoning mode is the state during a consultation with a model, when
the executive is evaluating the model, asking the model's questions and
giving model-defined output. This is the "program-running" mode.
In this state the user can ask for some explanation of the system, e.g. ask
for a model question to be explained ("?" command) or ask for the reason
(context) why the system asked a particular question ("WHY" command).
Further explanation can be obtained when the user interrupts the program,
i.e. changes the state to command mode. Then, the user cao ask for more
types of information, but a lso 1nf1uence the sequencing of the consultation

IL

session. He can for instanee leave certain parts of the model out of the run
("FORGET"), or concentrate the investigation on one or more particular
goals.
Running the program canthen be resumed, untn the user interrupts it again
or the evaluation of goals is finished. The latter is called the "done mode",
which again allows for various kinds of explanation (~.g. "FACTORS", ~LIST
DONE GOALS" etc.).

S4. The SAGE interactive command language

The SAGE interactive command language consistsof several commands.the
user can type in on the terminal, in order to interact effectively with a.
model. ·· ·
A more detailed description is included in AppendiX. B, · [21]SAG02 and
[22]SAG03.
For the moment it suffices to list the commands in classes, which I will
divide in two groups:

1. Sequence commands
2. Explanation commands.

54 1. Seguence commands
Sequence commands are all commands which will directly or indirectly
influence the course the program takes.
They can be subdivided into 5 classes:

,...basic __ _,

I f10DEL

I DO

OVERFLOW
BREAK IN
SCREEN

r
pun seoquenceo

BEGIN
! (breakin)
RESUME
QUIT

concentr ate

CONSIDER
FORGET

Sequence commands

skip questions

SET
EVALUATE

Yhat if .. ·----.

INVESTIGATE
REINSTATE

More information about each command can be found in Appendix B.
Examples of the use of these commands can be found in the dialogues in
Chapter 3.

§42. Explanatjon commands
Explanation commands are all commands which may help the user
understand (parts of) the program and i ts execut ion, and the commands to
record consultation sessions.
They can be subd1vided into 4 classes (see fig. on next page):

vhat is ... ?

[EJ
LIST
SUMMARISE

- Jj­

hov/vhy ... ?

FACTORS
WHV

r:h:~r:~J
~

HISTOGRAM Explonotion commonds

flg. ~ Exp'lanatton commands

r~m~mb~r

SAVE
RESTORE

LOG
CLOSELOG

Explanation commands may be used both by the user and the designer. i.e.
totest a certain consultation session (a run of the program). or totest the
model used in that session. More information about these commands can
also be found in Appendix B. and the dialogues will provide many examples
on their use.

Chapter 2
KNOWBODE : an expert system for making Bode plots.

St. The task

Si nee my work on the SAGE expert system represents part of a research
project on the use of Al in control engineering, it was decided. that an
example expert task to be implemented should be selected from that field.
A task that according to many students requires considerable expert
knowledge in control engineering is passing a test in "Dynamische
Systemen" (i.e. "Dynamic Systems", an elementary co~rse in control
engineering) .
The expected size of this task* plus the fact that a primary aim of the
research is the investigation of the possibilities of the expert system,
made me choose a much smaller task: how to make a Booé plQt.
I expected SAGE to be good at purely consultationa_l tasks (evaluating
statements in terms of other statements) possibly supported by some
numerical procedures in the external environment, but I decided totest its
limits. (Simon,[15] p.13:) In a faxing [task] environment we would learn
something about its internal structure, specifically about those aspectsof
the internal structure that are chiefly instrumental· in limittng
performance.
In making a Bode plot calculations are essential: if SAGE was to be a
consultant on this, the "numerical" part (as opposed to the "symbolical"
part) could not be placed external to the expert system, but should be a
central part in it. Will this create any special problems (and why), in
addition to the central problem: how to make an expert system in SAGE?

S2. The expert know ledge

The domain specific knowledge needed to compute a Bode plot can be found
in "Dynamische Systemen" [12] p., but a lso in books like [3],§ 6-4.2. From
this book I will reproduce a small part giving an impression what a Bode
plot is, for those not familiar with the term. Nottee that this text, from
which the knowledge needed in the system can be taken, could a lso be part
of the introductory text of the expert system.

In control engineering, the frequency-transfer function (FTF) of a system
is very useful as a means of predicting (control) system response and
specifying performance ([3], p.140).
The FTF of a system is a complex frequency function T<jw) which tells us
that a stable linear time-invariant system subject to a harmonie input
signal of frequency w will, in steady state, have a harmonie output signal
of the same frequency as the input but with the amplitude magnified in the
ratio IT(jw)l and with the phase advanced with the amount LI.(jw). ([3], p.
140).

* Tht uxtbook "Dynamtscht Systtmtn· ([12D contam ~ pagtS. lf wt ~~ equatt tht knowledgt
oontR\M in on. Hnt.no. with h lcnowltclp in OM Rli.E, s.vw~l thouAnd rulK woulel M MOKRnJ.
1n chapttr 4(·an~~s1s1 we wm dtscuss tht s1zt of tht KfiJWBOOE systtm.

I oJ

Bode suggested a practical plotting method of the FTF, . which is
particularly suited to those cases where the FTF appears in the form

. , (1 + jwT1)(1 + jwT2) ...
T(JW J = K -~-'----'----­

(jw)N(l + j'I'VTa)(1 + jWTb) ...

By taking the logarithm of this equation, and comparing the real and
imaginary parts of lt, we obtain the following two expressions for the
gain of FTF, expressed in db, and the phaseJ expressed in radians:
Ga in:

20 log ITI = 20 log K + I 0 log[I + (wT 1)2] + ...

- 20N log w - 1 0 log[1 + (WT
1

)2] - ...

Phase:

lt is particularly simple to plot these functions on a ~einllog p~otting
paper (see fig. 6). On such a paper, the function -20N log w wil I simply be
a straight llne wlth a negative slope of -20N log 2 ~ -6N db per octave,.
The terms of the form ± 10 log[1 + (wT)2] are a lso handled very
conveniently. We note that if wT » I, that is, w » I /T, then this term
approaches the asymptote ±20 log(wT). This is obviously a straight line
with the slope ±6 db per octave intersecting the 0-db level at the
frequency w = 1/T, referred to as the break freqllency.
I f wT « 1, that is , w « I /T, then the term approaches the asymptote ± 1 0
log 1, which is obviously the abscissa axis. Right at the break frequency,
the term equals ± 10 log 2 ~ ±3 db. The total plot is shown in fig. 6. To
obtain the overall gain, one only has to add up terms which consist
basically of straight-line segments. The phase angles of these terms,
±tan -t (wT), are a lso plotted in the graph. /t is important to note !hal
!he total gain and !he total phase of T(jw) are obtained simply
by Slimming liP terms of !he basic types shown in fig. 6.

-rj/2 12

1114 6 10 log[1 +(wT)2]

'Ij I
"' =8 1 lo.. 8 . (I c' 0 'W'
Gl
VI ·~

"' .&; 0
0..

-11/4 -6

-1112 -12

-311/4 -18

fig. 6. example of a Bode plot

SJ. The expert system

KNOWBODE is a computer program describing some features- of the Bode
plot corresponding to a frequency-transfer function consisting of several
(up to 1 0) factors.
Description of the plot is necessary, because only an "expert" on Bode plots
needs the mere picture to see all features. Non-exrJerts need to be told
what they see.
By the way, KNOWBODE does not draw the actual Bode plot, because we are
mainly working on a (simple) video terminal, and SAGE ltself has limited
graphical abilities*. But it is possible to add an external FUNCTION to the
program for drawing the plot onsome plotter or video sèreen.
KNOWBODE can handle only a small portion of the complete task "making_ a
Bode plot". lt can interpret only frequency-transfer functions provided- in
factorised form. lt has Jimited capacities for interpreting symboHc
variables (like "tau-1"). rt wi11 describe features concerning the gairi ITI,
but not yet those concerning the phase LI. lt does not describe (or detect)
extremum points in the gain. . · ·
Some of these limitations may probably be ove~corr1ê by adding more
ACTIONS/RULES etc. Others are more fundamental, due to limitations in
SAGE and the representation chosen for the problem. In the fo11owing
chapters, describing the design of KNOWBODE, I shall also try to indicate
the nature of some of these constraints.

* In ow-~ siudy •ttw 'introduotion of v!fi!blts• (Appendix D) w W1ll brWfly disouss .a posrinlityfor
graph1cal ou1put.

Chapter 3
A few d1alogues wlth KNOWBODE

This rather long chapter may give you some idea of the possibi1ities of
working with SAGE.

In the first dialogue, we show a run of the program KNOWBODE which is
de11berately kept as simple as possible. lt may give yóu an idea of the
questions which are usually asked by this program, and show the usual
output. •

In the second dialogue, we shall deal with a few geReral features. The
conversation shows that the user can ask "why", "what is .. ","what_ if.." and .
related questions, and inspeet partsof the program.

In the third dialogue, we are witnesses of the execution of the·program on
a few levels, and use the question possibilities the user h~s to get some
task-specific information. ·

In the last dialogue, the user takes over control of the program, and meets
a few 1 i mits. ·

All dialogues are done under the assumption that the user is rather
familiar with the SAGE system, but not with KNOWBODE. Other users
however will probably have to make frequent use of the HELP option.
Readers of this report can use Chapter 1, Appendix A and B and the HELP
files included in part 3.
To distinguish the user's answers and commands from the system output,
we asked the user to type in capitals.
Everything in the dialogues in a font like this should be regardedas the
remarks of an observer, who has a rather detailed picture of both
KNOW80Dé. and the user's mind. Remarks between string quotes "like this"
should be regardedas an approximation of the user's thoughts onsome
decision. N.B. this observer is not part of SAGE, nor is it a computer
program.
Superscript numbers, like thisUJ, used in the first dialogue, are added in
this report to mark certain points. Between those points, the response
time of SAGE was measured: see fig. 11 on p. 42.

S 1. DiaJogue 1

(In which a user familiar with SAGE runs KNOWBODE just to get an.
answer.lt may give you an idea of the normal run of the program.)

>RUN SAGEE

SAGE Expert System Executive, version 1.3
Copyright (C) SPL International 1981.
Licensed Site: University of Eindhoven, on POP 11/34

lf you do not l<now what to do at any time, type HELP

PJease type a command: MODEL KNOWBODE

Current model is <Dynamic_Systems> - Version 2. 28-September-84.
Author: Gidi P. van Liempd

Compi led at 16:51 :00 19-Dec.:.84

Type BEGIN to begin.

Please type a command: BEGir..f.O
(Now the program to compute a Bode plot wil/ start running)

(2)1n this version of <Dynamic_Systems> the only thing I can do is
calculate a Bode plot.

-- more (Y /N) ? Nol3l

(the user doesn't want the extra introductorytext)

<4)Do you want me to calculate a Bode plot?
(You may answer yes or no): YEst5l

(6)Are you fami1iar with me?
(Range is -5 -> 5): YEst7l

(however, if you (the reader) are not familiar, see the next dialogue)

C8)When I give you the Bode plot, do you wish me to explain in more detail
the contribut ion of each factor?
(You may answer yes or no): Nol9l

<10)At what points during the processof calculating the Bode plot do you
wish to have the opportunity to interrupt me:

1. at all possible points
2. I don't care, just give metheBode plot
3. I want to have the opportunity to interrupt you at the point where

you examine individua1 factorsfortheir interesting frequencies
4. 1 want to have the opportunity to interrupt you when there is more

than one factor causing the same break point
5. I want to have the opportunity to interrupt you when you areabout

17

to examine a new break frequency

Make a choice : ~11J

(12)1s there anything you want to ask?
(You may answer yes or no): Nol13l

<14>1s the frequency-transfer function available?
(You may answer yes or no) : YEsU 5J

C1 6>vou may now type in the frequency-transfer function (FTF):
1 /(1 + jw 3)~11) · ·

(A simpte f1f. 1he '?' is necessary tomark the end)

<18>For Jow frequencies, the asymptote of IHI in a logiHI vs log(w) plot
represents (19la horizontalline. For decreasing frequency, logiHI wiJl
approach the (2()lasymptote from below.
Above w = 0.33 the behavior of the asymptotes of IHI and arg(H) changes
due to (2Ufactor F ACTOR-1. The previous asymptote intersected the break
point frequency at IHI = 1.00, but the actual value of IHI at the break point
is:
0.71.

The effect from this break point on the total asymptote of IHI is, that the
C22)slope changes to -1.00.

* * * That concludes the consultation. * * *

Type QUIT to quit.

Please type a command: QUIT
>

S2. DiaJogue 2

(In which an inquisitive user, who is familiar with SAGE ,is having a go at
KNOWBOD€.. ft wilt demonstratea few of the possibilites in interactive
sessions.)

>RUN SAGEE

SAGE Expert System Executive, version 1.3
Copyright (C) SPL International 1981.
Llcensed Site: University of Eindhoven, on POP 11/34

lf you do not know what to do at any time, type HELP

Please type a command: MODEL KNOWBODE

Current model is <Dynamic_Systems> - Version 2. 28-September-84. ·
Author: Gidi P. van Llempd

Compi led at 16:51 :00 19-Dec:.84

Type BEGIN to begin.

Please type a command: BEGIN

In this version of <Dynamic_Systems> the only thing I can do is ca Jeulate a
Bode plot.

-- more (Y /N) ? YES
(the user: "Yes, let me see some more text on this")

This Bode plot is calculated using a frequency-transfer function, which in
this version I can only use if it is given in factorised form. I mean, if the
FTF is not available, but e.g. a differential equation on the system, there is
not much I can do in this version.

Do you want me to ca Jeulate a Bode plot?
(You may answer yes or no}: WHY

("Why? What are the consequences of my answer?")

Your answer supplles a value for the assertion <Bode_ploLwanted>
the user wants me to calculate a Bode plot

Please reply: WHY LEVELS 3
("Your explanation was not enough. Please give me a few more levels of
explanation on the consequences")

Your answer supplles a value for the assertion <Bode_ploLwanted>
the user wants me to calculate a Bode plot

The assertion <Bode_ploLwanted> is a precondit ion of the action
<Bode_plot>

I will now calculate a Bode plot
in consultation area <control>
the overall sequencing

Please reply: LIST BODE_PLOT

Ll

("Wel/ then, what does this action <Bode_plot> do?")

Action <Bode_plot>:
I will now calculate a Bode plot
Effects are:

<get_FTF>

CONSIDER what advice the user expects from me <user _wishes>
CONSIDER how to obtain the frequency-transfer function (FTF)

CONSIDER initialization of increments and background memory
space necessary for area <xmine_low_freq\break> <prep:....low_freq\break>

CONSIDER investigation of the low frequency behavior of the
gain IHI and phase arg(H) for the.FTF H, and preparation of a list of
frequencies where a change in the behavior of I Hl or arg(H) wi 11 occur
<xm i ne_l ow _freq\break>

CONSIDER the initialization of increments in background
memory necessary for AREA <body_xmine_intervals> and start of the
actual calculation <examine_intervals>
Provided the given precondit ion is fulfilled.

Please reply: ??
("Could you please repeat the question for me?")

Do you want me to calculate a Bode plot?
(You may answer yes or no): YES

("Okay, 1111 give the program a chance")

Are you familiar with me?
(Range is -5 -> 5): ?

("What do you mean by that?" By the way, do you see that there is a
certainty range (instead of "Yé.S or NO") connected to this question!)

I mean, have you worked with me (SAGE) before, do you know some of the
commands available to you etc.
Please reply: YES
(1his is the same as answering "5", i.e. "I am certain on this")

When I give you the Bode plot, do you wish me to explain in more detail the
contribut ion of each factor?
(You may answer yes or no): NO

("Lefs say no.But maybe 1111 change my mind later ... ")

At what points during the processof calculating the Bode plot do you wish
to have the opportunity to interrupt me:

1. at a11 possible points
2. I don't care, just give metheBode plot
3. I want to have the opportunity to interrupt you at the point where

you examine individual factors for their interesting frequencies
4. I want to have the opportunity to interrupt you when there is more

than one factor causing the same break point
5. I want to have the opportunity to interrupt you when you are about .

to examine a new break frequency

Make a choice: 2

Is there anything you want to ask?
(You may answer yes or no): WHY LEVELS 3 .
("What do you mean, andwhere are we in the program?") . · ..

···-.. .. .
Your answer supplies a value for the assertien <any_questions>
the user wants to ask questions. ·

The assertien <any_questions> is a precondition of the action
<interrupt_process>

I am about to proceed on the instructions you gave me. As long as you do
not answer this question, you can interrupt my line of thought, e.g. for
asking ?<name> questions.
in consultatien area <geUTF>
how to obtain the frequency-transfer function (FTF)

Please reply: ??
("What was the question again?")

Is there anything you want to ask?
(You may answer yes or no): ?

I mean, is there anything you want to ask before I go on trying to get the
FTF
Please rep ly : ?
("can you give me even more informationon this question?")

Is there anything you want to ask?
(You may answer yes or no): NO
(By asking the same question again, the program shows it has no more
information)

(In the mean time, the user has changed his mindabout not wanting extra
explanation on the factors of the f1f. He' I/ use the next question as an
interrupt point to change his answer.)

Is the frequency-transfer function available?

(You may answer yes or no): LIST GOALS
("Let rne see what the program has done, and what it is . .doing riqht now")

**

The following goals are under consideration:

Assertton <FTF _gtven> Not evaluated
Prior Value: -100.0
the frequency-transfer functton ts gtven

whtch ts being considered because it ts the precondit ion for. actton
<read_givenJTF> ---------------

Area <geUTF>: Status: now being investtgated
how to obtain the frequency-transfer function (FTF)_

contains the act tons:

1/
I am about to proceed on the 1nstructfons you gave me. As Jong as you do
not answer this question, you can interrupt my line of thought, e.g. for
asking ?<name> questions. <interrupLprocess>

21 if the FTF is given, I will now read 1t <read_givenJTF>
3/

I am sorry, but I could not correctly interpret the FTF you gave me. Please
try again and makesure it is in the right form. lf you do not know what the
right form is, examine FACTORS how_to_readJ'TF <failure_to_readJTF>

41 if I had the knowledge, I would get the FTF in other ways when 1t is
not directly available <more_actions_geUTF>

which is being considered because it appears in action <Bode_plot>

Area <control> :
the overall sequencing

contains the actions:

Status: to be 1nvestigated

1 I I will now ca Jeulate a Bode plot <Bode_plot>

which ts being considered because it is the model's FIRST AREA

The following goals have been completed:

Area <user _wishes> : Status: investtgated
what advtee the user expects from me

contains the actions:

1/ I gtve the inexpertenced user some advtee <fam111ar_with_SAGE>

-L.q-

2/ I setsome of the features which wi11 be used during the
calculation of a Bode plot, if wanted <help_Bode_plot>

Assertion <xtra_xplanation_want>
Prior Value: -100.00
you want extra explanation

Current Value:- lOO.OO

Assertion <interrupts_possible> Current Value: -1-00.00
Prior Value: -100.00
the user has the opportunity to interrupt the thought prc)cess at

appropriate moments

Please reply: !
("I wil/ interrupt the normal course of the program, because 1 want to
change the value of <xtra_xpfanation_want>, which is now fALSE")

Please type a command: SET XTRA...XPLANATION_WANT

How certain are you that you want extra explanation?
(Range is -5 -> 5) : 5

<xtra_xplanation_want> has been SET to 100.00
(Notice how the certainty value "5" has been transformedinto "I 00.00",
which is "TRUé.")

Please type a command: RESUME
("You mcry now continue with the normal course of the program")

Is the frequency-transfer function available?
(You may answer yes or no): INVESTIGATE

("I wonder what happens it I give some answer rather than another. Let me
INVé.STIGATé. that")
That command is not currently allowed
- type HELP for legal functions.

("Oh wel/, it seems I have to change to command mode again")

Please reply: !

Please type a command: INVESTIGATE

Is the frequency-transfer function available?
(You may answer yes or no): NO
("Let's see what happens if I scry NO". Notice how the same question is
asked)

Since 1 do not yet have the knowledge to obtatn the FTF tn_other ways, e.g.
when the different ia! equation of the system is known, there is not much I
can do.
For all frequencies, logiHI vs log(w) represents a straight line with slope
UNKNOWN.IHI has the value 1.00 for w = 1.

* * * That concludes the consultation. * * *

Type QUIT to quit.

Please type a command :REINST ATE
(Notice how the program's answer didn't teil very much, ;.". fact was
completely wrong. Let's REl NS1 A1f. the old situation.)_

Please type a command: RESUME
(RESUMé the normal course of the program)

Is the frequency-transfer function available?
(You may answer yes or no): YES

You may now type in the frequency-transfer function (FTF):
1 /(jw)(1 + jw)?

For low frequencies, the asymptote of IHI in a logiHI vs log(w) plot
represents a straight line with slope -1.00. For decreasing frequency,
logiHI will approach the asymptote from below.
Above w = 1.00 the behavior of the asymptotes of IHI and arg(H) changes
due tofactor FACTOR-2. This factor, which is in the denominator of the
FTF, represents a normal first order system. Below the break frequency,
the gain of this factor has a horizontal asymptote and the phase tends to
0.00 degrees, above it the gain has an asymptote in a direction with
tangent -1.00 in a logiHI vs log(w) plot, and the phase tends to -90.00
degrees. The previous asymptote intersected the break point frequency at
IHI = 1.00, but the actual value of IHI at the break point is:
0.71.

The effect from this break point on the total asymptote of IHI is, that the
slope changes to -2.00.

* * * That concludes the consultation. * * *

(Weil? Did you see the extra explanation?)

SJ. Dia1ogue J

(In which the user from dialogue 2 continues, but now probes. for the _
deeper levels of the program and more task-specific information).

Please type a command: BEGIN
(Now the program wilt start runningagain)

In this version of <Dynamic_Systems> the only thing I can do js calculate a
Bode plot.

-- more (Y /N) ? NO

Do you want me to calculate a Bode plot?
(You may answer yes or no): TRACE 1 _

(Now the program wilt show when it enters or leaves an area in'the model)
~ . .

Tracing levelis now 1
•

~ ..
Please reply: YES
(1his is the answer on the last question)

We are considering what advice the user expects from me
(Intelligent readers of this report remember from the previous dialogue
thatthis is the first action effect of AC110N <Bode_plot>!)

Are you familiar ... (We wil/ skip printing the next three questions in this
dialogue, since they are not interesting any more. See dialogue I if you
want. Here the user wilt give the same answers as in that dialogue. We piek
up the conversation on:)

Make a choice : 1
("l'd like to be able to interrupt the program at all possible points")

We have completed considering what advice the user expects from me

We are considering how to obta1n the frequency-transfer function (FTF)

Is there anything you want to ask?
(You may answer yes or no): NO

Is the frequency-transfer function available?
(You may answer yes or no): YES

You may now type in the frequency-transfer function (FTF):
(1 + jw tau)/[(jw tau -4)**2 + 3**2]?
(Notice that we use a variabie "tau" in this f1f!)

We have completed considering how to obtain the frequency-transfer
funct ion (FTF)

-27-

We are considering inltialization of increments and background memory
space necessary for area <xmine_low_freq\break>

We are considering investigation of the low frequency behayior of the gain
IHI and phase arg(H) for the FTF H, and preparation of a list of frequencies
where a change in the behavior of IHI or arg(H) will occur

I have just completed investigating the first factor.
Is there anything you want to ask?
(You may answer yes or no): TRACE 3
("Weil apparently this is the first interrupt point in the· area where the
program investigates the low frequency behavior. Plea~e giye mè tuil
details on how you wilt go on: tracinglevel 3") ...

Tracing level is now 3 --

Please reply: NO
("I have no more questions, thank you. Please continue")

Node <ask_any_questions_4> evaluated to -100.00
Node <any_questions_4> evaluated to -100.00
**

Result for <any_questions_4>:
The likelihood that the user wants to ask questions is -100.00

**

The goal we are considering is: there is another factor of the total FTF to
be invest igated

Node <another _factor> is not yet evaluated
Node <checLnexLfactor> is not yet evaluated
Node <not_finished> evaluated to 100.00
Node <checLnexLfactor> evaluated too 100.00

Node <another _factor> evaluated to 100.00
**

Result for <another _factor>:
The likelihood that there is another factor of the total FTF to be
investigated is 100.00

(Aha! Notice how the result of goals is put between those stars)

The goal being investigated is unnamed Cit is a parameter or a precondit ion
of an act ion)
(1his is not very clear. But now the user unfortunately has no way to

- Ltl-

interrupt the program to ask what is meant by this!)

Node <triviaLfactor> is not yet evaluated
Node <check_triviaLfactor> is not yet evaluated
Node <type> is not yet evaluated
Node <factor> is not yet evaluated
Node <obtain_factor> is not yet evaluated
Node <nexLfactor> is not yet evaluated
Node <FTF> evaluated to position POLYNOMIAL -1 (71.00)
Node <nexLfactor> is not yet evaluated
Node <factor _cycle> evaluated to position CYCLE-3 (3.00)
Node <next_factor> evaluated to 17.00
Node <obtain_factor> evaluated to 17.00
Node <factor> evaluated to FACTOR-2 (17.00)
Node <type> evaluated to 3.00
Node <check_triviaLfactor> is Not Evaluable
Node <trivial_factor> evaluated to -100.00
**********************************~***********************

Result for the unnamed goal is -100.00

**

The goal being considered ... (7his monologue by the program wilt go on for
several pages, until the next interrupt point, which is when the program
has finished investigating the second factor of the f1f for its /ow
frequency behavior. We wiltnotprint all, but piek up on:)

Result for <value_factor _cycle>:
the number of factor cycles examined sofar is second (2.00)

**

having examined a factor I allow the user to interrupt my line of thought,
if wanted

I have just completed investigating the second (2.00) factor.having
examined a factor I allow the user to interrupt my line of thought, 1f
wanted (1hls is agaln a point where SAGE Is not very clear, I thlnk. But do
you notlee that this text "I have just .. " Is a/most identlcal to the output
text just before we changed the 1RACE level?)

The goal we are cons1der1ng Is: the user wants to ask Questlons

Node <any_Quest1ons_4> Is not yet evaluated

Is there anythlng you want to ask?
(You may answer yes or no): TRACE o

("How strange! I have seen the same q!Jestion and node <any_questions-:-4>
before! The area <xmine_!ow_freq\break>probab/y uses ~EST ART to
examine each new factor. But now I shall put the tracirïg level back to ·
normal.")

Tracing level is now 0

Please reply: NO

For low frequencies, the asymptote of IHI in a logiHI vs log(w) plot _
represents a horizontalline. For decreasing frequency, l.ogiHI will approach_
the asymptote from below. .
Above w = 1.00* 1 /tau the behavior of the asymptotes __ of IHI and arg(H) ·
changes due tofactor FACTOR-1. The previous asymptote ln!.erse-cted tne
break point frequency at IHI = 0.04, but the actual value·of IHI at.the break
point io:
l.OOSORT[1 + 1.00 tau**2]/SORT[(25.00 -1.00 tau**2)**2 + 64.00tau**2l ...
The effect from th1s break po1nt on the total asymptote of-IHI1s, that the
slope changes to 1.00.
I have just completed 1nvestigat1ng the f1rst break point.
Is there anything you want to ask?
(You may answer yes or no): NO

("Again an interrupt point!")

I w111 now exam1ne the next 1nterest1ng frequency.

Above w = 5.00* 1 /tau the behavior of the asymptotes of IHI and arg(H)
changes due to factor F ACTOR-2. The previous asymptote intersected the
break point frequency at IHI = 0.20, but the actual value of IHI at the break
point is:
l.OOSQRT[1 + 25.00 tau**2]/SQRT[(25.00 - 25.00 tau**2)**2 + 1600.00
tau**2l

The effect from th1s break point on the total asymptote of IHI is, that the
slope changes to -1.00.
I have just compJeted investigating the second break point.
Is there anything you want to ask?
(You may answer yes or no): NO
(fvotice that he re also the text is al most the same.)

* * * That concludes the consultation. * * *

Type OUIT to qult.

(I nstead of quitting~ the user wants to know~ why log/Hl will approach the
asymptote from above. By doing LIST DONE GOALS and LIST DONE
OBJECTS~ which are si mil ar to the LIST GOAL from the previous dialogue~
he finds out that OBJECT <relative_position> is what he wants to see. We

- JV-

feft out that LIS1 commands in this dialogue, because their output needs
a lot of space)

Please type a command: LIST RELATIVE_POSITION

Object <relative_position> Current value: above
Range (-1 OOOO.OOE30 to 1 OOOO.OOE30) Scale: <pósition_scale>
relative position of IHI with respect to the asymptote ·of JHI ~-

(Notice that no numerical value is visible, only the sca/e value "above" t)

Please type a command: FACTORS RELATIVLPOSITION
("How did you get the va/ue "above" for <relative_position>?'l

The ob j eet: · ·
relative position of IHI with respect to the asymptoteof IHI

<re lative_position>
may be determined by:
** 1. using the rule <calc_rel_position>
(1he 2 stars in front indicate that the ru/e has been u~ed)

Please type a command: FACTORS CALC_RELPOSITION
("What does this ru/e do?")

By rule <calc_rel_position> the conclusion:
relative position of IHI with respect to the asymptote of IHI

<re I at ive_pos i ti on>
is:

coeff _1 st_term-lHI * coeff _2n<Lterm-lHI
(because this product of coefficients is the actual coefficient of w**2 in
the expansion of IHI for low frequencies, and therefore it determines the
upward or downward parabolic direct ion)

Please type a command: FACTORS COEFF _1ST_TERM-lHI

The object:
the coefficient of the first term of the expansion of the totaliHI

<coeff _1 sLterm-lHI>
may be determined by:

1. using the rule <calc_coeff_1st_term1>
2. using the rule <calc_coeff_1 sLterm2>
3. using the rule <calc_coeff_1sLterm3>
4. taking the default < 1.00>

(Now the user can go on asking what this rule <calc_coeff_/ st_term3>
does or why the others failed, but we'/1/eave that to you. Let's ex amine
anotherobject, whose name you have a/ready seen several times:)

Please type a command : FACTORS BREAKJREQUENCY LEVELS 2

The object:

-"' ,­
the break frequency <breaLfrequency>

may be determined by:
** 1. using the rule <geLbreakfrequency>

By rule <geLbreakfrequency> the conclusion:
the break frequency <breaLfrequency>

is:
current_element(list, break_poinLcycle)

(we take an interesting frequency from our list of interesting freqljencies) .

Please type a command : ?1 i st
(instead of asking how you should determine <list> or thè· other argu;nent
of the FUNC110N <current_element>,we ask what it i~) •. · · ... · · ·

the position of a list of a11 break points
Please type a command: ?
("Have you got more informationon that?")

..

a list of all the points where a change in the behavior of gain IHI and phase
arg(H) will occur.
Please type a command : ?

The actual value indicates the first position in background memory where
the list is kept.
Please type a command : ?

Sorry-no further explanation available.
(Readers who are wondering how this break frequency got into that lis(
are advised to do HELP BREAK FRf.QUENCY.
But seriously, this is done in area <Xmine_iow_freq\break>).

Please type a command : QUIT
(1his is the end of this dialogue)

QUIT- are you sure? (Y or N) YES

* * * SAGE consultation finished. * * *

>

S4. Oialogue 4

(Suppose the user from dialogue I decides not to quit, but to find out
what would happen if he continues, and introduces a variabie in the F1F).

Please type a command: BEGIN
(Now the program wil/ start running again, but background memory is
unchanged)

In this version of <Dynamic_Systems> the only thing I..Gan do is calculate a
Bode plot.

-- more (Y /N) ? NO

Do you want me to calculate a Bode plot?
(You may answer yes or no): ! ..

(Since part of the work has a/ready been done in dialogue. r~ like .getting the
f1F, the user wil/ now take contrC?I of the course of the pfogr~m,by
changing to command mode"!") .;: · ·

Please type a command: FORGET ALL
(1he program should forget the normal course of events)

A11 goals forgotten.

Please type a command: CONSIDER EXAMINE_INTERVALS

The area <examine_interva1s> w111 be considered immediately.
(However, the program wil/ do nothing until its course is RéSUMéd)

P1ease type a command: CONSIDER XMINUOWJREQ\BREAK

The area <xmine_low_freq\break> wi11 be considered immediately.
(And aft er that, <examine_;nterval s>!)

Please type a command: CONSIDER PREP_LOWJREQ\BREAK

The area <prep_low_freq\break> wi11 be considered immediately.

Please type a command: SET VARIABLE

Is the variable of a factor

I.
2. tau
3. tau_l
4. tau_2
5. tau_3
6. t
7. t_l
8. L2

9. L3
10. unknown

Make a choice : 3

· <varfable> has been set to tau_ I

P1ease type a command: RESUME
(Now the program should execute the areasin the order specified) .

At what points during the processof ca1cu1ating the Bode plot do you wish
to have the opportunity to interrupt me :

t. at all possib1e points
2. I don't care, just give metheBode plot
3. I want to have the opportunity to interrupt you at thè point where .

you examfne indfvidual factors for thefr interesting frequeneies .
4. I want to have the opportuQlty to interrupt you when there is more

than one factor causing the samebreak point .
5. I want to have the opportunity to interrupt you when you areabout

to examfne a new break frequency

Make a chofce : 2
(Notice that this question is part of the area <user _wishes>, which has
been setto uneva/uated by the BEG/ N command. 1his area is not among
the ones the user orderedto CONSIDER, so assertions (and questions) from
this area wil/ be examined only if, and when they are needed by the other
are as)

For 1ow frequencfes, the asymptote of IHI in a logiHI vs 1og(w) plot
represents a horizontalllne. For decreasing frequency, logiHI will approach
the asymptote from below.
Above w = 0.33* I /tau_ 1 the behavior of the asymptotes of I Hl and arg(H)
changes due to factor F ACTOR-1.
When I give you the Bode plot, do you wish me to explain in more detall the
contribut ion of each factor?
(you may answer yes or no): NO
(Notice again, that now this question is asked when it is needed!)

The previous asymptote fntersected the break point frequency at IHI = 1.00,
but the actual value of IHI at the break point is:
0.71.
(1his is wrong. 11 should be 1.00/SQR1[I + 1.00 tau_/ ~~21. 1his error is
due to the factthat in the background memory the variabie has notbeen
set, but only in the SAGE model part)

The effect from this break point on the total asymptote of IHI is, that the
slope changes to -1.00.

* * * That concludes the consultation. * * *

Type QUIT to quit.

Please type a command: SET VARIABLE
("What if I set <variable> to anothervalue?")

Is the variabie of a factor

1.
2. tau
3. tau_ 1
4. tau_2
5. tau_3
6. t
7. L1
8. L2
9. L3
10. unknown

Make a choice : 4

<variable> has been SET to tau_2
%RECORD ACCESS ERROR 2 (type mismatch) 14 2346 1 0

Fata! error number 13 GETACS/ AxsErr
>
("Hm, I seem to have hit a sore spot. Wel/, that's the end of our
conversation.")

Chapter 4
Analysis of KNOWBODE

This chapter may supplement the knowledge on "what KNOWBODE does"
gained in the last chapter, with knowledge "how KNOWBODE does it". This
is a very tedious chapter.
lt just provides you with some figures on the detalls of KNOWBODE, which
is necessary because in subsequent chapters design problems are
i 11ustrated using examp Jes from KNOWBODE, and you. rr,tay need this
background information.
I suggest you glance through this chapter, andreturn to it when needed.

A slight attempt is made to compare KNOWBODE with R1 (currently called
XCON) by McDermott ([7]), an attempt doomed from the start because
KNOWBODE is too smal!.

S 1. The structure of dialogu#s in the SAGE system

The greatest part of the dialogues with the SAGE system is a
program-initiated question answering process. This is often considered
too rigid a structure (see [6]), and that was in fact one of the reasons why
I decided to make a FUNCTION to take care of direct input (<read>, see
Appendix C). But the fact that SAGE is a backwards chaining system makes
sure that focused questions are asked: see for example dialogue 4, where
SAGE asks the questions when they are needed (see a lso Winst on, [19]
p.199). Since SAGE is based on goal trees (and AREAs and ACTIONs also
form a strict hierarchy), "how" and "why" questions are possible ([19],
p.41).
When giving answers and explanation to the user, SAGE uses canned
sentence fragments, and the text associated (by the designer) with the
elementsof the model. SCALEs may be used to transferm numerical output
into words, and allow the user to make a choice between words on input
(see dialogue 4 on SET <variable>). However, there again it is the system
which must name the objects. Since the user must find out what a certain
object is called by the system, the program should sometimes identify it
in the dialogue: " due to factor FACTOR-2." This was also observed on
MYCIN ([19],p. 197).
More advanced types of discourse in SAGE are theoretically possible, but
they would require expert knowledge on the rule systems that govern
person-person communication (see [13]) and would probably obscure the
(actua 1) expert task.

One may add, that due to truth-maintenance (the value of
ASSERTIONS/OBJECTS remains unchanged when evaluated) coherence
throughout the dialogue is maintained. In a normal run, SAGE will not ask
the same question twice.

See a lso Chapter 8, §4.4 (QUESTIONS).

'

-36-
S2. The mode 1

As described in Chapter 1, a model consistsof an ACTION-based partand a
RULE-based part. We shall describe bothof them in the case of KNOWBODE.

§2. 1. The ACTION-based part of KNOWBODE

The ACTION-based part consistsof a hierarchy of AREAS (see fig. 7). These
AREAs contain ACTIONs that may call other AREAs, initiate investigation
of goal trees and take care of output. In fig. 8 we indicated for all AREAs
the number of ACTIONs, action effects, the number of different
ASSERTIONs/OBJECTs which appear in the ACT I ONs of that AREA (even as
part of a function/procedure call) and we indicated the number of
RULEs/ ASSERTIONs/OBJECTs/QUESTIONs declared in that AREA.

fig. 7 a hierarchy of subtasks

l !..."CC

I I (j) ~=- IJ.)

+-' ~

u (j)r- (j)
Q,) z (IJ z I (!) 0 u 0 z

- (j) (j) Q.l f-f-
- ij) 0 z !- i- -

0 :;:::: IY t 't (j) IY u !-- C• ww LU I w w i..D f- ·~ ill~J I.J) '"") w +-' u u =:t I.J) co =:t
<[(0 <[O IY <[0 0

control 1 2 1 2 2 2 1
user _ wishes 2 4 4 - 6 - 3
get_FTF 4 5 I 3 1 3 - 2
prep_l ow _freq\break 2 2 1 1 1 1 -
xrnine_low_freq\break 1 1 16 22 26 9 23 1
exami ne_i nterval s I

,..,
L. 3 I 2 - - 1 -

bodu_xmine_int.ervals l 9l 16 I 23 i 29 4 1"11::'
L..J 2

13 i 1 46 ! (49)

'

.- 1 b.
I

i 25 52 I 9

fig. 8 firsl3 columns indicale ACTIONs, action effeels and (different)
facls lnvestlgaled In AREAs, last 4 columns indlcate RULEs, ClJESTIONs,
ASSERTIONs and OBJECTs declared in the AREA.

The total number of ACTIONs + RULEs (92) may be taken as a measure of
the size of the task. Compared with other expert systems, like RI ([7]),
which has 772 rules, KNOWBODE is small (which was to be expected).
There is not much more to say.

Of the 48 action effects, 16 take care of output (ADVISE) and 11 of the
explicit flow of control in and between AREAs (REST ART, REASK, CONSIDER
<area> and FORGET <area>). ·

49 different ASSERTIONs and OBJECTs appear in the ACTIONs. As already
stated in the footnote on p. I 0., I would like to call these facts .QQals.
Viewed from the AREAs, the RULE-based part consists ·of a forest of 49
goal trees.
Comparing this number with the total number of facts (77), creates the
suspicion that there is a shallow forest (i.e. a forest where the root nodes
are only a few branches away from the external environment) or a very
bushy forest (there is a tangled .structure among the trees) but in any case,
the AREAs are not far from the ;external environment.

The fact that the number of OBJECTs is twice as large as the number of
ASSERTIONs indicates that this is a numerical task.

lf you investigate the nature of the questions asked in the dialogues, you
see that they are only conceroed with what kind of output the user wants.
Apart from the FTF, no additional (domain-specific) information has to be
specified by the user.

S2 2. The RULE -based part of KNQWBODE

lf we examine the RULEs of KNOWBODE in terms of the functions that they
perform and the extent to which they embody domain-specific knowledge,
we find that only approximately 27 RULEs (of the 61) may be considered
directly related to knowledge about Bode plots. An example of such a RULE
may be found on p. 9: RULE <calc_break_point_2>.
24 RULEs are concerned with retrieving data from the external
environment, or storing data there. An example is <geUreak_frequency>
on p. 31.
The rest (I 0 RULEs) may be considered "neutra!" and have a function
somewhere in between*. Only one of them is considered a pure
computational rule:

RULE converLto._IHI :
"conversion of log(I Hl) back to lH I"

intersecLasym_IHIIS
ex pon(1 0., log_intersecLI Hl)

Comparing the number of storage/retrieval RULEs with domain-specific
ones indicates that KNOWBODE relies heavily on data from the exteroal

• I shall nol print them here, but e.g. RULE <checlcJlorizontal> and RULE <checLLbrea!Wioint> are
both considered neutral RULES by me.

-38-
environment, wh1ch is also conflrmed by the fact that only 11 RULES
contain no FUNCTION whatsoever.
By the way, in R 1 the number of domain-specific rul es is 480 opposed to
292 more genera 1 ones.

That part of a goal tree which is oot domain-speciflc I shall call the "grey
zone" (or "twilight zone"?). lt may be called grey, because it is oot
interesting to the end-user (and should therefore be invisible), but is to
the designer (who must be able to inspeet and understand it>. lt is
somewhere in between the external environment (obscured, black) and the
high-level part of the model (visible, white). In Chapter9 I shall say some
more on this. ·

lf we examine the oumber of RULES or OUESTIONS avail~ble to establish a
single fact, we find:
2 OBJECTS (<IHI> and <arg(H)>) which caooot be eva luated because there are
no DEFAULT values, RULES or oyESTIONS to establish them. They are used
only as a "bidden HELP optioo", for the user may ask their associated text
(explanation) by using the "?" commaod.
15 OBJECTS which have ooly a DEFAULT value and no RULES or QUESTIONS
to establish them. They are used to indicate memory positions in
background memory, necessary as arguments in FUNCTIONS and
PROCEDURES. Since they are OBJECTS rather than CONSTANTS, they may
have (explanatory) text associated with them. An example: <list>.
50 ASSERTIONS or OBJECTS have only I RULE or QUESTION to establish a
value for them, aod possibly a DEFAULT value. Only ooe of these 50 is
ASKABLE.
7 ASSERTIONS or OBJECTS have 2 RULES or QUESTIONS to establish a value
forthem (aod possibly a DEFAULT value).
2 ASSERTIONS or OBJECTS have 3 RULES or OUESTIONS to establish a value
forthem (and possibly a DEFAULT value).
I OBJECT (<slopeJHI>) bas 4 RULES to establish a value for it.
There are no ASSERTIONS or OBJECTS which have more than 4 RULES or
OUESTIONS to establish a value for them.

The measures of performance for searching a goal tree, as meotiooed in
[9], p.91-94, caooot be properly used for evaluating SAGE.
However, I shall try to give a few criteria which indicate sarnething of the
nature of the KNOWBODE task.
1) The oumber of branches at each fact node in the tree may be considered
a measure of the difficulty of the task*. This oumber is determioed by 2
aspects:

a) the number of RULES or OUESTIONS available to establish a
single fact. As you have seen above, this is about I RULE or
OUESTION per fact: this meaos that usually the situation is
specific** eoough to determioe the value of that fact.
b) the oumber of different ASSERDONS or OBJECTSin the

-39-
preconditions or body of the RULES (or in the preconditions of
QUESTIONS). This is an indication how "specia1ized" the
situation is in which the fact may be evaluated by that RULE.
Varying over all RULES, we find an average of 1.7 different
ASSERTIONS or OBJECTS in the preconditions or body ofRULES.
lf we include in the calculation the number of FUNCTIONS with
different arguments appearing in the RULES, we findan average
of 2.8 nodes per RULE. Actually, this number should be
considered higher, because so many of the RULES only serve to
retrieve a value from the external environment. In [7] (p.65) a
somewhat similar measure for the ex~ert system R 1 is
mentioned, ("fan-out"), with a value of 8. _ _

2) the "bushiness" of the trees may be considered a measure of the
djfference in know1edge needed to estab1ish a fact. lt is determined by the
number of RULES that use the same fact (or the same call of situation of a
FUNCTION), averaged over all facts. I did oot compute that, but do mention
that the node "type(factor)" .·is used in 17 different places in the
KNOWBODE model. SAGE is welÎ equipped to handle multiple calls on tthe
same node, because it wiJl compute such a node only once!
3) the depth of the goal tree may, in combination with the number of
branches on each node, be considered a measure for the amount of effort a
program has to spend before it will attain a goal. But if there is a very
bushy forest, one shouldn't forget that SAGE needs oot examine a (partial)
tree twice.
An upper bound of the minimum "distance" of a fact to the exteroal
environment in KNOWBODE is 6 RULES, (for <slope-lHI>). Th is means that, if
they were ordered properly, SAGE would have to examine a sequence of 6
RULES before it retrieved ~ value for a precondit ion from the exteroal
environment. Usually, the forest is much shallower: every node needs to be
expanded only a few levels before any of its preconditions is evaluated.

In KNOWBOOE we !Jave a s!Jallo~ bus!Jy but simp/e torest~

corresponding to a task w!Jic!J depends !Jeavily on t!Je External
Environmen~ is based on a smal/ amount of related knowledge
and considers only simp/e situations.

-40-
S3. The interface and external environment

S3. 1. The interface: FUNCTIONs and PROCEPUREs

The FUNCTIONs and PROCEDUREs which make up KNOWBODE's interface to
the external environment may be divided into 4 classes:

t I ..-s or age n~tnev a 1 ,.....dinct in I output_

\

~

~

first_element 2 type 2 value_IHI 1 J
currenLe 1 emej 2 get_alpha 1 read - 1

next_factor 1 get_beta 1

not_finished 3 get_x 1 computatioD---..,

cause 1 get_num_or _denoj 2 square_root 1

examine 1
power 1 ex pon - ..-2

put._in_memory
mu 1 log 3

2

add
get._variable 2 interna1 1

increase ~emove 1 3 ·- rename_factonl
recorded 10 delete 1

put_on_record 5 clean 1
<::' 1

flg. 9 RKTIONsiPROcEDt.REs in KNOWBOOE. Figtrto indicatts runber of different
can situations (a situation with different can paranwters) m KlllYBODE.

N.B. The number behind the FUNCTION or PROCEDURE does DQlindicate how
many times the FUNCTION or PROCEDURE was cal led, since due toRESTART
any function or procedure may possibly be called as many times as there
are factors in the FTF, to get new data from the external environment. lt is
more an indication of how general they are.

Functions which take care of slorage or retrieval are abundant in
KNOWBODE. The most basic starage/retrieval functions are <recorded> and
<puLon_record>. As you cao see, they are called in several situations (i.e.
ca11s with different parameters) which means they are the most general
functions.
The FUNCTIONs <type> ... <geLvariable> all retrieve a different aspect of a
factor of the FTF. The fact that <type>, <geLnum_or_denom> and
<geLvariabJe> have 2 call situations is a result of the fact that
ASSERTIONS/OBJECTS declared in an AREA different from the AREA in
which they are used, are oot set to unevaluated when the AREA in which
they are used is RESTARTed. Thus, both in AREA <xmine_low_freq\break>
and <body_xmine_intervals> "type(factor)" should be ca11ed, butweneed to
introduce an extra object <factorX> in one AREA to make that possible.
The FUNCTIONs <firsLelement> ... <cause> retrieve elements from a list (i.e.
a poJynomial or a list of break frequencies). They keep track of the
elements either by an iocrement (one of the ca11ing parameters indicating
a memory position where this iocrement is stored) or by camparing the
argument with elements in the first column of a two-dimensional listand
returning an associated parameter from the second column of that lfst
(<cause>).

...,,
<examine> ... <increase> are FUNCTIONs and PROCEDURES which take care of
storing or adding elements toa listor a specific memory position. Memory
positions may either be explicitly mentioned in the arguments (used in
<add>, <put_irunemory> and <increase>) or implicitly: used in <examine>.
(The use of different memory positions explains why there are different
call situations).

<currenLe I ement> I <nexLf actor> and <geLnum_or _denom> I <power> are
FUNCTION pairs which act on the same external routine. Use of different
narnes was made for better understandabi1ity: see Chapter 9.

Oireet input and output, i.e. directly from the terminal to the external
environment is performed by <read> and <valueJHI>.

Computational procedures are used very little in KNOWBODE:
<square_root>, <log> and <expon> are the only ones.

lnternal procedures are PROCEDURES which have only effects inside the
external environment (mostly clearing memory positions).

53.2 The External Environment

The actual routines which realize the FUNCTIONs and PROCEDUREs, are
FORTRAN programs. A functional dependency scheme of those routines is
included in part 3. <valueJHI> and <read> call upon a tree of FORTRAN
routines, but most other functions and procedures are small and simple
pieces of program included in a FORTRAN routine called XXSWIF (which is
the basic external program called by SAGE).

The memory function of the external environment, or background memory
as I call it, is realized by a single REAL ARRAY which currently has 200
positions. The virtual organization may be considered as in the following
figure:

fig. 1 0 (Virtual) organization of baclcgromd mtl1lOnJ .

Background memory contains 4 types of data:
1) increments (in CYCLE-1 through 3), necessary to keep track of cycles
executed, see Chapter 1 0.
2) intermediate results of calculations (BUFFER-X, Y and Z), see also
Chapter 10.
3) data on the FTF (ln POLYNOMIAL -1 and the FACTOR arrays). Elementsof
POLYNOMIAL -1 are first positions of factor arrays.
4) data on the break points of the FTF, and the factors that caused them (in
LIST-1 and the CAUSE arrays). The first row of LIST-1 contains break
frequency va lues, the second row first positions of cause arrays where the
factors causing a break point are stored. In the cause arrays, Jirst
positions of factor arrays are stored (see [11] and Appendix-o>. ~

S4. Speed and size

In the next figure the measured time span between a user's answer and the.
subsequent question of KNOWBOD~ is displayed for dialogue 1. Figures
between brackets correspond to ppints in the conversation. At point (18)
KNOWBODE starts the output on the Bode plot. Points (18) to (22)
correspond with the beginning of lines displayed on the terminal*. At
those points in time a few new I i nes of output were presented.

(f
BEGIN' J

7" 8---··· I
,--.J.----'

(2) t"' In 11is ...
NO(::;)

1".4_::,j (r;-
Do you ...

YES(5)

1".9~
({)

Are you ...

YES(7)
7" 4 . -- l

,----·.----'
(8)

When I...)
N0(9

,_-1".8_::,j

(10)
At vhat... .

(11)
2

,--2".9__:_;
(12)

Is there ...

NO (13)

,--2".0~
(14)

Is the... (.
YES 15

)

,--1".2~
(16) .

You may ... ()
1/(1 + jw 3)?

1
;

r-1'36".1---'

(18) 1 for low ...
6".0

()
9 ... 6)_2o" .s_c _14" .z_ I)

22 (21 20) (19 .
slope... factor... asymptote... a honzontal...

fig. 11 tint span bttween user's answrs and I<N0'1mODE's quutions in
elialotut 1

We may use the data in this figure to give a rough estimate of the speed of
KNOWBODE**. In the next figure I have indicated the number of AREAs
entered, ACTIONs entered (i.e. where preconditions succeeded) and RULES
and OUESTIONS processed*** in each time span. Since the inner
mechanisms of SAGE are unknown to me, I am not sure these are the

*Dut to WchnicalitiK it was notposstilt to tvPf tht linK in tht dialoguK in 1his report in tht samt
llngth as in rulfty .
** I<N0'1iBOOE is "" on " PDP-11/'!A cmder RSX-11 H 1 with tht dttiils (pi9fS of cort ttc.) u incfic.lttd
in ~ SAOEE.ctt> wtrich is inoluded in prt 3 of tlris repart
*** SM a lot of worlc in ~ a RlU is dont in ~ tht prtconditions I trNttd
Rt.lES that failtd or sucoteded in the samt wav'

, __

-43-
factors that determtne the speed of the program. Using the data between
point (5) and point (16) from these two figures, we may roughly calculate
that the time SAGE needs toenter an AREA is ± 1 sec., toenter an ACTION
also ± 1 sec. and the time to process a RULE or QUESTION ± 2 seconds.
Using this as a prediction for the time needed between (17) and (18) we
would find ± 47 sec., whereas the actual duration is twice as large! As a
possible explanation I point out that REST ART is used in this interval,
which inTRACE 3 mode consultations was observed to take a long time.
As a general conclusion I may add that the system response 1s acceptable
in a "conversation", when the number of RULES to be used is sma11, but
slow when more RULEs or QUESTIONs have to be processed.

--
(1) (3) (5) (7) (9) 1 l '13 l5 17

1 ! 1 1 1 1 1 1 1
(2) (4) (6) {8) '10 12' '14 16 (18'

AREAs entered l l - - 1 - - 2,.
.::...

3:
0

1 2 l 9 ACT I ONs entered z - - - -
:::.:::
z

C!UESTIONS/RULES
:J

1 1 1 1 1 1 - 18
processed

fto. 12 No&. that 1) 1he Ml.f.A entertel m (3) -> (4) is FRSTMI.EA (and thtrtfor•
1ffl out of 1M o.tloulation) 2) timts ... not ~ abov• perint
(18). becauH SAGE watts tin an output bufftr is filltd. SM part 3.
•direct input/output•.

The ~of the SAGE Executive is 31,456 words, which is quite large. The
compiled version of the model KNOWBODE is 415 blocks, about 104 K,
which doesn't te 11 me much because I don't know how SAGE eneodes the
model (e.g. is the heavy use of REST ART, which KNOWBODE makes, a
problem?). But compared to the total number of RULES and ACTIONS it
seems quite large. The size of the external environment is also large, and
FUNCTIONs and PROCEDUREs had to be put in an overlay structure (see part
3).

,,
Chapter 5
The representat1on problem

A representation is a set of syntactic and semantic conventions that
make it possible to describe things. The syntax of a representation
specifies the symbols that may be used and the ways tho~e symbols may
be arranged. The semantics of a representation specifles how meaning is
embodied in the symbols and the symbol arrangements· allowed by the
syntax. (Winston,[19] p.254).
The SAGE modelling language is part of a representation for expert tasks.
The syntax of that representation is described in [21]SAG02, [22]SAG03
and Appendix A of this report*. As far as the semantics .is coricerned, the
naïve user might get the idea that it is almost the same as thesemantics
of some subset of a natura 1 1 anguage: ([20]SAGO 1 p.12:) "SAGE offers a
simple but powerful language in which the knowledge of the expert can be
encoded. lt is not a programming language - for we are creating data and
notprograms-but more 1 ike stylised English."
However, this is not quite true. Knowledge, encoded in naturallanguage (as
in "The Expert Knowledge" on p.14) is usually enough for human beings to
be able to solve questions in a speciflc problem area. How is that
possible? What happens when we see or hear text in a famlliar natura!
language? "We can think of all language use as a way of activating
procedures within the hearer, any utterance as a program - one that
indirectly causes a set of operations to be carried out within the hearer·s
cognitive system." (Terry Winograd, quoted by Hofstadter [4], p. 629).1n
termsof knowledge, we may say that impheit in the encoded knowledge is
the knowledge that human beings have such and such capabillties, enough
to make some sense of the words and sentences.
Compared to human beings SAGE has very limited capabilities. The SAGE
modelling language syntax must help us to stylize our Englfsh into a form
understandable for the SAGE system. But the syntax is "not restrictive
enough" to permit only useful encoding of knowledge.

As an illustration of this, let us examine how a naïve user might eneode
the following sentence: "We note that if wT » 1, that is w » 1 /T, then
this term [Le. of the form ± 10 log[1 + CwT)2JJ approaches the asymptote
±20 log(wT)."(p. 15).
He mi ght eneode i t as

ACTION adYiceJermJ1Jpe_4 :
·Advice on terms ofthe form + or -10 •
,og[1 + ('&'T)**2)•
ADYISE -we oote that if 'lt'T » 11 that is"' » 1/T 1 •

,hen termsof the form + or - 1 0 log[1 + (yT) **2) •
·approach the asvmptote + or - 20 log("'T). •

* rtcmc. that syntax ~ may alrtadg includt some stmantics: e.g. umg 'WOI"ds as
·AREA·

1
• ADVISE.

1
·acttonname· ten you somethfng of 1t1e JK1"P05e of 1t1e symbols.

Or as
ACTION advice_term.Jype_4 :

• Advlee on terms of the form + or - 1 0 •
1ool 1 + ('ao'T)**2l for lrioh frequencies·
ADVISE ïhis term 'will approach the asymptote •
·+ or- 20 log('w'T)•
PROVI DED tupe....oLterm = pl uun1 n_ 1 o.JOQ....etc

AND 'w'T _much.Jarger -than 1

(plus appropriate encodings for assertions as <wT -:muctLlarger _tharL 1 >,
and rules to estab11sh those assertions)

or he m1ght eneode the knowledge in a RULE:

RULE checUhav_trm_type4:
·checks behavior for type 4 terms for high frequencies·
trm...appr _asym_2o.Jog IS TRUE
PROVI DED type_of-term • pl ULIIri n_ 1 O_log....etc

AND 'w'T -much.Jarger _than 1

(agaln plus approprlate encodlngs for the assertlons named. and rules to
establlsh those assertlons. e.g.)

ASSERTION 'w'T -much.Jarger _than 1 :
• YT is much larger than 1 •

RULE check-'w'T _much.Jarger :
·a si mple test: dependi ng on the constant <man~:~-ti mes> •
•the assert1on ts etther true or false·

'w'T _much.Jarger -than 1 IS TRUE
PROVI DED frequenc':l-'w' > man~:~-ti mes * 1 I T

lt Is obvlous that there are many more ways to eneode the same knowledge
In the SAGE bullding blocks. Less obvlous Is the fact that most of those
ways w111 yleld useless programs, whlch at best glve some advlee on
detans of the problem, but do oot solve the overall problem. Those
programs Jack a "sense of direct Ion": they do oot know what Is "Important".
what the user wants.
We may say that the SAGE modelling language (as the natura! languages in
generaD has oot the rlght structure to Im:c.e us to eneode that sense of
direction lnto the model. Also. the SAGE system fs oot powerrul enough to
generate that sense ltself. I therefore propose to treat the SAGE modellfng
language as a programm1ng language, to make usaware that the knowledge
engineers. who put the knowledge toto the program. must put more
structure into that knowledge than they would when talking tosome human
betng*.

*Considtr snon [16] p.27 : • il ass.smg prolilem solmg proc:Nres we roost consider not on~ the1r
~in um problems onc. hs. problems haw been reprKenttd# but ~ko the1r aclequacy in
rtprtStntbJ problems when those problems we presenteel WritiaDj il naüral-languagt pros.•. Tbe term
-probllm solving• is uad twU in this senttnc.: w• c. inftr ht I*IPJ. son»twn.s find it u-cl to
d1stilgutsh bttween rnakilg+umg a representat1on1 and just usilg a representation. (Or 1 il terms of
lcnow'INge: l»lwHn tlw lcnowlHglo nHdiKI to er•• ~ c.rUin probllm r~ and t1w lcnow'INge
storfd il that representatlon). Ste a lso part 1 of th1s report.

At the most abstract level the representation prob1em is in fact the design
problem: how to make a .Q.Wll1 expert system that wi11 do what we want it
to do. Which brings us on the design criteria.

S 1. Design Criteria

During the design of the expert system, I came to the conclusion that the_
design criteria may be more or Jess divided in three classes, which 1 will

* name
[11 performance
[2] understandabi 1 i ty
[3] f1exibi1ity.

I am aware that in several publlcations (other) criteria for program design
have been formulated. The division which I describe here is an attempt to
c1arify the specific needs on designinga (SAGE) expert system.

S2. Performance

The most important criterion in designing a program is : when I take this
piece of program, and put it into the program l'm trying to bui1d, (how
good) wi11 it do the job? This is what I ca11 the "performance" criterion.
"Performance" has to do with the details of how a procedure realizes a
piece of knowledge.
For a procedure to be a good performance procedure, there must be a
demonstratien that competeoce (expert knowledge) has been put to use
effectively ([19] Winston, p.295). Th is means, that I test whether the
program does what I want it to do. And I test in what situations it does
that.
During development of a program, the designer should test the performance
by running the program, either in his mindor (actually) on the computer.

S3. Understandability

A second design criterion is the requirement that the expert system (as
any computer program) must be as understandable as desired by two kinds
of (intelligent) systems:

1. (anticipated) end-users. By "anticipated" we meao that the
expert system cao expect the user to have~ knowledge of
the subject on which he wants advice from the system. For
instance, in KNOWBODE we expect the user to understand

* A~ it proved posri)lt to makt tht systtm wflhout explicit tormulation of tht criteria~ it mag
speed up ~· But se. also p . for similar situations in desigrmg dialogws. 'w'hat is exprtssed here
dots not contradiet 11'*1 conclunÎn that dtsign 111.1 prototyping is very us.ful Yhtn tht l\fCtiSar1J
lcnowlfdgeo is not explicit.

46

.... ,
english, and expect him to be able to give the
frequency-transfer function. The designer of the system must
decide what to expect from the end-user.
2. those who wish to (further) develop this program or a
similar one, the designers.

Good understandability can be achieved by the following principle: ".shmï
the observer what he wants to see, hid.e. from him what he doesn't want to
see". Well, what does a user want to see? Results. But in order to reach
those results, the system needs information from the user. However the
user usually does not know what information the system wants and why it
wants that, because an expert system is generally basedon knowledge
which the user Jacks. But if it is possible for the system to show what it
is trying to do, then maybe, if the user understands enough of it, it may
provide some information, and together they can conduct some sort of
"dialogue" to get the results.
In a "norm a 1" computer program. the llSe.C must try to understand what the
program does by the output it gives. The designer may look at the listing.
But what we actually want is, that what is visible of the_ program to be in
"human" terms, on a level of abstraction which is common for people. Since
the "human level" is nota fixed level of abstract ion, there must a lso be a
possibility to "trans late" higher order concepts or descriptions into lower
ones. As will be shown, the goal trees that SAGE provides allow such a
chunked description, and allow introspective question answering ([191,
p.40).

The procedure which SAGE uses to examine facts incorporates search
Different partsof the model will be used in several places of the program.
lt is therefore not very easy for the designer to inspeet the model by
looking at the listing! The designer must be regarded as a special kind of
user, with different interests, and his primary means of testing the
program is actually running it.

SAGE is not perfect. Sometimes the designer is forced to use certain
constructions to realize a procedure which are not "proper", which are not
as people would do. These constructions must be hidden from the user, but
should be visible to the designer.

S4. FJex1b11ity

In particular during design, (when you do not yet know what you're going to
need) it is important that the way you represent your problem is flexible.
By "flexible" I mean easily changeable (when additional knowledge is
incorporated).
For instance, the "flexibility" criterion is a reason why the knowledge
encoded in AREA <user _wishes> (examination of the results the user
wants) is not directly included in AREA <control> : in this way, an extended
version of KNOWBODE which will be able to compute po lar plots as wellas

- .qo-

Bode plots, may use this AREA as an independent module*.

"Flexibility" may conflict with understandability: making ever more
general structures to perform some task creates a haze about what is
actua11y happening. In my treatment of the design of the External
Environment, in Chapter 9, I wi11 clarify this. In the e~d the performance
of a program is determined by the flexibility of the representation (see
Hofstadter, [4], p.296-302).

* Mother ~t is •. g. tM -~lHy· orit«ion : tM fMI"POH and Motioning of
<user_Yishes> wfl1 be cltarer ff1t ts fn a separatt area fnstNCI oftangltd up fn <control>.

Chapter 6
How to so1ve a prob1em using the SAGE building bJocl<s.

Here we wlll deal with the question on how to get good "performance" of
the expert system. In our case, how can we let the system describe a Bode
plot?
A powerful technique which was developed for converting global goals,
llke "making a Bode plot", into local strategies is called problero reduction
(Hofstadter [4] p.609/61 0, Sirnon [15] p.73, Winston [19] p.33) or .goal
reductjon. lt is based on the idea that whenever one has a long-range goal,
there are usuaJJy subgoals whose attainment wiJl aid in the attainment of
the main goal. Therefore if one breaks up a given problem into a series of
new subproblems, and so on, in a recursive fashion, one eventua11y comes
down to very modest goals which cao presumably be attained in a couple of
steps.
At this point I want to make two remarks. First, it may be clear that what
human beings caJJ "a very modest goal" may st i 11 be very difflcult for a
computer. And what some people call a very modest goal may be very
difficult for others. There is oot rea11y a clear division. We wi 11 see that
the backwards chaining that SAGE does wiJl allow the user to find where
his own "modest goals" lie. Maybe you saw that already in dialogue 3: if a
user knows what "a coefficient of the first term of the expansion of the
totaliHI" is, heneed oot ask further questions. But if he doesn't know, he
may ask them!
Second, there is no reason to expect that the decomposition of the
complete problem foto subproblems wi11 be unique. The usefulness aod
understandability of "good" representations (i.e. structures (=programs)
and processes (=SAGE) in which the problem cao be solved) may vary
enormously. When searching fora good representatton, we should keep the
specific strengths and weaknesses of SAGE in mind. What those strengths
and weaknesses are, we wi 11 find out soon enough.

Let us* try to use problem reduction to make a structure in the SAGE
mode11ing language, in which the problem may be solved. From what souree
do we get ideas on which subgoals may aid in attaining the main goal?
This is where the expert comes in. At some time in the past he/she has
learned what steps to take in order to achieve the goal. The expert may oot
be able to 1.ell you how to do lt, but that's another thing entirely. By
confrontinga working system and an expert with real problem situations,
we may remedy differences in performance, just as we may change the
vocabulary and explanation used in confrontations wlth a real end-user
(this is called design by prototyping).
In the KNOWBODE case the designer had to become an "expert" himself, by
reading books like [3] and [12], and solving example problems.

* Peoplt hiv. proveel to bt ablt to solw probltms {somttimts). At pnsent, then art a t.w Al
pngnms 1b ·ISAAC- and "lff::ERST NI>- whtch can translatt (a fnt) problems postel il nattral
~ into forma)~,...~ (britf ~ inoludtd il [16) p. 23-25). NotiM
tht dfffer~ with SAGE: at best you may say that SAGE fs not an expert, but may becomt OM

(KHO'w'BOOE), wherNs thoA programs n •.,.U m r~ting ttmgs, but cannot beoolM •.,.U m
maldng a Boelt plot.

St. How to make a Bode pJot

As the last sentence of "the expert knowledge" (p.15) suggested, it seems
a good idea if we could split the FTF into factors of somebasic types, then
examine the gain and phase for those types, and obtain the total gain and
phase by simply summing up the parts. This would mean some
decomposition 11ke in this flgure:

(making a Bode plot)

· ' I r get FTF in factorised form
'· I

J. I
I ~) l
1 get gain and phase for each factor
\ J

l'

l get tota·1 ga1 n and phase
.. } I

~ \ ~)
ftg. 13 ffrst dtcomposftion of tht problem

But the actual problem is not a matter of simple calculation: we are
interested in the behavjor of ga in and phase. We want to see things 1 ike
"[...] this plot approaches the asymptote ± 20 log(wT); which is a straight
line with slope [...]"(etc.). The question is, whether this information may be
"summed up" more or less in the same way the values for gain and phase
are summed up.
lf we know the break points of individual factors, i.e. the frequencies
where there is a change in the slope of their asymptotes, we may calculate
the total asymptote of IHI (in a logarithmic plot) in an interval between
break points, by simply adding the slopes of all Cindividual) asymptotes in
that interval. We cannot examine the break points in increasing order, if
we don't know that order first. Therefore we may now give a possible
decompositon of the subtask "get gain (and phase) for each factor":

"' get gain and phase for each factor

------.~ Î
(get factor from FTF
._. ----:r.--_..1 I

11' -.. I

(deter:ine type~ (ir (jw). (I+ jwT) etc.)

(examine behavi~r ,Onc1uding break point)
~ I

(H break point ~xi~ts~ put into list

I
!~ I

yes/_..... another factor?
...........)

l. ____ "');-=-···~0 .

Nouce UlCJL wenave un.roaucea a 1oop 1..0 exCJmme a11 racwrs. 1 ne .llSl was
necessary, because we first had to put thc break points in the right order
to be able to examine them for the behavior of the total plot. A part of the
decomposition of the subtask that examines the total behavior of the Bode
plot may now be:

(sort Hst)

,.r

take break poin~ from list

[.

examine slope factor above break point
add slope to total slope

)
'--~".,..-----"

..... --.
yes.-•.-...- another break: point? ___ __

............ .".
-~·

fig. 15 (part o1) decornposition of thf third smtask

Now we have two loops, one nested in the other. For every interval
between break points, we have to examine the slope of .all factors, and add
them together. lt took me quite some time to realize that this is not
necessary! Since the asymptotes are all straight line segments, I only have
to examine in each frequency interval factors for which the slope has
changed, and only add the slope of the asymptotes of those factors to the
total slope*.
The factors for which the slope has changed, are the factors that "caused"
a new frequency interval (another break point) in the first p1acel So, if I
remember which factor caused which break point in the Hst, I on1y have to
take that factor into account when ca1cu1ating the new slope. There st111
wi 11 be two loops, because it is possible that more than one factor caused
a break point at the same frequency.
Why did I include the last part of this example? Because now it seems sa
simple, but during design it taak me a long time. I think, I was probably so
fixed on using loops, that I fa11ed to consider whether those loops should
examine all elements.
This last paragraph already indicates that design is not a straightforward
process, but depends upon search and backtracking by the designer. The
next section is another illustration of problems that may arise during
design.

S2. lnteracting subproblems

lf I would look only at the problem of a Bode plot for one factor, I would

* ActuaD:I we should add thf amowrt bcJ 'A'hich thf sloptof thf ~mptott of thf fndividual factor hls
ohingtd. But mee IR typK of syst.ms whioh wt oonsidtnd havt I horizontll~symptotf for 1ow
frtqutnc1ts (1f~ have a brtale pmt), tht rtsult 1s tht samt.

say it was clear from the descriptions included in "the expert knowledge",
on p. 14-15, that the behavior of Bode plots for single factors is almast
completely characterised by a description of their low and high frequency
behavior. However, if more than one factor is present in the FTF, these
descriptions will have to include a range in which they are valid. As I said
before, in a logarithmic plot of logiHI versus log(w) break freguencies are
easy points of reference for the behavior of logiHI and allow calculation of
the resulting asymptote in various frequency ranges.

A descript ion using break frequencies is easy for terms of the farm
(1 + jwT) in a FTF. But terms of the form [(jw - a)**2 + b**2] which a lso
occur, cannot be handled so easily. This kind of terms may have an
extremum point, see the following figure:

12+---+----t-----'1-----ll----t-

fig. 16 000. plot wflh •xinnun point

lf we take as break point the intersectien of the asymptotes (point B),
near the extremum point it does nat seem correct to say that logiHI
approaches the horizontal asymptote (the asymptote for low frequencies).
I f we take point A as break point, the asymptote for high frequencies
cannot be calculated very easily (the slope is known, but nat the
interseet ion point with the previous asymptote). Since I wanted to make a
list of break points for all factors, and use that list to compute the
overa11 behavior in various frequency ranges, I had to make a decision. I
decided to take pointBas the break point (because that is according to the
definition) and kept in mind that the program would have to check between
break points whether an extremum point is present.*
The fact that I had to solve this problem, cannot be attributed to the rigid
nature of ACTIONS alone (i.e. the fact that advfee always must be given in
canned sentences, like "Above w = ... "), but is also a problem connected
with the nature of Bode plots: sarnething has to be said about the behavior
near an extremum point.
The fact that I could not easily take point A as break point has to do with
the fact that I have to use those break points in another (sub)task as well.
In this way, this problem interacted with the problem in the other subtask.

S3. How to translate the flowchart into the SAGE building blocks

Now that I have made sufficiently clear that 1t is possible to decompose
the problem, let us examine how we should translate the flowchart into
the SAGE bullding blocks (AREAS, ACTIONS, RULES, ASSERTIONS, OBJECTS
etc.). This is actuaJJy not a process which begins when you have a
completely f1n1shed flowchart, but is done during 1ts design. Not waiting
ubtil the flowchart is flnished is more or less necessary, because there
are limits on the possibilities of SAGE, and also because several choices
have different effects on what the user may ~ when the program is being
run. First a few constraints:
1) Loops can only be executed in AREAS or in the external environment.
Nested loops in AREAs are only possible under certain conditions (see
chapter 1 0).
2) Output has to be done in ACT I ONs.
3) Only RULEs and QUESTIONs can give ASSERTIONs or OBJECTs a value.

Now if you take care of these constraints, you may translate the flowchart
into AREAs and ACTIONs. For instance, we try to put every element in the
decomposition of the second subtask (which has now become investigation
of the low frequency behavior and the break points) 1nto an ACTION. AJJ
the ACTIONs together form the AREA <xmine_low_freq\break>. lf we
should need more ACT I ONs to realize a single element in the flowchart, we
may consider to form a separate AREA, and just have an ACTION which
CONSlOERs that AREA (just as ACTION <Bode_plot> CONSlOERs the subtasks
<geUTF>, <xmine_low_freq\break> etc.). Whether we do this splitting up
into AREAs depends on what we want the user to see.

AREAS and ACTIONs form a hierarchy of tasks. But below this are the goal
trees. Maybe it is a good idea to say that goal trees should take care of
things which the user should not see immediately. An example: the second
"act ion" in what we previously called "get gain and phase for each factor"
is "determine type (of factor)". lt might be decomposed as:

.. -~----"1''------------------.
de-te-rmine- type-

(succtoe-d) (fail)

fig. 17 possl,.lt ~of "dtttrmfne typt"

-54-

There are several situations possible in the type of the factor. This may
easily be captured in different RULEs, and the user need ·only see the
ACTION <determine_type> (not implemented):

ACTION determi ne_type :
·determtnes the tupe ofa factor·

CONSI DER type

RULES take care of t!Je vaa·et.y In sltuation~ ACT/ONS of t!Je
common parts.

You may wonder why this ACTION is not implemented. Because it is oot
necessary! lf I examine the break point of a factor (examine-whether it is
there) naturally, I have to examine what type of factor I am examining.
Thus, I moved both the element "get factor from FTF" and "determine type"
to the RULE-based part, where they will be called when necessary. In this
way, the user will only be· confronted (on the ACTION level in
<xmine_low_freq\break>) with :.

ACTION adeLbreeLpol nt :
•finding the break point of a factor (if possib1e) •
·aoo adding it 'liith the factortoa list·

CALL add(breaLpoint1 cause.Jactor, Hst)
PROVI DED breaLpoi nLexists

which is in my opinion what is most essential in this AREA. Notice that
<determine_type> could have been programmed in ACTIONs, where it would
be more explicit, but the designer did oot think it necessary.

§4. Brief summary

Let me briefly summarise this chapter.
Design is a cyclic process, where you may
1) try to break up the task into small steps, and make a flowchart.
2) translate (during design) this flowchart into the SAGE building bleeks.
Depending on the possibilities of SAGE and the design criteria, you may use
- AREASas functional entities corresponding wlth (high-level) (sub)tasks.
- ACTIONS as the "basic" routines in the task, easily visible to the user
and which put a stress on the commoo elemeots in a task.
- RULES as "basic" routines which are adapted to specific sltuatioos.

Chapter 7
ARE As and ACT I ONs

Suppose there is a task, which may be divided into several subtasks which
can be arranged into a certain sequence. There are several ways of dealing
with the investigation of such a sequence*. For instanc~, we may try to
attain the goals as if they are part of a SAGE RULE: -

RULE execute_taslc:
"one wy to deel '&lith a taaie beving severelsubtesks"

uou..accomplisheLuour _teslc IS TRUE
PROVI DED yotUCCOmplisheL 1 st...subtaslc

AND yoiUCCOmplishecL2ncLsubteslc
AND ..• (etc.)

But what if you fail to attain the first subtask? In the next chapter we
shall see that in such a case, in a RULE like this, the other preconditions
are not examined, and the n~xt RULE to attain <you_accomplishe<L
your _task> is investigated. By choosing a structure for the execution of
the sequence of subgoals as represented in the RULE above, it is as if the
designer says: "I consider the attainment of a subtaskso vital, that i t's no
use going on if you fail in accomplishing it". This indicates that failure is
considered a serious event, and that while you're working onsome goal you
should try hard to reach it. But this "attitude" may be considered a built-in
feature of the SAGE system: it is implicitly determined by the procedure
that SAGE uses to examine facts, and here used by the designer to execute
the sequence of subgoals as desired.

The procedure used to execute the ACTIONs in an AREA is different.
Whereas SAGE in goal trees uses a procedure of which one of the
characteristics is "I shall examine RULEs to attain a goal .until I have
evaluated the goal or there are no RULES left", in AREAS it roams about,
saying "I shall process all ACTIONs in this AREA, unless I am explicitly
told to FORGET it".
This means that in AREAs.. (premature) terminalion of an
in vest igat ion must be made explicit, w!Jereas in goal trees tiJ is
is implicit
But also: lnvestigation of a goal tree trom an AREA wil/ only
occur at !!Je ti me it is explicitly ment ioned in an ACT/ON.
Should the goal fail to be attained, then it is not possible in SAGE to use
the well-known implicit procedure, which people use: when they f1nd they
cannot reach a goal, they divert their attention elsewhere and more or less
"forget" the goal, but if they notice that the situation has changed, the
goal pops back to mind again. Naturally, in SAGE one may try a goal tree
later again (actually, not the same but a simi1ar one) but this second
attempt has to be explicitly encoded in an ACT ION.

* rtcmc.1hat hert we do somethi.g of 'Wirich I said in the prtvious chaptw 1hat it should bt hplementecl
in ME.As and ACTKlNs. That st111 nmains trut if vou :; ït c,.:.nsidfrtlo "major" taslcs, wtrich should bt
"c'JoR to tfw srfac." 1 NSI'ly 'risibJ. to tfw URI".

n may not seem clear, but this is one of the basic llmitations of SAGE.
However, it is possible to remedy it: see Appendix E.

The means which an ACTION has to direct the flow of control explicitly,
were al ready mentioned in Chapter I: they are "STOP", "REST ART", "REASK",
"CONSIDER" and "FORGET".
We will oot deal with STOP. lt simply halts the execution of the program,
and may be resumed by RESUME.
"RESTART"/("REASK") will be considered in Chapter I 0, where· we talk
about multiple use of knowledge in SAGE.
Here we wiJl say only a few words on CONSIDER and FORGET.

CONSIDER s/Jould be regarded as a subroutine cal/ (wit/J
constraints)
FORGET works .o.aJ.y on facts or areas wóicó .M.Jt.e. been consjderett..
or wóic/J ~ oresentl)! under consjderation . * ft sóould be
regarded as a command to make facts invisible (not
unevaluated!) and wóen · app/ied to AREAS yet under
CONSIOERationJ as an explictt RETURN statement.

I shall now demonstrate some features of CONSIDER and FORGET on a small
problem: initialization of background memory.

S 1. Example: 1nit1alizat1on of background memory

As we shall see in chapter I 0 we may use the procedure encoded in an
AREA several times using REST ART. In order to use results from previous
cycles of a loop, an AREA cao store some results in background memory.
And for keeping track of the number of executed cycles we use increments
which are a lso stored in the external environment.
The buffers where data will be stored or retrieved from during the cycles
must be properly initialized, e.g. increments must be set to I. This is
definitely a low-Jevel task, which we ·want to hide from the user.

We caooot put all the necessary operations in an ACTION and RULES in the
AREA itself, because then it would be executed every time the AREA has
been restart ed. I t must be encoded in a seperate AREA.
There are a few possibilities to conneet the AREAs necessary for the
preparatjon and the ~of the Joop:

I] See fig. 18 on the next page. Th is possibi lity was used for the AREA
<xmine_low_freq\break>. Both this AREA and the AREA
<prep_low_freq\break> used for the initialization are CONSIDERED in AREA
<control>. When <prep_low_freq\break> is done, it may be forgotten
because it is oot interesting totheuser (only the state of background

* NB. 'WMn you ~w ., ~ .tftot lib
COHSI>ER A, B, C

(as for ;nst_,. in ACTKlH <Boc»..plot>) thtn AREAS <9> and <C> a.-.!!!!! tMer oonsideration yet 'WMn
A 1s ~ consid4!rtd and c.. thenfore not be forgotten!

·+·
..

contr
' jp I

ol .
I l •

') • I
I

a-~ y······-. I
•,) l

,,~

~.,
<, ____)

rfl l ~ I
; I !

I I
I

l!n'olll'l' -I

.•

rep_Joy _freq \break

xmine_lov _freq \break

fig. 18 floy of control bet'W'Nn il'"NS. Soliel mes Wficate txplicit cHr eetion of the
flow of control, daslwd 1iMs ~licit tnnsfw.

memory is altered). Therefore the last ACTION of th1s area is:

ACTION forgeUhis_area :
"yhen done, I forget this area, because it is"
"not veru 1mportant Y1th respect to the actual "
"ca Jeuletion of the Bode plot"

FORGET prep_lwJreq\break

Notice that this ACTION may also be part of <examine_Jow_freq\break>
because the preparat1on AREA must (naturally) be considered first. But I
try to keep "the knowledge" of <prep_Jow_freq\break> all in one area.
D1sadvantages of this method are
1) as far as the user is concerned, the AREA <prep_Jow_freq\break> and
<xm1ne_low_freq\break> are on the same level of abstraction: because if
he looks at LIST Bode_plot (in dialogue 2), both are named as areas to be
considered.
2) in an interactive session where the user takes control, he may very well
forget to use the area <prep_low_freq\break> and thus not properly
initialize the loop.
3) Notice that in dialogue 3 we see that the area <prep_low_freq__break> is
entered: "We are considering initialization of ... " but we do not see that it
ends : there is no message "We have completed considering
initialization ... ". This is due totheuse of FORGET.

2] By containing the body of the loop in the execution of the area that
initializes it, we give the user less chance of forgetting preparation of
background memory. See fig. 19 on the next page.
This possibility was used for AREA <examine_intervals>. Now the AREAs
no Jonger are on the same level of abstract ion, no, we pushed the ~ one
level deeper! The AREA which initializes and executes the Joop must now
have a name and associated text to express that it contains both. As you
can see from dialogue 2, the user sees on the highest level only that AREA.
A disadvantage of this method which is not visible in dialogue 3, is: since

examine_interva ls
control 1

r

A : body _xmine_interv als

~ 1 §+j.-.. ---,~=~~.
I : I ./•

I

: I
§

•.•..••...•

fig. 19 flow of control bet>nen areas. Solid mts indicate explicit weetton of1he
flow of control, dashed 'linK impHeit transfw.

the body is now contained in another area, you will see when this area is
finished (in TRACE 1 or higher levels) sarnething like

We have completed;considering execution of the body of the
loop.

We have completed considering initialization of the loop and
execution of the body.

Which is a bit confusing because it looks like a strange way to order the
are as.

3] A third method, which does not have this disadvantage nor the
disadvantages of the first method, but which was probably too obvious to
be visible since I didn't discover it until I was writing this report is

H l
• "__.... !•

r-n
I
I
I
I
I

l~
fig. 20 flow of control bet'Wtfn areas. Soliel mts fndicate expHcit drection of thf

flow of oontrol, dashtd 'linK impHeit transfer.

This methad gives the preparatien of background memory its full due: it is
a procedure on a lower level then the execution of the body. The methad is
based on the fact that the ASSERTIONs and OBJECTs in an AREA are
examined only once, thus when you CONSIDER the AREA for the second
time, no goal tree wlll be investigated and hence nothing wil1 happen.*

* See f'lrst foo1not. next page.

,J--;,-

S2. ACTIONs which should not appear in the flowchart

AREAs consist of a number of ACTIONs. T!Je ACT/ONs in a single AREA
s!Jould all be ''of t!Je same (!Juman) size**", by which 1 mean that
they should deal with the task at hand on the samelevel of abstract ion: in
AREA <control> all ACTIONs deal with the task on a subtask level, in AREA
<getJTF>, a subtask, ACTIONs deal with aspects of getting the FTF Oike
reading it), but they should notdeal with aspectsas scanning or parsing. lt
is rather confusing when somebody who is explaining a difficult equat ion
in which among other things multiplications occur, all of a sudden starts
explaining how to multiply.

Unfortunately, SAGE is not completely transparent, i.e. I am sometimes
forced to use extra ACTIONs in an AREA to reallze a certain desired result.
I shall now discuss a few cases.

I) ACTIONs to provide interrupt po.ssibilities:

ACTION i nterrupt_process :
•tNiem ebout to proceed on the instructions you •
·oave me. As long as uou do not ansYer this •
•question, you een interrupt my line ofthought, •
·e.g. for esking ?<neme> questions. •

RESTART
PROVI DED any....que3tioM

When the program is running, the only way the user may interrupt it is by
waiting for a question. Since KNOWBODE does not have a great deal of
QUESTIONs, there are only a few points available where the user may break
in.
But the program does make extensive use of REST ART. Th is means that the
program uses certain sections several times, and every time it executes a
section again, it will discard all results from the previous cycle.
Which means, that if we want the user to be able to inspeet the state of
the model, ask questions perhaps, we shall have to provide him with
(dummy) questions at appropriate points in order to temporarily halt the
program. Such appropriate points are either the first ACTION in an AREA,
as in this case, or the ACTION where RESTART is going to occur.
The first ACTION in an AREA might be a good point for the user to change
the TRACE level, in order to see the process on a specific factor in more
detail.
The Jast ACTION in a cycle allows him to inspeet the evaluated facts
before they are returned to the unevaluated state.
Notice how <interrupt_process> creates a sma11 Joop to the top of the
AREA by using REST ART.

* I am not absoüt.ly surt "tl'htthtr ACTIONs il an AREA which contm no facts, but only ADYISE or
CONSI:IER <arM> effects will not be executed a second tinw. lt is not c1Nr from tb@ marwals (see
[22)SAG03 p. 84, for ilstanct). Rtsults of a test I conducted are lost. But also tht fact that il LIST
NIE.AS SAGE dellOM h status of NIE.AS as ~·does not gm nu:h t.,.,. ofbeing able to use
it agm. In tht rest of tlris report, I Wlll take as an asswnption that ARE AS cannot be reopenecl.
* * or put differently. '"fllfJrfJ :,-llould bfJ no mixing ot"lnrfJ!s'".

vv

2) ACTIONs to store intermediate results:

ACTION memorize_parLrault :
·1 Yill store some of the reaults in order to •
·remtmber them in the next freque.-.:u interval·

CALL puLirwnemory([bufferX),
nw.....alope_f Hl,
i ntersecL.asym_J Hl,
breaLfrequer.:u)

As noted in 1), programs which use part of an AREA several times with the
help of the RESTART command, return all facts evaluated in that AREA to
unevaluated before they begin again at the first ACTION. lf you will need
'iny rogultg from tho cyclo jw~t finighod in tho no><t cyclo, you will havo to
store those in background memory.

3) ACTIONs prov1d1ng a more f1~X1ble output:

ACTION adYice....about.....alope :
·1 give the val ue of the slope in the above-"
·mentioned adYtce about the behaYlor of I Hl.

ADYISE
slope_becji n_J Hl.·.·
PROVI DED ti nd oLJi ne = NOT horizontal

This ACTION is following ACTION <advice_about.JHI>, which gives an
advice as indicated in the example on p. 7. The ACTION is necessary,
because the advice given is either

[.. ..]represents a horizontalline.

in which case there is no value needed for the slope, or

[....]represents a straight line with slope <slope_begirLIHI>.

where there is an actual value for the slope.
The ACTION is therefore necessary as aresult of the rigidity in the output
format SAGE provides. See Appendix D, where a similar situation may be
found when the program either has to include "1 I <variable>" in the output
text or not. In that case I could attach a SCALE to <inverse_var> which has
the "value" (dummy string) when there is no variable.

4) ACTIONs which must REST ART, but nat display text.

ACTION trivialJactor2 : ••
RESTART
PROVI DED tri vielJactor

AND (another Jactor OR
(valueJactorcgcle > 1.))

A si de-effect of REST ART is, that the action text of the ACTION which

RESTARTs the AREA, is printed. lf I don't want that, as in this case, I am
forced to split the ACTION in two ACTIONs, with the same preconditions
(and preferably related names), where the last one, which contains the
REST ART has only a dummy string "" as action text. Unfortunately this
dummy string wiJl still be a dummy string when the user does a LIST
ACTIONS or LIST AREA, in which case it is not very clear to the user why
there is no action text.

-62-
Chapter 8
How to make a goal tree in SAGE

Makinga tree is not as easy as it may look.
In a SAGE expert system, statements and numerical entities can be
considered as nodes in a (goal) tree. In Chapter 1 {p. 1 0) a description was
given of the rather simple procedure SAGE uses to climb the tree, i.e. to
examine fact~. But maybe the consequences of this procedure for the
designer can be better explained by summarizing the unusual parts in two
slogans:

I nvest i gat i on Yt.ilL lead t o eva 1 u at i on
Evaluated facts will .ruU. be reinvestigated*

We shall deal with these statements in the first two sections of this
chapter. The last two sections are devoted to the questions in what order
the RULEs in your model should ·be, and how to make an understandable
tree. All the examples in this ctiapter (in fact in the whole report) are on
RULEs which equate the value of the conclusion with the resulting value of
the rule body {in Appendix A called "equivrules"). Probably no expansion is
needed to apply the methods described in this chapter on RULEs where the
resulting value depends on several factors {"cumul rul es").

S 1. lnvestigation Yt.il.Ll.ead to evaluation

lf SAGE starts investigating a fact {as part of an ACT ION, or in the course
of the investigation of ether facts) it YLi.ll eventually come up with a value
for that fact. "SAGE won't take no for an answer"**.
This mean~ that in a program yo(J s!Jo(J/d avoid a tact being
investigated as long as it is (Jnknown wilether (JSef(J/ eva/(Jation
is posstöle. An example:

RULE calC-breaLpoi nL2:
• .***

breeLpoint IS square_root(alph8*81pha +
beta*beta)

PROVIDEO tgpe(factor) = second.....order

Had the precondition ("type{factor) = secon<Lorder") not been present and
investigated befare the execution of the rule body, the objects <alpha> and
<beta> would have to be investigated by SAGE. However, these objects only
have significanee for secend order systems, so SAGE would probably find
their va lues to be "unknown" (worse, si nee I happen to know that they get
their va lues simply by retrieving a value from the external environment:

• * txcept ~ REST ART IREASK, or txplicit ust of commands bv tht ustr. Stt .IYII'iq)lt ust of
knowlNgf·.
** In fact, SAGE wm. But it won't 9~ takt "wW8own" for an answer, and il that cast w"ill kttp on
trying othtr Rli.Es for a t..tter an5'lfW.

*** stt p. 9 for tht associattd strilgs.

RULE obtain_alphe:
•gets the val ue al pha of the factor ...-e 're discussi ng •

al phe IS geLal phe(factor)

and stm11arly for <beta>, SAGE w111 probably come up with some
meaningless value). lt ts clear that such a investigation should have been
avoided.
Here we have seen a first means of preventing the investtgatton:
precondtttons. Preconditions can prevent jnvestigation 12L111e
(RULE/ACTION/OUESTION) 12ody. They can postpone, but notprevent the
evaluation of the conluston of a rule: tf the precondttton fatls, <breakpoint>
w111 still get a value, but not by this rule.

Another situatton where it is very useful to prevent 1nvest1gat1on of a
(rule) body is tf the (rule) body contatns funct1ons wh1ch have effects on
the outstde world:

RULE GRASP _blocLZ :*
·1Jmp3 bloct z·

J...grasped_blocU IS
grasp(bloc U)

PROVJ DEO Lhas....LC1eer _top
AND my_hancUs_emptv
AND miJ_hancUs....over ...Z

The FUNCTION <grasp>, which results in the actual grasping, should not be
acttvated unless all preconditions are met.

We may use this example to tllustrate a second means of preventtng
investigation: operators like "AND" and "OR". Unlike in "ordinary" logic, we
can say that these operators have several funct i ons:

•

[1 J They stand for their "logica!" definitions (adapted to the
fuzzy logic which can be employed in SAGE, see [22] SAG03
p.65):

<X> AND <Y> = min(<X>, <Y>)
<X> OR <Y> = max(<X>, <Y>)

[2] They determine the order of investigation: (see example)
<Z_has_a_clear _top> is investigated befare the assertion
<my _han<L is_empty>.
[3] They can prevent the investigation of facts ([22]1SAG03
p.81):
lf "<X> AND <Y>" is encountered and either factor is already
evaluated to FALSE, then the other factor will not be
investigated.
lf "<X> OR <Y>" is encountered and either factor is already
evaluated to TRUE, then the other factor will not be
invest i gat ed .

So, in our example, if <my_han<Lis_empty> turns out to be FALSE (for

* Examplt taktn trom "MMYER• a program fn SI.OE madt by thf author, to move blocks.

- U""t-

SOme reason or other the robot couldn't get his hands free*) then the next
assertion, <my_han<Lis_over 2>, is oot investigated. This is fortunate,
because accidents might happen if the hand is movedover to Z stlll holding
some, possibly large, object.

In short, operators like "ANO" and "OR" may prevent investigation
of facts following t!Je operator.

The bullt-in function "KNOWN" is a third means of preventing investigation
in SAGE. We wlll illustrate it in an example which uses also the previous
means:

ACTION hel p_Bode_plot :
•t setsome ofthe features Yhich Yill be uaed •
·duri no the celculation of e Bode plot, if Yanted.

CONSI DER xtrL.Xplanation_wnt
ALSO
CO HSI DER 1 nterrupts._possi ble
PROVIDEO KNlWN(BodeploLwnted)

1AND BodeploLY&nted

Th is action is part of the AREA <user _wishes>. Th1s AREA, wh1ch tr1es to
determine what amount of advice the user wants or needs, is entered as a
result of the first action effect 1n ACTION <Bode_ploT> from AREA
<control>:

ACTION Bode_plot:
•t Y111 llO'w' celculate e Bode plot•

CONSI DER uaer _Yishe8
ALSO
CO HSI DER getJTf 1 prep.JOYJreq\break1

x mi ne.JOYJreq\break1

exami nL.intervals
PROVIDEO Bode_ploLYented

But suppose that a future version of KNOWBODE a lso allows pol ar plots to
be made. For such a versfon, the exfstfng AREAs <geVTF> and
<user _wfshes> need lfttle change: perhaps a few extra ACTIONs to take
care of specffic user wishes associated wfth polar plots. The actual
(overall) calculation of the polarplot may be directed by an ACTION very
similar to <Bode_plot>. Suppose such an ACTION (i.e. <pol ar _plot>) was
positfoned in <control> in front of <Bode_plot>.
Now ff a user wants a po lar plot, then as a ffrst action effect the flow of
control of the program wfll be dfrected to AREA <user _wishes>. In this
area, the program will encounter <help__Bode_plot>. Had its precondftion
been:

PROVIDEO Bode_ploLwnted

the program would reason as follows: "here we have an ACTION with as a

** Yf don't just inwestigatt <m!J....hancl.is.........,ty> 1 we want it to.,. TRlE. Set> the next paragraph: t1ris
is an examplt ofthe slogan "You don't want to comeback empty-handed to the top ofthe (goal) tree•.

precondit1on a yet un1nvest1gated* ASSERTION. Let's examine it". Meaning,
that the user having just answered "yes, I want to see a po lar plot", all of
a sudden is confronted with a question whether he wants to see a Bode
plot! As a designer I chose to postpone that question until the (second)
ACTION in <control> is investigated, and so I used the function KNOWN.**
KNOWN may test whether a tact has been eva/uated witbgut
causing its investigation (and subsequent evaluation) lf
<Bode_ploLwanted> has been evaluated before, KNOWN will return TRUE
and then we can check what value it has (true or false) in the sëcond part
of the precondition of <help_Bode_plot>. lf it has not yet been evaluated,
KNOWN wil I be F ALSE, and thanks to the AND operator (previous method!),
no further investigation will ensue.*** - -

S2. Evaluated facts will run be reinvestigated

This has a very positive effect, especially on consultational programs:
SAGE will investigate a fact only once and then remember the value, so the
user will not be confronted with ,the same questions over and over.

But there arealso negative effects. lf a fact has been given a value which
you don't like, it will cost you extra work to imprave the situation. See for
an example Appendix C on <reacLFTF>. This means that in designtiJg a
program you shou/d avoid a tact betng eva/uated (gett ing a
va/ue) as long as the (expected) value is not what you want. Or as
a slogan:

·when you come back to the top of the tree, you don't
want to come empty-handed. •

lllustrated by the example a few pages back (GRASP_blociLZ): when
investigating <Lhas_a_c1ear _top>, we don't want to see the current value,
we try to make sure that it's TRUE. Here we have a real go&, not just an
unexam i ned f act.
In programs both real goals and unexamined facts will appear. Look sharply
what you want.

What means does a programmer have to effect this avoidanee of
evaluation?
We have already seen, that preconditions on a RULE or a OUESTION
can prevent that some tact (conclusion) wil/ get a va/ue by 1.b.41
RULE or OUESTION. SAGE wi 11 then try another rule or question to give
that facta value.
A similar effect can be obtained by having the RULE- or QUESTION ~
evaluate to UNKNOWN. As long as other means of establishing a value for
that fact are available, SAGE wil I treat an UNKNOWN fact as "not yet

* Because fn a normal cowse of the program 11\is assert1on wi11 bt fn'ftittgat@d as a prtcondition of
ACTION <Bodt...plot> 1 which has a position afler <polar ..plot> in AREA <control>, and is ~ not
ytt "* fnvestigatton.
** A possi)~ Mtter so'kmon is to UA "" option quKtion 1h <aslc.-inttrrup> 1 which 0.1n giw v.aluts
to Wtfl"il facts .at the samt ttnt!
*** NotiMth.at p10p1t UA 1M word "'cnown• usu.a~ in 1M stnH "'cnown to M trut•. SPL might 1hinlc
of pnventmg confUsion by chingfng tht namt to "EYALUATED•.

uv

evaluated" and wiJl go on investigating it.
A RULE- or OUESTION body w!Jic!J eva/uafes to UNKNOW~
transfers evaluation of t!Je (conclusion) tact to ot/Jer RULES or
OUESTIONS. See a lso Appendix C for an example.

S3. The order of applicable RULES

In what order should the set of RULES which may establish a value for the
sat:lN fact be put into the model's souree listing?

A first approach, which is very well applicable in the KNOWBODE case, is
to use QQ particular order. lt is as if the designer thinks: "I know that SAGE
will try all applicable rules untll it finds an answer. lf there is more than
one "good" answer fora fact, I don't care which one he takes. ·sut by using
preconditions on the rules I sha11 limit the situations in which they can
come up with a "good" answer". This approach makes it very simple to .ack1
new RUL ES to the mode 1.

But it is not always desirabie to use this approach. Consider for instanee
the case from a few pages back, where there was a RULE to establish the
goal "I have grasped block Z"{<l_graspecLblock_Z>). In the same model
there is another RULE to establish that goal:

RULEo~oUS-GRASP-Z:

"yhen I em holding block Z, it is"
" prettu o~ous I have orasped Z .•

Lgnsped...blocU IS TRUE
PROVI DED I em holding(blocU)

Most people would probably agree that the program is downright stupid if
it doesn't test this rule before rule <GRASP_blocU>. lt saves a lot of
useless effort (attaining all goals in the preconditions and rule body of
<GRASP_blociLZ>) on the si de of the program, so why not make use of the
fact that the oo1ec in which SAGE examines RULES is llifd, and put this
one in front of the other?
Since I was talking about useless effort on the side of the program: what
makes me so sure that evaluating the FUNCTION <holding> costs
considerably less effort than evaluating the preconditions and rule body of
<GRASP_blociLZ>? lt may be that <holding>, which represents a
subprogram in the external environment, involves the execution of
thousands of FORTRAN statements, and not so little effort after all.
Be warned. Every RULE to establish a fact connects that fact to a tree of
other facts. 11 you /Jave knowledge on !!Je elfort it casts to
investigate some tree;! or on t!Je importance of t/Je situation in
w!Jic!J a certain tree is applicab/e;! use !!Jat knowledge w!Jile
designing !!Je program. "Effort" naturally also includes effort on the
part of th~ user: if in a consultational program a fact may be established
by two RULES, of which one involves asking the user one simple question,
and the other invo1ves asking a lot of difficult ones, which RULE should the
program try first?

This knowledge on what 1s ··s1mp1e·· ana ··anncult: JS part: or me Know1eage
the expert on the problem should provide.

Concerning the order of RULES, l'd like to discuss two more "slogans"
which are the implied result of the procedure SAGE uses to investigate
facts. The first one is: investigating a RULE/OUESTION tor some
tact~ implicitly means t/Jat preceding RULES/OUEST/ONS have
tailed!
Consider the following two RULES from KNOWBODE:

RULE calc_prev_point:
"if this is not the first break point, we can "
"take the value of the previous break point"

previous_point IS recorded(prev_breal<-freq)_
PROVIDEO NOT firsUreal<-freq

RULE calc_prev_point2:
"if there is no previous break point, we can take"
"w = 1. as a frequency for which we know the"
"va1ue of the asymptote of IHI"

previous_point IS 1.
PROVIDEO firsUreal<-freq

Since <recorded> is a simp Je FUNCTION to retrieve a value from background
memory, and <prev_break_freq> mere1y indicates the position in this
memory, we know that the secend rule is activated (on1y) when we are
dea1ing with the first break frequency (<firsUreal<-freq> = TRUE). We
may leave this second ru1e out and make 1. simp1y the DEFAULT value of
<previous_point>. In this case, it is perfectly valld, but in general I would
suggest against using that kind of knowledge, because it is not explicit
and may therefore be over1ooked by future designers who wish to add
rul es.

The second, re1ated, slogan is: investigating some tact implicitly
means t/Jat tiJere is a situation w/Jic/7 justifies t/Jis
in vest igat ion!*
In the first sectien of this chapter we discussed what wou1d happen if the
precondition "type(factor) = secon<Lorder" was not present in RULE
<ca1c_break_poinL2>. lt would mean that RULE <obtain_a1pha> cou1d be
activated in situations for which it is useless, i.e. when there is no
<alpha> for the factor under investigation. We can also state that
otherwise: since the precondition is there, we know that when the RULE
<obtain_a1pha> is activated, it is activated in a context that there is an
<alpha> present. This justifies the fact that the same precondition was not
added to rule <obtain_alpha> .

..
* Vou might try to tnCOdt ïM order of looiring for ttmgs• ([8) p.39) mo SAGE Rt.US

-68-
S4. How to make an understandable tree

lt is good to realize that "understandable" means "understandable for the
user", because SAGE will 'understand' anything as long as it is
syntactically correct.
As said before, KNOWBODE is nota perfect expert system. The suggestions
given below are certainly not followed precisely in the model. But during
design one should reach for performance rather than_ for ~
understandability. "Understandable" wiJl do. Also, 1f any of the suggestions
given below may seem unnatural to a designer in SAGE who reads this, I ·
adv i se him/her n.o.t to feel obliged to adopt my convent i ons ~ut- to use his
or her own, because those are the ones that will be used mosreasily.
The exact text associated with the elements in the tree has to be adapted
through series of consultations with an actual end-user. This is_ also
"design by prototyping".

In KNOWBODE, the program refer5 to the user as "you", to itself as "I" and
(in the standard SAGE sentence;fragments) to the parties involved in the
dialogue as "we".

§4.1. ASSERTIONS

ASSERTIONS should describe relations between objects (in reality).
The name should be the shortest expression of the statement made in the
assertion. The flrst level of associated text should present the statement,
preferably very short. Extra information can be buried in deeper levels.
Oon't torgel t/Jat t/Je user wil/ encounter t/Jis assertion as part
of a w/Jole tree: when going through the tree (with FACTORS or WHY
command) he doesn't want to be flooded with the same information over
and over aga in.
SCALES attached to ASSERTIONS are useful for output in ACTIONs, but on
lower levels (i.e. inTRACE 2 or 3) they may create confusion. An example:

ASSERTION behavior -1 Hl :
"there is no breelc point, log I Hl vs log('W') is a •
·straight llne everiJ'W'here·

DEFAULT FALSE
USING raRCJLSC8le

1) the name <behavior JHI> does not express the statement. However if it
had done so, it would have created confusion in the listing of ACTION
<advice_abouUHI> (see p. 7).
2) the expression of the statement is correct.
3) Use of the SCALE <range_scale> provides flexible output in ACTION
<advice_abouUHI>. But on TRACE 3 level the user may encounter things
like:

Result for behavior JHI :
The likelihood that there is no break point, logiHI vs log(w) is a
straight line everywhere is For low frequencies, the asymptote
of IHI in a logiHI vs log(w) plot (-1 00.00)

-69-
S42 OBJECIS

For OBJECTS, al most the same recommendations apply as for ASSERTIONS.
OBJECTS do not express relations, but denote entities. The first associated
level of text should be a (short) noun phrase (whereas with ASSERTIONS it
is a sentence).
SCALES may produce both readab Ie output and better understandable traces
at deeper levels.

A good example of an OBJECT is <list>, with three levels of associated text
(see dialogue 3) and an associated SCALE <memory_scale>, which inTRACE
3 will display as

Node <list> evaluated to position LIST -1 (81.00)

Another examp Ie is <break_point>:

OBJECT breaLpoi nt :
"tl" breek frequency"
1'1lRE

.,

"the frequency vhere one region of asymptotic •
"behavior of gai n I Hl and phase arg(H) meets •
·another"

(0.0. 11\400 mum_reel)

which has a neat d1vis1on between text in the f1rst level and deeper levels,
but wh1ch Jacks a clear definit1on on how to compute the break point ('ït 1s
def1ned as the frequency where one asymptote intersects another").

§4.3 RULES

RULES are the means by wh1ch a fact may obtain a value.
In SAGE a RULE can only estab11sh a value for one fact (although dur1ng the
process of the1r execut1on other facts may be evaluated). Therefore the
name of the RULE should express for wh1ch fact the RULE is meant, wh1ch
1s useful e.g. 1f you LIST all RULES 1n a certa1n AREA, or 1t should express
1n what respect th1s rule 1s different from other rules to estab11sh the
same fact. Ih1s 1s useful when you ask for the FACTORS wh1ch may
estab11sh some fact. See d1alogue 3: <calc_coeff_lsLterml> etc. display
1n the1r name only for whtch fact they are meant. There are no good
examples 1n KNOWBODE of the other kind of names, but RULE
<judge_by_cred1bf11ty> from the Appendix 1n part 1 seems to express what
I mean.
In the narnes I used "get" or "obtain" to indicate simp Je retrieval of va lues,
"calc" to ind1cate that some kind of "calculation" was fnvolved, whereas
"check" is more an indication that we are trylng to conffrm some
assertion.
In the flrst assoc1ated level of text of the RULE the procedure encoded 1n
th1s RULE should be descr1bed. However, 1 don't th1nk you have to repeat
everyth1ng that you see fn the rule body 1n th1s text, 1f you want to keep tt
short. Ih1s means that 1 th1nk the text should support the rule body. An

-/U-

example of this may a lso be found in dialogue 3: RULE <calc_reLposition>
:"because this product of ... ".
But if you use LIST RULES you wiJl not see the rule body and be confused if
the associated text does not contain a description of the actual
calculation. Well, you can't win them all. I think FACTORS RULE + a short
description is more important than LIST RULE. -
Oeeper levels of associated text are syntactically possible, but I never
succeeded in making them visible in an actual session. I don't know why.

Another aspect which I would like to stress in RULES is, that because the
actual procedure which calculates the conclusion in the RULE is a whole
tree of RULES rather than the topmost branch (RULEtwhich -I called "the"
procedure, you should "keep your knowledge local" and "there should be no
mixing of levels". This is already implicit in the previous section and
chapter 7, but I will discuss 1t here in the light of understandab11ity.
When there are RULEs in a model of a type like this:

A IS ... ·~

PROVIDEO B
ANDC
AND D

i.e. RULES with more than one precondition (and there are other RULES to
obtain B, C and 0), 1t is possible to move the preconditions between rules
like this:

A IS ...
PROVIDEO D

DIS ...
PROVlOED B

ANDC

(there are a few other ways poss1ble). Th1s rem1nds me of the remark 1n
the prevtous sectfon: 1nvest1gattng some fact 1mp11c1tly means there 1s a
s1tuat1on wh1ch just1f1es th1s tnvest1gat1on. But you should be very careful
to see 1f you are do1ng the r1ght th1ng:
1) the RULE to attain <0> has been specialized to a case where and <C>
are precond1t1ons. Are there any s1tuat1ons 1n wh1ch you need <0> but
where the goals and <C> caooot be atta1oed? In that case the second
way of encod1ng the knowledge tnto RULES forces you to use an extra RULE.
2) In the second vers1on precond1t1ons and <C> have been moved to
deeper levels and on the level of the f1rst RULE they are tmp11c1t.
Cons1der for 1nstance a new (not 1mplemented) verston of RULE
<GRASP_block_Z> (see p. 63), where <Z.Jlas_a_clear _top> and
<my.JlaocL1s_over _l> have been added as precond1t1ons to the RULE to
obta1n <my.Jlaod_fs_over _l>:

RULE GRASP ..block...Z :
•grupa bloct z·

I..JJrasped_blocU IS
grasp(bloc U)

PROVI DED miJ-hancUs_cwer ...Z

(I

Now it is taken as implicit that <my__hancLis_empty> is true etc. The user
may find this in the deeper levels, but how deep does he want to dig and
what does he understand from the top level?
The conversemaya lso happen, when you add preconditions from the rule to
attain in the first rule, before precondit ion , which may give you
too much detail visible in the first RULE. What you should do is "keep your
knowledge local" where it is needed, in chunks of about the same "human"
size. A bit vague, but you'll manage.

§4.4. QUESTIONS

The D.aDN associated with the question should express for which fact the
question is intended, or the specific nature of the QUESTION (see RULES;
this is a similar case). I used "ask" as in <ask-Bode_plot> to indicate for
which fact the question is intended.
The associated text of the QUESTION should naturally be the question that
needs to be asked to give a. certain fact a value. Deeper levels of
associated text can elaborate or rephrase the question.

Although a human-like outlook of the question answering behavior may
tempt the user to overestimate the program and consequently leads to
disappointment ([6]) I think it is the best way yet to use in questions,
because I rather have a disappointed user of an expert system than a
confused one.
A neutral question like

Is the frequency-transfer function avai1able?

(currently in use in KNOWBODE) proved to be not as clear as

Can you give me the frequency-transfer function?

But another version, which still directly addresses the user

Can you give the program the frequency-transfer function?

introduces <tn my opinion) a mysterious third party: there is you (the user),
there is the program, and then there is a "thing" feeding the program.
(Aithough this does shed some light on the parties involved in the standard
SAGE sentence fragment "~ are considering .. .).
lf you don't know which approach to choose, put the alternatives in deeper
levels of text associated with the QUESTION.

§4 5 FUNCT I ONS

In the next chapter (section "grey zone") I shall elaborate on the name and
associated text of FUNCTIONs. For the moment it suffices to say that
although it is syntactical1y correct to associate more levels of text with
FUNCTIONS, I never managed to make them visible in a consultation
session.

Chapter 9
Design of the Interface and Externa1 Environment

In chapter 1 I mentioned that there is a possiblllty to conneet SAGE to
other computer programs.
These programs may be used to supplement the features of SAGE, e.g.
provide it with access (other than by terminal) to the wor1d outs-ide the
computer, by programs to handle robot hands and eyes.
We wlll call the user defined system containing all these programs ".t.b.e.
External Environment". SAGE can have access to this environment through
FUNCTIONS and PROCEDURES. A CALL to a procedure in an ACTION, or the
investigation of some function in an expression, will cause the value of
the arguments to be transferred to a specific external program. The
arguments, i.e. ASSERTIONs, OBJECTs or CONSTANTs will be evaluated by
SAGE before the actual call is made.
FUNCTIONs return a numerical value from the external environment, or
return UNKNOWN. -

SAGE can identify which part of the external environment to use by a
system key, a numerical value attached (by the designer) to each function
or procedure in the introductory block of a model. Intherest of the model,
the designer may call functions/procedures by n..arM, but SAGE wl11 use the
value to call the right spot in a program named XXSWIF ("SWitch to
Xternal", the "F" denotes that it is a FORTRAN program, in our case). From
then on, lt is up to the external program, until lt returns to SAGE. See
[24]SAG04 and part 3 of this report.

From the analysis in chapter 4 of the external environment used for
KNOWBODE, we may derive that h.e.J:e. the extensions of the possibilities of
SAGE are:

1) Allowing the user to enter seyeral data elements in one
chunk (the FTF), in the function <read>. See Appendix C.
2) providing a memory function for AREAs which are
RESTARTed. In this memory, intermediate results of
calculations and increments are kept.
3) providing a much simpler means of carrying out simple sort
& search tasks than SAGE does. An example: the function <sort>.
See Chapter 10 "Multiple use of knowledge".
4) providing a possibility to use loops in output routines,
which can easily be used time and again at different spots in
the model: see procedure <valueJHI> (Appendix D).
5) a (future) possibility of carrying out calculations on several
(semantically related) pieces of data at the same time. See
Appendix D.

These extended possibillties are the result of the environment designed.
The ~ for these extensions came from the task at hand and the given
features of SAGE: a task like makinga Bode plot from an FTF consisting of
several factors seems to elicit the use of loops , sequences of

calculations which are repeated several times and which possibly use the
results of previous cycles. The extensions 2), 3) and 4) just mentloned are
all related to this multiple use of knowledge.
I would therefore prefee not to speak of the extensjon of possibilities of
SAGE, but rather of using the external environment to ease constraints.
Comparing programs with SAGE, one shouldn't forget that although these
external programs winonsome points, they looseon others.

In order to give a more general idea of how to use the External
Environment when designing an expert system in SAGE, I think it wi11 be
better to leave the functional description and consider (paradoxically*) an
historica! account of the design.

S 1. Historica I account of part of the design

Naturally, when designing KNOWBODE I did not start on the external
environment, but on the model. .
Originally, I intended the , model to obtain the data on the
frequency-transfer function (l.e. AREA <geLFTF>) by asking a series of
questions from the user (see Appendix C for an example). Soon I was
confronted with problems which were related to the facts that an FTF
consists of a variabie number of factors which may be of several types,
and may easily contain two or more factors of the same type.
In the flowchart I devised of the problem I simply created a loop:
KNOWBODE should use part of its questions and facts again. This proved to
be not very easy. Th is, and the fact that it would take the user quite a long
time to enter an FTF by answering questions, made me decide to use a
FUNCTION (or PROCEDURE) to read the FTF.

Such a function wi11 load data into the external environment. This means
that this data must be stored there unti1 the model needs it and takes 1t
out. This "must be" is not true: external programs may a lso "offer the data
at their own initiative"- but not in SAGE, because SAGE is a backwards
chaining system , i.e. a system which hypothesizes a conclusion and uses
rules to work backward toward the hypothesis-supporting facts (Winston,
[19] p.185).
lf I lfi the data stay in background memory, making multiple use of the
procedures (AREAs and RULE trees) just means functions must piek up
their data from different posltions in memory (see Chapter 8).

Having decided to put the data in background memory, I began thinking how
I should repcesent this data in there. There are several strategies to
repcesent rational polynomial expressions llke the FTF is in a computer
(see [11] Pavelle p. 11 0). Choosing a suitable representation depends
critically on what you want to do wlth the data in it. For instance,

* Paradc»rical)J, becaust it would seem that ff' vou 'Want to kno'W ho'W IJ OU may YB. tht External
Environmtnt, it is bttttr to oonsidtr ~ it dots thin to oonsidlr ho'W vou mldlo it. Howvtr' :me. tht
cons1rmts on tht problein 'Were not easillj visi)le at tht beginrmg, and a lot of different
implementatieins of the external enlfironment and its interface are possi)le, and these are conditions
which ar.;; probabliJ venj comrnon in design, it seems 'WOI'"th'Wile to examine 'WI»j this part;cular
oonfigw"~tion w~ ohoAn.

- I ""t-

representing a flrst order system I ike "(1 + jw 3)" in this way:

type

fig. 21 poss.,le fmplementation tn ~ memory

enables functions like <type> (retrieving the type of a factor) to be. very
simple, whereas

large-st pover

coefficient
coett1cieont

is easier for functions which add polynomials. At the time I was designing
the system it was unclear which functions were to be used, and since I did
not want to choose a representation which would have to be altered
completely in the future (flexibility criterion of design!) I decided to wait
and workon the model.

I shall now dicuss the design of two different FUNCTIONs, <type> and
<currenLelement>, which are repesentative for the majority of interface
routines.

At some point or other during design of the model I needed the .t}!D.e. of the
factor the rul es were investigating, e.g. in a RULE 1 ike

RULE checUreaLpoi nt :
·a break po1nt '-'111 occur 1fthe factor(part1a1 •
•a~ptem) being inveatigeted ia type 3 or 4, •
,hat is, a fi rst-order or a second-order sustem•

breeLperi nt...exista IS TRUE
PROVIDEO (type(factor) = firal..Drder)

OR (type(factor) = second...order)

At first it may seem not clear why the tree structure ends in a function
<type> here: the FTF the user types in is examined by a scanner and a
parser program, which determine the type of a factor in terms like "if the
flrst symbol is a left parenthesis T, and the second symbol an integer
equa1 1, and the third then the type of this factor is type 4"*. But

*Nom. that I ust an F-TtD strucmrt to cltscrh ttris proctdrtl NB. tht parser USfd m tht txttrnal
ec••• 011nent ofKNO'w'BODE, is !J2!baed on such ruln.

people need only to be told "factors of the form (1 + jw <x><T>), where <x>
is , i.e. first order systems, are called type 4 systems" as is done in
several rules in the model.
In the previous chapter I already mentioned that the point where we stop
putting knowledge in facts and rules (and continue in normal programming
languages) depends on the performance the program must be able to reach,
and on what we want to be visible to the user. There is no clear dividing
Jine, because designers are another kind of users than end-users of an
expert system, and have different wishes on what should be vtsible, but in
this case the balance swung in favor of the end-users.
Notice t!JatJ once I have decided to use a tunetion <type) to
retrieve t!Je type of a factor trom background memory; I can go
on designing t!Je model (in fac~ even running it to check simp/e
explanation capabilities) wit/Jout tJaving tö · know !Jow tiJt's
tunet ion s!Jould be implemented! *
Somewhere in the future I will have to come up with a program which cao
perform that function.

In a similar way, when during design I needed the current element from a
list of break points, I figured that this would be easier to implement in a
"normal" computer program than to go on in RULES for a few levels, and I
decided that some FUNCTION should come up with that value:

RULE geLbreaLfrequency :
·..,..take an interesting frequency from our list·
"ofinteresting frequencies"

breaLfrequency IS currenL.element(list,
brea~int_cycle)

<break_poinLcycle> was a CONSTANT, indicating a position in background
memory where the number of break frequencies examined is stored.
According to my opinion (as expressed in dialogue 3) the user also is oot
interested in tulw. you take this element out of the list, but more in the
processas aresult of which it was put into the list.
Looking at this function, the reader may wonder why the result desired in
the construct ion, which is actually

breeLfrequency IS currenLelemenUist()

is oot generalized to

breaLfrequency IS element(currenLposition, list)

where <currenLposition> is an OBJECT which directly holds the number of
break frequencies examined, fnstead of just 1odjcating a position where
this value is stored, like <break_factor _cycle>.
Naturally, I generalized <currenLelemenLlist> to <current_element>, to
be able to use the same function on possible other lists, Jike

-76-
<cause_break_point>, a list of all factors causing a certain break point. lt
seems such a waste to use a program in the external environment only
once. But if I used an OBJECT <currenLposition> to keep track of the
desired element of the list, I would have to introduce a lso a RULE like this:

currenLposition IS reconfed(breaLpoi nL.cycle)

I would still have to store the value in background memory, because in
order to change it, it will have to be returned to unevaluated by RESTART
and wlll then be forgotten by the model (see Chapter 8). But I think that
this RULE is hardly interesting to the user, and should therefore better be
included in the function itself.
This does not explain why <break_poinLcycle> is present among the
arguments of <currenLelement>. lf I let the function take care of the
value of the current position in the 1 i st, why not a lso let it take care of
where that value is stored?
lf the function is applied toa list other than <list>, the function should be
able to recognize that this is a different 1 i st, and keep track of the current
element for that list. This is rather easy to do if you know the possible
listsin advance. But if we go on to consider .tlQw. the function wiJl do it,
we see a problem: the function wiJl probably keep different increments in
store for all its possible arguments. But where are these increments
initialized? WheQ do they need to be initialized? How can the function do
that (in advance of the actual function call)? This depends on the specific
argument lists concerned and the structure of the model.

To deal with this problem in an easy way I added the extra argument,
visible to the designer, as a reminder "this is the Jocation where the
function keeps track of the current element in the list named in the first
argument. 1 (the designer) must take care that this Jocation contains the
right value".

Notice that our desire to generalize the function (i.e. not making
<currenLelemenLJist> but <currenLelement>) now forces us to be more
specjfic on the function call! And notice that this was the result of a
"bottom-up" process: it was found when I was thinking of how the function
could be implemented in the external environment.

By the way, why didn't I generalize the function <type>? I t is easy to make
a function and rules like

tupe....ofJactor IS oeUronurrau(factor I tupe_element)

We canthen use this same function in

variable IS geLfroiiLllrrey(factor, variebhulement)

But these calls which look very similar on the model side, are only similar
on the exteroal side if type_element and variable_element are quantlties
actually stored in a list! See the pictures a few pages back: both types of
backaround memorv can be called bv these functions. but onlv in the first

kind can a single type of routines handle both calls.

Here we see that generallzing functions on the model side imposes
restrictions on the structure and functions (if we want to keep them
simple) in the external environment. But the converse is also true: if we
want to have a simple kind of background memory, e.g. a single real array,
and allow only a few generalized FUNCTIONS, as in

RULE geLval ue :
"retrieves a value from some memory position"

val ue IS reconled(Jmition)

RULE do....store_a_value:
·you 3tore a value soiDeYhere in memory·

store_a_value IS puLon._record(position, value)

(these RULEs are taken from AREA <control>, but are not used in the
program). As I mentioned earlier, a function like <current_element> .cao be
realized using only these FUNCTIONs, but 1t will take a number of RULES.
The functioning of these rulesds only interesting to the designer, and
probably it could have been done easier in a program on the external side.

Let me summarise this proces of design of the interface and external
environment.

W!Jen, during design of t!Je mode~ I decide I need a FUNCTION or
PROCEDURE (t:e. access to and use of t!Je External Environment~
I have a wis!J in a 5/)ectlic situation. (As said before, the need to use
the external environment is caused by the wish to ease the constraints on
SAGE).
lnstead of a FUNCTION/PROCEOURE fit tor t!Je specific situationl
I can use a more general one (using arguments in t!Je tunetion or
procedure cal/~ t!Jereby aiming at easier implementation on t!Je
external side. (see fig. 2J)

However, if you generalise on the model side, without looking at possible
implementations, it is possible that an extra level of programs will have
to be introducedat the external side. (see fig. 24).

flg. 24 samt FtJ«:TKlN calls us. difftrtrrt prGCTams

lf there is an actual inplementation on the external side, it may determine
whether it is useful to generalize function calls on the model side. (see
fig. 25)

MODEL

....--,
l__.!---tH~-M-Mll

fig. 25 difftnnt Wnpltmtnbtions

S2. grey zone

In view of flexjbility* and easy yjsjbility for the designer, there wi11
always be (partial) goal trees on the model side, which must rea1ize the
specific wishes in termsof the avai 1able FUNCTIONs. Th is is what I called
the "grey zone" in Chapter 4.
When the model is (almost) ready to run, we know the specific situations
in which functions are called, and we may try to restore the specjficoess
of the cal!. This is necessary, as you may see from the following example:
in KNOWBODE there is ao ACTION <clean._ancLcalc--2>:

ACTION clean....and...celc_2 :
·clean the list necessery in background memory·

CONSI DER L..cleenecLlist
PROVIDEO I did puLon_record(cycle-3, 1.0)

* lf you ~avt 1ht right basic fUnot1ons, dts1gn k easier on 1ht model sicfeo than on 1ht external sicfeo.

-79-
Now if the user runs the model inTRACE 2 or 3 mode, he may be confronted
with a message like:

"The goal we are considering is: I put the given value (2nd argument) in the
indicated position in background memory (I st argument)"

You'll probably agree that this is not very understandable. Here we see the
"grey zone" quite close to the surface. What I should have done here was
make the specificness of the sjtuatjon visible. There are· a few means to
do that:
I) Change the name and associated text of the FUNCTION. Th is is a good
idea, because it has no effects as far as extra external programs, extra
RULEs etc.
However, this is only applicable if the text associated with the FUNCTION
may be used in all call situations. But notice fr-om Chapter 4, that
<current_element> and <next_factor> use the same external routine! So it
is possible to make use of it.
2) Change all CONSTANTs in ttie arguments to OBJECTs. Ir. this way, an
extra layer of associated text may be introduced. <break_poinLcycle> is
such an OBJECT, with only a CONSTANT as its DEFAULT value.
3) I may also introduce an extra layer of of RULEs: instead of using the
FUNCTIONs directly in ACTIONs and (some) RULEs, I put a RULE in between,
like in

variable tS geLvariable(factor)

This allows me a speciflc explanatory taxt with <variable>, and other
features, 1 ike use of the SET command (see dialogue 4). A disadvantage is,
that if a FUNCTION is used in more than one AREA which are possibly
RESTARTed, I have to introduce an OBJECT+ RULE for each AREA

flg. 26 gr'f\1 Zont

-80-
Chapter 10
Multiple use of knowledge

When designing a flowchart for a program, there usually are sequences of
many similar operations to be carried out one after another. Even a
computer programmee with little experience will not write them all out,
but writes a .lD.®., which tells the computer to perfarm a flxed set of
operations and then loop back and perfarm them again, over and over, until
some condition is satisfied ([4] p.149). And the ~of the loop- the fixed
set of instructions to be repeated - need not actually be completely flxed.
lt may vary insome predictabie way.

Because of the structure of SAGE, it is worthwile to devote an entire
chapter to the question how a designer should handle loops. I hope that this
will be clear at the end of this chapter. However, it should be noted that in
consultational programs the similarity in the instructions is usually not
high enough to use loops effectively.

S 1. In what kind of situations do we encounter sequences of
sim i lar operations?

I will discuss 4 kinds:
1) Search: until you find the thing you want, you carry out a series of
operations. Those operations are usually the ones needed to determine
whether you found what you want. The loop is aborted upon success or
when there are no things left to examine. Usually, we are not interested in
the results of the unsuccessful executions of the Joop, we just want to
find something.
2) lteratjve use of knowledge, (very sim i! ar to 1)): when we have a data
structure composed of several elements, which should all be processed in
about the same way. The loop is aborted when there are no more elements
to process. An example in KNOWBODE: we have a frequency-transfer
function composed of several factors, which should all be examined for
their break points, asymptotes etc.
Usually, we are interested in the results of every execution of the loop.
3) Recursive use of knowledge: loops may be nested; a special kind of
nested loop occurs when an inner Joop is quite similar to the outer Joop.
Thus, execution of the instructions in the outer loop wiJl involve execution
of a similar set of instructions which again can involve execution of such
a set, etc. etc.
This is called recursjon. Such program structures are typical - in fact they
are deemed to be good programming style {[4] p.149, see also Hofstadter
[5] {March 1983) p. 16). An example on the use of such recursive procedures
is the execution of this goal tree {on the next page) {Winston [19] p.39):

- 81-

goal:
A on top of B

. --------------------\.\,
F mdsp.:t•)l? A ,8 t'·1ak~?sp.:tCE' A ,B

....,...r--'
--< '-.,

Ci€'trid-~f-~-- ~~s~"i•)l? A ,E:
._r-___ _

... -·i.l-:... ____ .. :·--~--
~·· --

Fmdspacl? D,T<tbli? Putat D,Tabl€'
:;(IJZ.: __ , -

---Ç--- ... ---- _..,.--. ~ _____ _,.,..,- ______ ..,..- ---

Gr .:t:::p D Hoveob ject D, T .:tb le Ungt· asp D
xyz

_,../~--"""' ----
--~-/ '~ -------Gr asp A t-1ovt~ob j€'d A ,B Ungr ~s p A

XI.JZ ------ -
~--...... _-... ___ _

Cl~?;rtop A

I
I

G€'tridof C

fig. 27 goal tret. Branchts joined by arcs art \IMitr NIJ noclts,
othtr branchH tilder OR nodts.

In order to PUT block A AT the position on top of block B, the set of
instructions needs to invoke a similar procedure, PUT block C AT the
position on the table. (And if there were any bleeks on top of block C, again
similar procedures would have to be called).
Notice that I. execution of the outer loop cannot be completed until the
inner loops are finished, and 2. in order to work, the recursion has to
bottam out somewhere.
4) Situations similar to 1) and 2): there is a sequence of operations which
we want to use a number of times, but nat in one loop. We want to use the
sequence of operations, then do sarnething else, and then do the specified
sequence of operations again.
In computer programming we speak of a subroutine, a more general notion
than Joop ([4] p.lSO). Subroutinescan cal! each other by name, and thereby
express very concisely sequences of operations to be carried out. This is
the essence of modularity in programming <c9mpare this with the use of
RULES in SAGE!).

S2. What possibilities are there in SAGE for loops and
subroutines?

.ARE.As may be processed more than once in a program run, by using the the
action effects RESTART or REASK. There are a few problems however.
ThP~P onPr::~t1on~ onlv h::~vP ::~n pffprt on the area within which thev are

-82-

used: other AREAs which are CONSIDERed by ACTIONsin this area wil i n.o..t
be reexamined. Which means that AREAS cannot be used in the same way
most subroutines can.

I

I
I
I
I
I
I

B

• • • • • • •• •• I .._..._. ----

See fig. 28 : if the procedure contained in AREA B is a lso to be used again
in the second or later executiolis of AREA A, it cannot be a separate area
but should be included in AREA A.
Also, nested loops of this kind:

fig. 29 nesteel loops

cannot easily be contained in an AREA Loops a1ways start at the first
ACT ION.
One may however use preconditions on the ACTIONS in part I, which will
prevent their execution in case they are processed in the course of the
inner loop (difficult! and not understandable to the user).

What about the elementsof the RULE-based part?
ASSERTIONs and OBJECTs are investigated only once: when facts have been
given a value, they keep that value ("truth maintenance", p. 1 0). But if the
AREA to which they belong (i.e. in which they are declared in the souree
listing) is restarted, they are returned to an unevaluated state.
You might wonder how facts can get a different value upon reinvestigation,
since the procedure to examine them is determinist ie and not dependent on
the fact that they have been returned to an unevaluated state. This is
possible because the Jeaves of the goal tree, where the tree receives
va lues, are made of QUESTIONs and FUNCTIONs. Ouestions may be answered

-83-
differently by the user and the calculation of functions .c..an depend on what
happened in the past.
RULEs are custom-made (by the programmer) for every OBJECT or
ASSERTION*. Since facts retain their values, RULES to establish them
need to be used only once in the investigation process.

So in SAGE our on ly** means of creat ing loops is to use REST ART or REASK
in the program.
But all kinds of loops can be created in the external environment, using
normal programming techniques. These loops unfortunately are not visible
to the user. Unfortunately? Sametimes it is not necessary or desirabie
that the user should see everything, so we still have several po~siblities.

S3. Then how should we handle situations with loops?

I) Avoid t!Je ~ to use loops if possible~ in SAGE
We can avoid search situations· if we have the knowledge where to look
(this is obvious). An example: by putting all break points in a list in the
external environment in size order, we krulw. that the first break point
which is larger than the current one is the next in the list. Sorting the
break points (uninteresting to the user), has been done by a PROCEDURE
(<sort>) in the external environment***.

Sametimes we can avoid the need to use recursion by rearranging the
sequence of operations, but then there wiJl still be (nested) loops. See an
example.

2) Oon't use loops.
(Why go through a lot of trouble, if not using them is easier?) When you are
workingin the RULE-based part of the model, you must realize that if you
want the program to use part of the goal tree ~. you're asking for
trouble. See a lso chapter 8 where you were advised to avoid evaluation of
the facts in a goal tree untll you are sure that they have the desired value.
Usually, the easiest thing to do is just to program another similar tree
(with si ightly different names, like <factorX> insteadof <factor>).

For AREAs the situation is somewhat different. First, it is rather easy to
use REST ART to introduce loops, and second, let us see what happens if you
don't use them: suppose I had "folded out" AREA <examine_intervals into
AREAs for every interval, I would have 1 O****AREAs of about the same
size as <examine_intervals> plus the associated facts and rules! The
model's souree listingis a lot bigger, but maybe the program is raster

* Ont mfght argue, as fn tht btg1nnfng of this chapttr, that fn consultattona1 programs tht rults art too
spteffic tobt generalfztd very rooch.
** Tht !§!!:has, fn a dtalogut w1th tht program,txpHcit commands avai1ab1t to rmvtstigatt an AREA!
Ttris means that it is a lso possm1t to rnalet a conmand file wtrich contms thtst ilstructions. Such a file
could 1btn bt starttd by tht user through "DO flltnamt·, upon a rtqUtSt by tht program! This is not an
tltgant solution.
*** Yt could also have tht nakpoints fn a Hst ~' and use a FUfCTDf to starch for tht next
brtale point and rttritw its n'lut.
**** btcaust I a11ow tht FTF to contain up to 10 factors, which g;ves at most 10 intervals bttwten
brNic ooints:.

-84-
(RESTART seems to slow him down). But what is really a problem is the
fact that when the user asks for "LIST DONE GOALS" or "SUMMARISE" he
wi 11 see 10 times the text associated with the area <examine_intervals>
plus all the actjoos with their associated text. The user 1) will be flooded
with text (which he can·t interrupt! and 2) wi 11 probably not understand
why the program doeso't simply say "I did this (1 0) times". I think that for
AREAstheuse of loops is not very bad.

3) Use RESTART/REASK and t!Je external environment
I already poioted out some restrictioos on the use of loops through
RESTART /REASK (refereoce to AREAS outs i de the loop cao be made ooly
ooce, loops always begin at the first ACTION in the AREA). I also
mentiooed that the model does not remember that that it bas executed a
loop before (af.!g[the RESTART or REASK commaod). I f a loop ts restarted,
it is the user who must ootice that the same questioos are asked agaio,
and who may then give different answers {by usiog "REASK" the questions
which are reasked are restrict.ed to explicitly meotiooed ooes ooly). Or,
the model should inform the external environment that it is going to
restart an area, and there this informatioo cao be held in memory.

An easy way to do this, is to store the number of executed cycles of a
eertaio loop in background memory. This is the way used in KNOWBODE: for
iostaoce, in AREA <xmine_low_freq\break> the oumber of factors
examioed (the number of executed cycles of the loop) is stored in positioo
<factor _cycle> in memory. Such a positioo must be initialized properly: we
already discussed that in Chapter 7.
lt cao be used by FUNCTIONs to figure out what factor to examioe oext:

RULE obtai nJactor :
"takes a factor out of the FTF"

factor IS nexUactor(FTF,
factorcycle)*

Wheo the AREA 1s restarted, the oumber of cycles must be 1ncreased by
ooe:

ACTION tesLnextJactor : **
CALL increase(factorcycle, 1.0)
ALSO
RESTART
PROVIDED another Jactor

The results of the execut1oo of a loop wh1ch must be remembered, posslbly
intermediate results of calculations, must also be stored in the exteroal
environment. This is dooe in

ACTION adLbreaLpoi nt :
"fi nd1 ng the break point of 8 factor (if possi ble) "
"8nd addi ng it 'w'ith the factor to 8 list"

CALL add(breaLpoi nt, eauseJector, list)
PROVIDED breaLpoinLexists

* thert is no explicit nHd to show <factor....cyclt> i'l tht argllntnt of tht FUNCTION. Tlris was ciCint so
+ho lfArillrw..- mV.ht o:><rl'he c:- wharo tNo 1"11..,."_ nf ~Je~ 'k -dorlllolt

and

-85-

ACTION memor1ze..partresult2 :
"putting some re3ult3 in beclcground memory in"
"order to be able to remember them in the next "
"cycle in th1s AREA"

CALL puU runemory([bufferV),
order_J~t_terntJH,

coefL 1 sLterm_J Hl,
coefL2nd_term_J Hl)

Th1~ Wf4Y ~f4n ~A ~14mmf4ri~Ac:i a~:
1) e~e.cute the. seQue.nce of ope.r~ttons

2~ St0:~ ~~~t~:~~~~~te) :e5\J1t5 of C~1CiJ1t~tîOf15 WfliGr1 rJ.re
necessary for future cycles 1n background memory and/or
produce output
3) erase everything in the AREA (REST ART)
4) and start again (using stared results).

lt is a methad which is very sultable for iterative use of procedures.

However, in the case of recursjon as demonstrated by fig. 27 on p. 81 this
methad is not applicable, if we were to eneode this goal tree into RULES
for SAGE and make use of recursion for the procedure PUTAT. The
"high-level" goal (PUT AT A,Bxyz> cannot be reached until the "lower-level"

goal (PUTAT C,Tablexyz> has been attained. But this lower-level goal

wants to use the sameprocedure (RULEs) as the high-level goal and has to
walt until the AREA is cleared. This wil! not happen as long as
<PUT_A_AT_B> has not been evaluated. Here we have a definite deadlock
situation.
One might argue that reordering could solve the case:

1) first investigate and evaluate <PUT _C_AT _Table>
2) then clear the area, but retain the results (ln the real world)
3) then investigate and evaluate <PUT _A_A T _B>.

This is a good solution, but I am not sure that it is always possible to
order the steps of the salution in advance. What can you do in such a case?
For the sake of completeness, I wiJl discuss a salution in Appendix E.

4) Use loops in !!Je external environment
We have already seen an example of loops in the external environment:
sorting all break points in a list requires loops, which are easily encoded
in FORTRAN or other computer languages.

I will discuss here another example, which is not implemented, but has
interesting features.
lf there was a FUNCTION <make_list>, which could act on listsof factors
("polynomials" like FTF) and make new lists of all factors which had a
certain feature to be specified in the arguments, and which would return
TRUE if there was at least .o.o..e. element in that list, then I could make
ACTIONs like

- oo­
ACTION x mi ne_triviaLfact~ :
·c~oes totriviel factors·

(actionbody)
PROVIDEO I did make.Jist(ofJacto~Jrom FTF1 'w'ith typeJeaturel

equals 1 order _O_or _ti mLlag1 ancLpuU nto JisL2)
AND I d1d makL11st(oLfactorsJrom 11sL2. 'titth xJeeture.

equels. 0.01 ancLpuLinto JisL3)
AND I did makLlist(ofJactorsJrom JisL31

'w"ith variabJeJeature 1 equaJs I no_variabJe ,
and_puLi nto JisL4)

AND I did makL1ist(ofJactorsJrom 11sL4, -.ith muJeature,
equels, 1.0, and_puLinto Jist-5)

where ''1", "did", "of_factors_from", "with" and "an<LpuLinto" are NOISE
words, and "type_feature", "x_feature", "variable_feature", "mu_feature",
"equals", "order _Q_or _time_lag" and "no_variable" are CONSTANTs to
indicate to the function what should happen.
What is the advantage of doing it this way? Weil, now the program can
select .all trivia! factors in the course of .one....ACTION, use only one kind of
FUNCTION to do it and wi 11 stop ~if there are no elements left to examine
(see Chapter 8).
I don't even have to know how many trivia! factors there are, it wi 11 work
for any number (up to the lengthof the 1 ists). Compare this with the use of
algebrajc expressjons in the external environment, in Appendix D. There
also, operations for more than a sinlge entity are done at the same time.

This whole chapter was about loops in a single program. We can a lso think
of loops consisting of programs: a program is used on some data, and then
it is used again on other data etc. Or a program is used on some data and
then a slightly different (improved) program is used again on the same
data, etc. etc.
Here the external environment can also be used to store "intermediate
results". I shall not discuss this any further, but just notice that in this
way the external environment may be used to incorporate "experience" into
the program.

References

[1] d'Agapeyeff, A
"Expert system~ fittiJ generation and UK supp/iers", published by

the National Computing Centre L imited, 1983.

[2] Cordier, Marie-Odi le
·zes systèmes experts", (genera! artiele about expert systems) La

Recherche vol. 15 no. 151, January 1984, p. 60-70. (in French)

[3] Elgerd, OI Ie I.
"Contro/ Systems Theory·~ McGraw-Hill Kogakusha Ltd, Tokyo, 1967.

[4] Hofstadter, Douglas R.
''6o'del, Esc!Je0 Bac/7: an Eternal 6o/den Braid", New Vork: Basic

Books 1979.

[5] Hofstadter, Douglas R.
'ï1etamagica/ t!Jemas" (about Lisp), Scientific American, February,

March and Apr i I 1983.

[6] Kobashi, Y. and Kumar, A.
ï1odel mismatches indecision making by an expert system·~

Proceedings of the NGI-SION Symposion 2, 16/17 April 1984.

[7] McDermott, John
"RI: A Ru/e-Based Configurer of Computer Systems", Artificial
lntelligence, 19 (1982) 39-88.

[8] MiJne, AA.
"T!Je House at Poo/7 Corner", printed in Great Britain by Richard Clay

(The Chaucer Press) Ltd, Bungay, Suffolk (1982).

[9] Nilsson, Nils J.
"Princip/es of Artificial lntelligence", Palo Alto, CA: Tioga

Publishing Company, 1980.

[1 0] Newell, Allen
"T!Je Know/edge Lever, Artificial lntelligence 18 (1982) 87-127.

[11 J Pavelle, Richard., Rothstein, Michael. and Fitch, John
"Computer Algebra", Scientific American, December 1981, I 02-113.

[12] Rademak er, 0.
"Dynamische Systemen", dictaat bij het college 3.720.0, dictaatnr.

3.316,
Technische Hogeschool Eindhoven (1978) (in /Jutc/7}.

- 88-

[13] Reichman-Adar, Rachel
"Extended Person-11ac1Jine Interface", Artificial lntelligence, 22

(1984) 157-218.

[14] Ritchie, G.D. and Hanna, F.K.
"A/1: A Case Study in Al 11et1Jodology", Artificial lntelligence 23

(1984) 249-268.

[15] Simon, Herbert A
"TIJe Sciences of t!Je Artificia/" ,MIT Press, Cambridge, MA, 1969.

[16] Simon, Herbert A.
"SearciJ and Reasoning in Problem Solving", Artificial lntelligence

21 (1983) 7-29.

[17] Steflk, Mark et al. .
''TIJe Organization of Expert SystemsJ A Tutorial", Artificial
lntelligence, 18 (1982) 135-173.

[18] Waltz, David L.
"Artificia/ lntelligence", Scientific American, Oct. 1982, p.101-122.

[19] Winston, Patriek Henry
''Artificial lntelligence", (2nd edit ion) Addison-Wesley Publishing

Company, 1984.

[20] SAGO I, "An Introduetion to t!Je 'SAGE' Expert System",
Knowledge Engineering Group, Systems Programming International (1982).

[21] SAG02, "SAGE expert system L anguage Specifica! ion",
Knowledge Engineering Group, Systems Programming International (1982).

[22] SAG03, ''SAGE User 11anual (tor SAGE version 1.3)",
Knowledge Engineering Group, Systems Programming International (1982).

[24] SAG04, "SAGE Instal/ation Gutde (tor t!Je POP 11 range of
maciJ!nes operating under RSX-1111)", Knowledge Engineering Group,
Systems Programming International (1982).

