
 Eindhoven University of Technology

MASTER

The Architect's Workbench

Bravenboer, R.G.

Award date:
1990

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/3f6b0634-7f6c-473c-a644-fd8babd16c9c

Department of Electrical Engineering

Digital Systems (EB)

Master thesis:

The Architect's Workbench

by R.G.Bravenboer

Supervisor: Prof. ir. M.P.J. Stevens

Coach Ir. W.J. Withagen

Period February - October 1990

The faculty of Electrical and Electrotechnical Engineering of Eindhoven University of

Technology does not accept any responsibility for the contents of traineeship or

graduation reports.

Eindhoven University of Technology

Abstract

ABSTRACT

This master thesis describes the Architect's Workbench, a high level simulator that

supports a top-down architectural analysis of buffering architectures. For this purpose

a range of instruction set architectures is available for simulation.

This thesis will also describe problems that occurred when the workbench was ported

from the Vax/Sun environment to the Apollo Domain environment, and the solutions

that have been created.

Most of the problems occurred because of the difference in compilers and run time

environment. Especially the connections between pascal and C programs caused

problems.

Some thought is given to the adaptation of the workbench to a tool with which the

performance of the buffering architecture for the C-processor currently under

development in the Digital Systems group of the department of Electrical Engineering

at Eindhoven University can be investigated. The changes to be made are described.

- 1 -

CONTENTS

o. Introduction

1. Introductory chapter

1.1. Research on architectures

1.2. The buffer hierarchy

1.3. Performance measurement

1.4. Conclusions

2. The Architect's Workbench

2.1. The compile time software

2.2. The run time software

2.3. The Architect's Workbench

2.3.1. Instruction traffic simulation path

2.3.2. Data traffic simulation path

2.3.3. Mixed traffic simulation path

2.5. Conclusions

3. Virgin

3.1. New features

3.2. Using virgin

3.3. Conclusions

4. Testing the Architect's Workbench

4.1. U2a

- 2 -

Contents

4

6

7

9

13

15

16

16

21

22

24

25

25

26

27

27

28

33

34

34

4.2. The u2a pascal library

4.3. The instruction traffic simulators

4.4. The data traffic simulators

4.4.1. First level buffer testing

4.4.2. Second level buffer testing

4.5. The combined traffic simulator

4.6. Conclusions

5. Adapting for the C-processor

5.1. Simulating the stack cache

5.2. Adapting hUref

5.3. Conclusions

6. Conclusions

Literature

Appendices:

1. List of extensions used by the Architect's Workbench

2. Virgin

3. Cache.conf

4. GethUref & ucode.h

- 3 -

Contents

36

39

40

41

42

42

43

44

44
46

47

48

50

51

55

68

70

Introduction

Chapter 0: INTRODUCTION

At Eindhoven University of Technology the Digital Systems Group (EB) is occupied

with research in the area of structured design and realization of digital systems and

VLSI building blocks. Currently part of this group is involved in the C-processor

project, designing a highly advanced microprocessor tuned on supporting high level

programming languages.

Processor - Memory traffic is a serious constraint for computer systems.

Microprocessors in particular are vulnerable to performance degradation because of

pin/bandwidth limitations. To satisfy memory bandwidth requirements, and achieve a

high processor throughput, buffering of both instruction and data traffic is useful.

Buffering can be very successful, because processor requests obey the principle of

locality. All requests are both temporally and spatially associated with each other.

Optimal reduction of traffic is achieved when processor requests for data or

instructions are satisfied from the buffer instead of from main memory. A means of

deciding which buffering configuration produces such an optimal reduction, given the

architectural characteristics of the processor involved, is thus needed.

In the United States of America, at Stanford University, an integrated software tool

has been developed which simulates the behavior of various processor architectures

with various buffer configurations. This integrated architecture evaluation tool, which

is called the Architect's Workbench, describes the performance and utilization of

buffer hierarchies through the creation of reference patterns. These patterns are

registered while simulating the processing of standard test programs, benchmarks, for

a particular buffering scheme.

- 4 -

Introduction

Within or group there is an urge for the C processor mentioned earlier to be

simulated with various cache designs. These simualtions will greatly reduce the

number of tests on realizations in hardware that are otherwise needed to select the

optimal buffer configuration for this processor, and will thus save money. For these

simulations to be realistic however, timing information in the simulation of data

traffic is needed. This thesis will describe the adaptations of existing software and the

development of new software for the Architect's Workbench to be able to perform

such simulations.

- 5 -

Chapter 1

Chapter 1: INTRODUCTORY CHAPTER

This chapter introduces the basic concepts on which research using the Architect's

Workbench described in this thesis is built, such as processor-to-memory traffic, and

vice versa, traffic buffering, and tradeoffs in buffer design. It also describes several

buffering models, as far as relevant for, or available from, the Architect's Workbench.

When analyzing traffic and traffic buffering, in order to optimize traffic handling, one

would like to know what constraints a chosen processor architecture will impose on

the buffering and memory systems. In order to be able to specify these constraints

some performance figures are needed. In paragraph 1.3 will be discussed how these

figures can be obtained from the measurements the Architect's Workbench provides.

The amount of traffic needed to sustain full processing speed determines the memory

bandwidth requirements. Memory bandwidth is the amount of data the memory

system can deliver every second. Memory bandwidth can be influenced strongly by the

following issues:

- A Buffer Hierarchy

- Compile Time Software

- The Instruction Set Architecture

- 6 -

Chapter 1

1.1 Research on architectures

: "Entering basic
: block N"

Data Irom
compiler tool

··········l·~·· .. ·· ..

1------------ I-----~------
I I I :

I I I Target I

I Benchmark L
1
----t--t------?~I architecture II

: execution I
1 \ I : simulation 1
1 I I I------ 1 1

Host processor

Figure 1.1: The CARA methodology.

The architecture of a processor forms the link between the hardware implementation

(design, technology) of a microprocessor and the instruction set that it supports. The

most straightforward way to examine a particular architecture is to examine the

operation of an existing implementation of such an architecture in hardware. A

cheaper approach however is to simulate that architecture in software, on existing

hardware, through examination of the performance of its instruction set architecture.

Analytical approaches usually involve measurement of some aspects of typical

programs, and application of these aspects to models of the simulated architecture.

CARA, Compiler Aided Research on Architectures, in it's general form requires that

a set of standard programs, called benchmarks, are written in high level languages.

Analysis of the performance of these high level language programs is then performed

by compiler tools. The benchmarks are first translated to an intermediate format, and

then broken up into basic blocks. Each basic block, a structural unit of a program as

will be explained in more detail in chapter 2, is then analyzed separately, and the

results are stored in tables. Furthermore a call to a trace routine is inserted at the

- 7 -

Chapter 1

start of each basic block. The benchmark is then compiled and executed on a host

machine. Program flow is registered through the inserted calls to trace routines, on

entry to each basic block. A final simulator then combines this trace with the stored

block characteristics to construct an overall simulation. The main reason for

separating the trace and block info has been the attempt to reduce the data file sizes.

(Even so trace files of up to 3.5 Megabytes do occur when executing certain

benchmarks, like the pascal compiler 'pasm').

.........................
: :

: "Entering basic
o block N"

Data from
compiler tool "Reference to

memory line L"

,- - - - - - - - - - - i
I ,, .
• Benchmark
: execution
• •
!.. - - - - - - - - - - -,

• 0 0 0.0000.0 oJ 0 ••• 0 0 0 ••••:

. J_ _____ . _
• '. 1
1 Target 1 1

1 architecture L..,_f----:j~..1 Cache :
, simulation' 1 simulation 1
, • 1 1

!.. - - - - - - - - - - _I !.. :

Host processor

Figure 1.2: The extended CARA methodology.

CARA however may be used for more then just processor architecture analysis. As in

the Architect's Workbench it may provide a whole range of buffer and cache

simulators. In a realistic simulation also some general hardware parameters such as

register sets, bus widths, cache sizes and cache organization will be specified.

If during the simulation of the target architecture yet another trace is generated, one

which contains address information, then this trace can be used to feed these

simulators. Figure 1.2 shows this extended CARA methodology, as implemented m

the Architect's Workbench.

- 8 -

Chapter 1

The instruction set architecture greatly influences the magnitude of the instruction

traffic when counting the number of instructions read. For example there are

architectures designed to minimize instruction traffic, using more complex

instructions, and at the other end there are the reduced instruction set computers,

which are designed to minimize cycle time. Therefore when examining the

performance of architectures through comparison of their instruction counts one

should take their expected actual cycle times into account.

1.2 The butTer hierarchy

The principle of buffering, especially when using caches, is based on locality, Le.

related that is data is positioned close to each other. There are two forms of locality.

Temporal locality, which is best for data traffic, and spatial locality, which is best for

instruction traffic. A buffer hierarchy can use this principle to reduce the read and

write times through keeping often needed code and data close to the processor, thus

minimizing the execution time of programs. This hierarchy thus provides an interface

between processor and memory. It may be ordered in multiple layers in order to

combine several buffering mechanisms, or to combine the advantages of large buffers

with those of small buffers, or to combine on and off chip buffer parts.

One kind of buffer is the single register set. It's contents are addressed through

specification of the appropriate register within the set. This minimizes both the

instruction traffic (shorter address, less bytes) and the data traffic (shorter distance,

the amount of cycles needed to acquire the data drops). The main parameters used to

specify single register sets are set size, functionality and instruction formats. The

effectivity of a single register set is greatly influenced by the way the data are

allocated to its registers.

Because registers are an integral part of the instruction set architecture, a compile

time program has to exploit them, and thus has a great influence on the performance.

- 9 -

Chapter 1

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
o

local variables

global variables

evaluation stack

s

constants

Figure 1.3: Functionality of an example 16-register set.

The format of the instructions only influences the instruction traffic.

~ ... 3 j I~
5iD 2

51... S! i~ en
"51 of of

~
£!:! 1

0

~ 8 b C

sel seleclor sel counler +1/·1 sel counter +11·1

Figure 1.4: Multiple register set organizations.

- 10 -

Chapter 1

The functionality of registers greatly depends upon the operations allowed on a

register. If all operations are allowed on it, the register is a general purpose register

(GPR), otherwise it is a special purpose register (SPR). The effectiveness of a register

allocator is influenced by both number and functionality of the registers in a set.

Figure 1.3 shows the layout of an example 16 register set. Most register allocators

have access to the general purpose registers, the upper 8 registers. The amount and

implementation of additional registers varies with the architecture involved.

A more sophisticated buffer is the multiple register set, introduced to save time by

not saving registers on context switches such as interrupts, proces switches, messages

and procedure calls, but using another register set when entering a new context. Some

additional parameters for multiple register sets, in addition to those of single register

sets, are parameter overlap and strategies for underflow and overflow handling and

aliasing detection. Figure 1.4 gives some examples of multiple register set

organizations. Configuration A provides a number of completely separate sets which

may be allocated using pointers. Organization B switches sets at procedure calls and

returns, and allocates the sets in a stack like manner, using a counter. The stack is

oriented in a circular manner, the head is attached to the tail, thus allowing to store

the bottom of the stack when room for the top is needed. This provides a cheap

implementation of the least recently used replacement strategy. Organization C

behaves like register set B, but uses overlap of register sets to pass parameters

between procedures.

A stack buffer (contour buffer, stack cache) resembles the B type multiple register

set, except for the set sizes, which are not fixed. Every set allocates as much of the

stack as it needs, including room for static and dynamic links. Like multiple register

sets Band C it is constructed head to tail. Additional parameters that specify the

stack buffer are allocation/deallocation strategy and memory layout.

Another way to buffer data is through the use of caches. A cache is a small piece of

fast accessible memory, preferably close to the processor, which tries to contain the

data most likely to be accessed in the near future. Caches come in a range of fetch,

- 11 -

Chapter 1

write back and replacement strategies. Most conventional caches use line fetching on

demand.

Data which has been changed has to be written back to memory. One may choose to

do this on replacement (simultaneous read and write) or on changing the data (write

through).

The main parameters to specify a cache are size, line size, degree of associativity,

replacement strategy. A cache with an associativity of one is a direct (linear) cache,

each memory line fetched has one possible location to be stored in the cache. An

associativity of N means that each line of memory may end up into one of N cache

lines. A fully associative cache allows a memory line to be loaded into anyone of the

cache lines.

Choosing between accessible lines may occur at random, or replacing the least

recently used (LRU), or applying a first in first out (FIFO) strategy.

The traffic between a processor and it's memory system consists of two fundamentally

different kinds, instruction traffic and data traffic. The instruction traffic is a one way

stream, from the memory to the processor, it's contents are read and executed, but

not changed. Instruction traffic is mostly a consecutively stored and executed stream

of data. Buffering of this data therefore can best be done by a cache.

The data traffic is necessarily two way since data may be changed, and thus has to be

written back to memory some time. Also data traffic contents may originate from, or

be directed to, different addresses in memory, or elsewhere. Therefore data traffic

streams require more complicated ways of buffering, and thus have to be simulated

using different simulators.

Approximately 75% of all data references are simple local, simple global, and run

time management variables. Most of these references are local, confined to the scope

of the active procedure. Because of this limited scope, a relatively small buffer may

capture most references.

- 12 -

Chapter 1

1.3 Performance measurement

In order to be able to compare the performance of different buffer architectures and

instruction set architectures, the definition of performance measures is important.

Some performance measures one could think of are:

The hit ratio Rhit, (1 - Rmiss)' defined as the ratio of the number of times the

processor finds a memory reference in cache to the total number of memory

references.

The miss penalty, the amount of cycles lost when a memory reference can not

be found in cache.

The traffic ratio Rtraf, defined as the ratio of the number of bytes transferred

between cache and main memory and the number of bytes transferred between

the processor and the cache.

The service time, the amount of cycles needed to run a trace.

The access time, the amount of time the buffer and memory actually need to

provide for a hit or a miss.

The chip surface used, which especially for an on-chip buffering mechanism is

a constraint.

Three parameters related to cache performance which can be measured quite easily,

are the miss rate, the traffic ratio and the service time. The miss rate and traffic ratio

are derived as follows:

Rmiss = T bypass/Tbase

R traf = Tmem/Tbase

T base, the baseline traffic, splits into a stream which is satisfied by the buffer, T buf' and

a stream which bypasses the buffer and is directly fed from main memory, T bypass•

- 13 -

Chapter 1

Tbypass

Processor Memory

Figure 1.5: Buffer performance model.

Tmem, the memory traffic after buffering, consists of Tbypass together with the traffic

needed to maintain the buffer, Tmaint.

From the processor's point of view one is interested in the amount of delay the buffer

and memory system impose on it. In order to be able to estimate this delay one needs

the access times, including the miss penalty, and the miss ratio.

From the memory systems point of view the bandwidth requirement, bytes per

second, imposed on it by the buffer and processor is important. This bandwidth

requirement can be calculated from the expected processor clock frequency, the

average amount of processor references per clock cycle, and the hit ratio.

The parameters which is provided by trace simulation in the Architect's Workbench is

the miss (hit) ratio. Except for the average reference per clock cycle all other

parameters can be considered external data. The average reference per clock cycle

can at present not be calculated because the workbench traces do not contain timing

information.

There are four basic parameters which characterize a reference in the data stream

between processor and memory, the data type, the memory address (or logical

- 14 -

Chapter 1

segment), the direction (read or write), and the time passed since the former

reference. The data type is needed to define the amount of memory needed to store

the data, the address to identify a piece of data (is it already in the buffer?), the

direction to define which action the buffer should take, and the time passed to be

able to investigate timing effects. Timing effects are especially important when a

buffer tries to match different processor and memory timing and delays optimally.

Momentarily the workbench traces contain all of these parameters except for the

timing information.

1.4 Conclusions

A realistic simulation of a buffer mechanism in software requires benchmarks

(realistic program load) and a way to implement instruction set architectures, because

these architectures strongly influence the load which is actually presented to the

buffer. The extended CARA methodology presents a way to create these realistic

loads, simulating instruction set architectures, and thus to examine the performance of

buffers mechanisms.

Because the trace files resulting from such simulations can be very large, they are

split up into a basic block description file and a program flow registering file.

Through for instance the effectiveness of register allocation, compile time programs

can strongly influence buffer performance measures.

Two of the more important buffer measures, the traffic ratio and the miss ratio are

provided by the Architect's Workbench.

Although there is a demand for timing information to be included in the simulations,

the Architect's Workbench does not yet include this timing information in it's traces.

- 15 -

Chapter 2

Chapter 2: THE ARCHITECT'S WORKBENCH

The Architect's Workbench has been built according to the extended CARA

methodology. This methodology can basically be seen as divided into two stages.

Executing the first stage, representing the compile time software, results in the

creation of a static trace file, the basic block description file. The second stage,

representing the run time software, starts with creating a dynamic trace file, the

program flow description file, and contains, as will be described in paragraph 2.2, the

actual simulators of either separate data or instruction streams or the combination of

both.

2.1 The compile time software

Because various high level languages tend to support different program

characteristics, there should be a way to write benchmarks in several of the most

important of these languages. In order to ease the processing of benchmarks written

in different high level languages, an intermediate language, U-code, has been chosen.

The use of this language results in a situation in which several front ends translate a

variety of high level languages such as C, pascal, fortran, and in the future maybe

others, to U-code. In this way the rest of the first stage, such as register allocation

and compilation, becomes independent of a change of benchmark language, thus

reducing the size of and increasing the flexibility of the Architect's Workbench.

A scheme of the compile time software organization is given in figure 2.1.

- 16 -

Chapter 2

FRONT I(EG'Sre~ BASIc

END IU.(.oU'/TE/?- .. Bl.OCK ~

foo.p - (oo.U
,

foo.z. - HNlJlYlEIl foo.sl
OPr/f1'l.EI?,

foo·C
{OO·f

fOO.JC
\

1MNSUlrE/l fOO ~

Figure 2.1: Compile time software organization.

One of the functions performed by a compiler (the compile time software) is the

assignment of data to registers. The way in which this is done affects the execution

characteristics of the program. A good register assignment scheme can, for example,

reduce the number of movements of data items between main storage and registers,

and allow use of the faster register-to-register type of instructions.

In some allocators register allocation takes place in parallel with code generation,

because of the argument that the code generator has full kriowledge of the target

machine, e.g. restricted instruction formats or special purpose registers can be

incorporated into the allocation strategy. A second approach splits the allocation into

two steps. The first step is independent of the target machine and involves allocation

of the general purpose registers and code optimization in an intermediate language

such as V-code. The second step maps the optimized code onto the target machine,

compiling down to the target machine assembler language.

This two step approach is also used in the Architect's Workbench, although for the

reason of simulation this second step is split up into two parallel actions. The first

action stores the optimized code in a static trace file, to be used for simulation of the

target machine later on, while the second action assembles down to a host machine

- 17 -

Chapter 2

(instead of the target machine) to create a trace file containing program flow

information.

Within the Architect's Workbench thus only the general purpose registers are

considered for allocation.

The occurrence of a constant or data name in an executable statement can be

characterized by its effect on the associated data item during statement execution. A

data item is defined when statement execution causes a new value to become

associated with the data item. A data item is used when the current value of the data

item is required for correct statement execution. Each data item may thus be

appointed its definition-use-chain, defining its temporal validity. Interference occurs

when two variables are both valid at some point within the program. Total

interference occurs when every time a variable is used, it interferes with the same

variable. Using DU-chains, register allocation is reduced to a graph coloring problem.

Weighing functions are used to decide which data should have a high allocation

priority.

The Architect's Workbench's register allocators make use of these DU-chains.

Before continuing something should be said about basic blocks. The basic block and

the region are defined as structural units of a program.

When considering a program as a list of statements (with each statement an ordered

sequence of delimiters, operators, constants and identifiers) a basic block is an

ordered subset of the statements in this program defined as:

Bj = {

= {

in which:

sa' sa+1' ..., Sb }
Sj I sj6 P,

Sj is executed before Sj+1'

Sj =! sa may not be branched to from s e. P,

Sj =! Sb may not branch to s E P }

- 18 -

Chapter 2

- P is the whole program

- B is a basic block

- s is a statement

A region can now be described as a collection of basic blocks, behaving as one basic

block, provided one or more internal loops are ignored. Thus a region may vary from

a basic block up to a whole program, as long as it contains one single exit point.

Allocation within a block is considered local, while allocation within a region is

considered global. Within the Architect's Workbench procedures are treated as

regions. Thus a local assignment is assignment within a basic block, while global

assignment is assignment within a procedure.

Local assignment is attractive because a compiler can easily, and in a reasonable

amount of time, partition a program into basic blocks and derive the necessary

interference characteristics. Local assignment however cannot usually maintain

assignment history when crossing block boundaries, thus forcing all variables to be

moved to main memory. This is especially inefficient when considering loops past

block boundaries.

One-one register assignment allocates exactly one variable to each register in the

region of assignment. The register allocator 'order' thus allocates variables one

procedure (global, as will be explained on the following page) at a time. And, because

it performs no data flow analysis, it maps local variables in registers for the entire

time a procedure is active. Apart from the fact that only a certain amount of variables

can be allocated to registers, this method has one major drawback: all registers are

saved across procedure calls, because the callee might either need the registers, or

some of the variables as non local variables.

This method however is still interesting because it is used in commercially available

compilers. It is also used as a standard for measuring the effectiveness of other

allocation strategies.

- 19 -

Chapter 2

As opposed to most commercially available compilers, the following assignment

strategies attach a greater importance to the creation of an optimally executable

program than to the time involved in the compilation.

Many-one assignment allocates at least one variable to a single register in the region

of assignment. Variables which do not interfere can be allocated to the same register.

Assignment of a variable to a register set works as follows. Take a register from the

set and assign the optimal combination of variables to it. T~ke the next register and

optimally assign as much of the remaining variables as possible. Continue until the

whole register set is allocated. Each variable that has been assigned a register uses

that single register, possibly together with some other variable.

/(E6 fi XO XZ Xl XI I XI Xo

REG B XI XI XO XO I Xl.. X2

Figure 2.2: Many-few-assignment. (Example: 3-2-assignment)

Many-few assignment allocates at least one data item with each of several registers in

the region of assignment. Several variables XO, Xl, X2 are assigned to several

registers, REG A, REG B, as shown in figure 2.2.

A basic block generator, 'hllref, extracts the information necessary to describe each

basic block and puts it in a file foo.st. Furthermore, in the V-code file, it includes all

calls to trace generation routines in order to be able to generate a trace during run

time. Next a script file called 'utrans' calls a compiler which translates the V-code to

machine-code for the host machine on which the Architect's Workbench runs. In case

the host is an Apollo, 'u2a' will be called by Vtrans. Next the Apollo assembler 'as'

will compile the machine code file into a binary file, and the Apollo binder will link

- 20-

Chapter 2

'ld' a library containing trace routines and other standard routines to this file. The

benchmark is now ready to be executed.

2.2 Run time software

C~CHE

1----+ tfEIIS{)RE.S

.st r-----'""I BUFFER ItfFl50f<ES
-.t..---";'~/n I---~

LEVEL
6UFF131t.

Figure 2.3: Run time software organization for a data traffic simulation.

After the first stage of the CARA methodology (compilation of the benchmark), the

second stage (simulation) follows. This second stage starts with the execution of the

created executable benchmark. The benchmark executes as it normally would have

done, from the user point of view, but meanwhile, every time it executes a call to a

trace routine, the actual basic block number is written to a trace file foo.tr, thus

registering the program flow. In combination with the static trace file foo.st a buffer

simulator can reconstruct the complete program flow and analyze all instruction

fetches or data references and simulate the working of a buffer mechanism to provide

buffer performance measures.

The Architect's Workbench distinguishes three kinds of simulations. The first kind,

the data traffic simulation, is shown in figure 2.3 as a two level buffer simulation. The

first level simulates program execution and buffer performance. Furthermore it

generates a new trace foo.at which contains the address sequence of all references to

- 21 -

Chapter 2

main memory that could not be covered by the first level buffer. The second level

buffer simulator uses this address trace to extend the simulation to a cache.

In multi-level buffering first level (register oriented) and second level (cache) buffers

have distinct purposes. The first level buffer determines the peak performance of the

processor, while the second level buffer determines the actual performance. Hence, a

cache does not hide architectural (first level buffer) flaws, but emphasizes them,

because it reduces the influence of the memory system on performance.

In fact the Architect's Workbench allows up to three buffer levels to be simulated.

The first level buffer may be a single or multiple register set, or a stack buffer. The

second level may either not exist, or be a fully associative cache as implemented in

the buffer simulators, or be an address trace foo.at for a separate simulator. In case

off a fully associative cache the third level exists of one of the other three choices.

The appropriate choice should be set in 'cache.conf, the cache configuration file, as

specified in appendix 3.

The second kind of simulation, instruction traffic simulation, is implemented as a one

level cache simulator. For the third kind, the mixed traffic simulation, the address

trace from the first level data buffer is combined with the instruction reference trace

to generate an extended address trace, which is then fed to the second level cache

simulator.

2.3 The Architect's Workbench

As the previous paragraphs indicate, running a simulation on the Architect's

Workbench without using a guiding simulator can be quite complicated. Figure 2.4 on

the next page gives an impression of what simulation paths are possible, which

simulators may be used, and what data files do occur along the way. Furthermore, in

the following sub-paragraphs some more detailed examples are given about the three

main simulation paths, for data, instruction and mixed traffic simulations.

- 22-

Chapter 2

(oa. xx. .](

! .y roo .e.

Ff('ONTEAJO

goau
..L

IfE/fo/?6

I
'\. .l~

~PTIIf/Zcl< poPr-IRf:O

I I
It SElter fjfUHIT~CTullE

I,

-k..st.et ~.s~~
./

B!31) B-Bf/
.--"

{a7. x
II

T~11AJ)U? 'if),(7RIU}jiRllJI<

fCO fro
'N

(oo.tr'.d '"AcIiF. t1Ml'

/3UF51/f k-- fa:>.lr. i
~ea~cr
!J£F/51l c"JcE

foo.at I?RC!(~1VI2E.

~ L 1
IDSt" L......; t;tl7CJ9CHE St/f8lQxtEF

I ! J.

fev. r;ta. (ro,b

CAClfESl17

1 }(x.)(

EXECOl7O.
SECCc.T £

Figure 2.4: Layout of the Architect's Workbench.

- 23 -

Chapter 2

Several appendices contain further data as to where to find and change parameters of

caches and instruction set architectures.

'front ends' : Uccawb, ufortawb, upasawb, upas17awb

,optimizers' : Uoptawb, order, inter

'translators' : U2a, u2sun, u2vax

'buffer sim.' : Srssim, srssub, mrssim, mrssub, bufsim, bufsub

,cache sim.' : Asscch, setcch, setsub, setrep

2.3.1 Instruction traffic simulation path

Running an instruction traffic simulation with the Architect's Workbench is primarily

done according to the following steps:

1 Generate aU-code file using a front end.

2 H desired perform optimizing with 'uoptawb' without register allocation, using

the switch '-regs:O'. The static analyzers perform there own allocation, as far as

they use registers.

3a Run the basic block generator 'hllref to create an instrumented U-code file.

3b From the file awb.parameter select an instruction set architecture. Run the

corresponding static analyzer ('dcastat', 'regstat', 'stackstat', 'genrstat') using the

accompanying flags. Use the switch '-u' when 'uoptawb' has been used. The

basic block description file foo.st is now created to replace the one created by

'hllref.

4 Use a translator to create an assembler file, use assemble it, and link the

corresponding library to it. Now there is an executable benchmark.

S Execute the benchmark to create a trace file foo.tr.

6 Take from a previous cache simulation the number of bits read and put it in a

file foo.mt. Remove foo.mt if no referencing simulation is intended. Run

'simcache' or 'simsmcache' to simulate an instruction cache. Results appear in

- 24 -

Chapter 2

foo.sta. If a file foo.mt exists then this is assumed to be a referencing

simulation. Relative traffic will be calculated using the number of bits read by

both caches.

2.3.2 Data traffic simulation path

1 Generate a V-code file using a front end.

2 If desired perform optimizing.

3 Run the basic block generator 'hllref to create the instrumented V-code file

and the basic block description file foo.st.

4 Vse a translator to create an assembler file, use assemble it, and link the

corresponding library to it. Now there is an executable benchmark.

5 Execute the benchmark to create a trace file foo.tr.

6 Set a link named 'cache.conf to a cache configuration file. This file specifies

the buffer levels and cache parameters, as explained in appendix 3.

7 Run a first level buffer simulator, creating foo.at.

8 Run a second level cache simulator, using foo.at.

2.3.3 Mixed traffic simulation path

A mixed traffic simulation basically starts with generating a static instruction

reference file foo.st. Furthermore a complete data traffic simulation is performed up

to the generation of the address trace file foo.at. These two files are now merged by

idsim. Merging is performed by reading two instruction references after every data

reference, unless there are no instruction references left in the current basic block, or

an immediate write occurs in the data stream. In case of an immediate write the

remaining instruction references in the current basic block are all read at once. The

newly created trace file foo.at is then fed to the second level cache simulator.

- 25 -

Chapter 2

2.4 Conclusions

The Architect's Workbench provides a range of possibilities for the simulation of

instruction set architectures and buffers, using various kinds of traffic.

While growing the Architect's Workbench has become increasingly hard to penetrate.

This chapter contains a description of the structure of the workbench. Even so, due to

the large amount of programs and the complicated ways they are interconnected, it is

not easy to work with the Architect's Workbench.

- 26 -

Chapter 3

Chapter 3: VIRGIN

Testing the Architect's Workbench still is a quite complicated task since it is a large

and complex structure of programs. Getting acquainted with the workbench therefore

starts with reading the Introductory User's Guide [10], which is a bit vague and

incomplete in details, followed by studying the reports of researchers who have made

use of the workbench in their architecture and buffer performance studies. Mter

reading comes trying some simulations yourself. At this stage 'virgin' was written.

Mainly as a way to try and write down the structure of the workbench, and the

relations and connections between its contents, it developed into a simulator.

3.1 New features

In order to make it easier to use the Architect's Workbench, it has been equipped

with various script files. These script files together work somewhat like a simulator,

asking the user to specify choices and parameters, and relieving the user of most of

the dumb work. The main simulation script files, 'isim' and 'virgil', however have been

written for specific research done by earlier users. They allow limited access to the

possibilities of the Architect's Workbench. For example, the data cache simulation in

the Introductory Users Guide is impossible using the data traffic simulator 'virgil'.

'Virgin' makes the existing script files obsolete. It directly accesses all programs that

are part of the workbench. The script is like a primitive simulator leading the user

along his simulation path through the Architect's Workbench, based on choices he

- 27 -

Chapter 3

makes on the way. 'Virgin' offers much more freedom than the old script files. New

features of 'virgin' are:

Specification of a user simulation directory instead of making use of the

common benchmark directory.

The possibility to add parameters, as specified in the manual pages, to the

simulators.

The ability to bypass code optimizers.

A copy on screen of every command executed, in order to show the user what

commands he should give to perform a similar simulation himself. This is a

teaching function. Anyone doing research will not run complete simulations,

but, once he has the basic files, execute some parts with various parameters.

Reading 'virgil' shows him how to write his own script file.

'Virgin' performs in a clear and logical order all the functions that before were

performed by the script files 'virgil', 'idsim', 'utrans', 'z2tr', 'lookup-iarch',

'askugen', 'show-cmd', 'askcache', 'u2tr', 'ugen', and 'obsolete'.

3.2 USiD~ viriDD

STEP 0: Initialization

In this step the Architect's Workbench header is printed on the screen.

A path is set to a user directory specified in 'virgin', where an additional Instruction

Set Architecture parameters file 'more.parameters' may be kept. Furthermore paths

are set to several workbench data files containing respectively instruction set

architecture parameters, cache architecture parameters and benchmarks.

Also a host machine, Apollo or Sun, is chosen, because files assembled on them do

not get the same file name extensions, while files translated on them need different

translators. The operation of 'virgin' on the Sun has not yet been properly tested.

Chapter 3

The error and warning messages are initialized, and a warning is given for any

workbench program that is supposed to be present but can not be found.

It is possible on the command line of 'virgin' to specify the benchmark to be

simulated and it's extension, but this feature has not been extended to other input yet.

Next the user has to specify a simulation directory, the directory in which all the

intermediate and result files are going to appear. The user may enter 'dummy' if he

wants his current working directory to be his simulation directory.

STEP 1: Selection of the type of simulation

The user now specifies whether he wants to do an instruction 'i', data 'd' or mixed 'id'

traffic simulation. The mixed simulation will initially be treated as two separate

instruction and data traffic simulations, after which the files actually needed will be

joined together.

Next the user specifies the benchmark language, C, pascal or fortran, and in case of

pascal whether it should be a 16 bit or the default 32 bit instruction set simulation.

'Virgin' then presents the available official benchmarks to choose from. The user may

either specify one of those, or any other program already in the simulation directory,

as long as it's extension is 'p', 'c' or 'f. H the benchmark is found in the workbench's

benchmark directory then it is copied to the user's simulation directory.

This causes a simulation error further on for the benchmarks 'pasm' and 'pcomp'

because they also need data files to work with, for which copying is not provided yet.

STEP 2: V-code generation

The appropriate front end compiler is executed, before which options as specified in

the workbench's user manual may be added.

- 29 -

Chapter 3

STEP 3: Preparations for the instruction traffic simulation

This step is only executed in case the simulation is an instruction traffic simulation.

The instruction set architecture parameters file and the additional user parameters

file, as mentioned in the introduction step, are read, and from their combined

contents the user may now select an architecture for simulation. From this choice,

within this step, the appropriate static analyzer and the switches that go with it are

selected, and within the simulation directory a subdirectory is created for the results

of the instruction cache simulation to be stored in. This subdirectory is named after

the instruction set architecture that will be simulated.

STEP 4: Register allocation

Since for a mixed simulation two simulation paths are followed in parallel, two

versions of several files are going to exist at the same time. To those files, where

necessary, an additional extension '.d' or '.i' will be added.

In this step a code optimizer annex register allocator (or none) is selected. There are

two schemes for selecting an optimizer, one for a data buffer simulation, and another

one for an instruction buffer simulation. The reason for this is that in case of a mixed

simulation one may want to specify different optimizers for the data and instruction

buffer simulation.

Before the optimization one can execute the memory reorganizer 'memorg' which

does not work well with the optimizer 'uoptawb'. For an instruction traffic simulation

however one has to use 'uoptawb' without register allocation (is taken care of

automatically), or none, because the static analyzers 'xxxstat' do not take optimized

code.

In case of a data traffic simulation from a menu a register allocation strategy is

chosen. For some of the allocators the user is asked to specify certain basic

parameters, like number and kind of registers for allocation by the global many-to

one register allocator 'uoptawb'. Finally one is asked whether one wants any

additional switches to be set, whereafter the register allocator is executed.

- 30-

Chapter 3

STEP 5: Static and dynamic trace file generation

Because of the possibly parallel simulation the step 5 script may be executed twice.

First the trace library to be loaded with the benchmark is selected. Next the basic

block allocator 'hllreP is executed to create an instrumented V-code file and a static

trace file foo.st describing all basic blocks. The V-code file is then translated and the

resulting assembler file is assembled by a host system assembler, after which the

binary file is loaded with the selected library by a host system loader. The executable

result is executed and creates a dynamic trace file foo.tr.

In case of an instruction traffic simulation the selected static analyzer is executed

which removes the static trace file created by the register allocator 'hllreP and

replaces it with a new one which is created using the parameters of the selected

instruction set architecture.

The user may have added parameters for 'hllreP and the translator. The parameters

for the static analyzers, in case of instruction traffic simulation. have been set by the

selection of the instruction set architecture.

STEP 6: Initializing cache.conf

In case of a data traffic simulation. which exists of a first level buffer simulation and

optionally a second level cache, the user chooses a data cache architecture from the

ones presented by 'virgin'. In fact a link is created to the appropriate configuration

file. The file is read by the first level buffer to know whether a second level fully

associative cache should be simulated before the third (was second) level cache. The

second (possibly third) level cache reads the file for cache parameters.

STEP 7: Simulate a data buffer or do an instruction cache simulation

In case of an instruction cache simulation 'simblockreP can be executed to create a

file containing basic block reference counts. The user makes a choice between a

simulator for caches (512b to 16Kb sizes) or small caches (128b to 4Kb sizes).

- 31 -

Chapter 3

Next a reference instruction set architecture is selected, or 'self', in order to acquire

the number of bits read in the referenced simulation. In fact the referenced cache

architecture simulation results are referenced through the name of the instruction set

architecture that that cache was simulated with. This construction exists because all

simulation result files get the same name foo.sta, but are stored in a subdirectory

named after the instruction set simulated.

In fact the number of bits read from the referenced cache is the only reference

information used, in order to create a correction factor for the presentation of

relative traffic figures.

In case of a data buffer simulation the first level buffer simulator, simulating register

sets or a stack buffer, is selected and executed. An address trace foo.at is created, to

be used by the second level buffer simulator. Options may be added for this buffer

simulator.

STEP 8: Mixed simulation

The simulator 'idsim' combines the address trace generated by the first level buffer

simulator with the static trace file created by the static instruction analyzer in step 5

to form a new address trace file to be exchanged with the old one.

Options may be added.

STEP 9: Data and mixed traffic cache simulation

A second level cache simulator is chosen, which uses the address trace file to simulate

cache performance. Options may be added.

- 32 -

Chapter 3

3.3 Conclusions

A new script file, 'virgin' has been written which makes all the existing script files

obsolete. It offers a lot more freedom in selecting the simulation path and specifying

parameters than the old script files, and can be used as a simulator or teacher.

- 33 -

Chapter 4

Chapter 4: TESTING THE ARCHITECT'S WORKBENCH

Recently the Architect's Workbench, which has been developed on a Vax system, was

transferred, via a Sun system, to the Apollo environment, because of the relative

abundance of Apollos in our group. At the transfer the compilers, provided by the

host system, changed naturally, and the V-code to host assembler code translator of

the workbench was rewritten. Due to these changes the workbench ceased to function

as it was supposed to. Except for the V-code to Apollo translator u2a most errors

have to be searched in differences between Vax, Sun, Apollo and the Pascal and C

compilers on those systems.

The first try at finding errors was made by running several kinds of simulations with

the available benchmarks, in order to locate problem spots. Vsing all benchmarks is

likely to cover most of the V-code statements and at least all of it used by the

available benchmarks. These simulations resulted in some quite long error lists

generated by the Apollo assembler. These happened to be related to u2a.

4.1 U2a

Rewriting u2a had been done through replacing all Sun assembler code in the old

compiler by Apollo code. Furthermore some other problems caused by the different

conventions of the host systems, like read-only code segments on the Apollo, and thus

the treatment of externals, had to be compensated for.

- 34 -

Chapter 4

Most of these errors could be described as typing errors when exchanging Sun for

Apollo code. Some code statements had been overlooked. A full check of the listing

of uZa showed some additional errors in compiler pieces for the compilation of U

code statements which had not been used. A known remaining error is:

add.l # 16,sp

megal symbol in source field.

The error resulted when compiling the benchmark pcomp. The error is located in

uZa.p, compilation of UINST

Other errors occurred for unrecognized or undefined globals.

This was indirectly caused by the fact that the Apollo system considers the code

segment as a read only area, during execution as well as during the loading phase.

Labels that can not be resolved by the assembler thus can not be accessed by the

loader. For external routines and variables, whose address is not known at compile

time, this requires a special treatment. First a label has to be created in the data

segment. This label can be resolved by the loader. For a call to an external routine,

this label can also be loaded into a register. Executing 'jsr (register)' then actually

calls the external routine. Conform the Apollo convention the register AO is used.

However, the name of the external label, in the data segment, should be different

from the name of the variable that is used in the code segment. The variable and the

label thus have to be coupled in the data space also.

For uZa the easiest solution requires the creation of include lists (to be included in

the benchmark under compilation) which contain a piece of data space for all

external addresses that can possibly be referenced. Then the only thing uZa has to do

is adapt the names of the U-code routines that are recognized as externals, giving

them an extension. Lists have to be available to uZa from which uZa can decide

whether a called routine is an external or internal routine.

- 35 -

Chapter 4

An unrecognized global occurs when u2a does not recognize a call as a call to an

external (global) routine, and it gets the 'internal' status, thus trying to access a non

existing internal routine. An undefined global occurs when a call gets the 'external'

status, but his patch is not in the include list.

4.2 The u2a AWBpascal library

In fact there are some more lists and include files. The way in which they are related

will be explained using figure 4.1. When a benchmark is compiled to assembler code,

math, io and other 'standard' routines may be referenced. These routines are supplied

by the compiler in an include library which, after compilation, is linked to the

benchmark by the loader. In case of an AWBpascal (workbench pascal) benchmark

this will be an AWBpascal library (not 'standard' Apollo pascal or any). This

AWBpascal library therefore is also compiled using upasawb and u2a.

Some 'basic' and (in case of a trace library, trace) routines are implemented in a C

library, which on its turn is linked to the AWBpascallibrary.

STO·/J.JC
r

L/jr.NOTPC - - - - - ..£1Sr.~!! ~
r-- - -,-

I

8EAJCllhll~K I (-LI'Y?IIR"t
r!1g:P~_J PI1SCRt. 10

_ {IS!:!,!!/~

PI(J.IA/C "
ll/JI(/J~Y P/(JL/8.1Nc...., ,

Figure 4.1: The workbench pascal library structure.

- 36 -

Chapter 4

Basically there is the following: a set of C routines which is called (external, with

respect to AWBpascal) by the AWBpascal include library, and is linked to it after the

AWBpascal library is compiled. These C routines are mentioned in list.piolib, the

checklist of library externals for u2a, while their declaration in the data space has

been taken care off in piolib.inc, which is included in the AWBpascal library at

compilation of the library by u2a.

Next there is list.pio, which mentions all routines the benchmark may call from, or

via, the AWBpascal library, as well as an include file pio.inc which is included in the

benchmark during compilation of the benchmark by u2a. List.pio is not used directly.

There also is, hand made, list.notpio, which mentions all routines (trace, math, and

others) that are not in list.pio.

The script file xrfyio creates list.pio and pio.inc through scanning pio.p and

tracepio.p, the AWBpascal libraries, for procedure names. Therefore the declaration

of the external C routines called by the pascal library happens in an include file

pio.ext in the library, as to not to get their names in list.pio, unless they are explicitly

referenced via the library. This happens for instance with the open routine, which

may be referenced by both the AWBpascal library as well as the benchmark.

Finally the include file std.inc is included in both the include library and the

benchmark. This file provides general system routines and calls for the C routines

which are not part of the set called by the AWBpascal library, like math. The file

list.std is created by taking list.pio and adding the math and system functions,

list.notpio.

Thus:

In case of a library, std.inc and piolib.inc are included by the assembler.

List.piolib is scanned by u2a for routines with special treatment.

In case of a benchmark std.inc and pio.inc are included by the assembler.

List.std is scanned by u2a for routines with special treatment.

- 37 -

Chapter 4

The largest problem in debugging benchmark execution and the included libraries is

caused by the fact that there is no debugging information available for any standard

debugger. You can not step through, you may just watch results appear during

execution. The only way around it is to include your own comments and debugging

routines and re-compile, which takes a lot of time.

Within the C library dprint(number) and fdbprint(FDB) are included which allow- -
respectively printing of an integer or (most of) the file description block to the error

stream stderr, which writes to screen immediately. In the AWBpascal library, in

pio.ext, these are declared as $Dprint(number) and $Fdbprint(FDB), which just call

the C routines. These debugging routines can thus be called from any place in any of

these libraries without further declaration, provided you choose the right procedure

name. If calls to the AWBpascal declarations are entered in list.std and std.inc then

they may even be accessed by the benchmark itself.

The file description record (structure) is defined in the AWBpascal library as well as

in the C library and is passed on most procedure calls. Care should be taken that

these declarations stay compatible. They should contain the same set of variables in

the same order, using the same number of bytes. For instance, because C by default

assumes integers to be 32 bit, in pascal the standard 16 bit integers have to be

redefined as 32 bit integers. Problems occurred because the two AWBpascal libraries

used different declarations, while both used the same C library.

Because for both AWBpascal libraries the same include lists list.pio and pio.inc are

used, and the libraries themselves are not equal, the linker stage causes some

undefined globals errors which are harmless. The routines involved are in case of an

instruction traffic simulation using plib.a: _$$XXX_ex, with XXX = get, put, rdc, rdi,

rln. In case of traceplib.a these are rdb, rdenum, rdident, rdset, strset, strwrite, wrb,

wrenum, wrset. In the latter case however they are mainly not implemented yet,

although not used by the current benchmarks either.

- 38 -

Chapter 4

Within the C library part a bug exists which can cause a segmentation fault upon the

closing of data files by benchmarks which make use of such files. For the time being a

warning message will appear upon calling the routine _close.c.

In the u2a compiler currently only the creation and inclusion of the pascal libraries

(trace)plib.a is implemented.

4.3 The instruction traffic simulators

,/awb/icsims' is the directory in which the sources of the instruction traffic simulators

reside. The instruction cache simulators simcache and simsmcache had been ported

from pascal to C. There were some problems in calling trace accessing routines

because some routine calls in the ported simulators passed variables, as it is normal

to do pascal, while in the associated C library pointers to variables were expected.

The simulations of instruction caches have been reproduced as in the Introductory

User's Guide, except for some details. For a cache which is larger then the amount of

memory needed to store the whole benchmark the amount of lines fetched is equal to

the amount of distinct lines referenced and the total amount of lines in memory.

After correcting the offset of the reference counter with 1 this was true. Also since

the production of the Introductory User's Guide someone has fixed the counting of

distinct lines referenced, and disabled the creation of the last line in the data file.

This line used to mention the architecture simulated and the one referenced. This

cannot be fixed in a simple way since the simulator does not even get that

information any more.

- 39 -

Chapter 4

4.4 The data traffic simulators

After getting u2a in a workable condition it was tried to reproduce the simulations

presented in the Introductory User's Guide, in order to compare the results produced

by the simulators with the results as they ought to be. The benchmark myfile.p, and

an exact description of the simulations and the results are included in appendix 2.

The directory '/awb/datasys' contains the sources from which the first level data

traffic buffer and the second level cache simulators are built, as well as those for the

basic block allocator hllref. The simulators are created as enlightened in figure 4.2.

The most complicated one is the buffer simulator. The main buffer part simsim.p

contains those routines which are common to all buffer simulators, such as reading

the static trace file, reading the dynamic trace file, initializing the output file, error

routines, and common initialization. Some of these routines, error and printing

procedures are thus used as global routines. It is however not allowed to create global

routines in the module which contains the main program block. Therefore simmain.p

is declared as main program, and it calls simsim.p.

I¥J~~"'//~
.P ICCHCC/(.P· ~

.P IXXl('S/I".P ~

Jlnsm.p . ~

~
151*M/~'PI ~

cCHSu{3
)(X~5L6

Figure 4.2: Buffer simulator bUildup.

- 40-

Chapter 4

Simsim.p also calls the actual buffer simulation routines, as well as initialization of

specific variables. These are located in XXXsim.p, after which the final simulators are

named, for the appropriate buffer simulation (XXX = Single Register Set, Multiple

Register Set, and stack BUFfer).

XXXsim.p then calls cchcch.p, which generates the address trace me, and allows the

user to simulate an additional (second level) fully associative cache.

If this cache is using subblocks, then these modules change to XXXsub.p and

cchsub.p.

The library libsim.a which gets included with the rest supplies C routines for the

handling of references to the dynamic and address trace files.

The cache simulators just consist of one program linked with a C library libcch.a for

the trace routines.

4.4.1 First level buffer testing

When testing the data traffic simulators the first problem that occurred in accessing

the trace file foo.tr. While the simulators happened to be written in Pascal, the trace

handling routines were written in C. Pascal passes variables by value while C passes

them by reference. Some violations on this were found.

Furthermore the Domain Pascal manual, as well as the Domain C manual state that

integer values and character strings are passed correctly when using 'valyaram' in

combination with 'external', but they also explicitly state that no guarantee whatsoever

is given for something more exotic as enumerated data types or records. Therefore a

conversion file conv.p has been loaded with the C routine library which handles

variable passing by explicitly converting enumerated types in Pascal to integers in C,

and vice versa.

- 41 -

Chapter 4

The next error found involves several variables which were declared throughout the

pascal sources, and were also declared and referenced in the C library. Because they

were nowhere defined external or passed on routine calls, they did not get linked

through, thus producing a junk address trace. They have now been defined in

simsim.p and are referenced as externals anywhere else. The variables involved are:

blockcount

blockmask, blockshft, subblockshft

cachein, cacheout, cachebs, cachebn

The last error involves the counting of references made. In simsim.p in the procedure

scantrace the amount of references is counted in hllrefcount. It is checked against a

continue flag and hllrefmax. Hllrefmax gets defined as maxint. On the Vax this used

to be for a 32 bit integer. The Apollo however assumes integers to be 16 bit unless

defined otherwise. This had been solved through redefining integer as integer32 in the

file local.inc, which gets included in any pascal program. Maxint however was still

defined for 16 bit, which is much to small for most benchmarks. This is now also

corrected in local.inc.

4.4.2 Second level buffer testin~

The second level buffer has not been tested intensively. The test files produced

similar results as in the Introductory User's Guide. The declaration of the C routines

has been checked and there is no special reason to suspect any problems.

4.5 The combined traffic simulator

The combined traffic simulator essentially is built of a trace merger followed by the

standard second level buffer. No problems have been found.

- 42-

Chapter 4

4.6 Conclusions

Several errors created by the change of host system and compilers have been found.

They have been corrected throughout the workbench. Several parts of the workbench

have been tested and found correct. Although not all parts of the Architect's

Workbench have been tested in detail, it is expected that all code that has not been

changed functions properly now.

Although a lot of them have already been corrected, errors may still be found in the

U~code to Apollo translator u2a. Currently a trainee is working on their detection.

U2a does not yet support libraries for C and fortran benchmarks, nor have their front

ends been checked.

At least one error does still exist in that part of the C library that is concerned with

basic file handling for the AWBpascal library. It is located in the close routine.

A test of the Architect's Workbench in great detail can best be performed by running

several strategic simulations on a properly working version of the workbench

elsewhere, and comparing the results of those simulations, including all intermediate

files, with the same simulations on the Apollo. This should also yield the last

remaining errors.

- 43 ~

Chapter 5

Chapter 5: ADAPTING FOR THE C-PROCESSOR

Within the C-processor project the demand has arisen to develop a suitable buffering

mechanism, possibly using the Architect's Workbench. For the developers it would be

desirable if the simulations needed would not only yield rough capacity

measurements, but also realistic timing measurements. This calls for a way to include

timing information in the Architect's Workbench.

5.1 Simulatin~ the stack cache

The C-processor will be a stack based machine and will use a stack cache to hold

local variables and pass parameters to procedures and functions. Besides this stack

cache the processor will be equipped with an instruction cache and (probably) a

global data cache. Local data to the stack cache may either be the part of stack that

fits in the stack cache, or all data on stack, or an intermediate definition. Since it is

not yet decided that a global data cache will be present, the stack cache most likely to

be implemented will consider all data on stack local, in order to give better results.

The locality of stack data is highly compiler dependent. Therefore simulations are

needed to decide which definition gives the best performance. Cache performance can

be evaluated by feeding a cache model in software with a series of references. These

traces can be obtained by running a workload on a software model of the processor.

This is the method used by the Architect's Workbench.

The service time of the cache, the number of cycles needed to run a trace, can be

calculated from the amount of references that have produced hits and misses. These

- 44 -

Chapter 5

data

~~~r.~~~....

.9.Q.Q!f.9L.

~tU! _~

main memoMMU
I
I

I
I
I
I

I,
~- --'

~_....

l virtuall
! !
! !
! i

!

stack cache

execution
unit

1 _

Figure 5.1: The stack cache in the C-processor.

reference counts are available in each cache simulation output file. Also the miss rate

and traffic ratio are provided. A more accurate simulation can be performed if the

time between references is known.

Vsing the traces foo.st and foo.tr, as implemented in the Architect's Workbench,

timing information should be included at a spot at which the instructions of the target

architecture (or V-code) are still available. This is certainly not at the point at which

the dynamic trace file foo.tr is created. This file only registers entrances to basic

blocks and the addresses that are referenced within those basic blocks at run time. At

the creation of the static trace file foo.st however the V-code is available, from which

an estimate of the instruction sequence of the simulated architecture can be made,

and the time passed between references to memory can be calculated. In the final

stack cache simulator the timing information from the static trace file can then be

combined with the addresses stored in the dynamic trace file tp generate a realistic

load for cache simulations.

The way in which the Architect's Workbench should be adapted to support timing

information to simulate the C processor stack cache may be summarized as follows:

- 45 -



Chapter 5

A table should be created with estimated execution times (in clock cycles) for

each V-code instruction.

An adapted version of the basic block generator hllref should, while creating

foo.st, read this table and calculate the number of clock cycles passed between

memory references.

A stack cache simulator should be written (possibly through adapting the first

level stack buffer simulator bufsub) to simulate the stack cache.

5.2 Adaptina: hllref

Adapting hllref to support timing information (clock cycles) can be done In the

following way:

First there should be a list containing the estimated execution times for all V-code

instructions. V-code instructions embodying comments and other trace management

should get an execution time of O. The list can best be read from a file, to a table

containing two positions for each V-code instruction, one for the V-code instruction

name and one for it's execution time. (The header file ucode.h contains a list of all

allowed V-code instructions).

When hllref reads the V-code file calling the procedure ucodefilescan, for every

instruction read the procedure ucodeinst is called to analyze that instruction. Just

before that point, for instance through a procedure checktable, the current

instruction's execution time should be added to a timer. In ucodeinst, if a instruction

inhabits a reference, the procedure addref is called to add a reference to the list

hllrefs. At that point the timer should be saved with the reference and reset. Then

every reference contains the time passed since the last reference.

Also there are several instructions which may trigger the variable newblock to

become true. Back in ucodefilescan upon true the procedure genblock is called to

- 46 -



Chapter 5

write the simulated block to the static trace file foo.st. This happens through the

procedures putreflist and putref, which empty the list hllrefs. The procedure putref

should save the timing info with the reference. Every reference is encoded as a string

of characters to which the time can easily be appended. (The static file is read by the

procedure gethllref, appendix 5, in the buffer simulators. This procedure should, when

decoding the string, also read the timing info).

An extra timer should be added to the last reference of each block in order to save

the time between the last reference and the end of the block. This can not be an

extra reference since simulators count references.

There is however a problem in that no information is available from the io library.

Because the library is also analyzed by hllref this info is available in the static trace,

and could somehow be inserted in the dynamic trace. This quite complicates the

matter.

Another solution would be to put this timing info in a table also to be read by hllref.

Hllref does check on library routines, so here the info could be inserted in the

benchmark's trace.

Furthermore in this way there will be no timing information on the included C

library.

5.3 Conclusions

In this chapter a way is presented in which the Architect's Workbench can include

timing info in it's static trace. A description has been given of the adaptations that

have to be made to hllref.

There remains however a problem with the libraries to be solved.

- 47 -



Conclusions

Chapter 6: CONCLUSIONS

A realistic simulation of a buffer mechanism in software requires benchmarks

(realistic program load) and a way to implement instruction set architectures, because

these architectures strongly influence the load which is actually presented to the

buffer. The CARA methodology presents a way to create these realistic loads, and

thus to examine the performance of instruction set architectures and buffers.

The most important buffer measures can be derived from the traffic ratio and the

miss ratio. These measures are provided by the Architect's Workbench. Although

there is a demand for timing information to be included in the simulations, the

Architect's Workbench does not yet include this timing information in it's traces.

A new script file, 'virgin' has been written which makes all the existing script files

obsolete. It offers a lot more freedom in selecting the simulation path and specifying

parameters than the old script files, and can be used as a simulator or teacher.

Several errors created by the change of host system and compilers have been found.

They have been corrected throughout the workbench. Several parts of the workbench

have been tested and found correct. Although not all parts of the Architect's

Workbench have been tested in detail, it is expected that all code that has not been

changed functions properly now. Errors may still be found in the U-code to Apollo

translator u2a. U2a does not yet support libraries for C and fortran benchmarks, nor

have their front ends been checked. At least one error does still exist in that part of

the AWBpascal library that is concerned with file handling.

- 48 -



Conclusions

A way is presented in which the C-processor stack cache can be simulated within the

Architect's Workbench, through the inclusion of timimg information in the static trace

file. Changes to be made to hllref have been documented. Afterwards, the rest of the

workbench might be equipped with timing information also.

- 49 -



LITERATURE

[1] Day, W.H.E.

Compiler assignment of data items to registers.

IBM Systems Journal, No.4 (1970), pp. 281-316.

[2] Freiburghouse, R.A

Register allocation via usage counts.

Communications of the ACM, Vol. 17 (1974), pp. 638-642.

[3] Huck, J.C. and M.J. Flynn.

Analyzing computer architectures.

IEEE Computer Society Press, TIr. 857, 1989.

[4] Kelly-Bootie, S. and B. Fowler.

68000, 68010 and 68020 primer.

Howard W. Sams & Co. Inc., Indianapolis 1985.

[5] Mitchell, c.L.

Processor architecture and cache performance.

Stanford University, Technical report: CSlrlR-86-296, July 1986.

[6] Mitchell, C.L. and M.J. Flynn.

A workbench for computer architects.

IEEE Design & Test of Computers, February 1988, pp. 19-29.

- 50-

Literature



Literature

[7] Mulder, J.M.

Tradeoffs in processor-architecture and data-buffer design.

Stanford University, Technical report: CSL-TR-87-345, December 1987.

[8] Paalman, J.AH.

A stack cache for the C-processor.

Eindhoven University of Technology, Graduation report, August 1990.

[9] Smith, J.E. and J.R. Goodman.

Instruction cache replacement policies and organizations.

IEEE Transactions on Computers, Vol. C-34 (1985), pp. 234-241.

[10] Torellas, J. et al.

Introductory user's guide to the Architect's Workbench tools.

Stanford University, Technical report: CSL-TR-88-355, May 1988.

[11] Withacen, W.J.

Porting the AWB to the Apollo environment, "Hacking Away".

Eindhoven University of Technology, in preparation.

[12] Unix Programmer's Manual

A Unix based help utility within the Architect's Workbench supplying

information about workbench programs.

[13] Various Unix and Apollo manuals.

- 51 -



Appendix 1

APPENDIX 1: List of extensions used by the Architect's Workbench

The following list gives in a compressed way information about all known file

extensions that may occur. It is the purpose of this list to make it easier to work with

or at the Architect's Workbench.

Extension

'none'

a,asm

at

as.cch

b

bin

c

dif

f

iz

Produced by >

Consumed by <

> ld

> 'translators'

<as

> 'buffer sim.'

> idsim

< 'cache sim.'

> asscch

< USER

> 'buffer sim.'

< order

>as

< ld

< uccawb

> order

< USER

< ufortawb

> memorg

Remarks

Executable benchmark

Assembler file

Address trace file

Results of cache simulations, for awbplot

Dynamic basic block count

Binary file

C-code source file for C-to-U-compiler

Performance statistics

Fortran-code source file for Fortran-to-U-compiler

Instrumented U-code from pre-organizer

- 52 -



I

mt

p

s

set.{xxx}

st.d

< 'optimizers'

> 'front ends'

> uoptawb

< USER

> copy with 'awk'

< sim(sm)cache

< upasawb

> upasawb

< USER

> set{xxx}

< USER

> hlIref

Appendix 1

Compilers list file

Optimizer action summary

Contains masterbits: number of bits read in

referenced instruction cache simulation

Pascal-code source file for Pascal-to-U-compiler

Symbol table info from Pascal compiler

Results of data cache simulations for awbplot

Static trace file containing basic block information

st.i

sta

< 'buffer sim.'

> {xxx}stat Static trace file containing basic block information

< sim(sm)cache, idsim

> sim(sm)cache Instruction cache simulation results

< USER

staLs

staLr

> simsmcache

< USER

> simcache

Results of instruction cache simulations for awbplot

Results of instruction cache simulations for awbplot

t

tr.*

tr.d

tr.i

u

w

x

< USER

> uoptawb Strings that occur in the U-code program

< USER

> ex. benchmark Trace file containing info about program flow

< 'buffer sim'

< sim(sm)cache, simblockref

> 'front ends' Original U-code

< memorg, 'optimizers'

> stackref Instrumented U-code

> hllref Instrumented U-code

- 53 -



z

< 'translators'

> uoptawb,order Instrumented U-code

< hllref

Appendix 1

'front ends' : Uccawb, ufortawb, upasawb, upas17awb

'optimizers' : Uoptawb, order, inter

'translators' : U2a, u2sun, u2vax

'buffer sim.' : Srssim, srssub, mrssim, mrssub, bufsim, bufsub

'cache sim.' : Asscch, setcch, setsub, setrep

st.d, st.i, tr.d and tr.i are used in 'virgin' instead of st, sti, tr, and tr to clearly indicate

which files belong to which simulation type.

- 54 -



Appendix 2

APPENDIX 2: VirKin

The following pages contain a listing of the script file Virgin.

Virgin is a simulator which has been written to ease working with and at the

Architect's Workbench.

- 55 -



renebr I virgin Page 1 10/09/90 9145 AM

The name of a benchmark. It must be in the correct
directory, depending upon the filetype extension.
Example: ccal.p should be in the directory

$BENCHDIR/pascal/ccal.

<bench> II

'I/bin/csh -f

""""""""""""""""""""""""""""""""""""""'", File: virgin,
, This script file is (will be) a desktop for the Architect's Workbench.
, It takes care of shaping the flow of commands necessary to run a simulation.,
, 02/10/90 Created - RGB,
, Usagel
, virgin [ <bench>.{p,c,f},,,,,,
, Copyright (c) 1990 by Eindhoven University of Technology

""""""""""""""""""""""""""""""""""""""'"
", STEP 01 Initialize desktop

echo
echo ••
echo"
echo "
echo "
echo
echo "
echo "
echo

The Architect's Workbench"
Release 1.7: August, 1989"
(c) Copyright 1988 Stanford University"

Direct correspondences to awb@umunhum.Stanford.EDU"

set user
set awb
set mAch
set BENCHDIR
set CONFlGDIR
set PARAMETERS
set MOREPARAMS

- /usr/user/renebr/awb
- /awb
- apollo 'apollo, sun
- $awb/benchmarks
- $awb/interface/config
- $awb/interface/awb.parameters
- $user/more.parameters

set error - $0
set warning - $errorlt" WARNING:"
set error - $error:t" ERROR:"

if ($mach -- sun) then
set utrans - u2sun3

else if ($mach -- apollo) then
set utrans • u2a

else
echo $error unvalid machinetype $utrans
exit 1

endif

foreach file ( uccawb ufortawb upasawb upas17awb \
order inter uoptawb memorg \
hllref $utrans \
bufsim bufsub srssim srssub mrssim mrssub \
regs tat stackstat dcastat genrstat \
simblockref simcache simsmcache \
idsim \
asscch setcch set rep setsub

set $file - $awb/bin/$mach/Sfile
if II -f $awb/bin/$mach/Sfile ) then

echo $warning File $file:t not found.
endif

end

, Parse command line arguments (if any)
if I$'argv >

set bench
set ext
set what

endif
repeat $largv

1) then
$1 :r

- $1 Ie

- $2

shift , Clear argument variables



renebr I virgin Page 2 10/09/90 9:45 AM

I Select simulation directory
select:
echo ""
echo -n "Please enter simulation directory: "
set SIMDIR - $<
if I( -d $SIMDIR) then

echo" "
echo Directory $SIMDIR does not exist.
if ($SIMDIR 1- 'dummy') then

echo -n "Do you want to create $SIMDIR? [yIn) "
if ( $< -- y* ) then

echo ""
echo mkdir $SIMDIR
mkdir SSIMDIR
echo ""
echo pushd $SIMDIR
pushd $SIMDIR > Idev/null

else
goto select

endU
endU

else
echo pushd $SIMDIR
pushd SSIMDIR > Idev/null

endU

'" STEP 1: Select type of simulation

askwhat:
if I ($?what) then

echo
echo 'What would you like to simulate?'
echo" [i) Instruction traffic"
echo" [dJ Data traffic"
echo" lid) Integrated 110 traffic"
echo -n "Your choice [i,d,id) "
set what - $<

endU
if I«$what -- i) II ($what -- d) II ($what -- id» then

echo ""
echo Serror "Invalid selection ($what)"
unset what
goto askwhat

endU

aSklang:
set sixteen - 0
if ($what 1- i) then

echo "
echo -n "Do you want to simulate a 16 bit machine (ex. 1750A)? [y,n) "
if ($< -- y*) then

set sixteen - 1
set ext - p

endU
endU
if I(S?ext) then

echo
echo Select benchmark language:
echo -n "Your choice [c,fortran,pascal) "
set ext - $<

endU
if ($ext -- c*) then

set lang - c
set ext - c
set gen - $uccawb

else if ($ext -- f*) then
set lang - fortran
set ext - f
set gen - $ufortawb

else if ($ext -- p*) then
set lang - pascal
set ext - p
set gen - $upasawb
if ($sixteen -- 1) set gen - $upas17awb

else



renebr I virgin Page 3 10/09/90 9t45 AM

echo
echo $error "Invalid language ($ext)"
unset ext
goto asklang

endit

askbencht
if 1($1bench) then

echo ""
echo Benchmarks available:
Is $BENCHDIR/$lang/'·'I'·'.$ext sed 'S/A.<'\III' I sed "s/\.$extll" I pr -5 -t -11
echo -n "Please choose onet
set bench - $<

endit
if I(-f $bench.$ext) then

if I(-f $BENCHDIR/$lang/$bench/$bench.$ext) then
echo ""
echo $error Benchmark $bench.$ext not found
unset bench
goto askbench

else
echo
echo cp $BENCHDIR/$lang/$bench/$bench.$ext $bench.$ext
cp $BENCHDIR/$lang/$bench/$bench.$ext $bench.$ext

endit
endit

III STEP 2t Generate U-code

if I(-x $gen) then
echo ""
echo $error "Cannot execute $gen."
exit 1

endit
echo
echo Ready for executing $gentt
echo -n "Please add options: "
set options - $<
echo
echo $gen:t $options $bench.$ext
$gen $options $bench.$ext
if ($status) then

echo
echo $error "Unexpected result from $gentt"
exit 1

endit

III STEP 3t Prepare for instruction simulation

if ($what I- d) then
if (I -f $PARAMETERS) then

echo
echo $warning File $PARAMETERS not found.

endit
if (-f $NOREPARAMS) then

set PARAMETERS - ($NOREPARAMS $PARAMETERS)
else

if (I -f $PARAMETERS) then
echo
echo $error No parameter files found.
exit 1

endit
endit

askarch:
if 1($1arch) then

echo ""
echo 'Instruction architectures available:'
egrep 'Aarch' $PARAMETERS I awk '{ print $2 }' I pr -5 -t -11
echo ""
echo -n "Please choose onet "
set arch - $<

endit



renebr 1 virgin Page 4 10/09/90 9145 AM

I Read switches of the specified architecture from parameters file(s).
set data - 'egrep "~arch[ I"'Sarch " $PARAMETERS'
if ($status) then

echo ""
echo $error Architecture Sarch not in SPARAMETERS
unset arch
goto askarch

endif
set simulator - $data[3] I stack, reg, genr or dca
set switches - "$data[4-]"
set bdst - $arch
if (I -d $bdst) then

echo ""
echo mkdir $bdst
mkdir $bdst

endif
endif

III STEP 4: Register allocation

if (Swhat 1- i) then
echo nil

echo REGISTER ALLOCATION FOR DATA CACHE SIMULATION
askalloci
if l(S7alloc) then

echo
echo 'The U-code optimizer Uopt allocates registers.'
echo 'Mrssim and mrs sub cannot take this register allocated ucode.'
echo
echo 'C does not work very well without optimization in uopt.'
echo
echo 'Interprocedural register allocation can only be done for Pascal, for'
echo 'programs which are not going to be simulated with mrssim or mrssub.'
echo
echo 'Register allocation strategYI'
echo" [uopt] Global many-to-one"
echo" [inter] Interprocedural one-to-one"
echo" [order] Global ordered one-to-one"
echo" [none] Unoptimized one-to-one"
echo -n "Your choice [uopt,inter,order,none] "
set alloc - $<

endif

if (Salloc -- u~) then
askuoptregsl

I We will need to know the number of registers if we use uoptawb
I register allocation

echo' ,
echo -n 'Do you want to specify register options? '
set regs - S<
if ( $regs -- y* ) then

echo
echo "Registers available for GLOBAL ALLOCATIOlll"
echo" Is) separate integer and floating point registers"
echo" [u] unified registers"
echo -n "Your choice [s,u] "
set regs • $<
echo ""
if ($regs -- s*) then

echo -n "Number of registers for integers: "
set regs - -intregs:$<
echo -n "Number of registers for floats
set regs - ( $regs -fpregs:$< )

else if ($regs -- u",) then
echo -n "Regist.ers available for global allocation: "
set regs - -regs:$<

else
echo Invalid selection $regs
goto askuoptregs

endif
else

set regs - "
endif
echo
echo Current options for Uopt are: Sregs



renebr t virgin Page 5 10/09/90 9145 AM

echo -n "Please add further optionsl "
set options - $<
echo ""
echo uoptawb $regs $options $bench
$uoptawb $regs $options $bench
if ($status) then

echo
echo $error Unexpected result from uoptawb
exit 1

eudif
else

echo ""
echo -n "Do you want to reorganize memory? [y,n] "
set options - $<
if ($options -- y*) then

echo ""
echo memorg $bench.u
$memorg $bench.u
if ($status) then

echo
echo $error Unexpected result from memorg
exit 1

end if
else

echo ""
echo cp $bench.u $bpnch. iz
cp $bench.u $bench.iz

endif
if ($alloc -- 0*) then

echo
echo "Current options for Order are: -117 -us:3 "
echo -n "Please add further options: "
set options - ( -1:7 -us:3 $<
echo ""
echo order $options $bench.iz
$order $options $bench.iz
if ($status) then

echo
echo $error Unexpected result from order
exit 1

endif
else if ($alloc -- i*) then

echo
echo Current options for Inter are: -regslO
echo -n "Please add further options: "
set options - $<
echo ""
echo inter -regs:O $options $bench.iz
Sinter -regs:O $options $bench.iz
if ($status) then

echo
echo $error Unexpected result from inter
exit 1

endif
echo ""
echo mv $bench.{r,z}
mv $bench. {r, z}

else if ($alloc -- n*) then
echo ""
echo mv $bench. iz $bench. z
mv $bench.iz $bench.z

else
echo ""
echo $error "Invalid selection ($alloc)"
unset alloc
goto askalloc

endif
endif
echo ,.

echo mv -f $bench.{z,z.d}
mv -f $bench.{z,z.d}

eudit

if ($what 1- d) then
echo
echo REGISTER ALLOCATION FOR INSTRUCTION CACHE SIMULATION

-60 -



renebr I lIirgin Page 6 10/09/90 9:45 AM

echo
echo "Include (Uopt) global code optimization?"
echo -n "Your choice [yIn) "
if ($< -- yw) then

echo Current options for Uopt are: -regslO
echo -n "Please add further options I "

set options - $<
echo fin

echo $uoptawblt -regs:O $options $bench
$uoptawb -regs:O $options $bench
if ($status) then

echo
echo $error Unexpected result from uoptawb
exit 1

endif
set switches - ( -u $switches )

else
echo "
echo cp $bench.u $bench.z
cp $bench.u $bench.z

endif
echo t,
echo mil -f $bench.{z,z.i)
mil -f $bench.{z,z.i)

endif

'" STEP 5: Static and trace file generation

if ($mach
if ($mach

apollo) set machext - "a"
sun) set machext - "0"

if ($ext -- c) then
set tracedlib - $awb/lib/$mach/clibdtrace.$machext

else if ($ext -- f) then
aet tracedlib - $awb/lib/$mach/flib.$machext

else if ($ext -- p) then
set tracedlib - $awb/li.b/$mach/traceplib.$machext
set traceilib - $awb/lib/$mach/plib.$machext
if ($sixteen -- 1) set hllref - ( $hllref -sixteen

endif

set kind - data
set help - "z.d"
set trace lib - $tracedlib
if ($what -- i) then

set kind - instr
set he Ip - "z. i"
set trace lib - $traceilib

endif

again:
echo ""
echo Current options for hilref are:
echo -n "Please add further options I "

set options - $<
echo ""
echo hllref $options $bench.$help
$hllref $options $bench.$help
if ($status) then

echo
echo $error Unexpected result from hllref $status
exit 3

endif

set flag - "
if ($ext -- c) set flag - " -c "
echo
echo Current options for $utrans:t are: $flag
echo -n "Please add further options: "
set options - $<
echo ""
echo $utranslt $flag $options $bench.x
$utrans $flag $options $bench.x
if ($status) then

echo "n



renebr : virgin Page 7 10/09/90 9:45 AM

echo $error Unexpected result from $utrans:t
exit 4

endif

echo ""
if (Smach -- apollo) then

echo mv -f $bench.a $bench.aam
mv -f $bench.a $bench.asm

elae if ($mach -- sun) then
echo mv -f $bench.s $bench.asm
mv -f $bench.s $bench.asm

endif

echo ""
echo as $bench.aam
as $bench. asm
if ($atetns) then

echo
echo $error Unexpected result from aaaembler
exit 5

endif

if ($mach -- aun) then
echo' ,
echo mv -f a.out $bench.bin
mv -f a.out $bencll.bin

endif

ec.ho ""
echo ld -0 $bench $bench.bin $tracelib
ld -0 $bench $bench.bin $tracelib
if ($status) then

echo
echo $error Unexpected result from loader
exit 6

endif

# Create trace file (.tr) by running instrumented benc1lmark:
echo ""
if (-f $bench.in) then

echo" .I$bench < $bench. in ;> $bench.out"
.I$bench < $bench.in ;> $bench.out

else
echo ".I$bench ;> $bench.out"
.I$bench> $bench.out

endif

if ($kind -- data) then
echo n"

echo mv -f $bench.{st,st.d}
mv -f $bench.{st,st.d}
echo mv -f $bench.{tr,tr.d}
mv -f $bench.{tr,tr.d)
if ($what -- id) then

set kind - instr
set help - "z.i"
set trace lib - $traceilib
goto again

endif
else

echo ""
echo nn -f $bench. st
nn -f $bench.st
echo mv -f Sbench.{tr,tr.i)
mv -f $bench.{tr,tr.i)

endif

if ($what 1- d) then
echo ""
if ($simulator -- dca*) then

echo dcastat $switches $bench.z.i
$dcaatat $switches $bench.z.i > $bench.st.i

else if ($simulator -- reg*) then
echo regstat $switches $bench.z.i
$regstat $switches $bench.z.i > $bench.st.i

else if ($simulator -- genu) then



renebr I virgin Page 8 10/09/90 9:45 AM

echo genrstat $switches $bench.z.i
$genrstat $switches $bench.z.i > $bench.st.i

else if ($simulator -- sta*) then
echo stackstat $switches $bench.z.i
$stackstat $switches $bench.z.i > $bench.st.i

else
echo $error "Unsupported simulator ($simulator)"
exit

endit
endit

III STEP 6: Initialize cache.conf

if ($what I- i) then
I Remove old symbolic link

find. -type 1 -name cache.conf -exec rm -f {} \;
if ( -f cache.conf ) then

echo
echo $error "Cannot run with cache.conf in $cwd"
exit 1

endit
I Get cache.conf

askconfig:
if I($?config} then

echo n"
echo Data architectures:
Is $CONFIGDIR I pr -5 -t -11
echo ""
echo -n "Please select one: "
set config - $<

endit
if I( -f $CONFIGDIR/$config then

echo
echo $error "Invalid data architecture ($config)"
unset config
goto askconfig

endit
echo ""
echo In -s $CONFIGDIR/$config cache.conf
In -s $CONFIGDIR/$config cache.conf

endif

III STEP 7: Select buffer or do I cache simulation

I Level 1 simulation

if ($what I- d) then
echo "
echo cp $bench.tr.i $bench.tr
cp $bench.tr.i $bench.tr
echo cp $bench.st.i $bench.st
cp $bench.st.i $bench.st
echo n"

echo -n "Do you want to generate a dynamic trace (y,n) "
set options - $<
if ($options -- y*) then

er.:ho Nfl

echo -n "Please specify options for Simblockref: "
set options - $<
echo $simblockref:t $options $bench
$simblockref $options $bench > /dev/null

endit
echo ""
echo -n "Do you want to simulate an instruction cache? (y,n) "
set options - $<
if ($options -- y*) then

asksize:
if I($?size} then

echo
echo 'What cache sizes would you like to simulate?'
echo" (sm) 128 to 4K"
echo" (reg) 512 to 16K"
echo -n "Pick one (sm,reg] "
set size - $<

-6?-



renebr 1 virgin Page 9 10/09/90 9145 AM

i) then

endif
if ($size -- s*) then

set cachesim - $simsmcache
else if ($size -- r*) then

set cachesim - $simcache
else

echo 11ft

echo $error "Invalid selection ($size)"
unset size
goto asksize

endif

askref:
if I(S7ref) then

echo ""
echo 'Select reference architecture (or "self")'
egrep '~arch' SPARAMETERS I awk '( print S2 )' I pr -5 -t -11
echo ""
echo -n "Your choice I "

set ref - S<
endif
egrep "~arch[ ]*Sref " SPARAMETERS
if «Sstatus) && ($ref 1- self» then

echo nn

echo Serror Invalid selection.
unset ref
goto askref

endif

if ($ref -- self) rm -f Sbench.mt
if ($ref 1- self) then

if (-f $ref/$bench.sta) then
awk '/~Instructl (print substr($6,2)}' $ref/Sbench.sta > Sbench.mt

else
echo "
echo "$error Sref/$bench.sta was not found"
echo Assuming self
exit 0

endif
endif

echo't
echo Scachesim:t Sbench
$cachesim Sbench > Idev/null
echo mv Sbench.sta $bdst/Sbench.sta
mv Sbench.sta Sbdst/$bench.sta

endif
endif
if (Swhat

exit 0
endif

if (Swhat 1- i) then
askbuffer:
echo
echo Select data buffer structure:
echo" [srs] Single Register Set"
echo" [mrs] Multiple Register Set"
echo" [buf] Stack Buffer"
echo -n "Your choice [srs,mrs,buf] "
set buffer - S<
echo
echo Select data buffer simulator:
echo' [sim] Simulator'
echo' [sub] Simulator, on-chip cache has subblocks'
echo -n "Your choice [sim,sub] "
set flag - S<

if ($flag -- siR) then
if (Sbuffer -- s*) then

set buffer - Ssrssim
else if (Sbuffer -- m*) then

set buffer - Smrssim
else if (Sbuffer -- b*) then

set buffer - $bufsim
endif

- 6'1-



renebr I virgin Page 10 10/09/90 9145 AM

else if ($flag su*) then
if ($buffer -- s*) then

set buffer - $srssub
else if ($buffer -- m*) then

set buffer - $mrssub
else if ($buffer -- b*) then

set buffer - $bufsub
endif

else
goto askbuffer

endif

echo "
echo mv $bench.tr.d $bench.tr
mv $bench.tr.d $bench.tr
echo mv $bench.st.d $bench.st
mv $bench.st.d $bench.st
echo "
set options - ' ,
echo Current options for $bufferlt arel $options
echo -n 'Please enter additional options I '

set options - ( $options $< )
echo' ,
echo $bufferlt $options $bench
$buffer $options $bench

andif

III STEP 81 IOsim

if ($what -- id) then
set options· ""
if ($sixteen -- 1) set options - " -sixteen"
echo ""
echo mv -f bench.{At,atx}
mV -f bench. {at,atx}
echo
echo Current options for Idsim arel $options
echo -n 'Please enter additional options I '

set options - ( $options $< )
echo "
echo cp $bench.st.i bench.st
cp $bench.st.i bench.at
echo $idsimlt $options $bench < $bench.sti
$idsim $options $bench < $bench.sti

endif

III STEP 91 0 and 10 cache simulation

set switches - ""
if ($what -- id) set awitches - " -inatr "
if ($sixteen -- 1) set switches - ( $switches -sixteen)

II skcllche I:
echo
echo Select type of associativity:
echo" If) Fully-associative cache"
echo" Is) Set associative cache (or direct mapped)"
echo -n "Your choice [f,sl "
set choice - $<

if ($choice -- f*) then IASSCCH
echo
echo Current options for asscch arel $switches
echo -n 'Please enter additional optionsl '
set switches - ( $switches $< )
echo $asscchlt $switches $bench
$asscch $switches $bench
echo "t1

if I($status) then
echo' ,
echo "Cache performance results are in $cwd/$bench.as.cch"

endif
exit 0

endif

-65-



renebr 1 virgin Page 11 10/09/90 9145 AM

echo ""
echo -n "Include subblocks in cache? [y,n] "
set sbic - $<

if ($sbic -- n*) then 'SETCCH
echo
echo Select set si2el
echo" [2] Two"
echo" [4] Four"
echo" [all] I, 2 and 4 (LRU only)" I -rIO (default)
echo -n "Your choice [2,4,all] "
set si2e - $<
if 1($si2e -- a*) then

echo
echo Replacement strategy:
echo" [f] FIFO"
echo" [r] Random"
echo -n "Your choice [f,r] "
set method - $<
if ($method r"') then

set x -
else

set x - 3
endif
if ($si2e 4) @x - $x + I
set switches - ( $switches -rl$x

endif
echo
echo Current options for setcch are: $switches
echo -n 'Please enter additional options: '
set switches - ( $switches $< )
echo $setcchlt $switches $bench
$setcch $switches $bench
if I($status) then

echo "
echo "Cache performance results are in $cwd/$bench.set.cch"

endlf
exit 0

endif

echo ""
echo -n "Prefetching of subblocks? [y,n] "
set pfsb - $<
if ($pfsb -- y*) then

echo -n "How many subblocks to pre fetch? [I] "
set switches - ( $switches -pref:$< )

else if ($pfsb -- n*) then
echo -n "Load forwarding? [y,n] "
if ($< -- y*) then ISETREP

echo ""
echo Maximum associativity I
echo" [I] One"
echo" (2) Two"
echo" (4) Four"
echo -n "Your choice [1,2,4] "
set maxass - $<
set switches - ( $switches -a:$maxass
if 1($maxass -- 1) then

echo
echo Replacement strategy'
echo" [f] FIFO"
echo" [1] LRU"
echo" [r] Random"
echo -n "Your choice [f,l,r] "
set method - $<
if ($method -- f*) then

set x - 2
else if ($method -- 1*) then

set x - 0
else

set x 
endif
set switches - ( $switches -r:$x )

endif
echo ""

-6t-



renebr : virgin Page 12 10/09/90 9145 AM

echo Current options for setrep are: $switches
echo -n 'Please enter additional optionsl '
set switches - ( $switches $< )
echo $setrep:t $switches $bench
$setrep $switches $bench
if I($status) then

echo "
echo "Cache performance results are in $cwd/$bench.set.rep"

endif
exit 0

else
set switches - ( $switches -forw )

endif
endif

ISETSUB
echo
echo "Maximum (LRU) associativity'"
echo" [1] One"
echo" [2] Two"
echo" [4] Four"
echo -n "Your choice [1,2,4] "
set sets - $<
set switches - ( $switches -amaxl$sets
if I($sets -- 1) then

echo
echo Minimum associativity:
echo" [11 One"
echo" [2] Two"
echo -n "Your choice r1,2] "
set switches - ( $switches -amin:$<

endif
echo
echo Current options for setsub are: $switches
echo -n 'Please enter additional options I '

set switches - ( $switches $< )
echo $setsub't $switches $bench
$setsub $switches $bench
if I($status) then

echo't
echo "Cache performance results are in $cwd/$bench.set.sub"

eudif

exit 0

-



Appendix 4

APPENDIX 3: Cache.conf

The configuration file is located in the directory'/awb/interface/config'. The buffer

configuration has a default data path to/from cache of 4B and is structured as in the

following example:

2 3 4 4 32 1024 0 1 0 0 1

1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

or:

lciosngafzu

rm

r8

w8

in which:

I level (1 = first, 2=second, 3 =third, 4 =fourth)

c configuration (1 =buffer, 2=onchip, 3=offchip, 4 =main memory)

l,c 2,1 Not allowed

2,2 Like 2,4 but with fully associative cache in second level

2,3 Like 2,4 but with cache simulator in second level

2,4 Normal single/multiple register set or stack buffer

- 68 -



Appendix 4

3,3 Like 2,2 but with cache simulator in third level

datapath from memory in bytes

o datapath to memory in bytes

s blocksize

n blocknumber

g ignore writes (flag)

a allocate on write misses (flag)

f subflag (flag)

z subblocksize

u cachestatus (flag)

r count regular access

m count maintenance access

r8 reads from cache include static, global, stack, structure, heap, frame, io and

immediate references.

w8 writes to cache include static, global, stack, structure, heap, frame, 10 and

immediate references.

- 69 -



APPENDIX 4: Gethllref & ucode.h

- 70-

Appendix 4



renebr 1 gethllref Page 1 10/10/90 9:05 AM

procedure gethllref(var fltext; var r: hllrefrec);
var chI char;

xflag: boolean;
begin

with r do begin
repeat read(f,ch) until ch <> ' ';
indir :- directl mem 1- zmt; dtype 1- zdt;
bytecnt 1- 0; xflag :- false;
if ch - 'X' then begin

read( f, regno) ;
read(f,ch) ;
xflag :- true;

end;
if ch in ('&','@'] then begin

if ch - '&' then indir :- addressof
else indir :- indirect;
read(f,ch);

end;
if ch in ('E','R'] then begin

if ch - 'E' then reftype :- evalstackref
else reftype : - runtimeref;
l~ I- getrwtype(f);
dtype :- getdatatype(f);
if dtype in [mdt,sdt) then read(f,bytecnt);

end l'" E R ")
else if ch in ('L','N','C'] then begin

rw :- getrwtype(f);
rtflag I- false;
if ch - 'L' then reftype :- localref
else if ch - 'C' then reftype :-globalref
else begin reftype :- nlocalref; read(f,block); end;
mem :- getmttype(f)1
read(f,obj);
if mem in (mmt,fmt,tmt] then obj 1- -obj;
dtype 1- getdatatype(f);
if dtype in (mdt,sdt] then read(f,bytecnt);

end l'" L N C {,)
else if ch - '1' then begin

reftype :- iwmediateref;
dtype I- getdatatype(f);
read(f,bytecnt);

end (" I ,',)
else if ch - '5' then begin

reftype :- iostartref;
rw 1- getrwtype(f);
dtype 1- getdatatype(f);
if dtype in (sdt,mdt] then read(f,bytecnt);

end (* 5 "')
else if ch - 'P' then

reftype I- frameref
else err('gethllref: bad reftype',ord(ch»;
if xflag then begin reftype2 1- reftype; reftype 1- extended; end;

end; (," R ,',)
end; (6 getbllref 6)



renebr I ucode.h

(* -- UCODE.INC -- *)

Page 1 10/10/90 9103 AM

(* This file contains all types that define U-code *)
const

(* set constant representation in Ucode *)
maxoperands - 10; (* maximum number of operands in u-code instruction + 1 *)
maxinstlength - 30; (* maximum size of a b-code instruction, in host words, -

max (size of largest set constant (in bits), size of
largest string constant (in bits» div wordsize+ 2; *)

type
datatype - (adt,

bdt,
cdt,
edt,
hdt,
idt,
jdt,
Idt,
mdt,
pdt,
qdt,
rdt,
sdt,
zdt) ;

(*address (pointer)*)
("'boolean'" )
( "fcharacter,'t)
(*procedure entry point*)
(*pointer pointing to heap only*)
(*integer, double word*)
(*integer, single word*)
(*non-negative integer, single word*)
(*array or record*)
(*procedure, untyped*)
(*real, double word*)
(*real, single word*)
(*set*)
(*undefined*)

memtype 
zmt,
pmt,
tmt,
emt,
mmt,
fmt,
rmt,
vmt

)1

undefined )
parameters )
temporaries }
Statically allocated memory }
complex variables }
simple variables }

{ registers }
{ space for arrays/record - tjiang 21-11-85 }

(*constants")
valuptr - Avalu ;
stringtext - array [l •• strglgthl of char;
atrg - record

len: O•• strglgthl
charsl stringtext

end;
valu -

record (*describes a constant value*)
case data type of

adt,bdt,cdt,hdt,ldt,jdtl (ival: integer);
mdt,qdt,rdt,sdt,idt:

(lenl O•• strglgth;
charsl array [l •• strglgthj of char);

end;

(*ucode instructions*)

Add all new opcodes at the end just before Unop - tjiang 21/11/85 }
uopcode 
(uabs,uadd,uadj,uand,ubgn,ubgnb,uchkf,uchkt,uchkh,uchkl,uchkn,uclab,ucomm,
ucup,ucvt,ucvt2,udata,udead,udec,udef,udif,udiv,udsp,udup,uend,uendb,uent,
uequ,uexpv,ufjp,ugeq,ugrt,ugoob,uicup,uiequ,uigeq,uigrt,uileq,uiles,
uilod,uimpm,uimpv,uineq,uinc,uinit,uinn,uinst,uint,uior,uistr,uixa,ulab,
ulca,ulda,uldc,uldp,uleq,ules,ulex,uloc,ulod,umin,umax,umod,umov,umpy,umst,
umus,uneg,uneq,unew,unot,unstr,uodd,uoptn,upar,uplod,upop,upstr,uregs,uret,
urlod,urnd,urstr,usdef,usgs,usqr,ustp,ustr,usub,uswp,usym,utjp,uujp,uuni,
uvequ,uvgeq,uvgrt,uvles,uvleq,uvmov,uvneq,uxjp,uxor,uzero,ueof,
uvdef,
unop) 1

bcrec - packed record
case boolean of false:

(OpCI uopcode; (* 7 bits *)
dtype 1 datatype; (,', 4 bits *)
mtype I memtype; «, 2 bits ")
lexlev : 0 •• 151 (* 4 bits *)
ill 0 •• 655351 (* 16 bits *) (* used for labels and block numbers *)

-:rz -



renebr I ucode.h Page 2 10/10/90 9103 AM

case uopcode of
ucvtl (dtype21 datatype)1
uent: (pnamel identnamel

case uopcode of
ucup: (pop,push,extrnal: 0 .. 127)1

)1

uchkll (checkvall valu);
uiequ: (length: integer I

case uopcode of
uldc: (constval: valu) I
udata:(areaname: identname)I
uiequl(offset: integerl

case uopcode of
usym: (vname: identname)I
uinit: (offset2lintegerl initvall valu)1
uxjpl (labe12: 0 •. 35535)

) ;
true: (intarray: array[1 ••maxinstlength] of integer) I

end ("'record") I

(W source line buffer w)
sourceline ~ array [l •• strglgth] of charI

opcstring • array [1 •• 4] of charI ('" string representation of an
Uopcode *)

(* different types of operands in au-code inustrtion *)

uoperand • (sdtype, smtype, slexlev, slabelO, slabell, sblockno,
sdtype2, spnameO, spname1, spop, spush, sexternal, scheckval,
slength, sconstval, scomment, sareaname, soffset,
svnameO, svnamel, soffset2, sinitval, slabe12,
send) I

(W describes the order and type of operands in au-code inustrtion w)
uops • array [l .•maxoperands] of uoperandl

utabrec ~ record
format: uopsl (* operands *)
opcname: opcstringl (* opcode name table *)
hasconst: booleanl (* true if instruction requirs constant w)
instlengthl l ••maxinstlengthl (* length of instruction w)
endl


	The Architect's Workbench
	Abstract
	Contents
	Chapter 0: Introduction
	Chapter 1: Introductory chapter
	Chapter 2: The architect's workbench
	Chapter 3: Virgin
	Chapter 4: Testing the architect's workbench
	Chapter 5: Adapting for the c-processor 
	Chapter 6: Conclusions
	Literature
	Appendices

