
 Eindhoven University of Technology

MASTER

A stack cache for the C-processor

Paalman, J.A.H.

Award date:
1990

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/717dcd4f-1191-48e2-9bce-1f62e0f0fc6e

,co 2ts

Eindhoven, january - august 1990

Master thesis:

A stack cache for

the C-processor

by J.A.H. Paalman

Supervisor: Prof. ir. M.P.J. Stevens

Coach: ir. W.J. Withagen

Eindhoven University of Technology

Department of Electrical Engineering

Digital Systems Group

The department of Electrical Engineering of the Eindhoven University of Technology does not accept any responsibility regarding

the contents of student projects and graduation reports

Abstract

This master thesis discusses the data cache(s), which are to be used on the C-processor.
The C-processor is being developed at the Digital Systems group of the department of

Electrical Engineering of the Eindhoven University of Technology. The processor is a high
performance processor, so caches have to be used to provide instructions and data on

the speed of the processor. The C-processor uses a stack to store the local data of
procedures and functions. A stack cache is used to provide fast access times to the

stack. In this thesis several options for the data cache are discussed. Besides the normal
cache parameters like cache size and (transfer) block size, some special features for a

stack cache are provided. A linear cache can be used. This type of cache can use some
special replacement policies. Besides the cut back K replacement strategy found in

literature, a hybrid replacement policy is suggested, which will behave better on task
switches. A direct mapped cache is proposed for extremely high task switching

frequencies. The miss penalties of the cache can be reduced by using read and write

buffers. These buffers can also be used as an extension of the cache when the buffers

are almost empty. A special strategy is proposed to speed up the writes and thus
producing a better access time.

All cache parameters can influence the performance of the cache. The only way to
estimate the performance of the cache realistically is by simulating it. A start has been
made to write a simulator for the stack cache. A data format for the traces is provided. To

simulate the cache realistic address traces are required. These traces, however, are
currently not available. Traces generated by a trace generator will give some insight in the

effects of the cache parameters, but the many parameters of an stack address trace make
it difficult to produce a realistic performance prediction.

A stack cache can give high speed access to the stack, but global data will still be

serviced at main memory speed. Therefore the a global data cache is proposed.

Especially if the stack cache has a high hit ratio. An inventory is given of coherence
protocols for the global data cache.

The data caches are far from ready. The proposed architectures for the stack cache will

have to be simulated to get performance statistics. With these statistics an optimal
architecture can be chosen and a decision can be made if a global data cache has to be
developed.

Contents

Chapter 0 Introduction 1

Chapter 1 Caches on the C-processor 2

1.1 Why do caches work 4
1.2 What parameters are used to reach the goals? 5

1.2.1 Cache organisation 5
1.2.1.1 A direct mapped cache 6
1.2.1.2 A fully associative cache 7
1.2.1.3 A set associative cache 8
1.2.1.4 Comparison of the cache types 9

1.2.2 What size should the cache have? 10

1.2.3 What set size to chose? 10
1.2.4 And what about the block size? 11

1.2.4.1 The address format for the cache 13
1.2.5 Replacement policies! 14

1.2.6 Coherency and task switching 15
1.3 The stack cache and the C-processor 16

Chapter 2 Data coherence 19

2.1 Snoopy coherence schemes 20
2.2 Description of the various protocols 22

2.2.1 Write through 22
2.2.2 Write once 23
2.2.3 Synapse 24
2.2.4 Berkeley 24
2.2.5 Illinois 25

2.2.6 Dragon 26
2.2.7 Firefly 26

2.3 Performance of the various coherence schemes 27

Chapter 3 The stack cache 29

ii

3.1 The Coprocessor stack 29
3.2 Stack cache organisation 30

3.2.1 A linear cache 31
3.2.2 A direct mapped cache 33

3.3 The effects of cache parameters on a stack cache 34
3.3.1 The cache size 35
3.3.2 The (transfer) block size 36

3.3.3 Replacement policies 37
3.3.3.1 The cut back K algorithm 37
3.3.3.2 The barometer pointer algorithm 38
3.3.3.3 Two-pointer algorithm 39
3.3.3.4 Comparison of the algorithms 40

3.3.4 Task switching and caches 41
3.3.5 Coherency 45

Chapter 4 Architecture of the data caches 46

4.1 General cache blocks 47
4.1.1 The data ram 47
4.1.2 The tag block 48
4.1.3 The read buffer 49
4.1.4 The write buffer 50
4.1.5 Intelligent buffers 52

4.1.6 The control block 54
4.2 Communications to the MMU 59

4.3 The linear stack cache 60
4.3.1 The control block 61

4.3.2 The tag block 68
4.4 The tag block 71

4.4.1 The control block 72
4.4.2 The tag block 72

4.5 The global data cache 73
4.5.1 The data ram 73
4.5.2 The tag block 74
4.5.3 The control block 75

iii

4.6 Multi port issues and priority

4.7 Thedefinition of local data revisited

4.7 The performance of the cache

Chapter 5 Cache simulations

5.1 Why does a cache have to be simulated?

5.2 What has to be simulated?

5.3 Traces for the stack cache

5.4 The simulator

Chapter 6 Conclusions and recommendations

6.1 Conclusions

6.2 Recommendations

Literature

Appendix A A trace format

Appendix 8 The control algorithms

iv

76
77
79

81

81

82
83
86

89

89
90

92

95

98

List of terms used

base pointer: lowest address stored in a linear cache

a block: data ,stored in an aligned, fixed-sized region of (cache) memory.

coherence: the problem of keeping shared data consistent

hit ratio: defined as the ratio of the number times the processor finds a memory
reference in cache to the total number of memory references.

linear cache: a cache containing all memory locations from a certain point to the TOS

local data: definition 1:the continuous part of the stack that fits in the stack cache is
considered local, the rest global.

definition 2: all data on the stack is considered local, all other data global.

definition 3: all data on the stack from the TOS to a certain point is local,
all other data global.

PIN: The process identification number of the process

prefetching: fetching data before the data is wanted by the processor

pseudo-writes:

Quad:

write strategy in which tha address is issued before the data is ready
(section 4.2)

4 bytes, standart data type on the C-processor

replacement strategy: strategy guiding all data transfers in a cache

set size: The number of banks or the number of addresses in a cache on which a
memory location can reside.

stack frame: piece of the stack used to store the local variables of a procedure

traffic ratio: defined as the ratio of the number of bytes transferred between cache and
main memory and the number of bytes transferred between processor and
the cache.

Transfer block: The unit of data transfers.

v

Chapter 0 Introduction

In the micro processor world many new and fast processors are marketed. As both the
addressing space and the speed of the processors grows, it becomes impossible to

manufacture large memories which match the speed of the processor and still are cost
effective. Therefore cache memories are used. These are small memories which can keep

up with the speed of the processor. Replacement strategies try to allocate these memories
dynamically to the data or instructions the processor needs at each moment. If this is

done successfully, these cache memories give the impression of being large, fast
memories. As the VLSI technology moves on, more and more parts of a computer are

integrated on a chip. Cache memory is one of the first candidates, since it can also
reduce the number of pins of a chip. At the Digital Systems Group of the Department of

Electrical Engineering of the Eindhoven University of Technology a high speed processor,

called the Coprocessor, is being developed. This processor too will be equipped with on

chip cache memory. The processor will use a split cache architecture. An instruction
cache has been developed by Jos Bormans, Yun Chao Hu and Joep Pernot. In this report

the cache structure for the data will be discussed.
The Coprocessor will store the local data on a stack instead of in registers. A specialised
stack cache will speed up references to this stack and can be compared to the register
sets used in RISC processors. A second data cache for the global data can be necessary

if the stack cache is very efficient. In the next chapter the basics of caches are discussed.
Chapter 2 gives an inventory of techniques to maintain coherency in the global data
cache. In chapter 3 the parameters of the stack cache for the C-processor are discussed
and this is followed by a description of a few possible architectures of the stack cache.

Also some new features are introduced. To manufacture a optimal cache for the workload,
simulations are required. The fifth chapter gives the basics to design a simulator for the

stack cache. In the last chapter some conclusions are given and some recommendations

for further research are made.

1

Chapter 1 Caches on the C-processor

The C-processor is designed to execute high level programming languages, such as the

C programming language, at high speed. This is partially done by tailoring the instruction

set to the high level languages. Secondly, the architecture has to support some

constructions of the high level languages. The C-Ianguage is characterised by the use of

procedures and functions. To provide easy function calling and to ease the passing of

parameters, two approaches for storing local variables and passing parameters are mostly

used. One can use multiple register sets and pass parameters by overlapping the register

sets. The alternative approach is to use a stack to pass the parameters. In this last

approach a stack cache is commonly used, so stack references can be serviced most of

the time by fast cache memory or cache registers, rather than by slow main memory.

Characteristics of the register sets approach are the fixed set size and a fixed number of

sets. A fixed number of locals can be in registers at the same time, a fixed overlap; a

fixed number of parameters can be passed through registers and the registers can be

addressed by a few bits. The allocation of local variables to registers can be a mayor task

for the compiler.

The use of a stack cache permits a variable number of locals per procedure and the

number of parameters also is not fixed. The size of the sets become variable, and the

number of sets in the cache too. A compiler can use exactly the number of memory

locations (registers) needed for a frame. Thus a frame always fits in a register set, there

are no free registers in a set, nor are there to few. The register set size can vary from 0

to the cache size. The stack cache has to be addressed like a memory. This implies that

long addresses have to be used. The local variables simply can be put on stack by the

compiler. The only allocation problem arises when the stack cache is too small to hold all

the locals of a procedure. But even then a register frame larger than the cache size can

be chosen, which, depending on the cache replacement strategy, only results in an

increase of cache misses.

2

Caches on the C-processor

The stack cache has no fixed frame size, thus register allocation needs no attention. As

it is addressed as a memory, all memory addressing modes can be used and, depending

on the cache architecture, the penalty for task switching can be lower. The stack cache

also is transparent to the software. However, registers can be addressed by a smaller

number of bits, are faster and are less expensive. The C-processor will be a stack based

machine and will use a stack cache to hold local variables and to pass parameters to

procedures and functions.

Besides a stack cache to hold the local variables the C-processor will be equipped with

an instruction cache and (probably) a data cache for global data (global data cache) to

speed up the processor. There are separate instruction and data caches, because

separate instruction and data busses are used (Harve.rd architecture). To use both busses

effectively, the traffic on the busses should be almost equal. In this case the traffic of the

instruction cache should be equal to the traffic of both the stack cache and the global

data cache. If the traffic on one of the busses is higher. the processor will wait for that

bus. One of the c2.ches can be reduced, without reducing the processor throughput, so

there is a waste of silicon. The matching of the traffic can be managed by manipulating

the miss ratios and the traffic ratios of the caches. The traffic on the data bus depends

on both the stack data traffic and the global data traffic. Although the stack cache, and

the global data cache can be designed separately, they need to be examined together in

the final design phase.

There are two parameters related to cache performance:

1) hit ratio (Rhrt). defined as the ratio of the number times the processor finds a

memory reference in cache to the total number of memory references.

2) traffic ratio (R"al)' defined as the ratio of the number of bytes transferred between

cache and main memory and the number of bytes transferred between processor

and the cache.

3

Caches on the C-processor

A global data cache is useful when the hit ratio of the stack cache approaches the

percentage of global data references in the data stream.

Example: Hit ratio stack cache 90%. 10% global references. Of every 100 references,

the stack cache now produces 9 references to main memory, while al/ 10

global references refer to main memory. A higher stack cache hit ratio would

not have a large effect on the processor speed.

The goals of the caches are (in order of importance):

high hit ratio, most of the processor memory requests should be serviced by the

caches.

low cache access time (Tace), data should be provided to the processor in a minimal

time, because cache access is in the critical path.

low miss penalty (Tm...). in case of a miss, the extra access time should be small.

low traffic ratio; minimize the traffic between memory and cache, but the traffic on

both busses should be balanced.

small area, don't use to much silicon.

The order of importance is only relative. If, for example, the hit ratio is above a certain

offset, a further increase in the hit ratio can require so much silicon, that the design is no

longer feasible.

Before going into detail about the actual design, the next section will describe some

fundamentals of caches.

1.1 Why do caches work ?

A cache is a small but fast memory, which contains a part of the contents of main

m~mory. Caches can speed up a processor considerably because of the principle of

locality. In a program, instructions near the present instruction are likely to be executed

and data near the data being referenced are likely to be referenced (e.g. array structures,

4

Caches on the C-processor

stack). This is called the spatial locality of a program. Besides spatial locality, there is

temporal locality. Instructions in a loop will soon be used again, often several operations

are done on the same data, etc. If the cache memory contains instructions and/or data

near those presently in use and holds instructions/data that were used in the near past,

the cache memory is likely to contain the next instruction(s)/data. Thus the processor can

operate on the speed of the cache memory.

1.2 What parameters can be used to reach the goals?

There are several architectural choices that gravely affect the performance of the

(relatively) small cache memory. Some of these issues are the organisation of the cache,

the size of the cache, the use and the size of (transfer) blocks, the replacement policy

and, for data caches, the coherence scheme.

1.2.1 Cache organisation

Since the cache memory is a small memory, it can only contain a small part of the

instructions or the data of a program. There are three ways to organise a cache :

a direct mapped cache

a fully associative cache

a set associative cache

For each of these organisations the memory of each entry is divided in two parts. A data

part which contains the actual data and a tag part, which contains the virtual or real

address of the data and some information regarding the validity of the data. The address

part of the tag is used to check if a memory location is cached. If data is not in the cache,

or if the data is not valid, a cache miss occurs.

5

Caches on the C-processor

1.2.1.1 A direct mapped cache

In a direct mapped cache (fig. 1.1), normal memory can be used for a cache. The

address of each block can be mapped to only one place in the cache. Caches are usually

divided in blocks to save tag memory. The tag is only kept for a block (see section 1.2.3).

A part of the address (n bits) of the request is used to specify the entry in the cache. This

means that on a cache miss, only one cache entry can be replaced; no replacement

address
request

lag

PIN m bits n bits I

compare
data

" stat.

...
f--

~

"to control

Figure 1.1 A direct mapped cache

6

Caches on the C-processor

strategy can be used. The absence of a replacement policy can have a negative effect on

the cache performance. If two often used memory locations map to the same cache

location, they will replace each other. This will decrease the hit ratio and increase the

traffic ratio. The absence of a replacement policy also has a positive effect. No time is

spent on determining which entry has to be replaced.

1.2.1.2 A fully associative cache

In a fully associative cache (fig. 1.2) each memory location can be mapped to each cache

location. An associative memory has to be used. The entry that has to be replaced on a

miss can be chosen by a replacement strategy. An entry with a low probability of being

request

tag

PIN address

compare
data

~,
stat.

...............

Figure 1.2 A fully associative cache

7

Caches on the C-processor

used soon, can be replaced, so the hit ratio can be high and the traffic ratio low.

However, it takes some time to find this entry. Furthermore associative memory will be

larger than normal RAM memory.

1.2.1.3 A set associative cache

A compromise between a direct mapped and a fully associative cache is the set

associative cache (Fig. 1.3). In a set associative cache a memory entry can reside in a few

direct mapped cache banks. A memory location can be mapped to only one location in

each bank; to a set of a few addresses. The number of banks or the number of

addresses in a cache on which a memory location can reside, is called the set size. The

address

set slze=2

PIN I m bits I n bits I

compare
data.,F

I Istat.
I I

I I -

I I - ...
~

~rto control

"'"
I

tag

request

Figure 1.3 A set associative cache

8

Caches on the C-processor

number of sets is equal to the size of each cache bank. The associative search now only

has to be performed in one set. The fully associative cache and the direct mapped cache

are special cases of the set associative cache. In a fully associative cache the set size is

equal to the cache size, and there is only one set; a direct mapped cache has a set size

of one, and the number of sets is equal to the cache size. In general, the cache size is

equal to the set size times the number of sets. As the set associative cache has

associativity, a replacement algorithm can be used. The set size is mostly small, so the

access time will be only little longer than the access time of a direct mapped cache.

1.2.1.4 Comparison of the cache types

The advantages of high associativity are important for small caches. As the caches

become larger, the hit ratio will increase. The average access time for data (T) is T = RM

* Tace + (1 - RM) * TmilS' As the RM approaches unity, the access time will be more

important than the miss penalty. A large direct mapped cache can outperform an equally

large (set) associative cache. The choice of associativity not only is a simple comparison

of hit ratios and complexities, but also depends on timing aspects for larger cache sizes.

For a stack cache a fourth type of cache can be used, the linear cache. This type of

cache contains a contiguous part of the memory. Because this cache only contains one

continuous part, it is not useful for an instruction cache, since each jump or function call

can cause a replacement of a large amount of instructions in the cache. Because the

stack is a continuous area, the cache can contain a continuous part of the stack,

containing the top of the stack too. It then suffices to remember the address of only one

entry, and calculate the addresses of the other entries, using an offset. The tag memory

then consists of validity data only and will be very small. This type of cache is further

discussed in section 3.2.1 about stack caches.

9

Caches on the C-processor

1.2.2 What size should the cache have?

The size of the cache has a mayor effect on the hit ratio and the traffic ratio. It also

influences the access time. As the cache becomes larger, it can contain more information,

thus the chances of a hit increase. This causes an decrease of the traffic ratio, as more

hits require fewer bus accesses. Because of the locality of programs, the increase of the

hit ratio decreases with the increasing cache size. The extra items in the cache will be

older or further away in memory, and are less likely to be referenced.

The main disadvantage of a large cache is the increase in access time, since larger

memories have longer access times. Secondly large caches require a large chip surface

so there also will be a physical limit to the cache size. The traffic on the data bus must

be about the same as the traffic on the instruction bus, so simulations can give

information about the cache size needed. The guidelines given by Smith [Smi85(B31)] can

be used for a first approximation.

1.2.3 What set size to chose ?

The misses in a set associative cache caused by the mapping of various memory

locations to the same cache location(s) are called collision misses. If the set size

increases from one (direct mapped cache) to two, most of the collision misses are

avoided. A further increase of associativity (the set size), further reduces the collision

misses. But this decrease becomes less and less. Various studies [Smi82(B24)],

[Aga89(P31»), [Hil89(P56)] have shown that a set associative cache with a set size of 8

has almost the same hit ratio as a fully associative cache.

10

Caches on the C-processor

1.2.4 And what about the block size?

In a cache some memory locations can use the same tag. Such a block consists of data

stored in an aligned, fixed-sized region of (cache) memory. One reason for using blocks

is that it saves tag memory. The tag for a block requires only one address part (see fig.

1.4). Furthermore, using blocks, the cache can make use of the spatial locality: by

fetching a block at a time, some memory locations near the desired memory location are

fetched too. These locations have a high probability of being used in the future. However

not all locations will be used. A large block increases the number of bytes fetched at a

: :

quadOl I RU8d4

tr~fer block 1
transfer block 2
transfer block 3

block n+l

.. .

•data

· .· .· .
r..··"'! r··········~

i .! •: _··_~_··_··_··_··_··_··_··_··_··_··_··_··_··i

: .. i

: tag . L~

L~~ .ddT.~OCk~

v: valid
d: dirty

address

Figure 1.4 Cache memory organisation

11

Caches on the C-processor

read. The data near the requested data have a high probability of being referenced in the

near future. For data further away in the block, this probability is smaller, so the ratio of

useful data in a block decreases with increasing block size. This effect is due to the spatial

locality. Each block fetched, will replace another block. The probability that this block

contained useful data increases as the number of blocks that fit in the cache decreases

(the cache size remains constant), since it only uses spatial locality. If only one block fits

in the cache, at least one data item was referenced in the past. If two blocks of half the

size are used, two items were referenced in the past. As the principle of temporal locality

dictates, both items are likely to be referenced again. Thus, using temporal locality, one

would prefer small blocks, since each block will contain data referenced in the past, and

spatial locality prefers large blocks, so all data near the referenced data will be present.

A cache with a small block size, a lot of the data present was used in the past, but

probably a large portion of that data was used long ago and has small chances of being

used again. The data near the data in use has a small probability of being present if it was

not used before. As the block size increases, some of the data used long ago will be

replaced by data near the data used at the moment. The hit rate will increase, since the

cache will contain data near the presently used data instead of data used long ago. If the

block size further increases, the average age of the data will decrease. The cache will now

contain data further away from the data in use, but data used recently will not be present.

Thus after reaching an equilibrium, the hit ratio will decrease again.

The size of the blocks also has effects on the miss penalty and the transfer ratio. On a

cache miss in a full cache a whole block has to be replaced. The cache can use the new

data only when the replaced block is written back to the main memory and a whole block

is fetched. Thus, an increasing block size results in a larger transfer of data and the miss

penalty increases. Secondly if the block size increases, a block is more likely to be dirty

(since it contains more data), and needs to be written back, even if the rest of the block

does not have to be written back. These two negative effects of large blocks can be

minimised by introducing transfer blocks.

12

Caches on the C-processor

Transfer blocks are the units of data transfers. The tag of a block containing transfer

blocks, consists of the address for the whole block and valid and dirty bits for the transfer

blocks only (see fig. 1.4). The miss penalty is decreased because only dirty transfer

blocks have to be written back, and the transfer block containing the required data can

be fetched before the other transfer blocks in the block, and thus be used by the

processor before the rest of the block is present.

The optimal block and transfer block size are dependent on the cache size and

organisation. Smith [Smi87(P17)] gives guide lines for block sizes (called line sizes by

Smith) to get a desired hit rate / traffic ratio. But simulations will, once again, be

necessary.

1.2.4.1 The address format for the cache

The use of blocks and transfer blocks has some effects on the addresses used to access

the cache. Parts of the address are used to identify quads in transfer blocks and transfer

blocks in blocks. In a direct mapped cache, each block can only reside on one place, so

a part of the address can be used to identify the block in the cache.The addresses used

for the cache have five fields (fig. 1.5):

PI N: This is the process identification number of the current process

cache: These bits are used to see if a block is in the cache

block: These bits determine the place of a block in a linear or direct mapped cache

Transfer: Select a transfer block within a block

Quad: Select a quad within a transfer block.

These parts are only used if they are needed; Le. if the size of the block equals the size

of a transfer block, the transfer field will not exist.

13

Caches on the C-processor

2 b·tL8B' TB'16 b·t MSB'1 S S S S 1 S

PIN cache block transfer quadaddress

Figure 1.5 A cache address

1.2.5 Replacement policies !

Replacement policies in caches include all operations on cache memory. This includes

the replacement of blocks by other blocks, writing back or fetching blocks in advance,

and operations when the active process changes.

When the cache is full and there is a miss, a block in the cache has to be replaced by the

block wanted by the processor. The problem at hand is which block to replace. Obviously,

the best block in the cache to replace, is the block that will be used last of the blocks in

the cache or even never again. Unfortunately, the cache has no knowledge of the Mure,

so an educated guess has to be made. This is done by replacement policies. A first policy

is to replace a random block. Since there is no knowledge about the Mure, each block

has the same chance of being replaced, so we can replace a random block. This policy

has a minimal overhead, since almost no time is lost to decide what block to replace.

Thus the miss penalty is minimal. However, the past can be used to predict the Mure.

The principle of locality can be used. This is done by the FIFO and the LRU replacement

policies. In FIFO the block that was fetched the longest time ago is replaced, in LRU the

block that was least recently used is replaced. As far as the hit ratio is concerned, LRU

performs best, followed closely by random and FIFO is by far the worst. The bad

performance of FIFO is not surprising since the block fetched the longest time ago is

replaced, even if it is a frequently used block, or was the block last referenced. The

closely matched performance of LRU and random can be a surprise. In the following

example random even outperforms LRU. (there are of course counter examples, this

example just indicates the possibility of a random replacement scheme out[performing the

LRU replacement scheme.)

14

Caches on the C-processor

Example: Cache size 3 blocks, in a loop blocks A, Band C are referenced

sequentially. In LRU each block fetched always replaces the block to be

referenced; A and B in cache, miss on C, C replaces A; Band C in cache,

miss on A; A replaces B; etc. If random is used, the chance that the block

to be referenced is replaced is 50%, so the random replacement strategy will

give half the number of misses of LRU.

The overhead of LRU however, can be high. The set size (n) is equal to the number of

blocks that can be replaced, so n blocks have to be checked and updated at each

reference. In the tag field of each block IOg2n bits are needed to contain the LRU

information. Especially for a fully associative cache the cost can be high. For two or four

way associative however, LRU is commonly used. The LRU replacement policy is used

in the instruction cache. This policy is also an obvious choice for the data cache.

1.2.6 Coherency and task switching

The C-processor will be used in a multi-processor environment where it has to cooperate

with other processors (Le. a DMA processor). In a multi-processor environment, several

copies of the same data can exist (in cache, main memory). This can even happen to data

on the stack (which is private to a process) if processes can migrate between processors.

Global data can be shared between processes too. The C-processor has a very strict data

protection mechanism, which uses process identification numbers (PIN). The only way to

share data is to use the real address of the data. If a virtual cache is used, there even can

be two copies of the same data in the cache. This last problem can be solved by using

a special mapping or by also putting the real address in the tag. The assurance that all

of the copies are identical is called data coherence or data consistency. Coherence

problems occur when the data in the cache and the data in main memory need not be

the same. For example when DMA writes something to main memory, or when the C­

processor writes something to cache.

15

Caches on the C-processor

A few of the algorithms used to solve the coherence problem are :

- write through

- write once

- Dragon

- Firefly

- Berkeley

- Illinois

- selective invalidation

These algorithms, and some more, will be evaluated in chapter 2. The coherence problem

will only occur in the stack cache if processes can migrate between processors. This

problem can occur in the global data cache and has to be solved.

When several processes are running on the same processor, task switching will occur

frequently. At a task switch, (almost) all data in the cache will no longer be useful. In some

cases, in a linear stack cache where only the base address is available, this means that

the cache has to be flushed. The effects of task switching are especially important for the

stack cache.

1.3 The stack cache and the C-processor

In the C-processor, two caches are placed in the two data paths between main memory

and the processor. In the instruction data path an instruction cache is placed [Sor89]. The

stack cache is placed in the data path, between the execution unit and the Memory

Management Unit; the connection with main memory (fig. 1.5). The execution unit can

issue several stack data requests at the same time. The execution unit is multi ported. The

execution unit can also issue some control signals to move the TOS, or to switch off the

ca.che. The cache responds with status signals, to indicate when the data transfer is

completed. When some data does not reside in the cache, it must be fetched from main

memory. The execution unit and the stack cache use virtual addresses. Main memory is

16

Caches on the C-processor

ma.in memo
Ie--......

~.Mr.~!!~....

~!?~~r.~.1...•

~t.u~ _~

date.

I
I

I

I
I
I

I
I

~- -_.

,--------, real

!virtual!
! !
! !
! !

!

stack cache

execution
unit

Figure 1.6 The stack cache in the C-processor

addressed with real addresses. The MMU translates the virtual addresses to real

addresses. Between the cache and the MMU the same status and control signals can be

used as between the execution unit and the cache. A more complete model of the C­

processor is given in [Wit88] and [Bud88].

The stack cache will always handle local data, placed on the stack. The stack cache will

contain at least a continuous part of the stack, containing the top of stack. If a global data

cache is used too, the division between local data and global data has to be clear. The

definition of local data can be difficult; local data in a procedure can be global data for a

function called by the procedure. For the distinction between global and local data three

options are given below, each having implications for the design of the data cache.

The first definition of local data is the most narrow: the continuous part of the stack that

fits in the stack cache is considered local, the rest global. Thus, for a 1 kB cache, data

from 1024 bytes below the TOS to the TOS are considered local, all other data are

considered global.

Definition 2: all data on the stack is considered local, all other data global.

17

Caches on the C-processor

Definition 3: all data on the stack from the TOS to a certain point is local, all other data

global. One could also opt to make the offset the current stack frame, but the size of the

frames can vary. Most of the frames are small, but some can be quite large. Thus most

times many frames would fit in the cache, sometimes one frame can be to large. Such a

dynamic distinction between local and global data is most difficult to implement, and will

not be chosen.

A request to the stack cache is considered a stack cache miss, when the request does

not fall within the definition of local data. The stack cache miss must not be confused with

a miss: data that is not in the cache, but inside the definition of local data. In the next

chapters definition 2 will be used. Since it is not yet decided that a global data cache will

be present, a stack cache based on this definition will cache more global data and can

give better results. The implications on the design will be discussed further in section 4.7.

The performance of the data caches of the C-processor has to match the performance

of the instruction cache, specially where the bus traffic is concerned. The design of the

instructinn car-he is almost complete [Borag], [Hu89]. This will be a two-way associative

1024 quad (=4 bytes) cache with a block size of 32 quads and a transfer block size of

a quads. The predicted hit rate is a6% [Sora9].

18

Chapter 2 Data coherence

When data is distributed over several resources, contradictory information can be present

at several places. Problems will occur when two processors operate on different copies

of the same data. These coherency problems mainly affect the global data cache. Certain

realisations of the stack cache can be affected by coherency problems too. In chapter 3

about stack caches, we will take a closer look at this problem. In the rest of this chapter

coherence problems will be discussed in general. There are several ways to solve

coherence problems.

The most simple techniques are to disallow private caches for the processors or to

declare shared writable data not cachable. These techniques reduce performance,

because the processor is either completely dependent on main memory (no caches) or

dependent on main memory for all shared writable data. Besides this, the second

approach is transparent to neither the user nor the compiler.

A third technique is to flush the cache each time the processor exits a critical section. This

scheme can introduce a high overhead (lots of critical sections, large caches) and is

difficult to implement on write-back caches.

A fourth scheme employs a centralised global table to store the status of the memory

blocks. Cache enforcement signals can be generated on the basis of the block status.

When a processor wants to use a block, it has to access the table. To limit the accesses

to the global table, local status flags can be provided in the cache directories for the

blocks that reside in the cache. Depending on the local flags and the type of the request,

the processor may use the cached data, or has to consult the global directory.

In this scheme the global directory can be the bottleneck. Because of the distance

between the processors and the directory, the latency of the table will limit the

performance and increase the miss penalty.

19

Data coherence

The directory can also be distributed among the various processors. This approach takes

advantage of the broadcast capability of the bus. In the schemes now to be discussed,

the consistency is maintained by a bus watching mechanism, also called a snoopy cache

controller. The schemes are known as copy back or snoopy cache coherence protocols

[Arc86(PS9)]. The bus is the limiting factor for the number of processors to be used.

Furthermore, the complexity of the bus interface unit will increase, because it has to watch

the bus.

For the C-processor with its on chip caches, the snoopy algorithms are more desirable

for the following reasons:

The caches are on chip. The time to consult the on chip tags will be much shorter

then the time to consult a central directory in main memory.

The number of processors will probably be small. There will be no problems with

the limited bandwidth of the bus.

The on chip caches will be small, so the miss ratio will be rather high. Any increase

in the miss penalty will seriously affect the performance.

The higher performance of snoopy schemes is confirmed by simulations in [Aga88(B41)]

for small multi-processor systems. In the following section the various snoopy coherence

schemes will be discussed.

2.1 Snoopy coherence schemes

To ensure the consistency of the data in caches, a cache has to store some information

with respect to the other copies of each entry. First one has to know if the data is correct

and still up to date. This is called the validity of the data. Secondly the data can be shared

with another cache, so information about the exclusiveness has to be in cache. Third a

cache can be the owner of an item. Then even main memory can have an invalid copy

and the cache has to respond instead of main memory if someone tries to access that

data.

20

Data coherence

A model in which the various states of the data is described uniformly is needed to

compare the snoopy coherence protocols. In the so called MOESI (the first letters of the

states described below) state model [Swe88(P12)] the attributes validity, exclusiveness

and ownership are combined to form five states for the data in a cache. These five states

are:

M modified, the data in the modified state is not shared by any other cache, it has

changed since it was read from main memory and main memory has not been

updated. The processor may read and write this data.

o owned, data in the owned state may be shared by other caches and main memory

is not updated. The processor may only read owned data.

E exclusive, data in the exclusive state is not shared by other caches, and main

memory is up to date. The processor may read the data.

S shared, data in the shared state can be shared by other caches, and it is owned

by either main memory or another cache. The processor can only read this data.

invalid, the data in the cache is not consistent with data elsewhere, and may not

be read by the processor.

A block that is not in the cache is a sixth state : not present. This state is not included in

the MOESI model.

With some of these states (not all are necessary) a cache coherence protocol can be

formed. In table 2.1 the various coherence protocols are described in terms of their

MOESI states. As can be seen in the table, there are almost no protocols that use the

same states. Furthermore they use different states or state changes to write back data to

main memory. The protocols are described in detail in the next section.

21

Data coherence

Table 2,1 MOESI states for various coherence protocols

M 0 E S

write through valid invalid

write once dirty reserved valid invalid

Synapse dirty valid invalid

Berkeley owned owned non- unowned invalid
exclusively exclusively

Illinois exclusive exclusive shared invalid
modified unmodified unmodified

Firefly not shared shared not shared shared
dirty dirty not dirty not dirty

Dragon dirty shared valid shared
dirty exclusive clean

2.2 Description of the various protocols

In this section a description of some snoopy protocols will be given. The first protocol,

write through, is a very simple protocol which can be implemented at low cost but has

very low performance. It is mainly included for comparison of the various schemes.

2.2.1 Write through, states: valid(S) and invalid(l) [Yan89(P32)]

A yvrite can give rise to a hit when the block is in cache and valid, or a miss otherwise. On

a miss, the block is loaded from main memory in the VALID state. On a hit, the block is

22

Data coherence

supplied by the cache and the block remains VALID. When a write occurs, the block is

written through to main memory. All other caches watch the bus, and invalidate all data

in the cache to which a bus write occurs.

2.2.2 Write once, states

[Yan89(P32)]

dirty(M), reserved (E) , valid(S), invalid(l)

On a read request of the processor the cache responds with a hit or a miss. If the

requested word is not in the cache or is invalid the result is a miss. Otherwise the data is

supplied without changing the state of the block. On a miss, the data is supplied by

another cache if a dirty copy exists, otherwise main memory will send the data. A block

is loaded with state VALID. If the block is loaded from main memory, and a cache has a

RESERVED copy of the block, this cache will set its state to VALID. If the block is supplied

by a cache, this cache will write the block back to main memory and set its state to

VALID.

A write of the processor also gives rise to changes of states. If the block is VALID in the

cache, its state is changed to RESERVED, all other caches are invalidated and the block

is written through to main memory. If the block is RESERVED, the state is changed to

DIRTY, and the data are written to the cache. If the block already is DIRTY, all that has

to happen is to write the block to cache. The state remains the same. If the block is not

in the cache, the block is loaded like on a read miss, all other caches are invalidated, and

the block is updated in the cache. The state is set DIRTY.

23

Data coherence

2.2.3 Synapse, states: dirty(M), valid(S), invalid(l) [Fra84(P37)]

Like some other protocols, this protocol uses ownership to resolve the coherency

problems. The main memory itself has an OWNED tag for each block.

A read hit causes no bus activity. On a read miss a public read signal is put on the bus.

If main memory is the owner, the block is loaded in the valid state. If another cache is the

owner (has a DIRTY copy), it writes back the word to main memory and invalidates its

copy. After this transaction main memory is the owner, and the public read is handled as

before.

A write hit on a DIRTY block can proceed locally. On a write hit on a VALID block or on

a miss, a private read request is issued, and the same actions are taken as on a public

read. After the block is updated in the cache, the state is set to DIRTY, so the requesting

cache becomes the owner of the block. All caches with a VALID copy monitor the bus

and invalidate their copy if they monitor a private read.

2.2.4 Berkeley, states: owned exclusively(M), owned non-exclusively(O),

unowned(S), invalid(l) [Kat85(P38)]

When a processor read results in a hit, the appropriate word is provided to the processor.

On a miss, a block has to be flushed. If this block is OWNED, the block is written to main

memory, and to other caches if the state is OWNED NON-EXCLUSIVELY. A write without

invalidation is used. Then it reads the block with status UNOWNED. It uses a special read

signal; a read-shared. If the block is OWNED by another cache, this cache will provide the

data, instead of main memory, and set the state in the cache to OWNED NON­

EXCLUSIVELY. If the block is NOT OWNED, it is supplied by main memory. A block is

always read in the state UNOWNED.

24

Data coherence

On a write, the following procedure is used. If there is a hit on an OWNED EXCLUSIVE

block, then the processor writes only to the cache. If the hit is in an OWNED NON­

EXCLUSIVE or an UNOWNED block, then all other caches must be invalidated, using a

write for invalidation. On a miss, some data will be flushed using the protocol of a read

miss, and the block is read using a read for ownership signal. On this signal the owner

sends the block and all caches (except the new owner) invalidate their copy of block.

Then the cache updates the block. After the block is written to the cache the state is set

to OWNED EXCLUSIVELY.

2.2.5 Illinois, states: exclusive modified(M), exclusive unmodified(E), shared

unmodified(S), invalid(l) [Pap84(P39)]

In this protocol too a read hit is only handled by the cache with no status change. On a

read miss, the highest priority cache will give the data (daisy chain). If no cache has the

data, then memory will provide the block. All caches that match the data will set the status

to SHARED UNMODIFIED. If the status in one of the caches was EXCLUSIVE MODIFIED,

the block is written back to main memory. The requesting cache sets the status to

SHARED-UNMODIFIED if the block came from another cache, and to EXCL-UNMODIFIED

if the block came from main memory. On a write miss the same read cycle is done to

cache the block. But an invalidate signal accompanies the read request, on which all

caches invalidate their copies of the block. The requesting cache sets the status of the

block to EXCLUSIVE-MODIFIED. On a write hit, the cache is updated and the status is set

to EXCLUSIVE-MODIFIED. Only if the status of the block was SHARED UNMODIFIED an

invalidation signal is sent.

25

Data coherence

2.2.6 Dragon, states : dirty(M), shared dirty(O), valid exclusive(E), shared

. clean(S) [McC85(P52)]

This protocol looks like write once, but it uses a shared line to see if a block resides in

more caches. A cache that monitors a read or write request for a block it contains, raises

the shared line. The shared states can be used to minimise the number of writes.

On a read miss, the data are read. If another cache has a dirty copy, it supplies the data,

otherwise the block comes from main memory. All caches that contain a copy of the

block, mark their copy as SHARED. Otherwise the cache marks the data as VALID

EXCLUSIVE. If the shared line is raised, the block is loaded as SHARED CLEAN,

otherwise as VALID EXCLUSIVE.

A write to a DIRTY or VALID EXCLUSIVE block can proceed locally. The state of the block

is set to DIRTY. On a write to a shared copy, the data are written to all caches. If a cache

has a copy it reads the block as SHARED CLEAN and raises the shared line. By

observing the bus, the cache performing the write can determine if the block is still

shared. If the shared line is raised, the block is marked SHARED DIRTY, else the state is

set DIRTY. Main memory is NOT updated.

On a write miss, the block is read as on a read miss. The block is loaded from the bus

as DIRTY or SHARED DIRTY depending on the shared line. If the block is SHARED, the

update is written through to the other caches.

2.2.7 Firefly, states : not shared dirty(M), shared dirty(O), not shared not

dirty(E), shared not dirty(S), invalid(l) [Tha88(P58)]

This protocol, which is similar to the Dragon scheme, depends on a shared-line. A snoopy

controller sets the shared line high if it finds an address on the bus that resides in the

26

Data coherence

cache. The controller that provided the address watches the shared-line to see if the data

also resides in another cache.

On a write that hits in non-shared data, no bus traffic is needed, and the data is marked

NOT SHARED DIRTY. If the data is shared, the cache writes through the data to maintain

coherence and update main memory. If the data is in another cache too (shared line is

set by another cache) it marks the data SHARED NOT DIRTY, otherwise NOT SHARED

NOT DIRTY. On a write miss, the same actions are taken as on a write to shared data.

A read hit requires no further action. On a read miss, the data is read from the bus. The

received data are marked clean and its shared bit is set to the value of the shared-line.

If the data are provided by a cache, this cache sets the shared bit.

2.3 Performance of the various coherence schemes.

The various coheience schemes can be compared in various ways. The first, and

probably least reliable comparison is given by the authors of articles about new schemes

(their scheme is better than...). A second approach is a comparison on the basis of

certain models. The main problem with models is the validity of the models. A last method

of comparing coherence schemes is using traces. This is most common practice. There

are several articles in which the various schemes are compared using traces. The first

comparison of the coherence schemes will be done on the basis of the various

comparisons in the various articles.

A comparison on the basis of a queueing model can be found in [Yan89(P32)]. Yang uses

a performance parameter called system power (processor utilisation * the number of

processors), to compare the coherence schemes. The highest system power is given by

the Dragon and the Firefly protocols. The system power of the Illinois, Write-once,

Berkeley and Synapse schemes are almost the same, but considerably lower than the first

27

Data coherence

two schemes. Of these schemes, the Illinois scheme performs best and the Synapse

scheme worse. The Write-once and the Berkeley owner scheme perform similar. Write

through results in the lowest system power. The other coherence protocols are not

evaluated by Yang.

A simulation of the same six protocols is performed by Archibald and Baer in

[Arc86(P59)]. It also uses the system power as a performance measure. The highest

system power, in their simulations, is obtained by the Dragon scheme, followed

respectively by Firefly, Berkeley, Illinois, Write once, Synapse and, far behind, write

through. The performance of the Synapse scheme is in all simulations more than two

times higher than write through. The relative performance of the schemes depends highly

on the degree of sharing, the percentage of reads and the cache and block size.

The various coherence schemes have a different cost. The Dragon and Firefly scheme

require a shared line, and a cache in the Illinois scheme has to see whether a block

comes from memory or from a cache. In the schemes where a cache can provide blocks,

the extra accesses to the cache can slow down the processor of that cache. The synapse

scheme requires an extra memory bit for each block. Besides, all protocols, except write

through, need a snoopy controller. The costs of the protocols and the system power both

have to be taken into consideration before the choice of a coherency protocol can be

made. At the moment, some new snoopy coherence schemes are being developed, the

so called competitive snooping schemes [Kar88(P57)]. Their authors claim that their

schemes outperform the normal snoopy schemes. It may be necessary to modify a

protocol to meet the specific demands of the C-processor. These include the size of the

cache, the traffic on the bus, the number and kind of additional processors, second level

caches, the way of sharing data, etc.

28

Chapter 3 The Stack Cache

In this chapter the basics of a stack cache will be discussed. First the stack of the C­

processor will be discussed. Then several organisations of caches that are designed

specially for a stack will be discussed. This is followed by a discussion of the effects of

the (block)size, the replacement strategy and coherency on the stack cache types.

3.1 The C-processor stack

On the stack of the C-processor all parameters used in and passed between procedures

and functions are stored (return addresses can be seen as parameters passed between

functions). Such a stack is shown in figure 3.1.

empty

proci~~

Figure 3.1 The C-processor stack

roc 3

roc 1

~shared

tZ/~ private

Most procedures will only require a small number of parameters and a small number of

local variables, so the typical stack frame (#Iocals + # parameters) will contain about 10

variables (80% < 11 words [Fur88(A12)], 95% < 13 words [Laz89(A13)], 94% < 13 words

29

The stack cache

[Sta88(P5)]). Most references to the stack will be to the frame containing the TOS, since

that procedure is being processed. The number of frames on the stack will probably vary

slowly, and will be about 8 (a window containing 8 frames needs to shift on less than 1%

of the calls and returns [Sta88(P50)]). However, some programs and procedures will

require more stack space.

The C-processor can access various addresses at a time. At a certain moment, it is

possible that the two operands for the next instruction are fetched from the stack, while

the result from the last instruction is written on the stack. The execution unit has multiple

ports to write to and read from the stack, so the stack cache has to support these

multiple ports. Since it will have a high hit rate, the cache will give less memory requests

to main memory. Thus the number of ports to main memory can be reduced.

So besides the speed of a cache, it has a second advantage : it can avoid multiple ports

to main memory.

The stack cache will have the following requirements besides the requirements from

chapter 1 :

- it has to contain the highest stack frame

- it has to support multiple requests in one clock cycle

- it must be transparent to the software

3.2 Stack cache organisation

The stack cache will contain (a copy of) the memory locations near the top of the stack

(TOS). The choice to have an extension of the memory stack or a copy of the memory

stack is not very difficult. If the cache is to contain a copy of the locations near the TOS,

the cache has to be write through to keep main memory up to date. This involves a lot

of traffic. If an extension is chosen, the write back strategy (write back dirty blocks when

they are replaced by another block only) can be used to solve consistency problems, and

the probability of stack references falling in the cache is very high for a reasonable cache

size. The penalty for task switches will be higher if an extension is used (write back dirty

30

The stack cache

blocks vs. no dirty blocks to write), but can be limited by using buffers. Besides, since

task switches will be relatively rare, the performance loss in normal use for the caches

using a copy, will be larger than the performance loss on the task switches for the

extension caches. So the cache will contain an extension of the stack.

Only those places below the TOS are of interest, places above the TOS are invalid (the

stack is growing upward). There are no coherence problems between processes,

because a stack is private to a process (each process has its own stack, identified by the

PIN). Since the stack is a contiguous area, the stack cache can best be organised as a

contiguous area. Only two options for the cache memory organisation remain: the cache

can be linear, or it can be direct mapped. The (set) associative cache will not be

discussed here. In an associative cache some replacement algorithm must be used, which

can replace blocks near the TOS. This behaviour is undesired for a stack cache because,

although these blocks may be least recently used, the probability that these blocks will be

used in the (near) future is high. The reason for this high probability is that these blocks

are near the TOS. In other words: on a stack spatial locality is higher than temporal

locality. A compiler can make the spatial locality even higher. The linear cache and the

direct mapped cache will be discussed in the following sections.

3.2.1 A linear cache.

A linear cache contains all memory locations from a certain point, the base pointer, to

the stack pointer (see fig. 3.2). The base pointer points to the lowest valid address in the

cache. This need not be the frame pointer, since the cache may contain more than one

frame. It is possible that this does not fill the cache. The cache can be organised as a

linear buffer. When the stack grows, data at the base of the cache are threatened to be

overwritten by the TOS and have to be written back to main memory (if they are modified),

before more space can be allocated to the stack. No data has to be retrieved from main

memory. The resulting free block is allocated to the TOS. This situation is called cache

overflow.

31

The stack cache

dale.

ase + k+2
sse + k+1

ase + k
ase + k-1

Registers ~.

I TOS I ~.

I base

...
~

....
~

[l>
Ib

Figure 3.2 A linear stack cache

Underflow occurs, when the stack is retreating. Again the stack pointer approaches the

base, but this time from the other side. The cache then becomes empty, and new data

has to be cached from main memory. Because the data beyond the TOS is invalid, no

information has to be written back to main memory.

When an overflow or an underflow occurs, some action has to take place. Several

replacement strategies deal with this situation. Some policies even try to avoid under- and

overflow situations (some kind of prefetching) These policies, specially designed for stack

caches, are dealt with in section 3.3.3.

When another process interrupts the running process, a task switch occurs and the

whole cache has to be flushed; the data that has been changed has to be written to main

memory and the contents of the cache has to be made invalid. A flush is necessary

because the only addresses remembered are the base and the TOS. If any data remained

valid in the cache, this would be used erroneously as valid data for the stack of the new

32

The stack cache

process. At the time of a task switch, the bus will be heavily used, and the processor will

be waiting for data from the stack of the new process. The amount of data transferred

depends on the replacement algorithm.

A way to reduce the number of task switches is the introduction of a second cache, to

be used by the operating system or supervisor. To achieve the same hit ratio as the

normal stack cache, the supervisor cache should be larger. If the same amount of data

ram would be used, each of the split caches should be half the unified cache. Simulations

in [Smi82(b24)] show that a split cache has a lower hit ratio than a unified cache. The

larger penalty of the unified cache on supervisor calls can be reduced by architectural

measures (chapter 4).

There are no coherence problems in a linear cache. The stack is private memory for a

process and the whole cache is flushed on a task switch. Thus it is impossible that two

different copies of the stack can be used at any time.

3.2.2 A direct mapped cache.

Instead of a linear cache, a direct mapped cache can be used. As long as all references

are made to memory locations near TOS, this cache behaves like a linear cache.

Because each block in cache has its address in the tag, it is not obligatory to invalidate

the whole cache on a task switch. If the processes can not migrate from one processor

to the other, no flushing is needed at all! So if a process is interrupted by another

process, which makes almost no use of the stack, a major part of the stack of the

interrupted process will stay intact. This remaining part of the stack will probably not be

a continuous part. Still, the parts that remained in cache will be valid and will not have to

be read again. This minimises the penalty of task switches. When a process is interrupted

by a large process, this process will fill the whole stack cache, so, though the cache was

not flushed at the task switch, all data is replaced by the new process. The net result is

33

The stack cache

the same as a flush. The overhead of flushing the cache however, is not at the time of the

task switch, but is smeared out over the beginning of the new process.

A disadvantage of a direct mapped cache is that the virtual addresses and the PIN-codes

of all blocks have to be kept in the tag memory. So direct mapped caches will be larger

than linear caches.

The same replacement strategies as in a linear cache can be used. However, care has

to be taken to remove no blocks of other processes, and thus reduce the advantages

of a direct mapped cache over a linear cache on task switches. Simulations will have to

provide information about the behaviour of the cache organisations.

In a direct mapped cache, coherence problems can occur if a process can migrate from

one processor to another. If a process migrates form processor A to processor 8,

changes some of the data on the stack and moves back to processor A, the contents of

the parts of the stack which are still in the cache of processor A might not be the same

as in the cache of processor 81 If the migrating of processes is allowed, a cache

coherence algorithm has to be used (see chapter 2).

3.3 The effects of cache parameters on a stack cache.

In this section the cache parameters will be discussed. First the cache size and the block

size will be handled, then the replacement policies for stack caches will be compared.

Finally the effects of task switching and cache coherency will be taken into account.

34

The stack cache

3.3.1 The cache size.

In general larger caches give smaller miss ratios, longer access times, smaller traffic

ratios and, depending on the cache structure, a larger or smaller penalty for task

switching. Although the hit ratio increases with the cache size, the increase of the hit ratio

will decrease as the cache becomes larger. In a linear cache the penalty for task switching

will grow with increasing cache size since more data has to be flushed. In a direct

mapped cache the probability that after a task switch some parts of the stack of the

resumed process will still be present increases with the cache size and so the penalty of

task switching decreases.

The task of the stack can be compared to the register sets in a RiSe processor, so a

cache size comparable to the number of registers in a RiSe processor will probably

suffice. The number of registers in a RiSe processor ranges from several dozens to

several hundreds (Rise I: 128, AM29000: 192, C/70: 1024). A processor with a stack

cache, the CRISP uses 32 registers, each register is one 32 bit word wide. Simulations

by Ditzel et al. [Dit87(P60)] proved this size to capture a sufficient amount of data for

certain C-programs (using a non optimising compiler). However this included only the

data of one procedure or function so "a larger cache size would reduce the amount of

flushing on procedure or function calls and returns". Although these numbers are

dependent on the instruction set, compilers and optimisers, they give an indication on the

number of locals that need to be cached (in register sets) to give a high processor

performance. Simulations have to provide data to find a cache size with a good trade-off

between stack cache size and hit ratio.

35

The stack cache

3.3.2 The (transfer) block size.

The block size has a great influence on the performance of the cache. In a linear cache,

the block size determines the quantity of data that is written to or read from main memory

at overflow or underflow. Since a whole block is fetched on an underflow, a whole block

will reside in the cache. The TOS will now reside on one block from the bottom of the

cache. A large block size will thus increase the time between two underflow situations. A

large block size will move the TOS further away from the border of the cache which was

crossed. If the block size is to large, the traffic ratio will be high, and too much data will

be replaced or fetched. Simulations are necessary to find the optimal block size.

In a direct mapped cache the tag of a block contains its virtual address and information

about the validity of the data. Because the address of the data now also resides in the

tag, a larger block size can reduce the size of the tag memory with a serious amount.

A block can be divided in transfer blocks. The tag of the block then provides information

about the validity of each of the transfer blocks. The address is stored for the whole block.

In case of an overflow only those transfer blocks that have been changed have to be

written back to main memory. The introduction of transfer blocks thus reduces the amount

of write back traffic. Transfer blocks can also reduce the miss penalty. As soon as a

transfer block is in the cache, it can be marked valid, and the data can be transferred to

the execution unit. Transfer blocks of more than one quad (= bus size) can make use

of burst transfers to main memory which improves the average time to fetch a byte.

However, large transfer blocks will increase the miss penalty and the amount of data

written back.

36

The stack cache

3.3.3 Replacement policies

There are several replacement strategies which have to deal with or prevent overflow and

underflow of the stack cache. Since most stack caches discussed in literature are linear

caches, a few of the replacement policies for this type of caches will now be discussed.

These policies are also discussed in [Sta87(B36)].

The cut back K algorithm (see also [Has85(B36)]) is the most simple algorithm and

acts only on demand.

The barometer pointer algorithm tries to avoid both overflow and underflow.

The two-pointer algorithm tries to keep the cache full and to avoid overflow.

In a modified form these can also be used for a direct mapped cache.

3.3.3.1 The cut back K algorithm

If the stack cache overflows (TOS moves above the cache) or underflows (TOS moves

below the base), one or more blocks (containing K transfer blocks) are written back to

Overflow Underflow

TO~t-------t

h..._t-------t

..-...

-

TOS

bas

co

e ...-..bas

s

..
v ...

TO

bas

Figure 3.3 The cut back K algorithm

37

The stack cache

main memory in order to free cache space, respectively read from main memory to obtain

the TOS (figure 3.3). The algorithm makes no attempt at predicting the future needs of the

stack cache. On the average, the cache will be more than half full. Besides, the number

of over- and underflows can be high. This can be offset by using larger blocks. However,

this will increase the number of bytes transferred. More bytes that are not used are

fetched, more bytes are replaced on an overflow.

3.3.3.2 The barometer pointer algorithm

TOS moves up

TO~

}/2TOS
}/2 n

base---'

bas

Figure 3.4 The barometer pointer algorithm

This algorithm keeps the TOS pointing to the middle of the stack cache (figure 3.4). It is

possible to let the TOS point to another place in the cache. [Sta87(836)] describes a

simple barometer pointer algorithm. On an overflow the block to be cleared is always

written back. Thus the penalties for overflow and underflow are equal (the main memory

access for one block). The chance that the stack will grow is about equal to the chance

that the stack will shrink. This makes the middle of the cache a logical place for the TOS

to point at. The frequency of overflow and underflow is thus reduced. If the penalty for

overflow differs from the penalty for underflow, the TOS can be kept pointing to another

place in the cache, such that the overall cache miss penalty is minimised. If the TOS is

38

The stack cache

greater than the middle of the cache, blocks are read from memory until the T08 is in the

middle, if the TOS is less than the middle of the cache, blocks are written to memory. A

special pointer points at the middle of the cache. By keeping the cache half-full, the usage

density is independent of the growth of the stack, but on the average it will be no more

than half. Some extra buss traffic is introduced if the stack grows and shrinks without

overflow or underflow, compared to the cut back K algorithm. As long as the cache would

not overflow or underflow with the cut back K algorithm, these extra bus transfers are

useless.

3.3.3.3 Two-pointer algorithm

This algorithm keeps the cache full (figure 3.5). It uses the cache to keep a copy of the

stack in main memory, and uses a write back strategy (only write to main memory if a

block is replaced) to keep main memory up to date. Besides the stack pointer, it uses two

TOS moves

base--~

ros 1---------+

.............................
base---,
TOS----.t-----+

Figure 3.5 The two pointer algorithm

pointers to indicate how many blocks need to be written back to main memory (the PUT

pointer) and how many blocks need to be fetched (the GET pointer). A detailed

description is given in [8ta87(B36)]. If both pointers are zero, the cache is at rest. If a

push is performed, the PUT pointer is incremented to indicate that a block has to be

written back to main memory to make room in the cache for some new data.

39

The stack cache

This strategy also introduces a lot of useless bus traffic compared to the cut back K

algorithm. Besides, if the stack is growing there is a continuous overflow situation. The

mayor advantage of this scheme is that the whole cache is always full.

3.3.3.4 Comparison of the algorithms.

In general, some strategies try to minimise over- and underflow by keeping the cache

half filled (two pointer algorithm), or try to detect trends (barometer pointer). Although

they can succeed in their purpose, they also increase the traffic ratio, because not all

space freed by writing blocks back to main memory will be allocated, and not all blocks

cached from main memory will be referenced. The strategies can also work against

themselves. Especially at the start and end of processes when the stack is continuously

growing or shrinking. In general these strategies reduce overflow and underflow a little,

while requiring a lot more bandwidth.

Other algorithms (like cut back K) only move blocks when necessary. This can result in

a high penalty if a new procedure is started or finished if the cache is full resp. empty. The

traffic ratio is completely dependant on the block size. If a fixed frame size is used for

procedures, and the block size is equal to the frame size, the stack cache can be

compared to the multiple register sets used in RISC (although there are some

differences). One of the disadvantages of using a fixed frame size, is that the utilisation

of cache memory will be far from optimal. Furthermore the allocation of variables in frames

will become a task of the compiler, with a major influence on cache performance. A

consequence of this is that the cache is no longer transparent to the software.

In [Sta87(B36)] three TOS management schemes are compared for a TOS buffer. The

study uses single pops and pushes to move the TOS. This is not the case in the C­

processor, where the TOS moves more than one memory location on a call or a return.

Although the situation is not the same, the study can be used to give an indication for the

40

The stack cache

C-processor. The conclusions of [Sta87(B36)] support the conclusions given above. Their

simple algorithm (comparable to the cut back K algorithm) greatly reduces the memory

bandwidth by requiring little TOS management. The demand TOS management is nearly

as high as the best of the other algorithms. The usage density is better than for the

barometer pointer algorithm, but worse than the two pointer algorithm.

The barometer-pointer algorithm reduces the demand TOS management but requires a

higher memory bandwidth and the usage density is low.

The two-pointer algorithm has the highest usage density, but requires a high memory

bandwidth, the demand TOS management is high and it is the most difficult one to

implement.

The study of Stanley clearly indicates that:

The simple algorithm (comparable to the cut back K algorithm) combines a high

usage density with low bus traffic. Besides it requires the least extra hardware. This

algorithm seems to be a good choice for a linear cache. The barometer pointer

algorithm is second best.

However, as stated before, the results only give an indication for the C-processor.

Besides, the results the effect of task switches has not been taken into account in

[Sta87(B36)]. The effects of task switching will now be discussed.

3.3.4 Task switching and stack caches.

The linear cache only keeps track of the lowest and the highest address of the data in the

cache. If another process wants to use the cache, this information will be lost, so all data

in the cache has to be written back to main memory before the new process can use the

stack. For large caches these cache flushes can cause a lot of bus traffic and a large time

penalty for task switches.

For the replacement algorithms, the effects are most severe for the two pointer algorithm,

which keeps the cache full, and the cut back K algorithm. The barometer pointer cache

41

The stack cache

is only half full, so only half the data has to be flushed compared to the two pointer

algorithm. In the barometer pointer and the two pointer algorithm a secondary effect

occurs that reduces the penalty of a task switch. Each time the TOS moves, some data

is moved to or from the cache. So a part of the dirty data is written back to main memory

before a task switch. This reduces the amount of data to be written back at a task switch.

Although the cut back K algorithm is a good choice for an environment with no task

switching, the barometer pointer algorithm can be a good choice if task switching occurs

frequently. The two pointer algorithm, which has even more write back traffic, contains

twice as much data as the barometer pointer algorithm. The performance of this algorithm

on task switches is difficult to estimate. It can be as bad as the cut back K algorithm, or

even better than the barometer pointer algorithm.

The low bus traffic and the good performance at task switches can be achieved if a mix

(!

~bas

t18et
TO

TOS moves down

-... ,
0:

~..
~

TOO

bas

offset

b6Se--l~-----j

dirty

Hset

TOS moves up
....---------,

TO;:)---.+----1

s .-... ,
y 0:

~..
po

TO

bas

dirt

Figure 3.6 The hybrid algorithm

of the cut back K and the barometer pointer algorithm is used (figure 3.6). In the hybrid

algorithm, blocks that are below a certain offset from the stack pointer are written back

to main memory, but are not cleared. As soon as the stack pointer and the base pointer

are within a certain distance, a block will be prefetched. The offsets at which blocks are

fetched or written back can be chosen to match the characteristics of the memory and

42

The stack cache

the data requests. A dirty pointer will be used to keep track of the lowest dirty block. This

pointer must be updated on each write. After each write and each increase of the TOS the

distance between the TOS and the dirty pointer is checked against the offset. If the offset

is exceeded, write backs are issued. A prefetch pointer will keep track of the distance

between the base and the TOS. Each time a block is fetched (base changes) or the TOS

changes, this pointer is updated. A special situation occurs when the TOS approaches

the bottom of the stack. Even if the prefetch pointer is smaller than the offset, no

prefetches must be issued, since blocks below the bottom of the stack may not be

fetched. A check of the dirty and the prefetch pointer can be done when no memory

requests are pending. This ensures that the interference with demand fetches and write

backs is small. The interference can be reduced further by interrupting the prefetch

memory accesses when a demand fetch or write back occurs. The prefetch part of the

algorithm has to be separated from the demand part as much as possible to reduce the

overhead for the demand part, which determines the speed of the cache.

This algorithm requires a more intelligent and complicated controller than the cut back K

algorithm. This can also have effects on the speed of the cache. The access time of the

cache on a h!t can be increased, so that it is no longer possible to handle one request in

a clock cycle. Therefore the cut back K algorithm can still outperform the hybrid algorithm

if the frequency of task switches is low.

If the frequency of task switches is high, a direct mapped cache can have advantages

over a linear cache. A direct mapped cache keeps the complete address of each entry

in the tag memory. This type of cache does not need to be flushed on a task switch. It

is possible that parts of the stack are still in the cache if an interrupted process is

resumed after a few task switches (for large caches). If only little time has past between

the task switches, the chance that the cache contains something useful rises. In the direct

mapped cache the same replacement strategies can be used as in a linear cache.

However, prefetching replacement strategies can now replace useful parts of the stack

of other processes. Prefetching algorithms will also be more complicated than in linear

caches, because task switches now can create holes in the cache (fig. 3.7). Besides,

43

The stack cache

proc. 1

Before TS

Figure 3.7 Task switching in a direct mapped cache

proc. 1

proc. 2

proc. 1

After TS

replacement strategies will only keep track of the pointers of the current process.

Remembering the pointers of other processes has no use, since each process can

change the contents of the cache. After a task switch the pointers will point to the first

block. Only when the cache fills up, the algorithm becomes aware of other blocks of the

current process residing in the cache. Of course, this can be eliminated by a time and/or

hardware consuming search process of the cache...

To compare the replacement strategies and the two cache designs in a multi tasking

environment, the linear cache will be simulated with the cut back K algorithm and the

hybrid algorithm. The direct mapped cache will be simulated with a replace on demand

algorithm (equivalent to the cut back K algorithm) and an algorithm comparable to the

hybrid algorithm. These algorithms are almost the same as the algorithms for the linear

cache. To determine if e request is a miss, they not only have to check the boundaries,

but also have to check if the requested data already resides in the cache. All caches have

to be simulated for various amounts of task switching.

44

The stack cache

3.3.5 Coherency

As said before, there are no coherence problems in a direct mapped cache without

process migration or in a linear cache. In a direct mapped cache with process migration

the coherence problem does exist. It can be solved by using a linear cache, prohibiting

migration or by using a cache coherence algorithm. It is not useful to flush a direct

mapped cache on a task switch, because the effects of a task switch would then be equal

to those of a linear cache, which has a lower complexity and has a smaller tag field (so

it should be used instead).

It is unlikely that a coherence algorithm, with its overhead, will result in an improved

performance, so no coherence schemes will be used on the stack cache. The various

coherence schemes have been discussed in chapter 2.

45

Chapter 4 Architecture of the data caches

A cache can be divided in several blocks (fig. 4.1) according to the functions the cache

has to provide. One block will hold the actual data. This block is called the data ram.

Another block will hold information about the data in the data ram. This block, called the

excecution unit bus

• tt

Tag
ram

control
block

Data
ram

read
buffer

write
buffer

t

.........................~
data types
dependent on
cache types

Figure 4.1

processor bus

tag block, consists of a tag ram, and, optionally, some registers. Furthermore some

control logic is needed. The control block controls all accesses to the cached data. The

address of the requested data is issued at the same time to the data ram and to the tag

ram. Thus the data will be ready for transport to the execution unit at the same time as

the hit information is ready. This parallelism speeds up the cache operations. It can be

useful to use some buffers in the design. Although these buffers improve the cache

performance, especially in case of a cache miss, the extra control logic will increase the

complexity of the cache. The extra checks that have to be performed can increase the

46

Architecture of the data caches

access time of the cache. If necessary (global data cache) a coherence controller can be

included in the control block. As stated in chapter 1, the most wide difinition of local data

will be used. In this chapter only stack references will be discussed. How a stack cache

miss is detected is discussed in section 4.7.

All these blocks will be discussed in the following sections. Section 4.1 describes the

blocks that are used in all types of data caches. Section 4.2 handles the communications

to the MMU. In section 4.3 the architecture of a linear stack cache is discussed, section

4.4 deals with a direct mapped stack cache and in section 4.5 some fundamental

architectural considerations of the global data cache are discussed. Section 4.6 discusses

multi port issues and proirit, section 4.7 revisits the definition of local data and finally the

performance of the cache is discussed in section 4.8.

4.1 General cache blocks.

Although some blocks have a specific implementation for a cache type, most blocks of

the cache are the same for all caches, or differ only slightly between the caches. If a

cache type uses a completely different implementation of a block, this will be discussed

in the section on that cache type.

4.1.1 The data ram

This part of the cache contains the actual data (fig. 4.2). The organisation of the cache

ram is the same for a direct mapped and a linear cache. A normal single- or multi- ported

ram can be used. In a set associative global data cache multiple ram banks have to be

used, and some selection for the correct bank has to be used. Multi ported Ram can be

used to service more than one data request at a time (Le. two reads and one write per

47

Architecture of the data caches

dala block
i

"
~ ..., ...
-"-.._. .._.._..~
..- ..-....._..•

ram

Figure 4.2 The data block

instruction). It can also be used to write some (pre)fetched data to the Ram, or read

some write back data from the ram, while servicing a data transaction with the execution

unit. The allocation of the ports will be handled by the control block.

The data can be accessed by the execution unit and the control block. The execution unit

gives read and write requests to the data ram, which can be blocked by the control block,

depending on the TAG information. The control block accesses the data ram to control

the replacement of blocks in the data ram.

4.1.2 The Tag Block

The tag block consists of a ram part, which contains the virtual (and in the global cache

in some implementations also the real) addresses and the status information of the blocks

in the data ram. The tag ram of the linear cache only holds the status information of the

data blocks. Information about the addresses is kept in some special storage (registers

or Ram).

48

Architecture of the data caches

The tag ram will be accessed by the execution unit and the control block. The execution

unit provides ihe ieast significant bits (LSB's) of the address of the request to the tag ram,

so this ram can provide the status information and the most significant bits of the address

of the block in cache to the control block. The control' block uses this information to

determine whether there is a hit or not.

The control block accesses the tag ram to update the status information. The status has

to be updated when the block in the data ram is written back to main memory (is no

longer dirty), when the block is changed by the execution unit (becomes dirty), and when

the block is replaced by another block. In the last case, the address has to be updated

too.

In the global data cache, the snoopy coherence controller may access the tag ram too.

Because many controllers can demand access to the tag ram at the same time, this ram

has to be multi ported. The number of ports depends on the characteristics of the data

requests to the cache.

4.1.3 The read buffer

A read buffer can be applied when the block size is larger than the number of bytes

(quads) requested by the execution unit or the number of bytes transferred between the

cache and main memory in one data transfer cycle. The buffer increases the performance

of the cache because the execution unit can access data, fetched from main memory, as

soon as it is available, and does not have to wait until the whole block is in the data ram

(this can be imitated by using valid bits for transfer blocks or even quads). Secondly, the

access time to the data ram in case of a prefetch can be limited. The access time is set

by the buffer and the data ram, and no longer by main memory. This makes it easier to

perform prefetches in the background.

49

Architecture of the data caches

The read buffer can also decrease the miss penalty of a write miss. When the execution

unit wants to write data to a block which is not in the cache, the data can be written to

the read buffer before the rest of the block is fetched from main memory. The control unit

must take care that this data is not overwritten by the data fetched from main memory.

This strategy can reduce the miss penalty for writes to zero, since a write to the buffer

takes no more time than a write to the data ram.

The status information and the addresses of the data in the buffer can reside in the tag

ram. Thus all status information is kept in one block. The buffer can be seen as an

extension of the data ram. The size of the buffer is dependent on the size of a block. If

the cache is multi-ported, a buffer that contains more blocks can be advantageous, since

misses to different blocks can occur at the same time (Le. two read misses and one write

miss on two read ports and one write port). The advantages of a read buffer are

dependent on the size of the cache (with a low miss ratio the miss penalty will become

less important), the block size (small blocks can be transferred to the data ram with no

extra cost) and the size of the buffer.

The buffer can be accessed by the control block. The access can be demanded by the

execution unit if a part of a block is already in the buffer, but not in the data ram (this can

be a read or a write request! I). The control block itself can access the buffer for prefetch

activities. Because the control block has to check if the data are in the read buffer before

it can access the buffer, the buffer must have a very short access time. The buffer will

also be accessed by the Memory Management Unit (MMU), when parts of a block are

moved from main memory to the cache.

4.1.4 The write buffer

.
Besides a read buffer to speed up cache misses, a write buffer can used to speed up

cache misses in a full cache, when one block is replaced by a new block. If a dirty block

50

Architecture of the data caches

needs to be replaced, it has to be written back to main memory, before the new block

can take its place in the data ram. When no buffer is used, the miss penalty for the

replacement of a dirty block will be about twice as large as the miss penalty for a non­

dirty block. Both miss penalties can be equalised using a write buffer. On a miss on a

dirty block. the block is written to the buffer before the new block is fetched. Only when

the transfer of the block from main memory is completed, the dirty block is written to main

memory. Since main memory is slow, the read request can even be issued before the

block is written to the write buffer. Thus, the miss penalty will be dependent only on the

time needed to fetch a block. Problems can arise however. when the write buffer is full

when a dirty block has to be replaced. A replacement strategy which uses prefetching

(linear cache), or a buffer with a size of more than one block will solve this problem.

Prefetching will limit the number of misses, and thus limit the number of times that the

write buffer is full when a new dirty block needs to be replaced. When a large buffer is

used, more than one block is needed to fill the buffer, so the buffer will be full less often.

The status information and the address of the data in this buffer can reside in the tag ram

too.

The write buffer needs some control logic to avoid conflicts between the control block and

the MMU. If something is written to a transfer block (access via the control block) while

this data is moved to main memory, the write has to be cancelled, and started again when

the write from the execution unit is completed (see also section 4.2).

The write buffer can be accessed by the control block. Because the tag will reside in the

tag ram, the execution unit can still modify or read the data in this buffer. The data can

also be moved back to the data ram. The buffer can also be accessed by the MMU (either

directly or via the control block) to move data to main memory when the MMU indicates

that data can be transferred (dependent on the access protocol between the cache and

main memoryjMMU). If a block consists of transfer blocks, only the dirty transfer blocks

have to be written back. When the MMU indicates that all dirty blocks are written back,

the whole block will be marked invalid (the space is freed).

51

Architecture of the data caches

4.1.5 Intelligent buffers.

The read and the write buffers are used to minimise the miss penalty. To work correctly,

they almost never will be filled. An intelligent buffer can use this free space, in a linear

cache or a direct mapped cache with a replacement strategy, as an extension of the

cache. This is done by introducing a controller and a small tag memory for the buffers,

containing the destination of the data (fig. 4.3). There are three possible destinations for

..n.
Buffer

DATA
T
A
G

I

I

I
I

I
I
I
I
I
I

I
I
I

I

!_~co;r~lJ

Figure 4.3 An intelligent buffer

the data, each giving certain "rights" to the data.

Destination:

RAM: This data mostly will reside in the read buffer. It arrives there by a (pre)fetch.

As soon as a whole block has arrived, it will be moved to the data ram. It

can not be replaced by another block before it is moved to the ram.

52

Architecture of the data caches

Data of this type can also reside in the write buffer, in case the TOS moves

up and down in quick succession. The data will be moved to the data ram

as soon as possible. In a linear cache there will always be place in the ram,

but in a direct mapped cache it can replace a dirty block from another

process. In the latter case the data will be moved to the read buffer first.

Data with destination RAM may be dirty.

MAIN:

BUFFER:

This data will be dirty and has to be written back to main memory. It

normally resides in the write buffer. It can not be replaced by other data

before the write back has completed. A block with destination MAIN in the

read buffer will be moved to the write buffer as soon as possible.

Data with destination buffer only resides in the intelligent buffer. It is data

which is requested by the processor, but does not fit in the RAM. The data

may not be dirty and can be replaced by other data at any time. It can be

reside in each of the buffers (not simultaneously in both). A buffer is not

considered full if it contains data with this destination.

Changes of the destination of the data blocks can be made by the control block and by

the buffers themselves. The following transitions exist:

RAM· > BUFFER: Non-dirty blocks for which there is no longer a place in the ram. This

can happen when the TOS increases while a block is {pre)fetched.

When the block is completely valid (in the buffer), the buffer sends

a request to move the block to the control block. This block can send

back a signal that it no longer has a place reserved for the data in the

ram. The destination is then set to buffer.

RAM -> MAIN: Dirty blocks for which there no longer is a place in the RAM.

53

Architecture of the data caches

MAIN -> BUFFER: If all dirty transfer blocks from the dirty block are written back, the

destination is changed to buffer. In a linear cache with the hybrid

replacement algorithm however, the block will be invalidated if the

write was dictated by the dirty pointer (a copy of the block will still

reside in the ram). This invalidation will require an extra state (MAIN,

DIRTY POINTER) or some communication with the control block to

check for a copy.

MAIN -> RAM: This transition is dictated by the control block. It occurs when the

block is situated below the base and the TOS decreases. The control

block can then force the transition by issuing a (pre)fetch.

BUFFER -> RAM: This transition is also dictated by the control block, but now the data

is dirty.

BUFFER -> MAIN: This transition automatically happens when something is written to

the block. Since it becomes dirty, it has to be written back.

The use of intelligent buffers will result in a lower miss ratio but also some extra hardware.

The buffers can each have a controller to govern the changes in destination, or share

one controller.

4.1.6 The control block

The control block (fig. 4.4) controls the dataflow in the cache. It avoids conflicts between

the requests which want to access the various stores and buffers at the same time. Since

most stores are multi-ported, it can resolve conflicts by appointing different ports to

different requests. This can be a fixed allocation; each port is dedicated to a specific task,

or a dynamic allocation, where the ports are allocated depending on the demand. A fixed

54

Architecture of the data caches

allocaticn will require more ports, but less logic than dynamic allocation. The type of

control block

ro " •• ·····························1
,....----'----,

... :
~!. bus unit ~ ,.
~ '-------':==t:,----------.....::=F-.---'1

Figure 4.4 The control block

allocation and the number of ports for each ram or register block is dependent on most

of the cache parameters. A good choice can only be made when simulation results are

knowr.. A fe'N ports are needed to serve requests simultaneously. By using some extra

ports, data can be written from the read buffer to the data ram, while the execution unit

fetches data from the data ram. The number of these extra ports also depend on the

extra bus traffic introduced by the replacement strategies.

The actions that take place in the control block are shown in fig. 4.5. Horizontally actions

that can be executed in parallel are shown, the serial stages are placed vertically.

Stage 1:

On a request from the execution unit, the tag block responds with hit information (address

or address and offset) and the status of the block which matches the (least significant)

bits of the address. The comparison of the most significant bits to determine a hit can

either be done in the tag block or in the control block. The status info of the buffers will

55

stage 1:

stage 2:

stage 3:

Architecture of the data caches

compare addresses

Figure 4.5 Cache actions on a reference

reach the control block on a separate bus, so no interference occurs between the buffers

and the ram. A hit is detected if the PIN and the address match and the block is valid. If

the RAM nor any of the buffers produces a hit, there is a cache miss. If the PIN of the

RAM also does not match, a task switch has occurred.

The various comparisons can be performed simultaneously. The PIN consists of 16 bits,

so a 16-bit comparator is needed to check the PIN. The size of the comparators for the

addresses is dependent on the block size and the cache size. The C-processor address

space is 4 gigabyte, addressed in quads (4 bytes), so 30 bit addresses are used. The

address of a block in the buffers does not include the bits used to select a quad in a

block. For a block size of 2m quads the address contains (30 -m) bits. The buffers require

(30-m) bit comparators. For the Ram a distinction has to be made between linear caches

and direct mapped caches. In a linear cache the address of the request has to be

checked against the borders of the cache (base, TOS). If the complete address is used

to address the cache, the address comparison requires two (30-m) bit adders

56

Architecture of the data caches

(subtractors). A cache, which is addressed with an offset from the TOS, needs only a (30­

n) bit adder. (cache size = 2" quads)

A direct mapped cache requires a (30-n) bit comparator to determine if there is a hit. The

n-m remaining bits are used to select a block in the cache.

A p-ported cache requires an address check for each port to the ram, and for each buffer

entry (fully associative buffers).

Example: linear cache, 5-ported (p=5), block size 16 quads (m=4), cache size 512

quads (n =9), both buffers contain 4 quads.

PIN comparison RAM: 1 1 16 bit comparator

PIN comparison buffers 40 16 bit comparators

RAM address check 10 26 bit adders

(reI. addressing 10 21 bit adders)

buffer address check 40 26 bit comparators

This makes a total of 91 signals, which are used to produce 5 hit signals.

Most of the hardware is used for the buffers. It may be awarding to reduce

these costs (see also section 4.7).

These results are used in stage 2, where the data are moved to the correct part of the

cache on a hit, and the replacement algorithm starts working on a miss.

Stage 2:

Since the replacement algorithms differ for the various cache designs, the actions on a

miss are treated in the sections on the specific control blocks (4.3.1 and 4.4.1).

On a read hit, the data is moved from the hit place (RAM or buffer) to the correct port.

On a write hit, the data is written to the hit place and the tag of the (transfer) block is

marked dirty. The control block of the hybrid replacement algorithm will also update the

dirty pointer. A hit on the write buffer requires some extra actions. The replacement

algorithm now has to decide if the block will be moved back to the data ram (actions like

57

Architecture of the data caches

on a miss, but fetch from write buffer), or if the write back will proceed. The hybrid

algorithm requires some special attention here. In this algorithm, a block can reside in

both the cache ram and the write buffer. When it is written back because the distance

between the TOS and the dirty pointer is to small, it will be written to the write buffer first.

Then a copy of the same data resides in both the data ram and the write buffer, until the

block is actually written back to main memory. The write will then proceed to both the ram

and the buffer. The block in ram will remain not dirty.

In case of a write miss, it is possible to reduce the miss penalty. The data can be written

to the data ram or the read buffer and the rest of the block can be filled in from main

memory later. Thus the write can take place immediately and the rest of the block can be

fetched later. This results in no write miss penalty. This option will be discussed further

in the next sections, since the difficulties implementing it vary for the different caches.

The handling of task switches is different for a direct mapped cache and a linear cache.

The direct mapped cache treats a task switch like a normal cache miss. Only if a

replacement algorithm is used, the pointers have to be initialised for the new stack.

A linear cache on the other hand, needs to be flushed. In stage 2 all dirty blocks in the

cache ram are moved to the write buffer, and from the write buffer to main memory. The

time needed for a task switch depends on the number of dirty blocks and the size of the

write buffer. It varies between no time (no dirty blocks) to some memory cycles (not all

dirty blocks fit in the buffer). The time also depends on the use of burst writes. It can be

faster to write back a whole block (burst) instead of only the dirty transfer blocks (several

normal writes). When all dirty blocks have been written to the buffer, the data ram is

invalidated, the new PIN is put in the PIN register and the pointer registers in the tag are

initialised (stage 3). Finally the new process can start with a miss.

The stages 1) and 2) have to be completed in the same clock cycle, so that the cache

can work on the same speed as the execution unit. The write request will probably be in

the critical path of the cache. The dirty bit in the tag has to be set and the data has to be

58

Architecture of the data caches

written to the cache. These writes can only start when the hit data is present. The write

has to be finished before a read of the tag and the data can be issued in the next clock

cycle.

The control block accesses all other blocks of the cache, and also gets information of all

these blocks and the execution unit.

4.2 Communications to the MMU.

The MMU is placed between the cache and the main memory and plays an important role

in the communications between the two parts when data are transferred. The control of

this traffic introduces some communication between these two units. The MMU

communicates with the control of the buffers to provide the correct data to the requesting

buffer as fast as possible. On a miss, the control for the read buffer (the read control) and

the control for the write buffer (the write control), can initiate the data transfer protocol with

the MMU. At a read request, the address of the wanted transfer block is provided to the

MMU. which will transfer this part of the block first. and sends the rest of the block later

(the standard data types cannot overlap (transfer) block boundaries). The read control will

update the tag of the buffer each time a transfer block arrives. As soon as the MMU

signals that the whole block is sent, the read control can initiate the transfer from the

buffer to the data ram. The read control has to keep track of bytes that are written by the

execution unit to the read buffer to avoid that these data are overwritten by data from

main memory. If a complete transfer block is written, the transmission of this block can

be cancelled by the read control.

The communications with the write control are a little more complicated, since they can

be interrupted by hits to data in the read block. Only the dirty transfer blocks of a block

have to be transferred. The total amount of data to be transferred now is dependent on

the size of the transfer blocks and the number of dirty transfer blocks. Large transfer

blocks will result in more data per block and a larger probability of dirty transfer blocks.

59

Architecture of the data caches

The transfer of a transfer block can be suspended or cancelled by a write to that transfer

block. This requires some extra signals like 'halt' and 'cancel'.

Write control can be elaborated further with the introduction of 'pseudo-writes'. In an

instruction there afe three addresses : two for the operands and one for the result

(addresses can be implicit; a: = a+b). The address of the result is known to the execution

unit before the result is available. If the address of the result is given to the cache in a

pseudo write before the data itself, the control unit can use the address to get the hit

information, and issue a prefetch for the requested block on a miss. The pseudo write

can be labelled with a request number, which can be used to transport the result to the

cache. A write then acts as:

pseudo_write <address>, < request_number>

calculate result, get hit information

write < request_number>, <data>

The maximum request number depends on the maximum number of cycles it can take

for an instruction to calculate the result. The prefetch can be stopped if an exception

occurs in the execution unit which eliminates the need to store the result (divide by 0).

This system can also be used for the data transport between the cache and main

memory. It will require a more elaborated communication between the cache control and

the MMU.

4.3 The linear stack cache.

In a linear stack cache, the tag area requires special attention. First of all, the stack cache

needs only a minimal tag ram. The data in the cache is a continuous part of the stack.

Therefore only the lowest or base address and the highest (TOS) address of valid data

in the cache need to be stored. The only information that needs to be stored for each

block, regards the write-back or dirty status. The second effect of the continuous data in

the stack is that some special replacement or 'prefetch' algorithms can be used (section

60

Architecture of the data caches

3.3.3). To implement some of these algorithms several extra pointers have to be used.

The functions of the blocks will now be described.

4.3.1 The control block

The control block has to coordinate the transport of the data in the cache. The unit has

to avoid conflicts between data moving between the buffers and the data ram, and the

servicing of the data request. It will also implement the replacement strategy of the linear

cache. Two replacement strategies will be implemented (simulated) for the linear cache:

the cut back k algorithm and the hybrid algorithm. The control block itself consists of

several units (fig. 4.4).

The compare unit compares the address given by the execution unit with the boundary

addresses in the registers in the tag block. It also checks if the PIN numbers match. This

block provides this information to the replacement unit.

The replacement unit implements the replacement policy of the cache. The actions for a

hit are discussed in section 4.1.6. Since there are two replacement policies to be

simulated for the linear stack cache, two replacement units will be discussed. The unit for

the cut back k algorithm has to provide the following replacement functions on a miss (fig.

4.6).

Stage 2)

First a check is made to see if there is enough space to store the block(s) to be fetched.

If the ram is full, the data will not be placed in the ram, but will reside in the buffers. In

the ram it would replace data closer to the TOS, which is more likely to be used. On a

read, the data will be stored in the read buffer. On a write request, the data is written to

the write buffer, if the size of the data is equal to a transfer block. The data can be written

back without the rest of the block being fetched. Otherwise the data will be stored in the

61

Architecture of the data caches

----------->
ready for next request

\
I
\

I
I

write :

get blocks

reserve buffer

space in
___------'d;:.:;a~ta ram

I
\
I
\

\

\

\

\

\

\

\ read
\

\

/
I

I
I

I

J
I

2: I
I
I

stage 1:

stage

stage 5:

stage 4:

stage 3:

stage 6:

figure 4.6 Cut back K cache, actions on a miss

read buffer. The rest of the transfer block is fetched and the transfer block is moved to

the write buffer. If the buffer is full, the request will be hold until a block has been moved

to (write buffer) or from (read buffer) main memory.

If the ram does not have enough space to store the requested block (and the blocks

between this block and the base), the control block has to wait until a block is free before

the read request can be issued (stage 2a).

62

Architecture of the data caches

On a write request the data will be written to the read buffer, and the tag is updated

(stage 2b).

stage 3)

After the fetch is issued, some free space for the requested block is reserved in the

buffer.

stage 4)

On a write this state consists of the waiting for, arrival of and storing of transfer blocks if

the fetched block.

The fetch request for a read first fetches the requested transfer block. As soon as this

data has arrived, it is provided to the execution unit. Afterwards the control block waits

for the rest of the block to arrive.

stage 5)

When the whole block is stored in the read buffer, the block is moved to the data ram.

The tags are updated. The blocks between the old base pointer and the new base are

marked invalid (except the fetched block). The base pointer is updated.

stage 6)

The blocks between the old and the new base pointer are fetched. The tags of these

blocks are updated (= marked valid). The number of blocks fetched will be a multiple of

K.

The miss penalty for a write consists of stage 2). This can take from 1 cache cycle if

space is available, to several memory cycles if a block has to be moved to free some

buffer space. Everything after stage 2) can be performed in the background, i.e. a new

request can be serviced.

63

Architecture of the data caches

The penalty for a read miss is more severe, since it also includes stages 3) and 4a). It

now takes at least one memory cycle before the request can be serviced. Everything from

stage 4b) on can be performed in the background.

A second series of actions is started in the control block when the TOS starts to move

(fig. 4.7).

If the TOS moves down, all data between the old TOS and the new TOS are no longer

of interest (even if some blocks are dirty). The valid bits in the tag are reset to make room

for data below the base (stage 1). If the new TOS is below the base pointer, the block

containing the new TOS is fetched and the base pointer and the TOS are updated (stage

2).

down up

stage 1:

stage 2:

stage 3:

fetch TOS

Figure 4.7 Cut back K cache: TOS movement

On an up movement space has to be reserved for use of the stack. If enough space is

available (new TOS < base + cache size) only the TOS register needs to be updated

(stage 3). Otherwise the base has to be moved up to free this space. The dirty blocks are

written back to the write buffer (free space, stage 1). Then the blocks between the old

TOS and the new TOS will be cleared. This consists of setting the valid bit and, optionally,

clearing the blocks by resetting them (stage 2). Finally the TOS and the base are updated

64

Architecture of the data caches

in stage 3). Normally clearing the blocks is not necessary since usually newly allocated

cache space is written first. Cache blocks can be cleared to avoid the possibility of

reaching unwanted data by moving the TOS up after, for example operating system calls.

\wrile

gel blocks

wait quad

\

\
1

\

\

\

\

\

" read
\

\

stage 3:

/
I

I
I

I
I

stage 2::

stage 4:

stage 5:

stage 1:

stage 6:

stage 7: update pointers
---------~

ready for next request

Figure 4.8 Hybrid algorithm, cache miss

65

Architecture of the data caches

An extra clear bit in the tag ram can be used to identify addresses that are appointed to

the cache, but never have been written to.

The hybrid algorithm uses an extra pointer, the dirty pointer, to keep track of the lowest

dirty block in the cache. A second extra pointer is used to record the distance between

the TOS and the base. The state diagram of the algorithm looks very much like the state

diagram of the cut back K algorithm (fig. 4.8). However, an extra state is used to update

the dirty and the prefetch pointer.

On a miss, the t h state is introduced. If some data below the base is fetched, the distance

between the base and the TOS increases. The prefetch pointer will be updated, which can

eliminate the need to prefetch blocks.

A write miss results in a dirty block below the base. The dirty pointer now has to point to

this block. This will probably cause the dirty transfer block in this block to be written back

to main memory. The distance between the dirty pointer and the TOS is likely to exceed

the offset.

As can be seen in the figure, the demand replacement algorithm is active from stage 1)

to 6), while from stage 7) on the prefetch part of the algorithm becomes active again. In

this way the prefetch algorithm does not interfere with the demand algorithm.

When the TOS moves, the pointers have to be updated (fig. 4.9). As the TOS moves

down, the prefetch pointer has to be updated (the distance between TOS and base

decreases). If the TOS passes the dirty pointer, the pointer will be set to point to the new

TOS. This assures that no more blocks are written back (TOS - dirty = 0, < offset) since

there are no dirty blocks below the new TOS in the cache (stage 3).

On an up-movement of the TOS, the prefetch pointer has to be updated; the distance

between the base and the TOS increases. If the TOS passes (base + cache size), the

base pointer has to be updated too. Finally, if the TOS even grows beyond (dirty +
cache size), the dirty pointer has to be updated, after the dirty blocks between the old and

66

down

Architecture of the data caches

up

stage 1:

stage 2:

stage 3:

fetch TOS

Figure 4.9 Hybrid algorithm: TOS movement

the new dirty pointer are written back.

If the demand replacement algorithm does not require any bus cycles (Le. on hits), the

hybrid algorithm can use these cycles to move the pointers to within their offsets.

Normally, the offsets are chosen thus, that the dirty pointer and the prefetch pointer can

not be both outside their offsets. In an almost empty cache, only prefetches will be issued,

while in a full cache only write backs are useful. The prefetches and dirty pointer write

backs can always be interrupted by demand reads and writes. The blocks written back

remain valid in the cache; since they are no longer dirty, the dirty bit in the tag is reset.

After a dirty block is written back, the algorithm will have to search the next dirty block.

This is done by reading the dirty bits, either through the normal ports on the tag, or

through an extra port. Of the parts of the tag, the dirty bit is used least; it is only written

on a write. Only on a write or on a write back this bit has to be accessed. The

construction of the tag thus can help the implementation of this algorithm.

67

Architecture of the data caches

Finally there is one occasion when the prefetching of blocks has to be suppressed. When

the TOS approaches the bottom of the stack normal use of prefetches would result in

fetching data below the stack space. This can be avoided by a check before the prefetch

is issued.

The last unit to be discussed is the bus unit (fig. 4.4). It decides which port and bus have

to be used for each data transfer in the cache. The allocation of the busses can be static

or dynamic.

The control block for the hybrid algorithm is more complex than the control block for the

cut back k algorithm. This can result in longer service times for the hybrid cache. Since

there are more accesses to the data ram, more write backs, prefetches, an extra port for

the data ram or the tag ram might be needed to avoid bottlenecks. The performance of

this algorithm might be better, mainly at task switches. In normal operation the expected

higher hit ratio can be offset by a higher bus usage (see section 3.3.4). If the resulting

service times for the hybrid algorithm result in a cache that can not service requests in

one clock cycle, the cut back K algorithm should be chosen or the performance of the

hybrid linear cache should be improved (introduction of the 'pseudo write'). If the bus

bandwidth proves to be the bottleneck, the least demanding algorithm should be chosen

(cut back K).

4.3.2 The tag block

In the tag ram of the linear cache the status of all data in the cache and the addresses

of the data in the buffers (if present) will be stored (fig 4.10). Secondly, there are several

registers present which contain the addresses of the various boundaries needed for the

replacement algorithm. For the cut back k algorithm, only the base register, which

contains the lowest valid block in the cache, and the TOS register, which contains the

highest valid address or the TOS, are necessary. The hybrid algorithm requires two

68

Architecture of the data caches

additional registers, one containing the address of the lowest dirty block in the cache and

...~

t bi k! a~ oc
!
i I PIN for ram ~ .._.._.._.._.._.._.._.._.._.._.._.._.._..
i.. ram

C V d :..~...1 .
a]

e 1 r
a .

t registers
]

I

TOS

r····
r d basey

dirty
: : : : n-bit address

Tag for

~
PIN for

I ~..buffers buffers

Figure 4.10 The tag block for a linear cache

one containing the distance between the TOS and the base address.

The ram contains two status bits for each (transfer) block in the cache and in the read

and the write buffer. These bits are a valid bit, which indicates that the block in the cache

is still valid, and a dirty bit, which is set when a write to the block occurs.

The base register and the TOS register contain the complete address of the boundaries

of the stack cache. The addresses of the blocks in the buffers are also in separate

registers. The dirty register only needs to store the LSB's of the address, since it will

always point at a stack location between the base and the TOS. A problem can arise

when the TOS and the base do not point to the same page. Extra logic is required if this

69

Architecture of the data caches

passing of the page boundary causes a non continuous address space for the stack. The

PIN of the current process can either be stored in the boundary registers, or in a separate

register.

The logic to compare the address issued by the execution unit and the addresses of the

contents of the buffers and the registers, can be placed in either the control block or the

tag block. This logic gives hit/miss information, and indicates when a block has to be

written back to main memory, or has to be replaced.

To implement the hybrid algorithm, two extra adders are necessary to see if the two

pointers exceed the offsets. For a cache size of 2" quads and block size 2m quads, n - m

bits have to be stored and compared (thus 2 (n - m) bit adders required). If a block needs

to be stored or fetched, this information is passed on to the control block. In case of a

write back, the control unit then accesses the tag to find the dirty transfer blocks to be

stored.

The tag ram needs to have the number of ports of the execution unit, plus some ports

to use for the replacement algorithm and to move data between the buffers and the data

ram while the data requests are serviced. The cut back k algorithm requires no additional

ports, since it operates on demand (a block is fetched/stored on demand). The hybrid

algorithm requires at least one extra read modify write port to update the dirty pointer

when the TOS moves up. This will be a one bit port, dedicated to the dirty bits. To check

more than one block at a time, more read ports can be used. The write port can also be

used if new data is fetched when the TOS moves down.

In the hybrid algorithm, the control block accesses the dirty bits in the tag to find the

transfer blocks to replace when the dirty pointer is smaller than the offset. The dirty bits

don't have to be accessed on a read, only on writes and write backs. If the dirty bits are

placed in a separate ram block (fig. 4.11) this can reduce the number of ports otherwise

needed for the tag ram. However, two rams require two selection parts.

70

Architecture of the data caches

t block

1 I P1N for ram ~._.._.._.._.._.._.._.._.._.._.._....•
,- -:..=..=..=..=..=..=..=..=..=..=\.=..=..=..=..=..=.., •

rem ! I
r-----+-''_==; ; I

d c V ! I__ ~L ~

1 1 a .._.._..L.._ .._.._.._.._.._.._.._.._.._.._.._.._.._.._.._.. "-"-

reI
t 1 registers

y .~ d I ;I~ r--·
lDJ Tag forr;;ryl PIN for ·1' n-bit address ~__

buffersLLJ buffers ~:"T ..~
;._.._..:-..:..J

Figure 4.11 Tag for the linear cache with dirty bits separated

The part which contains the addresses and the status of the data in the buffers has to be

associative. All entries of buffers have to be checked for all ports. So each entry needs

a comparator for each port of the execution unit. Again extra ports for the tags have to

be used to move data between the buffers and the data ram (requires an update of the

tag) at the same time as data requests are serviced. The implementation of the

replacement strategies will also be helped by these extra ports.

4.4 The direct mapped stack cache

The direct mapped cache needs a complete tag; the address of the data needs to be

present for all entries. The control block looks a lot like the control block of the cut back

k linear cache. Since the direct mapped cache is chosen for its low penalty on task

71

Architecture of the data caches

switches, it will not flush the cache on a task switch. The control block and the tag block

will be discussed in the following sections.

4.4.1 The control block

As mentioned in chapter 3. the direct mapped cache will be used when the task switching

frequency is high. So the replacement strategy of the direct mapped cache can be simple:

only the blocks that are requested by the execution unit have to be fetched. There is no

kind of prefetching (so the cache can be compared to the cut back k linear cache).

Prefetching can be included by implementing the same (hybrid) algorithm as for the linear

cache, but is more difficult to implement. It has to check if data below the base resides

in the ram (on a miss). The stages are almost the same as for the cut back K algorithm.

Only stage 2) is different.

Stage 2)

A block that is fetched now always replaces an other block. If the block to be replaced

is dirty, the new block can only be fetched if space is available in the read buffer to store

the block and if space is available in the write buffer to store the dirty block.

A movement of the TOS now requires a check of all places where blocks between the old

and the new TOS can be stored because these blocks have to be invalidated if they

belong to the current process.

4.4.2 The tag block

The tag block of the direct mapped cache (fig. 4.12) holds the same status information

as the tag block of the linear cache. But instead of keeping border addresses in registers,

72

Architecture of the data caches

the MSB's of all the blocks in the data ram and the complete addresses are kept in the

tag ram.

tag block

vd p
al I
1 r
1 t N
dy

MSB's
of • - - - - - - - - - - - - - ..
address ~ .._.._.._.._.._.._.._.._.._. __ .._.._..

Figure 4.12 The tag block for a direct mapped cache

4.5 The global data cache

In this section the blocks of the global cache are briefly discussed. The cache will use

the LRU replacement algorithm.

4.5.1 The data ram

The set size of the global data cache does not need to be one. A set associative cache

will be used, probably with set size 2. The data ram now consists of two ram banks,

addressed by the same bus (fig. 4.13). When an address is provided, both banks provide

their data, and the data corresponding to the complete address is selected by the control

73

Architecture of the data caches

data block
I•

...._.._.... Bank 1_.._..

-"r" ._.._..•
!
!
!
i

..... 1
Bank 2.... :

•._..!-..

"-"~fi_.. .._..-

Figure 4.13 The data block of the global data cache

block.

4.5.2 The tag block

The tag block again holds the virtual and the real addresses and the status information

of all the blocks in the data ram (fig. 4.14). The real address is kept in the tag ram to

avoid real to virtual transformation in coherence issues (see section 4.4.3 about the

control block). The tag ram is addressable per set. If an address is given to the ram, the

ram provides the tag of both blocks of the data ram. Thus two addresses, two pieces of

status information and two PIN's are given to the control block. The status information

now includes coherence information and replacement information besides the valid and

the dirty bit. These last two bits can be a part of the coherence information. The

replacement information will be one bit per set, which indicates which element of the set

is least recently used.

74

Architecture of the data caches

tag block

.- -.•.._...._00_00_.

.. bank 1. ram
L c

PR 0 MSB'su h
e

I of t arlk 2i r
e addressn n Nf c

0 e

ill bIts

m+n bits

[~fersBrJ a_d_d_r_e_S_s__----J~••~.~t

Figure 4.14 The tag block of the global data cache

4.5.3 The control block

The control block consists of several parts.

The control block checks if one of the elements in the referenced set, or the contents of

the buffers is wanted by the processor and checks its validity. It sends the correct data

to the processor. If the wanted address is not in the cache, the data can be in the cache

with an other address, used by an other process (Le. PIN is different). This so called alias

can map to only one set, if the number of sets is less than or equal to the page size and

if the LSB's remain the same in the virtual to real address mapping. Aliases can be found

by keeping the real addresses in the tag ram too. On a miss, the real addresses of the

data in all the sets are compared with the real address provided by the virtual to real

address translator' (usually situated in the MMU). If there is an alias, the data is provided

75

Architecture of the data caches

and the virtual address in the tag ram is changed. On a miss it signals the replacement

unit.

The replacement unit decides on basis of the LRU bit which element of the set has to be

replaced. If this element is dirty, it will be written to main memory via the write buffer. It

only replaces blocks on a request from the control unit.

The snoopy unit monitors the address bus and compares the addresses on the bus with

the real addresses in the tag ram. If the real address was not in the tag ram, a real to

virtual translation would be needed for each monitored bus access. This could slow down

the bus, because the snoopy unit must have reacted before the bus transfer is completed.

The unit reads and writes in the tag block and on the bus according to one of the

coherence protocols discussed in chapter 2.

4.6 Multi port issues and priority

Usi!1g more than one port for the cache introduces some problems but can give some

extra options to the cache. The cache needs logic to detect hits for each port to the

execution unit. This logic does not need to communicate with the logic of the other ports,

as long as it produces hits. A miss will be handled by a central part of the control block.

The ports can give some priority to the requests as only one miss at a time will be

handled. The priority of the ports will probably be fixed (Le. port 1 first, then port 2, etc.).

As long as the read buffer is not full and there is a write miss, the execution unit can write

to the read buffer as if there was a hit on the read buffer. The rest of the block will then

be fetched after possible read misses have been serviced. If there is no place in the read

buffer, the writes will be serviced first.

Secondly, some hardware has to check that prefetches and data movements between

buffers and the data ram do not interfere with data requests (avoid the use of blocks

requested by the execution unit). This last issue mainly affects the extra ports introduced

to do these extra transfers.

76

Architecture of the data caches

The minimal number of ports needed for the cache blocks has to ensure that the

accesses to the blocks by the control block do not interfere with the demand requests.

Moving a block from a buffer to the ram may not prohibit access to the ram for a

processor read or write. The data ram needs one extra read port to transport data from

the data ram to the write buffer and an extra write port to receive data from the read

buffer. The tag needs an extra read port and a write port to let the control block read the

tag of the block that is to be replaced, and to write the address of a fetched block. The

tag of the buffers can also be accessed by the MMU. Because the changes in the buffers

are controlled by the control block (to avoid conflicts), the tag does not need more ports.

The buffers themselves need extra ports to exchange data with main memory and the

data ram.

Example: Three ports to the execution unit; 2 read an 1 write port.

Data ram: 3 read ports + 2 write ports

Tag block: 3 read ports + 2 write ports

Read buffer: 3 read ports + 2 write ports

Write buffer: 3 read ports + 2 write ports

Two read ports and one write port are dedicated to service requests of the

execution unit. All blocks together have 12 ports for this task, of which only

three can be used simultaneously. Each block has one read and one write

port for other tasks. All these 8 ports can be used simultaneously.

4.7 The definition of local data revisited

In chapter one, three definitions of local data were given. In the above, the second, most

wide, definition was chosen: all data on the stack is local. Data requests outside this

definition will be handled by the global data cache (if present) or will be presented to main

memory. If all references to the stack are relative to the TOS, or use a flag, this algorithm

makes it possible to send only stack requests to the stack cache, and all other requests

to the global cache (if present). If no special addressing modes are used, an additional

77

Architecture of the data caches

check against the lowest address of the stack has to be made to determine a stack cache

miss.

The main advantage of this definition is, that stack data can only reside in the stack

cache. This simplifies the communications between the processor parts (execution unit,

both data caches, MMU, main memory). If intelligent buffers are used, some of the global

data in other definitions can be stored in the buffers. At the cost of larger buffers, more

of this data can be stored. The buffers will only contain a small portion of the global data.

A dedicated global data cache can outperform these buffers.

When no global data cache is used, this definition of local data will probably give the

highest performance.

The definition no. 1 given in chapter 1 (only data fitting in the cache are local), almost

begs for a global data cache. There is a big penalty for data just outside the cache if the

global data cache is not present. Each change of the TOS would cause data to change

between local and global. Data that becomes global no longer fits in the cache and can

be invalidated, or moved to the global data cache. If this data is placed in the global data

ram, the global cache could be used as buffer for the stack cache. The buffers on the

stack cache will be obsolete. Since stack data just below the stack cache can reside in

the global cache, the global cache must be searched on each miss (global data can

become local if the TOS moves down). All misses to the stack cache can be handled by

the global data cache; there are no buffers in the stack cache; some of the extra features

can not be used: the stack cache could become quite simple. If buffers are present, more

data can be stored in the stack cache, and since data from only one address can reside

on each place in the read buffer, this buffer can be a linear buffer. However the

communications between the parts of the processor become more complicated. The

global cache will contain stack data, which will not be flushed on task switches. This does

not cause any complications since the global data cache is equipped with an algorithm

to maintain coherence. Since stack data can reside in both data caches, coherence

problems between both caches can occur. A write buffer in the stack cache can contain

global data (replaced dirty data).

78

Architecture of the data caches

The buffer strategies used for the stack cache can now be used for the global data cache.

The definition no. 2 gave a small restriction: data below a certain offset from the TOS is

no longer local. To implement such an algorithm an eXtra check is required for each

reference. A cache based on this algorithm can use all the features mentioned in this

chapter. The communications between the stack cache and the global data cache will be

complicated by the fact that stack data can reside in both the global data cache and the

stack cache.

The definition of local data is still difficult. However, since no decision has been made

about a global data cache, definition number 2, the most wide one, seems the best

solution. It has the best performance when no global data cache is used, and

communications with the global data cache are most simple when such a cache is

present. If the stack references posses a high locality to the most recently used stack

frames, most misses will be global references. Wrth a less local reference pattern, one of

the other definitions can give a better performance if a global data cache is present. The

10caHty of stack data is highly compiler dependent (what should be placed on the stack?).

In definition 1 and 3 (stack data in the global cache), stack data has to compete with

other global data for a place in the global data cache. If most global data ~n either of

these 2 definitions) is non stack data (which can be caused by a high hit ratio in the stack

cache), the performance of a stack cache based on these definitions will not be (much)

higher than for a cache based on definition number 2. Simulations are needed to decide

which definition of local data gives the best performance. Definition number 2, all stack

data is local, could be used as a default.

4.8 The performance of the cache

The size of the cache has to ensure a stack cache hit ratio comparable to the instruction

cache. The expected hit ratios can only come from simulations. The optimal block size

79

Architecture of the data caches

and the transfer block size (resp. 32 quads an 8 quads in the instruction cache) will be

smaller, since data can be written to the cache. The speed on a write can be critical for

the performance of the cache. The introduction of pseudo writes (section 4.2) can

eliminate this bottleneck. Splitting the dirty bit from the rest of the tag will reduce the

number of ports to this part of the tag (the dirty bit is not needed for read requests, so no

port needed for read requests) and thus speed up the cache response on writes. The

read and write buffers will reduce the miss penalty, while intelligent buffers will use the

buffer space to reduce the miss ratio. As stated before, the cut back K algorithm can

perform quite well when the task switching frequency is low. The hybrid algorithm can

perform even better and will certainly outperform the cut back K algorithm as the task

switching frequency increases. A direct mapped cache can be used when the task

switching frequency is extremely high.

However, the more the hit ratio is increased by using more complicated algorithms, extra

buffers, more complicated write strategies etc, the more space and is used by control

logic. One has to keep in mind that this space could also be used to store more data. It

is difficult to translate the complexity of the control block to an amount of silicon, but

extra complexity must give an obvious increase in performance On simulations) before the

extra cache features are actually implemented.

80

Chapter 5 Cache simulations

In this chapter an answer is given to the questions Why, and How the cache is simulated;

what has to be simulated; an outline of a simulator is given; what data is required to

simulate the cache and the various ways to generate traces are discussed.

5.1 Why does a cache have to be simulated?

A cache will get a number of data requests from the processor or execution unit, which

it has to service in the shortest time possible. These data requests follow a certain

reference pattern, which can be used to adapt the various cache parameters in such a

way that the cache performs best. An optimal way to test the behaviour of a cache is to

observe a hardware cache in a hardware environment. However, most parameters are

fixed in hardware, so a change in the parameters would require the manufacturing of a

new cache in hardware. This approach is too expensive. Another approach is to model

the dependency of the cache characteristics on the cache parameters, and the

characteristics of the reference patterns, in a mathematical model of equations. Here the

validation of the model is the gravest problem. It appears that the characteristics of

programs are not similar, and that the effects on cache behaviour are serious

[Aga89(DDV89AGA)].

An intermediate approach is to model the cache in a computer program and to evaluate

the cache behaviour by feeding this simulator with a series of references. These

references, or traces, can be obtained from an existing processor by using a hardware

monitor. Another way to obtain traces is to run a workload on a software model of the

processor. A last way to get traces is to manufacture them artificially by using trace

characteristics, but in this method the trace characterisation has to be validated again.

81

Cache simulations

The first method is mostly used when a cache for an existing processor is designed. The

third method gives the least reliable results and can be used for a rough estimate of the

cache behaviour, and will be used when the second method is not available. Traces from

software are widely used (the Architect's Workbench [Mit88(P61)]) because it gives

accurate results, and can be used when a compiler and/or assembler is available for the

C-processor.

5.2 What has to be simulated?

The behaviour of the cache has to be caught in some numbers. Two parameters which

are widely used for cache characterisation are the miss ratio and the traffic ratio. These

parameters describe the effectiveness of the cache and the use of the bus between the

cache and main memory. These parameters do not use any timing information. This

information can be used to calculate a service time. The service time is the number of

cycles a computer (built with the execution unit, the cache and some main memory)

needs to run a certain trace.

With these parameters the performance of the cache can be measured. The next decision

to be made is which cache parameters will be included in the model. Partly this is dictated

by the cache models of chapter 4 and the general parameters discussed in chapter 1.

Included are:

architectural parameters like

cache organisation (linear/direet mapped)

replacement policy

size characteristics of the buffers

general parameters like

cache size

block size and transfer block size

number of ports

82

Cache simulations

number of cache (processor) cycles per main memory access (latency and

access time.

The simulator uses these inputs and the information from the trace to produce the hit and

traffic ratio and the service time. Some extra information can be calculated to measure the

performance of the replacement strategy, the buffers, etc. This leads to improvements in

the design of the cache.

5.3 Traces for the stack cache

The traces, which are used to simulate caches, need to store all information necessary

to get useful characteristics from the simulations. The traces will contain the minimal

amount of data required to get useful results, since traces tend to be long. Especially if

the effects of multi-tasking are to be included, the traces can require a lot of storage. A

minimal trace for a simple cache is a list of successive addresses of data requests. The

timing in this kind of traces is minimal, only the order of the references is recorded.

The stack cache requires more detailed timing information. Other information that is

required, regards the TOS movement, read/write information, the port issuing the request

and information on task switches.

The timing information for the stack cache has to be more detailed, to be able to give

estimates of the service time and the miss penalty. The stack cache uses buffers, which

can be filled. The replacement algorithm needs time to prefetch blocks. The amount of

time passed between the prefetch of a block and a request of data in the block can

determine whether the request results in a hit or a miss.

The timing information can be stored in two ways. First, one can store for each request

the amount of time (clock cycles) passed since the previous request was serviced. This

method is useful when more than one cycle elapses before a new request is issued.

Secondly, all clock cycles can be recorded. A flag is used to indicate that no requests are

83

Cache simulations

issued on a clock cycle. This approach requires less storage when one (or more)

requests are issued on almost every clock cycle.

The C-processor will be a high performance processor, equipped with a few ports

between the execution unit and the stack cache. This makes it very likely that at least one

request is issued on each clock cycle. Therefore the second approach of recording traces

will result in the least overhead in traces for stack cache simulation.

The movement of the lOS is used by several replacement strategies to optimise the

usage of cache memory. Information regarding these TOS movements should therefore

be included in the traces. The information is only needed when the stack moves. The

current TOS will be stored in the simulator.

The execution unit can use several ports to read from and write to the cache. The read

ports and write ports are separated. The ports will have a fixed priority. All requests can

be serviced in parallel, as long as they result in hits. When there is one miss, all hits will

be handled, the data from the miss will be read or written later. When there are more

misses at the same time, the priority determines which miss will be serviced first. Since

there is only one data port to main memory, only one miss can be handled at a time.

Priority and read/write information can be stored by appointing a port to a certain request.

The priority of the ports will be fixed in the simulator, so this information must be available

to the manufacturer of the traces.

The number of ports used in the trace will have to fit the number of ports used in the

cache. This can be done by using an optimising compiler for each of the wanted port

configurations. The trace then can be generated by using a tool like the Architect's

Workbench [Mit88(P61)]. As long as the exact number of ports between the stack cache

and the execution unit is not determined, one trace can be used to store the information

for several port configurations. This will reduce the number of traces to be stored. A

possible way to achieve this is given in appendix A.

84

Cache simulations

The behaviour of the stack cache on task switches determines the type of stack cache

to be used. The information about task switches has to be included in the traces. Task

switches on the C-processor are indicated by a change of PIN. As task switches are even

more rare than changes of the TOS, the PIN's only have to be recorded on task switches.

A suggestion for a trace organisation in which all the above characteristics are

implemented, is given in appendix A. This format is supported by the simulator, discussed

in the next section.

The traces can be compacted if basic blocks are used [Mit88(P61)]. The trace then

consists of basic block descriptions and a file in which the order of the basic blocks is

stored (order file). The description of the blocks can use the format of appendix A. The

stack cache is used to store local variables. The addresses of these variables on the stack

can vary for various procedure calls. If all addresses and movements of the TOS are

recorded relative to the current TOS, the same basic block can be used each time a

procedure is called. Problems can arise when a reference is made to some data outside

the stack frame of the procedure. This address can differ for various procedure calls, even

relative to the TOS. A possible solution could be to split the basic block in two parts, and

store the references which give problems in the order file. It is also possible to ignore the

problem and only put one address in the basic block. This will reduce the accuracy of the

simulation results.

The traces will have to match the actual reference pattern of the C-processor as close as

possible to get valid cache characteristics. With traces that match the reference pattern

less it is possible to gain insight in the effects of the cache parameters and the

replacement strategies. For this purpose traces generated by the workbench could be

used. To fine tune the stack cache to the C-processor, however, realistic traces are still

necessary. The number of these traces and the number of simulations with these traces

can be limited if other traces are used first. The final simulations with realistic traces can

85

Cache simulations

be used to examine the need of a global data cache and the matching of the traffic on the

instruction and the data bus.

5.4 The simulator

The simulator consists of three parts. In the first part the input parameters are read, the

second part reads the trace and does the actual simulation, and the last part generates

the statistics. If basic blocks are used, the basic block file is read in the first section of the

program, while the file containing the order of the blocks is read in the second part.

In the first part the cache configuration is read. This can be from a file in batch mode, or

interactive. All cache options as discussed in the previous chapters can be included.

These options are:

architecture (LinearIDireet mapped)

replacement strategy (Cut back K/Hybrid)

the number of blocks fetched on a miss (K of the cut back K algorithm)

the dirty offset (distance between dirty pointer and TOS when blocks are written

back in the hybrid algorithm, < cache size)

the prefetch offset (distance between base and TOS at which blocks are prefetched

in the hybrid algorithm, < cache size)

cache size (in quads, power of 2)

block size (1 ..cache size, power of 2)

the use of intelligent buffers (yin)

the use of pseudo reads (yin)

transfer block size (1 ..block size, power of 2)

read buffer size (quads)

write buffer size (quads)

the number of read ports and the number of write ports

main memory latency and access time (cycles)

86

Cache simulations

The number of read and write ports can also be passed in the header of the trace file. The

number of ports in the trace has to match the number of ports used in the simulator.

The simulation part will first translate the data from the trace to the data types used in

the simulator.

The second function of the simulation part is the simulation itself. The simulator has to act

as the control block of the cache (the control blocks are given in pseudo pascal in

appendix B). It has to keep track of the number of hits and misses and has to keep track

of data transfers to, from and within the cache. Finally it has to keep track of the number

of elapsed processor cycles. To be able to operate as a control block, the program will

need to know which data resides in the cache. This requires a data structure which

resembles the tag block in the cache. The data itself is not important and will not be

recorded.

The simulator stores the following information, which is used by the third part of the

simulator to produce the cache statistics.

1) the number of read and write requests

2) the number of read and write misses on the ram and the buffers

3) the number of elapsed clock cycles

4) the number of bytes transferred to and from the execution unit and main memory

5) the number of times and clock cycles the buffers are full

6) The number of conflicts between the demand and the prefetch part of the algorithm

On each clock cycle, the simulator first determines the status of the references. If all

references are hits, only the statistics above have to be updated. If a miss, a task switch

or a TOS movement occurs, a procedure has to be called to implement the replacement

algorithm. This happens after the hits have been recorded. This procedure will also record

the times at which blocks will arrive in the buffers (if a block is (pre)fetched) and when

transfer blocks are written back. These times will have to be checked each clock cycle,

to see if some data has arrived. The recording of these times can be used to make the

simulator event driven. The procedure will have to check too when conflicts between the

prefetch and the demand algorithm arise.

87

Cache simulations

The third part of the simulator calculates the statistics like hit ratio, transfer ratio, execution

time, etc. from the raw material gathered in the second part.

88

Chapter 6 Conclusions recommendations

6.1 Conclusions

The C-processor makes use of a stack cache to store local variables and pass

parameters between procedures and functions. In this report two possible architectures

for such a cache are discussed. Each of these architectures can use dedicated

replacement strategies and buffers to speed up cache misses. The linear cache with the

cut back K replacement algorithm is the most simple option. It uses the least control logic

and produces the smallest amount of bus traffic. It will have a higher miss ratio than the

linear cache with the hybrid algorithm and suffer at task switches when the cache has to

be flushed.

The more complicated hybrid linear cache will have a smaller penalty at task switches

since more of the data will be written back already at the moment a task switch occurs.

The usage of the bus will be less on task switches,but this algorithm will cost a higher

usage of the bus when no task switches occur.

A direct mapped cache can be used when the frequency of task switches becomes

extremely high. This cache type does not have to be flushed on a task switch. It requires

a complete address in the tag for all data in the cache, while the linear cache only needs

two boundary registers. The same replacement policies can be used as for the linear

cache but have to be adapted.

All cache types can profit from read and write buffers. These buffers between the cache

and main memory can reduce the miss penalty by fetching and writing blocks of data in

a background process. They require extra ports to the data ram and the tag to avoid

interference with the normal data requests. The buffers can also be used as an extension

of the cache when they are not completely filled with partly fetched blocks and data that

is not yet written back. This can further reduce the miss ratio.

89

Conclusions and recommendations

Writing data to the cache can cause problems for the speed of the cache. The data can

only be written after the control block has established that the data hits in the cache (or

not). The introduction of pseudo writes (Le. provide the address as soon as the instruction

is decoded and the data when available) can reduce the time required for a write to the

cache.

Since more than one request can be issued in one clock cycle, all parts of the cache will

be multi ported. They will even get some extra ports used by the control logic to

implement the replacement algorithm.

The performance of the caches has to be measured. A simulator has to be made, which

implements the suggested stack caches. The format for trace data has been defined. The

simulator has to use realistic traces to give a realistic estimation of the cache

performance. These traces are not yet available. At this moment work is done on the

architects workbench to provide these traces. To compare the behaviour on task

switches, these should be included too. Besides the normal performance parameters for

caches (Le. hit ratio, traffic ratio and service time) the performance analysis should include

both cache timing (the cache should answer data requests within one clock cycle) and

complexity (= mm2 silicon) too. Silicon used for control logic for a complicated cache could

be used to store more data in a simple cache. An increase of the data ram will double the

size (power of 2). The extra space can also be used to enlarge the buffers or the global

data cache.

6.2 Recommendations

First of all, the simulator has to be created and realistic traces have to be produced.

These should include task switches and timing information. The timing information

consists of the time between the servicing of one request and the arrival of the next

90

Conclusions and recommendations

request. When a simulator is available, the cache architectures can be simulated and

compared.

If the simulations are completed, the cache can be modeled on a lower hierarchical level.

This could end in the construction of a stack cache generator, which could tailor caches

to processors.

The simulation results can also show the need of a global data cache. A global cache is

suggested when the number of stack cache misses is smaller than the number of global

references. In the global cache the coherence problem has to be solved. In this report an

inventory of coherence algorithms and a general outline of the global data cache have

been given.

91

Literature
Besides the references used In this thesis, a lot more was found by Jos Bormans (especially about
Instruction caches) and me (data caches). The whole list is available at the Eindhoven University of
Technology. The numbers between brackets are used for Inventarlsatlon; B12 Indicates article no. 12 in the
articles gathered by Jos Bormans.

Aga88(B41)
Agarwal, A, R. Simoni, et al.
An evaluation of directory schemes for cache coherence.
15th annual international symposium on computer architecture 1988. p. 280

Arc86(P59)
Archibald, James & Jean-Loup Baer
Cache coherence protocols: evaluation using a multiprocessor simulation model.
ACM Transactions on computer systems, Vol. 4, No.4, p.273

Bora9
Bormans, Jos
Instruction cache for the Coprocessor
Master thesis, Eindhoven University of Technology, Department of Electrical Engineering, 1989

Bud 88
Budzelaar, Frank P.M.
The structured design of a processor for the language C.
Master thesis, Eindhoven University of Technology, Department of Electrical Engineering, 1988

Dit87(P60)
Ditzel, David R, Hubert R. McLellan & Alan D. Berenbaum
Design trade-ofts to support the C programming language in the CRISP microprocessor.
ACM Computer architecture News, Vol. 15, No.5, p. 158
Proceedings of the symposium on architectural support for programming languages and operating
systems ASPLOS II, 1987

Fra84(P37)
Frank, Steven J.
Tightly coupled multiprocessor system speeds memory-access times.
Electronics, Januari 12, 1984, p. 164

Fur88(A12)
Furht, Borivoje
A RISC architecture with two-size, over1applng register windows.
IEEE Micro, April 1988, p. 67

Has85(B30)
Hasegawa, M. & Y. Shigei
Hi~h-speed top-of-stack scheme for VLSI processor: A management algorithm and its analysis.
12 annual international symposium on computer architecture 1985. p. 48

Hu89
Hu, Y.C.
An instruction cache in IDaSS
Master thesis, Eindhoven University of Technology, Department of Electrical Engineering, 1989

92

Kar88(P57)
Karlin, Anna R, Mark S. Manasse, Larry Rudolph & Daniel D. Sleator
Competitive snoopy caching.
Algorithmica, Vol. 3, p.79

Kat85(P38)
Katz, R.H, S.J. Eggers, D.A. Wood, C.L. Perkins, R.G. Sheldon
Imglementing a cache consistency protocol.
12 annual international symposium on computer architecture 1985. p. 276

Laz89(A13)
Lazzerini, Beatrice
The RISC approach
IEEE Micro, February 1989, p. 57

McC85(P52)
McCreight, Edward M.
The dragon computer system
Microarchitecture of VLSI computers, ed. P. Antognetti et ai, NATO ASI series E 96, 1985. Martinus
Nijhoff. Dordrecht

Mit88(P61)
Mitchell, Chad L. & Micheal J. Flynn
A Workbench for computer architects.
IEEE Design and test of computers, February 1988, p. 19

Pap84(P39)
Papamarcos, Mark 5. & Janak H. Patel
A low-overhead coherence solution for multiprocessors with private cache memories.
11 th annual international symposium on computer architecture 1984. p. 348

Smi82(B24)
Smith, Alan Jay
Cache memories
Computing surveys, Vol. 14, No.3, p. 473

Smi87(P17)
Smith, Alan Jay
Line (block) size choise for CPU cache memories
IEEE Transactions on computers, Vol. C-36. No.9, p.1063

5ta87(836)
Stanley, Timothy J. & Robert G. Wedig
A ~erformance analysis of automatically managed top of stack buffers.
14 h annual international symposium on computer architecture 1987. p. 272

5ta88(P50)
Stallings, William
Reduced instruction set computer architecture.
Proceedings of the IEEE, Vol. 76, No.1, p.38

Swe88(P12)
Sweazey, Paul
VL51 support for copyback caching protocols on Futurebus.
1988 IEEE international conference on computer design. p. 240

93

Tha88(P58)
Thacker, Char1es P, Lawrence C. Steward & Edwin H. Satterthwaite jr.
Firefly: A mUltiprocessor workstation.
IEEE Transactions on computers, Vol. 37, No.8, p. 909

Wit88
Withagen, Willem Jan
Definition and high level descriptioin of the Coprocessor
Master thesis, Eindhoven University of Technology, Department of Electrical Engineering, 1988

Yan89(P32)
Yang, Qing, Laxmi N. Bhuyan & Bao-Chyn Liu
Analysis and comparison of cache coherence protocols for a packet-switched multiprocessor.
IEEE Transactions on computers, Vol. 38, No.8, p. 143

94

Appendix A A trace format

Each trace will consist of a header and a trace body. The header contains information

regarding the cache configuration(s) for which the cache is intended and some trace

properties. The body of the trace contains the actual trace data.

The header (table A.1) consists of a main_configuration, optionally followed by one or

more alternative_configurations. Each configuration consists of 2 numbers; the number

of read ports (no_read_ports) and the number of write ports (no_write_ports). Traces are

most useful if the number of ports in the main configuration is a multiple of the number

of ports in the alternative configurations.

Table A. 1 The trace format; the header

trace = header body

header = main_configuration {alternative_configuration} traceyroperties "."

main_configuration = configuration

alternative_configuration = configuration

configuration = no_readyorts "," no_write.-ports ";"

no_readyorts = integer

no_writeyorts = integer

traceyroperties = trace_size pseudo_write?

trace_size = integer

pseudo_read? = 'y" I "n"

The number of ports are separated with a comma, the alternative configurations with a

semicolon. The trace properties now include the size of the trace (trace_size) and the

inclusion of information about pseudo writes (see chapter 4). The header is finished with

a dot.

95

Appendix A

There are two ways to put timing information in the trace. First one simply puts in all

information for each clock cycle. A second option is to record only the clock cycles on

which requests are given, and pass the timing information in a parameter which tells how

many clock cycles have passed since the last request was serviced. If the simulated

processor is pipelined and uses more ports, there are few clock cycles on which no

requests are issued. So the first approach is chosen. The body (table A.2) of the trace has

to store all timing information and the information about the ports that can be used in

parallel for the various configurations. This information will be organised as follows.

The trace body consists of a number of clock cycles. A clock_cycle can contain one of

three possible reference types: a task_switch, a change of the TOS or a list of references.

The type is determined in the status field.

Since the PIN only changes at task switches, this part of the address is given only when

a task switch occurs. The PIN will be a 16 bit word. The same is true for a change of the

TOS. The TOS will not change very often, thus only needs to be provided when

necessary. The TOS is a normal address, thus will be a 32 bit quad.

Each reference_list consists of a list of addresses issued at the ports of the cache

(address_list), optionally followed by some alternative lists (alternative_list).

In the address_list the addresses at the ports are given. Since some ports can issue no

requests, information about empty ports (no request) is given in a p-bit present_list (p =

total number of ports). The bit sequence 110110 indicates that ports 1 and 4 of the 6

ported cache issue no request. The present_list can be proceeded by zero's to make

empty fit in an integer number of bytes (to ease reading by the simulator). The empty byte

will now become 00110110. The addresses for the read ports are given first, followed by

the addresses for the write ports. The addresses will be 32 bit quads. To accommodate

pseudo writes (chapter 4), the addresses for the write ports can be followed by the

number of clock cycles between the time the address is issued and the time the data is

available to the cache (delay). The delay will be placed in an extra byte.

The order of the addresses determines the priority: the first read address has the highest

priority of the read ports. The priority of the read ports in respect to the write ports is

dependent on the cache organisation as defined in the simulator. This priority is partly

96

Appendix A

dependent the free space available in the buffers and the replacement strategy (see

chapter 4).

The information for the alternative configurations follows the information for the main

configuration. Since these configurations contain fewer ports, it takes more clock cycles

to handle them. These cycles are placed in the alternative_list. In each of these alternative

clock cycles (alt_clock_cycle) the addresses issued on the ports are passed. The

addresses are passed by the port number (port_no) of the address in the address_list.

The ports numbering starts with the read ports, followed by the write ports. A port_no of

zero indicates an empty port. Each port number is stored in a byte. A byte filled with 11"'s

as the first port number in an alt_clock_cycle indicates the end of an alternative_list.

Table A.2 The trace format; the body

body = clock_cycle {clock_cycle}

c/ock_cycle = status TOS I PIN I reference_list

status = byte

TOS = quad

PIN = word

reference_list = address_list {a'ternative_'ist}

address-,ist = empty read_address {read_address} write address

{write_address}

empty = {"O"} present_list

present_list = bit {bit}

read address = address

write_address = address delay

address = quad

delay = byte

afternative_list = alt_clock_cycle {aft_clock_cycle} "11111111"

aft_clock_cycle = port_no {port_no}

port_no = byte

97

Appendix B Control Block
In this appendix the replacement algorithms for the control block are described in a pseudo pascal. All
actions in a stage can take place In parallel.

Program control_block

BEGIN
WITH each reference DO
BEGIN -

{stage one. check TAG information }

hit info := miss
IF ram pin = request pin AND ram address = request address AND ram valid

- THEN hit inTo: = hit; - - -
WITH each buffer DO

IF-buffer pin = request pin AND buffer address = request address
-AND buffer vaiid THEN hit IntO: = hit; -

IF ram pin < > request pin THEN hit Info: = task switch
{end of stage one} - - -

{stage two, on a miss various routines are called. these routines vary for the different
algorithms and will be specified later}

IF hit info = hit THEN
BEGIN {hit}

IF read request THEN get data from hit place
IF write- request THEN - - --
BEGIN -

write data to hit place
mark-tag dirtY -
IF hybrid'=-replacement THEN update_dirty_pointer

END
END {hit}

IF hit info = miss THEN
BEGIN {miss}

IF cut back K then cut back K miss
IF hybrid replacement THENhybrid miss
IF direct -mapped THEN direct miss-

END {miss} -

IF hit info = task switch THEN
BEGIN {task switch}

IF direct mapped THEN direct miss
IF linearTHEN -
BEGIN {linear}

move dirty blocks to main memory
{end of stage two,-begin of"5tage three}
IF all blocks in buffer THEN invalidate all ram tags
put new pin-in-tag - - -
{end of stage three, begin of stage four}
IF cut back K THEN cut back K miss
IF hybrid replacement THEN hybrid miss
{end of stage four} -

END {linear}
END {task switch}

END {all references. computer dead}
END.

98

The various procedures are:

PROCEDURE cut back K miss

BEGIN
{begin stage 2}
IF no empty space in ram THEN
BEGIN - - -

IF read request THEN read without replace
IF write-write request THEN write to buffer without replace

END {no empty space in ram} - - - -
{begin stage 2af --
IF read buffer = full THEN wait until space free
issue fetch - - -
{begm stage 2b}
IF write request THEN
BEGIN-

write data to read buffer
mark-tag quad dirty

END {write request} -
{end of stage 2, begin of stage 3}

reserve space for requested block in buffer
{end ofstage 3. begin of stage 4} - -

IF write request THEN wait for block to arrive
IF read-request THEN - - --
BEG�N-

{begin of stage 4a}
wait for required quad
{begin Of stage 41)}
provide data
wait for rest block

END {read request}-
{end of stage 4. begin of stage 5}

move block from buffer to ram
update base -
invalidate blocks between old base and new base
{end of stage 5, begin of stage6} - - -

get blocks between old base and new base
updat tag - - - - - -
{end of stage 6}

END {cut_back_K_miss}

PROCEDURE hybrid_miss

BEGIN
cut back K miss {the first 6 stages are the same}
{erid of stage 6, begin of stage 7}
IF write request THEN update dirty pointer
update -prefetch pointer - -
{end aT stage 7f

END {hybrid_miss}

99

Appendix B

Appendix B

PROCEDURE direct miss

BEGIN
{begin stage 2}
IF no empty space in ram THEN
BEGIN - - -

IF read request THEN read without replace
IF write-write request THEN write to buffer without replace

END {no empty space in ram} - - - -
{begin stage 2af --
IF block to replace not dirty THEN wait until space free
IF block-to- replace-dirty THEN wait untlf space in 60th buffers
issue fetch- - - - - - -
{begm stage 2b}
IF write request THEN
BEGtN-

write data to read buffer
mark-tag quad dirty

END {write request} -
{end of stage 2, begin of stage 3}

reserve space for requested block in buffer
{end ofstage 3, begin of stage 4} - -

IF write request THEN wait for block to arrive
IF read-request THEN - - --
BEG�N-

{begin of stage 4a}
wait for required quad
{begin of stage 41>}
provide data
wait for rest block

END {read request}-
{end of stage 4, begin of stage 5}

move block from buffer to ram
update base -
invalidate blocks between old base and new base
{end of stage 5, begin of stage6} -

get blocks between old base and new base
updat tag - - - - - -
{end of stage 6}

END {direct_miss}

The control block also has to work on movement of the TOS. This requires some special procedures.

PROCEDURE tos down cut back K- - - -
BEGIN

{stage 1}
invalidate ram between old TOS and new TOS
{can be done by settingthelnvalld bit} -
{end of stage 1, begin of stage 2}

IF new TOS < base THEN
BEGIN-

100

Appendix B

fetch TOS block
update base

END {TOS below base}
{end stage 2}

END {tos_down_cut_back_K}

PROCEDURE tos_up_cut_back_K

BEGIN
{stage 1}
IF new TOS > = (base + cache size) THEN {new TOS will overwrite part of data near base}
BEGIN- -

write back dirty blocks
{ end-of stage 1,-begin of stage 2}

clear blocks {can be done by setting the clear bit}
update base

END {overwrite base}
{end of stage 2, begin of stage 3}

update TOS in cache
END {tos_upyuf_back_K}

PROCEDURE tos_down_hybrid

BEGIN
{stage 1}
invalidate ram between old TOS and new TOS
{can be done by setting-thelnvalid bitt -
{end of stage 1, begin of stage 2}

IF new TOS < base THEN
BEGIN-

fetch TOS block
update base

END {TOS below base}
{end stage 2, begin of stage 3}
update dirty pointer
update- prefetch pointer
{end ofstage 3f

END {tos_down_hybrid}

PROCEDURE tos_up_hybrid

BEGIN
{stage 1}
IF new TOS > = (base + cache size) THEN {new TOS will overwrite part of data near base}
BEGIN- -

write back dirty blocks
{end-of stage 1,-begin of stage 2}

clear blocks {can be done by setting the clear bit}
update base

END {overwritebase}
{end of stage 2, begin of stage 3}

101

Appendix B

update TOS in cache
update-prefetch- pointer
IF new TOS > [dirty pointer + cache size) THEN update dirty pointer

END {tos_up_hybrid} - - - -

PROCEDURE tos_down_direct_mapped

BEGIN
{stage 1}
FOR all blocks between old TOS and new TOS do

IF request PIN =- ram pin-THEN invalidate ram
{can be done by setting the invalid bit} -
{end of stage 1, begin of stage 2}

IF new TOS < base THEN
BEGIN-

fetch TOS block
update base

END {TOS below base}
{end stage 2}

END {tos_down_cut_back_K}

PROCEDURE tos_up_cut_back_K

BEGIN
{stage 1}
IF new TOS > = (base + cache size) THEN {new TOS will overwrite part of data near base}
BEGIN- -

FOR base TO (new TOS - cache size) do
IF PIN request = PIN ram THEN
BEGIN- -

write back dirty block
{end-of stage l,-begin of stage 2}

clear blocks {can be done by setting the clear bit}
END {PINs match}

update base
END {overwritebase}
{end of stage 2, begin of stage 3}

update TOS in cache
END {tos_up_cuf_back_K}

102

	Voorblad

	Abstract

	Contents

	List of terms used.

	0. Introduction

	1. Caches on the C-processor.

	2. Data coherence.

	3. The stack cache.

	4. Architecture of the data caches.

	5. Cache simulations.

	6. Conclusions and recommendations..

	Literature

	Appendices

