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ABSTRACT

Finite state models are a popular method used in checking the behaviour of complex
systems, such as communication protocols.
These models can describe certain behaviours, that an implementation should have. If
the implementation is also described by such a model, the theory of finite state models
offers a well-described way of checking whether the implementation does match the
desired behaviours.

In this report the theory of finite state automata is discussed, describing finite automata,
the languages accepted by them and the regular expressions describing those languages.
Methods to construct automata accepting a certain language, to construct a regular
expression describing the language accepted by a given automaton and to construct a
deterministic equivalent of a non-deterministic automaton are given.

An extension of the theory is given, which handles co-regular expressions that describe
languages consisting of words of infinite length. B- and M-automata accepting such
languages are described. Again methods to derive expressions from given automata and
automata from co-regular expressions are given.

For M-automata, a method to directly convert a non-deterministic automaton into an
equivalent deterministic one has been found. This method is based on the well-known
subset-construction that is used to construct deterministic 'nonnal' automata.
After duplication of the limitsets of a non-deterministic M-automaton, subset­
construction yields a deterministic version, in which the limitsets are easily recognized.

These theories are used to create an environment, where the user can define finite state
models and perfonn several operations on them. The implementation of conversion
between automata and regular expressions, simplification of regular expressions,
complementation, determinization, minimization and several definitions of products of
automata, lead to a flexible tool called FADELA, a Finite Automata DEbugging
Language. The use of symbolic descriptions for states and inputs of automata, together
with the possibility to include batch-files in interactive operation offer a powerful tool to
examine finite state models and their equivalences.
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1. INTRODUCTION

An important step in the design of complex systems is verification. One has to be sure,
that the implementation of a system matches the specifications that were given for the
system, Le. the correctness of the implementation must be ensured.

In the case of communication protocols, when implementing such a protocol, one would
for example like to prove the absence of deadlock or the existence of liveness. Informal
specifications of protocols are often imprecise and may not be sufficient to ensure the
correctness. Therefore, formal specification and verification techniques are being used.

One of the formal methods to describe communication protocols, that is very popular, is
the use of finite-state models (finite automata). The (implementation of the) protocol is
then described by an automaton. When the properties that this protocol should have, can
also be described by automata, a formal verification is possible, based on the theory of
finite state automata. The protocol is correct, with respect to the given properties, if and
only if no accepted behaviour of the protocol-automaton is accepted by the automata that
describe the negation of the desired properties, or, equivalently, if the set of accepted
behaviors of the product-automaton of the automaton describing the protocol and the one
describing the negation of the property is empty. [1,2]

To do this kind of verification, an environment is useful, in which the user can create his
models in the form of automata or regular expressions describing such automata, where
he can perform 'standard' operations on these items, describe more complex operations
and view the results. Because often the infinite behaviour of a system is of interest, also
automata accepting infinite sequences and their description by co-regular expressions
should be made accessible in this tool.

These considerations have lead to the development of FADELA, a Finite Automata
DEbugging LAnguage, which enables the user to work interactively on automata and
expressions, but also has the possibility of performing batch-jobs.
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2. FINITE AUTOMATA AND REGULAR EXPRESSIONS

There is much literature on the theory of automata and languages or regular expressions.
Some good handbooks and articles give definitions of these subjects [3,4,5,6]. However,
to have a clear understanding of the denomination used in this report, in this chapter
some definitions and notations will be given.

Descriptions of languages consisting of finite-length words, the regular expressions that
describe these languages and the finite- state automata accepting them, are given..

2.1 Words, alphabets and languages

A language L is a set of words w.
The empty language, containing no words, is denoted by 0.
Every word in a language is a sequence of symbols x. The finite set X of symbols that are
used to form the words of the language, is called the alphabet over which the language is
formed.
The length of w, denoted by Iwi, is the number of terms (symbols) in w. For all i,
0< i ~ Iwi, the i th term in the word w is denoted by w [i].
The one word that has length zero, is denoted by E.

The (infinite) set of all finite words over X (including E) is denoted by X*.

Words can be concatenated as follows:

If u and v are words, having lengths Iu I and Iv I respectively, then w = U.v is a word,
for which

Iwl=lul+lvl

{

u [i]
w[i]= v[i-Iu I]

O<i~ lu I

lul<i~lwl

Given a word w, the repeated concatenation w n is defined, for n > 0, as:

wO=E
wI =w
w n =wn-I.w

Clearly it follows that Iw n I =n Iw I.

The reverse wR of a word w is defined as:

E! =E
(w.x)R =x. (wR), xeX, weX*.

Examples:
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x = {a, b} is the given alphabet.
L 1 = {a, b} is the language over X, containing all words of length 1.
L2 = {a.a, a.b, b.a, b.b} is the language over X, containing only those words, that have
length 2.
L 3 = {E} uL l uL2 is the language over X, containing only words of length less than or
equal to 2.
L 4 = {x 2n I xeX /\ n > O} is the language over X, containing only words of even length,
which consist of all a's or all b's.

It is obvious, that any subset of the universal language X* is a language over X,
containing only finite words.

2.2 Regular expressions

As was shown in the previous paragraph, languages of finite length words over a given
alphabet X are all subsets of the universal language X*. Therefore, one can define other
languages over the same alphabet, using the set-theoretical operations on given
languages:

Union:
L l uL 2 = {weX* I weLl v weL 2 }

Intersection:
L l nL2 = {weX* I weL l /\ weL2 }

COEJplement:
L = {weX* I weLl

(2.1)

Besides those well-known operations, some others are:

Concatenation:
L l .L2 ={w =U.v I ueL l /\ veL 2 }

Power:
L 0 = {E}
L" =L,,-l .L, n >0
or, equivalently,
L" = {weL* I Iw I =n}

Kleene-closure:
L*= U L"

o:s;,,<oo
Reverse:

L R = {wR I wELl
(2.2)

Note, that 0.L = L .0= 0, but {E} .L =L . {E} =L.
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Because X itself is a language over X, the Kleene-closure of X is defined and it is
obvious, that X* = U X n equals the previously described universal language X*.

<r.:;n <00

Regular languages over a given alphabet X can be constructed by starting with the empty
language 0 and singleton languages {x} for all xeX and using the operations of union,
concatenation and closure.

Example:

X= {a, b}.
L = {weX* I Iw I = 2/\ W [1] = a} can be constructed as follows:

A = {a} andB = {b}.
LA =A.A andLB =A .B.
L=LA ULB.

Regular expressions (RE's) are a way of describing, which operations have to be
performed, to construct a certain regular language [5]. The operations of concatenation,
closure and union suffice to construct regular languages of finite length words.

The definition of a regular expression over an alphabet X is:

• 0 is a regular expression over X.

• ifxeX, then x is a regular expression over X.

• if ex and ~ are regular expressions over X, then so are (ex + ~) and (ex. ~).

• if ex is a regular expression over X, then so is ex*.

• only those expressions, formed by using the previous rules are regular expressions.

The language L(ex) described by the regular expression ex is defined as:

• L(0) =0.

• ifxeX, then L(x) = {x}.

• if ex and ~ are regular expressions over X, then
L(ex+~) = L(ex) u L(~) and
L(ex.~) = L(ex) . L(~).

• if ex is a regular expression over X, then L(ex*) =(L(ex»*.
(2.3)

There may be several expressions for the same language. Two regular expressions for
the language L in the last example are:
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a .a+a.b
a. (a+b)

Instead of noting L =L(a), often a shorthand L =a is used.

Usually, the dot will be omitted, when the symbols are all represented by single
characters. The parentheses will sometimes be omitted, according to the priority of the
operator signs. The precedence of operators, going from high to low priority, is

* . +

which means, that the regular expression

(a+«(b+a))* .(b)*))

can be written as

a+(b+a)*.b* .

2.3 Finite automata

A finite automaton (FA) is a quintuple

M =(Q,X, 8,I,F)

where

Q is the finite set of all states M can be in.
X is the finite set of all possible input symbols.
8 ~ Q xX x Q describes the transitions.
I !:: Q is the set of initial states.
F ~ Q is the set of final states.

(2.4)

It is called finite or finite-state, because the number of possible states is finite.

The interpretation is as follows:

The automaton M can be thought of as a mechanism, consisting of a control block
capable of being in various states (Le. the elements of Q) and an input channel, that
receives input symbols from the environment (Le. elements of the input-alphabet X).
The automaton reads input symbols and as a reaction to the symbol read and the current
state, M will be in a new state at the next instant of time.
The set of instructions 8 describes what will be the next state, depending on the current
state and the current input. If 8 contains the instruction (qi,Xroqj), this means, that on
reading Xr , while M is in state qj , the automaton will move to state qj. Thus 8 can be
interpreted as a function, taking two arguments (the current state and the current input)
and returning the corresponding set of next states, i.e.



- 6-

0: QxX ~P(Q)

where

P(Q) is the powerset of Q, i.e. 2Q
•

It follows from this definition, that M may move to more than one state at the same input.
This type of automaton is therefore called a non-deterministic automaton. Because M
may often be in more than one state at a time, it is more convenient to use another
transition function, which takes as its input a set of states, rather than only one state like
odoes. Furthermore, the second argument will be a word, rather than a single symbol.
This extended transition function is defined as:

~: P(Q) xX* ~ P(Q)
~(Qi,E) = Qi
~(Qi'X)= U o(q,x) xeX.

qeQi

~(Qi'X.W)=~(~(Qi'X),w) xeX, weX*.
(2.5)

If 0 is defined as a function

0: QxX~Q

and I is a singleton, then M is a deterministic automaton.

The initial and final states of M have the following meaning:

Assume, M is in its initial states and is offered a word w over X at its input channel, one
symbol at a time. After reading a symbol x, M moves to the next states, defined by
~(l,x). After having read all symbols of w, M is in some subset Qf =~(l, w) of Q. The
word w has taken automaton M from states I to states Qf. If QfnF *" 0, the word w is
said to be accepted by M, otherwise w is said to be rejected by M.
One can now define a language corresponding to an automaton.
The language accepted by automaton M is the set of all possible words that are accepted
byM:

L(M) = {we x* I ~(l, w) n F *" 0}
(2.6)

Because this language is accepted by a finite automaton, such a language is called finite­
state. The language accepted by M is also called the behaviour of M.

2.4 Representation of automata by state-graphs

A very useful (graphical) representation of an automaton is in the form of state graphs.
An example is given in figure 1. In a state graph, each node represents a state of the
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Figure 1. State-graph representation of a FA

automaton. The edges are directed and labelled and these labels represent the input
symbols of the automaton. If there is an edge, going from node qi to node qj and it is
labelled with x" then that edge represents one instruction of the transition function O. To
be more precise, it is the instruction (qi,x"qj). Initial states are marked by an unlabelled
arrow pointing to them. Final states are marked by a circle.

A path in a state graph carries a word, Le. the concatenation of the labels of all edges
forming the path. A flow in a graph is any set of paths and obviously a flow carries a
language, consisting of all words carried by paths in that flow. Clearly, a word w is
accepted by the automaton, if and only if the graph contains a path carrying w, starting at
an initial state node and leading to a final state node. Following equation 2.6, the flow
from the initial states towards the final states carries the language that is accepted by the
represented automaton.

2.5 Silent moves and E.-closures

An automaton can be non-deterministic, if it has more than one initial state or if it has a
transition function 0, which allows more than one next state on the same input. There is
another reason, why some automata are non-deterministic. Those automata have got the
possibility to go to another state, without having read an input symbol. These silent
moves (or E-moves) are represented in 0 by instructions of the form:

(qi,E,qj) or O(qi,E) = {qj}

The symbol Ecan be seen as a new symbol, added to the input alphabet of the automaton.
As before, it represents the empty word. In a state-graph, silent moves may be
represented by edges without a label or labelled with E.

The E-closure is defined as:

£-CLOS(qi) = {qj I there is a path from qi to qj' labelled E }

These paths may have any length, since En =E. Of course every state can be regarded as
having a path towards itself, labelled E, because the word carried by such a path is the
empty word, which is the same as the word carried by a path of length zero. Therefore E­
CLOS(qi) always includes qi.

The definition of E-CLOS can be extended to sets of states, by using:
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E-CLOS(Q) = U E-CLOS(qj}
qjEQ

"The definition of t:t. (equation 2.5) is further extended to 0:
"§: P(Q) xx* -7 P(Q)

§(Qj,E) =E-CLOS(Qj)
o(Qj,x) = E-CLOS(t:t.(E-CLOS(Qj),x», xeX.
" " "
o(Qj,x.w) = o(o(Qj,x), w), xeX, weX*.

(2.7)

As before, the language accepted by an automaton with silent moves is:
"L(M) ={weX* I 0(l,w)rlF';t0}

(2.8)

It is proved [7] that for every automaton with silent moves, an automaton without silent
moves can be found, which accepts the same language.
Without repeating the proof here, it is stated, that for M =(Q,X, o,/,F) with silent moves,
an equivalent (i.e. accepting the same language) automaton without silent moves is given
by:

"M' = (Q,X,o,/,F')

where

, {F ul if E-CLOS(l) IlF ;t 0
F = F otherwise

2.6 Relation between deterministic and non-deterministic automata

Because every deterministic finite automaton (DFA) can be thought of as a special case
of non-deterministic finite automata (NFA), it is obvious, that for every DFA an
equivalent NFA can be given, namely the DFA itself. It is also true, that every NFA is
representable by an equivalent DFA. Without giving the formal proof [7], the
construction of a DFA from a NFA is given here, because it will be frequently used in
FADELA. This construction is known as the subset-construction.

For M = (Q,X, o,/,F), an equivalent DFA is given by:

"
M' =(Q',X,o,i,F')

where
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Q' =P(Q)
ois as defined in equation 2.7.
i =E-CLOS(l).
F' = {qe Q' I q (IF :;t 0}

(2.9)

It seems, that the number of states in the DFA IQ' I = 2 1Q I , but in many cases, a lot of
states in Q' can never be reached by a flow from ito F',which is the only flow of i!1terest,
because it defines the language accepted by M'.

States that are never reached can be deleted, without affecting the language of an
automaton. The useful states of M = (Q,X, O,!,F) are given by:

A A

U = {q e Q I 3 v,w e X* : q e 0(1, v) 1\ O( {q }, w ) (I F :;t 0}
(2.10)

2.7 Automata accepting the language of regular expressions

In the previous paragraphs, a relation between finite automata and languages was given.
Equation 2.3 gives the relation between a regular expression and a language. Equation
2.6 and 2.8 state, that every finite automaton represents a language over its input
alphabet. It can be proved, that automata and regular expressions represent the same
class of languages [7] and therefore, one can view regular expressions as descriptions of
the behaviour of automata.

The construction of an NFA with silent moves, that accepts the language of a given
regular expression, is as follows and differs from the construction given in [6,7] where
only NFA's with single initial and single final states are considered:

The most simple RE's are 0, E (which is equivalent to 0*) and xeX, for which the
corresponding NFA's are shown in figures 2,3 and 4 respectively.

Figure 2. FA for E

As equation 2.3 shows, regular expressions are formed, using these simple elements and
the operations of concatenation, closure and union. These operations can also be applied
to NFA's. Assume M 1 = (Ql,X1,Ol,!1,F 1) and M z = (Qz,Xz,Oz,!z,F z ) are NFA's
accepting the languages of RE 1 and RE z respectively. Without loss of generality, Q 1

and Q z are considered disjoint, because this can always be achieved by simply renaming
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Figure 3. FA for 0

Figure 4. FA for x

the states.

The union RE = RE 1 +RE 2 is represented by

M=(Q1 UQ2,X 1 uX2,81 u82J1 UI2,F1 uF2)
(2.11)

which obviously accepts both L(M 1) and L(M2) and is shown in figure 5.

Figure 5. Union of M 1 and M 2

The concatenation RE =RE 1 . RE 2 is represented by

M=(Q1 UQ2,X 1uX2,8J1,F2)

where

(2.12)

Figure 6 shows this construction and it is easily seen, that any path leading from an initial
state of M 1 towards a final state of M 2 carries a word wI in M 1, followed by E and a
word W2 in M 2. Once a silent move from M 1 to M 2 is passed, there is no way back into
MI' The concatenation w 1.E.w2 of course yields w 1.w2. The closure RE =RE 1* is in
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Figure 6. Concatenation of M 1 and M2

fact the concatenation of zero or more instants of RE 1. The construction in figure 7
represents this repeated concatenation and M is given by

M =(Q 1 uI,X 1,8,1,1)

where

I ={s}, with s being a newly added state, that is both initial and final.
8 = 81 U (j, E,S) U (s, E,i) for all Ie F 1 and ieI l'

(2.13)

By defining the new initial state S, which is also final in the closure-automaton, the
possibility of zero concatenations is created, yielding the empty word. Silent moves
from the (originally) final states towards this state and from it towards the (originally)
initial states, create the repeated concatenation of words of M l' The state S is the only
way to re-enter M 1, once a word of M 1 is passed.

E

Figure 7. Kleene-closure of M 1

From the given elementary RE's and these operations, all other RE's can be constructed.
Clearly, by performing the previously described operations on the corresponding
automata, for every RE an equivalent NFA can be constructed.

2.8 Regular expressions describing the languages accepted by automata

Any FA corresponds to a finite state language. Any regular language may be described
by a regular expression. It is proved, that the class of finite state languages and regular
languages are identical. Again in [6,7] the proof is given for the following construction:

One obvious method, for creating a regular expression of the behaviour of a given FA is
starting at every initial state and from there collecting all possible paths towards every
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final state. This is always correct, but a problem arises, when loops in the state graph are
encountered. For example, in the simple FA given in figure 1, this method would lead to
an expression like:

RE = a+a.b.c+a.b.c.b.c+a.b.c.b.c.b.c+.....

The Kleene-closure which is obvious the cause of any loop, should be used to describe
this repetition:

RE =a. (b.c)*

A better way to construct the expression for the flow in M =(Q,X, 8,I,F) is:

Let n be the number of states in Q = {q I, .. , qn}.
For 1SiS nand 1Sj S n define the regular expression a~ by:

a~ = L x, such that q)E 8(qj,x)
XEX

a~ = 0 if there is no XEX, such that jE 8(i,x)
qjE 8(qj,E), therefore always EE a?i

(2.14)

This means, that a~ is the regular expression for the paths, going from i to j, without
crossing any state > 0, where crossing means both entering and leaving. No states > 0
simply means, that a~ only describes the single symbols between i and j. Recursively,
the next'generations' of expressions (for 0 < k S n) are defined as:

k k-l k-l (k-l)* k-lai) = ai) +aik . au .ak)

(2.15)

Now at describes the paths from i to j passing through states Sk and thus aiJ describes
all possible paths from i to j. The regular expression describing the language accepted
by M is now given by:

RE= Laic
iEI
fEF

(2.16)

In computing the successive generations of expressions, some simplifications can be
made. For k = i

k (i-l)* i-I
aj) = au . ai)

and for k =j

at = aiTI .(a~TI )*.

For the automaton in figure 1, a regular expression corresponding to the accepted
language is:
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2 1 1 (1)* 1 - + b ( b)*aOI = aOI + aQ2. a22 . a2I - a a. . c. . c

where afj was obtained by inspection of the state-graph, but could also be computed by
further recursion following equation 2.15.
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3. FINITE AUTOMATA AND ro-REGULAR EXPRESSIONS

One conclusion of the previous chapter is, that every regular language is finite state. This
is true for languages containing only finite length words. However, not only finite length
words can be accepted by finite automata, but also infinite words. Of course the
accepting conditions used before are incapable for infinite words, because a path from
initial to final states is always finite.

To make an infinite path through an automaton (having only a finite number of 'states),
some states have to be passed infinitely many times. The only way for a path to re-enter
states is to contain a loop. In the automata discussed before, loops corresponded to the
Kleene-closure, which is by definition only a finite repetition.

The structure of finite automata seems useful, to accept infinite words, but the accepting
conditions will have to be adjusted and the meaning of loops has to be specified more
carefully.

In this chapter, the theory of regular expressions is extended to ro-regular expressions,
such that a class of languages consisting of infinite-length words can be described by
them. Then two types of automata, capable of accepting languages defined by ro-regular
expressions are dealt with.

3.1 co-words and co-languages

X is again an alphabet over which a language is defined.
The words, called o>-words, are constructed as before, but all have infinite length,
denoted by:

Iwl =ro

An ro-Ianguage is a set of ro-words.
The set of all possible ro-words over X is denoted by XCl>.

Concatenation of words and o>-words is defined and always has an ro-word as a result:

For ueX* and veXCl>, w =U.v is a ro-word, for which

Iwl =ro

{

U[i] O<i~ lu I
w [i] = v [i -I u I] Iu I < i

Obviously, concatenating anything after weXCl> is of no use. Therefore, u.v for ueXCl>
and veXCl> uX* by definition equals u.
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3.2 co-regular expressions

The closure operation is extended by defining the strong iteration closure or co-closure as:

WOO =w.w.w....
(3.1)

which means the infinite repetition of w.

Every ro-word looks like

w =a. ~oo

where

aeX*
~eX* - {E}

ro-regular expressions have the same form, where a and ~ are both normal regular
expressions, but ~*0.

Not every infinite word over X can be described by co- regular expressions, as the next
example shows:

w =0.1.0.0.1.0.0.0.1.0.0.0.0.1 ...

However, it is proved, that co-regular languages can be represented by finite automata and
every finite-state language can be described by an ro-regular expression [9].

3.3 Finite automata accepting co-regular languages

Given an ro-word w, a run p of automaton M for w is defined as the sequence of states,
that M goes through on reading w. Of course, when M is non-deterministic, there may be
several paths through M for wand thus there are more runs possible for w. Because
every run must have infinite length and the number of states is finite, some states have to
be passed more than once. In fact, to have an infinite run, there have to be states, that
occur infinitely many times in that run.
The set of states, that occur infinitely many times in a run p is denoted by INF(p).

In automata accepting only finite words, the accepting condition was based on the states
that M was left in after reading w. Automata accepting infinite words do not halt in a
specific state, but they keep moving around in INF(p) while reading the part ~ro of
w=a.pro.
By defining various accepting conditions based on the sets INF(p), different classes of
languages can be accepted by finite automata [10,11]. In this report, only two classical
types are discussed, namely B- and M-automata.
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3.3.1 B-automata

One of the frequently used accepting conditions is the one proposed by Biichi [12].
Although currently not implemented in FADELA, Biichi automata (denoted B-automata)
are given some attention here, because FADELA can easily be extended to hold this kind
of automata too.

The structure of B-automata is the same as for the automata discussed in chapter 1. Thus

M =(Q,X, O,l,F)

Only the accepting condition is changed:

A run p corresponds to an accepted ro-word, if and only if

INF(p) r.F * 0
(3.2)

Thus an accepted (I)-word is recognized on a B-automaton, if the loop at the end of the
run for that word contains at least one state in F.

The definition of the language accepted by a B-automaton B is:

L(B) = {weX CO I 3p for w: INF(p) r.F * 0}
(3.3)

The known equivalence between deterministic and non-deterministic automata accepting
finite words (equation 2.9), is not valid for B-automata, as can be seen from the example
of B in figure 8 and the result of the subset-construction on it, given as B del in figure 9.

a,b a

Figure 8. Non-deterministic B-automaton B

It is easily observed, that L(B) = (a +b)*. aco. In the deterministic version however, a
proper choice for the final (or accepting) states still has to be made. But none of the
possible accepting sets {}, {{O} }, {{O, I} } or {{O},{O, 1}} causes B del to accept the same
set of ro-words, all ending in infinite repetition of a, as does B.

This points out the great disadvantage of B-automata:
Not for every ro-regular language an accepting deterministic B-automaton can be
constructed, using the subset construction. It is proved, that there are non-deterministic
B-automata, for which there exist no deterministic equivalents [4].
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b a

Figure 9. Detenninistic B-automaton B det

3.3.2 M-automata

Another kind of automata, proposed by Muller [12] is implemented in FADELA, because
for M-automata there is an equivalence between detenninistic and non-deterministic
versions. This makes M-automata more attractive than B-automata:
For every ro-regular language, an accepting deterministic finite automaton exists [11].
Having deterministic automata makes taking the complement easy.

A M-automaton is defined as

M =(Q,X, 8,I,C)

where

C ~ P(Q) is a set of limitsets.
(3.4)

The accepting condition for M-automata is based on these limitsets. A run p corresponds
to an accepted ro-word, if and only if

INF(p)e C
(3.5)

Thus an accepted (I)-word is recognized on a M-automaton, if the loop at the end of the
run is exactly one of the limitsets given in C.

The language accepted by aM-automaton Mis:

L(M) = {weXO> 13p forw: INF(p)eC}
(3.6)

C is always a subset of P(Q) but not all elements of P(Q) can be limitsets.
Because a limitset is a set of states in which the run p of an accepted ro-word passes
every state infinitely many times, there must be at least one loop in it, containing all these
states.
In other words, a limitset must always be the set of states in a loop in the state-graph that
represents the automaton.

As a result, some states may be deleted, without affecting the language accepted by the
M-automaton. The only states that are useful are, assumed that C only contains legal



- 18 -

limitsets:

" "U = {qe Q 13u,veX*,cje C : qe o(I,u) A o({q}, V) n Cj ;C 0}
(3.7)

3.4 M-automata accepting the language of (I)-regular expressions

For every ro-regular expression, a non-detenninistic Muller-automaton accepting the
language described by that expression, can be constructed. This can be done in exactly
the same way as was done in the previous chapter for automata accepting finite words, by
performing the operations of union, concatenation and closure on automata, but here the
new operation of the ro-closure has to be performed also.

The union-operation (equation 2.11) must be adjusted, to work on pairs of M-automata.
A union between a M-automaton and a 'normal' one may never occur, since that would
mean, that the resulting automaton accepts both finite and infinite words.

The union RE =RE 1+RE 2, where RE 1 and RE 2 both are ro-regular expressions and are
represented by M-automata M 1 and M 2 respectively, is represented by:

M=(QI UQ2,X 1 UX 2,Ol U02'/1 uI2,C 1 uC2).
(3.8)

An extension for the concatenation-operation (equation 2.12) also has to be made. A
concatenation will either combine two 'normal' automata, in which case equation 2.12 is
used, or will put a M-automaton behind a 'normal' one:

(3.9)

where

The new operation of ro-closure always takes an automaton M 1 accepting finite words.
The resulting automaton is aM-automaton M, which must accept (L(M l))co. To do this,
a proper construction of limitsets has to be made [3].

Constructing the ro-closure is the same as for the Kleene-closure (equation 2.13). The
limitsets are all those sets, that contain the initiaVfinal state s:

where
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I ={s}, with s being the newly added state.
8 =81 U (j, E,S) U (s, E,n for all feF 1 and ieI 1.

C= {ce P(Q) Isec}.
(3.10)

As mentioned before, not all elements of C are usefullimitsets. They have to be loops
and clearly, all loops that contain s are precisely all the loops going from s through M 1

and back to s. (Recall figure 7.) Thus these loops describe all possible repetitions of
words ofMI'

In state-graph representation of M-automata, there is no general way to clearly show,
which subsets of Q are limitsets. The 'best' way to overcome this problem, is to mention
C along with the picture.

3.5 Language represented by M-automata

The class of co-regular languages equals the class of languages accepted by M-automata
[11]. In the previous paragraph, one pan of the proof is given, by describing the method
for creating a non-deterministic M-automaton, accepting the language of an co-regular
language. The converse can also be proved by a constructive method [3,9,11].

Equation 3.6 states, that the language accepted by aM-automaton M consists of those co­
words, that lead M from its initial states towards one of its limitsets and then forever
repeats some path inside that limitset, passing all states in it. Thus every word accepted
looks like:

w=a·Wo

where

a is the word that takes M from some initial state towards a state b inside a limitset c.
~ is a word that is carried by a loop inside c, starting at b, passing all states in c.

The language accepted by M can now also be described as the union of all this co-words
w:

RE= L E;
CjEC

where
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Ei = (X • (~1.2 '~2.3 ... ~k, 1)CO.

Ci = {S1,S2""Sk}'

(X is the set of words, that take M from its initial state towards S l'

~ij is the set of words, that take M from Si towards Sj, without
passing any state outside of Ci.

These (X and ~ can be computed by using equations 2.14 and 2.15.
(3.11)

Using this method, RE will give a description of the ro-language accepted by M­
automaton M.

3.6 Relation between deterministic and non-deterministic M-automata

It is proved [3,11], that the class of ro-languages accepted by deterministic M-automata
equals the class of ro-languages that non-deterministic M-automata accept.
Unfortunately, no construction is given for creating a deterministic M-automaton
equivalent to a non-deterministic one. Only constructive proofs are given, which use the
construction of ro-regular expressions as an intermediate step.

The subset-construction (equation 2.9) however can be used, but the right limitsets have
to be constructed in the deterministic version. In this paragraph, my method for directly
constructing deterministic M-automata from non-deterministic ones is given.

As an example, consider the NFA in figure 10 and its equivalent deterministic graph in
figure 11. When the only limitset is {l}, the ro-language accepted by M is
a. (b*.b.a)*.b co, as can easily be observed, using equation 3.11.

b

Figure 10. M-NFA M with limitset {I}

The limitset {I} is projected onto {<1>,<1,2>} by the subset-construction, but taking this
set to be the 1imitset for M det would also cause the ro-words described by a. (b.b*.a)co to
be accepted by M det. The reason for this error is the following:

The subset-construction maps every path (or loop) of the NFA onto a path (or loop) in
theDFA.
The path I-b-l-b-l- is mapped onto <1>-b-<1,2>-b-<1,2>-...
The path I-b-2-a-l- is mapped onto <1>-b-<1,2>-a-<I>-...
Both paths are mapped onto the same set of states {<1>,<1,2>}. The first path
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b

Figure 11. M-DFA M det

represented an ro-word, because it never left the limitset {I}, but the second did not stay
within the limitset. After mapping by the subset-construction however, both paths are no
longer distinguishable by their sets of passed states.

The solution to this problem is making sure, that every limitset is disjoint with respect to
paths that are entering the limitset, but later leave it.

Making limitsets disjoint from other loops can be done by duplicating the limitsets and
defining the duplicates to be the limitsets instead of the original ones. Duplicating c =
{q 1 , ..,qk} means:

Q=Qu{q'j I qjEC}
0= 0 u (qj,xroq'j) u (q'j,xroq'j), (qj,Xroqj)E 0, qj,qjE C.

(3.12)

b

b

Figure 12. M-NFA M' after duplication of {I}

In this way, all paths in C now have a twin in c' = {q'l, ..,q'k} and at any state in c, the
next state on a certain input may be either in C or in c'. The result of this duplication for
the NFA in figure 10 is given in figure 12. Clearly, the duplication method isolates the
limitsets, because there is no edge leaving a limitset. Thus there can never be a path
entering a limitset, but not staying in it.
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It is not difficult, to show that duplicating the limitsets does not affect the language
accepted by M.
Without loss of generality, assume there is only one limitset, thus C = {c}, since
otherwise C is just a union and the class of ro-regular languages is closed under union.
Let M' be the resulting automaton after duplicating the limitset C of M. Let P be a run for
an ro-word accepted by M. Since there are no edges removed, every path in M also exists
in M'. At some instant, p on M enters C (at state qo) and from then on will stay in c. (Le.
a-part ended and ~ro started) The corresponding p' on M' can of course also enter c (at
the same state qo) on M'. The next move on M will be from one state in c to a next state
ql in c. M' can make the corresponding move to state q'l in c', because for every move
from a state q OE C towards q 1 E c duplication created a move from q OE C towards q 1 E c'.
All subsequent moves on M within c have corresponding moves on M' within c'.
Thus L(M)cL(M').

The converse goes quite the same. Let p' be a run for an ro-word accepted by M'. At
some time, p' moves on M' from a state qoec' to a state qlEC', thus starting the ~ro_part

of the word, because there are no edges leaving c'. Because every move towards a state
q'E c' on M' corresponds to a move towards qE c on M, it is clear, that M can enter its
limitset too. The only possible subsequent moves on M' are all within c' and because of
the duplication, all these moves of course have corresponding moves within c on M.
Thus L(M')cL(M), which completes the proof that L(M') =L(M).

b

Figure 13. M-DFA M'det with limitset {<1,2,1'>}

As shown in figure 13, determinization of the NFA after duplication yields a DFA, in
which the limitset {<I ,2,1'>} corresponds to these sets onto which limitset {1'} is
mapped. Thus for every limitset c of MNFA' the corresponding limitset c' of MDFA is:

c' = {q E P(Q) I q (J C ;e 0 }
(3.13)

Of course, no edge may occur between states of such a limitset, if there is no
corresponding edge (Le. carrying the same label) within the original limitset. It is now
proved, that such an illegal edge can never occur, if the limitsets of the NFA are isolated
(using duplication) before performing the subset construction and constructing DFA­
limitsets using equation 3.13.
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Let M = (Q,X,8,I,C) be the NFA, where C contains only one limitset C which is the
result of duplication.
Let M' = (Q',X',8',I',C') the DFA, constructed via the subset-construction. Clearly C' is
also singleton.
Now take any (Q 1 ,X,Q2)E 8', with Q 1E C' and Q2E C'. Q 1 consists of states in Q, which
are all reachable in M from some state, by the same word.
If Q 1 (I C = 0, then Q 1~ C' and this implies a contradiction. Thus it follows Qi (I C :# 0.
If 3q OE Q 1 (I C : 8(q°,X) :# 0 then of course Q 2 E C' and the edge is legal, because it has
its corresponding edge within the limitset of M.
Else 'v'qoE Ql (lC 8(qo,x) =0. In that case, if 'v'qE Ql 8(q,x) (lC =0, then Q2~C',

again a contradiction.
Now take qlEQl and ql~c and (ql,x,q2)E8, with q2EC. This implies, that this edge
will occur in the limitset c' of the DFA M', while it was not in the limitset C of the NFA
M. However, the duplication ensures, that the only edges pointing towards a state q 2 E C

must come from a state q 1 E C (contradiction) or else, an equivalent edge will exist within
the limitset, i.e. 3q3E C : (q3,x,q2)E 8 and this q3 exists because it is the duplication of
q 1. It also follows from the duplication, that q 1 and q 3 are reachable from the initial
states of M, by the same word. That however would finally imply, that there is a
corresponding edge for (Q 1,x,Q 2) within the original limitset c.
That completes the proof, that there can be no 'new' edge introduced in the limitset of
the DFA, when the duplication method is used, before the subset-construction.

As mentioned before, not all sets of states are legal limitsets. Therefore, only those
limitsets, that are constructed using equation 3.13 and that each form a loop, form the set
of limitsets of the DFA.

The deterministic version of M-automaton M =(Q,X, 8,I,C) can now be given by:
'"

M' = (Q',X,8,i,C')

where

9' = P(Q)
8 is as defined in equation 2.7.
i = e-CLOS (I)

C' = {c'E Q' I c' as defined in equation 3.13 forms a loop }

(3.14)
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4. FADELA
In this chapter, the Finite Automata DEbugging LAnguage will be described. For the
exact syntax and semantics, refer to appendix A. First the need for a tool like FADELA
will be explained and the specifications listed. Then some theory and algorithms behind
the most important standard functions implemented in FADELA will be given.

4.1 Specifications for a finite automata debugging tool

A useful formal method for verification of protocols or systems is the use of finite-state
models. The theory of finite automata offers several proven ways for checking
equivalence between various models or checking whether a model accepts certain
behaviours. For example:

M is an automaton, the model to be checked. This may, for instance be a mechanism,
detecting certain sequences of input-signals. L is a description of the sequences, that M
must be able to detect. This may be a regular expression. A way to prove that M indeed
detects only sequences in L, is to construct an automaton ML = M(L), whose behaviour is
described by L. As shown in chapter 1, this can always be done. The complement CL of
this automaton ML will then accept all sequences, except those described in L. Theory
states, that the product-automaton of two automata accepts only those sequences, that are
accepted by both components of the product. Therefore, the product P = M x CL will
accept all sequences, that are accepted by M but not by ML . Now, if P accepts any
sequence, it is clear, that M was not correct, because such a sequence can not be in L. Of
course, to prove that M accepts precisely every sequence in L, the product of ML with the
complement of M should also be empty.

The way of testing correctness, as used in this example, is only one of several and there
may be many different definitions of correctness. One program, capable of checking
behaviours, like was done in the example, will therefore often not be flexible enough. A
more useful approach would be, to develop a tool, by which standard functions like
product and expression-automaton conversion can be performed. The user can then
perform more complex tests, by combining these standard operations.

A useful tool should match the following specifications:

• Possibility to describe finite automata.

• Possibility to describe regular expressions.

• Conversion between these two descriptions of finite state models.

• Simple user interface. This includes the possibility to describe the models in an easy
way. The presentation of the models and results of the operations must be easy to
understand by the user. This means for instance simplification of regular expressions.
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• The most important operations on automata must be standard functions, which can be
easily called by the user. These functions include:

• Union.
• Concatenation.
• Closure.
• Complement.
• Reflection.
• Minimization.
• Determinization.
• Products, like parallelization, lock-step product and intersection.

• Automata accepting infinite words and ro-regular expressions describing them should
also be possible.

• Working with the tool can be done interactively or by using batch-files.

• To make powerful batch-files, control statements and types like integers and booleans
should be available.

• Symbols to be used in regular expressions and in transition functions of automata,
should be free to choose, not restricted to single characters and digits. Because many
transitions may be described by boolean functions, the symbols should really be
boolean functions.

The result of trying to implement these specifications is FADELA, a Finite Automata
DEbugging LAnguage, which is a complete language, including as standard types: finite
automata, regular expressions, integers, booleans, sets of states and words consisting of
boolean products. Several functions on these types are implemented, to create a flexible
environment for examining finite-state models.

4.2 FADELA interpreter

To create a flexible user-interface, a syntax is defined and an interpreter is build, using
the tools LEX and YACC. This syntax (appendix A) describes the form every command
given by the user should have. These commands can be:

• Assignments to give a variable a specific value, which may be a constant value, the
value of a variable or the value of an expression. An expression is build from the
standard functions in FADELA.

• Print statements to show the values of variables, the names of used variables or to
show strings or results of computations (Le. the value of expressions).
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• Redirection statements to force output to be send to a specific file or to read next
commands from a file (Le. start batch processing).

• Repetitive (WHILE) and conditional (IF .. ELSE or ON) statements, to control the
execution of compound statements.

• Commands to dispose variables or quit the interpreter.

Execution of these statements, including computation·of expressions, could have been
done 'on the fly', thus having the results available at the time a statement or expression
was read. Although this is a very easy and quick way of interpreting a task, problems
would arise, when control statements were used, because then the WHILE- or IF-part
should have to be re-read. To overcome this, a parsetree is build for every statement and
its substatements. IT a statement on the highest level is read completely, it is executed,
which may involve execution of substatements. Of course, (nested) WlITLE- or IF­
statements are no longer a problem, because they occur in the parsetree as a pair:

Control statement =
<parsetree for boolean expression, parsetree for substatement>

There are no variable-declarations in FADELA. A variable is created when an
assignment to it is made and this assignment automatically defines the type of the
variable.
Because expressions of different types may look the same, the result type of the
expression is defined by the type of the variables occurring in it. Therefore, the silent
variable-declaration takes place, while generating the parsetree and before the execution
or computation of the result of the expression.
Variables are stored and retrieved using one general set of functions. All names have to
be unique and once a name is used for a variable of a certain type, the same name can not
represent a variable of another type, unless the previous variable was disposed. The
possible types, all having their own specific data-structure, are:

• Finite automata, either M-automata or automata accepting only finite words.

• (0)-)Regular expressions.

• Integers.

• Booleans.

• Sets of states.

• Finite words, being sequences of boolean products.

Examples:

booC 1, a and <a,-b,X> are boolean products,
although booC 1 and a each contain only 1 atomic boolean.



- 27-

{state 0, 1 ,X_123} is a set of states.

[a <a,-b,x> a a] is a finite word of length 3.

(a+(bool_l.<a,b»*).aCJ) is an ro-regular expression.

4.2.1 Data structure for finite automata

Considering the operations to be performed most frequently on finite automata, a useful
data structure is chosen. This structure should make operations like concatenation,
union, closure and ro-closure easy, because these operations will be performed while
generating a FA for a given regular expression. Furthermore, given current states and an
inputvector (Le. a boolean product), the next states must be computed. While
constructing a regular expression for the language accepted by a FA, all edges between
given states must be obtained and of course the labels (boolean products) on the edges.

A finite automaton in FADELA is stored in a structure containing:

I = set of initial states.
F = set of final states (in the case of a 'normal' automaton).
or
C =set of limitsets (in the case of aM-automaton).
L =set of all labels on the edges (Le. possible inputs).
M =matrix describing o.

where

M [i ]U] = sum of the labels of all edges from state i to state j.

An input is always a vector or product of boolean variables, e.g. x.z meaning x is true and
z is false. Every edge in the automaton may have such vectors as a label, which then
describe a boolean function which has to be true, in order to enable the transition along
that edge. Thus M [ilU] contains the union of some functions, e.g. x+y.z meaning that
there is an edge labeled x, going from i to j and there is one labeled y.z. Clearly, this
automaton will move from ito j on input x, because M[i]U] becomes true when x is
true.
Now o(i,x) is computed by simply taking row M [i] and computing the boolean function
at every column for the given value x:

o(i,x) = {j IM [i]U](x) = true }

The operation of union (equation 2.11 and 3.8) is simply summing the matrices. This
summing in fact means putting the two matrices together, since the sets of states are
disjoint. Concatenation (equation 2.12 and 3.9) involves summing the matrices and
filling M [f Hi] with the function E, which of course represents the silent moves.
Closures (equations 2.13 and 3.10) are created by adding a new row and column s to the
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matrix and filling M [s][i] and M [f ][s] with E. Besides these simple combinations of
the matrices, the sets I, F, C and L have to be adjusted in the way described by the
equations mentioned. These are also simple unions, except for the computation of C in
equation 3.10. This involves generating all possible subsets of Q and only keeping those,
that are loops containing s.

4.2.2 Data structure for regular expressions

The choice for a useful data structure for regular expressions is very straight forward.
These expressions can best be represented by a tree structure, where the nodes look like:

Lab = label (in the case of a leaf node).
Op =operation (in the case of an interior node).
Sub = the first child node.
Next =the next child node of the parent node.

where Op can be one of

Union, having more than 1 child node.
Concatenation, having more than 1 child node.
Closure, having only 1 child node.
co-Closure, also having 1 child node.

In figure 14, a tree for the expression a. (b+c)*.d is shown.
Operations on RE's, for instance constructing a finite automaton from a given RE,
involve recursive descending of the tree structure and performing the operation Op on the
FA's resulting from the subtrees.

4.3 Operations on finite automata

Besides the operations on automata discussed in chapters 2 and 3, namely concatenation,
union, closure and CO-closure, which are standard functions used in generating FA's from
RE's, some other operations are standard functions in FADELA.

4.3.1 Complementation

In the introductions to this report and to this chapter, the use of complementation is
already mentioned.
Let M be an (M-)automaton accepting language L over alphabet X. Then the
complementary (M-)automaton Me accepts all (co-)words over X, that are not accepted by
M.
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Figure 14. tree-representation of RE =a. (b +c)*.d

In the case of automata accepting only finite words, the complementation is very straight
forward:

Assume M is deterministic and 0 is fully specified, Le. for all states q and all symbols x,
exactly one next state is defined by o(q,x). As mentioned in paragraph 2.6, it is always
possible to construct a deterministic automaton equivalent to a given non-deterministic
one. Making 0 fully specified is done by adding an extra state qerror to M and then
adding transitions (q,x,qerror) for all q and x, where b(q,X) =0. This does not influence
the language accepted by M, since qerror is no final state and has no edges to other states
than qerror itself. Under these assumptions, there is a path in M for every possible word
over X. The complement Me of M is now constructed by complementing the set of final
states F with respect to the set of all states Q. Clearly no word w accepted by M can be
accepted by Me, because the state that w takes M to is not a final state in Me. Conversely,
any word that takes M to a non-final state, takes Me to a final state.

This simple complementation only works properly for deterministic automata. In a non­
deterministic automaton, two paths carrying the same word w may exist, one leading to a
final state and the other to a non-final state. Because of the first path, w is accepted by M,
but the second path causes Me to accept the same word w.

For M-automata, the same construction can be used, again under the assumption that Mis
deterministic and fully specified. Now the set of limitsets C is complemented with
respect to the set of all possible loops in M.
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4.3.2 Minimization

For the same language, several accepting automata may exist. A minimal DFA is one
that has the minimal number of states. Constructing the minimal equivalent of a given
DFA is done by combining equivalent states into one state. Two states S and t are
equivalent, if the language carried by the flow from S is exactly the same as the language
carried by the flow from t. In other words, S and t are equivalent if both are either final or
non-final and for every symbol x the next states 8(s,x) and 8(t,x) are equivalent. .
This leads to the following method to construct a minimal DFA from a given DFA:

Assume 8 is fully specified.
First a partition is made, splitting the set of states Q into two not equivalent subsets,
namely the final and the non-final states.
Consider one element Sof the partition. If the next states A(s,x) are in only one element t
of the partition for each symbol x, then the states in S are considered equivalent, else S

must be split into subsets that do have next states in only one element t for each symbol.
This splitting leads to successive refined partitions, until no more elements S of a
partition need to be split. Thus this final partition is 1t = {s 1, ..,sn}' such that A(sj ,x) l:; Sj
for all XEX and Sj,SjE 1t.

The minimal DFA is now given by

M' = (Q' X' 8' l' F'), , , ,

where

Q' = {1,.. ,n} representing the elements of 1t.

8' = {(i,x,j) 13(s,x,t)E 8: SE Sj 1\ tE Sj}
l' = {i I Sj (') I ;t 0}
F' = {i I Sj (') F ;t 0}

For a DFA with n states and m input symbols, this method has time bound m.n 2 , forming
at most n successive partitions, testing n states on m inputs in constructing each partition.
An alternative algorithm is developed by Hopcroft, taking only m.n log n time [14,15].
The latter algorithm is implemented in FADELA.

For M-automata, no minimization is available in FADELA, because no global
minimization algorithm has been found, due to lack of time. However, some decrease in
the number of states may be achieved, by using the mentioned algorithms, taking as
initial partition all (disjoint) limitsets and the set containing all other states. Thus

1t=Cu {ql'v'CEC:qe:C}
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4.3.3 Product operations

Three different product operations are implemented in FADELA, denoted by
Parallelization, Lock-step Product and Product, differing in the amount of
synchronization between the parts of the product-automaton.

Any product M of automata M 1 = (Q1,X1,~h'/1,F1) and M 2 = (Q2,X 2,0z'/2,F2) is
given by:

M =(Q,X, o,/,F)

where

Q= {(Q1,q2) IQ1EQ1 AQ2 E Q2}
1= {(i1,i2) I i 1El 1 A i 2EI 2 }

F= {(f1J2) IfIEF 1 A!2EF 2}

X and 0 depent on the type of product.

Parallelization
In the case of parallelization, there is no synchronization between the parts of the
product. The two automata are simply put together and work independently, although
the input channels may coincide when both automata have input symbols in common.

X = {<x 1 ,x2> Ix 1 ,x2E X 1 U X 2 }

Thus every input may contain one input for M 1 and one for M 2, but x 1 may also be
equal to x 2 and some inputs may be accepted by only one of M 1 or M 2.

0= {«Sl,S2),X, (t1,t2))}

where x = <x 1 ,x2> and either

tIE 01 (s 1 ,x) and t 2E 02 (s 2,X), thus both parts have a transition
or
t1 E 01 (s 1 ,x) and t2=S2, thus only M 1 moves
or
t1 =s 1 and t2E 02(S2,X), thus only M 2 moves.

This product automaton accepts words, that are the result of merging words accepted by
M 1 and M 2 respectively. Example:

a.b.b.c is accepted by M 1 and c.b.d.a is accepted by M 2. Then for instance
<a.c >.b. <b.d >.<a.c > and <a.c >.b.d.b.a.c are accepted by the Parallelization of M 1

and M 2. Note that <a.c > represents a vector that is one input, just like b.

Lock-step Product
In the case of Lock-step Product, the synchronization between the parts ensures that both
parts have a transition on every input, although not necessarily due to the same part of
the input.
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x = {<x 1 ,X2> I X1,X2E XI U X 2 }

This is the same as for Parallelization.

0= {«SI,S2),X, (tl,t2)) I tl E01(SI,X) 1\ t2E 02(S2,X) }.

This product automaton accepts words, constructed by placing in parallel words of equal
length accepted by M 1 and M2. Example:

a.b.b.c is accepted by M 1 and c.b.d.a is accepted by M2' Then <a.c >.b. <b.d >·.<a.c >
is accepted by the Lock-step Product of M 1 and M 2.

Product
The Product of two automata M 1 and M2 yields an automaton, that accepts only words,
that are accepted by both M 1 and M 2.

X=X 1 nX2°= {«s 1,S2)'X, (tl ,t2)) It 1E 01 (s I'X) and t2 E 02(S2,X) }.

The three mentioned types of products are also valid for M-automata. In that case, the
set of limitsets C is given by:

C ={ceQ I i th coordinates of qE c form a limitset E Ci for 1 ~i ~2 }

4.3.4 Miscellaneous operations

An important function in FADELA is generating a finite automaton that accepts the
language defined by a given regular expression. This is done in a very straightforward
way:
The tree representing the RE is recursively (depth first) translated into a FA, using the
functions for union, concatenation and (ro-)c1osure. This is in fact the implementation of
the construction discussed in paragraph 2.7.

Reflection of an automaton yields an automaton that accepts exactly the reverse (cf.
equation 2.2) of the language accepted by the given automaton. Of course this is only
defined for finite words. It is implemented by simply reversing the transition-matrix M
and swapping [ and F:

Mrefl[i][;] =M[;][i]
[refl = F
Frefl =[

The user needs the possibility to define automata, by directly describing them in stead of
having FADELA form them from regular expressions. An automaton is defined by
assigning a description of it to a variable. The description contains the set of initial states
[, final states F and transitions 0:
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M= {
{ 0 }
{ 1,2 }
( 0, a, 1 )
(0, b, 2 )
( 1, b, 2 )
}

To make input of these descriptions easier, the syntax is not very strict and the same
definition is given by:

M ={0 {l,2}
Oa1
Ob2
1b2
}

A M-automaton is defined. the same way, but of course the set of limitsets C is given in
stead of final stateset F:

M= {MULLER
{ 0 }
{ { 1, 2 }, { 2 } }
( 0, a, 1 )
( 1, a, 2 )
( 2, b, 1 )
}

The indication 'MULLER' should of course not be necessary, since the description of C
is clearly distinguishable from Fin 'nonnal' automata. In the case that C or F are empty,
the difference can not be seen, but then again, such automata are of no real concern,
because they only accept the empty language. If B-automata are added. to FADELA, a
distinction between B-automata and 'nonnal' ones is needed, which can be done by the
indication 'BUell'. Now the 'MULLER'-indication is merely an extra indication
towards the user.

In order to examine the behaviour of automata, some functions are implemented. to
retrieve infonnation about (parts of) the automata. These functions are queries for initial,
final or limit states, computation of the E-closure of a set of states and computation of the
next or previous states upon a given input(-vector), a given word or simply all possible
next and previous states, reachable in one transition.
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4.4 Computation of regular expressions

The most important function to enable examination of the behaviour of an automaton is
computing a regular expression for the language accepted by the automaton, since
regular expressions are usually more easily interpreted than descriptions of the finite
automaton itself.

This computation is done in FADELA using the methods described in paragraph 2.8 and
3.5. The construction of RE's for all paths, following equations 2.14 and 2.15 is not done
for all paths from I to F, as needed in equation 2.16. In stead, this method is only applied
to strong components within Q, i.e. sets of states in which every state can reach any other
state. Clearly, these strong components are the only parts where loops exist and thus the
only places causing closures in the RE. The method of paragraph 2.8 was needed to cope
with these loops (and closures), but in parts, where there are no loops, RE can be formed
by concatenating RE's along the paths.

The computation of RE's is now divided in two steps:

For every strong component, the RE is computed using equations 2.14-2.16, taking as
initial states those states that are really initial or are reached by states outside the
component. Final states and states reaching states not in the component are considered
final states. Here reaching means 'having a transition towards'.

The global RE is the union of the RE's along all paths from initial to final states. The RE
along a path is the concatenation of symbols on edges between strong components and
previously computed RE within strong components. In the case of M-automata, the final
RE is computed using equation 3.11.

The method of paragraph 2.8 leads to a lot of redundant information in the final RE.
Some simplifications are already mentioned in paragraph 2.8. FADELA offers a general
simplification of RE, which attempts to decrease the size of RE's. This is done by
recursive (depth first) replacement of subexpressions by equivalent expressions, having
fewer terms. It does not transform RE into a standard form, nor does this simplification
imply, that a global minimum for the size of RE is reached. The used simplifications are
shown in tables 1,2 and 3, showing the simplified results of the operations of (0)-)closure,
union and concatenation.
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table 1. simplification (00-)closures

a= aO) = a* =

E E E

~* ~O) ~*

j}+E ~O) ~*

j}+~* ~O) ~*

~.~* ~O) ~*

table 2. simplification unions

a= asimpl =
~.~*+E ~*

~*+E+'Y ~*+'Y

~+~ ~

~+~* ~*

a+(a+~)* (a+~)*

table 3. simplification concatenations

a= asimpl =
~.E.'Y ~.'Y

~.~O) ~O)

~* .~O) ~O)

~*.~* ~*

(~E).~O) ~O)

(j}+E).~* ~*
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5. EXAMPLE OF FADELA

In this chapter, an example of the use of FADELA is given. A batch perfonning a test of
containment of one language by another is used.

The following batch expects two languages 11 and 12 to be defined. If the text of this
batch is in file 'contain', then after defining 11 and 12, the user must give the command

# contain

which opens file 'contain' for input, thus executing the batch and returning to normal
input afterwards. The text of the batch is:

ml = M(l1)
m2 =M(l2)
print ("The language ";11;" is ";)
on not empty (prod (ml,compl (m2,labs (ml)))) print ("NOT ";)
print ("contained in the language ";12)

First two automata ml and m2 accepting exactly the languages 11 and 12 respectively are
constructed. The boolean expression controlling the ON-statement does the following:

- m2 is complemented with respect to all symbols of m1 and m2, yielding an
automaton accepting all possible words over input symbols of ml and m2, except
those words accepted by m2.

- The product of ml and the complement of m2 is constructed, yielding an automaton
accepting only words accepted by ml but not accepted by m2.

- If this product does accept any words, then these clearly are words that are in 11 but
not in 12. This implies, that 11 is NOT completely contained in 12 and therefore the
result of the expression is FALSE.

A run of FADELA (reply from FADELA is shown bold) now may look like:
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11 = a.b*.(a+b+c)W
12 = a.bW
#contain
Warning: Minimal Muller
Warning: Minimal Muller
Warning: Minimal Muller
The language a.b*.(a+b+c)W is NOT contained in the language a.(b)W
13 =11
11 = 12
12 = 13
#Contain
Warning: Minimal Muller
Warning: Minimal Muller
Warning: Minimal Muller
The language a.(b)W is contained in the language a.b*.(a+b+c)W

The warnings are a result of the fact that in FADELA the automata are minimized before
taking the product or complement, but no minimization is implemented for M-automata,
in which case only detenninization is applied. The capital W represents ro



- 38 -

6. CONCLUSIONS AND RECOMMENDATIONS

The most important operations on automata and «(0-)regular expressions are available in
FADELA.

Constructing an equivalent deterministic automaton can be done, not only for
nondeterministic 'normal' automata, but also for M-automata. The possibility was found
in literature, where proof for the equivalence between deterministic and non­
deterministic M-automata is discussed, but that proof involved constructing an co~regular

expression for the language accepted by the non-deterministic M-automaton and proving
that for any co-regular expression an accepting deterministic M-automaton can be found.
The construction discussed in this report is a direct conversion from non-deterministic to
deterministic automata, based on the subset-construction.

Currently, only M-automata accepting co-regular languages are available in FADELA,
but it should not be very difficult to include other types of automata, such as B-automata.

Minimization of the number of states in an automaton is only implemented for 'normal'
automata. Minimization for M-automata, although maybe not global, should be possible
too.
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APPENDIX A: FADELA SYNTAX AND SEMANTICS

commands:

Commands are given by the user interactively or read from a batch file. Once a complete
command is read (possibly containing subcornmands in the case of control commands),
its execution starts and the parsetree for it is deleted.

command:

EXIT immediately stops·PADELA, closing all opened files.
At any level in the parsetree a syntax error may occur. If so, the execution of the
command at the highest level will not take place and an error message with an indication
of the error is given. This error looks like:

syntax error in line <nn>: '<symbol>' not expected.

control:
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The boolean expression is evaluated and depending on the result, the first (result =
TRUE) or second (result =FALSE) subcommand of the IF-command is executed.
The ON-command is equivalent to an IF-command, where the second subcommand is
empty.
The WHILE-command is equivalent to an ON-command, that is repeated, as long as the
result of the boolean expression is TRUE.

commandblock:

--01 commands KD--
Several commands are grouped, to form one (sub-)command.

assignment:

An identifier represents a variable and consists of elements of
{ A,..,V;X,.. ,Z,a,..,z,O,.. ,9,_,',@ }, starting with an element of { A,.. ,V,X,..,Z,a,.. ,z }. The
oW' can not be used, because it is used as a special symbol, namely 0) in regular
expressions. To the variable, the result of the right-hand side expression is assigned.
Once a value has been assigned, the variables type (integer, boolean, fa, re, set of states
or word) is set and any further assignments to it must have the same type. If the right­
hand side expression does not have the correct type, a syntax error results.

deletion:

~~) ~
~ngrQY

<matchstring> may be any string of characters. All variables that have names starting
with <matchstring> are deleted. If no <matchstring> is given, all variables are deleted.
After deletion, the variable-names are free for new assignments of any type.
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output:

outputlist ) f---r-+

outputlist

PRINT sends all items in <outputlist> to the current output, adding a newline after each
item, unless it is followed by';'.
LIST sends to the current output all variable-names starting with <matchstring> or all
variable-names if no <matchstring> is given.
SHOW does the same as list, but not only shows the names, but the values as well.

outputlist:

outputpart

outputlist

outputlist

outputpart

outputpart

outputpart:

1'-----iI fa f----/I

statevector

bitvectocar
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An outputpart is an item printed by PRINT(outputlist). These may be strings, that must
be given in double quotes '''' or expressions.

matchstring:

filename:

matchstring

If a file is not in the current directory, it must be referred to by giving its path within
double quotes ''''.

redirection:

Input can be redirected to come from a (batch-)file, by using the '#' inclusion command.
After this command, commands will be read from the given file, until the end of that file
is reached. Then that file is closed and further commands are taken from the current
input-stream. File inclusions may be nested, but the depth is restricted by the number of
files that may be open at the same time. If the input-file is not found, an error is given:
ERROR: cannot open '<filename>' for input
Output can be redirected to a file, by giving the OUT or NEWOUT command.
OUTO closes the current output file and further output will go to standard out.
OUT(filename) closes the current output and opens the file <filename> for further output,
appending to it, if it already exists.
NEWOUT(filename) does the same, but always opens the file overwriting existing files
of that name.
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boolean:

booCfunc

boolJune:

EMPTY has value TRUE, if and only if the argument (set of states, fa or re) is empty,
which in the case of fa means, that fa does not accept any word. Boolean expressions are
evaluated following the usual precedence: NOT, AND , OR.
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integer:

intJunc:

--®-01 bitvectocar~

LEN returns the number of symbols (Le. boolean products, bitvectors) that are in the
given word (Le. bitvector array).

regexp:

bitvector
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reJunc:

Regular expressions have the usual form. oW' stands for co in co-regular expressions.
L(fa) returns a (simplified) (co-)regular expression for the language accepted by <fa>.
This may give errors, if unions, closures or concatenations occur, that are not possible,
because of incompatible arguments. These errors are listed under fa_func.
SIMPL(re) returns a simplified copy of <re>.

bitvector ar:

----..-----------~o

bitvectors

bitvector_ar

bitvectors:

bitvector

bitvector

LABS(fa) returns a word (bitvector array) consisting of all input symbols of <fa>.
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w1.w2 yields the concatenation of w1 and w2.
w[Lj] is the slice of w from position ito j, where w = w[1].w[2].w[3] ....w[LEN(w)].
If j < i then the result is w[i].w[i-1].w[i-2] ....w[j+l].w[j].
w[..j] is equivalent to w[l..j].
w[L] is equivalent to w[LLEN(w)].

bitvector:

bitvectocar

morebits:

singlebit

singlebit:

singlebit

singlebit

singlebit

~bell ~'
- label

label:

matchstring

In boolean functions (products, bitvectors) 'A' represents E. ,-, is the negation of the
following bit. Bits (atomic booleans) may have any name, but sometimes the name must
be given between '<' and '>' to prevent syntax errors, when the name has been used for a
variable.
A bitvector is represented by bits, separated by ',' and between '<' and '>'.
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somestates

statevector

statevector

statevector

svJunc:

statevector

statevector

somestates

statevector ) r--------r-+

bitvectocar
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states:

state:

-1 statename ~

statename:

statename

statename statename

On sets of states (statevectors) the functions of union (+), difference (-) and intersection
(*) are allowed.
States are represented by identifiers or numbers or by pairs of statenames, which result
from product operations on automata. In these pairs, two statenames, separated by ',' are
within '<' and '>'. Functions returning sets of states are:

- EPS(fa,set) returning the E-c1osure of <set>.
- INIT(fa) returning the initial states of <fa>.
- FINAL(fa) returning the final states of <fa>.
- ACC(fa,n) returning the <n>-th limitset of <fa>, empty if <fa> has less than <n>

limitsets.
- STATES(fa) returning the set of all states of <fa>.
- NEXT(fa,set) returning all states reachable from states in <set> on any input symbol.
- PREV(fa,set) returning all states that reach states in <set> on any input symbol.
- NEXT(fa,set,x) returning all states reached from <set> on input symbol <x>.
- PREV(fa,set,x) returning all states reaching <set> on input symbol <x>.
- NEXT(fa,set,w) returning all states reached from <set> on input of word <w>.
- PREV(fa,set,w) returning all states reaching <set> on input of the reverse of word

<w>.
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In the functions NEXT and PREV, a singleton set may be given by the element without
'{' and'}'.

fa:

somestates

transitionssomestatessomestates

faJunc:

faUst:
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Functions returning FA's are:

- CLOS(fa) returns a FA accepting the language (L(fa))*. If <fa> is aM-automaton,
then this function is not defined and an empty FA is returned. In that case also an
error-message is given:
ERROR: Closure of a Muller-FA

- CONCAT(fal,fa2,.. ,fan) returns a FA accepting the concatenation of the languages
accepted by <fal>,<fa2>,.. and <fan>. If anyone of the arguments except <fan> is a
M-automaton, then an empty FA is returned and an error-message given:
ERROR: Concat Muller-FA

- UNION(fal,fa2,..,fan) returns a FA accepting the union of the languages accepted by
the arguments. Those arguments must either all be M-automata or all 'normal'
automata, else an empty FA is returned and an error-message given:
ERROR: Union of a Muller-FA and a NotMuller-FA

- M(re) returning an automaton accepting exactly the language described by <re>. It
uses the functions of union, concatenation and (ro)-closure and thus may give the
error-messages produced to those functions.

- DET(fa) returning a deterministic equivalent of <fa>, using the subset construction.
- MIN(fa) returning the minimal equivalent DFA of <fa>, giving a warning if <fa> is a

M-automaton. The result then is a correct DFA, though not minimal and the message
IS:

Warning: Minimal Muller.
- COMPL(fa,word) returning the complementary FA of <fa>, Le. a FA that accepts all

words not accepted by <fa>. If the second argument is omitted, then the resulting
automaton accepts only words over the input-alphabet of <fa>, else all symbols in
<word> (bitvector array) are added to this alphabet, before constructing the
complement.

- REFL(fa) returning a FA accepting the reverse of the language accepted by <fa>. If
<fa> is a M-automaton, then this function returns an empty FA and gives an error­
message:
ERROR: Reflection Muller-FA

- PAR(fal,fa2) returning the product of <fal> and <fa2>, described in paragraph 4.3.3
under parallelization. The arguments must either be both M-automata or 'normal'
automata, else the following error-message is given:
ERROR: Parallel of a Muller-FA and a NotMuller-FA

- LOCK(fal,fa2) returning the product of <fal> and <fa2>, described under Lock-step
product in paragraph 4.3.3. Possible error:
ERROR: LockstepProduct of a Muller-FA and a NotMuller-FA

- PROD(fal,fa2) returning the product of <fal> and <fa2>, accepting only words that
are accepted by both <fal> and <fa2>. Possible error:
ERROR: Product of a Muller-FA and a NotMuller-FA
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statevector

somesets:

-01 statevectors~

statevectors:
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statevector

statevectors

transitions:

transitions

bitunion:

statevector
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