EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

A comparative analysis of the functional and the structural level fault detection for sequential
machines

Mijland, H.P.J.

Award date:
1992

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0916d68a-beab-4828-bbb8-f3e95e19304f

ED 255

5665

Eindhoven University of Technology
Department Electrical Engineering
Digital Systems Group (EB)

A COMPARATIVE ANALYSIS OF
THE FUNCTIONAL AND
THE STRUCTURAL LEVEL
FAULT DETECTION
FOR SEQUENTIAL MACHINES

By H.P.J. Mijland

Master Thesis
Eindhoven, the Netherlands
September 1989 - June 19390

Supervisor: Prof. ir. M.P.J. Stevens
Coach: Dr. Ir. L. Jo2wiak

The department of Electral Engineering of the Eindhoven University of Technology does not accept
any responsibility regarding the contents of student projects and graduation reports.

ABSTRACT

In this report a new concept to generate test vectors for sequential machines is
checked. Not one level of abstraction is considered but two levels. The test
generation occurs at the functional level, while information is retrieved from the
structural level.

Four methods for test generation, using structural level information at the
functional level were used to check the concept. Test generation was done for a
few examples. A comparison was made with a conventional functional level test
generation algorithm and a conventional structural level test generation algorithm.

The concept of using structural level information on functional level test generation
gave for all the examples better results than the conventional test generation
algorithms.

CONTENTS

LIST OF USED ABBREVIATIONS
1. INTRODUCTION

2. FUNCTIONAL AND STRUCTURAL LEVEL TESTS
2.1. Introduction
2.2. Structural level testing
2.3. Functional level testing
2.4. Combining structural and functional leve! testing
2.5. Structural level information
2.6. Conclusion

3. TEST METHODS BY COUPLING LEVELS
3.1. Introduction
3.2. Statistic testing
3.3. Local optimization
3.4. Static global optimization
3.5. Dynamic global optimization
3.6. Expected performance of the methods
3.6.1. Performance for statistic testing
3.6.2. Performance for local optimization
3.6.3. Performance for static global optimization
3.6.4. Performance for dynamic global optimization
3.7. Conclusions

4. USING THE METHODS
4.1. introduction
4.2. Generating test vectors
4.2.1. Generation for statistic testing
4.2.2. Generation for local optimization
4.2.3. Generation for static global optimization
4.2.4. Generation for dynamic global optimization
4.3. Fault coverage and number of test vectors
4.4. The machines
4.5. How to compare the methods
4.5.1. Structural level comparison
4.5.2. Functional level comparison
4.6. Determination of C, and C, in methods 2. and 3.
4.6.1. Determining C,
4.6.2. Determining C,
4.7. Making of test sequences

4.8. Fault simulation
4.9. Conclusions

5. RESULTS OF THE TESTING METHODS
5.1. Introduction
5.2. Tables of results
5.3. Analyzing the methods 1. to 4.
5.3.1. Results for statistic testing
5.3.2. Results for local optimization
5.3.3. Results for static global optimization
5.3.4. Results for dynamic global optimization
5.4. Comparing the new concept to the conventional methods
5.4.1. Functional level comparison of the concept
5.4.2. Structural level comparison of the concept
5.5. Implementation
5.6. Conclusions

6. CONCLUSIONS

REFERENCES

APPENDIX A. FUNCTIONAL LEVEL DESCRIPTION OF THE MACHINES

UNDER TEST

APPENDIX B. EXAMPLE OF FAULT SIMULATION AS IN 4.8.

32
34

35
35
35
36
36
37
38
39
39
39
40
40
43

44

45

46

48

LIST OF USED ABBREVIATIONS

cov
MEM
noib
nomult
NSL
OL

Pl

PO
rntv
sal
sai

Sl

SO

fault coverage
memory elements
number of input bits
log, (multiplicity)
next state logic
output logic
primary inputs
primary outputs
relative number of test vectors
stuck-at-zero
stuck-at-one
secondary inputs
secondary outputs

1. INTRODUCTION

The subject of this report is the testing of sequential machines. A lot of work has
been done in recent years, to facilitate the algorithms used for test generation. So
far a lot of this work is done to convert the test generation algorithms for
combinatoric circuits to be used for sequential machines. There are two important
disadvantages of this conversion.

The first disadvantage is that the sequential machine is considered as a
combinatoric circuit, not taking into account the sequential character of the
machine. Most of the times these methods cut the loops, caused by the memory
elements, which leaves a combinatoric circuit.

The second disadvantage is that the machine is described at one level of
abstraction only. By looking at only one level a great deal of information is lost
about the machine. This results in too many test vectors.

The aim of this work is to check the following concept: use information from more
levels to generate test vectors. This has two advantages. First, that a machine
can give different information on several levels, so maybe test generation
becomes easier and less test vectors must be generated to guarantee a given
fault coverage. Second, that the sequential character of the machine does not get
lost, so the machine is tested as a sequential machine.

In this report two levels of abstraction are considered: the functional and the
structural level. First attention is paid to the conventional test generation
algorithms at the two levels and the use of these for sequential machines. Then,
four test generation methods are considered. These methods generate test
vectors at the functional (state diagram) level making use of information from both
levels.

To check the concept described above, a comparative analysis of the methods
has been made using several sequential machines from the international
banchmark set [1].

2. FUNCTIONAL AND STRUCTURAL LEVEL TESTS

2.1. Introduction

In the last decades very much work has been done in developing test algorithms.
The starting point in these algorithms is always one level of abstraction of the
digital circuit description. In this chapter some of these algorithms, which are
known from literature (e.g. [5]), will be described. The concept which will be
checked in this work: the use of two levels of abstraction for test generation, will
also be explained.

2.2. Structural level testing

A digital circuit described on the structural level is composed of logical gates. At
their turn logical gates are composed of transistors. Depending on the technology
used, these transistors can be bipolar transistors or MOSFETS. After fabrication
these transistor circuits may contain faults. These faults can have in two ways
effect on the performance of the circuit. One way is that the faults change the
parameters of the circuit, like longer delay times. The other is that the circuit faults
cause logical faults in the gates. All these kinds of faults can cause improper
operation of the circuit.

Testing a digital circuit, the definition of a good fault model is necessary. A digital
circuit can be tested on timing, on power consumption or other parameters. Also
the circuit can be tested for logical faults. Two very important types of logical
faults are stuck-at faults and bridging faults. Stuck-at faults are faults which cause
a signal line to be always logic "1" or logic "0", the first named stuck-at-one (sa1),
the second named stuck-at-zero (sa0). Bridging faults cause two signal lines
which are next to each other to be connected. Depending on the technology
used, the resulting signal can be the logic AND or the logic OR function for these
two signals.

The logical fault model does not take into account the physical faults which can
occur in the transistor implementation of the machine. Still most structural level
fault models used are based on the logical fault model. In testing PAL’s or PLA’s
bridging faults are very important. For digital circuits stuck-at faults are considered
most important. Most test algorithms are based on the occurrence of only a

single stuck-at fault. This model is therefore known as the single-stuck-at fault
maodel. It is widely used and also widely accepted.

After defining a fault model, test generation can begin. Many algorithms have
been proposed in the past decades, of which two are the best known, the D-
algorithm (D =discrepancy) and the PODEM (path oriented decision making)
algorithm. In the circuit under test a fault is injected, and the algorithms try to
excite the fault and propagate its effect to an output. The disadvantage of these
algorithms is that they use backtracking to find a path to propagate the effect of
a fault. This means that generation time can be very long.

—— COMBINATORIC
I 01 L0GIC

COMBINATORIC —— 3
LOGIC — |
On

FF

L

R

(a) (b)

Figure 1. (a) a combinatoric circuit and (b) a sequential machine.

Digital circuits can be divided into two classes: combinatorial and sequential. In
figure 1.(a) a combinatoric circuit is shown. The outputs are a function of the
inputs only. In a formula this is

O =f(l,..,.) i=1.,n ().

For a sequential machine the outputs are a function of the inputs and of the
present state of the machine. This state is held by a set of memory elements,
outlined in figure 1.(b). The general formula for a sequential machine is normally
given as the 5-tuple

M = (1, S, O, delta, lambda) (2),

in which | is the set of inputs, S is the set of states, O the set of outputs, delta the
function which relates S to | and S, and lambda the function which relates O to
S in case of a Moore machine and to S and | in case of a Mealy machine.

For combinatorial circuits it is quite easy to generate test patterns, because a fault
can be excited and propagated to an output by only one test vector. For
sequential machines the effect of a fault can be propagated through the memory
elements, so it needs a sequence of test vectors to detect a fault. Most of the

structural level test generation algorithms are made for combinatorial circuits. With
a few changes it is possible to use them for sequential machines.

A very popular way the combinatorial test generation algorithms are used for
sequential machines is the scan technique. The goal of this technique is to make
the state of the sequential machine (the bit pattern held by the memory elements)
visible. This is only possible when synchronous sequential machines are
considered. The memory elements are coupled into a shift register. Testing is
done by shifting in and out test vectors. After generating a test vector, it is shifted
in, an input is applied after which the resulting state is shifted out and compared
to the expected next state.

There are two disadvantages of this method. One is that it takes a long time to
shift in and out test vectors. The second is that the sequential machine is
degraded into a combinatorial circuit, not taking into account the sequential
character of the machine.

Also the other test generation algorithms for combinatoric circuits have the
disadvantage like in previous example. The way in which they are used for
sequential machines is kind of artificial and the sequential character of the
machine is neglected.

2.3. Functional level testing

in this report attention is paid to the functional level testing of sequential
machines. The functional level description of a sequential machine is done by a
state transition table or a state transition graph. An entry in a state transition tabie
consists of a present state, an input and a next state. These three combined is
called a transition.

For functional level testing the definition of a good fault model for this level is
necessary. Gupta and Armstrong [2] have defined a functional level fault model
consisting of two types of faults. First they map physical faults to the functional
level. Secondly they scatter the functional description which causes functional
faults. The first type of faults is thus extracted from a different level of description
then the functional level.

The disadvantage for functional level testing is that normally little or nothing is
known about the implementation of the machine on a lower level of abstraction.
This results in a fault model that contains only the faults originated in the
disturbance of the functional level description of the machine.

The advantage in functional level testing is that generation time is smaller than
for structural level testing. Disadvantage is that there is no connection between
the functional level description and the implementation on a lower level. Therefore
functional level testing most of the time comes down to exhaustive testing. This
means that for larger sequential machines the testing time grows exponentially
with the growth of the number of input bits and the number of memory elements.

2.4. Combining structural and functional level testing

For functional level testing the generation time can be very short but the absence
of a good fault model results in a very long testing time. For the structural level
algorithms the test generation time can be very long, but the testing time is short.
Why not combine these two levels, so profit is taken from the advantages, while
maybe the disadvantages disappear. Generating test vectors at the functional
level, looking at the structural level, means that only those faults which influence
the functionality of the machine are considered. The concept proposed here is to
use the information about the faults on the structural level in the functional level
test generation. The purpose for doing so is to shorten the generation time but
also shorten the testing time.

If this concept works, further work can be done to use more levels of abstraction.
it could be possible to find a fault model on the lowest level of abstraction, the
level describing the silicon lay out, from which information is derived which in its
turn can be used on a higher level of abstraction. This method shows an analogy
with the design of digital circuits, which tends to be done hierarchically.

One of the goals in the design of a circuit at the structural level can be to keep
the circuit irredundant. Sometimes redundancy is added to prevent the
appearance of timing problems. An other form of redundancy is important in this
report. When a sequential machine is defined, it consists of a set of states, and
a set of inputs which can be combined to form a sequential machine. This
sequential machine is able to generate a sequence of outputs, which are a
function of the sequence of inputs. The states have to be implemented in a circuit
at the structural level. These states are normally defined as a set of bits in a
register. This register can hold as many states as two to the power of the number
of state bits. This means that when the sequential machine has e.g. twelve states
defined, and the implemented register has four bits, sixteen states are realized.

Another form of redundancy occurs when a certain input is forbidden from a
given state. This is possible when the surrounding logic never generates this

10

input. In the definition of the machine at functional level this input is not possible,
but in the implementation of the machine at the structural level this input is
possible and will cause a transition which is not defined. This shows the difference
between the definition and the realisation of a sequential machine.

Generating test vectors at the functional level, using information of the
implementation at the structural level, causes that it is not necessary to test on
faults which have no effect on the functional behaviour of the machine. When
the test generation occurs on the functional level it is even impossible to test
these faults, because a certain input which could detect such a fault, is not
allowed to occur. Also it is impossible to reach a state which could detect the
fault, because the state is not defined. Therefore it is impossible to generate test
vectors which detect faults that only effect the redundancies in the implementation
at the structural level. But this is not necessary because the faults don't effect the
functional behaviour of the machine, not during testing and aiso not during
operation.

2.5. Structural level information

it is not necessary to extract all the information from the structural level
description of the machine under test. Some restrictions are made to make
comparison possible.

A sequential machine can be build out of three blocks. In the next figure (Figure
2.) these three blocks are shown. The signal lines in this figure have the following
meaning: Pl are the primary inputs, the real inputs to the machine, Sl are the

Pl

PO
Sl NSL 50 MEM oL

—

Figure 2. Logic blocks of a sequential machine

11

secondary inputs or the outputs from the memory elements, PO are the primary
outputs, the real outputs for the machine and SO are the secondary outputs or
the inputs for the memory elements. The logic blocks are called NSL, MEM and
OL. NSL means next state logic, which is a combinatorial circuit which computes
the next state. MEM is the memory part which contains the memory elements.
This can be a register, a counter or flip flops. The block OL computes the outputs
and contains the output logic which is also a combinatorial circuit. In this figure
the OL is a function of the Si only. This means that the machine is a Moore type.
When the machine is of the Mealy type, the output also is a function of Pl. This
means that there has to be a signal line from Pl to OL. For this report it makes no
difference if the machine is a Moore- or Mealy-type.

In the previous subsection it is explained that it is not necessary to exhaustively
test the sequential machine, looking at the structural level. This is also the case
for the OL. When there are in the Moore type machine four memory bits, but
only twelve states defined, then it is not necessary to test all sixteen possibilities,
which the four memory elements can contain. The reason for this is the same as
in the previous subsection, that faults which only influence transitions that do not
occur, do not influence the functional behaviour.

The methods which will be explained in the next chapter, take into account only
that part of the sequential machine, that is composed by the NSL. The reason for
this is twofold. The first is that when the NSL is fault free, then the other two parts
can be tested as well. Secondly, all the faults which can occur in the MEM-block
and the OL-block can be processed as well, together with the NSL-block, in the
methods following in the next section. However for comparison with the
conventional test generation algorithms, only the NSL-block will be dealt with here.

The four methods assume that the state denoted in SO, can be made visible to
detect a faulty next state. There are a few methods in which this is possible.
1: This method is mentioned earlier in subsection 2.2. and is called scan
technique.
2. In an article published by Devadas c.s. [3], he proposes a synthesis
procedure in which states are assigned in a sequential machines, such that
a single stuck-at fault is easily detected. The state assignment makes sure
that a single stuck-at fault in the NSL has such an effect on the next state,
that the faulty next state does not have the same output as the correct next
state. This is possible if for example the stuck-at fauit only influences one
state bit. In the definition of the machine, two states which have the same
output, get assigned two patterns which differ in more than one bit.
3: When all states in the sequential machine have different outputs, it is
possible to define the inverse function of the function which is defined in the
OL. This inverse function can be added to the PO, and thus computing the
present state of the machine. When different states have the same output,

12

then an extra output bit has to be added in the OL to determine which of the
states the machine is in.

Stuck-at faults in the structural level description of the sequential machine have
or have no effect on the functional level description. When a stuck-at fault in the
NSL occurs, the only effect it can have will occur in the next state. If the effect of
the stuck-at fault propagates to one or more next state lines, this will result in a
faulty next state. This means that a stuck-at fault which is not redundant, will
always have an effect on a transition from one state to another. When the state
of the sequential machine is made visible by one of the three methods, mentioned
above, all the irredundant stuck-at faults can be detected by a transition. This
means that it is possible to assign stuck-at faults to transitions. This is what the
concept of this work is based upon.

2.6. Conclusion

In this section structural and functional level test methods are treated. The
disadvantages for structural level testing is the [arge generation time and the extra
work which is done for faults that do not effect the proper operation of the
machine. For functional level test generation, there is no well defined fault model,
so it results in exhaustive testing. The generation time is small, but the testing
time is much too long for large machine.

That is why a new concept is introduced: use information from the structural level
to generate test vectors at the functional level. The goal is that this might result
in less complex algorithms than the structural level test generation algorithms,
while they also generate less test vectors than the functional level test generation
algorithms. An advantage is that the new concept does not consider
redundancies.

13

3. TEST METHODS BY COUPLING LEVELS

3.1. Introduction

A transition at the functional level is realised by logic at the structural level. Some
transitions use more logic than others. Therefore these transitions can be
disturbed by more logical faults than others. The assumption made here is that
if a transition has a higher fault measure, it has to be tested more than other
transitions. Therefore the next methods all use a measure for transitions telling
something about the functional fault probability and the difficulty to test a
transition. This is the information which is derived from the structural level.

in the following subsections four methods will be introduced. There will be an
increase in the use of lower level information. After that the expected performance
of each method will be dealt with.

Figure 3. Example of a state transition graph of a sequential machine.

All of the methods use the functional level description of the machine for test
generation. An example of the functional level description of a sequential machine
consists of a state transition graph, shown in figure 3. (the edges represent
inputs, while the nodes represent states). It can be considered as a set of
transitions. One transition consists of three parts, a present state, an input and
a next state. As mentioned in subsection 2.5. the output is not important in these
methods. Both the present state and the next state are completely specified at the
structural level. An example for a transition is

IOWAIT reset START (3),

14

in which IOWAIT and START are the present state and the next state respectively,
and reset is an input. After state assignment and specification of the inputs, this
transition can be written as

11010 o--- 00000 4).

Here the number of state bits is five and the number of input bits is four. In the
input ’-" means that this bit is don’t care.

The input has the possibility of containing don’t care bits. An example is given in
(4), where the first bit controls the reset of the machine. This means that for a
transition with don't care input bits there are more possibilities to transit from the
present state to the next state. This is called multiplicity.

Exhaustive testing of a sequential machine means that muiltiple transitions have
to be tested. The following methods try to restrict the number of test vectors in
such a way that still most of the faults are detected.

For simplicity reasons the single-stuck-at fault model will be assumed at the
structural level, to generate test vectors and calculate fault coverage.

3.2. Statistic testing

Random techniques are widely used in all kinds of algorithms. Also for testing
sequential machines the random technique is used. A known good device is
compared to a circuit under test. Both of the circuits get offered the same inputs.
The outputs of both circuits are compared and if they differ the circuit under test
is marked bad. This method is often used for very large machines. The time used
to generate test vectors is short, but the fault coverage is often not guaranteed
to be high.

De first method (method 1.) is based on random techniques. It only considers the
state transition graph, with transitions defined as in (4). Therefore it follows that
the multiplicity is dependent on the number of don’t care bits in the input.

On the other hand it is possible to reach a next state from a present state with
two totally different inputs. This also increases the multiplicity. When a next state
is reachable through two totally defined inputs, starting from the same present
state, the muitiplicity for this transition is two.

15

The method of statistic testing assumes that with the increase of the multiplicity,
the hardware concerned with the transition also increases. This means that the
number of gates for a transition with high multiplicity is larger than for a transition
with multiplicity of for instance one.

Because nothing is known about the implementation of the machine, it is hard to
generate test vectors. Heuristics however say that a test vector containing many
zero's will detect more satl’s, while a test vector containing many one’s will detect
more sa0’s. This is true, because a logical "1" will easy excite a sa0, while a logic
"0" will easily excite a sai.

Another vector which detects certain faults is a vector which has alternating zero’s
and one's. This test vector will detect bridging faults more easy than other
vectors. This can be assumed, because inputs next to each other in the
specification, are often also implemented next to each other.

Because these vectors have statistically proven to give in most cases better
results than other test vectors, the first method will use these heuristics. That is
why this method is named statistic and not random.

The algorithm is as follows:
Determine a transition which will be calculated next.
Compute the multiplicity for that transition.
Dependent on the multiplicity, determine the number of test vectors for this
transition, with a minimum of 1 test vector.
The test vectors are chosen first by defining all don't care bits zero, then all
don’t care bits one, and after that alternating zero’s and one’s (two times).
If more than four test vectors are needed, the others are generated
randomly.

The question which remains is how the numbers of test vectors for a transition
depends on the multiplicity. Because exhaustive testing is very time consuming,
the number of test vectors must not be linear dependant on the multiplicity. That
is why the following relation is chosen,

number of test vectors = C, * log,(multiplicity) (5).
in most cases the number of test vectors is dependant on the number of don't

care bits in the input. For the constant in the formula 3 C, =2 is chosen, because
the important zero and one can be used, when the multiplicity is 2.

16

3.3. Local optimization

This method (method 2.) makes little use of the implementation on structural level.

A transition is defined as in formula (4). When a present state and an input vector
are offered to the NSL (see figure 2.) the logic computes a next state. Stuck-at
faults can influence this computation and this results in a faulty next state. For
every transition there are stuck-at faults which influence the correctness of the
transition. Counting these stuck-at faults gives a number, called Q,. it tells how
many stuck-at faults, when present, result in a faulty next state when this
transition takes place. The assumption made for this method is that the more
stuck-at faults can disturb a transition, the probability for this transition to be faulty
is higher. Therefore more test vectors are needed to test the transition.

In a transition it is possible that a number of input bits are don’t care. But it is also
possible that when these input bits are defined, some test vectors detect more
faults than others. Take for instance a transition which can be disturbed by 11
stuck-at faults, and has a multiplicity of 2. Assume that the multiplicity is caused
by one don't care bit in the input. It is possible that the test vector which has the
don’t care bit defined as logic "0" will detect 10 stuck-at faults, while on the other
hand the test vector with the logic "1" defined, detects only 8 stuck-at faults. In
this example there is a clear difference between the number of stuck-at faults the
test vectors detect. For the correct functioning of this method, it is also important
to know how many stuck-at faults are tested by each input vector.

The second algorithm is as follows:
For every transition a factor Q, is determined. The number of test vectors to
test this transitions is derived from this Q, as

number of test vectors = C, * Q, (6).

Choosing the test vectors for a transition, is done by first taking that vector
which detects most stuck-at faults. The next vector is chosen with the next
highest number of tested stuck-at faults, and so on, until the total number
of test vectors calculated by (6) is reached. When a choice is to be made
between two vectors, detecting the same number of stuck-at faults, this is
done randomly.

In (6) the factor C, is to be determined. This will be done later. The relation
between the number of test vectors and the factor Q, is chosen, because the
number of stuck-at faults is a measure for the amount of hardware that is part of
the transition. The relation (8) is chosen linear, to keep the complexity of the
method low.

17

This method is named local optimization. For a transition those test vectors which
detect the most stuck-at faults, are chosen. Locally, that means for one transition,
this gives the best fault coverage. For the total machine this does not have to
hold, because many test vectors can test the same stuck-at faults in different
transitions. The next two methods take into account the global effects.

3.4. Static global optimization

The third method (method 3.) also uses information derived from the structural
level description of the machine. All calculations take place at the functional level.
Like the previous algorithm this method uses the factor Q,, which gives the
number of stuck-at faults for a certain transition. Another factor is introduced. A
stuck-at fault can influence several transitions. The second factor will account for
this.

Just like in the previous subsection the factors are calculated for transitions as for
the possible input vectors belonging to such a transition. The factor belonging to
the transition prescribes the number of test vectors for such a transition, while the
factor for an input vector gives the quality for it as a test vector.

The factor which is important in this subsection, consist of two parts. The first one
is the same as in the previous subsection. The second is formed by summing the
numbers of transitions in which the stuck-at faults, which compose Q,, occur.
This factor is called Q,. The importance of this second factor is to tell something
about the appearance of stuck-at faults in other transitions, so they will not be
tested twice.

The algorithm is as follows:
For every transition and for every input Q, and Q, are calculated. These two
factors determine a quality factor, as

quality = C, * Q,/Q, (7).
The number of test vectors for a transition is equal to the quality calculated
for that transition. Which test vectors are chosen, depends on the quality
belonging to each input vector. First choose the vector with the highest
quality, second the vector with the second highest quality and so on, until
the number of test vectors for that transition is reached.

In (7) C, has to be determined, but this will be done later.

18

This method is called static global optimization. Static because the factors are
calculated before test generation starts, so during generation the factors stay
constant. Global because the factor Q, involves other transitions that are not
considered at that moment. Optimization, because the best vectors for a transition
are chosen, to optimize the fault coverage of the tests.

3.5. Dynamic global optimization

The method in this subsection (method 4.) uses, just like the two previous
mentioned methods, only one factor, namely the Q,. Looking at the structural
level there is a set of stuck-at faults which can disturb the behaviour of the
sequential machine. Subsets can effect parts of the machine, like a transition. The
factor Q, belonging to such a transition is the number of elements in the subset
of stuck-at faults. At start this factor Q, is the same as in method 2.

The method is as follows:

Choose the transition which has the highest Q,, in other words which can
be disturbed by the most stuck-at faults. Choose a vector which detects
most stuck-at faults. Add this vector to the set of test vectors, and remove
all faults, which have been tested for, from the set of stuck-at faults. This
gives a new set of stuck-at faults. Starting with this new set recalculate all
the factors Q,. Start again by choosing the transition which has the highest
Q,, until all stuck-at faults are tested.

In this method it is again important that a difference is made between two factors,
namely the factor for the transition and the factor for the input vectors. With the
first factor a transition is chosen which is going to be processed, while with the
second the next test vector is chosen.

The name for this method is now also clear. Global optimization like in the

previous method and dynamic because after every generation of a test vector the
whole machine is processed again.

19

3.6. Expected performance of the methods

There are a few test results which are important to say something about
usefulness of the four test methods. First the amount of processing time each
method uses, second the number of test vectors generated and third the amount
of faults that is detected by the test vectors. This is called the performance.
Before continuing with the performance two other things are important.

The four methods are all suitable to be programmed into a computer algorithm.
The complexity of the methods increase from method 1. quite easy to method 4.
very difficult. Also a trend is clear that method 1. uses no information of the
structural level, to method 4. using the most information of the structural level.

Methods 2. to 4. have one big disadvantage. They use information about stuck-
at faults, which has to be extracted from the structural level description. One of
the main problems is that fault simulators consume a lot of time to calculate the
sets of stuck-at faults which are detected by a certain input vector. The goal of
the four methods is to shorten the test generation time. When it is necessary to
first fault simulate the whole machine, it is possible that the decrease in generation
time at the functional level is not rewarding any more after fault simulating at the
structural level. The reason why these methods are still used, is first because
fault simulators do not use backtracking which causes a decrease in processing
time, and second because the idea may be extended to other levels of
abstraction, from which it is easier to extract the necessary information.

3.6.1. Performance for statistic testing

The first method uses no information about the implementation of the machine on
the structural level. It only assumes that with increasing multiplicity, the fault
probability increases. This is the reason why the number of test vectors for a
transition increases with increasing muitiplicity. The relation between these two is
given in formula 3.

In this formula the number of test vectors is related to the multiplicity as a
logarithm. This means that for muitiplicity of less than about 8, the number of
test vectors is equal to the multiplicity. For small machines with a small number
of input bits, this method thus resembles exhaustive testing. For large machines
this does not hold. For example compare a machine with four input bits and a
machine with 28 input bits. The first machine can have a transition with multiplicity
of e.g. 8, the second with muitiplicity of e.g. 27. For the first machine this

20

transition will be tested with 6 test vectors, while for the second machine 54 test
vectors are generated for this transition.

Depending on the size of the machine, test generation will resemble exhaustive
testing for small machines and give a very large reduction in the number of test
vectors for large machines. The fault coverage will be high for small machines,
because they are tested exhaustively. For [arger machines it hard to say how the
fault coverage will be, because of the random generated test vectors. The only
thing is that always the statistical more interesting vectors will be chosen, so fault
coverage can be high.

3.6.2. Performance for local optimization

Not taking into account the calculations of the factors Q,, the method 2. is a little
more complex than method 1. Because it chooses that vector in a transition
which detects the most stuck-at faults, the fault coverage will be high for each
transition. The disadvantage of this method is that it does not use information of
other transitions, so it is possible that there will be a lot of test vectors, testing the
same stuck-at faults. Also it is possible that because a choice has to be made
between vectors which can detect the same number of stuck-at faults, the wrong
vector can be taken. This means that fault coverage depends on choices. It will
be high, because for every transition the fault coverage is high.

The number of test vectors needed to cause this high fault coverage depends on
the factor C,. The expectation is that the number of test vectors will be high to
reach the coverage wanted, because no information about the other transitions
is used.

3.6.3. Performance for static global optimization

The complexity for this method is larger than for the previous method. This is
mainly caused by the calculations of Q,. The factor Q, relates other transitions
with the transition under consideration. The increase in complexity will also give
better resuits.

The factor Q, expresses something about the appearance of stuck-at faults in
other transitions. If for a transitions all the stuck-at fauits, influencing the behaviour
of that transition, appear in many other transitions, the factor Q, will be high. This
means that the number of test vectors for that transition will be low, as expressed
in (7). But because the stuck-at faults appear in many transitions, the probability
that they will be tested is high. So less test vectors than in method 2. will be
generated and the fault coverage will be high.

21

3.6.4. Performance for dynamic global optimization

Method 4. is bound to give the best results. The algorithm only stops when the
fault coverage is 100.00%. The number of test vectors will be small, but does not
have to be minimal. The reason for this is that when a choice has to be made
between two transitions with the same factor Q,, it is not possible to tell which
transition is to be computed next to give the minimal number of test vectors. So
the results are sub-optimal for sure and sometimes even optimal.

The disadvantage of this method is that after generating a test vector, all the
factors Q, have to be recalculated. That is why the complexity of this algorithm
is the highest of all.

3.7. Conclusions

Four methods for generating test vectors at the functional level, using information
on the structural level, are introduced. The expected performance is estimated.
It is clear that with increasing use of information, the complexity increases but also
the performance improves. The only question which remains is that the time to
extract information from the structural level will be short enough to profit from the
concept on which the methods are based.

22

4. USING THE METHODS

4.1. Introduction

After the introduction of the four test methods, the methods themselves have to
be tested. This is done to find out if the methods will give good results compared
to the conventional test methods.

In this section the four methods will be considered, how they were applied. Then
there will be said something about the results which were extracted, and about
the machines that were used to apply the methods to. After this the conventional
test algorithms will be explained, which will be compared to the new introduced
methods. The constants C, and C, from methods 2. and 3. will be determined.
At last the making of test sequences is mentioned.

During the work, some ideas about fault simulation were born. Fault simulation is
not the real subject of this report, but it is important before test generation can
start. Therefore these ideas are also mentioned.

4.2. Generating test vectors

In this subsection for all of the test methods the generation of the test vectors will
be dealt with. Because the methods are new, there is not any computer program
calculating any of these methods. Therefore the calculations are done by hand.
This is labour-intensive, especially for the more complex methods.

4.2.1. Generation for statistic testing

The generation of test vectors for this method is explained in subsection 3.2. The
method only uses the description of the machine at the functional level, which
exists of transitions. These transitions are given in terms of state bits and input
bits. An example for this is given in formula (4).

The multiplicity for a transition is determined. If the multiplicity is 1, then the
calculations stop and the only input is chosen as test vector. For a multiplicity of
2, the two possible inputs are chosen or if the multiplicity is caused by a don’t
care, this bit is taken zero for the first vector and one for the second.

23

When the multiplicity is larger, the statistical more important bit patterns are used.
As an example, take the transition in (4). The multiplicity is 8 and the number of
test vectors for this transition is 6. Four of these test vectors are formed by the
statistical bit patterns: 0000, 0111, 0101, 0010. The remaining two are generated
random. These can be: 0110, 0100.

For the generation of the random vectors a simple program in pascal was used.
The input was the number of don't care bits, and the outputs were the bit patterns
which had to be filled in.

4.2.2. Generation for local optimization

This method uses information retrieved from the structural level. The information
which is needed is to calculate the factor Q, for transitions and for inputs. That
is why the machine is fault simulated exhaustively at the structural level. Because
only the NSL (see figure 2.) is considered, the inputs of this logic block consist
of the present state bits and the input bits. The outputs of the block are the next
state bits. This is exactly the transition defined in formula (4). This is why stuck-
at faults that influence this transition, are very easy combined with the description
on functional level.

The fauilt simulation is done exhaustively. This means that for a completely
specified input a set of stuck-at faults can be found, which is detected by this
input for this transition. When two sets of stuck-at faults are the same, it is tried
to combine the two input vectors, resulting in a don't care bit. Counting the
number of stuck-at faults belonging to such a set, results in the factor belonging
to an input determining how well it will test this transition. Combining all the sets
of stuck-at faults, gives the number of stuck-at faults which can influence the
transition. This results in Q,.

Test generation now is done like mentioned in subsection 3.3. The Q, for a
transition determines the number of stuck-at faults. The input vector which detects
most stuck-at faults is chosen. Now it is clear why similar sets of stuck-at fauits
are combined, as mentioned above. When this would not be done, it is possible
to choose two vectors, which detect the same stuck-at faults. By combining
inputs, this can be prevented.

24

4.2.3. Generation for static global optimization

The third method also uses information from the structural level. Part of this
information can be used from the previous method, because Q, is needed here
as well. The calculations for Q, can be done manually, by counting how many
times a stuck-at fault appears in the sets of stuck-at faults, belonging to the
transitions. This increases the time needed for test generation.

With small changes to the fault simulator, this information is calculated
automatically. The extended calculations result in sets of transitions, belonging to
a certain stuck-at fault. Counting the number of elements in these sets, results in
the number of transitions in which a stuck-at fault appears. With these numbers
the calculations for Q, can be done.

After determining all Q,’s and Q,’s, the number of test vectors for a transition is
calculated with formula (7). The test vector which is chosen, has the next highest
quality factor. Like in method 2. the inputs for a transition are combined as much
as possible, to prevent that vectors which detect the same stuck-at faults, are
chosen.

4.2.4. Generation for dynamic globa!l optimization

In the previous methods, the information used from the structural level were the
sets of stuck-at faults and the sets of transitions. After the calculations of the
factors Q, and Q, for every transition, these sets were not used any more. The
fourth method uses the sets of stuck-at faults belonging to the transitions, and
keeps using them during the generation of the test vectors.

The algorithm is explained in section 3.5. The test vectors are generated using the
factors Q, for each transition, which are calculated as in method 2. After the
generation of a test vector, all the sets of stuck-at faults are recalcuiated and also
the factors Q,.

The functional level description of the machine under test contains transitions.
These transitions are put in a table, together with the sets of stuck-at faults which
can influence this transition. Also the inputs with their own sets of stuck-at faults
are included. The transition with the highest Q, is considered. After choosing the
vector which detects most stuck-at faults, all sets of stuck-at faults are
recalculated by removing the detected stuck-at faults from these sets. The sets
of transitions belonging to the stuck-at faults, generated for method 2. are a good
help in doing this. With the newly created sets, the factors Q, are also
recalculated, and the procedure is repeated, until all sets contain no elements any
more.

25

4.3. Fault coverage and number of test vectors

The reason for testing the methods 1. to 4., is to compare them to the
conventional test methods. There are two figures that say something about the
performance of a method: the number of test vectors and the fault coverage. The
number of test vectors can be found quite easy. They are counted after
generation. The fault coverage is a little more complicated.

Starting the fault simulation a set of faults is defined. Here the fault model for the
structural level is chosen to be the single stuck-at fault model. This means that
when the machine under test is defined, also the set of stuck-at faults is known.

After fault simulation it is clear which stuck-at faults do not effect the functional
level behaviour of the machine. These fauits are not included in the calcuiation of
the fault coverage. It is also clear which vectors detect which faults. This is used
after testing to calculate the fault coverage.

From the set of test vectors which is generated for a method, one test vector is
taken. The stuck-at faults detected by this vector are marked "detected". This is
done for all test vectors. The number of "detected" stuck-at faults is related to the
total number of stuck-at faults effecting the proper operation of the machine. This
results in the fault coverage, expressed as a percentage.

4.4. The machines

To test the methods introduced in this report, they have to be applied to a
machine. For comparison purposes not one but four machines were used. In this
subsection these machines will be considered. In appendix A. the machines are
described.

The starting point for the machines was a description at functional level (appendix
A), consisting of a state transition table. The state and input assignment had
already been done, so the only thing left to do was designing them at the
structural level.

A computer program was used to design the machines at structural level. This
program, called MOM (multiple output minimizer), minimizes the number of gates
by using logic gates necessary for one part, for other parts of the machine as
well. The result is an AND-OR realisation, with the number of inputs equal to the

26

number of state bits and input bits, the number of outputs equal to the number
of state bits.

Table 1. Characteristics of the machines under test

Sequential machines

EX4 EX6 MARK1 oPUS
states | 18 8 13 10
state bits | 5 3 4 4
input bits } 6 5 5 5
transitions | b4 31 33 30
gates | 26 26 21 23
real trensitions] 1152 248 416 320
s-a-faults | 322 278 238 258
non funct. sa-flts | 28 2 13 15
funct. sa-flts | 294 276 225 243

The most important parameters of the four machines are put together in table 1.
The machines have got names, so they are easily addressed.

For ali the parameters in table 1. the prefix "the number of" has to be added. The

explanation of the parameters is:
-"states" expresses how many states are defined at the functional level;
-"state bits" is equal to the number of memory elements. There is one
machine (EX6) which has a complete state specification. The other machines
have more states implemented at the structural level than were defined at
the functional level;
~"input bits" will need no explanation;
-"transitions” gives the possible transitions at the functional level, not taking
into account the muiltiplicity for that transition;
-"gates” is the number of AND- and OR-gates at the structural level
calculated by the program MOM. These are implemented in the NSL to
compute the transitions;
-"real transitions" are all transitions possible at the functional level, taking into
account the multiplicity of all transitions. The transitions together form the set
of input vectors from which test vectors can be chosen;
-"sa-faults" are the stuck-at faults which can occur in the structural level
description of the machine;
-"non funct. sa-faults” are the stuck-at faults that do not influence the
behaviour of the machine at structural level;
-"funct. sa-faults” are the stuck-at faults with which the fault coverage is
measured. These faults can effect the proper operation of the machine.

27

Three of the machines, EX6, MARK1 and OPUS are small sequential machines,
so in reality testing them exhaustively has to be considered. Because EX4 has 18
states, test generation will have higher priority. To compare the test methods
these machines satisfy.

During fault simulation the set of faults was decreased by fauit collapsing. This
means that e.g. a sa0 at the input of an AND-gate can not be distinguished from
a sa0 at the output. Therefore these equivalent faults are only calculated once, to
decrease processing time.

The program MOM designs the machines in a AND-OR implementation. This
means that when an input is offered to the NSL, this line fans out into several
gates. Fault simulations did not take into account this fan-out. This means that the
multiple faults were not computed for inputs. The outputs of the AND-gates
however could also fan-out to different OR-gates. The multiple faults created by
this fan-out were considered.

4.5. How to compare the methods

To express the performance of the test methods introduced in this report, two
figures are important, the number of test vectors and the fault coverage. To
compare these test methods with conventional methods, these conventional
methods have to be applied to the defined machines as well.

There are two levels discussed here, the structural level and the functional level.
As mentioned in section 2. there are a few methods known which generate test
vectors at the structural level. For the functional level only exhaustive testing is
mentioned.

4.5.1. Structural level comparison

Three of the four methods introduced in this report use information retrieved from
the structural level. Test generation however takes place at the functional level.
Four machines were tested using the new test generation algorithms and a
conventional structural level algorithm, PODEM.

However, the program that implements PODEM does no accept more than
sixteen inputs. During fault simulation, all the inputs of the AND-gates are
considered as the inputs, not as fan-out from the real inputs. This means that an
input with a fan-out of e.g. twelve, is split up into twelve different inputs, all having

28

the same logical value. For the PODEM several tricks are used, to let the program
calculate the machine. This introduces extra AND-gates with one input and one
output. Each gate implies four extra stuck-at faults (two times a sa0 and a sa1).
The extra AND-gates were only used as a sort of buffer. With fault collapsing
however there are no extra faults introduced. Therefore the results can be
compared. But because the number of stuck-at faults for the PODEM-input is just
a little higher than for the fault simulations, the comparison of fault coverage is not
exact, but satisfactory.

4.5.2. Functional level comparison

From the four methods, method 1. uses no information about the implementation
at the structural level, while the other three do use this information. This means
that this method can be qualified as a functional level test generation algorithm.
The other three methods do use this information. Method 2. uses little and
method 4. uses much information. Method 4. is thus the algorithm combining
the structural and the functional level most.

In order to check the concept of test generation by using structural level
information at the functional level, the following comparison is made. Because
method 4. uses most of the structural level information, these results will be
compared to the result of method 1. The only restriction however is that the
number of test vectors used for method 1. will be the same as the number of
test vectors generated by method 4. This is done to see how well the use of
structural level information improves the test results.

4.6. Determination of C, and C, in methods 2. and 3.

In the methods 2. and 3. there are two constants, C, and C,, which are not
determined yet. This will be done here.

4.6.1. Determining C,

The number of test vectors which have to be generated for a transition depends
on the factor Q, and the constant C,, defined in section 3.3. The factor Q, is
calculated after exhaustive simulations. The constant C, has to be defined as to
give the best fault coverage for the entire machine. The dimension of C, is the
number of test vectors per number of stuck-at faults.

29

The sequential machines considered are medium sized. This will give a different
value for the constant C,, than if large or small machines would be considered.
Because nothing is known about the average number of stuck-at faults a test
vector detect, an assumption is made of about 5. If this number is taken 1, which
means one test vector for one stuck-at fault, the generation would result in as
many test vectors as there were stuck-at faults. This would result in to many test
vectors, so 5 is expected better.

The simulations resulted in the factor Q, for every transition. This factor was about
10 to 20 for every of the four machines. Now it is easier to determine C,. This is
taken three values, C,=1/4, C,=1/5 and C,=1/6. This result in three new
methods for local optimization, method 2.1, 2.2 and 2.3 respectively.

A note is to be made for this choice. Because the machines are medium sized,
this values will not be suitable for other kinds of machines, because for larger or
smaller machines the average number of stuck-at faults detected by a test vector
will be different. For the machines under consideration, the factors are expected
to give good results.

4.6.2. Determining C,

The method 3. is developed, to create less test vectors than there were generated
by method 2. The factor resulted by dividing Q, and Q, (formula (7)), was about
0.10. Therefore the factor C, was chosen three values, C,=20, C,=25 and
C, =30, called method 3.1, 3.2 and 3.3 respectively. For method 3.1 and 3.2 the
number of test vectors calculated by formula (7), was rounded to a whole
number, while for method 3.3 the number of test vectors was taken as the highest
integer less or equal than the factor resulted. This last is done to minimize the
number of test vectors.

A fourth method was developed, named method 3.4. The three methods
mentioned earlier, assumed that the factor C, was constant. As in statistic testing
(method 1.), this method assumes that the number of test vectors is dependent
on the multiplicity of a transition. Therefore a new type of multiplicity has to be
introduced.

A transition is composed of a present state, a next state and an input (3). After
specifying the machine, it is possible that there are more possibilities to transit
from one state to another. This is called multiplicity. At the functional level don’t
cares are introduced to denote multiplicity, if it does not care what value an input
has for that transition.

30

These don’t care bits can also be used in the realisation at the structural level. If
this is done, it means that the hardware becomes simpler. This is the starting
point for the method 3.4. Assume that the higher the muitiplicity for a transition,
the less hardware is needed to realise the transition. With less hardware this also
means that the fault probability for that transition decreases, so less test vectors
are needed to test the transition. Therefore C, in method 3.4 will be calculated as

C, ~ 1/log,(multiplicity) (8).
In (8) ~ means "is related to".

The muitiplicity for the machines under test is mostly caused by don’t cares, the
number of input bits is also used to calculate C,. Eventually the number of stuck-
at faults per test vector has to be assumed, and this is taken 6. The resulting C,
is

C, = 20 * noib / nomuit (9).

in which noib means number of input bits and nomult is log,(multiplicity).

4.7. Making of test sequences

Applying test vectors to a sequential machine has to be done in a certain
sequence. Test generation for combinatorial circuits is done easier, because the
sequence of applying the test vectors is not important. For sequential machines
scan technique makes use of this advantage, because the state which the
machine is in, can be shifted into the memory elements. But the advantage of the
test methods introduced in this report is that they treat a sequential machine as
a real sequential machine. This means that the state of the machine can only be
reached by applying a sequence of inputs from a certain starting state, to the
state required. This means that the test vectors have to be applied in a certain
sequence.

The four methods used do not take into consideration the generation of
sequences of test vectors. This has to be done after the test generation. At the
European Design Automation Conference in Glasgow, C. Jay [4] published an
algorithm that generates a sequence of vectors, starting from single transitions.
After the generation of test vectors by the four methods, the algorithm can be
used to generate test sequences. These sequences can be applied to the
sequential machines.

31

4.8. Fault simulation
(Note: This paragraph is not really necessary for this report)

Just like for test generation, computer algorithms have been developed to do
fault simulations. As denoted in section 3.6. these fault simulators consume a lot
of processing time. That is why some attention was paid to fault simulation. Some
ideas followed, but a real algorithm was not developed. In this section a short
impression of the ideas is given.

The starting point for the fault simulation is the description of the machine at the
structural level. The fault model assumed is the single stuck-at fault model.
Attention is paid to the NSL only.

Conventional methods are concurrent, parallel and deductive fault simulation. The
equivalence of these methods is that they all work from input to output. The
inputs are applied to the logic and sets of stuck-at faults for each gate are
computed. During the calculations a lot of sets of stuck-at faults is needed to give
the resulting set of stuck-at faults, which for a sequential machine disturb the
transition. The first idea is not to work from inputs to outputs, but from outputs to
inputs.

Given a correct functioning logic block, say the NSL in a Moore-type sequential
machine. Apply a present state and a fully specified input to the NSL. Calculate
every output of each gate so the next state will be clear. Now the gates wiil be
marked with one of three terms: ACTIVE, ALMOST ACTIVE and NOT ACTIVE.

The definition for each term is:

ACTIVE:
a (N)OR-gate is active if only one input is logic "1";
a (N)AND-gate is active if only one input is logic "0";

ALMOST ACTIVE:
a (N)OR-gate is almost active if all inputs are logic “0";
a (N)AND-gate is almost active if all inputs are logic "1";

NOT ACTIVE:
a (N)OR-gate is not active if more than one input is logic "1";
a (N)AND-gate is not active if more than one input is logic "0";

A failure in this method is that it will work properly for fan-out free logic. When the
NSL, which is a combinatorial circuit, contains fan-out, the method proposed here,
will not work properly without justification. The expectation is that these
justification is only small. To explain the algorithm, the bad assumption of a fan-
out free NSL is made.

32

When a signal line has a certain logic value, the stuck-at fault influencing this
signal has the opposite value. This means if a signal line carries logic "1" ("0"), the
signal is disturbed by a sa0 (sa1). This will be called the opposite fault.

There are two things which need a different explanation, fault excitation and fault
propagation. First fault excitation will be dealt with.

The output of a gate whether it is ACTIVE, ALMOST ACTIVE or NOT ACTIVE, is
disturbed by its opposite fault. This means that for a certain transition in the NSL
the set of stuck-at faults for that transition contain the opposite faults of the
outputs. If a gate is marked ACTIVE, the opposite fault for the input which caused
that output is also included in the set of stuck-at faults. If a gate is marked
ALMOST ACTIVE, all the opposite faults for the inputs are included. If a gate is
NOT ACTIVE, no input with opposite faults have to be included.

Second fault propagation will be considered. If a gate is marked ACTIVE, the only
way it will propagate a stuck-at fault is via the input which caused the gate to be
ACTIVE. If a gate is marked ALMOST ACTIVE, all the stuck-at faults having been
propagated to the inputs of this gate, will also propagate through this gate. If a
gate is marked NOT ACTIVE, there will be no stuck-at fault which can propagate
through this gate.

Because the idea for this algorithm is to work from outputs to inputs, the
propagation is to be denoted different. A better word would be the consideration.
Because a gate does not have to propagate stuck-at faults via all of its inputs,
only that part of logic has to be considered which is connected to those inputs.

The justification for not fan-out free logic is assumed not to be difficult. By finding
the paths from a fan-out point to the outputs, it is possible to find out how signal
can propagate through the gates. This means that also the effects of stuck-at
faults can propagate via these paths. This finding of paths can be done before the
fault simulation starts, because these paths do not change during the simulation.

The algorithm is repeated shortly:
Specify an input and a present state. Calculate all the signals in the NSL.
Mark all gates as mentioned above. Consider one gate at the output and
use the excitation rules which refer to the mark of the gate. Use the
propagation rules to determine which parts of logic have to be processed
further. Repeat these rules for all gates which have to be considered. Repeat
all these calculations for every input and every present state.

Until so far the basic algorithm, of which an example is given in appendix B. An
extension may be made by not totally specifying the inputs, but accepting don't

33

cares. The reason for this is explained in section 4.2. There it says that sets of
stuck-at faults detected by two inputs can be the same, so the inputs may be put
together, introducing a don’t care. This idea is not worked out further, so it is only
mentioned.

4.9. Conclusions

In this section it becomes clear that it is not possible to compare the processing
time of the four test methods, because they are all calculated by hand. There are
however two important figures saying something about the performance of a
method. These figures are the number of test vectors generated and the fault
coverage.

The four introduced test methods are all based on the concept to use structural
level information to generate test vectors at the functional level. With increasing
use of information the complexity of the method increases. To find out if the
concept holds, the methods are compared to conventional test methods. For the
structural level test generation the PODEM algorithm is chosen, while for the
functional level method 1. is considered.

34

5. RESULTS OF THE TESTING METHODS

5.1. Introduction

in this report a new concept of test generation for sequential machines is
introduced. Four test methods were defined and were used on four machines. To
find out if the concept improves test generation, the results of these methods
have to be compared to the results of the conventional test methods. In this
section the results of the test generation of the new methods and of the
conventional methods will be given. After that a comparison will be made between
these results, to find out if the concept improves test generation.

5.2. Tables of results

Table 2. Test results for each machine

EX4

tml
rnty 35.24
cov 100.00
EX6

tm!
rnty 72.58
cov 99.64
MARK 1

tmi
rntv 50.96
cov 100.00
0PUS

tml
rntv 55.63
cov 97.94

me.1
15.10
100.00

tm2. 1
41.94
98.18

2.1
24.52
100.00

tm2. 1
23.75
96.71

tm2.2
11.46
100.00

tme.2
33.87
96.01

tme.2
18.75
100.00

tm2.2
20.00
96.71

tme.3
10.5%9
100.00

tm2.3
27.02
95.65

tm2.3
16.83
99.56

tm2.3
15.63
96.30

tm3.1
4.77
96.94

tm3. 1
31.45
95.65

tm3.1
10.58

tm3.1
12.19
95.06

tm3.2
5.12
96.94

tm3.2
12,98
99.11

tm3.2
15.00
94.24

tm3.3
4.60
96.26

tm3.3
34.27
95.65

tm3.3
11.78
99.11

tn3.3
15.31
95.88

tm3.4
5.82
96.94

tm3.4

tm3.4
17.19
96.30

tmé
2.87
100.00

tmé
13.314
100.00

tmé
7.2%
100.00

tmé
12.50
100.00

35

In table 2. the results are given for the calculations of the four test methods. In

Table 3. Test results for the
concept and the conventional

methods
EX4

tmé tm14 podem
rnty 2.87 2.87 4.17
cov 100.00 76.53 100.00
EX6

tmh tmi4 podem
rntv 13.31 13.31 16.13
cov 100.00 76.45 99.73
MARK1

tmé tm1s4 podem
rnty 7.21 7.21 9.85
cov 100.00 74.22 100.00
oPUS

tmé tm14 podem
rntv 12.50 12.50 16.45
cov 100.00 71.19 99.73

table 3. the results are given for the
comparison of the introduced concept and the
conventional test generation algorithms.

In the two tables there are a few things that
will be explained. The tables are divided in
results per machine. This is to make
comparison easier. The abbreviations used in
the tables mean: tm3.2 = test method 3.2, rntv
= relative number of test vectors, cov = fault
coverage. The last two figures are each
expressed as a percentage. The number of
test vectors is related to the number of real
transitions as mentioned in table 1. The fault
coverage is taken relative to the number of
functional stuck-at faults, also mentioned in
table 1. The only exception for this is the fault
coverage for PODEM, because it has its own
set of stuck-at faults as mentioned in 4.5.1.

5.3. Analyzing the methods 1. to 4.

The next section is related to table 2.

5.3.1. Results for statistic testing

The machines that were tested by the four methods, were small or medium sized
machines. Therefore the method 1. will generate almost as much test vectors as
for exhaustive testing. Only EX4 gives a different result, but the other machines
are tested by half or more of all the possible vectors. This is comparable to
exhaustive testing. The reason why EX4 differs, is because it is the largest

machine.

36

The fault coverage for the machines is high. If a second time test vectors are
generated, the fault coverage will be different, because of the random choices of
test vectors. The reason that the fault coverage is high is first because the
method resembles almost exhaustive testing and second because the statistic
more important vectors were used. Because the machines are small to medium
sized, the multiplicity of the transition is low, so the main part of the test vectors
consists of these statistical vectors. For larger machines the fault coverage will not
be this high, because the random technique will influence the fault coverage
more.

5.3.2. Results for local optimization

The reason to use the number of stuck-at faults as measure for the number of
test vectors, resulted in less test vectors than generated by the method 1. Still the
number of test vectors is high for all the machines, because a lot of vectors will
test the same stuck-at faults.

For method 2. the constant C, had to be determined. For method 2.1 this was
chosen to be C,=1/4, method 2.2 had C,=1/5 and method 2.3 used C,=1/6.
Dependent on this constant C,, the number of test vectors was calculated. If C,
decreases, also the number of test vectors for a transition decreases. Therefore
the total amount of test vectors decreases. This is well noticed in the table 2.

For the fault coverage the decrease of test vectors also results in decreasing
fault coverage. For EX4 it makes no difference which test method is used, the
fault coverage is 100.00%. For the other machines however, this decrease is
clearer.

The question remains if this increase in test vectors is worth the increase in fault
coverage. For EXB, an increase of more than 8% of test vectors, results in only
2% more detected stuck-at faults (compare method 2.2 to 2.1). This may be
worth if a high fault coverage is required. When the testing time has to be short,
method 2.2 is preferred.

This method generates relative the most test vectors for EX6. For the other
machines, the relative number of test vectors is about 15%, while for EX6 this
number is about 35%. This difference will be explained in the section about
implementation.

An assumption was made about the average number of stuck-at faults a test
vector would detect. Looking at the results, this number increases with increasing
size of the machine. For EX6 and OPUS (smallest machines, looking at the
number of real transitions) the average number of stuck-at faults per test vector

37

of about 5 is a good choice, while for EX4 and MARK?1 this figure can be higher
for a good fault coverage.

5.3.3. Results for static global optimization

As expected the methods 3.1, 3.2 and 3.3 generate less test vectors than the
method 2. This is caused because information of other transitions is used. The
fault coverage however is less than that for method 2., but this decrease can be
neglected considering the decrease of the amount of test vectors.

For the second time EX6 differs in results from the other three machines. For EX6
the relative number of test vectors is about 35%, while for the other machines this
number is about 10%. The reason for this will be explained in the section about
implementation. As mentioned in section 3.6.3. the method 3. would generate less
test vectors than the method 2. For three machines this holds, but for EX6 this
is not true.

Three choices were made for the constant C,. The quality (7) calculated with the
first two, C, = 20 and C, = 25, is rounded to an integer to determine the number
of test vectors. For the third, C, = 30, the quality was taken as the highest integer
less or equal than the quality to determine the number of test vectors. For all the
methods the ratio Q,/Q, for each transition is the same. This means that for the
methods 3.1 and 3.2 the transitions with this ratio low, get assigned a test vector
easy, while for the method 3.3 this ratio has to be higher. For transitions with a
higher ratio Q,/Q,, the number of test vectors will be high for the method 3.3,
while for the method 3.1 and 3.2 the number of test vectors will be less. Looking
at the results in table 2., EX4 has many transitions with this factor low. That is why
method 3.3 generates the least test vectors, compared to method 3.1 and 3.2.
For EX6 and OPUS the most transitions will have a high Q,/Q,. MARK1 gives a
good balance between the appearance of high and low ratios.

The method 3.4 gives a higher fault coverage than the methods 3.1 to 3.3, but it
also generates more test vectors. The reason for this is that for most transitions
multiplicity is caused by don’t cares. The assumption for this method seems thus
right. But the program MOM did not fully make use of the don't cares. Because
the program MOM tries to minimize the number of gates, parts of hardware are
shared between different parts of the machine. If a transition has an input vector
containing one don't care, this can be implemented in such a way that it is
redundant. This means that the defined bit on the don’t care position certainly
can have effect on the transition, while it is defined as don’t care. This is why this
method is not useful.

38

5.3.4. Results for dynamic global optimization

The fourth method gives the best results. The fault coverage is maximum, while
the number of test vectors is low. As mentioned in subsection 3.6.4. the number
of test vectors is minimal or close to minimal. For the four methods introduced
here, the number of test vectors is minimal.

One exception of this minimal amount of test vectors is OPUS. Test method 3.1
generates less test vectors than test method 4., but the fault coverage of method
4. is 100.00%, while that of method 3.1 is less. This means that also for OPUS
method 4. gives the best results.

5.4. Comparing the new concept to the conventional methods

Of the four methods method 1. uses no information and method 4. uses the most
structural level information in generating test vectors. They both generate test .
vectors on the functional level. PODEM however makes use of only the structural
level. For comparison, the method 1. is also considered to be a conventional
functional level test generation algorithm. The next section is related to table 3.

5.4.1. Functional level comparison of the concept

Because method 1. does not use any information of the structural level and
because it resembles exhaustive testing for the machines that were tested, this
method was used to compare the concept to.

The way method 1. was compared to method 4., was to restrict the number of
test vectors method 1. could generate, to the number of test vectors generated
by method 4. The generation took place as to give each transition the same
chance of being chosen as test vector. Don’t cares were filled in with the statistic
more important patterns. The results for this method called method 14 are put in
table 3.

The restriction for test method 14 causes a low fault coverage. The reduction in
the number of test vectors is 5 to 10 times, while the fault coverage is still about
75%. The reason that the fault coverage does not decrease 5 to 10 times is
because the input belonging to a transition, already detects many stuck-at faults,
while the don’t care bits are not even determined. This means without specifying
the don't care bits, many stuck-at faults belonging to the transition are already
detected. The don’t care bits for the method 1. are specified with the statistic

39

more important vectors, while for method 4. the specification for that vector is
done as to detect the most stuck-at faults which are still to be tested.

The test vectors generated for method 14. detect, even without the don’t cares
specified, already a lot of stuck-at faults. With the statistic more important test
vectors, the fault coverage can only improve, but the low number of test vectors
allowed, result in a bad fault coverage.

5.4.2. Structural level comparison of the concept

The structural level test generation algorithm used, was the PODEM algorithm.
This algorithm used a slightly different machine than the four test methods of this
report. Therefore the set of stuck-at faults which had to be tested was larger. But
also the stuck-at faults which are redundant for the functional behaviour of the
machines are considered, as explained in subsection 2.5. PODEM will try to test
all stuck-at faults, while the four methods of this report do not concern about non
functional stuck-at faults.

The results for the PODEM test generation were close to the results of method
4. The fault coverage was almost maximal, while the number of test vectors were
small. But for EX4 the number of test vectors generated by PODEM is much more
than were generated by method 4. This could mean that for large machines the
method 4. generates less test vectors than PODEM does. For go-no go tests
method 4. is thus preferable, because it decreases testing time.

5.5. Implementation

The results for EX4 are the best for all the four test methods, compared to the
other three machines that were considered. The relative number of test vectors
are the least for all the methods, while the fault coverage is always high. There are
a few reasons that this can be explained.

The first reason is that EX4 is a large machine compared to the others. It has 18
states, while the next largest machine has 13. At the structural level this means
that the number of state bits for EX4 is at least 5, while for the other machines 4
or even 3 (for EXB) state bits are sufficient.

The inputs for a sequential machine are normally dependent on the environment
of the machine. If the machine is part of a larger circuit, the inputs can well be

40

outputs of another sequential machine. This means that the inputs can normally
not be assigned as to give the minimal implementation.

Defining a sequential machine normally means working with a given input
assignment. The only thing that can be influenced, is the state assignment. For
the machine EX4 6 input bits are defined. Because in every state all inputs are
allowed, this means that there are 18 states times 2° inputs. gives 1152 real
transitions (table 1.). For the other machines the number of real transitions is
much less. This explains why EX4 gives such good results for all the test
methods. The number of test vectors is namely related to the number of real
transitions.

Looking at the implementation further, a second thing is noticed. The number of
gates for EX4 is not the largest, because also EX6 is implemented with 26 gates.
Looking at the number of test vectors generated by method 4. shows that EX4
is tested with 33, while EX6 needs 32. These results are almost the same, while
the relative number of test vectors differs, because the number of real transitions
differs.

Still this does not really explains the reason why EX4 only needs about 3% of all
the possible test vectors. This can be explained by looking at the inputs for both
machines further. The number of transitions for EX4 is 44, while for EX6 this is 31.
The number of input bits for both machines is 6 and 5 respectively. EX4 has one
bit used to reset the machine, while EX6 does not. Furthermore the number of
states for EX4 is 18, while for EX6 this is 8. EX4 can be resetted from each state,
using one input bit. This already causes 18 transitions and leaves just 26 others.
This means that from each state there are only two or three possible transitions.
For EX6 this number is much larger. There are 31 transitions and 8 states, which
means an average of about four transitions per state.

For EX4 the transitions have a large multiplicity. This multiplicity is caused by
don’t cares. Except for the bit that is used to reset the machine, all the bits are
only used in two to six transitions. For EX6 all the input bits are used for more
transitions.

A stuck-at fault in 2 machine can have effect on a transition in two ways. The first
one is because the logic for that transition contains the fault, the second, because
the rest of the logic contains the fault. For the AND-OR implementation this can
be made clear as follows:
An AND-gate is used to make sure that the next state bit will be logic "1" for
that transition. A sa0 in this gate will cause a fault. This is the first type.
If the next state bit is to be logic "0" for the transition, a sa1 in an AND-gate,
which is implemented for another transition can cause a faulty next state.
This is the second type.

41

A transition consists of a present state, an input and a next state. Assigning these
results in a bit pattern. Take for example two transitions:

100 =-0-- 001 (10),
101 -01- 011 (11).
1
0 = |
0 —1
S
1
0 —
(a>1_> \
0 —
1

Figure 4. Part of the implementation of a sequential machine

Part of the implementation for these two transitions is given in figure 4. The
implementation is given in an AND-OR fashion. The output is the second next
state bit. If transition (10) is tested, the input vector used can be e.g. -00-, but
also -01-, in which '-* means don’t care. The second vector will also detect the
stuck-at fault in which line (a) is sa0, while the first vector will not. This is also a
kind of multiplicity, but now for test vectors. This multiplicity is already introduced
in the generation of the test vectors for the methods 2., 3. and 4., but was not
called multiplicity before.

EX4 has many input bits which are not used in many transitions. Therefore the
multiplicity of test vectors explained before, has not a great effect on EX4.
Because EX6 uses many input bits in many transitions, this type of multiplicity
appears more. Also this multiplicity for one transition appears more, which means
that EX6 has more transitions in which stuck-at faults are detected by different
test vectors. This means that transitions in EX6 have to be tested more on the
average than in EX4.

EX6 uses three state bits to implement eight state. This means that EX6 is fully
specified, considering the states. EX4 however only has 18 states, but 5 state
bits. This means that EX4 has 32 states realised. Therefore the effect explained
in figure 3. in which logic for different transitions resembles, can be decreased
with the right state assignment.

Continuing with this reasoning and taking into account the method developed
by Devadas [3], a good state assignment is very important. On the one hand it

42

can lead to smaller implementation, while on the other hand it can facilitate test
generation.

5.6. Conclusions

The method 1. uses no information of the structural level implementation. This is
the least complex method. Method 4. however uses most of this information and
is the most complex method. The results for method 4. are the best, if number of
test vectors and fault coverage are considered.

Also compared to the conventional test algorithms, the concept of using structural
level information at the functional level gives better results. PODEM comes with
coverage near the results of method 4., but the number of test vectors is higher
and the complexity is larger because it uses backtracking. Method 4. does not
generate test vectors that detect redundancies, while PODEM does. This is an
advantage of this concept.

6. CONCLUSIONS

The concept checked in this report is to use the structural level information for
functional level test generation for sequential machines. The reason to do so is
first to find a good fault model, second to avoid the testing of redundancies and
third to avoid testing faults more than once.

Four methods were described, from which the first uses no structural level
information, to the last that uses the most information. The complexity of the
methods increases with increasing use of the structural level information.

The results that are used for comparison, are the number of test vectors
generated and the fault coverage. With increasing use of the structural level
information, these two results improve. The method that uses most of the
structural level information, gives the smallest number of test vectors, while the
fault coverage is maximal.

To find out if the concept holds the methods are also compared to the
conventional test generation algorithms. The method which is the best
representative for the concept uses the most structural level information. This
method also gives better results than the conventional functional and structural
level test generation algorithms. PODEM gives the coverage which is close to the
coverage from the method considered, but it uses more test vectors. For the
largest machine that was checked (EX4) it uses almost two times more test
vectors.

The complexity of the concept is for a great deal dependant on how hard it is to
extract the information from the structural level description. In this work this was
done by exhaustive fault simulation of the machine under test, but perhaps
simpler methods can be found. PODEM, however, uses backtracking to generate
test vectors. It is well possible that even with exhaustive fault simulation the
complexity for the introduced methods is smaller than the complexity of the
PODEM algorithm.

The concept of using structural level information for functional level test generation
gave for all the considered examples better results than both the pure functional
level testing and the pure structural level testing.

REFERENCES

[1].

[2].

[3].

[4].

[5].

Lisanke R.

LOGIC SYNTHESIS AND OPTIMIZATION BANCHMARKS,
USER GUIDE, Version 2.0.

Microelectronic Centre of North Carolina, USA,
December 16, 1988.

Gupta, A.K. and J.R. Armstrong
FUNCTIONAL FAULTMODELING AND SIMULATION FOR VLSI DEVICES.

IEEE Design Automation conference,
proceedings 1985, p. 720-726.

Devadas, S., H.T. Ma, A.R. Newton and A. Sangigvanni-Vincentelli

A SYNTHESIS AND OPTIMIZATION PROCEDURE FOR FULLY AND EASILY
TESTABLE SEQUENTIAL MACHINES.

IEEE Transactions on Computer-Aided Design,

Vol 8, no 10, october 1989, p. 1100-1107.

Jay C.

EXPERIENCE IN FUNCTIONAL-LEVEL TEST GENERATION AND Fault
coverage IN A SILICON COMPILER.

European Design Automation Conference

proceedings 1990, p. 485-490.

Fujiwara H.

LOGIC TESTING AND DESIGN FOR TESTABILITY
London: The MIT press

ISBN 0-262-060960-5

45

APPENDIX A. FUNCTIONAL LEVEL DESCRIPTION OF THE
MACHINES UNDER TEST

The four machines that were used to test the introduced methods, are described
in this appendix. First the state assignment is given, which contains the number
of state and the number of state bits as expressed in table 1. The description of
the machines is at the functional level and consists of the state transition table.The
transitions are of the form expressed in formula (3). In the transitions * means that
the state is don't care.

EX4
State assignment Transitions
1 00000 * 0----- 1 6 1---1- 16
2 10100 1 1----- 3 5 1---0- 17
3 01110 3 1----- 2 6 1---0- 17
4 o1 4 1----- 2 16 1----- 18
5 01100 2 1----- 7 17 1----- 18
6 01101 7 1----- 9 18 1----- 8
7 00100 9 10---- 9 8 10---- 8
8 00110 9 M---- 14 8 11---- 12
9 10010 1% 1----- 15 12 1----- 13
10 10000 15 1-1--- 10 13 t----1 4
11 10001 15 1-0-- 11 13 1----0 6
12 10110 0 1-0-- 3
13 01010 1 1-0--- 3
14 11000 10 1-10-- 3
15 11100 11 1-10- 3
16 11110 10 1-11- 5
17 MmN 1 1-11-- 5
18 01000 5 1---1- 16
EX6
State assignment Transitions
1 on 1 11--- 3 5 --0-- 2
2 001 1 00--- 2 S --11- 8
3 1M1 1 10--- & 5 0-10- 5
4 000 2 0-0-- 2 6 ----1 2
5 101 2 -1-- 5 [10--0 4
6 100 2 110-- 3 6 00--0 2
7 010 2 100-- 4 6 11--0 3
8 110 3 10--- 4 6 01--0 6

3 00--- 2 7 --0-- 2

3 1M--- 3 7 10%-- 7

3 01--- 6 7 011-- 6

4 010-- 6 7 111-- 3

4 e1-- 7 7 001-- 2

4 110-- 3 8 101-- 7

4 000-- 2 8 --0-- 2

4 100-- 4 8 0-1-- 8

5 1-10- 8 8 1M11-- 3

MARK1

State assignment

statel
state3
stateé
state5
stateb
state?
state8
state?
statel0
statell
statel?2
statel13
statels

OPUS

State assignment

init0
init1
init2
initéd
IOWAIT
RMACK
WMACK
read0
read1t
write0

1001
1011
0100
101
1100
0011
0110
0001
1010
1110
0010
1000
o

0000
0100
1010
ooto
1000
1001
0001
0110
1100
1110

Transitions
* 0----
1 1ee--
3 1----
4 1-111
4 1-110
4 1-10-
4 1-011
4 1-010
4 1-001
4 1-000
5 1----
6 1----
7 1----
Transitions
- ..1..
init0 --0--
init1 --00-
init1 --01-
init2 --0--
inits4 --01-
inité --00-
I0wait 0000-
I0Owait 1000-
I10wait 01000
I0wait 11000

47

oW

VMONN® O ==

init0
init1
init1
init2
inité
inité
I0Owait
I0wait
init1
read0
writel

10
"
1
12
13
14

1....
1....
1..-.
10---
11---
1----
1....
1-...

10wait
10wait
I0Owait
RMACK
RMACK
WMACK
WMACK
read0
read1
writel

14
14
N
13
12

14
3

RMACK
WMACK
init2
RMACK
read(
WMACK
writel
read1
I0wait
I0wait

APPENDIX B. EXAMPLE OF FAULT SIMULATION AS IN 4.8.

In this appendix an example will be given of the fault simulation introduced in
section 4.8. The function to be implemented is

f=xy.2 + xy.z (B.1).

In this formula x,y,z and f are logic variables, negation is denoted by ' and . and
+ are the logic operators AND and OR respectively. Apply the vector x=1, y=0
and z=0. The implementation and the applied vector are drawn in the next figure.
In this figure the gates are named with capitals, while the signal lines are named
with small letters.

X
—M\
A
Z,__i/] le
X
=

Figure B.1. Implementation of the function f with an input vector.

First the gates have to be marked. In this example this is
gate A = ALMOST ACTIVE
gate B = NOT ACTIVE
gate C = ACTIVE.

The set of faults belonging to this input vector is formed now. First the opposite
fault for the output has to be added. This means that signal line f with the stuck-
at faults sa0, written as f/0, is added. Because gate C is ACTIVE the only way
through which faults can propagate is via signal line a. This means that gate B
does not need to be calculated any further. For the signal line a the fault a/0 has
to be added. Now gate A has to be considered. This gate is marked ALMOST
ACTIVE, so all the inputs can propagate all the fault which have propagated so
far. This means that in a larger circuit all the logic in front of gate A has to be
processed. In this example, only the stuck-at faults sa0 for every input of gate A
have to be added. The inputs are reached and the resulting set of faults contains
five stuck-at faults.

	Voorwoord

	Abstract

	Contents

	List of used abbreviations

	1. Introduction

	2. Functional and structural level tests.

	3. Test methods by coupling levels.

	4. Using the methods.

	5. Results of the testing methods.

	6. Conclusions

	References

	Appendices

