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Summary.

This report will give a deseription of some methods to
énalyse signals, The aim of these methods is to give a
display of the information-bearing attributes of the signals,
We will do this in terms of the distribution of intensity as
a function of time and frequency. This distribution can de
calculated in an analogue way by means of a spectral
analyzer (a set of passband filters) or in a digital way by
means of a running transform (dynamic or short-term
spectrum). These methods are commonly used but they neglect
the phase relations of the different frequency components,
Because these relations may be important to the auditory
system a new method is suggested: the calculation of the
Complex Spectro Temporal Intensity Density Function (COSTID).

For this concept, signal description by means of the
analytic signal is used. This enables us to define envelope
and instantaneous phase of the signal; instantaneous frequency
is then given by differentiation of the phase with respect to
time. All these characteristics are directly related to the
COSTID.

A visual represemtation of this complex function of time
and frequency is constructed by coding the complex function
by means of colours. Two different ways of colour-coding are
presented here. They depend on the choice of real- and

imaginary part or modulus and argument of the complex value:



rectangular and polar coding.

As for the softwdre only a general description of the
preprocessing (filtering, sampling) and the implementation
is given, Progrem listings are available in the group
Neurophysics.

The results are presented for several computer generated

and one natural sound signal,




Introduction.

The investigations described here are part of the
research of the group Neurophysics. This research is within
the study of brain and behaviour concerned with the auditory
part of the nervous system of the frog Rana temporaria [1].

The basic question is the neural base of perception. In
this context the more direct goal is the description of the
stimulus-response relation for a single neuron in central
auditory nuclei. By stimulus is meant the sound presented
to the frog by means of an acoustic coupler attached to the
eardrum, By response we mean the extracellular measurements
of single unit activity: the action-potentials, spikes or
neural events,

From earlier investigations it appeared that artificial
sounds like tones, clicks and Gaussian white noise are less
effective in central parts of the auditory system than they
are iIn the more peripheral parts I?]. Therefore the stimulus
ensemble was extended to natural sounds that may play a role
in the normal behaviour of the animal,

Investigation of the characteristics of natural sounds is

.important for several reasons:

1. To characterize a system by means of correlation of
input and output signal, it is necessary to know the

characteristics of the input signal. The correlation depends



on the kind of input signal.

2. Stimulation with natural sounds under computer control
oan be done by digital to endlogue conversion of the Bampled
natural sound or by controlling synthesizers and noise
generators. This last method needs a parametrie description
of the natural sound.

3. To extract sound-parameters that can be used to

characterize units in higher parts of the auditory system [4].

Though we mentioned only acoustic signals in the foregoing
our methods are not limited to sound. Various other kinds of
signals can be analyzed, i.e. EEG, EQG, etec.

Signal analysis can be made in time- and frequency domain
separately, but there does exist also a method that considers
signal properties in time and frequency combined, The theory
of these methods is discussed in chapter 1.

As long as we are dealing with a real function of one or
two variables we can make a display in two or (in perspective)
three dimensions, But when the calculated signal function is
a complex function of two variables, it is no longer possible
to make a display of the total function in such a way.,
Therefore we came to a coding of complex values in colours.
The two dimensional complex plane js mapped into the three
dimensional colour range. The coding procedure is explained
in chapter 2.

Chapter 3 gives insight in the selection of examples and

the structure of the software that was developed.



For the need of checking the software and gaining insight
in the representation of complex functioms in a colour
display, we made some runs with artificial signals. They
consisted of pulses (reetangular, triangular and Gaussian),
sines, cosines and amplitude and/or frequency modulated wave
forms, In chapter 4 the results are given for a tone-pulse,
that resembles an element from a frog vocalization, for
combinations of these tomnes shifted in time and/or frequency

and for an element taken from a frog wvocalization,
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Chapter 1
Mathematical theory of signals,

In this chapter a review is given of some theoretical
aspects of signal analysis, Although all signals are real
(electrical voltages resulting from physical processes),
analysis will be based on complex signals; this leads to
considerable mathematical simplification,

The most general description of a signal is as a set of
pairs of num'bers{x(t),t}, -A <x(t) <A and Ot <T,

The restriction on x(t) is allowed because measuring ranges
are bounded and measuring time is also restricted. Because
the type of signal may have an influence on the type of
analysis, we shall first examine the various types of signals
which are encountered in practice,

A fundamental division of physical data is into determi-
nistie or random data.

Deterministic means that the relation between x(t) and t
can be described by an explicit mathematical relationship.
In general this implies that if an experiment producing
specific data of interest can be repeated many times with
identical results (within the limits of experimental error),
then the data can generally be considered deterministiec.
Data representing deterministic phenomena cam be categorized
as being either periodic or non-periodic. Periodie data can be

further categorized as being either sinusoidal or
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nonsinusoidal; non-periodic data as being " almost-periodic " or
transient (fig. 1.1). Of course any combination of these forms
may also occur. |
Data representing a random phenomenon cannot be described by
an explicit methematical relationship, because each observation
of the phenomenon will be unique. In other words, any given
observation will represent only one of many possible results,
which may have occurred. A single time history representing a
random phenomenon is called a sample function., The set of all
possible sample functions is called a random or stochastic
process. Random processes may be categorized as being either
stationary or nonstationary. For random processes, the properties
of the phenomenon can hypothetically be described at any instant
of time by computing average values over a subset of sample
functions (also called the ensemble), which are realizations of
the random process (fig. 1.2).
For the general case where mean
W () = limi ZN x (t) 1.1,
X N k=1 k
N-+oo
and the autocorrelation function
1 N
R (t,t+T) = 1lim - ) x (t) x(++T) 1.2,
X N k=1 k
N o0
vary as time t varies, the random process ix(t)} is said to be
nonstationary. For the special case where le(t) and Rx(t,t+t )
do not vary as time t varies, the random process x(t) is said to

be weakly stationary or stationary in the wide sense. For the

case where all ensemble averages (moments) and joint



moments are time invariant, the random process ix(t)} is
said to be strongly stationary or stationary in the striect
gense,

The concept of stationmarity, as defined above relates to
the ensemble averaged properties of a random process. In
practice, however, data in the form of individual signal
waveforma resulting from a random phenomenon are frequently
referred to as being stationary or non-stationary. A slightly
different concept of stationmarity is involved here, When a
signal waveform is referred to as being stationary, it is
generally meant that the properties computed over short time
intervals do not vary wsignificantly" from one interval to
the next. The word significantly is used here to mean that
observed variations are greater than would be expected owing
to normal statistical sampling variations. Many physical
signals as speech, frog vocalizations, ete. are non-
stationary signals. We find, for example, that any signal
derived from a process involving the Doppler effect cannot
be analyzed in terms of a constant frequency content since
this will be found to vary with time. Now a measure for the
non-stationarity can be the change of the power spectrum
when this spectrum is calculated for sequential signal parts
with more or less overlap. For the segmentation of the
natural sounds to analyze, we selected by looking at a visual
display of the total signal waveform mostly those parts with
a temporal envelope starting and ending at zero. These

segments will further on be referred to as "the" signal.



l.1. Real Signals .

Functions of a rather general nature can be described by
the development in a set of orthogonal functions igi(t)}. In
this way such an "arbitrary" function can be approximated by
a finite number of coefficients [3] prowvided the function
satisfies certain conditions,

A continuo;zs set of orthomormal functions is given by

ft gu(t) gV(t) =8 -v) 1.1.1.

where the Dirac-"function® 6 (8)=0 for s¢ O

+ 0O

and fdsﬁ(s): 1l

- o0

(In the rest of this report we will omit integration

bounderies that reach from - to +oc0),

Now a time function can be expressed as

where cv =fdt x(t) gv(t) l.1.3.

If -/dt lx(t)l < 00 we can take
gV (t) = e'ivt = cog(Vt) - 1 sin(Vt) 1,1.4.

which results in the Pourier- transform; an orthogonal
expansion of the signal in harmonic funetions, These functions

form an important class of functions because they are the



eigenfunctions of linear systems. In hearing, not only the
temporal structure of the sigmal is of interest, but also its
spectral composition. Investigations have shown that the ear
may ©perform a continuous frequency analysis. Therefore an
analysis in the frequency domain may lead to find related
characteristics of the auditory part of the nerve system,

We recall some properties of the Fourier transform to
demonstrate how they change as we use an analytic signal

instead of a real signal,

, _iwt
Fourier transformg (W) = dt e x(t) l.1.5.
where " ,//dt e"'wt " jg a linear operator on x(t);
1 it v
The inverse transform: x(t)_zTt dWe x(Uu) 1.1.6.
Since *('w) = i *(w) l.1.7.

it follows, that only one half of the spectrum fully
specifies the signal x(t). Now we can write equation (1.1.6)

in the form:

0
Changing the variable () to -(1) in the first integral and use

of equation (1.1l.7.) gives

it 1 wt,

1 =1 v 3¢ |

t) ==— 1 d +—1 4

x(t) 2T Wwe (W) 2TC W e X(UU)l. 9.

0

But equation 1.1.9. can also be written as
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1 % i
x(t) =—fdwRe Ezi(w)e'wtg 1.1.10.
2TC 0

Inspection of equation (1.1.10.) shows that a complex signal
éan.be found from the real signal by omitting the negative
frequencies and doubling the amplitude of the positive
frequencies, We see that x(t) is the real part of the complex
signal £ (t), if

wt

£ (t) =‘? aw e x(w) 1.1.11.

0

For the spectrum of g (t) we may write

v

E(w) = o w<o

(W) ;W =0 1.1.12,
2x(W) ;W >0

L]

Obviously the imaginary part of g(t) is given by

%(t) :—L[dw Img x(W )elwtj 1.1.13,
o

So we see that we can also represent x(t) by means of a
complex signal without any loss of information, this brings us
to the next part of this chapter.

1.2, Analytic Signals.

As mentioned before the aim of this analysis is the

description of natural stimuli used in the investigations of
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the auditory system of the frog.

For the classification of neurons the sensitivity
to frequency and intemsity are widely used. As long as pure
tones are used "the" frequency is well defined. Natural sounds
however contain different frequency compoments. In addition the
number of frequency components and their magnitude may vary
with time. The response of some neurons suggests that it may
also be important to study the phase relations between the
frequency components in the natural stimuli [}i].

The description of a signal in terms of an instantaneous
amplitude ("envelope”) and instantaneous frequency is possible
with the analytic signal. A concept that was introduced by
Gabor and Ville [6, 11, 9]. If we assume the signal to contain

no DC- compoment or
x(0) =‘J/;t x(t) = 0 ; we have the analytic signals
£ (%) = x(t) + 1%(%) 1.2.1.

where %(t) is the Hilbert transform of x(t). Both x(t) and x(t)
are real functions of time. The Hilbert transforms or reciproeity

formulag are defined as

aY) 1 (s
I(t) =des fé-%)— 1020203

=1 X(8) ‘
and x(t) = Tt dsg%_s l.2.2.b

The integrals being understood as Cauchy principal values[ 7].
The functions x(t) and X(t) form a Hilbert pair and have the

following properties[ 8, 9_]
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1) BEach function of a pair has the same intensity or "norm®

1 =fxz(t) dt =f§z(t) at 1243

2) The functions forming a pair are orthogonal,

fx(t)?c(t) dt = 0 1.2.4.

3) The Fourier spectra x(()) and X((W) of x(t) and ¥(t) are

related as

F(W) = 1 ¥(W) ;W< 0
= 0 s W =0 1.2.5.
= - i x(W) s W >0

For the Pourier spectrum of the analytic signal we then

get
E£(Ww) =0 s <O
= (W) ;W =0 1.2.6.
= 2x(W) 5w >0

This is the same result as we found for the Fourier spectrum
of the complex signal in the previous part of this chapter.
So we can construet amr analytic signal by making the negative
frequency components of the real signal equal to zero.

It should be noted here that in general complex signals are
not necessary analytic signals, Complex signals are only
analytic if their negative frequency components are equal to

zero, Given am arbitrary complex signal

p(t) x(t) + 1 y(t) = r(t)ekp(t) le2670
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This is in general not analytic for arbitrary x(t) and y(t)

or r(t) and((t). The necessary and sufficient condition is
v
p(w) =0 ;w << 0 102080

Which is equivalent with

x(t) r(t) cosP(t) 1.2.9,.

Regp (t)}
mm{p (t)}

- being Hilbert-transforms. This implies y(t) =)‘(ix(t)§ or

and y(t) r(t) sint (t) 1.2,10.

using eq. (1l.2.2.b)

=1 [de F(s)eosP(s) _ 1
r(t)sin (t) T 8 o r(t)sin@(t)@nt

1.2.11,
where @ denotes convolution,

The first equality applies if

](ds r(s)%M= r(s)][ds cosD(s) 1.2.12.

t-s

which is (approximately) correct if r(t) varies slowly with
respect to cosgp (t) for all t. This result forms a

special form of a theorem given by Bedrosian[ 3]. It states
that, if r(t) and cosfq) (t) are real functions with non-
overlapping spectra and with the frequency band of r(t) below
that of cos Qp (t),

H {r(t) cos (f (t)}

r(t) )—( {cos &p(t)}

r(t) Sin@ (t) 1020130

Basically the concept of modulation in communication rests
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on this same assumption, as the modulating signal is

supposed to have a frequency band below that of the carrier-

signal., One considers three important types of modulations

amplitude-, phase-~ and frequency- modulation. In all three of

them the modulated quantity is defined to depend linearly on

the modulating signal. Now it is clear that we cannot speak

of a modulating signal, when we are describing a signal that

is not the output of a modulator, but just an arbitrary

waveform, although we feel intuitively that we can speak of

the amplitude, phase and frequency of a signal, Therefore let

us define a number of signal-parameters related to the

analytic signal.

F(t) = x(t) + 1 i‘((t) = ¢ 2(t) + 1ib(%) 1.2.14,
y i
and g«m = e°°w+ pLw) sW=0 1.2.15.
a(t) s (W) s

the temporal
logarithmic amplitude

b(t) 3
the temporal phase

a(t)
the relative temporal
amplitude change

* refers to —%t—

B(t) s

the temporal phase change or
instantaneous frequency

Additionally we define

A(t) = e2(?) :

the temporal envelope

the spectral
logarithmic amplitude

B(W) =
the spectral phase

(W) 2
the relative speetral
amplitude change

d

]
refers to 3

BW) :
the spectral phase change or
slope of phase characteristic

s(W) = &< (W),

the spectral envelope.



1.3. The Complex Spectro Temporal Intensity Density Function.

Until now we considered signal properties either in time-
or frequency domain. Although the concept of instantaneous
frequency appears to supply a connection between the two
domains, it does not represent a full description of time-
frequency relations. It gives only information about the
change of the temporal phase and disregards the effect of
amplitude changes on the spectrum of the signal. As mentioned
before the spectrum only represents how a signal is built up
with harmonic components, but does not represent how the
relations between these components vary with time. Because of
this lack of phase information in the power speetrum, the
temporal characteristics of the signal waveform may change
without any effect on the power-spectrum. An ensemble of
different waveforms may have the same power-spectrum, But, as
the change of phase relations with time may be important to
auditory neurons, the question arises how we can analyse
signal properties in both the time- and the frequency domain,
This now can be done in various ways.

By passing the signal through a bank of bandpass filters
(spectral analyzer[ 21 _]) or calculation of the power-spectrum

of temporal windowed signal parts[ 4], it is possible to get
an impression of the change of signal properties as a function

of the spectral band selected and the temporal window, respec-

tively |:14:|. As Gabor's uncertainty relation |:11:| applies
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to these concepts, we can only talk about an approximation of the
time~dependent spectrumt, Filtets cannot Have both short impulse
responses and narrow bandwidth., So a band of fixed bandwidth
filters cannot provide both good spectral and good temporal
resolution., Exactly parallel limitations on resolution apply when
short term spectral analysis is performed. In the latter case the
window length should always be made as long as possible for good
spectral resolution, but it will normally be limited by how rapidly
the signal itself is changing. In calls of the frog Rana
temporaria, individual elements last ~ 21 msec. Now this is
a possible window length, if one is interested in the
spectral composition of the individual elements in these
calls.

Now a concept is presented that does not suffer from the
restrictions mentioned above. Several concepts involve both
time and frequency and have been introduced into signal
theory by different authors, Gabor[_11_] being one of the
first. The account of Rihaczek unifies several of these
concepts in terms of the complex energy density function [15,.]
Although we will use the mathematical expression given by
Rihaczek, we introduce a different name, because it
represents not really an energy : The Complex Spectro
Temporal Intensity Density Function (COSTID). This function

is defined as

v

=W, = €5 ww e'i“’tgm 1.3.1.
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where g (t) is the analytic signal
E ()) is the Pourier transform of g(t) and
é_KUt ig a function that relates témporal and
spectral functioms (fig. le3.le).

That this funetion represents indeed the distribution of the

signals intensity over its spectral and temporal ecomponents,

may hecome clear in studying the properties of the COSTID.

Properties of the COSTID - functiom

2
a) The temporal intensity Ig(t)l is given by spectral
integration of the COSTID - function.

v -1 t
L (aw E*wre' W' -

gmg(t) = I(t) 1.3.2.
I(t) is the square of the temporal envelope A(t).

1 - t) =
znaw (W,t)

b) The spectral intemsity is given by temporal

integration of the COSTID - function

Jat = (W,t) = g (W) dt§<t>e"wt=
£w) € w) = 3w) 1.3.3.
J(W) is the square of the spectral envelope S(()).

c) The total intensity of the signal I is given by temporal

and spectral integration

ffdt aw = <w t) = fdt |§<t>|1

d) The COSTID - function is independent of the absolute phase

IT |
ng 1.5.4.

of the signal. This implies that the COSTID - function of



F(t) = €, (8) +V1 - E(t) 1.3.5.
is independent of «. Substitution of

£ty = H {Em} = -1 £t 13,6,
and E(UU) = (= 31V 1 =o ) éo(U)) 1.3.7

gives __ v =1
—(W,t) = (x+ iV 1 =0 )E,f(w)e wt

% (o= 1Y 1 -0ot) E(t) = = (W,t) 1.3.8.

e) The COSTID - function is non-linear, Given the analytic
signals g1 (t) and gz(t), we can calculate the COSTID -
function of either signal

t - - t = ,
E,I()-» =, (W,%) and g2<) - =, (W)

Calculation of the COSTID - function for a signal

t) = t t
53() g1<)+ §2<)
regsults in the COSTID - function

W, = =, W, + B YE )

+ g;(w)e"wt§1(t) + Ez(w,t) 1.3.9.

In ¢) we saw that the total signal intensity

-3

could be found by integration over the whole time- frequency
plane, Now we can ask what the result is, if we integrate only
over a part of that plane. The COSTID - function can be

expressed in terms of modulus and argument



=(W,t) = lé <w>l¢'i@(w) oWt € )] o2 4 5 10,

By introdteing F(W,t) = Wt + P(W) = b (), the
argument or phase of the COSTID - function, we can write

_ . ~iv(w,t) .
=(wst) = [Ew| | Ew)] e 1.3.11.
The COSTID - function, being a distribution function, the

intensity concentrated in a region S} s T is given by
y (V)
1Q,m) =[dwfdt || | Eb)] e 1.3.12.
QR T

Using the fact that the spectral and temporal envelopes

-io(wt)

vary only slowly with respect to e » We see that
significant contributions to the integral can only come from
points where the argument'ﬁ‘(U),t) changes slowly as function

of () and t. This leads to the equations :

3> TWst) 0 — W = b(t)

ot 1.3.13.,
2 T (W,t) — t = -B(W)

> W =0 ﬁ

So a trajectory in the time-frequency plane may be found, on
which () and t are related by (l.3.13.) and the signal has a
local maximum in its intensity.

Signal parameters defined for the analytic signal can be
calculated from 1n —(W,t) according to the following

diagram



Re Im

b [ ) - ®
?t— a(t) W+ d(t)
b i - - ]

The last property of the COSTID - function that we will
give here is the normalized first moment of the COSTID -

function with respect to (W) or t. They are given by

Q) Jww = @
- faw = (W,t) | 1.3.148

- fat = (W,t) 1,3.14b

Now it appears that the first normalized moments are simply

related to the signal parameters we defined for the analytic

signal
»
faw w = W,v % a gty 1d m E
(xt) S AW = (W) OB a1 at "
= ﬁ(t) + i é(t) le3615.
and
fdt t = (W,t) i adg (W) id y
- — = > = - -~—1n (U))
T(w) fat = (W, EWw) aw 1 dW :
= -f(W) + 1 x' (W) 1,3.16,

So these relations may be diagrammed as



Re Im
Q (t) B(t) a(t)
T (W) -B(W) (W)

The relation between the COSTID - function and short-term

spectra made in analogue or digital way.,

When considering the analysis of signal waveforms with time
varying parameters the rate of change of these parameters is
often of prime importance [:20:]. If these changes are slow enough
to permit the signal to be considered as stationary over a finite
period of time, the conventional stationary methods of analysis
over such a small section of the signal time-history can be
applied. This is the general principle behind the many forms
of local, instantaneous and evolutionary spectral analysis.,

The ideal with this form of analysis is to determine (for
example) a power/ frequency distribution defined at a unique
instant in time. An early attempt to define a time varying
spectrum in terms of a Fourier transform was made by Page[:Ié].
He recognized that the time variation is invariably a slow one
in terms of the constituent signal frequencies and defined
what he called an Instantaneous Power - Spectrum, a differen-
tial of time, This spectrum depends only on the past history
of the signal and not on its future values, which are implied

in the classical definition of the Fourier transform[ZZ@].
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He proposed a "running transform" s

t 2
Pt (w) = I ds e_lwsx(s) 1.3.17.

- 00

His insgtantaneous power spectrum was defined as the rate of

change with time of P (W):
t

p(w "t) =_th_Pt (U)) 1.5.18.
By defining
t
it (w) = fds e_|ws X(S) l.3.19,
-~ 00

the equations (1.3.17.) and (l.3.18.,) can be easily be

manipulated into the alternative form
-iwt
p(W,t) = 2 Re ii*t (W) e ' X(t)} 1.3.20,

Ackroyd [ 13 Jhas derived a general expression for the

energy distribution in the time and frequency domain
fwt
e(W,t) = x(t) Re i:‘:(w) e } 1.3.21.

. it
Now Re {xt (W) e U%-} is the response to x(t) of a filter,

whose impulse response is

h(t) = u(t) cos W, t 1.3.22.

where u(t) is the unit step function. This impulse response is

physically realizable in the sense that it is zero for
negative t. The transfer function corresponding to this

impuls response is
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ﬁ ((,U) = ,.i wz ) 103023.
W, -Ww

while thé nonsphysically realizable impuls response, that

Ackroyd used, for the derivation of (1.3.21.) was at (1,
B (W) =Te{8(w+ w, ) + 6w -, 1.3.24,

So the "ideal" filter of (1.3.24.) was replaced by the less
scale factor., Therefore p((W),t) can be thought of as an
approximation to e((),t) with poorer spectral resolution.
Although eq.(1l.3.21,) seems to have the same form as the
COSTID - function it is not possible thusfar to express in a
simple way the energy demsity function in terms of the
COSTID - function. For the output of the spectral analyzer and

the results of the short time spectra method this can be done,

Relation between COSTID - function and output of real-time

Starting with a short description of the real-time spectral
analyzer, that was built in the electronie laboratory of the
departement of medical physics and biophysics, we will only
pay attention to the data path. All control-systems are
omitted in fig. le3.2e

The first section is formed by a filterbank, consisting of
45 1/3-0ctave filters, covering the frequency range from

2 Hz up to 50 kHz. Their behaviour is that of a 6-th order
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Chebyshev-filter with an effective bandwidth of 0,205 . fk
(fk being the center frequency of the k-th filter). To
avoid misinterpretations due to the different bandwidths, an
energy correction can be made.

Second section : the Hilbert-transformer,

As the Hilbert-transformer can only produce two outputs with
& phase difference of approximately 90 degrees over a limited
frequency range, a slight deviation may oceur in the
(squared) detected amplitude., However, in normal operation
an averaging occurs because the output of the preceding 1/%
octave filter contains a multiple of frequencies around fk »
each with their own phase, and so the error is reduced (for
P= 0,5° less than 10,

The third section contains an analogue multiplexer and
A/D converter., The multiplexing is done to reduce the number
of necessary A/D converters, squares and adders. The A/D
converter has am accuracy of 9 bits. Assuming a maximal
signal value of 5 Volts and accepting a percentage of errors
in the least significant bit of 1%, the signal to noise ratio
should be 69 dB (in practice 40 dB can be reached).,

The fourth and fifth section, respectively square and add
the data. Before squaring, the DC- offset is corrected
because an undesired DC- offset may reduce the dynamic range
of the analyzer. As long as the DC- offset is below the
quantization lLevel the dynamic range will be 54 dB.

The sixth section is formed by a delay-line-memory in

order to have also access to the analyzed signal prior to
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Fig. 1.3.3. Functional block-diagram of data-path
in the real-time spectral analyzer.




- 26 =

a trigger-oceurence, The delay-line contains 4096 locations
of 18 bitses Triggering can be done external (neural events),
manual and internal. The data being stored in the delay-line-
memory makes it possible to select p# pre-trigger data and
(100 - p)% after trigger data.

Section seven and eight are respectively averager and
main-memory, The objective of the averager is to average the
data that is related to several neural events but also to
reduce the variance of the detected envelope, The averaging is
performed on a running base : the weighting factor is
continuously adjusted to the number of averages already
executed.

The last two sections represent the display of the data in
a statie display and a dynamic display. The static display
gives the intensity as a function of frequency. The dynamic
display gives for every band selected the temporal intensity
ag a function of time., In chapter 4 these displays will be
given for signals that resemble elements out of a vocalization
of the frog Rana Temporaria,

Now for the derivation of the relation between the output
of the real-time spectral analyzer and the COSTID - function
we will refer to a simplified version of fig. l.3.2., namely

figo 103030

For the analyzer output v(t) for passband k, the following

relations can be given,
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v(t) = ¥y () + FH(t) 1.3.25.
If N (t) = y(t) + i §F(t) we get

v(t) = ) (L) =ﬁ- ﬁ(tm (W) «Wlawy  1.3.26.
Now we will express 7] (t) and 1)*(W) in terms of £(t) =

x(t) + i %(t) and kpk(t) = hk(t) + i hk(t) respectively in

g (W) and kPk(UJ), this gives
Tw) = 172 EXWIP [ w) 1.3.28,

Substitution in equation (1.3.26.) gives

1 Y V% UJt
t) = 1l t -
v(t) 7T f/z {fg< t)kpk(TI) dt} 1/2 g<w)upk<w)e aWw

1 - —

=T A d(l)d't - (UJ t -[: ) (U t 1030290
We see that for every passband the output of the real-time
spectral analyzer is thus simply the temporal convolution of

the COSTID - function of the input signal and the COSTID -

function of the corresponding bandpass filter,

Relation between COSTID - function and the results of the

In the foregoing part our signal x(t) was convoluted with
the impulse response of the filters fk(t). In this part x(t)
is multiplied with the window function w (t), that is
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short-time spectrum method,
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translated to some point Tk o« The resulting part of the signal
waveform will be referred to as a sequence. Por every
sequence the Fourier transform is calculated (fig. li3ede)s

As we consider the power spectrum in this case, we use
v 2 v v
| 7| = Fw) Fxw) 1.3.30.
If T(t) = y(t) + i ¥(t) we get

v 2 v - v, —iwt
| ¥ | = 74 WM™ W) = 174 | at NMwre Nt
=1 at — t 1e3.31.
/4 { a8 = (Wee) 3.3

which is non negative, Otherwise in using

M W) = 2Tl:f‘é - vap (s) ds 1.3.32.
where
g(t) = x(t) + 1 X(t) 1.3.37.
and
P (£) =w(t) + iW(t) 1.3.34.

the convolution of the COSTID - function of the signal and
the temporal window function with respect to the frequency

is found to be

y(w)lz =@1_T[—fdw at Eg ((L)-V ’t)ELI) (V't)o

In chapter 4 we will give some results of the short-time

power spectrum method for three computer generated signals.
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Fig, 2.2+ Three dimensional display; Short-time
power spectrum of the signal of fig. 2.1.
windowlength :

5.12 msec, windowshift : 40 LLsec
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Chapter 2

Visual Representation of Signalg,

In this chapter we will come to the description of a method
to display a complex function of two variables by means of a
colour representation., Though the variables in the displays
are time and frequency, the actual dimensions of the variables

are not relevant for the display techniques.

201, Real functions of a single variable.

To display a real function of a single variable only two
axes are needed., One for the variable and the other for the
corresponding function value, It is obvious that this method
can also be used for the real-, imaginary part, modulus or
argument of a complex function of a single variable. Though in
a number of cases it becomes difficult to interpret results,
that are given in two plots, but belong to the same function,
This first method is used for : the real-, imaginary part,
modulus or argument of the analytic signal or its Fourier
transform (the signal spectrum), See example of fig. 2,1.:

a real time-signal and its power spectrum. (the text refers to
the computer-file: TONE1ll,TST, the display mode: REAL, POWER and

the scaling of horizontal X and vertical Y axis:LIN= linear,
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Fig., 2.4. " Level-display of dynamic spectrum of fig, 2.2.
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2¢2+ Real functions of two variables,

For the display of a real function of two variables three
dimensions are needed, By making a virtual three dimensional
plot, this problem can be solved[:4:](fig. 2¢2s)e Otherwise it is
possible to display only cross-sections of the function., The
cross-sections can be made rectangular to one of the variable
axes and result in displays as described in 2.1, If a cross-
gsection is made parallel to the plane of the axes, two
possibilities remain s
1) the function values above the cross-section plane can be
projected into this plane (fig. 2.3.)

2) display only the points where the function crosses the

cross-section plane. (fig. 2.4.)

FPor these last two methods a normal two dimensional display is

made with the variables along the axes and the corresponding

projection or level-crossing is indicated by a certain symbol.
The displays discussed in this part are used for the output

data of the spectral analyzer and for the short-time or

running power spectra,

2+3. Complex functions of two variables,

Because the COSTID - function is a complex function of both
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Imaginary part?

time (msec)

frequency (Hz) =+

Fig. 2.5.a. An example of a vector-display; COSTID-
function of a single gamma-tone. In b. an enlargement of the
vector in a point (f= 5859 Hz, t= 2.32 msec) is given,
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time and frequency additional display methods have been
developed, as it was too difficult to interpret the results
if only one aspect of this function was displayed,

We displayed the complex function in two ways :
1) By means of a vector-display. For this we made a two
dimensional display with time along one and frequency along
the other axis. Then for every (f,t) pair we calculated the
modulus and argument and displayed a vector with length and
direction depending on respectively modulus and argument of
the COSTID - function value at (f,t), This method however has
the disadvantage that the vectors range into the regions of

others and make the display unclear,.(fig. 2.5.)

2) By making use of a colour display. The key to this
kind of display is the mapping of the complex values
into a colour range. It is obvious that we need not

consider the entire plane but only that part, that

contains the data points. Therefore we calculate at first
the modulus for all data points and seleet the greatest. Now
it comes to the choice of the colours for the segments or
parts of the circle with a radius that equals the maximal

modulus.,

The choice of the colour distribution is done in two ways 3

0) by making the colourrange a function of the real and
imaginary part

1) by making the colourrange a function of the modulus and
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argument,
The first one is called XY -coding; the second RdD-coding.
Now suppose that the maximal modulus was R for our data and look
at 2
0) The XY-coding.(fige 2¢3.1.)

The essence of this way of coding is the fact, that we place
a grid over the circle with radius R. This grid can be seen as
a matrix with values from O to n~1l, Where n is the number of
different colours. This implies that we have a resolution of
\VVa values for the real- and also for the imaginary axis
(\fh has to be an integer). Now we label every complex value
with the corresponding grid number. So this results in only one
real value for a class of complex values, It should be noted
however that the resulting display can only be interpreted, if
we have the possibility of looking at the coloured grid in
combination with the coded display of the complex function
values, At this point the choice of the colours is still open,
This gives us the possibility of manipulating with the colours
to investigate what c¢olour choice is optimal for the perception
of the signal features one wants to study. These investigations
are the subject of further research[:l9:]. We have considered
only the case of an increasing red brightness on the real axis
in positive direction and an increasing green brightness for
the imaginary axis., This results in a yellow colour for the
values with great positive real- and imaginary part and black

for the values with great negative real- and imaginary part.
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1) The R4fP~coding. (fig., 2.3.2.)

In this procedure a segmentated circle is placed over the
circis witn thdiud R in whith all the compléx data foints For
the display are concentrated. The colour circle consists of
segments and sectors. The sectors determine the resolution
for the argument of the complex value and the number of
segments determine the resolution for the modulus., In this
varying the hue, és a function of the argument of the complex
value, and the saturation, as a function of the modulus. If
we have again n different colour values (number of colours),
we get E values for the modulus in the case of m segments

n nm

( = has to be an integer).
m
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Chapter 3
Methods.

Je1l. Preprocessing.

All manipulations with the signals before sampling of the
analogue waveform are categorized as preprocessing.,

First there is the selection of some calls out of a number
of recorded frog vocalizations. The recordings were made by
D. Hermes at the laboratory of Medical Physics and Biophysics
of the University of Nijmegen. He used BK type 4134 microphones
and recorded the signal on audiotape with an Otari MX 5050
taperecorder at a speed of 38 cm/sec.

After the selection has been accomplished the signal was
lowpass filtered with a Krohn-~hite 3343 filter, (-3dB point at
5000 Hz) and copied to an FM-tape by means of an instrumental
recorder of Hewlett- Packard (3968 A, recordingspeed at 15
inch/sec. ).

Now the signal is played back at a speed of 15/16 inch/sec
and sent to the sampling device through the Krohn-hite filter
(now =3dB points for highpass at 2.2 Hz and lowpass 310 Hz).
In this way the bandwidth is reduced by a factor 16
from 5 kHz to 312,5 Hz., At a rate of 1562,5 samples/sec the
signal is sampled by the LPS 11 system of a PDP 11/45 computer
which has a ¥ bit A/D converter, For the original signal this

implies that it is sampled 5 WT (25000 samples/sec).
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Fige 3¢2+1l. Diagram of the developed software.
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3.2+ Software implementation.

The software implementation is explained in the diagram

of fig. 3.2.1l., which contains partly also software of J.
Bruijns, J. Boezeman and N, de Jong. A full descriptioh of the
software is not relevant here, but for those readers, who
want more information, the listings, program descriptions

and tests are available, The programs are written in Fortran
IV plus and used on a PDP-11/45 computer operating under

RSX 11-D.
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Chapter 4

Results.

In this chapter results are presented for the COSTID -
function of some sound signals. The COSTID was calculated for
several computer generated "simple" signals (sines, Gaussian
pulses, etc) for the purpose of software testing, but also to
have some reference for the interpretation of the results for
natural sounds., In the first part the results are presented
for the COSTID of an artificial signal that resembles an
element out of a frog call and in the second part for the
COSTID of an element of a B-call of the Irish frog Rana

Temporaria,

4,1, Artificial Signals.

When looking at the elements in a call of the frog Rana
Temporaria, one gets the impression, that they are simple
amplitude "modulated" signals (fig. 4.1l.). Now for an element

out of a call a simple approximation was chosenE:i]
Sh(t) = An(t) cos (Lunt +«pn), for the n-th element,

Considering this waveform for only one element we will drop the

index n and define the parameters :
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4 1
the envelope : A(t) = A {Y 1 e B , called a gamma-envelope

(Y - envelope)

the carrier-frequency ﬂc =.£2_
2TC

and the phase-term P

This signal will be referred to as a gamma-tone and we

generated a signal waveform with the parameters :

A=l, Y =3, 0 =0.0025, 0= 2TC 4882.8125
and (P X 0.85#TC .

The carrier-frequency is not of the same order as that of the
approximated "frequency" in the natural frog-call-element

( %~ 600 Hz), because we wanted the results for a gamma-tone,
that was approximately in the "middle" of the time-frequency
plane under consideration (t 3 0 - 5,12 msec ; £ : 0 - 12,5
kHz)., The signal is constructed by multiplying a cosine-

waveform with a gamma-envelope (fig. 4.2.).

On the following pages we will now give for this signal :
1) the temporal and spectral representation of its analytic
signal

2) the COSTID - function in a three~dimensional display, a
vector-display and a representation with xy- and n;} colour

coding,
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Fig. 4.7. The COSTID-function of a single gamma-tone.
time; from 0. to 5,12 msec; frequency: from 0. to 12500 Hz.,

-— FREGUENCY -->

Fige 4.7.2. The real part.
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Fig. 4.7.b. The imaginary part.
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Fige 4.7.4,
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Fig. 4.8. The COSTID-function of a gamma-tone,




CED-FUNCTION OF TEST SIGNAL
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Fig. 4.9.a. The COSTID-function of
a single gamma-tone with rectangular coding.

Fige 4.9.b. The COSTID-function of
a single gamma-tone with polar coding.
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As seen from property e) of the COSTID - function this
function is non linear. To investigate the effects that result
from this property when the COSTID - function is calculated
for the sum of two gamma tones we will shift the gamma tone,
discussed before, in the time-frequency plane, We will consider
three cases :

1) the sum of two time shifted gamma-tones

2) the sum of two frequency shifted gamma-tones

3) the sum of two time and frequency shifted gamma-tones,
With respect to a hardware spectral-analyzer or calculation of
short-time spectrum the COSTID - function has a number of
advantages. For the purpose of comparing the COSTID with these
other methods we will give also the results of these methods
for the next three examples.,

For the spectral analyzer we converted the computer
generated signals digital to analogue and analyzed the signals
with the hardware real-time spectral-analyzer. (Conditions :
sampling time 0,12 msec and averaging over 64 repetitions of
the signal).

In the calculation of the short-time power spectrum we used
a time window of duration 5.12 msec to get the same frequency
resolution as we had for these signals in the COSTID- funection,
this implies however that the window is not optimum for the
gamma~tones of the next examples. One can even say that it is
very bad to take this window duration, because we can have two
tones within the same window and so in the spectral representa-

tion it is not possible to distinguish between the two tones,
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Time domain

@ .9895

SUM@D8 - ANA
0.000 ﬂvp mvnvl\\l/\"h"‘ AUA JAUAUAV[‘V“V-. | :j;;:_ﬂ: LIN
-0.9895
.9596
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o | Ml sl
Il

-8.9596

1.003
SUMDDS . ANA
MODULUS
Xt LIN Y: LIN
oo ' | @.512E-02

S T T e
o

x(t)

x(t)

A(t)

b(t)

Fig, 4.10, The analytic signal of two time shifted gamma-tones.

@ .8009E+0S SUM@08 .F IN
IMAGIN
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0.008 VJ\_ ~ 0.512E-02
-0.8809E+03
ceen. A

SUM@R8 .FIN
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0-000 0.512e-02

AAML X: LIN Y: LIN
9 .0000

Fig. 4.11. The relative temporal amplitude change and
instantaneous frequency of two time shifted gamma-tones.
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Frequency domain _

0.2884

SUMB@8 .HSP
REAL
X: LIN Y: LIN
2.000 /\.\/ Vv/\ - . B.125E+05
L]
-0.2884
S
0-1251 SUMBB8 .HSP
IMAGIN
ﬁ Xt LIN Y: qIN
: A
P.000 o Saamane -~ @B.125E+05
i T
-0.1251 '
©.2884 SUM@BBS8 . HSP ;
; MODULUS H
' X: LIN Ys: LIN
0.000 . DVNARE S ’ ; : ' ——— B.125E+05
S(W)
-0.2884
3. 2
14 SUMBBS . HSP
PHASE
X2 LIN Y: LIN
0 -P00 1 B.125E+BS
Blw)
~-3.142
Fig. 4.12. The Fourier transform of the analytic signal
of two time shifted gamma-tones.
0.-4938E-D1
SUMB@S . INT
IMAGIN
y X: LIN Y: RIN
0_&0 FPOVVN - ooy B .125E4+D5
[}
X (W)
-B.4938E-ﬂlj
0.9163E-082
SUMPB8 . INT
REAL
Xt LIN Y: LIN
?.000 AANCYT —— 4 B.125E+85
]
-0.39163E-D02 ﬁ

Fig. 4.13., The relative spectral amplitude change and spectral
phase change of two time shifted gamma-tones.
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* Spectral intensity

|

L

frequency (kHz) +

Fig. 4.14.a., Output of spectral analyzer: Static
display of two gamma-tones shifted in time

T Temporal intensity in passband selected

' 6.3 kHz

g M 5.0 kHz

’ o~ o~ . 4.0KkHz

’ 341 kiHz
0 time (msec) > 9

Fige 4.14.b. Output of spectral analyzer: Dynamic
display of two gamma-tones shifted in time,
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frequency (Hz) = 12500

Fig. 4.15.a. The short-time power spectrum of two gamma-tones
shifted in time; windowlength: 5.12 msec, windowshift: 40 LLseo.
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Fig. 4.,15.b., Part of the Fig. 4.15.c. Part of the

corresponding " sonogram ", corresponding level-display.
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time:

Fig. 4.16., The COSTID-function of
two gamma-tones shifted in time.

from O, to 5.12 msec; frequency: from 0. to 12500
¢

-— FREGUENCY -->

Fig. 4.16,a. The real part.

-- FREQUENCY -->

Fig. 4.16.b. The imaginary part.

Hz.



Fig. 4.16.c., The modulus.
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Fig., 4.16.d, The argument.
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function of

The COSTID-
two time shifted gamma-tones.

Fig. 4.17.
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GAMMA-TONES F=4882 HERZ
12500.0

0.0000 TIMECMS) => S.120
CED-FILE: sumMees.CED

TIME RESOLUTION (MS): ©.0400
FREQ.RESOLUTION C(H2)>: 195.313

Figs 4.18.,as The COSTID-function of two
time shifted gamma-tones with rectangular coding.

Fig. 4.18,b, The COSTID-function of two
time shifted gamma-tones with polar coding.
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Fig. 4.19., The construction of two gamma-iones
shifted in time by addition of two single gamma-tones.
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Given x1(t) = A(t) cosW), t
%Z(t) =A(t -T ) cos (W, t

and the bandwidth of A(t) less than and below th§t of cosW),t

we can write

A(t) cos W,t — gl(t) T A(Y) elw"t

&
—~
+
~

1]

A(t -T ) cos W,t — gz(t) At —"E) el(}')’t

kel
—
+
p g
1}

The sum signal

signal g3(t)

x3(t) = x1(t) + xz(t) leads to an analytic

|, t
§3<t> = %A(t) LA =T § S

with spectrum 53((1)) = El + e-it(w—w)} é( w)

The COSTID - function of this sum-signal is

N {1 R e-n:(w-ug)j = (Wt -T)
where =, (W,t) is the COSTID- function of & (t). Note that
1 T(W- 1
iT( W-W)
the complex factor %1 + e j depends on the

time-shift,
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Time domain
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Fig. 4,20.

P.1217E+06
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The analytic signal of two
frequency shifted gamma-tones,
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Fig. 4.21,

instantaneous frequency o
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SUMBBS .FIN
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@A.S12F-RA2

The relative temporal amplitude change and
f two frequency shifted gamma-tones.
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Frequency domain
B-1486 SUMPBS .HSP
REAL
Xi LIN Y: LIN
A A A A A,
?.000 VVQ\IVWV\]VV @.125€+05
-0.1486
8-1303 SUMDDS . HSP
IMAGIN
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-0.148%
3-142 SUMBOS -HSP
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Fig. 4.22. The Fourier transform of the analytic
signal of two frequency shifted gamma-tones,
@.1281E-D2
SUM@@S . INT
IMAGIN
\j\r_,i:>k Xt LIN Y: {IN
?.000 BN " A RVAA Al B.125E+05 '
NS SNeee—eVVVY VVV o (W)
-0.1201E-82
@-33838-02 /\""-/—\/—\"WW’\/\/\/\/\/\/\/ SUMODS5 . INT
REAL
X: LIN Y! LIN
0.000 B.125E+05
1
(W)
-9.3583E-82
Fig. 4.23, The relative spectral amplitude change and

spectral phase change of two frequency shifted gamma-tones.
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? Spectral intensity

L

0.8 10
frequency (kHz) »

Fige 4.24.,a., Output of spectral analyzer: Static
display of two gamma-tones shifted in frequency.

t Temporal intensity in passband selected

6.3 kHz

’ ‘/\ 5 ] 0 kHZ
/ 4 [ O kHZ
e e e meee o o e e e s e e

, //'\\"\“‘ 3 ol EZ
, J /\ 2.5 kHz
, o 2.0 kHz

0 time (msec) = 9

Fig. 4.,24.,b, Output of spectral analyzer: Dynamic
display of two gamma-tones shifted in frequency.
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Fig, 4.25.a. The short-time power spectrum of two gamma-tones
shifted in frequency; windowlength: 5.12 msec, windowshift: 40 p,sec.
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Fig. 4.25.b. Part of the Fig. 4.25.c, Part of the

corresponding " sonogram " . corresponding level-display.
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Fige 4.26. The COSTID-function of
two gamma-tones shifted in frequency.

time: from O, to 5.12 msec; frequency: from O, to 12500 Hz.

-— FREQUENCY -->

Fig. 4.26.a. The real part.

&
N
R
-—- FREQUENCY --> p

/

Fig. 4.26.b. The imaginary part.
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Fige 4.26.c. The modulus.
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Fige 4.26.d. The argument.
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12500

frequency (Hz) >

27. The COSTID-function of
two frequency shifted gamma-tones,

4

Fig.



GAMMA-TONES F=2500 AND 4882 HE
12500.0

0.0000 TIME(MS)> => S.120

CED-FILE: SUM@OS.CED
TIME RESOLUTION (MS): ©.0400
FREQ.RESOLUTION (H2)>: 195.313

Fig. 4.28.,a., The COSTID-function of two frequency
shifted gamma-tones with rectangular coding.

IMAAR-TONES F=2560 AND 4882 HE

| 0.6900 _ TIMECHS) -
D CED-FILE: suMees,cED

Fig. 4.28,b. The COSTID-function of two
frequency shifted gamma-tones with polar coding.,
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Fig. 4.29. The construction of two gamma-tones
shifted in frequency by addition of two single gamma-tones.
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The COSTID - function for two frequency-shifted gamma-tones.

Given x1(t) A(t) sin(),t
xz(t) =A(t) cosWt ; w,> W,

and the bandwidth of A(t) less and below that of; sin()t

or cos(t (fig.4.30), we can write

T
2

x (1) — E (1) & a(t) & W
1 1
It

X, (4) —— gzm ¥ A(t) e

R

The sum signal x3(t) = X (t) + xz(t) leads to an analytic

signal §3(t)

T At
£ 4t) = At) J Wit {e'z ot AW +1§;Aw=w1—w°

with spectrum
v v i T
E4w) =E W) +e2 Ew-aw

The COSTID- function of this sum signal

. , . TT _
E(w:t)=§'l+e|(Awt 2 )} - 1(.0,t)

+ €1+e A(L)t+

)f = WA
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Time domain
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Fige 4.30. The analytic signal of two
time and frequency shifted gamma-tones,
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X N | =< .
N a(t)
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EAL
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0.0000 — +
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Fig. 4.31. The relative temporal amplitude change and instantaneous
frequency of two time and frequency shifted gamma-tones,
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Frequency domain

:Fi%gC '40:320

- 52 -

SUMD12 .HSP
REAL
X: LIN Y:! LIN

B.125E+05

SUMB 12 .HSP
IMAGIN
X: LIN Y tIN

0.125€E+85

SUMB12 .HSP
MODULUS
X3 LIN Y: LIN

@.125€+05 S(W)

SUMP12 .HSP
PHASE
X: LIN Y:! LIN

0.125€+0S g(w)

The Fourier transform of the analytic
signal of two time and frequency shifted gamma-tones.
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The relative spectral amplitude change and spectral

phase change of two time and frequency shifted gamma-tones,
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T Spectral intensity

i | -

0.8 frequency (kHz) = 10

Fige 4+.3%4.a., Output of spectral analyzer: Static
display of two gamma-tones shifted in time and frequency.

T Temporal intensity in passband selected

6.3 kHz

///\\\ 5.0 kHz

4,0 ktz

‘ —— 3.1 kHz

' //\ 2.5 kHz

r o 2.0 kHz
0 time (msec) =+ 9

Fig. 4.34.b, Output of spectral analyzer: Dynamic
display of two gamma-tones shifted in time and frequency.
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frequency (Hz) -~ 12500

Fig. 4+35.a. The short-time power spectrum of
two gamma-tones shifted in time and frequency.
windowlength: 5,12 msec, windowshift:; 40 sec,
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Fig. 4.35.b., Part of the Fig. 4.35.c. Part of the

corresponding " sonogram " , corresponding level-display.
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Fig. 4.36. The COSTID-function
of two gamma-tones shifted in time and frequency.

time; from O, to 5.12 msec; frequency: from 0. to 12500 Hz.
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Fig. 4.36.a., The real part.

-~ FREQUENCY --> )

fig. 4.36,b. The imaginary part.
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Fig. 4.36,c., The modulus.
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CED-FUNCTION OF TEST SIGNAL

AMMA-TONES F=2500 AND 4882 HE
123500.0

0.0000 TIMECMS) =

CED-FILE: sumMei12.CED

COMPLEX

-TIME RESOLUTION (MS): 0.042?3

Fig. 4.38.,a, The COSTID-function of two time and
frequency shifted gamma-tones with rectangular coding.

 CED-FUNCTION OF TEST SIGNAL
AMMA~-TONES F=2%00 AND 4832 HE
eS80 8

o soec TIMECMS )

CED-FILE: SuUM@12.CED
COMPLEX .
TIME RESOLUTION ¢MS 3
FREG. RESOLUTION (HZ):

Fig. 4.38.b, The COSTID-function of two time and
frequency shifted gamma-tones with polar coding.
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Fige 4.39. The construction uof two gamma-tones
shifted in time and frequency by addition of two
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The COSTID - functiomn for two gamma-tones shifted in time

and frequency

Given x1(t) = A(t) sin (W, t
X9 (t) = A(t-T) cosW, t s W2 W,

and the bandwidth of A(t) less and below that of sin(1),t and

cos Wt (fig.4.41), we can write

”’

A(t) e

: . TC
X (1) — E(t) Wt i
t

12

x) () — £ () T A -T) e 10y

The sum signal x:a(t) = x1(t) + xz(t) leads to an analytic
signal

. T . TC
iawt e—|7—§ e!wet J

53(t) = §A(t) + A(t-T ) e

14

where A () V), -Wo + The spectrum of this analytic signal is

é:B(U)) g (W) + eZZ g W -AW) e -i(W-W)v

So the COSTID - function of this sum-signal results in

:3(w,t) = 51((1.) »t) I(Au)t (u‘t*(x)'t* )
+ = 1(w st -T) e 7_
+ = 1(w -AW,t-T)

Again we find a complex factor that changes the original
COSTID - function, but this time there appear also two cross-
terms. Note that the two COSTID - functions that we find for

the gamma-tones apart can be recovered unaffected from the

\
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COSTID-function of the summation of these tones shifted in time
and frequency.

To conclude this part some additional remarks on the displays
of the calculated functions of the combinations of two time andy
or frequency shifted gamma-tones. From the output of the spec-
tral analyzer it can be seen that the gamma-tone with carrier-
frequency closest to the central-frequency of a passband selected
is favoured with respect to the other (fig. 4.24 and 4.34). In
the displays of the short-time power spectrum it can be seen
that there cannot be distinguished between them if they are
within the time-window at the same time, Besides that, we see
how signal values, which are unequal zero at the edges of the
time-window, introduce higher frequency components. Finally we
see from the displays of the COSTID-function, that the real -,
imaginary part and modulus can lead to misinterpretations if they

are cosidered separately (fig. 4,.,36; there are only two tones !)

4,2, Natural Signals.

To conclude this report the COSTID-function was calculated for
the fourth element of the B-call of the Rana temporaria (fig. 4.1).
In this case we calculated the COSTID-function for a time-signal
four times as long as the preceeding signals, because of the
duration of this element. This is also the largest sequence we
can handle at this moment (512 points or samples). As we will see
in the displays it is not necessary for these elements to consider
frequencies over 3000 Hz. So the sample frequeney can be reduced
(skipping of time samples) without aliasing effects. Doing so it
will be possible to calculate the COSTID over longer time.
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Time domain

514.0

BROEP4 . ANA
REAL
X: LIN Y: LIN
2.000 | ©.2056-01 x(t)
-514.0
78.9
578 BROEP4 . ANA
IMAGIN
X: LIN Y: LIN
~N
2.800 ] ®.205E-01 X(t)
-578.9
4.2
59 BROEP4 .ANA
MODULUS
X: LIN Y: LIN
P.000 : — ' ' - 7 v @.205E-01 A(t)
-594.2
3.123
BROEP4 .ANA
PHASE
Xt LIN Y: LIN
/ b(t)
9.000 W V / \/V \/JW @.205E-01
-3.123 L

Fig. 4.40, The analytic signal of an element
from a B-call of the Irish frog Rana temporaria.
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Fig. 4.41., The relative temporal amplitude change and instantaneous
frequency of an element from the B-call of the Rana temporaria.
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Frequency domain
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Fig. 4.42. The Fourier transform of the analytic signal
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phase change of an element from a B-call of the Rana temporaria,
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Fig. 4.47. The argument of the COSTID-function of
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Fig. 4.49.a, The CoSTID-function of an element
from a B-call of the frog Rana temporaria with
rectangular coding.
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Discussion.

In this report we have described a new method to
represent signals in time and frequency. The COSTID -
function preserves the phase relations that exist between the
spectral components. From the theory we have seen that the
COSTID - function, although it has rather elegant properties
is nonlinear ., In the displays of the COSTID - function of
two time and/or fregquency shifted gamma-tones we saw that the
COSTID - functions of the separate tones were multiplied by
a complex factor., It should be noted, that the COSTID =
function itself has no physical meaning, but that a number of
functionals on it do have,

The relations between the COSTID - function and other
second-order signal representations, as well as the properties
of the COSTID - functions averaged over a stochastic ensemble
of signals will be further evaluated by L. Cranen[:2l:].
While applications of the averaging of COSTID - functions of
pre-neural-event stimuli for cat and frog are done by
A. Aertsen,

From the results for the summation signals of gamma-tones,
of spectral analyzer, short-time spectrum and COSTID - function
method one can see, that with the COSTID - function, there
is no need for window=selection matched to the signal
phenomenon under investigation.

A remarkable difference between the xy- and rq} colour-



- 63 -

coding is found because of the implicit threshold of the xy-
coding. All points within the square around the origin of

the complex plane get the same colour. This in contrast to the
rgp-coding, where all points with modulus unequal to zero, get
different colours depending on their argument and modulus size,
The question arises in howfar the data in the region of very
small modulus is relevant. So an analysis of the accuracy
limits has to be done and this will lead to further improve-
ment of the colour~coding.

As for the choice of the colours we can say that by
changing the colour configuration certain signal features may
be enhanced, but are difficult to interpret. An optimal
selection cannot be given here. With respect to the perceptive
effects of the colour-display we can say that we have the
impression that one can learn to examine the colour displays.

Concluding we can say that it is expected that the COSTID-
function method will contribute to better insight in the
signal properties in cases where the phase relation between

the frequency components may be of interest.
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