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RIO Robust Control Design
for an Electromechanical

Servo System

Heinz M. Falkus

Summary

In this report, the application of~ control to an electromechanical servo system is
discussed. One of the reasons of introducing the H.. theory is that according to literature
the obtained controllers are expected to be robust. A system is called robust if it
maintains certain properties, like stability and performance of the closed-loop system, in
spite of plant perturbations or external disturbances. A servo mechanism for lfigh
performance applications with one dominant mechanical resonance frequency has to be
controlled. This resonance frequency can change due to tolerances in the mechanics of
the servo system illustrating the problem of robustness.

~

To solve the II. optimization problem, two different techniques can be used. The
state-space approach is recommended above the polynomial approach because of the
explicitness of the formulas involving only the solution to two algebraic Riccati equations
together with a substantial reduction in computation. For the calculation of the ..
controllers with the II. theory, a software program which is described in a separate
manual has been developed. This program is based on the formulas derived by K Glover
and J.C. Doyle [12] and has been implemented in PC-Matlab (Robust Control
Toolbox). A Two-Degree-of-Freedom configuration is introduced to optimize the trade
off between robustness and performance. To design a controller which is robust with
respect to stability as well as performance, stable factor perturbations are used for the
uncertainty modelling. Practical design specifications are translated into weighting
functions in the frequency domain and simulations are carried out with the controllers
obtained with the II. theory. Important criteria, like Model Robustness, Disturbance
Reduction, Input Saturation and Signal Tracking are examined.

To obtain an optimal performance and to satisfy the robustness constraints, high order
weighting functions are necessary, which implies also high order controllers. Uncertainty
modelling using stable factor perturbations lead only to sufficient and not necessary
conditions. Therefore an alternative design is presented as well. In this design all the
effort is put in performance optimization and no robustness information at all. is
included. Finally recommendations are made for further investigations to optimize the
results.

M. Sc. Thesis, Measurement and Control Section ER, Electrical Engineering, Eindhoven University of
Technology, The Netherlands, June 1990.
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1 Introduction

A number of methods exist in control theory to design and analyze controllers for a
given system. During the 1940s and 1950s the frequency domain approaches have been
developed to control a system, often referred to as the 'classical' methods. The more
'modern' state-space approach of control theory, has been developed during the late
1950s and 1960s. Although the state-space approach appeared to have a lot of
advantages, it is difficult to include uncertainties in the process dynamics into the state­
space design and system properties such as bandwidth, stability margin etc. are difficult
to study by state-space methods. These are the reaso~ for a new interest in the
frequency domain approach. In H.. optimal control a symbiosis of 'classical' and 'modem'
control theory seems to be achieved : 'classical' control system design objectives such as
robustness, are defined in terms of an H. optimization problem and a solution is
obtained via fairly standard modem linear multivariable control techniques. The H..
theory applied in this report uses the state-space approach advocated by J.C. Doyle and
K Glover. This approach is entirely based on standard state-space techniques.

Up to the present more attention has been payed to the development of the HID theory
in contradistinction to the practical applications of this theory. An explanation for this
is probably the strong mathematical character of the H. theory. It is not the case in our
opinion that the H. control problems are unpractical formulated control problems.
Earlier the opposite is true. It seems inevitable to design the more complicated control
strategies on the basis of the robustness demands with respect to stability and
performance.

In the Machine and Process Control ( MPC ) group of the CFf the attention is
focused on the control of electromechanical servo systems with one dominant mechanical
resonance frequency. It is expected that the control of these kind of systems can be
improved significantly by the practical application of the II. theory. The application is
focused on the more complicated servo problems, e.g. problems which demand high
bandwidth and high performance for the controlled system. The dynamical behaviour can
be modelled as a Single-Input Single-Output system.

It is the goal of this master thesis to show how an advanced control theory such as the
II. theory can be applied to practical control problems, in our case an electromechanical
servo system with one dominant mechanical resonance frequency. The main problem is
to translate design specifications such as desired behaviour, robustness, performance etc.
into weighting functions in the frequency domain in order to obtain proper closed-loop
behaviour. The choices of the weighting functions and the analysis of the obtained results
at simulation level will be the most important subjects.
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The practical control problem in our case is an electromechanical servo system. The
modelling of this electromechanical servo system is described in Chapter 2. In
Chapter 3 the solution method of the II. optimization problem is emphasized including
a short historical description on the II. theory. Before using the II. theory, the most
important properties of the II. theory together with the basic design considerations such
as robustness, process uncertainties etc. , are described in Chapter 4. To describe the
process uncertainties we use stable factor perturbations. In the Chapters 5 and 6
controllers are designed from different points of view. In Chapter 5 the robustness
approach is emphasized to design a controller which is robust with respect to stability as
well as performance. An alternative design method using the performance approach to
derive an optimal performance is emphasized in Chapter 6. Time response analysis and
robustness behaviour with respect to stability as well as performance of the control
system are simulated. Conclusions and recommendations for further examinations are
pointed out in Chapter 7.

5
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2 Description of the Servo System

2.1 Introduction

This chapter describes an electromechanical servo system. Before we can design
controllers for position servos, a model of the servo mechanism is needed. If we assume
that the mechanical part of the system is infinitely stiff, a simple second order model is
sufficient. In reality, however, the stiffness of the mechanics of a servo system is finite.
Therefore a fourth order model will be used. It enables us to improve the design which
results in more accurate control systems.

2.2 Modelling of the Servo System

In this section a model of an electromechanical servo system is derived. Fig. 2.1 depicts
a block diagram of a position servo system. The mechanics, position sensor, motor, servo­
amplifier, in combination with the motion controller determine the overall system
behaviour [14].

.. Motion Up Servo I Tm X p
DC Motor Mechanics

"" Controller Amplifier

X enc
Position
Sensor

Commands

Fig. 2.1 : An Electromechanical Servo System

The controller receives setpoint commands. These commands contain information
about the desired position as a function of the time. After receiving a command, a
control signal 'up' is send to the amplifier by the controller. The servo amplifier converts
the control voltage into a motor current 'I'. Controlling the current in the motor directly
protects the motor and mechanism from overloading. Due to the fast current loop, the
electrical time constant caused by the armature resistence and selfinductance can be
neglected. The current loop also makes the servo insensitive to variations of the
armature resistence due to temperature changes. The DC motor generates a torque 'Tm'
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that is proportional to the armature current 'I' provided by the amplifier. In the motor
model the motor constant '~' is the proportional gain. The motor and the mechanics are
connected by a fixed transmission ratio 'i'. Due to the torque 'Tm' , generated by the
motor, the mechanics will move the load. A position sensor measures the position of the
load '~'. For the position sensor several devices can be used such as optical incremental
encoders, resolvers and optical sinewave encoders. As the position signal of the sensor
is used for digital signal processing, the output signal 'Xent' is expressed in increments.
The data processing time in the position sensor is neglected. If an encoder is used which
has a considerable processing time in relation to the sample time of the digital controller,
this value can be modelled as an additional calculation delay in the controller. The
position information is fed back to the controller. The controller now compares the
actual position with the desired one and generates the new control signal 'up'.

To design a controller, a model of the motor with mechanics is needed. If we assume
that the motor and the load are infinitely stiff connected, the motor and the load can be
seen as one total mass. The mechanical friction in the bearings has been ignored as well.
The resulting model of the motor with load is shown in Fig. 2.2 .

X px
••

m 1 p 1- -Mt 8 2

T

Fig. 2.2 : Second Order Model of Motor with Load

A differentiar-equation for this simple configuration with only inertia forces is derived
using the law of Newton.

(2.1)

'~' can be considered as a converted inertia. This equation results in the following
transfer function :

oX. 1 KI}
pes) - -L.. - -- - -

T Ms2 S2
• I

with K - ...!.I} M
I

(2.2)
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A better model of the servo system is obtained when the motor and the load are not
considered as one total JDass. Fig. 2.3 depicts how this connection between the motor and
the load can be modelled. The spring represents the mechanical stiffness, 'c', between
the rotor and the load. The damper 'd1' represents the mechanical damping between
rotor and load. Finally, the dampers 'd2' and 'd3' represent the friction in the bearings
between the load respectively the rotor and the stator.

X2 Xl
+-

S -c-
T J m
A ROTOR LOADT
0 - dl --R -

d2

Fig. 2.3 : Model with Friction, Mechanical Damping and Stiffness

The equations of the forces in Fig. 2.3 are given by :

F'Pri"ll - c(i.12 -%1)

F4tsIyIrl - d1(ii"-i1)

F4ts1y1r2 - -~il

F#It11IfpnJ - - d, ii"

(2.3)

In Fig. 2.3 the angle of the rotor is called 'x2'. The position of the mass 'm' is called
'Xl' which is equal to 'Xp' in the second order model. The motor torque 'Tm' is given
by:

(2.4)
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The constant '~' is the motor constant. The control signal 'Up', send by the controller,
is the input signal of the motor. Fig. 2.4 depicts a blockscheme of Fig. 2.3 .

(
~.mper. +

Fig. 2.4 : Blockscheme of Fourth Order Servo Model

For the mechanical model of Fig. 2.3 , two linear differential equations can be derived.
One for the torques which act upon the rotor and one for the forces which act upon the
load. The differential equations are given by :

Force : EF. - mX1

with EF.. - FIprltv + FikDrIpnl + F~2

and

Torque : ET. - J£,.

with ET. - K,u, - iF""",., - iF~l + iF~s

The first differential equation is derived by substitution of 2.3 in 25a :

Substitution of 2.3 in 25b yields the second differential equation :

9
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Using the Laplace transformation, Eq. 2.6 and 2.7 become:

mx1,s2 - c(i.l2 -Xl) +d1s(i.l2 -XJ)-~XlS

J~S1 - K,up-ic(i~-XI)-idls(ix2-%1)-i2d3~S

(2.8)

Elimination of 'x2' results now in the final transfer function from the control signal 'up'
to the position of the load 'xl' :

The derived transfer function contains a large number of parameters and is rather
complex. We can reduce the transfer function P(s) by assuming that the friction in the
bearings between the load respectively the rotor and the stator can be neglected
compared to the mechanical damping between the rotor and the load. This results in the
following transfer function :

(2.10)

We can rewrite the transfer function given by 2.10 in a more compact form by defining
the following variables :

, p _ tJ. ~ J + mi' (2.11)
o 2 Jmc

The constant ' K.' is a gain factor. The parameter ' Co).' is the natural angular frequency
due to the finite stiffness of the mechanics and ' P.' is the servo damping ratio. The
compact transfer function with the variables defined in 2.16 is now given by :
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KG ( 2 Po CI) oS + (a)~ )
Po(S) - ----...;:;--~~----

S2 ( S2 + 2 P0 c.> oS + c.>~ )

(2.12)

To illustrate the form of the transfer function Po(s), Fig. 2.5 depicts the Bode plots of
Po(s) for K. = 1 , (,). = 1 rad/s , and p. = 0.01 . The resonance peak of the servo
system is clearly visible. This peak is characterized by the variables ' Co) .' and 'P.' , which
are highly depending on the mass of the load 'm' and the mechanical stiffness 'c' .

58 r-----.,..----r-...,...---T--,,.-,.--r...,......----........---.--...,...."""'"T-.."""'"T...............

. . . . . .. . .
8 ~ : ; : ~ :.. : .. :.~ : ~ : ~ : .. .; ~.~.

· . . . . . . . . .
: : : : : : . . . :::: : : : ..
: : : : : : : : : : : : : : : :· . . . . . . . . . .· . . . . . . . . . . . . . ..· . . . . . . . . .· . . . . .. . . . .

...............:- i : i :- .. i .. -\ .. i ..:- i· : \· . . .. .
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18J.

. . . ... . . ..
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-158 ..----"T!--.,..--.,.-...,.......,.r--T ..,.-...----........---.--...,...."""'"T!----..~!- .....'.....--.. . .. . .
-288 _ : ~ ; ; ;.. ~ ..0: · ; ~ ~ ~ ; ~ ~ ~.· .. . . . . . . .

l -258 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~... . : " ~ : -: : .. ~ .. :.. . ~ ~ -: ~ ~ .~ ~ ":- .. ':' -: :- . -:.· .. . . . . . . .
I) :: : : : : : ::: : : : : :

!! -388 ; :; : : : : :;: . : : : ;
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Clo. :: : : : : : • :::. : : :
-358 ~ .;"" ,,: : ~ :.. :. ':'';' : ~ : ,,~ .. -:
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Fig. 25 : Bode Plots of Po(s)
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3 The HIO Theory -

3.1 Introduction

With the knowledge of the process described in Chapter 2, we can design a controller.
Our goal is to design a robust controller for an electromechanical servo system with one
dominant mechanical resonance frequency. A system is called robust if it maintains
certain properties in spite of plant perturbations. First of all it is necessary to know which
control system properties need to be maintained in spite of plant changes. The
robustness can be divided into stability robustness and performance robustness. Stability
robustness is a fundamental robustness property. It expresses that the closed-loop system
remains stable in spite of plant changes. Performance robustness ensures that the
response of the closed-loop system to important inputs, in particular command and
disturbance inputs, remains acceptable in spite of plant changes. Secondly, it is necessary
to specify against what range of plant variations the control system is required to be
robust. For this purpose the II. theory is selected, because it is possible to specify
robustness criteria as well as performance criteria. In H.. optimal control a symbiosis of
'classical' and 'modem' control theory seems to be achieved : 'classical' control system
design objectives such as robustness, are defined in terms of an H. optimization problem
and a solution is obtained via fairly standard modem linear multivariable control
techniques.

This chapter describes now the method for designing robust multivariable feedback
control with II. synthesis. First of all we will give a short historical description on the
the II. control theory. The choice of the solution method will be explained as well. In
Section 3.3 the II. standard problem is introduced because many control problems can
be reduced to a similar problem where the II. criterion will have the same form. Finally
the solution method is described in more details.

3.2 A Short Historical Description on the Il Theory

Frequency domain feedback design goes back to the work of Nyquist in the 19305. His
and Bode's work led to what is nowadays referred to as 'classical' control. In the 19405
Wiener's work was directed towards optimal filtering, where for the first time stochastic
processes and an optimization criterion where used for design purposes. During the 19505
the study of optimization in control theory led in the early 19605 to the work of Kalman:
LQG optimal control and related subjects. The new theory based on time domain models
and tools ( the state-space approach to systems and control ) was paramount in control
theory during the 1960s and 19705. Those who where opposed to LQG optimal control
generalized classical frequency domain techniques to multivariable systems.

At the end of the 19705 it became clear that LQG control cannot cope with model
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uncertainties, so that robustness could not be guaranteed. The white noise assumption
in LQG also was not always the right way to represent disturbances. The study of robust
control problems took control theory in the early 19805 back to the frequency domain.
The work of Zames was the beginning of the II. optimal control era. The mathematical
and practical challenge of II. optimization is generally recognized.

The first contributions to the II. optimal control literature considered sensitivity
minimization problems. In Kwakemaak [17] it was recognized that II. optimal sensitivity
controllers suffer from two important drawbacks. Firstly, the optimal controllers were
generally improper, and therefore needed to be truncated at high frequencies to yield
suboptimal physically realizable proper controllers. Secondly, robustness and other
important control system properties, such as bandwidth and input power constraints, were
not taken into account. Thus a frequency weighted combination of the sensitivity and the
complementary sensitivity ( or the control sensitivity) was considered, for which an II.
optimal solution was derived in terms of solutions to polynomial equations. Doyle
introduced the "standard" HID control design problems. This formulation is adopted in
most publications on II. optimal control. In Francis [9] a factorization approach to the
solution of II. optimal control problems is given. This method, however, suffered from
severe cancellation problems. Kwakemaak solved the "standard" problem polynomially
; this method, however, also introduced spurious factors which cause the same delicate
cancellation problems. In Boekhoudt [2] this cancellation phenomenon is avoided. In
Appendix C the method to solve the "standard" II. optimization problem via a
polynomial approach is discussed shortly.

More recent publications give substantial simplifications and improvements of earlier
methods. The latest solution method of the II. optimization problem using the state­
space approach is described by K. Glover and J.C. Doyle [12]. This characterization
involves only the solution to two algebraic Riccati equations, each with the same order
as the system, and further gives feasible controllers also with this order. The polynomial
approach has no such explicit solution, and involves complicated matrix fraction
conversions to derive a set of polynomial matrix equations. After converting these
equations to alfebraic equations, by equating coefficients of like powers, a solution is
found through Iteration by decreasing 1 ( scaling factor ) gradually starting at ClO. The
optimal solution using the state-space approach can be found through iteration by finding
the minimal y ( scaling factor ) for which a solution exists. Because it is much easier to
implement the state-space approach ( PC-Matlab, Robust Control Toolbox, 'hinfkgjd'
procedure ), together with a substantial reduction in computation and the explicitness of
the formulas of Glover and Doyle, are the main reasons for using these formulas to solve
the II. control problem.

3.3 The II Standard Problem

Many control problems can be reduced to a similar problem, where the II. criterion
will have the same form. Therefore the standard problem is introduced. Suppose we have
a MIMO - System, with transfer matrix G. The input and output signals 'w', 'u', 'z' and
'y' are defined as follows :

13



wet) : exogeneous input
u(t) -: control input
z(t) : output to be controlled
yet) : measured output

wet)

e.g. command, disturbance inputs
e.g. controller output
e.g. error, process input signal
e.g. process output, reference signal

z(t)

I

G

u(t) y(t)

K

Fig. 3.1 : The Standard Problem

G can be partitioned as follows :

so the algebraic equations become :

.t - Guw + Gu "

y - G21 W + G22 "

(3.1)

(3.2)

The partitioning of G corresponds to the partitioning of the inputs and outputs.
The transfer matrix Mk from 'w' to 'z' is now a linear fractional transformation matrix

ofK

14
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Mk is the closed-loop transfer function matrix from the external input 'w' to the
controlled output 'z'. The problem is to minimize the H. - norm of the transfer matrix
Mk over all stabilizing controllers ~t which results in the following criterion:

(3.4)

The H. - norm of Mk is defined as :

(35)

where IMi L- 11_ ( Mi ) denotes the largest singular value of the matrix Mk ( square root
of the largest eigenvalue of Mk·Mk ). _

The standard problem is now defined as follows :

Standard Problem: Find a real rational proper controller K to minimize
the H. - norm of the transfer matrix Mk from 'w' to 'z'
under the constraint that K stabilizes G :

in! I -I La: :- K Gu + Gu K { I - G22, K} G21.,

3.4 A State • Space Approach

In this section we discuss the state-space approach to H. optimization described by
K. Glover and J.e. Doyle [12]. Let a linear system be described by the following state
equation:

i(t) - Ax(t) + B1wet) + B2"(t)

%(t) - C1x(t) + Du wet) + DU"(t)

yet) - C2x(t) + D21 wet) + D22,II(t)

15
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The signals are defined as follows :

wet) E 1.111

"(t) E I.-a

%(t) E Itl
yet) E Jt"2
%(t) E I."

: The exogeneous input vector.

: The control input vector.

: The output control vector.

: The measured output vector.

: The state vector.

Any frequency - dependent weights are included in this model. The transfer function can
be denoted as :

The corresponding Rosenbrock state-space matrix is :

A I B1 B2

-+-­
C1 I Du D12

C2 I D21 DrJ,

-: [~t~]
CID

(3.8)

For a linear controller with transfer function K(s), connected from 'y' to 'u', the closed­
loop transfer function Mk is already described in section 3.3 .

The state-space approach described by K. Glover and J.C. Doyle [12] involves only the
solution to two algebraic Riccati equations, each with the same order as the system, and
further gives feasible controllers also with this order. Given a state-space characterization
of all stabilizing controllers ~(s) such that

(3.9)

where y is the II. - norm of the transfer matrix M(G,~t) and the optimal solution is
defined by CI =min( y ) (Eq. 3.4 ) , the following conditions must be satisfied :

1) (A,B~ is stabilizable and (A,<;) is detectable. This is required
for the existence of a stabilizing~ . If the state matrix A contains
unstable poles, these poles have to be stabilizable and detectable
otherwise no stabilizing solution exists.

16



2) rank(0u) = m2 ' rank(021) = P2 . This is sufficient to ensure that
the controllers are proper. Otherwise the controllers might become
improper which makes truncation at high frequencies necessary to
obtain suboptimal physically realizable proper controllers.

3) A scaling of 'u' and '1, together with a unitary transformation of
'w' and 'z', enables us to assume without loss of generality :

.. ..

This is necessary for the derivation of the formulas.

4) 022 = 0 ( This condition will be removed later ).

The final assumptions ensure that the solution to the corresponding LQG problem is
closed-loop asymptotically stable.

5)
..

.. ..
11 ~

which implies: 1) No zeros on the j«.>-axis.

2) Pl ~ m2 •

6) .. ..
" ml

which implies: 1) No zeros on the J«.>-axis.
2) ml ~ P2.

The solution to the algebraic Riccati equation ( ARE ) :

.A. •X + X.A. - XP X + Q - 0r r

17
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will be denoted via its Hamiltonian matrix, as :

(
A -P 1X _ Ric r

-Qr -A·

where this implies that X = X· and

, Pr - P; , Qr - Q; (3.11)

(-:, ~:: 1(; )- (; )(A-P,X)

Re A,(A-PrX) < 0

Now define

(
y2[ 00]R - D·D _ -I

I. 1. o

where D1. - [ Du D12 ] , and

(
y2[ 00]R - D D· _ '1

.1 .1 0

[
Du ]where D.1 - •
D21

(3.12)

(3.13)

(3.14)

(3.15)

X. and Y. are now defined as solutions to the following algebraic Riccati equations :

18
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Y. . Ric {[ A·. 0 ) _ ( C..) i-I [ D.
I
B; C]}

-B B1 -A -B DI 1 .1

(

Ay -Py )
- Ric • • - Ric (Hr )

-Q -..4 •y. y.

and the 'state feedback" and 'output injection' ( - Kalman gain) matrices as :

Fu J ml - P2

F- FI2 J P2 - _R-1 [ D· C + B· X ]1. I •

Fz J mz

H - [ Hu HI2 Hz ] - - [ D.~ C1 + Y.C· ] i-I.. .. ..
P1 -m2 mz P2

For the system described by 3.6 and satisfying the assumptions 1-6 :

a) There exists an internally stabilizing controller ~l(S) such that
IM(G,X.> L< y if and only if
i) y > IIIIX ( c; [ DII•lI ' DII•u ] , i [ D;I.lI , D;I,21 ]) and
ii) there exists x. ~ 0 and y. ~ 0 satisfying 3.16 and 3.17
::- respectively and such that p(.I.1".) < r

( p (.) denotes the largest eigenvalue)
b) Given that the conditions of part (a) are satisfied then all rational

internally stabilizing controllers satisfying IM(G,X..>L< T are
given by Kill - JI(K•••> for arbitrary. E .8. such that I.L < T .

where

(3.17)

(3.18)

(3.19)

K -"
(3.20)
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" • ( 2 • )-1D U - - DU •21 Dll •11 Y 1 - Du .u DU •ll Dll •12 - Dll•22

". ~ • (2 • )-1D21 U 21 - 1 - D ll •12 y 1 - Du •u Dll •ll DU •12

Further we have

B2 - ( B2 + H12 ) .012

C2 - - .021 ( C2 + F12 ) Z

~1 - F2Z + DuD;11~2

A - A + He + B2V;;C1
where

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

Until now it was assumed that D22 = 0 . Suppose Kg is a stabilizing controller for the
case with D22 is set to zero and satisfying:

(3.26)

Then

(3.27)
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Hence all controllers in this case are given by :

which leads to :

(3.28)

for (f) € RH. , I (f) L < y (3.29)

where assuming that det ( I + 1511 D22 ) ~ 0 and :

K •D
(3.30)

with:

M. - [ 1 + [ ~n : 1Dr
M. - [ 1 + D [ ~n : 1r (3.31)

When D22 .. 0 there is a possibility of the feedback system becoming ill-posed due to
del ( 1 + D22K(-) ) - o. Such possibilities need to be excluded from the above
parametrization.
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-4 Application of HIO .Control.

4.1 Introduction

This chapter describes the basic design considerations together with the control system.
To design a controller with the aid of the II. theory, which is robust with respect to
stability and performance, a computer program has been developed ( implemented in
pc-Matlab using the 'hinfkgjd' procedure in the Robust Control Toolbox as basic ). This
program is menu-structured through which it's easy to enter variables, calculate the
controller and check the results afterwards [8]. Finally the unmodelled dynamics are
specified, including the robustness description and the range of plant variations for which
the control system is required to be robust, together with the design goals.

The design is focused on two different goals. The first goal ( constraint ) is to design
a controller which is robust for a certain range of plant variations. The second
goal ( objective ) is to optimize the signal tracking performance.

4.2 Two-Degree-of-Freedom Problem

To satisfy the goals with respect to robustness and performance in an optimal way, we
have chosen to use a two-degree-of-freedom configuration, with a feed-forward and a
feed-back controller, as depicted in Fig. 4.1 .

t U 1ny

Wu V y

nr Up v~+r +- Vr Cft ,,/ Po
+ X+

C'b
+ -

y

We

Ie

p

Fig. 4.1 : Two-Degree-of-Freedom Configuration
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The robustness and performance optimization are opposite criteria. Using the two­
degree-of-freedom configuration we have an extra degree of freedom in the design
( C ff ' instead of only Cfb ) to optimize the trade off between robustness and
performance. The solid lines are the basic controller system including the
electromechanical process. To be able to apply the II. theory, we added the dashed
lines, consisting of the shaping and weighting filters.

The two-degree-of-freedom problem is a multiple-input multiple-output ( MIMO )
configuration. The filters ( boxes) in Fig. 4.1 , however, are single-input single-output
( SISO ) transfer functions which are defined in more detail in Table 4.1 .

Table 4.1 : Two-Degree-of-Freedom Filters
( All filters are SISO transfer functions. For

the ease of notation the Laplace operator
's' is orriitted. )

Filter Description

Po Nominal process
Vv Shaping model disturbances
Vr Shaping reference signal
We Weighting error signal
Wu Weighting process input signal
Cfb Feed-back controller
Cff Feed-forward controller

..

..

The shaping filters (Vr and Vv) can be used to model the exogeneous inputs
( command input 'ny' and disturbance input 'nv' ). With the weighting filters ( We and
Wu ) we can weigh the controlled outputs ( error signal 'e' and process input '~' ) in the
frequency domain. This is necessary to obtain a predefined behaviour of tlie several
transfer functions which will be explained in more details in the following chapters.

We wish to optimize the closed-loop system response to the reference input 'r' and the
disturbance input 'v ' . The signal tracking error is defined as : e = r - ~ . The output
signal 'Ko' has to follow the reference signal 'r', where 'r' is a unknown fiXed signal, but
is modened as belonging to a class of signals e satisfying :

6 - { T : r - Y,n,. fOT some n, € L" , I n, ~ < 1 }
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· likewise 'r' '. we d~~ne now. t~e disturbance.'vp' :

'Dr' and 'n,/ are the two components of the exogeneous input 'w' and Vr and Vv are the
corresponding shaping filters.

w-(:;)
Furthermore we choose the components of the control output 'z' as :

%: • ( ~ ] _ ( W. ( r - xp
) )

u W. u,

(4.3)

(4.4)

where We and Wu are the frequency dependent weighting filters, '~' is the plant output
and 'up' is the plant input. Thus, 'i' is the weighted signal tracking error and 'ii' the
weighted plant input. From Eq. 4.2 and

it follows from Eq. 4.4 that :

.t _ ( ~ ) _ ( W. ( Y, 11, - Y" 11" - P" u, ) )

u W. up

The components 'r' and 'Xp' of the observed output 'y' are defined as :

y • (X, )_( Y" 11" + P" u, )
, Y,II,

Finally, the control input is of course the plant input '~' .
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Fig. 4.2 : Two-Degree-of-Freedom Configuration in "Standard" Form

Fig. 4.2 depicts the two-degree-of-freedom configuration in "standard" form ( Section
3.3 ). It follows, after combining the various relations, that in terms of the "standard" H..o
optimization problem we have :

~

i - W. Y" W.Y, -W.po nl'

(~ )-
ii 0 0 W. n,

%p Y" 0 Po
r 0 Y, 0

up

(4.8)

°11 Gu (:)-0(:)
°:11 °22
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(4.9)

Table 4.2 : State-space Representation Filters
( Observer Canonical Form )

Filter State-space Representation

Po' Vv
XP• - A,xp• + B,u, + Byny

x, - C,xP• + D,u, + D"n"

Vr
xy - A,%y + B,n,, ,
T - C,Xy + Drn,,

We
Xw - A.xw + B.e

• •
I - C Xw + De., e

Wu
Xw - AII%w + B.",• •
ii - CIIXW• + D.u,

In this state-space realization it is assumed that the process Po and the model
disturbance filter Vv have the same poles. Using an observer canonical form as state­
space representation implies that the states of two transfer functions with the same poles
will be the same. In our situation this makes a reduction of the number of states of the
augmented plant G possible because of Ay =~ and c;. = Cp • The purpose of this
assumption will be explained in Section 4.4 .

Combining the state-space representations of the filters in Table 4.2 in terms of the
II. standard problem with the state, input and output vectors defined as :

%p
n"

i
•

,mpm:(:)- .~:(;)-
iixY. n,

states :
,

Xw x,•
Xw ", r•

(4.10)

26



results in the following state-space representation of the augmented plant :

G(.) _ [ DlI D12
] [C]D22, + C: (sl - A r1

[ B1 B2 ]D21

A B1 B1
(4.11)

s
Ct Du Du
C1 D21 D22,

Ap 0 0 0 By 0 I- Bp

0 Ar 0 0 0 Br
1

0
-BeCp BeCr Ae 0 -BeDy BeD,

1
-B.Dp

0 0 0 All 0
.

0 I BII
1

-D.Cp D.Cr C. 0 -D.Dy D.Dr 1 -D.Dp

0 0 0 CII 0 ... 0 1 D•

Cp 0 0 0 Dy 0 I Dp

0 Cr 0 0 0 Dr 1 0

where 's' denotes the Laplace operator.

A last remark about the design of the shaping and weighting filters affecting the state­
space realization in Eq. 4.11. In Section 3.4 we mentioned a few conditions which must
be satisfied to ensure that a solution exists. We will first derive now the design
specifications to satisfy these conditions.

1) The requirement that (A,B:z) is stabilizable and (A,~ is detectable
is obvious. The augmented plant is stabilizable and detectable if every
eigenvalue greater than or equal to zero is controllable respectively
observable. Assuming that the shaping and weighting filters are stable
( eigenvalues less than zero ), the only unstable eigenvalues are the
two poles of the process in the origin. Both poles are controllable and
observable in our system satisfying condition 1.

2) The rank conditions on the matrices D12 and D21 can be satisfied by
designing the filters Vv ' Vr and Wu biproper. Because our process is
proper ( Dp = 0 ) it is necessary that the process input weighting filter
Wu is biproper, otherwise matrix D 12 has less than full rank. The same
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is true for D21 • In this situation the D matrices of the filters exist
and the condition of full rank is satisfied.

3) The scaling of 'u' and 'y' and the unitary transformation of 'w' and 'z'
can be carried out without loss of generality. The scaling of 'u' and 'y'
only implies that the inputs and outputs of the controllers have different
units and the input output behaviour of the controller remains the same
under these scalings and so does the transfer from 'w' to 'z' . The unitary
scaling of 'w' and 'z' may be carried out without loss of generality since
the ClO - norm is invariant under unitary transformations. The scaling and
unitary transformation is directly implemented in the existing Matlab
procedure.

4) The assumption that D22 = 0 can be removed without loss of generality
(Only some possibilities need to be exclude~).However, because we are
dealing with a proper process, this condition is automatically satisfied.

5,6) The final two conditions can be satisfied if there are no zeros on the
jc.>-axis, PI ~ ~ ( condition 5 ) and "'1 ~ P" (condition 6 ). Designing
the shaping and weighting filters well, we can avoid zeros on the jc.>-axis.

The other conditions are automatically satisfied because of the chosen
augmented plant.

4.3 The Formulation of the Optimization Problem

The optimization problem is formulated in the II. standard problem of Section
3.2 . Substitution of the transfer function matrix ( Eq. 4.8 ) in the optimization problem,
defined by:

(4.12)

results in :

(4.13)

_1-Woll-poc!'r:;_ !Y.ll-ll-p.C!'l::P.C,]V, 1
WIIC~(I-P4IC~) Y" WII{I-PoC/b) CIY' •
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The four sub-criteria are named in Table 4.3 .

Table 4.3 : H.t Optimization Criteria in a Two-Degree-of-Freedom Configuration

Weighting Transfer
Criterion Description Function Function

( scaled)

i 1
Mil -- l)~rbance ~dUcnon - w. v" - ( 1 - p.c" rl

".. y

i 1M12 -- Signal Tracking - w. V, 1 - ( 1 - p.c" r1 p.c,
II, y

.
II 1 ...

M -- Modll Robustness - w. v" C/O ( 1 - p.c" r1
:u II.. Y

II 1M22 -- Input Saturation - w. v, ( 1 - p.c" r1
C,

II, Y ~

In Eq. 3.9 y has been defined as the upper bound of the GO - norm. H we scale the
00 - norm to 1, y becomes a scaling factor in the weighting functions ( Table 4.3 ). It will ..
be our goal to find a solution with y ~ 1 , because in this situation the final transfer
function of a criterion will be bounded by the inverse weighting function.

Without the scaling factor y we might not find a solution for a certain choice of
weighting functions. In this situation we don't know which criterion is the limiting
function and also the frequency range where the limitation occurs is unknown. To avoid
the problem of not knowing which filter has to be redesigned, y is used as a scaling
factor. By adjusting y a solution is found for almost every choice of weighting functions.
The Hm optimization problem can be reformulated as follows :

I~ M(G,K.) I< 1 (4.14)

where every sub-criterion of M(G,~t) consists of a scaled weighting function and a
transfer function ( Table 4.3 ). The weighting function can be designed as the inverse of
the desired transfer function if a solution is found with y ~ 1 •
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4.4 Uncertainty Modelling
Stable Factor-Perturbation

Designing a robust controller for a certain range of parameter variations implies the
derivation of an uncertainty model. For this purpose we will consider stable factor
perturbations [4,18,23]. In robust stability analysis, factor perturbation uncertainty allows
a very general class of errors to be considered; more general than the corresponding
classes allowed by additive or multiplicative models. Additive and multiplicative
uncertainties are in fact a sub-set of stable factor perturbations. An immediate benefit
of the factor perturbation uncertainty approach is that the uncertainty class is not
restricted to perturbations which preserve the number of RHP poles of the plant This
enables a much greater confidence in the robust stability conditions obtained, as a wider
class of perturbations is being considered [18].

Let Po be the nominal model where we factorize

(4.15)

with Pi unstable ( Pi-
1 is stable) and Ps stable.

I::i. s I::i. j

+ -
Ps

"\
Pi

+ +

Fig. 4.2 : Factor Perturbation

We introduce now A. to be the model error on the stable part P" defined as :

(4.16)

and A, to be the model error on the inverse of the unstable part Pi ' defined as :

- -1
P, - P, + 4,
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We can write the perturbed plant combining 4.16 and 4.17 as :

p - ( p,-I + 11, rl
( p. + 11. ) (4.18)

and we get a configu~ation as depicted in Fig. 4.2 . This factorization can be formulated
in a more formal way· as a left coprime factorization and we can give a robustness
constraint by consid~ring the ~-bounds of the perturbations on the coprime factors.

Considering the pertl!Tbed .plant in Eq. 4.18 we have A, and A. as stable unknown
functions ( model uncertainties } with :

11 Rei l <.~ e,• s W uri -I
• ' "'s , W, ,Wi € RH. (4.19)

( Ws and Wi are known weighting functions) while ~t stabilizes the nominal plant
Po' The controller ~t will stabilize all perturbed plants P if and only if [23] :

(4.20)

So the optimization of the plant robustness with respect to stable factor perturbations
is equal to :

min
K.

(4.21)

Comparing tb~entionedrequirements with the optimization criteria formulated as a
standard problem in Table 4.3 , it is easy to see that if we choose Vv = Pi ' Wu = Ws
and We =Wi ' then the optimization of the plant robustness with respect to stable factor
perturbations is equal to the Disturbance Reduction and Model Robustness criterion
formulated in Section 43 . Of course we lose some degrees of freedom by this choice of
Wu and We ' but solving the problem will become much easier.

We can rewrite the nominal and perturbed plant as follows by polynomials :

(4.22)
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(4.23)

where

1 ( di ) € C·

1 ( diS ) € c­

l(dJ }€C-

We find now:

-
-
- dJ : Stabk polynomial of 2U order

(4.24)

(4.25)

The derived descriptions of the uncertainties ~. and A, can be used in the design of the
weighting filter Wu respectively We' It follows from Eq. 4.19 :

(4.26)

if Vv = Pi . The uncertainties are the lower bound descriptions of the corresponding
weighting filters. ~. and ~, are known functions now and depend only on the disturbed
part of the process , defined in A. and ~~, and the design of disturbance filter Vv

( numerator de ).

4.5 Plant Perturbations

Continuing our design, we first have to derive the plant perturbations. Therefore we
have to specify which process parameters can vary and the range of plant variations for
which the controller is required to be robust. In Chapter 2 we derived a fourth order
model of an electromechanical servo system:

(4.27)
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with the variables K. , fA) 0 and Po defined as :

K, ~ J + mi' 4, ~ J + mi'K. - , Ca>. - C , A --
., J + mi2 ., Jm t'll 2 Jmc

(4.28)

Considering the electromechanical servo system in a practical situation, all physical
parameters can vary within a certain range. We are mainly interested in designing a
controller which is robust for variations of the mechanical stiffness 'c' and the mass of
the load 'm' . We assume that the variations of the other physical parameters can be
neglected compared to the two dominant parameter variations. Because of these physical
parameter variations, the variables of the process can be rewritten as a nominal part and
a disturbed part :

(4.29)

I .
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Fig. 4.3 : Consequences Process Perturbations

The arrows in Fig. 4.3 show the consequences of these parameter variations.
The main problem in our robustness design is the variation of the resonance peak. The

controller has to be robust for variations of the resonance peak caused by variations of
the resonance frequency ~ and the damping ~ .
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Using _Eq, 4,27 , the pert1.ubedplant j~ be writtetl.as follows :

p _ (Ko+A t )[ 2 ( Po+Ap ) ( fl)o+Ac. ) s + ( wo+AfI) r1
S2 [ S2 + 2 ( ~o+A~ ) ( c.>o+A.. ) s + ( ea>o+A w )2 ]

with

(4.30)

All - [2Ko ( PoAw+A~<a>o+A~Aw) + 2A 1' ( Po+A~) ( <a>o+A w )] S

+ [Ko (2<a> o Aw+A: ) + At (ea>o+A w )2] (4.31)

Table 4.4 : Plant Perturbations

Parameter Nominal Value Variation

K K - 1 A1' • 100%0

(;) (a) - 1 .- A • SO%• ..
~ Po - 0.01 A, • 50%

Until now, we assumed that all process parameters can vary. The controller should be
robust with respect to stability as well as performance for the variations described in
Table 4.4 . The variations in Table 4.4 are global values and we presented them to give
an indication of the robustness range we try to achieve.

The uncertainty modelling derived using stable factor perturbations is an upper bound
of all possible uncertainties ( only amplitude information and no phase information ).
This implies that II. is minimizing much more uncertainties than in a practical situation
will occur by which conservatism is introduced. As Model Robustness is reciprocal to
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Signal Tracking Performance, a too conservative uncertainty modelling will result
automatically in loss of performance. Therefore we have to design our uncertainty
modelling very carefully to reduce the conservatism and achieve an optimal signal
tracking performance.

Because the gain K is directly related to the uncertainty A. , increasing the gain Kwill
also increase the gain of the process input weighting filter Wu • By weighting the process
input too strong, the controller becomes very passive. To avoid this problem, it is much
easier to check the robustness for variations of the gain K afterwards. If we design the
controller for the worst-case value of K and we make sure that at the end a gain margin
of 6 dB is achieved, we don't have to take variations of K into account in our uncertainty
modelling.

The same holds for variations of the damping ~ . If the envelop description of the
uncertainties A. and AI using the weighting filters Wu respectively We is critical ( filters
match uncertainties) around tbe resonance frequency, we will not satisfy the robustness

4"

constraints anymore if ~ becomes smaller. In this situation the peak value will increase
and the weighting filters are no longer an envelop description. Larger values of p ,
bowever, will decrease the peak value and tbe envelop descriptions still bold. So, if we
design the controller also for the worst case value of p ,we always satisfy the robustness
constraints if ~ varies, Le. becomes larger. ~

There is now only one parameter left we have to take into account in our uncertainty
modelling, the resonance frequency (;) . The resonance peak is caused by two complex
conjugated poles ( with small damping) in the process. A nominal controller will try to •
eliminate this resonance peak through pole-zero cancellation. This means the controller
has two zeros with tbe same values. The actual resonance frequency of the process can
vary around tbe nominal value. If the actual resonance frequency is greater than the
nominal value, we first have the positive phase shift of the controller, caused by the
zeros, and then tbe negative pbase shift due to the process. If the actual resonance
frequency is smaller than the nominal value, the situation is just the other way around
and because we have to deal first with the negative phase shift ( -180° ) of the process,
the system might become unstable much easier. Less problems are expected for the first
situation ( (;) > (0). ). For this reason we will design the controller for the worst-case
value of the resonance frequency and consider only positive variations.

We reduced the robustness design to only one parameter. Of course we have to check
afterwards whether the controller is robust for variations of the gain K and the damping
J or not and determine the robustness ranges. The uncertainty expressions we derived
in Eq. 4.30 can be reduced as well. To meet the robustness constraints considering
variations of the resonance frequency, the weighting filters Wu and We must satisfy the
conditions in Eq. 4.32 .
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d
Y".- P, - ...~

s

sup
- b.

fI)

2XoPob."s + Xo ( 2 (a) oAtI) + b.~ )

d, (S2 + 2Po(a) os + (a)~)
(4.32)

sup
- b.

fI)

S2 ( 2 PoAws + 2<.) ob.(ol + b.; )

d, (S2 + 2Po<.)os + <.>:)

with s - j c.> • The lower bound descriptions of the weighting filters Wu and We' 4. and
4 1 , are completely known functions now. The filters depend on the uncertainty
A~ ( =0 - 50 % of the nominal value) and the design of the disturbance filter Vv
( numerator df ).

According to the theory of stable factor perturbation the disturbance filter Vv contains
only the unstable poles of the process Po ( Vv = Pi ). In Section 4.2 however we assumed
that the disturbance filter Vv contains all the poles of the process Po to reduce the order
of the augmented plant G. This might seem a contradistinction. But by adding the stable
poles of the process Po in the denominator as well as in the numerator of Vv ' we can
satisfy both conditions.

(4.33)

We achieved now that the process Po and the disturbance filter Vv have the same poles,
but because of the pole-zero cancellation the disturbance filter Vv contains in fact only
the unstable part of the process Pi •

4.6 Performance Design Criteria

Until now we considered only robustness criteria. For this purpose we use stable
factor perturbation to derive uncertainty models which results in a lower bound
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description of the weighting filters We and Wu • The first goal is indeed to design a
controller which is robust for a certain range of parameter variations. The second goal,
performance optimization with respect to maximum position error, steady state position
error and settling time, is probably just as important. Because servo systems are often
used for high performance applications it is necessary to take some additional design
criteria with respect to performance into account. First of all however we have to specify
the type of reference signal which will be used. In theory step inputs are quite often used
for design purposes. In practice however, step inputs are seldom used for motion
trajectories. They cause saturation of the controller due to the limited acceleration and
velocity of the motor and servo amplifier and therefore result in a poor position
accuracy. High order set point functions are used to overcome these saturation problems.
A well known function is the parabolic position profile ( second order) which is pointed
out further in Appendix D. We will use this parabolic position profile as reference signal
in the simulations to check the performance of the designed closed-loop system. The
performance objectives are now specified in Table 4.5 .

Table 4.5 : Performance Objectives

I Description Value

Displacement 1 em
Maximum Acceleration 2.5 10-4 em/s2

Maximum Velocity 1.3 10-2 em/s
Motion Time 129 s
Settling Time 63 s

Maximum Position Error during Motion 10-3 em
Maximum Steady State Position Error 10-6 em

~

The resonance frequency we use in our simulation model is (a). = 1 rad/s. This is in
fact a scaled value. Because of this low resonance frequency we find the large motion
and settling time.

An practical example will give a better impression of these values. Suppose a practical
servo system has a dominant resonance frequency at (a), = 100 Hz = 628 rad/s . A
multiplication of (a), on the frequency axis is the same as a division of (a), in the time
domain. The corresponding motion and settling time for the servo system would be about
02 s respectively 0.1 s .

4.7 Design Procedure

In this section a global design procedure is presented which will be used in the
following chapters. Fig. 4.4 depicts a block diagram of this procedure.
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Fig. 4.4 : Design Procedure

A model of the electromechanical servo system has been derived in Chapter 2. In
Section 4.4 we described the uncertainty modelling using stable factor perturbations.
Finally the design specifications with respect to robustness and performance have been
presented in the Sections 4.5 and 4.6 . The actual design, the choice of the weighting
functions, computing the controllers and analyzing the solution will be the subject of the
following chapters.

In Section 4.3, "Formulation of the Optimization Problem", we introduced a scaling
factor y • By adjusting y a solution is found for almost every choice of weighting
functions. Our goal however is to find a solution satisfying :

CIt - min(y) s 1 (4.34)

H a solution is found with y ~ 1 , we know that the final transfer functions in the two­
degree-of-freedom configuration will be bounded by the corresponding inverse weighting
function ( Table 4.3 ). This is necessary to satisfy the robustness constraints.

Until a solution is found satisfying Eq. 4.34 , we will continue the design which consists
of analyzing the results, redesigning the weighting functions and computing the
controllers again.
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5 Controller Design
Robustness Approach

5.1 Introduction

In this chapter we start the controller design from the point of view of robustness
maximization. To achieve this goal, we will use the robustness constraints derived with
stable factor perturbations ( Eq. 4.32 ) and the parameter variations described in
Chapter 4. A scaling factor y has been introduced to ensure that a solution is found for
almost every choice of shaping and weighting filters ( numerical problems excluded ).
However, to make sure that the final transfer functions are bounded by the inverse of
the predefined weighting functions, a solution with y ~ 1 is needed. This is an additional
limiting condition because with y > 1 , it is not guaranteed anymore that the robustness
constraints will be satisfied.

5.2 Design Strategy for Robustness Approach

We will introduce now a global design strategy to show how robustness maximization
can be achieved. Experiments showed that this design approach is the appropriate way
to achieve maximum robustness. As mentioned before, the II. theory will minimize the
co - norm of the design criteria ( Table 4.3 ) which consist of a weighting and a transfer
function. H a transfer function of a design criterion matches the corresponding inverse
weighting function in a certain frequency range ( For example from 0.1 rad/s to
1 rad/s ), we will call this criterion a limiting function.

The design can be divided in two major parts. The first part is the robustness
maximization which has the following phases:

1) Design the reference filter Vr in such a way that the Signal
Tracking criterion, defined by :

M12 - w. [1 - ( 1 - PCIt rJ PC, ] V,

and the Input Saturation criterion, defined by :

M%1 - W. ( 1 - PC" rJ C,Y,

are not the limiting functions.

2) Design the disturbance filter Vv ( the denominator is the same as
the unstable part of the process, Eq. 4.32 ).
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3) With the selected parameter variations, the uncertainty lJ.. is a
lower bound description for the process input weighting filter Wu ~

and the uncertainty lJ. I is a lower bound description for the error
weighting filter We .
Design the weighting filters Wu and We in such a way that the
constraints of the uncertainty modelling will be satisfied and
a solution is found for y ~ 1 •

With this approach so far, the Model Robustness constraint, defined by :

and the Disturbance Reduction constraint, defined by :

will be satisfied. H the robustness is maximized, the Model Robustness constraint M21
orland the Disturbance Reduction constraint Mu have reached their limitation. Both
criteria are used to satisfy the uncertainty modelling, but have different names for
distinction. One or both of the transfer functions will match the corresponding inverse
weighting function ( Table 4.3 ) for a certain frequency range. We will show in the
following sections that in our design the Model Robustness constraint becomes the
limiting function.

The second part of the design is the performance optimization which can be divided
in the following phases :

4) Improve the Signal Tracking by optimizing the error weighting filter
We. This can be achieved by weighting low frequencies stronger and
increasing the bandwidth of the filter We ( The bandwidth of a filter
is defined as the 0 dB intersection ). The bandwidth should be
maximized as much as possible ( to decrease the maximum position
error) until no solution is found satisfying y ~ 1 • A further
optimization is not possible, because the Disturbance Reduction
constraint has reached its limitation and y will become larger
than 1.

5) Using the last degree of freedom, we can further improve the Signal
Tracking by optimizing the reference filter Vr • As we did with We'
Vr will be designed in such a way that low frequencies will be
weighted stronger and the bandwidth is increased as much as possible.
This can be done until either the Signal Tracking criterion or/and
the Input Saturation criterion will reach their limitations.
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We optimized the solution as much as possible ( satisfying the robustness constraints
and optimizing the performance) for a certain choice of the disturbance filter Vv • If the
results are not satisfying, we can use this last degree of freedom, redesigning the
disturbance filter Vv and restart the design procedure, to improve the results.

Until so far, we didn't mention the order of the shaping and weighting filters. Our goal
is however, to design controllers of the lowest possible order which satisfy the robustness
constraints. The order of the controllers obtained with the aid of the II. theory, depends
on the order of the augmented plant. The final order of tbe system is the sum of orders
of the process Po and the filters Vr , We and Wu. The shaping filter Vv will not increase
the order of the system, because it has the same poles as the nominal process
( Table 4.2 ). In order to keep the controller design as simple as possible and to reduce
the order of the controllers as far as possible, we will start the controller design with low
order filters. The order of the shaping and weighting filters is only increased if robustness
constraints cannot be satisfied or to optimize the performance objectives.

The controller design strategy presented here, is meant to give a general impression
of the design approach. A more detailed explanation together with the choices for the
shaping and weighting filters will be given in the following sections.

5.3 Robustness Maximization

In the previous section a general design strategy has been introduced. Our goal is to
design a controller which is robust, with respect to stability as well as performance, for
variations of the resonance frequency c7> of 50%.

5.3.1 Design Shaping Filters

The first step in the control design is the design of the shaping filters Vr and Vv • To
avoid that the Signal Tracking criterion or the Input Saturation criterion is the limiting
function in any frequency point, we will choose Vr small compared to the 00 - norm which
is scaled to 1 ( Section 4.3 ). Suppose we take ( Design step 1 ) :

v, - 0.001 (5.1)

The next step is to design the disturbance shaping filter Vv • According to the theory
of stable factor perturbations the disturbance filter Vv contains the unstable poles of the
process Po ( Section 45 ). Because we have to design Vv biproper ( Program condition
in Section 4.2 ), a general form of the transfer function Vv is given by :

(5.2)
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We are dealing now with two variables,. the gain ley and the choice of the cut-off
.. -frequency at b rad/s.-The robustness constraints have been formulated in Eq.4.3~. We .

can see that the numerator of Vv returns as a part of the denominator in A. and A, •

Experiments showed that an appropriate choice for the gain is ley = 1 which can be
explained as follows. Suppose we choose ley > 1. This would decrease the gains of A.

and A, which implies a gain reduction of the weighting filters Wu and We to satisfy the
I robustness constraints and therefore more space to optimize the performance. It turned
rout however that if the high frequency gain of Vv is larger than 1 , problems occur for
I i frequencies at GO and no solution is found satisfying y ~ 1 • The scaling factor y is
'1 adjusted in the solution procedure in such a way that the high frequency gain becomes

again smaller or equal to 1. For Icy < 1, the opposite is true. Satisfying the robustness
constraints for ley < 1 implies a stronger weighting with Wu and We in the frequency
domain and therefore less space to optimize the performance. Weighting the process
input stronger, will result also in a more passive controller. For these reasons we have
chosen Icy = 1, because another value for Icy will cause problems in one way or the other.

The choice of the cut-off frequency at b rad/s is not only important in the uncertainty
modelling. From experiments we found that the cut-off frequency of Vv can also be
recognized in the open-loop Bode plot of the final control system. The phase-margin
which is derived from the open-loop Bode plot is build up after the cut-off frequency.
The cut-off frequency at b rad/s should be chosen in such a way that a phase-margin of
45° ( Standard design criterion) is achieved. Increasing the cut-off frequency results in
a phase-margin smaller than 45° ( not acceptable) and decreasing the cut-off makes the
phase-margin unnecessary high. The appropriate choice for the cut-off frequency in our
situation is b = 0.1 . It will be explained later, together with the final results at the end
of this chapter, why this choice is appropriate. We have finished now design step 2.

5.3.2 First Order Weighting Filters

--r... ..-. ••.• ... .., ...

Fig. 5.1 : We ( 1st order, A.. - 50% )
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The design of the disturbance filter Vv' together with the robustness descriptions using
stable factor perturbations and the parameter variations of Chapter 4, make it possible
to derive the lower bound descriptions of We and Wu ' A, and A. ( Design step 3 ).

To reduce the order of the controllers, we will start with first order filters
We and Wu • Fig. 5.1 and 5.2 show the lower bound descriptions and the first order
filters given by :

w _ a.Ob + 30

• s + 2.
, w _ O.Ols + 16.25

• s + 0.13
(5.3)

The first order weighting filters have been designed in such a way that the low frequency
gain fits as good as possible and the high frequency gain is set to 0.01 . This corresponds
in fact with a straight line for low frequencies as well as for high frequencies. We can
find the poles and the zeros of the weighting filters by drawing a line with slope -1 ( First
order filter) which fits the lower bound descriptions of We and Wu' A, and A. , in an
optimal way. The intersection of two lines corresponds of course with a pole or a zero.

It's obvious that the envelop description of the unc.ertainties A, and A. , using first
order weighting filters is very poor. Only the process input weighting filter Wu fits well
for frequencies up to 0.1 rad/s ( Fig. 5.2 ). But for high frequencies we are weighting
stronger than necessary and therefore we introduce conservatism. For this particular case,
all the transfer functions together with the inverse weighting functions (scaled with
y ) will be presented. These functions are depicted in Fig. 5.3 , 5.4 , 5.5 and 5.6 .

Fig. 5.3 : Signal Tracking

.......... ...,.

Fig. 5.4 : Input Saturation

Calculating the controller, a solution is found for y - 14.75 • Fig. 5.3 and 5.4 show that
we have chosen the reference filter Vr small enough. The Signal Tracking and the Input
Saturation are not the limiting functions, and therefore we will not sbow these two
transfer functions anymore until we start optimizing the performance in the next section.
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Fig. 55 : Disturbance Reduction Fig. 5.6 Model Robustness

In Fig. 5.5 we see that the Disturbance Reduction is limited for frequencies smaller
than 1.5 rad/s ( Area I ). Examining Fig. 5.6, we find the limitations in the frequency
range above 4 rad/s (Area n). These areas have been depicted as hatched parts in Fig.
5.1 and 5.2 . These are exactly the frequency ranges where the uncertainty descriptions
using first order weighting filters were very poor.

5.3.3 Second Order Weighting Filters

Using first order weighting functions we cannot satisfy the robustness constraints.
Because we are interested in a solution with y ~ 1 , the only way to decrease y and still
satisfy the robustness constraints, is to increase the order of the filters We and Wu . We
increase the order of both weighting filters because the Disturbance Reduction criterion
as well as the Model Robustness criterion are the limiting function as we can see in Fig.
5.5 and 5.6 .

•

•
••i -28

Fig. 5.7 : We ( 2nd order, A.. - 50% ) Fig. 5.8: Wu (2nd order, A.. - 50% )
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Define now:

w _ 0.01 (S2 + roJ2s + 3600 )
e

S2 + 1.5.fis + 2.25
, W _ 0.01 (S2 + 50.fis + 25(0) (5.4)

• ( s + 0.2 ) ( s + 1 )

The second order weighting filters have been designed the same way as the first order
filters. The low frequency behaviour of both, second and first order, weighting filters
stayed the same. Only for frequencies above 1.5 rad/s ( We) respectively 1 rad/s
( Wu ) we are dealing now with a slope of -2 instead of -1. In these frequency ranges we
improved the envelop descriptions of the uncertainties. Fig. 5.7 and 5.8 show the second
order filters. The envelop description using second order weighting filters is better as
before, but for high frequencies we are still weighting too strong. With these new filters,
a solution is found for y - 14.09 • The hatched parts in Fig. 5.7 and 5.8 correspond again
with the frequency ranges where the limitations occur in the Disturbance
Reduction ( Fig. 5.9 ) and the Model Robustness ( Fig. 5.10 ).
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Fig. 5.9 : Disturbance Reduction Fig. 5.10 Model Robustness

Fig. 5.9 and 5.10 depict the Disturbance Reduction and the Model Robustness together
with the corresponding inverse weighting filters. It is obvious that the second order filters
are still not good enough. The decrease of y is marginal and the limitations occur in the
same frequency ranges as before.

Because the limitations occur in the same frequency range it might seem an obvious
choice to design the error weighting filter We in a different way. The Disturbance
Reduction is the limiting function for frequencies below 15 rad/s. Using a second order
filter it is possible to design We in such a way that the envelop description fits better also
for lower frequencies. This implies that we would weigh lower frequencies less as before.
But this is not our intention because satisfying the robustness constraint is only one of
the goals we try to achieve using We . The weighting filter We can also be used to
improve the Signal Tracking. To optimize the Signal Tracking we have to weigh low
frequencies stronger and increase the bandwidth as much as possible. Because we know
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already that we have to use the weighting filter We later on in the design to achieve an
acceptable Signal Tracking, we designed- We in such away-that bothgoals,robustness
constraint and performance objective, can be satisfied.

To satisfy the condition 1 ~ 1 , we have to increase the order of the filters Wu and
We even more.

5.3.4 Fourth Order Weighting Filters

Until now, the results derived with first as well as second order weighting filters were
not acceptable ( 1 :. 1 ). Examining the robustness constraints ( Eq. 4.32 ) in more
details, we can see that the lower bound descriptions of the weighting filters Wu and We
are in fact fourth order filters. Because we still don't know which criterion, the
Disturbance Reduction or the Model Robustness is the limiting function, we will increase
the order of both filters. Suppose we take the following fourth order filters:

w _ 0.01 ( S2 + 3{is + 9 ) (S2 + 12{is + 144 ) -

• ( S2 + 0.5{is + 0.25 f
W _ 0.01 {S2 + 3.4{is + 11.56 )2

• (S2 + 0.02s + 1 ) ( S2 + 0.5 lis + 0.25 f

(5.5)

The poles of these fourth order weighting functions follow directly from the robustness
constraints in Eq. 4.32 . The only degree of freedom left is the choice of the zeros.

Fig. 5.11 : We ( 4th order, A.. - 50% ) Fig. 5.U : Wu ( 4th order, A.. - 50% )

Fig. 5.11 and 5.12 show these fourth order filters together with the lower bound
descriptions. We can see that for frequencies up to 2 radls , the fourth order filter Wu
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is an optimal choice. The frequency range for which the envelop description is exact
depends on the choice of the zeros. We have placed now 4 complex conjugated zeros at
3.4 rad/s. Increasing the zeros will also increase the frequency range for which the
envelop description of 11, with Wu is exact. The fourth order weighting filter We has
been designed in such a way that the envelop description for the higher frequencies,
above the resonance frequency, is as good as possible. The low frequency behaviour of
We is designed, just as we did for the second order weighting filter We ' to improve the
Signal Tracking later in the design. Comparing Fig. 5.1 and 5.7 with Fig. 5.11 , we can
see that the lower bound description of 11, , using We ' is improved too. With these
fourth order filters, a solution is found for., - 4.69 • Fig. 5.13 and 5.14 depict again the
important transfer and inverse weighting functions. ., is reduced with a major factor, so
the increase of the order of the weighting filters can be justified. The hatched parts in
Fig. 5.11 and 5.12 show the frequency ranges where the limitations occur in the
corresponding transfer functions, the Disturbance Reduction ( Fig. 5.13 ) respectively
the Model Robustness ( Fig. 5.14) .

.............1.

Fig. 5.13 : Disturbance Reduction

...

...

:

Fig. 5.14 : Model Robustness

If we compare Fig. 5.9 and 5.13 we can see that the Disturbance Reduction function
is different for the lower frequencies, but still matches the inverse weighting function.
This might be an indication that this is not really a limiting function and adjustments are
possible. For the Model Robustness the situation is different, because for frequencies
above 2 rad/s the transfer function still matches the inverse weighting function. The
envelop description using Wu for high frequencies is not good enough and adjustment
of the high frequency gain is necessary. The solution is of course to decrease the gain of
Wu and adjust the zeros. Experiments showed that a gain of 10-5 is necessary to avoid
limitations for high frequencies. Fig. 5.15 depicts the new situation and we can see that
the new weighting function Wu ' defined by :

10-5 ( S2 + 18.8y'2's + 353.44 rW. - ~ ~""- .L--_

(S2 + O.02s + 1 ) ( S2 + O.Iy'2's + 0.01 )
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describes the disturbances in an optimal way for frequencies almost up to 20 rad/s .

..........."'.

Fig. 5.15: Wu (4th order, 11.. 50% )

A solution is found for y - 1.SS • Fig. 5.16 and 5.17 depict now the important transfer
and weighting functions using the optimized weighting filter Wu • In Fig. 5.16 we can see
that the Disturbance Reduction is indeed not the limiting function as we expected. The
transfer function doesn't match anymore the inverse weighting functions for low
frequencies. Until now, we reduced the problem so far that only 1 criterion, the Model
Robustness, is the limiting function. We can now maximize the robustness, using stable
factor perturbations as robustness description, to find a solution with y ~ 1 •

Fig. 5.16 : Disturbance Reduction

.. ..... ...,.

Fig. 5.17 : Model Robustness

Fig. 5.17 shows us, that the Model Robustness matches the inverse weighting function
for almost the whole frequency range. Only for frequencies above 20 rad/s the transfer
function doesn't match the inverse weighting function. But this is just the frequency range
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where we can improve Wu according to Fig. 5.15 . So, there is no freedom left for a
further reduction of y •

5.3.5 Reduction of Robustness Criteria

The II. optimization problem has been reduced to only one limiting function, the
Model Robustness. We optimized the process input weighting filter over the whole
frequency range where the limitation occurs ( Compare Fig. 5.15 and 5.17 ). Because we
still don't have a solution with y ~ 1 ,we have to reduce our demands concerning the
variations of the resonance frequency &> • With a minimal value for y of 1.55 , it is
obvious that we have to decrease the variations of &> in our robustness design. Using y

as a scaling factor of Wu and if we consider the low frequency gain at s = 0
( Eq. 4.32 ), we can calculate the maximum allowable variation of the resonance
frequency &> •

!t.
Y

/I ,,-0
_! Ko(2(a)ot.CoI+t.~)

y 0.01 (a)~
- 80.65 - t.fo),1IIU - 0.34 (5.7)

This implies that only variations of 34% are allowed.
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Fig. 5.18 : We ( 4th order, A.. - 34% ) Fig. 5.19 : Wu ( 4th order, A.. - 34 % )

With a maximum variation of the resonance frequency of 34%, we have to redesign
the weighting filters We and Wu • For this new situation, a proper choice for the
weighting filters is :

49



w.- 0.01 (s2 + 3.{s + 9 ) ( S2 + 9{is + .81 )

( S2 + O.s{is + 0.25 )

W _ 10-5 ( s2 + 16.8.{s + 282.24 r
II ( S2 + O.02s + 1 ) ( S2 + O.lJ2s + 0.01 )

(5.8)

as shown in Fig. 5.18 and 5.19 .
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Fig. 520 : Disturbance Reduction Fig. 521 : Model Robustness

As expected, a solution is found for y $ 1 ( y - 0.976 ). The new transfer and weighting
functions are depicted in Fig. 5.20 and 5.21 . The Model Robustness matches now the
inverse weighting function approximately for the whole frequency range (Fig. 5.21 ). As
before, we can see in Fig. 5.20, that the Disturbance Reduction is not the limiting
function and optimization is possible. Because we found a solution with y $ 1 , we are
sure that our robustness constraints are satisfied. Using the factor perturbation theory
as robustness description, the resonance frequency may maximally vary 34% • The
derived process input weighting filter Wu will be used for the rest of this chapter.

5.4 Performance Optimization

Until now, we satisfied the stability robustness constraints (Eq. 4.32 ). Our objective
in this section is to optimize the Signal Tracking ( Design step 4 ).

5.4.1 Optimization of Error Weighting Filter We

In the previous section we used a fourth order weighting filter We . We saw however,
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that the Disturbance Reduction was not the limiting function and optimization of the
Signal Tracking with We seems possible. Also the shape of the Disturbance Reduction
function was different in the previous situations ( Compare Fig. 5.9 , 5.16 and 5.20 ),
which probably makes an order reduction of the error weighting filter We possible. This
will also reduce the order of the controllers which is equal to the order of the augmented
plant ( Chapter 4 ). Suppose we take a second order weighting filter We . We have to
design the filter in such a way that on one hand the stability robustness constraint is
satisfied, i.e. We is still an upper bound description of Il, , and on the other hand lower
frequencies are weighted stronger to improve the Signal Tracking. Suppose we take :

w _ 0.01 ( S2 + 3O/is + 900 )

, S2 + 3.10-3/is + 9.10-45
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Fig. 5.22 : We ( 2nd order, AM - 34% )

(5.9)

Fig. 5.22 depicts this second order weighting filter We . We can see that the critical
point in the design of We is the peak value of Il, at 1 rad/s. Low frequencies are
weighted with 120 dB to ensure that the steady state error will reduce to zero.

5.4.2 Zero Order Reference Filter Vr

In the previous section we designed Vr in such a way that no limitations occurred in
the Signal Tracking and the Input Saturation ( Vr = 0.001 ). Fig. 5.3 and 5.4 show us,
however, that the chosen reference filter Vr is much too small. Increasing Vr (Design
step 5) results in :

Y, - 0.1
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Calculating a controller with the new designed second order weighting filter We and the
optimized reference filter -Vr , -a solution_is found for y - 1,08'7. • Y incteas~d slightly.
Because of y > 1 the robustness constraints are in fact not satisfied anymore. But the
increase of y compared to the limiting condition, y s 1 I is so small that we loose only
about 2 % of the stability robustness range. In this design the decrease of the stability
robustness range is acceptable because of the obtained order reduction of the controllers.

Reducing the order further or increasing the bandwidth of the error weighting filter
We I results in an unacceptable y ( ., :. 1 ). For these situations ., will increase
significantly which results in a decrease of the stability robustness range of the same
order•
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Fig. 5.25 : Disturbance Reduction Fig. 5.26 : Model Robustness

Fig. 5.23 and 5.24 depict the Signal Tracking and the Input Saturation function. The
transfer functions do not match the inverse weighting functions at any frequency point.
This indicates that a further optimization of the reference filter Vr might be possible. In
practice, increasing Vr resulted however also in a larger and therefore unacceptable
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y • The design became probably so critical considering the whole frequency range, that
a further optimization with a constant filter Vr is not possible.

The Disturbance Reduction and the Model Robustness are depicted in Fig. 5.25 and
5.26 . We can see that for both criteria the transfer functions and the inverse weighting
functions almost match completely.

Table 5.1: Feed-forward Controller ( gain Cft': 3.231e+07 )
1) Zero at CIO

2) Real zero, imaginary part • 0
3) Pole - zero cancellation

Poles Cft' Zeros Cft'

- 3.1126e+02 1.6424e +46.. _4.3874e+39 j 1)

- 1.3597e +01 2.l106e+01 j - 1.6885e+00 8.139Oe -17 j 2)
- 1.3597e+01 - 2.1106e+01 j - 1.0000e -02 9.9995e -01 j 3)

- 2.2587e +01 - 1.0000e -02 9.9995e -01 j
- 9.9997e -03 9.9995e -01 j 3) -1.0000e-02 - 9.9995e -01 j 3)

- 9.9997e -03 - 9.9995e -01 j 3) - 1.0000e -02 - 9.9995e -01 j
- 7.0711e -02 7.0734e -02 j 3) - 7.0711e -02 7.0711e -02 j 3)

- 7.0711e -02 - 7.0734e -02 j 3) . - 7.0711e -02 7.0711e -02 j
- 2.1213e -03 2.1213e -03 j - 7.0711e -02 - 7.0711e -02 j 3)

- 2.1213e -03 - 2.1213e -03 j - 7.0711e -02 - 7.0711e -02 j

Table 5.2: Feed-back Controller ( gain Cfb : - 3.366e+07 )
1) Zero at CIO

2) Real zero, imaginary part • 0
3) Pole - zero cancellation

Poles Cfb Zeros~

- 3.11200+02 2.6214e+25 - 4.992Oe + 18 j 1)

- 1.3597e+Ol 2.1106e+01 j - 1.6180e+00 - 6.7085e -17 j 2)

- 1.3597e+01 - 2.1106e+01 j - 1.0000e -02 9.9995e -01 j 3)

- 2.2587e+01 - 1.0000e -02 9.9995e -01 j
- 9.9997e -03 9.9995e -01 j 3) - 1.0000e -02 - 9.9995e -01 j 3)

- 9.9997e -03 - 9.9995e -01 j 3) - 1.0000e -02 - 9.9995e -01 j
- 7.0711e -02 7.0734e -02 j 3) - 7.0701e -02 7.0836e -Q2 j
- 7.0711e -02 - 7.0734e -02 j 3) - 7.0711e -02 7.0711e -Q2 j 3)

- 2.1213e -03 2.1213e -03 j - 7.0701e -02 - 7.0836e -Q2 j
- 2.1213e -03 - 2.1213e -03 j - 7.0711e -02 _7.0711e -Q2 j 3)
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Until now, we optimized the Signal Tracking with an error weighting filter We of
lowest possible order, which satisfies the·stability robustness constraints ( Eq. 4.32 ) and
is optimized with respect to performance, and a constant reference filter Vr . A solution
is found with y close enough to 1. The Tables 5.1 and 52 contain the poles and zeros
of the feed-forward and the feed-back controller.

Even we designed originally controllers of the 10th order ( The augmented plant has
order 10, O(Plant) = O(Po) + O(Vr) + O(WJ + O(Wu) = 4 + 0 + 2 + 4 = 10), we
can reduce the order of the feed-forward as well as the feed-back controller to 6 because
of pole-zero cancellation. Due to numerical problems the first two zeros of the feed­
forward ( Table 5.1' ) and the feed-back ( Table 5.2 ) controller are not reliable.
Considering a pole-zero plot the distance between the first zero and the other roots is
so large that we can assume this zero at ClO • Also we can assume that the imaginary part
of the second zero is equal to zero. The reduced controllers satisfy the notes in the
header of the tables. The Bode-plots of the reduced eontrollers are depicted in
Fig. 5.27 . The Bode-plot of -Cfb is depicted because in the two-degree-of-freedom
configuration we used a positive feedback. Solving the Ii. optimization problem results
automatically in a feed-back controller with a negative gain. Therefore the minus sign
in the feed-back gain is actually the negative feed-back which is normally used.
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As we can see in Fig. 5.27 together with the numerical results in Table 5.1 and 5.2 ,
the derived feed-back and feed-forward controller are effectively the same. The minor
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difference between the zeros and the gain of both controllers can be neglected. In the
design so far the Model Robustness is the dominant design criterion. The feed-back
controller has been designed due to the demands in the frequency domain of this
criterion. We optimized the Signal Tracking which is obviously not dominant, using a
zero order reference filter Vr ( Vr = 0.1 ). The information we added to the control
system using Vr is constant over the whole frequency range. Because we didn't add any (
additional information in the frequency domain, the feed-forward controller is the same
as the feed-back controller.

Using the reduced controllers, we excite our control system with a parabolic position
signal ( reference signal ) to test the real time behaviour. This smoother signal consists
of a block signal ( acceleration signal ) which is integrated twice. Fig. 528 shows the
simulated output signal as a function of the time. It might seem that we have used a very
slow position signal ( motion time = 129 seconds ), but this is in fact not true. The
resonance frequency Co) 0 of our process is scaled to 1 rad/s. Because of the scaling of the
resonance frequency, the time axis is scales as well using a real servo system as example
which resulted in the used motion time. More information about the parabolic position
signal is given in Appendix D.

0 .• ,.

0 .• ,..

o.? ..

!.. 0 .• ,. .....
J o.s
!

••4 .. ,.:: /I. o.~

••2
/

..../
•• 1

7•• so 1M 150

Fig. 528 : Simulation Output Signal

The simulation of the error signal is depicted in Fig. 5.29. The design criteria with
respect to performance have. been specified in Section 4.6 • The absolute maximum
position error, 5.s 10-5 em, is within the range we have specified ( < 10-3 em). Even we
put all the effort in the robustness maximization it was possible to achieve an acceptable
position error. Also the settling time ( 56 seconds) is within the specified 63 seconds.
The only problem is that the steady state position error does not reduce to zero. We are
dealing with a final position error of about 10-6 em. But this is within the specifications
and therefore acceptable . In Fig. 5.23 we can see that low frequencies in the Signal ._
Tracking function will be suppressed with about -115 dB = 1.8 10-6 • This corresponds
with the steady state position error in the simulation of Fig. 5.29 . H we want to reduce
the steady state position error further we have to redesign the reference filter Vr to
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Fig. 5.29 : Simulation Error Signal Fig. 5.30 : Simulation Control Signal

Another important constraint which we haven't mentioned so far is the Input
Saturation. Demands about the Input Saturation are very difficult to introduce in the
frequency domain and result often in very conservative conditions. We didn't specify any
input saturation constraints to reduce the conservatism. Of course we have to check
wether the control signal 'up' would cause saturation or not Fig. 5.30 depicts the
simulation of the control signal. We can see that the shape of the control signal is the
same as the acceleration signal we used ( Appendix D ). Modelling the
electromechanical servo system , we used the law of Newton as basic, T. - M,l,
( Eq. 2.1 ). The main purpose of this controller design is to eliminate the resonance
peak. For low frequencies we can assume that the law of Newton is still valid. The force
of the motor, however, is also equal to T. - K,II, (Eq. 2.4 ). Therefore, it could be
expected that the shape of the control signal 'up' is the same as the acceleration signal
of the used reference signal at least for low frequencies. The peak values occur due to
the steps in the acceleration signal because of the limited bandwidth of the Signa!
Tracking function. These peak vales are limited in Fig. 5.30 . But because of the limited
number of points we used in the simulation these peaks might be larger. This can cause
problems in a practical implementation because of the limited input signal
( Saturation ). Using a smoother profile, for example a third order cubic position signal
[14], the peak values can be eliminated.

Until now, we have checked only the performance part, which is optimized as far as
possible using a constant reference filter Vr • Our basic constraint in this section
however, is stability robustness maximization. For this example the controller is robust
according to stability for parameter variations of ~ from 0.78 rad/s to 1.6 rad/s .
Stability robustness alone however, is not enough. To illustrate the performance
robustness, the resonance frequency is varied for the whole stability range. For every
value of &> within the stability range, the maximum position error ( positive as well as
negative ) is derived and the results are depicted in Fig. 5.31 .
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An optimal performance robustness, would give a horizontal line for the whole stability
range. As we can see in Fig. 5.31, the derived performance robustness so far is not
optimal. The maximum position error ( positive as well as negative ) increases slowly,
when the resonance frequency e;, is increased.

5.4.3 First Order Reference Filter Vr

In the previous section we optimized the Signal Tracking using a constant reference
filter.Vr • A further optimization is possible, increasing the order of the reference filter
Vr • A reference filter of first order, is defined by :

v _ O.Is + 0.2
, s + 2.10-6

(5.11)

The first order reference filter Vr has been designed in such a way that low
frequencies are weighted stronger to reduce the steady state position error further. The
zero of Vr at 2 rad/s has been maximized until the increase of the scaling factor y

became significant. With this new reference filter, a solution is found for y - 1.092 .
Comparing this with previous results ( Vr = 0.1 ), we see that y is hardly increased.

Fig. 5.32 and 5.33 depict again the Disturbance Reduction and the Model Robustness
together with the inverse weighting functions ( scaled with y ). The transfer functions
match the inverse weighting functions in the same frequency range as we have seen in
previous results using a constant reference filter Vr ( Fig. 5.25 and 5.26 ). Changing Vr
didn't affect these two functions.
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The Signal Tracking and the Input Saturation, which are affected because of a
changing Vr ' are depicted in Fig. 5.34 and 5.35. With the chosen reference filter of first
order, we see that both transfer functions match the inverse weighting function in the
same frequency range around 0.1 rad/s. This means we reached the maximal possible
optimization using a first order filter. Comparing Fig. 5.35 with 5.24 , we see that the
Input Saturation function hardly changed. But the Signal Tracking is improved
significantly. Low frequencies are weighted much stronger now as before, but the high
frequency behaviour of the Signal Tracking function is still the same. The hatched area
in Fig. 5.34 depicts the gain achieved by optimizing the reference filter Vr compared to
Fig. 5.23 .
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We have optimized the Signal Tracking as far as possible, because both transfer
functions, Signal Tracking and Input Saturation, match the inverse weighting function
in the same frequency range.

58



Table 5.3: Feed-forward Controller ( gain Cft' : 5.494e+07 )
1) Zero at CIO

2) Pole - zero cancellation

Poles eft Zeros Cft'

- 3.2167e+02 - 1.1125e+41 _5.8452e+34 j 1)

- 1.3601e+ 01 2.l08ge+01 j - 1.II25e+oo 8.9071e -01 j
- 1.3601e+Ol - 2.l08ge+01 j - 1.1125e+oo - 8.9071e -01 j
- 2.2558e + 01 - 1.0000e -Q2 9.9995e -01 j 2)
- 1.0000e -02 9.9995e -01 j 2) - 1.0000e -Q2 9.9995e -01 j
- 1.0000e -02 - 9.9995e -01 j 2) -1.0000e-02 - 9.9995e -01 j 2)
- 7.0711e -02 7.0734e -02 j 2) - 1.0000e -Q2 - 9.9995e -01 j
- 7.0711e -02 - 7.0734e -02 j 2) - 7.0711e -02 7.0711e -02 j 2)

- 2.1212e -03 2.l212e -03 j - 7.0711e -02 .. 7.0711e -02 j
- 2.1212e -03 - 2.1212e -03 j - 7.0711e -02 - 7.0711e -02 j 2)

- 2.0000e+OO - 7.0711e -02 - 7.0711e -02 j

Table 5.4: Feed-back Controller ( gain Cfb : - 3,46ge+07 )
1) Zero at 00

2) Real zero, imaginary part • 0
3) Pole - zero cancellation

Poles Cfb Zeros Cfb

- 3.2167e+02 - 3.0943e + 25 - 1.2783e -07 j 1)

- 1.3601e+Ol 2.l08ge+Ol j - 1.6056e+ 00 2,434Oe -16 j 2)

- 1.3601e+Ol - 2.l08ge + 01 j -1.0000e-02 9.9995e -01 j 3)

- 2.2558e + 01 - 1.0000e -Q2 9.9995e -01 j
- 1.0000e -02 9.9995e -01 j 3) - 1.0000e -Q2 - 9.9995e -01 j 3)

- 1.0000e -Q2 - 9.9995e -01 j 3) - 1.0000e -Q2 - 9.9995e -01 j
- 7.0711e -02 7.0707e -Q2 j 3) - 7.068ge -Q2 7.0847e -02 j
- 7.0711e -Q2 - 7.0707e -02 j 3) - 7.071le -02 7.0711e -02 j 3)

- 2.1212e -03 2.1212e -03 j - 7.068ge -Q2 - 7.0847e -Q2 j
- 2.1212e -03 - 2.1212e -03 j - 7.071le -Q2 - 7.0711e -02 j 3)
_ 2.0000e+00 3) _ 2.0000e+00 3)

The Tables 5.3 and 5.4 contain again the poles and zeros of the controllers for this
solution. The order of the controllers found with the aid of the H. theoty increased of
course with 1, because we increased the order of the reference filter Vr • The extra pole
of the controller is exactly the zero of the first order reference filter Vr • But only the
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feed-forward controller is affected, the order of the feed-back controller can be reduced
again to 6 through pole,.zerocancellation..Checkingthe.poles and zeros in the tables, the
same numerical problems occur as we noticed before. The Bode-plots of the reduced
controllers (satisfying the notes in the header of the tables) are depicted in
Fig. 5.36 .

28

188

Ph••• Plot or crr388

Z88

•G
188A

•••.c..
-188

-Z88
t8-a 18-1. 18. 18A 182'_.II••cy ........

lZ8 ". 1lltu'. Plot of err

8 '---=-"-.u.w~~~u.u......,..................
18-a 181 18a

F•••u.ncy ........

~ ~;~~~ : ~~~~~~ : :;~;§ ~ :::::'
18. ·~·~·~~~TI~·'·~·!~~g~~···~·~·~·~·~~··.:';'E~:'· . . ., ..0... . .

= :: :1:i:tjt~:::Uim~t::1:jt~~i::j:j1tG;•~ :~ ~ ~~~: >~::~: ~. :~:~ ~ i i ::~.
48 '~":: i?~."?·?~~:?~:·'·· ~.:~~~??~.~.:.?:.~:

: :: .. ":: ::: ::;:: :::: :::: ::: ::::· ., '" .. . ...... .... .... . .... .,

28 '~":'~~~~~:"' ":=:.. :,!.:.:.:~~~ .. ~.~.:.~:< ..· .· .. '" . .. , ., .· . . .. .. . .

lZ8 ". nltu'. Plot af -cr~

388 ...--r,..;,Pn,;".r:-8 ,..e","Piri) air
t -ra:.;.,r,...,-rm:C.:.;nr-rn,Im

-
28

f8-a 18-A 188 181 181

.-.....cv ........

288

•G 188A

G••.c..
-188

• 88
•
• 68•a: 41t

Fig. 5.36 : Bode Plots Controllers

Comparing these results with previous results ( Tables 5.1 and 5.2 ), we can see that
the feed-back controller has hardly changed. Only the feed-forward controller is affected
by the change of the reference filter Vr • The high frequency behaviour of the feed­
forward controller changed slightly compared to the previous results ( Fig. 5.27 ). But we
changed the Signal Tracking function using a first order reference filter Vr mainly for
the lower frequency range, which is not visible in the Bode-plots of Fig. 5.36 •

For this solution, with maximized robustness and optimized Performance, we are also
interested in other quantities like gain and phase margin. Because we took only
variations of the resonance frequency (}) into account in the uncertainty modelling, these
quantities can give us additional information, independently of the uncertainty modelling,
concerning the stability robustness for variations of other parameters like the gain K .
For this reason the open-loop Bode plots and the Nyquist curve are depicted in Fig. 5.37
and 5.38 . We can see that the peak value of the process transfer function is completely
eliminated using the nominal process parameters. The gain and phase margin are
determined from the open-loop bode plot in Fig. 5.37. In this case, the gain and phase
margin, gain-margin = 8.928 dB and phase-margin = 4557° , are sufficient In Fig. 5.38
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besides the Nyquist curve also the M = 1.3 circle is depicted. This circle gives more
information about the response-speed and the overshoot of the closed-loop system. When
the Nyquist curve does not enter the area, enclosed by the M = 1.3 circle, the step­
response and the overshoot ( -23 % ) of the closed-loop system are acceptable. By the
Nyquist stability criterion the closed-loop system is stable if and only if the nyquist plot
of the open-loop system does not encircle the point -1 , which is satisfied in our case.
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Fig. 5.39 : Simulation Output Signal

The simulations of the important time signals ( output, error and control signal) are
depicted in Fig. 5.39,5.40 and 5.41 . We can see that the new controller has become
more active due to the optimization of the reference filter Vr ' because the error signal
tends to zero during constant acceleration. This has been achieved because frequencies
below 0.1 rad/s are suppressed more using a first order reference filter Vr • The hatched
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area in Fig. 5.34 depicts the gain compared to Fig. 5.23 . Only the steps in the
acceleration signal cause peak values in the error signal. But we can see that the main .
peaks bave an opposite direction compared to the acceleration signal. Examining tbe
simulation of the error signal ( Fig. 5.40 ) in more details at for example t = 129 S , we
see that the error signal bas a peak in positive direction first before the peak in negative
direction occurs. The peak in positive direction is due to the positive step in the
acceleration signal at t = 129 s. The peak in negative direction bowever, is due to the
increased differentiating action in the feed-forward controller whicb tries to compensate
the first peak. As mentioned earlier, the first peak can be eliminated using a smoother
profile as reference signal. But the second peak can only be reduced by reducing the
differentiating action in the controller. By optimizing Vr ' we are weighting low
frequencies stronger as before ( Fig. 5.34 : -180 dB = 10-9 ), which results in
a smaller steady state error as can be seen in Fig 5.40 . The final position error
is almost reduced to zero now. The settling time is still within the specified 63 seconds.
Comparing Fig. 5.30 and 5.41, we see that the control signal 'up' has hardly changed for
low frequencies. The peak values however increased with a factor 2 wbich might cause
saturation in a practical implementation.
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Fig. 5.40 : Simulation Error Signal

5.5 Robustness Analysis

Fig. 5.41 : Simulation Control Signal

The standard rules used so far ( gain-margin, phase-margin and Nyquist stability
criterion ) tell us only something about stability robustness. The major problem we are
dealing with, is however not the stability robustness but the performance robustness. To
get more information about the performance robustness, we derived the maximum and
minimum values of the parameters t: , w and , for whicb the closed-loop system is
stable. Changing one parameter, the other parameters are set to their nominal values.
Table 5.5 shows the results.
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Table 5.5 : Parameter Variations

Minimum Maximum
Value Value

i 0.021 2.800

W 0.78 1.60

P < 0.001 0.16

The values in Table 5.5 determine the stability ranges for all parameters. To illustrate
the performance robustness for parameters variations, we derived the maximum position
error ( positive as well as negative ) for the whole stability range of every parameter.
Changing one parameter at the time, we find the results which are depicted in Fig.
5.42 , 5.43 and 5.44 .
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Fig. 5.42 : Performance Robustness &>
( Maximum Position Error)

The derived performance robustness is acceptable. The maximum position error
remains almost constant for all parameter variations in the interesting stability ranges.
For the resonance frequency (;) we are only interested in the stability range starting with
the nominal value (0) 0 = 1 rad/s ( (;) > (0). ). Comparing Fig. 5.31 with 5.42 , we can see
that the performance robustness for variations of (;) has been improved. The maximum
position error is decreased due to the optimization of the reference filter Vr • The
maximum. error value remains almost constant when the resonance frequency is
increased.
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Fig. 5.43 : Performance Robustness K
( Maximum Position Error)

Fig. 5.44 : Performance Robustness p
( Maximum Position Error )

The performance robustness of K is almost constant for positive variations. For
negative variations however, K shouldn't become smaller than 0.2 to ensure an
acceptable performance robustness. For values of K smaller than 0.2 the position error
increases significantly.

The derived performance robustness for variations of pis good. We have designed the
system for the worst case value ( Po = 0.01 ) and we are basicly interested in the
performance behaviour for larger values. But we can see in Fig. 5.44 that for the whole
stability range of p , also for values smaller than the worst case value, the maximum
position error changes only slightly for variations of ~ .

The information we have showed so far, gives a basic idea about the performance
robustness. The situations outlined until now, however, are idealistic in a way that we
changed only one parameter at the time. Therefore we will derive the stability as well
as the performance robustness for all possible parameter variations. The values in Table
5.5 will be used as the bounds of the parameters ranges and the stepsize is defined as
1/20 part of the interval. To show stability robustness we derived two 3D-graphs, because
we have for every combination of K and &l a minimum and maximum value of ~ for
which the closed-loop system is stable. Fig. 5.45 depicts now the upper bound of p and
Fig. 5.46 the lower bound The graph is not plotted for those parameter combinations
for which the system is unstable.
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Examining Fig. 5.45 , we can see that for combinations of extreme high values or
extreme low values of the resonance frequency &> and the gain K the controller is not
stabilizing anymore. For all parameter combinations of the process which are stabilized
by the controller, the maximum and minimum position error are depicted in Fig. 5.47 .
We can see that for some parameter combinations the position error increases
significantly. Checking the parameter values, we found that this occurs whenever the gain
K becomes smaller than 0.2 . But we concluded already from Fig. 5.43 that K shouldn't
become smaller than 02 , to keep the position error small enough. All parameter
combinations with K greater than 0.2 are bounded by the box depicted in Fig. 5.47 . We
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can see that an acceptable performance robustness is achieved.
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Fig. 5.47 : Performance Robustness ( Maximum position error)

We used stable factor perturbations to design. a controller which is robust with respect
to stability as well as performance. According to the theory, the maximum possible
variation of the resonance frequency c> for which the controller is robust is 34% . The
final controller however, is robust for a much larger range of variations of the resonance
frequency &> ( 60 % ). We can conclude that the conditions derived using stable factor
perturbations are sufficient but not necessary.

The derived solution ensures robustness with respect to stability as well as
performance for variations of all parameters. Basicly, there is one degree of freedom left
to improve the result, redesigning the disturbance filter Vv • As mentioned before, the
disturbance filter Vv can be used to manipulate the phase margin derived from the open­
loop system. The chosen filter , b = 0.1 , is optimal which can be explained as follows.
In Fig. 5.37 , a breakpoint in the magnitude plot around 0.1 ( = b ) rad/s is clearly
visible. The phase margin is build up after this breakpoint The value of b is chosen in
such a way that a phase margin slightly larger than 450 is achieved. Increasing b will
result in a phase margin smaller than 45° which is not acceptable and decreasing b
makes the phase margin unnecessary larger than 45° •

A last remark about the controllers. We have chosen a two-degree-of-freedom
configuration, using a feed-back as well as a feed-forward controller, to improve the
overall system behaviour with respect to robustness maximization and performance
optimization. Due to the fact that the Model Robustness criterion is dominant in our
design., it was only possible to improve the Signal Tracking, using a first order reference
filter Vr ' for low frequencies. This frequency range is, however not depicted in the
Bode-plots of the controllers. Therefore it might seem that the feed-back and the feed­
forward controller are almost the same ( Fig. 5.36 ). This is in fact only true in the
frequency range around the resonance frequency where the Model Robustness is
dominant
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5.6 Summary Robustness Design

The robustness design is structured in the design sequence of the filters. The
disturbance filter Vv is used on one hand to derive uncertainty models and on the other
hand to achieve a phase margin just above 45° . Using the chosen disturbance filter Vv
we find robustness constraints for the weighting filters. The envelop description of the
uncertainty 4. with the process input weighting filter Wu should be optimized to reduce
the conservatism in the design. The error weighting filter We has to be designed in such
a way that it is an envelop description of the uncertainty 4, , but improves the signal
tracking as well. The final step in the design is a further optimization of the signal
tracking using the reference filter Vr •

With the proposed robustness approach it is possible to design controllers which are
robust with respect to stability as well as performance for variations of all process
parameters. To achieve robustness for variations of process parameters, stable factor
perturbations have been used to derive uncertainty models. The derived robustness
constraints, however, lead only to sufficient and not necessary conditions. According to
the theory the resonance frequency (;) can vary only 34% . Simulations afterwards show
however that variations of c;, up to 60% are acceptable for performance robustness.

The achieved stability robustness for variations of the process parameters is much
larger than specified in the design criteria ( 0.021 ~ K ~ 2.8 with K. - 1 , 0.078 ~ (;) ~ 1.6

with CI). - 1 rod/s and 0.001 s p s 0.16 with p. - 0.01 ). The performance robustness
has been simulated for all possible parameter combinations for which the closed-loop
system is stable. For this purpose we used a second order position signal as
reference signal ( Motion time = 129 seconds ). The maximum position error during
the movement ( Displacement of 1 em) is smaller than 8.10.5 em . The only condition
is that the disturbed process gain has to be K > 0.2 • The steady state position error is
reduced to 10.9 em. The design criteria were 10-3 em for the maximum position error
respectively 10-6 em for the steady state position error. Also the obtained settling time
of 56 seconds is. within the specifications ( 63 seconds ).

By applying the II. theory we obtain controllers which are of 11th order. Because of
pole-zero cancellation we can reduce the feed-back controller to order 6 and the feed­
forward controller to order 7.
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6 Alternative Design
Performance Approach -

6.1 Introduction

Until now, the design has been focused entirely on the robustness constraints. We used
stable factor perturbations to design a controller which is robust with respect to stability
as well as performance. It turned out however that the conditions derived with stable
factor perturbations are sufficient but not necessary. For this reason we will describe in
this chapter an alternative design method. We will use no robustness information at all
and focus our design entirely on the signal tracking performance. Finally we will compare
the results obtained using the performance approach with the results of the robustness
approach.

6.2 Design Strategy for Performance Approach

As we did for the robustness approach, we will introduce again a global design strategy
but now suitable for the performance approach. The design sequence of the several
filters is quite different. The design can be divided in two parts, the performance
maximization and the robustness optimization. The first part has the following phases :

1) Design the disturbance filter Vv and the process input weighting
filter Wu in such a way that the Disturbance Reduction criterion,
defined by :

.......

the Input Saturation criterion, defined by :

and the Model Robustness criterion, defined by :

are not the limiting functions.
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2) The control system will be excited with a known reference signal.
Characterize the reference filter Vr with the power spectral density
of this reference signal.

3) Maximize the Signal Tracking performance using the error weighting
filter We . This can be achieved by weighting lower frequencies
stronger and increase the bandwidth of the filter We as much as
possible. Optimize We until a solution is found with y s 1 •

If the performance is maximized, the Signal Tracking criterion, defined by :

is the limiting function. The final transfer function from 'r' to 'e' will match the inverse
weighting function VrWe ( scaled with y ) for a certain frequency range.

The second part of the design is the robustness optimization which can be divided in
the following phases :

4) Optimize the robustness using the disturbance filter Vv until the
Disturbance Reduction criterion becomes the limiting function
This filter can be used mainly to optimize the shape of the open-loop
Bode plot and achieve a phase margin just above 45° .

5) Using the last degree of freedom, we can improve the Model Robustness
by optimizing the process input weighting filter Wu . This can be
done until either the Input Saturation criterion or/and the Model
Robustness criterion will become the limiting function.

With the performance approach presented here, we didn't use any robustness 1
information ( Eq. 4.32 ) at all. Of course we have to check afterwards for which
parameter variations of the process the controller is robust with respect to stability as
well as performance.

6.3 Performance Maximization

In the previous section we introduced a general design strategy for the performance
approach. Our goal in this section is to derive a controller for which the maximum
position error during the movement is as small as possible.

To avoid that the Input Saturation, the Disturbance Reduction or the Model
Robustness are the limiting functions ( Design step 1 ), we will choose the disturbance
filter Vv and the process input weighting filter Wu as follows :
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W. - 0.001

(6.1)

(6.2)

The zeros of the disturbance filter Vv are the same as the one we have chosen in
Chapter 5. Experiments showed that the decrease of the gain to ley = 0.01 is necessary
to avoid limitations in the Disturbance Reduction.

6.3.1 Design of Reference Filter Vr

In the previous chapter we used the robustness approach to derive a controller which
is robust with respect to stability and performance. We didn't add any information to the
system about the known reference signal, because a further performance optimization
using the reference filter Vr was not possible. We could only improve the Signal
Tracking using Vr for the lower frequencies but not in the important frequency range
around the resonance frequency (0). = 1 rad/s . To reach an ~..ptim.al signal tracking, we
have to add this information to the system. The power spectral density of the used
reference signal, described in Appendix D, is depicted in Fig. 6.1 .

Fig. 6.1 : Power Spectral Density of Second Order Profile

We can see that the slope of the power spectral density for the lower frequencies is -2.
Because of the limited sampling time in the frequency domain which is used to derive
the power spectral density, the spectrum is not continuous anymore for high frequencies.
In this high frequency range we have in fact a slope of -6 ( Fig. 6.1 ). A proper
characterization of this power spectral density for low frequencies is a second order
filter ( Design step 2 ). An optimal fit of the power spectral density can be achieved
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using a 6th order reference filter Vr' Increasing the order of the reference filter Vr by 4
however, will also increase the controller order by 4 . To avoid this significant increase
of the controller order we will use a second order reference filter Vr • Suppose
we take :

(6.3)

The poles of the reference filter Vr are chosen in such a way that frequencies below
10-3 rad/s are weighted with 120 dB to ensure that the steady state error will reduce to
zero. The placing of the zeros has been determined by numerical limitations. Increasing
the breakpoint at Ht rad/s due to the zeros of Vr is not possible because of numerical
problems which occur solving the Riccati equations.

6.3.2 Optimization of Error Weighting Filter We

After designing the reference filter Vr ' the next step ( Design step 3 ) in our design
is to maximize the Signal Tracking using the error weighting filter We . The bandwidth
of the filter We is increased as far as possible ( to decrease the maximal position error
during the movement ) and the low frequency behaviour is set to decrease the steady
state position error even more. The optimal choice of the error weighting filter We for
which a solution is found with y s: 1 :

w _ O.Gls + 400

• s + 4.10-4
(6.4)
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Using the defined filters, a solution is found for y - O.~8 • All the transfer functions
together with the corresponding inverse weighting functions are depicted in Fig. 6.2 ,
6.3 , 6.4 -and 6.5 . -
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l

Our primary design function in this performance approach is the Signal Tracking.
Comparing Fig. 5.34 and 6.4 , we can see that the baniwidth of the Signal Tracking
function has increased and frequencies around and below the resonance frequency
Cl). = 1 rad/s are suppressed stronger. Increasing the bandwidth of the Signal Tracking
function and suppressing the corresponding frequencies stronger will decrease the
maximum position error during the movement as well as the settling time.

Nevertheless , the Disturbance Reduction and the Input Saturation functions have
reached their bounds as well ( Fig. 6.2 and 6.5 ). Experiments showed however, that
these criteria are not the limiting functions in this design.

..

6.4 Robustness Optimization

After optimizing the Signal Tracking criterion we have to improve the robustness with
respect to stability and performance.

6.4.1 Optimization of the Disturbance Filter Vv

Continuing our design ( Design step 4 ) , we have to improve the Disturbance
Reduction by optimizing the disturbance filter Vv • As mentioned earlier, .the main
purpose of the disturbance filter Vv is to characterize the model disturbances and to
achieve a phase margin just above 45° . For this reason we will show first the open-loop
Bode plot ( Fig. 6.6 ) derived with the results of the previous section ( Using the filters
in Eq. 6.1 , 6.2 , 6.3 and 6.4 ).
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Fig. 6.6 : Open-loop Bode Plot ( b = 0.1) Fig. 6.7 : Open-loop Bode Plot ( b = 1 )

Table 6.1 : Margins in relation to zeros of disturbance filter Vv

b Phase Margin Gain Margin
( in rad/s ) ( in degrees ) (indB)

0.1 57.28 6.853
0.2 55.58 6.724
03 53.99 6.620
0.4 52.50 6.521
0.5 51.10 6.427
0.6 49.79 6.339
0.7 48.57 6.256
0.8 47.39 6.179
0.9 46.18 6.105
1.0 45.04 6.033
1.1 43.98 5.964

We have achieved a phase margin of 57280
• The breakpoint in the magnitude plot

at 0.1 rad/s is clearly visible. Because the phase margin is build up after this breakpoint,
the resulting phase margin is much larger than the necessary 450

• H we use the complex
conjugated zeros as variable ( b ) the disturbance filter Vv in Eq. 6.1 is given by :

y _ 0.01 (S2 + b{is + b2 )

" 1S

(6.5)
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To show the influence of the disturbance filter Vv on the phase margin, Table 6.1
contains the, values of p, \\,hic~ i~ the, cut-off frequency of Vv caused by the zeros, and
the corresponding phase and gain margin. " , ,- , -''

From Table 6.1 , it is obvious that if we try to achieve a phase margin just above
45° , an appropriate choice for the placement of the zeros is at b = 1 rad/s . The open­
loop Bode plot for this solution is depicted in Fig. 6.7 •The move of the breakpoint in
the magnitude plot from 0.1 rad/s to 1 rad/s is clearly visible. Increasing the bandwidth
of the filter Vv increased also the magnitude of the open-loop Bode plot for lower
frequencies, which results in a stronger suppression of external disturbances for these
frequencies. For this new situations, the four transfer functions with the corresponding
inverse weighting functions are depicted in Fig. 6.8 ,6.9, 6.10 and 6.11 .
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Comparing the new transfer functions with those of Section 6.3.2 ( Fig. 6.2 - 6.5 ) , we
can see that only the Disturbance Reduction function is affected by changing the
disturbance filter Vv • The transfer function from 'v' to 'e' still matches the inverse
weighting function VvWe for frequencies up to 10 rad/s, but lower frequencies are
suppressed stronger as before.

6.4.2 Optimization of Process Input Weighting Filter Wu

There is one degree of freedom left to improve the Model Robustness ( Design
step 5 ), using the process input weighting filter Wu • Considering Fig. 6.9 and 6.11 ,
there are still some possibilities left to improve the filter Wu ' especially for lower
frequencies. Only the Input Saturation function matches the inverse weighting function
VrWu almost at 16 rad/s. In Fig. 6.11 we see that in the frequency range from 1.5 Tad/s
to 16 rad/s the difference in slope of the Input Saturation function and the
corresponding inverse weighting function is -2. Therefore we choose a second order
weighting filter Wu to optimize the robustness. Experiments showed that an appropriate
choice for Wu is :

w _ 0.001 (S2 + 16{is + 256 )

• S2 + O.02s + 1
(6.6)
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With this new process input weighting filter, a solution is found for y - 0.899 • Fig.
6.12 , 6.13 , 6.14 and 6.15 depict the new transfer functions with the corresponding
inverse weighting functions.

In our design, the Input Saturation criterion has become the limiting function.
Looking at Fig. 6.15 , it seems that further optimization might be possible. Considering
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th~ wbole frequencY r8Jlge however, afurther optimization re~ults in.y > 1 • Because the
Input Saturation criterion becomes the limiting function before the Model Robustness
criterion, we cannot improve the robustness using the process input weighting
filter Wu • All possible degrees of freedom have been used already and all transfer
functions, except the Model Robustness function, match the corresponding inverse
weighting function. This implies, using the proposed performance approach, a further
optimization of the ModeJ Robustness is not possible.
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Table 6.2 : Feed-forward Controller ( gain Ctr: 7.25e+ 10 )
1) zero at co

2) Pole - zero cancellation

Poles Cft Zeros eft

- 9.7268e+03 4.1061e+43 _ 1.9935e+39 j 1)

- 1.0965e+Ol 1.7321e+Ol j - 5.1376e+OO 5.1696e+OO j
- 1.0965e+01 - 1.7321e+Ol j - 5.1376e+OO - 5.1696e+OO j
- 1.9113e+01 - 7.0711e -01 7.0711e -01 j
- 1.0000e -Q2 9.9995e -01 j 2) - 7.0711e .Ql - 7.0711e -01 j
- 1.0000e -Q2 - 9.9995e -01 j 2) - 1.0000e .Q2 _ 9.9995e -01 j 2)

- 4.0000e -Q4 - 1.0000e .()2 - 9.9995e -01 j
- 7.0711e+01 7.0711e+Ol j - 1.0000e .()2 9.9995e -01 j 2)

- 7.0711e+Ol - 7.0711e+Ol j - 1.0000e -02 9.9995e -01 j

The Tables 6.2 and 6.3 contain the poles and the zeros of the derived controllers for
this solution. The order of the augmented plant is 9 , so the basic controllers found with
the II. theory have also order 9 . Inspection of the values in the tables show, that both
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controllers have a zero which can be assumed to be at GO • The poles and zeros which can
be reduced through pole-zero cancellation are marked as well.

Table 6.3: Feed-back Controller ( gain Cfb : -4.88ge+08 )
1) zero at ClO

2) Pole - zero cancellation

Poles Cfb Zeros Cfb

- 9.7268e+03 - 4.9362e+24 _ 7.4140e+22 j 1)

- 1.0965e+01 1.7321e+01 j - 6.2753e -01 - 6.2755e -01 j
- 1.0965e+01 - 1.7321e+01 j - 6.2753e -01 6.2755e -01 j
- 1.9113e + 01 -1.0000e-02 - 9.9995e -01 j 2)

- 1.0000e -02 9.9995e -01 j 2) - 1.0000e -02 - 9.9995e -01 j
- l.OOOOe -02 - 9.9995e -01 j 2) - 1.0000e -02 9.9995e -01 j 2)

- 4.0000e -04 - 1.0000e -02 9.9995e -01 j
- 7.0711e+01 7.0711e+01 j 2) - 7.0711e+Ol _7.0711e+Ol j 2)

- 7.0711e+Ol _ 7.0711e+Ol j 2) - 7.0711e+01 7.0711e+01 j 2)

The Bode plots of the reduced controllers ( satisfying the notes in the header of the
tables) are depicted in Fig. 6.16 . Iil contradistinction to Chapter 5 is the difference
between the feed-back and the feed-forward controller clearly visible. ..
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Fig. 6.16 : Bode Plots Controllers

77



Ifwe look at Fig. 6.17 and 6.18, which depict the open-loop Bode plot respectively the
Nyquist curve for this solution, we can see that the phase margin has increased slightly,
but the increase of the gain margin is significant. Due to this increased gain margin we
can expect a larger stability range for the gain i: .

!-IU

1-HI ...

f -2.1

........t

.. .. .... -.... ~. .

. ·· .. ·········r·· .

·······~·.,...,..I" 'plot

-.-~ • " I.J ~,ft;I.

. 1.7
-1.1

-I_~I----'-4;----';-I:----':-Z----':-I--~1-----!

I r--..-----,--=-'T"""-"""'T'"--r---,

1.1 ·!/"'<~F··~···~~-T>~:".,··~........··t..·

l ~.: •••••• 0••·••••·••••·•••'••••·· ••••••••'••·•••••••••••••:\}•.~;I~" ...

i \ ~ ~
- -1 .....~~ ~.-. -. ······f··

·1.S w-o ·1 .. ·.. '·' '...
-I '-. oj ;., .

-I" .-r-T"T"!"T'fTTT""---,-.....,,""I"'I'Tm---r-"T"'"T""""!""!""'~'T""'""',...,.,rTTn
~ c.a i. ~i~~.~ .~ : :: :::

' ..i.~ ;;.i~ii .... i ... i ..~.i~' ;;;/./, ;.. ".:;;,,,"S.72 ".'oi ;;;;
; y \i-jJimi

[ : is
--:I,~-a~""""""'~I~I-l...----''''''''''''''''''''''I~I·;--''''''''''''''''''''~,,:';-1...........--'-'""""""':I~I.·

r ....._ ...~.

Fig. 6.17 : Open-loop Bode Plots Fig. 6.18 : Nyquist curve

Using the optimized shaping and weighting filters derived with the performance
approach, the simulations of the output, the error and the control signal are depicted in
Fig. 6.19 , 6.20 and 6.21 .
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Fig. 6.19 : Simulation Output Signal

Because of the increased bandwidth of the Signal Tracking function the maximum
position error as well as the settling time have been decreased significantly as we
expected. The maximum position error reduces almost to zero when the acceleration
signal is constant due to the fact that the bandwidth of the Signal Tracking function has
been increased and frequencies below the bandwidth are suppressed stronger. This can
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be explained by comparing the Signal Tracking functions in Fig. 5.34 and 6.14 together
with the corresponding simulations of the error signal. The hatched area in Fig. 6.14
depicts the difference between the Signal Tracking functions in the robustness design
and the performance design. In the performance approach the intersection with 0 dB of
the Signal Tracking is at 10 rad/s ( Fig. 6.14 ). in contradistinction with the robustness
approach where the intersection was at 5 rad/s ( Fig. 5.34 ). Another reason of the
decrease of the maximum position error is the stronger suppression of the frequencies
below the bandwidth. for example 60 dB in Fig. 6.14 and only 20 dB in Fig. 5.34
at 1 rad/s.
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Fig. 6.20 : Simulation Error Signal Fig. 6.21 : Simulation Control Signal

The peak values in the error signal are caused by the large differentiating action in the
feed-forward controller (Fig. 6.16) because the direction of the peaks is opposite to the
direction of the steps in the acceleration signal. The compensation by the controller of
the step in the acceleration signal is too large which results in this negative affect. We
noticed this problem already in Section 5.4 . In Fig. 5.40 we saw that the error signal
tends first in the same direction as the step in the acceleration signal and then in the
opposite direction due to the large differentiating action in the feed-forward
controller . This affect has only been increased because of a further increase of the
differentiating action in the feed-forward controller. The only way to avoid these
problems is to reduce this differentiating action.

6.5 Robustness Analysis

We didn't include any robustness information at all and therefore we are of course
interested in the robustness behaviour of the derived controllers with respect to stability
as well as performance. To get more information about stability robustness we derived
the maximal and minimal value of the parameters K , (;) and ~ for which the closed­
loop system is stable. The values in Table 6.4 determine the stability robustness range
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for variatio~ of the process parameters. The values of both design methods, the
robustness as well as the- performance approach h~lVe been included. The- stabilityranges ­
for variations of the process parameters for both methods are almost the same. The only
difference is the increase of the minimum value of K and the decrease of the maximum
value of ~ in the performance design.

Table 6.4 : Parameter Variations

Performance Design Robustness Design
Process

Parameter Minimum Maximum Minimum Maximum
Value Value Value Value

K 0.12 2.85 0.021 2.80
(;) 0.79 1.61 0.78 1.60

P 0.001 0.084 O.OC)l 0.16

To illustrate the performance robustness for parameter variations, we derived the
maximum position error ( positive as well as negative ) for the whole stability range of
every parameter ( Table 6.4 ), changing one parameter at the time and setting the other
two parameters to their nominal values. The results are depicted in Fig. 6.22 , 6.23 and
6.24 .
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( Maximum Position Error )

Fig. 6.24 : Performance Robustness p
. ( Maximum Position Error )

The stability range of the process parameters is almost the same for both design
methods. But the controller is not robust at all with respect to performance. H the
parameters vary from the nominal value, the maximum' position error increases
significantly ( Fig. 6.22 , 6.23 and 6.24 ). Looking at Fig. 6.22 • performance robustness
for variations of (;) , we see that the maximum position error which occurs if (;) is
increased as much as possible, is about the same size as the optimal error value we
achieved in the previous chapter ( Fig. 5.39 ). Comparing Fig. 6.23 and 5.40 we see that
the robustness range for variations of the gain i with respect to performance has
become much smaller too. The same is true for the variations of the damping ~ .

Because we put all the effort in performance maximization for the nominal process
parameters, it was not possible to achieve a controller which is robust with respect to
performance for a wide range of parameter variations. The controller has been designed
for a very small range of process parameters for high performance applications. But as
soon as the disturbed process is outside the specified range the performance behaviour
will decrease significantly.

I
1
1\
I'

Until now, we changed only one parameter at the time. Changing all parameters at
once, which gives more realistic information, we can derive two 3D-graphs showing the
values of the parameters for which the closed-loop system is stable. The values in Table
6.4 will be used as bounds of the parameter ranges. The stepsize is defined as 1/20 part
of the interval. Fig. 6.25 shows now the upper bound of ~ and Fig. 6.26 the lower bound.
Examining Fig. 6.25 and 6.26 , we see again that for combinations of extreme high values
or extreme low values of the resonance frequency (;) and the gain i , the controller is
not stabilizing anymore.
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To illustrate the performance robustness in a better way, Fig. 627 depicts the
maximum and minimum position error of all parameter combinations of the process
which are stabilized by the controllers. We see that the maximum position error is
concentrated in the lower left comer of Fig. 5.27 . This corresponds to variations of the
process parameters close to the nominal values. The achieved position error ( Fig.
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6.20 ) is only valid for the nominal values of the parameters. As soon as the variations
of the perturbed process parameters increase, the maximum position error increases as
well which is clearly visible in Fig. 6.27 .
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Fig. 6.27 : Performance Robustness ; Maximum position error..
Suppose we accept the same maximum position error ( < 8.10-5 em. ) as we achieved

in the previous chapter. The box depicted in the lower left comer of Fig. 6.27 is the
bound of this range. The maximum parameter variations which correspond to this bound
are given in Table 6.5 . ..

Table 6.5: Parameter Variations
( Maximum position error < 8.10.5 em )
+ : All values
- : No Values

it. (;) P
K ~ 0.6 + +

0.45 ~ K < 0.6 (;) < 1.4 +

0.3 ~ i < 0.45 (;) < 1.2 +

K < 0.3 - -

It is obvious that the range of parameter variations for which the performance of the
closed-loop system is acceptable has become smaller. The basic restriction we have is ..
that the gain should be K > 0.6 • If K decreases we find first restrictions for the variations
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of the resonance frequency and finally the performance becomes unacceptable for all
parameter combinatio~.

6.6 Summary Performance Design

The design sequence of the filters in the performance design is structured but basicly
different as in the robustness design. First we characterized the reference filter Vr with
the power spectral density of the reference signal. The Signal Tracking can be improved
by optimizing the error weighting filter We . Low frequencies should be weighed stronger
to reduce the steady state position error and the bandwidth should be increased as much
as possible to reduce the maximum position error during the movement. The disturbance
filter Vv is used again to achieve a phase margin just above 450

• The final step in the
design is a further optimization of the robustness using the process input weighting filter
Wu '

With the proposed performance.approach it is possible to design controllers for high
performance ap~lications. The maximum position error during the movement has l1een
reduced to 4.10· em and the settling time is less than 5 seconds ( Motion time = 129
seconds) using a parabolic position signal as reference signal. The steady state position
error is reduced to 10-11 em. Large peak values however occur in the simulation of the
error signal due to an increase of the differentiating aetio~in the feed-forward controller.
These peak values also occur in the process input signal and might cause saturation in
a practical implementation.

Because of the proposed design sequence of the filters together with the optimization
of the Signal Tracking it was not possible to include any robustness information. It ..
turned out during the design that the Input Saturation became the limiting function
before the Model Robustness could be improved. Because of the high performance
design the mentioned values with respect to position error and settling time are only
valid for the nominal process parameters ( K. - 1 , ~. - 1 and P. - 0.01 ). As soon as
the perturbed process parameters vary from the nominal values the maximum position
error increases significantly.

The robustness range for variations of the process parameters with respect to
performance reduced significantly compared to the robustness design. The achieved
stability robustness for variations of the process parameters remained however almost
the same ( 0.12 ~ K ~ 2.85 , 0.79 ~ 6) ~ 1.61 and 0.001 ~ , ~ 0.084J.

By applying the H.. theory we obtain controllers which are of 9 order. Because of
pole-zero cancellation we can reduce the feed-back controller to order 5 and the feed­
forward controller to order 7.

The robustness and performance approach have been presented here to show the
worst and the best possible performance behaviour of the closed-loop system using these
two extreme design techniques.
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7 Conclusions & Recommendations

7.1 Conclusions

This report describes the analysis of the II. theory and an application of II. control.
The general conclusions of this report will be discussed in this section. The more detailed
conclusions related to the two design methods, the robustness and the performance
approach, have been discussed at the end of Chapter 5 respectively Chapter 6.

The application of II. to an electromechanical servo system has led to insight into the
problems ( restrictions and advantages ) which might arise using II. control design
techniques. To solve the II. optimization problem, the state-space approach is
recommended above the polynomial approach because of the explicitness of the formulas
involving only the solution to two Riccati equations together with a substantial reduction
in computation.

The controllers in the Two-Degree-of-Freedom configuration have been derived from
two different point of views. This Two-Degree-of-Freedom configuration has been
introduced to optimize the trade off between robustness and performance. The objective
of the first method is robustness maximization. This robustness procedure has been
focused on the design of a controller which is robust for the maximum range of process
parameter variations with respect to stability as well as performance. The objective of
the second method is performance maximization. The controller design of this
performance procedure has been focused on the optimization of the signal tracking. The
design sequence of the shaping and weighting filters which is different for both design
methods, is the proper way to achieve our design goals. The proposed design procedures
however can also be used in general for the Two-Degree-of-Freedom configuration.

The main objective of this research was to design a controller for an electromechanical
servo system which is robust with respect to stability as well as performance. To achieve
stability robustness for variations of the process parameters, stable factor perturbations
have been used to derive uncertainty models. The way in which uncertainty is modelled,
affects the control design seriously. Taking all process uncertainties into account, can
lead to very conservative uncertainty models because the II. theory takes only amplitude
information into account and no phase information. Because of the trade off between
robustness and performance, a too conservative uncertainty model automatically leads
to bad performance. The derivation of the uncertainty models has to be done very
carefully to achieve an optimal performance. Although the uncertainty model has been
reduced to the variation of only one process parameter, the resonance frequency, the
derived robustness constraints using stable factor perturbations lead only to sufficient and
not necessary conditions. The obtained controller is robust with respect to stability as
well as performance for a much larger range of parameter variations as specified in the
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Uncertainty model. The achieved· performance (. maximum .position error during
movement, settling time ) of the final controller is within the range of defined
specifications.

Because the derived robustness constraints are sufficient but not necessary conditions,
a controller without uncertainty model is designed emphasizing the performance
optimization. A design without assuming uncertainty showed satisfying stability robustness
but is not robust at all with respect to performance.

For practical applications it is necessary to reduce the order of the controllers as much
as possible ( 4th order controllers are acceptable ). To achieve low order controllers, it
is necessary to design low order weighting functions as well. These low order weighting
functions ( satisfying the robustness constraints) result however in poor descriptions of
the uncertainty models, which leads to conservatism and therefore loss of performance.
To obtain an optimal performance, high order weighting functions are necessary which
implies automatically high order controllers.

7.2 Recommendations

Until now a parabolic position signal ( second order) is used as reference signal. But
the mechanics are still excited too much due to the fact that the acceleration signal of
the parabolic position signal has a steplike character. The peak values in the error signal
become clearly visible. To optimize the performance, it is necessary to introduce a even
smoother profile, like a cubic position signal ( third order ). Partly however, these peaks
are caused by the designed controllers. Therefore it is necessary to reduce the
differentiating action in the controllers as well to eliminate these peaks further. In a
practical irnpleJJJentation these peaks which also occur in the process input signal, might
cause saturation.

In this report stable factor perturbations have been used to derive uncertainty models.
The obtained robustness constraints are however sufficient and not necessary conditions.
Other techniques such should be studied to reduce the conservatism in the uncertainty
models.

Two extreme design methods with the robustness optimization on one hand and the
performance optimization on the other hand, have been presented This resulted in
controllers with optimal robustness and "poor performance" ( the derived maximum
position error and the settling time are still within the range of defined specifications )
respectively poor robustness and optimal performance. A more quantitive approach for
the range in between has to be made. Bounds should be derived for the ranges of
parameter variations for which the closed-loop system is robust together with the
corresponding optimal performance, to improve the use in practical applications.
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Until now high order controllers are obtained. For practical applications it is necessary
to reduce the order of the controllers. Several controller reduction techniques have been
proposed in literature. The affect of the controller reduction with respect to performance
behaviour ( maximum position error, settling time ), stability and performance robustness
should be tested.

A last remark about the implementation using motion control cards. Until now we
designed a continuous-time servo system, but in practical implementations we will use
digital controllers. It should be tested if a controller obtained with continuous-time
design techniques which is transformed to the discrete-time gives acceptable results.
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Appendix B

List of Symbols

A• • B• • c•. D.

A, • B, • C, • D,

Ar • Br ' Cr ' Dr

A• • B• • C. ' D.

A" ' B" • C" • D"
a

B

B1 • B2

B
B1 ' B2

P.
~
C

C1 • C2

C
C1 • C2

Cit
Cr

-=..

C

D

Du • D12 • DZI • Drz

Dl .• D.l
Dll,11 • Dll•12 • DU,21 • DIl•rz
D
.oil •D12 • 1521

D" H,
D,.l • D',ll • D,,12 , Df,22

~,11 • ~,12 • Df,22
D,
D/,22

4,

: State matrix augmented plant G
: State matrix controller Ka
: State space representation of We
: State space representation of P
: State space representation of Vr

: State space representation of Wu

: State space representation of Vv

: Standard problem
: Input matrix augmented plant G
: Elements of B

: Input matrix controller Ka
: Elements of B
: Servo damping ratio
: Disturbed servo damping
: Output matrix augmented plant G
: Elements of C

: Output matrix controller Ka
: Elements of C
: Feed-back controller
: Feed-forward controller
: Mechanical stiffnes
: Feedthrough matrix augmented plant G
: Elements of D
: Elements of D
: Elements of D11
: Feedthrough matrix controller Ka
: Elements of 15
: Elements of polynomial matrix fraction
: Elements of polynomial matrix fraction

: Elements of polynomial matrix fraction
: Greatest common left factor

: Element of polynomial matrix fraction
: Stable polynomial
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d,

d.
d,

tis
~

~
A,l

A~

A,
Ai
A.
Aw

A,
e
i
F
F11 • Fu • F2

F.
F.,..
F~l

F4laperl

F~J

•
cp

°
°11

°12

°21

°22
T
H
HII • H12 • H2

H.

1
I

btl
J

J
K

K.

K.
K,

: _1JDStable_ part of do _
: Nominal denominator-of Po
: Stable part of do
: Mechanical damping between rotor and load
: Friction between load and stator
: Friction between rotor and stator
: Error on Il.
: Error on do
: Model error on the inverse of Pi
: Error on~
: Error on no
: Error on Co).

: Model error on P5

: Error signal
: Weighted error signal
: State feed-back matrix
: Elements of F
: Mechanical forces ( in general )
: Force of spring
: Force of damper 1 ( d1 )

: Force of damper 2 ( d2 )

: Force of damper 3 ( d3 )

: Qass of signals for v
: Element of ]lB.

: Augmented plant
: Part of augmented plant ; transfer from w to z
: Part of augmented plant ; transfer from u to z
: Part of augmented plant ; transfer from w to y
: Part of augmented plant ; transfer from u to y
: Scaling factor state-space approach
: Output injection matrix
: Elements of H
: Hardy space of proper matrix functions in

closed right half plane
: Motor current
: Transmission ratio
: infimum
: Inertia
: Imaginary part ( j2 = -1 )
: Controller ( in general )
: State-space representation controller solution
: Gain constant
: Motor constant
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K.
K
L,

~
1
l(.)

MIMO

Mt

IMI; L
M,

M.N
M11

Mu
M21

M:a.
",

"'1
"'2

Nf,11 • Nf,12 • N/~1 ' N/~- - - -
Nf,11 • Nf,12 • ~~1 • N,~

N/~1 • N/~
7f

II.

IIr

II..

(,).(,).
(;)

P

PI· Q,
Pr • Qr

P,
p.
p.

P
P,
p.
PJ

P2
R.B.

~.~
r

: Stabilizing controller

: Disturbed gain
: Real rational matrix
: Inner product space
: Scaling factor polynomial approach
: Eigenvalue
: Multiple input multiple output
: Optimization function
: II. optimization problem

: Total mass motor with load
: Left coprime factors of P
: Disturbance reduction criterion
: Signal tracking criterion
: Model robustness criterion
: Input saturation criterion
: Mass load
: Number of exogeneous inputs
: Number of control inputs
: Elements of polynomial matrix fraction

.~

: Elements of polynomial matrix fraction

: Elements of polynomial matrix fraction
: Number of states
: Nominal numerator of Po
: Input reference signal
: Disturbance signal
: Nominal resonance frequency
: Scaling factor frequency axis
: Disturbed resonance frequency
: Process ( in general )
: Polynomial fraction matrices
: Elements algebraic Riccati equation
: Unstable part process Po
: Nominal process
: Stable part process Po

: Disturbed process

: Unstable part disturbed process P
: Stable part disturbed process P
: Number of outputs to be controlled
: Number of measured outputs

: Matrix definition state-space solution
: Polynomial fraction matrices
: Shaped reference signal
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Ric : Riccati
pC;) : I...argest eigenvalue·
It : Real
SISO : Single input single output
8 : Laplace operator
8. : Scaled laplace operator
8"1' : Supremum
T. : Motor Torque [Nm]
e : Class of signals for r
u(t) : Control input
", : Process input
11 : Weighted control signal
Yi : Equalizing solutions
Yr : Shaping filter for reference signal

Y" : Shaping filter for disturbance signal

", : Shaped disturbance signal
w. : Weighting filter for error signal
w. : Weighting filter for control signal
wet) : Exogeneous input
x : Solution Riccati equation ( in general )
x., Y. : Solution Riccati equations in H.t control
XI" YI : Polynomial fraction description controller
% : Displacement ( in general ) [m]
1 : Velocity ( in general ) [ms-I ]

i : Acceleration ( in general ) [ms-2]

~t) : State vector
~ : Position of mass m em]
11 : Velocity of mass m [ms-I ]

Z, : Angle position of inertia J [rad]

i:l : Angle velocity of inertia J [rads-I ]

%, : Position load em]
1, : Acceleration load [ms-2]

%'. : States nominal process Po

%Yr : States reference filter Vr

%r. : States error weighting filter We

%r. : States process input weighting filter Wu
)'(t) : Measured output
1.C.fJ : Output to be controlled
I· L : II. norm ( in general )
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Appendix C

A Polynomial Approach

In this appendix the method to solve the "standard" II. optimization problem via a
polynomial approach is discussed shortly. The main reference we use in this section is
the book "TIle II. Control Design Method, A Polynomial Approach" of P. Boekhoudt
[2].

The starting point is the definition of equalizing solutions. Define :

(C.l)

and

(C.2)

where L is a real rational, not necessarily stable matrix of less than full rank. This is of
no influence for the minimization problem. It ensures only that Zk,l is of full rank. We
consider equalizing compensators, K, which have the property that : 06

(C.3)

Let the general problem matrix G have a left coprime polynomial matrix fraction
description :

(D D)-I (N N )G _ D/N
,

_ 1.11 1.11 1,11 /,11

o D,:D. N1:J,1 ~;rl

and the compensator transfer matrix a right fraction description :
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then the closed-loop matrix is given by ;.

MI; - Gu + G:11 K { 1 - G22, K r1 G21

- Dj,l\ [ Nf,l1 - ( Df,12X, - Nf,12 Y, ) { D,:nX, - N,;rJ.Y, r1 N';21 ]

(C.6)

Because polynomial matrices do (as constant matrices) not commute, we need
polynomial matrix fraction conversion.

(C.7)

then

To make sure that ( Df,12X, - N,,12Y, ) and (D/~X,- N~Y/) are polynomial and to satisfy
Eq. C.2 , we require that : ..

(e.9)

where Pf and Of are polynomial matrices to be determined. Combination of Eq. C.6 , C.S
and C.9 results in :

MI; - D;}lNf,u - Di.tl ( Df,12X, - Nf,12Y, ) { D/;l2X, - N,;rJ.Y, r1
Nt:zl

- Di.l
1
1Nf,11 - ( D"uP, - N,,12Q, ) ( D,;rJ.P,- N/;l2Q, fl 11,;21

We now define a greatest common left factor 15, of 15t.= and NDf1 such that:

(C.IO)

,
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where DPJ and ~):J. are left coprime. Then the polynomial matrix fraction conversion :

allows us to write Mk as :

- -I - - -1 - -I
- Nf,ll Df,l - ( Df,l2 PI - NI).l Q/) NI).l Df,l

- (~ll - lShl~;ll ) Di}

where:

(C.12)

(C.l3)

- -
Sl :- Df,11PI - Nf,l2QI

(C.l4)

The factor l'A has been inserted for later convienence. Finally, we perform the
polynomial matrix conversion :

so that Mk beCQIDes :

- (C.l5)

Substitution of the new Mk in Z yields :

(C.16)

Di.:Rfe (~llIY - lS;NI;ll r(~ll~ - lSfNt:u ) RflDil + LiL, - ').21 (C.l7)

( ~ll~ - '). S;NI;ll r(~ll IY - '). SjJ';ll ) + Rf DiJ LiLfJ/.l IY - ').1RfDi.l D/.1IY
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Since the first term on- the left and the term on the right-hand side of the expression are_

polynomial, also RjDi..LiLf>f,1~ is polynomial. Define :

with i, polynomial. We can rewrite the Eq. C.17 as :

(C.l8)

The equalizing solutions satisfy now the following polynomial matrix equations :

- -
S, - Df,UP, - Nf,uQ,

1 - - -
1 JY - D';l2P, - N',1:lQ,

~)'1 R, - ijJ':ll

The solution of the polynomial equations may be devided into 5 phases :

(C.20)

1)

2)

3)

4)

5)

~lving the equations for 1 - 00 • This solution is referred to
as the starting solution.
Establishing the dimensions and the degrees of the unknown
polynomial matrices.
Converting the set of polynomial equations, by equating
coefficients of like powers, to a set of algebraic equations.
Solving the algebraic equations by using the solution at
infinity as a starting solution and by decreasing 11 I gradually.
Refining the solution for 1 close to the optimal 1 - 1.,.
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Appendix D

Parabolic Set Point Function

In practice step inputs are seldom used for motion trajectories. They cause saturation
of the controller due to the limited acceleration and velocity of the motor and servo
amplifier and therefore result in a poor position accuracy. High order set point functions
are used to overcome these saturation problems. A well known function is the parabolic
profile ( second order ) which is pointed out further in this appendix.

The parabolic trajectory used for point-to-point control is depicted in Fig. D.l .

Ace
-----4 ----i ;~+_-;......

Vel

Pos

--~, ~ ~--

: :· .· .· .· .· .
~ ;
· :

- ---t--..:=:. ...............! ! ! .· . .r t1 .j, t2 i t3--j
Fig. D.l : Parabolic Trajectory ( t1 = t:J )

Before we can derive the form of the parabolic trajectory ( time intervals t1 ' ~ and
~ ) with the corresponding displacement, maximum acceleration and velocity, we will
first consider these values in a theoretical case. Suppose we have an electromechanical
servo system with a bandwidth of fa). rad/s. In our simulation model the resonance
frequency is scaled to 1 rad/s5 ( 'S stands for scaled ). This implies we have to use the
following scaling factor :
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S - 6) b S. (0.1)

The translation from 5 to 55 is the same as a division of (,). on the frequency axis. In the
time domain this is a multiplication of Co)•• Table 0.1 shows the scaled design values
which will be used in the simulations.

Table 0.1 : Scaled Design Values ( omitting .S )

Description Value

Resonance Frequency 1 rad/s
Maximum Acceleration 2.5 10-4 em/s2

Maximum Velocity 13 10-2 cm/s
Motion Time 126 s
Settling Time 63 s

-

To achieve a displacement of 1 em with the restrictions for maximum acceleration and
velocity of Table 0.1 , the time intervals of Fig. 0.1 can be derived as follows. We will
use the maximum acceleration and velocity to minimize the motion time as much as
possible. We find :

,

The displacement due to the time intervals t1 and t3 ( t1 = t3 ) is :

2 * ( ~ * t1.mu S * 1.310-2 e; ) - 0.676 em

(0.2)

(0.3)

A total displacement of 1 em can be achieved if the displacement during the time
interval ~ is (1 em - 0.767 em) =0.324 em. So, the time interval ~ can be defined
as:

tz S * 1.310-2 em - 0.324 em
S2

-~-2Ss
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The parabolic trajectory with a displacement of 1 em using maximum acceleration and
velocity is defined now. The total motion time is :

(0.5)

The minimum motion time of 129 seconds is larger as specified in Table 0.1 because of
the limited acceleration and velocity. A smaller motion time can only be achieved if the
maximum acceleration or ( and ) the velocity is increased.

Table 0.2 shows the values of the position, velocity and acceleration for a
displacement of 1 em during 129 seconds.

Table 0.2 : Parabolic point-to-point trajectory

Interval Position Velocity Acceleration
( s ) (em ) ( em/s ) ( em/s2 )

, s 0 0 0 0
0<'sS2 1.25 10-4 ,2 2.S 1b-4 , 2.S 10-4
52 < , S 77 1.3 10-2 , + 0.338 1.3 10-2 0

77 <, S 129 1 - 1.25 10-4 ( 129 - t 'f 205 10-4 ( 129 - , ) - 2.S 10-4
, > 129 1 0 0
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