
 Eindhoven University of Technology

MASTER

The evaluation of suitable Object-Oriented Development techniques in order to make a
prototype Point Of Sales Terminal on a personal computer

van Bezooijen, H.

Award date:
1990

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/af1ed922-8648-49c6-9a9b-7fa1be3faf8c

Eindhoven University of Technology
Department of Electrical Engineering
Digital Systems Group (EB)

Schlumberger RPS
Development and Engineering
Industrieweg 5, Bladel (Holland)

The evaluation of suitable Object­
Oriented Development techniques in
order to make a prototype Point Of
Sales Terminal on a personal computer

H. van Bezooijen

Date

Supervisors

Supervising
professor

may 1989 - februari 1990

ir. J.M.H. Dassen
Schlumberger RPS
ir. A.C. Verschueren
Eindhoven University of Technology

Prof. ir. M.P.J. Stevens
Eindhoven University of Technology

The Department of Electrical Engineering of the
Eindhoven University of Technology does not accept
any responsibility regarding the contents of
student project- and graduation reports.

ABSTRACT
In order to obtain an evaluation of Object-Oriented Developping
Techniques Schlumberger RPS wanted to build a prototype Point Of
Sales Terminal based on these techniques.
To accomplish this, at first a study was made of the concepts
of Object-Oriented Development Techniques that are currently
found in literature. This evolved in the implementation of two
possible suitable techniques found in the literature part.

The approach for studying the literature was an object-oriented
Development path analogous to the more or less 'usual'
development path - analysis, design and implementation.

The literature study has lead towards a development path for
Object-Oriented Analysis and Design that is primarly based on
methodologies like Synthesis and Object-Oriented Domain Analysis.
To these methodologies we added some features of Hierarchical
Object-oriented Design (ADA environment) and of the Shopping List
Approach, advocated by Betrand Meyer.

The Obj ect-Oriented Analysis is primarily based on an Information
Model made by Shlaer Mellor, to which we added class
hierarchies and an External Events Model. The External Events
Model is the starting point of the analysis.

The Object-Oriented Design is centered around a methodology
developed by Schlumberger. This methodology is extended with an
Object Diagram and a methodology that links the design to the
analysis; This linking is a mapping of events, found in the
analysis, to methods in the design.

An element of the development path that needs further investi­
gation is concurrency modeling.

The Object-Oriented Programming language used for the prototype
POS Terminal implementation is Smalltalk.

CONTENTS

1. INTRODUCTION. 1

PART I: LITERA.TURE 2

2. OBJECT-ORIENTED PROGRAMMING 3
2.1 Terminology and Definitions 3

2 . 1. 1 The Obj ect 3
2.1.2 The operations of the object 4
2.1.3 Class hierarchy and inheritance 4

2.2 Smalltalk: an Object-Oriented Programming System 7
2.2.1 Object-oriented qualification 7
2.2.2 Smalltalk................................. 7

3. OBJECT-ORIENTED ANALYSIS/DESIGN 9
3.1 The need for Object-Oriented Analysis/Design 9
3.2 The development path 12
3.3 Fundamentals of Object-Oriented Development 13

4. OBJECT-ORIENTED ANALYSIS/DESIGN METHODS •............ 15
4.1 Hierarchical Object-oriented Design (HOOD) 15
4.2 An integration of Objects in Structured

Analysis and Design 20
4.3 The Shopping List Approach 21
4.4 Object-Oriented Analysis and Design 22

4.4.1 Synthesis 22
4.4.2 Object-Oriented Domain Analysis (OODA) 24

4.5 Evaluation of the methods, 26
4.5.1 Comparing the methods 26
4.5.2 Conclusions 27

PART II: AN OBJECT-ORIENTED IMPLEMENTATION 30

5. THE
5.1
5.2
5.3

POINT OF SALES SYSTEM••....
The system's hardware•.....•..........
The system functional i ty .
The user interface .

31
31
33
35

6. OBJECT-ORIENTED ANALYSIS 37
6.1 The strategy 37
6.2 The Analysis 39

6.2.1 The External Events Model 39
6.2.2 The Information Model 41
6.2. 3 The state Model 47
6.2.4 The Class Hierarchy 51

6.3 Results 52

7. OBJECT-ORIENTED DESIGN 53
7.1 Design considerations 53
7 • 2 The des ign 54

7.2.1 Step 1 (conceptual design) 54
7.2.2 step 2 (detailed design) 56

7 • 3 Rev i ew .••.•.•••••••••.••.••..•••••...••..•.•..... 58

8. OBJECT-ORIENTED IMPLEMENTATION 59

9. CONCLUSIONS AND SUGGESTIONS 60

10. LITERA.TURE 62

APPENDIX 1
APPENDIX 2
APPENDIX 3
APPENDIX 4

APPENDIX 5
APPENDIX 6
APPENDIX 7

Context Diagram and External Events List 65
Entity Relationship Diagrams 71
Entity and Relationship Descriptions 76
State Models 116
Cornrnunication Model 120
Events List 121
The Class Hierarchies 129
Method descriptions 130
Obj eet Diagram 174

1. INTRODUCTION

Koppens Schlumberger is a manufacturer of gas station
equipment. This equipment can vary from a single dispenser to
a complete gas station outfit.
An important part of this equipment is the Point Of Sales
(POS) Terminal.
The POS Terminal functionality consists of:
(1) hardware control of dispensers, credit card and banknote

acceptors, modems
(2) cash register functions
(3) management functions, like stock control, financial

reports
(4) communication with a host for transaction clearance
(5) software downloading

Nowadays a POS Terminal has grown to a multi-processor system
with several Mbytes of application software. Currently used
techniques for the software development are based on the
structured analysis and design methods (Ward-Mellor and
Hatley-Pirbhay).
The applications developed at the Development and
Engineering Department of Koppens Schlumberger are systems
with only a certain basic functionality.
This functionality is extended and adapted to the divergent
wishes of the clients in different countries.
This approach demands software requirements like reusability
and extendability.

Over the last years a relatively new method of programming
has come up, Object-Oriented Programming (OOP).
OOP is developed to support software requirements such as
reusability, extendability and understandability. The current
availability of analysis and design techniques for Object­
Oriented Systems is limited. At Koppens Schlumberger one was
interested in an object-oriented approach for software
systems development.
The graduation subject is described as:

Make a small (working) prototype POS Terminal on a
standard PC (personal computer). To accomplish this study
the literature for suitable Object-Oriented Development
Techniques and evaluate these.

This report is divided into two main parts. The literature
part includes the concepts of Object-Oriented programming ,
abstracts of the literature study and conclusions for the
direction(s) to follow to obtain an Object-oriented Design.
The second part deals with the implementation of two
possible suited techniques, evolved from the first part, for
this project. At the end of part two, recommendations will be
given for further development of Object-Oriented systems.

1

2. OBJECT-ORIENTED PROGRAMMING

In the first section of this chapter an overview of the
thinking and meaning behind Object-oriented Programming (OOP)
is introduced. Furthermore the most important terminology
used in this programming will be explained and defined.
The second section deals with an Object-Oriented language,
Smalltalk. This language will be used to implement our
prototype POS terminal.

2.1 Terminology and Definitions

2.1.1 The Object

Everything in OOP focusses on objects. One can say that an
object is a model of a "real world" entity. One can model a
house, a car etc. Our problem domain is a subset of this
"real world". How an object is modelled depends on the use of
this object. If for example the criterium for a airplane is;
it flies with an engine, then every flying thing with an
engine is an airplane.
The object is fully characterized by its (internal) state and
its interface. The internal state is described with what is
called the attributes of the object.
In our example an airplane can have attributes like number of
passengers, maximum fuel etc. The attributes are the private
data of the object. The state of an object is comprised of
the current values of the attributes.
The interface of an object consists of a set of actions.
We want objects to perform these actions. To accomplish this
we need a set of operations that act upon the object.
Operations that could act upon an airplane are take-off,
land, take-passengers, fly-a-direction etc.
These operations don't teIl us how the object performs them.
Neither do we know what and how its attributes are involved.
with help of these object descriptions we try to give a
summary of what an object is.
An object is a combination of data (attributes) and
operations, it has a hidden internal structure (a state), it
is accessible through a set of requests (operations) - the
object's interface - and has"identity to distinguish it from
other objects.
The hidden internal structure is the basis for information
hiding. Information hiding is used to conceal properties that
are unimportant to the user of a particular object. It also
plays an important role in the analysis and design of object­
oriented systems.

3

2.1.2 The operations of the object

The operations of the objects mentioned in the previous
section can be viewed as services which are offered to the
users of an object.
The object has two kinds of operations, public and private.
The public operations are the offered services which is
called the object' sinterface. The private operations are
solely used by the object itself.
The terms operations, services and methods (Smalltalk
terminology, see section 2.2) are synonyms.
The set of required services that an object needs of other
objects, to fulfill certain actions, is called the required
interface.

The interaction mechanism between objects is a message
passing model.
Message passing has a certain security advantage. Because the
objects knows what methods it has to offer it will refuse an
unknown message or i t can rej ect a message that carries a
wrong data type. The response to a known message depends on
the internal state of the object.

A method can have zero or more arguments. The receiving
object knows how many arguments it has to expect. Type
checking of the received arguments can be done at compile
time or at run time, depending on the used language.

2.1.3 Class hierarchy and inheritance

To organise the objects we need a kind of a catalog to put
them in. These catalogs are called classes. A class defines
the general characteristics of a group of objects. For
instance the classes person and dog belong to class mamrnals.
The person 'John' is an instance of the class man. From this
moment on we refer to a class if we describe the general
features and we refer to an object if a specific instance of
a class is mentioned.
The further one extends the class hierarchy the more specific
a certain characteristic of a class attribute is specialised.
The subclass person can be divided into different subclasses
like man and woman.

From an opposite point of view it is possible to grow to
classes at a 'higher level'. This is a form of genera­
lization of class characteristics. We can attach the class
students as a subclass to the already mentioned class person.
This process of generalization is actually a modelling for
data abstraction.

4

To formalize the concept of class we can use abstract data
types (ADTs). Combining the concept of data abstraction and
classes it is possible to get an explicit (Meyer [3])
description of classes of data structures. This leads us to
the theory of abstract data types.
This theory is based on the fact that abstract data
structures are specified by their available services and
properties of these data structures and not by their
implementation. Meyer [3] gives a specification of abstract
data types. This includes a formal syntax and semantics
specification of the abstract data type.
The abstract data type is a class of data structures
described by i ts interface. With these properties we add
another element to the object description of section 2.1.1:
Objects are encapsulations of abstractions.

In Figure 2.1 we see a part of the class hierarchy of the
class magnitude (Smalltalk [5]).

FLOAT
DATE

FRACTION

MAGNITUDE NUMBER

TIME
INTEGER --+--

LARGENEGINTEGER

SMALLPOSINTEGER

SMALLINTEGER

FIGURE 2.1 MAGNITUDE CLASS HIERARCHY

In Figure 2.1 we see that classes are identified by a name.
This name is a short description of what the class
represents.
Obj ects are instances of a class. They are represented by
identifiers.

There is a second element to putting objects (classes) into
class hierarchies: inheritance.
Inheritance is the property of ascribing features of a class
to i ts subclasses . The inherited features can be external
(methods) and internal (the different states).
Taken the example of the class hierarchy of MAGNITUDE of
Figure 2.1 it is clear that a method 'add' belonging to the
class NUMBER is inherited by the class INTEGER. Only the
implementation differs. Another technique of reusing methods
is to redefine them for the sub classes.

5

If a class inherits properties from its ancestors, like
INTEGER inherits certain properties from MAGNITUDE, i t is
called single inheritance.
Multiple inherit;ance inheriting properties of different
other classes - 1 S also possible but this problem area is out
of our scope, so we will not go into this part of the object­
oriented domain.

The features abstraction, class
gives the user the possibility to
Already defined messages in a
hierarchy can be freely used
description permits it.

hierarchy and inheritance
reuse code.
higher rank of the class
by sub classes if their

It is also possible to send the same messages to different
classes. We could think of an object STRING that is sent the
message ' add ' with as an argument another string. In this
case we would expect a new string that is the union of the
two strings.
I f two classes respond to the same message , this is called
'operator overloading'. The parameters of these messages need
not be the same. When two classes respond in a meaningful
(but possible different way) to exactly the same message,
this is called polymorphism.

6

2.2 Smalltalk: an Object-oriented programming System

2.2.1 Object-oriented qualification

Object-oriented programming is defined as programming in a
language where objects form the basic structures while the
language must support the object-oriented paradigm.
The object-oriented paradigm is a general term for a set of
characteristics that is used to define and describe the
terminology of objects.
These characteristics are abstraction, encapsulation, class
hierarchies and polymorphism.

When we use the term objects we mean objects that are
qualified by the above description.
There are a lot of languages with obj ects as the maj or
structures but only if all the elements of the object­
oriented paradigm can be applied to a such a language it is
qualified as an object-oriented language.
Wegner [18] described language qualifications from obj ect­
based (ADA) via class-based (CLU) to object-oriented
languages (SimuIa, Smalltalk).
Meyer [3] distinguished seven steps that lead to true object­
orientedness. Only systems (languages) that come to the last
step may be cal led object-oriented.
These steps cover beside the in this section already
mentioned object-oriented features:

- automatic memory management
- dynamic binding
- multiple and repeated inheritance.

Except for the multiple inheritance, Smalltalk satisfies all
these properties mentioned by Meyer.
Smalltalk is the language chosen to implement our prototype
POS terminal.

2.2.2 Smalltalk

Smalltalk is more than just an object-oriented language, it
gives the user a complete programming environment.
This environment supplies a user interface that contains
multiple windows, icons, text and graphics windows, menus,
mouse use and an extended class hierarchy.

Smalltalk is cal led a 'truly' obj ect-oriented programming
language. The classes, the methods and their responses are
objects.
Classes are instances of higher-level classes, the "meta­
class". There is one root class, called OBJECT.
The objects communicate through messages, which consist of an
'method selector' and, possibly, parameter objects.

7

The reception of a message invokes the evaluation of the
'method' which matches the 'method selector'. The method is a
piece of executable Smalltalk code, which i tself can send
messages to other objects and manipulate (amongst others) the
instance (private) variables of the receiving object.
When evaluated, a method always returns a result object to
the sender of the message.
Whenever we talk about message or method sending to objects
we actually mean the above described meachnism.

Smalltalk distinguishes three forms of messages: unary,
keyword and binary.
Unary messages are messages with no arguments. A Smalltalk
expression like: 'string' size, will return the number of
characters of the object 'string'. The message is 'size'.
Keyword messages are messages with one or more arguments.
The expression:'strang' at:4 put:$i, will replace the
character 'a' by the character 'i'.
Binary messages are messages which are evaluated from the
left to the right.
The expression: a + b * c, means actually (a + b) * c.
It is also possible to send more than one message to an
object at the time by using a semicolon to separate messages.
The expression: set add:2 : add:3, shows how two items (2,3)
are added to an object set.

Smalltalk gives the possibility to define class methods and
class variables. Smalltalk is case - sensitive.
The user is provided with a basic library of classes that has
enough capacity to develop his own system.
The private variables of objects are called attributes.
Smalltalk has no protection against the use of private
methods, it is the responsibility of the user to make a
correct use of the private methods.

The type checking is

garbage
non-used

an automatic
worry about

Smalltalk is a dynamic typed language.
done at run-time.
Furthermore, it is equipped with
collector. The user doesn' t have to
objects that occupy unnecessary memory.

It is already mentioned that Smalltalk is more than a
programming language.
The interaction between the Smalltalk system and the user is
achieved through an extended user interface that is
completely window driven.
It is easy to extend the system with new applications made by
the user or with commercially purchased applications.

8

3. OBJECT-ORIENTED ANALYSISjDESIGN

Although Object-oriented Programming (OOP) and has become an
area of great interest in recent years, object-oriented
development methodologies are scarce.
Presently, the analysis for these designs is done with
techniques introduced by Ward-Mellor [7], Hatley-Pirbhay [6]
and Jackson [8]. As a result most of the CASE tools are based
on these techniques and have strong similarities.
Te use OOP as a new implementation strategy doesn' t imply
new or improved analysis and design techniques.
One of the first papers about what is called an obj ect­
oriented development (Booch [19]) suggested already that
design methods would have to adapt to this environment.
In this chapter we describe some, what are believed, general
advantages of such an object-oriented development
environment.

An object-oriented development is the path that is gone
through from the idea of a system to i ts obj ect-oriented
implementation. We shall call this trajectory, the (software)
development path.

3.1 The need fer Object-Oriented AnalysisjDesign

Programs are growing in code size and complexity. AIso, there
is an increase in speed of successively updating versions of
programs. Software requirements like robustness, speed,
cerrectness and reliability are not enough to fulfill these
huge and fast changes.
Adapting the software development process, with respect to
the fast changes, demands a more flexible approach to
software design.

Methods that cope with the increasing complexity of software
systems are based on an increased use of predesigned software
libraries andjor are based on decomposing the system into
smaller subsystems. Decomposition criteria that are in use
are event partitioning and functional partitioning.

The methods based on decomposition can be characterized as
Top-Down approaches (see [6,7,8]).
A Top-Down method that came recently in use is the analysis
and design method described by Hatley-Pirbhay [6]. Their
method is focused on functional decomposition. These Top-Down
approaches have several advantages. Besides the fact that
they are a weIl established and described discipline, they
encourage a logical development, tackle the system complexity
by making smaller subsystems (the functionally decomposed
subsystems) and are supported by various CASE tools.

9

These advantages merely apply for slow evolving systems with
a strong centralized development.
However, as we mentioned above, systems are changing rapidly.
As a system evolves through its lifetime, it can be updated,
replaced or even become redundant.

One of the most volatile parts of a system are the interfaces
between the system and its terminators. These interfaces
determine the 'top' of a system. When using a (functional)
top-down analysis and design approach in such a rapidly
changing system (Hatley-Pirbhay [6]), there are some serious
drawbacks.

Most of these drawbacks are due to the fact that during the
evolution of a system the criteria for system decomposition,
the functions, are changing also.
The designer must try to avoid a premature binding of the
functional relations. In this he/she can prevent that changes
in the "top" lead to many changes in submodules and a lot of
time and effort spent to the analysis and design is wasted.

A second important drawback of top-down design is that the
interesting data structures are global. Any change in
representation of these data structures will effect all the
submodules that need these particular data structures.
Using global data structures has another disadvantage.
Breaking up a system in order to decrease the complexity one
focuses on for this decomposition important properties.
Other not so important properties stay hidden.
This process of information hiding is as good as impossible
when using global data structures.

The third drawback of the functional top-down approach is
that it doesn't support data abstraction, which can be very
useful in describing and designing software systems.

Other drawbacks mentioned in literature are the mismatch
between the software model and the 'real world' and the lack
of appropriate approaches to concurrency in top-down design.

It is obvious that with all the disadvantages mentioned
above, the current (functional) top-down analysis and design
methods are not the solution in reducing the system
complexity, and hardly offer any methods for reusing code.

What we need is a new criterium for system decomposition.
This criterium must be based on the most persistent elements
in a software system: the data structures which from now on
we shall callobjects or entities.
We wil I use the description for objects as given in chapter 2
when referring to enties or objects.

10

Using abstract data types as the basis for system decomposi­
tion is believed to contribute to a more modular design and
the reuse of code. In this way we obtain objects as the basis
for system modularity. Modular building of the system must be
based on cooperation between objects.

What about the other mentioned drawbacks of top-down
development ?
Looking again at the description given for objects in chapter
2, it is not so difficult to understand that an object is a
natural basis for concurrency.
Changes in object structures tend to be more local compared
with the global changes of the top-down approach.
The concept of information hiding is also encapsulated in the
description and use of objects.
An object knows what it must perform through its defined
operations. The same argument applies for changes in data
representation. If the internal representation of data
changes, the external representation of this data inside the
object does not change.

This leaves us with the matter of code reuse.
Only using objects as the decomposition basis itself does not
imply reuse of code.
Putting the obj ects into abstract classes and include the
feature of inheritance to the class structure makes code
reuse possible.

We made a summary of a few of the expected advantages when
using the object-oriented paradigm in system development.
The question that now arises is whether this different
approach still follows the same analysis and design path that
is currently used by the 'traditional' methods and what parts
of these methods can be applied in an object-oriented
environment.
In the next paragraph we will describe what development we
have in mind when referring to the development trajectory.

11

3.2 The development path

The process of developing a software system is a long
trajectory. Roughly one can distinguish the following phases
in such a trajectory: user requirements negotiations,
analysis, design and implementation.
We call this trajectory the development path.
In recent years this path has been refined by improved and
integrated analysis and design methods.
The growing availability of CASE tools for these methods made
the development process more controllable and verifiable.
The growing interest in object-oriented systems caused a
different approach for the analysis and design phase.
At first most attention was paid to the design phase
[16,19,21]. More recently there have been developments in the
analysis area [4,10,17,23].
The goal is a fully object-oriented development path.
Schematically depicted in Figure 3.1.

TEXTUAL STATEMENT

I,
IOBJECT-ORIENTED ANALYSIS I

OBJECT-ORIENTED DESIGN

OBJECT-ORIENTED IMPLEMENTATION

FIGURE 3.1 AN OBJECT-ORIENTED DEVELOPMENT PATH

Some of the above mentioned methodologies try to make a new
development trajectory, while others are merely involved with
one of these phases, or try to use existing methods for an
object-oriented environment.
In chapter 4 we will summarize the features for four of the
most interesting directions of research there are at this
moment in literature, concerning object-oriented development.

12

3.3 Fundamentals of Object-oriented Development

Booch [19J was one of the first who used an object-oriented
approach for the decomposition of a software system. Although
this approach was primarily intended for an ADA environment,
the properties of his methodology can be seen as a general
starting point in the object-oriented developments area.

The modelling is focussed around real world objects.
An object is defined as an problem domain entity with the
following characteristics:

- has an identifier (a name)
- has state
- requires and delivers services for other objects
- has restricted visibility of and by other objects
- is an instance of a class
- may be viewed by its specification or by its

implementation

Abstraction and information hiding are the bases of object­
oriented development. The development of Booch [19J consists
of five major steps:
1. Find the objects and their relations from the problem

domain. To accomplish this, model them according to their
role in the problem domain. Booch uses a kind of data
flow diagrams to find the objects.
Establish classes of found objects.

2. Identify the services (operations) delivered and used by
an object. This description includes also the constraints
upon the use of the services from an object.

3. The establishment of the visibility of the object in
relation to other objects.
This step places the object in a layered structure.

4. Establish the interface of each object. These are the
statie dependencies between the objects.

5. Implement the object.
This step involves, if necessary, the decomposition of an
obj ect into other obj ects or - in the contrary - the
composition of an object from other objects.

The object-oriented development steps described by Booch are
mostly the design and implementation parts of the
development path of Figure 3.1.
A separation between an object-oriented requirement and
analysis phase preceding the design and implementation phase
isn't made in this methode
The different layers of abstraction that come across the
development are collections of objects and classes that are
called subsystems.

13

As benefits of an object-oriented approach are mentioned:
- reduction of the total life-cycle software costs
- the implementation of robust systems
- The modeling of real world entities

Booch doesn't mention inheritance as a tooI for reusability,
because ADA doesn't support inheritance.
Although the object-oriented development description of Booch
isn't complete, it was a first step for building a new
software development path.

14

4. OBJECT-ORIENTED ANALYSISjDESIGN METHODS

In this chapter a summary is given of four, in my opinion,
important directions of research in the field of object­
oriented development.
In the last paragraph of this chapt~r we make a comparison
between the summarized methods and give an overview of what
we think are useful parts for developing a fully obj ect­
oriented development path.

4.1 Hierarchical Object-Oriented Design (HOOD)

HOOD [16] is originally developed for an ADA environment. The
ADA environment is more then j ust a language. We are only
interested in the object-oriented features of ADA and HOOD.
Because ADA doesn't include the inheritance mechanism it is
clear that strictly following the definition for object­
oriented Ianguages (chapter 2), ADA is not an object-oriented
language.
However, as we shall see, HOOD has some interesting elements
which can be used in object-oriented modeling.
In Figure 4.1 The pIace of HOOD in the software development
path is shown.

TEXTUAL
STATEMENT

OBJECT-ORIENTED OBJECT-ORIENTED
AHALYSIS DESIGN

OBJECT-ORIENTED
IMPLEMENTATION

A. OBJECT-ORIENTED DEVELOPMENT PATS

ARCHITECTURAL
DESIGN

REQOIREMENT DEFINITION

B. BOOD LIJ'ECYCLE

-- BOOD

DETAILED CODE
DESIGN

-po

FIGURE 4.1 HOOD IN THE SOFTWARE LIFE-CYCLE (from [16])

Figure 4.1 indicates the potential use of HOOD in our
development trajectory of section 3.2. In Hierarchical
Object-Oriented Design the objects are the basic elements of
modularity.

15

The implementation phase of the software development path
crosses, what in HOOD is called, the detailed design phase.
The pseudo code given in the detailed design is almost an
implementation in object-oriented terms.

HOOD deals with problems like:
- Entity abstraction
- What is the relation between the objects
- Object decomposition
- What kind of control must be applied

What kind of (graphical) representation is needed

An object in HOOD is a data package with related operations
(procedures). It is a model of a problem domain entity.
HOOD enforces a structurized design onto a system.
This structure is characterized by three groups of
principles (HOOD [16]):

- Abstraction, information hiding and data encapsulation
- Two (system) hierarchy structures (see below)
- Control structures

The first group of principles are characteristic for the
object-oriented paradigm.
The object is described by its statie and dynamic properties.
The statie properties are a description of the object's
interface and its internals. The statie properties also
include a 1 ist of operations required from other obj ects .
This description and use in HOOD differ little from their
general application (chapter 2).
The dynamic properties describe the communication (protocol)
between objects.
What is interesting are the other two principles, hierarchy
and control.

Hierarchy in HOOD is twofold.
Every object can be decomposed into other (sub)objects.
The decomposed object is cal led the father and the sub­
objects are referred to as the children. This is called the
parent-child relationship. An operation wanted from the
father is actually executed by one its children, if it has
children !
The second form of hierarchy is caused by the use
relationship. An object can use the features of other
objects. If the system is split into layers, the used
objects are placed in junior (lower) layers as compared to
the using obj ects, which are placed in the senior (higher)
layers. How many layers a system needs depends on the system
complexity. An object in a lower layer doesn't need to know
about the objects in its senior levels. It only provides
operations to them.

16

"Unintelligent" objects, for instance, databases will be
placed in the lower layers while objects representing major
sub systems are placed the higher ones.
Figure 4.2 shows the two relationships graphically.

PARENT - OBJECT

CBIID ­
OBJT.C'r PARENT - OBJECT

PARENT-CBILD
RELATIOHSBIP

OS! RELATIOHSBIP

FIGURE 4.2 RELATIONSHIPS IN HOOD

Control deals with the level of parallelism. If the object
that uses another object stays "active", there will be a new
control flow created in the used obj ect. This new control
flow can act in parallel to the original one.

Control structures in HOOD and the use relationship are
strongly coupled. Control structures are a description of the
dynamic properties of the objects. It describes how the use
relationship is executed, when looked at from the using
object.

An execution can be performed sequentially or in parallel.
In the second situation the response of the operation request
depends on the internal state of the used object: the
operation is said to have constraints and a new control flow
is generated inside the used object. Based on the two
execution types, HOOD divides the obj ects into two groups,
active and passive objects. Passive objects have no form of
parallelism at all. Active objects must have at least one
constraint operation. In HOOD we make a distinction between
two kind of operation constraints:

- The internal state of the object, the execution of the
operation depends on the sequence of the previous
operations.

- The type of the operation request, for example time-out
operation types.

17

To avoid circular control it is forbidden for passive objects
to use active objects. Of course it is still possible to get
a deadlock, when two active objects are using each other !

Another way to look at the layered object model that is found
in a HOOD like environment, is to consider it as layered
virtual machine [21]. Between the layers there is a virtual
machine interface. The set of objects in a layer satisfy a
certain level of abstraction and information hiding. This
view of the object model and its representation matches the
hierarchy structures discussed above.

HOOD [16] advocates a designing trajectory started with a top
object that is decomposed into sub objects. The process of
decomposing continues until non decomposable (terminator)
objects are found. This qualifies HOOD as a top-down design
methode Seidewitz and Stark [21] also mention a splitting,
not a decomposing, of the top as a possibility when the
strong centralization causes bottlenecks.

OBJECT ACTIVATORS

LAYER 1
INTERFACE

LAYER 2
INTERFACE

FIGURE 4.3 A HOOD OBJECT DIAGRAM

18

towards the
abstraction
analysis is
an object-

This causes multiple control and as a consequence there is
concurrency at this level. As Meyer [3] stated, real systems
have no top. In Figure 4.3 we see an example of the two
hierarchies put together in a layered object model. One
notices that in this obj ect diagram the parent-child rela­
tionship and the provided interface are not shown. Obj ect
activators are kind of use relationships for active objects.

HOOD as the name refers to, is primarily targeted
design phase. Stark and Seidewitz [21] mention
analysis preceding the design phase. Abstraction
a transformation from structured analysis to
oriented design.

In Figure 4.4 we see such a transformation. The rectangles in
the Data Flow Diagram are the identified objects. The
heuristic for finding these objects is simply the detection
of the data stores combined with the operations acting upon
the data stores. Disadvantages are that one doesn I t know
whether the obtained interfaces are minimalized or not and if
of all the proper-ties of objects can be applied to the in
this way obtained objects.

INPUT

OBJECT 2
(2.0,
4.0)

OUTPUT

SA LEVEL 0 DATA FLOW DIAGRAM OBJECT DIAGRAM

FIGURE 4.4 MAPPING FROM SA TO AN OBJECT ORIENTED MODEL

A look alike methodology is discussed in the next section.
HOOD [16] refers also to SA methods but doesn I t mention a
mapping from analysis to design.

19

4.2 An integration of Objects in structured Analysis and
Design (SA/SD)

The SA/SD analysis and design method that is based on
process decomposition. It is a purely top-down methodology.
Elements used at the SA/SD process are context diagrams,
entity relationship diagrams (ERD's) , data flow diagrams
(DFD's), structure charts and transformation schemes.
An integration of the his method with an object-oriented
development is described by Ward [17]. His obj ect-oriented
development and SA/SD have some similarities. Both decompose
a system into smaller sub systems, both use ERD's.

The basic difference is that the object-oriented approach
uses events for the communication between objects. A list of
events and arelation between objects can be used to identify
the objects. This leads to the ERD's.

SA uses also ERD's, but the entities found here are nothing
more than data stores. Ward [17] loosens this constraint in
order to include all objects and to show a bond between
respectively the SA and the object-oriented approach.
In these expanded ERD's abstract data types and inheritance
(through subtyping) are identified.

The integration of the two techniques is done at a high level
of detail. A high level transformation scheme together with
ERD's is used to find the objects or group of objects.
Control processes of the transformation scheme become sort of
Icontrol' objects.
Transformations or groups of transformations are transformed
into respectively objects and groups of objects.
With the methodology of Ward [17] we come to a similar
object partitioning as we have seen in section 4.1.
HOOD can also start with SA. Although the result may look
alike, the road to it isn't.

Ward [17] makes an explicit use of the ERD and its heuristics
to detect the objects. For instance to find subtypes that
can be used for inheritance. In the contrary, we do not find
inheritance in HOOD.
Ward believes that there is no fundamental difference between
SA/SD and object-oriented design.

20

4.3 The Shopping List Approach

This "method" advocated by Meyer [3] is more a philosophy
then a complete design methode
The shopping list approach is a description for the relation
between the designers and users of objects.
The designer is a provider of classes of objects, object
descriptions and a list of the various operations belonging
to the objects.
The designer will postpone as long as possible the sequence
specification of the operations. This makes using the objects
more flexible.
An object is used by means of its messages. When a user or a
designer of objects wants to assembIe or design new objects
he will have to make an arrangement of the sequence of
operations of the used objects in order to fix the interface
of these new objects.
At this point of the development cycle of obj ect-oriented
software the top-down approach and the bottom-up approach
interfere.
This method of designing objects is opposed to methods where
premature binding of the order of relationships is obliged,
like the data flow diagrams used in top-down design.

The Shopping List Approach has the disadvantage that
designers are tempted to the excessive use of classes. This
can lead to a lot of code overhead.

Related to the Shopping List Approach is the idea that
software components can be standardized and used in the same
way as it is done with IC's, composing modules with already
made library elements.
Ledbetter and Cox [20] call these reusable software
components Software-IC's.
They can be compared with the classes of objects as discussed
in chapter 2.
The basic idea behind building Software IC's is object
programming through messages.
Requirements needed to build and use reusable components are:

- encapsulation
- inheritance
- dynamic binding
- direct mapping from real world functions to implementation

These four requirements are covered by the obj ect-oriented
paradigm.

21

4.4 object-Oriented Analysis and Design

Recently two methods are published that have an object­
oriented view as a starting point. These methods are
Synthesis [23] and Object-Oriented Domain Analysis.
In this section we give a summary of these methods.

4.4.1 Synthesis

The base for Synthesis [23] is information modeling. It uses
the Context Diagram, Events Lists, ERD's and the state Model
from the Information Model.
Other components are an object class hierarchy, event parti­
tioned neighborhood diagrams and supporting textual
statements. Central to the Synthesis Model is event partitio­
ning. Neighborhood diagrams are used to show the detection
and response for one, or a related group of events. In figure
4.5 a simple example of a neighborhood diagram is shown.

EXTERNAL
DISPENSER

•
(STIMULlJS)

(RESPONSE)EVENT 1:
nozzleUp EVEN! 5:

fuelPrice

,

FtJEL-DISPENSER

1'12:
t f IJelPrice EVENT

EVENT 3: notify released
return f elPrice

r 't

PRICE-TABLE
,.....-

tJSER INTERFACE

EVER
ge

FIGURE 4.5 A NEIGHBORHOOD DIAGRAM EXAMPLE

The diagram from fiqure 4.5 is a simple example of the
situation at an EXTERNAL DISPENSER where a customer takes a
nozzle. The FUEL-DISPENSER gets a FUEL-PRICE from a PRICE­
TABLE and releases the EXTERNAL DISPENSER by sending the
fuel-price to it. Furthermore the USER INTERFACE is notified
that a FUEL-DISPENSER is released.

22

The Synthesis Model is built into two steps.
First one makes in parallel an Augmented Information Model, a
Context Diagram and an (External) Events Dictionary.
The Augmented Information Model is an extension of ERD' s.
They contain information about the entities and their rela­
tionships. The goal of this step is to centralize information
around the entities of the problem domain.

We now have, what is called , an Obj ect-Oriented Essential
Model. This model is the basis for the next step.
In this step relevant objects are generated for entities,
relationships and event types found in the Essential Model.
This must be done using the properties of obj ects, putting
them into classes and make use of inheritance. The objects
are supplied with initial methods, attributes and state
diagrams. Using the Events List a Neighborhood diagram is
made for every event. Eventually all the neighborhood
diagrams are put together in layered graphical
representation.

Synthesis uses many already known tools. The neighborhood
diagram is actually a DFD for object-oriented systems.
The analysis to design mapping part of Synthesis isn't very
weIl worked out. This is probably done because Synthesis is
meant to be an object-oriented analysis for a lot of
different implementations. The boundary between analysis and
design is probably the step of the creation of neighborhood
diagrams.
The design consists of the mapping of neighborhood diagrams
to an object-oriented programming language.

23

4.4.2 Object-Oriented Domain Analysis (OODA)

Object-oriented Domain Analysis [4,10] has a very similar
approach to analysis as synthesis.
OODA is based on building an integrated set of three formal
models, the Information Model, the state Model and the
Process Model.
To build these models one follows prescribed rules and a
specific order of integration.
In Figure 4.6 the sequence and the integration of the three
models is shown.

primary
sourcel

/

IPROCESS MODEL I,

FIGURE 4.6 ANALYSIS PRASE OF SYSTEM DEVELOPMENT (from [10])

The graphical form of the Information Model is a kind of
extended ERD.
The extension pays attention to the kind of relationship
there exist between the entities and it formalizes them. Also
It formalizes the description of the objects. Further it pays
attention to the typing of obj ects and the construction of
super and sub types.
The Information Model emphasizes on the relation between the
problem domain entities. The documentation for every
individual information model has a textual and a graphical
part. It is a passive description of the problem domain.

24

state
object
output

After finishing the Information Model (see Figure 4.6) the
dynamic behaviour of the entities is described in the
state Model. It is assumed that every entity has state. It
must be possible to make a state machine for every entity
from the Information Model.
The graphical notation of the state-machines is called a
life-cycle diagram. In describing the life-cycle of an object
it is important to examine the following features: states,
events and actions • state descriptions are made in pseudo
code. The events cause the state transformations. An action
can be seen as one state process.

The interactions between the different individual
models is graphically shown in what is called the
Communication Model. This diagram show the input and
events for each state model (object) in the system.

The Information Model and the state Model together form the
basis for the Process Model. The Process Model consists of
separate DFD' s for each state of each entity of the state
Model.
The Process Model adds little new knowledge to the analysis.
It is arefinement for the analyst to find generic processes
that drive objects through their life-cycles.
The genericity found in this way can be used to maximize
thereusability of objects and processes.

OODA doesn't refer to the use and specification of externals
in the three previously described parts of the analysis
phase. This is the successive step that has to be carried
out. The external specification phase is a description of
what the automated system must do and how i t communicates
with the outside world. It states what processes have to
carried out by humans and what processing is done by the
system.

Shlaer Mellor [10] mention two alternative methods for the
external specification phase. Making a list of external
events reflects the external view of the system. An
alternative way of external specification is focusing on
what's inside the system. The second alternative is the less
recommended method to use [10, pages 99/100].

Although the external specification phase is certainly not a
part of the analysis in OODA it is described in this section
to show the basic difference between OODA an Synthesis.
This is the moment in the software development cycle where
the externals are introduced.
Synthesis start the analysis phase with a context diagram and
a list of external events. OODA calls this the external
specification phase, which comes after the analysis.

25

needs a
[21] and
analysis.
specific

4.5 Evaluation of the methods

In the previous sections we have summarized four different
methods that describe parts of the software development
process when using objects as essential units.
In this chapter we will compare these methods regarding their
place in the development path and we will try to answer the
question whether a fully object-oriented development path is
needed or that individual steps can be carried out without
the object-oriented view.

4.5.1 Comparing the methods

Mapping the described methods from the previous sections onto
the steps of the obj ect-oriented software development path
(Figure 3.2 without the object-oriented meaning), we notice
that there is not one method that covers the complete
development path.

HOOD (section 4.1) is a design method that
supplementary analysis method, Stark, Seidewitz
Booch [19] mention the use of structured
Furthermore HOOD is primarily intended for one
language, ADA.

An object-orientation integration with SA/SD (section 4.3)
leads to an object-oriented design but starts with a
structured analysis approach. It is questionable if the
analysis of this method can be qualified as an object­
oriented analysis.

The Shopping List Approach (section 4.3) is a special case,
i t is more a philosophy than a method and is used in the
design and implementation phase of the development route.
This approach is only useful if there are class producers and
class users. To compose his own software tooIkit, the user
makes a list of the generic classes he needs.
Building applications with the Shopping List Approach demands
a proper use of the inheritance concept.
The preparation of the generic modules requires object­
oriented analysis and design techniques in order to capture
all the object-oriented properties.

Obj ect-oriented Domain Analysis (OODA) and Synthesis (both
section 4.4) develop an object-oriented analysis. They focus
on the information centralization around the domain or real
world entities. Apart from their way of using the external
events these methods look alike. For example the
Communication Model found in OODA can be compared with the
set of all the neighborhood diagrams from Synthesis.

26

Placing all the described methods in an object-oriented
development path we get a table as shown in Figure 4.7.

~
OBJECT-ORIENTED DEVELOPMENT PATS

TErroAL ST. ANALYSIS DESIGN IHPLEMENTATION

BOOD ...
OBJEC'r INTEG:RA%ION ...WITB SA/SD

SlOPPING LIST ...APPROAC.B

SlNTHESIS ...
OOOA ~

FIGURE 4.7 OBJECT-ORIENTED DEVELOPMENT OVERVIEW

The dashed arrow part of the integrated SA/SD method is used
to referto the uncertainty if this part belongs to an object­
oriented approach of the analysis phase.
The continuation of OODA and Synthesis into the design phase
is due the fact that certain ingredients of the analysis
phase of these methods belong to design.
For instance the neighborhood diagrams of Synthesis and the
coding in the state Model of OODA.
HOOD extension into the implementation phase was already
noticed in section 4.1.

4.5.2 Conclusions

The goals of object-oriented development are mainly twofold.
We want to decrease software development and maintenance
costs. On the other hand we need system development
approaches that can cope with the increasing complexity of
these systems. Object-oriented system design contributes to
the decrease of these problems in several ways.

It encourages the reuse of code, implemented by inheritance.
The understandability of systems is improved by modelling
real world entities by their behaviour instead of their
implementation. In this way the feedback between the analyst

27

and his information suppliers about the system is improved.
The same reason holds for the requirements negotiations
between the client and his suppliers.
Describing entities as abstract data types (ADT's)
contributes to the reduction of these problem areas.
Using objects as the basic components in a system design can
contribute to an easier redesign and maintenance.
To explain this view it is necessary to know how the objects
are used and what they do. This brings us back to the
properties inheritance (class hierarchies), ADT's and object
communication.
The specialization of existing objects to create new objects
through inheritance is an obvious example.
The objects communicate with each other using messages. If
the relation changes or a new relation is added between two
objects, the modification of that system part can be achieved
by making local adaptions.
In this case one can think of adding new methods or changing
existing methods (inheritance).

The objective is to find a software development path that
supports the mentioned advantages of object-orientedness.
This leads us the interpretation of the usefulness of the
summarized methods to the object-oriented development path
from Figure 4.6.
From this point of view, the integration of SA/SD in
object-oriented development is of little use.
Although this method supports properties like subtyping and
inheritance it doesn't contribute to easier system
modifications. What to do if the translation from SA/SD to an
object-oriented has been made and changes have to be made?
Probably one has to do the SA/SD integration once more
because the system structures are processes and not objects.
In my view this is a one-way method that is only useful to
translate current systems to an object-oriented environment.

Synthesis and OODA are pure object-oriented methods. They are
based on modelling the real world entities and the relations
between the entities. Supporting of this kind of modelling I
would favour starting an analysis with an external events
list. This makes the system easier to understand. This is
done in Synthesis and not in OODA. Therefore I would start an
object-oriented analysis with a Context Diagram and an
external events list. The result of the analysis is a
description of the entities, relations and class hierarchies.

The next step to implementation is probably to to find the
messages belonging to the objects and describing the
communication between the objects through these messages.

28

This can be done with object diagrams using a similar kind 01
control structures as we saw in HOOD. Another aspect of Hoor
is its hierachical structure. Besides the representatior
facet it can be useful to monitor the control structures.

The Shopping List Approach is a methodology that must bE
included in the design and analysis phase. This way 01
thinking forces the designer to make 'good' objects.

29

PART II: AN OBJECT-ORIENTED IMPLEMENTATION

30

5. THE POINT OF SALES SYSTEM

In part I and especially in paragraph 4.5 we made some
remarks and conclusions about Object-Oriented Development
methods. In order to verify these assumptions we want to
develop a prototype object-oriented system.
The results of this evaluation are not only intended to show
the advantages and disadvantages of these methods but can
also be used to give a judgement of the relevancy about
object-oriented development in general.

Our prototype system is a small Point Of Sales (POS) terminal
application for a gasoline station. In this chapter we will
give a description of the hardware connections with and the
functionality of this POS Terminal.

5.1 The system's hardware

The POS terminal is based on a standard personal computer
(PC), IBM compatible. The POS terminal is the "heart" of a
gasoline station. It controls all the devices needed to run
such a station. In Figure 5.1 the POS terminal and the
devices connected to it is shown.

POINT or SALES
TERMINAL RS232

: HOST _X.2sl

~DISK I PRINTERll

~

RS232
~

ADDRESS : i Card Acceptor I
MULTIPLEXER Terminal (CAT)

1'7 BANKNOTE Accertor I--, Terminal (BAT
, I

DISPENSER I: .: PRIRTER21COLUMN 1
1t

IDISPEHSER ~
ICOLUMN 8 I
- - - - - ..J DISPENSER COLUMN ROULES (S) +

CALCOLATOR

FIGURE 5.1 THE SYSTEM HARDWARE

Each of the items of Figure 5.1 is described below.

31

HOST
The HOST is mainly used to obtain on-line
authorization. It can also be used for software
receiving of blacklists, price tables etc.

credit card
downloading,

PRINTER1
This printer is used for the printing of customer tickets or
is used to produce different kinds of reports.

CARD ACCEPl'OR TERMINAL (CAT)
A CAT is a device that can be used by a customer for prepaid
fuel deliveries. The customer has to put in his credit card
and type some data like his PIN code, a Dispenser (Column)
number, etc. The CAT checks this data.
Depending of the card type the system may decide for an on­
line authorization via the HOST.

BANKNOTE ACCEPl'OR TERMINAL (BAT)
Is used in the same manner as CAT, i . e. as a prepayment
device, but accepts only banknotes as input. One needs only a
validity checking of the banknotes.

PRINTER2
This printer is used for making backups of credit card paid
transactions and transactions paid by a BAT.

ADDRESS MULTIPLEXER (KCD)
This device is the connection between the DISPENSER
COLUMN(S), BAT, CAT, PRINTER2 and the PC. It simply reroutes
the messages coming from and going to the PC. Every device
(PRINTER2, BAT, CAT and DISPENSER COLUMN(S)) has an unique
address.
The system isn't aware of the existence of this device.

Dispenser Column(s).
A Dispenser Column exists of a Calculator and one or more
Nozzles and is used to dispense fuel. A Nozzle is identified
by it's fuel type (diesel, super, blended mixture, etc.).
A Nozzle is connected to a fuel storage tank. Only when a
Nozzle is used for a blended mixture it is connected to two
fuel storage tanks.
The Calculator has a display for volume, total price and
pricejvolume. The Calculator communicates with the PC by
means of a set of messages. It has one pump that is put on
during the dispensing. Only one fuel type can be dispensed at
a time.

THE USER INTERFACE
The user interface is a part of the POS Terminal.
Further explanation is given in section 5.3.

32

5.2 The system1s functionality

The POS terminal is placed inside the kiosk (also called a c­
shop). The kiosk attendant (an operator) uses the POS
terminal for cash register applications and uses it to
monitor and control the dispenser (columns).
The user interface displays the data of operator IS current
transaction (payments and deliveries) he is handling.
The operator can authorize and stop a dispenser. During its
operation cycle the dispenser status is monitored on the user
interface. There is also an option for the operator to
monitor the calculator data during the dispensing.
The POS terminal has three access levels:

(1) a service level
(2) a manager level
(3) an operator level

The service level has the highest access mode, an operator
level the lowest. This service level mode is used by a
company service man for changing the configuration settings,
error handling, program updates etc.
The manager level is intended for the station manager only.
The station manager is for instance allowed to change prices,
to produce all kinds of reports, update local accounts and to
change access codes of the operators.
An operator has limited rights on the POS terminal. He may
enter all the functions for the cash register applications
and dispenser control.
The period that an operator is logged in is called a shift.
All the transactions handled by the operator during his shift
are filed with his shift number. In this way a manager is
capable of producing shift reports which allow him to
monitor the operators.
A manager can have also operator access rights. But before
entering management functions he has to guit his operator
mode.

The functionality of the POS terminal can be divided into
five groups,see also chapter 1:

(1) control of peripheral devices
(2) cash register functions
(3) management functions
(4) communication with a host
(5) software downloading

The primarily occupation of a gasoline station
selling, paying and accounting of gasoline - and
products.
This is, what we call transaction handling.

33

is the
c-store

Transaction handling comprises elements of the first four
functional i ties mentioned above whereby the emphasis is on
dispenser column control and cash register functions.
We use the transaction handling mechanism as the starting
point for the prototype system to be built.
We are going to make a small subsystem that is capable of
handling the following ingredients:

- Dispenser column control
- status displaying of dispenser columns, printer(s) and

other connected devices
- Prepayment with credit cards
- Cash payment
- C-store dispensing
- Transaction accounting

Basic management functions like changing prices
- Operator functions needed for transaction handling

34

5.3 The user interface

The user interface is an essential part of the system.
with "user" we mean whether an operator, a manager or a
service man, not a customer !
Of course, the customer must be able to view his transaction
data. This demands a second monitor. However, this customer
'view' is outside the scope of our system and project.

We distinct four important main windows in the user
interface:

A window that displays the status of the dispenser columns
and other peripheral devices.
A console window used for dispenser authorization and
control functions.
A command line window which displays a number of last
entered commands together with the system's responses.
A transaction window for displaying tickets.

The status of a dispenser column is shown by a collection of
rectangles. The combination of the rectangIe' s colour and
it's place in the collection is characteristic for a certain
dispenser status.

The window that includes all the above mentioned (sub)
windows is called the Main - or Working Window.
The Main Window can be present in two modes. The normal or
working mode and a degraded mode.
The degraded mode is depicted when no operator or manager is
logged in, i.e. statie forecourt control.
An example of a Working Window is displayed on the next page.

35

SHIFT: P JANSEN DATE: MONDAY 12 JUL 1989 112:31:561

PUMP LEDS

~
~

·PRINTER
. STATUS

1 2 3 4 5 6 7

I TRANSACTIONS : 51
ticket 1 ticket 2 » THIS IS CONSOLE

» PANE.
» USE MENU
» OR
» USE THE
» COMMANDLINE
»
»

> THIS IS COMMANDPANE
> USE COMMANDLINE
> LOGIN PLEASE
>

FIGURE 5.2 A WORKING WINDOW

36

CORRECT

HELP

MORE

?

6. OBJECT-ORIENTED ANALYSIS

The goal of the analysis phase is to make and evaluate a
model which is based on entities as the basic structures for
the system (de)composition.
To accomplish this goal we will first have to determine what
road has to be taken.

6.1 The Strategy

In section 5.2 we discussed the transaction handling
mechanism. From this point of view, the transaction handling
mechanism, we start the analysis of our prototype system.

The fundamentals of the analysis modeling will be the first
two models used by Shlaer - Mellor [7,10], the Information
Model and the state Model (this includes the Object
Communication Model) .

To this analysis modeling we add the concept of external
event model ing. This methodology is found in the synthesis
[23] model, see sections 4.4 and 4.5.
This external event modeling is the starting point of
analysis. This approach is also referred to as the "outside
in" approach.
A second i tem that is added to the analysis phase is the
classification of entities, i.e. the building of hierarchies.
This hierarchy building is done in parallel with the
previously mentioned steps in the analysis phase.
Aiming at an object-oriented system the class hierarchy
becomes the backbone.
Although this hierarchy modeling wasn't discussed as a
separate step in literature it was already used indirectly
when making Entity Relationship Diagrams (ERD'S) with
subtyping in it. So this step is nothing more than a
formalization of a heuristic used in ERD's.

This Object-Oriented Analysis combination is strongly based
on the use of event modeling. Because of this event
partitioning, we need to make some remarks about the use of
events in our model (see also Ward -Mellor [7, part 2]).
Event modeling is a mapping between environment and a
system. It is a stimulus response mechanism. This means that
an event that is sent to, or coming from the system's
environment, expects a (preplanned) response. This preplanned
response 'can also be empty !
The events that occur between the system and its environment
are cal led external events. Events that occur inside the
system are called the internal events, we refer to both as
events.

37

External events are the most important ones. They describe
the system's interface with it's outside world entities,
called terminators.
An external event can be described as a significant
occurrence with a preplanned response.

To identify external events one needs to recognize them.
Event recognition can be divided into two parts:

- direct recognition
- indirect recognition

The difference between those two is more or less the fact
that indirect event recognition is used when having
continuous events and direct event recognition is used when
dealing with discrete events.
Because we are having a system that has only discrete events
we use the direct event recognition.

Ward - Mellor [7, part 2J mention two strategies for creating
a list of events:

The active event modeling approach.
An event is found by answering the question:
What effects have the actions of the terminator
on the system ?
The passive event modelling approach.
Here one doesn't have a well defined context
(terminators).
Now search for associations between objects in the
system's environment.
The use of ERD's is recommended.

The first strategy is appropriate to us. We have well
defined terminators.

In literature a distinction is made between data and control
events. We don't make that distinction. We use an event as a
package of control and data.

38

6.2 The Analysis

As already mentioned in the previous section we use the
transaction view for the analyzing of our system. We define a
transaction as the combination of one or more payments with
one or more deliveries . In section 5.2 we described the
functionality of a subsystem that could manage transaction
handling. Such a system focuses especially on the relations
between the peripherals; DISPENSER COLUMN(S), CAT and
(partially) the USER INTERFACE. The PRINTER1, PRINTER2, HOST,
and BAT are occasionally referred to but are of less
importance.

In describing the analysis process we will go through the
following steps:

(1) External Events Model
- Context Diagram
- External Events List

(2) Information Model
- ERD
- Entity descriptions
- Relationship descriptions

(3) State Model
- lifecycles
- (object) communication diagram

(4) The Class Hierarchy

The execution of each step is discussed in the next four
sections.
Although class hierarchy building is numbered as step 4 i t
occurs in parallel with the two previous steps.

6.2.1 The External Events Model

Extracted from the hardware description of chapter 5 we start
with a Context Diagram (see Figure 6.1).
The Address Multiplexer is transparent to the system, from
now on called EXOOS, which stands for EXperimental object­
Oriented System, and is left out of the Context Diagram.

The peripheral devices of the system, the CAT and the
DISPENSER COLUMN(S) are existing devices.
Their interaction with the system is weIl documented.
From these documents we extract their external events. We
will only type the names of the events. We left the data
types out for convenience. In Appendix 1, all the external
events are listed.
The external events associated with the user interface that
we are interested in, are those related to the DISPENSER
COLUMN and some simple cash register functions.

39

US:::::.

-., - ,..,,....- ... -,....~-
U 1.::: =-_', ~~!"" .. -

FIGURE 6.1 THE CONTEXT DIAGRAM

The events representing management functions are also
included in this document but this part of the design is left
out of our project.

40

6.2.2 The Information Model

The Information Model is based on Shlaer - Mellor [7,10J. We
won I t strictly follow all the conventions used by Shlaer­
Mellor. We just simplified some of the descriptions used in
[7J because we found it more convenient.
The Information Model consists of Entity Relationship
Diagrams (ERD' s) together with sets of descriptions of the
elements of the ERD's (see also Appendix 2 and 3).
We will give a short description for some of the ERD's that
we have constructed with the transaction view in minde

A transaction was defined as a combination of payments and
deliveries. A transaction can be prepaid or postpaid. The CAT
(Figure 6.1) is a prepayment device. The CAT's application as
a prepayment device is only used for fuel deliveries at the
moment. In Figure 6.2 an ERD with CAT as a centre is shown.
Relationships will be typed as:a relationship.

To come to a delivery the following steps are taken:
- The client puts a card in CAT and types a dispenser

number, the CAT sends a message to OPT (controls).
- Before entering the validation phase the OPT reserves the

wanted fuel dispenser (reserve dispenser) .
Then the OPT asks a card validation from the CARD
VALIDATOR (asks validation) .

- The OPT asks an authorization from the CARD AUTHORIZER AND
PAYMENT HANDLER (asks authorization).

- If everything to this step is done successfully the OPT
creates an OPT TRANSACTION CONTROLLER (TRCTR).
This entity is responsible for handling transactions.
There is one TRCTR for every transaction.

- With the authorization data, i.e what type of fuel, amount
of money or volume is permitted, the OPT sends a release
request to the FUEL DISPENSER (reguests fuel-delivery).
The request arguments include amongst others the OPT
TRCTR and authorization data for the dispenser.

Although we refer to it as a prepayment mechanism, it would
be better to call it a pre-authorize mechanisme There is no
payment at the moment of a fuel delivery request, only the
authorization !
A TRCTR is responsible for putting payments and deliveries in
a transaction and for the storing of the same transaction.
One could say it is the link between the delivery and payment
mechanisms.

We turn our attention to the FUEL DISPENSER. In Figure 6.3
the fuel delivery ERD is shown.

41

CARD
ACCEPTOR
TERMINAL

asks
validatlo

I

I
I EXTERNAL (S)
I
I
I
I

--~ -----1-
I

1 I

1- ir~~~:~A<OE-1
I
I
I

I COMMAND ITERMINAL
.-_.- ~---~----E2>,,/ .

;,~e~-,
~nsey..>

L__ ([
OUTOOOR

PAYMENT

TERMINAL

FUEL­
DISPENSER

prInts
lIct.t

sets

eo~ilC~~~non>----
of

creates

OPT
TRANSACTION
CONTROLLER"'Ij

H
G'lc::
::d
pj

0\

lIJ

8
lJ:
tij

0c::
8
t1
0
0
~

'0
)00

~
~

~ 8
lIJ pj

~
~---'--------

CARD
---- AUTHORI ZER AND

PAYMENT HANDLER

CARD

VALIDATOR

r.adsl
update. Jearcbes

adds

flnds
eard 1nfo

In

•..• _-- .. -- ---_.__ ..]
CARD TABLE

OUTOOOR PAYMENT ERe
pt-erd: 13

15/02/90

I
~_.. -~ -~ ~- _.~ I

TRANSACTION
CO~~~OL~~~

OPT
TRANSACTION
CONTROLLER

EXTERNAL(S)

COMMANO
TERMINAL

OUTDOOR
PAYMENT
TERMINAL

~
reserveS "-­
dispenser

'"requests>
(llel­
dellvery

~----''(

collects
dellvery

dellvery
ready

_~r

OPERATOR l
_'"rACE

USER
INTERFACE

MANAGER

EXTERNAL (S)

~
H
Q

~
tij

m

w

8
::I:
tij

~
t'4

t:l
tij
t'4
H

~
~
I<

~
tij

w ~
t:l

del-enj: IJ

mEL DELIVERY ERD 15/02/90

The FUEL DISPENSER steps after a release request are:
- waiting until the customer lifts up a nozzle (receives

status). A nozzle stands for a fuel type. If this type is
authorized the FUEL DISPENSER needs a price (provides
fuel-price) to send to the DISPENSER CALCULATOR
(controls) .
This fuel-price is a unit price. It depends on the
customers card type what he actually will pay.

- After the ending of the delivery, the nozzle is put back
by the customer (receives status), the OPT TRCTR is
signalIed by the FUEL DISPENSER (delivery ready).
The FUEL DISPENSER creates a DELIVERY (creates).

- The OPT TRCTR collects the delivery data (colIects
delivery) .
The FUEL DISPENSER is ready for another release.

The TRCTR creates a PAYMENT (create) and sends a payment
request to the CARD AUTHORIZER AND PAYMENT HANDLER. This
entity pays (~) the delivery and the transaction is
complete. The TRCTR sends the OPT a message with data for the
client's ticket (prints ticket).
The FUEL DISPENSER' s status is continually displayed at the
USER INTERFACE (displays status and calculator data) of the
POS Terminal, see Figure 6.1. The commands entered by the
operator enter the system through the entity OPERATOR
INTERFACE.
The transaction mechanism for a shop payment shows a lot of
similarities. Now i t is the OPERATOR INTERFACE that must
release a fuel dispenser and not only fuel is dispensed but
shop products also. In Figure 6.4 the transaction controller
ERD is shown.

The process of building ERDs can' t be separated from the
description of its elements. In Appendix 3 the description of
the entities and their relations can be found.

The description of entities is a textual statement. An
important item of this description are the attributes.
An attribute is an abstract ion of a single characteristic of
an entity. In the analysis all the attributes must be found.
Roughly we distinguish two important types of attributes:

1. Referential attributes, they are used to couple objects.
2. Private variables, these are objects needed by an entity

to perform it's functions.

For instance the
attributes for the
INTERFACE etc.

FUEL DISPENSER will
PRICE-TABLE, the OPT

44

have referential
TRCTR, the USER

[HOST I---r

I EXTERNAL
I

: I~~~~~:~ll

I EXTERNAL
I
I
I

INDOOR
PAYMENT
TERMINAL

r---- ----I
CARe
VALIDATOR

-._-_._------

---I--r~~~:j
OUTDOOR
PAYMENT
TERMINAL

_____ . J

re<P-IeJt
fuel­
dall.e'r

.-----{~~~::.-T~-...~-E-J

OPT
r-----~ TRANSACTION

CONTROLLER W:~t

~---I----I

L---H =~!~OH I ~-------==-
CONTROLLER

---- nfon..

~~.nt

ARTICLE
DISPENSER

TRANSACTION
,'>------+---J CONTROLLER

~
H
(j)

~
M

0\

~

~
M

8

~
til
)I
n
8 IIWfAGERH
0
Z

n
0

~ Z
11I 8

::d
0
t-t

fu
::d
tij
::d
0

TRANSACTION CONTROLLER ERD
tc-erd;5
29/01/90

leads to generic relationships. In
that the relation collects delivery

transaction controllers. Subtyping is
hierarchy building, see also

The attributes can also be described in textual documents.
In Appendix 3 there is no special description of the
attributes. Most of the descriptions can be found implicitly
in the entity descriptions.
The relationship descriptions tend to be protocol like and
give an indication of possible events between the entities.

In the ERDs we see relations with a crossbar. They indicate
subtyping. A FUEL DISPENSER is a subtype of ARTICLE
DISPENSER. We choose OPT and the USER INTERFACE as a subtype
of COMMAND TERMINAL. The reason behind this is that one needs
at least an OPT or an USER INTERFACE to obtain a working
system.
Working with subtypes
Figure 6.4 one notices
belongs to two types of
a useful tool for class
section 6.2.4.

The relations in an ERD are logic relations. There are
several types of relations.
For instance the 'include relationship'.
Examples can be found in Figure 6.4, TRANSACTION includes
PAYMENT and in Figure 6.3, CARD VALIDATOR finds card info in
CARD TABLE.
In most cases one of the entities that contains an 'include'
relationship can be found as an attribute of another entity.
Shlaer - Mellor [7], chapter 5, gives a survey of a number of
relationships ..

46

6.2.3 The state Model

A lifecycle represents the dynamic behaviour of the entities.
It is the intention that every entity found in the Informa­
tion Model is formalized by a lifecycle.
We used the graphical representation and notations of the
lifecycles found in [7].

It is in this phase that the attribute 'status' of an entity
is actually assigned with values.
We notice that when modeling lifecycles we have the require­
ment of one action per state.

A lot of table like entities have a very simple lifecycle.
The PRICE TABLE (see Figure 6.2) is such an example. As we
shall see it has only one state.
From the more complicated entities we took four to
investigate. These entities are (see also Appendix 4):

- FUEL DISPENSER
- OUTDOOR PAYMENT TERMINAL (OPT)
- OPT TRCTR
- UI TRCTR.

Lifecycles are completely event driven. This means that in
the lifecycle of FUEL DISPENSER, which controls the
(external) DISPENSER COLUMN, one should recognize all the
events found in the External Events List.
The lifecycle diagram of the FUEL DISPENSER is shown in
Figure 6.5. Putting such a lifecycle together is a time­
consuming job. Not only the information what an entity stands
for and what it is supposed to do is important. But also the
information, when and in what order the entity is supposed to
handle it's requests, is needed. In this case it means that
one has to investigate every relationship in the information
model of FUEL DISPENSER with the other entities. In our case
we made a simplified lifecycle by not implementing the
relationship between FUEL DISPENSER and MANAGER.

Shlaer - Mellor [7] state that a state model of an entity's
lifecycle is analogous to pure code. This 1.S actually an
anticipation of an aspect of the development trajectory that
belongs to the design phase.
We used it as a more global high level description for the
states of an entity. Furthermore it is difficult to speak
about pure code if it isn't obvious what kind of
implementation language is chosen.

wo

47

h"".IlJ.

..........u. ,..,.....,,.........

1.1"-'''..-._
1L--.- -r--..J..-----11.;::,:=-s.....

....,.._OK
Ul~1
'I ..t...a..d,., --.--.
lil_lh411 ,.__
111

~Ol...,......

_.-
IJ_OUI

" _1._Cuq
IO ..lfWI....
111.: 01 _

"-..ou" ..,....
I1 "apI'ImeOuI
lt ...'.....eut•

I'I'.~"'",...........
....,tIld...

(11 • .-_.......

.. -

(d.nOl....O'-

......"'.
1.1 MI.' P

'I,~'

",._Dl__

I ..:~..-_

111:.......-_

________~_______ I

,1.1 ..__• .-.......,....
r-~---------------oIllt' ."a."'•

~ lhIJ -

....... I1....Deo.

....-.......

.............
11. "ap~,
.-,y.........

.1: ~.., -

1.ln '1lIO....

... 100......

r.,:.....D-

--I ...:~...... ..,-0.-._.....
I..

..,.:.........-

.-re....

.".---
1•• ';-......01...--,•.."....,1_-
I ••:c...........

Io"..........

I..

I'lj
H
G)

~
ttj

0'1

UI

t"i
H
I'lj
ttj
n
t<
n
~
IJ
H
:J:.'
G)

~
.a::- D
CO I'lj

:J:.'

d
ttj
t"i

0
H
(/)

"d
ttj
Z
(/)
ttj
~

U'.IIpII,

1.lftNI'.......

IJ. *'-C)wn
•• ..-., ond•

•••• C.IC U ..'It._~_D _.I
L __

in Figure 6.5 are
like E43:reserve­
and relationship
are aresultof

The events with names starting with EX
external events. Some of the events,
Dispenser, come directly from entity
descriptions. Others, like E22:authorized,
the one action per state.

In Figure 6.5 one can see the dispenser release through an
OPT using the states:idle, reserving, reserved & requesting,
reserved, authorizing and authorized.
The release through means of an OPERATOR INTERFACE that the
states:idle, requesting and authorized.

Comparing the lifecycles of the two transaction controllers
(see Appendix 5) we notice that the generic relationship,
collects delivery, leads to an event, E51:collect delivery,
which is generated by both the transaction controller and
sent to a dispenser.

All the individual lifecycles together form the state Model.
From the the lifecycle models we can construct, what is
called (Shlaer Mellor [10]), a Cornrnunication Model. It
shows the interaction between the individual state models.
In Figure 6.6 the Cornrnunication Model is shown. We created
some relevant events for the entities which hadn't a life­
cycle to complete a working model.

49

"'Ij
H
(j)

~
M
(J\

0'1-0
tJj
~
M
n
1-3

n
0

I
H
n
~

UI 1-3
H0 0
Z
:s:
0
0
M
t"'

1"_,_

l-f1 I lp ,
111

.'''--

1"Jf'IoIE.... r- -,....- ...ICIl',~

.>1"''''TH ,_tDoIv.,
'''-'''-110"'''- E", -ESt cr._teOfT,.QI IH"....... u__.......CIt fl"InkwmOpet...

"Iotaplll• ... -..."'"141........ -- E.........-5.....
E••• c....._O...

EI7''''''''Sw'' E....."ectCWI

.1'-- rE•••" ...C'Wt .- E" ,,,,,ad&W1S..td

E'FI-O--- Ir
p..............-...-

E50Q'...Tf-.cl~

.1 r- 1"_',,-
I._f.........-
I"~ -I

E.. ,.,;.
P.,....

.I P'''-

~1 ".. ~........c..,... ,~...
I: ~ I cd«1011..,.., rE'IC'~., ...-- ._........-....-

I~-- E,. ...~

.1 -., I 'N itnonc...1 I ,.. IoI-T,..
14'Cf'N~'
1• ...-,

Etlr.-veA......
E.I'......A.....

1101-1 - ""-'"

I 1
123-...._. LJ

E... f~.

I rl,...._..En ,eMfYeOI....-.,.. r- E'JT..........._

"'" , I""_loCo••11- , r- -. --
II 21mOOu. EI1'''.......A.._E.'Or....MOl....

1.II __tIOI

EI"-.oe...-- IdObclR..... 'E.140 ...AecfI·
('12c"lK

1.' (J~'m.<:M III'cI._tl. ti
hl'~ey'IOU_

E'.'.~ E.J.lc..dn
E.JI~10' ..- I.toc:hedlc.rc
E.Jlc~10>!-e- EdS pu*'8." ., Ed'.,..ma.....h'!""*-o... hIOklo..

1 JI
pik. UIbIII

1 I 01--.. - co,.......

6.2.4 The Class Hierarchy

Essential for Obj ect-Oriented modeling is the building of
class hierarchies. This is the basic structure for the
current design and future changes in the same design.
Every entity found must be placed a the class hierarchy.
In Figure 6.7 a part of the class hierarchies is shown.
For the complete class hierarchies see Appendix 5.

We already discussed the parent class COMMAND TERMINAL of
USER INTERFACE and OPT.
From Figure 6.4 we extract two other super/sub classes.
The TRANSACTION CONTROLLER with the subclasses OPT TRCTR and
Ol TRCTR, and the ARTICLE DISPENSER with the subclasses FUEL
DISPENSER and CSTORE DISPENSER.
Finding these higher level data abstractions is not an easy
job. This process is simplified by searching for generic
relationships and comparing different, but similar lifecycle
diagrams. For instance compare the two transaction controller
types and their relations with other entities.

---IWW:ER

---- TRAHSACT::N
COtfftOLIJ:A

____ c:ARD

CBEa:ER

tlI-TRAHSACTICN
~ COtmlOLLU

~ OPT-TRAHSACTICN
COtfftOLID.

r---- c:ARDI V1LIDATOR

1'--__ c:ARD
ArmiORIZER

____ ARfICI.t FtlEL-DISl'ENSER

DISPENSER ~'--__
~ C-SBOP-DISPENSER

____ COIOWlD

TERKINAL

____ IlfDOOR PAYHENf

fEIUIIlW. (Uf)

---- fJWIDCtIOI

_~__ OtlfDOOR PAYMENT
I TERHINAL (OPT)

L-OSER
IIIfEJlJ'ACE

FIGURE 6.7 CLASS HIERARCHIES EXAMPLE

51

6.3 Results

Shlaer - Mellor [7,10] mention another step following the
state Model, the Process Model. It comprises separate data
flow diagrams for each state. They add little information to
the analysis and it takes a lot of time to construct them.
Shlaer - Mellor use the processes of the data flow diagrams
mainly for identifying identical processes inside one object
and inside related objects. They call these related objects
the supertypes. Capturing the same properties in such a
manner is almost identical with putting objects into
classes. Therefore the Process Model is most useful in
clarifying the different states of a lifecycle. Because it
is not an essential part we left it out the development path.

The most difficult part of the analysis phase is the building
of ERD's with relevant relations. This includes finding the
entities and their relations.
The "outside - in" approach is a good start to detect high
level entities. Further analyzing can lead to the
decomposition of entities and new entities.

The detection of higher level data abstractions of entities
is encouraged by generic relationships and by comparing
lifecycle diagrams (see Appendix 4).
This implies that making an object-oriented analysis is a
recursive process.

52

7. OBJECT-ORIENTED DESIGN

The goal of the design phase is to trans late analysis to such
an arrangement that the system is ready for implementation.

7.1 Design considerations

In Part I we discussed an Object-oriented Design method, the
HOOD (section 4.1, [16]) approach. HOOD is especially
designed for an ADA environment but some features as
mentioned in chapter 4, the Obj ect Diagram, parent-child
modeling and concurrency, could be useful in other design
methodologies too.
The use of Obj ect (neighborhood) Diagrams was also advised
by Synthesis (section 4.4) and used in HOOD [16].
The only other 'methodology' mentioned in literature, was the
Shopping List Approach, but this was more a philosophy than a
useful tooI (section 4.3 and 4.5).
Neither of these approaches can be used as a continuation of
the (Object-oriented) Analysis from chapter 6.
Schlumberger has internally come up with an Object-Oriented
Design Development trajectory which consists of two steps
called conceptual - and detailed design.
This method was not supported by an analysis method.
Neglecting this deficiency because we had already an
independent Analysis Model, we evaluated these steps, and
added the concept of object diagrams that was already found
in literature.
At the same time we tried to make a link between the Object­
Oriented Analysis and this Design Trajectory.
The result, as we will see in section 7.2, was a remarkably
simple step that is executed in combination with the
conceptual design step.

In the next section we will describe the design steps we have
followed.

53

7.2 The Design

The methodology developed internally consists of two steps­
conceptual and detailed design. In this section we will
discuss both.

7.2.1 step 1 (conceptual design)

The first step consists of finding the classes, put them in a
hierarchy and fill them with public methods. From our
analysis we already have the hierarchy. A method in this
context is a message and a response. The response is
obligatory, but may be empty.
If we want to fill the class hierarchy we will have to find
the methods first.
The heuristic is very simpIe: Use the events !
We distinguish two types of event mapping:

1. One event results in one method.
2. Two events (a request and a response) result in a

method.

An example of the first mapping is the event:deliveryReady,
generated by FUEL DISPENSER, that can be transformed into
the method:deliveryReady (see Figure 6.3).
The combination of the two events reserveDispenser and
reserveResponse to a method:reserveDispenser is an example of
the second type of mapping (see Figure 6.3).
This mapping is the main link between the analysis and the
design. In Appendix 6 one can find all the public messages
that are put into the class hierarchy.

Looking at the class ARTICLE DISPENSER and especially at the
method, collectDelivery, one notices that this method is
reimplemented at its subclasses. Such a construct was
already expected when we looked at the lifecycle diagrams in
chapter 6.

stripping the event responses from the Object Communication
Model leads us to a new type of diagrams, the Object
Diagrams. See also part I: the Synthesis and HOOD overview.
object Diagrams are not included in the original conceptual
design step but they are a logical graphical addition. In
Figure 7.1 we show such an object diagram.

54

f
I
i
!

I
i J

~.r2:;~"'" '- .,.i.....'-~I
! _ l --1 =
I LalOr-- 1
! _0' 1
.............

"'-l'"
......

i
.i.

j

!::i.,::

r-:~=~~~ ..·_·ri.l·----'---...-.....--~J.I
11

..-j...u.~ 0- j!::t..... .,._s.... 1 1
::t == i!
<""dot_dl'" "'-t.,..... : i
-,." 1 !

11__'" --1 I i
::::'.... _ i!11.

r-~-;;-';'-...__---L..Jl ..,.......... 1
...~ lC1D1'l....

i

11

i
I

lI !

~.

i LJ L
,....R.....

~- !,... ,-
........,.0.....

i
! ~

, I I
t '....r.;-,.

I I
..""""

I
:
! - ""91 I

n.d

!

1

_spOlleA.. I' --
i

...-. i_..-...01"

I l] I
•.."....I~ooA

.- l 1.._.. ...--..... II
....,...

-{-~
I

-: i
I

1

! 1
:

,.................................!
!

.. __:

1

································

[l--::=----;===~~~~··~· ~..~...~..~..~..~..~..~...~.+~"':'..'::~~--
, ,-- L I : ,-,--~I L"_-""·-~__ L,.....*~..;Y;=:r';;;~=~;---~l~.._·_·..._-_'-__I i L ~.. _.J-.."'-.--'-'IoC:=-••=------
•••••••••••••• ol !:, nnnt

.................,...,0..... :,...w"..,...······;

I ••.cl
,
..

UI
UI

7.2.2 step 2 (detailed design)

This step has two main substeps which we will describe with
some examples taken from Appendix 6.

In the first substep, declarations of public methods are
made. This includes the description of the arguments, the
return value and the class types for each value.
Figure 7.2 shows an example of public method declaration:

object
method

argument
type

returnValue
type

FUEL DISPENSER
reserveDispenser

: anOriginator
ConunandTerminal

-aBoolean
Boolean

FIGURE 7.2 AN EXAMPLE OF PUBLIC METHOD DECLARATION

A method can have zero or more arguments, it always has one
return value. We used the SmallTalk notation (A) referring to
return values.
The arguments can be deduced from the events that lead to a
particular methode

A second substep that is performed is the production of the
definitions of the public methods.
To accomplish this we use the lifecycle diagrams. We do not
produce a copy of the "code" of the lifecycles but an
interpretation. We produce a kind of pseudo code.
In Figure 7.3 an example of pseudo code is given. This
example shows the use of a private variabIe, originator
and the creation of a private method, gotoReserved.
The private variabIe must be one of the list of attributes
found in the analysis. The private methods found in this
manner must be declared also. The is analogous to the
declarations of the public methods. Together with this
declaration a textual description is produced. An example is
given in Figure 7.4.

56

reserveDispenser:anOriginator

(* anOriginator wants to reserve this fuel dispenser.
This only possible when fuel dispenser is in state
idle. If already reserved check anOriginator and
if oke reserve again.

*)

status = idle
ifTrue:[save anOriginator in originator.

self gotoReserved.A
true

J
ifFalse:[originator = anOriginator

ifTrue:[self gotoReserved.A
true

J
ifFalse:[AfalseJ.

J
Afalse

FIGURE 7.3 AN EXAMPLE OF PUBLIC METHOD PSEUDO CODE

gotoReserved

(* Set time out for reserved.
Update dispenser status.

*)

FIGURE 7.4 AN EXAMPLE OF PRIVATE METHOD DECLARATION

strictly following this methodology would imply making
declarations and default values of the private variables.
The declaration of the privates is already done in the
analysis, this need not be done again.
The declarations of the default values is left to the
implementation phase.

57

7.3 Recapitulation

An item that is fairly important but which is not discussed
in these design steps is concurrency. If an object has sent a
message to another obj ect and must be able to respond to a
receiving message at the same time, there is concurrency.
Looking at Figure 7.1, one could imagine such a situation in
case the OPT sends the authorizecard message to CARD
AUTHORIZATION AND PAYMENT HANDLER while the CAT sends a
betRestart to the OPT. Arestart means that the CAT has
returned the credit card to the client and the authorization
can be stopped. The CAT expects a status message from the
OPT. In the analysis and design models there is no special
mechanism for concurrency recognition. The only thing left to
do is placing remarks in the design and analysis phase where
to expect concurrency.

Another item, the parent - child relationship, found in
HOOD [16], is not used in this design phase. We already
mentioned the include relationship, which is similar, in the
analysis phase and its connection to the attributes.
It is not clear what the influence is on the design.

The mapping of events to methods and the use of lifecycle
diagrams for generating pseudocode is the link between
analysis and design.

58

8. OBJECT-ORIENTED IMPLEMENTATION

The implementation language is SmallTalk, see chapter 2.
Due to the effort put into the analysis and design phase
there was no time left for the implementation.

The implementation phase of the development trajectory
consists extending the design phase with coding details.
This step is focused mainly on the coding details of the
private methods and transforming the pseudocode of the public
methods to the actual code.
When looking at Figure 7.3 we see astrong resemblance with
Smalltalk. The pseudocode developed in the design phase is
close to code.
The expectation is that the coding takes less effort than the
design itself. Provided that problems such as concurrency
can be simply resolved.

During the analysis and design phase some tests with a
SmallTalk communication port and a Dispenser Column were
carried out. This communication port of Smalltalk is
interrupt driven.
From this test we know that it is possible to control
peripheral devices with a Smalltalk application. Conclusions
about real-time aspects cannot be drawn yet.

All the interrupt types (communication, keyboard, mouse and
time) in the Smalltalk (version V286 1.0) system are rerouted
through one event before entering the system. Given the fact
that there is only one process running (the user interface
process) the complications of parallelism are enormously
reduced.

59

9. CONCLUSIONS AND SUGGESTIONS

In chapter 3 we discussed the need for a complete Obj ect­
Oriented Oevelopment to come to object-oriented implemen­
tations. Although the implementation is not completed we can
conclude that the composed Object-Oriented Analysis (OOA) and
Design (000) models are fit for an object-Oriented Implemen­
tation in Smalltalk. The pseudo code, made in design phase,
is close to an implementation in Smalltalk.

The OOA and 000 are based on different ideas and items found
in literature. Ouring the development and the evaluation of
our object-oriented trajectory we did not follow the
sequence of steps as described in the chapters 6 and 7. This
, jumping' was necessary to get an insight in the different
methodologies and their integration. However, when one wants
to obtain a smooth OOA and 000 trajectory one must follow the
sequence of these steps as they are reported.

The link between the analysis and design models by mapping
the events is areasonabIe solution to couple the design to
the analysis. The different models can probably be more
integrated and leveled to each other, when the attenti on is.
turned over to make a complete development path, instead of
separate models for analysis and design. An example is the
lifecycle modeling (Shlaer - Mellor , analysis phase) that
includes pseudo code. This coding is actually a part of the
design phase. The lifecycle modeling must be done with sort
of a high level description but not with pseudo code.

In the design phase the concurrency is an underdeveloped
subject that needs more investigation and a pIace in the
development trajectory.

An open issue is how to integrate the parent-child relations
in the development path. It is obvious that this is related
to the (de)composition of a system but is not clear what to
do with it.

An important characteristic of object-oriented programming is
reusability. This reuse is obtained by inheritance.
In our development trajectory we make little use of reusable
objects. We simply have no reusable objects (classes)
available. A testcase for the reusability of the created
classes will be future adaptions or alterations of the
designed system.

60

10. LITERATURE

Baaks:

[1) A Little Smalltalk.
Timothy Budd.

[2) An introduction to Object-Oriented Programming and
Smalltalk.
Lewis J. Pinson, Richard S. Wiener.

[3) Object-oriented Software Construction.
Bertrand Meyer.

[4] Object-oriented Systems Analysis:
Modelling the World in Data.
S. Shlaer, S. J. Mellor.

[5J Smalltalk V286, Tutorial and Programming Handbook.
Digitalk Inc.

[6J Strategies for Real-Time System Specification.
Derek J. Hatley, Imitiaz A. Pirbhai.

[7] Structured Development for Real-Time Systems.
Paul T. Ward and Stephen J. Mellor.
Volumes 1,2 and 3.

[8] System Development.
Michael A. Jackson.

61

Papers:

[9] An Object-Based Development Model.
David M. Bulman.
COMPUTER LANGUAGE, august 1989.

[10] An Object-Oriented Approach to Domain Analysis.
Sally Shlaer, Stephen J. Mellor.
ACM SIGSOFT, jul 1989, pages 66 - 77.

[11] An Object-Oriented Requirements Specification
Method.
Sidney S. Bailin.
Communications of the ACM, Vol 32 Nr. 5, pages 609 .. 623.

[12] An Object-oriented Structured Design Method for Code
Generation.
A.I. Wasserman, P.A. Pircher, R. J.Muller.
Interactive Development Environments. Inc.

[13] Assuring Good Style for Object-oriented Programs.
K. J. Lieberherr, I. A. Holland.
IEEE Software, september 1989, pages 38 - 48.

[14] Design Principles behind Smalltalk.
Daniel H. H. IngalIs.
BYTE, august 1981, pages 286 - 298.

[15] Experimental Prototyping in Smalltalk.
Jim Diedrich, Jack Milton.
IEEE Software, may 1987, pages 50-64

[16] HOOD MANUAL, Issue 2.2 april 1988, ESA/ESTEC and
Issue 3.0 september 1989, ESA/ESTEC

[17] How to Integrate Object Orientation with Structured
Analyses and Design.
Paul T. Warde
IEEE Software March 1989, pages 74 ... 82.

[18] Learning the language.
Peter Wegner.
BYTE, march 1989, pages 245 - 249.

[19] Object-Oriented Development.
Grady Booch.
IEEE Transactions on Software Engineering, Vol SE-12,
February 1986, pages 211 ... 221.

62

[20] Software-IC's.
L. Ledbetter, B. Cox.
BYTE, june 1985, pages 28 - 36.

[21] Towards a general Object-oriented software development
methodology.
E. Seidewitz, M. Stark.
Goddard Space Flight Center.

[22] What's in an Object?
Dave Thomas.
Byte, march 1989.

[23] What's The Object?
Presented by Meilir Page-Jones and steven Weiss.

63

	The evaluation of suitable object oriented development techniques in order to make a prototype point of sales terminal on a personal computer

	Abstract

	Contents

	1. Introduction

	2. Object-oriented programming

	3. Object-oriented analysis/design

	4. Object-oriented analysis/design methods

	5. The point of sales system

	6. Object-oriented analysis

	7. Object-oriented design

	8. Object-oriented implementation

	9. Conclusions and suggestions

	10. Literature

	Papers

