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SUMMARY 

An important part of a coal gasification plant is the quench. 1n 
the quench hot particles containing reactorgas has to be cooled 
down by mixing it with cold gas. This must be done in such a way 
that no hot particles can reach a cold quench wall. 
This report contains a theoretica! anrl expertmental investigation 
of a (so-called) A-type quench in which through an annular slit the 
cold gas is mixed into the hot gas. 
In the theoretical part the applicability for this flow of a two 
dimensional vortex methad is investigated. The conclusion is that 
only the first part of the mixing layer, which is dominated by 
large scale two dimensional phenomena, can thus be modelled. 
A first step in the development of a vortexmethod has been made. 
In the experimental part the flow is simulated in the Quench Test 
Unit. Nitrogen with temperatures of 90 K and 350 K has been used as 
modelgas. The results of three experiments, visualisation and slow­
and fast temperature measurements, can produce enough information to 
optimalize the A-type quench design. 
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CHAPTER 1 INTRODUCTION 

1.1 Background and purpose 

In a coal-gasification plant coal is being gasified into syngas, a 
mixture of CO and Hz· Two important parts of such a plant are the 
gasification-reactor and the tube, connected to this reactor, 
through which the produced syngas flows. 
In the gasification-reactor coal is tnjected together with oxygen. 
The coal is partly oxydized in order to create a temperature of a 
ca. 1800 K. At this temperature the reaction will continue and 
the final product is syngas. This gas contains a large number of 
ashparticles (diameter=ca. 20 micrometer) which at this temperature 
are liquid and very sticky. A part of these particles is captured by 
the reaction vessel wall and flows down into a slag tap. The rest of 
these particles will be convected with the gasflow and will stick to 
the cooler walls of the outlet pipe and probably will grow into big 
lumps and block the gasflow. 
Several options to prevent this have been studied in the past. 
The syngas has to be cooled before tt can be produced further and 
cooled gasparticles lose their stickyness. So the problem is how to 
cool the ashladen syngas without the sticky ashparticles blocking 
the flow. 
Shell has chosen a device in which the reactor gas is quickly cooled 
by mixing it with cold gas. Such a device is called a quench. 
(quenching means cooling very quickly). 
A quench that has already operated used the principle of envelopping 
the ash-laden gasstream in a cold gasmantle. This is the so-called R­
type quench. This quench performed quite well but did not fully 
prevent for all coal types the outlet-pipe wall from fouling. 
A more recent idea is the so-called A-type quench. In such a quench 
the hot reactorgas is intensely mixed with a cold quenchgas that is 
injected at high speed into the hot flow through an annular slit at 
the bottorn of the outletpipe (quenchshaft). The purpose of this cool 
gas addition is to cool the sticky ashparticles enough to remove 
their stickyness and thus preventing them from fouling the quench­
shaft. The special feature of the A-type quench is its aerodynamic 
throat (fig.1.1) that prevents hot particles to reach the wall during 
the cooling proces. 
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0 Hot sticky ashparticles 
~Cool non-sticky 

ashparticles 

Fig.l.l The A-type quench on top af the gasificationreactor 

The investigations decribed in this report contribute to the 
understanding of the flow behavior in an A-type quench. 
The designers of the coalgasification plant are primarily interested 
in an answer to the following question: 
"Can an A-type quench be operated such that no slagging/fouling of 
the quench by ashparticles occurs?" 
If this appears to be the case the second question becomes relevant: 
"Can we reduce the shaftlength by increasing the mixing/quenching­
speed?" 
If normal operating condition exist in a quench with one annular 
slit only two parameters are left to optimize quenchperformance: 

- The slitwidth (S) 
- The angle between the annular slit anrl the quenchshaft (~) 

This paper contains a theoretica! (part A) and an experimental (part 
B) investigation of the A-type quench flow. In the theoretica! part 
a vortexmethod is used to model a mixing-flow. 
As a first step in investigating mixing in the complex A-type 
geometry a more simple geometry was studied. This is the geometry of 
the plane mixing layer. In chapter 2 a literature overview of the 
experimental knowledge of the plane mixing layer is given. In chapter 
3 some basic theory concerning the vortexmethod and in chapter 4 a 
literature overview of the vortexmethod is given. 
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In chapter 5 a description of a vortexmethod by the author is given. 
As a first step the plane mixing layer was simulated with the 
vortexmethod. The simulation of the A-type quench flow was not 
completed, and some problems concerning this simulation are not 
yet solved. The basic outline for this simulation however is already 
given. 
The experimental part of the investigation consists of the designing, 
building and testing of a scalemodel of the A-type quench. In this 
model it is possible to study as well the effect of the slitwidth S 
as the effect of the angle on the quenchperformance. Details about 
the design of this so-called Quench Test Unit (Q.T.U.) can he found 
in chapter 6. The description and some examples of the the results of 
the actual experiments are given in chapter 7. Due to delays in the 
building of the Q.T.U. this paper will not give all the results 
available nor an extensive discussion of the results. 
Finally in part C a final conclusion will be given. 
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PART A TREORETICAL DESCRIPTION OF TRE MIXING LAYER 

CHAPTER 2 nNOMENOLOGY OF TRE PLANE MIXINGLAYER; LITERATURE 

2.1 Introduetion 

In chapter 1 the study of parallel mixing was announced as a first 
step of understanding the quenchflow in a A-type quench. A mixing 
flow is a very good example of a turbulent flow. So understanding a 
mixing flow means having some understanding of turbulence. 
Turbulence is described by Hinze 5) as follows: 

1.) Turbulent fluid motion is an irregular condition of flow in 
which the various physical quantities show a random varlation with 
time- and spacecoordinates, so that statistically average values 
can be discerned. 

2.) Turbulence is a continuurn phenomena, that is characterized by a 
strong diffusive nature with respect to any transferable property. 

3.) Turbulence exists of the superposition of eddies of various 
sizes. There is a strong interaction between these eddies resulting 
in an energytransfer from the bigger eddies to the smaller ones. 

Various models for descrihing turbulence, based on these 
conceptions, have been developed in the last 100 years. Well known 
is the mixing-length model of Prandtl and more recent the k-€ 
models. 
Recent investigations, of which we will describe some examples, 
have shown that turbulent motion is not as chaotic as had been 
thought. It seems that coherent structures of deterministic nature 
are an essential feature of turbulence. Such coherent structures 
have been observed for a long time. Famous are for example the 
drawinga of Leonardo Da Vinci (1452-1519), see figure 2.1.1. 

Fig.·2.1.1 Drawing by Leonardo Da Vinci with coherent structures. 
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The existence of these coherent structures however has been 
attributed to the geometrie configuration of the flowdomain. Only 
recently it has become clear that by using only statistica! 
information of a turbulent flow important information is lost. 
Stated differently, a lot af properties of turbulent flow can be 
explained with the concept of coherent structures. 
The vortexmethod, to decribe turbulent flow, makes use of this 
concept. Most flows of high Reynolds number are characterized by 
areas with high vorticity and areas with low vorticity. Coherent 
structures nearly always coincide with the areas of high vorticity. 
A good example of such a turbulent flow and the flow that is of 
great importance to the A-type quench is the mixing layer. 
The most simple form of a mixing layer is the plane mixing layer. 
In the plane mixing layer two fluidstreams *) of different 
veloeities meet eachother after a sharp separation point. The x­
coordinate starts at the ortgin in the separation point and goes in 
streamwise direction, the y-coordinate is perpendicular to the 
splitter plate (figure 2.1.2). 

u, -

figure 2.1.2 The plane mixing layer 

u, 

ul 

Since it is the alm of this work to model the mixing layer in the 
A-type quench with a vortexmethod the first step would be to model 
the plane mixing layer with a vortexmethod, and preferably with a 
two-dimensional vortexmethod. 
In order to get a good idea of how the plane mixing layer looks 
like in reality paragraph 2.2 describes expertmental results 
about the plane mixing layer as presented in literature. 
In paragraph 2.3 a synthesis of the descriptions of the plane mixing 
layer based on paragraph 2.2. 

*) The definition of plane mixing layer also includes the plane 
one-stream mixing layer, where ul or u2 is o. 
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2.2 EKpertmental evidence 

In this paragraph we will describe the expertmental work on the 
plane mixing layer by Winant & Rrowand 4), Brown & Roshko 1), 
Chandrsuda 7), Wygnanski ~), ~reidenthal 11), Jimenez 11), Fiedler 
14) and nz i om ba 15 ). 
The first two investigations descibe the mixinglayer as a two­
dimensional phenomena, Chandrsuda stresses the three­
dimensionaltty of the miKing-layer, Wygnanski attacks the view of 
Chandrsuda, Breidenthal & Jimenez reconcile these views and the 
last two articles are concerned with the effect that initial condi­
tions have on the development of the mixing layer. 

~i~a~t_a~d_B~o~a~d-~l formed a plane mixing layer by bringing two 
streams of water, moving at different velocities, together in a 
walled channel. Dye was injected between the two streams just 
before they were brought together, marking the vorticity-carrying 
fluid. Unstable waves grew (Kelvin-Helmholtz-instability) and the 
wavelength of the system was that of the most unstable wave. Fluid 
was observed to roll up into discrete two-dimensional vortical 
structures. 
These turbulent vortlees interacted by rolling around eachother and 
they often formed a single-vortical structure, see also figure 
2.2.3. This repeatedly ocurring pairingprocess controlled the growth 
of the mixinglayer. Palring was promoted by small variations in the 
strength and spacing of the vortical structures. 

1. 

2.. 

Fig. 2.2.1 Oye-photo's in a watertunnel demonatrating the rolling-up 
and palring process of vortlees in the plane mixing layer, by Winant 
& Browand 4). 
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In cases where the instability was mechanica1ly forced the 
frequency of the wave was fixed by the frequency of the forcing­
mechanism. This appeared to delay the proces of vortexpairing. 
In figure 2.2.1 a sequence of dye photograph's is presented. 

!r~w~! ~o~h~o_3l studled the plane mixing layer between two streams 
of different gases (nitrogen and helium). 
With spark shadowpictures they showed that for all density-ratios 
the mixinglayer was dominated by large coherent structures, see 
figure 2.2.2. 

Fig.2.2.2 Shadowpicture of plane mixinglayer by Brown & Roshko 3). 

High speed film showerl that these structures were convected at 
nearly constant speed and increased their size and spacing discon­
tinuously by amalgamation with neighbouring ones. In figure 2.2.3 
the timehistory of a number of these coherent structures is given. 

4 

/ 

Fig.2.2.3 Timehlstory of coherent structures by Brown & Roshko. 
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The pictures and measurements of density fluctuations suggest that 
turbulent mixing and entraioment (the process of dragging the 
surrounding fluid into the mixinglayer) is a process of entanglement 
on the scale of large structures. 
Brown & Roshko defined the vorticity-thickness as a measure for the 
thickness of the mixinglayer: 

(2.2.1) 

The dependenee of the vorticitythickness on the velocity-difference 

parameter ~m (U1-u2)/(U1+U2) and on the density ratio r •J01'l02 is 
shown in figure 2.2.4. 

vis ~.tAL 
THic.k.NESs 
OF 
MIX IN~ 
LAVE R. 

À•,., U1 - U1 

U1 +U1 

Fig.2.2.4 The grow of the vorticitythickness by Brown & Roshko 3). 

-Influence of density difference-
Brown & Roshko found that in all mixing layers the sp.reading angle 
of the density profile was greater than the spreading angle of the 
velocity profile. This was particularly marked for the case where the 
massflows (fl·U1 • (J2-u2 ) of flow 1 and 2 were equal, see figure 
2.2.5. This implied significantly different diffusionrates for mass 
and momentum. When the data was compared with a simple eddy-

viscosi ty model the Schmidtnumber Sc (Sc= Yr/DT -> momenturn 
diffusion I mass diffusion) for which the best correspondence was 
found lied between 0.2 and 0.3. 
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Fig.2.2.5 Averaged velocity- and densityprofile by Brown & Roshko. 

This considerable difference in the diffusivities is related to the 
large structures in the flow. Owing to the large-amplitude excur­
sions of the layer helium on one side was convected with little 
mixing to the nitrogen side and vice-versa. These velocity 
perturbations will be much less in the heavy than in the light gas, 
due to the requirement of continuity of the corresponding pressure­
perturbation. Consequently, in traversing away from the low velocity 
dense gas on one side there will be a considerable change in mean 
composition befare the mean velocity changes significantly. 

-Entrainment-
Brown & Roshko also presented a simple model for the entrainment 
rate based on the concept that entrainment is caused by the entang­
lement of non-turbulent fluid by the large coherent structures. 
They assumed each eddy to be a cilindrical structure with diameter 

dviz• When Uavc is the average convectionspeed of the eddies, and 
lav is their average spacing then the averaged entangled flow-rate 
per unit span is given by: 

(2.2.2) 

From expertmental realations for dviz and lav they finally derived: 

(2.2.3) 

• 
4'e. 
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This formula (2.2.3) accounts for all entangled fluid and does not 
distinguish between the two sides. They found reasonable agreement 
with entrainmentdata of other authors. 

fh~n~r~u~a_e~·~l_7J performed a two-stream mixing layer experiment 
in a suck-down smoke tunnel. Turbulence-levels in the two streams 
were of order 0.2 %. They found that the persistance of the two­
dimensional structures increased as the velocity-ratio departed 
from unity. The persistance of two-dimensional structures decreased 
however with increasing turbulence-level of the low velocity­
stream. The mechanism of this break-down of two-dimensionality is 
the distartion by weak oscillations in the transition-region of the 
mixing layer. But even in the three-dimensional mixing-layer fairly 
regular large scale structures existed having a spatlal distribu­
tion that was not radically different from the later stages of the 
'Rrown-Roshko flow. 
The conclusion of Chandrsuda et.al. was that the 2-D Brown-Roshko 
vortex-roll disturbances will only arise in the rare situation 
of a plane mixing layer with laminar boundary layers at the nozzle 
exit and low turbulence-level in the external flow. 
Other evidence suggested that the 2-D Br&R structure won't appear if 
the exit boundary layer is turbulent. They thought there was also 
reason to believe that the small-scale turbulence in the Br&R 
mixing layer will eventually break down the 2-D structures to 
three-dimensionality. 
So they concluded there is only one asymptotic state of the plane 
mixing layer and its large structure is fully 3-D. 

~y~n~n~k! ~t.=...a!_ ~ set out to test the sensitivity of the large 
eddy structure of the plane mixing layer to outside influences. 
They wanted to see how long these structures remained 
two-dimensional. Experiments were performed in a windtunnel with u2 
=15 m/s and u1 /u2 = 0.4 with a turbulence-level of 0.2 %. 
They introduced different kinds of disturbances on the initial 
conditions and also on the boundaryconditions of the mixinglayer. 
Spanwise correlation measurements were done at different down­
stream position for u'- and v'-velocities and also for a scalar 
contaminant (temperature). The conclusion was that an initial 
turbulent boundary layer did not influence the two-dimensionality 
of the mixing layer. Forcing improved the spanwise regularity of 
the large eddies. 
Increasing the free-steam turbulence with a factor 15 to 3% caused 
the spanwise correlation to decrease quickly just after the 
splitterplate but its final value was not much less than in non­
turbulent cases. It was thus concluded that the two-dimensional 
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turbulent cases. It was thus conclurlerl that the two-dimensional 
character of the coherent eddies perseveres in spite of strong 
external smali-scale buffeting. 

!r~i~e~t~a!~t~a!._ll) studied the plane mixing layer in a blow-down 
watertunnel. The free-stream turbulencelevel was around 0.5%. The 
maximum Reynoldsnumber achieved, based on the vorticitythickness of 
the mixing layer (éw) and the velocitydifference hetween the two 

lt streams, was around 10 • 

An important goal of this investigation was to study the mixing at 
an intimate molecular level. This was done by letting a diffusion 
limited chemica! reaction between the two streams produce an easily 
detectable reaction product. 
It was concluded that if diffusion is the limiting factor in mixing 
then the mixing (the amount of product) is dependent of the 
Reynoldsnumber and the Schmidtnumber. ~owever if (large scale) 
entrainment is the limiting factor (at high Reynoldsnumbers) then 
mixing is independent of Re and Sc. After transition (small-scale 
laminar to small-scale turbulent) mixing is esentially independent 
of Re. 
Transition was influenced by the initial conditions. For example 
the transition Reynoldsnumber of the mixing layer (A U x I y) 

decreased with increasing velocityratio. 
In figure 2.2.6 the (speculative) effect of the initial Reynolds­
number (U1 (9, /v ( (!), = momentumthickness of boundarylayer at end of 
splitterplate) and the non-dimensional distance downstream x/Q

1 
on 

the small-scale mixing (normalized product-thickness P!e,; 
P=thickness of productlayer) is given. 

P/6 

" / -
/ .-------_· - -

/ ----- ----
/ ---- -­~--:::---

~~===========::::i~x/0, 

Fig.2.2.6 Speculative effect of the initial conditions on the 
transition in the mixing layer, by Breidenthal et.al.ll) 
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What was c1ear was that there was no mixing in the initial 2-n 
disturbance region. Depending on the initial Reynoldsnumber sooner 
or later transition took place in the mixinglayer and mixing 
increased very quickly. After this transition the mixing was again 
Re-independent. 
From the flow-pictures of the reaction product it appeared that 
next to the primary 2-D disturbance there were so-called span-wise 
wiggle-disturbance, These disturbances can maybe interpreted as 
streamwise vortlees of alternating sign. The average wavelenth of 
this wiggle was about 1.1 times the wavelenth of the initial 2-D 
Kelvin-Helmholtz waves. Despite these three-dimensional effects and 
strong three-dimensional small-scale turbulence the large structure 
remained basically two-dimensional • 

.:!_i~e.!!.e~ ~t.:._a!: Ja) performed a mixing layer experiment in 7xll cm 
water tunnel. One of the streams -the low speed one- contained a dye 
that fluoresced when illuminated with a sheet of laserlight 
perpendicular to the streamdirection. A film was made on a fixed 
position in the mixing layer. The dimension time, as represented by 
the sequence of filmframes, was converted to a space-dimension by 
supposing a certain convection velocity. Thus it was possible to 
create 3-D pictures of the mixing layer, see figure 2.2.7. 
Reynoldsnumbers, based on the mixinglayer thickness, were of order 
300-600, corresponding (Rreidenthal 4)) to the growth of 3-D 
instahilities and the well-developed region of 3-D instabilities. 

F1g.2.2.7 The low-reynolds number mixing layer seen from the !ow­
speed side, looking downstream. Flow is from bottam left to top 
right. 
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Out of these plctures lt appeared that next to the primary spanwise 
vortlees the plane mixing layer contained secondary structures wi,o 
deformed these spanwise vortices. 
These secondary vortlees were in sign a1ternating longitudinal 
vortices, that were produced ear1y in the evo1ution of the mixing 
layer as a result of the deformation of the 2-D eddies by a 
secondary instability. 
At very 1ow Re the vorticity field was 2-D, concentrated in the 
spanwise cores, and the mixing was low. During transition to 3-D 
the stream-wise longitudinal vortlees appeared in the braids of the 
primary vortlees (figure 2.2.8) but the vorticity was still largely 
2-D in the cores. The only three dimensionality was in those places 
in which both systems intersected, above and below the classica! 
cores. It was only there that mixing was enhanced. Further down­
stream small-scale turbulence was either produced or convected 
throughout the layer and mixing was more uniform. 

Fig. 2.2.8 Model for streamwise vorticity distribution 

Jimenez et.al. devised a system to estimate vorticity strengths 
from concentration measurements. The strength of the longitudinal 
vortlees was a large percentage of the local circulation in the 
spanwise vortexsystem. This suggested that their origin is some 3-D 
instability of the spanwise structure, either before or after the 
first palring interaction. 

Ii~d!e~!~e~s!n~l4l investigated the effect of excitation on the 
one-stream mixing layer in air with a turbulent boundary layer 
before separation. 
The unexited free stream turbulence level in the 300x300 mm exit 
nozzle was smaller than 0.15 %. Exitation was applied near the 
separation point through a slit with the help of a loudspeaker. 
They concluded that the neutral shear layer is unstable for 
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periodtc perturbations. The perturbation wave was amplified along x, 
forming two-dimensional vortlees of elliptical cross-section. 
Amplification is defined as the ratio between the amplitude of the 
disturbance at a downstream position and at the separation point. 
The rate of amplification was highest at the onset of 
vortexformatlon, it was zero at the saturation point xs (near 
x=U

0
/f

0 
where U

0 
was the main stream velocity and f

0 
the excitation­

frequency) and further downstream it was negative. 
The maximum value of amp1ification depended on the strength of 
excitation. It was around 53 for exitationstrength -> 0. 
It was observed that the sequence of periodic events in the stream 
was sensitive to the separation condition at the trailing edge. When 
forcing was applied such that the separation remained at all times 
fixed to the trailing edge only vortlees of basic frequency were 
formed. After the saturation point the energy in the excitation 
frequency decayed exponentially, while the vortlees lost coherence 
without pairing. 
When on the other hand at strong forcing the separation point was no 
longer fixed to the trailing edge but moved periodically upstream, 
a stabJe condition of repeated palring set in. 
Formation of vortlees -be it with or without pairing- was always 
accompanied by strong increase of spread and thus of entrainment. 
After saturation the spread rate strongly decreased. In the mean 
exited flows experienced approximately twice the spread 
compared to neutral flow. The turbulent shear stress had a maximum 
at vortex formation and a minimum at the beginning of decay. 
The different ways of vortex formation, rolling-up of the sheet OR 
palring of vortices, had no different effect on the flow 
properties, i.e. increase in spread, shear stress or entrainment) 
The wavelengtbs of the distorbed vortexsheet (kelvin Helmholtz­
wavelength) compared well with the values found by Hernan 
& Jimenez 1982 15): 

Fiedler & Mensing: A I À (x-x
0

) • 0.56 

Hernan & Jimenez: At À c~-~o) "'0.578 
with: A .. *avelength, À"" (Ul-U2)/(Ul+U2) and x0 "" ortgin of mixing 
layer. 

Dzi~m~a_e!·~l~l5l investigated both in a suction tunnel and in a 
blower tunnel the turbulent free shear layer. They made an effort 
to remove all resonance frequencies of the wind tunnel and if this 
was not possible to estimate their effect on the flow. Free stream 
turbulence levels were below .4 1.. 
They concluded that the initia! conditions played an important role 
in the development of the free shear layer. One of the most cruelal 
influences was a periodic oscillation forced upon the shear layer 
immediately downstream of the trailing edge. Other resonance 
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frequencies like those of the windtunnel influenced the shear l~yer 
in a similar, but moderate way. The shear layer reacted on this 
periodic disturbance only if the exited waves were close or 
identical to the natura! wavelenth in the flow. In this case the 
corresponding vortices became stabilized over a certain distance 
while the spreading angle of the shear layer deviated from the 
linear. 
Also Dziomba et.al. concluded that the discrete coherent vortex is 
not a typical constituent of the undisturbed free shear layer, only 
in the case of periodic forcing they become apparent. 
Unintended forcing increased the spreading rate of the shear layer 
with more than 20 %. When the laminar-turbulence transition took 
place on the splitter-plate, i.e. the leaving boundary-layer was 
fully turbulent, the modulation forced upon the flow at the 
trailing edge was not weakened or cancelled by the transition 
process. Thus the effect of forcing was increased. 
While disturbing frequencies could disturb the shear layer at almost 
any downstream position, only the developing region was influenced 
by the splitter-plate boundary layers or the trailing edge 
thicknPss. 
Dziomba et.al. concluded that it is extremely difficult to 
create a shear layer whose characteristics are not influenced by 
outside disturbances. 
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2.3 Synthesis 

In this paragraph it is tried to make a synthesis of the expertmen­
tal evidence presented in paragraph 2.2. 
The plane mixing layer can be divided in five regions: 
(1) the boundary layer on the splitting plate, 
(2) the free stream region, 
(3) the linear region, 
(4) the transition region and 
(5) the fully turbulent region. 

2. 

Vorticity 
~ containing 

area 

Figure 2.3.1 The division of the plane mixing layer in five regtons 

Also we will discern two different length-scales: 
(1) The small-scale of the Kolmogorov vortices. On this scale 
molecular mixing takes place, and the 
(2) The large-scale of the momenturn thickness of the boundary layer 
or the mixinglayer. This is the scale on which large scale mixing, 
entrainment and mixing layer growth occurs. 
The conditions existing in the boundarylayer (region 1) and in the 
free stream region (region 2) fully determine the development of the 
mixing layer in the regions 3,4 and 5. The different conditions 
possible are stated in table 2.3.2 



-22-

Region Condition Parameter 

1 The boundary layer is turbulent u-e - V 
1 The boundary layer is laminar U·G 

y 

1 Angle between the two streams oL 

1 Radius of splitterplate point Rs/e 
-------- ------------------------------------- --------------------

2 The difference in the free stream bU 
veloeities U1 - U.z. = .6l,.{ divided by -
the average velocity i ( U1 + UJ = U u 

2 Excitations in the free stream u' v' - , 
V u 

2 The existence of walls 

2 Density difference between the two 
f~ streams f:t.. 

Table 2.3.2 Parameters determining the plane mixing layer 

Despite the fact that all these conditlans have different effects 
on the mixing layer it is possible to see some 'universal' 
structure in the development of the mixing layer. 
These universal properties refer predominantly to large scale 
happenings in the mixing layer. 

In region 3 two fluids with different veloeities meet eachother. 
Every small disturbance on the interface of the two fluids, the so­
called vortexsheet, will grow. This primary instability is called 
the Kelvin Relmholtz instability. Until the waves on this interface 
start to roll up a very simple two dimensional linear inviscid 
theory as presented by Michalke 1) is able to predict the growth­
rates and the frequencies of this waves. The growth of these waves 
causes the increase in spread of the mixing layer. Under all 
conditlans of table 2.3.2 the large scale structure of the mixing 
layer is essentially two dimensional in this region. 

In region 4 the vortex sheet starts to roll up and form elliptical 
vortlees or eddies. These vortlees are responsible for the 
entraioment and also by amalgamating/pairing cause the mixing layer 
to grow. This region is called a transition region because in this 
region a secondary instability creates large scale 3-D 
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fluctuations. The exact nature of this instability is not known but 
it seems to he triggered by small-scale 3-n motions. It appears 
that the moment of transition depends on the Reynoldsnumber of the 
initial boundary layer (region 1) and also on the level of free 
stream turbulence (region 2). The 2-D spanwise vortlees form heli­
cal structures and in the braids of these helices there appear 
streamwise counterrotating vortices. Where the streamwise and 
the spanwise vortlees interseet small scale 3-D mixing is enhance~. 
Finally the mixing layer becomes fully turbulent in region 5. 
Large scale fluctuations are fully three dimensional. ijut even now 
there often is some spanwise coherence in the large eddies. It is 
still a point of discussion where and how the mixing layer flow 
becomes self preserving and if there is only one self preserving 
state for the mixing layer. 

-Ex ei ta t ion-
In region 3, just downstream of the separation point the mixing 
layer is most sensitive to outside disturbances/excitation. This 
sensitivity is so great that it is very difficult to create a pure 
neutral mixing layer. One can safely assume that in every 
industrial mixing layer these disturbances play a role. They always 
increase the spreading rate of the ~ixing layer. Excitation with 
veloeities that are only 0.5% of the main stream velocity can 
increase the growth rate of the mixing layer with a factor 2. 
Coherent excitations always increase the spanwise regularity of the 
primary vortlees and they seem to move the large scale transition 
further downstream. 
Suppose the mixing layer is excited by a frequency f

0
• In the area 

o < >:.f 0 x/Uc < 1 , where X =(UcUz)/(u1+u2) and Uc=.S cu1+u2), 
more or less corresponding with region 1, the vortexformation and 
amalgamation is strongly stimulated by excitation. When the 
exitation is weak this process will continue further downstream. 
With strong excitation however the mixing layer seems to resonate 

in the area 1 <À~f0·x/Ue < 2 with the excitation frequency f 0 • 

This causes the 2-D spanwise vortlees to stabilize and it prevents 
amalgamation. A decrease in the spread rate of the mixing layer is 
then observed. 
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CHAPTER 3 FLUID DYJIIAMIC BACKGROUlfD FOR TUE VORTEXMETHOD 

3.1 Introduetion 

In chapter 2 it became c1ear that coherent structures play an 
important ro1e in the evo1ution of the mixing1ayer. Because these 
coherent structures can be seen as more or less discrete vorticity 
containing areas surrounded by a fluid that contains no vorticity 
the vortexmethod seems a promising approach for a description of 
this flow. Befare a description of the vortexmethod in chapter 4 
some of the fluid dynamic background of the vortexmethod is presen­
ted in this chapter. 
In paragraph 3.2 the Kelvin-Thomson theorem is treated. This theorem 
states that in flow without viscosity circulation (circle integral 
of vorticity) is preserved and that vorticity moves with the fluid. 
In paragraph 3.3 the complex velocity potentlal is presented. With 
the help of the complex velocity potentlal it is possible to 
describe the vortexmethod in an elegant and clear way. 

3.2 The Kelvin-Thomson circulation theorem. 

~~ r Suppose we have a velocity field u(x). The circulation (strenth) r 

around a closed material curve drawn in the fluid is defined as: 

f (3.2.1) 

with S the closed material (fixed to the fluid elements) curve and 
ds a material line element of the curve. 

The change of circulation through S is given by: 

= 
d 
di (3.2.2) 
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This integral can he split in two: 

(1) I CÎ and (2) f di}'. d s 
at 

(3.2.3) 

It is easy to prove that the first integral is zero. Suppose we 
~ ..::.. start the integration in point Xs 1 and end in Xs 2• Because the 

..l.. '~ ' integration curve is closed xs,l ~ xs, 2 and: 

= = 0 

To solve integral 2 it is necessary to find an expression for 
d~/dt. It is generally accepted the Navier-Stokes equation 
describes fluid motion in Newtonian fluids: 

olû 
- = olt 

(3.2.4) 

We substitute this in equation 2.2.3. First however we suppose that 
~ 

the outside force F can he described by a potential, so this term 
vanishes in a closed curve integration. Second we suppose that the 
pressure p is a function of alone or that is constant. Then it is 
possible to write integral (2) as: 

j = f[- V f J-7f-) 
and, since ~~ is a single valued scalar function: 

f 

dr 
ol.t = 

(3.2.5) 

(3.2.6) 

Neglecting viscosity V gives us Kelvin's circulation theorem: 

= 0 (3.2.7) 

The circulation round a closed material curve is invariant in an 
inviscid fluid. When the rotation operator is applied to the 
velocity the vorticity vector follows: 
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(3.2.8) 

With Stokes rule the relation between circulation and vorticity 
follows: 

l= Jjw-.~·dA (3.2.9) 

in which the integral is taken over a surface with normal vector n 
and bounde~ by the close curve s. We define a vortexline as a line 
in the fluid whose tangent is everywhere parallel to the local 
vorticity and we define a vortextube as a surface in the fluid 
formed by all vortexlines passing through a given closed curve. 
When we substitute equation 3.2.9 in the Kelvin circulation 
theorem the result suggests that vortex-tubes are in some sense 
permanent. As is shown by an argument in Ratchelor 16), pp.274, we 
find one of the dynamica! vorticity laws of Helmholtz: 
A vortextube moves with the fluid and its strength remains 
constant. 

3.3 The complex velocity potentlal 

It is possible to write any velocity field Û(~) as a summation of 
three velocities: 

"t- (3.3.10) 

(e:stands for expansion, v for vorticity and p for potential) 
where tre, ~v and ~p obey the following relations: 

- ~ 
~ 

\} . .Jo.. 
~ V' x (3.3.11) 

u~ = Ue. ::: 0 

~ ~ ~ V· .... \l 
~ (3.3.12) 

l..iv = 0 x Uv : w 
" 

~ ~ 

\j. ~ \/x ~ (3.3.13) Up :. 0 Up = 0 

~e describes that part of the velocity field that is caused by 
expansion of the fluid. Since we are only concerned about 
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incompressible fluids Ûe • 0. 
The solution to equation 3.3.12 is the welt known Biot-Savart 
equation. When aKX) is known throughout the velocityfield it is 
possible to calculate Û(x). ~iot-Savart sais that the velocity 
Ûv(x) caused by a fluid element at~, with vorticity~(~') is 
given by (s"" ~ - ~'): 

r~ ~ 
Ou (x) "'" -V 

5 x w c x. 'J J v (x·) 

~Ti 1s1 3 

Fig.3.2.1 Flowfield picture belonging to equation 3.3.14 

(3.3.14) 

~ 

The total velocity field caused by the vorticity fieldw(x) is the 
integral of 6uv over the entire volume: 

I 

'ilT fl! 
V 

...lo. ~ ~) 
sxw(:>c.' 

ls) 3 
Ó V{x') (3.3.15) 

Because we can write Vx tip • 0 a velocity potentlal cplX.> can be 
defined for ~p such that: 

~ ~ 

= Up (X) (3.3.16) 

This is a very handsome simplification because by knowing the scalar 
field fC~) it is possible to derive the velocity field ~x). The 
continuity equation for incompressible fluids V·Û • 0 requires that 
at all points the Laplace equation holds: 

0 (3.3.17) 

The properties of the solution of the Laplace equation are strongly 
dependent on the topology of the region of space in which the 
equation holds. When this region is "single valued" this means that 
we can write: 
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(3.3.18) 

where the solution is independent of the integration path between 
x

0 
and x as long as this path remains inside the fluid. 

In the particular case of a two-dimensional velocity field ~p 
satisfies relations of such a form that is possible to make use of 
the theory of functions of complex variables in a way that is both 
elegant and effective. The components up and vp of ~p can be 
written as: 

Up : ?_cf. 
vp = ~ 

'dx. roy (3.3.19) 

Because \7·4 ... 0 
f' 

we also can define a streamfunction l( such that: 

Up .:: ~ 
' vP .:: ~ 

-oy '";>..)(: 
(3.3.20) 

We now define a complex potential w(z) (z=x+iy) as: 

w(z) .. r + I y; (3.3.21) 

By taking the complex derivative of this potentlal we find the 
velocity: 

dw - u., . _, (3.3.22) 

In this way we have a powerful tool, the complex function theory, 
~ 

to describe our velocity field up. 
It is possible to combine the advantages of the complex potentlal 
description with the vorticity distributton description and tackle 

...... ..lo. ~ 

velocityfields u = uv+ up. This is most easily demonstrated ~ith 
an example, e.g. the pointvortex. A pointvortex in the point x1 is 
deertbed by its streamfunction: 

= - r.-1 (3.3.23) 
2-rr 
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The velocity field connected with this stream function obeys every-
~ 

w~ere v.û = 0 and everywhere, except on the point xi itself, 
V x Û • 0. The velocity potential, connected with the pointvortex 
is not single valued anymore. There is a "'cyclic constant"' r; , and 
everytime we choose our path of integration to go around point xi 
thls cyclic constant is added to the velocitypotentlal. This does 
not prevent us from deriving a velocity field from it. The complex 
velocity potentlal of the point vortex i is given by: 

J" ( z - z.;) (3.3.24) 

and the veloeities dw/dz: 

(z- z ;) 
(3.3.25) 

In this way we defined a complex velocity potentlal for a flow 
field with circulatlon. The Kelvin theorem applied on a pointvortex 
in a velocity field states that the clrculation of the pointvortlees (r;) 
is a preserved quantity and that the polntvortex position moves wlth 
the local velocit~ 
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CHA.PTER 4 TUF. VORTEXMETHOD; LITERATURE 

4.1 Introduetion 

A variety of fluid flows of high Reynolds number are characterized 
by the coexistence of high-vorticity areas and low-vorticity areas. 
The two major classes of such flows are boundarylayers on solid 
surfaces and free shear layers. The mixing layer in the Quench Test 
Unit is a good example of such a shear layer. Shearlayers come into 
existence when the boundarylayer on a bodysurface sperates from 
this surface. This is called shedding. The way in which the layer 
separates from the surface is determined by the so-called Kutta­
condition. The layer is unstable for disturbances and tends to 
roll-up into concentrated vortices, see chapter 2. This instability 
is called, as we have seen, the Kelvin ~elmholtz instability. 
These vortices are sometimes indicated with the more general name 
coherent structure. Owing to the interest in these coherent 
structures during the last decade much effort has been spent to 
describe the motion and the structure of the shear layer. 
These studies could be devided into three different types: 

1) Studies that model the shear layer with an isolated vortexsheet 
of zero thickness. (isolated means: placed in a unbounded fluid) 
2) Studies that model the shear layer with as an isolated 
vortexsheet of small but finite thickness. 
3) Studies that model the separation of the shearlayer from a solid 
surface and also look into the interaction of the layer with walls. 

Inspirated by the discrete nature of the coherent structures a 
vortexmethod describes the high vorticity areas with more or less 
discrete vorticity building blocks (VBB's). 
These VBB's are solutions of the inviscid ~avier Stokes equation, 
the so called Euler equation. The summation of the velocity 
potentials of these VBB's is still a solution to the Euler 
equation. The Thomson-Kelvin theorem, presented in chapter 3, 
states that, when the viscosity is zero, the circulation of these 
VBB's is preserved and that they move with the local velocity. 
Those VBB's can have different forms, depending on the flow under 
investigation. For two-dimensional flows we want to suggest the 
following division going from a not so abstract physical VBB to 
very abstract mathematica! VBB's. This division is presented in 
figure 4 .1.1. 
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one dominant lengtb-scale two dominant lengtb-scales 

vortexsheet with 
finite thickness 

vortexsheet 
( 

J _,.. ,-
( ~-
segment or 

panel vortices 

discrete 
vort i ces 

.· 

.. . . . 

point vortices 

eddy 

cUskvortex 

Figure 4.1.1 Schematic presentstion of two dimensional vorticity 
building blocks 

The definitions of the most used terms in the vortexmethod are: 

Vortex ; A vortex is a finite element of fluid containing 
vorticity. It is surrounded with vorticity free fluid or walls. 

Vortexsbeet ; A vortexsheet is a surface (in two dimensional fluids 
a line !) over which there is discontinuous change of the velocity 
component along the surface. The pressure and the normal component 
of the velocity are continuous when crossing the sheet. The term 
vortexsheet is also used to describe the 'physical' vortex- or 
shearlayer in which the discontinuity always is stretched over some 
distance because of viscosity. In this paper when the attention is 
focussed on the thickness of the vortexsheet this will always be 

mentioned. 

Pointvortex ; A pointvortex is a position in a two dimensional 
flowfield with a fixed circulation r . At some distance its 
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velocityfield is that of a cicular vortex with uniform vorticity­
distribution. As we have seen in par. 3.3 the velocity, induced by 
a pointvortex, has a singularity (goes to infinity) in the point 
vortex itself. 

Discrete vortex ; Some authors call the discrete vortex a vortex 
blob or use the term discrete vortex to denote a point vortex. A 
discrete vortex is a pointvertex in a two dimensional flow field 
except for a small region around the vortexposition. In this region 
the singularity in the velocity potentlal has been removed and is 
replaced by a potentlal without a singularity. See for more details 
paragraph. 4.4. 

Segment- or Panel- or sheetvortex ; This kind of vortex is a short 
line with some mathematically easy to describe form, e.g. a 
straight line or a circle-arc. Also the vorticitydistribution on 
this line is given by a relatively simple expression. These facts 
allow an analytica! determination of the velocity potentlal of this 
segement- or panel- or sheetvortex. 

Other less commonly used VBB's have been used in literature. 
An example is the FAVOR (finite area vortex region) presented by 
Melander et.al. 74). It is elliptically formed and the authors 
claim that it has several advantages above the more usual point- or 
discrete vertices, when descrihing coalescence of vorticity. 

In the following paragraphs a review is given of the two 
dimensional vortexmethod presented in the literature. The 
attention will be focussed on the description of the shearlayer 
and the vortexsheet. In paragraph 4.2 an analytica! mathematica! 
description of the isolated vertexsheet and several of the analytic 
or similarity solutions that are known for this vertexsheet are 
given. 
Paragraph 4.3 describes how the vortexmethod tries to give a 
numerical salution to the equations presented in paragraph 4.2. 
An history is given of the trials of several authors to solve the 
equations of motion of the vortexsheet. One of the methods, the 
discrete vortex method, deserves a separate treatment. This is 
given in paragraph 4.4. 
In paragraph 4.5 walls are introduced in the fluid that is 
described by the vortexmethod. Paragraph 4.6 deals with the problem 
of vortexshedding. In paragraph 4.7 a much used way of introducing 
artificial viscosity in the flow will be presented. Paragraph 4.8 
describes a vortexmethod modified to include the effects of gravity 
and surface tension. Applications of the vortexmethorl and combined 
experimental/vortexmethod studies are the subject of paragraph 
4.9. Finally in paragraph 4.10 a conclusion is formulated. 
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4.2 An analytica! description of the vortexsheet. 

A convenient description for the equation of motion of an isolated 
vortexsheet is, among others, given by Moore 54). 
Suppose P is a typical fluid partiele of the sheet and Q is 
reference fluid partiele on the sheet. If the vorticity in the 
sheet is of one sign the net vorticity or circulation C in the are 
QS is a monotone function of the arcdistance between Q and S, and C 
is a Lagrangian intrinsic coordinate. 

• Z.p 

5 

Fig. 4.2.1 The vortexsheet, belonging to equation 4.2.1 - 4.2.4 

If zs(C,t) is the complex coordinate of a point on the sheet as a 
function of time then the complex velocity of the partiele at 

position zp in the plane is given by the twodimensional Eiot Savart 
integral (see also par.3.3): 

_L 
2rri + LAr- i VE (4.2.1) 

where UE,VE denote the components of an external irrotational 
velocity field. 
The self-induced motion in a point zt on the vortexsheet is the 
average of the veloeities on both sides of the sheet: 

(4.2.2) 

These veloeities are given by: 

-1 CJ/ 

dz.-, = + l /~zt\ + _!_. f de' + Ue.- i V~:: (4.2.3) 
olt z1t Zt - 1. C'é)c. 2rnc zt- zsLc.~ t) -

~ 

where the slash in the integral sign denotes the Cauchy principal 
value. From 4.2.2. and 4.2.3 follows the selfinduced velocity of 

the vortexsheet in point zt: 
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_, V-r::. 
(4.2.4) 

The strength ~ of the sheet, which denotes the velocityjump across 
the sheet, is given hy: 

:::: 

o/C 
ols 

where s is a pathlength parameter along the sheet. 

(4.2.5) 

Moore 34) has generalized equation 4.2.4 to a vertexsheet of small 
thickness. If ~ denotes a large but constant value of the 
vorticity in a thin sheet the equation of motion of this sheet 
becomes: 

. 
I 

{.w 
(4.2.6) 

Equations 4.2.4 would seem suitable for numerical treatment. But in 
spite of a lot of attempts by various authors no consistent and 
easy to use solutions have yet been obtained. 

-Analytical solution-
A. A simp le exact so lu t ion of equa t ion 4.2.4. is tha t of a 
cicular vertexsheet with a uniform vorticity distribution. When 
the strength and the radius of the sheet are unity the salution of 
zt(C,t) is given by: 

(4.2.7) 

B. Prandtl demonstrated the existence of self-similar unsteady 
spiral vortex sheets with the shape of logaritmie spirals. A 
physical example of such a sheet is the so called Kaden-sheet. 
An initial flow for t<O is defined as a steady attached potential 
flow around a semi-infinite flat plate (zp = x + O·i; x<•O ; 
w=-iaz112 ,a=constant). At t=O the plate is removed, leaving a 
semi-infinite vortexsheet. At its end the selfinduced velocity is 
infinite and the the singularity is resolved through a self-similar 
spiral-like roll-up of the form: 
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2~ 

(a..t) w (~) (4.2.8) 

where t=time andw(À) the nondimensional self simHar shape 
function of the sheet. Several authors have attempted, with mixed 
succes, to simulate Kaden's prohlem with a vortexmethod. We 
mention van de Vooren 19), Chorin 20), Moore 24), Pullin 36), ~ink 

& Soh 40) and Baker 42). Outof the results of Pullin figure 4.2.2 
is an example. 

~--------------------------~~2 
1------------~o 'I 
..... ..L......L......L--L---IL.....-..._...._-'-.....L.....J--1..-J -~ 2 

-3-2 -3-0 -2-8 -2-6 -2-4 -2-2 
:lC... 

0·2 

---------------------------------------·---------· 0 

y 

L-L-L-L-~~~~~~J_J_~~~-L~~~~~~~~-~2 
-~2 -2~ -1~ -1~ -1~ -1·2 -1~ -08 -06 -~4 -02 

x 

Fig. 4.2.2 Salution of Kaden's problem with a vortexmethod, by 
Pull in 36). 

C. The Kelvin Helmholtz instability of a vortexsheet shows that 
infinitesimal disturbances of wavelength ~ on a plane sheet of 
strength K , while the disturbances are so small that non-linear 
effects play no role, grow like exp(w. ~- t/ )\ ), see Batchelor 16) 
The shorter the wave, the faster it grows. When, at larger 
amplitudes non-linear effects start to dominat~ the growthrate 
reduces. Meiron et al. 64) studied the K.H.-instability of a 
vortexsheet of zero thickness. They applied a sinusoidal 
perturbation of the vorticity. By means of a high order Taylor 
series in time they showed that the sheet develops a curvature 
singularity at a finite time te. This indicates that the vortex­
sheet of zero thickness as a model for the shearlayer is only valid 
for a limited period of time. 
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4.3 Discretization with pointvortlees 

Rosenhead 17) already in 1931 tried to ~olve the equatton of self 
inuced motion of the two dimensional isolated vortexsheet by 
representing the vortexsheet with pointvortices. 

Fig.4.3.1 The vortexsheet represented by pointvortices. 

He approximated the integral of equation 4.2.4 by a Riemann sum and 
used the fact that a pointvortex induces no motion on ltself to 
cancel the infinite contributton from the local singularity of 
4.2.4. If the circulation of the ith pointvortex is denoted by r,· 
and its position by z1 then the velocity of the ith pointvortex is 

given by: 

:lft 
ol "Z ,· -cit 

c~.~ 

I de' 
~ rri z. -z Lc' t) c I S .I 

No 

_J ~ 
=:.zrri <. 

'Zi-ZJ. 
(4.3.1) 

The motion of the sheet is followed by using a simple first order 
(or second order) scheme: 

- z,· (t) + 
dz,· 
dt 

. o{é 

where dt is the timestep of the procedure. 

(4.3.2) 

Unfortunately this simple straightforward procedure leads to 
chaotic motion that does not accurately represent the hehaviour of 
the continuous vortexsheet. Hama & Burke 1~ recalculated Rosenheads 
result with finer timesteps and finer discretization. They found 
that chaos developped in those regions of the sheet where 
pointvortlees came closer to eachother. They concluded that chaos 
was caused by the singularity in the velocitypotential which caused 
unrealistic high veloeities on nearby vortices. 
This happened in spite of the fact that because of conservation of 

energy the point vortlees cannot come arhitrarly close to 
eachother. The Hamiltonian H is one of the four invariants of the 
vortexmethod in an unbounded flowfield: 
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1) H = (4.3.3) 

Other invariants ar~ 

2) (4.3.4) 

3) r,. ,,. (4.3.5) 

4) (4.3.6) 

Many authors have tried to solve the problem of erratic and 
chaotic movement of the vortexsheet. Many adhoc procedures were 
invented to prevent chaos. An example of such a strategy is the 
amalgamation of two vortlees into one vortex with their combined 
strength when they come nearer to eachother than a eertaio 
arbitrary limit. With this procedure Clements et al. 25) simulated 
the flow around a circular cylinder. 

Chorin 20) first suggested the use of discrete vortlees 
(pointvortices with a viscous desingularized core). One has to 
realise that, hy representing a vortexsheet with discrete vortices, 
one simulates a shear layer of small but finite thickness. Hald et 
al. 13) and Majda et al. 57) proved that under eertaio conditions 
the discrete vortex representation converges with arbitrary high 
order accuracy to the salution of the two-dimensional ~uler 
equation. This subject will be described in greater detail in 
paragraph 4.4. 
Fink & Soh 40) claimed that the point vortex method broke down 
into chaos because of an integration error. In support for this 
they established a theory of the integration error in the scheme of 
equation 4.3.1. They concluded that a pointvortex representation 
implicitly involved the neglect of logarithmic terros which represent 
the local contributtons for the self induced velocity. They argue 
that these logarithmic terms, although in a regular represented an~ 
smooth sheet initially vanishingly small, amplify through small 
sheet distortions, leading eventually to chaotic motion. They 
introduced a repositioning technique aimed at removing these 
logarithmic terms, and they found that chaotic movement disappeared. 
In their technique each timestep the vortlees are repositioned 
along the sheet in such a way that their spacings remain equal. The 
consequence of this intrusion in the development of the sheet is 
that each timestep each vortex must be attributed a new vorticity 
strength r . This is done in such a way that the cumulative 
vorticity C(s), when going along the sheet with path parameter s, 
remains the same before and after repositioning. A variant of this 
technique, used by the author, is described in paragraph 5.4. 
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accuracy. 
Baker 48) disputed the results of Fink & Soh and proved them to be 
unreliable. He reproduced the work of van Vooren 19) and gave an 
accurate treatment of the pricipal value integral 4.2.4. This was 
done by subtracting from the integrand a function with the same 
singularity, which thus rendered the integrand regular. The 
canceling function could be integrated analytically. If trapezoidal 
integration is used van Vooren's procedure leads to: 

c~ ~ 

-Lf Je' - -.!.....~~ 
~;rri z -z (c.~i:)- 211"i ._ 7:t-ZJ 

r t s ~- o 

~0 ~*t 

(4.3.7) 

This means that the error in Rosenhead's pointvortexmethod (and 
also in Fink & Soh 's vortexmethod), denoted by the first term on 
the right hand of 4.3.7 is less than eN where: 

~2.'& I I~~ 
MtA.x 

I ~~ll-= (4.3.8) 

and that therfore the integration procedure of Rosenhead was a 
consistent approximation because the truncation error goes to zero 
when the number of integration points goes to infinity. 
The conclusion is that chaos is not caused by inaccurate 
integration. 
Moore 54) showed that chaos in fact was caused by a discrete form 
of the Kelvin-Helmholtz instability and that the succes of Fink & 
Soh's metbod was due to the fact that it dampened this discrete 
K.H.instability. He compared the results of Rosenhead's and 
Fink & Soh 's vortexmethod applied on a circular vortexsheet with 
the analytica! solution, see equation 4.2.7. The circular 
vortexsheet was represented by 60 pointvortices. The difference 
between the exact solution z(t) and the calculated solution ;j(t) 
was expressed by: 

with j denoting the jth vortex, p the label of the mode (0(p(60), 
~ the amplitude of the error and<r,. the growthrate of the error. 
The modes 30,20,15,12,10 have periodicities of 2,3,4,5,6 
vortexspacings. He found that a disturhance with a spacing of 2 
(pairing of neighbouring vortices) was the most unstable mode. In 
table 4.3.2 some growthrates for different modes are given. 
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Periodicity Cï-p 

2 spacings 6.91 
3 spacings 6.17 
4 spacings 5.15 
5 spacings 4.32 
6 spacings 3.62 

Table 4.3.2 Growthrate of the different modes of the discrete 
Kelvin Helmholtz instability. 

Fink & Soh's salution against chaos was in fact the supression of 
these modes of disturbance. Its specific effect can be seen in the 
comparison of the two pictures of figure 4.3.3. In these pictures 
the 'mode-spectrum' of the error is given. In Rosenhead's method 
one sees clearly that the most unstable mode is mode 30. In the 
second picture the overall amplitude of the error is many orders 
lower. Intersesting is the fact that Fink & Soh's method is most 
effective for the most unstable p=30 mode. 
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Fig. 4.3.3 Mode-spectrum of the error in the point vortexmethod 
salution of the circular vortexsheet using Rosenhead's 
version or Fink & Soh's vers ion; 
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Fink & Soh's vortexmethod, when pursued long enough in time, 
eventually also develops chaotic hehaviour and it even produces 
spurious waves in the vortexsheet. With this method not the 
equation of motion of a vortexsheet of zero thickness was solved 
but the equation of motion of a thin layer with an unknown 
thickness. Although it is not clear in general what the 
relationship is between the unkwown exact salution of the Gauchy 
principal value integral 4.2.4 and Fink & Soh's solution, the gross 
features of the developped vortexsheet can probably be accepted as 
re al. 

o"" 
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Only in more recent years more accurate ways of numerical treatment 
of equation 4.2.4 have been presented. 
Hoeijmakers & Vaatstra 60) presented a panel-vortex metbod with a 
flexible timestep and a flexible vortex-representation of the 
sheet. When the curvature of the sheet increased, timesteps 
decreased and the number of dicretizations increased. This was done 
in such a way that second order accuracy was preserved all times. 
Moreover they calculated the short range self induced veloeities by 
repreaenting the sheet locally with a quadratic polynomial with a 
continuous quadratic vorticity distribution~. However in the 
roll-up region the time-step decreased so much that the procedure 
ceased to advance in time. They chose therefore to amalgamate the 
inner part of the roll-up region into one pointvortex. In this way 
they achieved smooth and stable results. Through this amalgamation 
procedure they effectively turned the vortexsheet again in a thin 
layer. 
The first authors who succeeded in finding a numerical salution to 
the equation of motion of an infinitly thin vortexsheet were Higdon 
& Pozrikidis 75). They used a similar procedure as Hoeijmakers & 
Vaatstra 60), with flexible representation and timestep. The 
difference was that they chose for their vortex segment, that 
represented the sheet for short-range selfinduced velocity 
calculations, the are of a circle. They didn't apply an 
amalgamation procedure and they consequently found that the 
timestep reduced and converged to a finite te. At the same time the 
number of representations increased and a singularity evolved in 
the curvature of the sheet. This result is similar to the result 
obtained by Meiron et al. 64), mentioned in par. 4.3. 
Higdon & Pozrikidis 76) succeeded also in simulating the Kelvin 
Helmholtz instability of a sheet with pre-defined thickness and 
constant vorticity. They found that the growthrate of the 
disturbances strongly was effected by the layer-thickness, but that 
the final amplitude is relatively insensitive to the thickness. ~or 
thin layers with thickness less than 3% of the wavelength, three 
different patterns were observed in the vortex care region. A 
compact elliptic care, an elongated S-shaped core and a bifurcation 
into two cores. ~or thicker layers stationary elliptic cores may 
develop if the thickness exeeds 15% of the wavelength. 
A last contribution to the pointvortexmethod that we want to 
mention is one of Maskew 30). He observed that in the near-field 
(1-5 vortexspacings) of a straight vortexsheet represented by 
pointvortlees the calculated induced veloeities deviate from those 
of the exact solution. He presented an algoritm in which the 
vortexsheet between two pointvortlees was subdivided in an array of 
subvortices, keeping ofcourse the total circulation constant. tn 
this way, by choosing the number of subvortices, he in fact reduced 
the dimension of the 'near-field' and thus could reach arbitrary 
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accuracy in evaluation of veloeities near the sheet. This procedure 
could have interesting applications in the ro11-up region or in 
models with more than one vortexsheet. 

4.4 Discrete vortlees 

Discrete vortlees were first introduced by Chorin 20) as a way of 
prevenring the erratic behaviour in the solutions of the 
vortexmethod. ~e introduced a viseaus core that desinguralized the 
Riot-Savart integral. The complex velocity potentialw at a point z 
caused by Chorin's discrete vort ex in z j with strength ~ and 
core radius 6 is given by: 

w(z) = rà- . w& (z -'Z~) 

w~, (z') : t 
.!- ,&. (_z ') 
2:1T 

z c 
~"" ó + eS 

(4.4.1) 

where C is a constant chosen in such a way that w & (z') is 
continuous. This choice of wó(z') causes the velocity in the core 
to be constant. A cut-off that has been used by various other 
authors is the Gaussfan cut-off: 

w~ (z') -
2. 

~ (- lzl ) 
' 

z < s (4.4.2) 

The discrete vortex methad was critisized by among others Leonard 
51) because of the arbitrary introduetion of a core radius and 
because the methad didn't al1ow for deformation of the core while 
surrounding fluidelements were distorted. 
Hald & del Prete 33) found however that on certain conditlans 
(concerning the choice of vortexspacing and cut-off function 
w (z')) the methad converged for a limited time interval to the 
salution of the Euler equations. Their results were improved upon 
by Majda & Beale 57). They proved that discrete vortexmethods can 
have arbitrarily high order accuracy when the distance h between 
the vortlees and the core size ~ are well chosen. As the attractive 
computational features of the discrete vortexmethod Majda & Beale 
mentioned: 
- The discrete vortlees closely mimic the physical mechanisms in 

2-n fluid flow. 
- The discrete vortexmethod is adaptive; The discrete vortlees 

autpmatically concentrare in regions with steep gradients. 
- Vortexmethods do not have numerical viscosity like conventional 
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Euleruian difference methods. 
- They can he designed to have higher order accuracy without 

substantially changing the basic algoritm. 
The main disadvantage of the discrete vortex methad is the fact 
that the computational cost is proportional to N2, with N the 
number of vortices. 

4.5 The vortexmethod and walls 

For fluid flow two boundaryconditions must be satisfied at a solid 
surf ace: 

1) the inpenetrability of the wall. 

2) 
..... ... 
u. • s = 0 the no-slip condition 

n is the normal vector on the wall and t is a vector along the 
wall. The vortexmethod essentially is an inviscid methad 
specially suited for high Reynolds number flows. In a high Reynolds 
number flow the boundarylayer is very thin and the flow outside of 
the boundarylayer can be treated as an inviscid flow. Therefore in 
many cases the no-slip condition may be released. The most common 
way to satisfy the inpenetrability condition in two dimensional 
flow is by way of mirror vortices. Suppose a pointvortex with 
strength r approaches a flat plate. Introduetion of a similar 
pointvortex but with opposite vortexstrength at the mirrorposition 
causes all normal veloeities on the plate to cancel, see figure 
4.5.1. 

Fig. 4.5.1 Solving the inpenetrability condition by way of a 
mirrorvortex 

With the help of conformal mapping, using for example a Schwartz 
Christoffel transformation (see Batchelor 16)), it is possible to 
transfarm a lot of flowgeometries to the flat plate geometry. If 
this plate is positioned along the real axis vortices and mirror­
vortices are eachother's complex conjugates. 
Suppose that a geometry in the z-plane is transformed to the upper 
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half ~ -plane with a transformation denoted by: 

::. (4.5.1) 

The velocity induced on vortex i is derived from the total complex 
velocity potential (including all rotational and irrotational 
sources) minus its own velocity potential: 

~ 

h~ ow j f.. .1. } dz.; t + I 

olz. --- :: 2"TT 'Z- z i (4.5.2) 
olt z-.-z; 

As is calculated in appendix 1 this expression can be written in 
terms of ~ where the position tin the :f-plane corresponds with z1 
in the z-plane: 

};~ 
2 ~ "Z; 

(4.5.3) 

The potentlal dw/d ~ consists of the contribution of the vortices, 
the mirrorvortices and the irrotational flow ~E in the .f -plane: 

dwl 
d -3 -r; 

+ 
i r.. _( 
2Tr f 

- J. + __!__·} (4.5.4) 
~;- -fj ~; -~J 

* where ~j and ~j are the vortex- and mirrorvortexposition in the 
~ -plane. 

Inamuro et al.70) presentedan alternative way of satisfying the 
Û·n = 0 condition. They distributed pointvotices on the walls in 
such a way that at the midpoints between the pointvortlees the 
normal veloeities were zero. They claim that their method is more 
easily adaplable to complex geometries. Several authors want to 
model the boundarylayer and have therefore to satisfy the no-slip 
condition Û·s ~ 0. Generally this is done by introducing vorticity 
at the walls, in the form of discrete vortices or vortexsegments, 
that compensate the velocitydifference between the fluid and the 
wal1. Usual1y these boundarylayer vortices are given a random walk 
component in their veloeities in order to simulate the diffusion of 
vorticity that takes place in a boundarylayer. 
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4.6 The shedding of vortlcity 

The shedding of vorticity from a sharp edge is uniquely determined 
by the Kutta condition, which requires that the velocity of the 
fluid is finite at the separation point and that the separated 
vorticity is convected away from this point. In the case of such a 
sharp edge the separationpoint is always fixed to this edge. The 
vortexsheet that develops after shedding is parallel to one of the 
surfaces when the wedge has a finite angle. The sign of the shed 
vorticity determines to which of the surfaces the sheet is 
parallel. ~oundarylayer separation from smooth solid surfaces is 
determined by the pressure distributton along the surface and is 
therefore more difficyult to model with a vortexmethod. 
The rate of vorticity shedding dr /dt is given by: 

(4.6.1) 

when u1 > u2• u1 and u2 are the veloeities along the sheet on the 
one and on the other side just after the separation point. 1n the 
case of the shedding from a bluff body like a prism u2 = 0 and 
~r 11 ~ 
c(t becomes 1.2,·U1 • 

Several methods have been used to incorporate vortexshedding in a 
vortexmethod model. One of the earliest attempts was by Clements 
21) who studied the two dimensional flow past a square. He 
eva1uated u1 at a point at a distance YI above the square's 
separation point, see figure 4.6.1. 

Fig.4.6.1. Vortexshedding from a square by Clements 21). 

A vortex with strength r = {: u1
1

• dt (with dt the timestep of the 
procedure) was then placed exactly at the separation point. In 
spite of the fact that the Kutta-condition was not satisfied and in 
spite of the arbitrariness of the distance YI Clements claimed good 
qualitative results and a fair prediction of expertmental kwown 
Strouhal numbers and velocityprofiles. The RMS-values of the 
fluctuating veloeities in hls model were higher than determined 
experimentally. In a later study Clements 25) modified hls 
introduetion point in order to cause finite veloeities at the 
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square's edge and thus satisfying the Kutta-condition. Other 
examples of studies that used this shedding procedure are those of 
Kiya 28), who studled the vortexshedding (of discrete vortices) 
from an inclined plate in a shear flow, Kamemoto 39), who showed in 
his study that the choice of the timestep can influence the flow­
characteristics and Nagano fi3), who used close approach vortex­
amalgamation to prevent chaos in his study of the flow past a 
prism. All these studies used conformal mapping and mirrorvortices 
to satisfy û.n = 0. They all found qualitative similarity with 
expertmental results and a good prediction of drag- and lift farces 
or Strouhalnumbers. Quantities as intensities of fluctuating 
veloeities or pressuredistributions on the surface were not well 
predicted. 

Clements 25) Stansby 55) and Cheer 71) simulated the flow past a 
circular cylinder with the vortexmethod. Clements and Stansby 
didn't satisfy the no-slip condition and satisfied the Û·~ = 0 
condition with conformal mapping and mirrorvortices. They used as 
an (arbitrary) criterion to find the separation point a certain 
distance from the point on the cylindersurface where the induced 
velocity had a maximum. The shedding rate dI /dt was determined by 
evaluating the veloeities at (again) a more or less arbitrary 
distance from the separation point. The major justification given 
for these procedures is the qualitative nice result it gives. 
Cheer 71) modelled the no-slip condition on the cylinder with small 
sheet vortices, thus creating a simulated boundarylayer. To the 
veloeities of the sheetvortlees he added a random walk component 

(see next paragraph) to simulate the diffusive effect of viscosity. 
Outside this layer the flow was simulated with discrete vortices. 
When the vortexsheets crossed a given boundary they were smoothly 

~ ..... 
changed in discrete vortlees and vice-versa. U·n = 0 is satisfied 
by conformal mapping and mirrorvortices. This procedure produced 
separation without assumptions made for the separation point. nrag­
and lift coefficients are in good agreement with experimental 
results. 
Graham 32) and Disselhorst 41) present shedding algorithms that 
make use of a continuous short vortexsheet that is connected to the 
separationpoint. Further downstream the vorticity of this sheet is 
transformed to pointvortices. The vorticitdistribution on this 
sheet is chosen such that the Kutta-condition is satisfied. 
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4.7 Viscosity in the Vortexmethod 

The effect of molecular viscosity in a flow is to diffuse or spread 
out concentrations of vorticity, see equation 2.3.6. 
Chorin 79) suggested that this diffusive effect could be simulated 
in a vortexmethod by giving each timestep the veloeities of the 
vortlees a random walk component. When u1 denotes the velocity 
induced on vortex i at z1 at time t 1 the new vortexposition at 
t 1+dt is given by: 

Z; (_t + df) z, (t..) + 
I 

IA. i . dt + w (4.7.1) 

The components of w are independent random Gaussian variables with 
a mean of zero and a varianee that is given by: 

Varianee = Or 3.. . U.· L · dt 
~ 

(4.7.2) 

where L is a lengthscale of the flow, ~ is the kinematic viscosity, 
Re the Reynoldsnumber and U the main stream velocity. 
Milinazzo & Saffman 29) examined the validity of this idea by 
trying to model the well kwown problem of the decay of a circular 
finite sized vortex with N discrete vortlees with random walk. 
The exact salution for the square of the radius of gyration of such 
a vortex is: 

A(t) = + t,t. V"'· t (4.7.3) 

where t denotes time and '( the kinematic viscosity. Milinazzo & 
Saffman defined an error as: 

( Avort - A o 

E. = (4.7.4) 

where Avort denotes A calculated by the vortex method. 
Milinazzo & Saffman let the whole vortex rotate three times around 
its own axis and then found an errorE of 20% for N=SO and 10% for 
N=1000. This result suggested that the error decreased like N-1/2. 

Since computation times increase with N2 it is very expensive to 
reduce this error. They concluded that the random walk idea was 
only moderately useful. This vue was strongly attacked by Chorin 
38) who criticised Milinazzo & Saffman's way of defining an error. 

46 
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~ilinazzo & Saffman also used the "Cloud in Cell" methad (see 
paragraph 4.9) to calculate the deacay of the circular vortex. They 
found errors of the same order as before but computing casts were 
much lower. 

4.8 A vortexmethod for flows with densitydifferences and surface 
tension effects 

Zalosh 27) formulated a vortexmethod in which the evolution of the 
vortexsheet is influenced by the stahilizing effects of buoyancy 
and surface tension. These effects play a role when the 

vortexsheet separates two flows with different density. 

One can define a critical velocitydifference ~Ucrit across the 

sheet. When the velocity difference LlU >AUcrit then disturbances 
on the sheet will grow. If ~U < ~ Ucrit then the disturbance of 
the sheet will merely oscillate. lalosh gave this critical 
velocity difference as: 

(4.8.1) 

where c::f" = the surfacetension, fi and pl. the two densities and g the 
gravityaccelaration. 
He derived an expression for the change of the vorticitystrength's 
of the vortlees representing a sheet between two fluids of 
different density. The expression for vortex i with strength r

1
· 

is given by: 

clr;· 
= 

o/1:. 

where Ri denotes the local radius of curvature of the sheet, s the 
pathlength along the sheet, G; local incHnation of the sheet with 

respect to the horizon and ~si the lengthof the sheet that is 
represented by vortex i. 
Zalosh simulated the Kelvin Helmholtz instability with this 
vortexmethod and found growthrates that are consistent with 
expertmental observations of the initially linear rate of spread of 
turbulent mixing layers. 
Bromilov 77) used equation 4.8.2 in combination with a repositio­
ning procedure (similar to that of Fink & Soh) to model the shear­
layer, that develops from a starting flow past a wedge and that 
separates two fluids of different density. Some of his results are 
presented in figure 4.8.1. He found that the spreadingrate of his 
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results were in good agreement with the experimentally determined 
spread of Brown & Roshko 3). 
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Fig.4.8.1 Shearlayers, represented by pointvortices, between 
fluids of different densities, by Bromilov 77) 
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4.9 The Cloud in Cell vortexmethod (C.I.C.) 

Christiansen 78) introduced the Cloud in Cell vortexmethod for 
fluid flow. This method is an hybrid between an Rulerian gridmethod 
and the Lagrangian point vortex method. The basic equations are: 

The ~oisson equation: 

(4.9.1) 

where i) denotes the vorticity and yJ the streamfunction, which is 
related to the velocity by: 

IA : V :: -;t (4.9.2) 

The Euler equation: 

+ + (4.9.3) 

The vorticity in the flowfield is represented by N pointvortlees 
with strength r.. A finite difference approximation of the Poisson 
equation on a rectangular grid (x

0 
+ (i-l)Hx, y

0 
+ (j-l)Hy ; 

l(=i(=Nx , 1(j(=Ny) with gridspacings Hx and Hy is given by: 

N 

flowfield ~ r~ = ffw·dA 
"': J.. J I 

Because one can write for the whole 
it seems a good idea to assign values to 
following a procedure af area weighting: 

~(k) at the gridpoints 

w(k) = (4.9.5) 

where Ak are the areas shown in figure 4.9.1. 

I i .j •....:1.:.,_) ---------~~i •l,j •I ) 
LJ(3) LJ(4) 

Az. I A1 
I ------x- ---------- --
; (Xn·Y~) 
I 

A., A3 

W! ll ._ +---_...:, _____ -+w 121 
( i.j) (i ·l.j) 

Fig. 4.9.1 Cridelement in the CIC- vortexmethod 
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Now, with c.J;,~ known, equation 4.9.4. can be solved with the help 
of a fast Poisson solver. Outof the calculated lfi,J the veloeities 
in the gridpoints can easily be calculated with a central 
difference scheme: 

U;~ = ( lp;, J+ L 

V·· 
'I 

(4.q.6) 

The velocity of the pointvortex can then be calculated with: 

= (4.9.7) 

The pointvortlees are subsequently convected following a simple 
Euler scheme x(t+dt)=x(t) + u(t)•dt in which dt is chosen to 
satisfy: 

olt <. (4.9.8) 

Boundaryconditions must be given at the gridedge for an unique 
solution. An example is the setting of the streamfunction r~. 
The big advantage of the CIC-method is the computational 
efficiency. The computation-time is about proportional with the 
number of pointvortices. Application indicate that CIC is about 20 
times faster for N=lOOO than the point- or discrete vortexmethod. 
Baker 42) applied the "Cloud in Cell"-technique to the Kelvin­
Helmholtz instability. ~e found that the sheet develops small scale 
instahilities of the order of gridspacing. According to Raker this 
is due to the anisotropic redistribution process. The large scale 
disturbances had growth-rates in good agreement with non-linear 
theory. ~e also applied CIC to Kaden's problem. 

-g; 
0 0.0 

I ... 
"' 8 

1.500 

Fig.4.9.2 CIC-vortexmethod salution of Kaden's problem, Baker 42) 
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Again the small-scale instahilities developped, see figure 4.9.2. 

The large scale motion was in good agreement with the similarity­
solution, see equa t ion 4.2.8. 
The conclusion can be that the CIC-vortexmethod is able to predict 
large scale vortexmotions at a considerab1e lower computationa1 
cost. An exact error analysis is not availab1e yet. 

4.10 Comparison of the vortexmethorl mixing layer and experiments 

In this paragraph an investigation by Ashurst is presented, that 
compared the two dimensional plane mixing layer modelled with a 
discrete vortexmethod with experimenta1 results of Winant & Rrowand 
4), Brown & Roshko 3) and Browand & Weidman 6). The set-up of the 
experiment was essentially the same as drawn in figure 2.1.2. In 
this investigation discrete vortices with random walk were used. 
According to Ashurst there are three parameters that define the 
ideal mixinglayer: 1) Th:_ velocitydifference A U = (u2 - nl) , 
2) The average velocity U = O.S(u1 + u2) and the kinematic 
viscosity ~. Good experimental techniques eliminate other effects. 
The splitterplate was represented by a uniform sheet of vorticity 
represented by a row of discrete vortices with spacing L/M and of 
strength r = t. U L/M where L is the lengtheeale and M the number of 
vortices per lengthscale •• The average velocity was produced with 
the addition of a linear potentlal throughout the system. Each 
timestep a vortex was convected into the flow with the proper 
vorticity production rate dr; dt .. UAU. Thus L/M: Ücft. The 
timestep was selected to be 0.05, after looking at the displacement 
for each timestep on computer generated movies. 
The preliminary results for the mixing layer indicated that the 
random walk provides the laminar sqrt(x) growth rate of 
momentumthickness with a transition to the turbulent linear growth. 
Leaving out the random walk component still gave a transition to 
linear growth but the early growth differs clearly from the sqrt(x) 
growth rate. 't'hus the experimentally observed linear growth of the 
mixing layer is a consequence of the Euler equation. The approach 
to linear growth rate occurred at about the same location as the 
waterchannel results of Winant & Rrowand 4). The vorticitythickness 
growth rate was equal to the one found by Brown & Roshko 3). 
Computer generated movies of the vortex motion clearly revealed 
vorticity coalescence and the large scate vortex pairing. Figure 
4~10.1 presents streakline plots of the discrete vertices. From 
these pictures Ashurst concluded that 
vortex pairing is identical to mixing layer growth and is very 
important to the entrainment process of the surrounding non­
turbulent fluid. 
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Fig.4.10.1 Streakline plots of each discrete vortex for a unit time 
with respect to the average velocity. The Reynoldsnumber 
(A'-1· &../V) is 1000. 

One of the numerical simulations was done to correspond with the 
experimental condition of the Water channel of Browand & Weidman 
6). The numerical results for the Reynoldsstress were twice the 
experimental value found by Browand & Weidman 6). 
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The expertmental RMS velocity fluctuations in the y-direction were 

twice as large as those in the x-dirextion. The numerical RMS 
velocity fluctuations were equa1 in hoth directions and even a 
little larger than the maximum experimental ones. 
In a second ca1cu1ation aging of the discrete vortlees was inc1uded 
by reducing the vortex interaction according to the exact salution 
for a single isolated vortex in a viscous fluid, see equation 
4.7.3. The overall effect was however not an exact salution of the 
Navier Stokes equation. The discrete vortex velocity field U(r,t) 
was now a fuction of distance r from the vortexcenter and the age t 
of the vortex: 

.I:· (1 - ~ (_-.-2./~'ft)) (4.10.1) 
.%. '1T" "' 

where '(' denotes the kinematic viscosity. 
The results of the aging were dramatic in the sense that now both 
the Reynolds stress and the two components of the RMS-velocity 
fluctuations were in good agreement with experiment. 
Ashurst performed another calculation at the much higher 
Reynoldsnumber of 25000 in order to campare lts results with the 
experiment of ~rown & Roshko. The growth-rate of the 
vorticitythickness now exceeded the experimental one with 16%. The 
calculation included the aging effect. The reynoldsstress and the 
longitudinal RMS velocity fluctuations showed good agreement with 
experiment, however the normal velocity fluctuations were 50 % 
larger. A possibility for the disagreement is the lack of the space 
dimension in the numerical simulation. Shadowgraphs indicated the 
existence of three dimensinal Taylor type vortices (see also 
chapter 2) with axes of rotation in the flow direction. It was felt 
that these Taylor vortlees could produce the experimentally 
observed normal (and spanwise) fluctuations while not affecting the 
longitudinal fluctuations. 
Ashurst concluded that the two-dimensional discrete vortexmethod 
simulation of the free mixing layer showed excellent agreement with 
moderate Reynolds number flows if the diffusion and decay of 
vorticity were included. 
In a later artiele by Ashurst et al.50), in which an experimenta1 
and a CIC-vortex method investigation of the two-dimensional flow 
over a backward facing step are compared Ashurst et al. concluded 
that to improve vortex dynamics results, a model of dissipstion 
caused by small scale three dimensional vorticity should be added 
to the two-dimensional calculation or a full three-dimensional 
discrete vortex dynamics ca1culation should be done. 
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4.11 Conclusion 

The vortex method is a useful and promising addition to existing 
turbulence models. Majda & Beale (par 4.4) summed up the nice 
features of the vortexmethod: 
-The vortlees (vortex filaments in a three dimensional 
vortexmethod) closely mimic the physical mechanisms of the flow. 
-The vortexmethod is very adaptive. Vortlees concentrate in the 
areas with steep gradients. 
-The vortexmethod is not troubled by numerical viscosity 
-1t can be designed to have arbitrary high accuracy in solving the 
Euler equation. 
With relatively little effort "extra's" (viscosity, density 
differences, dissipation) can be build in. Even the disadvantage of 
a computation time, that is proportional with the square of the 
number of vortices, has been solved in the hybrid 'Cloud in Cel' 
vortexmethod. There is however no established error analysis for 
the CIC-vortexmethod. 
The two dimensional vortexmethod has however a limited 
applicability in simulating experiments. Comparison with gross 
experimental features, such as drag,lift or strouhal numbers, is 
not conclusive. Moreover one must distinguish between a method to 
model turbulent flow (in most cases a three dimensional phenomenon) 
and a method to approximate an exactly two dimensional flow. The 
two-dimensional vortex method, in particular the discrete vortex 
method, is only reliable in rnadelling those flows that are 
dominated by two dimensional large scale inviscid phenomena. The 
initial part of the turbulent mixing, where the Kelvin Belmholtz 
instability dominates, is an example of such a flow. Real progress 
can only be expected from a three dimensional vortexmethod. 
Discussion of three dimensional vortexmethods is however outside 
the scope of this study but several literature references are 
listed. (e.g. Callegari et al. 35; Acton 46); Leonard 51); T{ida 
53); Beale 58); Beale 59) and Robinson 65) 
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CHAPTER 5 A VORTEXMETHOD FOR MIXING IN CONFINKD FLOWS 

S.l Introduetion 

In this chapter a 2-D point vortex method for confined mixing will 
be described. In the previous chapter many methods have been 
described to improve the accuracy of vortexmethods. Only a few of 
these methods have been implemented in the vortexmodel that is here 
presented. This is due to a lack of time and to the fact that some 
of the improvements only came to the attention of the author just 
before writing this report. 
Nevertheless the here descibed vortexmodel is a flexible basis for 
further development. 
The essential problems of a 2-D vortexmethod descrihing confined 
mixing are: 

1) To satisfy the boundaryconditions on the walls of the geometry 

2) To find a physically satisfying vortexshedding algorithm 

3) To prevent the growth of numerical errors and errors caused by 
the discretization process. 

Because these problems are essentially the same for different 
geometries first the solution to them will be treated for the 
splitter-plate geometry, see figure 5.1.1 The advantage of this 
geometry above the A-type geometry is that conformal mapping of the 
splitter plate geometry is relatively simple. 
This geometry consists outof two infinite parallel flat plates and 
a half infinite flat plate in the middle of these two, see figure 
S.l.l. 

At the end of the semi-infinite plate, when the two non-vortex 
flows UH and n1 have different speeds, a vortexsheet will 
seperate. 

1.0 

----> 
----> UH 

o.s ----> 
-------> 
-------> UL 

0.0 -------> 
0.0 1.0 

Fig.S.l.l Splitter-plate geometry with the irrotational main flow 
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Paragraph 5.2 presents the Schwartz-Christoffel transformation, 
that transfarms the geometry of figure 5.1.1 to the upper half 
plane and it gives the equation of motion for the pointvortlees in 
this geometry. 
1n paragraph 5.3 the vortex she~ding problem will be treated. 
In paragraph 5.4 some inital results will be presented. Since they 
show the typical chaotic behaviour of Rosenhead's point vortex­
methad a redistribution technique to combat this chaos will be 
descri bed. 

In paragraph 5.5 an amalgamation technique will be presented. This 
technique aims to give a better representation of the highly rolled 
up regions of the vortexsheet and to reduce calculation time. 
Paragraph 5.6 will outline the structure of the program VORTEX that 
solves the equation of motion of paragraph 5.2 tagether with the 
shedding algorithm of paragraph 5.3 and the redistribution 
technique of paragraph 5.4. 
Paragraph 5.7 shows the effects that forcing (deliberate 
disturbances in the main flow) has on the development of the 
vortexsheet. 
Paragraph 5.8 gives a short look at the influence of the velocity 

ratio parameter À. -IC (=U1 - UH)/(U1 + UH) on the growth of the 
mixinglayer (vortexsheet). 
How to change the above pointvortex model to acommodate for the an 
A-type geometry, see figure 5.1.2, will be the subject of paragraph 
5.9. 

0.0 ~~--------------"~q_u_e_n_c_h __ sh __ a_f_t_w_a_l_l __ " ____________ __ 

"axis of symmetry'' 

-1.0 --- * --- * --- * --- * --- * --- * --- * --- * --- * --- * 

Fig.5.1.2 The A-type geometry 

Finally some conclusions are presented in paragraph 5.9. 
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5.2 The equation of motion in the splitter plate geometry. 

Recause the vortexmethod essentially is aninviscid flowmodel the 
only boundary condition on the wall that has to be satisfied is 
~ ~ 

u·n = 0, the inpenetrability of the wall. In a 2-D flow above an 
infinite flat plate this boundary condition can easily be satisfied 
by introducing mirrorvortices, see par.4.5. By way of aso called 
Schwartz Christoffel transformation (Batchelor 22) it is possible 
to project geometries on a half plane bounded by a flat surf ace. 

For the splitterplate geometry the Schwartz Christoffel 
transformation is gi ven by: 

ofz A -
cl~ 

= 
-rr[~+ 1.) (~-1.) (5.2.1) 

~l.ys Îc.o.l pi" .. '- ~ .. a ... •for ... J>la. .... Q. 

z-pla. .. e. j- plot .. ~ 

r"'-•• 
Z".-· 

I 
( ..... ö) 

A·~ 
5 

y,· 

l>·? 
t' 

J\"1'" ,,./f ~ 
(-oo, o) (-~. o) 

-1 I> •1 
(•-, o) a I+ x- A' s, 

~· 

Fig.5.2.1 The Schwartz Christoffel transformation of the splitter 
plate geometry in the physical z-plane to the flat 
surface geometry in the transfarm 1 -plane. 

In the points A' and B' sourees provide the main irrotational fluid 
flows UL and UH" In the ~ -plane A' and B' are on the real axis in 
the points -1 and +1, their transformed positions in the z-plane 
are at - ~ respectively above and under the splitter plate. 

The differentlal equation 5.2.1 has the following solution: 

z = 
1 

2.-rr-
(5.2.2) 

With the help of this equation vortexpositions in the upper ~­
plane can easily be transformed to the z-plane. 

( • oo, o) l+ 
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The vortexsheet, shedding from point ~ = (0,1/2i) in the physical 

plane will shed in the~ -plane from S' = (0,0) in the direction 
of the positive imaginary axis. 
Mirrorvortices whose strength is opposite to that of the point 
vortlees in the upper JS -plane are introduced at their complex 
conjugated positions. 

The complex velocity potentlal in the ~ -plane at a point ~ P (see 
also equation 4.5.4) is given by: 

ir! f-' .1 j J. (---;) +-.") (5.2.3) 
2. ". J - ~~ (~ -~· 

f ~ " ~ 

where: ~j is the position of the vortex j in the upper half 
plane and ~ j * the complex conjugated of ~ r 

In paragraph 4.5 the general equation of motion of the point 
da. 

vortlees are given. By substituting the above equations 5.2.1 ( ot~) 
and 5.2.3 (dw/d-!) into equation 4.5.3 we obtain the velocity of 
the pointvortlees in the z-plane in terms of their position in the 
~ -plane: 

.. ! (u L~i -1)_,. u (~;+1)\ _ ~ (.1. ~a.) + 
dz; 4 " ~i L. ~i I I.J ~: 
- = N 11 (5.2.4) 
ott (_.g; .. J)(~i -t). L~ - ~ r* -f. t i rt } 

~. L!*1i .2{~; -~~) ~~1. .z(~;- ~/) 
where ~i is the transformed z1-position. 
The evolution of the vortexsheet in space can now easily be 
calculate by way of a simple Euler scheme: 

(5.2.5) 

where dt is the timestep of the procedure. 
The timestep dt usually is determined öy test-calculations. 
In paragraph 5.4 an example is given of the evolution of the 
vortexsheet for different timesteps (the largest timestep is 
divided by two and so on). 

5.3 Vortex shedding from a wedge anrl a plate 

To introduce vorticity in the flow a vortexmodel, that aims to 
model the physics of this introductton, must contain a shedding 
mech~nism. The most important condition determining the shedding 
mechanism is the Kutta condition see par 4.6. To satisfy this 
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condition most authors introduce a pointvortex at an arbitrary spot 
with a vortexstrength that satisfies the kutta condition, which 
means that it eaus es a zero veloei ty in the origin of the ~ -plane, 
see figure 5.3.1 and paragraph 4.6: 

-before introduction-

~( 0 

~.ft;..., 

~tloc.;ty .. 
•• ;,9, ... 

-after introduction-

i 

Fig.5.3.1 The shedding mechanism with pointvortex introduction. 

This methad was also tried in the present investigation. It 
appeared that different choices of introductionpoint caused 
different instahilities in the vortexsheet. Another 'unphysica1' 
feature of this methad is that between the introduetion point and 
the shedding point high veloeities normal to the vortexsheet occur. 
There is a lot of 'leaking' between the two streams. 

It was therefore decided to model the first part of the vortexsheet 
with a vortexsegment with a constant vorticity distribution, see 
also Disselhorst 41) & Graham 32). 
The sheddingmechanism with a vortexsegment is presented here for 
the more general shedding from a wed~e. The flat plate is a special 
case from this. 
In the complex plane a sharp edge can *e transformed to a flat 
plate with the transformation z = ~ , see figure 5.3.2. 

-z- p la'"'!-

A 

.B 

Fig.S.3.2 The transformation of a wedge from the z-plane to the 
~-plane. 
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The velocity V is the velocity in the origin of the~-plane in the 
absence of the vortexsegment. It is caused by the sourees in A and 
B and by the pointvortlees and their mirror vortlees that were shed 
in an earlier phase. To satisfy the kuttacondition (V=O) a 
vortexsegment will be introduced. 
The following assumptions are made about the vortexsegment: 

-It leaves the side of the wedge withe the highest velocity 
tangentially. 

-It is straight. This seems a reasonable condition when the length 
of the vortexsegment Sz is smaller than the average distance 
between the vortices. 

-In the physical z-plane the segment has a constant 
vorticitydistribution. This means ~- d r/d/zl =constant. 

-It is connected to the origin. 

It is easy to see that ~a ( ~ - ~) is the angle between the 
segment and the 1f-axis. One can derive (see appendix ?.) that the 
following relation must be true in order to satisfy the Kutta 
condition: 

V 
~ cos fJ:> 

lT L ~- '.t.) 
(5.3.2) 

where SZ is the length of the segment in the z-plane and r its 
vorticity strength (dC/ds). 
To calculate the convection of this vortexsegment it is replaced by 
a pointvortex with strength 0o Sz positioned on the midpoint of the 
segment. 
The sheddingrate d i/dt is: 

(5.3.3) 

where u+ and u are defined as: 

~ ~:f u~ 
u+ ... 

~~~ -z-"o 
(5.3.4.a) 

u- Á ~:)~ ~ u,!l ... -t- (5.3.4.b) 
::. z..,..o UL 

When d = (:t-Ahr >O and UH< u1 then u+= 0. 
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In this case ccr>o) d r/dt is given by: 

dl J 
2 2.. 

dt :: + z. u .J._ L{L - :L 
(5.3.5) 

The convectionvelocity of the vorticity near the edge is Uc· 
Uc is given by (see also Graham 32): 

. 
" 

. 
• = 

Then for b)O one finds: 

.L -
2. L{ 

(5.3.6) 

(5.3.7) 

(5.3.8) 

When Ó =0 the situation is little more complicated. One can derive 
that u+ and u- are given by: 

u~ = Uc. ir } IA.+ 
\ = u -

u - Uc + tr (5.3.9) 

and that Uc in this situation is given by: 

Uc. .1 (u+! + UL) 2. 
(5.3.10) 

The segment, after the first timestep, is transformed in a point­
vortex that is convected from the middlepoint of the segment. 
In the description of the splitter plate vortexsheet of the 
folowing paragraphs the above way of shedding vorticity is always 
used. 

. I 
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5.4 Redistribution 

The necessaty of a technique that produces a more realistic flow 
than can be obtained with an unmodified (~osenhead) point vortex 
procedure and that reduces the digital Kelvin Helmholtz instability 
found by Moore 54) (paragraph 4.3) is clearly demonstrated in 
figure 5.4.1. The unmodified point vortex method for confined 
parallel mixing, as presented in paragraph 5.2. is there applied to 

a starti"lg flow: t<O u1 and UH = 0, t=>O u1 =0.4 and UH=0.2. This 
means that the velocity ratio parameter À." , defined by 13rown & 

Rosko 3) as (u1-uH)/(U1+UH), is equal to 1/3. 
An dimensionless time dt* is defined as: 

u t­
L 

(5.4.1) 

where U is the average veloei ty .5(U1 +UH), t is the time and L is a 
lengthscale. The width of the outflow channel (L) is 1. 

* The moment of the evolution of the sheet in figure 5.4.1 is t =1.2. 
* The dimensionless timestep dt is respectively for picture 1 to 4 

equal to 0.03,0.015,0.0075 and 0.00375. Picture 5 is produced onder 
the same conditions as picture 2 but including the redistribution 
technique that will be described in this paragraph. 
Because every timestep one vortex is shed from the splitter p1ate 
the number of point vortlees in picture 2 is twice the number of 
pointvortlees in picture 1 and so on. As Hama & Burke 1R) and other 
authors have reported chaos increases with decreasing timestep and 
discretization mesh. 
From pictures like this the timestep used for most calculations 

* has been found. It appeared that a timestep of dt = 0.015 
produced the same results as shorter timesteps did except in the 
inner region of (Kaden's) the starting spira1. 
Since the interest of this paper is focussed on the mixing1ayer 
this was not thought to be of importance. 
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Fig.5.4.1 Development of a vortexsheet for a confined starting flow 
from a splitter plate. In each picture both the point­
vortlees connected by a cubic spline (IBM-procedure) as 
the pointvortlees themselves are shown. The moment in 

* time is t •1.2 but the timesteps used to reach this point 
are different. 

* Unmodified pointvortex procedure: 1. dt •0.03 
2. dt*-o.015 3. dt*•o.oo75 4. dt*-o.oo375 

* Point vortex metbod with redistribution: 5. dt =0.015 
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The aim of redistribution is to represent the vortexsheet with a 
new set of pointvortlees in such a way that the discrete Kelvin 
Helmholtz instahility is surpressed but the same sheet remains 
represented. The redistribution technique presented here is a 
variant of the one Rromilov 77) used. It is very similar to the 
repositioning technique that Fink & Soh 40) used. 
Consider a vortexsheet represented by N-N

0 
vortices. The 

s-parameter gives the pathlength along a cubic spline function 
through the pointvortlees (see appendix 4), starting with vortex N

0 
and going till vortex N. The s-position of vortex i is given by s 1 
and its vortexstrength by r1• The cumulative vorticity C(s1) is 
defined by: 

c ( SN
0

) ::. î ~0 (5.4.1) . ,_ 
~ 

c ( s :) .LG + ~ n 2 I 

d-
} =- IJo 

Along the splinefunction the redistributed vortexpositions s1' 
are such that the distances between neighbouring vortlees are 
equal: 

si' = sN + (i-No) • (SN - SNo \ 
0 N- Alo j 

(5.4.2) 

The mldpoints between the redistributed vortlees are: 

(5.4.3) 

As is demonstrated in figure 5.4.2 one can define a continuous 
function C(s) by interpolating C(s1) as a function of s. 
The redistributed vortex strengths are calculated from: 

r' /Jo = (5.4.5.a) 

' r,. 1: N0 +1··AI-! (5.4.5.b) 

r' N ::: (5.4.5.c) 
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Fig.5.4.2 The redistribution technique 

c (s.,_,) 

C (sAb•d 

In figure 5.4.3 an example in given of the redistribution 
technique. The sheet in the first picture, represented by the 
pointvortlees on the triangle positions, is redistributed starting 
at the third vortex (N

0
=3). In the other pictures the original 

cumulative vorticity C(s) and the redistributed cumulative 
vorticity C(s') and the vortex strenghts befare and after 
distribution are given. 
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REDISTRIBUTION-TEST. VORTEXSHEET REDISTRIBUTION-TEST. CUMULATIVE VORTICITY 
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Fig.5.4.3 Example of redistribution 

VORTEXSTRENGTHS OF REDISTRIBUTED SHEET 
rm 

A disadvantage of the redistribution technique is the large amount 
of computation time needed to implement it. A run of 100 timesteps 
with redistribution took almast four times the amount of processing 
units as the same run without redistribution. This is main1y due to 
the evaluation of the splinefunction. 
It was therfore decided to study the effect of not using 
redistribution every timestep. In figure 5.4.4 the results are 
shown for the same flow as shown in figure 5.4.1. 
In the upper picture redistribution was applied every timestep, in 
the second picture every two timesteps and in the third picture 
every four timesteps. 
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Fig. 5.4.4 Effect of the intermittent use of redistribution on the 
calculation time and the vortexsheet 
Intermittency (I) is: Picture 1: I=l 
Picture 3: I=4 

evolution. 
Picture 2: 1=2 

Remarkable in figure 5.4.4 are the spurious waves that develop in 
picture 3. Moore 54) found under certain conditions the same kind 
of waves when using Fink & Soh#s procedure of repositioning. An 
explanation is not known. The conclusion is that to follow the 
development of the mixing layer it is sufficient to apply 
redistribution every two timesteps. This saves about 1(0% of the 
calculation cost. 

Another comparison of the development of a vertexsheet with and 
without redistribution is presented in figure 5.4.5. It is the 
development of the Kelvin Helmholtz instability on a finite 
vortexsheet. To see what the effect of different timesteps and a 
finer discretization are these parameters were also varied. 

* At t =0 the sheet, consisting of equal strength pointvortices, had 
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sinusoirlal disturbance. The length of the sheet was 4 wavelength 

and the starting amplitude was 10% of the wavelength. Exponentlal 
growth rates of the amplitude can therefore not be expected. 
The timestep is now non-dimensionalised with the velocity difference 
across the sheet and as length scale the wavelength À is chosen. 

* For each condition four moments in time are shown: t • 0.4, 
0.8,1.2 and 1.6. The number of vortlees per wavelenght is 10 or 20. 
Clearly visible is the chaos that develops in the roll-up region 
when no redistribution is applied. Remarkable however is the fact, 
at least in the timeperiod observed here, that the chaos doesn't 
seem to influence the size and form of the large scale structures 
very much. 
Another conclusion that can be made from figure 5.4.5 is that 10 
vortlees per wavelength is not enough to model the roll-up region 
for an extended period of time. 

5.5 Amalgamation 

In an attempt to reduce calculation time and to prevent unphysical 
behaviour that, in spite of the redistribution technique, can occur 
in regions where vortlees from different arms of the roll-up spiral 
can come close to eachother a variant of the amalgamation 
technique, described by Bromilov 77) has been tried in the mixing 
layer simulation. 
This amalgamation technique is aimed therefore at amalgamating the 
inner vortlees of the roll-up region into one vortex. This is 
justified by the fact that at a distance of several vortexspacings 
the cluster of vortlees in the roll-up region seems to behave like 
one vortex, see Maskew 30). 
After each interval of Ta timesteps the algorithm cheques if the 
sheet has started to roll up (whether xi+l < x1 for any i) and on 
the onset of rolling up determines the lower and upper points p1 
and pu, between which rolling up is taking place, see figure 5.5.1. 

Fig.5.5.1 Illustration with the amalgamation algorithm. 



-70-

If the points p1 and Pu are found and the ratio }YAj~ I is lower 
than a predetermined value ra and the number of vortices between Pl 
and Pu is larger than a predetermined value ma amalgamation of 
these vortlees takes place into one vortex, positioned at their 
center of vorticity and with their combined strenghts. 
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Fig.S.S.2 The effect of the parameters Ta, ra and ma on 
amalgamation. In each picture the same sheet is shown at 

* two different points in time: t =0.6 and 1.2. The picture 
in the upper left corner is made with the same conditions 
but without amalgamation. 
In the lower right corner the calculation time is 
compared with the no-amalgamation run (CPU=lOO). 
dt*=O.OlS and~~l/3. Vortices, whose strength is clearly 
larger than that of their neighbours are more clearly 

marked. 

. .. ... . . 

... .. 
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The results of this amalgamation procedure, as presented in figure 
5.2.2., are not very satisfactory. In nearly every amalgamated 
situation the sheet crosses itself. Moreover it is very inconvenient 
to have an amalgamation procedure that is dependent on three 
aribitrary parameters. It is possible that the failure of this 
amalgamation technique is related to the redistribution technique. 
Lack of time prevented an extensive study of this. 
The conclusion is that this amalgamtion procedure is unreliable and 
that creating a good physically sound amalgamation procedure is 
not easy since the introduetion of spurious effects is difficult to 
prevent. 

5.6 The structure of the program VORTEX. 

In this paragraph the structure of the program VORTEX, used to 
calculate the development of the vortex sheet will be presented. 
The narnes of the different subroutines together with an explanation 
of their function will be given. 
In an initial version of the program at a eertaio timestep t, when 
the vortex positions were known as well in the ~ -plane as in the 
z-plane the vortlees were convected in the z-plane with the 
velocity given by equation 5.2.4. The new positions in the z -plane 
were then tranformed to the ~ -plane. This gave no problems because 
the transformation of the confined splitterplate geometry to the 
upper half plane was analytically known (equation 5.2.2). Since the 
author's vortex method was meaned to describe the A-type flow, of 
which the Schwarz Christoffel transformation has no analytic 
solution, an alternative approach was devised. The essence of this 
new approach is that convection of the pointvortlees is done in the 
~ -plane. 

The 'unphysical' convectionspeed of a pointvortex in the ~ -plane 
is given by: 

• 
d~; 

dt 
(5.6.1) • 

* If this equation is substituted in the equation for dz1 /dt (4.5.3) 
the 'speed' of vortex i in the ~ -plane follows: 

.jf 

eH' i -= 
eH: 

i Ji I 
+ -- • ----

2.". (~-i;) 
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l. 

For the confined splitter-plate geometry Jà-!j d-z.) can easily he 
rletermined: 

(5.6.3) 

In principal this means that one only have to know the differential 
part of the Schwartz-Christoffel dz/d 9 , which in most cases is 
easy to obtain, in order to calculate the movement of the vortices 
in the ~ -plane. The cumhersome numerical transformation of these 
position to the physical z-plane can then be postponed till the 
timestep one really is interested to see the vortexpositios. 

A consequence of this procedure is a change of the redistribution 
algorithm. This algorithm redistributes the vortlees along the 
sheet to have equal spacing. Since most Schwarz-Christoffel 
transformation are not linear, equal spacing in the ~ -plane 
doesn't mean equal spacing in the z-plane. In the f-plane the 
vortices must be redistributed along the cubic spline curve through 
the pointvortlees according to: 

J~~ ... l;~j ~ s 
..:__",.;.-----...:....- . toto.l 

J,t~ l~l~.i 
S(i) (5.6.4) 

where s(i) denotes the pathlenght along the sheet from vortex N0 to 
vortex i and where Stotal denotes the total pathlength along the 
sheet in the ~ -plane. 
The consequence is a simplification of the structure of VORTEX. 
In figure 5.6.1 a schematic flow scheme is presented with in 
capitals the subroutines involved. All subroutines whose function 
lies in the area of output (selection of data to store, making 
plotfiles etc.) are not mentioned. 
VORTEX is an interactive program that uses the subroutine INIT 
(initialisations) to asks all kin of questions at the user. 
In INIT one can for example choose between a starting flow or 
a condition in which alraedy a vortexsheet is present which 
satisfies the Kutta-condition. Moreover it asks which kind of 
output is desired, if amalgamation or redistribution must be 
performed. 
The meaning of the other subroutines follows readily from the short 
description in the flowscheme of figure 5.6.1. 
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INIT (I nitialisations ) 

UVINDS (c alculates 'velocities' of the vortices in the 
~ -plane. 

, 

Positions are 
shifted with 
Euler scheme 

Position and 
strength of 
shedding vort ex-
segment are 
calculated to 
satisfy Kutta-
condition (par 5.3). 

IFAMAL 

<? ye.s 
l AMALGA 

if 
redistribution ? 

yes 1 KUBSPL 

l'IO 
I_ SSWERF 

, ' I REDIST I 
""" J 

Outputprocedures I 

UVINDS eaUs: 
-DWDS & DWDSl (calculate dw/d~) 
-DSDZET (calculates d~ /dz) 
-TRINDS (calculates last term eq.5.2.4) 

(Cheques if amalgamation is desired) 

(Calculates amalgamated vortex, par.5.5) 

(calculatessplinecoefficients of curve 
through pointvortices (appendix 4)) 

(calculates pathlength between vortices) 
(performs redistribution, par. 5.4) 

Fig.5.6.1 The flowscheme of the program VORTF.X 
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5.7 The forced mixing layer 

In chapter 2 it became clear that the conditions in the outer 
flow,especially near the separation point, have a big influence on 
the development of the mixing layer. Some authors even stated that 
it is impossible to create an experimental mixing layer that is not 
infuenced by some kind of disturhance. 
In calculations with VORTEX however, when no artificial outside 
disturbances were introduced, the vortexsheet behaved 
unrealistically quiet and smooth, see figure 5.7.1. 

'( 
0.8 

0.7 

0.E 

0 c:; 

0.4~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 

* * Fig. 5.7.1. Development of the vortexsheet. t ~1.2 dt =0.015. 
À~=1/3. No outside disturbances are applied. 

It was therefoe decided to simulate these 'inevitable' disturbances 
by adding a fluctuating signal to the irrotational main flows UH 
and UL. In figure 5.6.1. the effect of sinusoidal disturbances is 
presented for different amplitudes A of the disturbance. This 
diturbance is given by: 

Uw ,. o. '4. ( 1 + A) co~ (z -rr ~ot) 
olt" 

(5.7.1) 

U'- o.l,' ( J. +A) St vt. C'Tr ~",) : 
olt * 

where Pd is the period of the disturbance in number of timesteps .. 
dt • Redistribution was applied only every two timesteps. 
In figure 5.7.2. Pd was 10. 
The results are qualitatively in good agreement with experimental 
results, which show that forcing of the mixing layer: 
- causes the mixinglayer to resonate with the forcing frequency 
- increases the growthrate of the mixinglayer width. 
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Fig.5.7.2 Forcing of the mixing layer for different amplitude A of 
* * the forcing-sinus. t =1.2 dt =0.015 and Pd=10 

Non-coherent disturbances appear to have less influence on the 
mixing layer growth rate than the coherent forcing of figure 5.7.2. 
In figure 5.7.3 the influence of a sinusoidal disturbance with an 
amplitude of 1% of the mean is compared with a random disturbance 
and a pseudo-turbulent disturbance that have a maximum amplitude of 
1% of the mean. The pseudo-turbulence was created by applying a 
digital low-pass filter to a random signa!. Its powerspectrum is 
also given in figure 5.7.2. 
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Fig.5.7.2 Comparison of the effect of different types of disturban­
ces in the main flow on the vortexsheet development. 
Conditions are the same as in figure 5.7.1. 

The conclusion of this paragraph is that a mixing layer model by 
means of a pointvortexmethod needs artificial disturbances in order 
to create realistic results. 

5.8 Changing the velocityratio 

Brown & Roshko 3) showed in their experiments that increasing the 
velocity ratio parameter À'lfcased the growth rate of the 
mixinglayer width to increase. This effect can also been seen in 
our pointvortexmodel, see fig.5.8.1. In this picture three values 
of A* ( À* =1/3 , A* =1/2 , À* =2/3) were compared. An exact ~ 
analysis of the mixinglayergrowth is hampered (especially for A 
=2/3 by the dominating Kaden spiral caused by the fact that we 
observe a starting flow. In all three pictures an artificial pseudo 
turbulent signal was applied on the main stream with an maximum 
amplitude of 2% of the mean. 

:' I Z 



-77-

y 

0.9 A of( =- .1j3 
0.8 

0.7 

0.6 

0.5 W?7' ~,-...,, 

• 0. 4 

0.3 

o.o 1..0 2.0 

., 
1.0 

0.9 A if. = 'h. 
0.8 

0.7 

0.f< 
·~ 

0.5 ~ ' "-._) 0.4 
o.o 1,0 z.o 

1. 0 

0. 9 ,\ .. = 2;3 
0.8 

0.7 

0.6 

0. 5 :l!777?55!J-----~-~-

0.0 1.0 :l.O 

-!IE 
Fig.5.8.1 Influence of changing À on the development of the 

mixinglayer. Wi l:l-t f>.S euolo + LAv b IA {.4!.&.~ c.e. : IMa" = ~ 0/o 

5.9 The A-type geometry 

The original aim of this work was to model the flow in A-type 
mixing geometry with the vortexmethod. To acomplish this the 
splitter-plate model has to be extended. In figure 5.9.1. is an 
picture of a possible result of a vortexmethod for the A-type 
mixing geometry is given. In the geometry is assumed that the flow 
in the A-type quench may be assumed symmetrie so only one half of 
the quenchshaft has to be modelled. 

I 

l 
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Fig.5.9.1 Possible result of a vortexmethod for the A-type flow 

At least the following extensions must be added to the present 
plane mixing layer point vortex model: 

- A new Schwartz-Christoffel transformation, to transform 
~ -positions to z-positions, must be used in order to be able to 
satisfy the boundary conditions with mirrorvortices. 
- The shedding mechanism must be adapted for a wedge flow. 
- Provisions must be make to convect a second vortexsheet see 
figure 5.9.1. This could mean for example that the close approach 
algorithm of Maskew 30) (see paragraph 4.3.) must be included. 
- A procedure must be created that handles vortlees that cross the 
boundary (make them disappear, bounce them back ?) 

- The algorithm of Zalosh 27) (see paragraph 4.8), to model 
densitydifferences, must be included. 

Probably it is a good idea to change the vortexmethod from a point 
vortex method with redistribution into a discrete vortex method or 
a "cloud in Cell'-vortexmethod. This would reduce computationtime 
considerably. The "random walk" approach to viscosity of Chorin 79) 
or the "aging" algorithm of Ashurst 31) coulrl be tried. 

Some preliminary calculations have been done on the Schwarz 
Christoffel transformation needed for the A-type geometry. The 

0 
Schwarz Christoffel transformation belonging to the o(=30 - quench 
is given by: 

dz 
d~ 

~ ~ b ( ~ + i_J 
(3 - p .1) { I?- f>z_) (5.9.1) 

where pJ and pk determine the diameter-slitwidth ratio and the 
relative position of the two separation points, see also fig.5.9.2. 
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0 

Fig.5.9.2 The Schwarz-Christoffel transformation of the A-type 
geometry. 

In figure 5.9.3. some results have been given of the numerical 
salution of equation 5.9.1. The choice of p~ and p~ were: 

Ps. =- -0.157 
p~ .. 4.0 

The picture shows how straight lines along the real and imaginary 
axis of the~ -plane are transformed to the z-plane. 
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5.10 Conclusions 

In this chapter a point vortex method for the confined plane mixing 
layer has been constructed. The redistribution technique to 
surpress the chaos-causing discrete Kelvin Helmholtz instability 
proved succesful. It appeared to be possible to simulate, at least 
qualitatively, some experimental features of the mixing layer. 
A more close analysis could maybe also prove quantitative 
agreement. 
This model can be considered as a first step on the way of 
modelling the A-type quench flow with a vortexmethod but many steps 
lay still ahead. 
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PART B TRE QUENCR TEST UNIT 

CHAPTER 6 DESIGN OF THE QUENCH TEST UNIT 

6.1 Introduetion 

The purpose of the Quench-Test-Unit (Q.T.U.) is to have a sca1e­
model of a real quench in which the aerodynamic performance of 
this real quench can be tested. In order to satisfy this purpose 
the Quench-Test-Unit must meet three requirements: 

1) The flowconditions in the Q.T.U. must be the same as in an 
actual quench. 

2) The Q.T.U. must be designed in such a way that changing the 
main parameters (slitwidth S and flowangle~) can be done easily. 

3) The Q.T.U. must be designed in such a way that it is easily 
accessible to instruments with which the fluid dynamic behavior 
can be tested. 

In this chapter it will be described how the design that meets the 
above requirements looks like. In paragraph 6.2.2 will be 
described what the important flowparameters are and which 
conditions they force on the design of the ().T.U. 
The density-ratio condition is met by using a very cold gas. How 
this cold gas can be produced is described in paragraph 6.2.3. 
In the Q.T.U. it is tried not only to model the flowconditions in 
the quench as good as is possible but also is tried to simu1ate 
the flow in the reactorvessel befare the quench. The determining 
factor here is the burner-flow. In paragraph 6.2.4 will be 
described how these burners are modelled. 
In paragraph 6.2.5 is described how the test-seetion ltself (part 
of Q.T.U were the hot and cold flow meet) is designed. 
In paragraph 6.2.6 finally all the elements, described in 
paragraph 6.2.2 to 6.2.5, are put tagether to farm the complete 
flowscheme of the experiment. 
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6.2 Simulating the flow; requirements. 

-Actual circumstances-
The conditions existing in the actual quench are described 
schematically in figure 6.2.1 and tabel 6.2.2: 

Fig.6.2.1 Schematic picture of Quench-Test-Unit 

HOT FLOW 

Uh = ca. 5 m/s 
D = ca. 0.4 m 

fh = ca. 3 kg/m3 
Ph ,.. 25 bar 
Th = 1800 K 
Mh = ca. 1.9 kg/sec = 
Reh > 5 104 

COLD FLOW 

Uc = 5 - 60 m/s (to be determined) 
S • 1 - 12 mm (to be determined) 

fc = ca. 12 kg/m3 
Pc =- 25 bar 
Tc = ca. 450 K 
Me = ca. 1.9 kg/sec 

Ree > 5 104 

Tabel 6.2.2 Physical parameters of the actual quench 

-Total dimensions-
The geometry of the Q.T.U. is the same as the actual geometry, but 
is scaled down in order to have a lower throughput. To be able to 
simulate actual flowconditions as well as possible the 
reactorvessel with the four burners are included in the 
flowmodel. For economie reasans sealing down to very small 
dimensions is attractive. However because of the requirement of 
accessibility for experiments it was decided to set a lower limit 
to the diameter of the quenchshaft (D): 

D )::r 0.1 m (6.2.1) 

All other dimensions follow from this dimension. 
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-Density ratios-
The density ratio between the hot reactorgas and the cold 
quenchgas must be the sameasin the actual quench:. 

(6.2.2) 

This ratio is so high that it is not possible to use liquids to 
simulate the reactor- and quenchgas. The following possibilities 
are thinkable: 

1) A combination of a cold and a hot gas. 

2) A combination of a high and a low molecular weight gas. 

Becaus~ of economie and safety reasans the salution finally chosen 
is to use cold nitrogen (T=80 K) to simulate the quenchgas, and to 
use slightly heated nitrogen (T=320 K) to simulate the reactorgas. 
How to produce this low-temperature nitrogen-gas in sufficient 
amounts will be the subject of paragraph 6.3. 

-Mass Flow Ratio-
The massflow-ratio between both fluids must be the same as in the 
actual quench, this is: 

(6.2.3) 

-Compressibility-
The veloeities in the Q.T.U. can be more or less chosen freely 
but they must not be so high that compressibility-effects start 
playing a role. A cri terion for this is M.l.< cf (0.1) where M is 
the machnumber of the flow. The highest veloeities are in the 
annular slit, so that the above criterium becomes: 

Uc < 0.3 * velocity of sound = ca. 60 m/s (6.2.4) 

-Viscosity-
In the actual coal-gasifier and quench the throughput is so large 
that the flow is fully turbulent. The Reynoldsnumber in the 

s quenchshaft is estimated to be more than 10 • It is not necessary 
to require the same values in the Ouench Test Unit as long as the 
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Reynoldsnumber is sufficiently large, say 3·104. The 
Reynoldsnumber in the slit must be based on the hydraulic diameter 
of the annulus, being 2S. The ratio of the slit- and 
shaft-Reynoldsnumber can now be written as: 

= 
(6.2.5) 

This means, with Mh =Mc,;Uc = 6-10-6~)}lh "" 20·10-6 ...,k\ , t.'na.t­
Rec/Reh - 2. This means that by satisfying the condition Reh) 3·104 

for the hot flow automatically this condition is fulfilled for the 
cold flow. The minimum required massflow to satisfy this condition 
for the hot flow is given by: 

= o. 0 s (6.2.6) 

• This value for Mh doesn't vlolate the compressibility-requirement 
(6. 2. 3) upto a velocity-ratio Uc/Uh "' 12. This is amply sufficient. 

-Buoyancy-

If the veloeities in the quench are small and the diameter is 
large buoyancy-effects can play a role. A characteristic quantity 
for this effect is the Froude-number: 

{6.2.7) 

where g is the gravity constant. 
To investigate the effect of buoyancy the Froude number of the 
experiment should have the same value as in the actual quench. 
If a turn-down ratio {the ratio between the minimal massflow and 
the nominal massflow) of 50 % is taken into account the lowest 
value of Fr in a large scaled up quench is around 1. 
This value cannot easily be accommodated for in the Q.T.U. unless 
very large amounts of gas are used. Fr can be written as: 

11 withO("' 

• 

5" 
R~"'-
--;--:;­
Mh 

-25 
10 in the o.r.u. 

{6.2.8) 
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. ~ 
This means that the massflow Mh (Reh = 3•10 and Fr= 1) must 
be four times as high as required by the viscosity-condition 
(6.2.6). 

It is not necessary to do detailerl measurements on this value 
of Fr=1. Only when mixing is slow and density differences are 
persistent (H-type quench) it can be necessary to see if complica­
tions will occur on this value of Fr=l. For that case the Re­
condition is released a bit and we require Reh < 1.5 10~ • Then 
the required massflow is equal to the requirement set by the 
viscosity condition (6.2.6), i.e. Mh = .OS kg/sec. To be able to 
get Re so low with the same massflow the quenchshaftdiameter n 
must be enlarged with a factor 2. This means that the design of 
the Q.T.U. must be such that such an enlargement is possible. 

6.3 Production of cold gas 

In this paragraph the productionmethod of the cold gas will be 
described. The cold gasflow must meet the following requirements: 

(1) Massflow Me = 0.05 - 0.1 kg/sec 
(2) Temperature Tc = ca. 80 K 
(3) Running-time under constant conditions should be at least 

20 minutes. 
The low temperature is reached by using the evaporation heat of 
liquid nitrogen. Three ways of using this principle have been 
studied: 

(1) The bubble-bat:h principle 
involves bubbling room-temperature 
nitrogen through a liquid nitrogen 
bath. Calculations showed that heat 
transfer from gas to liquid is 
amply sufficient to produce a 77 K 
gas. A disadvantage of this was 
that existing cryogenic vessels had 

~. 
/ 
I ,tJ 

to be rebuild at high cost to acommodate the pipediameters for 
sufficiently large massflow. Another disadvantage is the 

possible entrainment of liquid nitrogen draplets in the gasflow. 

(2) The closed heat: exchanger 
principle would solve this last, 
but not the first problem mentioned 
above. 
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(3) So finally the salution chosen 
was to spray liquid nitrogen in a 
fast turbulent gasflow. When a 
droplet with diameter d

0 
suddenly is 

brought in a flow with speed U
0 

this 
droplet will experience a very 
large acceleration. When these tiq.N2 
acceleration farces are sufficiently Ml,c 
greater than the surface tension, 
holding the droplet together, 

:_:··. 

· .. :.~ 
;: .. 

r1 c 

~as N2 
M g,c 

the droplet will break up. According to Hinze 57) this will happen 
when the Weber number of the droplet is greater than 13. The ~eber 
number of a droplet is defined as: 

(6.3.1) 

where D0 is the diameter of the droplet, jDg the density of the 
gasflow, U0 the velocity of the gasflow relative to the droplet and 
er~ is the surface tension of liquid nitrogen. 
Ferment 18) found that the final diameter of the draplets is given 
by: 

1 
(6.3.2) 

These relations (6.3.1 and 6.3.2) are presented grphically in 
-3 %. .a figure 

160 

~0 
120 

80 

40 

6.3.1. for d"co("" 9 10 kg/s andfg = 1.2 kg/m. 

/ 
10 -------------

20~ 

0.0 0.5 1.0 1.5 2.0 ~D 
0 

Fig.6.3.1 Final drop diameter (in~m) as a function of the initia! 
drop diameter D0 (in mm) and the velocity U

0 
(in m/s) 
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• The gas velocity U0 is determined by the massflow Mg,c and the 
diameter Dt of the tube in which the liquid nitrogen spray is 
injected. Under normal working conditions the diameter nt was 
chosen such that the velocity U

0 
is greater than 60 m/s. 

With the initial droplet diameter D
0 

smaller than l mm this choice 
garantees a final drop diameter of less than 40;um. 
The evaporation speed of such a droplet is determined by the 
tempersture difference 6T between the droplet and the surroundtng 
gas and by the heat exchange factor~between droplet and gas. 
We try to establish an upper limit for the evaporation length, i.e. 
the length the droplet has travelled before total evaporation. 
When the radius of the drop is R, the evaporation heat of liquid 

nitrogen is Hevap' its density isj01 and the average travelling 
speed of the droplet is Ud we can write the rate of change of the 
radius dR travelling a distance dz as: 

dR 
dz = (6.3.3) 

The difficulty in solving this equation is that both ~and~T are 
dependent on z. Since we are only interested in the lower limit of 
dR/dz we fill in the minimum values for ~~and ~T. 

The heatexchange factor ~ is given by: 

;\ 
.z.R 

• Nu. (6.3.4) 

where ~ is the heatconductivity of N2 and Nu is the nusselt number 
for a sphere. It is well known that the Nusselt number of a sphere 
in the limit for Re~ 0 is equal to 2. 
Aiming at a final low tempersture of 90 K ~T) 13K. With a 
droplet speed Ud < 20 m/s a liquid nitrogen drop of 40;« m always 
has evaporated before it has travelled 3 m. In the design this 
worst case evaporation length of 3m is used. 
To establish the average travelling speed of the droplet < 20 m/s 
the tube diameter nt expands after some distance in a wider tube, 
see figure 6.3.2. 
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Fig.6.3.2 The design of the cold nitrogen producing part of the 
Q.T.U. 

6.4 Modelling the burners 

In the quench test unit the aerodynamic properties of the hot flow 
entering the quench are simulated by modelling the burners and the 
reactor vessel through which this gas flows in a actual coal 
gasification plant. 
The reactor vessel is modelled by geometrically sealing it down, 
see par.6.2. The rnadelling of the burnerflow is not so 
straightforward. The important parameter is the equivalent momenturn 

diameter Deq: 
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(6.4.1) 

• • in which J
0 

and M
0 

are the momenturnflow and the massflow through 
the burner and f~ is the ambient density in the reactor. 
The physical meaning of Deq is that it determines the entraining 
capacity of a jet. Fora round jet Ricou & Spalding R5) found 
empirically: 

= o. ~8 
(6.4.2) 

When Ureactor is the diameter of the reaction vessel the scale rule 
for the burners is given by: 

(6.4.3) 

AC...TI.A.AL. 

For the actual coal gasification plant for one burner ~- .25 à 
.35. This means that a burner in the Q.T.U. must have a diameter 
such that the gasvelocity Ub is given by: 

(6.4.3) 

~ 
with eX. = 0.25 a 0.35 
Under normal running conditions Ub must be between 10 and 20 m/sec. 

6.5 The Testseetion 

The testseetion of the Quench Test Unit is the part where the hot 
and the cold flow meet. This part must meet the following (more or 
less contradictory) requirements: 

1) Adjustable n and oL 

The slitwidth D and the flowang1e o( must be easily variabie 

Solution 
Chosen is for a system that allows varying the slitwidth D 
continuously by turning the nuts (1), see figure 6.5.1. The 
varfation of the flowangle o<. is a little more complicated. It 
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requires changing the pieces 
{2) and {3) {45 °) and replace 
them by for example pieces (4) 

and (5) (15 ° ). 

0 0 
Fig 6.5.1 Two examples of the Testseetion (o(=45 and &<=15 ) 

2) Material 
The density ratio of the hot and the cold gas on the moment they 
meet should be 4. This means that the heat conductivity of the 
material keeping the cold and hot flow apart should be very low. 
The material should also be resistant to high temperature diffe­
rences (250K), it must be easy to mould and it should have a low 
thermal expansion coefficient. 

Solution 
The chosen material is Celeron, a phenol ralsin with cotton. It 
is relatively cheap, very strong and has attractive properties: 

-!> -1 
- Thermal expansion coefficient: oL= 2·10 K 

- Heatconductivity: o( = 0.34 W/m K 
These properties guarantee that under normal stationary operating 
conditions the temperature influence of the two streams on 
eachother is negligable {<1%) 
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3) Uniform flow distributton 
The cold flow must be tangentially evenly distributed. Therefore 
we need a calming chambre with some kind of flowreststance that 
forces the flow around the inner tube. Also the cooling down of 
the whole testseetion should not take to long. 
This means that the whole calming chambre must have a small 
heatcapacity and a very good insulation from the environment. 

Solution 
A distribution plate (1) (see fig~~l) in the middle of the 
calming chambre takes care of a good tangentlal distributton of 
the cold gas, coming outof a vacuum isolated pipe (2). In this 
plate holes are evenly distributed. The total area of these 
holes (including a contraction factor of 0.6) is about half the 
area of the cold gas pipe (2). 

0 
Fig.ó.5.2 The Testseetion (~=90) 



-92-

Those parts of the calming chambre that can be vacuum isolated (3) 
are so isolated. This kind of insulation offers the lowest 
heatcapacity and the best insulation. The upper part of the 
calming chambre (4) must remain removable to allow for the 2'5 cm 
diameter quench shaft. Isolation there (5) is provided for by a 
piece of roofmate (À= ca. 0.02 J /Km). The inner side of the 
suschambre is the celeron piece (6) 

4) The 25-cm quench 
The design of the testseetion must be such that it is possible 
to install a quench with a diameter of 25 cm instead of the 
normal 10 cm quench. See for an explanation paragraph 6.2. 

Solution 
In figure 6.5.3 the modifications are shown to allow for a 25-cm 
quench. 

i 
Fig. 6.5.3 The 25-cm testseetion (o(=30°) 
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6.6 f'lowscheme of the Ouench Test Hnit 

In this paragraph the (gas-)flowscheme of the complete Ouench Test 
Unit will be described. This includes a description of the 
important parameters and their mutual dependence. In fig. 6.6.1 a 
schematic representation of the flowscheme is given. 
In the scheme the symbols are drawn that are used to point out the 
different temperatures, pressores and massflows. Going from left to 
right the flowsystem consists outof the following items: 

1) The nitrogengas supply. The pressure is ca. 14 bar. 

2) A backpressure regulator. With this regulator one can choose the 

initial pressure Pi. The temperature of the gas is given by Ti· 

3) The gasflow splits in two ~arts. One part will, after heating, 
form the hot flow. Its massflow is ~h. The other part (massflow = 

~c,g) will form in combination w~th liquid nitrogen (massflow = 
Me, 1) the cold flow (massflow == Me). 

Cold flow 

4) The gasflow is restricted by 
a critical nozzle with a 

diameter nc,cr• 

Hot flow 

4) The gasflow is restricted by 
a critical nozzle with a 

diameter Dh er . 
' 

Through a eritical nozzle the massflow, when the pressure before 
the nozzle is more than ca. two times the pressure after the nozzle 
(and eritieal flow is assured), only depends on the diameter of 
the nozzle and the upstream pressure Pi. This dependenee is given 
by: 

= (6.6.1) 

This means that by ehoosing a ratio De er/Dh er one fixes the . ' ' massflow ratio Mc,g/Mh: 

= 
(6.6.2) 

• 
Mh. 



5) After the critical nozzle 

liquid nitrogen is sprayed 
into the gasflow (par.4.3). 
The massflow Me 1 can be , 
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determined hy adjusting the 
He-pressure on the cryogenic 
vessel. Helium is chosen 
because it remains gaseous 
at the boiling temperature 
of liquid nitrogen. 

6) Through the vacuum isolated 
raiser pipe the cold flow 
enters the calming chambre 
and via the distribution 
plate enters the testsection. 

Mh l: .------'----:f 

::])"'·""" 

5) After the critical nozzle 
the gasflow, which is at the 
initial temperature Ti, can 
he heated with a 10 kW elec-
trical heate~ (Enough to 
heat 10 gr/s N2 to 100 

0
C.) 

6) At this point steam can be 
injected into the hot flow. 

7) After splitting into four 
pipes the hot flow supplies 
the four burners. 

6. 

6. 

Ac. 
f 
~ 
"' 
I 
s 

" L 
4 ,. 
e 

1. ~x~Dc:,c:r L__ ____________ Lt. 
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c.vyo,51e.-....ic... 
ve.ssel 

Fig. 6.6.1 Schematic plan of flow with important parameters. 

Suppose a run is planned with the following requirements: 

1- 't'he massflow ratio Mc/Mh must he 1. 
2- The massflows Me = Mh = 0.05 kg/s 

3- The densityratio fc~h = 4. (Th .. 360 K Tc ,. 90 K) 
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The chosen low temperature Tc determines the massflow ratio 

Mc,g/Mc,l =J': 

C.p (_Tc. - ~ ~) + H ~~ 
4 (_Ti-1~) 

(6.6.3) 

The critical nozzle diameter ratio nc cr/Dh er one has to choose 
~ , , 

depends on V : 

V 1 ~ J- (6.6.4) 

The value of Der should be chosen such that: 
- there is critical flow through the critical nozzle 
- the initial pressures needed are not to high 

Now the initial pressure Pi can be adjusted to supply the right 
• • amount of gas (Mc,g + Mh). 

The helium pressure must be adjusted until enough liquid 
nitrogen is pushed through the spray nozzle (5) to cool the cold 

flow down to the chosen temperature Tc. 
As an extra illustration in figure 6.6.2. a photograph of the 
reactor vessel, t he test seet ion and the measuring instruments is 
presented. 

~ig.6.6 .2 Pho tograph of part of the Q.T .U. 
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CRAPTKR 7 EXPERIMENTS 

7.1 Introduetion 

The goal of experiments in the quench test unit is to find the 
optima1 flowangle oLand s1itwidth S. Optimal is: 

1) The ~,S combination that causes minimal fouling of the quench­
shaft, 

If this goal can be reached and there is still some freedom in the 
choice of ~and S, the second goal becomes the determination of: 

2) The ~,S combination that causes maximum mixingspeed. 
To be able to answer these questions fu11y one should have to know 
the ashparticle trajectories and their individual temperature 
histories. This can only be done by simulating the actual fouling 
process in an ex)eriment. Particles are then needed that have the 
right size distribution, thermodynamica! and cohesive properties 
so they behave as the actual ashpartic1es. This can nat be 
considered as a realistic option. 
Finally it was decided to judge the performance of the quench with 
the help of the following three techniques: 

1) Flow visualisation 
2) Slow temperature measurements 
3) Fast temperature measurements 

Several other techniques, like measuring break through times with 
the help of tracers, or velocity measurement with the help of laser 
doppler anemometry were considered. Due to financlal and practical 
problems these ideas were nat further pursued. 
In the next three paragraphs the three above mentioned techniques 
will be discussed and some examples of results will be given. 

7.2 Visualisation 

The aim of visualisation in the Q.T.U. is to support the 
temperature measurements and to offer a fast methad to judge the 
quench performance. 
A secondary aim is the detection of coherent structures and their 
comparison l~ith vor.texmethod results. 
To visualize a flow one can choose from severa1 alternatives. 
If the aim is to freeze on a picture one flowcondition of the 
Q.T.U., due to rather high veloeities in the quenchshaft 
(5-40 m/s), a very fast methad is needed. For the condition in the 
Q.T.~. two methods seem suited: 

1) Shadowgraph- or Sch1ieren photography 
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2) Photography with light scattered from particles that follow the 
flow. 

The first method is based on the fact that the optica! pathlength 
depends on the gasdensity. Recause of the high density differences 
in the quench flow this method seems viable. Several problems 
however must be overcome. Interpretation of Schlieren- or 
shadowgraph results are not easy. The fact that lightrays used to 
obtain these results have to pass two concentric transparant walls 
and a cilindrical flow makes this interpretation probably very 
hard. 
In this investigation the second method, use of light scattering 
particles, was used. The quality of this visualisationmethod 
depends on three independent elements: 

1) Quality of illumination 
2) Quality of scattering particles 
3) Quality of photography 

These elements will he discussed seperately. 

Illumination 
Illumination was provided for by a laserbeam and a rotating mirror. 
The laser illuminated from below through the reactor vessel a plane 
through the axis of symmetry of the quenchshaft, see figure 7.2.1. 
Fiedler 13) et.al. have described this rotating mirror system. 
During the experiment the testseetion was screened from disturhing 
lightsources. Only light coming from the scattering particles could 
reach the lens of the camera. 
First the shutter of the camera is opened. While the shutter is 
open the rotating mirror will sweep the laserbeam once through the 
area under observation, see fig.7.2.1. After this one sweep the 
shutter is closed. 
The scattering particles are several orders smaller than the laser 
beam diameter. The time that one partiele is illuminated by the 
laserbeam therefore only depends on the speed with which the beam 
sweeps through the observation area. In the photographs shown in 
figure 7.2.2-7.2.24 this speed was ca. 33 m/s. The beamdiameter is 
around 1 mm and the maximum flowspeed is around 20 m/s. This means 
that a partiele wil1 never travel further than 1 mm while being 
illuminated and thus sharp pictures are ensured. 
A small disadvantage of this methad is that the pictures are 
distorted. There is time lag of around 1/300 sec. between the 
illumination of the far left and the far right side of the photo. 
In this time particles travel 1 to 3 cm. 
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Fig.7.2.1 Set up of the visualisation experiment in the Q.T.U. 

Scattering particles 
The choice of scattering particles appeared to be very important 
for the final result. Because only a low intensity laser was 
available (40 mW) and beacause of the relative high speeds a lot of 
particles with good scattering efficiency were needed. 
The best reults were obtained with condensationdroplets that were 
formed when the hot flow, to which steam was added (par.6.5), mixed 
with the colrl flow. The result was that the parts where mixing had 
taken place contained a thick fog. Three examples of pictures thus 
taken are presented in fig.7.2.2., 7.2.3 and 7.2.4 
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Fig. 7. 2. 2. 

Visualisation in the Q.T.U . 
0 

o(=90 and S= 0. 6 mm 

Remarkable is the quick 
mi xi ng. After only one 
diameter no dark hot spots 

ar e present anymore. 

Fig.7.2.3. 

Visualisation in the Q.T.U. 
~=90 and S= 4.4 mm 

In this picture one can see 
that the hot flow reaches 
the wall about 3 diameters 
above the s 1i t. Th is 
penomena could be the 
reason that the H-type 

quench sometimes was 
fouled. 
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Fig.7.2.4 

Visualisation in the Q.T.U. 
eX =90° and S ~ 1 mm 

In this photograph the cold 

flow seems to reelreulate 

down the centre of the 
pipe. This was also 
observed in some of the 
slow temperature 

measurements, see 

figure 7.5.1. 

This visualisation method however needs a lot of extra research , 
before it is really trustworthy. The partiele size distribution, 

the condensationprocess {possibly homogeneaus nucleation) and the 

exact amount of vapor in the hot nitrogen are not well known. 
Results at the T.H.Eindhoven, with f og created for visualisation, 
suggest a partiele size distribution with a maximum at ca. 3;«m. 

This kind of particles are able to f ollow details in the quenchflow 
of 0.5 mm. 

The amount of steam added to the hot flow was determined by the 

quality of visualisation. Too little steam resulted in too low 
light intensities, too much steam resulted in a too thick fog and 
in a fouling of the quenchshaft. It may be very interesting to use 

this iceforming on the quenchshaft and even upstream of the slit as 
a way to simulate the fouling process in the actual quench. This 
option however needs a lot of extra considering. It is very well 
possible that the heat release in the condensation process when 
using a very high vaporconcentration influences the flow. 

Estimation of the amount of steam us ed during visualisation 
indicates that de temperature is onl y raised a few degrees. 



-101-

When camparing the visualisation results with the temperature 
measurements no contradictions are observed. 

Photography 
The biggest problem in recording visualisation results with 
photography were the extremely low light intensities coming from 
the 40 mW laser, the only one that was available. 
This problem was tackled in three ways: 

1) The photographic film used was very sensitive. It appeared that 
Kodak Ectachrome, illuminated as a 6400 ASA film, gave 
reasonable results. 

2) The most light sensitive lens, that was readily available, was 
used. The ratio of the focal distance f and the aperture D was: 
f/D ~ 1.4 

3) The camera was positioned in a forward scattering angle of 40 
0 

with respect to the direction of the laserbeam, see figure 7.2.1. 
At this angle the lightintensity, scattered from water draplets 

0 
of a few micron, is much higher than at 90 looking angle. A 
disadvantage of this cameraposition is the non-constant distance 
between lens and subject resulting in diminished resolution. 

Conclusion 
It can be concluded that it is possible to do flowvisua1isation in 
the Q.T.U. with the help of a laserbeam and condensing steam. 
For the moment one has to be carefut interpretating thusfar 
obtained results because of lack of quantitative information of 
some of the parameters and their influence on the flow and the 
visualisation process. It can however be conc1uded that this 
visualisation technique is a helpfut too1 in judging 
quenchperformance and in preselecting ares in the quench that are 
interesting for further investigation. 
Major improvements can be expected when using more defined 
scattering particles. A more powerfut laser would improve the 
flexibility of parameter choice. 

7.3 Slow Temperature Measurements 

With a rake (figure 7.3.1) of 10 Chromium-Alumel-Thermocouples 
(thickness=O.Smm) slow temperature measurements were done in the 
quenchshaft. The rake was moved to different x-positions 
(relative to the slit). In this way it was possible to determine 
the average temperatures in the whole quenchshaft. 
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Fig.7.3.1 The thermocouple rake in the quenchshaft 

The data were recorded on a Yew recorder. At each position the 
temperature was recorded about six times in half a minute thus 
allowing an estimation of the average temperature. After entering 
(by hand) this data in a computer it is possible to create an 
isotherm plot. Instead of the temperature the dimensionless 
parameter f will be used: 

T( x, y) --r: I X 

~~IX. 
(7.3.1) = 

where the mixing temperature Tm i x is defined as: 

• • 
-~IX 

/Vt c. Tc. 4- Mn Th 
-

Me + M~t 
(7.3.2) 

When the hot and the cold massflows are equal the mixingparameter 
is between -1 and +1. An example of results of this kind of 
measurements are shown in figure 7.3.2. Shownare the results of 
~= 45° S ~ 3mm quench. The area of concern is shown intheupper 
picture. 
The results are presented in two ways. In the first contourplot of 
the vertical coordinate is y/R with R the radius of the quench 
shaft. In the second contourplot the vertical coordinate is the 
square of y/R. In this plot the areas between the 1-contours are 
proportional with the volume of the nitrogen that has a f-value 
between that of the contours. At the right side the positions of 
the thermocouples are designated with arrows. 
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Fig.7.3.2 r-contour plots of the 45°,3mm quench. 

Mh• 45 g/s Me• 41 g/s Th= 350 K Tc= 93 K 

It was feared that the very high temperature gradients existing in 
the quench could influence the accuracy of the thermocouples. The 
all important temperature of the tip of the couple could be 
influenced by heatconduction through the mantle of the 
thermocouple. A correction was calculated, based on the Nu-number 
of the couple, the heatconductivity of its steel mantle and of the 
surrounding gas. It appeared that the influence of heatconduction 
through the steel mantle is restricted to a length of about 5 mm. 
As can be seen in figure 7.3.3 the effect of this correction seems 
to be minimal and only noticable in the very high gradient areas. 
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Fig.7.3.3 The effect of a correction for heatconduction through the 
thermocouple mantle of the slow temperature measurements 
results. Flowconditionare as in figure 7.3.2 

7.4 Fast Temperature Measurements 

With the use of constant current anemometry (CCA) it is possible to 
measure very fast fluctuating temperatures. CCA is based on 
measuring the resistance of a very thin wire. This wire bas a 
diameter of 1 ;tt m and a length of 1 mm and is fixed to the end of 
fork shaped probe. The current through the wire is so small that it 
doesn't influence the temperature of the wire and therefore the wire 
bas the temperature of the surrounding fluid. 
According to its supplier (DANTEC) its frequencyresponse starts 
going down only after 3kHz. Measurements in the quench showed 
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rising speeds of 100 °e in 0.1 msec. With the help of a DIFA 

transiscope (a digital oscilloscope) it was possible to sample the 
signa! and record it on a floppydisk. The samplefrequency used was 
12500 Hz and one measurement contained 64k samples. This means a 
measurement time of ca. 5 seconds. In a later stage these 
measurements can be analyzed with an HP-9845 computer. 
In figure 7.4.1 an example is given of a part of a temperature 
signa! and of a temperature distribution P(T) of the complete 64k 
samples of this signa! • 
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Fig.7.4.1 Fast temperature distribution and signa!. 

This measurement was taken at 2 mm from the quench shaft wall at a 
height of 210 mm above the slit. The temperature of the cold flow 
Tc was ca. -180 °eand the temperature of the hot flow was ca. 80 
0 e. Remarkable is the high peak in the signa!. lts top is more than 
100 °e higher than the average temperature at that position. lts 
width suggests a gaspocket with a dimension of ca. 1 cm. From the 
distribution one can see that there is a chance of ca. 2 % that 
temperatures above 0 °e reach the shaft wall at this point. 
These results coincide very well with some of the visualisation 
results in which dark spots (hot, no condensation droplets 
containing fluid pockets) seem to reach the quench shaftwall. 
The temperature signa! of figure 7.4.2 is taken at 25 mm from the 
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quenchshaft wall and ca. 50 mm above the slit. The position appears 
to be in the border of the cold jet. The intermittent structure of 

the signal very strongly suggest that at this position coherent 
structures determine the flow. Another indication for coherent 
structures is the fact that near -120 °c the distribution has a 
maximum. This suggests a bimodal distribution, which is typical for 
coherent structures • 

. 04 

.03 

oe 
i~---------------------------------------. 

-- t-

Fig.7.4.2 Fast temperature distribution and signal 

7. 5 A comparison with the results from a K- E. Model 

As was mentioned in paragraph 2.1 one of the modern models for 
turbulence is the so-called K-~model. This model is basedon a 
decomposition of every turbulent quantity (velocity, temperature, 
etc.) in its average and its fluctuating part. Then transport 



-107-

equation are formulated for all these parts. By making certain 
suppositions concerning turbulent energy (K) and dissipation (~) 
these eqation (partial differential equations) can be solved 
numerically. 
A commercially available K- E program is known by the name of 
FLUENT. Without giving further details or comment about FLUENT a 
comparison is here presented of an average mixing parameter contour 
plot produced by FLUENT and one based on Q.T.U. experiments. 

These results concern a quench with a slitwidth S of 0.9 mm and a 
flowangle o( of 30°. The massflows and the hot and cold tempera­
tures are a little different from most other examples: Me= o.o~t 

kg/s Mh = o.O'f5kg/s Tc = - tb5 °e and Th = 2o 0 e. 
The experimental result shows that the cold flow acts as a wall jet 
till ca. 1.5 D above the slit and then it recirculates down the 
center of the quenchshaft. This behavior of the cold flow is also 
predicted by the K-~ model. 
It therefore seems possible that a K- E model is able to predict 
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average temperature fields of the A-type quench. Thus it can help 
selecting the right experiments. The fast temperature results and 
the temperature distribution presented in par.7.4 can never be 
predicted by a K- émodel because the distribution of the 
fluctuating quantities has to be specified in the input of the K-E 
model. The results from the fast temperature measurements suggest 
that coherent structures are an important factor of the flow. Only 
a model with sufficient temperal resolution can reveal such 
structures. Examples of such models are 'large eddy simulation' and 
the 'vortexmethod'. 
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PART C COMCLUSION 

In part A of this thesis a description of the experimenta1 plane 
mixing layer was given. The conclusion was that the initial region 
of the mixing 1ayer is strongly dominated by the Kelvin-He1mho1tz 
instability, which in this case is a large sca1e two dimensional 
inviscid effect. In a later stadium of the mixing layer, probab1y 
because of small scale three dimensional turbulence, large scale 
three dimensional effects (e.g.streamwise Taylorvortices) start 
to play an important ro1e. 
This conclusion has consequences for the ability of the two­
dimensional vortexmethod to model the mixing layer. It became clear 
that the two dimensional vortexmethod is a very good methad to 
describe flows that are dominated by large scale two dimensional 
"coherent structures". lts advantages above other methods 1ay in 
its close mimicry of physical phenomena in the flow, its adaptivity 
and its lack of numerical viscosity. ~ven for flows, where smali­
scale three dimensional turbulence has some importance the two 
dimensional vortexmethod (with some modifications) can be applied. 
The above mentioned condition for the app1icability of the two 
dimensional vortexmethod are satisfied by the first part of the 
mixing layer (regiont and 2 of figure 2.1.1) This means that only 
the first say 10 to 20 slit diameters of the A-type quench mixing 
layer can be modelled by a two dimensional mixing layer. 
(neglecting the possible distarting effects of the fact that two 
mixing layers originate in the slit) After this distance three · 
dimensional effects probably have a so great importance that this 
cannot be incorporated in a two dimensional vortexmethod. 
In the experimental part R this thesis showed that it is possible 
to simulate large density difference in flows experimentally with 
the use of heated (100 °C) and caoled (-190°C) nitrogen. In fact 
all experimental techniques used in this work made use of this 
temperature difference. With the visualisation studies and the slow 
temperature measurements it was possible to study the time-averaged 
mixing process. The fast temperature measurements and also the 
visualisation results can be used to judge time dependent 
properties of the quench. From the preliminary results it can be 
concluded that stationary models (K-~methorl) and other methods 
that imply Gaussian probability distribution for the fluctuating 
quantities are not able to predict the aerodynamic properties that 
are important to the fouling of the quench (probability of a hot 
partiele to reach the quench shaft\ Models that could be able to 
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predict these properties must be timedependent. 
Examples are: 
- The large eddy simulation. 
- The three dimensional vortexmethod 

So we end where we started: with the vortexmethod. 
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APPB'l'iDIX j, 

Transformation Induced Velocity 

The following relations exist between points in the ~-plane and the 
z.-planea 

-z,· ~ z(~;) 

~; = .S ( z;) 

The complex COhjugate of the velocity induced on vertex i in the z-plane 

1. 

2. 

is given b7: 

1 (
cl z. •)• ,e.;_ { cl w + l..!l . _!,_ 
~ :: 'Z.4 -z.; l_ cl z. 4~ (z- z.i) 3. 

The goal of this excercise is to ~ite this velocity as a function of the 
complex veloei ty potential and the vortexpo si tion i in the ~ -plane. 
we therefore. 111ul tiply eq ua ti on 3. with cd/o' z. and add and subtrac t the 
following term: (i11/.:ur)• ( j,/(~-~i)) 
The resul t is: 

(j~jj =" t-;; ~ ~ " ( Jr+~(.f~;) + g. ~1~Z;)~ -(~1-1;))) ~ 4. 

In order to rewrite this equation weneed the Taylor expansions of zi 
a.nd ~i and two relations that follow from these expansionss 

~i : z + , (~; -~) ::/1 + i (~i- ~)L !':~1,-+ <1'f~-f; )3 

. el z.'Z ~ 

+ i:. ( f- ~;) d ~~ -t 0'(~- -!i) (~- 'Zi) 
~- ii 

12,_ 
-~. - ~ (-z;- z.) ~~ Jz + {)( -z.;.- z)l. 

(~-..a,·) z- z.,· 
d~ 1 d (z.-'Z;) 
~~-= 

When equatioms 6. and 7. are substituted in 4~ we finds 

5. 

6. 

a. 

/_d-&j)4( ~ i d~ (d"' i~ 1 i r: I l ~ -/{ )cl~ )d~) J 
\~ ~ ..... z.; { d~. c.l-'3 +~~~~i) ... ~: Ï. di- ..z. z-z; dz' J\'1. 9. 

l:lecause of the limit z _..~;the term i,(z-'&.;) J ~ ... " is zero and we 
finally find the wanted relation for d•;/~é s 

·~ (~)%.l z )j . .t;· dz . ~~ ~~ 10. 



APPJOO)!X Z 
Shedding from .. wedges 

A vertexsegment with length S is being shed from a wedge in the z-plane. z 

The relation between the z~plane and the ~-plane is given bys 
À 

:z = ~ 1. 

When a constant vorticitydistriburion ~ is supposed the cumulative vortici· 
startingat the wedgepoint (origin·of z-plane) is given bys 

' x >. i>-.('-:> 
1;:&4""' - ~ • I 'Zsa)IJ =- ~ • /.SS se-.9 / : ~ • ~so' • e... 

with z 1 z-coordinate of the segment in the z-plane 
~seg 1 'Y' -coordinate of the segment in the ·-plane 

aeg .,) .,_ /. ""/ J 
~ ;.; "i>.. - /'2. 

Taking the derivative of ~tion 

\. ;~À 
"~·e. 

2. gives1 
~-1. 

'$ so,g d ~ ç.,g 

2. 

The complex velocitypotential ;~\0 caused by the vortex segment in the 
crigin of the ~ -plane is gi ven by1 S. e.- ~i 

dw1} = 
ë]:g ~=o 

and thus: 

' (,.{-av = 
; ~ { 

.:z.:n-( À-1~ • 

~ 

J }\-'2. 

O -s~, cl ~ SC!,9. 

À-1. 
5~ ·e. i~ 

Wh.en the m.irror vortex segment is also taken into account the veloei ty 
v, produced by these two segments , iss 

-À{ À-I 
V - . e:()S ~ ' s~ - tr(.>-.-t) 6 • 

With S:. Y.A S' this becomess 
! z 

•- 'IA -~t~~ V - SZ - -rr- ( ~- 1) 
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A~.t'.:.i~JL\ 3 
In this appendix it will be shown that there are only two possibilities for 
the position of a vertexsheet near a sharp edge. 

As can be seen in appendix :2. 
the Shwartz-Christoffel transformation 
from a wedge to a plate is giwan by: 

z = ~À 

'-~~_,.......,....,,......." ...... __ z __ p(a"..e 

1. 

d-z. >.-J. 
= -s q~ 1 I 1 7 I 

2. 

In this appendix the aim is to show that a sheet, shedded from this wedge, 
has to leave one of the sides of the wedge tangentially. 
One assumption is made: The speed of the fluid next to the sheet is directed 

along the sheet. , -<. 
In the ~ -plane wedefine a po~nt P given by: P:~= R·e 

The complex velocity potential in point P is given by: 

dw { ~~ e~r• 
d~ t Re: .. ' ,._.,;; l " -5',"1 - Re;« 

s~r Jr· J 
j J'• A ;a(. 3. 

o "")~- ~e 

With a constant vorticitydistribution along the sheet in the z-plane(v) ~ 
find for the ~ -plane (see appendix ~ e~uation ~.3.): 0 

dr+ __ ' v s"' dr- , "- ., = À- j_ 
d s "o · , ;;- =--1\ r s , 

with: s = J -51~f and 
Substituting 4. in 

... t'(' 

.Sst, • s · e a&d 
3. gives: 

s 

f 
-;~ j ~ ~ ~"' ds 

2 
o i(ec->r' 

0 ~- t"'\4t I 

:~ ~sll\ds 7 e_ D S- ~f_i(O(• .. )] 

Je fine the integral 11 as: r ~ ?<- '< IJ. s - s- Re ;e wit\, e = <: tl(. +V' 0 
s~ s-\ ;e s""-"' = f s"" • ._ els + Re. f s- ~ .. ;s 

ds 
() 0 ... 00 

I 

~~ ~Q;e I ""-J. 
ds - 4- $ -- 11\ ee;e 0 s - 00 

. s ·e J ,._, 
Re & s-R..c.:f> 

d~ 

De fine the integral I 2 as: 

00 
k.-~ 

I.z. f s ds 
Re. ie 0 s-

6. 

1· 

8. 

10. 
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2Jefine t:!e 

~ {z.) = 

func ti on g( z): 
z "'-- 2. 

R !(;) 
-z. - Q 

jl1 

11. 

'Nhen g(z) is integrated along the rea1 axis from zero to infinity ww find I • 
The curve 1.2.3.4.5. is defined in the figure be1ow. The integral of g(z) 

2 

around this curve is zero, no singularities are enclosed. 
\;'hen tne wedge has a sharp angle (n..:::. 1) and path 2. lies at infini ty then 
the integral o: g(z) along path 2. is zero. 

, 
3,/ \ 

0>0 ·.e ," \ 

~e ,' \ '2.. 

"- -o ',Je ~ 
3.: ... - '· 

-, 
I 

--..' &r I 
,!>.. - .# 1{. 

,, -""'~"'• 

l4:e~:· 
' ' 

I 
12.. 

I ~~\6 i. 

0 
- 3.' ' / 

' This implies that I2 is equal to tne integral of g(z) along 5.4.3.: 
i/rite z as: 

,..,.... R ,·e 
z = e. 

Th en: 

I~= 
1t/hen E~ 0 this integra1 can be split into the principa1 va1ue integral 
and the integra1 along path 4.: 

~ 

11\-r i (M-1) 8 l(~~.)[ -r"-f 
I 1 = R c. · J -r- _ 1 clr + 

C) 

The integra1 a1ong path 4• is: + ÎTT "'~ - ,·.".. 

The integral along path 5.-3. has as a solutio~ 

fot:> 'l" "' - I 
dr 

1-- 1. 
0 

The conclusion is the 

~~ ,.. ... ,dr) 
~- ~ ] 

€>>0 
G c. t:J 

( .,., .... s~ ... (e) ."-;) 
l -lt\11\ ( (I- 't) 'T7") 

salution for 12 

12. 

15. 

16. 

W:1en this salution _is substi tuted in the equation for ,jwjtl~ ( 8.) we find: 
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è.w/ä..S is evaluated at ...IS= R e;V- 'frith "(-= y- b, d..,. 0 ,.-
ofw/ = ~ ( - SÏ"'- 'l" S "'- + R .._e.ir..._ [- s;~( .. +\)v) - c.,s({" +d~J 
d.IJ (.- ~ ( -rr tl\.. ~ ta"-((1- .. ~w) 19. 

R [ 
i(-'r) jo. s __ , Js i ior j... s .... , J~ ] ) 

- .e. Sr (s- R) - e. ff (S-ItC2.iw-) 

The first part of this e~tion is exactly the velocity V of equation 
6., appendix • This means that this velocity is compensated by the 

sourees and other vorti0ity in the plane, in order to satisfy the 
Kutta condition. 
When dw/d ~ is mul tiplied wi th d ~ /dz in order to calculate veloei ties 
in the z-plane and at the same time R-+ 0 then the third part of equation 

19. goes to zero (d f/dz""' R-"' and n <1) 
The only part that remains is: 

tJw/ À "' ;'("11\. [- si\1\.(("' .. ,~v-) - eos (t"'+t) Y)J. 
ol-$ ~- = ~ R e. fcaM.. ({.t-lo\)Tr) 20. 

Because the speed of the fluid must be directed along the sheet: 

must be real 21. 

must be real 22. 

Thus or: 

=> 
w;~"' V= 

-n-
23. C< "'< 1 • 0 c v-< "TT' => ~ ("" + 1.) 

or: [-· . .J :-o • • 

fQM.. ((a-.,)lT) -:: -fa"- (c ••") v-) 
wi4"' : D c k c 1 I oc."r<Tr ~ V' k. -rr 

I :: 24. 
(V\~ t) 

These two angles can be wri tten as: 

'Î-: 
"Tr + e-VL )· -rr -l. -

l + ""- ~ 

,..... l-rr -rr) -z. ..... ~-z:.. 
26. 

These are exactly the two angles belonging to the sides of the wedge, 
compare equation 2., appendix • 
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AP?.-.;;, JIX lf 

Cubic Spline Interpolation of pointvertices 
~ 

~ne aim is to have available a function K(s), where s is the pathlength, 
that defines a curve that goes through all the pointvertex positions and 
that has continuous first and second derivatives. 
We define a parameter t that, like s, goes and grows along the curve. 
t has the property that it has the value j when evaluated at vertex j. 
This means: 

xj- '::c_O:=i) 

y; = y Cf:= i) 

y 

1. 

2. 

~ 
K is completely defined by x(t) and y(t). Because both x(t) and y(t) h~ve 
n~e. \)ropu·t-y ~1-,G\t fov- JZac/..t t +Lteve is ()11('1 tllole. :Je:- ov y-value.. it is possible 
to make a cubic spline interpolation for x(t) and y(t). All details can be 
found in 'Numerieke metho:l.en * 1 

• 

The essence of this method is that for example x(t) is piecewise described 
by a set of third order polynomes: 

For each j= N ,N +1, •• ,N wi th j ~ t~ j+l 
0 0 

x(t) is given by: 

x.(t). (j .... 1-t}(~-t~{r-Cji"r-tt}} + (t-~){~+J.- ts.;., (,- ( t-J):a.)) 

The factors B. can be derived from the following set of linear equations: 
J 

j.:. N0 +j, .. -, N-J. t(s;_, + vBJ 4 ~~+s.) = x.;.s. - %~ +X~-1 4. 

. 
Alo BNo = .4 ~ .. , ~,v •• .z. 

5. 
~ ~ -

B~: ,%. .BN- f.. :BAJ-%. 
6. 

d ::- IJ 

In the same way the cubic spline interpolation for y(t) can be determined. 
The relation between the parameter t and the pathlength s can be found fra~: 

:s~) = 

-t ., 
f V YL(-i) • "-2.(.#c) 

No 
olt 

Now x(s) and y(s) are known and thu.s K(s). 
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