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Abstract 

Perception of pitch motion in complex sounds was stuclied in three ex­

periments. The first experiment dealt with the perception of global pitch 

movement in random-ehord sequences. The subjeet's behaviour in identi­

fying overall pitch motion can be accounted for by a model in which the 

ultimate pitch percept is determined by a function of elementary events in 

the sequence. The second experiment dealt with the perception of an up­

or downward musical scale against otherwise randomly changing tones. It 

appears that the subject adopts the strategy of tracking only one of two 

possible scales, from which he can deduce which scale actually was present. 

The third experiment dealt with the detectability of a frequency jump in 

a flat 20-component spectrum, due to changes in amplitude in adjacent 

components of successive time frames. It appears that the 70. 7%-correct 

threshold varies from 1.2 to 1.9 dB when the subject does not know a priori 

where the change in amplitude occurs. and decreases even to 0.25 dB in 

some conditions when he does knovv the place. 
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1 Introduetion 

The problem of pitch perception for sinusoidal tones has received consid­

erable attention in the literature on psychoacousties. Relations have been 

established between subjective pitch and objective acoustie variables such as 

the tone's frequency (Stevens and Volkmann, 1940), its intensity (Stevens, 

1935; Verschuure and van Meeteren, 1975), its duration (Doughty and Gar­

ner, 1948), its temporal envelope (Hartmann, 1978; Rossing and Houtsma, 

1986) and the preserree and strength of other interfering sounds (Terhardt 

and Fastl, 1971; Larkin, 1978). 

Pitch perception for complex tones has received much attention as well 

during the past few decades. The pitch of a harmonie complex tone is 

not merely determined by its fundamental frequency, but is toa very large 

extent inftuenced by its harmonies. Tones of church bells, orchestral chimes 

or filtered tones from common musical instruments very often produce a 

clear, unambiguous pitch sensation without the preserree of any acoustic 

energy at the fundamental frequency. It has been established over the years 

that this so-called missing fundamental percept is not accounted for by 

difference-tone distartion or by periodicity detection of interference patterns 

in the ear, but is the result of the way in which our brain processes the 

neural transformations of sounds from our two ears. Detailed reviews of 

this research have been given by de Boer (1976) and Scharf and Houtsma 

(1986). When two complex tones, each comprising a few harmonies, sound 

simultaneously, the pitches corresponding to each tone can usually be heard 

as well (Beerends and Houtsma, 1986). The exact perceptual limit to the 

number of simultaneous tones or pitches that can be correctly perceived is 
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not known, and is probably very dependent on training (Doehring, 1971). 

Perception of pitch sequences is another problem that has received a fair 

amount of attention in the past. A temporal sequence of two tones, called 

a melodie interval, is typically perceived in a categorical manner (Burns 

and Ward, 1978). Eiting (1984) showed that recognition of three-note se­

quences occurs on the basis of contour (e.g., up-down-up) as well as on 

the size of successively perceived melodie intervals. Deutsch (1980) stuclied 

listeners' retention capacity for longer tonal sequences and found that it 

depended greatly on the degree of hierarchical structure in the sequence. 

For very fast tonal sequences (more that 15 notes per second) a stream of 

notes may become perceptually separated into two or more parallel streams, 

each forming a melody (Bregman and Campbell, 1971; Dowling, 1973; van 

Noorden, 1975). 

Less attention has been paid to the study of sequences of simultaneous 

tones. One of the few situations that has received attention is the dichotic 

conflict situation in which two different melodies are simultaneously pre­

sented toa subject, one toeach ear (Kimura, 1964; Deutsch, 1975; Butler, 

1979). The limits of our auditory system to perceive a melody against a 

background of other potentially interfering tones without dichotic separa­

tion remains largely unknown. This is somewhat unfortunate because it is 

just this situation that is encountered most often when we listen to music. 

This report deals with the study of pitch motion perception in sequences 

of simultaneous tones. In experiments with such complex changing sounds 

grouping mechanisms like frequency proximity, timbre, amplitude or good 

continuation play an important role in identification processes (Deutsch, 
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1982, section IV). In order to allow quantitative measurements and data 

analyses, a review of signa! dctection theory as applied to forced choice 

fixed-stimulus and adaptive procedures will he given ( Chapter 2). 

The first experiment ( Chapter 3) deals with the perception of randomly 

changing elements, moving according toa probability scheme, which evokes 

a global pitch movement. In this type of experiment the issue of correspon­

dence, i.e., the question of which elementsin one time frame correspond to 

which elements in the next frame(s), plays the most important role. The 

aim of this experiment is to discover if the results can he explained with 

a theory that uses only the shortest jumps in frequency and time ( local 

correspondence, Bell & Lappin, 1973; Allik & Dzhafarov, 1984). 

The second experiment ( Chapter 4) deals with the perception of a dis­

cretely moving signa! against a background of other randomly changing 

elements. This type of experiment differs from the preceeding one since 

now a signa! and noise (i.e. the randomly moving elements) are to he sepa­

rated in the identification process in order to perceive the motion direction 

of the signa!, whereas in the previous experiment this motion percept is 

part of the whole. Therefore not only correspondence but good continu­

ation are important in the identification process as well. The aim of this 

experiment is to reveal some elements of the detection process of signals in 

a noise-like background. 

The third experiment (Chapter 5) deals with the perception of a motion 

due to a change in amplitude of two successive components in a complex 

spectrum. The aim of this experiment was to determine the threshold of 

the change as a function of the place of the component in the complex and 
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as a function of the shape of the complex. In particular we will investi­

gate whether small changes in details of a complex sound are detected as 

changing components or as changes in overall pattern. 
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2 Theory 

2.1 Signa} Detection Theory in 2-Alternative 

Forced Choice Procedures 

Signa! detection theory, developed largely for radar applications during the 

Second World War, has proven very useful for the description of auditory 

processes as well (Green & Swets, 1966). Auditory discrimination of two 

very similar sounds, absolute identification of several sounds, detection of a 

sound signa! against a background of noise, and even magnitude estimation 

and category sealing can all he described and parametrized by this theory. 

Since in this study we will deal with stimuli in which either an up- or 

downward frequency motion has to he detected, signa! detection theory 

will play a central role in this report and wiJl therefore he reviewed in this 

chapter. 

In a typical 2-alternative forced-choice auditory test, a subject is pre­

sentedon each trial one out of two possible stimuli, and asked to give one 

out of two possible responses. The stimulus could he a tone buried in 

noise versus noise without a tone, and the response "tone present" versus 

"tone absent". In this study the general situation wil! he stimuli with an 

up- or downward frequency motion, and responses of "pitch up" or "pitch 

down". The possible stimulus-response combinations, together with their 

short-hand notation, have been listed in Table 2.1.1. 
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Stimulus Subject 's Number of 

response occurrence 

up up Nuu 

up down Nud 

down up Ndu 

down down Ndd 

Table 2.1.1.: Results of a 2-alternative forced choice experiment. 

A perception and decision processis modeled in a black-box fashion. We 

assume that there exists a real random decision variabie X ( -oo < X < oo) 

with the property that each stimulus, when presented to a subject, gives 

rise to particular value X 8 • Futhermore there exists some internal criterion 

X 0 at the X-axis, so that if Xs < X 0 the subject responds down and if 

Xs 2: X 0 the subject responds up. We assume that X 0 is constant during 

the experiments. 

Due to all kinds of human factors (degree of concentration eet.), physical 

noise in the stimulus (e.g. the presence of background noise) or physiolog­

ical noise ( neural firing), the same stimulus does not always give rise to 

the same value of X 8 • Due to the discrete nature and the huge amount 

of neural firing we assume, on grounds of the Central Limit Theory, that 

the distribution of Xs over the X-axis for one type of stimulus is Gaussian. 

The mean of the Gaussian curve represents the expected value for X 8 , the 

varianee represents the associated amount of noise. Since there is no reason 

to believe that the amount of noise in the response of an up-stimulus differs 

from the amount of noise of a down-stimulus, we assume that the varianee 
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in the response of the two types of stimuli are equal thus U u = ud = u. lf 

we denote the mean of the up-stimuli with Xu and the mean of the down-

stimuli with Xd, we get four expressions for Nuu, Nud, Ndu and Ndd (see 

tigure 2.1.1): 

Figure 2.1.1: Distribution of X 8 over the X-axis. 

(1) 

1 1oo _.1(x-x4)2 Ndu 
-- e 2 " dX = =: P du, 
uy'Z'; x" Ndd + Ndu 

(2) 

and (3) 

_1_100 _l('-.,.X,.)2dX _ Nuu _, p 
rn= e 2 - -. uu' 

CJy .t.7f X" Nud + Nuu 
(4) 

where e.g. Pud is the chance that the subject responds down to an up-

stimulus. Since P uu + Pud = 1 and P du + P dd = 1, we actually deal with 

only two independent equations. For convenience we choose equations (1) 

and ( 3). We de fine the sensitivity d' as the normalized distance between 
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d' := X u- Xd. 
a 

(5) 

d' indicates to what degree a subject tends to confuse both signals. If d' is 

large both signals are practically not confused; if d' = 0 the signals can 't 

be distinguished and performance is at chance-level. In equation (1) and 

(3) we make the transformation 

X-X t = u 
' a 

and substitute d', so we get 

where we defined d as the normalized distance between Xu and X0 : 

d := Xu- Xo. 
a 

(6) 

(7) 

(8) 

(9) 

The Normal Probability Function is defined as (Abramowitz & Stegun, 

1956, sect. 26.2): 

1 /z l 2 <I>(z) := ~ e- 2u du. 
y 27r -oo 

(10) 

In order to write equation (7) as such a function we make the transformation 

v = t + d' and get: 

<I> ( d' - d) = p dd (11) 

<J>( -d) = P ud• (12) 

Or, since d and d' are unknown: 

(13) 
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{14) 

where <P- 1 (z) is the inverse of the Normal Probability Function. We now 

have found an expression for d and d'. 

Suppose we have an ideal subject. This subject tries to maximize his 

fraction of correct responses Pc: 

Pc:= Nuu + Ndd 
Nuu + Nud + Ndu + Ndd 

(15) 

Thus he tries to find an Xm which satisfies: 

!~: lx .. =x ... = 0. {16) 

With the aid of equations ( 1) and ( 4) we write: 

(N + N ) 1 fx" e-1(-'~-'4 ) 2 dX du dd ;;ï'F -oo 

(17) 

and 

= 0. 

(18) 

Thus 

Solving equation (19) for Xm gives us 
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(20) 

or, if we normalize Xm to a and express equation (20) in terrus of d': 

Xm _ Xd +X u 1 I ( Nuu + Nud) -- +- n . 
a 2a d' Ndu + Ndd 

(21) 

In the simple case, where the number of up-stimuli equals the number of 

down-stimuli, we see that Xm is the mean of Xu and Xd and lies at the 

point of intersection of the two Gaussian curves (see tigure 2.1.1). 

However, a non-ideal subject uses the criterion X0 insteadof Xm. The 

difference between these criteria is a measure for the subjeet's tendency to 

answer more frequenty, say, up. This tendency is called the bias {3, and is 

defined as (Lippman et al., 1976): 

{3 ·-
Xo-Xm 

a 

~d' _ d _ ~ ln(Nuu + Nud). 
2 d Ndu + Ndd 

(22) 

If there exists no preference, {3 = 0; if {3 > 0, there IS a tendency for 

down-responses, if {3 < 0, a tendency for up-responses. 

The definition of d' (being the distance between Xd and Xu) is a more 

appropriate quantity for the subject 's ability to distinguish two signals than 

Pc, since d' is freed from bias. So it doesn't matter if there is some bias, 

for we can eliminate this from the data. 

Mention that up to now we dealt with only two stimuli (up and down), 

differing only in pitch motion direction. The difference variabie ~ of the 

signa! was not varied. One can imagine that, when varying ~, d' and {3 

may vary as well. 

10 



2.2 Method Of Fixed Levels 

In the Method of Fixed Levels, 2-alternative Forced Choice experiments are 

performed at only one value of the difference variabie ~, chosen befarehand 

by the experimenter. This results in one point in the d'-~-plane. By taking 

some more difference values levels more points are obtained and one gets 

an impression of d' as a function of ~. 

Many experiments (Green & Swets, 1966) have shown that often d' is 

a linear function of ~. If in deed this is the case, we only need two val u es 

of d' by different values of ~ and we directly know the performance for 

all values of ~. lf we want to fit the line l : d' = a+ b~ we have to find 

the slope b and the intersection point with the d'-axis a. For covenience, 

we define r := -a/ b as the point of intersection of l with the ~-axis. The 

slope b is a measure for the detectability or amount of noise in the human 

system or in the signal.If b is small, only at high signa! intensities the signa! 

is easy perceived; if b is large, detectability already becomes easy at low 

intensities. The offset r is a measure for the parameter uncertainty in the 

human system (Tanner et al., 1970, p.88 and Jeffress, 1970, p.109). If 

we deal with an ideal observer r should be zero, but a human observer 

sametimes causes r to be positive. This means that performance stays at 

chance level upto ~ = r (i.e. d' = 0 for 0 :::; ~ :::; r). From there on d' 

increases linearly with ~, following l. 

2.3 Adaptive Procedures 

If we assume that d' is a linear function of ~ and the offset level r = 0, we 

only need one point at the d'-~-plane to estimate the line l. A very quick 
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and effective way to estimate one point is the adaptive procedure (Levitt 

& Rabiner, 1967; Levitt, 1971 or Shelton, 1982). In Chapter 5 we wil! use 

the transformed up-down method with two steps, as described in Levitt 

(1971). 

This procedure starts with the presentation of two stimuli with a high 

probability of a correct response (or, in other words, two easy stimuli with 

large difference .6.). lf both the subject 's responses are correct .6. is de-

creased one step, and again two stimuli are presented. lf again both re-

sponses are correct, .6. is decreased and this procedure is continued until 

one or two negative responses are obtained. Instead of a decrease, we now 

increase .6. and each time an incorrect answer results in an increase for .6.. 

lf again two responses are correct .6. wil! he decreased, et cetera. A typical 

data record is shown in figure 2.3.1. The moment a decrease in .6. is fol-

lowed by an increase in .6. or vice versa is called a reversal. The amount of 

in- or decrease of .6. is called a step. The values of .6. tend to converge to 

that value for .6.0 at which the probability of two correct responses equals 

the probability of one or two incorrect responses. If we denote P(.6.) as the 

probability of a correct response to a stimulus with value .6., then 

P ( two correct responses) 

P ( one correct and one incorrect response) 

P ( two incorrect responses) 

Thus 

1 2 
4P(.6.o) 

2 
-P(.6.o) · (1- P(.6.o)) 
4 
1 2 -(1- P(.6.o)) 
4 

(23) 

Th is gives P { .6. 0 ) = ~ J2 ~ 0. 707. If we average over all ( except the first 
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four) reversals we have a good approximation of the difference ~ at which 

the chance at a correct response is 70.7 % . Th is point corresponds with 

d' = 1.0889 if r = 0. 

++ 
++ 

++ 
++ 

+-
++ 

++ 
++ ++ ++ ++ +- +-

t 

Figure 2.3.1: Typical data record of a transformed up-down method with 

two steps. "+" and "-" denote a correct and incorrect response respectively. 

This figure shows jive reversals. 

13 



3 Pitch Motion with Random 

Chord Sequences 

3.1 Introduetion 

This chapter deals with the perception of global pitch motion in so-called 

Random Chord Sequences (RCSs). In hearing little attention has been paid 

to the study of sequences of simultaneous sounding tones. 

In research on vis ion, however, the problem of motion detection has 

been given a fair more amount of attention. When (in vision) several dots 

are presented repeatedly, but each time in another configuration, some kind 

of movement might appear. In experiments with these moving random-dot 

patterns or cinematograms (Julesz, 1971) the issue of correspondence, i.e. 

the question of which elementsin one time frame correspond (perceptively) 

to which elements in the next frames, becomes quite complicated. Much 

visual behaviour, though, can be accounted for with a so-called local cor­

respondence model in which perceptual correspondence is limited to single 

spatial jumps in succesive time frames only (Bell & Lappin, 1973). 

A special case of a random-dot pattem is the Circular Random Cine­

matoyram (CRC) first applied by Allik & Dzhafarov (1984). Their CRC 

consistedof twelve light elements grouped circularly at the 5-minute marks 

on the face of a doek, where each light elements could be either on or 

off. A sequence of random circular displays often evokes an apparent 

clockwise or counterclockwise rotation percept, reftecting the so-called phi­

phenomenon (Wertheimer, 1912; Korte, 1915), or reversed phi-phenomenon 

(Anstis, 1970). Perceptual identification data could well be accounted for 
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with a strictly local and short-range model in which only jumps between 

successive display elements in successive time frames play a role. 

The study presented in this chapter is an acoustic analog of Allik and 

Dzhafarov's (circular) random cinematagram experiment. It deals with the 

perception of apparent global pitch movement in aso-called random-ehord 

sequence (RCS), the acoustic equivalent of a CRC. An RCS is a sequence of 

pure- or complex-tone clusters in which, under certain conditions, a global 

upward or downward pitch movement can he heard. The topic of this 

study is to find out if in hearing global pitch movement as in vision can 

be explained with a local correspondence model, and if so, to what degree 

subjects are able to identify this pitch motion. 

One part of the experiments described in this chapter was performed by 

Jüri Allik and Joan Rossin Tallinn, E.S.S.R; the other part by the author. 

The theory descibed in this chapter was developed by Jüri Allik and Ethibar 

Dzhafarov (U.S.A.) for the visual experiments and extended for hearing by 

Ethibar Dzhafarov, Aad Houtsma and the author. All calculations were 

performed by the author. This chapter is written by Aad Houtsma and the 

author and is to be published in the Joumal of Experimental Psychology: 

Human Perception and Performance. 
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3.2 Random-Chord Sequences 

A single complex tone is characterized by its fundamental frequency, its 

speetral envelope and phase function, and its duration. One such tone is 

called an element. An element can be in one of two possible states: sounding 

{on) or silent ( ojj). Several such elements grouped together, each with a 

different fundamental frequency, form a chord. Since each tone has only 

two states, M different tones can form 2M differently-sounding chords. A 

random temporal sequence of two or more of these 2M chords is called a 

Random-Chord Sequence or RCS. 

The states of elements in an RCS are determined in the following man­

ner. First, a direction of frequency motion is chosen. This can be either 

upward (N=1) or downward (N=-1). Next, the statesoftheM elementsof 

the first chord (or frame) are determined randomly, resulting in an average 

of 50% of the first-frame elements being in the on state. The states of ele­

ments in the second frame depend on the states in the first frame. lf N=1, 

each element (on or ojj) of the first chord is connected with the element of 

the second chord that is one frequency step higher. If N =-1, it is connected 

with the second-ehord element one frequency step lower. The conneetion 

implies that the state of each element in the second chord wiJl follow the 

state of the element in the first chord with which it is connected with a 

probability P which is called the State Repetition Probability or SRP. If, 

for instance, the states of the lowest and highest-but-one tones of the first 

chord are on and N=1 and SRP=1, the next-lowest and the highest notes 

of the second chord will be on as well. If SRP=O, however, the next-to­

lowest and highest notes of the second chord would be off in this example. 
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During an RCS the direction of motion N and the SRP are kept constant. 

States of elements in the third chord are determined from element states 

in the second chord, etc. To obtain a circular scheme similar to the visual 

displays used by Allik and Dzhafarov (1984), extreme chord elements are 

also connected: for N=1 the highest note of the ith frame is connected with 

the lowest note of the i+ lth frame, and for N =-1 the lowest note of the ith 

frame with the highest note of the i+ lth frame. Three examples of RCSs 

are illustrated in Figure 3.2.1. 

(a) 

(c) 

~ ~(b) 

Figure 3.2.1: Three examples of random-ehord sequences. (a) N=1, SRP=1, 

circular scheme, 6 elements, 8 frames; (b} N=-1, SRP=O, circular scheme, 

6 elements,4 frames; (c) N=1, SRP=0.8, circular scheme, 6 elements, 8 

frames. An open circle denotes an off-element; a closed circle denotes an 

on-element. 
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3.3 Experiments 

Two series of experiments are reported. They both represent attempts to 

measure subjects' ability to identify the direction of perceived global pitch 

motion for RCSs of two, four, five and eight sequentia! chords. The first 

series of experiments (Experiment A) investigated the effect of the sound 

used to represent chord elements. This series was carried out with four 

subjects at the Institute for Perception Research in The Netherlands, using 

a P 857 mini-computer and a 12-bit DI A converter to compute, store, syn­

thesize and present stimulus sequences. In the second series of experiments 

(Experiment B) the effect of chord composition was investigated. These ex­

periments were carried out at the Institute of Language and Literature of 

the Estonian Academy of Sciences in Tallinn, E.S.S.R., with two subjects, 

using an EC 1010 mini-computer with 12-bit DI A converter. Both sets of 

experiments are presented separately. 

3.3.1 Stimuli 

In Experiment A there were always six elements ( tones) in a chord, each of 

which could he either on or off. Tones were either pure sinusoids, sawtooth 

waves or so-called Shepard tones. Of the sawtooth waves, only the fi.rst 

four harmonies were included. Shepard tones (Shepard, 1964) are complex 

tones with octave harmonies and a fixed bell-shaped speetral weight func­

tion. They have the property that transposition by one or more octaves 

always yields the same physical tone, and therefore the same perceived 

pitch. This circular pitch property was used to make RCSs perceptually 

completely circular. Wave samples and spectra of the three sounds are 
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shown in Figure 3.3.1. Sequences of two, four and eight 6-element chords 

were used. For sinusoidal and sawtooth-wave sounds the fundamental fre-

quencies of elements were chosen at 370, 392, 415, 440, 466 and 494 Hz, 

representing an inter-tone spacing of one equally-tempered semitone. Shep-

ard tones were tuned to 262, 294, 330, 370, 415 and 466 Hz, two semitones 

apart. 

Time log(Frequency) 

Figure 3.3.1: Samples of waveforms and spectra for the three types of sounds 

used in Experiments A and B. (a) Sinusoid, (b) Sawtooth-like wave, (c) 

Shepard tone. 
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The duration of each chord was 250 ms which included a 20-ms on and a 

20-ms off ramp. There were no inter-ehord silent periods. The SRP varied 

between trials from 0.0 to 1.0 in steps of 0.1. 

In Experiment B there were either six or eight elements (tones) in a 

chord. The tones were always sawtooth-like complex tones comprising 4 

harmonies, as shown in Figure 3.3.1(b). In one experiment six chord ele­

ments were arranged in semitone increments with fundamental frequencies 

at 370, 392, 415, 440, 466 and 494 Hz, as in Experiment A. In another 

experiment fundamental frequencies were arranged to form a dominant­

seventh chord of frequencies 196, 247, 294, 349, 392 and 494Hz. In a third 

and fourth experiment, in which eight elements per chord were used, fun­

damentals were arranged in quarter tones (440, 453, 466, 480, 494, 508, 

523, 539 Hz) and as a dominant-seventh chord (196, 247, 294, 349, 392, 

494, 587, 696Hz). All chords had a duration of 250 ms which included a 

20-ms on and 20-ms off ramp. In the first two experiments RCSs of two, 

four and eight chords were used; in the last two experiments only RCSs of 

five chords were used. 

3.3.2 Metbod 

In Experiment A all sessions started with a determination of the subjeet's 

hearing threshold for the chords to he used. The subject, who was seated 

in a double-walled sound-insulated chamber and received the stimuli binau­

rally through headphones, adjusted the intensity of an intermittent 440-Hz 

sinusoidal, sawtooth or Shepard tone to detection threshold. All stim­

uli in the experiment were presented 20 dB above this empirically estab-
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lished level. This rather low level was chosen to avoid as much as possible 

confaunding effects of aura! combination tones (Zwicker, 1955; Goldstein, 

1967). After presentation of each RCS the subject indicated whether the 

perceived global pitch motion was upward or downward by pressing one 

of two buttons on a response box. There was no reponse time limit and 

no feedback was provided. From each subject 100 trials were collected for 

each sound condition (i.e., 2-, 4-, and 8-frame stimuli combined with each 

of the three wavefarms) and at each SRP value. Feedback was not provided 

because there were no right or wrong answers. The subjeet's task was to 

indicate the subjectively perceived direction of pitch motion and not the 

physical direction of frequency motion N. 

In Experiment B stimuli were synthesized digitally, played through a 

12-bit Dj A converter and stored on magnetic tape. Subjects were seated 

in a quiet room and received the stimuli through loudspeakers. They were 

allowed to choose a comfortable sound level. After presentation of each 

RCS the subject indicated whether the perceived global pitch motion was 

upward or downward by writing the letters Y or A on a score sheet. The 

response time allowed was 2 s. There were 100 trials in the first and second, 

and 200 trials in the third and fourth experiment for each sound condition 

and each SRP value. No feedback was provided. 

3.3.3 Subjects 

In Experiment A all RCSs with sinusoidal and sawtooth wave tones were 

judged by four subjects AH, BE, JJ and NV all of whom had some musical 

training and experience. RCSs with Shepard tones were judged by three 
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subjects AH, JJ and NV. All subjects had normal hearing. 

In Experiment B all RCSs were judged by two subjects JR and MR, 

who both had some musical training and had normal hearing. 
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3.4 Results 

The results of Experiment A are summarized by the data points shown in 

Figure 3.4.1. For each of the sounds used to represent chord elements, the 

fraction Pc of trials is shown at each SRP value for which the direction of 

perceived global pitch motion agreed with the chosen direction of frequency 

motion N. Because all four subjects appeared to behave similarly, their data 

were pooled. Each data point, in which a different symbol designates mea-

surements with two-chord, four-chord and eight-chord sequences, therefore 

represents 4 x 100 = 400 experimental trials. The psychometrie functions 

fitted through these points are model predictions and will be discussed in 

the next section. 
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Figure 3.4.1: Experimental and theoretica/ results of Experiment A. (a) 

Results obtained with sinusoidal tones, Vni = 14.6; (b) results with sawtooth 

waves, Vnj = 13.6; (c) results with Shepard tones, Vnj = 4.0. +: 2-chord, 

x: 4-chord, <>: 8-chord sequence. 
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The results of ExperimentBare shown comprehensively in Figure 3.4.2. 

The first panel (a) shows results obtained from one subject with sequences 

of two, four and eight chords comprising up to six sawtooth wave tones 

arranged in semitone steps. This condition was comparable to that of 

Experiment A, part 2, the results of which were shown in Figure 3.4.1(b). 

The second panel of Figure 3.4.2, (b), shows the results from the same 

subject for an arrangement of chord elements according to a dominant­

seventh chord. Figure 3.4.2(c) shows the averaged results of two subjects 

obtained with five-chord sequences of eight elements arranged either in 

quarter-tone steps or in steps that form a dominant-seventh chord. Data 

points in Figures 3.4.2(a) and (b) represent 100 trials and those in Figure 

3.4.2(c) 200 trials each. The functions shown represent model fits to he 

discussed later. 

Observation of the data of Figures 3.4.1 and 3.4.2 reveals the following 

general tendencies: 

(a) Although the functions formed by the data points appear to pass 

through the point (Pc= 0.5, SRP=0.5), as is expected, the functions show 

a distinct lack of odd symmetry about this point. For SRP values smaller 

than 0.5, Pc is generally closer to 0.5 than for SRP values larger than 0.5. 

All functions appear to satisfy the inequality: 

Pc(SRP) + Pc(1 - SRP) > 1 (1) 

The probability that this asymmetry is accidental was calculated to he 

smaller than 0.06% at the 95% confidence level for the data of Experiment 

A. 

(b) For SRP values smaller than 0.5, subjects always perceive a global pitch 
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movement opposite to the actual direction of frequency movement. This 

apparent "pitch direction reversal" phenomenon holds for all chord and 

signa! conditions. It is analogous to the "direction reversal" phenomenon 

reported by Allik and Dzhafarov {1984) and the "reversed phi" phenomenon 

reported by Anstis (1970). 

( c) Both positive and the negative portions of the psychometrie functions 

take on more extreme values when the number of chords in a RCS is in-

creased or the sound used to represent chord elementsis speetrally enriched. 

(d) The functions obtained reach more extreme values of Pc when chord 

elements are regularly spaeed (whole tones, semitones, quarter tones) than 

when they are irregularly spaced, as is the case with the dominant-seventh 

chord arrangement. 
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Figure 3.4.2: Experimental and theoretica[ results of Experiment B per-

formed with sawtooth waves. (a) Element spacing in semitones, Vnj = 3.62; 

(b) Element spacing according to a dominant-seventh chord, Vnj = 8.6; +: 

2-chord, x: 4-chord, o: 8-chord sequence; (c} Element spacing in quar-

ter tones (+, Vnj = 7.13} and according to dominant-seventh chord (x, 

Vnj = 61.9 }, with 5-chord sequences. 
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3.5 Models 

3.5.1 Voice Tracing Model 

When one listens to an RCS a sequence of simultaneous tones is heard. 

When a subject is asked to determine the direction of global pitch motion 

heard in such a sequence, he may, on the one hand, make the decision on the 

basis of apparent movement of some "average" pitch. An "average" pitch 

cannot he a simple frequency average for each frame, since such an average 

contains no relevant information about the imposed frequency motion. The 

listener will have to form some list of element pairs that define a correspon­

dence pattern between successive chords and average only over those pairs. 

Solving the correspondence problem is not a simple matter and will he re­

turned to later. On the other hand, the subject might use the much simpler 

strategy of tracing a particular set of elementsin successive frames. Musical 

practice indicates, for instance, that polyphonic dictation, where students 

have to write down the notes of several simultaneously sounding voices, 

is always easiest for the two extreme voices: soprano and bass. It there­

fore seems possible that subjects in the present experiments based their 

responses entirely on the perceived frequency movement of either upper or 

lower elements of successive chords. 

Inspeetion of the data for two-chord RCSs of Experiment A from this 

point of view, and only for those RCSs that contained sinusoidal or saw­

tooth wave tones, revealed a definite correspondence between perceived 

pitch motion and physical frequency motion of the highest "on" elements 

of the two chords. Eighty percent of all trials showed this correspondence. 

For those trials where the highest tone frequencies were identical, the lowest 

28 



"on" elements (bass voice) appeared to have some inftuence on perceived 

pitch motion, but the correlation was not very large. For RCSs of four 

and eight chords the criterion for upward vs downward frequency motion 

of the top ( soprano) or bot torn (bass) voice is no Jonger clear because of the 

randomness in the order of successive notes. Although some criterion could 

possibly he defined it was not attempted because of inherent arbitrariness. 

The results obtained with the Shepard tones provide perhaps the streng­

est evidence that simple voice-tracing models cannot account for observed 

behavior. In a chord of (up to) six Shepard tones one cannot really teil 

which toneis the highest or the lowest because of the circular pitch property 

exhibited by such tones. A "soprano" or "bass" voice is, even by purely 

physical criteria, impossible to determine. The data of Figure 3.4.1(c) 

however, clearly show that correlation between the directions of frequency 

motion (N) and perceived global pitch motion is greatest precisely for this 

type of chord elements. This suggests that global pitch movement is not a 

perceptual feature of a few particular elements in the chord sequence, but is 

probably a global feature to which all elements can in principle contribute. 

3.5.2 Dipole Contribution Model 

In order to determine which elements in an RCS contribute to the percept 

of pitch motion, the RCS is separated into its smallest elementary events 

for which pitch motion can be perceived. Every two elements (tones) in two 

different chords (frames) form such an elementary event. These events are 

called dipoles. A dipole D is characterized by (a) its displacement vector 

d=(f, t), where f is the number of tone (frequency) steps within the given 
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chord structure and t is the temporal distance expressed in frames, and 

{b) its form h denoting the states of the two dipole elements. Since there 

are only two possible states for any element, there are four possible dipole 

forms: on-on, on-off, off-on and off-off, denoted as h 11 , hw, ho1 and hoo 

respectively. An example is shown in Figure 3.5.1. 
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Figure 3.5.1: Examples of various types of dipoles. Dipole a: d={3,1};h 11 • 

Dipole b: d={-2,1};h01 . Dipole c: d={1,1};hu. Dipole d: d={4,1};h00 • 

The main idea of the Dipole Contribution Model (DCM), proposed by 

Allik and Dzhafarov (1984), is that each dipole contributes in principle to 

perceived global pitch motion. Some dipoles, such as the ones with displace-

ment veetors d=(O,O), (0,1) or (1,0), are excluded because they cannot 

possibly convey such a percept. The dipole contribution, c{D)=c(f, t, h), is 

a unidimensional random variabie representing the perceptual contribution 

of this elementary event to apparent pitch motion. The sign of this contri-

bution is taken positive if the displacement vector d points upward (! is 

positive) and negative if it points downward (! is negative). The statistics 

of c(D) depend on the di pole's displacement vector d and form h. Dipole 

contributions c(D) are assumed to have the following general properties: 

(a) Homogeneity. All dipoles of the samedisplacement vector d and form h 

contribute equally, regardless of their position of occurrence within a RCS. 
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(b) Symmetry. Contributions of any two symmetrical di po les, i.e., dipoles 

of the same form h but with displacement veetors d=(f, t) and d=(- /, t), 

respectively, have symmetrical probability density fundions so that the av-

erage of their net contribution is zero. 

(c) Independence. Contributions of any two different dipoles are statisti-

cally independent, provided their types and forms are known. (When the 

dipole form is a random variable, as it is treated in most of the remainder of 

this paper, contributions of two dipoles are not always independent because 

of the interdependence of forms for some dipole pairs in the contiguration). 

The contributions of all the various dipoles are arithmetically added to 

forma Total Sum of Contributions (TSC} which, of course, is also a random 

variable. lf for a given chord sequence the TSC is positive, the perceived 

direction of global pitch motion will be upward, and if negative, it will be 

downward. For any value of SRP and N the relative frequency of occurrence 

of the various dipoles can be determined statistically. It is assumed that, 

since the TSC is the sum of a large number of relatively small contributions, 

most of which are mutually independent, the TSC can be considered as 

approximately Gaussian and specified by its two charaderistic parameters 

E[TSC] and Var[TSC]. The probability Pc of a "correct" identification of 

global pitch motion, i.e., a perceived motion that agrees with the actual 

direction of frequency transformation N, is: 

Pc= 1 {oo exp[- (x- E[TSCJ)Z ]dx. 
yf21rVar[TSC] Jo 2Var[TSC] 

(2} 

This is illustrated in Figure 3.5.2, in which "correct" identification of either 

frequency motion direction has been indicated by the two differently-shaded 

areas. The integral of Eq. (2} can easily be reduced to the standard Gaus-
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sian integral: 

EjTS<'! 2 

Pc= _1_ /"'rsr:J exp[-~]dx =<I>( E[TSC] ), 
V2"7f -oo 2 Jvar[TSC] 

where a[T SC] = Jv ar[T SC I. 

0.5,--------------.------------~ 

o.o~~~~~~~~~~~~~~~ 

-4.0 0.0 

TSC/cr[TSC] 
4.0 

(3) 

Figure 3.5.2: Gaussian detection model relating observed identificatwn per-

formanee to statt'stics of the DCM. The decision criterion is assumed to be 

balanced, i.e., placed to maximize 'correct' identifications. 

Although Eq. (3) may suggest that only two free model parameters 

are involved, there are, in principle, very many because the magnitudes of 

c(D), i.e., the details of density functions, are freely chosen for each dipole 

of a particular displacement vector and form. A model with so many free 

parameters is not testable and therefore not too interesting. To restriet the 

model further, three additional simplifications were made: 

(1) The DCM was restricted to a local or short-range model in which only 

those dipoles contribute to the TSC that have a displacement vector d 

which is either (-1,1) or (L1). This implies that global pitch motion is af-

fected only by single-tone (frequency) jumps within successive time frames. 
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Dipoles that span several frequency steps and/or extend over nonsuccessive 

chords are ignored. This simplification was found to work wel! for the vi­

sual experiments on motion perception in circular random cinematograms 

by All ik and Dzhafarov ( 1984); 

(2) Dipoles of the form h00 , i.e., off-off, do not contribute to perception of 

global pitch motion and are therefore ignored. This assumption is specific 

for the present auditory experiments because perception of pitch motion 

for two successive tones that are both off seems highly unlikely. Dipoles of 

the form h11 , i.e., on-on, are the only ones that convey a percept of pitch 

motion. They are referred to as jumps; 

(3) Contributions by dipoles of the forms h01 and h 10 , referred to as non­

jumps, have identical distributions, with expected values equal to zero. 

Because these assumptions leave only two kinds of contributions, namely 

those of jump and non-jump dipoles, the number of parameters of the DCM 

has been reduced to only two. Allik and Dzhafarov (1984) further found 

that their visual data could he wel! accounted for with a model version in 

which the jump contributions were a fixed, deterministic number (random 

variabie of zero variance), leaving the varianee of non-jump contributions 

to he estimated as the only free parameter of the model. This simplification 

will he considered as well. 

Although the computation of model predictions for perceived pitch di­

rection with the use of Eq. (3) is in principle straightforward, the actual 

computation of the necessary statistics E[TSC] and Var[TSC] for a given 

RCS can he very cumhersome and tedious. Because such computations 

have been shown in detail by Allik and Dzhafarov (1984), we will present 
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here only the highlights for that particular form of the DCM that applies 

to the present sound experiments. 

The expected value of the TSC is given by the expression: 

E[TSC] =ME+ (p- ~) 11 2 4 ' 
(4) 

where M represents the total number of dipoles with a displacement vector 

d=(l,l) in the RCS, Ei1 is the mean perceptual contribution of dipoles 

with that displacement vector and form h11 (on-on), and P is a simple 

abbreviation of the state repetition probability SRP. The derivation of this 

equation is shown in Appendix la. 

The varianee of TSC comprises two sets of terms: 

Var[TSC] = L Var[c(di)] + 2 L L Cov[c(di), c(d3)]. (5) 
i j f.i 

The first term, as is shown in Appendix Ib, is equal to: 

where P is the SRP, Q equals 1- P, and Vi and Vni are the normalized 

variances of contributions by dipoles in jump form and the non-jump form, 

respectively: 

The second term of Eq. (5) is a sum of covariances which can he written 

as: 
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where P(d;,d;) is the joint probability that the ith and jth dipales are 

bothof the form h 11 (on-on) and the summation is taken over covariances 

of those single-step dipole pairs (d=(±l, 1)) that !ie along a diagonal in 

the direction of frequency motion in the RCS (set SI) or that conneet two 

of those successive diagonals (set S2). Th is is because the effect of the 

SPR propagates along those diagonals and causes a correlation between 

the forms of dipoles contained in or touching them. All dipoles pairs not 

belonging tothesets sl Of s2 have a joint probability P(di, dj) of being in 

the h 11-form that equals 0.25, which makes their covariance zero. Unfor­

tunately there is no simple general expression for P( di, d,) for the dipoles 

contained in the sets S1 and S2 since such an expression depends on the 

length of the chord sequence. For any chord sequence, however, P( di, dj) 

ultimately depends only on the state repetition probability SRP, as is shown 

in Appendix Ie. 

1f we now return to Eq. (3), we see with the aid of Eqs. (4), (6) and 

(7) that its independent variabie E[TSC]/ Jvar[T SC] depends only on M, 

P(=SRP), Vj and Vnj, where the latter two are free parameters. In the 

following data analysis it will be assumed that the parameter Vj is equal 

to zero, which amounts to assuming that each observed on-on jump on a 

RCS causes a fixed, noiseless contribution to the overall perceived pitch 

motion. The only remaining model parameter Vnil representing perceptual 

noise contributed by observed dipoles that have a non-jump form, canthen 

be estimated by fitting Pc(SRP), plots of "correct" direction identification 

as a function of SRP generated by Eq. ( 3), to the empirically obtained 

data. 
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For each of the three subject-averaged data sets shown in Figure 3.4.1 

respectively obtained with (a) sine-wave chords, (b) sawtooth-wave chords, 

and ( c) Shepard-tone chords, three functions were computed according to 

Eq. (3) with the parameter Vni chosen in such a way that the summed 

square error between function and data values was minimized. In other 

words, one best-fitting Vn1-value was computed for data from 2-chord, 4-

chord and 8-chord sequences of particular sounds. Only half of the empirica! 

data were used to estimate Vni and the conesponding function. These 

functions are shown as solid curves in Figure 3.4.1. The same procedure 

was foliowed for the data of Experiment B, using all the data points. The 

results are shown in Figure 3.4.2. 

A chi-square test was performed on the fitted results of Experiment 

A, using the second half of the empirica! data. It was found that model 

functions and empirica! data (i.e. those data that had not been used to 

obtain the functions !) did not differ significantly at the p < .05 level. 
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3.6 Discussion 

The data of both experiments A and B are well accounted by a simple 

version of the Dipole Contri bution Model (DCM). A simp Ie version means 

that (a) it is a short-range local model in which correspondence between 

elements is limited to adjoining elements in successive time frames, (b) all 

off-off jumps do, on the average, not contribute (no-blank version), and (c) 

the noise involved in the perception of on-on jumps is assumed to he zero 

(Vj = 0). The model accounts for the reversed direction of perceived pitch 

motion, apparent from the data, for state repetition probabilities smaller 

than 0.5 ( the so-called "reversed phi-phenomenon"), as well as the slight 

asymmetry of empirically obtained psychometrie functions about the point 

Pc = 0.5, SRP=0.5. The chi-square test performed with one half of the 

data of Experiment A on the model-generated curves that were optimally 

fitted to the other half of the data yielded values that were consistent 

with the hypothesis that both halves of the data are based on the same 

underlying mechanism. The chi-square criterion did not, however, allow 

us to discriminate unequivocally between possible variants of the short­

range local DCM, for instanee assumptions that Vj i=- V nj =/=- 0 (two free 

parameters) or that Vj = V nj i=- 0. The former assumption, when put into 

the model, yields somewhat smaller chi-square values, as is expected with 

two free parameters, but also typically yields optimum estimates for vj 

about ten times smaller than for vnj. 

The impikation of parameter values found for Vj and Vnj is that on­

on relationships between corresponding tone elements are perceived with 

much less noise interference than on-off or off-on relationships. Normally 
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one might expect the amounts of noise to be about the same. Although a 

chi-square test did not provide campeiling evidence to reject this hypothesis, 

the data appear generally more consistent with the idea of a (relatively) 

much smaller Vj. For reasons of simplicity we chose to represent the global 

pitch perception process by the rather extreme version of the DCM in 

which Vj = 0, leaving only the free parameter V nj to be estimated, without 

the intention of claiming that the percepts of short-range on-on jumps are 

totally noiseless. 

Another potentially significant finding is that perception of global pitch 

motion within the general context of these experiments can be well ac­

counted for with a short-range, local form of the DCM. There remains the 

question, however, to what extent this finding can be generalized to all mu­

s ie perception. Experiments with tone streaming have convincingly shown 

that in sufficiently rapid tone sequences our auditory system may group 

tone elements tagether that are not in successive time frames. lt is possi­

ble, for instance, to construct a single sequence of tones which leads to a 

percept of two parallel melodies formed by odd and even numbered notes, 

respectively (Bregman & Campbell, 1971; van Noorden, 1975). There are 

also visual analogs to those streaming experiments (Julesz & Bosch, 1966). 

It is quite possible that the short-range local salution to the element cor­

respondence problem, which the auditory system seems to employ in the 

present experiments, has sarnething to do with the large amount of ran­

domness in the chord sequences. Harmonie or melodie structure, put into 

transitions from one chord to the next, could cause the auditory system 

to use solutions to the correspondence problem other than a short-range 
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local one. This implies that 20th century serial music, in which traditional 

harmonie and melodie structures play a negligible role {Austin, 1966), is 

perceived in a short-range and local manner by most listeners. If this con­

dusion is correct, a composer may have a possible tooi to manipulate a 

listener's perceived correspondence between notes by varying the amounts 

of randomness and structure in the music. 

The local form of DCM can also account for some auditory pitch para­

doxes reported in the literature. One of them, actually used in this study, 

happens when a Shepard tone is foliowed by another Shepard tone in which 

all frequencies have been multiplied by 1.89. lnstead of hearing the pitch go 

upwards a major seventh, subjects typically report hearing a pitch descent 

of a semitone. This is because there actually are many semitone frequency 

jumps in a downward direction in this case which apparently dominate the 

global percept. Another paradox, recently reported by Schroeder {1986) 

and Risset (1986), has a slightly stretched Shepard tone (e.g. 49.6, 102.4, 

211.2 ...... Hz) foliowed by its exact octave transposition (i.e. 99.2, 204.8, 

422.4 ..... Hz). Despite the component frequency jumps of exactly one oc-

tave upwards, subjects typically report hearing a slightly deseending pitch 

jump. Apparently also in this case, local dipoles formed by frequencies that 

are close dominate the global pitch percept and are stronger than the central 

or virtual pitch which should have resulted in upward actave percepts. 
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3. 7 Conclusions 

Consiclering the quantitative behavior of the parameter V nj, it is found 

that: 

1. It appears to be rather subject-independent. For that reason data 

of four subjects in Experiment A and two subjects in Experiment B 

were pooled. 

2. It seems to decrease with the harmonie richness and complexity of 

signals employed to represent the tone elements of the chords. The 

largest decrease of V nj, however, occurred between the data shown in 

Figures 3.4.1(b) and (c), representing sawtoothand Shepard tones, re­

spectively, whereas the change between the cases of sine and sawtooth 

representation (Figures 3.4.1(a) and (b) was rather small. Unfortu­

nately, the change from sawtooth to Shepard tones involved not only 

a change in tonal spectra but also a change of tone spacing within 

chords (semitone to whole-tone spacing) and, more importantly, a 

change to a situation of true physical circularity of the chord sequence. 

This covariance of parameters obscures a clear-cut condusion on what 

exactly causes the decrease in the noise of perceived non-jumps. 

3. Regularity of inter-tone spacing generally leads to smaller values of 

Vnj· Thiscan beseen bycomparingresultsofFigures3.4.2(a) and (b), 

and also the two sets of data shown in Figure 3.4.2(c). Despite the 

larger inter-element tonal distances of the dominant-seventh chord, 
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compared with semitones or quarter tones, the resulting estimates of 

V nj are consistently and significantly larger. This is, in a sense, logi­

cal because with a regular inter-element space the processor has only 

to deal with a single dipole size, whereas in the dominant-seventh 

chord arrangement the physical frequency jumps of nominally identi­

cal dipoles are often different in size. This can only be a confaunding 

factor for any processor, and is most likely to lead to degraded per­

formance. 

4. The auditory results presented in this study appear very similar to 

the visual data obtained with random circular cinematograms by Al­

lik and Dzhafarov (1984). Both sets of data are adequately accounted 

for by very similar models. This suggests that in both cases we are 

apparently dealing with a general cognitive brain process which ex­

tracts information from visual and auditory sensoryinputs in a similar 

manner. 
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4 Deterministic Signals in 

Discrete Noise 

4.1 Introduetion 

This chapter deals with the perception of a deterministic signa! of a dis­

crete nature against background of randomly changing tones. In experi­

ments with random-ehord sequences (Chapter 3) a statistica! arrangement 

of tones causes a global pitch motion percept. The stimuli in the exper­

iments in this chapter resembie the stimuli from chapter 3 very much (in 

some cases they can be identical), but the subjeet's task is fundamentally 

different. In experiments with RCSs the subject is asked to determine the 

global pitch motion, whereas in this experiment the subject is asked to 

identify or separate the signa! from the background noise tones. The signa! 

is an either ascending or deseending musical tone scale. To our knowledge, 

no experiments are reported where a melody is presented against a back­

ground of other potentially interfering tones. One of the few situations 

that slightly resembie our experiments is the dichotic conflict situation in 

which two different melodies are simultaneously presented to a subject, one 

to each ear (Kimura, 1964; Deutsch, 1975; Butler, 1979). The limits of 

our auditory system to perceive a melody against a background of other 

potentially interfering tones without dichotic separation remains largely 

unknown. This is somewhat unfortunate because it is just this situation 

that is encountered most often when we listen to music. 

In research on vision, the problem of motion perception for discretely 

changing elements against a background of other randomly changing el-
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ements seems to have been g1ven more attention that the above men­

tioned analog in hearing. Experiments with rnaving random-dot patterns 

or cinematograms (Julesz, 1971; van Doorn and Koenderink, 1982, 1984; 

Nakayama and Silverman, 1984) have convincingly shown that, when a 

directional rnaving dot signa! is embedded in a background of randomly 

rnaving dots, the motion can often be detected. This implies that the brain 

must have a rather sophisticated way of solving the correspondence prob­

lem. 

The experiments presented in this chapter are designed to get some in­

sight in the detection process and the strategy used by subjects by listening 

to complex signals. Also will be stuclied to what degree noise influences the 

detectability of the signa!. 
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4. 2 Experiments 

In this section two experiments are performed. The first one deals with 

signals in overall noise (Experiment A), the second one (Experiment B) 

with noise, occuring only in elements of the alternative signa!. 

4.2.1 Stimuli 

The structure of the stimuli used in this experiment can be represented 

by a 6 x 6-matrix, where each column represents a time frame and each 

row represents a tone (see Figure 4.2.1). Throughout the experiment the 

6 tones were sinusoids with frequency of 262, 294, 330, 369, 415 and 466 

Hz, representing the six tones of a whole-tone scale from C to BP in equal 

temperament. 

/(Hz) 
466 000000 
415 000000 
369 000000 
330 000000 
294 000000 
262 000000 

0 250 500 750 1000 1250 t(ms) 

Figure 4.2.1 : Representation of a stimulus. The abscissa is time; the or-

dinate is frequency. 

The duration of one time frame was 250ms, which included a 20-ms on and 
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20-ms off ramp. There were no silent periods between tones. One tone from 

one time frame is called an element. One stimulus contains 36 elements. 

Each element can he putto state on (audible) or off (silent) independently. 

All on-elements have equal amplitude. Sometimes an on-element is called 

a I-element, an off-element a 0-element. Two elements lying in successive 

time frames and have adjacent frequencies form a dipole. If e.g. both 

elements are 1-elements the dipole is called a 11-dipole. 

Each stimulus contained one of two possible signals (i.e. a sequence 

of 1-elements, which had to he identified) plus noise-elements. The first 

signa! was an ascending whole tone scale (see Figure 4.2.2(a)). This signa! 

was labeled up. The second signa! was a deseending whole tone scale (see 

Figure 4.2.2(b)). Th is signa! was labeled down. 

I oooooe I eooooo 
ooooeo oeoooo 
oooeoo ooeooo 
ooeooo oooeoo 
oeoooo ooooeo 
eooooo oooooe 

t t 

Figure 4.2.2 : {a) Representation of an up-stimulus. {b) Representation 

of a down-stz.mulus. An open circle denotes a 0-element; a closed circle a 

1-element. 

Notice that both signals !ie at the diagonals of the matrix. We there-

fore sometimes speak about the diagorral (that diagorral where the signa! 

is placed) and the alternative diagorral (the other diagonal). Elements, not 
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lying at one of the diagonals are referred to as non-diagonal elements. 

In Experiment A, in order to mask the signa!, elements that were not 

part of the signa! were put on with a certain probability Pn. Before a 

stimulus was generated, a choice was made between up and down and P n· 

Thus if P n = 0.0, only stimuli like the ones pictured in Figure 4.2.2 were 

obtained. If e.g. P n = 0.3 stimuli like the one in Figure 4.2.3 are obtained. 

I oooeoe 
••ooeo 
oooeeo 
ooeooo 
o•o••• 
eooeoe 

t 

Figure 4.2.3 : Representation of a stimulus with Pn = 0.3. 

If P n = 1.0 all elements are on and, since both signals are physical present 

or, in other words, both diagonals contain only 1-elements, an up-stimulus 

is indistinguishable from a down-stimulus. In Experiment A P n varied from 

0.0 to 1.0 in steps of 0.1. 

Of partienlar interest are the elements lying at the alternative diago-

nal. When an increasing number of 1-elements is present at the alternative 

diagonal, identification of the signa! becomes more difficult, regardless the 

amount of non-diagonal elements in state on. To examine the importance 

of the elements at the alternative diagonal Experiment B was designed. 

The stimuli of Experiment B resembied the ones from Experiment A. 

Again the stimulus contained either an up- or down-signa!. However, now 

only elements at the alternative diagonal could be put on. All non-diagonal 
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elements remained off during Experiment B. Thus if e.g. the stimulus was 

labeled up, apart from the signal-elements, only 1-elements could appear 

at the alternative diagonal, i.e. the diagonal from top-left to bottom-right 

(see Figure 4.2.4). Since now there are only 64 (= 26 ) ways of arranging 

these elements at the alternative diagonal, we don 't need P n any more as 

an indicator for the noise level. 

I eooooe 
ooooeo 
oooeoo 
ooeeoo 
oeooeo 
eooooe 

t 

Figure 4.2.4 Representaüon of an up-stimulus of Experiment B. 

4.2.2 Metbod 

All sessions started with the determination of the subjeet's hearing thres-

hold for the stimulus to be used. The subject, whowas seated in a double-

walled (IAC) sound insulated chamber, received the stimuli binaurally 

through Sennheiser HD 424 headphones and adjusted the intensity of a 

gated 440-Hz sinusoidal tone to detection threshold. During the experiment 

all stimuli were presented 20 dB above this empirically established thresh-

old. The rather low level was chosen to aYoid as much possible confaunding 

effects of aura! combination tones (Zwicker, 1955; Goldstein, 1967). 

After the presentation of each stimulus the subjeet's task was to indicate 

whether the signa! was up or down, conesponding with the ascending and 

deseending scale respectively. He did this by pressing one of two buttons 
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on a response-box. There was no response time limit, and feedback was 

provided immediately after each response. 

For Experiment A, about 4000 trials were collected from each subject, 

most of them between 0.4 ::; P n ::; 0.8. One session contianed up to six runs 

of 110 trial, and lasted about one hour. 

For Experiment B, about 1000 trials were collected from each subject, 

all of them having at least three 1-elements at the alternative diagonal. 

4.2.3 Subjects 

All trials in this experiment were judged by four subjects: AH, JG, RL 

and NV. The degree of musical experience as well as the experience in 

psychoacoustical tasks, however differed greatly from subject to subject. 

All subjects had normal hearing. 

4.2.4 Apparatus 

The stimuli were calculated on a P857 mini-computer system at a sampling 

ra te of 10 kHz. With a 12-bit DIA-converter these data were transformed 

into acoustical signals. The output of the DIA-converter was low-pass fil­

tered at 4.3 kHz with two Krohn-Hite 343 filters (96dBioctave). All signals 

previously have been checked with a Data Precision Analyser (DATA-6000). 

The frequency-response curve of the headphones appeared to beflat within 

3.5 dB in a region from 60 to 5000 Hz. 
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4.3 Results 

This section deals with the results of Experiment A and B. In the figures 

presented in this section, the subjeet's score is presented in units of d' {as 

described in section 2.1). d' is related to the %-correct score following 

Pc= <l>{d'/2), 

where <I>(z) is the Normal Probability function. Table 4.3.1 shows some 

values for d' with its associated %-correct score. 

d' Pc{%) d' Pc{%) 

0.0 50.0 3.0 93.3 

1.0 69.1 4.0 97.7 

2.0 84.1 5.0 99.4 

Table 4.3.1 Relation between d' and Pc. 

The data in the figures in this section are pooled over all subjects, since 

inter-subject consistency prooved to he good. The (numerical) results for 

the individual subjects can he found in Appendix II. 

4.3.1 Experiment A 

Figure 4.3.1 shows the results of Experiment A where d' is plotted versus 

the noise level P n· P 11 = 0.0 means that no elements are on except the 

ones which belong to the signal. P n = 1.0 means that all elements are on. 

Detection then is at chance level. P 11 = 0.3, e.g., means that, on the average, 

3 out of 10 elements are in state on. 

When 0.5 ::=; P 11 ::=; 1.0, d' seems to he a linear function of P n· If the line 
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l : d' = a + b(1 - P n) is fitted to this part of the data of Figure 4.3.1, a 

value for the offset a is obtained, lying close to zero. Since (1) for Pn = 1.0 

d' has to be zero (all elements are on); (2) the standard error of a allows us 

to put a to zero; (3) there is no reason to assume that, apart from the noise 

caused by P n, there exists other noise or signal uncertainty which might 

cause an offset a, we take a = 0, and fit the line l : d' = b(1 - P n) to the 

data. This gives b = 3. 7. 

7~----------------------------~~ 

f 
4 

3 

1.0 0.8 0.6 0.4 0.2 0.0 

Pn 

Figure 4.3.1: Results of Expen.ment A. d' is plotted versus the noise-probability 

If 0.0 :S P n :S 0.4 the theory as described in section 2.1 cannot be prop-

erly applied since ( 1) the number of trials per data point for 0.0 :S P n :S 0.4 

is smalland (2) d' is rather large, so the identification task is so easy that an 

almost 100% score is obtained. Therefore the data points for 0.0 :S P n :S 0.4 
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are not taken into account in the fit. For the sake of completeness these 

points are presented in Figure 4.3.1. When Pn = 0.0 all subjects scored 

without one mistake, therefore the associated d' is infinetely large. 

Figure 4.3.2 shows d' versus the number of 1-elements N at the alter­

native diagonal. If N =0, all elements at the alternative diagorral were 0-

elements; if N =6, all elements at the alternative diagorral were 1-elements, 

and, since both signals then are present, performance was at chance level. 

6~------------------------------~ 

5 

3 

2 

1 

0~'---r----.r----.-----r----.---~ 
8 

N 

Figure 4.3.2: Results of Expen·ment A. d' is plotted versus N, the number 

of 1-elements at the alternative diagonal. 

If the line l : d' = a+ b(6 - N) is fitted to the data, it appears that a 

is significantly non-zero and l intersects with the N-axis for N=5.80. This 

offset probably is due to the variation in noise at non-diagorral elements. 

Furthermore b = 0.83. 
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One may wonder, since N is an integer, if it is allowed to speak about 

N =5.80 and to fit a line. When one keeps in mind that we deal with 

experiments with a 6 x 6-matrix, we can take N only equal to 1, 2, 3, 4, 5 

or 6. If, on the other hand, we dealt with a 5 x 5-, 7 x 7- or n x n-matrix 

an analogue experiment could be performed. Then probably again a linear 

relationship between N and d' would be obtained. If we plotted d' versus 

N/5 (in case of the 5 x 5-matrix), versus N/6 (in case of the 6 x 6-matrix), 

versus N /7 (in case of the 7 x 7-matrix), or versus N /n (in case of the 

n x n-matrix), one might expect that in each case a bout the same curve 

would be obtained. Thus actually we should speak about the fraction N /6 

of elements being on at the alternative diagonal, but for convenience we 

choose to work with N. This reasoning is not entirely correct, since we 

don't know the subjeet's performance for n = 5 or 7. Moreover, later in 

this section we will see that the first and last elements at the alternative 

diagonal are more important for a correct identification than the middle 

elements. 

Figure 4.3.3 shows d' versus the number of 11-dipoles D at the alterna­

tive diagonal. D=O corresponds with no 11-dipoles (which does not mean 

that there are no 1-elements at the alternative diagonal); D=5 corresponds 

with 5 11-dipoles, thus 6 1-elements. At D=5 d' = 0, since both signals are 

present in the stimulus. 

With 6 elements at the alternative diagonal D=4 can be constructed in 

only two ways: 111110 or 011111 (where an 1 denotes an on- and a 0 an 

o.ff-element). D=4 thus represents the score where either only the fi.rst or 

the last element was off. Figure 4.3.3 shows that identification for D=4 is 
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good, significantly better for D=3 and equally good for D=2 and D=l. 

5~--------------------------------~ 

4 

3 

2 

1 

0~----~------~----~------~----~ 
5 4 3 2 1 

D 
0 

Figure 4.3.3: Results of Expen"ment A. d' is plotted versus D, the number 

of 11-dipoles at the alternative diagonal. 

The score belonging to D=3 is rather bad. D=3 contains mostly 0-

elements in the middle and 1-elements at the ends, e.g., 110111. 

Closer examinatien of the data shows that 62% of all mistakes occurs 

with stimuli where the alternative diagonal is of type 1xxxx1 (x can be 1 or 

0), the 111111-stimuli excluded; 23% of type Oxxxxl; 13% of type 1xxxx0 

and only 3% of type OxxxxO. 

Figure 4.3.4 shows d' versus ED, the net number of dipoles in the entire 

stimulus.ED is defined as the number of 11-dipoles in the direction of the 

signa! minus the number of dipoles in the opposite direction. Thus, e.g., if 

the stimulus is up and there are 7 11-dipoles (5 11-dipoles from the signa} 
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included) in the up-direction and 3 in the down-direction, I:D = 4. 

Figure 4.3.4 shows that by decreasing I:D d' decreases to I:D ~ 0. If 

I:D = 0 d' > 0 and by a further decrease of I:D d' slightly increases. 

6 

5-

l - f '"0 
4-

3-
i 

f 

2 ' 
I 

1-

f ' I 

0 I I I I I I 1 l 

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 

l:D 

Figure 4.3.4: Results of Experiment A. d' is plotted versus ED, the net 

number of 11-dipoles in the direction of the signa[. 

4.3.2 Experiment B 

Figure 4.3.5 shows the results of Experiment B where d' is plotted versus 

the numbers of 1-elements N at the alternative diagonal. lf N =0, all ele-

ments at the alternative diagonal were 0-elements; if N =6, all elements at 

the alternative diagonal were 1-elements, and, since both signals then are 

present, performance was at chance level. 

54 



5 

-
." 4 

3 

2 

1 

0~----.----,----~----~----~--~ 
6 5 4 3 2 1 0 

N 

Figure 4.3.5: Results of Experiment B. d' is plotted versus N, the number 

of 1-e/ements at the alternatz've diagonal. 

Fitting the line l : d' = a + b( 6 - N) to the data would give a > 0. 

Th is is not possible since, at N =6 performance should he at chance level. 

Therefore and because the standard error allows it, we put a = 0. The line 

l : d' = b(6 - N) then gives us b = 1.9. 

Figure 4.3.6 shows d' versus the number of 11-dipoles D at the alterna-

tive diagonal. D=O corresponds with no 11-dipoles (which does not mean 

that there are no 1-elements at the alternative diagonal); D=S corresponds 

with 5 11-dipoles, thus 6 1-elements. At D=S d' = 0 since both signals are 

present in the stimulus. 

As in Figure 4.3.3 performance for D=4 (stimuli where only either the 

first or the last element was a 0-element) is better than for D=3. 
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Closer examination of the data shows that 80% of all mistakes occurs 

with stimuli of type 1xxxx1 (x can be 1 or 0), the 111111-stimuli excluded; 

15% of type Oxxxx1; 4% of type 1xxxx0 and only 1% of type OxxxxO. 

5~-------------------------r----~ 

4 

3 I 
2 

1 

04-----~,------~,----~------r------i 

5 4 3 2 1 

D 
0 

Figure ,f.3.6: Results of Experiment B. d' is plotted versus D, the number 

of 11-dipoles at the alternative diagonal. 
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4.4 Discussion 

The aim of the experiments was to discover which strategy subjects develop 

to separate the signa! from the background. An ideal subject would adopt 

the strategy of tracing one of both possible signals, say up. Thus at the 

beginning of a stimulus, he focuses at the lowest element and find it's a 

1-element. The next time frame he focuses at the one but lowest element 

and find it's a 1-element, et cetera, till he finds a 0-element. Then the ideal 

subject knows that the signa! was not up and responds down. If he finds 

only 1-elements at this diagonal, he knows that can he up and responds up. 

A human subject tries to adopt this strategy, but doesn't control it 

perfectly. He wil! be influenced to some degree by other 1-elements, either 

at the alternative diagonal or even by 1-elements at other places. The 

fact that stimuli with no interfering elements always were judged correctly, 

showed that subjects were very well aquainted with its shape. 

Camparing the results of Experiments A and B shows that the offset 

m Figure 4.3.2 apparently is caused by the presence of non-diagonal 1-

elements, for this offset disappears when all non-diagonal elements are put 

off. Probably the non-diagonal 1-elements hamper the subject in his effort 

to identify the tones from the signa!. The non-diagonal elements cause 

apart from the offset, additional noise in the identification process, since 

the slope of the line in Figure 4.3.5 (b = 1.9) is about twice as large as the 

slope in Figure 4.3.2 (b = 0.83). 

The results as plotted in Figures 4.3.3 and 4.3.6 can be explained by 

stating that the states of first and the last elements at the alternative di­

agonal are more important in the identification process than the states of 
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the middle elements. We can deduce this from the fact that in both figures 

the signa! for D=4 (having the states 111110 or 011111 at the alternative 

diagonal) is relatively good separable from the noise, whereas this is cer­

tainly not the case for D=3 (having e.g. the states 101111 (5 1-elements) 

or 001111 ( 4 1-elements) at the alternative diagonal). In both cases the 

most mistakes are made with states 1xxxx1 (111111 excluded) at the al­

ternative diagonal, then Oxxxxl, then lxxxxO and almost no mistakes were 

made when the alternative diagonal was of type OxxxxO. From this we may 

conclude that the state of the last element at the alternative diagonal is 

even more important than the state of the first one. This can be explained 

by assuming that in the first time frame the subject is not able to iden­

tify all elements immediately, whereas this is easier in the last time frame, 

since the five time frames before this one have shown the exact place of 

all elements. Of course the performance in Experiment B is better than in 

Experiment A, due to the absence of non-diagonal elements, but the global 

behaviour is the same. 

We assume that a subject always tries to maintain the same clue, i.e. to 

give the answer which corresponds with the direction of the signa!. If this 

is actually happening and one believes that the decision process is governed 

by the amount and direction of 11-dipoles in a stimulus, as we did in the 

experiments with Random-Chord Sequences, one should expect d' < 0 by 

ED < 0 and d' = 0 by ED = 0. Figure 4.3.4 shows that this is obviously 

not the case. The decrease in performance by decreasing ED is not due 

to the decrease of ED, but to the increase in the number of 1-elements 

in the stimulus., At ED = 0 it still is possible that there are 0-elements 
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at the alternative diagonal, which causes d' > 0. Likewise the increase in 

performance by decreasing ED (for ED < 0) is not due to the decrease of 

ED, but to the increase in the number of 0-elements in the stimulus, which 

is necessary to make many 11-dipoles in the opposite direction. 
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4.5 Conclusions 

The results of Experiments A and B allow us to draw the following conclu-

s10ns: 

1. A subject, when listening to one of two possible known signals against 

a background of noise, adopts the strategy of tracking one of both 

possible signals. If he notices that the possible signal he is tracking is 

not complete, i.e. that the diagonal contains an off-element, he knows 

that the other possibility contained the real signal. If on the other 

hand, he doesn't notice any off-elements he assumes that he tracked 

the real signal. 

2. The data show that subjects are inclined to track a down-stimulus, 

probably because the first element of this signal is the most upper 

note of the signal and therefore more easily to detect. 

3. It appears that when the first or especially the last element is off 

identification of the signal becomes rather easy. The state of the last 

element plays a more important role than tha first one because the 

subject not always is able to immediately identify all elements at the 

beginning of a stimulus, whereas at the end he indeed can identify 

them. 

4. An ideal observer would, when tracking one diagonal, not pay atten­

tion at any other element. Clearly a human observer is not ideal, 

since the presence of elements at the alternative diagonal and even 

non-diagonal elements decrease the score considerably. 
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5. From experiments with Random-Chord Sequences one might expect 

that the subjeet's decision depends on the net number of on-on­

dipo!es present at both diagonals, or even on the net number of on­

on-dipoles in the whole stimulus. This experiment shows that this 

is definitely not the case, si.nce the score does not increase by an in­

crease in dipoles. Only the presence of individual elements and their 

positions in the stimulus affects the score. 
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5 Discrimination of Speetral Profiles 

5.1 Introduetion 

In this chapter we deal with the detectability of changes in amplitude in 20-

component complexes. In literature many experiments have been reported 

on the threshold level of changes in a multitone complex. Thresholds al­

ways were determined with 2-alternative forced choice experiments where 

in one time frame a stimulus was presented containing a multitone complex 

without a signa! and the other time frame containing the same multitone 

complex with a signal (i.e. an increment in amplitude in one or more com­

ponents). Thresholds were determined as a function of the interstimulus 

interval, the number of components in the complex, the spacing of the 

components over the frequency-axis (Green et al., 1983), dichotic or cliotic 

presentation (Green & Kidd, 1983), the component number of the complex 

(Green & Mason, 1985, Green et al., 1987) frequency and pha.se (Green & 

Mason, 1985) by increments in amplitude of only one component. In these 

experiments the component number remained fixed during one session. In 

other experiments the component number varied randomly during one ses­

sion (Spiegel et al., 1981; Spiegel & Green, 1982). In all experiments the 

authors tried to detect the listeners' ability to detect changes in speetral 

shape or profile. An important theoretica! issue was whether the listeners' 

sensitivity to changes of one component in more complex spectra is better 

than for changes in amplitude in a single sinusoid. To avoid that listeners 

would focuss on changes in intensity instead of profile changes, the overall 

intensity of the two stimuli were varied randomly in all experiments. 
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The experiment reported in this chapter also deals with profile analysis, 

but the experimental set-up is designed such that listeners are not able 

to focus on changes in intensity between the two stimuli any more. In 

the experiments described in this chapter both stimuli contain a speetral 

component which has been slightly varied in intensity compared to the 

others, but the place of this component is not the same. This causes a jump 

percept. By measuring the listeners' ability to identify the direction of the 

jump {i.e. the frequency of the incremented component becomes higher 

or lower) we can learn sarnething about the listeners' ability to identify 

changes is speetral shape. Furthermore we investigated the perception of 

intensity decrements in components {instead of increments, as is clone in 

many experiments). 
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5.2 Experiments 

5.2.1 Stimuli 

In the experiments, described in this chapter, all stimuli contained a 20-

component complex witheither an equallinear or equallogarithmic spacing 

between adjacent components (see Figure 5.2.1). The latter stimuli next 

are 
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I 
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• 

I 
{b} 

Figure 5.2.1 : Spacing of the components over the frequency-axis. (a) /in­

complex; {b) log-complex. 

referred to as log-stimuli; the other ones as /in-stimuli. The lowest frequency 

always was 200 Hz, the highest 4000 Hz, so the /in-complex comprised the 

frequencies 

f11n,N = 200 · N Hz, 
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the log-complex comprised the frequencies 

N-1 

flog,N = 200 · 2010 Hz, 

where 1 ::::; N ::::; 20. Each component started in phase and all components 

had the same amplitude A0 • The stimulus consisted of two time frames, 

the duration of each time frame was 250ms which included a 20-ms on and 

20-ms off ramp. There was no inter-stimulus silent period between the two 

time frames. 

In the first time frame the Nih component was incremented from ampli-

tude A0 to A. In the second time frame the N~h component was incremented 

to the same amount, thus from Ao toA. N2 always was one of the neighbour 

componentsof N1 , thus N2 = N1 ± 1 (see Figure 5.2.2). 

!.111111111111111111111 • 
I 

!.j I I I I I i1 I I I I I I I I I I I I I • 
I 

Figure 5.2.2: Representation of an up-stimulus with a /in-complex. The 

upper graph represents the first time frame, the lower graph the second time 

fame. 

If N 2 = N 1 - 1, the stimulus was labeled down, due to the downward step 
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(or jump) in frequency of the incremented component from the first to the 

second time frame. Likewise, if N2 = N1 + 1, the stimulus was labeled up. 

A stimulus is labeled with a value N, which stands for the incremented 

component with the lowest frequency. 

The increment in amplitude I was expressed in dB-units: 

I=20 log10 (A/ A0 ). If I=O, there is no increment (thus no signal). If e.g. 

I=6.02, the increment is as large as the amplitude of the complex. Of course 

we also might decrease the amplitude of a component in the complex. This 

gives A/ A0 < 1, thus I< 0. The removal of a component results in I=-oo. 

5.2.2 Metbod 

All sessions started with the determination of the subjeet's hearing thres­

hold for the stimulus to be used. The subject, whowas seated in a double­

walled (IAC) sound insulated chamber and received the stimuli binaurally 

through Sennheiser HD 424 headphones, adjusted the intensity of a gated 

20-component lin- or Jog-complex ( depending at the stimuli to be used in 

the session) to detection threshold in about 30dB white noise. All stimuli 

during the experiment were presented 20dB above this empirically estah­

lisbed threshold. The 30dB noise floor was used, in the first place to flatten 

the threshold as function of the frequency, so that all components of the 

complex would sound equally loud, in the second place, to mask as much 

as possible confounding effects of aura! combination tones (Zwicker,1955, 

Goldstein, 1967). The white noise was present throughout the whole ex­

periment, so not only when the stimulus was present. 

After the presentation of each stimulus the subjeet's task was to indicate 
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whether the signa! was up or down, by pressing one of two buttons on a 

response box. There was no response limit and feedback was provided 

immediately after each response. 

In Experiment A about 300 to 400 trials per component per complex 

were collected from each subject. In this experiment N varied random from 

1 to 19. The subject did not know a priori the value of N, or, in other 

words, where the jump would occur (random signal-fixed mask, see Spiegel 

et al., 1981; 1982). One session contained up to six runs of 190 trials and 

lastedabout one hour. In one run the increment I remained fixed (Method 

of Fixed Levels (section 2.2)), with values of 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 and 

5.0 dB. 

In Experiment B a bout 400 trails were collected for N =4 and N = 17 for 

the log-complex from subjects AH and NV. Now N remained fixed (fixed 

signal-fixed mask). During one run the increment I remained fixed at the 

values of 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 dB for I> 0 and -0.5, -1.0, -1.5, -2.0, 

-3.0, -6.0, and -oo dB for I< 0. 

In Experiment C the 70. 7%-correct level for I was obtained in an adap­

tive test for N=4 and N=17 for the log-complex from subjects AH and NV 

for I> 0 and I< 0, the procedure described insection 2.3. Trials were run 

in blocks of 100 and each run produced about 14 to 22 reversals, the first 

four reversals excluded. The increment I was decreased by 0.25 dB follow­

ing two correct responses and increased by 0.25 dB following one incorrect 

response. The level, betonging to each contiguration was determined only 

once. 
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5.2.3 Subjects 

The trials in Experiment A were judged by subjects AH, JG, JS and NV in 

case of the /in-complex; and by subjects AH, RL, JS and NV in case of the 

log-complex. Trials in Experiment B and C were judged by AH and NV. 

The level of musical experience and experience in psychoacoustical tasks 

differed greatly from subject to subject. All subjects had normal hearing. 

5.2.4 Apparatus 

The stimuli were calculated on a P857 mini-computer system at a sampling 

rate of 10 kHz. With a 12-bit DIA-converter these data were transformed 

into acoustical signals. The output of the DIA-converter was !ow-pass 

filtered at 4.3 kHz with two Krohn-Hite 343 filters {96dBioctave). After 

this white noise, produced by a Wandel und GoJterman Noise Generator 

RG-1, was added. The intensities of the stimulus and the noise could, by 

means of attenuators, be adjusted independently. All signals previously 

have been checked with a Data Precision Analyser (DATA-6000). The 

spectrum of the complex was found to be flat within 0.5 dB up to 2 kHz 

and decreased smoothly down 5 dB at 4 kHz. The frequency-response curve 

of the headphones appeared to be flat within 3.5 dB in a region of 60 to 

5000Hz. 
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5.3 Results 

The data shown in the figures in this section are pooled over all subjects, 

since intersubject consistency prooved to he good. The (numerical) results 

for the individual subjects are presented in Appendix 111. 

5.3.1 Experiment A 

Figure 5.3.1 shows the results of Experiment A, where d' is plotted versus 

the increment I of the random component in the complex (in dB). The 

diamonds represent the results of the experiments with the log-complex; 

the crosses with the /in-complex. The results with the /in-complex show a 

rather linear relationship between d' and I. Fitting a line to these data re­

sults in a slope b=0.873 dB- 1 and an offset r=0.65 dB. The results obtained 

with the log-complex show for I> 2.0 a performance which increases slower 

than linear. Probably this is due to Jack of concentration by the subjects 

at higher levels of I, since the task there becomes rather easy (score about 

95% correct). Moreover, closer examination of the data show that some 

learning-effects are incorporated in these data. Therefore only the first 

three data points are used to fit a line. This resulted in a slope b=l.618 

dB- 1 and an offset r=0.55 dB. 

The next figures show the results for each individual component N in the 

complex. For each value of N a least-square fit was made, which resulted 

in a value for the offset r, the slope b and the point Jr0 .7 , the intensity 

corresponding with d' = 1.0889 ( the 70. 7%-correct point). In case of the 

log-complex only the data points of 1=1.0, 1.5 or 2.0 dB were taken into 
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account, for the same reason as mentioned above. 

4 

3 

2 

1 

o~~~r----,-----r----,-----~--~ 
0 1 2 3 4 5 6 

I(dB) 

Figure 5.9.1: Results of Experiment A. d' is plotted versus the increment 

I{J'n dB} of one component in the I in( x)- and log(o )-complex. 

Figure 5.3.2(a) shows for each individual component N the slope b for 

the log-complex. The results show a decrease for d' by components near the 

end of the complex. Figure 5.3.2(b) shows for each individual component 

N the slope b for the /in-complex. The results show (as in Figure 5.3.2(a)) 

a decrease for d' by components near the end of the complex, however to 

a much lesser degree. For N ~ 10 a decrease in slope might he noticed. 

N = 10 corresponds with incremented components of frequencies 2000 and 

2200Hz. 

Figure 5.3.3 shows for each individual component N the offset r ( denoted 

with a diamond) and the h0 .7-level t (for threshold). These points are 
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denoted with crosses. 

Figure 5.3.3(a) are the results for the log-complex. The quantity t re-

rnains rather constant as a function of the component number N and only 

increases at the ends of the component range (N=1,2 and N=18,19). The 

offset r also remains rather constant (except for N=19). Figure 5.3.3(b) 

are the results for the /in-complex. For N = 1 to N =4 both t and r decrease. 

For N> 4 t seems to increase slightly; r remains about constant. 

8 
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I 

CQ 
~ 4 -..c 

3 3 
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0 0+--.--.--.--~~~-r--~-r~ 
1 3 5 7 " 11 13 15 17 1" 1 3 5 7 " 11 13 15 17 1" 

N N 
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Figure 5.3.2: Results of Experiment A. The slope b {dB- 1
) is plotted versus 

the component number N. (a) log-complex, {b} /in-complex. 
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Figure 5.3.3: Results of Experiment A. the offset r (o) and the 70. 7%-correct 

point t (x) is plotted versus the component number N. (a) log-complex, {b} 

Jin-complex. 

5.3.2 ExperimentBand C 

The results of Experiment B and C are presented in Table 5.3.1, together 

with some relevant data from Experiment A. The experiments are per-

formed with N=4 and N=17, for I> 0 and I< 0 (denoted with a "+" and 

a "-" respectively). Since in Experiment C only one point at the d'-I-plane 

is determined, the offset r has been put equal to zero. 
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Experiment A 

Subject N I t r b 

AH 4 + 1.364 0.885 2.275 

AH 17 + 1.179 0.651 2.062 

NV 4 + 2.742 0.000 0.397 

NV 17 + 1.593 1.033 1.944 

Experiment B 

Subject N I t r b 

AH 4 + 0.678 0.000 1.607 

AH 17 + 1.655 1.364 3.750 

NV 4 + 1.787 1.493 3.705 

NV 17 + 1.203 0.877 3.332 

AH 4 - 0.869 0.379 2.224 

AH 17 - 1.150 0.197 1.143 

NV 4 - 2.862 0.864 0.545 

NV 17 - 1.359 0.662 1.562 
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Experiment C 

Subject N I t r b 

AH 4 + 0.396 0.000 2.747 

AH 17 + 0.422 0.000 2.579 

NV 4 + 0.725 0.000 1.502 

NV 17 + 0.250 0.000 4.356 

AH 4 - 0.503 0.000 2.166 

AH 17 - 0.489 0.000 2.225 

NV 4 - 1.456 0.000 0.748 

NV 17 - 0.206 0.000 5.279 

Table 5.3.1: Results of Experiment B and C. Some relevant results from 

experiment A are presented as well. t stands for the threshold {dB}; r for 

the offset {dB} and b for the slope (dB- 1 ). 

Camparing the results from experiment A with Experiment B shows us 

that no significant impravement has been achieved by keeping N, the place 

of the jump, fixed. Closer examination of the data of Experiment B shows 

that at a fixed value for N and I great differences in performance occurred 

by the same subject, varying from 75% correct to chance level. This is 

probably is caused by the effect that subjects sometimes looses the clue, 

i.e. suddenly they do not know anymore where to listen. This causes great 

instability and an overall decrease in performance. Therefore the adaptive 

metbod in Experiment C was tried as well. 

The results of Experiment C show a much better performance for ex­

periments with fixed N, that is, if we look only at the ho.7 data. Since we 
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assumed r = 0 in Experiment C, it is not entirely fair to compare these 

slop es. 

When I< 0, both subjects sometimes reported a clue reversal, i.e. the 

down-stimulus was perceived as an up-stimulus and vice versa. Closer ex­

amination with subject AH showed that by I=-oo clue-reversal appeared 

in log-complexes at all values of N, whereas in the lin-complexes this phe­

nomenon was perceived up to N=lO. For N> 10 identification became more 

difficult (up to 70% correct) and clue reversal disappeared. Insteadof clue 

reversal some kind of timbre recognition was adopted. 
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5.4 Discussion 

Figure 5.3.1 shows that increments in one component of a log-complex are 

much easier perceived than in a /in-complex, since the slope of the first one 

is almost twice as large as the slope of the latter. The offset, however, is 

in both cases almost the same. (The standard error allows us to let the 

two offsets coincide). The offset indicated a degree of uncertainty in the 

signal (Jeffress, 1970, p. 109). In this experiment the uncertainty was 

due to the fact that the subject did not know a priori the value of N, or 

so to say, did not know where in the frequency domain the signal would 

appear. Since the subject knows he's dealing with a rather complicated 

spectrum, he instanteneously scans along the frequency-axis back and forth, 

and frequently misses the signal because he's looking at that time at another 

place (Tanner ,1970, p.87). Since this degree of uncertainty is the same for 

the lin- and the /og-complexes {there are an equal amount of possibilities 

where the signal can appear), the two offsets coincide. 

Figure 5.3.2( a) shows that an increment in the middle of the log-complex 

is more easily perceived than one at either end of the complex. This result 

was also obtained in previous experiments with analogue multitone com­

plexes (Green et al., 1987; Bernstein & Green, 1987). Profile analysis theory 

would provide us a possible explanation. In this theory it is assumed that 

subjects, when listening to a complex spectrum, tend to watch changes in 

shape, rather than intensity changes of one or more components. Perhaps 

at edges of the complex profile, analysis is more diffi.cult and performance 

gets worse. 

Another explanation might be, since we assume that subjects scan over 
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the frequency-axis, that a subject is more concentrated at changes in the 

center of the complex, thus perceiving changes at the ends less wel!. Ex­

periments by Green et al. (1987) show, on the other hand, that maximum 

performance always lies near the 1000Hz region, no matter the frequencies 

of the complex. Sofarthere is no real explanation for the shape of the curve 

in Figure 5.3.2(a). The most we can say is that perhaps subjects are always 

concentrated on frequencies near 1000 Hz. 

Figure 5.3.2(b) shows an analogue edge effect for experiments with lin­

complexes, however less pronounced. One may wonder if this is the same 

effect as discussed under Figure 5.3.2(a), since two other items become 

important. First of all, the relative frequency interval 'o/ (with 1:1/ = 

/ 2 - / 1 and / = (/1 + / 2 ) /2) for small N is rather large. The largest 

interval occurs for N=l and is a jump over an octave. Due to the extreme 

consonance of octaves (Plomp, 1966, Chapter 4), in relation to the total 

spectrum, identification of the direction of the jump becomes very difficult. 

Fifth (N=2) and fourth (N=3) jumps suffer as well from this phenomenon, 

however to a lesser degree. Wh en N becomes larger, the interval becomes 

smallerand consonance effects become less important. In the second place, 

near N =10, a small decrease in performance is noticed (see Figure 5.3.2(b) 

and 5.3.3(b)). In this region o/ ~ 0.1. Furthermore experiments with 

I=-oo for lin-complexes showed a clue reversal for N< 10 (with a 100% 

score) and some kind of a timbre recognition for N> 10 (with a 70% score), 

thus a change appeared near N = 10. Th is change did not appear with 

the log-complexes, since clue reversal was obtained for all N, always with 

a 100% correct score. The decrease in performance and the change in 
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the recognition clue probably are due to critical-band effects. However, 

comparisons of results of these experiments with those of Zwicker et al. 

{1957, Table I) show that effects of critica! bands should appear already 

near N =6. On the other hand, experiments with two simultaneous tones, 

carried out by Plomp (1966, Chapter 1), shows that the discrimination 

threshold for two tones with a difference in frequency of 200Hz is near a 

center frequency of about 2000Hz, which corresponds to our results. 

For I< 0 clue reversal was often reported by subjects. This phenomenon 

.c~~ he explained by stating that subjects do not listen to the decremented 

component in the complex, but rather insome way compares the two com­

plexes, which gives them (1) a jump in the actual direction (N
1 

---+ N
2
), 

caused by the increment in the components and, directly related, (2) a jump 

opposite to the actual direction, called the complementary jump, (N
2 

---+ N
1

, 

see Figure 5.4.1). Since the presence of the complementary jump is stronger 

than the actual jump (Experiments with random-ehord sequences ( Chapter 

3) have shown that subjects in general do not pay attention to "missing" 

components) this jump is heard, not the actual jump. 

Experiments C (and B as well) clearly show that a decrease of a com­

ponent in a complex is equally well perceived as an increase. 
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I 

Figure 5.4.1: Representation of an up-stimulus with I= -oo. The upper 

graph represents the first time frame, the lower graph the second time fame. 

Instead of perception of the decremented component, a jump is noticed due 

to the complementary jump {indicated with a dashed line), which results in 

a clue reversal. 
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5.5 Conclusions 

The results of the experiments allows us to draw the following conclusions: 

1. Increments in a component of a log-complex are easier perceived than 

in a /in-complex. The identification loss in /in-complexes probably is 

due to consonance-problems for the lower components (N=1 to N=3) 

and critica! band effects for the higher components (N> 10). 

2. An increment in the middle of a (log- )complex is easier to detect than 

an increment at one of both ends. It appears that best performance 

always occurs in the region of 1000Hz. A possible explanation is that 

subjects, no matter what signa!, are focussed on the frequency region 

near 1 kHz. 

3. Uncertainty in the place at the frequency-axis where the signa! occurs, 

causes in both lin- and log- complexes an offset of about 0.6dB. This 

agrees with the idea that the size of the offset is related to the number 

of possible places where the signal might occur (Jeffress, 1970) 

4. Performance with log-complexesis good, better than in previous ana­

logue experiments of Spiegel et al. (1981). Performance is even ex­

cellent when N is kept fixed, i.e. when there is no signa! uncertainty; 

much better than in previous experiments of Green et al. (1983, 

1985, 1987). Since Experiment C was only a preliminary experiment, 

suggested is to determine the thresholds more carefully, since these 

values are unbelievebly small. 

5. An increment and a decrement m a component of a complex are 

equally well perceived. 
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6. Absence or decrementsof a component in a complex sometimes causes 

clue reversals. Apparently one pays less attention to components with 

smaller amplitudes. 
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I Appendix I 

Appendix I shows the calculation of E[TSC] (Appendix Ia), Var[TSC] (Ap­

pendix Ib) and Cov[TSC] (Appendix Ie). 

I.l Appendix Ia 

This appendix shows the computation of E[TSC]. According to general 

rul es: 

E[TSC] := E[L c(d)] = L E[c(d)]. (1) 
d d 

Breaking down E[c(d)] into its partial contributions corresponding to the 

four different dipole forms h with the associated probabilities Pdh, we can 

write Equation (1) as: 

E[TSC] = LE[c(d)] = LLE[c(dh)]Pdh. (2) 
d d h 

Since only dipoles with form h11 have a non-zero contribution, Equation 

(2) can he further simplified to: 

L L E[c(dh)]Pdh = L E[c(du)]Pd11 • (3) 
d h d 

According to the symmetry principle, contributions of any two symmetrical 

dipoles are identical but differ in sign : 

(4) 

where d11 and di1 have displacement veetors (- J, t) and (!, t), respectively, 

and are both of the h11 form. We now split up the sum of Equation (3) 

into two parts, one being the sum of positive ( (!, t)), the other the sum of 

negative ((- f, t)) dipoles. We finally can rewrite the summation over only 
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positive dipales since the total number of positive dipales equals the total 

number of negative dipales in each RCS: 

L E[c( d11 ) ]Pd11 
d d>O d<O 

L E[c(di1)](Pdi1 - Pd}1). (5) 
d>O 

Since only the shortest dipales contribute, we simply need to sum over all 

(1, 1)-dipoles. According to the homogeneity principle, all these contribu-

tions are equal, so that : 

E[TSCJ = MEi1 (Pd~i - Pd~l), (6) 

where d~t is a dipole with displacement vector (1, 1) and form h11 , d~i 

a dipole with displacement vector ( -1, 1) and form h11 , and M the tot al 

number of (1, 1)-dipoles in an RCS. E{1 is a short notation for E[c(dtt)J. 

The chance that a (1, 1)-dipole is in h11 form (Pd~i) is either ~p or ~~ 

depending on the motion direction N ; Pdii then is ~ or ~P, respectively. 

Assuming that N = 1, we get for E[TSCJ : 

(7) 

This equation corresponds to Equation (4) in the text. For N=-1, the same 

expression is obtained for E[TSCJ except for an opposite sign. 

2 



1.2 Appendix lb 

This appendix shows the calculation of Var[TSC]. According to general 

rul es: 

Var[TSC] Var[Lc(d)] 
d 

L Var[c(d)] + 2 L L Cov[cï(d),cj(d)] (8) 
d i j;ti 

and 

Var[c(d)] E[c2(d)] - E2[c(d)], (9) 

where 

E[c2
( d)] L E[c2(dh)]Pdh 

h 
E2[c(d)] {L E[c(dh)]Pdh} 2

• 

h 

Pdh is the probability that the dipole is of form h, and the summation is 

done over all four possible forms h. Using the fact that only E[c(d11 )] is 

non-zero, we can write Equation (9) as: 

Var[c(d)] = E2 [c(d11 )]Pd11 (1- Pdu) + I:Var[c(dh)]Pdh. (10) 
h 

With the aid of the symmetry principle we now write the sum of variances 

over only the positive dipoles. If, in addition, we only consider the shortest 

(1,1) dipoles, we obtain: 

I:Var[c(d)] 
d d•>O h 

where the notations d*+ and d•- designate dipoles with displacement vee-

tors of (1,1) and (-1,1), respectively, as defined in Appendix la. Regardless 

of whether N=1 (i.e.Pd~t = !P and Pdi! = ~) or N= -1 (Pd~t = ~ and 

Pd;i = !P), we obtain the final result: 
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1 3 
L:Var[c{d)] = -M(Ei1 )

2{{2P + 1)Vi + {2Q + 1)Vni + P + PQ +-},{12) 
d 4 4 

where M is the number of dipoles with displacement veetors {1,1) in an 

RCS, Ei1 is a short notation for E[c(dii)], Q=1-P, and 

Var[c{ di1)] + Var[c( dó0)] 

(Ei1F 
·- Var[c(di0 )] + Var[c(dÓ1)] 

(Eil)2 

(13) 

{14) 

In order to calculate Var[TSC] we need to find an expression for the co­

variance. This will he clone in Appendix Ie. Var[TSC] then is the sum of 

Equation {12) from Appendix lb and two times Equation (52) from Ap-

pendie Ie. 

1.3 Appendix Ie 

This appendix contains the computation of Cov[TSC]. According to general 

rul es: 

i j#i 

L L {E[ci(d) · Cj(d)]- E[ci(d)]· E[cj(d)]}. (15) 
i j#i 

Again, breaking up E[c( d)] into partial contributions associated with the 

four different dipole forms, we obtain: 

(16) 

where Pi;d means the joint probability that the ith dipole is in one form 

h1 and the jth dipole insome other form h2• Pid means that dipole i is in 

form h1. According to the independenee principle: 
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(17) 

so that Equation (16) becomes: 

Cov[ci{d),cj{d)] = L:l:::E[ci(dh,)]E[cj(dh2 )](Pijd- PidPjd). (18) 
h, h2 

We now use the fact that only E[c{d11 )] is non-zero, which gives us: 

As in the previous appendices, we now restriet ourselves to summation over 

only the (1,1)- and (-1,1)-dipoles, which yields four different ways in which 

the two dipoles can be grouped, namely (1) both dipoles are (1,1)-dipoles, 

{2) one {1,1)-dipole is grouped with one {-1,1)-dipole, (3) one (-1,1)-dipole 

is grouped with one {1,1)-dipole, and (4) both dipoles are (-1,1)-dipoles. 

So we may write Cov[TSC] as: 

Cov[TSC] = L L Ei1Ei1 (P~+d~~- Pid~iPjd~i) 
i+ j+;t:i+ 

+ LLEi1Eï1 (P~-d~~- Pid~iPjd~ï) 
i+ j-

+ L L EïiEidPij+d~~- PidiïPjd~i) 
i- j+ 

+ L L EïiEïi(Pij-d~~- Pid~ïPjd~ï), (20) 
i- j-;ii-

where i+ and J+ apply to all positive shortest-dipole pairs with form hu, i-

and i- to the negative ones. PS- di i, for instance, is the joint probability 

that the ith dipole is of form h11 with displacement vector (1,1) and the 

Jth dipole is of form hu with displacement vector (-1,1). Ei1andEï1 are 

the short notations for E[ci(dit)] and E[ci(dït}], respectively. We observe 

that Eï1 = - Ei1 and that PS- d~i = Pij+ d~~. 

What we obviously have to do is to search for those dipole pairs where 

Piidii i= Pidi 1P,di 1• This appears to be the case only when the two dipoles 
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can be connected by a so-called chain (shown in Figure lc.l. A chain is a 

diagonal in an RCS into the direction of motion (N). Two elements (sf, st) 

lying apart from each other on a chain have the same states with probability 

So for: 

s = 0: P 1 = 1 

s = 1 : P2 = P(= SRP) 

s = 3 : Ps = p2 + Q2 

s = 4: P4 = P 3 + 3PQ2 ,ect. 

00000000 

00~00 00 
0000 000 
000 0000 
00 00000 
00000000 

Figure Ic.1: A chain in a RCS. The chainlength s=3. 

(21) 

(22) 

The four terms in Equation (20) give rise to eight different ways in which 

two dipoles can be connected by a chain: The aligned version results from 

the first term of Equation (20), the 1 1 and 1 2 version from the second 

term, the Is and 1 4 version from the third and the parallellogram, z1 and 

z2 version from the fourth. The eight versions are discussed next, where 

for simplicity we take N=+l. 
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1. The aligned version is shown in Figure Ic.2. 

0 

0000 

0 

0000 
00000 

Figure lc.2: Structure of the Aligned version 

We can see that P;j+ di i (the probability that both dipoles have form 

h11) has the value !P · Ps · P = !P2 P8 • We also notice that Pid'it = 

P;dit = !P, so the covariance term for the aligned version will be 

(obtained by the substitution in Eq. C6): 

Cov(ali) = ! P 2E+ E+ "'N(alil(2P - 1) 4 11 llL..t s s ' 
s 

{23) 

where N;ali) is the frequency of occurrence of an aligned dipole-pair 

with a connecting chain of length s in a RCS. N;ali) depends on the 

size of an RCS (number of frames and elements) and on the way 

the RCS is constructed {i.e. circular or non-eireular), because this 

determines values of s in the sum. 
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2. The 1 1-version is shown in Figure Ic.3. 

0000 
00000 
0000 000 
000 0000 
00 00000 
0 000000 

Figure Ic.3: Structure of the 1 1 -version 

As can be seen: 

so: 

P+-d** 
ij 11 

!p. p 1 
- 2 8 2 

1 
= -P 

2 
1 
-
4 

3. The 12-version is shown in Figure Ic.4. 

00000000 

000 0000 
00000 

Figure Ic.4: Structure of the 1 2 -version 

As can be seen: 

P+-d'* 
ij 11 

1 1 
= -P·P ·-2 s 2 

1 = -P 
2 

8 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 



so: 

4. The 13-version is shown in Figure Ic.5. 

000000 0 
00000 00 
0000 000 

0000 
00000 

000 0000 

Figure Ic.5: Structure of the 13 -version 

As can he seen: 

so: 

P-+d•t 
ij 11 

1 1 -P .p . -
2 

8 
2 

1 
-
4 

= !p 
2 

9 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 



5. The 14-version is shown in Figure lc.6. 

000000 0 
00000 00 
0000 000 
0 0000 
00 00000 
00000000 

Figure lc.6: Structure of the 14 -version 

As can he seen: 

p-+d'* 1 1 
ij 11 - -P·P . -

2 s 2 

Pid~! 
1 

= -
4 

Pjd~i - !p 
2 

so: 

6. The Z1-version is shown in Figure lc.7. 

00000000 
00000 00 
0000 0 0 
0 0 0000 
00 00000 
00000000 

Figure Ie. 7: Structure of the Z 1-version 

As can he seen: 

10 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 



so: 

7. The Z2-version is shown in Figure Ic.8. 

00000 00 
0000 000 

0000 
00 00000 
000 0000 

Figure lc.B: Structure of the Z 2-version 

As can he seen: 

p--d** 1 1 1 
ij 11 = - ·-P . -

2 2 B 2 

Pid~ï 
1 

= -
4 

Pid~ï 
1 

= -
4 

so: 

11 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 



8. The parallellogram version is shown in figure Ic.9. 

00000 
00000000 

Figure Ic.9: Structure of the parallellogram-version 

As can he seen: 

!p .!p 
2 B 2 S 

1 

4 
1 

4 

so: 

(48) 

(49) 

(50) 

(51) 

We observe that all except the 1 versions have a positive value (since Eï1·Ei1 

is negative). All eight sub-covariances now sum to the total covariance term: 

8 

Cov[TSC] = L Cov(k) (52) 
k=l 

The varianee of the Total Sum of Contribution is the sum of Equation 

(12) of Appendic lb and two times Equation (52). We see that Cov[TSC] 

depends only on the SRP, the number of frames and elements in a RCS 

and on its construction ( circular or non-eireular). 
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11 Appendix 11 

In this appendix the data of the individual subjects are presented as ob­

tained from the experiments described in Chapter 4. 

The results of each subject are presented over two horizontal lines. The 

fi.rst line ( denoted with a "g") is the number of correct responses. The sec­

ond line ( denoted with an "N") is the number of trials for that condition. 

Furthermore the results are devided in u_1rstimuli ( denoted with an "u") 

and down-stimuli ( denoted with an "d"). The last two rows are the pooled 

data. 

13 



Experiment A 
J 9 

IJ d ll d 
43 48 119 92 
84 108 216 180 
30 60 95 130 
84 108 216 180 
26 68 116 110 
84 108 216 180 
53 45 1:?7 93 
84 108 216 180 

Score versu~- Pn 
8 7 . 6 5 

u d 11 r1 ll d 11 d 
152 168 168 193 160 235 184 249 
268 248 264 252 232 284 232 284 
100 211 129 211 144 :?43 168 261 
268 248 264 252 232 284 232 284 
1~6 145 19~ 168 181 220 195 230 
268 248 264 252 232 284 232 284 
166 168 19~ 194 161 ~~8 189 256 
268 248 264 252 232 284 232 284 

4 . 3 
u d u d 11 

273 216 157 115 106 
296 220 160 116 108 
249 212 152 113 108 
296 220 160 116 108 
26 ~. 206 148 1 1 5 1 06 
296 220 160 116 108 
270 207 160 115 108 
296 220 160 116 108 

.2 
d 

168 
168 
166 
168 
163 
168 
168 
168 

IJ 

60 
60 
60 
60 
58 
60 
60 
60 

d 
60 
60 
60 
60 
59 
60 
60 
60 

u 
60 
60 
60 
60 
60 
60 
60 
60 

0 Pn 
d 

60 g 
60 N 
60 g 
60 N 
60 g 
60 N 
60 g 
60 ,.. 

AH 

RL 

NV 

152 221 457 425 584 692 685 766 646 9~6 736 9961057 841 617 458 428 665 238 239 240 240 g TOT 
336 432 864 7201072 99210561008 9281136 92811361184 880 640 464 432 672 240 240 240 240 N TOT 
****************~********************************************************************** 

ExpPTiment 11 
L ,. Score v€'rsu•· N 

4 3 
U D U D U D U D U D U 

135 149 178 ;:.1 12 266 290 269 321 249 284 227 
304 300 348 320 368 368 324 348 260 292 236 

94 194 152 257 215 322 241 322 233 281 224 
304 300 348 320 368 368 324 348 260 292 236 
129 174 221 191 290 267 271 296 243 272 223 
304 300 348 320 368 368 324 348 260 29~ 236 
160 152 220 195 276 292 27~ 326 253 288 224 
304 300 348 320 368 368 324 348 260 292 236 

D 
192 
196 
195 
196 
190 
196 
195 
196 

0 N 
U D 

138 156 G AH 
140 156 N 
136 156 G .JG 
140 156 N 
138 154 G RL 
140 156 N 
HO 156 G NV 
140 156 N 

518 669 791 8551047117110561265 9781125 898 772 552 622 G TOT 
1216120013921280147214721296139210401168 944 784 560 624 N TOT 
******************************************************** 

Experiment A Score versu~ V 
~~ 4 3 ;1 

u 11 (J 

135 149 87 
304 300 120 

94 194 7';' 
304 300 120 
129 174 84 
304 :,oo 120 
160 152 94 
304 300 120 

D Ll 
6E< 181 
8(1 316 
73 148 
80 316 
70 214 
80 316 
71 198 
80 316 

D U D U V U 
205 236 211 268 380 ~·75 
308 292 252 336 436 612 
;:'50 189 229 247 39:1 545 
308 292 252 336 436 612 
184 238 188 275 358 575 
308 292 252 336 436 612 
189 245 205 268 392 583 
308 292 252 336 436 612 

0 
Il 

591 G 
604 N 
588 G 
604 N 
570 G 
604 N 
595 G 
604 N 

AH 

F<L 

NV 

518 669 337 282 741 828 908 8331058152322782344 G ro·r 
12161200 480 3201264123211681008!344174424482416 N TOl 
***************•~*****•************************** 

ExperimPnt A score versus Sum<D> 
--4 -3 -2 -1 0 3 4 5 

H 

2 
d 
0 
0 
0 
0 
0 
0 
0 
0 

ll 

0 
0 
0 
0 
0 
0 

0 
0 

d u d u d u d u d u d u d L' d u d u d u 

8 
3 
8 
6 
8 
7 
8 

4 8 19 80 75 293 305 236 305 260 284 230 239 158 194 159 139 40 32 12 
4 16 28 152 124 512 496 356 376 29b 324 256 248 168 200 160 140 40 32 12 
4 6 26 64 101 226 377 229 338 208 274 204 235 148 193 154 139 37 32 12 
4 16 28 152 124 512 496 356 376 296 324 256 248 168 200 160 140 40 32 12 
4 12 20 97 75 297 321 256 288 25~ 251 223 227 158 182 153 136 38 32 12 
4 16 28 152 124 512 496 356 376 296 324 256 248 168 200 160 140 40 32 12 
4 10 17 81 90 329 294 251 313 260 278 238 238 156 190 160 140 40 32 12 
4 16 28 152 124 512 496 356 376 296 324 256 248 168 200 160 140 40 32 12 

7 
d 
8 
8 
8 
8 
8 
8 
8 
8 

u 
4 
4 
4 
4 
4 
4 
4 
4 

18 
32 

0 
0 

0 16 36 82 322 34111451297 9721244 98'l1087 895 939 620 759 626 554 155 128 48 32 16 
0 16 64 112 608 4962048198414241504118412961024 992 672 800 640 560 160 128 48 32 16 

**********************************************~•****•********************************************* 
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8 sum<D 
d 
0 g AH 
0 N 
0 g .JG 
0 N 
0 g RL 
0 N 
0 g NV 
0 N 

0 g TDT 
0 N TOT 



Experiment B Score vers u .. N 
6 5 4 3 2 0 N 

u D ll D u D u D u D ll D u D 
2 12 50 68 175 180 239 237 0 0 0 0 0 0 G AH 

12 12 7;;> 7'2 180 180 240 240 0 0 0 0 0 0 N 
0 10 ~1 69 168 180 240 237 0 0 0 0 0 0 G JG 

12 12 72 72 180 180 240 240 0 0 0 0 0 0 N 
3 7 ~)8 68 174 176 240 238 0 0 0 0 0 0 G RL 

12 12 7~ 72 180 180 240 240 0 0 0 0 0 0 N 
4 6 61 70 178 178 240 239 0 0 0 0 0 0 G NV 

12 12 72 72 180 180 240 240 0 0 0 0 0 0 N 

9 35 220 275 695 714 959 951 0 0 0 0 0 0 G TOT 
48 48 288 288 720 720 960 960 0 0 0 0 0 0 N TOT 
****************************************************** 

EXPERIMENT B SCORE VERSUS D 
5 4 3 2 0 Il 

u D ll D u D u D u D lJ D 
2 12 18 23 67 81 153 156 P9 178 47 47 G AH 

12 12 24 24 84 84 156 156 180 180 48 48 N 
0 10 ~1 24 66 81 149 154 175 179 48 48 G JG 

12 12 ;.~4 24 84 84 156 156 180 180 48 48 N 
3 7 21 23 73 81 151 153 179 178 48 47 G RL 

12 12 24 24 84 84 156 156 180 180 48 48 N 
4 6 24 24 73 82 154 154 180 179 48 48 G NV 

12 12 24 24 84 84 156 156 180 180 48 48 N 

9 35 f~4 94 279 325 607 617 713 714 191 190 G TOT 
48 48 96 96 336 336 624 624 720 720 19;:> 192 N 
*******~*****~**··~~*~*************~********** 
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111 Appendix 111 

In this appendix the data of the individual subjects are presented as ob­

tained from the experiments described in Chapter 5. 

The results for each subject for either the /in-complex or log-complex are 

presented separately. Each time the fi.rst 19 lines present the number of tri­

als for one value of N with correct response. The line denoted with "N per 

component" gives the number of trials per component. Furthermore the 

results are devided in up-stimuli ( denoted with an "u") and down-stimuli 

(denoted with an "d"). The last two rows are the pooled data for all com­

ponents. 
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1.0 1.5 2.0 2.5 3.0 4.0 dB 
u d u d u d u d u d u d u:up d:down 

15 22 18 27 23 22 0 0 24 33 11 15 Subject AH 
16 19 9 23 20 28 0 0 22 34 15 15 
25 23 26 27 22 33 0 0 33 35 14 14 log-complex 
22 20 21 26 31 33 0 0 33 35 15 15 
19 19 29 27 30 34 0 0 33 35 15 15 
23 31 28 30 29 34 0 0 34 35 14 15 
22 25 27 29 32 32 0 0 32 35 13 15 
23 22 28 30 35 33 0 0 33 35 15 15 
28 22 28 27 34 33 0 0 34 35 15 15 
24 26 29 30 34 34 0 0 33 35 14 15 
13 22 24 28 29 32 0 0 35 35 15 15 
22 30 26 35 28 35 0 0 35 35 15 15 
29 28 35 34 35 35 0 0 35 35 15 15 
19 20 30 30 35 34 0 0 35 34 15 15 
26 31 33 34 33 35 0 0 34 35 14 15 
24 21 34 29 34 34 0 0 34 35 15 14 
23 20 32 26 33 30 0 0 33 34 14 14 
18 18 26 24 28 21 0 0 34 28 15 14 
24 18 27 21 28 17 0 0 32 21 15 15 N correct per component 
35 35 35 35 35 35 0 0 35 35 15 15 N tot per component 

415 437 510 537 573 589 0 0 618 639 274 281 N correct 
665 665 665 665 665 665 0 0 665 665 285 285 N tot 
*********************************************** 

11 19 27 32 26 31 0 0 26 29 27 27 Subject RL 
18 25 23 18 31 29 0 0 27 24 29 28 
17 30 24 27 30 28 0 0 28 28 29 30 log-complex 
19 18 25 30 29 33 0 0 30 28 30 28 
20 25 29 32 34 30 0 0 29 29 28 29 
16 19 29 29 31 33 0 0 30 29 30 28 
18 25 27 32 32 32 0 0 27 27 29 28 
21 24 25 35 32 33 0 0 29 28 29 30 
29 25 29 35 32 34 0 0 30 29 30 29 
22 26 26 29 33 34 0 0 29 29 30 28 
23 19 29 35 35 31 0 0 29 29 28 29 
15 24 29 34 34 35 0 0 28 30 29 29 
19 23 28 31 34 35 0 0 28 28 30 30 
24 28 29 32 34 30 0 0 28 29 30 29 
27 26 33 31 34 34 0 0 29 30 30 29 
26 33 34 31 34 34 0 0 28 30 28 30 
20 25 23 32 31 32 0 0 28 30 29 30 
12 16 26 28 26 28 0 0 29 28 29 29 
19 21 22 25 16 27 0 0 27 27 30 25 N correct per component 
35 35 35 35 35 35 0 0 30 30 30 30 N tot per component 

376 451 517 578 588 603 0 0 539 541 554 545 N correct 
665 665 665 665 665 665 0 0 570 570 570 570 N tot 
*********************************************** 
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1.0 1.5 2.0 2.5 3.0 4.0 dB 
u d u d u d u d u d u d u:up d:down 

32 26 34 32 36 35 0 0 40 39 10 10 Subject JS 
29 26 30 30 37 36 0 0 39 39 10 9 
26 24 36 34 40 40 0 0 38 40 10 10 log-complex 
32 31 37 35 38 40 0 0 39 40 9 10 
29 29 38 38 37 40 0 0 40 40 10 10 
27 26 37 38 40 40 0 0 40 40 10 10 
25 26 30 34 37 37 0 0 37 40 9 10 
31 31 38 34 37 39 0 0 39 40 10 10 
32 25 33 31 37 39 0 0 39 40 9 10 
31 32 36 40 39 40 0 0 38 40 9 10 
34 31 38 40 40 40 0 0 39 40 9 10 
32 31 38 37 39 39 0 0 40 40 10 10 
22 20 28 37 38 39 0 0 39 40 10 9 
19 20 22 27 27 36 0 0 40 39 10 10 
18 21 29 18 27 30 0 0 37 34 8 10 
25 15 21 20 23 32 0 0 29 29 5 9 
31 25 31 21 35 30 0 0 39 31 9 10 
20 27 29 29 36 30 0 0 35 36 9 10 
26 20 28 21 33 21 0 0 38 31 9 10 N correct per component 
40 40 40 40 40 40 0 0 40 40 10 10 N tot per component 

521 486 613 596 676 683 0 0 725 718 175 187 N correct 
760 760 760 760 760 760 0 0 760 760 190 190 N tot 
*********************************************** 

16 27 13 21 17 25 20 30 23 33 15 15 Subject NV 
20 25 21 21 16 28 25 32 25 32 15 15 
15 25 19 19 19 27 24 32 30 34 15 15 log-complex 
18 25 16 27 15 28 21 33 29 34 14 15 
14 25 24 31 24 35 29 35 35 35 14 15 
21 16 24 30 34 35 33 34 34 35 15 15 
16 28 27 29 33 33 34 33 35 35 15 15 
15 22 26 33 30 35 33 35 34 35 15 15 
17 26 26 32 34 34 35 34 35 35 15 15 
15 26 31 32 29 34 35 35 35 35 15 15 
19 28 30 34 35 33 33 35 34 35 15 15 
15 29 26 28 34 33 34 35 32 35 15 15 
19 32 29 35 33 35 35 35 32 35 14 15 
27 26 34 35 35 35 35 35 34 35 15 15 
28 21 33 33 33 35 34 35 34 35 15 15 
19 28 27 34 34 34 34 33 35 35 15 15 
12 20 24 27 30 26 35 32 33 35 14 15 
14 21 20 20 22 25 22 27 33 29 15 15 
12 21 15 20 11 16 11 17 11 20 7 8 N correct per component 
35 35 35 35 35 35 35 35 35 35 15 15 N tot per component 

332 471 465 541 518 586 562 617 593 637 273 278 N correct 
665 665 665 665 665 665 665 665 665 665 285 285 N tot 
*********************************************** 
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1.0 1.5 2.0 2.5 3.0 4.0 dB 
u d u d u d u d u d u d u:up d:down 

0 0 13 14 25 18 0 0 25 17 33 19 Subject AH 
0 0 9 18 18 23 0 0 24 29 37 33 
0 0 18 20 30 28 0 0 39 40 40 39 lin-complex 
0 0 22 23 38 37 0 0 39 40 40 40 
0 0 22 22 40 40 0 0 40 40 39 40 
0 0 23 25 36 40 0 0 40 40 40 40 
0 0 25 22 38 39 0 0 40 40 40 40 
0 0 15 14 35 29 0 0 38 36 40 40 
0 0 19 19 39 37 0 0 39 39 40 40 
0 0 20 13 36 24 0 0 40 34 40 39 
0 0 15 5 26 3 0 0 31 7 37 16 
0 0 8 15 20 22 0 0 28 32 36 38 
0 0 9 14 21 32 0 0 30 39 35 40 
0 0 17 15 29 30 0 0 37 38 39 40 
0 0 15 12 18 29 0 0 27 30 33 38 
0 0 15 11 26 23 0 0 30 27 31 24 
0 0 13 14 19 23 0 0 23 23 24 34 
0 0 14 11 24 23 0 0 27 31 22 38 
0 0 10 13 20 25 0 0 30 33 35 38 N correct per component 
0 0 25 25 40 40 0 0 40 40 40 40 N tot per component 

0 0 302 300 538 525 0 0 627 615 681 676 N correct 
0 0 475 475 760 760 0 0 760 760 760 760 N tot 

********************************************** 

14 19 15 22 11 15 1 1 14 21 13 13 Subject JG 
11 18 10 14 10 17 4 4 16 21 19 16 
12 18 10 17 4 19 2 3 6 24 12 16 lin-complex 
14 25 22 33 19 25 3 5 24 30 18 20 
13 20 13 27 15 17 4 3 20 26 17 17 
22 19 25 28 23 29 3 5 24 28 19 20 
18 16 16 30 26 28 4 5 28 30 19 20 
17 20 31 26 27 27 5 4 29 30 20 20 
13 20 23 27 25 29 3 5 28 29 20 20 
13 19 23 22 17 26 4 4 24 28 19 20 
15 23 24 25 18 22 5 3 27 27 20 19 
14 23 21 21 23 25 5 5 27 30 19 20 
15 15 19 21 22 28 4 4 26 29 19 19 
17 17 29 23 25 27 5 2 30 29 20 20 
19 21 31 29 29 27 5 5 30 30 20 20 
21 17 23 19 27 23 4 5 30 29 18 20 
20 17 27 16 26 20 5 4 29 29 19 20 
22 19 26 23 29 28 5 5 30 30 20 20 
17 17 29 27 29 26 5 5 30 28 20 20 N correct per component 
30 30 35 35 30 30 5 5 30 30 20 20 N tot per component 

307 363 417 450 405 458 76 77 472 528 351 360 N correct 
570 570 665 665 570 570 95 95 570 570 380 380 N tot 
*********************************************** 
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1.0 1.5 2.0 2.5 3.0 4.0 dB 
u d u d u d u d u d u d u:up d:down 

8 16 2 24 3 22 0 0 9 26 13 33 Subject JS 
19 26 25 33 24 33 0 0 28 32 32 29 
29 26 34 33 34 35 0 0 33 35 33 34 !in-complex 
32 29 35 33 35 35 0 0 35 35 35 35 
30 30 34 32 35 35 0 0 35 35 35 35 
24 20 24 24 26 30 0 0 34 33 34 35 
19 11 22 19 24 22 0 0 28 25 32 33 
18 14 19 22 25 18 0 0 29 29 30 33 
18 20 28 23 29 27 0 0 33 34 35 34 
18 20 18 20 26 24 0 0 31 33 34 35 
22 12 24 16 28 14 0 0 29 26 32 33 
14 20 22 19 25 20 0 0 27 29 32 35 
23 16 29 19 26 20 0 0 33 30 34 34 
23 18 27 15 22 19 0 0 33 31 35 34 
17 18 24 17 22 26 0 0 24 27 33 34 
23 19 24 20 24 23 0 0 31 29 33 35 
16 14 20 14 24 23 0 0 34 31 34 34 
19 18 22 20 28 27 0 0 33 31 34 34 
24 20 28 21 27 25 0 0 33 28 35 35 N correct per component 
35 35 35 35 35 35 0 0 35 35 35 35 N tot per component 

396 367 461 424 487 478 0 0 572 579 615 644 N correct 
665 665 665 665 665 665 0 0 665 665 665 665 N tot 
*********************************************** 

0 0 21 15 15 20 2 4 26 27 33 33 Subject NV 
0 0 15 28 29 27 5 5 33 31 34 35 
0 0 16 25 31 34 4 5 34 35 34 35 !in-complex 
0 0 24 28 31 33 5 5 35 35 35 35· 
0 0 26 29 31 33 5 5 34 35 34 35 
0 0 21 17 24 28 5 5 34 33 35 35 
0 0 22 25 29 35 5 5 34 34 35 35 
0 0 30 33 29 33 5 5 35 35 35 35 
0 0 29 31 30 34 5 5 35 35 35 34 
0 0 23 20 26 30 5 5 35 33 35 35 
0 0 19 21 25 25 4 5 33 34 35 35 
0 0 22 20 23 22 3 5 32 33 35 33 
0 0 18 16 18 27 3 4 32 35 34 35 
0 0 20 18 20 25 2 5 32 24 35 30 
0 0 17 17 14 17 3 0 20 30 26 35 
0 0 16 15 13 17 3 2 19 24 28 31 
0 0 18 16 17 18 2 4 8 26 28 34 
0 0 18 16 14 26 2 4 23 29 29 34 
0 0 20 9 9 21 1 3 15 22 12 21 N correct per component 
0 0 35 35 35 35 5 5 35 35 35 35 N tot per freq 

0 0 395 399 428 505 69 81 549 590 607 635 N correct 
0 0 665 665 665 665 95 95 665 665 665 665 N tot 

********************************************** 
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