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Laser . . . inter eximia naturae dona numeratum
plurimis compositionibus inseritur

The Laser is numbered among the most miraculous gifts
of nature and lends itself to a variety of applications

Plinius, Naturalis Historia, XX11I, 49 (Ist century A.D.)

An Elaboration of the Quotation from Pliny the Elder:
The Laser during the Graeco- Roman Civilization

During the Graeco-Roman civilization (roughly from the 6th century B.C. to the 2nd century
A.D.) the Laser was well known and much celebrated. It was in fact a plant (perhaps
belonging to the Umbelliferae) which grew wild over a large area around Cyrene (in present-
day Libya). Sometimes also called Laserpitium, it was considered to be a gift of God due to its
almost miraculous properties. It was used to cure a variety of diseases, from pieurisy to various
epidemic infections. It was an effective antidote against the poison of snakes, scorpions, and
enemy arrows. Its delicate flavor led to its use as an exquisite dressing in the best cuisine. It
was so valuable as to be the main source of Cyrenaean prosperity and it was exported to both
Greeks and Romans. During the period of Roman domination, it was the only tribute paid by
the Cyrenaeans to the Romans, who kept the Laser in their coffers together with their golden
ingots. What is perhaps the best testimony to the Laser of those days is to be found on the
celebrated Arcesilao cup (now in the Cyrene Museum), where porters can be seen loading the
Laser onto a ship under the supervision of King Arcesilao. Both Greeks and Romans tried
hard, but without success, to grow the Laser in various parts of Apulia and Jonia (in the south
of Italy). Consequently the Laser became more and more rare and seems to have disappeared
around the 2nd century A.D. Ever since then, despite several efforts, no one has been able to
find the Laser in the deserts south of Cyrene, and so it remains the lost treasure of the
Graeco-Roman civilization.

From 0.Svelto, Principles of lasers
Plenum Press, New York, 1982 .
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SAMENVATTING -

In het laatste decennium kunnen we eeu sterke groei in het gebruik van lasers
voor medische doeleinden waarnemen. De optica van het gedrag van licht in
weefsel is echter nog in ontwikkeling  een vergelijking tussen de theorie van
de lichtverdeling in verstrooiende en absorberende media 1is daarom
noodzakeli jk.

Voor dit doel 1is het wvan belang de beschikking te hebben over goed-
gedefinieerde verstrooiende en absorberende stoffen (fantomen).

Ook is het belangrijk inzicht te hebben in de indringdiepte van het licht in
het medium, en in de mogelijkheid de indringdiepte te vergroten; dit is vooral

van belang bij de behandeling van tumoren m.b.v. lasers.

In hoofdstuk T zullen we een overzicht geven van de optica van verstrooiende
en absorberende media en van de resulterende lichtverdelingen in het medium
voor verschillende lichtbronnen.

In hoofdstuk II zullen we de optische parameters van de verstrooiende stof
Intralipid 10%, en van de absorberende stof Evans Blue onderzoeken, en
vergelijken met de resultaten van andere onderzoekers. De uiteindeli jke
resultaten zijn gegeven in par. II.5.

In hoofdstuk III zullen we de mogelijkheid onderzoeken om de indringdiepte van
licht in hersenweefsel te vergroten door het gebruik van een spiegel-systeem.
Metingen werden verricht in verstrooiende en absorberende media, welke
onderzocht werden in hoofdstuk II. Het blijkt dat bij gebruik van een spiegel-
systeem de indringdiepte van het licht in het medium niet wezenlijk wordt
vergroot.

In hoofdstuk IV zullen we de invloed van de bundeldiameter op de indringdiepte
van het licht in het medium onderzoeken, waarbij experimentele resultaten
vergeleken zullen worden met een theoretische oplossing. Het blijkt dat er
goede overeenkomst bestaat tussen theorie en experiment, en dat de invloed van
de bundeldiameter op de indringdiepte van het licht aanzienlijk is. Tevens is
het mogelijk met deze resultaten de lichtverdeling tengevolge van het spiegel-
systeem, zoals beschreven in het vorige hoofdstuk, te verklaren.

Tenslotte zullen we in hoofdstuk V een voorstel presenteren om de optische

parameters van weefsel invasief te bepalen.



During the last decennium we can notice a strong expansion in the use of
lasers for medical applications. The optics of the interaction of 1light
tissue, however, is still under development; a comparison between the theory
of light propagation in scattering and absorbing media and experimental
results is therefore necessary.

For this purpose it is important to have the availability of well-defined
scattering and absorbing substances (phantoms). It is also important to have
knowledge about the penetration depth of light inside the tissue, and about
possibilities to 1increase this penetration depth; this 1is particularly

important in the treatment of cancer by laser light.

In chapter I we will present an overview of the optics of scattering and
absorbing media and the solutions for several light source geometries.

In chapter II we will investigate the optical parameters of the scattering
substance Intralipid 10%, and absorbing substance Evans Blue, and compare them
with the results found by other investigators.

The final results are given in par. II.5.

In chapter III we will present an attempt to increase the penetration depth of
light in brain tissue by using a mirror system. Measurements were carried out
in a phantom using the well-defined substances described in ch. IT.

It appears that the mirror system does not substantially increase the
penetration depth of the light.

In chapter IV we will investigate the influence of the beam diameter on the
penetration depth of the light inside the medium, and the experimental results
will be compared with a theoretical solution. It appears that there is good
agreement between theory and experiment, and that the influence of the beam
diameter on the penetration depth is substantial.

Also it is possible with these results to explain the observed behaviour of
the light shown in the previous chapter.

Finally we will present in chapter V a proposal to determine the optical

parameters in tissue under in vivo conditions.



0 Introduction

Photodynamic therapy (PDT) is an experimental method for treating tumours by
means of laser light and a photosensitizer. The basic concept of PDT is
injecting the patient with a photosensitizer, e.g. Haematoporphyrin derivative
(HpD) which has the property that it has a greater affinity for tumour tissue
than for normal tissue, [Profio, 1984 and Bown, 1986].

Some time after administration the concentration of HpD in tumour tissue will
be greater than in normal tissue [Profio, 1984 and Berns, 1983].

Exposing this tumour tissue to laser light with a wavelength matched to an
absorption peak of HpD (e.g. 630 nm) and on condition that the 1light-dose
exceeds a threshold value, this induces a photochemical reaction with a toxic
prbduct, singlet oxygen. As a result the affected tumour cells will die
[Berns, 1983 and Weishaupt, 1976].

In this way, photodynamic therapy is a very efficient and selective method for

cancer treatment.

One of the problems, however, which occur in this therapy is the prediction of
the light distribution in the tissue. Knowledge of this light distribution is
important because it is necessary for the light to penetrate deep enough to
kill all tumour cells. If not, the non-damaged tumour cells will grow again

[see fig. 0.1).

— Laser-1ight

a4 N7

Threshold 1ight
distribution

—~Tissue

Tumour cells that
will regrow

Fig. 0.1
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The 1light distribution 1in tissue depends on several factors, such as
absorption, and the angular distribution of scattering in the tissue, which in
turn depend on the density of the particles, their shape and size relative to

the wavelength, the index of refraction of the tissue etc.

To describe multiple-scattering and absorption of light in a turbid medium the
main theory is: the transport theory [Ishimaru, 1978]. This theory is based on
the "equation of radiative transport”, an integro-differential equation which
uses the medium parameters, such as the absorption coefficient U 3 scattering
coefficient Llsand scattering phase function S(cos@).

Together with boundary condition this equation describes the 1light

distribution in a scattering and absorbing medium.

This report falls into four parts.

In chapter 1 the transport theory will be presented as well as the solutions
for three different light source geometries, based on the work of several
authors. These solutions will be wused lateron for a comparison with
experimental results.

In chapter 2 a method will be presented to determine Mo Mg and g using a
scattering and absorbing tissue phantom. The experimental values will be
compared with the values found by other authors.

In chapter 3 an attempt will be presented to improve the penetration depth of
light in a brain tissue phantom. This part was presented at the Symposium of
the N.M.L.G. (Nederlands Medisch Laser Genootschap) Rotterdam, The
Netherlands, at the Daniel den Hoedkliniek, September 1987.

In chapter 4 the influence of the beam diameter on the penetration depth will

be investigated.

Experimental values will be compared with theoretical results.



In chapter 5 we will present a proposal for a (semi-)invasive in-vivo

determination of the optical parameters.

The work was done in a research project for the St. Joseph Hospital in
Eindhoven, the Netherlands under supervision of Dr. M.J.C. van Gemert as a
graduation project for the Eindhoven University of Technology, the

Netherlands, under supervision of Prof. Dr. J.A. Poulis.



I. Theory.

I.1 Introduction.

The main theory to describe the propagation of light in a turbid medium is the
transport theory, which is based on the "equation of radiative transport™,
[Ishimaru, 1987], an integro-differential equation. Together with boundary
conditions this equation can be solved in principle, if scattering and
absorption properties of the medium are known. In the case that scattering
dominates over absorption, however, which is true in all cases discussed in
this report, this "equation of transport” can be treated in the so called

diffusion approximation, which is much more easy to handle.

In this chapter the theory will be presented only briefly; a more detailed

version can be found in appendix B.



I.2.1. Transport theory [Ishimaru, 1978].

To describe this theory, we will use the notation recommended by Star, Wilson,
Jacques and van Gemert which can be found in Appendix A. Before proceeding,
some assumptions will have to be made made, namely:

~ the model is time independent

- the medium is homogeneous and isotropic

- the scattering particles are randomly distributed over the tissue volume

— the scattered photons retain their frequency

- there are no other sources but the incident beam

- the scattering particles are sufficiently far away that interference

effects between phantoms can be neglected.

The transport theory is based on the "equation of transport”:

(8-ML(E,D) = - p LD + K rs(8.37)L(r,s”)dw (1.2.1)
L% 1
where
-~ . s -~ . . . -~ _2 ‘l
L(T,8) = energy radiance in T in direction § (Wm “sr )
M, o= absorption coefficient (m—l)
Moo= scattering coefficient (m—l)
Mo = U a+u ¢ = total attenuation coefficient (m_l)
dw” = element of solid angle (sr)
cos 8 = 3.8 = cosine of the angle between § and §~.

S(8.87)= phase function representing the part of the photon flux which is

. . ~ . R . ~ -1
scattered from direction s~ in direction s (sr

).

Because the scattering particles are randomly distributed, we may substitute
S(§.87) by S(cos8).

In eq. (I.2.1.) the left part is the net rate of change of L at £ in the

direction &:



dL(T,3) .
—_— = (3.7)L(T,8) (I.2.2)
ds

This rate of change is due to losses by scattering and absorption, represented
by the first term on the right side, and the gain through scattering from all

vl

directions §” into §, represented by the second term on the right side.

The relation between the energy fluence rate W(Wm_z) and the energy radiance L

is:

1
¥y(7) = — S L(T,Ddw (1.2.3)
41
41

I1.2.2. Phase functions.

Scattering of 1light in a medium is described not only by the scattering
coefficient My oo but also by the "phase function” S(cos®), which is the
relative probability for scattering of a photon from direction 8~ into
direction 8, where 5°.5 = cos.

Examples of phase functions are shown in fig. T.2.1.

The phase function S(cos8) can be expanded as a series of Legendre polynomials

Pn(cose) [Davison, 1957 ch. 17}:

- (2nt+1)
S(cosB) = 5
n=0 2

ann(COSQ) (1.2.4)



Conversely, we obtain bn from the fact that the functions Pn form a complete

orthogonal set:

bn = flS(cose)Pn(cose)d(cosG) (I.2.5)

-1

Normalisation requires that the integral of S(cos®) over all directions equals

1, so

b0 = fls(cose)d(cose) =1 (1.2.6)

-1

because PO = 1, and because Pl(cose) = cos® we obtain for b1:

1

b1 = [ 5(cosB) cosBd(cosh) = g (1.2.7)
-1

Thus bl’ usually referred to as g and called the asymmetry parameter [v.d.

Hulst, 1980], is the mean cosine of the scattering angle.

However, there exist many phase functions describing the scattering of light
in a medium [v.d. Hulst, 1980, vol. 2, p. 306-307].
Slightly forward scattering, for example, can be represented by the first two
terms of the phase function, thus
1
S(cosB) = a(l + 3 g cosB) , g 5_; (1.2.8)
where a = us/ W is called the albedo.

Another phase function often used in 1light optics is the Henyey-Greenstein

function:



2

(1-g7)
S{cos8) = a » (1.2.9)
(l+g2--2gcose)3/2

However, this phase function is not easy to handle, so we will adopt a simpler

phase function, namely "isotropic scattering combined with a forward peak”

[v.d. Hulst, 1980]:

S(cos8) = a [(l-g)+2g §(1l-cosh)] (1.2.10)

According to v.d. Hulst all three phase functions are the same in the first
two terms of their Legendre polynomial expansion.
A plot of these phase functions for several values of g is given in fig.

I.2.1.

There are two possibilities to continue now; one way is to write both radiant
energy L and phase function S(cos8) as a series of Legendre polynomials,
insert them in eq. I.2.1 and truncate after the first two terms. This method
is called the Pl—approximation and is e.g. described by [Star et al., 1987].

We will use another approach which is described by [Reynolds, 1975] and,
[Groenhuis, 1983] and by [Prahl, 1986}, using the phase function "isotropic
scattering combined with forward peak”. The reason is that with this approach
it is possible to obtain an analytical solution. We have to realize, however,
that this choice may affect the valid of the measured optical parameters,
because an indirect method will be applied that utelises the inverse solution
of the transport equation for a slab geometry. Substituting eq. (I.2.10) into

eq. (I.2.1) we find after some calculations:



A
1 S (8)
[
o
g=1/3
E 2 I.,F loo
7/\ Z/\ S se
\\i_yl - 0\2_&/6 8 ° o 2 22 79 S0 100 150 200
g=1/3 g=0.5 g=0.7 g=0.9
C
- 2 2 2 2
1] 4 4] 1
. L f}z-%# . f% . # 3 .
1 L3 1172 3 172 3 1 2 3
=1/3 =
g=1/ g=0.5 g=0.7 9=0.9

Fig. 1.2.1: Pase functions for several values of g.

A:

B:

C:

Slightly forward scattering

Henyey-Greenstein function

(ed. I1.2.8).

(eq. 1.2.9).

Isotropic scattering with forward peak (eq. 1.2.10).
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U
S
(8.V )L(2,8) = - utrL(?,é) + — [ L{(%,37)dw” (I.2.11)
4mm

where
p’s = us(l—g) = reduced scattering coefficient
= + y” = tr t ffici
Hep u, o transport coefficient
I.2.3 Diffusion approximation.

To describe the propagation of iight in a scattering medium it is often
convenient to devide the energy radiance L(f,$§) into two parts, the redcued
incident or non-scattered energy radiance Lri(§,§) and the so called diffuse
energy radiance Ld(f,§) [Reynolds, 1975], [Groenhuis, 1983] and [Prahl, 1986},
which is the part of the energy radiance that is scattered at least once.
Thus,

L(£,8) = L_ (£,8) (1.2.12)

i

Lr.(f,ﬁ) has the same direction (Z) as the incident beam and contains the
i

unscattered plus forward scattered beam. Substituting this eq. (I.2.12) into

eq. (I.2.11) we find two equations, one for Lri and one for Ld’ see Appendix .

The diffuse energy fluence rate Y d(?) and the reduced incident energy fluence

rate Y ri(?) are defined as

1
¥ (®) = = L (1.2.13a)
4T 4T

and

1
Yo(R) =— L . dw (1.2.13b)
ri Wy T ri

y
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Expanding the diffuse energy radiance Ld in a Taylor series we find after some

calculations (see appendix B) the so-called "time-independent diffusion

equation™:

2 2 R
(V" = q eff) Yqg = - y .+ — Je_. § dw (I.2.14)

2 . . .
where ' c. = 3 YoM g = effective attenuation coefficient

-

= S -
and €4 = ] S Lri dw
T 4q
-1 : .
D=(3 1y ) = diffusion constant

tr

If the parameters characterising the incident beam are defined, together with

boundary conditions this equation can be solved in principle.

A few words have to be said about the definition of the reduced incident
radiant energy Lri(f,ﬁ). According to Ishimaru (1978) and Van Gemert (1987),
Lri contains only the unscattered beam and therefore they receive a different
"diffusion equation”. Here we define L. as the unscattered + forward
scattered beam, in agreement with Groenhuis (1983), Prahl (1986), because it
is in practice not possible to distinguish between the wunscattered and the
purely forward scattered beam. The final result, which is the sum of the

diffuse and the collimated parts, must of course be the same.
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—
.

o
S~

Boundary conditions.

The boundary conditions are determined by the tissue geometry; for a slab

geometry they will have another form than for a spherical geometry. We will

assume a slab geometry.

To derive the boundary conditions, consider the situation shown in fig I.2.2.

i ' X
=0 Air b\

Medium

z=d

Air

Fig. I.2.2. Model for diffuse reflection at the boundaries.

The boundary condition here is that the total diffuse flux directed inward the

medium is equal to the reflected part of the total flux directed outward; thus

if we define

we find
at z=0 [ I (2,8)(8.2)dw = J r (B)I (?,8)(8.2)dw (I.2.15a)
2'n' d ZTT d d
H>o U<y
at z=d f I.(2,8)(8.8)dw = [ r (B)I (£,8)(58.2)dw (I.2.15b)
27 d 27 d d

U<o U>0
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where rd(e) is the internal reflection coefficient for diffuse radiation; For
convenience 4 is supposed to be constant; Later on we will correct for angle-

dependance of ry
Again we devide the energy radiance L(%,8) into two parts (eq. I.2.12), the
reduced incident energy radiance Lri(?,ﬁ) and the diffuse energy radiance
Ld(?,§), and we define the diffuse energy fluence rate 4’d(?) as (eq.

1.2.13a).

1
Q’d(f) = — Ld(?,g)dw (I.2.13a)
4 b

After some calculations Groenhuis [1983] arrived at the following boundary

conditions for the slab geometry:

1
at z=0 y (#)-2Dh 2y (8)+ —h 2. Q) = 0 (1.2.16a)
9z d 9
) 1
atz=d V¥ (8)+2Dh < y (8) + — h 2. Q(2) = 0 (1.2.16b)
d 9z d 90
where D = 3y )'l (1.2.17)
tr
hoo= (Lr/(-ry) (1.2.18)
1
Qr) = — fgri 5 dw (1.2.19)
Her 4
LI’S
e . =5 [ 1. 4w (1.2.20)
ri ri
4w
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These are the boundary conditions used by Groenhuis (1983), Reynolds (1975)
and Prahl (1986). The internal reflection coefficient for diffuse radiation

can be estimated using a curve fit proposed by Egan and Hilgeman [Egan and

Hilgeman, 1979}:

rg = - 1.4399 072 +0.7099 n ' + 0.6681 + 0.0636 n

where n is the index of refraction of the medium.

In the derivation described above, the internal reflection coefficient 4 is
assumed to be a constant. However, in a real situation the reflection

coefficient T is angle-dependant; thus actually we have to consider the

situation shown in fig. I1.2.3.

Incident
Air beam 4

z=0 — /;f/

Medium . 41
~ -7
z-\.‘\;!EEIi;/' o
2=d

Air 1

Fig. 1.2.3. Model for diffuse reflection at the boundaries including total
reflection. ec is critical angle.

Light which reaches the surface under an angle smaller than the critical angle
for total reflection, thus 6<9C, is partly reflected and partly transmitted

(beam 1). If, however, the angle is greater than GC, all the light is totally

reflected.
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The internal reflection coefficient r, is related to the angle 8 by Fresnel's

d
laws:
2 2
ry = %[Rll+ R_L] (1.2.21)
where
nm d cos8 ., "D ir coso d
R, = —= al = ae (1.2.21a)
il
n cosB ., + n . cosB
med air air med
n d cosB a- n ., coso ,
R, = me me air air (I.2.21b)
n cos8 + n ., cosO .
med med air air

The critical angle Gc is determined by Snell's Law:

noed Sinemed =n_.. SinBair (1.2.22)
A plot of rd as a function of @ is given in fig. I.2.4.
1.0 11.0
rg(6)
0.81 +0.8
0.6 4 +0.6
0.4 1 r0.4
|
0.2 1 I 10.2
| —— r ,(0)
0 I d
0 0.2 6.4 0.6 1 0.8 1.0 ——> cos(6)
¥ + t+ U + —4
] .
90° 75° 60° ©450 300 0° €— O

Fig. I.2.4. Internal reflection coefficient rd(e) as a function of 6, based.of
eq. (I.2.21) and eq. (I.2.22).
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When 8 = 0, the reflection coefficient rd(O) is

med air
rd(O) = 5 (I.2.23)

This angle dependance of the internal reflection coefficient I has to be

raken into account in eq. I.2.15.

This has been done by [M. Keyzer, 1986] and the result is (see also Appendix):

1
at 2=0 ¥ (2)-2DA & v (2) + — A2.Q(£)=0 (1.2.24a)
9z "d 2T
: ; 1
at z=d Y (2)+2DA & y (2) + — AZ.Q(2)=0 (1.2.24b)
d 3% ld e
where D = (3 )—-l
- Hep
3
2/[1—rd(o)]—1+| cos 0 |
A= =3 (1.2.25)

1—c0528
c
and Q(?) is defined in eq. (I1.2.19).
When we compare eq. I1.2.24 with eq. I.2.16 we can see the strong resemblance
between them, except that h has to be substituted by A.

We can make a plot of h and A versus the index of refraction n, shown in fig.

I.2.5.

15

' .

1

)_leX.\Vv
+ +

10 79 30—y
n

Fig. I1.2.5: Values of h and A versus the index of refraction n.
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For the indices of refraction of interest for photodynamic therapy

(1.48<n <1.52) [Bruls, 1984] we find a difference between h and A of

white skin
about 15%. It is not clear, however, how strong this difference affects the

light distribution predictions.

1.3 Wide beam solution (see Ishimaru, p. 182).

Consider a parallel beam of monochromatic 1light with infinite diameter
incident on a plane parallel scattering and absorbing medium. This beam can be

described by:

L, (2,8) =F_ & (3-2) (1.3.1)
where F, 1is a constant.
When the indices of refraction are different, FO has to be multiplied by
2 2
1 [nmed-l) /(nmed+l) ]
When we substitute eq. (I.3.1) in the diffusion equation, we find according to

Ishimaru, p. 182:

2
a__ . = - -
5 ¥ 4(2)7 W e ¥ 4(2) Q, exp(-u .2) (1.3.2)
oz
where Qo = [3u M oer + 3gyu oM t](Fo/éw )

—
|

eff Iu aU tr
=u a+(1-s_;)uS
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The general solution of eq. (I.3.2) is the sum of a particular solution V¥

dp

and a complementary solution VY dc”
For the particular solution we take

¥ dp = Coexp(— utz) (1.3.3)
and for the complementary solution

Y de = Clexp(+11effz) + Czexp(—Lleffz) (1.3.4)
Thus the general solution is:

Y d(z) = Clexp(+LJeffz) + Czexp(—LJeffz) + Coexp(-LJtz) (1.3.5)

The constants Co Cl and C2 are determined by the boundary conditions. For a

thin slab of medium all three terms are important [Star, 1986]. For a thick

slab it can be shown that Cl -+ 0, [Ishimaru, 1978] and [Star, 1986]; thus the

solution becomes:

%‘d(z) = Coexp(—]Jtz) + Czexp(—]Jeffz) ‘ (1.3.6)
where ut =]Ja + Lls
%
Heff = [3‘Jalltr]

Looking at the ratio of Hogs and H, we find:

H
eff L [3(1-a)(1-ag)]?

He

where a = us/ ut = albedo
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In the case that scattering dominates over absorption, thus a > 1 we find

u eff<< pt ifa - 1 (1.3.8)
Returning to Eq. (I.3.6) we sce both terms are important at the boundary, but
deep inside omnly the last term differs from zero, and we find that deep inside
the medium:

. -1

¥ d(z) = Czexp(— “effz) ifa-» 1, 2> T (1.3.9)
This situation occurs already beyond a depth of a few free optical path
lengths ut~l [Star, 1987].
The general light patcern inside the medium as a function of depth z will be

like that shown in fig. I.3.1.

5 r

4

314

2 4

1 z(mm)
—_>

0 . " + + M “
+ + + + ¥ -+

0 2 4 6 8 10 12 14 16 18 20

Fig. I.3.1: General light pattern 1ns1fe the medium for an 1nc1?8nt Ylde beam,
with parameters g = lmm , g = 0.7, 1Ja 1.3x10

The position and value of the maximum of the curve depends on the boundary

conditions.

I1.4. Finite diameter solution.

In this paragraph we will discuss the solution for a beam with a finite
diameter incident on a medium. Details of this derivation can be found in
appendix B ; here we will give only a brief overview. The derivation is based

on Reynolds {1975], Ishimaru [1978] and Prahl [1986].
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Consider a parallel beam of monochromatic light with a finite diameter
incident on a plane parallel scattering and absorbing medium. This beam can be
described by:

Linc(f,s) = FOB(r)d (8-2) (I.4.1)
where FO is a constant

B(r) is the radial distribution of the incident light beam; here we

assume:

B(r) =1 if 0 <r<b

0 ifr> b

Substituting this incident beam in the diffusion equation (I.2.14) we find:

-

2 Ha Hg
(Vo=-=)y, = Z—_ F B(r)exp(~ u, 2) (I.4.2)
D D

with boundary conditions (see ch. I1.2.4)

9

at z =0 V¥ () - 2DA — ¥ (®) =0 (I.4.3a)
d d
0z
at z=d ¥ (?) + 2DA Loy L) =0 (I.4.3b)
oz

Today these differential equations can be solved numerically; solutions are
available from e.g. Keyzer [1986]. The differential equation (I.4.2) can also
be solved analytically by wusing a Greens function approach; the latter

function G(2;2”) has to be a solution of the equation:

15
v 2 - Bya(e;e7) = 5 (2;87) (I.4.4)

D

with boundary conditions:

li
o

at z=0 G(2;27) - 2DA G(R;27) (1.4.5a)

it
o

at z=d G(2;27) + 2DA & G(R;#7) (1.4.5b)

N N
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The solution of this equation is (see appendix B ):

4y~ Z
N S x . n
yd(r,z) = 5 FO ) Fn 51n(knz + Yn) — Rn(k nr) (1.4.6)
n=1 (k™ _+u )
n tr
where
2(DA)k
tan k d = ———7?751—-
(bA) ko -1
=t nnl(DAk )
Y n a n
u
Ai = kzn + =2
D
2
A -A A A
RO - 1/ n 1 anO( nr)Kl( nb)] r<b
n n

b/A.n [KO(X.nr)Il(X nb)] r>b

In(A nr) and Kn(k nr) are modified Bessel functions of the first kind of order

n. Based on this solution a computer-programme is available [S.Prahl, 1986].

I.5 Point source solution.

To discuss the solution for a point source we have to distinguish between the
situation that the point source is put directly inside the medium and the
situation that the point source is put inside a sphere filled with water or a

scattering medium. Both solutions will be discussed below.

I.5.1 Point source in an infinite medium.

Consider a point source placed inside an infinite medium. There is no external

light source, thus L, =0
inc
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The point source can be expressed by [Ishimaru, 1978]:
e (2,8) = (P /4 m) 8(%) (I.5.1)

and the diffusion equation becomes:

3
(v 2- uzeff) ¥ (2) = =(=T O P 8(8) (1.5.2)
4

The solution of this equation is [Ishimaru, 1978]

3 1
¥ d(f) = (Z;- P)

He P, . exp(- Ueffr) (1.5.3)

where Po is the power of the point source.

-1
and Hegs = B(Uautr)

This equation has also been used by Star [Star, 1986].

We like to remark already here that this solution is not valid near the point
source itself, because there the diffusion approximation is not valid. Only at
a distance of a few times Lflt the equation (I.5.3) is valid.

The general light pattern inside the medium as a function of the radius r will

be like that shown in fig. I.5.1.
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r(mm)

0
0 2 4 & 8 10 12 12 16 18 20

I.5.1: General light pattern inside the medium for a point source.

Fig.

I.5.2 Point source inside a sphere.

Consider now a point source which is placed inside a sphere filled with air or

clear water and placed in an infinite medium with absorbing and scattering

A

v
/
///4

Fig. I.5.2: Point source inside a balloon with radius r
infinite medium.

medium

1’ placed in an

A solution for this situation is available from Star [Star, 1986],

and we
find:
3 pexp(= p  (r-r.)) 2 exp ‘(U (x-r ))
Y (r) = — [ tr eff 1 - ; 1 ] (1.5.4)
4o (1+ Ueffrl)r 3 r

Note that light which is scattered out of the medium into the sphere re-enters

the medium elsewhere. Because u eff<< M . (see eq. I.3.8), deep inside the

medium only the first term remains.
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II. Phantom materials.

I1.1 Introduction.

In this chapter we will concentrate on determination of the optical properties
of the media we have used. For this purpose part of the theory of the previous
chapter will be used. Because biological tissues are often very irregular and
inhomogeneous, we have chosen for a liquid tissue phantom which exists of a
mixture of a purely absorbing medium and a scattering medium. Recent
developments in the measurement of optical constants of biological tissues
indicate that tissue scatters light strongly in the forward direction [Star,
1986]); therefore it is important to use a scattering medium which has also

strongly forward scattering properties.

I1.2 Intralipid and Evans Blue.

In search of a good phantom material one of the problems is to find a
scattering medium which has the combination of, highly forward scattering, no
absorption, availability and which can serve as an international standard. A
first choice was styrene butadiene, but it appeared that its g-value was
rather low (g70.4), the availability was bad and that the material was not
homogeneous [Splinter, 1987]. Therefore we have chosen for Intralipid (10%),
which is very well available in every hospital, has highly forward scattering

properties and low absorption, and is rather homogeneous (see chapter II.3).

As an absorber we used Evans Blue, dissolved in an isotonic phosphate buffer.

The concentration was 515 mg/1.
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I1.3 Determination of optical parameters.

I1.3.1 Homogeneity of Intralipid.

To examine for the homogeneity of Intralipid, the size of the particles was
measured at the department of colloid chemistry at the Eindhoven University of

Technology. The results are presented in figs. IT1.3.1 to II.3.4.

In figs. II.3.1 and I1I.3.2 we see the results for normal Intralipid. From the
statistical analysis we can see that both measurements give virtually the same
result for the mean particle size, namely 1.004 pm and 1.030 Hm. The
coefficient of variation, which is the ratio of the standard deviation and the

mean value, is resp. 13.67% and 17.7%.

In figs. II.3.3 and II.3.4 we see the results for boiled Intralipid (boiled
for 30 seconds at lOOOC and steered Intralipid (at 20.000 cpm). We can see
that for boiled water Intralipid the mean size of the particles becomes
smaller (about 0.84 p1m) whereas for steered Intralipid the mean size of the
particles becomes greater (about 1.4 ym). The coefficient of variation in both

cases is less then 207.

From the results we concluded that the homogeneity of normal Intralipid seems
adequate for our purposes. We must take into account, however, that boiling or
steering Intralipid can change the size of the particles and thus change the

scattering properties of the particles.
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Measurement of the homogeneity of Intralipid from
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the St.Joseph Hospital; the

vertical axis gives the relative amount of particles of a certain size, the

horizontal gives the size of the particles in ym.
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Fig. I1.3.4

Measurement of the homogeneity of Intralipid from the St.Joseph Hospital; the
vertical axis gives the relative amount of particles of a certain size, the
horizontal axis gives the size of the particles in um.
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II1.3.2 Determination of y and u .

A. To determine the absorption coefficient Mo of Evans Blue, we used the

experimental set-up shown in fig. II.3.5.

W
Wi& AL J-__L-_ 2 W1 ﬂ“
Laser =1 1 T=3F —T::FL detector
s————
»dle
f i
I l e 7\:
111 I 1 I

Fig. II.3.5: Experimental set—up for determination of u and pu .
I, II and III are pinholes with width w_ ,w and w,.°

1°72 3
A cuvet of diameter d is filled with the absorber and placed in a tank.
The beam of e He-Ne laser is directed perpendicularly on the cuvet and
the transmitted light is detected by a photodiode. This was repeated for

several concentrations of Evans Blue and two cuvet-diameters.

To determine the absorption coefficient y a Ve used the "Beer-Lambert”-

Law for substances which do not scatter:

y = ‘yoexp(—LJa.c.d) (1I1.3.1)
where C is the concentration of the absorber.
Note that the absorption coefficient My has here the dimension [1engt:h_l

. -1 3 .
concentration ]; the final value for ua has of course to be given for
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pure (1007%) Evans Blue.
From this equation it is possible to calculate a if u o and C are
known. There was good evidence, however, that the sensitivity of the

detector was not linear anymore when the detector was illuminated by the

non—-attenuated laser beam. Therefore we used:

1
- o in ¥
WS s (I1.3.2.)
d
where d 1is the diameter of the cuvet

Y is the detected light intensity, which is proportional to the
current of the detector.

¢ 1is the concentration of the absorber, where 1007 is equal to
515 mg/l of Evans Blue.

The results are shown in fig. II.3.6.

c(%)

Fig. I1.3.6: Logarithm of the detected light intemsity as a function of the
concentration of the absorber Evans Blue (515 mg/l) for two

cuvets (d1 = 0.5 cm and d2 = 1.0 cm).
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The slope TN vas calculated by linear regression and the result for

pure (100%) Evans Blue was:

1

0.5 cm : u 7.654 mm

[}

for d1

for d 7.556 mm_1

2 1.0 cm : Ua

so the average value, now taken for a solution of 1 ml per liter, is

b= (7.60 +0.05) x 10° mm ! ml7l 1 (11.3.3)

As a control experiment we made an absorption spectrum of Evans Blue. The

result is presented in fig. II.3.7.

SRS SO DU IUU S N B SRS U VA N N SN W WOUY T NN UHA UHI UHNN VNN SHN SN S U T S T
J L 11
i L 10
J 9
i . 8 -1
: N — 1 5 w (mm )
) | - 6
j | 5
J | X
- I L 4
] | - 3
] | - 2
. |l L 1
) ¥ ¥ L] 'h T ¥ TT1 T lﬁﬁ‘T‘ T 1] ‘ | LS I L 4 l L I ] iy 0
450 500 550 600 650 700 750

—_—

A(nm)

Fig. 11.3.7: Absorption coefficient My for pure Evans Blue

as a function of
the wavelength.
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For the He-Ne laser wavelength ( A = 632.8 nm) we find:

U a = 7.4 x 10_3 mm—lml~11

This result is in good agreement (within 2.6%) with the first result.

To determine the scattering coefficient M S of Intralipid, we used the
same experimental set-up as in fig. 1II.3.5. Because Intralipid is
strongly scattering, the whole cuvet can act as a light source; therefore
it is necessary to measure the total attenuation (which is virtually
equal to the scattering coefficient as absorption can be neglected with
respect to scattering) under a very small angle and the combination of

two pinholes I and II is now important (see fig. II1.3.8).

Y

Laser-
beam

detector

I1.3.8: Measurement of |; with two pinholes with width v and w, at
distance 1. s

The angle R , which is half the opening angle, is given by (see appendix

C):

w.+w

tan B= —-=--= (11.3.4)
21
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In this case we used pinholes with width w1 = 0.5 mm and w, = 1.1 mm at
length 1 = 750 mm, so R = 1.0 mrad.
To avoid multiple scattering we measured at low concentrations (up till a

1% solution). To measure | g Ve made the assumption that for low

concentrations (single scattering) we may use

Yy =y o exp(- S.c.d) (11.3.5)

or, because WO cannot be measured properly:

b o= - - 2R (11.3.6)
d oc
where d is diameter of the cuvet
b4 is transmitted light, which is linear proportional to the
current of the detector.
c is the concentration in percent, where 1007 is non-diluted

"Intralipid lOZ".*)

Again we measured the transmitted light for several concentrations and

two cuvet diameters. The results are shown in fig. I1I.3.9.

As a control experiment we repeated this measurement after a few weeks;

these results are shown in fig. II1.3.10.

%) Intralipid is available in bottles of "Intralipid 10%" and "Intralipid 20%"
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Fig. 11.3.9: Logarithm of the detected light as a function of the
concentration of Intralipid from the St.Joseph Hospital.
{Discuvet diameter d1 = 0.5 cm, d2 = 1.0 cm).

FY g 0L h151617 181320
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Fig. II.3.10: Logarithm of the detected light as a function of the
concentration of Intralipid from the St.Joseph Hospital,
measured after a few weeks.
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d1nY
Again the slope —%i}— was calculated by linear regression and we find for

fig. 11.3.9 for pure Intralipid:

for dl = 0.5 cm : U s = 38.4 mm_1
for d, = 1.0 cm : 1 = 38.8 mm—l
2 s
So the average value, now taken for a solution of 1 ml per liter, is
-3 _ -1 -1
Moo= (38.6 + 0.2) x 10 " mm = ml ~ 1 (11.3.7)
For the control measurements in fig. I1.3.10 we find:
for d; = 0.5 cm : U _ = 38.6 P
for d, = 1.0 cm : u = 37.8 mn \
2 s
So now the average value is
-3 -1 -1
M = (38.2 + 0.4) x 10 " mm ~ ml 1 (11.3.8)

which is within 1.0% from the value in II.3.7.

I1.3.3. Determination of g.

To determine the asymmetry parameter g of Intralipid we had to use an indirect

method; therefore we return to paragraph I1.5.1. From eq. (I;5.3) we have the

solution for a point source in an infinite medium:

where

C
¥ (r) = - exp(-U effr) (11.3.9)
r
2 = 3
eff Hy Her
=3y [u *(e)u ] (1I.3.10)

From eq. (II.3.9) we can determine W oaff by
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- -2 In( ¥.r)

(I1.3.11)
or

which is the slope in a ln{er )-r-diasram. From eq. (II.3.10) we can now

calculate the g-value by:

2
u M
g=1- -2 (___sgi - 1) (11.3.12)

Note that with this method it is necessary to add absorber to the Intralipid

to be able to calculate g.

For our experiments we used the experimental set-up shown in fig. II.3.11l.

Tibre with isotropic
radiating tip r'—zy\__

L%P fibre with isotropic
detecting tip

\ /‘ ‘.Jy .
o g scattering and
w/l\u Sl absorbing medium
t—'—-':—'ﬁ

Fig. II.3.11: Experimehtal set—up for determination of U

eff

A fiber with an isotropic radiating tip 1is placed in a scattering and
absorbing medium (containing Intralipid and Evans Blue) and the energy fluence

rate ¥ 1is measured as a function of radius r with a fiber with an isotropic

detecting tip.
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The results are presented in figures I1I.3.12 and 1I1.3.13. Measurements were
carried out for two scattering coefficients and several absorption
coefficients.

The slope which determines | was calculated by linear regression; the

eff

asymmetry parameter g was calculated by eq. (II.3.12). The results are

presented in Table II.1.

PP U

O LANED B M B B R e I SRR S SRRt AR R RN R S LA
0 5 10 15 20 25
Fig. I1.3.12: 1n(VY .r)—r:fiagram of the detected light intensity, for
U =1 mm . Used are mixtures of Intralipid from the St.

Joseph Hospital and Evans Blue.

3.0
In(¥-r)|]
2.07
ﬂ
4
1.0
] r(mm)
. _—
001-'|gtiiilbl\ill‘slll\2‘0||01\251l

Fig. I1.3.13: 1n(¥ .r)—r:?iagram of the detected light intensity, for
U =2 mm . Used are mixtures of Intralipid from the St.
Joseph Hospital and Evans Blue.
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g (+ 1%) My (+ 1%) Hoofs g
1 mm t 0 p— 0.041 ma * X
1 mm 0.01 mm 0.105 mm ! 0.642
1 mo ! 0.05 mmn ! 0.245 mn * 0.651
2 mm—l 0 mm—l' 0.061 mm-l X
2 ! 0.05 mn ! 0.313 ma ' 0.698
2 mm * 0.10 mm * 0.429 mm * 0.743

Table II.1: Results and calculated g-value for Intralipid from the St.Joseph
Hospital.

From these values we can determine the average value for g with standard

deviation, and we find:

§ = 0.68 + 0.05 (I1.3.13)

We also measured pure Intralipid without addition of absorber (see table

II.1); from the calculated 1Jeff—values we can determine the absorbance of

pure Intralipid uao’ from eq. (II.3.12) and we find for the two cases:

5 -1 -1

-1 6.7 x 10 " mm ~ml ~ 1

o =1lmm ; yu

2mm—1; u

ao

3.7 x 10 m " ml 1

]

=
]

ao

as an average value therefore we find:

W= (5:2+41.5) x 107 o Ll 1 (11.3.14)
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This wvalue cannot be neglected compared to the absorbance of Evans Blue in the
media we have used (26 ml/l and 52ml/1 of Intralipid); we have to add the
absorbance of Intralipid to the absorbance of Evans Blue and recalculate the
g-value. This gives the results shown in Table II.2, where g* is the corrected

g-value (corrected for the absorption Llao of Intralipid).

H s Ua ueff g*

-1 -1 -1

1 mm 0.0113 mm 0.105 mm 0.685

! mn} 0.0513 mm © 0.245 mm * 0.662
-1 -1 -1

2 mm 0.0526 mm 0.313 mm 0.716
-1 ~1 -1

2 mm 0.0526 mm 0.429 mm 0.752

Table I1.2: Corrected results and g*-value for Intralipid from the St.Joseph
Hospital.

From these corrected g*-values we can determine the average and the standard

deviation:

g* = 0.70 + 0.04 (11.3.15)

as the final result for the asymmetry parameter g.

I1.4 Comparison with other results.

The results in paragraph I1.3 of Intralipid were compared with the wvalues

found by other investigations. The results are shown in Table II.3.
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US “ao g
1) -5
Star W.M. 0.045 0.8 x 10 0.83
Jacques S.L.z) 0.0417 0.55
) 3) -5
Wilson B.C. 0.0384 1.6 x 10 0.69
Moes C.J.M. 0.0386 5 x 1072 0.70

Table II1.3: ConpfrisoT of the results of Intralipid; i and u are in
= s ao
(um  ml ~ 1).

D R.R.T.I., Rotterdam, The Netherlands.

2)

3)

Harvard Medical School, Boston, U.S.A.

Hamilton Regional Cancer Centre, Ontario, Canada.

From Table 1I.3 we see that the values differ substantially, particulary the

g-values, although the results of Wilson and ours show good agreement.

It was not clear, however, whether these differences were due to material
differences or to a different method of measurement. As a control experiment
all four groups therefore used Itralipid from the same bottle (from W.M. Star)
to be sure to have the same material, and measured again, each one with his
own nmethod.

Our results are shown in figures II.4.1 and I11.4.2. The method of measurement

is exactly the same as explained in paragraph II.3.
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Fig. II.4.1: Determination of scattering coefficient |, of Intralipid from
RRTI, Rotterdam conform the method in paragraph 11.3.2 (Qd is
cuvet diameter, d, = 0.5 cm, = 1.0 cm).

Compare with figs} I1.3.9 and %I 3.10.

“we n W N

01 2 34 S & 7 6 9 10111213136 1516 13 18 1320 21 22 23 24 2§

Fig. II.4.2: Determination of conform the method in paragraph II.3.3.
The numbers 1 to 7 %nglcate different absorgtlon coefficients
U g the scattering coefficient y s = 1 mm . Used are mixtures
of Intralipid from RRTI, Rotterdam and Evans Blue (compare with
figs. 11.3.12 and II.3.13).
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From fig. II.4.1 we find for the scattering coefficient Mo for pure
Intralipid from RRTI, Rotterdam:
-3 -1 -1
Hg = (40.0 + 0.2) x 10 mm  ml 1 (I1.4.1)

The angle between the pinholes was the same as in paragraph II.3.2, namely

B = 1.0 mrad.

We see that the value for g from RRTI, Rotterdam in eq. (II.4.1) is 3.5%

larger than the value in paragraph II.3.2.

In fig. II.4.1 we see a diagram of 1ln (Y .r)-r where r is the radius, conform
the method described in paragraph II.3.3. The numbers 1 to 7 indicate

different absorption coefficients Ua of Evans Blue.

From fig. IT.4.1 we can determine U off by linear regression and subsequently

calculate the asymmetry parameter g from eq. (II.3.12). The results are shown

in Table II.4.

no- Us Ua Ueff &
1 1 mm L 0 mm ! 0.034 mm " X
-1 -1 -1
2 1 mm 0.065 mm 0.091 mm 0.586
-1 -1 -1
3 1 mm 0.012 mm 0.114 mm 0.643
4 1 mm ! 0.020 mm - 0.138 mm 0.702
5 1 om t 0.030 mm ! 0.1764 mm ! 0.695
-1 -1 -1
6 1 um 0.040 mm 0.196 mm 0.719
7 1 mm ! 0.050 mm - 0.216 mm © 0.738

Table II.4: Results and calculated g-value for Intralipid from RRTI,
Rotterdam. The numbers 1 to 7 refer to the curves in fig. II.4.2.
(compare with Table II.1).
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From Table II.4. we find for the average g-value:

g = 0.68 + 0.05 (11.4.2)

Again we can use this value to determine the absorption Moo of Intralipid
itself and we find:
-5 -1 -1
M a0 = 5 x 10 mm ml 1 (11.4.3)
Again this value cannot be neglected for the media we have used (25 ml/1l of
Intralipid) and we have to add this absorbance to the absorption coefficient
Moy in Table II.4. The corrected values and the corresponding corrected g*-

values are summarized in Table II.S.

. *
no Us ua Ueff 8

2 1 mn ! 0.008 mm ! 0.091 mm 0.655
-1 -1 -1

3 1 mm 0.013 mm 0.114 mm 0.679

4 1 mm - 0.021 mm 0.138 mm © 0.722
-1 -1 -1

5 1 mm 0.031 mm 0.174 mm 0.710
-1 -1 -1

6 1 mm 0.041 mm 0.196 om 0.730
-1 -1 -1

7 1 mm 0.051 mm 0.216 mm 0.747

Table II.5: Corrected results and g*¥-values for Intralipid from RRTI,
Rotterdam (compare with Table II.2).

From Table II.5 we can calculate the average g*-value, finding:

g% = 0.71 + 0.03 (I1.4.4)
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II.5 Summary of the results.

Finally we can compare these values with the values found by the other members
mentioned in Table II.3. Because we all used the same Intralipid from RRTI,
Rotterdam, all differences are due to a difference 1in the method of
measurement. These results for Intralipid from the RRTI in Rotterdam are
summarized in Table TI.5, together with the results for Intralipid from the

St. Joseph Hospital and which is used in all further experiments.

Mg ¥ a0 &
A.  Moes C.J.M.  (38.6 + 0.2)x10 5 x 107 0.70
B.  Star W.M. (40.0 + 0.1)x107>  1.2x107° 0.67
Jacques S.L. *]
Wilson B.C. *]
Moes C.J.M. 40.0 + 0.2x107° 5 x 107 0.71

Table 11.5: Comparison of the coeffifiengf of Intralipid,
(py _ and are inmm ml "~ 1).
A: Results #8r Intralipid from St. Joseph Hospital.
B: Results for Intralipid from RRTI in Rotterdam.

*] These results were not known at the moment of writing.
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ITI. Brain tissue phantom experiments.

ITI.1 Introduction.

In this chapter we will turn to a more clinical situation, namely the
treatment of malignant brain tumours. The majority (up to 90%) of these
malignant gliomas appear focal. About half of these gliomas show evidence of
macroscopic 1nvasion into the white matter of the brain; thus for these
gliomas there is not a sharp separation between tumour and normal tissue, but
there is a diffuse area where tumour cells are inbedded in normal tissue
[Sandeman, 1986]. The conventional therapy has consisted of resection, where

possible, followed by adjuvant radiotherapy and chemotherapy to treat residual

tumour [Sandeman, 1986], see fig. IIL.1l.1

diffuse area

Fig. III.1.1: Model of the brain; part of the tumour is cut out.
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The results, however, have been poor; in all treatments the two-year survival

has been in the region of 10% or less, irrespective of the therapy [Salcman,

1980], see fig. III.1.2.

50—

Fig. 1. Survival in glioblastoma. Results of a retrospe;liye
analysis by Salcman, 1980(4), published by kind permission
of the Congress of Neurological Surgeons. O-~O, surgery
alone; O—--0, surgery + DXR, ®—@, surgery + DXR +
chemotherapy.

25—

PERCENTAGE SURVIVING

TIME (Months)

Fig. III.1.2: Survival of glioblastoma.

It is clear that "present therapeutic methods for malignant gliomas aré SO
ineffective in influencing longterm survival that all new potential treatment
modalities should be fully evaluated” [Sandeman, 1986].

Therefore Photodynamic Therapy (PDT), described in the introduction of this
report, can conceptually be a rather good method because tumour cells are more
affected by this therapy then normal cells, which is very important in the
brain. Besides there is good evidence that whereas the concentration-ratio of
HpD for tumour-to-normal tissue is 2:1 or 3:1 for most tissues, it is in the
order of 26:1 [Wharen, 1983] or 35:1 [Salcman, 1980} for the brain.

A time-depending graph of this concentration-ratio, measured by [Salcman,

1980], is shown in fig. III.1.3.
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Fig. III.1.3: Fluorescence in the normal brain tumour, and the brain adjacent
to tumour (BAT). From [Sandeman, 1986].

This makes PDT a very selective method for treatment of malignant gliomas.

An applied method for the follow-up is described by Wilson B.C. [Wilsom,
1986]. The tumour cells can be selectively killed. In this method a rubber
balloon is inserted inside the resected hole in the brain and filled with a
purely scattering medium. After that a fibre is placed in the middle of the
balloon and the light will be multiple scattered. With proper positioning of

the fibre the balloon will act as an isotropic diffuse light source (see fig.

ITI.1.4).
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scattering
. . medium

diffuse area

Fig. III.1.4: Diffuse light source for treatment of malignant brain tumour.

In this way the light can penetrate into the brain tissue and in combination

with the photosensitizer HpD the tumour cells can be selectively killed.

However, when we look at the effective penetration depth of the light in the
tissues as measured by B.C. Wilson, we see that the results are only in the
order of 2 to 5 mm (see fig. III.1.5). The effective penetration depth

-1

(= u eff) is the depth required to reduce the irradiance in the tissue to

1/e or 37% and is given by the slope of the graph of ln(Y .r) against r (see

fig. I1.3.11).
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Figure 1. Penctration depths, as in table 1: B, in vivo, post irradiation; @, in vivo, pre irradiation; 4, in
vitro, pre irradiation; S & E, range of values from Svaasand and Ellingsen (1983, 1985), in vitro, pre irradiation.

Fig. I1I.1.5: Penetrations depths in brain tissue for irradiation with diffuse
sphere.

A method to improve the penetration of 1light into the tissue is therefore

clinically very relevant.

A first attempt was to compare this situation of diffuse illumination with
collimated illumination, because the idea was that with collimated
illumination we get deeper penetration of 1light compared with diffuse

illumination (see fig. III.1.6).

air - \ — air
777777 1 ] 7/ .
tissue — — tissue
a diffuse illumination b collimated illumination

Fig. I1I.1.6: Comparison of diffuse and collimated illumination; shown are
the paths of the unattenuated photons before interaction with
the tissue.
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Therefore we used the light source shown in fig. III.1.7

isotropic
fibre

diffuse area

Fig. II1.1.7: Isotropic irradiation: point source placed in the middle of
the balloon with diameter d = 54 mm.

A fibre with an isotropic radiating tip is placed in the middle of the balloon
(in this case consisting of glass instead of rubber). The balloon was filled

with air, water or a scattering medium respectively.

The light distribution was measured by a fibre with an isotropic detecting

tip; as a tissue phantom we used Intralipid ( Lls = 1 mm—l, no absorbance

added), (see fig. III1.1.8).

=::1sotropic detec-

ting fibre

Intralipid

Fig. III.1.8
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The results are shown is fig. IIL.l.9.

900
medium is Intralipid ,
8oo no absorber added .
] balloon is filled with
v | #eo7 X air
6 oo+ e : water -1
] Intralipid, He= 0.5 mm_,
50018 o Intralipid, uj= 1 mm
4001
3001
200
100

ad r e . . "y j
12 346 5 6 7 8 91011321316 15161718 19202122 23 26282627 23
—-——%
r(mm)

Fig. III.1.9: Light distribution inside the medium as a function of the
distance r, measured from the surface of the balloon.

From the results it 1is clear that in this way it is hardly possible to
influence the penetration of light; it makes no difference whether there is a

scattering medium inside the balloon or not.

11I.2 Modelling the light distribution.

The question which arises now is whether it is possible to realise deeper
penetration of light in the tissue without creating an overdose of light at
the edge of the tissue (this could be harmful because of possible heating
effects).

From the previous paragraph it is ciear that changing diffuse incident light
into collimated incident 1light makes virtually no difference; therefore we

have to look more closely to the predicted light distribution inside the

medium.
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What we 1like to have is a constant light intensity as a function of the
distance r (measured from the surface of the balloon), inside the medium (see
fig. II1.2.1A). ¥ min is the minimum light fluence for necrosis of the tumour
cells. What we obtain, however, is the pattern shown in fig. III1.2.1B, which
is the light distribution for a point source inside a balloon. This curve 1is

described by eq. I.5.4, thus

1

Y ; exp(—]Jeffr) (I11.2.1)

When we increase the light intensity there will be a deeper penetration of the
light, but the edge of the tissue can receive an overdose of light (see fig.

IIT1.2.1C).
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Fig. IIL.2.1A: Ideal light
distribution.

T e

|

.
extensi

of* tumour

on >

Fig. I1I.2.1B: Light distribution
with isotropic
irradiation,
small intensity.

Fig. I1I.2.1C: Light distribution
with isotropic
irradiation,
higher intemsity.

Fig. I1I1.2.1D: Light distribution
when irradiated with

a forward directed
Y wide beam
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For a deeper penetration, another attempt 1is: irradiate with a forward
directed wide beam. According to paragraph I.3 we can expect for a wide light
beam roughly the pattern shown in fig. III.2.1D and beyond a few mean free
paths the curve will behave according to eq. 1.3.9, thus (when we make the
transition from carthesian coordinates to spherical coordinates, and

substitute z by r)

¥ =~ exp(- Ueffr) (111.2.2)

Comparing eq. (III.2.2) with eq. (III.2.1) it is clear that the decrease of

the light intensity for a wide beam is smaller then for a point source.

OQur suggestion therefore is to create a forward directed wide beam within the
balloon. For this purpose half of the balloon was coated to make it a mirror
(see fig. II11.2.2A). Again the fibre with isotropic radiating tip was
inserted, but now placed in the focus of the mirror instead of the centre.*) A

forward directed wide beam will be the result.
Some other possible advantages of the system are that with a variation of the

tip in horizontal direction there is the possibility for a diverging, parallel

or focussed beam.

*) To avoid direct radiation, a little mirror was placed just behind the tip,
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isotropic fibre

mirror A
>
A >
va >
>

Fig. III.2.2A: System for wide beam experiment.

ceed

Variation in horizontal direction e

Qe

Variation in radial direction (::.

Fig. II1.2.2B: Possibilities for application.
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ITI.3 Experimental results.

We carried out some experiments to compare the system with a mirror (see fig.
I11.2.2A) with the system of isotropic irradiation (see fig. III.1.7). In both
cases the balloon was filled with water to realise index-matching. The
measurements were carried out for a diverging, a parallel and two focussed
beams (see fig. III1.2.2B). As tissue phantoms we used three scattering and
-1 -1

absorbing media with optical parametersLlS =1mm , g=0.7 andLla = 0 mm

Moo= 0.01mm, M, = 0.05 mm‘-l respectively. These parameters differ from the

-1

parameters of brain tissue which are in the order of Mg o= 5mm , g = 0.9 and

W, = 0.15 mm—1 [Splinter, 1987]. Nevertheless we have chosen for the first
parameters to be able to measure also deeper indside the phantom.

In this paragraph we will present the measurements; the results will be

discussed in paragraph II1I.4.

The experimental set—-up we have used is shown in fig. III.3.1.

—
8
fibre
figre
P w ) ) 77
laser [v22) 21 [ 0
[aser ] [ -
2 3 4 /////// 8
~ \— medium 6 7
1. laser, 14 mW, 632.8 nm 5. model for measurements
2. chopper 6. current-voltage converter
3. beamsplitter 7. lock-in amplifier
4. coupling 8. diodes

Fig. III.3.1: Experimental set—up for brain tissue phantom experiments.
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First of all we carried out measurements for the system of isotropic
irradiation which we define, following Wilson [Wilson, 1986], as a point
source inside a sphere filled with water (see fig. II1.1.7); the results are
presented in fig. III.3.2. The vertical axis gives the ratio of the energy
fluence rate inside the medium and the incident energy fluence rate at the
surface of the balloon; the horizontal axis is the distance r in mm measured
from the surface of the balloon. The solid lines are the theoretical curves
calculated with eq. I.5.4 and normalised at the incident energy fluence rate

per mm2 at the surface of the balloon.

1500 1 Medium consisting of
1 Intralipid: p_=1 !
v | s -3 -
o= 1.3-10 © mm
I a0 -
Evans Blue: My 0 mm 0]

v =0.01 L o

1 X

ua=0.05 mm

500

Fig. I1X.3.2: Results for isotropic irradiation (point source in a sphere
filled with water, no mirror).

Second, we carried out measuremen£s for the system with a mirror; these
results are shown in figures IITI.3.3 to III.3.6. In fig. III.3.3 the pattern
of the incident beam is shown for the balloon with mirror; for this purpose
the medium was replaced by water (no scattering, no absorption). We measured

in the x-directon at z = 0 (see fig. III1.3.3).
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In each picture of fig. IIT.3.3 the vertical axis at the left gives the energy
flueace rate in arbitrary units. In each picture of fig. IIT.3.3 we also
calculated the average value; this average value in each picture was called
IlOOZ and is given at the vertical axis at the right side in each picture. By

assigning I in the case of a parallel beam the value Io’ we can compare

1007%
the four patterns in fig. IIT1.3.3 mutually. In the first three patterns in
fig. IIT.3.3 we see a dip in the middle; this dip is caused by the little
mirror just behind the isotropic radiating tip (see fig. I11.2.2A). The two
peaks in all of the first three patterns are caused by the fact that the

mirror is a sphere and not a parabola what it should be to create a parallel

beam (see also the discussion in paragraph III.4).

In figures III.3.4 to III.3.6 the measurements for the balloon with mirror in
the case of a diverging, a parallel and a focussed beam are shown. For the
mdium we used Intralipid and Evans Blue; the optical coefficients of each
medium are given in the figures. The circle in each figure is the edge of the

balloon, the medium is beneath it.

Next we have to compare the measurements of the system with the mirror with
the system of 1isotropic irradiation. For this purpose we measured from the
figures TII.3.4 to III.3.6 tﬁe decrease in the energy fluence rate as a
function of the distance r, measured from the surface of the balloon. To avoid
measuring in the shadow caused by the dip of the incident beam (see also fig.
II1.3.3) we measured not along the vertical z-axis, but along the axis A-B
shown in the figures. The results are shown in figurews III.3.7 to III.3.9. To
be able to compare the system of isotropic irradiation with the system with
mirror it is necessary to divide the results of fig. III.3.2 (isotropic

irradiation) by a certain factor to equalize the results of both systems at
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the surface of the balloon, and thereafter look at the decrease of both
systems inside the medium. This has been done for each picture in the figures
IIL.3.7 to IIL.3.9. In each figure the vertical axis gives the relative energy
fluence rate normalized to the incident fluence rate IlOO% (see also fig.

I11.3.3), as a function of the distance r measured from the surface of the

balloon.
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I11.4 Discussion.

In this chapter we will discuss the results from the previous paragraph

successively.

First we have to look to the results of the system with isotropic irradiation
(see fig. I11.3.2). We see that the measurements (single points) are in good
agreement with the theoretical curve (solid line), except for the measurements
with pure Intralipid (y s = 1 mm—l, no absorber added). This difference,
however, can possibly be explained by a too big normalization factor for these
measurements. Also we can notice the absence of a maximum which is predicted
by the theory. This absence of a maximum is possibly due to the finite size of
the isotropic tip of the detecting fibre; in fact this tip is a little sphere
(radius r = 0.45 mm) which integrates over a certain area, and a rather

subtile maximum could be spreaded out.

Second, we look at the patterns of the incident beams, shown in fig. III.3.3.

To explain this pattern we have to look at fig. III.4.1.

Spherical mirror

r
Fig. II1.4.1: Reflection at a sphere. f = — = focus of the sphere.
2
p = object distance
image distance
distance to the symmetry axis
ptan o

=3
It

!
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Reflection at a spherical mirror can be expressed by the formula of Descartes:

1 1 2
_.+-=_
P q r

(I11.4.1)

If a point source is placed in the focus, a parallel beam will be the result.

This formula, however, is only valid at small opening anglest ; at greater
angles we have to make a correction and eq. (III.4.1) becomes [Alonso and
Finn, vol. 3]:

1 1 2 h2 1 1

B G (II1.4.2)

p ¢ r r r P

With eq. (III.4.2) the reflection at a spherical mirror can be simulated
theoretically; the results are presented in fig. III.4.2.

Shown are the 1light rays from a point source in regular steps 100; the
accessory light pattern was estimated by adding the number of rays per unit
length of the x-axis. Comparing the theoretical results of fig. IIT1.4.2 with
the measured results of fig. III.3.3, we see a rather good agreement. Besides
the similarity in the pattern there is also good agreement for the width of
the beam, which in the case of the beam is approx. 20 mm. It is obvious that
the small dip in the middle of the of the measured patterns is caused by the

little mirror behind the isotropic radiating tip.

We must conclude that the difference in the pattern of the incident beam
between a spherical mirror and a parabolical mirror is apparently substantial

and can influence the final result.
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Fig. II1.4.3: Theoretical coastruction of the incident light pattern of the
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Looking at the results for the mirror system placed in a écattering and
absorbing medium in figures III1.3.4 to III1.3.6, we see that there are rather
different resulting light patterns between the several incident beams. For a
diverging and a parallel beam there exists a dip in the pattern which

disappears for the focussed beam.

Finally we have to look at the comparison between the results for the mirror
system and the isotropic irradiation system, shown in the figures III.3.7 to
I11.3.9.

For a medium with only scattering, no absorber added, the mirror system is
better than the isotropic irradiation system only within a small distance.

The diverging beam is slightly better than the parallel beam, the focussed
beam is worse everywhere.

Adding some absorber to the medium (figures III.3.8 and III.3.9) makes the
result even worse, although again the diverging beam penetrates deeper than
the focussed beam.

An interesting point is that the decrease of the mirror system is sharper at
large radii than the decrease of the isotropic irradiation system, in
contradiction with our expectations (par. III.2).

Apparently the wide beam approximation is not valid for this mirror system; a
cause 1is probably the too small width of the incident beam in fig. III.3.3
(approx. 20 mm for the parallel beam). We have found strong evidence for this

explanation in chapter IV, par.IV.4

The final conclusion with regard to the brain tissue phantom experiments is
that with the developed instrument we cannot receive a deeper penetration of
light inside the medium. Only at small distances we observe a higher energy

fluence rate, but the decrease 1is sharper at 1larger radii than with the

isotropic irradiation system.
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Iv. Penetration dgpths as_g_function

of beam diameter: experiments and theory.

.l Introduction.
In this chapter we will investigate the conditions for which the wide beam
approximation is valid; in particular the influence of the beam diameter on
the light penetration will be studied. This influence of beam diameter is of
interest in PDT because it can strongly influence the penetration depth of the
light in the tissue and consequently the result of the treatment.

Another point of interest is that these measurements together with well-
defined optical parameters (see par. II.5) allow a comparison with the
theoretical finite diameter solution of par. I.4.

Finally we will try to find evidence that the deviation of the results from
the mirror-system (see chapter III) from the wide beam solution is caused by
the fact that the beam diameter was too small, (the diameter was approx. 20

mm, see fig. II1I1.3.3).

Iv.2 Experimental set-up.

For our measurements we used the experimental set-up shown in fig. IV.2.1.
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Fig. IV.2.1: Experimental set-up for finite diameter beam measurements.

A laser beam is directed to a microscope object-lens (f = 10 mm), diverged and
after passing through a circular diaphragm directed to a tank filled with a
scattering and absorbing medium. In part of our experiments this tank filled
with medium was surrounded by a tank filled with water to realize index-
matching (see fig. 1V.2.2),

in the other part of our experiments this was

omitted to investigate the influence of the boundaries.

When the medium is irradiated by a beam of light, part of the energy flux will
leave the medium in the negative z-direction (see fig. IV.2.2).

For a water-air boundary the critical angle for total reflection 8¢ is 480;
the experimental set-up for index-matching was constructed in such a way that
light leaving from the middle of the tank filled with medium under the

critical angle 8¢ reached the front of the watertank just in the corner (see

fig. IV.2.2).
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Fig. IV.2.2: Experimental set-up to realize index-matching.

Light beams leaving the medium and reaching the front under an angle smaller
than the critical angle (e.g. beams 1 and 3) will be transmitted through the
boundary; the reflected part is negligible (see also par. I.2.4, fig. 1.2.4).
Light beams leaving the medium at larger angles will reach the side of the
watertank (directly like beam 2 or via total reflection at the front like beam

4) also at angles smaller than the critical angle 6c and will 1likewise be

transmitted.
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In this way index-matching could be realized.

Another point of importance is that the finite beam solution was developed for

a parallel incident beam, while we have a diverging beam (see fig. IV.2.3).

| Laser

A

\V4

\
\

S

/

7

/

/

) :

/

R
s p

SN

Ly air-water
boundary

Fig. IV.2.3: Experimental set-up for construction of a parallel beanm.

However,

shown by

simple geometry that the

maximum angle of

deviation (R) from a parallel incident beam (see fig. IV.2.3) is given by:

(1V.2.1)
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where d is diameter of diaphragm

1 is distance between object—glass and air-water boundary (1

140 cm)

n, is index of refraction of the medium (for water n, = 1.33).

[

In the set-up we used the maximum diameter of the diaphragm was d = 9 cm, and

. . R o
the corresponding maximum deviation ange was B = 1.4

nax , which is rather

small. Therefore this experimental set-up was considered adequate for our
purposes.

To reduce the amount of measurements we measured only in the middle of the
beam from the medium-water boundary or medium~air boundary in the z-direction

(see fig. 1V.2.2).
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v.3 Results.

First we measured the profile of the incident beam in pure water; the results

are shown in fig. IV.3.2.

In fig. 1IV.3.3 the results are shown from the finite beam diameter
measurements in the case of index-matching, together with the results of
computer calculations, based on the finite diameter solution of par. 1.4, for
several optical parameters.

The vertical axis gives the energy fluence rate inside the medium with respect
to the incident energy fluence rate taken 100 per mmz. The horizontal axis
gives the depth z inside the medium in mm, measured from the boundary of the
medium.

For the experiments we used mixtures of Intralipid from the St. Joseph
Hospital and Evans Blue.

Fig. IV.3.4 gives the same measurements as those in fig. IV.3.3, but now in

the case of a medium-air boundary.

A few words have to be said concerning the measurement of the energy fluence
rate inside the medium with respect to the calibration measurements in water
of the incident beam.

Consider the isotropic tip shown in fig. IV.3.1A, with surface area A.

In an ideal situation this whole surface area A will be illuminated. However,
when the energy fluence rate inside the medium is measured experimentally,
that part of the tip which is connected to the fibre with cross section a will

not be illuminated (see fig. IV.3.1A).



-77-

laser-~
beam

coating

///£:> /////fibre
% g Z

/////;q Fk\\\\ coating

A. Energy fluence rate B. Calibration

measurement measurement

Fig. IV.3.1.

This disturbance caused by the connection of the tip to the fibre does not
appear for the calibration measurements, because in this case the fibre is
directed perpendicularly to the incident laser beam (see fig. IV.3.1B). So we
have to adjust the relative energy fluence rate measurements inside the medium
with a factor A/(A-a) to correct for this connection part.

In our case (with tip diameter dtip = 0.9 mm and fibre diameter df. =

ibre
0.65 mm ) the correction factor is A/(A-a) ~ 1.15.

The results in figs. IV.3.3 and IV.3.4 were multiplied by this correction

factor.
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Iv.4 Discussion.

When we look at the profile of the incident beam (fig. IV.3.2) we see that
although the profile is Gaussian, the deviation from a uniform profile is

small and therefore the profile was considered adequate for our purposes.

From the finite beam diameter measurements (figs. IV.3.3 and IV.3.4) we notice
a good agreement between measurement and theory, although for small beam
diameters there seems to be a deviation which possible can be explained by the
fact that the beam diameter is in the order of the diameter of the isotropic
detector (dtip = 0.9 mm).

Comparing the results for index-matching (fig. IV.3.3) with those in the case
of a medium-air boundary (fig. IV.3.4) we notice a larger energy fluence rate
in the latter case; this is due to the diffuse back reflection in the case of
a medium-air boundary, which consequently determines the boundary conditions
{(see par. 1.2.4).

From all results it is clear that the size of the beam diameter has a large
influence on the energy fluence rate inside the medium.

Looking at the results for an incident beam with a radius of 10 mm (comparable
with the parallel beam of the mirror system inm ch. III, see fig. III.3.3), we
can notice a considerable deviation from the wide beam results (with a radius
of 45 mm). Therefore it is likely correct to assume that the deviation from
the wide beam solution for the mirror system in ch. IIT is caused by the too

small beam diameter.
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V. Proposal for a (semi-)invasive in-vivo determination
of optical parameters.

V.l. Introduction.

One of the main problems in Photodynamic Therapy (PDT) is the prediction of
the light distribution in the tissue (see the Introduction of this report).
Essential for this prediction is knowledge of the tissue parameters, namely
the absorption coefficient Uy scattering coefficient S and asymmetry
parameter g, assuming the diffusion approximation to be valid.

One of the methods for determination of all three parameters is the
integrating sphere method [Splinter, 1987]. Other methods have been described
by e.g. [Marijnissen and Star, 1987] and by [Wilson et al. 1987]. All these
methods are in-vitro methods with the disadvantage that the optical parameters

can change substantially with respect to in-vivo conditions.

v.2. Theory and discussion.

In chapter I1 we measured the optical parameters of Intralipid and Evans Blue
separately; the method used in that chapter, however, cannot be used for
tissues which possess both scattering and absorption. The method in chapter II
concentrated on determination of Mo Mg and g.

In chapter I, however, we defined optical parameters related to Mo B and

g, namely the linear attenuation coefficient U oo the 1linear transport

coefficient ey and the effective attenuation coefficient u (see also

eff

appendix A) where
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He = M b (V.2.1)
Moy = ua+(l-g) Mg (V.2.2)
L
= 2
Hoge = (3 uautr) (v.2.3)

Conversely, Ua’ Us and g are given by

2
u
ff
R (V.2.4)
3 1'ltr
U2
eff
W= M~ 77T (v.2.5)
3
Her
3 u2 _ u2
L A (v.2.6)
He Her™ B oeff
Consequently, the optical parameters Moo u s and g can be found by
determination of the parameters ut, utr and ueff'

The linear transport coefficient utr and the effective attenuation coefficient

Mogg can both be determined invasively by using the solution for a point

source in an infinite (or bulk-)medium, (eq. 1.5.3):

3 UtrP
y (B) = ———-== exp(- ueffr) (1.5.3)

bt r

with P
Using eq. I.5.3, we find for of £

9 In( ¥.r)
— e (v.2.7)
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which is the slope in a 1n(Yer) versus r-diagram (see also par. II.3).

Oncey off is found, we can find y r from eq. I1.5.3 by

1 dlnVY
u = == (=m—=—- ) (v.2.8)
tr C 3P r
0 )
3 1
where Co = ~~— - exp(-y eff'ro) (v.2.9)
by r,

and rO = distance to the point source.

Thus, u tr is determined by the slope of a 1n¥ versus P-plot at point e

In practice this means that in addition to determination of the energy fluence
rate ¥ as a function of radius r to find Hoofg? at each radius inside the
medium the incident power P must be varied to determine y er The advantage of

this method is that both measurements can be done at the same time.

The last parameter My still has to be found by an inlvitro method by using a
slab of tissue and detecting the transmitted light (see also par. II.3.2B).
For light transmitted through a scattering and absorbing slab of tissue of
thickness d and detected under a small angle (see also fig. II.3.8) we may
write

Y =?o exp{-u td) (v.2.10)

where Y o is incident fluence rate
Yy is transmitted fluence rate
W 1is total attenuation coefficient
= +
(u N u a Us)

d is thickness of the slab
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From eq. (V.2.10) we can find Ta by

1

ut==;(an-anO) (V.2.11)

If a method can be found to determine the total attenuation coefficient u " in

vivo, this method could be fully invasive.

One of the problems of the method presented above is proper determination of
the constant CO (see eq. V.2.9), which is needed to determine y e Especially

accurate detection of the related radius ro is essential.

1

For brain tissue (with optical parameters in the order of y a 0.15 mm ,

u =5 mm—l, g = 0.7 [Splinter, 1987] we find for a variation of 0.1 mm in
s
the radius r a variation in C—l0 (and consequently in ]Jtr) of 10-15%. This

accurate detection of r, could possibly be a limitation of the method.
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RECOMMENDED NOMENCLATURE FOR PHYSICAL QUANTITIES IN THE
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MEDICAL APPLICATIONS OF LIGHT

angle

NAME OF QUANTITY DEFINITION SYMBOL UNITS
(linear)absorption probability of absorption per u m—1
coefficient infinitesimal path length a
(linear)scattering probability of scatter per Mg m_1
coefficient infinitesimal path length
(linear)attenuation probability of interaction per My m_1
coefficient infinitesimal path length

= +

HemHa 7 Mg
differential scattering probability of scatter through dus/dQ _lsr_1
coefficient a specified angle 6 per infinite-

simal path length per unit solid

angle
scattering phase function (27 / Lg)d Lg(e)/dQ S(cos®)
single scattering albedo Lg/ B a
mean cosine of scattering [ 1S(cose)cosed(cose) g

-1
mean free path 1/11t mfp m
(linear transport U =y + (1-g)u u m—1

. s tr S tr

coefficient
diffusion constant D=(3 utr)-l D m

ff i i i “a% u -1
effective attenuation Wogs = ( ) off m

coefficient



specular reflectance

scattered reflectance

(total)reflectance

primary transmittance

scattered transmittance

(total)transmittance

internal reflectance
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fraction of incident light RS
flux reflected by irradiated P
surface
fraction of incident light R
flux scattered through S
irradiated surface

=R+
Rt Rsp RS Rt
fraction of incident flux T
penetrating without interaction P
fraction of incident light flux T

exiting a surface after scattering

at least once

T, =T +T T
t p s

fraction of light incident R
from within the tissue reflected
back into the tissue



photon number

radiant energy

photon flux
energy flux

photon fluence

energy fluence
photon fluence rate
energy fluence rate

photon radiance

(energy)radiance

photon exposure

radiant exposure
(dose)

photon exposure rate
(intensity)

radiant exposure rate

-88-

number of photons emitted N
transferred or received

energy of photons emitted J
transferred or received

= hV N

dN/dt ¢t
hV dN/dt ' W
dN/dA where dN photons ¢ m_2

are incident on a sphere
of cross—-sectional area dA

hv dN/dA ' v Ju 2
d¢/de 0 m 2st
d¥/de y Wm--2

. -2 -1 -1
d#/d where df is the photon m s sr

fluence rate propagating in a
specified direction within solid

angle dQ

A -2 -1
dy /dQ L(#,8) Wm “sr
dN/dA where dN photons are a2
incident on a plane surface of
area dA
hv dN/dA Jn”?
dN/dade m—zs—l

hy dN/dAdt W 2
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Appendix B.

We will present here the "transport theory” for the propagation of light in a
medium and the diffusion approximation associated with this theory. Also a
solution will be given for a beam with finite diameter incident on a medium.

This solution was developed by Ishimaru (1978), Reynolds (1975), Groenhuis

(1983) and Prahl (1986).

The transport theory is based on the "equation of transport” (Ishimaru, 1978,

ch. 7):
~ ut
(8 ¥V )L(2,8) = —1JtL(f,§) + — 4fﬂs(cose)L(i‘,§’)dw' (B.1)
b
where
a . \ , . ; o -2 -1
L(%,8) = energy radiance in ? in direction § (Wm “sr )
u, = absorption coefficient (m—l)
Mg = scattering coefficient (m_l)

M, = “a+ pg = total attenuation coefficient (m—l)

dw” = element of solid angle (sr—l)

-

8.8°= cosine of the angle between § and §7.

cos ©

S(cos8)= phase function representing that part of the photon flux which is

~

scattered from direction §7into §.

In eq. (B.1l) the left part is the net rate of change of L in the direction §:

dL(z,s) ~
— = (8. V)L(2,8)
ds
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The first term on the right side in eq. (B.l1) represents the losses due to
scattering and absorption, whereas the second term 1is the gain due to
scattering from all directions §° into direction §. This gain depends on the
relative probability for scattering of a photon from direction §7 into
direction §, called the “"phase function” S(cos®). There excist many
theoretical descriptions of the phase functions (see part I1.2.2); we will use

"isotropic scattering combined with forward peak”:

S(cos8) = a [(1l-g)+2g6 (1-cos8)] (B.2)
Hg
where a = -17 = albedo
t

and g = asymmetry parameter (see par. I1.2.2).

Substituting eq. (B.2) into eq. (B.1) we find after some calculations:

JL(?,87)dw” (B.3)
4T

reduced scattering coefficient

=
]

u s(l-g)

= -+ transport coefficient
Hop H s H a P ]
It is convenient to devide the energy radiance L(%,8) into two parts, the

reduced incident energy radiance Lri(?,ﬁ) and the remaining diffuse energy

radiance Ld(?,é), thus

L(E,8) = L ,(%,2) + Ly (%,8) (B.4)
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Substituting eq. (B.4) into eq- (B.3) we find

d
d_z Lri(?’z) == UtrLri(fyz) (B‘Sa)
~ D Ay _ ~ s ~w .
(s.v)Ld(f,s) = ptrLd(f,s) + ) S Ld(?,s )dw
T e
S -
+ s Lri(f,z)dw (B.5b)

4 4

Note that Lri containes unscattered plus purely forward scattered light (see

par. 1.2.3).

We will now consider the diffusion approximation, in which we assume that the

diffuse part of the radiance consists of (nearly) diffuse radiation (see fig.

B.1)

s
[ \ >
L,=Y¥,=const

)
d d ’ )
N ,\L(;‘, §)=wd(r)+3/4nF

d 4 5f

Fig. B.1l: Diffuse radiance L (£,8) for the diffusion approximation.
Fd(f) is the diffuse flux vector in the direction of unit vector §

£



-992-

For this purpose we define the diffuse energy fluence rate V d(?), the reduced

incident fluence rate wri(f) and the diffuse flux vector ?d(f) as:

1
Y d(i’) = Z——- / Ly dw (B.6)
i
4
1
¥y o (2) = — [ L. dw (B.7)
ri rl
4w 4m
%d(f) = F (2) §f = Ly (2,8) 8 du (B.8)
by

Because Ld(?,8) describes nearly diffuse radiation, we may expand it in a

Taylor series and truncate it after the first two terms:

L(2,8) = ¥ (B) + ¢ ’F‘dm.g (B.9)

Substitution of eq. (B.9) into (B.8) will give¥*):

3
c = —— (B.10)
i
thus
3 ~
Ld(f,s) = ?’d(f) + Z:: Fd(f).s (B.11)

We continue with the derivation of the diffusion equation on the basis of eq.

(B.5b) by taking the following two steps:

*) For any vector A is ﬂf §(§.K)dw =

and J 3[8V (A.8)]dw = O
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1. First, we integrate eq. (B.5b) over 4 of solid angle and together with

eq. (B.6) and eq. (B.11l) we obtain:

A.A = - b4 + - v .
v.F (%) it M d(f‘) 4m s ri(?) (B.12)

2. Second, we multiply eq. (B.5b) by 8§ and integrate again over 47 of solid

angle to obtain:

3 3
Fd(?) + — [ e .(2,8) 8 dw (B.13)

ri
4 b

T Moy

where

(2,8) = — [ I _.(%,2)dw (B.14)

Combination of eq. (B.12) and eq. (B.13) and elimination of Fd(f) yields the

"time-independent diffusion equation” for the diffuse energy fluence rate

y d(i‘):

02 2 ) (f)=—“s’w vl s 5 d (B.15)
V.7 Hers’ ¥y 5 ri . ri ° %Y :
4 m
where
2 . , . .
U off = BLJathr = effective attenuation coefficient
D = (31Jtr)—l = diffusion constant

So far we have neglected the nature of the incident light. Here we will derive

a solution for a collimated light beam of finite width perpendicular to the

surface of the medium in the z-direction; the beam can be described by:
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L, (2:8) = L _B(¥) & (#-2) (B.16)

. , . -2
where Lo incident irradiance (Wm )

B(r)

radial distribution of the incident light beam; here we assume

B(r)

1

1 if 0<r<b

=0 if r>b

When the indices of refraction are different, Lo has to be multiplied by a
factor 1-[(n —1)2/(n +1)2].
med med

We now return to eq. (B.5a) to calculate the reduced incident beam Lri:

d
(—1-; Lri(l?,z) =" W Lri (2,2) (B.17)

with boundary condition:

L (2,2)] 5= L;.(2,8) (B.18)

The solution of eq. (B.>a) becomes:

L (2,8) = L B(rexp(-y 2) & (W-2) (B.19)

Substituting eq. (B.19) in q/ri (eq. (B.7)) ande - (Eq. (B.14)) we find:

Y g = % LB(T) exp(-y 2) (8-20)
e (B.21)
Yo = —Z— LOB(r) exp(—litrz) .
and
S gri(?,§)§ dw = 0 (B.22)

4w
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SO

Q) = — r¢ 1 (F,8)8 dw =0 (B.23)

Substituting these equations in the diffusion equation (B.15) and in the
boundary conditions [eq. (I.2.16), see par. I.2.4] we find for this incident

beam:

-

2 Hs

(V= of ) ¥ (B = - = Ly ) (B.24)
with boundary conditions:
at 2=0 y (2) - 20A = ¥ (2) = 0 (B.25a)
0z
at z=d ¥ (%) + 2DA i?; y () = 0 (B.25b)

The differential equation (B.24) can be solved analytically, by using a Greens
functions approach. The Greens function G(f;2”) has to be a solution of the

equation:

G72* uzeff) G(t,27) = S§(2-27) (B.26)

with boundary conditions

at z=0 G(2;2°)-2DA {%; G(B;27) = 0 (B.27a)
at z=d G(%;%7)+2DA {%— G(2;27) = O (B.27b)
z
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In cylindrical coordinates eq. (B.26) becomes

2
1

. )
(- - r 9+ + ii;— - n zeff) G(2;27) = — § (2-27)68 (z-27) (B.28)

r 3r or oz 27r

The Greens function defined by eq. (B.28) and subject to boundary conditions

(B.27) is (see Reynolds, 1975 and Prahl, 1986):

G(2;27) = —i— fill’ aP (2 e, (27) g (r;r7) (B.29)
where
I, =k /[2k d+sin2 y_-sin 2(k_d+v ) ‘ (B.30)
pn(z) = sin(knz +‘Yn) (B.31)
g (r;r7) = i°z 1“iii°i 1“::; i::z (B.32)
o n (0] n

where Io and KO are modified Bessel functions.
The eigenvalues kn are solutions of

2(DA)kn

tan k d = — 5 (B.33)
(DA) Kk _“-1

the function Yq is
-1 4
y, = tan (DAkn) (B.34)

and ) a is given by
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2 2

A =k =+ pzeff (B.35)

n n

We now consider the following case.

|
I
A
I
!
|
]

0

TITTTITI /'/////'7//{/// 777717 TTTTTTTIT

¥

Fig- B.2: Incident beam at z=0

Mathematically we can describe this incident beam as (see fig. B.16):

Lri = LO B(r”) exp (- M 2 ) (B.

1 if 0<r<b
where B(r”) =

0 if r>b
or
B(r") = [H(xr") - H(r -b)] (B.36)
1 if r°<b
with H(r"-b) =
0 if r >b

and H denotes the heaviside step function.

Together with eq. (B.24) and eq. (B.29) we can write:
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-

v (r,2) = (22
- 4D
v

) LOB(r’) G(T;27) dv” (B.37)

Using equations (B.29) to (B.35) we can calculate the integral (B.37):

- 2
. Usg . x
Y 4(r,2) = L« ] ) — 2 T p,(2)
D
n=1
2m d
S da8” pn(z’) exp (- utrz’) dz~
0 0]
/P[H(r")-H(r"-b)] g(r;r”) r’dr” (B.38)

9

The first integral gives 2 m , the second integral gives
£ 31n(knz + v n) exp (- M p 2 ) dz =

2 2 -1
=z [k “+ W] (B.39)

where

z = sin Yn[p +exp(-u trd)(kn51nknd— utrcosknd) +

tr

+ cos Yn[kn—exp(— utrd)( ptrsinknd+kncosknd) (B.40)

The third integral gives:

1
= [1-A anO( Anr)Kl( Anb)] if r<b

>

n
Rn(x nr) = (B.41)

b
o [Ko( Knr)ll( Anb)] if r>b

n

Combining equations (B.29) and (B.38) to (B.4l) finally gives:

4 u”
_ s ® ,
Wd(r,z) = ( ) LO r T n Sln(knz + v n)
D
n=1
Zn

PRI (542

n Utl’.‘
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2(DAYk
where tan k d = -———5——5—— {B.43)
(DA) k-1
-1
v = tan “(DAk_) (B.44)
n n
2 2 2
Xn = kn + qu off (B.45)
-1
D=(3 “tr) (B.46)

Equation (B.42) is in agreement with Reynolds (1975), Ishimaru (1978) and
Groenhuis (1983).

Based on this solution a computerprogram is available from S. Prahl (1986).
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Appendix C.

Opening angle for two pinholes ¢ and d at distance 1.

[hSiNa
N

Fig. C.1 Fig. C.2

In fig. C.1 is

a c d
b d c
and
e c
sing = — => a = (C.2)
a 2sinf
2 2 2
12= a” - %e and 1l= b -%d
2
2 d )
= a —2 "z;d
d : -
= SVat-x? (c.3)



thus

thus
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(C.4)

(C.5)
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C.J.M. M
Bijlage oes

— In de tabellen II.1 , II.2, II.4 en II.5 staan afgeronde getallen ;
gerekend is steeds met meerdere getallen achter de komma .

5 1

~ Ineq. I1.3.14 moet staan u_ = (5.2 + 1.5) x 107> mm 'm ™' 1
— In Table II.2 moet staan 0.0111 mm:} i.p.v. 0.0113 mm:} op regel

en 0.1027 mm i.p.v. 0.0526 mm op regel 4
~ In table Il.4 moet staan 0.0065 mm-1 i.p.v. 0.065 mm-1 op regel 2

en 0.113 mn | i.p.v. 0.114 o

—_—

op regel 3

— In par. II.3,blz. 38 is in het iteratie-proces ter bepaling van de
gecorrigeerde g*-waarde feitelijk één iteratie-stap uitgevoerd.
Bij volledige uitvoering van het iteratie-proces blijken vier ite-
ratie-stappen éen correcte waarde op te Teveren voor §* .
Het uiteindelijke resultaat voor g* wijkt daardoor iets af en we vinden:

g* = 0.71 + 0.03 ( I1.3.15)

— Dezelfde argumenten m.b.t. het iteratie-proces, zoals hierboven be-
schreven gelden uiteraard voor par. II.4, blz. 42 .
Na vier iteratie-stappen vinden we voor de correcte g* :

-

g* = 0.71 ¢ 0.03 ( 11.4.4)

hetgeen in overeenstemming is met het eerste resultaat .

— Als gevolg van dit iteratie-proces worden de getallen in tabellen nu :
in tabel I1.3 moet staan 5.6 x 107° i.p.v. 5 x 1072 voor My, OP regel 4
en 0.71 i.p.v. 0.70 voor g op regel 4
in tabel I1.6 moet staan 5.2 x 107> i.p.v. 5 x 107° voor My, OP regel 5

en 0.71 i.p.v. 0.70 voor g op regel 1



— Eq. I.2.5 t/meq. !.2.7 moet zijn :
X _
b =437 S(cose)Pn(cose)d(cose) _ (l.2.5)

n
-1

Normalisation requires that the integral of S(cos6) over all directions
equals a , soO

b0 = 3 } S(cos6)d(cos®) = a (I.2.6)

-1
because P0 = 1, and because P1(cose) = c0sH we obtain for b1 :

1
by =3/ S(cosd)cosh d(cose) = ag (1.2.7)
-1
Thus b1 is the mean cosine of the scattering angle and equals ag , where
g is usually called the asymmetry parameter (v.d. Hulst, 1980) .



