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Abstract 

In this master thesis the electric properties of Si-é-doped GaAs structures are investigated. 
These so called é-dopes are M.B.E. grown GaAs structures which contain a sheet of donor 
atoms (Si) localized within several atomie layers. In practice ditfusion and segregation effects 
can broaden the distribution. Provided moderately high dopant concentrations are present, a 
two-dimensional carrier gas is formed. The eigenstates of the confined carriers are subbands 
with energies which depend on the shape of the space-charge potential. Some basic proper­
ties of the é-doped structures have been determined by magneto-transport measurements in 
magnetic fields up to 20 Tesla. The analyses of these mea.surements indicate that the GaAs 
substrate temperature during the growth is a very important system parameter. The struc­
tures grown at a temperature of 480°C show an extremely narrow dopant profile (:::::: 20Á) 
which increa.ses as the growth temperature is raised. An important mechanism causing the 
increase of the impurity spread at higher growth temperatures seems to he migration of Si­
atoms with the growth front (segregation during growth). Segregation is also dependent on 
the areal impurity density as confirmed by SIMS mea.surements. The heavily doped struc­
tures show a large discrepancy between the number of Si-atoms in the dopant sheet and the 
number of donors determined from subband population mea.surements. lt is not clear at the 
moment what mechanism is causing this discrepancy. For the lower dopant structures it is 
possible to calculate the different subband mobilities from mea.sured quantities. The calcu­
lated mobilities can differ up to a factor four for the different subbands and are the highest 
mobilities reported thus far. 
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Chapter 1 

The 2-D electron gas 

Molecular Beam Epitaxy (M.B.E.) is potentially superior to conventional epita.xial techniques 
in the growth of very abrupt semiconducter transitions like AleGat-eAs/GaAs heterostruc­
tures and quanturn wells. This technique is very suitable for growing very sharply confined 
doping layers, localized within several atomie layers, in bulk GaAs (~-doping). Provided 
moderately high dopant concentrations are present (typical areal dopant concentrations are 
of the order 1012 f cm2), a two dimensional electron gas is formed. The cri ti cal areal dopant 
density<1> creating an 2-D electron gas is about 2 1011 fcm 2• A common feature of these 
structures is the formation of a multi subband electron gas at the dopant plane which has 
interesting electrical properties. A brief overview of electrical properties of two dimensional 
electron gases is presented in this chapter. The theoretica! model used toperfarm numerical 
self-consistent calculations is discussed in the second chapter. The results of these calculations 
are presented in chapter 2 too. A more advanced theoretica! analysis of the Shubnikov-de 
Haas and Hall signals of these structures is presented in chapter 3. In the fourth chapter we 
present the results and conclusions of the measurements performed on six samples. 

1.1 Intrad uction 

The scientific as wellas the technological interest on lil-V semiconductors nowadays is mainly 
concentrated on low-dimensional systcms. These low-dimensional semiconductor systems 
can have very different electrical and optical properties, than observed in bulk materials. 
Realisation of these structures is only possible with highly developed epitaxial techniques like 
M.B.E. or M.O.C.V.D. (Metal Organic Chemica! Vapour Epitaxy). A two dimensional system 
particulary of interest to us, is Si-6-doped GaAs. A schematic diagram of this structure is 
given in figure 1.1. This structure consist of pure GaAs which contains an (atomie) sharply 
confined impurity sheet of silicon atoms. The typical background impurity concentration in 
M.B.E. grown GaAs is 1014/ cm3 • Hence the main background impurity distance per atomie 
layer is approximately 0.3 J.Lm. The Bohr-radius of Si-atoms in GaAs is, at zero temperature, 
circa lOOÁ. Only above a critica} dopant concentration these Bohr-radii can have overlap, 
and a degenerated electron gas can arise. The expected insulator-metal transition occurs at 
an areal density of 2 1011 /cm2• Above these densities the electrons are no langer confined 

2 



CHAPTER 1. THE 2-D ELECTRON GAS 3 

to one donor only. And example of the Hartree potential the electrans "feel" is visualized in 
figure 1.2. 

s1· 
2DEG 
--IM-----------------

8 -GaAs 

Figure 1.1 Schematic 

representation of a c5-doped 

structure. 

-500Á 0 

Figure 1. 2 Typical form of the self-consistent calculated sym­

metrie Hartree potential. This partienlar system has four sub­

bands beneath the Fermi level. The probabilities of finding an 

electron at a distance 1 from the donor plane are also visualized. 

These probabilities are different in all subbands. 

The different subband states have different probabilities of finding an electron at a distance 
z from the sheet of dopant. The electrans in the higher subbands tend to shift away from 
the plane of dopant while the lowest subband electrans have a maximum probability in the 
dopant plane. Thus we expect different subband rnahilities at low temperatures since then 
ionized impurity scattering is the most important scattering mechanism. Part of this work 
consistsof extracting the subband rnahilities and the subband populations of these structures. 
This is done via magneta-transport measurements. 

500Á 



CHAPTER 1. THE 2-D ELECTRON GAS 4 

1.2 GaAs 

1.2.1 Effective mass formalism 

The effective mass formalism, introduced by Slater<2>, states that the Schrödinger equation 
which describes all the electronstatesin the system can he replaced by a more simple equation. 
The idea is that the total system descrihing Schrödinger equation with a periodic potential 
can he replaced by a Schrödinger equation with an effective mass m* and a smooth potential 
function. In case the effective mass is energy independent we have for bulk GaAs the following 
eigenvalue equation defining the electron states in the r -conduction band: 

(1.1) 

with solutions 
</>(x, y, z) = exp( ik· r) (1.2) 

where k represents the wave vector. The corresponding dispersion relation (E-k relation) 
becomes 

> .. 
>­
C) 
Q: 
w 
z 
w 

-12 

L A X U.K 

WAVE VECTOR q 

Figure 1.3a Electron energy vs reduced wave 

vector, for the four valenee bands, and the first several 

conduction bands. 

(1.3) 

Figure 1.3b First Brillouin zone fortheGaAs 

lattice. 

This is the i deal (parabolic and isotropie) dispersion relation for electrons in the conduction 
band in GaAs. This relation is only valid for small values of k. At higher energies a more 
complex relation between the energy and the wave vector occurs as can he seen from figure 
1.3a. This figure shows the dispersion relation in GaAs for various k-values and orientations. 
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For convenience the different k-orientations are visualized in tigure 1.3b. An electron can not 
have a perfectly defined k-vector, but has always a small uncertainty dk which gives rise 
to a wave-packet instead of the plane wave exp( ik · r ). The velocity of a wave pack et that 
describes an electron state at a point k is given by 

18E(k) 
v=---

fi 8k 
(1.4) 

Here fik = p does play the role of the classieal momentum. In the presence of an electrie field 
E, we have fik = eE. When combining these two equations, we can calculate the acceleration 
of an electron, 

This finally gives: 
. _ ]_ 82E(k) E 
v- fi2 8k8k e 

lf we campare this with the conventional Newtionian equation 

mv=eE 

we see that the equivalent of the mass of an electron is now the inverse of a tensor; 

(1.5) 

(1.6) 

(1. 7) 

(1.8) 

This tensor is the nearest equivalenttoa dynamica! mass for the electron. For example, in a 
semiconductor the energy surface may he of the form 

E(k) = fi2kl + fi2k~ + fi2k~ 
2m1 2m2 2m3 

(1.9) 

referred to some local principal axes. The effect of an electric field in accelerating an electron 
will then he very different in different directions. 

1.2.2 Density of states and Fermi level 

An important quantity in a semiconductor is the density of states function, whieh describes 
the number of electron states per energy interval as function of the energy. The density 
of states is closely related to the dispersion relation of the semiconductor. For a parabalie 
isotropie conduction band the two dimensional density of states function, DOS2(E), can he 
calculated from 

2 
DOS2(E2)dE = L -( )2 

~k 271' 
(1.10) 

where the summation runs over all ~k combinations obeying: E(k) = E2 ; E(k + ~k) = 
E2 +dE. Appendix B showshow exactly the function DOS2(E) can he calculated from this 
equation. For a parabalie isotropie dispersion relation we then have: 

m* 
DOS2(E) = - 2 11'fi 

(1.11) 
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and for the three dimensional analogue 

1 2m* 1 r;; 
DOS3(E) = 

2
1r2 {h2)2vE 

lf however we use a parabolle an-isotropic dispersion relation like 

n2k2 n2k2 n2k2 
E(k) = - 2 + - 11 + - 11 

2m1 2m2 2ma 

6 

{1.12) 

{1.13) 

both the density of states functions change and the effective mass is replaced by m• -
-?fm1m2m3 and m•- y'm1m2 for the 3-D and 2-D situation respectively. This is sametimes 
used as the definition of the effective mass for a an-isotropic dispersion relation. A general 
equa.tion for calculating from arbitrary dispersion relations the 2-D or 3-D density of states 
functions is given in appendix B. 

The total density of electrons, n, can now he calculated via 

n = fooo J(E,T,EJ) DOS(E) dE (1.14) 

where J(E, T, E1) is the Fermi-Dirac distri bution function and E1 the Fermi energy. At zero 
temperature this equation reduces to 

n =foEt DOS(E) dE (1.15) 

which is a mathematica! formulation of the definition of the Fermi level. 

1.3 2-D electron gases 

In this section we shall give a short overview of important electrical properties of2-dimensional 
electron gases. For a more detailed analysis of the presented formulae we refer to the reference 
list (3-5). 

1.3.1 Transport properties of a one subband system 

In the absence of a magnetic field the isothermal conductivity is defined as 

ne2 

O"zz(O) = 12 /E:e =- < T > 
m* 

(1.16) 

Here is J2 the electric current in the x-direction, Ere the electric field in the x-direction and 
< r > the averaged scattering time. For a 2DEG at sufficiently low temperatures we can 
replace < r > by the scattering time at the Fermi level r(E,). The drift mobility, J.ld, is 
defined as 

e e 
J.ld =- < r >=- r(EJ) 

m* m* 
(1.17) 

The drift mobility only depends on the scattering of electrons at the Fermi level. In the 
presence of a perpendicular magnetic field B we have the following relation between the 
electric current J and the electric field E 

(1.18) 

• 
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and via the inverse tensor relation 
(1.19) 

where u is the conductivity and p the resistivity tensor. The Hall constant, RHAIZ, and the 
Hall mobility, JlHAll are defined as 

(1.20) 

and 
(1.21) 

respectively. For a one subband system at low temperatures the Hall constant reduces to ~ 
and hence the Hall mobility equals the drift mobility J.ld· In the presence of a perpendicular 
magnetic field the density of states function, DOS2(E), changes dramatically from a constant 
toa set of delta-functions. This is visualized in figure 1.4. The electrans in the energy interval 
(n+ l±l) 1ieB/2m* are all compressed to an energy n 1ieBfm*; heren is the Landau number. 
Every Landau level has a degeneracy, G, which is proportional to the magnetic field B i.e. 
G = eBj1r1i. At absolute zero the Fermi level is pinned totheupper most fitled Landau level. 
If the magnetic field is increased a little, the Fermi level will stay pinned to the highest filled 
Landau level untill this Landau level aceomadates no more electron states. At that particular 
magnetic field the Fermi level will skip to the new top most filled Landau level. The Fermi 
energy skips periodically in 1/B, with a period S given by: S = ej1r1iN2DEG where N2DEG is 
the areal elctron density. Figure 1.5 shows how the Fermi level varies as the magnetic field is 
raised. 

hwcyct 

•-t-- •.. --.- "1--- .. --+ 

I I I I I I 
Eo 

Figure 1.4 Change of the density of states 

function of a 2-D electron gas in the presence of a 

magnetic field. 

0 
0 2 4 6 8 

B -> 

Figure 1.5 Fermi level ofa 2DEG as a function 

of the magnetic field at .zero temperature in case 

spin-splitting is neglected. 

At non zero temperatures the Fermi level changes more gradually. The periodicity of the Fermi 
level in the redprocal magnetic field affects all other quantities of the system. _For instanee 
the resistivity will oscillate in 1/B with the same periodicity S. Measuring the periodicity in 
1/B, directly gives the areal electron density of the system. 

10 
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1.3.2 Transport properties of a multi-subband system 

In the former subsection the Hall constant, RHall, was magnetic field independent. This no 
longer holds when we have more than one type of carriers present. For instanee a multi 
subband 2DEG must be regarcled as ha ving different electron "types". The scattering time, 
Tn, usually differs for electrans in different subbands. For a two subband system we then 
obtain for the Hall "constant" 

(1.22) 

where Rï = ;;.~ and Ui = nieJl.i· This equation is generally true even when T is a function of 
v and for any two kinds of carriers, electrans andfor holes. Neglecting the terms in B 2 we 
have 

R _ Rtul + R2u~ 
Hall - (Ut + 0'2)2 

(1.23) 

Fora 2-dimensional electron gas we can rewrite this to 

RHall = --=..!__ = -1 { n1Jl.~ + n2Jl.~ } 
nH alle e ( n1J1.1 + n2J1.2 ) 2 

(1.24) 

which defines the Hall areal electron density, nHall· The Hall mobility, Jl.Hall, follows from 

(1.25) 

Both the Hall mobility as the Hall areal electron density can be measured via Van de Pauw 
measurements. The generallow field formulae for Jl.Hall and nHall in a multi subband system 
are 

(1.26) 

(1.27) 

Once these quantities have been measured, tagether with the different values of the subband 
populations, ni, one can use these formulae to calculate the different subband rnahilities Jl.i· 

For more than two subbands however one can only approximate the rnahilities of the different 
subbands, because there are still to many unknown parameters in our equations, assuming 
that nHall, ni and Jl.Hall have all been determined. In the presence of a perpendicular mag­
netic field, B, the density of states of the different subband are affected in the same way as 
explained in the farmer subsection. The total density of states for a three subband system 
in the presence of a magnetic field, B, is visualized in figure 1.6. Figure 1. 7 shows how the 
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Fermi level is affected by the magnetic field at zero temperature. 

,-

2 4 6 

B ---> 

8 
Eo 

10 

B=O 

9 

B #O ;--.-

: ... --•. --.,· . -.. 
: ... -- .-. -.- .• -- l--
1iwcyc~ 

Figure 1.6 Chance of the denaity of atatea 

function of a mul ti subband 2DEG in the preaence 

of a magnetic field. 

Figure 1. 7 Fermi level of a (three aubband) 

2DEG as a function of the magnetic field at zero 

temperature in case spin-splitting is neglected. 

We can notice again the jumps the Fermi level makes when a certain Landau level is de­
populated. The periodicity of the Fermi level in 1/B is now a combination of three different 
subband periodicities, Si, which again are proportional to 1/ni. So for a multi subband 
system the resistivity will also have oscillations, however more complex and with different 
periodicities than a one subband system. In chapter three we will examine in more detail the 
oscillatory behaviour of the resistivity. 

1.4 Cyclotron resonance 

The effect of a magnetic field on an electron state is given by 
. e 
k = r;v x B {1.28) 

This means that the change in the vector k is normal to the direction of B and normal to v. 
The velocity v itself is normal to the energy surface. Thus, k must he confined to an orbit 
defined by the section of the Fermi surface with the plane normal to B. The magnetic field 
simply drives the presentative point round this orbit without change of energy. If the electron 
is not scattered, it makes a circuit in the period 

271" eB f dk --- - {1.29) 
Wcycl - fi V.L 

where V.L is the component of vin the plane normal to B at a point k. The corresponding 
frequency, Wcycl, is called the cyclotron frequency. For free electrous we have 

(1.30) 
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so that wCJICl = ~· It is customary to define the cyclotron effective mass such that 

* eB m ---CJICl - w 
CJ1d 

(1.31) 

It should he noted that this is not the same as the dynamica! mass of the electron. It is a 
property of an orbit, not of a partkular electron state. Using equation (1-29) finally gives 

(1.32) 

where A is the area enclosed by the orbit in the plane normal to the magnetic field. Fora 
two dimensional isotropie parabolk dispersion relation like 

(1.33) 

the corresponding effective cyclotron mass, m~ is equal to the effective mass of conduction 
band m*. This is easily verified. Fora non-parabolk an-isotropic two dimensional dispersion 
relation they need not necessarily he the same. The effective cyclotron mass in the two dimen­
sional situation however is proportional to the density of states function at the Fermi level. 
The periadie motion of the electrans could he detected by resonance with an electromagnetic 
field of suitable frequency. The only condition is that the electron should make at least one 
circuit of the orbit befare being scattered. One therefore must measure at low temperatures 
and at sufficiently high magnetic fields in order to see an absorption peak. 

1.5 Scattering mechanism Figure 1.8 This figure shows the tem­

perature dependenee of the typical scattering 

mecha.nisms in the two dimensional electron 

ga.s in a. hetero structure. For a. ó-dope struc­

ture the different mobilities ha.ve other weight 

fa.ctors. 

bi 
--------------------' 

1000 ri ~~~ ___ .... I 
i 
i -• • > o::­

.... E 
-u 

-----------------

op I 
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\ 

The electrans in the 2-D electron gas can he 
scattered by the irregular potentials in the 
crystal. The irregularities may come from the 
ionized impurities in the 2-D layer or in the 
GaAs and or the lattice vibrations ( acoustic 
or polar optica! phonons). Being governed 
by the Bose-Einstein distribution function, 
the population of phonons increases exponen­
tially with temperature. At room tempera­
ture, the optica! phonon states are so signifi­
cally populated that they dominate the elec­
tron scattering processes. The longitudinal 
optica! phonon energy for GaAs is 36 meV 
(410 K). At lower temperatures ionized impu­
rity scattering through coulomb interaction is 
dominant. Figure 1.8 shows the temperature 
dependenee of the mobility for different scat­
tering mechanism. 

:a. 
100 \ 

\ 
\ 

20 
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\ 

100 



CHAPTER 1. THE 2-D ELECTRON GAS 

Figure 1.9 Figure showing typical 

curves of the temperature dependenee 

of the mobility for a heterostructure, 

bulk GaAs, and a 5-doped structure. 
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Note that the total mobility is calculated from 

_1 =L_!_ 
Jltot i Jli 

(1.34) 

where Jli represents the mobility due to one type of scattering mechanism. For a multi 
subband system this formula holds for each subband seperately. The systems mobility must 
he calculated from equation 1.27. For a more detailed analyses of these types of scattering 
mechanism see reference 6. 



Chapter 2 

Self-consistent calculations 

lt is a physical impossibility to create a system containing particles which can move (freely) 
in an infinitely thin layer. According to the Heisenberg uncertainty relation A.zA.p~~: ~ n 
every partiele will have an uncertainty in all its space coordinates as in the corresponding 
momenturn coordinates. Thus there will always he a certain thickness or speading of the 
so called "two dimensional" system. In most cases however these quasi 2D systems can he 
described very wellas being perfect 2D systems. The two dimensional electron gas (2DEG) 
is one of todays most investigated quasi 2D system (the hetero structures and quanturn 
wells ). Several authors have recently reported numerical calculations on the electronk sub­
band structure in Si 6-doped GaAs systems<1•7- 9>. In our calculations we will follow the 
stategy introduced by Zrenner<1>. In the first part of this chapter ( section 2.1) we present the 
theory which is used to describe the equilibrium state of a Si ó-doped GaAs system at zero 
temperature. This (envelope-function) formalism however is a general theory not specifically 
derived for GaAs systems. In the second part (section 2.2) we present the results of the self 
consistent calculations performed on a IBM RT PC. Only a selected part of the calculations 
are presented in this report: The main part of the calculations are collected and depicted in 
an additional manual(10). 

2.1 Theoretica! description of 8-doped GaAs 

2.1.1 One dimensional electron gas 

Consider a free electron gas in one dimension that is confined toa length L by infinite harriers. 
The electron wave functions 1/Jn( z) are solutions of the Schrödinger equation 1-l 1/Jn( z) = 
En 1/Jn(z); with neglect of potential energy we have 1-l = p2 /2m, where pis the momentum. 
In quanturn theory p represents the operator -in dj dz so that 

(2.1) 

where En is the energy of the electron described by wave function 1/Jn(z). The boundary 
conditions of this differential equation are 1/Jn(O) = 0 and 1/Jn(L) = 0. Proper normalization 1 

1 JoL ,P,.(z) ..P!(z) dz = 1 

12 
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will give sinelike wave functions 

and energy 

fi . mrz 
1/Jn(z) = y L sm( L) 

E = ~ (~)2 
" 2m L 

13 

(2.2) 

(2.3) 

In a linear solid the quanturn numbers of an electron are n and m, the spin quanturn number 
which can take the values ±i. According to the Pauli exclusion principle no two electrans 
can have identical quanturn numbers. A quanturn state labeled by quanturn number n hence 
can aceomadate only two electrons, one with spin up and one with spin down. This is called 
a (two fold) degeneracy. To aceomadate N electrans in this one dimensional system the first 
N /2 energy levels must he filled with each two electrons. lt is convenient to suppose that N 
is even. The Fermi energy E1 is defined as the topmost filled energy level in the ground state 
i.e. the N /2e energy level. 

(2.4) 

The example of an infinite potential well resulted in rather simple solutions for the Schrödinger 
equation. However solving this eigen value equation may become an arduous task when a more 
complex potential function U(z) enters the Schrödinger equation. In general the Schrödinger 
equation of a free electron gas feeling a potential U(z) can be written as a set of non-linear 
( coupled) differential equations with four adequate boundary conditions: 

( 

1/Jn(z) ) ( </>n(z) ) .!!_ </>n( Z) = ~( U(z) - En) ·1/Jn(Z) 
dz En 0 

N(z) 1/Jn(z)t/Jn(z) 

(2.5) 

The first two boundary conditions areN( -oo) = 0 and N( oo) = 1 while the other two depend 
on the problem being addressed. 

2.1.2 Model specification 

A Si é-doped GaAs system can best be characterized with the help of figure 2.1. This figure 
show<> the energy band diagram of three parts of the 6-dope in case the heavily doped part is 
sepa: ated from the two enclosing GaAs layers. The GaAs in all the three parts is supposed 
to be slightly and uniformly doped with acceptars with a typical concentration N Ace of order 
1014 fcm3 • The acceptor levels are all supposed to lie at an energy EAcc above the valenee 
band. The midpart however is supposed to he also uniformly doped with Si donors2 with a 
concentration Nd over a distance dnon· These donor levels all lie at an energy Enon below 
the conduction band. At zero temperature the Fermi level E1 (read chemical potential) in 
the midpart is different from that of the enclosing GaAs layers. When the separations are 
lifted, one expects the electrans with the highest chemical potential to drift to regions with 
lower chemical potentia1.3 Due to the building up of a charge distri bution p( z) the potential 

2 The silicon atoms can only act as donors if they replace galium atoms in the lattice. 
3 ln fact this can only happen at temperature above absolute zero; what is meant hereis that the temperature 

is raised before the junction and brought back to zero afterwards. 
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function U(z) will change shape and finally result in a "well shaped" function visualized in 
figure 2.2. The acceptor depletion region spreads out on both 

Figure 2.1 Schematic 

energy band diagram in 

cue the heavily doped 

part ia aeparated from the 

enclosing two GaAs lay-

ers. 

I 
I 
I 
I 
I 
I 
I 
l----------- __ JE 

.. t Ace 

E1 - EAcc/2 Figure 2.2 Schematic 

diagram showing the dif­

ferent space charge regions 

in the 6-dope system. 
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' sirles of the z = 0 plane over a distance dAcc· In this region we assume all acceptors to be 
ionized. The Fermi level in the neutral GaAs {the undepleted regions lzl > dAcc) lies EAcc/2 
above the valenee band. Solving the Poisson equation in this region gives 

{2.6) 

where E11 is the GaAs band gap at absolute zero. 

2.1.3 System description 

The potential energy function U(z) for the electrous depends only on the coordinate perpen­
dienlar to the Si doped plane. The three-dimensional Schrödinger equation {2-7) defining the 
electron envelope functions ~n(x, y, z) 

h2 d2 d2 d2 
-- ( -d 2 + -d 2 + -d 2 ) ~n(x,y,z) = ( În - U(z)) ~n(x,y,z) {2.7) 

2m* x y z 

reduces to a one-dimensional Schrödinger equation {2-9) when a constant effective mass m* 
is assumed. Envelope functions like 

{2.8) 
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finally give 
n,2 d2 

(- 2m• dz2 + U(z)- En ) <l>n(z) = 0 (2.9) 

with 

(2.10) 

The quanturn numbers necessa.ry to-characterize an electron state are: the ( rather trivialand 
here omitted) spin quanturn number m,, the wave veetors k. and k11 and the energy state index 
n. The wave veetors k2 and k11 are correct quanturn numbers since the momenturn operators 
Pz and p11 commute with the system's Hamiltonian (xy-plane symmetry). The energy eigen­
functions C)n,k",~ are simultaneously eigen-functions of the momenturn operators p1111 and p11 

but no Jonger eigen-functions of the operator P:~· Hence the wave vector kz is no quanturn 
number. The kinetic energy Tof electrans in a state C)Tc.,Je,,n is given by 

(2.11) 

In bulk GaAs an electron in the conduction band can move "freely" in three dimensions with 
a kinetic energy 

n,2 
T = -(k2 + k2 + k2

) 2m* z 11 :~ 
(2.12) 

In analogy to the situation in bulk GaAs we define a mean k:~ as 

< k:~ >n= (2.13) 

The importance ofbeing able to de:fine some sort of average kz wave vector per energy subband 
is the fact that this mean < k:~ >n value must he treated as a constant in the dispersion relation 
of bulk GaAs(ll) which normally is krz:, k11 , k:~ dependent. With this reduced dispersion relation 
( only the k 1111 and k11 dependency remains) one can calculate the corresponding 2-dimensional 
density of states DOS2. How exactly this can be done is worked out in appendix B. For an 
isotropie parabalie dispersion relation like 

(2.14) 

the two dimensional density of states becomes 

(2.15) 

In case the non-parabalie dispersion relationC1 1) is used, the density of states becomes 

(2.16) 

with 

(2.17) 

(2.18) 
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Here the energy values are expressed in me V's and the wave vector kz has dimension 1/m. 

The electrans feel a poten ti al U( z) which consistsof two contributions: a Hartree poten ti al 
Uc(z) and a part Ux(z) which incorporates the exchange and correlation effects ofthe electron 
gas. We will use the exchange and correlation potential given by Gunnarson and Lundqvist<12) 

(2.19) 

where Ry is the Rydberg constant, f.,. the relative permittivity in GaAs, me the electron mass 
and r. a dimensionless function of the z-coordinate given by 

_ 3 ( ) _ 411"(T0 f.,.m8 ) 3 ( ) r. z - n.z z 
3 m* 

(2.20) 

with r 0 = 5.29177 10-11 m. The Hartree potential follows from the Poisson equation 

(2.21) 

where f.0 is the permittivity of vacuum and p(z) is the space charge distribution. In equilib­
rium the charge distribution differs from zero since after the junction a charge redistribution 
takes place to elevate the discrepancies in the chemica! potential in the different parts of the 
structure. The boundary conditions for the Poisson equation are: 

.!!_U(z) I = 0; 
dz 

±cl Ace 

These conditions must always he satisfied and restriet the combinations of the parameters Na 
and dAcc· Globally their dependenee can he given by 

dAcc = B + (2.22) 

where Bis the electron penetration depth<13>. At non zero temperatures the electron charge 
density nez(z) is given by 

(2.23) 

where J,::0
00 

l/>i(z) lf>!(z)dz = 1. For low enough temperatures, kT~ Ei, this leads to 

(2.24) 

The summation index runs over all bound states i.e. Ei < E,. The acceptor distribution 
function n Ace( z) looks like 

{ 
N for lzl < dAcc 

NAcc(z) = O a l e se 
(2.25) 
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The precise shape of the donor distribution function nDon(z) can not he defined since it 
depends critically on MBE growth-parameters like the growth temperature<14) Tl/f'owth· For 
the time being we assume a rectangular function given by 

N (z) = { Nd for lzl < ldDon 
Don 0 else (2.26) 

The influence of the donor distribution shape has also been investigated. 

Charge conservation states: 

1
oo e2 1oo 

p(z)dz = - ( nDon(z)- nAcc(z)- n..,z(z) ) dz = 0 
-oo fofr -oo 

(2.27) 

So areal charge neutrality implies that the number of ionized donors N"ÈJon equals the number 
of electrans in the 2-D electron gas N2DEG plus the number of charged acceptars NDepl with 
areal densities 

N2DEG = 1: n..,z(z) dz 

NDepl = 1: nAcc(z)dz = 2NadAcc 

N"ÈJon = 1: nDon(z) dz = NddDon 

(2.28) 

(2.29) 

(2.30) 

Choosing the areal electron density N2DEG as a system parameter seems self-evident. It 
directly gives the total number of bound states Nbound and the Fermi energy E1 fora given 
set of eigen functions </>i( z) and energy eigen values Ei . This follows from the relation 

Nbound-1 Et 

N2DEG = L 1 DOS2(E) dE 
i=O E& 

(2.31) 

Once the areal electron density N2DEG of a system is known the donor density Nd in equation 
2-25 can he replaced by N 2osG±2NadArc. 

dvon 

The potential function U(z) depends on the areal electron density n..,z(z) via the equations 2-
20 and 2-21. This density function ne~( z) ho wever depends indirectly on the poten ti al function 
via the eigen functions </>i(z). Hence the set of equations defining the system must he solved 
self-consistently. The numerical metbod used to find self-consistent solutions will he discussed 
in the next subsection. 
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SUMMARY 

A theoretica! description of the system can he found if the following set of equations is solved 
self-consistently: 

t~,2 d2 
(-- -d 2 + U ( Z) - En ) </>n( Z) = 0 

2m* z 
(2.32) 

The potential U(z) consistsof two parts: a term Ux(z) given by equation 2-19 and a Hartree 
term given by 

(2.33) 

It turns out that our system is totally defined when the following parameters are defined: 
effective mass m•, the the area! electron density N2DEGi the energy band gap E11 ; the bulk 
acceptor density N0 ; the relative permittivity f,. and finally the normalized donor distribution 
function ÎiDon( z) defined as: 

ÎiDon(z) = nDon(z) / Njjon (2.34) 

In case this is a rectangular function this functional dependency can he expressed by one 
parameter only i.e. the donor spread distance dDon· All other parameters and functions can 
he calculated from this set of parameters. This particular choice is not binding, however, 
careful thought should he paid to the selection of an other parameter set. 
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2.2 Numerical calculations and results 

2.2.1 Iteration procedure 

In order to find self-consistent solutions an iteration procedure is used; illustrated in figure 2.3. 
The idea of this iteration procedure is to calculate every iteration step a potential function 
u<•>(z) which in time will converge to the self-consistent potential U(z). If one allows the 
potential function u<•>(z) in the iteration step s to change only slightly from the function 
u<•-1)(z) we have : lim ...... oo IU(z)- u<•>(z)l = 0 V z. To start the iteration process it is 
necessary to have a first guess for the potential U(z). Wethen solve the Schrödinger equation 
2.32. With these eigen functions and eigen values the electron density nez(z) can he calculated 
from equation 2.24 and 2.31. Finally via the Poisson equation 2.21 and equation 2.19 a new 

Figure 2.3 Block di-

agram of the iteration 

procedure used to find 

aelf-consistent solutions. 

Gueae U<0>(z) 

Calculate the potential u<•>(z) 

potential Unew(z) can he calculated. In or­
der to ensure convergence the newly calcu­
lated potential Unew(z) may only partially 
enter the Schrödinger equation of the next 
iteration step. We weighted this partienlar 
function hy a factor 8 ( 0 ~ 8 ~ 1 ). The 
potential u<•>(z) that enters the Schrödinger 
equation in the sth iteration step is given hy 

The iteration procedure is terminated after a 
desired accuracy in the potential function is 
reached. The numher of iteration steps crit­
ically depends on the "quality" of the first 
guess (for the potential function). A "poor" 
first guess needs approximately 16 iteration 
steps. However when solving a numher of 
different systems with only slightly different 
input parameters, the final potentials of these 
"nearhy" systems produce very plausihle first 
guesses. 

2.2.2 Solving the Schrödinger equation 

The most diffi.cult and time consuming part of an iteration step is the solution of the Schrödinger 
equation. A very suitahle method for solving boundary value problems of non linear differen­
tial equations, like the Schrödinger equation, has only recently been developed and is called 
"multiple shooting"(15). This powerful metbod can solve an arbitrary set of n first order 
non-linear differential equations like: fty = f(t,y) on the interval a~ t ~ b with boundary 
values: g(y(a),y(b)) = 0. The Schrödinger equation can he written as a set of four differ­
ential equations ( equation 2.5) with appropriate boundary values. These equations can he 
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rewritten to a set of differential equations of dimensionless quantities only: 

!!:_ ( ::~~~ ) = ( ::,R(U(i)n~{~n) · <l>n({) ) 
dÇ ~n 0 

N(Ç) </>n(Ç)</>n(Ç) 

(2.35) 

with Ç = zf zo, <l>n(Ç) = </>n(z/ zo)/ .;zö, 1/Jn(Ç) = 1/Jn(z/ zo)/ .;zö, ~n = Enfê, U(Ç) = U(z/ zo)/& 
and R = 2m~f'~ where z0 = 100 A and [ = 1 meV. In case the system is symmetrie in 
the z = 0 plane one "only" ha.s to solve the set of differential equations on the interval 
z 2: 0 with different boundary values for even and odd solutions. The infinite z-domain is 
truncated toa finite interval [O,b] with b = 500 A . Theeven solutions have boundary values: 
N(O) = O, N(b) = i, </>2n(b) = 0 and 1/J2n(O) = 0 the odd solutions have boundary values: 
N(O) = 0, N(b) = i, </>2n-1(0) = 0 and 1/J2n-1(b) = 0. Clearly all even respectively 
odd solutions have the same boundary values wherea.s still all the different eigen functions 
of the Schrödinger equation can he calculated. This might seem a bit strange but it works 
well because one must give, besides the boundary values, a first guess for the four functions, 
1/Jn, </>n, N and ~n on the interval [O,b]. lf these four input functions are close enough to the 
exact solutions the program will use the input functions to converge via some sort of Newton 
iteration process to the exact solutions within a given accuracy. For additional information 
about this methad we refer to the hook "Numerical solutions of boundary value probieros for 
ordinary differential equations"(ls). 

2.2.3 Results 

In this section we present a selected part of the calculations to give an impression of how 
various parameters influence the 6-dope system. As stated in section 2.1.3 a system is totaly 
defined by six parameters only namely: the effective mass m*, the area! electron density 
N2DEG, the energy band gap of GaAs Eg, the acceptor background concentration Na, the 
relative permittivity of GaAs f,. and the donor spread distance dDon· In all our calculations we 
used the following quantities: Eg= 1520 meV, f,. = 12.0 and m* = 0.067mel· The influence 
of the other three parameters, treated as system variables, ha.s been investigated. 

Influence of the areal electron density and the donor spread distance 

The poten ti al function U( z) of a 6-dope ha.s a sharp dip near the plane of Si-dopend a.s can he 
seen in tigure 2.4a and 2.4b. These figures show the potential function for two different donor 
spread values tagether with the square of the envelope functions. The envelope functions are 
expressed in arbitrary units and superimposed on their corresponding lowest subband energy 
incase non parabalicity and exchange and correlation effects are included. The regions the 
donors are confined to are also displayed in these figures. The most interesting parameters 
of a 6-dope are: the area! electron density per subband ni, the relative area! electron den­
sity per subband ni/ N2DEG, the position of the subband energy above the conduction band 
Ei - U(O) (in the manual refered to as Ei) and finally the position of the subband energy 
beneath the Fermi level E1 - Ei. All these parameters are tabulated and depicted in the 
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additional manuai(10) for different values of N 2nEG in the range 1012 /cm2 to 1013 fcm2 and 
various values of dnon with 10 A$ dnon 5 200 A. For all these ca.lculations the background 
acceptor concentration Na was 1014 f cm3 • Figure 2.5 displays the dependency of the param­
eter ni on the area.l electron density N2nsa fora donor spread distance of 40 A. 

10 10 ,.----------, 

-10 -10 - -> > 
I • e - -.. .. J 

-110 -110 

-210 -210 
-500A 0 500Á -500Á 0 500Á 

z-+ 
Figure 2.4a&b Results of self-consistent calculation of the potential fundion U(z) incase the Fermi 

level Et is set to zero for two different values of the donor spread distance. Figure a) dDon = 20 A and 

N2DBG = 8 1012 /cm2
• Figure b} dDon = 180 A and N2DBG = 8 1012 /cm2

• 

7 

- 6 ('I 

I = 0 
Figure 2.5 Results Es 
of self-consistent calcu- 0 

lation of the parameter ('I 4 -n> for a dD .... value of 0 3 40 A. .,... - 2 
= 1 

c 
1 i = 2 

0 
0 5 10 

n2DEG ( 1 0 u cm -2) 

An interesting result is the linear dependency of ni for smal! values of dnon· For bigger donor 
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spread distances this linearity is lifted. This condusion follows even more directly when exa­
mening the dependency of the relative areal electron density per subband and N 2DEG· Figure 
2.6 visualizes the influence of the donor spread distance on the parameter ni for a constant 
areal elctron den si ty of 8 1012/ cm2. 

-.. 
Figure 2.6 Resulta I 

of ldf-c:onaistent calcula.- E 
tion of the parameter ni 

() 

for various dD.". values .. .. 
with a constant N2DBG 0 
value of 8 1012 /cm2

• .... -
c 

6 

5 

4 

3 

2 

1 

0 
0 

I = 

i = 1 

------ ... ----------------------­-----
. -----------
1 = 2 --------------------------
I ... ~ ... ~ ... ,,.,,,,,,,., .. , .. ,.,.,,,,,,.,,'., .. ,,, .. ,, ... ,,·:~.:.:.: 

100 
dDon (Á) 

200 

This is an interesting tigure since in principle one deduces fora given set of ni values the best 
fitting dDon value to that partienlar set. Note however the difficulty in deducing a reliable 
donor spread value for dDon :::; 40 Á since the different subband electron densities do not 
differ much in this region. 

Influence of acceptor concentration 

To investigate the influence of the background acceptor concentration Na we varied this par­
tienlar system parameter over nearly four decades while keeping all other system parameters 
constant. The results of these calculations are visualized in tigure 2. 7. An important condu­
sion drawn from this tigure is the fact that a 6-doped system is not heavily influenced by the 
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acceptor concentration. This in contrast to an Al.Ga(l-•)As/GaAs hE>terostructureC26>. 
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Figure 2. 7 Results of self-consistent calculation of the parameter n; for different acceptor concen­

tration. The system parameters are: N2DBG = 6 1012 /cm2 and dDon = 20 A. 

Influence of the donor distribution function shape 

23 

Most of the calculations were performed using a rectangular donor distri bution function given 
by: 

if lzl < idnon 
el se 

This particular choice for the shape of the donor distribution functions may he critized since 
it lacks back up of physical arguments. For instance, it seems more realistic to work with a 
function that falls off to zero more gradually on both si des. Or, when looking at the preper­
ation procedure of the samples, why working with a symmetrical distribution function? The 
growth of 6-dopes with M.B.E can he described as a stop and go procedure during which hot 
silicon atoms (Tsi ~ 1400 oe) are deposited on the relatively cold (T growth ~ 600 oe) GaAs 
wafer. Segregation, causing an asymetric donor distribution, and diffusion effects, causing a 
gradually and more wide spread distribution function, might he important processes; how­
ever neglected here. The influece of diffusion on 6-doped samples can he investigated via 
annealation (le). 
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Ei- U(O) ni ni/N2DEG Et- Ei Ei- U(O) ~ ni/N2DEG Et-Ei 

32.2410 4.2505 0.5313 132.1200 37.3380 4.2526 0.5316 131.3200 
92.9890 2.4155 0.3019 71.3730 99.5530 2.3531 0.2941 69.1090 

135.3100 1.0090 0.1261 29.0520 138.4500 1.0539 0.1317 30.2120 
155.0700 0.3249 0.0406 9.2918 158.9800 0.3404 0.0426 9.6820 

Table 2.1a&b Listing of system parameters to show the influence of the shape of the donor 

distribution function. Lelthand table (a) displays the resulta fora blok-tunetion with parameters: 

N2DBG = 81012 fcm2 and dD_ = 100 A. The righthand table (b) displays the results of a Gaussian 

donor distribution function with u = ::/fdDOf& and N2DBG = 8 1012 fcm2 • 

To investigate the inftuence of a donor distribution function that falls of more gradually to 
zero we used a Gaussian function given by: 

lt is possible to minimize the discrepancies between system parameters like Ei - U(O), ni, 
ni/ N2DEG and Et- Ei of a Gaussian and a rectangular distri bution function. The relation 

between a and dDon for minimal parameter differences reads: a = YfdDon· Table 2.1a&b 
show the results for this optimal substitution of a. Note the small differences between the 
parameters ni, ni/ N2DEG and Et - Ei whilst the discrepancies in Ei - U(O) are no longer 
negligibly small. So differences in the donor distribution function shape are best seen in the 
quantity Ei- U(O). This however is a difficult accessible quantity (optically?). Conclusively 
we state that the exact shape of the donor distribution function is not an accessible quantity 
when measuring system parameters like ni, ni/N2DEG or Et-Ei (measuring quantities). The 
only information obtainable from measurements seems a mean donor spread distance dDon 
or u. Further investigations are necessary to see whether all kinds of distri bution functions 
(especially the asymetric destribution functions are interesting) can he mapped on a system 
discribed by a rectangular distribution function. 

Influence of exchange and correlation effects 

In order to express somehow the exchange and correlation effects in an electron gas, one often 
uses the L.D.F.4 formalism. Now all exchange and correlation effects of an electron gas can 
he incorporated by a potential U x that is a function of the electron density only. We use 
the equation derived by Gunnarson and Lundqvist<12). This potential function is negative 
and for a b-doped system it gradually falls of to zero for large valnes of lzl. The influence 

4 Local Density Functional 
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on system parameters like n,, n,f N2DEG and E1 - E, is relatively small as can he seen from 
tables 2.4 a & b. The parameters E,- U(O) are mostly influenced and can differ a few me V's. 
Most changes of these parameters can also he found (to first order) via simple firts order 
perturbation theory. 

E,- U(O) n, n,fN2DEG E,- E, E,- U(o) n, ni/N2DEG E,-E, 

32.2410 4.2505 0.5313 132.1200 31.892 4.1842 0.52303 130.30 
92.9890 2.4155 0.3019 71.3730 91.592 2.3826 0.29783 70.596 
135.3100 1.0090 0.1261 29.0520 132.57 1.0248 0.12810 29.618 

155.0700 0.3249 0.0406 9.2918 151.42 0.3749 0.04686 10.768 
161.23 0.0334 0.00418 0.9576 

Table 2.2a& b Listing of system parameters to show the influence of exchange and correlation 

e:frects. Lefthand table (a) displays the results for a reetangwar donor distribution function with 

parameters: N 2DBG = 8 1012 /cm2 and dD..,. = 100 A in case exchange and correlation effects are 

included. The righthand table (b) displays the results when nepecting exchange and correlation 

efrects. 

We conclude that most system parameters are not heavily influenced when including an ex­
change and correlation potentiallike (2.19) and that the differences in system parameters are 
of the samemagnitude as the effect of a different of the donor distri bution shape. 

Parabalicity versus non-parabalicity 

Following Zrenner's strategy, non-parabalicity enters the self-consistent calculations only via 
the density of states function DOS2(E) (see appendix B). The non-parabalie density of states 
function can accommodate more electron states per energy interval than its parabalie ana­
logue. For energies larger than 100me V these density of states functions can differ one another 
up toa factor 3/2. Tables 2.3 a & b display the calculated system parametersfora parabalie 
and a non-parabalie system. Camparing these two tables, shows that there are rather large 
differences between all parameters. This indicates that non-parabalicity may not he neglected. 

E,- U(O) n, n;fN2DEG E1- E, E,- U(O) ni n1/N2DEG E1- E, 

32.2410 4.2505 0.5313 132.1200 32.979 4.0771 0.50964 145.68 
92.9890 2.4155 0.3019 71.3730 95.407 2.3299 0.29124 83.249 
135.3100 1.0090 0.1261 29.0520 140.36 1.0718 0.13398 38.296 
155.0700 0.3249 0.0406 9.2918 163.01 0.4378 0.05473 15.646 

175.68 0.0832 0.01041 2.9760 

Table 2.3a& b Listing of system parameters to show the influence of non-parabolicity. Lelthand 

table (a) displays the results fora rectangular function with parameters: N2DBG = 8 1012 /cm2 and 

dD.,.. = 100 A in case non-parabolicity is included. The righthand table (b) displays the results in 

case the parabolic dispersion relation is used for the self-consistent calculations. 
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Figure 2.8 displays the parameters E 1 -
Ei versus the areal electron density. Note 
that for smaller values of the areal densi­
ties N 2DEG the system parameters are less 
influenced since for small N2DEG values the 
two density of states functions become almost 
equivalent. On the other hand the bigger the 
areal density, the bigger the differences of sys­
tem parameters will he. This latter condu­
sion is also valid for other system parameters 
like ni, ni/ N2DEG and Ei - U(O). 
Conclusion: non-parabalicity must he in­
cluded in the self-consistent calculations es­
pecially for areal electron densities above 
11012Jcm2• 
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Figure 2.8 The parameters 

E 1 - E; versus the arael electron 

density Nwsa are displayed for 

the parabolic ( - - ) and the non­

parabolle ( - ) dispersion relation. 
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Chapter 3 

Signal analysis 

3.1 Introduetion 

In a magnetic field the density of states DOS acquires an oscillatory component 6DOS which, 
at low fields, can be written as(l7) 

6DOS(E,T,B) 2 ~D( ) ~ (2r1rE ) ------'----'----'--'- = L..J rx · e"'•'"• cos --- r1r 
DOSo r=l fiwc 

(3.1) 

where DOS0 is the zero-field density of states, Wc is the cyclotron frequency and E is the 
electron energy. The function D( x) is defined as 

x 
D(x) = -....,.......,.. 

sinh(x) 
(3.2) 

with x = 21r2kBT /fiwc. This function incorporates the temperature dependenee of equation 
(3.1). The single partiele life timer. is related to the broadened (Lorentzian) Landau levels 
width r such that r = 1ij2r.. Isihara and Smrcka<17> have shown that these oscillations 
in the density of states give rise to oscillatory components in all other physical properties. 
Especially in the conductivity a that can be written as: 

e Nejf WeT 
(Jzz = 

B 1 + w:r2 (3.3) 

(3.4) 

where Ne!J is the effective number of electrans participating in the electrical transport and N 
is the number of states below the Fermi energy. At zero magnetic field equation (3.3) results 
in azz = N0 rte2 Jm* and thus the T used in our expressions for the conductivity is in fact the 
magnetic field-dependent transport life time Tt. 

The difference between the single-partiele life timer. (also refered to as quanturn life time) 
and the transport scattering time Tt is that the latter is weighted by the scattering angle (), 
i.e. 

_!_ = j v( O)dfl 
r • 

(3.5) 

.!_ = j( 1 - cos( 0)) · v( O)dfl 
Tt 

(3.6) 

27 
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The scattering time Tt is related to the conductivity u by 

n e2rt 
u=--=nep. 

m* 

28 

(3.7) 

In high-mobility GaAs heterojunctions the ratio of Tt and r. can he relatively large<18) ( ~ 10). 
In that situation the single-partiele relaxation time r. cannot he estimated from the mobility 
measurements. In 6-doped GaAs samples however, the different subband mobilities l'i are 
usually smal! compared to that of a heterojunction, because of a largeroverlap between the 
subband envelope-functions and the random distributed Coulomb scattering centers. This 
would imply that rtfr.::::::: 1 (17). 

The oscillatory partsin the conductivity Nel/ and 1/rh are proportional to the density 
of states at the Fermi energy EF. 

ó.DOS(EF) 
Nef! =No (1 + DOSo ) (3.8) 

.!._ = _!_(1 + ó.DOS(EF)) 
Tt To DOSo 

(3.9) 

When EF > lifrt and EF > liwc (both conditions are usually satisfied) we may write<17>: 

oN _ No . ó.DOS(EF) 
oB- B DOSo 

(3.10) 

U sing these relations and keeping only the terms linear in I1Dgg'tr) finally results in 

(3.11) 

(3.12) 

Here u0 = ;:.
2
• Noro is the conductivity at zero magnetic field. The expressions 3.11 and 3.12 

are useful when descrihing a 2-D electron gas with only one subband. A typical property of a 
6-doped system is that more than one subband is occupied. When interactions between the 
subbands are neglected we have the following expression for Uzz and Uz71 in a multi-subband 
system since conductivity is an additive quantity 

(3.13) 

N~d-l uo,iWcTo,i (
1 

_ 3w;r~.i + 1 ó.DOS(EF- Ei)) 
Uzy = - L...J 1 + 2 2 2 2 ( 1 + 2 2 ) DOS 

i=O Wc To,i Wc To,i Wc To,i 0 
(3.14) 

where uo i = e
2
• N 0 ïTo i is the conductivity at zero magnetic field in the i-th subband and E; 

' m , • • 

the ground state energy of the i-th subband. One can calculate Pzz and Pz11 via the tensor 
relations 

(3.15) 
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- (1:11JI 

Pz'll-- 2 + 2 
(1 :11:11 (1 Z'IJ 

(3.16) 

Thisleads to rather simple expressions for the resistivity pin a one subbband system assuming 
that ~Dos~,) is small DO 

fl.DOS(EF) 
Pzz = Po(1 + 2 DOSo ) (3.17) 

(3.18) 

A multi-subband system, like 6-doped GaAs, has very complex expressions for the longitudinal 
and Hall resistivities. This will be worked out in more detail in the next section. 

3.2 Magnetic field modulation 

When a small time dependent magnetic field Bmod(t) is superimposed on a quasi static mag­
netic field B the resistivity will change only slightly under the condition Bmod(t) < B. Choos­
ing the modulation field like Bmod(t) = Bm sin(Ot) suggests the use of Lock-in techniques to 
accurately resolve the oscillatory parts of the signal i.e. the Ot and 20t components of the 
signal. This technique is very powerful and especially useful when studying small changes in 
magnetic field dependent signals like SdH-oscillations. The conductivity in a magnetic field 
of a multi-subband system can bedescribed by the expressions 3.13 and 3.14. One can derive 
from these formulas the following expressions to first order in ~DOÉ~Jó-E;) for the resistivity 
in a multi-subband system: 

(3.19) 

(3.20) 

where 
Nbound-1 

A= L CTo,i 
(3.21) 

i=O 

Nbound-1 

C L CTo iWcTo i - ' ' - 2 2 
i=O 1 +Wc To,i 

(3.22) 

2 2 2 
b· _ CTo,iWc To,i 

1 - ( 1 + w2r:2 ·)2 
c 0,1 

(3.23) 

3w;rJi + 1 
d · - CTo ·w r:o · · ' 

I - ,1 C ,1 2 2 ( 1 2 2 )2 
wc To,i +wc To,i 

(3.24) 

(3.25) 
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Choosing a magnetic field like ÏJ = B + Bm sin(Ot) will affect the function ei like 

~ ~ 21r r 
ei = ~ G,.,i(B) cos(-P.-iB_(_1_+_lba.=-B-si-n(_O_t_))) (3.26) 

_,.,.. 
where G,.,i( B) = 2( -1 )" D( rx )e"'• ... ,i. The functions x and D have been defined in the former 
section. For Bm < B this can he rewritten to 

co 

ei= L:G,.,i(ÏJ)cos(~;i- rasin(Ot)) (3.27) 
f'=l 

where a = ~~T. The functions G,.,i, ai, bi, Cï, A, C and dï are slowly varying in the magnetic 
field B; so one may neglect the oscillatory part of the magnetic field in these functions. This 
implies that the modulation field affects the resistivity most strongly via the function 6. A 
Fourier series expansion of ei gives: 

co 

ei= L G,.,i(B) cos(~;i -ra sin(Ot)) (3.28) 
r=1 

co 

= L G ,.,i( B) { cos( ~;B) cos( ra sin( Ot) ) + sin( ~:S) sin( ra sin( nt) ) } 
f'=l 

co co 

=L:G,.,ï(B) { cos(~;i)[Jo(ra)+2LJ2n(ra)cos(2nflt)] 
f'=l n=l 

co 

+ sin(~;i)[2LJ2n+l(ra)sin((2n+1)0t)]} 
n=O 

Here we use the possibility of writing the functions cos( z sin( x)) and sin( z sin( x)) as a infinite 
series of Bessel-functions i.e.: 

co 

cos( zsin(x)) = Jo(z) + 2 L J2n(z)sin(2nx) 
n=1 

co 

sin( zsin(x)) = 2 L J2n+1(z) sin( (2n + 1)x) 
n=O 

Detection of the first (0) harmonie component in the resistivities finally gives: 

N~d-1 
(C2 - A2) bi+ 2CA d; ~ J (2'"'B ) . ( 21rr) G (B) 

Pzzo = 2 ~ (A2 + C 2 ) 2 ~ 1 ~ Slll P;B r,i (3.29) 

N~d-1 -2CA b; + (C2 + A2) di~ J (21rrB ) . ( 21rr) G (B) 
Pzyo = 2 ~ (A2 C2)2 L...J 1 ~ sm P;B r,i 

t=O + r=1 

(3.30) 

and for the second harmonie (20) component 

(3.31) 
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(3.32) 

Define the functions Çf-(B) and 1tf-(B) as: 

Rmcu: 

çf-(B) = L J1( 2P';Nr)sin{];;i)G,.,;(B) 
f"=l 

Rma:e 
1t-flma:e(B) = "' J ( 211"f"B,.) cos( 211"7") G ·(B) , L...J 2 P;B2 P;B '"•' 

f"=l 

These functions are shown in figure 3.1 and 3.2 for two upper limits Rmax of the summation 
index r. From these figures we conclude that, since the whole theory is basedon a low field 
approximation, it is permitted to truncate the series after the first term. The final expressions 
for the first harmonie component in the longitudinal and Hall resistivity now read: 

N~d-l -2CAbi + (C2 + A2)di (21rB . ( 27r 
P:e110 = 2 ~ (A2 + C2 ) 2 J1 ~) sm P;B) Gt,s(B) 

while the second harmonie (2f2) components read 

N~-1 (C2 -A2)b,+2CAd, 21rB 27r 
Pzz20 = 2 ~ (A2 + C 2 ) 2 J2(~)cos(P;B)Gt,ï(B) 

Figure 3.1 The function 

Çfl"",..(B) for Rmaz = 1 (straight) 

and Rmaz = 20 (dotted). Used pa­

rameters: ~-'• = 0.2 m2 /V "i Po = 
0.0242 1/T; B.,. = 30 mT. 

,, 

I I 

I I 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

0 10 

B -t (T) 
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Figure 3.2 The fundion 

?tf,.••(B) for Rmaz = 1 (straight) 

and Rmaz = 20 (dotted). Same pa.-

rametera aa in figure 3.1. 

32 

\I 

0 10 

B---+ (T) 

The essentia.l part of the functions PO and p2o is the periodidty in the redprocal magnetic 
field. Although the above expressions are derived for low magnetic fields one assumes, without 
further theoretical reasoning, that these formulas remain globaly valid for high field: this 
means that the resistivity remains periodic in 1/B with periodidty P;. This periodicity Pi is 
related to the number of electrans in the subband i, ni, via the relation 

4.84 w-2 (1012 -2) 
ni = cm 

pi 
(3.37) 

Now ni becomes an accessible quantity when magnetic field modulation techniques are used 
since in pricipal Pi can he extracted from (Fast) Fourier Transfarms of the field modulated 
resistivity, i.e. Pzz' in the redprocal magnetic field. Notice that not all the oscillating terms 
that contribute to the signal have the same weight function (amplitude). The subband with 
the highest mobility result in the major contribution to the signal. In 6-dopes the different 
subband mobilitiesl, lli, can differ one another up toa factor 5(1). The lowest subbands will 
contribute neglectably to the signal at low fields because of there relatively small mobility. 
This can he understood by examining the ( weight )function G,.,i( B). This ( weight )function is 
exponentially dependend of the scattering mobility and becomes close to unity for B ~ 1/ p,.,i 

while it falls of rapidly to zero at lower fields. If one wants to resolve all the subbands then 
one should measure to fields up to 1/ p,.0 • We characterized the 6-dopes by measuring with 
fields up to 20 Tesla. In this range of fields all the periods Pi could he resolved. The accuracy 
with which the periods can he resloved from the measurements will he discussed in the next 
section. 

1 No reliable values have yet been published or calculated! 
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3.3 Fourier transforms 

3.3.1 Fourier and fast Fourier transform 

Fourier transformations are especially useful when extracting periodic behaviour in arbitrary 
smooth functions. Simultaneons visualization of a function and its Fourier transfarm is often 
the way to overcome lacking insight in problems. The Fourier transformC19) of a function /(x) 
is defined as 

(3.38) 

This integral, which is a function of s, may he written as F( s ). The inverse Fourier transfarm 
is defined as 

f(x) = /_: F(s)ei21r:uds 

Another way of writing the two successive transformations is 

(3.39) 

{3.40) 

also called Fourier's integral theorem. There are some restrictions under which these equa­
tions are valid. First the integral of I /(x) I from -oo to oo should exist and secondly all 
discontin ui ties in /(x) must he fini te and replaced by their midvalue. Any function satisfying 
these conditions can he written as 3.40. Some authors lump the factor 211' with s to yield the 
following set of equations 

{3.41) 

f(x) =- F(s)eiz•ds 1 /00 
211' -oo 

(3.42) 

A third also often used definition of the Fourier transfarm is the symmetrie version of the last 
two equations 

1 /00 . F(s) = rn= f(x)e-•:udx 
y27r -oo 

(3.43) 

1 /00 f(x) = rn= F(s)eiz•ds 
y27r -oo 

(3.44) 

We will use the first version. In practice it 's impossible to measure a quantity f( x) with 
infinite resolution on an infinite x-domain. One usually has a fini te set of data points f( Xï) 
on a finite x-interval. The rednetion of the x-domain x E R to an interval (xmin, Xma~) makes 
the continuons s-domain sERdiscrete sE {l·6s ll E Z} when assuming f(y+xma~-Xmin) = 
f(y ); where 6s = 1/( X ma~- X min)· All frequencies in the Fourier spectrum are integer values 
of the minimal frequency ~s. Suppose we have measured a quantity f( x) at equi-distant 
points x E {xmin + k ·~x Ik E (0, .. ·, N- 1)} with ~x= 1/(N ~s). This set of data points 
can he wri t ten as 

N N 
L f(x~c) · 6(k- <~-~;;,.)) = L f(x) · 6(k- <~-~;;,.)) = f(x) · D(x) (3.45) 
lc=O lc=O 

The information a bout /(x) in between the intervals is not contained in the product; ho wever, 
the values of f(x) at the values x= x1c are preserved. 
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The convolution of two functions f and g is another function h defined by the integral 

h(x) = /_: f(u) g(x- u) du = J(x) * g(x) (3.46) 

The function h( x) is a linear function of J( x) since it is a linear sum of values of f( x), duly 
weighted as described by g(x). The reason for introducing the convolution theorem is the 
fact that it's Fourier transfarm is the product of the Fourier transfarm of the two original 
functions. 

f(x) * g(x) U .1'(s) O(s) 

A simHar relation holds for inverse Fourier transformations 

J(x) g(x) §: .1'(s) * O(s) 

(3.47) 

(3.48) 

Generally we can say that the convolution of two functions means multiplication of their 
transforms. Applying the above theorem on a sampled function (which is in facta product of 
a continuous function and a series of delta functions ), enables us to predict the general form 
of its Fourier transform. 

f(x)D(x) U .1'(s)*V(s) (3.49) 

The function V(s) can be written as a convolution of two functions, III(s) and S(s), since 
one can write D( x) as a product of two more elementary functions 

(3.50) 

where H (x) is the Heaveside step function and I IJ( x) (pronounced as shah) is defined as 

00 

III(x) = L 6(x- n). (3.51) 
n=-oo 

Graphically this is illustrated in figure 3.3. If 1/ ~x is chosen too small compared to the width 
of the Fourier transform of a function /, serious problems arise. The convolution with the 
function .1'( s) results in the overlapping wave form illustrated in figure 3.4. 

S(6) /l\ 
_/I\" 
vv~~ 

6~ 

III(-6) ....L.I ~---1--IL--..1...---L.. 

Figure 3.3 The product of two functions leads to a convolution of the transforms. This is illustrated for 

the product in the x-domain of the functions II I( z) and S( z ). 
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-+&c+- &---+ 

I I I I I I I I I 
z-----+ -+ ll.& +-- & ---+ 

I ~ 
Figure 3.4 Example of too low sampling in the x-domain of a fundion h( z ). lt ia impoaaible to reconatrud 

the fundion h(z) from it'a aampled Fourier banaform via a inverse Fourier transformation aince the "trianglea" 

overlap. 

This distortion of the desired Fourier transform of a sampled function is known as aliasing. 
lt's caused by a too low sample frequency 1/ t1x. To exclude aliasing the sample frequency 
must at least he two times Sc, where Sc is the highest frequency component of the Fourier 
transform of the continuons function /(x). The fast Fourier transform is simply an algorithm 
that can compute the discrete Fourier transform much more rapidly than other available 
algorithms. We will not discuss the computational aspects of the algorithm but merely look 
at some applicatioms. The first step in applying the discrete transform is to choose the 
number of samples N (where 2 log Nis an integer value), a sample interval t1x and a minimal 
x value Xmin· Note that the value of the function at a discontinuity must he defined to he 
the midvalue if the inverse Fourier transform is to hold. The discrete Fourier transform of 
our data array f(x~c) now becomes a complex array F(sn) 

N-1 

F(sn) = t1x. L /(Xmin + kt1x)e-2winlc/N 
lc=O 

n 
Sn= Nt1x (3.52) 

The scale factor t1x is introduced to produce equivalance between the continuons and discrete 
transformations. The discrete transformations are symmetrical about N /2. This follows 
because the real part of the transformation is even and the results for n > N /2 are simply 
negative frequency results. It's recommendable to use the true frequency scale in the plots 
instead of the array index n. The relation between the index n and the true frequency reads 

Sn= { 
NÄz 

n-N 
NAz 

for 0::5: n < N/2 
(3.53) 

for N/2:::;; n < N 
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The FFT resul ts are spaeed in frequency by the in terval Äs = 1 f ( N Äx). lf a higher resol u ti on 
is desired then an increase in N is preferabie to an increase in Äx since this can cause 
aliasing. Beware that the term increase in resolution is ambiguous in that one is not sure 
if a larger or smaller resolving power is implied. A common mistake made by FFT users is 
to increase N by appending zero's to the sampled and truncated function and to interpret 
the results as having enhanced resolution. The frequency resolution has already been set and 
the convolution operation of adding zero's merely provides additional frequency samples by 
interpolating the original frequency results. Resolution is determined by the "time duration" 
of a signal which is set by the truncation interval. For periodic functions with known periods, 
one can choose N Äx equal to an integer multiple of a period. Whenever it is impossible 
to choose N sufficiently large or where the periodic function is not known, the concept of a 
data-weighting function must he employed. 

3.3.2 The data-weighting functions 

The use of data-weighting functions can he a very powerful technique to minimize the un­
desired effects of a non-optima! x-domain truncation. In this section we will investigate the 
effect of the four most used weighting functions on the discrete frequency spectrum. 

Rectangular weighting function 

Truncating a function /(x) in the x-domain can he seen as a multiplication of a rectangular 
weighting function R( x) and the original function /(x) where the width of the function R( x) 
is N ÄX = (Xmaz- Xmin)· 

R(z) · /(z) 

ovv v mvv vv v~ 

O~~~~~~LU~~~~~UL~~~~~ 

-25 s -----+ 25 

Figure 3.5 The upper graph shows the function f(z) = cos(211'z&o) with &o = 11. The lower graph shows 

the corresponding continuous Fourier transform F(&). The difference from the two expected delta fundions at 

8 = ±11 results from x-domain truncation. The following parameters were used: N ~z = 1.0 and ~" = 1.0 
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A rectangular weighting function must he defined as: 

0 for X < Xmin V X > Xmin + N ~X 

R(x) = 1/2 for X = Xmin V X = Xmin + N ~X (3.54) 

1 for Xmin < X < Xmin + N ~X 

For the time being we will assume tha.t Nis constant (N = 64). To demonstra.te the effect of 
multiplying a. da.ta. function /(x) with a. rectangular weighting function R( x) one first has to 
look a.t the continuons Fourier transfarm of the function R(x) · f(x) (for simplicity we take 
f( x) = cos(21r s0x )). This is visualized in tigure 3.5. The s-doma.in is now continuons since we 
ca.n't use the relation f(y+ N ~x) = f(y) here. The difference between the continuons Fourier 
transfarm and FFT is that for FFT only N points are selected in both the data function as 
in the corresponding Fourier transform. 

FFT of R(z) · /(z) with N = 64. 

0.50 

-0.50 ..__ ____ ........._ ____ "i_ ____ _.__ ____ ___J 

0 32 64 

0.50 

-0.50 ,___ ____ __._ ___ _ 

0 32 64 
Figure 3.6 Obscured signa! when a reetancwar weighting function is used on a eosine function. From the 

continuous signa! ( -) only a discrete set of points is selected when an FFT is performed. Which N points 

are selected depends on the factor •o/ t:u. Here we display •o/ fl.• is integer ( •) and •o/ fl.1 is integer plus a 

half (•). 

Notice that the continuons transform gives the same result as the FFT if we use the relation 
f(y + N ~x)= f(y). The data points x1e are equally separatedat a distance ~x while the 
Fourier spectrum is equally spaeed at integer multiples of ~s(= 1/(N~x). Which N points 
in the frequency doma.in are selected from the continuons power spectrum depends on the 
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number of periods, np ( = s0 / ~s ), on the interval N ~x. The two most interesting cases are 
illustrated in figure 3.6 where the dots represent the situation nPt is integer and the squares 
represent the situation np2 is integer plus a half. Note the apparent broadening (leakage) of 
the frequency peak at frequency s0 for np = nP2 while for np = nPt we have an almast delta 
peak at frequency s0 • This is the reason why the highest resolution is obtained when N ~x 
is an integer multiple of the period. However if the period is an unknown parameter one 
can select a weighting function whose Fourier transfarm falls off more rapidly in amplitude 
on bath sides of its peak value compared to the transfarm of a rectangular weighting function. 

Characteristics of several weighting functions 

Several weighting functions have been employed with the FFT. We'll discuss briefly the in­
teresting features of the four most popular; the rectangular, the Hanning, the Parzen and the 
Bartlett window functions. These functions and their corresponding frequency response are 
defined in table 3.1 and depicted on the next page. 

Table 3.1 

x-domain s-domain Highest side 3 dB 
he re z=-"'- lobe dB band width NAz 

WR(z) = { 
1 lzl :S ~ 

wR(s) = N 4).x · sinc(7rsN 4).x) -13 0.85 

0 lzl > ~ 
NAz 

wa(z) = { 
1-!. izl :S ~ 2 

wB(s) = N~"'sinc 2 (7rsN 4).z/2) -26 1.25 

0 lzl > ~ 
NA:.: 

wy(z) = { 
cos2( 1I"Z) lzl :S ~ 

w (s) = NAx sinc
2
(,..•NAz) -32 1.40 

0 lzl > ~ 
H 2 1-(•NA:.:)2 NA:.: 

wp(z) = ! 1- 24z2 + 48Jzi3 lzl <i 

2(1- 2Jzl)3 ~ < lzl < ~ wp(s) = 3N8A"'sinc4 (7rsN 4).x/4) -52 1.82 
NA:.: 

0 lzl > ~ 

All functions have sidelobes in the frequency domain but produce less leakage than the trans­
farm of the rectangular function. However they all have a braader main lobe. Reeall that 
x-domain weighting is a frequency domain convolution so the braader the main lobe, the 
more smeared the results of the FFT become. In general, the more one reduces side lobes or 
leakage, the braader or more smeared the results of the FFT appear. One therefore should 
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choose that weighting function whose characteristics are best suited to the problem being 
addressed. Whenever the technique of fast Fourier transformation is used to resolve periodic 
behaviour in a signal it is usually a matter of experimenting with various window functions 
until the window function is found which gives optima! results. In most cases however the 
Hanning weighting function gives a satisfactory result. 

Figure 3. 7 Four 

oftea used weighting 

tluadions. 
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Figure 3.8 Absolute 

value of the Fourier trana­

forma of the four weight­

ing fundions depicted in 

ligure 3.7. The ampli­

tude is expressed in dB's 

(read 20 10log ). 
'S 

"' > w 
--' 

'"' al 
0 
--' 
UJ 
0 
Vi 

0 

iO 

;'0 

-30 

-40 

-50 

-60 

-70 

80 

90 

-100 

---- -- fi.ectangutar 

--- Hannmg 

--- Parzen 

--

_1_ 
Nb.z 

SUMMARY 

In this chapter the idea that the resistivity in a 2D electron gas acquires oscillatory components 
in a magnetic field is theoretically founded. According to this theory when using magnetic 
field modulation the measured signal has at least one periodicity in 1/B. If a high enough 
magnetic field is used ( ~ 20 Tesla ) the different subband periodicities in 15-dopes can he 
found when applying a fast Fourier transformation on the signal in 1/B. 



Chapter 4 

Measurements on 8-dopes 

In this chapter we present the results of measurements of six 6-doped samples grown in a 
computer controlled Varian Modular M.B.E. system at three different temperatures (480 oe, 
530 oe, 620 oe) with two different areal dopant concentrations of 2 1012 I cm2 and 8 1012 I cm2• 

The electrical characterization of the samples is presented in section one. The second section 
shows the experimentalset-up of the magnetic field modulation measurements in fields up to 
20 Tesla. All data has been recorded using a XT-PC and LAB-masterC20>. The results of the 
magnetic field modulated Shubnikov-de Haas measurements are presented in the following 
two sections. In section five we discuss the results of SIMS1 measurements performed on 
two samples. We also performed cyclotron resonance measurements on two samples. These 
results will he discussed insection six. We willend this chapter with an evaluation of our mea­
surements and compare the results and conclusions with publications of similar experiments. 

4.1 Sample growth and electrical characterization 

Our six 6-doped structures were grown in a computer controlled Varian Modular M.B.E. 
system using the following preperation menu: A substrate GaAs wafer is etched in order 
to remove possible (surface) polution. The final step of the etching procedure incorporates 
the creating of an oxide top layer on the substrate wafer, which later on will he thermally 
removed in the M.B.E. system 2 • After the oxide layer has been removed the actual growing 
menu for the 6-dopes can he started. First an initia! 0.5 J.Lm thick GaAs buffer layer was 
grown on the undoped (100) GaAs substrate at a temperature of 580°e foliowed by a 2.5 J.Lm 

GaAs layer at a substrate temperature Tgrowth· The latter temperatureneed not necessarily 
to he different from 580°e. We however have grown structures at substrate temperatures of 
480°e, 530°e and 620°e. To ensure a smooth surface the Ga-flux is interrupted 10 seconds 

1 Secondary Ion Mass Spectroscopy 
2 This is done at a temperature between 580° and 620°C under a constant As-flux. 

40 
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before the actual Si-atoms are deposited. 

Sample T tp'OVIth. (oe) NDon {1012 lcm2) 

A 480 2 
B 530 2 
c 620 2 
D 480 8 
E 530 8 
F 620 8 

Table 4.1 List of charaderistic growing parame­

ters of the samples. 

• l~m GaAa Tgr.,..eh 

" " f· " ' " " ' " " " " ' ' " " " 
2.5J'm GaAa Tgro.Ua 

~- -~-------- -~--
GaAa 580 oe 0.5J'm 

GaAs Substrate 

Figure 4.1 Schematic graph ofthe 

sample's structure. 

Si-plane 
+-

The deposit of the donor atoms lasted only 7.5 or 30 seconds to obtain an areal donor density 
of 2 1012 I cm2 or 8 1012 I cm2 respectively. Finally a 1 J.Lm thick GaAs top layer was grown 
at a temperature T11r0VIth· A schematic diagram of the samples is shown in figure 4.1. Table 
4.1 shows the characteristic growing parameters of all samples. The electrical characteriza­
tion of the samples have been stuclied by Hall effect measurements using the Van der Pauw 
method. The Hall electron density naall and the Hall mobility J.LHall have been measured for 
temperatures between 4.2 and 300 K. These measurements are displayed in figures 4.2 and 
4.3. The values at 4.2 K are also tabulated in table 4.2. 

T (K) 

Figure 4.2 The measured temperature 

dependenee ofthe Hall electron density nHall 

between 4.2 and 300 K. 
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An interesting result of figure 4.3 is the differences in mobility of the samples grown at 480°C 
and the one's grown at 620°C. This might indicate that the samples C & F have a more 
wide spread donor distribution function than the structures A & C. For temperatures below 
77 K the most important scattering mechanism in 6-dopes is ionized impurity scattering so 
a smaller mobility certainly indicates a larger donor spread distance. A general difference 
between samples D, E and F and the set A, B and C is the slight temperature dependenee 
of the heavily doped samples below 100 K. The influence of illumination (red LED) is also 
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investigated by measuring again the Hall electron density and the Hall mobility as a function 
of the temperature. The results of the samples A,C,D and F are displayed in figure 4.4. 

_.,/"------. 0.80 l i i 0.60 

0.60 ~~ ---------------. D 
B ~ . ~ 0.40-

CI.I 
... -•-..__ '1o E •,. > ....... .. • ",....A....... ........... -·-·-·-~ --·- ~~~~~~~-~~~ ·-·-·-·-·-·-· F 

E 0.20-

10 100 

T (K) 

Figure 4.3 The measured temperature 

dependenee of the Hall mobility Ji.Hall be­

tween 4.2 and 300 K. 

All samples show a decrease of 
the Hall electron density and an 
increase of the Hall mobility af­
ter illumination. The original as 
well as the illuminated samples 
have, for temperatures above 150 
K, the same Hall mobility and 
Hall electron density. 

4 10 100 

T (K) 

Sample nHall ( 1012/ cm2) J.LHall ( m2 /V s) 

dark light dark light 
A 1.14 1.13 0.545 0.676 
B 1.13 1.14 0.517 0.654 
c 1.87 1.73 0.223 0.327 
D ~3.76 3.27 0.385 0.515 
E 5.70 5.05 0.226 0.280 
F 7.46 7.30 0.224 0.243 

Table 4.2 Table of Hall mobility and Hall electron den­

sity at 4.2 K before and after illumination. 
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Figure 4.4 Mea­

sured temperature de­

pendence of the Hall 

electron density and the 

Hall mobility between 

4.2 and 300 K before 

(\7) and after illumina­

tion (•)· 
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4.2 Experimentalset-up 

The experimental set-up for the magnetic field modulated measurements is graphically dis­
played in tigure 4.5. A sweepgenerator (SW) generates an in time slowly increasing and 
decreasing voltage V .w which is proportional to the magnetic field. To this magnetic field 
cantrolling voltage a small oscillating (70Hz) voltage V1 (Osc) is superimposed to create the 
modulating magnetic field Bmod· The voltage VI also serves as reference signal for the Loek­
ins (Lil and 112). The samplescan he mounted on an insert which is placed in a He-bath in 
the center ofthe bitter magnetic system. This magnetic system generates fields up to 20 Tesla. 
Lowering the pressure above the He-bath enables measurements at temperatures between 4.2 
and 1.2 K. A constant current lprep (~ lOOJ.'A) is sent through sample (S) contacts 1 and 53 . 

The Hall and Shubnikov-de Haas voltages are measured via Lock-in 1 and 2 respectively. The 
Lock-in output signals V1 and V2 now are proportional tothef (and/or 2f) harmoniepartsof 
the Halland the Shubnikov-de Haas voltages. These signals are plotted on a XV-recorder and 
written to data-files as a function of the magnetic field. All measurements were performed on 
Hall-bar structures. The precise geometry and size of the Hall-bar structures is displayed in 
appendix C. 

vin2 
vin1 v_+v, 

~ .. ·1~natal ·V . I 

,_ v.., 

xv-recorder 
PC 

Figure 4.5 Schematic diagram of the experimenial set-up used for the magneiic field modulaied 

measurements. 

The hard- and software<20) concerning the data transfer to the PC is specifically developed 
for field modulation measurements. In appendix D a short guidance to the program FFT19 
is given. This program covers all mathematica! action necessary to extract the periodicity in 
1/B of the measured data. 

3 For sample contact definition see appendix C 
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4.3 Subband population measurements in perpendicular field 

The population of the subbands has been determined from Shubnikov-de Haas and Hall effect 
measurements on Hall-bar shaped samples in magnetic fields up to 20 Tesla. To obtain 
a better resolution of the oscillatory parts in Pzz and PZJJ the technique of magnetic field 
modulation was used with a modulation field of 30 mT at a modulation frequency of 70Hz. 
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0.00 0.50 1.00 0.00 0.35 0.70 
1/B ___. (1/T) 1/B-+ (1/T) 

Sample A Sample D 

0 1 2 3 4 

0 2 3 4 5 

n ___, (1012jcm2) 

Figure 4.6 Example of typical results of measurements. Here samples at a growth temperature of 480°0 

are shown. In order to resolve the smallest periodicity the sample D we tilted this sample over an angle 

~ = 25.84°. The x-axis of the Fourier transform of this sample hence must be multiplied with cos(~)= 0.9 to 

get the proper subband populations. 

5 



CHAPTER 4. MEASUREMENTS ON 6-DOPES 45 

This enables us to measure signals closely related4 to dpzzfdB and dpCJJfdB. Taking the fast 
Fourier transfarm of these signals in 1/B gives the periodicities Pi of the different subbands. 
The periodicity however is proportional to the inverse of the subband popwation ni via 
relation 3.37. Results of samples A and D are visualized in figure 4.6. Some extra figures of 
Fourier transfarms of the other samples are collected in appendix E. Most measurements were 
performed at 4.2 K since temperature lowering to 1.2 K gave no essential signal improvement. 
Tables 4.3 a and b show the results of the subband population measurements for the samples 
A, B and C before and after illumination. The similar results for the heavily doped samples 

A B c A B c 
T.,...."th 480 oe 530 oe 620 oe T.,.owth 480 oe 530 oe 620 oe 

P- Per~ P- p211 P- P211 p .... P211 p .... P211 p .... P211 

nt 0.34 0.36 0.38 0.38 0.42 0.42 nt 0.45 0.42 0.38 ?? 0.44 0.45 

no 1.43 1.44 1.38 1.32 1.32 1.38 no 1.50 1.53 1.40 ?? 1.40 1.34 

nw 1.77 1.80 1.76 1.70 1.74 1.80 nw 1.95 1.95 1.78 ?? 1.84 1.79 

nHall 1.14 1.13 1.87 RB all 1.12 1.14 1.80 

Table 4.3 Thia table shows the dift'erent subbaacl popalaüona of the samples with an areal Si-denaity of 

2 1012 fcm2 • Lelthand table before illumination; righthand table after illumination. 

D E F D E F 
Tp..."th 480 oe 530 oe 620 oe T.,...."th 480 oe 530 oe 620 oe 

p .... Per~ P- Per~ P- Per~ p .... pi/Jfl p .... Per~ p .... Per~ 

ns 0.16 0.18 ?? ns 0.25 0.29 ?? 
n, 0.51 0.52 0.70 0.74 ?? n2 0.56 0.55 0.75 0.78 ?? 
nt 1.23 1.24 1.66 1.71 ?? nt 1.29 1.30 1.80 1.78 ?? 
no 3.50 3.50 3.22 3.35 ?? no 3.50 3.50 3.32 3.50 ?? 

nw 5.24 5.26 5.74 5.98 nw 5.35 5.35 6.12 6.35 

nna11 3.77 5.7 7.5 nna11 3.3 5.1 7.3 
~ "" Table 4.4 Thia table shows the different subbaad populations of tlie samples with an areal Si-density of 

8 1012 fcm2 • Lelthand table before illumination; righthand table after illumination. 

D and E are displayed in table 4.4 a and b. Unfortunately we were not able to extract 
the different subband populations from sample F. However the also tabulated Hall electron 
density indicates that almost all silicon atoms must he ionized since ntot must he larger than 
or equal to nHall· In the samples A, B and C the value ntot differs slightly from the areal 
Si-density. This is probably due to the formation of a depletion region on both sides of the 
2DEG. However the heavily doped samples D and E show a much larger discrepancy. Clearly 
some other mechanism must he responsible for the relatively low value of ntot· Zrenner 
et aJ.(21) argued that at low values of Tgrowth the electron concentration is limited by the 

4 See section 3.2 
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population of the DX-center at 200 meV above the r-conduction band minimum, whilst at 
high growing temperatures auto-compensation occurs priortoDX-center population. However 
when assuming that population of the DX-center is the main electron saturation mechanism 
for sample A, we are not able to fit the measurements with theoretica.l calculations. An 
areal electron density of 5.3 1012 f cm2 is to low to give a Fermi level of about 200 me V 
above the r -con duetion band minimum. The fact that no PPC-effect was measured is also 
an arguement against the population of the DX-center. Beall et a1.<22) argued that at high 
areal dopant densities donor saturation occurs because of Si-islands formation. These islands 
consist of electrically active (donor) as wellas electrically inactive Si. They noticed an increase 
of the areal electron density after annealing 6-doped samples several times. Diffusion of the 
inactive Si-atoms ( eventually causing them to become electrically active) seems the most likely 
explanation for the increase in ntot· The diffusion ofSi-atoms was measured via Secondary Ion 
Mass Spectroscopy. When looking at the samples D, E and F we see an increase in ntot when 
the growing temperature is raised. This indicates that at higher temperatures more Si-atoms 
become electrically active. The mobility however decreases at higher values of T rowth. which 
indicates a more wide spread donor distribution. Conclusively we can say that during sample 
growth, segregation of Si-atoms seems to he an important mechanism, determining not only 
the donor spread function but also the areal donor density in the samples. 

For a two subband system it is possible to calculate the different subband mobilities J.Lo 

and #Jt using the following low field formulae<3>: 

Nbuund-1 n· 
I: 
i=O 

Nbuund-1 

I: 
i=O 

(J.Li-'-) = J.'Ho.ll 
nHo.ll 

n· 
J&i-'-(J'i- J.'Ho.ll) = 0 

nHo.ll 

(4.1) 

(4.2) 

The subband mobilities of samples A, B and C are calculated that way and tabulated in 
table 4.5. For systems with more than two subbands one can only find an estimation for 
the subband mobilities. The best approximations for the different subband mobilities of the 
heavily doped samples D are also tabulated in this table. 

Table 4.5 Table showing 

the calculated subband mo­

bilitia in m2 /V •· 

J.'HAll 

J.'o 

J.'1 

J.'2 

A B 

0.55 0.52 
0.22 0.20 
0.93 0.85 

c D 

0.22 0.39 
0.22 0.15 
0.22 ~0.55 

~0.55 

The calculated mobilities of the second subband of samples A and D are higher than other 
6-dope subband mobilities reported so far< 7•14•21 >. The enhancement of the mobility in the 
samples grown at low temperature, is most probably due to the smaller overlap between 
the donors and the electron wavefunction<23>. Above 100 K the mobility in all subbands is 
equal because longitudinal optica! phonon scattering is the main scattering mechanism. This 
scattering mechanism is less sensitive to the electron wavefundions than ionized impurity 
scat tering. 
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With the measured subband population values, tabulated in tables 4.3 and 4.4, we are able 
to find an optima! set of numerically ca.lculated values of fii, when using the donor spread 
distance as a fitting parameter. The results of this fit of samples A and D are illustrated in 
figure 4. 7. The best fitting donor spread distance for these samples is 20 A. The optima! dDon 
values for the other samples are tabulated in table 4.6. This fitting procedure however is no 
longer very sensitive for variations in the fitting parameter dDon fordDon-values below 40 A. 

7 

- 6 .. 
I 

E 5 
0 

.. 4 ... 
0 3 ,.. - 2 
c 1 

0 
0 

A 

0 

i - 1 ---­.... -----·---=- 2 ........ I • ------- ~--------------~-- ------------~ 

T growth Ddon 

A 480 oe 20 A 
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Figure 4. 7 Figure ahowing the calculated and the meuued nbband Tab Ie 4.6 Table ahowing the beat 

population valuea of sample A and D. The beat reauit ia achieved with fitting value of do- for the various 

a donor spread distance of 20 A. samples. Sample F can not be re­

lated to some do- value because 

the different subband populations 

couldn't be determined. 

An interesting result of this fitting procedure is the fact that the donor spread distance in­
creases as the growth temperature of the samples is increased. This seems to substantiate the 
idea that at relatively high growth temperatures spreading of Si-atoms takes place and that 
the spreading depends on the areal Si-density. 

4.4 Subband population measurements in tilted field 

In the former section we investigated the influence of a perpendicular magnetic field on trans­
port properties like the Halland the Shubnikov-de Haas effect. The measured signals dpzz/dB 
and dpZJJfdB finally give the different subband population values, ni. With these values it 
is then possible to find a best fitting donor spread distance dDoni meaning that we look for 
that particular value of dDon which gives a minimum difference between the measured and 
numerically calculated subhand population values. This can he done because the perpendic­
ular magnetic field doesnotaffect the shape of the potential function U(z). However if there 
is also a magnetic field component parallel to the 2DEG, the total potential function becomes 
magnetic field dependent. In those situations we are no longer allowed to extract a dDon 
value from the measured subband population values. Figure 4.8 shows the system's geometry 
in case the magnetic field is no longer perpendicular to the 2DEG. The perpendicular and 
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parallel magnetic field components are Bcos( 4>) and Bsin( 4>) respectively. 
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Figure 4.8 Geometry of the ayatem in case 

the mapeüc field ia tilted over an angle ;. 
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Figure 4.9 Meaaured value of P1 (T-1
) as a 

funcüon of eus(; ). 

In order to investigate the influence of the parallel magnetic field component we measured the 
Shubnikov-de Haas and Hall signals and calculated the "corresponding" periodicities of the 
second subband, P1 . Figure 4.8 shows the functional dependency ofthe measured quantity Pt 

A 

D 

and cos{</>) for the high mobility samples A and D. In case the parallel magnetic field does not ? 
affect the potential function of the system, we can expect a linear dependency P1 "'r cos(</>). CoPti~T • 

The line representing the linear situation is also drawn in figure 4.9. The population of the 
second subband of sample A ( closed symbols) seems to he linear dependent on cos( 4>) while 
sample D (open symbols) shows only a linear dependency on cos(</>) for small values of</>. 
For cos(</>)> 55° the relation n1 / cos(</>) is a constant no longer holds. The cycltron radius of 
the electrans is the zx-plane is approximately 257 À/ JB sin(</>). Now if the cyclotron radius 
becomes of the same order as the "thickness" of the electron gas, the electrons can make 
circular orbits and the existence of the parallel magnetic field component is noticed. This 
could explain why sample D seems more affected he by the parallel magnetic field than sample 
A, since theoretica! calculations show that the "thickness" of the electron gas increases for 
higher areal electron densities. 

Further analysesneed to he doneon samples with various areal electron densities and at 
different growth temperatures ("' different value of dDon) to show how the different subbands 
are affected by a parallel magnetic field component. 

We also investigated the depopulation of the different subbands by measuring at parallel 
magnetic fields only. The Schrödinger equation of this system is 

eB e2B 2z2 

{ (P! + p~ + P!)/2m* + - 11 (zp21 + p21 z) + 11 + U(z)- E }'lf(x, y, z) = 0 
• 2m* 2m* 

This particular Schrödinger equation has been numerically solved by Reisinger<24) fora para­
bolie conduction band. The calculations gave the different subband energies as a function of 
Bu and the areal electron concentration N2DEG using a 5 A broad donor distribution function. 
The calculated critica! magnetic fields (magnetic field at which subband depopulation takes 
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place) are visualized in figure 4.10 as a function of the areal electron density. First order 
perturbation theory shows that for a symetrie potential U(z) the different subband energies 
En are lifted a factor dEn, with 

e2B2 
dE =< w lz21w > _11 n n n 2m• 

Clearly the higher subbands are more influenced because < Wnlz21Wn > increases for higher 
subband indices. Eventually the highest subband will he lifted above the Fermi level ( subband 
depopulation) and the electrans are rearranged over the remaining subbands. For higher mag­
netic fields the next subband will depopulate id. The resulting oscillations in the resistivity 
are called the diamagnetic SdH-effect. 
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~ ~igure 4.10 Calculated critica! magnetic 

~ fieJdaC2•> for depopulaton of the i'" subband as 

a fundion of the areal electron density. 
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Figure 4.11 Typical reauit ofthe measure dia­

magnetic SdH-efl'ect using the technique of mag­

netic field modulation. 

A typical result ofthe diamagnetic SdH-effect is visualized in figure 4.11. The measured crit­
ical magnetic fields of samples A and D are diplayed in figure 4.10. The difference between 
the measured and calculated critica! magnetic fields is probably due to the non-parabolicity 
of the conduction band in GaAs. As shown in chapter 2, non-parabolicity must he taken 
into account in the self-consistent calculations. Especially at small values of the donor spread 
distance, here ~ 5À, non-parabalicity can give large corrections in system parameters like 
E1- Ei. It would he very intersting to verify these data with a theoretica! calculations which 
take non-parabolicity into account. 

20 
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4.5 SIMS measurements 

We performed SIMS (Secondary Ion Mass Spectroscopy) measurements on the samples D 
a.nd F. With this technique it is possible to remove several atomie toplayers of a sample 
by shooting primary ions at the sample's surface a.nd detect the (secondary) ions which are 
removed from the sample. This, however destructive technique, is very suitable for scanning 
the profile of samples in one direction a.nd determine the chemical structure as a function 
of the depth. The resolution is about 3nm since not only one atomie toplayer is removed 
but a mixture of several atomie layers. The results of the SIMS measurements are displayed 
in figure 4.12. This figure shows tha.t the sample grown at 620°C has a.n asymmetrie donor 
distribution function while sample D has a. symmetrie donor distribution. The asymmetry 
must be caused by segrega.tion of Si-atoms during the growth of the sample. 

1019 ~----------------------------~r---------------------------~ 

a. u. 

0 

• 
' t 
' ' ' ",,'\ 

' ' ' ' ' '-, 
' ' ' • 

I 

' 

200 

, 
I 

I 

I , 
,.I 

I 
I 

I 
I 

' 

400 

• 
' I , 

" 

I 
I 

• 

600 800 

Figure 4.12 Si profile ofthe aampies D (-) and F (- -) as a lunetion ofthe etching depth. 

1ooo A 

The full width halve maximum values are 50 A and 80 A for samples D and F respectively. 
Conclusion: SIMS measurements show that segregation of Si-atoms takes place at a growth 
tempera.ture of 620°C. At a growth temperature of 480°C these effects have disappeared. 
Further investigations need to be done to show the growth temperature dependency of the 
segrega.tion effects. Dilfusion of Si-atoms seems to be of minor importance in both samples. 
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4.6 Cyclotron resonance 

The cyclotron resonance measurements are performed on the high mobility samples A and 
D. A schematic diagram of the experimentalset-up is given in figure 4.13. We measured the 
transmission of the Far Infra Red laser light as a function of the magnetic field from 0 to 
20 Tesla at a temperature of 1.3 K. A typical result of the measured transmission profiles is 
depicted in figure 4.14. 
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Figure 4.13 Experimental set-up of the mea.­

sured Fm transmission profiles as a fundion of 

the magnetic field. 

bm: bolometer; S: sample; SW: sweepgenerator 

and power supply for magnetic field. 

~0 (T) 
Figure 4.14 Typical result of a Fm trana­

mission profile as a fundion of the magnetic field 

at a wavelength of 77.4 l'm. The depth of the 

transmission dip is about 0.5% of the transmis­

sion signal. 

The dips in the transmission profiles are all very broad. A reason for this extreme broadening 
can he the relatively low mobility ( "' scattering time ) of the ó-dopes compared to mobility 
of heterostructures. A second reason is the high area! electron density which gives rise to 
considerable dielectric broadening<25) of the CR-profile. Finally, as more than one subband is 
populated, the overlap of severalless broad CR-profiles also give rise to an apparent broad­
ening. Assuming the minimum of the transmission profiles is due to one subband we can 
determine an (cyclotron) effective mass m~ via the following equation: 

* e BminÀ m - _ __;.;.,;";,.._ 
CJid - 27!'C 

where ).. is the laser wavelength; c the speed of light in vacuum; e is the proton charge and 
Bmin is the value of the magnetic field at the minimum of the transmission profile. Figure 
4.15 shows the calculated values of the cyclotron effective mass as a function of the laser 
wavelength ).. for both the samples. The cyclotron effective mass differs considerably from 
the bulk GaAs effective mass m* = 0.067 me. The discrepancies are caused by the non­
parabolicity of the conduction band in GaAs. It is easy to show that at low temperatures the 
cyclotron effective mass is proportional to the non-parabolk density of states function at the 
Fermi level m~ = 1r1i2 DOS2(EJ ). For large area! electron densities (large values of Et) the 
relation between the cyclotron effective mass and the effective mass of bulk GaAs reads: 

20 
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m~1 ~ 1.13 m* for sample A and m~cl ~ 1.26 m* for sample D . 
Figure 4.15 shows that indeed the cyclotron effective mass is larger than the bulk effective 
mass value and that m~cl in sample A is smaller than in sample D. 
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Figure 4.15 Measured cyclotron effective mass values as a fundion of the laser wavelength À for sample 

A (upper) and sample D (lower). 

It is not clear yet whether the measured transmission minima are wavelength dependent or 
just statistically scattered around a constant value. 
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4. 7 Discussion 

The growth temperature, T tpowth, is a very important growing parameter for b-doped struc­
tures. A relatively high value of Tvowth brings about a more widely spread donor distribution 
function. The areal donor density is also an important system parameter that can limit the 
width of the donor spread distance. The most important mechanism that red u ces the minimal 
value of the width of the dopant sheet seems to he the migration of Si-atoms with the growth 
front. Diffusion seems to he of minor importance during the growth. Magneta-transport 
measurements indicate that the samples grown at a temperature of 480°C, have a donor with 
of 20 A. For this value of T tpowth the donor width is not influenced by the areal donor density, 
while at growth temperatures ~ 520°C, the donor spread distance becomes a function of 
both the areal donor density and the growth temperature. This latter condusion is a little 
speculative since we only have performed measurements on a few samples. The sameeffects 
however have been noticed by Santos et a/.(14) 

The noticed discrepancy of the deposited areal Si-density and the measured value of elec­
trically active Si-atoms in the heavily doped samples is still an unsolved effect. This effect 
reduces at higher growth temperatures. The most likely explanation is given by Beall et 
a/.<22) who states that at sufficiently high dopant concentrations the Si-atoms will form clus­
ters during the growth, which contain a relatively high concentration of electrically inactive 
Si. After annealing <5-doped samples, they noticed an increase in the number of electrically 
active Si-atoms. An other explanation for the noticed discrepancy was given by Zrenner et 
a/.(21 ) who argued that at high areal electron densities the DX-center at 200meV above the 
r-hand minimum is populated. This argument however fails for the heavily doped structure 
with a growth temperature of 480°C because noPPC-effect is measured. Furthermore, calcu­
lations show that an areal electron density of 5.3 1012 f cm2 can never give a Fermi level that is 
200meV above the r-hand minimum. The measured Hall rnahilities of the samples grown at 
low temperature are much higher than rnahilities reported so far. We were able to calculate 
the different subband rnahilities for the lightly doped samples. The difference between the 
different subband rnahilities is approximately a factor four for the samples grown at tempera­
tures beneath 530°C. In the high temperature grown sample the two subband rnahilities are 
equal. This indicates a broader donor distribution function since the overlap of the subband 
wave functions with the ionized donors is closely related to the subband's mobility<23). The 
more the subband rnahilities differ one another, the narrower the donor width must he. 

We only used a symmetrie charge distribution in all our numerical self-consistent calcula­
tions. Some of the é-doped structures most certainly have an asymmetrie donor distribution, 
due to Si-segregation during the growth. It is therefore recommendable to investigate the 
influence of asymmetrie donor distributions on the system parameters. The presented set 
of calculations are still valuable since they can he used to calculated asymmetrie systems 
via first order perturbation theory. The performance of numerical self-consistent calculations 
which allow asymmetrie distributions, might he interesting. This however is an extremely 
time consuming job that should he given serious consideration to. 
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Appendix A 

Table of values 

Quantity Symbol Value SI 

Velocity of light c 2.997925 108 m s-1 

Proton charge e 1.60219 10-19 c 
Planck 's constant h 6.62620 10-34 J s 

n 1.05459 10-34 J s 

Electron rest mass me 9.10956 10-31 kg 

Proton rest mass mp 1.67261 10-27 kg 

Electron volt eV 1.60219 10-19 J 

Boltzmann constant kB 1.38062 10-23 J K-1 

Permittivity of free space fo 8.8542 10-12 F m-1 

Permeability of free space J.lo 1.2566 10-6 H m-1 

Bohr radius h2 /mee2 To 5.29177 10-11 m 
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Appendix B 

The function that describes the number of electronstatesin the energy intervalE and E+b.E 
is called the density of states DOS(E). This function can he calculated from the dispersion 
relation Edi•p(k) which gives a relation between energy E of the electrans and their wave 
vector k = (kz, ky, kz). Fora 3-D electron gas one can calculate the function DOS3(E) via 
the relation: 

DOS3(E)b.E = L 2 
t..le 

where the summation runs over all b.k combinations in k-space between the equi-energy 
surfaces E = Edi•p(kz, ky, kz) and E + b.E = Edi•p(kz + b.kz, ky + b.ky, kz + b.kz). The 
summation can be rewritten as a volume integral of the density of states in k-space over the 
volume between surfaces E and E + b.E. So 

This can be wri t ten as 

where we used the relation: d3k = dS IV t1J. I Finally the 3-D density of statescan he written 
k dup 

as an integral over an energy surface Sl in k-space weighted by the redprocal of the function 

IIV'kEdi•pll· rr 1 a ds 
DOSa(E) = JJs12( 2") IIV'kEdi•pll 

Fora two dimensional system the density of statescan by calculated using the sameprocedure 
as above. This finally results in an integral over an energy curve sl in the two dimensional 
k-space weighted by the redprocal of the function IIV'kEdï.pll given by 

With these formulae the density of states can be calculated even for an arbitrary dispersion 
relation. The dispersion relation for GaAs derived by Rössler(ll) is a correction to the mostly 
used parabalie dispersion relation which is no Jonger valid at high electron concentrations. 
This non-parabalie dispersion relation is used to calculate the density of states DOS2(E) of 
a 2-D system like the ó-dopes. 
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Appendix C-1 

The next three tigure show the three Hall-bar types of the measured samples. All values are 
expressed in J.Lm. The Hall-bar structure codes are 1°, 2° and 2b. 

Sample code Hall-bar code 

A 2a 

B 2b 

c 2b 

D !C 

E 2b 

F 2b 
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! ' 
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Appendix D-1 

Short user guidance to the program FFT19 

The program FFT19 is an additional program to the measurement program MAP(20>. It 
is written in ASYST (version 2) and can perfarm all the mathemetical actions necessary to 
extract the periodicities P; and the conesponding subband populations n; of the measured 
data. The program can he started on any DOS level by typing FFT19. When the program 
is loaded the (first-level) menu card is displayed with the following commands: 

Option 0: Two types of data-files can be imported; Asyst files created with the program 
MAP and ASCII-files. The format of the latter file type should he: 
-Line 1- Number of Y-data collumns ( maximal value is 4). 
-Line 2- Number of data rows to he read. 
-Line 3 tillend of file- lines with data. 

Option 1: Only useful for (MAP)Asyst-files. This option clears the screen and shows the 
additional camment lines in the imported file. 

Option 2: Shows the number of imported Y-channals ( maximal is 4), and asks which channel 
should he plotted on screen. Bath the original signa! as the signal in 1/x are 
visualized. Use this option again to laad another channel. 

Option 3: This option asks whether you want to rescale the x-axis of the upper and/or the 
lower figure. Type 0 to leave an x-extrema unchanged. 

Option 4: Enables one to write a small Y-label above bath figures. 

Option 5: Prints only the two visualized figures to the printer di vice PRN. 

Option 6: Option to alter the grid on/off condition. 

Option 7: Option toenlarge figures only temporarely. 

Option 8: Starts the FFT-menu and shows the FFT-menu card. The FFT-menu has 8-
options which will he discussed next. 

Option 9: Quit the program FFT19; Type start to restart the program ar bye to return to 
DOS. The Crtl- Serall Loek terminates the program at any program level. Type 
SD and hit enter to go to Asyst mode ar bye to return to DOS. 
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FFT-menu commands 

Option 1: Gives the absolute value of the Fa.st Fourier Transform of the imported data 
arrays. Two options can he used: FFT of Y(X) or FFT of Y(l/X) .. 

Option 2: Ad vaneed FFT option menu. Calculates the FFT of the signa! using one of the 
following window functions; Rectandular, Cosine , Gauss or Triangle. Furthemore 
zero's can he added to the signa! to "improve" resolution. With this option the 
signal is symmetrically mirrored in the maximum or minimum value of X; this 
impraves the frequency resolution. 

Option 3: Option to rescale the X-axis of the data. 

Option 4: Option to rescale the X-axis of the calculated FFT. 

Option 5: Option for saving signa! arrays like original data and/or its calculated FFT. 
-Line 1- Number of data-lines in file. 
-Line 2 tillend of file- Xï Yi 

Option 6: Prints the visualized graphs to the printer device PRN. 

Option 7: Option to zoom in on the FFT signa! only. 

Option 8: Return to the main menu. FFT-data-arrays will he lost. 
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Appendix E-1 

Sample A FFT of Pzz signal. 

0 2 3 4 5 

Sample A FFT of Pzy signal. 

0 2 3 4 5 
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Appendix E-2 

Sample B FFT of Pzz signal. 

0 2 3 4 5 

Sample B FFT of Pzy signal. 

0 2 3 4 5 
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Appendix E-3 

A 

Sample C FFT of Pzz signal. 

2 3 4 5 

Sample C FFT f · al o Pzy stgn . 
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Appendix E-4 

FFT of Pzz signa! . 

4 5 
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Appendix E-5 

Sample E FFT of Pxy signal. 

0 2 3 4 5 

Sample E FFT of P:xx signal. 

0 2 3 4 5 


