EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Delta-doped GaAs

Voncken, A.P.J.

Award date:
1989

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain


https://research.tue.nl/en/studentTheses/c7c5b845-a5fe-4f28-a347-80dbf7246188

0-doped GaAs

A.P.J. Voncken
University of Technology Eindhoven
The Netherlands

December 7, 1989



Abstract

In this master thesis the electric properties of Si-é-doped GaAs structures are investigated.
These so called §-dopes are M.B.E. grown GaAs structures which contain a sheet of donor
atoms (Si) localized within several atomic layers. In practice diffusion and segregation effects
can broaden the distribution. Provided moderately high dopant concentrations are present, a
two-dimensional carrier gas is formed. The eigenstates of the confined carriers are subbands
with energies which depend on the shape of the space-charge potential. Some basic proper-
ties of the §-doped structures have been determined by magneto-transport measurements in
magnetic fields up to 20 Tesla. The analyses of these measurements indicate that the GaAs
substrate temperature during the growth is a very important system parameter. The struc-
tures grown at a temperature of 480°C show an extremely narrow dopant profile (= 20A)
which increases as the growth temperature is raised. An important mechanism causing the
increase of the impurity spread at higher growth temperatures seems to be migration of Si-
atoms with the growth front (segregation during growth). Segregation is also dependent on
the areal impurity density as confirmed by SIMS measurements. The heavily doped struc-
tures show a large discrepancy between the number of Si-atoms in the dopant sheet and the
number of donors determined from subband population measurements. It is not clear at the
moment what mechanism is causing this discrepancy. For the lower dopant structures it is
possible to calculate the different subband mobilities from measured quantities. The calcu-
lated mobilities can differ up to a factor four for the different subbands and are the highest
mobilities reported thus far.
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Chapter 1

The 2-D electron gas

Molecular Beam Epitaxy (M.B.E.) is potentially superior to conventional epitaxial techniques
in the growth of very abrupt semiconducter transitions like Al;Ga;_,As8/GaAs heterostruc-
tures and quantum wells. This technique is very suitable for growing very sharply confined
doping layers, localized within several atomic layers, in bulk GaAs (§-doping). Provided
moderately high dopant concentrations are present (typical areal dopant concentrations are
of the order 10'2/¢m?), a two dimensional electron gas is formed. The critical areal dopant
density(!) creating an 2-D electron gas is about 2 1011/cm?. A common feature of these
structures is the formation of a multi subband electron gas at the dopant plane which has
interesting electrical properties. A brief overview of electrical properties of two dimensional
electron gases is presented in this chapter. The theoretical model used to perform numerical
self-consistent calculations is discussed in the second chapter. The results of these calculations
are presented in chapter 2 too. A more advanced theoretical analysis of the Shubnikov-de
Haas and Hall signals of these structures is presented in chapter 3. In the fourth chapter we
present the results and conclusions of the measurements performed on six samples.

1.1 Introduction

The scientific as well as the technological interest on III-V semiconductors nowadays is mainly
concentrated on low-dimensional systems. These low-dimensional semiconductor systems
can have very different electrical and optical properties, than observed in bulk materials.
Realisation of these structures is only possible with highly developed epitaxial techniques like
M.B.E. or M.0.C.V.D. (Metal Organic Chemical Vapour Epitaxy). A two dimensional system
particulary of interest to us, is Si-6-doped GaAs. A schematic diagram of this structure is
given in figure 1.1. This structure consist of pure GaAs which contains an (atomic) sharply
confined impurity sheet of silicon atoms. The typical background impurity concentration in
M.B.E. grown GaAs is 10'*/cm3. Hence the main background impurity distance per atomic
layer is approximately 0.3 um. The Bohr-radius of Si-atoms in GaAs is, at zero temperature,
circa 100A. Only above a critical dopant concentration these Bohr-radii can have overlap,
and a degenerated electron gas can arise. The expected insulator-metal transition occurs at
an areal density of 2 1011 /em2. Above these densities the electrons are no longer confined
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to one donor only. And example of the Hartree potential the electrons ”feel” is visualized in

figure 1.2.
8i*
GaAs -
2DEG
_’ __________________ r”
GaAs
S -GaA | , ' '
-GaAs -
5004 0 500A
Figure 1.1 Schematic Figure 1.2 Typical form of the self-consistent calculated sym-
representation of a §-doped metric Hartree potential. This particular system has four sub-
structure. bands beneath the Fermi level. The probabilities of finding an

electron at a distance s from the donor plane are also visualized.
These probabilities are different in all subbands.

The different subband states have different probabilities of finding an electron at a distance
z from the sheet of dopant. The electrons in the higher subbands tend to shift away from
the plane of dopant while the lowest subband electrons have a maximum probability in the
dopant plane. Thus we expect different subband mobilities at low temperatures since then
ionized impurity scattering is the most important scattering mechanism. Part of this work
consists of extracting the subband mobilities and the subband populations of these structures.
This is done via magneto-transport measurements.
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1.2 GaAs

1.2.1 Effective mass formalism

The effective mass formalism, introduced by Slater(?), states that the Schrodinger equation
which describes all the electron states in the system can be replaced by a more simple equation.
The idea is that the total system describing Schrédinger equation with a periodic potential
can be replaced by a Schrédinger equation with an effective mass m* and a smooth potential
function. In case the effective mass is energy independent we have for bulk GaAs the following
eigenvalue equation defining the electron states in the I'-conduction band:

-h? d? L

W{'d? + -d—:;i + ;i';;}‘ﬁ(za y,2) = E¢(z,y,2) (1.1)

with solutions

¢(1‘, Y, Z) = e:cp(ik : l‘) (12)
where k represents the wave vector. The corresponding dispersion relation (E-k relation)
becomes ,

h 2 2 2
Ek) = Py (kz + Ky + k3) (1.3)
Las
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Figure 1.3a Electron energy vs reduced wave Figure 1.3b First Brillouin sone for the GaAs
vector, for the four valence bands, and the first several lattice.

conduction bands.

This is the ideal (parabolic and isotropic) dispersion relation for electrons in the conduction
band in GaAs. This relation is only valid for small values of k. At higher energies a more
complex relation between the energy and the wave vector occurs as can be seen from figure
1.3a. This figure shows the dispersion relation in GaAs for various k-values and orientations.
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For convenience the different k-orientations are visualized in figure 1.3b. An electron can not
have a perfectly defined k-vector, but has always a small uncertainty Ak which gives rise
to a wave-packet instead of the plane wave ezp(ik - r). The velocity of a wave packet that
describes an electron state at a point k is given by

v= 19E(k)

T h 0k

Here ik = p does play the role of the classical momentum. In the presence of an electric field
E, we have ik = eE. When combining these two equations, we can calculate the acceleration
of an electron,

(1.4)

9 10E(k), _ 18 19E(k) hak

=5l ok J T Eaks ok ot (1.5)
This finally gives:
1 92E(K)
= 77 oKok ¥ (1.6)

If we compare this with the conventional Newtionian equation
mv = eE (1.7)
we see that the equivalent of the mass of an electron is now the inverse of a tensor;

1 1 3%E(k
—_—— P E(k) (1.8)
mg; h ak 3/&:
This tensor is the nearest equivalent to a dynamical mass for the electron. For example, in a
semiconductor the energy surface may be of the form

A i B

E(k) = m1 2m2 2m3

(1.9)

referred to some local principal axes. The effect of an electric field in accelerating an electron
will then be very different in different directions.

1.2.2 Density of states and Fermi level

An important quantity in a semiconductor is the density of states function, which describes
the number of electron states per energy interval as function of the energy. The density
of states is closely related to the dispersion relation of the semiconductor. For a parabolic
isotropic conduction band the two dimensional density of states function, DOS3(E), can be
calculated from

DOSy(Ey)dE = Z (1.10)

2 )2
where the summation runs over all Ak combinations obeying: E(k) = Ej; E(k + Ak) =
E; +dE. Appendix B shows how exactly the function DOS,(F) can be calculated from this
equation. For a parabolic isotropic dispersion relation we then have:

*

DOS,y(E) = ;’;_lz (1.11)




CHAPTER 1. THE 2-D ELECTRON GAS 6

and for the three dimensional analogue
1 2m* s

If however we use a parabolic an-isotropic dispersion relation like

R2k2 K%k R%k2
E(k) - 2m1 + 2m2 + 2m3

(1.13)

both the density of states functions change and the effective mass is replaced by m* —
Ymymamg and m* — ,/mym; for the 3-D and 2-D situation respectively. This is sometimes
used as the definition of the effective mass for a an-isotropic dispersion relation. A general
equation for calculating from arbitrary dispersion relations the 2-D or 3-D density of states
functions is given in appendix B.

The total density of electrons, n, can now be calculated via
n = / f(E,T,Es) DOS(E) dE (1.14)
0

where f(E,T, Ey) is the Fermi-Dirac distribution function and Ey the Fermi energy. At zero
temperature this equation reduces to

n= /OE’ DOS(E) dE (1.15)

which is a mathematical formulation of the definition of the Fermi level.

1.3 2-D electron gases

In this section we shall give a short overview of important electrical properties of 2-dimensional
electron gases. For a more detailed analysis of the presented formulae we refer to the reference
list (3-5).

1.3.1 Transport properties of a one subband system

In the absence of a magnetic field the isothermal conductivity is defined as

77,62

022(0) = Jo/ Eo = — <7 > (1.16)
Here is J, the electric current in the x-direction, E, the electric field in the x-direction and
< 1 > the averaged scattering time. For a 2DEG at sufficiently low temperatures we can

replace < 7 > by the scattering time at the Fermi level 7(Ef). The drift mobility, ug, is
defined as

€

pa = —TZ— <T>= — 1(Ey) (1.17)

m*
The drift mobility only depends on the scattering of electrons at the Fermi level. In the
presence of a perpendicular magnetic field B we have the following relation between the
electric current J and the electric field E

J=GFE (1.18)
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and via the inverse tensor relation

E=5J

(1.19)

where o is the conductivity and p the resistivity tensor. The Hall constant, Rgq, and the

Hall mobility, pgay are defined as

Rygau =

and

HHall = 022(0) |Reau|

ne <r>2

1 <r2>

(1.20)

(1.21)

respectively. For a one subband system at low temperatures the Hall constant reduces to 'fle—
and hence the Hall mobility equals the drift mobility p4. In the presence of a perpendicular
magnetic field the density of states function, DOS,( E), changes dramatically from a constant
to a set of delta-functions. This is visualized in figure 1.4. The electrons in the energy interval
(n+ %—:i: 1) heB/2m* are all compressed to an energy n he B/m*; here n is the Landau number.
Every Landau level has a degeneracy, G, which is proportional to the magnetic field B i.e.
G = eB/nh. At absolute zero the Fermi level is pinned to the upper most filled Landau level.
If the magnetic field is increased a little, the Fermi level will stay pinned to the highest filled
Landau level untill this Landau level accomodates no more electron states. At that particular
magnetic field the Fermi level will skip to the new top most filled Landau level. The Fermi
energy skips periodically in 1/B, with a period S given by: S = e/ThNapgg where Napgg is
the areal elctron density. Figure 1.5 shows how the Fermi level varies as the magnetic field is

raised.

Figure 1.4 Change of the density of states
function of a 2-D electron gas in the presence of a

magnetic field.

Figure 1.5 Fermilevel of a 2DEG as a function
of the magnetic field at zero temperature in case
spin-splitting is neglected.

At non zero temperatures the Fermilevel changes more gradually. The periodicity of the Fermi
level in the reciprocal magnetic field affects all other quantities of the system. For instance
the resistivity will oscillate in 1/B with the same periodicity S. Measuring the periodicity in
1/B, directly gives the areal electron density of the system.
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1.3.2 Transport properties of a multi-subband system

In the former subsection the Hall constant, Rgan, was magnetic field independent. This no
longer holds when we have more than one type of carriers present. For instance a multi
subband 2DEG must be regarded as having different electron "types”. The scattering time,
Tn, usually differs for electrons in different subbands. For a two subband system we then
obtain for the Hall ”constant”

Ry0%}(1 + 03B R3) + Ry03(1 + 0} B2R3?)
(0’1 + (7'2)2 + U%U;BZ(RI + Rz)

Rygan = (1.22)
where R; = ;_13 and o0; = njeu;. This equation is generally true even when 7 is a function of

v and for any two kinds of carriers, electrons and/or holes. Neglecting the terms in B? we
have

Ry0? + Ryo3
R = ———= 1.23
Hall (01 + 02)2 ( )
For a 2-dimensional electron gas we can rewrite this to
- -1 2 2
Rpgay = —— = —L(Du+ Dakty (1.24)

ngale € (n1p1 + napa)?

which defines the Hall areal electron density, ngqy. The Hall mobility, ugau, follows from

pHa = (01 + 02)|REan| = (napin + naia)

Both the Hall mobility as the Hall areal electron density can be measured via Van de Pauw
measurements. The general low field formulae for pgq.n and nggy in a multi subband system
are

(i napsi)? (1.26)

NHall EJ nJng

_ Xjni

HHall Ei natt;
Once these quantities have been measured, together with the different values of the subband
populations, n;, one can use these formulae to calculate the different subband mobilities y;.
For more than two subbands however one can only approximate the mobilities of the different
subbands, because there are still to many unknown parameters in our equations, assuming
that ngau, n; and pgay have all been determined. In the presence of a perpendicular mag-
netic field, B, the density of states of the different subband are affected in the same way as
explained in the former subsection. The total density of states for a three subband system
in the presence of a magnetic field, B, is visualized in figure 1.6. Figure 1.7 shows how the

(1.27)
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Fermi level is affected by the magnetic field at zero temperature.

o T , B=0 B#0 2R
Y "
Eyaof T
BOL 3'~5"V"\F“W”W”’f
20} hweye :
10 —'—l—LJI—ILlu-ll-—
Ep ol E
0 2 4 6 8 Ey Ei E— E;1
B -——>
Figure 1.6 Change of the density of states Figure 1.7 Fermi level of a (three subband)
function of a multi subband 2DEG in the presence 2DEG as a function of the magnetic field at sero
of a magnetic field. temperature in case spin-splitting is neglected.

We can notice again the jumps the Fermi level makes when a certain Landau level is de-
populated. The periodicity of the Fermi level in 1/B is now a combination of three different
subband periodicities, S;, which again are proportional to 1/n;. So for a multi subband
system the resistivity will also have oscillations, however more complex and with different
periodicities than a one subband system. In chapter three we will examine in more detail the
oscillatory behaviour of the resistivity.

1.4 Cyclotron resonance

The effect of a magnetic field on an electron state is given by

k= %v x B (1.28)

This means that the change in the vector k is normal to the direction of B and normal to v.
The velocity v itself is normal to the energy surface. Thus, k must be confined to an orbit
defined by the section of the Fermi surface with the plane normal to B. The magnetic field
simply drives the presentative point round this orbit without change of energy. If the electron
is not scattered, it makes a circuit in the period

2 _eB [ dk

= 1.29
Weyel vy ( )
where v; is the component of v in the plane normal to B at a point k. The corresponding
frequency, weyel, is called the cyclotron frequency. For free electrons we have
dé. - m fdk_ 2mm

Y ST (1.50)
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80 that wey = ’"—?. It is customary to define the cyclotron effective mass such that

mr =8 (1.31)
cyel Weyel .

It should be noted that this is not the same as the dynamical mass of the electron. It is a
property of an orbit, not of a particular electron state. Using equation (1-29) finally gives

. R dk K2 9A
o = 57 § T B = 27 55 (1.32)

where A is the area enclosed by the orbit in the plane normal to the magnetic field. For a
two dimensional isotropic parabolic dispersion relation like

h2
E(kg,k,) = 2—m-_-(k: + kZ) (1.33)

the corresponding effective cyclotron mass, mg,, is equal to the effective mass of conduction
band m*. This is easily verified. For a non-parabolic an-isotropic two dimensional dispersion
relation they need not necessarily be the same. The effective cyclotron mass in the two dimen-
sional situation however is proportional to the density of states function at the Fermi level.
The periodic motion of the electrons could be detected by resonance with an electromagnetic
field of suitable frequency. The only condition is that the electron should make at least one
circuit of the orbit before being scattered. One therefore must measure at low temperatures
and at sufficiently high magnetic fields in order to see an absorption peak.

Figure 1.8 This figure shows the tem-

1.5 Scattering mechanism ,
perature dependence of the typical scattering

The electrons in the 2-D electron gas can be mechanisms in the two dimensional electron
scattered by the irregular potentials in the gas in a hetero structure. For a é-dope struc-
crystal. The irregularities may come from the ture the different mobilities have other weight
ionized impurities in the 2-D layer or in the factors.

GaAs and or the lattice vibrations (acoustic ~ v ~T
or polar optical phonons). Being governed _P_l - B e

by the Bose-Einstein distribution function,
the population of phonons increases exponen-
tially with temperature. At room tempera-
ture, the optical phonon states are so signifi-
cally populated that they dominate the elec-
tron scattering processes. The longitudinal
optical phonon energy for GaAs is 36 meV
(410 K). At lower temperatures ionized impu-
rity scattering through coulomb interaction is
dominant. Figure 1.8 shows the temperature
dependence of the mobility for different scat-
tering mechanism.

1 T (K) 10 100
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Figure 1.9 Figure showing typical
curves of the temperature dependence
of the mobility for a heterostructure,
bulk GaAs, and a §-doped structure.

HHann (cm?/Vs)

Note that the total mobility is calculated from

1
Htot

:Zl

i

11
r'f\-":'. AR i
10} ~e___heterostructuur |
%9
Ne ]
\.\
o \
A
bulk " Ay
/‘/ A. 4
A |
A
s &
/ \
10t 5
A-u-n—n-an_p-NEng A
« d-structuur "
10? b S
4 10 T (K) 100
(1.34)

where p; represents the mobility due to one type of scattering mechanism. For a multi
subband system this formula holds for each subband seperately. The systems mobility must
be calculated from equation 1.27. For a more detailed analyses of these types of scattering

mechanism see reference 6.



Chapter 2

Self-consistent calculations

It is a physical impossibility to create a system containing particles which can move (freely)
in an infinitely thin layer. According to the Heisenberg uncertainty relation AzAp, > &
every particle will have an uncertainty in all its space coordinates as in the corresponding
momentum coordinates. Thus there will always be a certain thickness or speading of the
so called "two dimensional” system. In most cases however these quasi 2D systems can be
described very well as being perfect 2D systems. The two dimensional electron gas (2DEG)
is one of todays most investigated quasi 2D system (the hetero structures and quantum
wells). Several authors have recently reported numerical calculations on the electronic sub-
band structure in Si é-doped GaAs systems(1:7~%), In our calculations we will follow the
stategy introduced by Zrenner(1). In the first part of this chapter (section 2.1) we present the
theory which is used to describe the equilibrium state of a Si §-doped GaAs system at zero
temperature. This (envelope-function) formalism however is a general theory not specifically
derived for GaAs systems. In the second part (section 2.2) we present the results of the self
consistent calculations performed on a IBM RT PC. Only a selected part of the calculations
are presented in this report: The main part of the calculations are collected and depicted in
an additional manual(19),

2.1 Theoretical description of §-doped GaAs

2.1.1 One dimensional electron gas

Consider a free electron gas in one dimension that is confined to a length L by infinite barriers.
The electron wave functions 1n(2) are solutions of the Schrodinger equation H ¥,(z) =
E,, ¥n(z); with neglect of potential energy we have H = p?/2m, where p is the momentum.
In quantum theory p represents the operator —ih d/dz so that

2 2
Hbn(2) =~ 359n(2) = n $(2) (21)

where E, is the energy of the electron described by wave function t,(2). The boundary
conditions of this differential equation are 1,(0) = 0 and ¥,(L) = 0. Proper normalization !

1f0L Yu(z) Pl(z)dz =1

12
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will give sinelike wave functions

'(pn(z) = \/% sin(T (2.2)

and energy ,
— 2 '
E, = ) (2.3)

In a linear solid the quantum numbers of an electron are n and m, the spin quantum number
which can take the values i%. According to the Pauli exclusion principle no two electrons
can have identical quantum numbers. A quantum state labeled by quantum number n hence
can accomodate only two electrons, one with spin up and one with spin down. This is called
a (two fold) degeneracy. To accomodate N electrons in this one dimensional system the first
N /2 energy levels must be filled with each two electrons. It is convenient to suppose that N
is even. The Fermi energy Ejy is defined as the topmost filled energy level in the ground state
i.e. the N/2¢ energy level.
h* Nm.,

1= 5 (57) (2.4)
The example of an infinite potential well resulted in rather simple solutions for the Schrédinger
equation. However solving this eigen value equation may become an arduous task when a more
complex potential function U(z) enters the Schrédinger equation. In general the Schrédinger
equation of a free electron gas feeling a potential U(z) can be written as a set of non-linear
(coupled) differential equations with four adequate boundary conditions:

d wn(z) 2m ¢n(z)
E ¢2§:) - _ET(U(Z) _'OE") : d)ﬂ(z) (25)
N(z) Yn(2)¥n(2)

The first two boundary conditions are N(—oc0) = 0 and N(o0) = 1 while the other two depend
on the problem being addressed.

2.1.2 Model specification

A Si §-doped GaAs system can best be characterized with the help of figure 2.1. This figure
show< the energy band diagram of three parts of the §-dope in case the heavily doped part is
separated from the two enclosing GaAs layers. The GaAs in all the three parts is supposed
to be slightly and uniformly doped with acceptors with a typical concentration N4 of order
101 /cm3. The acceptor levels are all supposed to lie at an energy E 4. above the valence
band. The midpart however is supposed to be also uniformly doped with Si donors? with a
concentration Ny over a distance dp,,. These donor levels all lie at an energy Ep.n below
the conduction band. At zero temperature the Fermi level E (read chemical potential) in
the midpart is different from that of the enclosing GaAs layers. When the separations are
lifted, one expects the electrons with the highest chemical potential to drift to regions with
lower chemical potential.® Due to the building up of a charge distribution p(z) the potential

3The silicon atoms can only act as donors if they replace galium atoms in the lattice.
3In fact this can only happen at temperature above absolute sero; what is meant here is that the temperature
is raised before the junction and brought back to zero afterwards.
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function U(z) will change shape and finally result in a "well shaped” function visualized in
figure 2.2. The acceptor depletion region spreads out on both

D o
Figure 2.1 Schematic / 7

energy band diagram in
case the heavily doped
part is separated from the
enclosing two GaAs lay-

€¢Is.

Figure 2.2 Schematic
diagram showing the dif-
ferent space charge regions

in the §-dope system.

v

————————— , Neutral
dD‘”‘ Z -
sides of the z = 0 plane over a distance d4c.. In this region we assume all acceptors to be

ionized. The Fermi level in the neutral GaAs (the undepleted regions |z| > d4ec) lies Egec/2
above the valence band. Solving the Poisson equation in this region gives

U(Z) - Ef = Eﬂ - EAcc/2 for IZI > dAcc (2°6)

where E, is the GaAs band gap at absolute zero.

2.1.3 System description

The potential energy function U(z) for the electrons depends only on the coordinate perpen-
dicular to the Si doped plane. The three-dimensional Schrédinger equation (2-7) defining the
electron envelope functions ®,(z,y, z)

2 2 2 2
T (ot et ) Ba(e ) = (6 - V() Balenz)  (2)

reduces to a one-dimensional Schrédinger equation (2-9) when a constant effective mass m*
is assumed. Envelope functions like

B b by (2,95 2) = @ (2)ei ke Hhrd) (2.8)
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finally give
h? d?
(w5 75+ V() ~ En) $u(2) = 0 (29)
with 2062 4 42) .
hé(kZ + k3
én=E, + TR (2.10)

The quantum numbers necessary to-characterize an electron state are: the (rather trivial and
here omitted) spin quantum number m,, the wave vectors k, and k, and the energy state index
n. The wave vectors k; and k, are correct quantum numbers since the momentum operators
Pz and p, commute with the system’s Hamiltonian (xy-plane symmetry). The energy eigen-
functions ®, i, .k, are simultaneously eigen-functions of the momentum operators p, and p,
but no longer eigen-functions of the operator p,. Hence the wave vector k, is no quantum
number. The kinetic energy T of electrons in a state ®x, i, is given by

hz

2m*

Tp by =< Py by | Top|Pr ke by >= — (K2 + K3 + /:“! £¢a(2) 2dz) (2.11)

In bulk GaAs an electron in the conduction band can move ”freely” in three dimensions with
a kinetic energy

hz 2 2 2
T = s (K2 + k] + kD) (2.12)

In analogy to the situation in bulk GaAs we define a mean k, as

d? oo
<k; >p= \/ < By | 5 Bk by > = \[/_ 1 &4n(2) Paz (2.13)

The importance of being able to define some sort of average k, wave vector per energy subband
is the fact that this mean < k, >, value must be treated as a constant in the dispersion relation
of bulk GaAs(11) which normally is k,, ky, k, dependent. With this reduced dispersion relation
(only the k; and k, dependency remains) one can calculate the corresponding 2-dimensional
density of states DOS,. How exactly this can be done is worked out in appendix B. For an
isotropic parabolic dispersion relation like

E(k) = £5(k2 + k2 + k2) (2.14)

2m*

the two dimensional density of states becomes

DOSy(E) = :;; (2.15)
In case the non-parabolic dispersion relation(!?) is used, the density of states becomes
DOS,(E k;) = a(k,) + B(k.)- E (2.16)
with .
a(k,) = :;ﬁ (0.993 + 2.46 10-19k2) (2.17)
Blk.) = 22 (1.52 1073 + 6.32 10-2242) (2.18)

wh
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Here the energy values are expressed in meV’s and the wave vector k; has dimension 1/m.

The electrons feel a potential U(z) which consists of two contributions: a Hartree potential
Uc(z) and a part Ux(z) which incorporates the exchange and correlation effects of the electron
gas. We will use the exchange and correlation potential given by Gunnarson and Lundqvist(12)

l§m12y

Ux(z) = (140.0545 r,In(1 + 314) ) (2.19)

Cr‘

where Ry is the Rydberg constant, ¢, the relative permittivity in GaAs, m, the electron mass
and r, a dimensionless function of the 2-coordinate given by

4T To€,Me \ 5

172(2) = (T ey ) (20)
with r, = 5.29177 10~! m. The Hartree potential follows from the Poisson equation
8 € e?
EUC(Z) = p p(z) = p ( nDon(2) = nace(2) — nei(2) ) (2:21)
ov-r o-r

where ¢, is the permittivity of vacuum and p(z) is the space charge distribution. In equilib-
rium the charge distribution differs from zero since after the junction a charge redistribution
takes place to elevate the discrepancies in the chemical potential in the different parts of the
structure. The boundary conditions for the Poisson equation are:

iU(Z) = 0; U( idAcc) = Ef + Eg - EAcc/2

tdgee

These conditions must always be satisfied and restrict the combinations of the parameters N,
and dg... Globally their dependence can be given by

2Eg¢0¢,

dAcc =B+ ezNa

(2.22)

where B is the electron penetration depth(!3). At non zero temperatures the electron charge
density n.i(z) is given by

na(z) = i(ﬁ;(z) 6l(2) /E " J(E,T, Ef)DOS(E) dE (2.23)

where [% ¢i(2) ¢3(z)dz = 1. For low enough temperatures, kT < E;, this leads to

Nbound-1

ne(z) = E 8:(2) 81(2) / DOSy(E)dE (2.24)

The summation index runs over all bound states i.e. E; < Ef. The acceptor distribution
function n 4.(2) looks like

N, for |z| < dgee

Nyee(2) ={ 0 else (2.25)
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The precise shape of the donor distribution function npes(z) can not be defined since it
depends critically on MBE growth-parameters like the growth temperature(*) T, ys4. For
the time being we assume a rectangular function given by

Ny f LdDon |
NDon(Z)z{ 0 e‘l’;elzl <3 (2.26)

The influence of the donor distribution shape has also been investigated.

Charge conservation states:

/ : p(2)dz = £ /_ :( nDon(7) = Mace(2) — n(2) ) dz = 0 (2.27)

€o€r

So areal charge neutrality implies that the number of ionized donors N}, equals the number
of electrons in the 2-D electron gas Napee plus the number of charged acceptors Np,; with
areal densities

Napgc = / nei(2) dz (2.28)
Npept = / Nace(2)dz = 2Nod pce (2.29)
N, = / npon(2)dz = Nadpon (2.30)

Choosing the areal electron density N2pgg as a system parameter seems self-evident. It
directly gives the total number of bound states Nbound and the Fermi energy Ey for a given
set of eigen functions ¢;(2) and energy eigen values E; . This follows from the relation

Nbound-1 Ey
Nwpge= Y /E DOSy(E)dE (2.31)
i=0 i

Once the areal electron density Nopgg of a system is known the donor density Ng in equation
2-25 can be replaced by &mﬁiz—&ﬂu.

Don

The potential function U(z) depends on the areal electron density n.(z) via the equations 2-
20 and 2-21. This density function n.(2) however depends indirectly on the potential function
via the eigen functions ¢;(2). Hence the set of equations defining the system must be solved
self-consistently. The numerical method used to find self-consistent solutions will be discussed
in the next subsection.



CHAPTER 2. SELF-CONSISTENT CALCULATIONS 18

SUMMARY

A theoretical description of the system can be found if the following set of equations is solved
self-consistently:
K d?
( 2m* dz?
The potential U(z) consists of two parts: a term Ux(2) given by equation 2-19 and a Hartree
term given by

+U(2)- E, ) ¢pa(2) =0 (2.32)

&Vo(2)= :: ( nDon(2) = nace(2) = met(2) ) (2.33)

ovr
It turns out that our system is totally defined when the following parameters are defined:
effective mass m*, the the areal electron density Napgg; the energy band gap E,; the bulk
acceptor density N,; the relative permittivity ¢, and finally the normalized donor distribution
function fip,n(2) defined as:
fipon(2) = npon(z) / N3, (2.34)

In case this is a rectangular function this functional dependency can be expressed by one
parameter only i.e. the donor spread distance dp,y,. All other parameters and functions can
be calculated from this set of parameters. This particular choice is not binding, however,
careful thought should be paid to the selection of an other parameter set.



CHAPTER 2. SELF-CONSISTENT CALCULATIONS 19

2.2 Numerical calculations and results

2.2.1 Iteration procedure

In order to find self-consistent solutions an iteration procedure is used; illustrated in figure 2.3.
The idea of this iteration procedure is to calculate every iteration step a potential function
U()(z) which in time will converge to the self-consistent potential U(z). If one allows the
potential function U(*)(z) in the iteration step s to change only slightly from the function
U(*-1)(z) we have : lim,co |U(2) — UC)(2)] = 0 V 2. To start the iteration process it is
necessary to have a first guess for the potential U(z). We then solve the Schrédinger equation
2.32. With these eigen functions and eigen values the electron density n.;(z) can be calculated
from equation 2.24 and 2.31. Finally via the Poisson equation 2.21 and equation 2.19 a new
potential Unew(2z) can be calculated. In or-
der to ensure convergence the newly calcu-
lated potential Upew(z) may only partially
enter the Schrédinger equation of the next
iteration step. We weighted this particular

Figure 2.3 Block di- | Guess UO(z)

agram of the iteration

pr°°°d“"° used t°_ﬁnd function by a factor @ (0 < 6 <1 ). The
self-consistent solutions. potential U(*)(z) that enters the Schrédinger
\/ equation in the st? iteration step is given by

Ul)z) = (1= 8) UCD(2) + 0 Upew(2)

Solve the Schrodinger equation

N
7

The iteration procedure is terminated after a
Y . ) : S
desired accuracy in the potential function is
reached. The number of iteration steps crit-
ically depends on the ”quality” of the first
guess (for the potential function). A ”poor”
4 first guess needs approximately 16 iteration
steps. However when solving a number of
different systems with only slightly different
~<-{ Calculate the potential U(*)(z) input parameters, the final potentials of these
"nearby” systems produce very plausible first
guesses.

Continue
-

Calculate the potential U,y (z)

2.2.2 Solving the Schraodinger equation

The most difficult and time consuming part of an iteration step is the solution of the Schrodinger
equation. A very suitable method for solving boundary value problems of non linear differen-
tial equations, like the Schrodinger equation, has only recently been developed and is called
"multiple shooting”(38). This powerful method can solve an arbitrary set of n first order
non-linear differential equations like: dity = f(t,y) on the interval a < ¢t < b with boundary
values: g(y(a),y(b)) = 0. The Schrodinger equation can be written as a set of four differ-

ential equations (equation 2.5) with appropriate boundary values. These equations can be
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rewritten to a set of differential equations of dimensionless quantities only:

d znggg ~R(U (gn(f) ) - #a(§)
n(€ _ z, ~Hn) " Pn
| wm | T 0 (2:35)
N(§) Bn(E)Bn(€)

with £ = z/20, $a(€) = @n(2/20)/ /70, ¥n(€) = ¥n(2/20)/ /20, hn = En/E, U(§) = U(z/20)/€
and R = 2—1;;';%'—"1 where zp = 100 A and £ = 1 meV. In case the system is symmetric in
the z = 0 plane one "only” has to solve the set of differential equations on the interval
z > 0 with different boundary values for even and odd solutions. The infinite z-domain is
truncated to a finite interval [0,b] with b = 500 A . The even solutions have boundary values:
N(©0)=0, N()=1, ¢n(b)=0and 12,(0) = 0 the odd solutions have boundary values:
N(@©) =10, N(b)= %, #2n-1(0) = 0 and %2,-1(b) = 0. Clearly all even respectively
odd solutions have the same boundary values whereas still all the different eigen functions
of the Schrodinger equation can be calculated. This might seem a bit strange but it works
well because one must give, besides the boundary values, a first guess for the four functions,
¥n, dn, N and p, on the interval [0,b]. If these four input functions are close enough to the
exact solutions the program will use the input functions to converge via some sort of Newton
iteration process to the exact solutions within a given accuracy. For additional information
about this method we refer to the book ”Numerical solutions of boundary value problems for
ordinary differential equations”(*5),

2.2.3 Results

In this section we present a selected part of the calculations to give an impression of how
various parameters influence the é-dope system. As stated in section 2.1.3 a system is totaly
defined by six parameters only namely: the effective mass m*, the areal electron density
N2pEg, the energy band gap of GaAs E,, the acceptor background concentration Ng, the
relative permittivity of GaAs ¢, and the donor spread distance dpey. In all our calculations we
used the following quantities: E; = 1520 meV/, ¢, = 12.0 and m* = 0.067m,;. The influence
of the other three parameters, treated as system variables, has been investigated.

Influence of the areal electron density and the donor spread distance

The potential function U(z) of a §-dope has a sharp dip near the plane of Si-dopend as can be
seen in figure 2.4a and 2.4b. These figures show the potential function for two different donor
spread values together with the square of the envelope functions. The envelope functions are
expressed in arbitrary units and superimposed on their corresponding lowest subband energy
incase non parabolicity and exchange and correlation effects are included. The regions the
donors are confined to are also displayed in these figures. The most interesting parameters
of a é-dope are: the areal electron density per subband n;, the relative areal electron den-
sity per subband n;/Na:pEg, the position of the subband energy above the conduction band
E; — U(0) (in the manual refered to as E;) and finally the position of the subband energy
beneath the Fermi level £y — E;. All these parameters are tabulated and depicted in the
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additional manual(?%) for different values of N2pgg in the range 1012/cm? to 10'3/em? and
various values of dpon With 10 A< dpo, < 200 A. For all these calculations the background
acceptor concentration N, was 10 / ¢m3. Figure 2.5 displays the dependency of the param-
eter n; on the areal electron density Napgg for a donor spread distance of 40 A.

80 80

E (meV)
E (meV)

-180 ‘l -180 |

-280 — 1 -250 —

-500A 0 500A -500A 0 500A
z — z —
Figure 2.4a&Db Results of self-consistent calculation of the potential function U(z) incase the Fermi
level E; is set to zero for two different values of the donor spread distance. Figure a) dpon = 20 A and
Napge = 8 10'? /em?. Figure b) dpos = 180 A and Napgs = 8 10'? fem?.

Figure 2.5 Results
of self-consistent calcu-
lation of the parameter

n; for a dpon value of

40 A.

n, (10" cm-
O = N W H OGO N

o
(6)]
-
o

An interesting result is the linear dependency of n; for small values of dp,n. For bigger donor
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spread distances this linearity is lifted. This conclusion follows even more directly when exa-
mening the dependency of the relative areal electron density per subband and Nypgg. Figure
2.6 visualizes the influence of the donor spread distance on the parameter n; for a constant
areal elctron density of 8 10'2/cm?.

6

Figure 2.6 Results
of self-consistent calcula-
tion of the parameter n;
for various dpon values

with a constant Nappc
value of 8 10'? /em?.

n, (10" cm™ ?)

©C = N W & O

This is an interesting figure since in principle one deduces for a given set of n; values the best
fitting dpon value to that particular set. Note however the difficulty in deducing a reliable
donor spread value for dp,, < 40 A since the different subband electron densities do not
differ much in this region.

Influence of acceptor concentration

To investigate the influence of the back ground acceptor concentration N, we varied this par-
ticular system parameter over nearly four decades while keeping all other system parameters
constant. The results of these calculations are visualized in figure 2.7. An important conclu-
sion drawn from this figure is the fact that a §-doped system is not heavily influenced by the
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acceptor concentration. This in contrast to an Al,Ga(;_z)As /GaAs heterostructure(26),

5
-, -—-—-—‘
Q'G 4—_ —————————————— - |=O
5
) 3
o
- 2 =1
D i —
e 17
o= 2
|t et \
0 man - — T B .

N (10! ¢m-3)

Figure 2.7 Results of self-consistent calculation of the parameter n; for different acceptor concen-
tration. The system parameters are: Napgg = 6 10'?/em? and dpon = 20 A.

Influence of the donor distribution function shape

Most of the calculations were performed using a rectangular donor distribution function given

by:
Nanmgt2daceNa | 1
nDon(Z) = { Don if lzl < 2dD°"

0 else

This particular choice for the shape of the donor distribution functions may be critized since
it lacks back up of physical arguments. For instance, it seems more realistic to work with a
function that falls off to zero more gradually on both sides. Or, when looking at the preper-
ation procedure of the samples, why working with a symmetrical distribution function? The
growth of é-dopes with M.B.E can be described as a stop and go procedure during which hot
silicon atoms (T's; = 1400 °C) are deposited on the relatively cold (Tgrowtn = 600 °C) GaAs
wafer. Segregation, causing an asymetric donor distribution, and diffusion effects, causing a
gradually and more wide spread distribution function, might be important processes; how-
ever neglected here. The influece of diffusion on §-doped samples can be investigated via
annealation(18),
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E;-U@©)| ni | ni/Nwpgc | Ef - E; E;-U@©)| n | ni/Nippe | Ey— E;
32.2410 | 4.2505 0.5313 132.1200 37.3380 | 4.2526 0.5316 131.3200
92.9890 | 2.4155 0.3019 71.3730 99.5530 | 2.3531 0.2941 69.1090
135.3100 | 1.0090 0.1261 29.0520 138.4500 | 1.0539 0.1317 30.2120
155.0700 | 0.3249 0.0406 9.2918 158.9800 | 0.3404 0.0426 9.6820

Table 2.1a&b Listing of system parameters to show the influence of the shape of the donor
distribution function. Lefthand table (a) displays the results for a blok-function with parameters:
Napre = 8 10'? /em? and dpon = 100 A. The righthand table (b) displays the results of a Gaussian
donor distribution function with o = ¥Zdp,s and Napag = 8 102 /em?.

To investigate the influence of a donor distribution function that falls of more gradually to
zero we used a Gaussian function given by:

nDo'n(z) — szgsaZ:“:N, e-—(z/o')2

It is possible to minimize the discrepancies between system parameters like E; — U(0), n;,
n;/Napgg and Ey — E; of a Gaussian and a rectangular distribution function. The relation

between ¢ and dp,, for minimal parameter differences reads: o = 345dp.,,.. Table 2.1a&b
show the results for this optimal substitution of 0. Note the small differences between the
parameters n;, n;/Napge and Ey — E; whilst the discrepancies in E; — U(0) are no longer
negligibly small. So differences in the donor distribution function shape are best seen in the
quantity E; — U(0). This however is a difficult accessible quantity (optically?). Conclusively
we state that the exact shape of the donor distribution function is not an accessible quantity
when measuring system parameters like n;, n;/N2pgc or Ey— E; (measuring quantities). The
only information obtainable from measurements seems a mean donor spread distance dpon
or 0. Further investigations are necessary to see whether all kinds of distribution functions
(especially the asymetric destribution functions are interesting) can be mapped on a system
discribed by a rectangular distribution function.

Influence of exchange and correlation effects

In order to express somehow the exchange and correlation effects in an electron gas, one often
uses the L.D.F.4 formalism. Now all exchange and correlation effects of an electron gas can
be incorporated by a potential Uy that is a function of the electron density only. We use
the equation derived by Gunnarson and Lundqvist(12). This potential function is negative
and for a é-doped system it gradually falls of to zero for large values of |z|. The influence

*Local Density Functional
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on system parameters like n;, n;/Napgg and Ey — E; is relatively small as can be seen from
tables 2.4 a & b. The parameters E; — U(0) are mostly influenced and can differ a few meV’s.
Most changes of these parameters can also be found (to first order) via simple firts order
perturbation theory.

E; - U(0) n; n;/Napge | Ef - E; E; - U(0) ng n;/Napge | By — E;
32.2410 | 4.2505 0.5313 132.1200 31.892 4.1842 0.52303 130.30
92.9890 | 2.4155 0.3019 71.3730 91.592 | 2.3826 | 0.29783 70.596
135.3100 | 1.0090 0.1261 29.0520 132.57 1.0248 0.12810 29.618
155.0700 § 0.3249 0.0406 9.2918 151.42 0.3749 0.04686 10.768

161.23 0.0334 0.00418 0.9576

Table 2.2a&b Listing of system parameters to show the influence of exchange and correlation

effects. Lefthand table (a) displays the results for a rectangular donor distribution function with

parameters: Napre = 8 10'? /em? and dpon = 100 A in case exchange and correlation effects are

included. The righthand table (b) displays the results when neglecting exchange and correlation

effects.

We conclude that most system parameters are not heavily influenced when including an ex-
change and correlation potential like (2.19) and that the differences in system parameters are

of the same magnitude as the effect of a different of the donor distribution shape.

Parabolicity versus non-parabolicity

Following Zrenner’s strategy, non-parabolicity enters the self-consistent calculations only via
the density of states function DOS,(E) (see appendix B). The non-parabolic density of states
function can accommodate more electron states per energy interval than its parabolic ana-
logue. For energies larger than 100meV these density of states functions can differ one another
up to a factor 3/2. Tables 2.3 a & b display the calculated system parameters for a parabolic
and a non-parabolic system. Comparing these two tables, shows that there are rather large
differences between all parameters. This indicates that non-parabolicity may not be neglected.

E;-U0©)| n; |ni/Nwpge| Ef—E; E;—U@®)| n; |ni/Napgc|E;z—E;
32.2410 4.2505 0.5313 132.1200 32.979 40771 0.50964 145.68
92.9890 2.4155 0.3019 71.3730 95.407 2.3299 0.29124 83.249
135.3100 | 1.0090 0.1261 29.0520 140.36 1.0718 0.13398 38.296
155.0700 | 0.3249 0.0406 9.2918 163.01 0.4378 0.05473 15.646

175.68 0.0832 0.01041 2.9760

Table 2.3a&Db Listing of system parameters to show the influence of non-parabolicity. Lefthand

table (a) displays the results for a rectangular function with parameters: Napsc = 8 10'2/em? and
dpon = 100 A in case non-parabolicity is included. The righthand table (b) displays the results in

case the parabolic dispersion relation is used for the self-consistent calculations.
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Figure 2.8 displays the parameters Ey —
E; versus the areal electron density. Note
that for smaller values of the areal densi-
ties Napgg the system parameters are less
influenced since for small Napgg values the
two density of states functions become almost
equivalent. On the other hand the bigger the
areal density, the bigger the differences of sys-
tem parameters will be. This latter conclu-
sion is also valid for other system parameters
like n;, n;/N2pgg and E; — U(0).
Conclusion: non-parabolicity must be in-
cluded in the self-consistent calculations es-
pecially for areal electron densities above
1102 /cm?.

1=0
150 b
1001
50t
O ;
0 N2DEG — (1017/cm2) 9

Figure 2.8 The parameters
E; — E; versus the arael electron
density Nappc are displayed for
the parabolic ( - - ) and the non-

parabolic ( — ) dispersion relation.
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Signal analysis

3.1 Introduction

In a magnetic field the density of states DOS acquires an oscillatory component ADOS which,
at low fields, can be written as(!?)

[o )
ADO;(OE;,OT,B) - 2ZD(N:)-€0_¢',1‘ COS(21‘7I‘

r=1

hch - r7) (3.1)

where DOS) is the zero-field density of states, w, is the cyclotron frequency and E is the
electron energy. The function D(z) is defined as

z
D(z) = sinh(z) (3.2)
with z = 2n2kgT/hw,. This function incorporates the temperature dependence of equation
(3.1). The single particle life time 7, is related to the broadened (Lorentzian) Landau levels
width T such that ' = #/2r,. Isihara and Smr&ka(!?) have shown that these oscillations
in the density of states give rise to oscillatory components in all other physical properties.
Especially in the conductivity o that can be written as:

e Nepr  wer

= 3.3

Oz B 110 (3.3)
N

Ozy = e-ﬁ — W TOzz (3.4)

where N,zy is the effective number of electrons participating in the electrical transport and N
is the number of states below the Fermi energy. At zero magnetic field equation (3.3) results
in 0z = No7ee?/m* and thus the 7 used in our expressions for the conductivity is in fact the
magnetic field-dependent transport life time 7.

The difference between the single-particle life time 7, (also refered to as quantum life time)
and the transport scattering time 7, is that the latter is weighted by the scattering angle 6,
ie.

Ti: / v(8)dQ (3.5)
Tl= / (1 - cos(6)) - ¥(8)dQ2 (3.6)

27
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The scattering time 7; is related to the conductivity ¢ by

o= =nep (3.7)

In high-mobility GaAs heterojunctions the ratio of 7, and 7, can be relatively large(18) ( > 10).
In that situation the single-particle relaxation time 7, cannot be estimated from the mobility
measurements. In §-doped GaAs samples however, the different subband mobilities u; are
usually small compared to that of a heterojunction, because of a larger overlap between the
subband envelope-functions and the random distributed Coulomb scattering centers. This
would imply that /7, ~ 1 17, ‘

The oscillatory parts in the conductivity N.ss and 1/7, are proportional to the density
of states at the Fermi energy Ep.

_ ADOS(EF)
N,ff—No (1+ DOS, ) (3.8)
1 _ 1 ADOS(EF)
Tt - 7'()(1 t DOSO ) (3.9)

When EF > h/7 and EF > hw, (both conditions are usually satisfied) we may write(17):

ON No ADOS(Er)

—_— =) 3.
0B B DOS, (3.10)
Using these relations and keeping only the terms linear in -ALI?O%?E)- finally results in
0o 2wir¢ ADOS(EF)
= 1 3.11
== = 1 + wfrg( * 1+w?r¢ DOS, ) (3.11)
OoWeT 3wir2+1 ADOS Ep
Tey = 77 > 202 S Tra ( )) (3.12)
+ witg witg(1+wir§) DOSp

Here oo = %Noro is the conductivity at zero magnetic field. The expressions 3.11 and 3.12
are useful when describing a 2-D electron gas with only one subband. A typical property of a
é-doped system is that more than one subband is occupied. When interactions between the
subbands are neglected we have the following expression for 0,, and o,y in a multi-subband
system since conductivity is an additive quantity

o Nboid—l 0o, (1+ 2w1¢; ADOS(Ef — E:)) (3.13)
Nhound-1 0 oo 3wil;+1 ADOS(Ep - E))
Tay=— ), P AL 2.2 DOS ) (3.14)
i=0 + we To,i We TO,i(l + we To’;) 0

where 0g; = ;—iNo';To'.' is the conductivity at zero magnetic field in the i-th subband and F;
the ground state energy of the i-th subband. One can calculate p,. and pzy via the tensor
relations

U:n:
Prz = ——22—— (3.15)
ol + 02,
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g.

This leads to rather simple expressions for the resxst1v1ty p in a one subbband system assuming

that —A%Sgd is small

_ ADOS(Er) ,
Pzz = po(1+2 DOS, ) (3.17)
_ , 1 ADOS(EF)
Pay = PoweTo(l — oi3  DOS, ) (3.18)

A multi-subband system, like §-doped GaAs, has very complex expressions for the longitudinal
and Hall resistivities. This will be worked out in more detail in the next section.

3.2 Magnetic field modulation

When a small time dependent magnetic field B,,.q4(t) is superimposed on a quasi static mag-
netic field B the resistivity will change only slightly under the condition Bpeq(t) < B. Choos-
ing the modulation field like By,04(t) = By, sin(2t) suggests the use of Lock-in techniques to
accurately resolve the oscillatory parts of the signal i.e. the Q¢ and 2t components of the
signal. This technique is very powerful and especially useful when studying small changes in
magnetic field dependent signals like SdH-oscillations. The conductivity in a magnetic field
of a multi-subband system can be described by the expressions 3.13 and 3.14. One can derive
from these formulas the following expressions to first order in M%ES';'—EQ for the resistivity
in a multi-subband system:

A Nbound—1 (2 _ A%)b; + 2CAd;
Pzz = m( 1+ Z & A(A? + C?) ) (3.19)
_c . Mhmdl _9CAbi+(C- A% d;
where
Nbound-1 o
A= — 3.21
L T (3.21)
Nbound-1
00,i%c70,4
C = — 3.22
‘;:) 1 +wfr&,- ( )
209 ,wzrg,
| = 3.23
i+, G2
3w? TO, +1
d; = 09 WeTo i 3.24
(] 0’0, 1%} TO, To '(1 + w ,‘)2 ( )
ADOS(EF - E; =
&= (Br— £ _ Z -1y 2” (3.25)

DOSy
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Choosing a magnetic field like B = B + B,, sin(Qt) will affect the function §&; like

2r r
P,B(1 + Bp sin(02t))

&= iG,,.-(B) cos( (3.26)
r=1

where G, i(B) = 2(—-1)'D(ra:)e"':""' . The functions z and D have been defined in the former
section. For B,, < B this can be rewritten to

&= i G, B) cos(%".’—g — rasin(2t)) (3.27)

r=1

where a = 3—2" The functions G, 4, a;, b;, ¢, A, C and d; are slowly varying in the magnetic
field B; so one may neglect the oscillatory part of the magnetic field in these functions. This
implies that the modulation field affects the resistivity most strongly via the function &. A
Fourier series expansion of §; gives:

= i G.i(B) cos( FE — rasin(Qt)) (3.28)

= ZG, i(B){ cos( %) cos( rasin(Qt) ) + sm( Ze) sin( rasin(Qt) ) }

= Z G.iB) { cos( 75 ) [ Jo(ra) + 2 Z Jan(ra) cos(2nQt) ]

+ sin(F5) [ 2 Z Jans1(ra)sin( (27 +1)Qt) ] }
n=0

Here we use the possibility of writing the functions cos(zsin(z)) and sin(zsin(z)) as a infinite
series of Bessel-functions i.e.:

cos( zsin(z) ) = Jo(2) + 2 i J2n(2) sin(2nz)

n=1

sin( zsin(z) ) = 2 Z Jant1(2) sin((2n + 1)z)

n=0

Detection of the first (2) harmonic component in the resistivities finally gives:

Nbound-1
—_ (C2 A2) b + 2CA d 2xrBy, 2%xr
Pzzq = 2 ;0 (47 1 GOy ZJ( £ ) sin( %) G, i( B) (3.29)
Nbound—1 oo
—2CAb; + (C? + AY) d; - xr
Pzyq = 2 Z 2 ( 2\2 ) Z']l(%zm)sm( 2 5) Gri( B) (3-30)
=0 (A +C ) r= '
and for the second harmonic (2§2) component
Nbound-1
C? — A%)b; + 2CA d; 20rBy
Pzzm =2 Z ( (A2)+ Cg )2 Z ‘] 2; gz )COS( )Gr,i'(B) (331)

=0 r=1
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Nbound-1 _ 2
S 2CAb; + (C? +

Az) d; 2xrB
(A? + C7)2 Z J2(*E5P) cos( %% $5) Gri(B) (3.32)

=0
Define the functions G/*™**(B) and Hf™4*(B) as

Gfme=(B) = E N1 (3gge) sin(§F) Gr.i(B)

r=1

Rmaz

Hi™2(B) = 3 Ja(%5pe) cos(35) Gri( B)

These functions are shown in figure 3.1 and 3.2 for two upper limits Rmaz of the summation
index r. From these figures we conclude that, since the whole theory is based on a low field
approximation, it is permitted to truncate the series after the first term. The final expressions
for the first harmonic component in the longitudinal and Hall resistivity now read:

Nbound-1
C? - A?)b;+2CAd; . ,,, s
Peca =2 3 ( (A2)+ s  Jy (228 sin(£%) Gr4(B) (3.33)
Nbound-1
—2CAb; + (C* + A%)d; . ,,.
Paye = 2 ;) 7T +( o) ) J1( %8s ) sin( %) G14(B) (3.34)
while the second harmonic (2Q2) components read
Nbound-1
(Cz—Az)b,'-i-?CAd; x x
Pzxzaq = 2 z—:o (A2 n 02)2 Jz(%‘?) COS(é—B) lei(B) (335)

e = 2"""’{2""'1 —2CAb; + (C? + A?) d;
V20 = (Az + Cz)z

J2(%B2) cos( &) G14(B) (3.36)

Figure 3.1 The function

gRme=(B) for Rmaz = 1 (straight) i

and Rmaz = 20 (dotted). Used pa- G,RW(B )
rameters: 4, = 0.2 m?/Vs; P, = |

0.0242 1/T; By, = 30 mT. =

‘U M
.'AVAAAAA A
Y U U U v /
o] 10
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Figure 3.2 The function 'HB"‘"( B) H \
HE™e=(B) for Rmaz = 1 (straight) F t

.
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\
and Rmaz = 20 (dotted). Same pa- I !
rameters as in figure 3.1. Iy I \ I\
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The essential part of the functions pq and paq is the periodicity in the reciprocal magnetic
field. Although the above expressions are derived for low magnetic fields one assumes, without
further theoretical reasoning, that these formulas remain globaly valid for high field: this
means that the resistivity remains periodic in 1/B with periodicity P;. This periodicity P; is
related to the number of electrons in the subband i, n;, via the relation

_ 4.84 1072

n=—p% (10'2 cm™2) (3.37)

Now n; becomes an accessible quantity when magnetic field modulation techniques are used
since in pricipal P; can be extracted from (Fast) Fourier Transforms of the field modulated
resistivity, i.e. pzz, in the reciprocal magnetic field. Notice that not all the oscillating terms
that contribute to the signal have the same weight function (amplitude). The subband with
the highest mobility result in the major contribution to the signal. In 6-dopes the different
subband mobilities?, y;, can differ one another up to a factor 5(1). The lowest subbands will
contribute neglectably to the signal at low fields because of there relatively small mobility.
This can be understood by examining the (weight)function G, ;(B). This (weight)function is
exponentially dependend of the scattering mobility and becomes close to unity for B > 1/u,;
while it falls of rapidly to zero at lower fields. If one wants to resolve all the subbands then
one should measure to fields up to 1/u,0. We characterized the §-dopes by measuring with
fields up to 20 Tesla. In this range of fields all the periods P; could be resolved. The accuracy
with which the periods can be resloved from the measurements will be discussed in the next
section.

!No reliable values have yet been published or calculated!
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3.3 Fourier transforms

3.3.1 Fourier and fast Fourier transform

Fourier transformations are especially useful when extracting periodic behaviour in arbitrary
smooth functions. Simultaneous visualization of a function and its Fourier transform is often
the way to overcome lacking insight in problems. The Fourier transform(1®) of a function f(z)
is defined as

/ : f(2)e~ P dg (3.38)

This integral, which is a function of s, may be written as F(s). The inverse Fourier transform
is defined as

w .
f(z) = / F(s)e'?™=*ds (3.39)
— a0
Another way of writing the two successive transformations is
f(z) = / [ / fy)e ™ dy | e27=*ds (3.40)

also called Fourier’s integral theorem. There are some restrictions under which these equa-
tions are valid. First the integral of | f(z) | from —oo to oo should exist and secondly all
discontinuities in f(z) must be finite and replaced by their midvalue. Any function satisfying
these conditions can be written as 3.40. Some authors lump the factor 27 with s to yield the
following set of equations

F(s) = /_ : fz)e = dz (3.41)
f(z) = 51; /_ : F(s)e**ds (3.42)

A third also often used definition of the Fourier transform is the symmetric version of the last
two equations

1 it —izs
Flo)= 5= /_ ~ f(e)e s (3.43)
f(z) = -——12—7r _:f(s)e""ds (3.44)

We will use the first version. In practice it’s impossible to measure a quantity f(z) with
infinite resolution on an infinite z-domain. One usually has a finite set of data points f(z;)
on a finite z-interval. The reduction of the z-domain z € R to an interval (Zmin, Tmaz) makes
the continuous s-domain s € R discrete s € {I-As | ! € Z} when assuming f(y+Zmaz—Zmin) =
f(y); where As = 1/(Zmaz — Tmin)- All frequencies in the Fourier spectrum are integer values
of the minimal frequency As. Suppose we have measured a quantity f(z) at equi-distant
points = € {Zmin + k- Az |k € (0,---,N — 1)} with Az = 1/(NAs). This set of data points
can be written as

N N
Y fzi) - 6(k — EEmindy = N f(z). 6(k — EFmin)) = f(2). D(z)  (3.45)
k=0 k=0

The information about f(z) in between the intervals is not contained in the product; however,
the values of f(z) at the values z = z; are preserved.
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The convolution of two functions f and g is another function h defined by the integral

he)= [ () g(z - w) du'= f(2)* g(a) (3.46)

The function h(z) is a linear function of f(z) since it is a linear sum of values of f(z), duly
weighted as described by g(z). The reason for introducing the convolution theorem is the
fact that it’s Fourier transform is the product of the Fourier transform of the two original
functions.

f(@)xg(z) EX F(s)6(s) (3.47)

A similar relation holds for inverse Fourier transformations
f(2)g(z) X F(s)*G(s) (3.48)

Generally we can say that the convolution of two functions means multiplication of their
transforms. Applying the above theorem on a sampled function (which is in fact a product of
a continuous function and a series of delta functions), enables us to predict the general form
of its Fourier transform.

f(x) D(z) X F(s)+ D(s) (3.49)
The function D(s) can be written as a convolution of two functions, ZIZ(s) and S(s), since
one can write D(z) as a product of two more elementary functions

D(z) = H(z = Zmin) - H(Tmaz — z) - [TI(E=Eminly = §(z) . [1]({2=Emia)) (3.50)
where H(z) is the Heaveside step function and I7I(z) (pronounced as shah) is defined as
II(z)= ) §z~n). (3.51)

Graphically this is illustrated in figure 3.3. If 1/Az is chosen too small compared to the width
of the Fourier transform of a function f, serious problems arise. The convolution with the
function F(s) results in the overlapping wave form illustrated in figure 3.4.

S
S(z) (s)
Zons \/A Av
min z__>zmaz A4 s \J/
III("—‘—};M)’ l l J I ITI(s) | I
—SAz € T — ) ' s
S(Z:) III((’—Z:‘.!) III(S) * S(s)/\/
\J v A"/
z—> s—>

Figure 3.3 The product of two functions leads to a convolution of the transforms. This is illustrated for
the product in the x-domain of the functions I1I(z) and S(z).
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h(z)
I ——— —> 5. & 8§ ———>
—> Az z — —> As «— 7 3——->7
| I
z —> s—>

Figure 3.4 Example of too low sampling in the x-domain of a function h(z). It is impossible to reconstruct
the function A(z) from it’s sampled Fourier transform via a inverse Fourier transformation since the triangles”
overlap.

This distortion of the desired Fourier transform of a sampled function is known as aliasing.
It’s caused by a too low sample frequency 1/Az. To exclude aliasing the sample frequency
must at least be two times s., where s. is the highest frequency component of the Fourier
transform of the continuous function f(z). The fast Fourier transform is simply an algorithm
that can compute the discrete Fourier transform much more rapidly than other available
algorithms. We will not discuss the computational aspects of the algorithm but merely look
at some applicatioms. The first step in applying the discrete transform is to choose the
number of samples N (where 2log N is an integer value), a sample interval Az and a minimal
z value Z,in. Note that the value of the function at a discontinuity must be defined to be
the midvalue if the inverse Fourier transform is to hold. The discrete Fourier transform of
our data array f(zx) now becomes a complex array F(s,)

N-1
F(sn) = Az Y f(Tmin + kAz)e 2™ kN 5 = sz (3.52)
k=0

The scale factor Az is introduced to produce equivalance between the continuous and discrete
transformations. The discrete transformations are symmetrical about N/2. This follows
because the real part of the transformation is even and the results for n > N/2 are simply
negative frequency results. It’s recommendable to use the true frequency scale in the plots
instead of the array index n. The relation between the index n and the true frequency reads

O— for0<n< N/2

Sp = (3.53)
for NJ2<n < N

2z

2

3

2

L]
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The FFT results are spaced in frequency by the interval As = 1/(NAz). If a higher resolution
is desired then an increase in N is preferable to an increase in Az since this can cause
aliasing. Beware that the term increase in resolution is ambiguous in that one is not sure
if a larger or smaller resolving power is implied. A common mistake made by FFT users is
to increase N by appending zero’s to the sampled and truncated function and to interpret
the results as having enhanced resolution. The frequency resolution has already been set and
the convolution operation of adding zero’s merely provides additional frequency samples by
interpolating the original frequency results. Resolution is determined by the ”time duration”
of a signal which is set by the truncation interval. For periodic functions with known periods,
one can choose NAz equal to an integer multiple of a period. Whenever it is impossible
to choose N sufficiently large or where the periodic function is not known, the concept of a
data-weighting function must be employed.

3.3.2 The data-weighting functions

The use of data-weighting functions can be a very powerful technique to minimize the un-
desired effects of a non-optimal z-domain truncation. In this section we will investigate the
effect of the four most used weighting functions on the discrete frequency spectrum.

Rectangular weighting function

Truncating a function f(z) in the z-domain can be seen as a multiplication of a rectangular
weighting function R(z) and the original function f(z) where the width of the function R(z)
is NAz = (xmaz - xmin)-

imivivisiviviviviviv
VVVVVVV YTV —

R(z) - f(z)

Z(s)

0
-25 s — 25

Figure 3.5 The upper graph shows the function f(z) = cos(27zso) with so = 11. The lower graph shows
the corresponding continuous Fourier transform F(s). The difference from the two expected delta functions at

s = 311 results from x-domain truncation. The following parameters were used: NAz = 1.0 and As=1.0
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A rectangular weighting function must be defined as:

0 for < Tmin V T > Zmin + NAZ
R(z)=4 1/2 for Z=2Zmin V T = ZTmin + NAz (3.54)
1 for Zmin < T < Tmin + NAZ

For the time being we will assume that N is constant (N = 64). To demonstrate the effect of
multiplying a data function f(z) with a rectangular weighting function R(z) one first has to
look at the continuous Fourier transform of the function R(z)- f(z) (for simplicity we take
f(z) = cos(2xspz)). This is visualized in figure 3.5. The s-domain is now continuous since we
can’t use the relation f(y+ NAz) = f(y) here. The difference between the continuous Fourier
transform and FFT is that for FFT only N points are selected in both the data function as
in the corresponding Fourier transform.

FFT of R(z) - f(z) with N = 64.

050

~0.50
050 -
-0.50 — —- . -
0 32 64

Figure 3.6 Obscured signal when a rectangular weighting function is used on a cosine function. From the
continuous signal ( — ) only a discrete set of points is selected when an FFT is performed. Which N points
are selected depends on the factor so/As. Here we display s0/As is integer (o) and s0/As is integer plus a
half (m).

Notice that the continuous transform gives the same result as the FFT if we use the relation
f(y+ NAz) = f(y). The data points z, are equally separated at a distance Az while the
Fourier spectrum is equally spaced at integer multiples of As(= 1/(NAz). Which N points
in the frequency domain are selected from the continuous power spectrum depends on the
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number of periods, np (= sg/As), on the interval NAz. The two most interesting cases are
illustrated in figure 3.6 where the dots represent the situation np, is integer and the squares
represent the situation np, is integer plus a half. Note the apparent broadening (leakage) of
the frequency peak at frequency so for np = np; while for np = np; we have an almost delta
peak at frequency sg. This is the reason why the highest resolution is obtained when NAz
is an integer multiple of the period. However if the period is an unknown parameter one
can select a weighting function whose Fourier transform falls off more rapidly in amplitude
on both sides of its peak value compared to the transform of a rectangular weighting function.

Characteristics of several weighting functions

Several weighting functions have been employed with the FFT. We’ll discuss briefly the in-
teresting features of the four most popular; the rectangular, the Hanning, the Parzen and the
Bartlett window functions. These functions and their corresponding frequency response are
defined in table 3.1 and depicted on the next page.

Table 3.1
x-domain s-domain Highest side 3dB
here z = 32— lobe dB band width
l2] < 3
wr(z) = . wg(s) = NAz - sinc(rsNAz) -13 =
|z] > 3
—3 ld<3
wp(s) = ¥82sinc?(rsNAz/2 -26 128
2 NaAzx
2] > 3
cos?(rz) |z| <1 -
wyg(z) = wy(s) = NZA’ 51:1::(8(;52;?:) -32 )1,:.;
l2| > 3
1-242% +48)z |z| <}
wp(z) = ¢ 2(1 - 2|z|)3 Loz <l wp(s) = MAzginct(xsNAz/4 -52 1.82
1 2 8 Naz

] |z|>%

All functions have sidelobes in the frequency domain but produce less leakage than the trans-
form of the rectangular function. However they all have a broader main lobe. Recall that
z-domain weighting is a frequency domain convolution so the broader the main lobe, the
more smeared the results of the FFT become. In general, the more one reduces side lobes or
leakage, the broader or more smeared the results of the FFT appear. One therefore should



CHAPTER 3. SIGNAL ANALYSIS 39

choose that weighting function whose characteristics are best suited to the problem being
addressed. Whenever the technique of fast Fourier transformation is used to resolve periodic
behaviour in a signal it is usually a matter of experimenting with various window functions
until the window function is found which gives optimal results. In most cases however the
Hanning weighting function gives a satisfactory result.

Figure 3.7 Four
often used weighting
functions.
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SUMMARY

In this chapter the idea that the resistivity in a 2D electron gas acquires oscillatory components
in a magnetic field is theoretically founded. According to this theory when using magnetic
field modulation the measured signal has at least one periodicity in 1/B. If a high enough
magnetic field is used ( &~ 20 Tesla ) the different subband periodicities in §-dopes can be
found when applying a fast Fourier transformation on the signal in 1/B.



Chapter 4

Measurements on §-dopes

In this chapter we present the results of measurements of six §-doped samples grown in a
computer controlled Varian Modular M.B.E. system at three different temperatures (480 °C,
530 °C, 620 °C) with two different areal dopant concentrationsof 2 10'2/¢m? and 8 101%2/em?.
The electrical characterization of the samples is presented in section one. The second section
shows the experimental set-up of the magnetic field modulation measurements in fields up to
20 Tesla. All data has been recorded using a XT-PC and LAB-master(20), The results of the
magnetic field modulated Shubnikov-de Haas measurements are presented in the following
two sections. In section five we discuss the results of SIMS! measurements performed on
two samples. We also performed cyclotron resonance measurements on two samples. These
results will be discussed in section six. We will end this chapter with an evaluation of our mea-
surements and compare the results and conclusions with publications of similar experiments.

4.1 Sample growth and electrical characterization

Our six é6-doped structures were grown in a computer controlled Varian Modular M.B.E.
system using the following preperation menu: A substrate GaAs wafer is etched in order
to remove possible (surface) polution. The final step of the etching procedure incorporates
the creating of an oxide top layer on the substrate wafer, which later on will be thermally
removed in the M.B.E. system 2. After the oxide layer has been removed the actual growing
menu for the §-dopes can be started. First an initial 0.5 ym thick GaAs buffer layer was
grown on the undoped (100) GaAs substrate at a temperature of 580°C followed by a 2.5 um
GaAs layer at a substrate temperature Ty, outh. The latter temperature need not necessarily
to be different from 580°C. We however have grown structures at substrate temperatures of
480°C, 530°C and 620°C. To ensure a smooth surface the Ga-flux is interrupted 10 seconds

1Secondary Jon Mass Spectroscopy
?This is done at a temperature between 580° and 620°C under a constant As-flux.

40
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before the actual Si-atoms are deposited. ry
1um GaAs Tgroweh
I3 growt Si—plane
Sa.mple Tgrowth(oc) NDm(lou/cmz) M R R RN RN RN NN NUNRNT]
A 480 2 2.5um Gads Tyowtn
B 530 2 l
c_| e 2 o T i
D 480 8 ass 0.5um
E 530 8 GaAs Substrate |
F 620 8
Table 4.1 List of characteristic growing parame- Figure 4.1 Schematic graph of the
ters of the samples. sample’s structure.

The deposit of the donor atoms lasted only 7.5 or 30 seconds to obtain an areal donor density
of 210'2/cm? or 8 10'2/cm? respectively. Finally a 1 um thick GaAs top layer was grown
at a temperature Tgpouen. A schematic diagram of the samples is shown in figure 4.1. Table
4.1 shows the characteristic growing parameters of all samples. The electrical characteriza-
tion of the samples have been studied by Hall effect measurements using the Van der Pauw
method. The Hall electron density ng,u and the Hall mobility pg.n have been measured for
temperatures between 4.2 and 300 K. These measurements are displayed in figures 4.2 and
4.3. The values at 4.2 K are also tabulated in table 4.2.

2.0 - * ! , , 10
— 8 o
1 'E
514! 6 O
° o
Z 4 T
3 3
T o8 — 2 =

4 10 100 4 10 100
T (K) T (K)

Figure 4.2 The measured temperature
dependence of the Hall electron density naan
between 4.2 and 300 K.

An interesting result of figure 4.3 is the differences in mobility of the samples grown at 480°C
and the one’s grown at 620°C. This might indicate that the samples C & F have a more
wide spread donor distribution function than the structures A & C. For temperatures below
77 K the most important scattering mechanism in é-dopes is ionized impurity scattering so
a smaller mobility certainly indicates a larger donor spread distance. A general difference
between samples D, E and F and the set A, B and C is the slight temperature dependence
of the heavily doped samples below 100 K. The influence of illumination (red LED) is also
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investigated by measuring again the Hall electron density and the Hall mobility as a function
of the temperature. The results of the samples A,C,D and F are displayed in figure 4.4.
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Figure 4.3 The measured temperature
dependence of the Hall mobility umau be-
tween 4.2 and 300 K.

All samples show a decrease of
the Hall electron density and an
increase of the Hall mobility af-
ter illumination. The original as
well as the illuminated samples
have, for temperatures above 150
K, the same Hall mobility and
Hall electron density.

Sample | ngau (10'2/em?) | pgan (m2/Vs)
dark light dark light
A 1.14 1.13 0.545 0.676
B 1.13 1.14 0.517 0.654
C 1.87 1.73 0.223 0.327
D r—’ 3.76 3.27 0.385 0.515
E 5.70 5.05 0.226 0.280
F 7.46 7.30 0.224 0.243
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Table 4.2 Table of Hall mobility and Hall electron den-
sity at 4.2 K before and after illumination.

Figure 4.4  Mea-
sured temperature de-
pendence of the Hall
electron density and the
Hall mobility between
4.2 and 300 K before
(V) and after illumina-
tion (w).
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4.2 Experimental set-up

The experimental set-up for the magnetic field modulated measurements is graphically dis-
played in figure 4.5. A sweepgenerator (SW) generates an in time slowly increasing and
decreasing voltage V,,, which is proportional to the magnetic field. To this magnetic field
controlling voltage a small oscillating (70 Hz) voltage V¢ (Osc) is superimposed to create the
modulating magnetic field Bmod. The voltage Vy also serves as reference signal for the Lock-
ins (LI1 and LI2). The samples can be mounted on an insert which is placed in a He-bath in
the center of the bitter magnetic system. This magnetic system generates fields up to 20 Tesla.
Lowering the pressure above the He-bath enables measurements at temperatures between 4.2
and 1.2 K. A constant current Ippep (= 1001A) is sent through sample (S) contacts 1 and 5°.
The Hall and Shubnikov-de Haas voltages are measured via Lock-in 1 and 2 respectively. The
Lock-in output signals V; and V, now are proportional to the f (and/or 2f) harmonic parts of
the Hall and the Shubnikov-de Haas voltages. These signals are plotted on a XY-recorder and
written to data-files as a function of the magnetic field. All measurements were performed on
Hall-bar structures. The precise geometry and size of the Hall-bar structures is displayed in
appendix C.
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Figure 4.5 Schematic diagram of the experimental set-up used for the magnetic field modulated

measurements.

The hard- and software(29) concerning the data transfer to the PC is specifically developed
for field modulation measurements. In appendix D a short guidance to the program FFT19
is given. This program covers all mathematical action necessary to extract the periodicity in
1/B of the measured data.

3For sample contact definition see appendix C
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4.3 Subband population measurements in perpendicular field

The population of the subbands has been determined from Shubnikov-de Haas and Hall effect
measurements on Hall-bar shaped samples in magnetic fields up to 20 Tesla. To obtain
a better resolution of the oscillatory parts in pz; and pg, the technique of magnetic field
modulation was used with a modulation field of 30 mT at a modulation frequency of 70 Hz.

Sample A Sample D ) ‘{

3
“- L
8%.3
9B |

0 B— (T) 10 20 O B (1) 10 20
3 Sample A Sample D
L
% | ) -
8pzy I
6B
0.00 0.50 1.00 0.00 0.35 0.70
1/B— (1/T) 1/B — (1/T)
Sample A 3 Sample D
o
\/ - ,_,/’/.\
0 1 2 3 4 5
n—  (10%/cm?)
o 1 2 3 4 5

n— (10%/cm?)
F igure 4.6 Example of typical results of measurements. Here samples at a growth temperature of 480°C
are shown. In order to resolve the smallest periodicity the sample D we tilted this sample over an angle
¢ = 25.84°. The x-axis of the Fourier transform of this sample hence must be multiplied with cos(¢) = 0.9 to
get the proper subband populations.
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This enables us to measure signals closely related* to dp,./dB and dp,,/dB. Taking the fast
Fourier transform of these signals in 1/B gives the periodicities P; of the different subbands.
The periodicity however is proportional to the inverse of the subband population n; via
relation 3.37. Results of samples A and D are visualized in figure 4.6. Some extra figures of
Fourier transforms of the other samples are collected in appendix E. Most measurements were
performed at 4.2 K since temperature lowering to 1.2 K gave no essential signal improvement.
Tables 4.3 a and b show the results of the subband population measurements for the samples
A, B and C before and after illumination. The similar results for the heavily doped samples

A B C A B C
Torowth 480 °C 530 °C 620 °C Torowth 480 °C 530 °C 620 °C
Pez  Pzy | Pez  Pzy | P2z Pzy Pez  Pzy | Pez Pzy | Pzz  Pry
ny 0.34 036038 0.38]0.42 0.42 ny 045 0.421] 038 77 | 0.44 045
ng 143 1441138 132132 138 no 1.50 1.53 ]| 140 77 | 140 1.34

Mot 177 1807176 170} 1.74 1.80 Neot 195 195] 1.78 77 | 1.84 1.79

nHall 1.14 1.13 1.87 nHall 1.12 1.14 1.80

Table 4.3 This table shows the different subband populations of the samples with an areal Si-density of
2 10" Jcm?. Lefthand table before illumination; righthand table after illumination.

D E F D E F
Torowth 480 °C 530 °C 620 °C Tgrowth 480 °C 530 °C 620 °C
Pzz  Pzy | Pez  Pay | Pz Pzy Pzz P2y | Pze Pzy | P2z Pay

ns 0.16 0.18 77 ng 0.25 0.29 77

na 0.51 0.52}0.70 0.74 27 ng 0.56 0.55 ] 0.75 0.78 77

ny 123 124|166 1.71 7 ny 1.29 130} 1.80 1.78 77

ng 3.50 3.50|3.22 3.35 17 ng 3.50 3.50 [ 3.32 3.50 77
Neot 5.24 526 | 5.74 5.98 Mot 5.35 5.35{6.12 6.35

NHall 3.77 5.7 7.5 NHall 3.3 5.1 7.3

PNK N~
Table 4.4 This table shows the different subband populations of thc samples with an areal Si-density of

8 102 /em?, Lefthand table before illumination; righthand table after illumination.

D and E are displayed in table 4.4 a and b. Unfortunately we were not able to extract
the different subband populations from sample F. However the also tabulated Hall electron
density indicates that almost all silicon atoms must be ionized since n;,; must be larger than
or equal to ng.y. In the samples A, B and C the value ngy differs slightly from the areal
Si-density. This is probably due to the formation of a depletion region on both sides of the
2DEG. However the heavily doped samples D and E show a much larger discrepancy. Clearly
some other mechanism must be responsible for the relatively low value of n4;,;. Zrenner
et al.(21) argued that at low values of Ty ,ouen the electron concentration is limited by the

4See section 3.2
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population of the DX-center at 200 meV above the I'-conduction band minimum, whilst at
high growing temperatures auto-compensation occurs prior to DX-center population. However
when assuming that population of the DX-center is the main electron saturation mechanism
for sample A, we are not able to fit the measurements with theoretical calculations. An
areal electron density of 5.3 10'2/cm? is to low to give a Fermi level of about 200 meV
above the I'-conduction band minimum. The fact that no PPC-effect was measured is also
an arguement against the population of the DX-center. Beall et al.(3?) argued that at high
areal dopant densities donor saturation occurs because of Si-islands formation. These islands
consist of electrically active (donor) as well as electrically inactive Si. They noticed an increase
of the areal electron density after annealing 6-doped samples several times. Diffusion of the
inactive Si-atoms (eventually causing them to become electrically active) seems the most likely
explanation for the increase in nyp¢. The diffusion of Si-atoms was measured via Secondary Ion
Mass Spectroscopy. When looking at the samples D, E and F we see an increase in ne when
the growing temperature is raised. This indicates that at higher temperatures more Si-atoms
become electrically active. The mobility however decreases at higher values of Tgpouth Which
indicates a more wide spread donor distribution. Conclusively we can say that during sample
growth, segregation of Si-atoms seems to be an important mechanism, determining not only
the donor spread function but also the areal donor density in the samples.

For a two subband system it is possible to calculate the different subband mobilities po
and p, using the following low field formulae(®);

Nbound-1 n:
Y (#i=—=)= pRan (4.1)
= N Hall
Nbound—-1 n:
> pi——(wi— pEan) =0 (4.2)
=0 RHall

The subband mobilities of samples A, B and C are calculated that way and tabulated in
table 4.5. For systems with more than two subbands one can only find an estimation for
the subband mobilities. The best approximations for the different subband mobilities of the
heavily doped samples D are also tabulated in this table.

A B C D

LHan | 0.55 ]| 0.52 | 0.22] 0.39
o 022020022 0.15
g1 | 0.93 085 0.22 | ~0.55
R ~0.55

Table 4.5 Table showing
the calculated subband mo-
bilities in m?/Vs.

The calculated mobilities of the second subband of samples A and D are higher than other
6-dope subband mobilities reported so far(7:1421), The enhancement of the mobility in the
samples grown at low temperature, is most probably due to the smaller overlap between
the donors and the electron wavefunction(23). Above 100 K the mobility in all subbands is
equal because longitudinal optical phonon scattering is the main scattering mechanism. This
scattering mechanism is less sensitive to the electron wavefunctions than ionized impurity
scattering.
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With the measured subband population values, tabulated in tables 4.3 and 4.4, we are able
to find an optimal set of numerically calculated values of n;, when using the donor spread
distance as a fitting parameter. The results of this fit of samples A and D are illustrated in
figure 4.7. The best fitting donor spread distance for these samples is 20 A. The optimal dpon
values for the other samples are tabulated in table 4.6. This fitting procedure however is no
longer very sensitive for variations in the fitting parameter dpon for dpon-values below 40 A.

7 ) | v T v L}
| 0 *
(E) 5 Tgrmfh Daon
« 47
o 3} A[480°C |20 A
- B |530°C |30 A
~ 2t C|620°C | 604
c 1} D |480°C |20 A
E | 530°C {80 A
0 F|{62°C | 7

0 Ni, (10" cm™) 8

Figure 4.7 Figure showing the calculated and the measured subband ~ Table 4.8 Table showing the best

population values of sample A and D. The best result is achieved with  fitting value of dpos for the various

a donor spread distance of 20 A. samples. Sample F can not be re-
lated to some dpow value because
the different subband populations
couldn’t be determined.

An interesting result of this fitting procedure is the fact that the donor spread distance in-
creases as the growth temperature of the samples is increased. This seems to substantiate the
idea that at relatively high growth temperatures spreading of Si-atoms takes place and that
the spreading depends on the areal Si-density.

4.4 Subband population measurements in tilted field

In the former section we investigated the influence of a perpendicular magnetic field on trans-
port properties like the Hall and the Shubnikov-de Haas effect. The measured signals dp,,/dB
and dpgy/dB finally give the different subband population values, n;. With these values it
is then possible to find a best fitting donor spread distance dp,y,; meaning that we look for
that particular value of dpo,n Which gives a minimum difference between the measured and
numerically calculated subband population values. This can be done because the perpendic-
ular magnetic field does not affect the shape of the potential function U(z). However if there
is also a magnetic field component parallel to the 2DEG, the total potential function becomes
magnetic field dependent. In those situations we are no longer allowed to extract a dpon
value from the measured subband population values. Figure 4.8 shows the system’s geometry
in case the magnetic field is no longer perpendicular to the 2DEG. The perpendicular and
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parallel magnetic field components are Bcos(¢) and Bsin(¢) respectively.

A
0.1¢

-

-

~

-

~

‘—

0.01 e

0.2 cos( ) 1

Figure 4.8 Geometry of the system in case Figure 4.9 Measured value of P, (T7!)asa
the magnetic field is tilted over an angle ¢. function of cos(¢).

In order to investigate the influence of the parallel magnetic field component we measured the
Shubnikov-de Haas and Hall signals and calculated the ”corresponding” periodicities of the
second subband, P;. Figure 4.8 shows the functional dependency of the measured quantity P,
and cos(@) for the high mobility samples A and D. In case the parallel magnetic field does not
affect the potential function of the system, we can expect a linear dependency P; ~ "cos(¢).
The line representing the linear situation is also drawn in figure 4.9. The population of the
second subband of sample A (closed symbols) seems to be linear dependent on cos(¢$) while
sample D (open symbols) shows only a linear dependency on cos(¢) for small values of ¢.
For cos(¢) > 55° the relation n;/ cos(¢) is a constant no longer holds. The cycltron radius of
the electrons is the zx-plane is approximately 2574 /,/Bsin(@). Now if the cyclotron radius
becomes of the same order as the ”thickness” of the electron gas, the electrons can make
circular orbits and the existence of the parallel magnetic field component is noticed. This
could explain why sample D seems more affected be by the parallel magnetic field than sample
A, since theoretical calculations show that the "thickness” of the electron gas increases for
higher areal electron densities.

ConvsST ?

Further analyses need to be done on samples with various areal electron densities and at
different growth temperatures (~ different value of dpon) to show how the different subbands
are affected by a parallel magnetic field component.

We also investigated the depopulation of the different subbands by measuring at parallel
magnetic fields only. The Schrodinger equation of this system is
ezBﬁz2

2m*

i (2pz + p22) + +U(z)- E }¥(z,y,2) =0

2m*

{ (P2 + P2 +p¥)/2m* +

This particular Schrédinger equation has been numerically solved by Reisinger(24) for a para-
bolic conduction band. The calculations gave the different subband energies as a function of
B and the areal electron concentration Nopgg using a 5 A broad donor distribution function.
The calculated critical magnetic fields (magnetic field at which subband depopulation takes
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place) are visualized in figure 4.10 as a function of the areal electron density. First order
perturbation theory shows that for a symetric potential U(z) the different subband energies
FE, are lifted a factor dE,,, with

e’BI’I

dE, =< ¥, |2%|¥, > Py

Clearly the higher subbands are more influenced because < ¥,|z2|¥,, > increases for higher
subband indices. Eventually the highest subband will be lifted above the Fermi level (subband
depopulation) and the electrons are rearranged over the remaining subbands. For higher mag-
netic fields the next subband will depopulate id. The resulting oscillations in the resistivity

are called the diamagnetic SdH-effect.

2of- it * /2

Sample D

a.u.
¥

Opxx/ B
v

0 1
Nageg (102cm-2) 0 B — (T)
! Figure 4.10 Calculated critical magnetic Figure 4.11 Typical result of the measure dia-
fields(®") for depopulaton of the i** subband as magnetic SdH-effect using the technique of mag-
a function of the areal electron density. netic field modulation.

A typical result of the diamagnetic SdH-effect is visualized in figure 4.11. The measured crit-
ical magnetic fields of samples A and D are diplayed in figure 4.10. The difference between
the measured and calculated critical magnetic fields is probably due to the non-parabolicity
of the conduction band in GaAs. As shown in chapter 2, non-parabolicity must be taken
into account in the self-consistent calculations. Especially at small values of the donor spread
distance, here < 5A, non-parabolicity can give large corrections in system parameters like
E4 — F;. It would be very intersting to verify these data with a theoretical calculations which
take non-parabolicity into account.

20
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4.5 SIMS measurements

We performed SIMS (Secondary Ion Mass Spectroscopy) measurements on the samples D
and F. With this technique it is possible to remove several atomic toplayers of a sample
by shooting primary ions at the sample’s surface and detect the (secondary) ions which are
removed from the sample. This, however destructive technique, is very suitable for scanning
the profile of samples in one direction and determine the chemical structure as a function
of the depth. The resolution is about 3nm since not only one atomic toplayer is removed
but a mixture of several atomic layers. The results of the SIMS measurements are displayed
in figure 4.12. This figure shows that the sample grown at 620°C has an asymmetric donor
distribution function while sample D has a symmetric donor distribution. The asymmetry
must be caused by segregation of Si-atoms during the growth of the sample.
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Figure 4.12 Si profile of the samples D (—) and F (- -) as a function of the etching depth.

The full width halve maximum values are 50 A and 80 A for samples D and F respectively.
Conclusion: SIMS measurements show that segregation of Si-atoms takes place at a growth
temperature of 620°C. At a growth temperature of 480°C these effects have disappeared.
Further investigations need to be done to show the growth temperature dependency of the
segregation effects. Diffusion of Si-atoms seems to be of minor importance in both samples.
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4.6 Cyclotron resonance

The cyclotron resonance measurements are performed on the high mobility samples A and
D. A schematic diagram of the experimental set-up is given in figure 4.13. We measured the
transmission of the Far Infra Red laser light as a function of the magnetic field from 0 to
20 Tesla at a temperature of 1.3 K. A typical result of the measured transmission profiles is
depicted in figure 4.14.
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Figure 4.13 Experimental set-up of the mea- Figure 4.14 Typical result of a FIR trans-
sured FIR transmission profiles as a function of mission profile as a function of the magnetic field
the magnetic field. at a wavelength of 77.4 pum. The depth of the
bm: bolometer; S: sample; SW: sweepgenerator transmission dip is about 0.5% of the transmis-
and power supply for magnetic field. sion signal.

The dips in the transmission profiles are all very broad. A reason for this extreme broadening
can be the relatively low mobility ( ~ scattering time ) of the §-dopes compared to mobility
of heterostructures. A second reason is the high areal electron density which gives rise to
considerable dielectric broadening(?%) of the CR-profile. Finally, as more than one subband is
populated, the overlap of several less broad CR-profiles also give rise to an apparent broad-
ening. Assuming the minimum of the transmission profiles is due to one subband we can
determine an (cyclotron) effective mass my,,; via the following equation:

m* = € Brin A
vl = "ore

where A is the laser wavelength; ¢ the speed of light in vacuum; e is the proton charge and
B,.in is the value of the magnetic field at the minimum of the transmission profile. Figure
4.15 shows the calculated values of the cyclotron effective mass as a function of the laser
wavelength A for both the samples. The cyclotron effective mass differs considerably from
the bulk GaAs effective mass m* = 0.067 m,. The discrepancies are caused by the non-
parabolicity of the conduction band in GaAs. It is easy to show that at low temperatures the
cyclotron effective mass is proportional to the non-parabolic density of states function at the
Fermi level mZ,, = 7h*DOSy(Ey). For large areal electron densities (large values of E;) the
relation between the cyclotron effective mass and the effective mass of bulk GaAs reads:
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My ~ 1.13m* for sample A and m(,, = 1.26 m* for sample D .
Figure 4.15 shows that indeed the cyclotron effective mass is larger than the bulk effective
mass value and that m},, in sample A is smaller than in sample D.
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Figure 4.15 Measured cyclotron effective mass values as a function of the laser wavelength A for sample

A (upper) and sample D (lower).

It is not clear yet whether the measured transmission minima are wavelength dependent or
just statistically scattered around a constant value.
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4.7 Discussion

The growth temperature, Tyrouth, is @ very important growing parameter for é6-doped struc-
tures. A relatively high value of Tg,owen brings about a more widely spread donor distribution
function. The areal donor density is also an important system parameter that can limit the
width of the donor spread distance. The most important mechanism that reduces the minimal
value of the width of the dopant sheet seems to be the migration of Si-atoms with the growth
front. Diffusion seems to be of minor importance during the growth. Magneto-transport
measurements indicate that the samples grown at a temperature of 480°C, have a donor with
of 20 A. For this value of Tgrowtn the donor width is not influenced by the areal donor density,
while at growth temperatures > 520°C, the donor spread distance becomes a function of
both the areal donor density and the growth temperature. This latter conclusion is a little
speculative since we only have performed measurements on a few samples. The same effects
however have been noticed by Santos et al.(14)

The noticed discrepancy of the deposited areal Si-density and the measured value of elec-
trically active Si-atoms in the heavily doped samples is still an unsolved effect. This effect
reduces at higher growth temperatures. The most likely explanation is given by Beall et
al.(32) who states that at sufficiently high dopant concentrations the Si-atoms will form clus-
ters during the growth, which contain a relatively high concentration of electrically inactive
Si. After annealing é-doped samples, they noticed an increase in the number of electrically
active Si-atoms. An other explanation for the noticed discrepancy was given by Zrenner et
al.(31) who argued that at high areal electron densities the DX-center at 200meV above the
I'-band minimum is populated. This argument however fails for the heavily doped structure
with a growth temperature of 480°C because no PPC-effect is measured. Furthermore, calcu-
lations show that an areal electron density of 5.3 10'2/em? can never give a Fermi level that is
200meV above the I'-band minimum. The measured Hall mobilities of the samples grown at
low temperature are much higher than mobilities reported so far. We were able to calculate
the different subband mobilities for the lightly doped samples. The difference between the
different subband mobilities is approximately a factor four for the samples grown at tempera-
tures beneath 530°C. In the high temperature grown sample the two subband mobilities are
equal. This indicates a broader donor distribution function since the overlap of the subband
wave functions with the ionized donors is closely related to the subband’s mobility(23). The
more the subband mobilities differ one another, the narrower the donor width must be.

We only used a symmetric charge distribution in all our numerical self-consistent calcula-
tions. Some of the §-doped structures most certainly have an asymmetric donor distribution,
due to Si-segregation during the growth. It is therefore recommendable to investigate the
influence of asymmetric donor distributions on the system parameters. The presented set
of calculations are still valuable since they can be used to calculated asymmetric systems
via first order perturbation theory. The performance of numerical self-consistent calculations
which allow asymmetric distributions, might be interesting. This however is an extremely
time consuming job that should be given serious consideration to.
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Appendix A

Table of values

Quantity Symbol | Value SI

Velocity of light c 2.997925 | 108 m s~!

Proton charge e 1.60219 1018 C

Planck’s constant h 6.62620 1074 J s

h 1.05459 1034 J s

Electron rest mass me 9.10956 10-31 kg

Proton rest mass mp 1.67261 10-%7 kg

Electron volt eV 1.60219 10718 J
Boltzmann constant kg 1.38062 | 10-23 J K1
Permittivity of free space € 8.8542 | 10712 FF'm™1
Permeability of free space Lo 1.2566 | 107® H m™!

Bohr radius h%/m,e? To 5.29177 1071 m
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Appendix B

The function that describes the number of electron states in the energy interval £ and E+AFE
is called the density of states DOS(FE). This function can be calculated from the dispersion
relation Fgi,p(k) which gives a relation between energy E of the electrons and their wave
vector k = (kz, ky, k;). For a 3-D electron gas one can calculate the function DO S3(E) via
the relation:
DOS3(E)AE =2
Al

where the summation runs over all Ak combinations in k-space between the equi-energy
surfaces E = Egip(kz, by, k;) and F + AE = Egp(ks + Akz, ky + Aky, k; + Ak;). The
summation can be rewritten as a volume integral of the density of states in k-space over the
volume between surfaces £ and £ + AFE. So

DOSs(E)dE = ///S oL

This can be written as

d 52 dE
D = — 1 3ds.____
05:8)= 7 [[f, 2345 o
where we used the relation: d3k = dSi—deE%—l Finally the 3-D density of states can be written
iap

as an integral over an energy surface S1 in k-space weighted by the reciprocal of the function

IV Edispl-
ds

p0sy(B) = [[ 26 5

For a two dimensional system the density of states can by calculated using the same procedure
as above. This finally results in an integral over an energy curve sl in the two dimensional
k-space weighted by the reciprocal of the function |Vy Egi,p| given by

- 1y2__ 48
DOSK(E) = [ 23 o
With these formulae the density of states can be calculated even for an arbitrary dispersion
relation. The dispersion relation for GaAs derived by Rossler(!) is a correction to the mostly
used parabolic dispersion relation which is no longer valid at high electron concentrations.
This non-parabolic dispersion relation is used to calculate the density of states. DOSy(E) of
a 2-D system like the é-dopes.
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The next three figure show the three Hall-bar types of the measured samples. All values are
expressed in um. The Hall-bar structure codes are 1%, 2* and 25,

Sample code | Hall-bar code
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Short user guidance to the program FFT19

The program FFT19 is an additional program to the measurement program MAP(29), It
is written in ASYST (version 2) and can perform all the mathemetical actions necessary to
extract the periodicities P; and the corresponding subband populations n; of the measured
data. The program can be started on any DOS level by typing FFT19. When the program
is loaded the (first-level) menu card is displayed with the following commands:

Option 0: Two types of data-files can be imported; Asyst files created with the program
MAP and ASCII-files. The format of the latter file type should be:
-Line 1- Number of Y-data collumns (maximal value is 4).
-Line 2- Number of data rows to be read.
-Line 3 till end of file- lines with data.

Option 1:  Only useful for (MAP)Asyst-files. This option clears the screen and shows the
additional comment lines in the imported file.

Option 2:  Shows the number of imported Y-channals (maximal is 4), and asks which channel
should be plotted on screen. Both the original signal as the signal in 1/x are
visualized. Use this option again to load another channel.

Option 3: This option asks whether you want to rescale the x-axis of the upper and/or the
lower figure. Type 0 to leave an x-extrema unchanged.

Option 4: Enables one to write a small Y-label above both figures.

Option 5:  Prints only the two visualized figures to the printer divice PRN.
Option 6: Option to alter the grid on/off condition.

Option 7:  Option to enlarge figures only temporarely.

Option 8: Starts the FFT-menu and shows the FFT-menu card. The FFT-menu has 8-
options which will be discussed next.

Option 9:  Quit the program FFT19; Type start to restart the program or bye to return to
DOS. The Crtl- Scroll Lock terminates the program at any program level. Type
SD and hit enter to go to Asyst mode or bye to return to DOS.



Option 1:

Option 2:

Option 3:

Option 4:

Option 5:

Option 6:

Option 7:

Option 8:

62

Appendix D-2

FFT-menu commands
Gives the absolute value of the Fast Fourier Transform of the imported data
arrays. Two options can be used: FFT of Y(X) or FFT of Y(1/X)..

Advanced FFT option menu. Calculates the FFT of the signal using one of the
following window functions; Rectandular, Cosine , Gauss or Triangle. Furthemore
zero’s can be added to the signal to "improve” resolution. With this option the
signal is symmetrically mirrored in the maximum or minimum value of X; this
improves the frequency resolution.

Option to rescale the X-axis of the data.
Option to rescale the X-axis of the calculated FFT.

Option for saving signal arrays like original data and/or its calculated FFT.
-Line 1- Number of data-lines in file.
-Line 2 till end of file- X; Y;

Prints the visualized graphs to the printer device PRN.
Option to zoom in on the FFT signal only.

Return to the main menu. FFT-data-arrays will be lost.
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Sample A FFT of p,. signal.

Sample A FFT of p,, signal.
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Sample B

FFT of p,. signal.

n — (102/em?)

ﬂ Sample B

FFT of p,, signal.
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Sample C FFT of p;. signal.
L 2 3 4
n — (10'2/cm?)
Sample C FFT of p,, signal.
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Sample D FFT of p,, signal.
I A/—r//l\
1 2 3 4

n — (1012/cm2)
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Sample E

FFT of p,, signal.

Sample E

FFT of p., signal.
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