
 Eindhoven University of Technology

MASTER

Implementation of distributed debugging techniques for the MPS030 multiprocessor system

Schade van Westrum, E.F.J.M.

Award date:
1989

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/5bf5d812-e1ac-43d3-ab13-1c59c2b26c22

Implementation of distributed

debugging techniques for the MPS030

multiprocessor system

E.F.J.M. Schade van Westrum

FI/FIV 89-18

October 1989

Verslag van het afstudeeronderzoek, verricht van november 1988 tot
oktober 1989, in de vakgroep Fysische Informatica van de
faculteit der Technische Natuurkunde van de Technische
Universiteit Eindhoven, onder .leiding van ir. G.J.W. van Dijk en
prof. dr. A~J. van der Wal.

CONTENTS page

CONTENTS

ABSTRACT 1

INTRODUCTION 1

I. THE STRUCTURE OF THE DEBUGGER 2

II. STRATEGIES FOR DISTRIBUTED DEBUGGING 3

III. TOOLS FOR SEQUENTIAL DEBUGGING 5

IV. THE RECORDING OF EVENTS 7

A. Partlal ordering of events 8

B. The implementation of logical clocks 9

1. Rendez-vous based message passing 10

2. Synchronization of processes using semaphores 12

3. Synchronization of processes using eventflags 15

c. The timefile 17

V. BEHAVIOUR SPECIFICATIONS 18

A. Halting of processes 19

VI. DISCUSSION 21

REPERENCES 22

ABSTRACT

The debugging of a distributed program requires all of the

techniques used for sequentia! programs as well as specific

techniques for handling the distributed nature of the program.

Two different techniques for debugging a distributed program have

been implemented, viz. a technique that records the execution

order of the distributed program and a technique that compares a

description of the expected program behaviour with the actual

behaviour.

An algorithm for timestamping events in a distributed environment

is described. These timestamps of events are both recorded as

well as used in cernparing a specified sequence of events to the

actual program behaviour.

"Happened before" relations have been derived for tightly-coupled

multiprocessor synchronization primitives, viz. semaphores and

eventflags.

INTRODUCTION

This paper describes the first stage of the implementation of a

debugger for distributed programs. A debugger is an aid in

program development for finding the causes of departed behaviour

(bugs,errors) of programs different from the expected behaviour

according to the programmer.

The debugger is written for the MPSOJO microcomputer-based

multiprocessor system, developed at the department of Physics of

the Eindhoven Univarsity of Technology. A number of computer

modules, based on the MC68030 microprocessor, and memory modules

are interconnected by a cluster bus to form a tightly-coupled

multiprocessor cluster. Several clusters are interconnected by a

system bus to form a node. Fast point-tc-point communication

channels are used to interconneet several nodes. The software

architecture of the MPSOJO system is based on a multi-tasking

real time eperating system kernel, including extensions for

multiprocessor communication and synchronization message

passing based on rendez-vous synchronization, semaphores and

eventflags.

1

Fully implemented debuggers for distributed programs hardly

ex i st. Many approaches to debug distributed programs are often

suggestions of which the possibility of implementation is not

examined.

Facilities of debuggers for sequentia! programs are indispensable

for debugging processes separately. Existing debuggers for

sequentia! programs have facilities to halt the program at

interesting points and can continue the program instructien by

instruction. Additional tools have to be provided for debugging a

distributed program which is much more complex than a sequentia!

program. In a multiprocessor system it is not possible to halt

processes, that run on different processors, at the same physical

time. The halting of processes may also change the communication

and synchronization order of the distributed program. The tools

of a sequentia! debugger do not include the control of

communication and synchronization events, because a sequentia!

program is completely ordered. A distributed program however is

only partially ordered. Special facilities are required to debug

the specific problems of distributed programs.

The organization of the paper is as follows In Sec. I, the

structure of the debugger is described. Different strategies for

the debugging of distributed programs are discussed in Sec. II.

The tools for sequentia! debugging are described in Sec. III. In

Sec. IV the timestamping of events and the technique that records

events are discussed. The technique that compares a description

of the expected program behaviour with the actual behaviour is

described in Sec. V. Finally, in Sec. VI, the conclusions of the

paper are presented.

I. THE STRUCTURE OF THE DEBUGGER

A program consists of a sequence of events. Distributed programs

are sufficiently complex that they require all of the techniques

used for sequentia! programs as well as specific techniques for

handling their distributed nature. In general, three techniques

are used to debug distributed programs :

(1) Recordinq

This technique records the events (e.g. including the

2

interactions between processes) of a distributed program.

This technique is used for later analysis of the execution

order of a distributed program. The recording of events is

time consuming and requires a lot of starage for retaining

the information.

(2) Replay

The replay technique gives the possibility to re-execute the

distributed program started from particular points. During

the replay, the order of events is kept the same as the

order of events in the original execution of the distributed

program. The user has interactive control over the re

execution. He may specify the next breakpoint, examine the

state of the system, resume execution, etc. Replay needs a

lot of information of the original execution. This

information has to be recorded during the original

execution.

(3) Behaviour Specificatien

Our

The technique of behaviour specifications is used to oompare

the expected program behaviour with the actual behaviour. A

behaviour specificatien consists of a number of events

combined by relations. When a behaviour specificatien is

satisfied interactive control is given to the user. The

checking of the behaviour specifications . a lso time l.S

consuming.

debugger for distributed programs uses the behaviour

specificatien and the recording techniques.

II. STRATEGIES FOR DISTRIBUTED DEBUGGING

two different strategies for the debugging of

programs can be distinguished the bottorn-up

In genera!,

distributed

debugging strategy [5] and the top-down debugging strategy

[1,3,9]

In the bottorn-up strategy, each process is tested separately in

an artificial test environment, using the standard debugging

3

tools for sequentia! programs. Aft er the processes are tested

individually, they are combined and tested together using

distributed debugging tools. The time and effort invested to

create the artificial test surroundings is considered worthwhile

in debugging distributed programs because of their complex nature

(5]. Also the finding of communication errors is facilitated if

individual processes are at least correct [9]. This way of

debugging is a conservative and time consuming way of debugging.

The top-down strategy can eliminate the time and effort to

create an artificial test environment [1, 3, 9] • In the top-down

strategy all processes are tested together in their real

environment. In this way, the communication and synchronization

of processes are tested as soon as possible. The focus of

interest is shifted from the complete program, to a single

process within the program, then to a procedure within the

process and finally to a statement within the procedure.

Usually a pregrammer will start with a top-down strategy rather

than with a bottorn-up strategy because of the time involved in

creating the artificial environment. In general a mixture of both

strategies will be used, depending on the arising bugs.

The implemented debugger allows both strategies as well as a

mixture of both. It is not always necessary to create an

artificial environment to test a separate process because every

process can be halted, stepped and continued in its real

environment by using our debugger, thus all the interactions

between the debugged process and its real environment can be

controlled. It can be necessary to create an artificial

environment when the real processes are not interacting in the

correct way wi th the process currently being debugged because

they contain fa tal bugs. Processes that do not interact in the

correct way can be halted. Next, the supporting processes, which

replace the processes that were not interacting correctly, can be

loaded down to the processor(s). The supporting processes contain

the interactions with the debugged process.

4

III. TOOLS FOR SEQUENTIAL DEBUGGING

Debuggers for distributed programs require at least all

techniques .for the debugging of sequentia! programs. In a single

processor multi-tasking environment extensions have to be made in

order to debug one single process sequentially while other

processes continue executing instructions. In this section, the

implemented tools for the debugging of sequentia! programs

(processes) in a single-processor multi-tasking environment are

described.

Breakpoints

A process can be halted at an interesting points (addresses) to

get control over the process, by using breakpoints.

The MC68030 microprocessor supports breakpoints through internal

interrupts (exceptions).

The breakpoint command replaces the original code by a trap

instruction. The code value is stored and replaces the trap

instructien again when the breakpoint is removed. When the

processor executes the trap instruction, an exception is

generated. The exception service routine checks whether the

breakpoint is specified for the process, that has hit the

breakpoint, or for another process. In the former case the

process is halted, its registers are shown and control is passed

to the user. In the latter case the process will get the highest

priority, the trap instructien is replaced by the code value and

the process executes a single instructien before it is halted

again. Then the trap instructien is replaced, the process gets

its original priority and continues its executions normally.

A breakpoint is specified by an address and a process

identifier. The breakpoint command also offers the possibility

to specify the number of breakpoint hits, that a process has to

make before i t is hal ted. Th is can be very useful, especially

when breakpoints are placed within loops.

Setwatch-command

Although the facilities supported by the MC68030 microprocessor

are sufficient for the debugging of code, additional tools for

the debugging of data items (variables) are desirable in more

5

complex systems. Therefore the MPSOJO computer module is equipped

with a debug register.

The debug register will generate an interrupt after the address,

that has been stored in this register, is read or after a value

is written to this address.

A watchpoint is specified by an address. This address is placed

in the debug register. After a process reads this address or

writes a value to it, an interrupt is generated and the

interrupt service routine is executed. The interrupt service

routine halts the process, shows its registers, shows the

previous and actual value of the address and the control is

passed to the user.

Tracing

To aid in program development, the MC68030 includes an

instructien by instructien tracing capability. The processor can

be programmed to trace all instructions or only instructions that

change program flow, by setting the trace bits in the status

register. In this trace mode, an instructien generates a trace

exception after it completes execution, allowing the debugger to

monitor the execution of the program.

The trace command is specified by the type of trace and a process

identifier. The trace command .sets the trace bits in the status

register of the process and after each trace exception the

process is halted, its registers are shown and the control is

passed to the user. The debugger for the MPSOJO system supports

the trace command to be specified with the number of steps to be

executed before the process is halted.

Go

The user of the debugger can continue a halted process by the go

command. This command specifies the process identifier of the

process that has to continue normal instructien execution.

Register show

The registers of a halted process can be examined by the register

show command.

6

Register change

The registers of hal ted processes can be chanqed. The command,

that changes these registers, has to specify the type of the

register (address or data), the number of the register, the

process identifier and the new value.

Debug status show

A command has been implemented to show the current debug status,

because of the complexity of the debugging of distributed

programs. The command shows the used breakpoints and how many

times the breakpoints still have to occur before the process is

halted. Also an overview is given of the halted processes : the

command shows by which exception (breakpoint,watchpoint,trace)

the process are halted.

Cancel breakpoint

When a breakpoint is not used anymore, it can be canceled. The

trap instructien is replaced by the original code. If a process

is halted at this breakpoint, the process remains halted and

control remains with the user.

Examine/Deposit

An examine and deposit command has been developed for examing

the contents of specified addresses, changing the values of the

examined addresses and passing up and down through neighbour

addresses.

IV. THE RECORDING OF EVENTS

In order to obtain a survey of the execution order of a

distributed program a debug facility has been developed that

records the history of the program [5, 8, 9] • The communication

between processes, the operations on semaphores and eventflags

are the events that are recorded during program execution. A

reduction of information, from the complete program history to

these events, has been made to avoid that a user of this debugger

will be overwhelmed by the amount of information. But in spite of

the reduction, the history of the synchronization and

communication between processes is recorded, and can be studied

7

by the user for tracing bugs of synchronization and communication

bugs.

since the physical clocks of different processors are not

synchronized, events cannot be ordered using physical time.

Therefore events are timestamped, i.e. labeled with a loqical

time. A partial order of the recorded events can be derived from

these logica! times.

First, in Sec. IV.A, the principle of partial ordering is

explained. The implementation of logica! clocks is described in

Sec. IV.B. Finally, in Sec. IV.C, the implemented recording debug

technique is described.

A. Partial ordering of events

Usually a "happened before" relation between two events a and b

is justified by physical time. As mentioned before, physical

time cannot be used to order events because the physical clocks

of different processors are not synchronized. Yet, "happened

before" relations exist between events of processes. "Happened

before" relations exist between all the events of one process

because the process consists of a sequence of events. But also a

"happened before" relation exists between communication and

synchronization events. Thus this type of events order the

complete system partially.

The "happened before" relation (denoted by -+) for distributed

systems, for which is assumed that message passing is the only

form of the interaction between processes, is defined by the

following three rules [7] :

Rl : If a and b are events in the same process and a becomes

befare b, then a -+ b.

R2 If a is the sending of a message by one process and b

is the receipt of the same message by another process,

then a -+ b.

RJ : Two distinct events a and b are said to be concurrent

if a ~ b and b ~ a.

A clock condition is derived from the rules for the "happened

before" relation :

8

Clock condition. For any events a and b :

if a~ b, then C(a) < C(b).

In words : if a happened befare b, then the logica! time of a is

smaller than the logica! time of b.

This clock condition can be divided into two conditions

Cl If a and b are events in process Pi and a becomes

befare b, then Ci(a) < Ci(b).

C2 If a is the sending of a message by process Pi and b is

the receipt of that message by Pj, then Ci(a) < Cj(b).

This means that every process needs its own logical clock. These

logica! clocks do not have to be synchronized but have to satisfy

the clock conditions. Every logica! clock must increase its time

at the occurrence of an event of the process to which the logica!

clock belongs. Also a message m has to contain a timestamp Tm of

the sending event and upon receiving the message m the receiving

process has to set its clock greater than its present value and

greater than Tm· In this way timestamps can be attached to this

type of events. The comparison of the timestamps determines

whether events are concurrent or happened befare each other.

B. The implementation of logica! clocks

An implementation of logica! clocks has been choosen similar to

[2] in which logica! clocks for message passing systems are

described.

To every process a vector of integers is attached. Each element

of this vector is reserved for one process of the system. Every

process has to increment its element of its own vector at the

occurrence of an event, so that the progress of this element will

satisfy the clock condition Cl. The other elements of the

process vector will remain unchanged, in the case the event does

not represent a communication between this process and another

one.

9

1. Rendez-vous based message passing

Synchronous rendez-vous based messages passing means that the

sending and the corresponding receiving processes wait for each

other, till they are both ready to send or receive the message

respectively. A sending process is blocked and the message is

inserted into the message queue of the recei ving process. The

sending process remains blocked, until its message is received. A

receiving process checks its message queue whether it contains

pending messages. If the message queue is empty, the receiving

process is blocked until a process sends a message to this

process. Otherwise, the first message in the message queue is

received and the execution of the process sending this message is

resumed. This means that either the sender will wait for the

receiver or the receiver will wait for the sender.

The three mentioned "happened before" relation rules do not

include the rendez-vous mechanism. A "happened before" relation

rule can be added to the previous three rules :

R4 If b is the receiving of a message by one process and c

is the resumption of the execution of the sending

process, then b ~ c.

Also a clock condition can be derived from this rule

C3 If b is the receiving of a message m by process Pj and

c is the resumption of the execution of process Pi ,

that has sent message m, then Cj(b) < Ci(c).

Instead of sending the timestamps with the messages, common

variables are used for the time veetors in a tightly-coupled

multiprocessor system. The operations on the time veetors are

made directly on these common variables.

When process Pi sends a message m to process Pj, the following

operations have to be made on the process veetors in the case of

synchronous rendez-vous based message passing

(1) Pi increments the i-th vector element of its vector, to

10

satisfy the clock condition Cl for the i-th vector element.

This vector is the timestamp for the sending of the

message m.

(2) If Pj executes a receive operatien and no process are

pending in its message queue, the j-th element of the vector

of Pj is incremented, to satisfy the clock condition Cl.

This vector element is the timestamp for the

blockon receive eventof Pj·

(3) When the message m is actually received by process Pj, Pj

increments the j-th element of its vector, to satisfy clock

condition Cl. Each element of the vector of Pj is compared

with the corresponding element of the vector of Pi, and both

elements are set to the larger one. This is done to indicate

that events "happened before" the sending of the message m

by Pi will happen before future events of Pj and that the

events "happened before" the receiving of the message m by

Pj also will happen before future events of Pi. Then the

i-th element of the vector of Pj is incremented, to satisfy

clock condition C2 for the i-th (sending) element. The

re sult of this vector is the timestamp for the recei ve

event.

(4) After the message has been received by process Pj, Pi

increments both the i-th and the j-th element of its vector,

respectively to satisfy clock condition Cl for the i-th

element and CJ for the j-th (receiving) element. This vector

is the timestamp for the resumption of the execution of

process Pi, after Pi has been blocked on a send event.

Figure 1 shows an example of the operations on the time veetors

of sending and receiving processes. The other points with time

veetors in figure 1 are no communication or synchronization

events. These events satisfy clock condition Cl.

Figure 1 also shows· that the i-th vector element of a process Pi

is increased at the occurrence of every event. Other elements are

only changed in case of communication events.

11

[Q,Q,QJ

a C1.0.0J

Bloc:ked

b [2,3.0]

c [3,3.0]

e cs.3.3J

Pi P2

[Q,Q,QJ

co. 1.0]

J [2,2,0]

Rec:e I ve

k [2,3.0]

CQ,O,OJ

n [Q,Q, 1 J

Rec:elvl'ng

P3

Figure 1 The timestamping of communication events using the

clock conditions

passing.

for rendez-vous based message

To determine whether an event Pi (A) happened before another

event Pj (B), the i-th element of the time vector belonging to

event Pi (A) has to be compared with the i-th element of time

vector belonging to theevent Pj(B). If the i-th element of Pi(A)

is smaller than the i-th element of Pj (B), then Pi (A) -+ Pj (B),

because this i-th element is only increased by other processes in

case of communication.

For example, from figure 1 we determine that i -+ o since 1 < 3

and also that k 7 o since 3 ~ 3.

The same result of the vector operations can be obtained if the

message buffers of the involved processes are exchanged between

the sending and receiving process in stead of using common

variables. Both the buffers have to contain the timestamps of the

two processes involved in the sending and receiving of the

message.

2. Synchronization of processes using semaphores

A semaphore is a common data structure, consisting of a counter

and a queue, on which two operations are defined, viz. wait and

12

signa!. A process that executes a wait operatien on a sernaphare

is either suspended in the sernaphare queue if the counter has a

zero value or continues instructien execution after the counter

has been decremented. A signa! opera ti on ei ther increments the

semaphore counter when the queue is empty or releases the first

process from the sernaphare queue. Semaphores are used to

establish mutual exclusion between processes.

Processes that operate on the same semaphore become partially

ordered.

The "happened before" relations caused by the wait and signa!

operations can be summerized in two rules :

RS If a and b are wait or signa! operations on the same

semaphore by different processes and a turns up before

b, then a -+ b.

R6 If a is a signa! operatien of one process and b is the

next event of another process, that was released by

event a, then a -+ b.

The corresponding clock conditions are

C4 If a is a wait or signa! operatien on a semaphore by

process Pi and b is a wait or signa! operatien on the

same semaphore by process Pj and a turns up before b,

then Ci(a) < Cj(b).

CS If a is the signa! operatien by process Pi and b is the

next eventof process Pj, that was released byevent a,

then Ci(a) < Cj(b).

To implement logica! times for the operations on semaphores, a

vector of integers is added to every semaphore. Each element of

this vector is reserved for one process of the system.

When a process Pi executes a wait or a signa! eperation on a

semaphore s, the following operations have to be made on the

time vector of process Pi and the time vector of semaphore s :

(1) The i-th vector element of process Pi is incremented by

one, corresponding to the clock condition Cl.

13

(2) Each vector element of process Pi is compared with the

corresponding element of the semaphorevector and bath

elements are set at the larger one. In this way the

"happened before" relation is indicated between this walt or

signal eperation and all previous wait and signal operations

of other processes on sernaphare s and also between previous

communication and synchronization operations of process Pi

and future wai t and signal opera ti ons on semaphore s from

other processes. The result of the time vector operatien on

the process vector of Pi is the timestamp for the wait or

signal operation. Then the i-th element of the

semaphorevector is increased by one to indicate that this

wait or signal eperation will happen befare future walt and

signal operations and thus to satisfy clock condition C4.

(3) I f process Pi is the f irst process in the sernaphare queue

and Pj executes a signal operatien on that semaphore,

process Pi is added to the list of ready-to-run processes.

For the vector of process Pj the operations of (1) and (2)

are made and then the time vector of Pi is equalized to the

time vector of the sernaphare s to satisfy clock condition

es.
CO,O,OJ [O,O,OJ [Q,O,OJ

a [1 , 0 , 0 J wa 1 t (s)

I [2 , 1 , 0 J wa 1 t (s)
b [2,0,0]

c [3,0.0]

d C4, 2, OJ ... !..J..9.Q.§LLt~ .. ! _
[5,2,0]

J [5,3.0]

n [0 ,O, 1 J
Blocked

E! [5,2 ,OJ k [5,4,0] si gnal Cs)

Figure 2

CS,S,OJ

. P1 P2

wa I t (s) o CS , S , 2 J

p cs,s.3J
q CS,S,4J

s I g na 1 (s) r CS , S , SJ

P3

The timestamping of semaphore primitives using the

clock conditions of these primitives

14

An example of the operations on the time veetors is sketched in

figure 2.

Examing the time axis of process P2 , it can be noticed that the

second vector element of P2 is non-contiguous between two ticks

(between i and j). The number of ticks doesnothave to be equal

to one. This distinguishes a process that blocks on a wait

eperation from a process that does not block on a wait operation.

The "happened before" relations can be determined in the same way

as done at the send and receive events. For example, from

figure 2 it can be determined that j ~ p since 3 < 5 and that n 7
k since 1 ~ o.

3. Synchronization of processes using eventflaqs

An eventflag is a common data structure, consisting of a flag and

a queue, on which two operations are defined, viz.

wait_for_eventflag and set_eventflag. A process that executes a

wait_for_eventflag is suspended in the eventflag queue. The

set_eventflag releases all the pending processes from the queue.

In this way processes, that have to wait for the occurrence of

the same eventflag and processes that set this eventflag, beoome

partially ordered.

The "happened before" relation caused by the wait_for_eventflag

and set_eventflag can be summarized by the following rules :

R7 If a and b are wait_for_eventflag or set_eventflag

operations on the same eventflag by different processes

and a turns up before b, then a ~ b •

RB If a is a set_eventflag operatien and b, c, d, ..• are

the next events of the processes, that were resumed by

event a, then a~ b, a~ c, a~ d, a~ ••.•

The corresponding clock conditions are :

CG If a is a wait_for_eventflag or set_eventflag eperation

on eventflag evt by process Pi and b is a

wait_for_eventflag or set_eventflag eperation on

eventflag evt by process Pj, and a turns up before b,

15

C7

then Ci(a) < Cj(b).
If a is a set eventflag operatien by

c, d, are the next events of

processes

event a,
Pj'
then

••• , that

< Cj (b),

process Pi and b,

respectively the

were resumed by

<

To implement logica! times for these operations a time vector is

added to every eventflag. This time vector consists of integers

and for every process a vector element is reserved. The

operations on the time veetors of the eventflags and on the time

veetors of the processes, that opera te on the eventflags, are

very similar to the operations on time veetors of semaphores and

on the time veetors of the processes that operate on the

semaphores.

The following operations will be made on the time veetors of the

eventflag evt and the process Pi in case process Pi executes the

primitive wait_for_eventflag or the primitive set_eventflag ·on

evt:

(1) The i-tb vector element of process Pi is incremented by one,

corresponding to the clock condition Cl.

(2} Each element of the time vector of Pi is compared with the

corresponding element of the eventflag evt and both elements

are set to the larger one. This vector is the timestamp for

the wait_for_eventflagjset_eventflag event. The i-tb element

of the time vector of the eventflag evt is increased by one,

to satisfy clock condition C6.

(3) For all processes Pi that are dequeued from the eventflag

queue, the veetors are equalized to the vector of the

eventflag evt, to satisfy clock condition C7.

An example of the operations on the time vector of process P1 and

process P2 , which execute a wait_for_eventflag operatien on evt,

on the time vector of process P3 , which execute the set_eventflag

operatien on evt, and the operations on the time vector of event

evt is sketched in figure 3.

16

[Q,Q,OJ [Q,O,OJ [Q,Q,OJ

a C1,Q,OJ
n [Q,Q, 1 J

wal t_for
b [2,0,0J eventflag

wa I t_for
I (3, 1 ,QJ eventflag

81ocked
p [Q,Q,2J

Blocked

[3,2,4J -r3·;·=r;4.]-
_______ Q __ ,[3.r..2.r..3J set___eventfl ag

J [3,3,4J
c (4,2,4J

d CS,2,4J r [3,2,4J

k [3,4 ,4J

Pi P2 P3

Figure 3 The timestamping of eventflag primitives using the

clock conditions of these primitives.

When a process Pi bas been suspended in the eventflag queue, the

i-th element of its vector is non-contiguous between two

successive events (e.g. P1 and P2 in figure 3).

From figure 3 it can be determined that for example i ~ q, since

1 < 2 and p ~ b since 2 ~ o.

c. The timefile

on the occurrence of a communication or synchronization event,

the following information is written to a file :

- The process identifier of the process that executes this

event.

- The type of communicationjsynchronization event.

-Fora communication'event : the process to which the message

is sent or the process from which the message is received.

For a synchronization event : the semaphore or eventflag name.

- The timestamp of the event.

After a bug bas been detected in the distributed program the

time relations between the communication and synchronization

17

events, written down in the time file, can be examined. With the

use of the time vectors, a picture can be made of the execution

order of the distributed program.

V. BEHAVIOUR SPECIFICATIONS

Interact i ve debugging requires that the pregrammer is able to

halt a program at interesting points in i ts execution. These

interesting points are expressed in terms of events that

correspond to a particular behaviour of the

program [1,3,4,6,8,10]. A behaviour specificatien (assertion[6],

predicate[10]) is a relation between such events. Four different

types of behaviour specifications can be distinguished, viz.

simple, disjunctive, conjunctive and linked behaviour

specifications [10].

A simple behaviour specificatien consists of a single event. This

single event applies to the state of a single process. The three

other types of behaviour specifications are combinations of

simple behaviour specifications.

A disjunctive behaviour specificatien consists of events combined

by the disjunctive (or) operator. A disjunctive behaviour

specificatien is satisfied when at least one of the specified

events has occurred.

A conjunctive behaviour specificatien consists of events combined

by the conjunctive (and) operator. A conjunctive behaviour

specificatien is satisfied when all of the specified events have

occurred.

A linked behaviour specificatien consists of events combined by

the happened befere (~) operator. A linked behaviour

specificatien is satisfied when (all of) the events have occurred

according to the specified sequence of the events. Although the

events may have occurred, the behaviour specificatien is only

satisfied when the events occurred in the order specified by the

"happened before" relation.

The implemented facility to specify the program behaviour, that

has to be examined, is still in i ts in i tial fase. Behaviour

specifications cannot yet consist of combinations of the

disjunctive, conjunctive and "happened before" operators. At this

18

moment, only one relation is allowed between all the specified

events.

Our debugger allows behaviour specifications that consist of the

communication and synchronization events, described in previous

sections. Every event of a behaviour specificatien has to contain

the following information :

(1) The process identifier of the process in which the event

occurs.

(2) The type of event.

(3) In the case of a send event, the process identifier of the

process to which the message is sent.

In the case of a synchronization event, the name of the

semaphore or the eventflag.

The pregrammer can specify a number of processes that are halted

when a behaviour specificatien is satisfied. While the debugger

is comparing the actual behaviour of the distributed program with

the expected behaviour (from the behaviour specification), the

pregrammer can examine which parts of the behaviour specificatien

have already been occurred. After the behaviour specificatien has

been satisfied, the pregrammer can e.g. examine, single step and

continue the halted processes. In the case that no processes are

specified that have to be halted when a behaviour specificatien

is satisfied, the debugger shows that the specified events have

occurred.

When an event occurs that is part of a behaviour specification,

the information written to the time file also contains the

sequence number of that event in the specification. The user has

the possibility to examina the order in which the events have

occurred by comparing time veetors of the events.

A. Halting of processes

A number of selected processes can be halted after a behaviour

specificatien is satisfied. Two problems arise when halting

processes of a distributed program.

19

The first problem is to halt processes that are blocked.

The halting of a number of processes differs from halting a

single process that hits a breakpoint : The process that hits a

breakpoint, always is the current process and can be blocked. If

a number of processes have to be halted, the possibility exists

that some of the processes are blocked already e.g. waiting for a

semaphore. When a process is in a semaphore queue and becomes

halted, another process can still execute a signal operation on

that semaphore. As a result of this signal operation, the halted

process is dequeued from the semaphore queue. A possible solution

to the problem of halting a process that is already blocked is

to delay the halting until the process becomes scheduled. At that

moment, the debugger process interferes and blocks the process.

Another solution has been chosen for : All processes are halted

by setting a flag in the process descriptors of the processes.

This flag prevents the processes from being scheduled. After

setting the flag, the debugger process does not interfere any

more in halting the processes. The execution of the halted

processes is resumed by clearing the flag in the process

descriptor.

The. second problem is the hal ting of processes on processors

other than the processor on which the behaviour specificatien is

satisfied. All processes on different processors cannot be

halted at the same physical time.

It can be shown that there will be no "happened before" relations

between halted processes. When process Pi is halted and the

halting of a process is considered as an event, its i-th vector

element is incremented by one to satisfy clock condition Cl.

This is the timestamp for the hal ting of process Pi. Since

process Pi is not scheduled anymore, the i-th element of any

other process vector can be at least equal to this i-th element

of Pi (see Sec. IV). Thus, no "happened before" relations between

halted processes exist.

However information can be lost : Processes, that have to be

halted on different processors, can still communicate and

synchronize between the time at which the behaviour specificatien

is satisfied and the time at which the debug processes receive

the instructien to halt the processes.

20

If the programmar does not want to lose information, the

programmar should halt the processas early enough so that they

are hal ted befare the interesting points are reached. Then the

programmar can execute the halted processas in single instructien

steps to examine the interesting points.

VI. DISCUSSION

The first stage of the implementation of our debugger for a

mul ti processor system is described in this paper. The

implementation of the sequentia! debugging tools and the

recording and behaviour specificatien techniques for distributed

programs are presented. The timestamping of events is described.

The algorithm for the computing of logica! timestamps is derived

from suggestions done by [2] and [7] and is extended for rendez

vous message passing, semaphore and eventflag operations.

The implemented debugging tools have some disadvantages. The

timestamps require a lot of storage, because every process needs

a vector element for each process in the system. The recording of

the events and their timestamps and also the computation of the

timestamps is very time consuming. Finally, the debugging tools

can change communication and synchronization of the processas

wi th respect to the communication and synchronization of the

processas without the use of the debugger.

We believe that these disadvantages are inevitable consequences

of the supply of information in a distributed system. Approaches

of other debuggers to make the communication and synchronization

completely independent from the presence of the debugger have

failed until now and have a major disadvantage, viz. they

provide too little information to debug a distributed program.

They fail in helping to find communication and synchronization

errors.

Future developments of our debugger can be divided into two

parts.

The first part of the future developments is to reduce the

overhead of our debugger on the communication and synchronization

21

of processes. A separate communication netwerk will be created

for the transport of the interactions between the debug processes

on different processors. This separate netwerk will prevent that

these processes interfere in the interactions between user

processes on different processors. Futhermore, it should be

examined whether it is useful to record the events and their

timestamps by another processor (or other processors) than the

processors that execute user processes.

The secend part of the future developments is to extend the debug

facilities. The sequentia! tools and the behaviour specifications

have to be extended for using them in a multiprocessor

environment. Until now, they can only be used in a multi-tasking

environment.

For using a behaviour specificatien in a mul tipracessar

environment a central process must divide this behaviour

specificatien into parts that have to be examined for different

processors. The central debug process has to instruct the remote

debug processes to check those parts of a behaviour specificatien

that apply to the processes on their processors. When an event

which is part of a behaviour specificatien occurs, the remote

debug process bas to notify this to the central debug process.

The. central debug process will then check whether or not the

complete behaviour specificatien is satisfied.

REFERENCES

[1] F. Baiardi, N. De Francesco and G. Vaglini, "Development of

a Debugger for a Concurrent Language", IEEE Transactions on

Software Engineering, Vol. SE-12, No. 4, April 1986,

pp 547-553.

[2] C.J. Fidge, "Partial Orders for Parallel Debugging", SIGPLAN

NOTICES, Vol. 24, No. 1, January 1989, pp 183-194.

[3] R.J. Fowler, T.J. LeBlanc, J.M Mellor-crummey, "An

Integrated Approach to Parallel Program Debugging and

Performance Analysis on Large-Scale Multiprocessors",

SIGPLAN NOTICES, Vol. 24, No. 1, January 1989, pp 163-173.

[4] M. E. Garcia and W. J. Berman, "An Approach to Concurrent

Systems Debugging", Proc. of the 5th International Conf. on

Distributed Computing Systems, Denver, May 1985, pp 507-514.

22

[5] H. Garcia-Molina, F. Germano and W.H. Kohier, "Debugging a

Distributed Computing System", IEEE Transactions on Software

Engineering, Vol. SE-10, No. 2, March 1984, pp 210-219.

[6] P.K. Harter, O.M. Heimbigner, R. King, "IDD: An Interactive

Distributed Debugger", Proc. of the 5th International Conf.

on Distributed Computing Systems, Denver, May 1985,

pp 498-506.

[7] L. Lamport, "Time, Clocks, and the Ordering of Events in a

Distributed System", Communications of the ACM, Vol. 21,

No. 7, July 1978, pp 558-565.

[8] B. Lazzerini and C.A. Prete, "Event-driven Debugging for

Distributed Software", Microprocessors and Microsystems,

Vol. 12, No. 1, JanuaryjFebruari 1988, pp 33-39.

[9] c-c. Lin and R.J. LeBlanc, "Event-based Debugging of

Object/Action Programs", SIGPLAN NOTICES, Vol. 24, No. 1,

January 1989, pp 23-34.

[10] B.P. Milier and J-0. Choi, "Breakpoints and Halting in

Distributed Programs", Proc. on the 8th International Conf.

on Distributed Computing Systems, June 1988, pp 316-323.

[11] M. Spezialetti J.P. Kearns, "A General Approach to

Recognizing Event Occurrences in Distributed Computations",

Proc. on the 8th International Conf. on Distributed

Computing Systems, June 1988, pp 300-307.

23

