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SUMMARY

An application of Simulated Annealing, a combinatorial optimization
method, to gate array placement is described. Simulated annealing is
also known as statistical cooling.

Gate arrays are almost fully processed, with the exception of the
interconnection masks chips, consisting of a matrix of basic cells. A to
be into silicon implemented set of functions has to be mapped on the
basic cells, obtaining a realization satisfying the required performance.
The placement involves the rearranging the basic cells such that the
interconnection is to be made within the required area.

The combinatorial optimization algorithm 4dnvolving simulated annealing
(also referred as statistical cooling) is based on a detailed analogue
between the optimization of very large and compiex systems and
statistical mechanics (for exampie the growing of a single crystal from
a melt by careful annealing).

The most difficult part is the controlling of the parameters, such like
the cooling step size, and the definition of cost function parameters
to reach finally a “"good” placement. The only way now to determine
these parameters is by examine some experiments, because this is the
missing link in the theory of statistical cooling. Therefore, to receive
finally an increasing insight into the best values of these parameters
and the best way of controlling them, a flexible implementation of
the optimization algorithm has been made.

A minor number of results are obtained by examining some experiments
(placing some networks on gate arrays). The overall conclusion given by
the experiments is that the final placement is thought to be near to
optimal placement reached within an acceptable amount of the CPU-
time consumption. The best and fastest cooling scheme, here found, is
piece wise linear, controlled by the acceptance ratio. A suitable
‘objective function contains a parameter including the sum of the
perimeters of the surrounding box of all nets and also a quantified
factor expressing the density of the surrounding boxes at grid
positions.
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PREFACE

The thesis for the master degree in Electronics I decided to perform
within the research group Automatic System Design, due to the
existence of a close relationship between software and hardware. This
research group is currently working at Computer Aided Design (CAD)
for Very Large Scale Integration (VLSI). Thus, my thesis subject s
closely related to that particular domain of the VLSI design. It is
involved with automatic layout generation of circuit layouts. The
original description of the contents of my thesis was said to be :

"AUTOMATIC GATE ARRAY PLACEMENT AND ROUTING”

This is a rough approximation of the contents of the task. It can lead
to a enormous amount of work consisting of constructing and
developing a large number of algorithms and programs. Therefore, in
order to limit the amount of work the decision of choosing two
algorithms out of a very large number of algorithms; one placement
and one routing algorithm. For the placement algorithm the algorithm
of simulated annealing was chosen and for the routing task the
“Greedy router” was to be the most obvious one.

One of the most important requirement, the to be developed system
has to meet to, is its technology independence. It is very hard to
confirm to this requirement, and so far as 1 concern nobody has
succeeded in fulfilling this requirement yet. The most obvious start of
the task was doing some literature review and trying to define a
general storage structure for defining all kinds of gate arrays of all
different kind of silicon foundries.

Within the time claimed for finishing my task, I was only be able in
designing the ptlacement algorithm and implementing it one several
machines. The implementation of the algorithm was necessary for
getting more experience of the course of the placement during the
run. The increase of practical experience was inevitable since this
placement algorithm cannot be theoretically proven.

WwWith the gathered experience of the implementation and the runs of
some placements it was possible to come to a detailed specification
(Software Specification) of the algorithm, Thus, for the integration of
a placement program in a complete gate array design system, only the
implementation phase of the software life-cycle, of this program,
must be performed.

Rob Jongen,
Eindhoven,
The Netherlands
Sept J0th, 1984
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CHAPTER 1
INTRODUCTION

The research group Automatic System Design (ES) of the Eindhoven
University of Technology department of electrical and electronic
engineering keeps working on tools for Computer Aided Design for Very
Large Scale Integration (VLSI), like a layout editor and a circuit
simulator etc. At the end of 1983 the Dutch government accepted the
ICD/NELSIS project. The goal of this project is to design a complete
CAD workstation for VLS circuits. The research group ES is one of the
members of the ICO project and it has to take care of the circuit
simulator (PWL) task 4, and of a full automatic gate array design
station,

In the mid 70's some IC manufacturers feel the need to have a design
approach with a typical short turn around time (a few weeks) and low
costs intended for circuits count of lower than 10,000 chips a year.
One typical design approach that meets these requirements is the gate
array design approach.

The design technique, based on gate arrays, is a rapid design approach
where the cell structures are more primitive than for example in the
standard cell approach, and exist either as groups of 4 to 6
transistors or simple combinational logic gates in a regular two
dimensional array. The wiring procedures involved with gate arrays are
clearly more complicated than for example standard cell approaches
because the functional cells themselves have to be constructed from a
number of array (basic) cells, and the interconnection channels are of
a fixed width.

The customers that design a personalization of a gate array have to
take pencil and paper to manually place the gates, interconnect them,
and submit this layout, along with a circuit schematic list, to the gate
array manufacturer for digitizing and wafer processing the chips. Most
of the manufacturers will also provide some tools such as stencils, etc.
for the common used functions and recently they provide also some
tools like an interactive layout editor and some verification tools.

Since the production of the first gate array the circuits intend to
be integrated are growing and growing in complexity (from LSI to
VLSI), and so do the master slice grow from a few hundred cells to
several thousands. With this expansion it becomes more and more
difficult to design an integrated circuit and the turn around time will

- 6 -
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also become larger corresponding with increasing costs. Therefore, in
order to achieve error free design and a further reduction of design
costs and turn around times, automated procedures must be used for
placement and routing.

One of the most time consuming processes in the manual gate array
design sequence is the layout verification, i.e., insuring that the meta!
pattern implements the desired schematic that often takes weeks for
arrays larger than 1000 gates. Due to the fact that automatic layout
generation programs construct by correctness, no layout verification is
necessary. Thus, the introduction of automatic generated layout can
save a lot of time. Of course this is only true in fully automatic
systems, because any manual interaction makes verification necessary.

Up to now the automatic gate array: design stations have not
succeeded in discovering the market and the manual design will still
not be superseded by the automatic one, as a result of the fact that
nearly all automatic design stations are not generally applicable for
different images. Most engineering houses that are invoived in gate
array design, have more than one master chip supplier. Therefore, they
need a system which can handle different images of different
foundries.

Considering the wishes and requirements of an automatic gate array
design system, the ICD/NELSIS project has formed a minimum list their
system have to fit to. These requirements are:

the system has to function as soon as possible.

the system has to be flexible to the different master chips of
the suppliers and foundries.

the system has to use the existing programs as much as possible.

the system should be fully automatic.

Concerning the layout stage of the design system, fig. 1.1 gives a nice
impression of how such a system should look like.
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NETWORK MACRO TMAGE DESIGN

LAYOUT
gsecription

Fig. 1.1.: Gate array layout design system proposed by
ICO/NELSIS.

The first implemented placement algorithm is based on simulated
annealing. In this report the usage of simulated annealing as a
placement method for gate arrays is explained, and it will show how
this ptacement algorithm works in detail.

The qualities of the placement program were evaluated with the help
of a few gate arrays of different suppliers. There were some
restrictions in reviewing the qualities especially the routability quality
because on the moment I finished my research work on this subject
there was no suitable gate array router available in our research
group. The routability quality of the tested gate arrays were reviewed
on some graphics.

In the first two chapters the concepts gate arrays and placement are
explained. Afterwards the oprinciple of the simulated annealing
algorithm is described. Inherent to a annealing optimization method are
the experimental results, which are discussed in the last two chapters.
Rest us to inform you about the usage of this annealing application
for macro placement.
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CHAPTER 2
GATE ARRAYS

The semi-custom silicon technology was introduced to answer the needs
of producing chips faster with lower icosts. These needs became
stronger with the tendency of producing smaller volumes of chips than
the traditionally full custom technology required.

There exist two main semi-custom approaches to complement the full
custom design route; the gate array and the standard cell approach.
The gate array, master slice or uncommitted logic array approach to
VLSI design is based on the concept of using an integrated circuit
consisting of a matrix of identical components or functional elements
that has passed through all stages in the chip fabrication process
except the final interconnection (metal) stages. The array chip is a
standard component and can be held as a stock item. The specific
interconnect pattern derived from the users or customers system
logic specification is then applied to the uncommitted chip via one or
more metallization masks to complete the chip. This leads to the
personalization of the master slice chip. The identical components of
the gate array, often called basic cells, consist of one or more
transistors and/or gate cells. Clearly, trade-offs exist in the design
complexity of the basic cell since a more complex cell will minimize
interconnection requirements but will ultimately result in less efficient
utilization of the elements within the cell.

2.1. THE ORIGINS

Through the ages there was always a need to produce electronic
circuits which are faster, cheaper, smaller and more reliable. The
electronic engineers tried to supply this demand by developing new
technologies, new design methodologies and providing new design
supporting tools especially CAD tools. The decrease of effort necessary
for designing a chip has lead to integration of more and more kinds
of electronic circuits in silicon. Not only this decrease causes a
diverting of integration limits, but also reliability and cost aspects
play a relevant rule in this subject. Although, the decreasing tendency
in cost of integrated circuits, the tota! design and production cost
are still too high for a small and medium volume of chips of a
particular circuit.
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The high design costs are due to the relative long time ( 3 to 6
months) necessary for passing through all stages of the design cycle
to reach finally a complete silicon implementation of an electronic
circuit. This time-to-market is called the throughput time of a design.
The total cost of a single chip can be limited by an increasing volume
of processed chips, because the design costs need only to be made
once per desian.

$100 000 1 T T T T
Custom Typicsl 100-iC system i
Cell ]
$10000 - library -1 |
3 Gate
% array
>
¥ $1000~ -
[ .
4
s s . ;
Small- and medium-scals i
$10(— integration
1 1 1 1 |
0 10 100 1000 10000 100000 1 million
Number of systems

Fig. 2.1.: Cost function of gate arrays.

Of course an obvious method for decreasing these design costs is to
reduce the total throughput time for each design. This can be
achieved by introducing for example computer aided design tools. But
the throughput time of a design is not only dependent of the
development time it is also dependent of the process time. To achieve
a very large reduction of the throughput time and the involving costs
a total new silicon technology and design methodology is needed. The
semi-custom silicon technology was introduced involving with standard
cell and gate array designs to answer these needs.

The development of semi-custom integrated circuits is the most
important recent event in electronic silicon technology since the
microprocessor. Unlike the microprocessor revolution of early to mid-
70s which was fueled by silicon technology, this revolution is fueled by
system design engineers. These engineers are driven by the need for
high-performance, low-cost and compact system designs. Also from this
point of view, semi-custom design technology answer these needs the
best way, due to the almost fully processed semi-custom I.C.'s. Of
course the single customization layer, will carry from this point of
view the best results, the smallest process time and thus the lowest
process costs.

The process time has become small compared with the development
time, by the introduction of the semi-custom silicon technology which,
of course, still results in high costs. To come to a further reduction
of costs the development time need to be shortened radically.
Therefore, it is nearly required to have sophisticated CAD workstations

-10 -
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available especially from the point of speeding up the development
time. Workstations provide productivity enhancement for the design
project, satisfying the basic need for accelerated time-to-market.
Reaching this goal, today’'s workstations provides a completely
integrated semi-custom design environment. Including schematic entry,
logic simulation, design verification, and automatic layout, the
workstation addresses many concerns and risks a system designer has
with semi-custom design.

Additionally, the system designer often needs to use a variety of
technology options given specific application requirements. CM0OS, ECL,
TTL, linear semi-custom technologies; all have their respective
application areas that, until now, required a different design
methodology and corresponding set of risk factors for each. The
workstation ensures technology independence based on semi-custom
libraries ported to the system with the identical design methodology
for each technology. This one feature alone encourages the system
designer to use the technology and silicon vendor that best meet his
or her requirements.

2.2. DESIGN METHODOLOGY

The uitimate goa! of chip design is to have a silicon implementation of
an electronic circuit. To answer this demand a designer has to pass
through different stage in a way determined by the design
methodology and the chosen silicon implementation technique. In
general these stages are involved with functional specification, logic
design, design verification and physical layout design.

2.2.1. GENERAL VLS| DESIGN

Starting at the top level of the design path, functional specification
was mostly done in natural language, sometimes accompanied by
constraints on in- and output, and sometimes even a prescription on
the kind of algorithm to be used. But nowadays the accent of
importance is moving more and more from an unstructured approach
to the use of system architectures and other structured methods.
The functional specification is then handed to the logic designer who
will carry out the implementation phase.

The logic designer will then built a logic description of the circuit
using technology dependent symbols. The way the logic description
arises from the functional specification is strongly determined by the
chosen silicon implementing technology. For example a logic design of a
CMOS circuit will be totally different from the design in TTL. This
design will be verified with a logic and a circuit simulator. The logic
design phase has an interactive character: design-verification-redesign-
verification and so on. After the logic design is finished the
description is passed to the layout design phase.

- 11 -
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The ultimate task of a layout design is to produce a layout, a set of
data that completely specifies the geometry of the circuit in a unique
way. Usually this data is an encoding of patterns, which exist in
separate planes. The term mask will be used for each separate plane
with a pattern.

Until recently, after the logic diagram for the integrated circuit had
been checked, the designer would then commence to layout the
circuit, transistor by transistor, in a relatively random manner. Each
device (transistor) is defined in the fabrication sequence by masks,
which selectively define diffusions, pn-junctions, etc. The designer,
therefore, has either to draw his layout in coloured pencil on squared
paper, in the most primitive form, or define shapes on a coloured
graphical terminal. However, it has become evidently clear that the
potential complexity of today's VLSI circuits cannot be handled by this
primitive approach. The alternative is using structured layout
approaches, such as PLA's, were defined for an easy and fast
automatic synthesis of a layout structure. Symbolic approaches which
endeavour to divorce the designer from the technology and the
process of laying~out primitive shapes to detailed design rules were
also introduced. Symbolic approaches, induces the use of leaf-cell
libraries and placement and routing programs, to interconnect the
chip.

In the fall of 1973 the first structured VLS! design philosophy was
published by Carver Mead and Lynn Conway in their book “An
Introduction to VLSI Systems”™ ([Mead 79]). The essential new concept
that can be distinguished in the Mead and Conway design style is the
divide and conquer principle. The divide and conquer principle is
believed to be a solution for the management of complexity during
the design of very large scale integrated circuits. A circuit is divide
into manageable pieces (cells), each piece is evaluated, and when
necessary it is again subdivide into new pieces (cells) with lower
complexity. This process is repeated until a collection of pieces has
been obtained, that can be easily implemented. This divide and conquer
design style also known as hierarchical design style, has lead to a
general acceptance by system designers to manage complex designs.
Hierarchical design involves the successive decomposition of a complex
design into a series of lower complexity problems which can be solved
independently. The problem of managing the complexity in design
became a major task when VLSI technology permits realization of
circuits which contain at least 50.000 devices per chip. In the
management of complexity a well structured design will be satisfying
in itself. The hierarchical design process is controlled by the use of
different partitioning techniques.

_12-
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2.2.2. GATE ARRAY DESIGN

The main difference in design methodology, that distinguishes in gate
array design, is the fact that the gate array approach will not
support the hierarchical concept so easily.

The logic design stage in gate array design distinguishes from general
circuit design in the importance of low level decisions at higher levels.
This is due to the significant difference in implementing basic
functions of almost the same kind. For example in a certain technology
a three-input NAND gate and a two-input NAND gate will equal in size.
But a four-input NAND gate on the other hand will be more difficult
to implement because it will need at least two basic cells and
therefore it will be two times larger (on the chip) than the one with
fewer inputs. Therefore, most of the time a set of real basic
functions (basic building blocks) i.e. functions that can be integrated
easily (small area) will be determined for the representation of
complex functions. It is notable, that layout parameters are reflected
in the logic design phase.

In the layout stage of gate array design, the concept of “repetition”
will generally fit better than hierarchy, due to the regular structure
of a gate array image. This fact that gate arrays not easily support
the concept of hierarchy, will lead to a compulsive demand of having
automatic placement facilities available. The complexity will be one
reason and the number of basic building blocks to be placed is
another reason for using placement routines.

2.2.3. WORKSTATION SUPPORTS DESIGN

Designers seeking tangible support for gate array implementations find
instead that manufacturers offer minimal design aids during the
critical logic and schematic phases. The first hurdle creating the
design on paper rather than in a computer-based format. Then the
designer must hand-code the network-list description of his circuit
into the particular machine language that the manufacturer uses to
run automated design toots.

Simulation and analysis, layout and routing are performed by the
manufacturer. These are driven by a textual description of the design,
and the user’'s task of generating this syntax-dependent is difficult
error-prone. When this process is coupted with the lack of experience
of a typical gate array designer, a significant bottle-neck crops up in
the development cycle. The usual result is poor use of the resources
because of the large number of reruns necessary to produce a
correctly simulated design.

Another problem arises early in the design process when key
architectural decisions must be made. Often, there is little information
available to the designer concerning the amount of logic that will
actually fit into a given array. As the design progresses, there is a

- 13~
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critical need to be able to jump ahead to determine whether a
proposed design approach will be too large or too small for the array.
What's more a designer needs to be able to extract information from
the physical layout and return it to schematic or logic diagram for
further analysis. This is for example important for making timing
analyses of the interconnection path.

The key to successful designs of large arrays is aside from the ability
to design hierarchicaly, the availability of suitable CAD workstation
providing a complete set of hierarchical design tools to handle all
aspects of an array design: from logic design to physical layout design.
Hierarchical design means subdividing the problem into manageable
blocks and designing each block until it functions correctly.

A stand-alone, portable universal development system will fill the void
by providing a complete solution to all phases of the gate array design
task. Moreover, the ‘Tuniversality”™ could be used to design arrays
produced by a number of semiconductor manufacturers. This is nearly
a demand for small and medium sized companies who are involved in
gate array design. The "universality” stands in stark contrast to some
mainframe-based gate array development systems, which support just
one type of array or only arrays produced by one manufacturer. Such
a universal development system also allows desigh development from
the functional description level right through to a finished layout,
using a common database. That database contains the information
required by the specific gate array, describing properties of the bare
array before the layers of metallization interconnections are added.
These properties present component, layout, and design-rule
information of a particular gate array image.

Although, it seems that gate array workstations brings array design
down to system designers level, it has to be remarked that due to
the possible inability to easily ptace and route large gate arrays, the
freedom, flexibility and time saved with these workstations are lost.
This is sometimes called the Achilles heel of workstations for semi-
custom I.C. design.

Recently, semi-custom silicon vendors encourage engineers to assume
more of the design responsibilities on workstations, allowing the
vendors to concentrate on their strength: silicon fabrication. This has
lead to a transferring of semi-custom I1.C. design responsibility from
silicon manufacturers to system designers, involving with a fundamenta!
change in design methodology. This makes the designer no longer
dependent of one technology supplied by one particular silicon
foundry. Thus, the designer is now able to apply the most suitable
silicon technology for the implementation of his circuit.

- 14 -
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2.3. IMAGE DESCRIPTION

The gate array image description distinguishes a number of generally
applicable terms:

o core cell

o interconnection “channels”
0 chip image

(o} design rules

The structure of interconnection “channels” (spaces) are very
technology dependent, but mostly they can be described as a fixed
space with a certain number of design rules defined on its use. In the
CMOS single layer gate array technology, there is a further restriction
on the use of polysilicon as second interconnection layer, which is of
course already preprogrammed. In this technology a channel is
constructed of polysilicon cross-unders i.e. small strips of polysilicon
with on its both ends a via. These poly cross-unders are used for the
connection direction orthogonal at the cell rows. The personalization
now includes the determination of the positions of small metal strips
to connect poly cross-unders for the connection in one direction and
the determination of long metal tracks across the poly cross-unders
for the connection in the other direction. By using this trick one has
created a single layer personalization gate array that gives the
feasibility to interconnect in two directions.

L

Fig. 2.2.: Routed CMOS channel with poly cross-unders.

- 15 -
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In the chip floorpian we can distinguish two main types:
o cell rows

o cell blocks

In an array with cells positioned in rows the interconnection between
two interconnection channels is somewhat difficult, certainly it is in
the middle of a channel, if the use of feed-throughs is restricted.
Therefore, in some images the cells are arranged in blocks, mostly
consisting of two rows, to make the interconnection easier.

ACTIVE AREA - IJ—]III]' *
ONYERNAL CELISIT—T K/ / /7
I1/0 11 g o
wana 2777777777722 et L
CHANNELS L channgly e==""]
7777777777777 ]
E ] blocks =T
I IS S SLS SIS
ROUTING CHANNEL |— |- D oite —
SETWEEN INTERNALT T (LLLLLLLLL LY, ‘
remmvenmcensol L L | LI [T T 15 [[REBRRNAREJURIREERNS)

O CELL SUPPLY PAD
Fig. 2.3.: Two main types of chip images.

To save time, and to make designing easier, the most appearing basic
functions will be already layouted and coliected in a library. There may
exist more than one different layout pattern (stamp) representing the
same function in that library. Common pre-layouted tibrary functions
are: 2 input NOR or NAND, 3 input NOR or NAND, inverter, D-flip-flop,
and sometimes there exist also some more complex functions such as
counters and so on.

There are several types of gate array chips, each offers different
performance features. As might be expected, digital master stices are
available in virtually all digital technologies: NMOS, CMOS, I2L, ISL, TTL.
ECL.

2.4. DIFFERENT GATE ARRAY IMAGES

The cell configurations must be chosen for ease of both internal
interconnection to form the required gate functions and external
connection of these functions into higher levels of functional
capability.

- 16 -
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This leads to very different cell configurations for the different
technologies. Most cells are made up of components which can easily
be configured to form simple logic functions within each cell, except
for ECL. ECL cells are generally larger, including up to 20 or more
transistors, and are suitable for the implementation of more compiex
functions within the cell.

2.4.1. 12L" AND 'STL"

All designs using integrated injection logic (I2L) and its Schottky
variants employ a single transistor gate, allowing the implementation of
the nand function through the use of several inputs. A very dense
layout is possible with 12L, although this is not true with STL.

The cells are made of single transistors, each configured as a single
input, multiple output inverter.

input Output
\ / —

Eromesl 2t

§i

$4F=—dt]w =
&)

- {4
(=

--ld-

EE-E |- et mm

B _comg( e iz @ a] ‘

CooE, g o | =88
Vi | i

P-Type Gate Finger )

Fig. 2.4.: 12L gate array image.

The 12L cell configuration used is shown in Fig. 2.4., and includes 8
single input, 4 output gates. The contact and the underpass levels are
customized as well as the metallization, so simplifying the problems of
routing through the cell and providing many of the benefits of two-
tevel metal with only a single layer.
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Fig. 2.5.: STL gate array image.

Schottky transistor logic (STL) has a similar layout to that of I2L
above with a “stick” structure for ease of interconnection, see Flg. 2.
5. The cell, however, becomes targer due to the addition of two
resistors. The design no longer includes customized underpasses and
contacts, but instead uses double metal.

242 'ECL”

ECL designs tend to wuse larger cells containing greater than 20
transistors in each. This leads to an improvement in the operating
speed of complex logic functions, flip-flops for example , but may
lead to under-utilization of the cells if many simple gates, such like
single NOR and NAND gates, are required.
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Fig. 2.6.: ECL gate array image.

2.4.3. 'CMOS”

All CMOS gate array cells are made up of transistors pairs with
common gates which can easily be configured into logic functions.
There is a variety of cell types, containing from two to six transistor
pairs, each manufacturer claiming his design to be the best, although
this depends on the type of logic function to be implemented.

The two transistor pair cells, shown in Fig. 2.7.,, are the best for
simple functions such as two-input gates, but the larger cells are the
better for more complex functions, since these can then be
implemented within a smaller number of cells.
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Fig. 2.7.: Fujitsu two transistor pair CMOS cell.

CMOS BASIC CELL CIRCUIT, CMOS BASIC CELL TOPOLOGY

The three/two pair cells have the advantage of a polysilicon cross-
under through the middle of the cell for ease of routing. The 'AMI’
cell shown in Fig. 2.8. is particularly unusual in having a cross-over
gate in the second pair section of the cell, allowing the use of single
transistors where this would be useful. This allows economical
implementation of transmission gates which require a N and P channel
transistor pair with separate gate connections and can simplify the
interconnection of other logic functions.
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Fig. 2.8.: AMI 3/2 input CMOS cell, with cross-over gate.

The three and four transistor pair cells are sometimes configured as
two separate two input gates. There differences from other cell
types are commonly expressed in little changes of the routing area.

The silicon foundry ‘Harris' uses a cell containing 6 transistors pairs, 4
having a common gate for each pair but the other having separate
gates. The independent transistors available in this design aliow
increased design flexibility.

Cell configurations are also important in the routing phase of the gate
array. Particular aspects are for example the possibility of the
internal cell routing and the access to contacts from the routing
channeis.

Most of the cells are surrounded by polysilicon cross-unders to
improve the routing in single metal systems.

An important question is how many cells are required for the

implementation of logic functions. Table 2.1. presents typical values of
required number of cells for some logical functions.
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[ § L
|  FUNCTION NUMBER OF CELLS |
| |
I 2 2/3 3 4 TRANS.PAIRS |
| |
| inverter 1/2 1/2 1/3 1/4 |
|  2-input NOR 1 1 2/3 1/2 |
| 3-input NOR 3/2 1 1 3/4 |
1  o-flip-flep 5 2 4 2 |
[| i
Table. 2.1.: Comparision of some gate array images.

-4

2.5. GATE ARRAY VERSUS STANDARD CELL

The other main custom approach is the standard cell approach and
differs from the gate array approach in relaying on a not fully
processed chip. The standard cell approach involves the use of fully
characterized standard circuit cell from a cell library and offers the
advantage of proven circuit elements which require simply to be
arranged and interconnected on silicon, in the same manner as laying-
out a printed circuit board. One limitation of the standard cell
approach is that the cells have a fixed positioning of the input and
output pins. An advantage of the standard cell to the gate array
approach is that the size of the interconnection channels between the
rows of cells are not fixed in advance but they are flexible in width
and so it is much easier to interconnect the chip. The standard cell
approach and the gate array approach offer comparable costs and
time-scale features. However, each has specific in that the gate
offers very inexpensive commitment whilst standard cell designs the
possibility of custom design space on the chip for specific hand-
crafted functions.

The dividing lines between full custom, gate array and standard cell
approaches tend to bilur, since trends are towards standard
interconnect arrangements to realize standard functional .cells for use
on gate arrays.

O Only interconnect masks (metal) need to be designed, so that
prototype time-scales and costs are reduced.
0 Since only interconnect masks have to be designed and produced,

there is a higher probability of obtaining a correct design first
time.
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o The integrated circuit processing stage of metallization is less
involved than any of the other processing stages, consisting, in
the main, of etching away unwanted aluminium to leave the
designed interconnect pattern. Thus a system house can have an
effective full custom capability without the need for a fully
processing capability.

Simplification of layout, with the possible use of standardized
interconnection design, permits automatic routing software to be used
for chip commitment. Use of standard functional cell types and
standard cell arrangements for those functions together with a
standard interconnection grid greatly simplifies the task of designing
the required interconnect pattern on the gate array. Firstly all the
available track paths are clearly defined by the standard
interconnection grid and, secondly, the interconnection pattern is
suited to autorouting. The design expertise required to customize the
gate array is almost wholly confined to the initial stages of logic and
circuit definition with the interconnect pattern being similar to the
design of a printed circuit board, and no detailed knowledge of the
integrated circuit being required.

The gate array can be regarded as a mask programmable component,
or functional array, offering the fully capability of dedicated chip
design in terms of incorporation on a singie chip of combinational logic
functions, sequential circuits and possibly analogue functions.
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CHAPTER 3
PLACEMENT

Placement of gates on a gate array corresponds with finding a map of
logical functions on a two dimensional array of basic cells such that
after routing the interconnections, the realized functions will behave
exactly the same as the functions that had to be realized. Therefore
the most important requirement of a placement algorithm is that the
chip. after placement, guarantees the routability otherwise the to be
impiemented functions cannot be realized in silicon. Thus, the silicon
implementation, obtained by personalizing a gate array (placement and
routing), has to reflect the functional requirements.

The placement of the gates must be optimized so that the routability
and some other performance factors are guaranteed. This optimizing
corresponds with minimizing an objective function (cost function)
which contains a certain number of terms, providing a more or less
fulfilling of following requirements:

- routability

- minimum total wire length

- minimum number vias

- minimum number feedthroughs

- minimum used area or maximal gate utilization

Automatically optimizing the placement of a large number of gates by
using a combinatorial optimization can be a computational nightmare.
For example, the performing what's called a “pairwise interchange”
(interchanging two cells to reduce interconnect) on 1000 cells can
result in 500,000 swaps and an analysis of routability must be made
for each swap! So it needs no evident to simplify the optimizing
objective function,

Another simplification of the placement optimization can be used, by
clustering some cells together in order to reduce the required number
of swaps. Therefore, gates are often clustered into highly
interconnected groups (IBM calls these "supernodes”), and then these
“supernodes” are optimally placed, again using pairwise interchanges and
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wirability analysis, "Macros” or "macrocelis” are commonly used terms to
describe clusters that form an identifiable function. Clearly, much
care has to be taken about the generated optimum by using pairwise
interchanges of macros, because it is not necessary that it is also an
optimum of the placement if there were no macros used!

Macros are aiso used for manual placement to make the manual
placement a little more comfortable. Often a designer want to use
macros, also when he has automatic placement and routing programs
available, to finish the wires the automatic programs couldn’t route.
In that case sometimes the designer replaces some macros {manually)
and tries to complete the routing then.

So far we have assert that a logical function can only be mapped on a
whole number of basic cells. This is simplification of the reality. The
images of basic cells, consist mostly of a set of transistors connected
together in some way. So it is possible that one basic cell contains
more than one logic function. Thus, usually the above mentioned
assertion will not be satisfied.

A— B — c D —
B NanD ). A7) nanD .+ B nanp .o C™1 nanp
c_ . c— . D—- . B-—‘
D—f D — A—f A —

Fig. 3.1.: Example of logic equivalent pins.

Because the netlist (input data) is described in terms of logic
functions, there must be an assignment step of logic functions to
cells when a pairwise interchanging placement program is wanted to be
use. Thus, there is a need of having a tool for this automatic
assignment of logic functions to cells. This is a very difficult tool and
step because of its technology dependence. Also this assignment step
is not unique so it might lead to a sub-optimum of the objective
function. It is very easy to show that this assignment step of the
placement is not unique. Consider for example a & input NAND
function, the order of the input pins is not determined or fixed,
because of non existing geometric constraints in the logic function. So
there are in this example 16 ways of mapping the logic function
containing no geometric information to a basic cell,

Now we are able to give an overview of the placement functions:
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- technology independent handling of gate array masters

- assignment of logic functions to physical cells

- exchangeability of logic functions within a cell

- exchangeability of logical equivalent pins within a logic function
- special handling of macros or “"giant-celis”

- automatic placement of the input- and output cells (pads)

- restricted area concerning cells

4

- weighting of nets in order to cluster logic functions or cells

3.1. DIFFERENT PLACEMENT ALGORITHMS

There are two main placement methods: the constructive placement
and the iterative placement. A constructive placement method consists
of a heuristic algorithm which is often based on graph theoretical
methods. The module placement algorithm involving with resistive
network optimization [Cheng 84] is an example of a graph theoretically
constructive placement.

The most famous and well known constructive placement algorithm is
the min-cut algorithm first published by Lauther (Lauther 78]. The
main strategy of this algorithm is that a module with the highest
number of interconnections to an already placed set of modules
(cluster) is placed as the next and it is placed as close as possible to
the cluster, such that the interconnection length is minimized. This
will be repeated until all modules were placed. Thus, this algorithm
minimizes the interconnection length of one module and its
environment but it does not give any guarantee of creating a final
placement of all modules which has a minimum interconnection length.
This disadvantage is often seen as the most important one.

Another large disadvantage of the min-cut algorithm is that the
interconnections are clustered to the center of the chip which can
lead to a significant area consumption necessary for the
interconnections. Sometimes the area consumption can be decreased a
little by designing very complex and very optimal channel routing
algorithms.

Inherent to gate array design is the inflexibility towards all
parameters and so the dimensions of the interconnection channels will
be fixed. Therefore, the min-cut algorithm will be in general not
applicable for gate array placement, due to the non uniformal
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distribution of the nets linterconnections) on the chip surface after
the modules were placed.

The most well known optimization method in the class of combinatorial
optimizations is certainly the 'Monte Carlo’ optimization. Many derivates
of this method were applied to placement optimization problems,
although these applications had one main disadvantage. They cannot
guarantee finding a global optimum. This optimization method consumes
a very large amount of computation time. Therefore it is almost not
applicable in iterative processes like chip placement. Another not less
important aspect of a iterative placement optimization methods is
that the quality of the resulting placement is very dependent of the
initial placement.

In reference iterative placement is+ sometimes in literature
represented as a Markov process. A new state will be generated by an
exchange the positions of two modules on the chip with a certain
perturbation probability. The transition probability from state i to
state J wil be determined by a perturbation probability for
generating state j from state i and by the probability to accept
state j if the system is in state i. In practice one obtains a Markov
chain by repeatedly generating a new configuration the acceptance
criteria. Optimization is performed by starting this chain-generation
from an initial state (initial placement).

Ptacement and routing go hand in hand: The most careful placing is
the surest path to creating a ogate array that can be routed
automatically. In other words, a chip whose elements are optimally
placed stands the greatest chance of being optimally routed.
Successful automatic placement is the basic ingredient for minimizing
wire length, avoiding congestion, and making the fullest use of all
available gates.
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Simulated  ARnéalingiv-a stochastic optimization method. This method is
based on the existence of a connection between combinatorial
optimization and statistical mechanics. The framework for this
optimization is provided by a detailed analogy with annealing in solids.
£ iall : ettt | Toa s (o a— -
Simulated annealing is particularly usefu! as an optimization method. An
algorithm is used for appropriate numerical simulation of the behaviour
of a many-body system at a finite temperature. This algorithm
provides a natural tool for bringing the techniques of statisticatl
mechanics to bear on optimization.

PO QS @) Py n : e g vl o2 el 2}

optimization, consists of a mixture of a number linhomogeneous liquids.
This mixture has to be led. (apneale until it becomes a mono
crystalline structure, M' t% ground state of
matter. With other words a single crystal is growing from a meit by
lowering the temperature. To lower the temperature is not a
sufficient condition for finding the ground states of matter. The
procedure which on the other hand guarantees the sufficient
condition consists of careful annealing, first melting the substances,
then lowering the temperature slowly and spending a long time at
temperatures in the vicinity of the freezing point. If this procedure
is not exactly followed, for exampie by lowering the temperature not
slowly GM substance couldbe—aHewes—toXget out of
equilibrium. The resulting crystal will have many defects, or the
substance may form a glass with no crystalline order and only
metastable, locally optimal structures.

(e,
The model in the statistical mechanics, which is used as'analogue for ?

4% THE ANALOGUE.

In the section above we already talked about the physical model

consisting of a mixture of inhomogeneous liquids, which will be used as &.,...
example for showing the annealing process in $&ss statiW oo
On the other, h%nd we have the gate array system } placemen R
cost functioh has to be optimized by aq combinmatorial optimization

method (simulated annealing). In the foliowing it will be shown how the
physical model can be used as an analogue for the placement of gate
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arrays.

In the physical model we know the following terms: atoms, movement
and coliision of atoms, temperature, energy of the system, cooling and
heating, single crystal and glass. These terms can be compared with

the terms of the gate array placement modely whereby—the physcal

~mocel-acts. as--af--anstogue.

| 9F two random modules. This simulation

Fig. 4.1.: Comparision of annealing in solids and simulated
annealing.

G Coriata,
There is onaly—omre--big. problem—ieft—a- disagreement between the
placement and the mixture of liquids. The movement and collision is a
typical parallel process i.e. at the same time many (almost all} atoms
or molecules are moving through the sys eg he &‘terch g of time

T modules Y can—mexmr be—a—parallel_process. Rohedssc; e parallel motion
of the atoms must-be simulated by s ‘:—v-'“» ‘lg)tgrfhangmg

one time step in the physical model with a fixed number of
interchanges. The consequence is that the control function which is
time dependent has to be adapted to this change of the time

i variable. All this will have the effect that the time variable in both
., cases is equal to a certain number of movements or interchanges. The
imovement of an atom and the collision of two atoms is simulated by

H

‘ian interchange of two, randomly chosen modules of the gate array.

L

(St juuw«b}‘d\ Q«WV\‘CC“‘QWL( .
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A% METROPOLIS

Iterative improvement, commonly applied to ecwkews@ 3l optimization
problems, is much like the microscopic rearrangement processes
modeled by statistical mechanics, with the cost function playing the
role of energy. However, only accepting rearrangements which lower
the cost function of the system is like extremely rapid quenching
from high temperatures to the temperature zerog it should not be
surprising that resultin solutions are usually metastable. The
Metropolis procedure gl'om statistical mechanics provides a
generalization of iterative improvement in which controlled uphill steps
can also be incorporated in the search for a better solution.

Metropolis in the earliest days of scientific computing introduced a
simple algorithm which can be used to provide an efficient simulation
of a collection of atoms in equilibrium at a given temperature. In each
step of this algorithm, an atom is given a small random displacement,
and the resulting change, AE (delta energy), in the energy of the
system is computed. If AE <= 0, the displacement is accepted, and
the configuration with the displaced atom is used as the starting
point of the next step. The case AE > 0 is treated probabilistically:
the probability that the configuration is accepted is

P(AE) = expl -AE / kT ).

Random numbers uniformly distributed in the interval (0,1) are a
convenient means of implementing the random part of the algorithm.
One such number is selected and compared with P({AE). If it is less
than p{AE)., the new configuration is retained, if not, the original

conf‘lguratlon is used to start the next step Tim‘

é&g INITIALIZATION

The €aling algorithm n imitiglized. The initialization phase Gysigu 4
gives tothe jzmperature an initial_ value) and prepares) the initial L&
placement, is read from the descnptlon the user aeﬂned ﬁ-e—)

zt-he-nlas&mentgﬁ'

Before the annealing phase can start one has to be sure that all
substances are in a dissolvable condition in the mixture of the
analogue annealing model. This means that the placement has to grow
worse, i.e. the cells have to be mixed so that the quality of the
placement will decrease. The decreasing of the quality of the
placement is called the heating phase because the temperature of the
system increases during this phase. At one point of the heating phase
the increase of the temperature is stopped and the placement
created corresponds with the maximal necessary disorder placement.
The maximal necessary disorder placement corresponds with the

MAH,CVKA.AWCVQ 7)—-.-/\- %wmé /
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mixture containing all substances in a dissolvable condition. There is
only one problem: we don't know when the point the heating phase

ends is reached exactly. In practice heating is stoppe réﬁnﬂore
than 99.5 percent of the moves are accepted.T(uavu.L ga
process delimas Hun afecke AREIVIN VT

A RA=aA-3° o e ¢ - 2 - 3 ' . oy o 3 o

kiﬂg

The determination of the starting temperature apd the heating phase
is important to guarantee the algorithm _end with an optimal
placement W . If the reaghed .placement after the
heating phase is than the placement corresponding with the
maximal necessary disorder, we have to anneal until this placement is
reached. This means a lot of computation time wasted. On the other

hand, if we don't heat enough, the annealing algorithm cannot find
the optimal placement.

The starting temperature is determined by the mean absolute value of
the delta-energies of a certain number of moves. This corresponds
with the temperature being calculated from the fact that the
exponent of the Boltzmann equation is set to one. With this method
we can come fast and with a little effort to the staring point of
the annealing phase.

4.4. THE CONTROL FUNCTI o H e
m%m o e )
The comdmel functionMis almost the most important part of this

optimization approach. When the temperature lowers too fast the
system will end in a glass, and when on the other hand the
temperature lowers very slow the system will become a single crystal
but the computation time to run the optimization process will be
immensely huge anpesmuastmxi. One thing we know is that when we cool
infinitely slow the probability of reaching the global minimum of the
energy function is equal to one!
! ' A‘Mﬂ/‘

Our aim is to fing aoiontrol function %ﬁ\ﬁ/way that we know with a
certain confidence/the global minimum of the cost function will be
reached and the costs of this optimization process in terms of
computation time will be minimal. Thus, the problem of finding a
suitable contro! function is transformed in the problem of finding the
fastest temperature lowering scheme such that reaching the global
optimum is guaranteed.
T

In the gate array placement model there is no time variableg s when
we want to use a time dependent temperature scheme we have two
a&%etermined variables. We can change the number of interchanges
or moves per temperature step and we can change the temperature

-31-



w + i& Q %’?w e P.FJ /Zﬁxl Lt V{ vd - f\
Q)(PQ&MLQJ-J a0 MH{,FL@ gwc.guf_h Q‘OS‘*A}{‘

Hre (QLL’LP“&M /(*W‘C"Vw? /J=LLMQ4 “yOre,
wooho ng tesndls ot oot f e ble
aon (0640 367 Ge Hral Ho J,Md »

" W)roipr\'&k’ K\Ll»‘w Ok{p‘u%&.m te ({g .




T.H.Eindhoven Automatic System Design (ES)
Gate Array Placement by Simulated Annealing

step size.

p&n&emm For this task "{ deslgned a test example that emulates
the behavior of a gate array. The fact that the optimal placement is
known is what makes this test example special.

we
The lowering temperature lowering scheme f{ found is explained next.

When the number of cells of a gate array is equal to n then the
maximum number of moves at one temperature will be 100n and the
maximum number of accepted moves (interchanges) will be 10n. These
two figures are to be considered as stop conditions for one

temperature step i.e. if one of these conditions is reached a new
temperature is calculated.

-

J¥

!
Fig. 2!; The course of the acceptance level in function
V'l of the temperature.

For each temperature the ratio of the number of accepted moves and
the total number of moves is calculated, and 4 cauﬁ— this ratio the
We
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1 4 [
acceptance ratioq or level‘.When tho—eeurse—ot the acceptation ratio
and _ the energy of e system., temperature are——iswsed we see
‘globally the same —ammwe the acceptance ratio -&”‘3‘2 much

smoother than the cas=af-tie energy. This means that we can use the

' acceptance ratio for controilling the temperature of the system.

o

teG

. o0 \LD be
L C‘&‘ AFQ Ee

The controlling of the temperature eoceswns piece wise linear .,

temperature |owering step changes at certain points of the
acceptance ratio curve, the break points. The determination of the
breakpoints depends on the é@é" of the acceptance level. For the

scheme I—&semnd, used only two breakpoints {H—thought—that—it—was

—~one at the acceptance level

of 907 and the othe;)ﬂgne at 107Z. These two breakpoints are chosen
tiest way beca&s%the Seudde of the /Ecagtage ratic 46

digittetheda thresliFégiohs. The regionf is the

Gt

most important one because the energy decreases iR- there very W‘—rou(r}%

Thereigﬂle ‘*ﬁ- chose the +€oligwing temperature steps in the three
regions, 0.7 in the upper region, 0.9 in the mid region and again 0.7 in
the lowess accept=rce region. Cludval
Ruprstae Tl Qast Rumg do fox e Y,

T . . .

conditions of the annealing algorithmg whieh—atso—betonys To—tke
controting—seheme. One stop condition is reached if the acceptance
level becomes lower than a certain value. The value of the lowest level

g€ i/cr_'tose is equal to 0.5%. Necessary is also another stop condition.

Consider“that a system has a close clustered configuration which may
lead to the fact that the previous stop condition is never reached. In
that case we Q&—m introduce a stgop condition to guarantee
the annealing algorithm will alwa:%. This stop condition
cansiste- of the maximum number of times the maximum number of
moves is exceeded; it is called the freeze condition.

Y
with this s?geme /f7found the optimal placement of the test example

rather fast. also used it in some other examples, and it seems to be
quite useful in/ future as an overall scheme.

ap 1
./i’[_‘b -
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~CHAPTER 95—
THE CHOICE OF THE MODEL

e SimpliFie
alcw‘Stions

sompetation B, dre

‘I:,:\‘\ (QJ \i\‘-‘. td( {e’e

(5o d rpwnt .

(o) an update of the placement must be very easy and cost just a
few calculations.

o The minimum of the cost function of the simplified model has to
coincide with the optimal placement of the gate array.

The gate array will be considered as a two dimensional array of cells.
All cells are equal in dimensions and completﬁnterchangeable. so they
will be considered as points. This is the firét simplification. Normally,
the cells contain{ two rows of pins to be connected, one on the top-
side and one at the bottom-sidey; whesein, Each pin is connected to
one or no net,, but- When the cells become points the pins will be
collapse together to one pin (in the center of the point) connected
to a certain number of nets. According to this simplification we te&t—b&
the information of pin order and to which pin each net is connected.
Nate

Renmark that it is self-evident that te-in our mode! the total "move-
space” has to be accessible. For our application this means that every

interchange of every two cells must be possible.
a

The placement of a gate array invoives wilifiram #resdy—Thontianed. cost

function (also called object function) which im to be minimized to a
aAf
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}
global minimum corresponding to the optimal placement #the
persionalized gate array. When making no simplifications the cost
function consists of the total wire length of nets. It is very easy
.to see that the calculation. of&hewtotalamength after every
interchange of two cells will ent
peoblem -inte—a—computational—mightmare. Therefore, we try to make-up
a cost function which is very easy to update after,interchange of
cells. /W

First I will summarize again the terms contained in the object
function:

routability (uniform distribution of nets)
- total wire length 4
- number vias

~ number feedthroughs

\

Mok ot q(w 0w

TeeRm the strt}pcture of the simplified cost function is=sF&n. The cost
function comdiets~of the total sum of the perimetery of the

\'ch ql'uw\\olotsurrounding boxes%of! Eil_l nets. The surrounding box of a net is

i

introduced to y an idea of the length of a particular
nety.To get to know the length of a net is a great problem because
it is not routed vyet. e : i 3

situating exactly  hecause it . dependsoa-—the—routing. When we
intmde‘:'feﬁoi%ﬂ surrounding box of a net we know that the net must
be in —(’éherevindependent of the routing of the net. If the
surrounding box of a net is cut by a cross-line we know sure that

the net is cut at least ond¢ time by th@&Tcrass-line. Thus, the
surrounding box is a for the total wire length, if-the—pet-—it

Fm ?!!!’ it is a lower bound for it.
W,

The gate%array is constructed of a number of columns and rows,
Calling=% the grid of the gate array. The smallest grid unit is emactty
equal to the dimensions of the smallest possible baii‘f: cel}. All
dimensions and measures in this report will be expressed in ti2ce' grid
units. For example, a 10x12 gate array prcepesed ag a matrix of 12
rows containing 10 cells each. AT

To estimate the total wire length,
the—simplified—model, the total chip is cut at each grid coordinate in
both the x- and y-direction. At every cut the number of the
surrounding-boxes that is hit or cut by the cut-line is determined. If
we watlss add these numbers of-hidden-celds for all cut-lines we have
croatmel an estimatfern of the total wire length. This total sum is equal
to the-half of the sum of the perimeters of all surroundjng boxes. It
is also possible to express a preference of a certain kind the form
of the surrounding boxes in the cost function. This is useful if the
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Reare,

routing of a particular net is more difficult in one direction £ in the

other direction. For example it is more favourable to route a net in

the “"channels” than across the rows of cells, which is only allowed at

feedthrough spacings s whemr—there—is—only-ore—metatization—mask—used.

FTo-—give—a—certaim préference of the Tets—in-eRe—gartieatar—dthrection

and-—to—-have=—g-—factor-—for "the-urform—eisrtribatiormr=—of-tire-—cut

surroundiig  BoXes, received—for—every—eut-tine, bt We wil display l—l?u. et~

tham in &&- histograms -eewh for ooﬁ’\darectuon 7 CHA—W‘:

. V¥ PN

Now the cost function can be easily constructed t

these two histograms. The area of such a histogram gives an e-x-p%nell—w\,\qk
lof the total wire lenth Wd in one dlrection Na#ma-ﬂy-*

ﬁn-‘- o

Beeau&e—of\the__ﬂxe.d——and'—‘prepfegpammad,w{acm—u -of. . gate—arrays—itis-
mwwmw«m—mmwmm
lergth,—in—the—ebjeective—fumetion— There is a need for providing an
expression o*ﬁ——%he*unﬁom#y of the distribution of the nets st=cMip
SERtEEF—| . This expression will be given by the
maximum gtolumn height of the two histograms. The next example will
show thi$ more in detail. Consider a personalized gate array with the
following/ histogram:

QL Gt ‘-v\@n 1“( \tc'(- -/“"/5 eG4 u\,:w’!r'g

&ﬁi)i"@d&,{ Fig.5.1.: Badly placed chip.

1

They total area of that histogram is rather small, although the
placement is very bad, because of the high density of the
nets at one place of the chip. This is for gate arrays very
unconvenient since the routability can‘m l with the consequence
that the placement becomes worthless. Hpﬁr, the cost function we
will use to optimize the placement by simulated annealing is AL%W@ UL, !
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F=wus2H +wn MAK(H) + whs EUH\, e MIK(H,)

col

where A ; \ R,
whs : Horizontal sum weight factor. AN \ OZ“Z" W
whm : Horizontal max weight factor. . = \ ¢{/ \ acann
WVS & Yertical sum weight factor. - .
wvm : Vertical max weight factor. A\ e \ us

4‘6 e o \ d; / AL
The weight factors are meant £er controlimg ame—cbservifig the impact
of the terms of the cost function on the performance of the LWt
placement. Not.. the _individgal Vilu f’éflfhé" Twelght—~-facters——is
important .but ‘{hek mutual ) { 1] . The——Tratios—of the
weight —facters —whstiwhm—and—wvsiwvim—express—the—ratio—of—the
infl oy : . . . rion: ; +
i : The ratiosef whm/wym and whs/wvs
f the preference for the vertical or horizontal

oy

Note that the magnitudes of the 4 terms used- in the cost function
are totally different, This difference can be explained from the fact
that the “sum” terms are formed by the sum of all columns of the
histograms compared with the ~ “

give§ ap ex For
direction, “-Thatostare,

-
L -

max” terms that are constructed by
the size of only one column. One has to correct this by adapting the
weight factors in a way that the magnitudesof the terms become oé
the same size. : aboant
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MACRO PLACEMENT

In the previous hapter we have discusseg,xthe simplified model
necessary for the ahpealing algorithm. This thodel only handles basic
cells, which are all the \same.

Sometimes the design houses want to have a macro placement program,
because until now they placed thei:{/ate arrays manually, with the aid
of macro’'s, The advantage \of handiing with macros in contrast with
basic cells is that the nu f modules to place is much smaller.
Therefore the interconnectio much simpler. For example when we
want to use a flip-flop, it h4§s to be designed only once, and it can
be bhandled as one module the internal cell (inside the module)
interconnections separated e external cell (outside the module)
space.
The problem of using t annealing algQrithm for macros is that they
have not the same dimeénsions, which ke the interchange of two
macros very complicated. Before I shal\ explain the procedure of
macro interchanging two assertions have tQ be made. One assertion is
that the macro cells are only one dimensional and all macros lie at the
same direction (horizontal or vertical). The secind assertion consists of
the fact that all cro dimensions are equal to a natural number of
grid units. Where e grid unit is equal to the dimension of a single
basic cell.

6.1. MACRO INTERCHANGING PROCEDURE

se the same grid as for the basic ckll placement, we
ells randomly on the chip. They are both member of
different macrg cells. Note that a single basic cell i3 considered also
as a macro cell containing only one cell. The largest macro will be the
dominant macrp. The other macro has to be extended on a way that
can be interchanged with dominant macro. To make this interchanging
possible, the [extended macro (cluster) has to satisfy\ the condition
that the length of it is equal or larger than the domjnant's macro
length. Even {f the cluster is larger then another extra cotdition must
be satisfied:; the macros member of the cluster that dolnot fit in
the space ¢f the dominant macro, have to fit in the free spaces
distributed /over the chip. When it is not possible to satisfy this last

Since we still
determine two
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condition, tﬁe\ macro interchanging procedure stops this attempt of
interchanging apd starts from the beginning with two new rand,o’mly
determined cells\

e
e

The smallest macrb\ has to be extended to form a clustep/6f macros.
First look wether there exists a macro on the lefthapi4-side of the
already determined clyster l(initially they cluster contains only the non-
dominant macro). If \it does, add that macro to~ he cluster. The
action done for the\ lefthand-side of the ister can also be
repeated, if necessar for the righthand-siie. Of course, these
actions need only be repeated if the length the cluster is still not
big enough.

modutes (grie contains the dominant one)
tnant macro will be replaced at
on the chip. The space, of the
freeceil list, containing all free
contained in the cluster have to be
e free by replacing the dominant
macro to the cluster positio start with the biggest macro and
put it in the most left posigz/n of \the dominant macro free space, if
it fits. Thereafter the bi S one is replaced and so on. When
one macro of the cluster /doesn't fit in the dominant macro free
space we will try to :;,uf/ it in anoth&r free space elsewhere on the
chip, if it exists. A,

Until now we have got t
intended to be interchange
the most left position of th
cluster, left will be added t
spaces of the chip. The macro
placed in the space that be

It might possible t 1;/ some macros wonit fit in any allowed position
at the chip surfacé..'In this case this atitempt of interchanging two
modules is interrupted and a whole new attémpt of two other modules
is started. S/

Summarizing we//€an say that the macro placekent algorithm only deais
sional macros on a two dimensigqnal grid. I think that it
e to design an efficient macro ihterchanging procedure,
restrictions to the dimensions qr to the degrees of
erefore I have invented another approach to place macro
pproach introduces some extra (strongl forces between the
f cells of a macro and it considers the \macros consisting of
number of independent basic cells. Thesd intra macro forces
be controlled during the annealing, i.e., with the decrease of
the t@mperature the forces become more and mpre dominant. The
advantage of this approach is that there are not kny restrictions to
the /"macro” interchanging procedure but the big disadvantage is that
the/ number of independencies is equal to the numbek of gates on the
gafe array in contrast with the number of macros, ich is of course
myuch smaller. This has an impact on the computati time of the
annealing algorithm,

is not possi
which has
freedom.
cells. Thi
member
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IMPLEMENTATION ASPECTS

Conform the number of annealing atomic actions necessary for one
run, the total run time will be the bottle-neck in the implementation
of this optimization algorithm. It will be clear that the run time
optimization of the atomic action has got the greatest attention
during the implementation phase of the annealing algorithm.

PASCAL was used for the implementation, because on the moment the
annealing research on the—application— of gate array placement was
started the language C was not available.[C was the language chosen khy_
the NELSIS project.)

A
/214 DATA STRUCTURE
0o A e Irnac s G G

J\gg‘MA ! ‘*’“I\QLL‘{\(

(‘ | X :":1 Led (7[
W

data structure$, Frerefore—the—dosigh—of—the—datr—structureas—to—be
weltESREIGETUd. Heheo—a—date—strueture—desighwitt—determime—the
main—efficiency—of—an—implementation of -an—algorithmraccompliehing
with. .the amount . of computation. time -necessary-for-an—optimizatbion
~3akx In our case the most obvious data structure design would sewrest EA
af linked lists: one per net, containing the connected modules (cells)
and one per cell, containing the tp_—-iwdf connected nets. The
advantage of this approach is the dynamic memory neseesesy for the
storage of all relevant information of the nets and modules, but its
big disadvantage is the limited accessibility which results in a time
consuming process when records are not directly accessible. —is
~prere-exists—a- n
memory—angd—speed—whehi you—aesigh-a--data.strue i s dd
WMMMWW omty; it -exists...always-in-every

"meiav G WO Chasa tlag v’u—v&%l- L DS ‘“Qhe( %"‘ e Glweg b,
Sefar- i ¥ T ; e (5‘

e

\ N o Viad ¢t L {"k’ N2t i‘ ) {'(’\4'—! \\3‘((,!,3 “{'-3 ié-‘iﬂld, .
B O g
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Fors Lwdefd v Loty 12 Lt e gy;a‘w"m e e Wanfy G trne e lia,
b ,. '

‘ (’L(i L i
“l‘ﬂ‘—%—m‘to one—of-the-bottle_necks in

“puas dost th ANometght the number of cells, nets and
- g odules gro:€ up to several of thousands if VLSI circuits will be used.

exaglgle a 5000 gates g=be array with 3000 nets and &he maximulﬂ,gt
number—of cells connected to one net is<28, and each cell has 8
terminals. Then the data structure needs 5000*8+3000*%20=100,000
records. So the whole data structure will claim about one million bytes
supposing that each record is 10 bytes long. The memory required by
using such structure is still quigte acceptable.

DLt {0 M-y @ G-

o —

All these considerations will point to the rather obvious use of stadic-
arrays (PASCAL) for the storage of the data of the data structure.
The—more—2 e rse— S g
this——annreatkng-—algoritif. An array structure has the important
characteristic that all elements are directly and separately accessible.

= e Ierasy MO o]I= 2

tein Jy hiesd wot 0 {une (o e wnian \

There exists alsof the problem of inserting and deleting one element
mm%m—emmm»eem. The solution to this
problem, for the annealing algorithm i ia-the fact that the
number of elements in the “lists” aé% constant. This means that if an
element has to be deleted another er the same element will be

inserted tinew

de - v—the | ‘i . F ists }—oniy—tE—POEToN

very—asccess—of the necessary-infermation. The net records contain all

cells connected by the net and the cell records contain all nets
connecting to the terminals of that cell. This—structure—its—derived
#em;_%he—-&ac-t- ‘:’hat”d&%t‘.o knowf the nets which are connected
to th€ moving cell. Surrounding rectangles must be determined for
each of the connecting nets individually. For the determination of
that surrounding rectangle the position of all terminals (cells) has to
be known. When all terminal positions are known the surrounding
rectangle can be determined by finding the minimum and maximum
coordinates of the terminals. Q0f -eourse this is a time consuming
process. To improve the pgrformance of the agosskmsg implementation

ttimtm—asnesmplion), one ¢ to find a solution for a very fast

calculation of a surrounding rectangle of a net.

The solution was found by using sorted arrays for the x-coordinates
and for the y-coordinates of the terminals of each net. Now the
minimum and the maximum coordinates are resp. the first and last
element of the sorted arrays. Note that for this operation we claim
that all these arrays must be sorted. Sorting arrays is a vy difficult
action to do it=wtpiciemt~ but in our case it can be very easy. Because
of the number of elements being constant and of the fact that only
one element is changing position ir—tiet—xrm=py at the same time,
sortin/g/\accomplishe W;:h shifting some elements to the right or left,
19 3
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The introduction of arrays for the implementation of the netlists has
caused a speeding-up of a factor 2 or 3. The algorithm is now about
2 or 3 times faster than it would be if it had used linked lists. The
speeding-up factor is of course dependent of the size of the array
and the complexity of the netlists. For large arrays the speeding-up
will be even larger than 2 or 3.

.‘T—L‘a 4 (ﬁ'fﬂ PJZQ(T) P doia v ST C‘t(«uwo.f b 2 05CH L esla tyer,
—

TYPE

gate_range = 0 .. max_num_of_gates;

column_range =0 .. max_num_of_columns;

row_range =0 .. max_num_of_rows;

cell_range =0 .. max_num_of_cells; ?
net_range = 0 .. max_num_of_nets; 1
cell_per_net_range = 0 .. max_cell_per_nets; ,W\L/7 '

netlist_point = “netlist_record;
netlist_record
RECORD
netnum : net_range;
next : netlist_point;
END;

{ "“MODREC "}
cell_record =

RECORD
net_list : netlist_point; { peinter to head of netlist }
colnr : column_range; column index of cell )}
rownr 3 row_range; row index of cell )

length : integer; length of macro, containing cell}
leftmost column index of macro }

rightmost column index of macro }

leftmost : column_range:

rightmost : column_range;
END;

cell_array = ARRAY( cell_range ) OF cell_record;

L N W W e W )

sort_array = ARRAYL cell_per_net_range ] OF cell_number;

{ “NETREC" }
net_record =
RECOROD
xmod : sort_array; { cell list on x-coord. order }
ymod : sort_array; { cell list on y-coord. order }
lastmod : cell_per_net_range; { number of cells in cell list }
x_weight : integer; { weight factor in x direction }
y_weight : integer; { weight factor in y direction }
END;
net_array = ARRAY[ net_range ) OF net_record;

Fig. W\A Data structure in PASCAL.

A
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% PROGRAM

A distintion has to be made between a move and an interchange of
cells. The change of energy -- delta energy -~ is necessary for the
determination of the acceptance of such an interchange. wWhen an
interchange is not accepted, the available energ and ;ts orresponding
A0 LB
interchange t be éJndon“e;‘S This results in a wh:ch is exactly
equal to th (pmno-}TOWmdmg: the undoing of
intercha&g )the moves were introduced. A move exchanges two cells
virtually be able to calculate the change of energy M&k&e
interchange#. Now when a move is not accepted nothing has to be
done to get the old system configuration back, because—the—data
structure—has-_not changed, This leads to a reduction of the cpu-time
with a factor qf almost 2. Therefore introduction of moves is very
useful the mor&%ﬁ%‘é“'%otal number of not accepted moves is at least
two times larger than the number of accepted moves {interchanges).
These are results from experiments., Therefore the benefit of
decreasing the computation time coEsSEmEsen, of a move is rather
Ruge. This benefit is also very profitable since the time copsumpldom
necessary for accepted moves is totally waisted because it contributes
nothing to the improvement of the system configuration, .=y
accepted—urres—de~r

interclhiange two celly is a araﬂel xactlon cell A goes . to th
sitibn of ¢eil B and concurrent cell B goes to the position jof cel

ince A£his mterchaﬂgmg agtion is: emulated by a co;mpute
seq entlal/, machme) thés parall I action is dlv:ded in a nuniber of;

;ﬁow is that /the moves are se,quentlal actlons. and hey wn*l
t cHahge the data ,étructure So whenrbne net connects to/cell A a
to ceill B then the calculation lof the surfounding, box if the

“were interchasiged willge—Wrong when it is-calculatid like the/
nets.

The data structure design of the simulated annealing program is the
most important part of the implementation concerning the speed
optimization. Therefore, a lot of effort has been supplied for the
database design, which has lead to an efficient implementation of the
annealing algorithm. The implementation consists of a rather simple
program controlling the “moves”, "energy” and “"temperature”. During
the designing phase a great emphasis was put on the "Stepwise
refinement” method elaborating the rudely specified statements.
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PROCEDURE SIMULATED ANNEALING;

{ stop_melt_acc ::= upper bound # accepted moves during melting. )}
{ stop_melt_att ::= upper bound # moves during melting. }
{ stop_ann_acc ::= upper bound # accepted moves during annealing. )
{ stop_ann_att ::= upper bound # moves during annealing. }
{ accept ::= indication for successful termination of

annealing at current temperature. }
{ melt 1:= increases temperature according to schedule. }
{ anneal ::= decreases temperature according to schedule. }
{ temp_not_acc ::= counts the ¥ of times that annealing was stopped

by passing the upper bound on the total # of

moves per temperature step. 1 )}
{ limit_count ::= upper bound of teap_not_acc. )
{ limit_level ::= lower bound on acceptance level. }

BEGIN
initialize surrounding rectangles:
calculate initial energy;
determine initial temperature;

{ heating )
WHILE NOT accept DO
BEGIN
melt;
metropolis{ stop_melt_acc, stop_melt_att, accept };
END;

{ cooling }
REPEATY
anneals
metropolisl stop_ann_acc, stop_ann_att, accept };
IF NOT accept THEN temp_not_acc := temp_not_acc + 13
UNTIL ( temp_not_acc > limit_count ) DR
( accept_level < limit_level };

print placement;

-END; { simulated annealing }

Fig.ﬁ‘.: Pseudo code description of the annealing
Z program.

The routines MELT and ANNEAL, increasey and decrease{ the
temperature by a step according to the temperature schedule. They
return a new temperature. which will be used for the Metropolis
algorithm to do some interchanges. The Metropolis algorithm determines
if the deita-energy of a move belongs to an accepted move or to a
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rejected

Metropolis algorithm,

one. This Metropolis procedure actually
which emulates the behaviour of the Boltzmann
equation. The pseudo code description is shown next.

PROCEDURE METAOPOLIS( stop_acc, stop_att, accept );

L N e N e e R )

count_acc

::= counts # accepted moves.

count_att ::= counts total # moves.

stop_acc
stop_att
accept

::= upper bound for # accepted moves.

::= upper bound for total # moves.

t:= indication for successful termination of
annealing at current temperature.

BEGIN { metropolis )

AEPEAT

4

pick two cells intended for interchanging at random;

calcula

te delta-energy;

{ test move can be accepted )}
IF delta_energy < D THEN

BEGIN

energy := energy + delta_energy;
effectuate interchange of the cells;
count_acc := count_acc + 1;

[N R W Wy )

}

IF RANDOM < EXP( - delta_energy / temperature ) THEN
BEGIN
energy := energy + delta_energy;
effectuate interchange of the cells;

count_acc := count_acc + 1;

END;

count_att := count_att + 1;

UNTIL ( count_acc > stop_acc } OR

{ count_att > stop_att );

IF { count_acc > stop_acc } THEN

accept

:= TRUE;

ENO; { metropolis )

Fig. ‘”3.: Pseudo code of the Metropolis
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EXPERIMENTS

aling ™

lackt;f theoretical foun tné\n
ave to bé examiped to collgct the
g,d’jusﬁing “suitable<” overall t:ﬁﬁzg
kperimen}j;ome eXperience in/the

eﬁmm_b&m;amd.w

1.

To determine the best temperature lowering scheme, one heave to
know what is the best possible placement, and in what time can it be
generated. Therefore, the “final energy” and the computation time ‘2
coasumption; for putting the systfm in the state with that energy are
. . . 0&&5@ : A |
in first %@ézﬁr’ important for ek the scheme. Of course this Qt(i.ﬁv .
collected experience is of general importance and not particular for %
this application of the annealing algorithm. To increase the insight in /
what is the best lowering scheme for annealing with gate arrays, some )
additionat infq‘imation is necessary. In that case not only the emdlht {/./wwxf
sf energy V“-;’S"“sav’fisfying but also some %«* for the routability are
required. The routability factor is very difficult to determine without
a routing program. In the examined experiments the routability factor
was determined by observing a figure which expresses the net density.

The experiments were done on four different gate arkays:
o The "RANDOM" gate array.
o The "CHESS-BOARD" gate array.
o The "BARS" gate array.

0o The "TEXAS” gate array.
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814 "RANDOM™ GATE ARRAY

The "RANDOM" array consists of 12 rows and 18 columns, and contains
180 occupied cells located at 216 possible positions, This corresponds
with an array filling of about 84/. The name of the gate array results
from the fact that the personalization of the array is based on a
random_  netlist. The netlist, whic?h contains 100 nets,|is generated in a
randomii manner but not totaljarbitrary./On the construction of the
netlist there were some constraints Rwigssn-, The

he it

’ - LY.
g

o a net may contain only 2 to 10 cells to which i

trainte—gare:

is connected.

0 a celi may only be connected to 4-12 nets.

4

A.U!J ]
Of course these constraints were defined empiri ’T% creating a
netlist whkich-witt~estimate the practice.-the best it ;L«/;\% kg{&&‘;ﬁ ‘tad
Cels, , g ace P
Ianirst i this gate array was designed| for testing and

verifying the implemented annealing algorithm, and secondly it has also
been used £eor adjusting or determine a suitable temperature lowering
scheme. ‘o —

Fig. Bg/ The start {a) and end (b) configuration of the
"RANDOM" array.

Due to the random character of the netlist, the annealing does not

converge, The acceptance ratic hae—reacheéﬂthe lower bound which is
about 3. TWWWhen we
J Lo si.r‘ LA :

o il
}/ Ladad
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I3
i

i LA
Titas

FARR IR .Y Lot @ ntemya
i T

look .ter the netlist we see one big "sphere” of elements witfg strong

cohesion forces (during the experiments we have
re”
connectivity (force) to ali other cells in that “spheref.

"chewing-gum™ effect), ﬁ'e. every cell in the “sph

Due to this strong connectivity effect it will be ix

the array in a way, that the connectivity is uniquel
at the same time a“Mimimum interconnection length.

In t

called

‘¥ the
has an equal

possible to place
distributed with

he center of

the array there always will be®congestion of e~ interconnectiem. This
phenomenon is—beo—dae="88R in the histograms of the final placement

(Fig. 8.1.b). o
SR e

Y
83. "CHESS-BOARD" GATE ARRAY ‘

These series of experiments were of highest impot

were used as reference for the determination and a

tance since they
justment of the

temperature cooling scheme. They involve witd the placement of the
so called "CHESS-BOARD" gate array, which is an array of 8 by 8 cells
is known before
hand. Each net of the netlist connects“four neighbour cells $eogetx.
Hence, the "CHESS-BOARD" consists of 64 cells and 49 nets.

with a netlist such that the best (minimal) placemen

Fig. 8.2.: Net connection.

The annealing algorithm belongs to the class
optimization that are independent of the start conf

of

combinatorial

iguration, since in

the initial phase of the annealing almost an unlimited number of

deterioations are allowed by an increasing temperatut

of maximal necessary disorder is reached. Theref

placement can be used as initial placement.
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The best placement has the following configuration. s

M P

Fig.iéjé;: The configuration of the optimal placement of
the "CHESS-BOARD" array.

First of all, the system is observed with the temperature decreasing
step equal to 0.95 according to the literature| [Kirkpatrick 83).

. S as o . .
Especially the acceptance ratio i functlonjwaf the temperature is
observed. The acceptance ratio shows in its ew@ three distinguished
areas as already mentioned in a previous chapter. It is obvious that
these areas characterize the entropy fup;tion of |the system, and A
when the control function has a piece |[wise linear character the -
parameters of that function wiil be determined by these areas. The )
observation of some experimental results shows Lthat when the ;
acceptance ratio changes much during one7 temperature step, the ,
temperature decreasing step must be small,"for exmp!em M{ /a_
Does on the other hand the acceptance ratiqg _change not very much . (/
then the decreasing temperature step can be sRiafer for examplem.\) T
This piece;[wise linear temperature lowering scheme will give the result
that the final configuration of the optimization process -&ecomes
rather close to the optimum configuration reasonable

computation time ceassmpdiaon cO 2 P OFa 3

seheduie
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Fig. 8.4.: The acceptance ratio and energy in fungtion of
the temperature.

Furthermore, some other faster schemes were tried out, resusiting ¥
not reachimg the optimum. The sy tz‘m ill frozenvi a local
optimum of the objective f‘unction,.éﬁtra”t&ru%e%e“mperature
WSS R—ts tooLulow to get _%zt of the equilibrium, comparirg—to—the
%emaeratﬁr;*neg?s%% acceptifig deterioations of the system to ?

et out of the equilibriumx N W
g q ;e 4’0‘0 /QOCQ- \ J{/AW /s ~

Sofar a “reasonable” temperature lowering scheme is experimentally
determined. Tg final result of the annealing algorithm depends not
only on the of the temperature lowering scheme but also on
the choice of the weightfactors in the objective function.
Weightfactors are, in first —H‘%ﬁ intended for controlling the
affect of a particular term of the objective function on the final
“Tesult. The second role of the weightfactorsmggi&h is of course of
minor importance, is their influence on the Eﬂuﬁs‘"g‘? the objective
function i i . ). This—Gourse
; weight factors.-depends
CoRsta containing -the. fotal sum .of-—-that—histogran
Therss Tr the weightfactor of the "max” term is an order of magnitude
larger than the one of the “sum” term the objective function will
have a "smoother” characteristic. The %% of the objective function
is important %@\ finding an optimal choice of the degrees of freedom
of the annealing algorithm, because there existS a very tight
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relationship between the objective function and the temperature
lowering scheme. This was also remarked antt—shews by Otten (Otten

84]. gbw%

In case of our “CHESS-BOARD" placement, values for & weightfactors
have to be chosen. The weightfactors are chosen in a way such that

the {ffects of each term is of equal order in size. This is done fes bea,

eliminating any preference of one term in particular. Hence, the values
are:

whm = 8
whs = 1
wvm = 8
wvs = 1

8.3. ‘BARS" GATE ARRAY deston,

¢

The gate array example circuit -- his report called the "BARS”
example -- that was intended for .ciiabdfd the ptacement algorithm
was hot really a gate array delivered by a factory as a benchmark. The
description of the gate array was extracted from a picture. The
picture is shown next.
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The shown gate array was used as benchmark for the routing system
called BARS (BAth Routing System) by a research group at Bath
university. The netlist description was extracted from the shown
picture. The nets connected to I/0 pads were ignored. Note that in
almost all gate array images the basic cells hasgtwo rows of pins
(terminals) ; one on the top side and one at the bottom side. Each pin
in one pin row has its logic equivalent pin on the other pin row. If
such logic equivalent pin is used to get one net from one channel! to
another channel then this connection through the cell is called a
feedthrough.

Mostly the definition of feedthroughs is slightly different from the
definition¥ here (given)) The piece of intergonnection that goes through
a cell row, without having any connection to the underlaying cell is
called a feedthrough.

Because the feedthroughs were not indicated in the picture it could
be possible that a net was split in two or more nets caused by
ignoring the possible existence of feedthroughs. This incompatibility of
the netlist with the original netlist might have an effect on the
placement result.

After the netlist was extracted and typed in, the annealing job was
started. The initial placement was also taken from the picture. In this
example the starting energy is of great importance, because this is
the energy of the placement they used in BARS to route.

The size of the array is 10x12 cells, whereby 110 cells were occupied
by a certain set of functions irtenged—tor<hiiptemmnt. So it can be
considered as a relative small example, the more when compared to
the goal of our placement program: the feasibility of placing a gate
array consisting of at least 1000 cells.

em' DOT43 BF-this—6xafaple was Having the ability to-compare ou
Hlacément with” the plagcément of an already routed chip?’ The beauts
Hf/ this feasjbility was/ a little Aundone By the fact that the cipcui
lyas extracted from a picturé instead/of a network descriptidn. So

8 ag. _No nt 0 - p gse—oft aedrnrougn nd.-pin. eqy pnce.

The filling of the array is very dense[about 92/) and the number of
wires (nets) compare to the number of ‘tells is very high (175 to 120).

Ll !%wma difficult example for the placement and routing

programs. Nevertheless, the annealing program placed these 120, cells in
about 45 min. CPU-time (HP9000) with a total energy (cost nction)
about 1507/ smaller than the energy corresponding to the original
placement used in the BARS system. The starting energy was about
3000 units and the energy at the freezing point was about 2000.
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The acceptance ratio and energy in function of
the temperature.

Here again the same course of the acceptance ratio is observed, which
byu point{ to the usefulness of our temperature schedule.

8.4. 'TEXAS" GATE ARRAY

The experiments involving the "TEXAS" chip, were examined in order to
eyaluate the performance of the placement program ,on larger arrays.
Sﬁar only small to medium sized arrays for &ﬁi@é the annealing
schedule were used. The experiments with the large array can lead to
the justification of someﬁrameters of the annealing program, and it
is also used for m:m he time complexity. The second point

which makef{ these experiments so important is expressed in the
practical value of the examlned placements. M

example the “RANDOM" chip reflects a badr tatuo of‘ a personahzed
gate array; therefore its practical value ﬁuMiew. THiTwas—due
to.-the - appearance -of -the-elustered—etlist, gifmost~every modulé "8r
celd—is--conmrected--to- almost -every-other-moduteor-cell.
1 ‘,Cu.fl-b( Buq (Lo “‘-*% AQ'J UU{ ‘?d
The “TEXAS" array is—caliep=se beeause-it—was-a-gate-atrayfrom TEXA
INSTRUMENTS. The to be implemented set of functions wese

e 2.3 Y
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Ao oed {;s,w a
\ i i Mg&i‘yersal 1/0 c;ontroller. The iTresdrieyg circu_it was
designed by Stevens” on & st designda4 course. Stevens has tried to
implement this ci it, wia ST e array from TEXAS INSTRUMENTS.
(;_p curcu@ STL gat v ‘/_)
Although, the chip was not reiﬂzed. it is -- 4a——eu!=€%§‘e - thg most
yoe Sbe -Femmmple of a -@%&nenfed- chmeeit. The—Gauitammas

¥~ FefoTaim Dbl S PAG.Geefrerrryds -

ne
minimum numbér of cells the
at least. Suppose, the persqnalized
ible cell locatiorfs occupied,.dnd the

—E‘HEH"Bﬁ“é“"WE‘ﬁ“t‘g‘
ate array one have calculate

suutable gate array ust contai
gate array bas BOf of its p
ircuit contains~ 618 cells, e minimum arr; size should :
ase 873 square units (>8 cells). The two available gate ray mast’,ers'

ave a mzﬁ’ of resp. 400 and 600 cells. “Thus, it is qyte obvio that
t implemented ih only one _afray mg s smco?

is cirgdit cannot
ithr-the- mxx&mmms silicon-yehder:
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igher than the above mentipn

ic wiring systems

can be i d
which is the number of cells available in a gate|3arya
ster to Therefore the real sfz f
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he—siticormtechnology, dét&Fmined by the system designers, ¢Hosen 0
he implementation will be STL from TEXAS INSTﬁUMENTS siticon vendor.
ccomplishing with this technology, the gate/array image/,&o‘ok like th
ne in Fig. 8.7 The array dlsti’ngwshes the existence 94' “blocks™ wit
Ilarge wiring spaces between fhem Each block contalns two rows of 1
ells, with an “almost squ;re geometrlcal shape. Ther‘ef‘ore to provud
n approxlmétely squarer chip (aspect ratio “1) the n}u'nber 0o
orizontal /blocks musts "be almost equal to the number gf vertic
sume the Last proposlﬁons, the sultable chip should contai
n our /case 720 O}f 840 cells, orrespondmg;wuth array /fizes of resp
d 7x6 blogks. The flrst/Fhouce belong< to the smallest one, fo
aximizing the ,c?kl occupymg density. Thef array, 12 60 cells, i b
in our ca’se as the master for the' mplementa ion of a §48 cell
qvn%emmg—-ewew«twaemmpl G- WL T~ TE Bt ottt
Tolggab_& (@ Qoawale ﬁz rem

This array was first placed

it Very i r. Theasdéere, a tool was J‘N’\/\Qd

developed that compnled all net surrounding boxes and sorted them on

size. With— dater the placement —coutd—be—quakfied—somewhat Le \QL

-Bbetter,.and. it-.can. he remarked-that. the surrounding boxes W

big, and certainly the boxes are not oblong enough. This effect is
broughic=on by the fact that the cells are about 5 times larger in one
direction than the other one, but in our simplified model they are
assumed to be square (or points). So whenr—we—want—to—put—a
geometTic Tinterconnection. length_  in the .objective. funclics, -insteada
symbehe—eone, the weights of the terms in the objective function for
one direction neect—to—be—emiarged. After the weigths were adapted
the annealing job was run, with M better results.

Wike

e docydod
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OAL (GO0 1A
Fig. !@/ The annealing result of the "TEXAS" array.

int,L

The effgct of weighted- for both directiongresults in a

sk, In the network there were some mMacro's visede, —A-=deinis MOUEQ
B = smg—zpf flip-flops. These flip-flops contain B8 ceils. (7
Smce the wn'ablluty wnll be better in one direction, it will be clear

that the existing flip-flops will(J direction to give the best

results, because the intra macro wirirfg is more critical than the inter

macro wiring. Here again the results were better when Se direction

prefesonse is weigthed in the objectjve function.

/,\}Cf"f‘a,{‘,?q

be 6w, (A tourkrdy H, ot
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CFAPTEReS
RESULTS

CG(./,»];IU.N’.J

At the moment the mmedesed placements had to be reviewed there
was no gate array router available within the research group. This had
the consequence that the routability of the generated placements
could only be estimated. The-absence-of.the. routes-provided—also~tie
fagt-that—the chip--design -could~ NOL -be-yerified—anc=-2o-rt—wasvery
Wmmmﬂm@hﬁm.
C)Lu_. 2.5 (Y. “LV\C' Q.
Amxzher possibility of qualkéying the placement is to compare the
results from the annealing algorithm with the results from one or
some other placement algorithms. But these placement algorithms were
not available in the research group_cirl that moment.Trar ‘{o . (
P04 I N e

rOr S TRV Y,
Finedty: for-
progeam, some graphical tools were developed. £or=sizpenung
some parameters ; i displavimg the net density and the
mean length of all nets during the run of the placement optimization
program, amer Blso some tools for displaying the placement with its
cells and nets to get an idea of the correlation between the energy

de OLJ’&Q Fee

Cave oo

(value of the cost function} and the routability. The nets were
displayed from terminal to terminal just as a straight cenreedsn,
because routing-of..the—pets—was-npot _possible. f&wz:/

\,

N
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Fig. 9.1.: Minimum spanning tree net connection.

With these tools only a very general informal discussion of the quality

fagters of the placement is possible, and—cerEHR—Rot—A—OErEit—

mmeﬁ%»-themannea%mg—ppegram_was»wm%%ew*eﬁwhmww
-gate-array- placement—problems. there were not any.already.as.gate

arpay-~realized . networks..available. -The--supply..of..real-example-netwot ks
fer—appiying.. the . placement~prograti was mil “so~the-progFam was only
tested-and adjusted--on-the. -placement-of..some. . fiction gate arrays and

AetworksT

Siree—the placed-cireuits-

mwmpossibte™—to“qualify “the pracement”mwogm“ »Thus«»u@fs'o*mthe
performarnce o tRIT iHiptementaticn-ef--a-placementatgorithm>canrot
be-reviewed-or-compared-with~other-implementations..because™of

- lhe. lasie-of-benchmark—pticements
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-~ the missitg “ofother—placemert—programs

Grmance  evaluation WHicH IS doNe Gifite 6ften in the TEETIturp
s e comparing of the total comp tion time consuming”/necessary

f the placement of a gate arr containing N cells. Tiis is a quit‘%e
idiculous and” a not justified mparison because t € incompatibili'{y
of the two gate arrays. ey may be total different, the on’y
ompatibiffty is the total mber of cells (modg,wgs). The total us
omputdtion time depends” behalf the compatipﬂity of the arraysg on
finplementing compufer language and machine. It depends gl'go on
stop conditions .6f the algorithm and. the parameter cpbices of
e model. So it ,if certainly not justified to compare twoplacement
rograms (althou both may be based on simulated annedling) only on’\‘
he total congamed computation :?é necessary for t placement g&¥f)|
cells consiting gate array. Ther@fore I:will not sdmmarize the tsed \3

c .
T ovey de
Ihaugh to give an impression of the CPU-time necessary fes—tie run
@f an annealing job, in our case a placement generator, we will not
summarize the total time but the time needed for the calculation of
an accepted and rejected move of the “chess-board™ array on a
HP9000-UNIX system in PASCAL.

i

accepted move : 189 per sec.
rejected move : 352 per sec.

This quantity in time depends of course on the implementing machine
but it depends also on the size of the array, and on the number of
interconnections. Assume that the array contains N cells, then the
array size produces a factor N in time. Mostly the number of
interconnections is in some way related to the number of cells.
Therefore, the real dependency will be of the second order WO(A/xeB

3
The total number of moves necessary for one run (e&iﬁ in accepted
and rejected ones) is another concept which contributes to the
determination of the total run time. The contribution will be of order
N, because the number of moves is set to 10*N and 100*N depending
on the phase of the annealing. Together with the previous dependency
the total gee==will be of the third order (worst case).

(SO LI

The routability will be probably, kS, ~very

good 4—almazt—goacenweedl™ This conclusion is a result from the fact

that, ; in all examples, the uniform distribution of the nets is
aa%% (except for the "random” gate array). This is confirmed by
the histograms (Fig. 8.8) of the final placements and also by next
figure which shows the number of net surrounding boxes at grid
positions.
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Quwgolod
Fig. %} Non-uniformal (a) and an IIoEMOIER (b)
distribution of the nets.

The placement program, applied here, is technology independent per
definition, due to the definition of the model. The program can handle
restricted area constraints, determined by the move calculation
routine. Therefore, it is no problem to place evenbtuedystie pad cells,
by considering them as normal cells present in a restricted area.

be
conclusio

a gate array placement progr
ptacements, where the copftructije

e made to
parameters /in
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el

;

{practm ience due t& "the absence of test exampjes. Additional}
f

act te this is that it is impossible to give an evidence for the
"goodnessl of this-algorithm. Although the “"goodness” of the algorithm
cannot be\ guaranteed or be demonstrated the gonvergence of the
program is \proved and estimated of computatjdn time will be not so
big. The number of degrees of freedom and sg” the number of modules
is significant \smaller than with the chip (gdte array) without the use
of ‘giant| cells or macros. But the effort necessary for calculating
he [change of n;mt function ofl a move of two macros will
equire much qore  computation ~time; than necessary for the
alcdlation| of [the ‘energy of a moy€ of twp cells. The largest fraction
f the required CPU time is neg€ded for ;the determination of a new
ove. The| implementition of e annealind algorithm presented in this
apdr is very flexible\ towards the contr;olling of the many existence

lacéement parameters. his program j*implements a techrnology
inde ender{t gdte prray Placement algorithm. The gate arrdy imagke and
its kilicon| implementing” tectnology are mere or less | parameterizeld and
es! parameters il contcol the f‘iq‘nal resulti{g placement] For
elkample there/ are//two vectocs involve the pattern sensitivity gf the
acement) I allocatés  the channels, : regiops intended| for

interconnection, /and the regions\ where jnterconnedtion i not atlowed
ekcept for feedthroughs. It is &aNso pgssible to pllocatg a region in
here cells shay not be moved or\ only be foved|inside|that fegionsi

ifself whi accomplishing with not being allowed ¢t cross the'

bbundarieg’ of such regions. That allocatjng can be jmanaged be passing i
sébme parameters to "thRe placement prdgram. To optimize the timing 1
perfopmance of the implemented logic {one could use weight factors L
for /the_nets. Time critical nets will get high weight factor comparing &

non-critical nets. So the total length of these critical nets will
Small_in-the—firigl placement. B e
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GHAPTFER=1D"
CONCLUSIONS

In this report we presented an application of the simulated annealing
algorithm as formulated by [Kirkpatrick 83] to the placement problem
of gate arrays. This technique turns out to be a very powerful tool
for optimization of a cost function involved in the gate array
placement problems.
The advantages can be formulated as:

- the algorithm is applicable to all type of gate arrays /(7///;,./:

- the algorithm is very easy to implement

- the resuit can be as “good” as desired

The disadvantages are:
- automation of the overail cooling scheme is not realizable yet

- the required computation effort (time) may be very large (too
large for an interactive process)

b
B

ghip is of course only posgible if the ¢hip i<’ royted, which claimed a
outable chip first. Thus, /the routability of a placement fis the ;rost

gbvious quahty factor eﬁpecually f‘or/ gate arjays, and ftherefore a
Iacemen;: has Ieast to satlsfy/‘ this congdition. The restrictions
inherent’ to g te array. design cauges the iﬂ'ﬂrease oﬁ.importa'rge of
ghis factor observmg the qua}dty of a gfacement,véi:ompare full
clustof desu For e placemerx‘t which i¢ not routable it is out of
seéns alk abcyj: the bel aviour lews But/ to ensure the
rutabmty of a ple/c ment a redter is al \jvt necessar‘y especially for/
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Atnidugh all these facts one thing has to be remarked: this developed
I:;grent tool is very useful- to apply on gate arra without using
a

cybs (not-as fix m;é?os but the using of weighted-hets fop”defining
ro do€s proba lead- to an useable-application). Congfuded from
he co;ﬁ/plexity arid the, visible quality of the plﬁzébment:,«"fhe annedling
rogram will generally be ﬂg‘lae to,/produce” a placement but not
ual“gmtee a placemer‘i't which is closer to the optimum than any ot?é

PPPHE I W vosved

------- vVl

G
The result of the annealing algorithm s yh\icghly dependent Mﬁs the
choice of the cost function. If the global <e of the cost function
is too smoothi then the %Rr(\?aling will not work well. The reason is that
the metropolis algorithm not work' because, the cost function asd 30
the-~@mrergy will change only e aa}m | P of interchanges. When su vt "S- -
the cost function has i L a very capricious character [.¢ oy
with not one clearly obvious global minimum then the a.‘qﬁggigg program WV
et s wtt spend 5\9!&& of computation time in the region Q#- the MivHmmem Lual u-a

(| without W clear wwProgress. The i . d
temperature lowering schedule seems to be considerabiy general\?
applicable and is still very simple, Thi Hon
the—acceptable . functioning—of—the—motdel. This model is atso-sUITIDR “/J/N?ﬂn"it
for the description of all kinds of gate array images and therefore '

we may assume that our placement program/l‘s technology independent.

.
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