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Abstract.

ABSTRACT.

This master thesis report is the result of my graduation project in the Digital Systems
group of the department of Electrical Engineering of the Eindhoven University of
Technology. After a theoretical study on instruction caches, and after several trace
driven simulations of the cache performance with varying parameters, an optimum
instruction cache implementation is chosen. The choice of the cache parameters is
targeted towards an instruction cache needed for the C-procéssor. The C-processor is
in development at the Digital Systems group, but the cache has a more general
character. The traces, needed for the simulations, are artificially generated due to the
lack of a compiler for the C-processor. The optimum instruction cache is implemented
as a prototype with the Interactive Design and Simulation System (IDaSS) CAD tool.

The prefetch_lookup_on hits algorithm is used as prefetch method and the Least
Recently Used algorithm is used as replacement method. The cache has a 2-way-set-
associative mapped organisation. The used parameters are:

- a cache size of 4K Byte.

- a block size of 32 quads (4 Bytes).

- a transfer block size of 8 quads.

- a set size of 16 blocks.

A read buffer and a fetch buffer are used to improve the performance of the cache.

The prototype has passed several functional tests successfully. To create a cache model
with variable parameters, it is better to implement the cache in the Helix environment
instead of using IDaSS. The reason is the lack of flexibility of the IDaSS system.
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1.
INTRODUCTION

The development in the integration technology made it possible to create extremely
complicated integrated circuits. This is the reason that efficient design tools are needed
to handle the complexity of our designs. At this moment there is still a big gap between
the idee of the designer and an useful design tool. At the Digital Systems Group, of the
Department of Electrical Engineering of the Eindhoven University of Technology, a
project Structured Analyzes and Structured Design (SASD) is started to gain useful
design tools to fill this gap. To test the developed design tools of SASD a VLSI project,
the C-processor, was started. This processor is a dedicated microprocessor for effective
execution of programs written in the C programming language, and related high level
languages.

The C-processor project was started by F.P.M. Budzelaar [Budzelaar] in 1987, coached
by Prof. Ir. M.P.J. Stevens. He specified the requirements to execute compiled C-
programs efficiently and defined the global processor architecture. W.J. Withagen
[Withagen] worked out the instruction set and made a software model to test the defined
instruction set and its functionality. He also developed a hardware model that can be
used as a testing vehicle for further decompositions and gate level implementations.
JEH.M. Bormans [Bormans] studied different cache organisations and made trace
driven simulations to investigate the performance of the different organisations.




Chapter one. Introduction.

The C-processor is a high performance microprocessor, however the rate at which data
can be supplied to the microprocessor has become a limiting factor. The causes of this
limiting factor are the pin count constraints and the relative small progress in the cost
versus speed ratio of the memory. Therefor cache memories are used to level out the
speed mismatch between the processor and the main memory. The processor contains
separated cache memories, the instruction and data caches.

My graduation project was to implement an Instruction cache generator, comparable
to the already existing RAM and PLA generators. First a prototype of the cache
implementation has to be made with the design tool, Interactive Design and Simulation
System for ULSI. This system is developed by Ir. A Verschueren as part of the
mentioned SASD project. Due to the lack of time no attention could be spend to the
parameterize the implemented prototype. Thus, this master thesis raport contains only
the prototype implementation of the instruction cache.

The theory of the instruction caches, as studied by J.E.H.M. Bormans, is repeated in
chapter 2. The interface definitions are presented in chapter three. The fourth chapter
treats the decomposition of the cache in smaller modules. The next two chapters
describe the main modules. And finally the chapter seven contains the conclusions and
recommendations.




2.
THE CACHE MODEL.

The cache is developed with Interactive Design and Simulation System (IDaSS) as CAD
tool. This is done because the expectations were that interactive designing would be
faster than the Silvar Lisco packet. And the cache was also a testing vehicle for IDaSS.
The theory of Cache organisations are described in the master thesis report of JE.H.M.
Bormans [Bormans]. Only the results of this report are described in this chapter, for
further reading it is recommended to read this report.

2.1. The cache organisation.

There are three common ways of cache organisation:
1. fully associative mapped.
2. direct mapped.
3. set associative mapped.

The fully associative mapped and the direct mapped are special cases of set associative
mapping. If set size is 1, the mapping is direct. If the set size is equal to the total
number of blocks, the mapping is fully associative. The set associative mapped
organisation will be used for the prototyping and therefor only this organisation will be
discussed, the other organisations are described in [Bormans]. In a set associative
mapped cache is the memory address divided in four fields: Tag field, set field, transfer




Chapter two. The cache model.

block field and word field. A model of a two way set associative mapped cache is

illustrated in Figure 1.
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Figure 1. The set associative mapped cache.

The following items can be distinguished in processing the request for data.

1. the set field points to the set of cache blocks that may contain the block with
the requested quad.

2. the tag field is compared against the tags of the blocks in the set.

3. if one of the tags match, the status information of that block is checked.

4. if there is a hit, the transfer block field is used to select the transfer block within
the block.

5. after the transfer block is selected, the word field selects the quad within the
transfer block.
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2.2. The cache parameters.

Besides the mapping method, also the sizes of a number of cache parameters have to
be chosen. The following parameters are of influence on the performance of the cache.
In this paragraph the cache size, set size and block size will be discused. Transfer blocks
will be introduced in the section about block sizes. The size of these transfer blocks will
be discused in the section 2.24.

2.2.1. Cache size.
The area required for a cache can be divided into three parts:
- RAM for data

- RAM for overhead information (tag bits, status information, etc.)

- area required for multiplexers, buses, control logic, etc.

A numerical example that is used for the prototype of the instruction cache, its size is

1K quads, is:

- data RAM : 1024 X 32 = 32,768 bits.

- tag/status RAM 12X (37 + 34) = 142 bits.

- multiplexers : 4 X 256 = 1024 bits wide.

It is obvious that the size of the data RAM is the most important parameter in the

calculation of the used area on the chip.

The number of quads, which can be stored in the cache, is known as the most important
cache parameter, since it highly affects the miss ratio and the cache size. The larger the
cache, the more old information can be saved. This decreases the miss ratio. Since the
usefulness of old information declines in time, only a slight improvement of cache

performance is found beyond a certain cache size.
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2.2.2. Set size.

Set size is just a different term for the scope of associative search. The larger the set
size, the lower the miss ratio will be. This is because a larger placement freedom
improves the performance of the replacement algorithm. However, beyond a certain
set size, this improvement is likely to increase very little if any at all. Therefore the miss
ratio will not decrease significantly beyond a certain set size. A smaller set size, on the
other hand, results in a faster and less expensive implementation.

2.2.3. Block size.

The main advantage of grouping the quads in blocks is that the amount of the address
tags, replacement information, buffer circuitry, etc, decreases. This block overhead
decreases when the block size is enlarged. Besides the decrease in block overhead,
there are some other positive effects of enlarging the block size.

- More adjacent data is stored at once, which tends to reduce the miss ratio.
Prefetching could be, from this point of view, an alternative for large blocks.

- A block can be read in burst mode, which reduces the average main memory access
time.

- A smaller penalty of cache flushes, which occur in many caches during task switching,
is obtained by enlarging the block size. This way the cache will be filled faster.

There are two important disadvantages of enlarging the block size. Firstly, the miss
ratio will increase, because a complete block instead of one quad has to be fetched
from main memory. Secondly, the usefulness of extra loaded quads becomes less than
the usefulness of the replaced quads. Quads probably will be loaded into the cache
which never will be used. This effect is called memory pollution. Both miss and traffic
ratio, the traffic between the main memory and the cache, increase because of memory
pollution. Another negative effect of enlarging the block size is that placement freedom
will be reduced, since all quads in a block must have the same tag,
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There is however a way to limit the increase in traffic ratio and miss penalty, without
sacrificing the savings in overhead bits. This is possible by dividing the blocks in smaller
transfer blocks. This will be discussed in the next section.

It will be clear that the block size has a great impact on the performance of the cache.
The size, the access time, the miss ratio and the traffic ratio are influenced by it, some
of these because of different effects.

2.2.4. Transfer block size.

In the remainder of the text "blocks" will be used to indicate groups of quads, which
have the same address tags, "transfer blocks" for groups of quads which are transferred
as one unit between main memory and cache.

Each quad in a transfer block requires a data_valid bit, since not all quads of a transfer
block have to be stored in the cache (paragraph 3.4). Other status information, like
replacement information, is required for a complete block only. Dividing blocks in
transfer blocks increases the number of overhead bits thus only very slightly.

Although dividing blocks in transfer blocks is positive for the miss penalty and the traffic
ratio., it is not for the miss ratio. The miss ratio will be generally be higher, because only
a part of a block contains valid data. Since the usage of small transfer blocks permits
larger blocks, it could also be considered as a way to reduce overhead bits and thus to
obtain a cache which is able to store more quads. Therefore the miss ratio will not
necessary be higher. Another disadvantage is that the placement freedom will be
reduced. This can be seen by considering that instead of dividing a large block in smaller
transfer blocks, a number of small (transfer) blocks are enforced to have the same tag.
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2.3. Prefetch algorithm.

There are two ways to fetch a block from main memory:
- demand fetch: the block is fetched when it is needed.
- prefetch: the block is fetched before it is needed.

A simple method to store sequential information is the usage of large blocks. However,
this has many disadvantages as we have seen in section 3.2.3. The simplest prefetch
method used is known as one-block-lookahead: the subsequent block of the currently
referenced one is considered for prefetching.

If too much information is prefetched, memory pollution appears as it did for large
block sizes. The smaller the cache, the larger this effect will be. Prefetching will always
increase the traffic ratio. Another problem is that the storage prefetched quads will
delay the servicing of requests from the processor, unless multiported RAM is used.
These effects can be limited by dividing the blocks into smaller prefetch blocks. The
link to the previously introduced transfer block will be clear.

The one-transfer-block-lookahead method can be used in different ways. One method
is called prefetch_lookup: the prefetch of the next transfer block is based on its absence
in the cache. This method has the disadvantage of an extra cache access. Such extra
access are likely to increase the average cache access time. To limit these extra cache
access this method can be refined by only prefetching in case of a hit
(prefetch_lookup_on_hits).
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2.4. Replacement algorithm.

The replacement algorithm has to decide which block in the set will be removed to

store a main memory block. This happens when:

- a miss occurs. However, replacement is not always necessary. The block to which
the missing transfer block belongs, can already be in the cache.

- the block to which the prefetched transfer block belongs is not in the cache.

A replacement algorithm is the LRU (least-recently-used) algorithm. The LRU
algorithm is usage-based, which take the record of usage of a block into account. LRU
is based on the theory that if a block has been often and recently used, it is likely to be
referenced in the near future.

For LRU a table is required for each set, containing the replacement order of the
blocks in the set. If a new block has to be stored in the set, the block referred to by
the top of the table is used. That block reference will be placed at the bottom of the
table and the other references will be shifted one place up. If a block is used which is
in the cache, its refersnce will be put at the bottom of the table and the reference,
which were below it, will be moved one place up. However , if the set size is 2, just one
bit is required to decide which block has to be replaced. Updating the replacement
information is just a matter of setting or resetting it, depending on which of the 2 blocks
is used.

2.5. Architectural considerations.

The cache has to be able to service quad requests from the processor while it is
prefetching. The best way to achieve this parallelism is to use separated working
modules. One which controls requests from the processor, one which controls the
fetching. The former will be called server, the latter fetcher.
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To limit the increasing in the cache access time due to prefetching is to decrease the
duration of storing a prefetched block. This can be done by placing a buffer between
the main memory and cache memory. The advantage of this buffer is:

- The quads are stored in the buffer at main memory read speed and the whole fetched
transfer block is stored at once in the cache RAM at cache RAM write speed. This
requires a "wide" RAM.

The above mentioned buffer will be called fetch buffer from now on.

Another way to limit the above mentioned increase of the cache access time is to limit
the number of cache accesses to the cache RAM. This can be obtained in the following
way:

- Decreasing the number of accesses to the RAM by the fetcher. This is possible by
the above mentioned fetch buffer and by avoiding unnecessary prefetches by using
the prefetch lookup method.

- Decreasing the number of accesses to the RAM by the server. This is possible by
using a buffer between the cache and the instruction unit. If a request from the
instruction unit results in a cache memory hit, the total transfer block is copied in
this buffer. The following quads do not require access to the cache memory, as long
as they belong to the same transfer block and their valid bits are set. The valid bits
are necessary because it is possible that only a part of the transfer block is loaded
into the cache memory.

The last mentioned buffer, which will be indicated by read buffer in the remainder of
the text, has another and even larger advantage: This small buffer can be read much
faster than the cache RAM itself, for it is much smaller and no associative search has
to be done.

A miss is likely to be caused by a jump in the reference pattern, which itself can be
caused by a conditional expression, a function call, a function return, a task switch, an
interrupt, etc. A miss can also occur when quads of a transfer block are requested which

-10 -
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is still being prefetched. It is also possible that another transfer block is being prefetched
when a miss occurs. Thus, three different cases can be distinguished when a miss occurs:
1. The fetcher is not busy. This represents the miss penalty in its basic form.

2. The fetcher is still prefetching the transfer block which caused the miss.

3. 'The fetcher is busy prefetching a transfer block different from the needed one.

If the first case occurs, the fetching of the required quad can be accelerated by using
wrap around. The requested quad is fetched first, followed by. the quads in the transfer
block which have a higher address and finally those which have a lower address. If wrap
around is used, the fetching can be accelerated more by using fetch bypass: the
requested quad pair is passed directly from the main memory to the instruction unit
and is stored in the RAM at the same time or later.

Wrap around can be improved by fetching only the required quad pair and the quads,
which have a higher address, of the same transfer block. The lower quads will be
skipped. The last mentioned idee is based on the fact that it is not likely that these
quads will be requested. In this way the penalty of jumps will be minimised.

If the second case occurs, the same problems as mentioned above are present. But now
it is likely that the next fetched quad pair will be the required one. Therefor is it better
to wait for the quads and not to interrupt the fetcher. It will be clear that the usage of
a fetch buffer, with quad_valid bits for each quad, is the best solution.

If the third case occurs, it is wise to stop fetching the other quads in the fetched transfer
block, and write the quads, with the correct quad_valid bits, in the cache memory. Start
a new fetch cycle of the required transfer block, using wrap around. The above
mentioned idee will be called "stop prefetching”, in case of stopping prefetch actions, and
"stop demand fetching”, in case of stopping demand fetch actions. The fetched quads can
not be skipped, otherwise it would theoretically be possible that the cache is trashing:

repeatedly losing the fetched quads and a moment later fetching them again.

In Figure 2 the global architecture of the cache is drawn, including buffers.

-11-



Chapter two. The cache model.
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Figure 2. The global cache architecture.

2.6. Simulation results.

The trace driven simulations of J. Bormans [Bormans] show some interesting results.
The cache model of the prototype is extracted from these results. But at the moment
he ran his simulator, there was not and still is not a C compiler for the C-processor
available. This is the reason he used estimated traces, generated by himself. So the
results can be changed if real traces are used. The conclusions drawn from his
simulations are written in Table 1.

-12-



Chapter two. The cache model.

Table 1: The conclusions of the trace driven simulation.

Cache size : 1024 quads.
Set size : 2 sets.
Block size : 32 quads.

Transfer Block size : 8 quads.
Fetch algorithm : prefetch hit.
Cache option : stop fetcher, read buffer and fetch buffer.

-13-



3.

THE INTERFACE DEFINITIONS.

The parts of the C-processor which are of interest for the instruction cache are

illustrated in Figure 3. At the main memory side the instruction cache is connected to

the bus unit and at the processor side to the instruction unit. The memory management
unit (MMU) is placed parallel to the cache.

Bus
Unit

data

control

Instruction
Cache

data

address

control

- —

JL Ry [Jeontrol

address

<,.‘:

control

Memory

Management Unit

address

control

Instruction
unit

Figure 3. The instruction cache environment.

3.1. The bus unit.

The Bus Unit is the interface to the outside world. Besides requests from the instruction

cache, it receives also requests from the data cache. The bus unit is able to serve these

requests simultaneously. There are separate buses to the outside world for instructions

-14 -
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and data. (Harvard organisation.) The instruction bus is 32 bits wide and from now on
this quantity of 32 bits will be called quads. All signals coming from or going to the
outside world go through the bus unit for adaption of the signal levels. The bus unit
takes also care of the external bus control.

3.1.1. The bus unit interface.

The interface between the bus unit and the instruction cache has to be a flexible
protocol, because of the wide range of memory performance. The protocol has to be
as fast as possible because the C-processor may be connected to an external cache. In
this case memory request can be serviced in one clock cycle. In this situation a
handshake protocol is used to fulfil the specifications. An example of this protocol is
illustrated in Figure 4.

The protocol starts with making the valid signal active to indicate that the instruction
cache needs a memory access and it puts the address on the address bus. To use the bus
unit efficiently a count signal is added to the protocol to indicate how many quads the
cache wants. After a while the bus unit responds by puting the instructions on the data
bus and then enables the ready signal. Only an active ready signal means that the
instruction on the data bus is valid. It is possible that a jump is detected by the
instruction unit in the middle of the protocol and therefor a cancel signal is needed. An
active cancel signal means that the protocol has to be terminated at the next clock
cycle.

All data transfer and control signals will be synchronous but only the ready signal is
asynchronous to speed up the protocol.

To ensure that the cache will not have a deadlock, the bus unit or the MMU will
activate an error signal to indicate that it is not able to catch the requested quads. This
can happen in case of a page fault (by the MMU) or a timeout event (by the bus unit)
. To distinguish the two different cases a pagefault/error signal is added to the protocol.

-15 -
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Figure 4. The bus unit interface.
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If an error has taken place and the cache has to inform the processor of this error event
then the status of the error event (pagefault or timeout event) will be put on the data
bus.

If the static Data Ram of the cache is too slow writing the data from the fetchbuffer,
the access time of the Ram is more than one clock cycle, then it can be solved by adding
a Tr.Block acknowledge signal to the protocol. After the contents of the fetchbuffer is
written in the data RAM, the Tr.Block acknowledge signal will be activated untill the
next clock period. ‘

3.2. The instruction unit.

A 64 bits data bus is used to transport the instructions between the cache and the
instruction unit. The available bandwidth between the cache and the instruction unit is
thus twice as large as the bandwidth between the main memory and the cache. The
necessity of the 64 bits bus towards the instruction unit will be clear from the
considering that many instructions will be longer than four bytes. The 32 bits connection
with the outside world is imposed by pin constraints.

Instead of specifying the address of the 64 bits, the instruction unit specifies the address
of the first of the two quads. The cache has to deliver the quads at the specified address
and the quad at the next address. By allowing the 64 bits to be quad aligned in stead of
64 bits aligned, a more efficient data transport is possible between the cache and the

instruction unit.

The number of clock cycles between the current and the next request for the cache
depends on:

- the time required by the cache to deliver the two quads.

- the number of instructions contained in the double quads.
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- the execution time of these instructions.
3.2.1. The instruction unit interface.

To serve the requests from the instruction unit without any necessary delay, this
interface has to be as fast as possible. All instructions that are placed in the cache have
to be transported to the instruction unit in one clock cycle. Therefor again a handshake
protocol is used and some asynchronous behaviour is added to fulfil the speed
specification. This protocol is shown in Figure 5. |

This protocol starts by putting a valid address on the address bus and activating the
request signal. After the cache delivered the first requested quad, it will activate the
first ready signal. After finishing the second it will activate the second ready signal.
When the instruction unit receives two ready signals and its ready to receive the
requested quads then it activates the acknowledge signal. The cache can go to his rest
state after the instruction unit activate the acknowledge signal. This sequence is the
normal one, but it is possible that the instruction unit detects a jump instruction while
it is waiting for instructions from the instruction cache. In this situation the instruction
unit can stop the instruction request in the next cycle by activating the acknowledge
signal, while the cache has not activated the ready signals.

As we have seen is it possible for the cache to receive an error signal from the bus unit
or from the MMU. If the cache is prefetching, it can be ignored because the processor
has not requested for these instructions. But if the cache is demand fetching, it is
necessary to inform the processor of this error because the processor is expecting the
requested instructions. To inform the processor there are some error signals added to
the instruction unit interface.
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Figure 5. The instruction unit interface.

3.3. The memory management unit.

The C-processor is able to address 4 gigabyte. Since quads, instead of single bytes, are
addressed, 30 bits are required for an address. However, the available amount of RAM
will be less than needed for the complete address space. The major part of the
information will be stored on magnetic storage media. This requires a memory
management unit, which, among other things, has to translate the virtual addresses into
real or physical addresses. To reduce the amount of cache flushes, normaly after each
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process switch in a multitasking mode, a Proces Indentification Number (PIN code) is
added to the address. Now a cache flush is only needed after all PIN codes are used and
the new process will have the oldest unused PIN code. The PIN code has an arbitrary
width of 16 bits thus, the memory management unit receives addresses of 46 bits.

The memory management unit is placed parallel of the instruction cache. The cache
thus uses virtual addresses and is therefore called a virtual address cache. Most caches
are real address caches. These caches have the disadvantage that for each cache
reference the virtual address has to be translated into the real address. Although some
parallelism is possible in this translation and the location of data in the cache, the cache
access time is increased by this translation time. To reduce the cache access time, a
virtual cache is used. An address translation is only required after a miss. The translation
time can be shortened by translating the virtual address as soon as the cache receives
a request. In this case the MMU is placed paraliel of the cache.

If the memory management unit receives a request for a page which is not in the
physical address space, it generates an error signal to indicate that the processor has
to run an operating routine, e.g. to swap in a page from harddisk. Since this routine
will use the cache itself, an error signal has to be activated. Otherwise the cache will
wait indefinitely until a valid ready signal is returned by the bus unit and the operating

Toutine never can be run.

As mentioned before a distinguish has to be made between an error during a prefetch
action or during a demand fetch action. In case of a prefetch action the error signal is
ignored and the cache stops the prefetch actions. In case of a demand fetch action the
error signal has to be delivered to the instruction unit.
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3.3.1. The memory management interface.

At this moment there is no interface protocol defined, because the MMU is a subject
which still has to be studied. Only the prefetch addresses and status signals of the cache
are implemented to inform the MMU in what mode the cache wants to fetch data. After
the cache and the MMU receive a request from the instruction unit the cache will
search for the requested data in itself and the MMU will translate the virtuel addresses
into real addresses. If the data is in the cache and prefetching is not active than the
MMU will not proceed, if the data is not in the cache than the MMU will deliver the
translated address to the bus unit. When the data is found in the cache and the cache
wants to prefetch then the MMU will skip the translation of the virtual addresses
delivered by the instruction unit and it begins to translate the virtual prefetch address
delivered by the instruction cache. After the translation it will deliver the real address
to the bus unit.

The interface between the instruction cache and the MMU excists of a prefetch address,
a pagefault signal and a DemandPre signal. The last mentioned signal has a width of 2
bits. This signal indicates the fetch mode of the cache. The following cases are possible
(DemandPre1,DemandPre2):

- 00: The fetcher is non active, the MMU is non active.

- 10: The fetcher is demand fetching, the MMU has to translate the address
delivered by the instruction unit.

- 01: The fetcher is prefetching, the MMU has to translate the prefetch address.

- 11: The fetcher is demand fetching, but the prefetcher is updating the cache

status, the MMU has to translate the address delivered by the instruction
unit.
By polling this signal the MMU knows exactly the state of the fetcher and knows exactly
which address to translate. The meaning of the pagefault signal is ussumed to be clear.
An example of this protocol is illustrated in Figure 6.
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Figure 6. The memory management unit interface.
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4.
THE INSTRUCTION CACHE.

The second chapter contained an overview of the theory of instruction caches. Besides

the theory, some practical specifications were defined for the instruction cache of the

C-processor:

the cache, if possible, has to deliver the quads, which are in the cache, in one clock
cycle.
the instruction unit requires a quad pair instead of a single quad.
the MMU must function parallel with the cache.
the cache can be in four different modes.
* normal mode.
* transparent mode.
* cache flushing mode.
* self test mode.

As illustrated in Figure 2 the cache can be split up in smaller modules. The more

complex modules are the server and the fetcher and they are described in the next two

chapters. The rest of the modules (memories and buffers) are described in this chapter.

Table 1 is used to extract the dimensions of the memories and the buffers. As stated in
table 1 is the block size 32 quads. Thus there are 32 blocks in the cache and there are
16 sets (see Figure 1). This means that the address is divided into a word field of 3 bits,
a transfer block field of 2 bits, a set field of 4 bits and the remaining field is the tag
field of 37 bits.
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4.1. The decomposition of the cache.

As mentioned in the second chapter the cache has two sub modules, the server and the
fetcher. The other modules are a read buffer, a fetch buffer, a data RAM and a
tag/status RAM. Two other modules are added: First a status register, which contains
the transfer block addresses of the transfer block in the read buffer and in the fetch
buffer. Second a control unit, which collects the status signals from each unit in the
cache and distributes them through the system. The schematic of the cache is illustrated
in Figure 7. The used modules in this schematic are described in appendix B.

4.2. The cache RAM organisation.

In Figure 2 the tag/status RAM and data RAM are separated in the cache. This is an
effective organisation for several reasons. Only one tag is required for all quads in a
block. Some status information, like LRU bits, is also required per block. Other status
information, like data_valid bits, is required per quad. If CAM is used it will be evident
that the complete block must be stored on one RAM row. The quads have to be
selected by means of the output decoders.

Traditional RAM could also organized this way. A RAM row is selected by the address
decoder, using the set field of the address. (Assume a set size of 1, set associativity is
discussed later in this paragraph). The tag, the status or one of the quads are selected
by the output decoders. This is depicted in Figure 8a. It is of course not necessary to
locate tag and status at the same location of the quads. One possibility is drawn in
Figure 8b. This approach has many disadvantages:
- The address necessary to select tag/status information has a different format than
the address of the quad. (Or tags should be stored in an even more inefficient way).
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Figure 8. The data and status information combined in one RAM.

- Not all bits of the rows containing quads are used. (The length of tag plus status
is longer than 32 bits). This is represented by the single shaded area.

- The address space is not used efficiently, since it is not a power of 2. This is
represented by the double shaded area.

Therefor, it is better to use separated data RAM and tag/status RAM. This has also
certain advantages over the first approach:

- No wide RAM is necessary.

- The RAMs are smaller and thus slightly faster.

- Simultaneous access to data (quads) and tag/status information is possible.

Two different modules were drawn in Figure 1 to illustrate a two way associative set.
The tag and status information of the same set do indeed have to be accessible
simultaneously. Different status RAMs could be used. But since these will be very small,
it is better to use one status RAM, containing tag and status information of all the
blocks of one set in one row. This is depicted in Figure 9 for a two way set associative
mapped cache with LRU replacement and lookup prefetching.
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Figure 9. The status RAM of a two way set associative cache.

Quads of different blocks within a set do not have to be accessible at the same time.
Thus they can be placed on different rows of one data RAM. The read and fetch buffer,
introduced in chapter two, have a big influence on the cache performance. After all,
their benefits are exploited best when complete transfer blocks can be copied to or
from them. This requires a wide data RAM. (However not as wide as represented by
Figure 8a, where tag, status and a complete block were stored on one row). The status
RAM is not affected by the requirement that complete transfer blocks have to be stored
on one row. An example of the data RAM of a cache with set size 2 is depicted in
Figure 10. Blocks of 32 quads, divided over 4 transfer blocks, are assumed. The address
which has to be supplied to the address decoder, consists successively of the set field,
the block field and the transfer block field.

The memories in IDaSS have the restriction that they can not be wider as the maximum
width of the busses. Normally is this maximum set to 64 bits, thus a memory wider than
64 bits is not possible in IDaSS. Because of this restriction, the status memory in the
implementation of the prototype is divided in separate memories for the tag of the first
block, the tag of the second block, the status of the first block and the status of the
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Figure 10. The data RAM of a two way set associative cache.

second block. They are respectively named TAGO, TAG1, STATUSO, STATUSI1. The
tag memories have a width of 37 bits and a depth of 16 words (number of sets), the
status memories have a width of 34 bits ( 1 LRU bit, 1 Block valid bit and 4 * 8
data_valid bits) and a depth of 16 words. Physically this decomposition of the memories
is more realistic, because a memory of 144 bits wide and a depth of 16 words is rarely
used. A memory, with a square layout, is more realistic. To address the memories the
set field of the address is used as mentioned earlier in this chapter. Because the
detection of the first quad, the detection of the second quad and the detection of the
next transfer block are done simultaneously, the memories are implemented triple
ported. This is realistic due of the small size of the used memories (the total size of the
memories is, 16 * 17,75 = 284 bytes). The advantage of using triple ported memories
is of course that no wait cycle has to be inserted for access by the fetcher or the server.
In Figure 11 the implementation of the tag and status memories is illustrated.

The data RAM is, 8 * 32, 256 bits wide (the transfer block size) and a depth of, 2* *
2' * 2, 128 words (this is the maximum range for the concatenation of the set, block
and transfer block field as data memory address) as mentioned earlier in this paragraph.
Sometimes the server and the fetcher want to have access to this RAM simultaneously.
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But this is impossible due of the single ported aspect of this memory. To implement this
memory as dual ported or even triple ported is not very wise because of the large size
of the memory. The size of the data RAM is , 1024 * 4, 4K Byte. Because the single
ported character of the data RAM an arbitter is used to control the access to the RAM.
If the server and the fetcher want to have access to the data RAM simultaneously, the
server has always the highest priority to avoid unneccessary delay. The order of
delivering the required quads are assumed to be clear, only the special case of cache
memory hit of both quads, belonging to different transfer blocks, needs more explaining.
Due the single ported data RAM both quads can not be read from this RAM. Therefor
the first quad is copied in the read buffer, which cause a read buffer hit instead of
cache memory hit. Then the last quad is delivered to the instruction unit.

The modules, which are used in the IDaSS implementation, are described in appendix
C. For each module the name, the pin constrains, the functional description and the
logical description are explained. The schematic of the IDaSS implementation is drawn
in Figure 12.

4.3. The read buffer.

As mentioned in chapter two, the read buffer and the fetch buffer are used to avoid
repeatingly access to the data RAM. The read buffer copies the transfer block with the
required quads. The following quads do not require access to the data RAM, as long
as they belong to the copied transfer block. Because not all quads may be fetched of
a transfer block, due the "demand or prefetching stop” option, the status of the
transferblock also has to be copied. Thus the read buffer is build of data registers,
containing the quads, and status registers, containing the data_valid bits. Bypassing the
quads from the cache memory is used to be able to deliver a quad from the cache
memory and a quad from the read buffer. If this is not implemented then the above
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Figure 12. The IDaSS implementation of the data RAM.

mentioned case will cause problems due the old information in the read buffer. A

required quad is placed in the read buffer and is overwritten by the transfer block,

which is containing the older quad, at the next clock edge. This bypass feature is

implemented by special registers, which contains a normal register and a multiplexer.

In case of a read buffer hit the multiplexer selects the output of the register, thus the

quad in the read buffer, and in case of a cache memory hit it selects the input of the
register, thus the quad from the data RAM. The width of the read buffer is 8 quads as
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mentioned earlier in the text. In Figure 13 the schematic of the read buffer is drawn and
in Figure 14 the special data register is shown. The used modules of the read buffer
are described in appendix D.

4.4. The fetch buffer.

Because of the same reason given with the read buffer, a fetchbuffer is used in this
cache prototype. The fetch buffer is also build of data registers and status registers.
Bypassing also is used from the bus unit to the instruction unit. Therefor two large
multiplexers, 256 bits input and 32 bits output, are used to collect the two required
quads. The multiplexer selects one of the eight quads in the buffer and pass it to the
instruction unit. A control unit is implemented in the fetch buffer to generate the correct
control signals to the multiplexers and the registers. This unit selects the quads via the
multiplexers in case of a fetch bypass, it loads the data register with the appropriate
quad and set the status register to the correct value. Because this unit is complete
combinatorial, it is implemented as an operator in IDaSS. The schematic of the fetch
buffer is drawn in Figure 15 and the description of the used modules in the
implementation are described in appendix D.
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5.
THE SERVER.

The server has to find the required quads and to take the appropriate actions to deliver
those quads. The quads can be at three different places in the cache:

- in the fetch buffer.

- in the read buffer.

- in the cache RAM (see Figure 2).

Furthermore two different situations have to be distinguished. The first case is the
sitnation where both quads are in the same transfer block. The second case is that the
second requested quad is in a different transfer block. Due to the use of single ported
data RAM it is not possible to read data from two different rows in the RAM. Last
mentioned can slow down passing the second quad to the instruction unit.

5.1. The analysis.

All different states of the server can be illustrated as text but it is more clear to
illustrate it in a figure. Figure 16 illustrates all modes and a detailed set of modes of the
server is represented by Figure 17. The advantage of this method is the clear overview
of the modes of the server. Also some timing can be illustrated in this kind of flow
charts. In this chart some definitions are used.

* Status signals:

- READBUFHIT? : Set if the quad is in the read buffer.
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Figure 16. The flow chart of the server.
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- FETCHBUFHIT? : Set if the transfer block, which could contain the quad,
is in the fetch buffer.

- CACHEMEMHIT? : Set if the quad is in the cache memory.

- QUADHIT? : Set if the quad is in the fetch buffer.

* Control signals:

- ENABLE!1 : Set if the first quad can be passed to the instruction unit.

- ENABLE2 : Set if the second quad can be passed to the instruction
unit.

- READY1 : Set if the first quad can be passed to the instruction unit.

- READY2 : Set if the second quad can be passed to the instruction
unit.

In Figure 16 the rectangles, where status signals have to be read and a decision has to
be made, are drawn with dotted lines. The rectangles, where status signals have to be
read and the server might have to wait (wait states), are drawn with dashed lines. The
rectangles , where control signals have to be set, are drawn with solid lines. To complete
the chart, the settings of the status signals have to be drawn in the figure. But the
reason, why this is omitted in figure 16, is to have a clear drawing. But it is easily to
extract the settings of the status signals from the place in the drawing. After a dotted
rectangle four different possibilities exist.

- The first possibility is a read buffer hit.

- The second a fetch buffer hit.

- The third a cache memory hit.

- The last possibility is a main memory access.

This order is always the same after a dashed rectangle. The dashed dotted rectangle
means a wait cycle if the signal, written in the rectangle, is not set. If the signal is set
the flow continues.

The timing aspects can be described in clock cycles. If there is not a dashed rectangle
from the top of the chart to the bottom, the time of the flow is one clock cycle. If there
is a dashed rectangle the time of the flow can be more than one clock cycle. This
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depends on when the signal in the dashed dotted rectangle has been set. In case the
required quads are placed in different transfer blocks and both transfer block are placed
in the cache memory, the time of the flow chart is two clock cycles due of the single
ported data RAM.

As mentioned above, the first stage of processing the quad request is to detect the
required quads. The read buffer, fetch buffer and the Cache Tag/Status Ram have to
be checked on the presence of the quads. It is clear that comparators can be used to
perform the above mentioned checking. The advantage is that they are combinatorial,
thus fast response is possible. The results of the comparators is used to take further
actions by the server.

The second stage of processing the quad request is to set the control signals, the
following possibilities are possible, in case of a read buffer hit of the first quad. Figure
17 illustrates this part of figure 16.

1. The required quads are in the read buffer. In this case it is possible to enable the
appropriate places in the read buffer in less then one clock cycle, and the ready
signals, Readyl and Ready2, are activated.

2. The first quad is in the read buffer, and the second is in the fetch buffer. In this
case the server passes the first quad to the instruction unit, it sets the Ready1 signal,
and it eventually has to wait for the activating of the signal, quadhit2. If this signal
is set, the required second quad is available in the fetch buffer. If not, the fetch unit
is fetching the second quad, and the server has to wait for it. If the Quadhit2 signal
is set, the server passes the second quad to the instruction unit, and it sets the
Ready?2 signal.

3. The first quad is in the read buffer, and the second is in the cache memory. The
required quads are passed to the instruction unit in less then one clock cycle and
the Readyl and Ready?2 signals are activated.

4. The first quad is in the read buffer, and the second is outside the cache. The server
passes the first quad in less then one clock cycle to the instruction unit, and it set
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Figure 17. The set of modes in case of readbufhit of the first quad.

the Readyl signal. The second quad is not present in the cache and therefor the

server starts a demand fetch at the fetcher unit. After one or two clock edges the
fetch buffer status is updated by the new transfer block address and the server
regards from now on the situation as a fetch buffer hit.

In Figure 17 some horizontal solid and dashed lines are drawn to indicate the number

of clock cycles, which the server needs to deliver the requested quads. The solid line
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Appendix F. The fetcher.

Description:

This state machine is implemented to indicate in which mode the fetcher is fetching.
Two ways of fetching are possible:

- prefetching: fetching quads, which are not yet required by the instruction unit.

- demand fetching: fetching quads, which are required by the instruction unit.

The output signal is implemented as constant generator, named DemandOrPre.

State Description:

Rest:
DemandOrPre  Setto:0;
<<

DemF3:
DemandOrPre  Setto:3;
-> DemF

DemF:
DemandOrPre  Setto:2;
<<

PreF:
DemandOrPre Setto:1;
<<

Control Connector Specification:

"The specification of the control connector input:
Request,StartFetcher, TrBlockHit,Ready,QuadPointer,State,CacheHit."
%x0xx1001010 Goto:Rest.

Z%x0xx1001100 Goto:Rest.

%%x 1xooooxx 00x Goto:DemF.

%ox 1ooooor 10x Goto:DemF.

%0x1xx100101x Goto:DemF.

Pox 1xx000x01x Goto:DemF3."The prefetcher is stoppped by an active StartFetcher
signal."

Zox1xx100001x Goto:DemF3."The prefetcher is stoppped by an active StartFetcher

signal."
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%100x000000x Goto:PreF.

F.10 The demand and prefetching indication.

Module: a constant generator.
Name: DemandOrPre.
Pin Constraints:
Input: none.
Output: no name.
Description:
This constant generator is used to generate the output signals of the state controller,

named FController.
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is equal to one clock cycle, the dashed line is equal to zero or more clock cycles
depending when the signal quadhit? is set.

v

| st

REQUEST

COMPARE

READ BUFFER

FETCH BUFFER

CACHE MEMORY MAIN MEMORY

Figure 18. The ASM chart of the server.

From this flow chart an ASM chart is extracted and this ASM chart is drawn in Figure
18. Only the situation of a read buffer hit of the first quad is specified in detail (see
Figure 19).

An alternative method to illustrate the modes of the server is an old IBM method. The
basis is to draw a vertical line for each state and the state transitions can be presented
by arrows drawn from the present state to the next state. An example of this method
is illustrated in Figure 20.

A disadvantage with this method is that the figure is very long, but the state transitions
are very clear. A reason why this method is not used is the miss of timing aspects in
this method.
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(_READ BUFFER )

ENABLE1
READY!

ENABLER
REA

(__ RET

LOADREADBUF
ENABLE?Z
READY2

READBUFHIT?

ENABLEZ
READY2

CRETGRN )

ENABLER
READYZ

( RETURN )

CRETRN )

Figure 19. The ASM chart in case of a read buffer hit of the first quad.
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BUSY]
BUSY2

readbufhit /\ fetchbufhit /\ gquoadhit not

enoblel, readyl
quadhit

enabte2, ready2
“reodburh;-t /\ cachehit

loadreadbuf, enaoblel, enable2, readyl, reody2

lr‘eadbuf‘hlt /\ readbufhit

enablel. readyl, enable2, ready?2

readbufhit /\ maoin memory

startfetcher, enablel, ready!

fetchbufhit /\ quodhit not /\ readbufhit

quadhit

enablel, reodyl, enable2, ready?2

fetchbufhit /\ qQuadhit /\ readbufhit

enablel, readyl, encble2 ready?2

_
L

Figure 20. The modes of the server illustrated by an old IBM method.

5.2. The implementation.

The server is divided in three parts, the comparators and two combinatorial logic blocks.
The comparators has to detect the vallidity of the required quads, the first combinatorial
logic block has to set the control signals for the first quad, and the second combinatorial
logic block has to set the control signals for the second quad. Besides the control signals
mentioned in the previous paragraph some other control signals are added to update the
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status register and to load the read buffer in case of a cachehit. The names of these

control signals are:

- LOADREADBUF :  set, if the read buffer has to load the data of the data
RAM.
- LOADREADBUFAD : set, if the read buffer address of the first quad has

to be written in the status register.
- LOADINCREADBUFAD: set, if the read buffer address of the second quad has
to be written in the status register.

The module, which contains the comparators, is called "comparators” in the remainder
of the text. And the module, which contains the combinatorial logic for the first quad,
is called "combl" and the other is called "comb2". The "comparators" is divided into
three parts, "Quadfind1” which detects the presence of the first quad, "Quadfind2" which
detects the presence of the second quad and the module "LRU" which updates the LRU
bits of the cache blocks. To address the "tag/status" RAM and the "data” RAM the set
field of the address and the block, where the required quad is found, are needed. These
signals are easily to extract from the comparators, because the detection of the quads
is done by these comparators. The signal names added are:

- SETI1 : Indicates the set field of the lower quad address.
- SET2 : Indicates the set field of the higher quad address.
- BLOCKO : Set, if the lower quad uses cache blockl.
- BLOCKI1 : Set, if the higher quad uses cache blockl.

To make a distinction between status signals belonging to the first quad and the status
signals belonging to the second quad, a number (1 or 2) is apended to the name of the
status signals as described in the previous chapter, a "1" for the first quad and a "2" for
the second quad, thus "readbufhit" of the second quad becomes “readbufhit2".

The outputs of the modules "Quadfind1" and "Quadfind2" are all the time available, as
are the outputs of the LRU module. This means that no control is needed for the
module “"comparators”. Because the modules "comb1" and "comb2" are combinatorial
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logic, they are simulated in IDaSS by "operators". The two mentioned modules are
described in a special language, defined by IDaSS, as functions to set the control signals
as defined in the previous paragraph. The functions of the operators "combl" and
"comb2" represents the detection of the required quads. The names of the functions are
obvious to understand. The control signals depend on the outputs of the module
"comparators”, named status signals. The control of these two blocks are defined with
a control connector, which can be specified like a PLA, to set a specific function. Thus
the status signals set the control signals to the appropriate settings.

Besides the mentioned three parts some extra modules are added to the implementation
of the server. These modules merge and extract the busses due to the restriction in
IDaSS to have only one control connector available on an operator. These operators are
named "signalmerge” and "signalextract". The functions of these operators are defined
by default, and thus they are always active. Physically this operators do not exist, because
they have no logical meaning.

In case of a cache hit of the first and the second quad, there may arise some problems
due of the single ported data RAM. If the quads belong to the same transfer block,
there is no problem. But if the quads belong to different transfer blocks, it is impossible
to deliver those quads in one clock cycle. A solution for this problem is to copy the first
transfer block into the read buffer and deliver the first quad to the instruction unit and
during the next clock cycle deliver the next quad. Therefor a distinction has to be made
between the first clock cycle and the next ones. A constant generator, named "next", is
used as indication in which clock cycle the server is functioning. A Moore machine is
used to control the "next" constant generator. Because IDaSS$ has the restriction that only
clocked buses can be used as input for the state controllers, it is impossible to set the
"next" generator in time. A solution to that problem is to use a control connector, which
forces the state controller to a specified state. Every clock edge the state controller
evaluates the control connector, and if nothing is specified it evaluates its state
description.
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In case the first quad is in the read buffer and the next quad is in the cache memory,
it is impossible to copy the transfer block, which contains the last quad, into the read
buffer. In this case the old contents of the read buffer is lost. If the instruction unit sets
the acknowledge signal in the same clock cycle , there is no problem. But when the
acknowledge signal is not set in the same clock cycle the above described problem
occurs. To solve this problem the status register updates after the acknowledge signal
is set by the instruction unit.

A description of the used operators and state controllers are described in appendix E.
Of each module the name, pin constraints, the functional description of the module

and the logical description are described. The schematic of the server is drawn in Figure
21.
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Figure 21. The server implemented
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6.
THE FETCHER.

The task of the fetcher is to fetch the quads from the main memory. As mentioned in
chapter two there are two ways to fetch, demand and prefetching. The handshake
interface protocol between the fetcher and the bus unit is already defined in chapter
three. The used prefetch algorithm is a prefetch lookup_on_hits. This means that only
in the case of a cache hit the next transfer block will be prefetched, if and only if it is
not already in the cache. To start a prefetch only in the case of a cache hit, has the
advantage that the number of cache accesses is minimized (see paragraph 2.3). The
replacement algorithm has to decide which block in the set will be removed to store a
main memory block. The used replacement algorithm is the Least Recently Used
algorithm. The block, that is the least recently used, is replaced by the new block (see
paragraph 2.4).

6.1. The analysis.

The prefetch algorithm includes some comparators, which are used to check the
existence of the next transfer block in the cache. Thus, the fetcher is divided into three
parts:

- comparators.

- prefetch module.

- demand fetch module.
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The last two mentioned modules have to fetch the data from the main memory. Due
to the synchronous actions of the fetch algorithm and the replacement algorithm, they

are build with Moore machines.

Only wrap around is still not discussed. The wrap around feature is based on the idee
that a jump may occur into the middle of the transfer block. In this case it is wise to
fetch the required quad first and not the first quad of the transfer block. The following
quads are those which have a higher address in the same transfer block. As mentioned
in chapter two the lower quads will be skipped.

In case of a jump the fetcher may be fetching unnecessary data, and in this case the
fetcher has to be stopped. The question is "when is the data unnecessary?". In case of
prefetching, the instruction unit did not require those quads yet. Therefor the prefetch
action must not continue, when a jump occurs. In case of demand fetching, obviously the
instruction unit is required for other data, which is not being fetched at this moment.
Therefor the demand fetch action also has to stop immediately. To avoid that the data,
which is already fetched, is lost, the contents of the fetch buffer have to be copied into
the data memory. This stopping feature is called "stop prefetch” or "stop demand fetch".
Because the fetch operation may be stopped in the middle of its sequence, status bits
have to be used to indicate which quads of the transfer block are valid. The similarity
between the earlier mentioned quad_valid bits and these data_valid bits is assumed to
be clear.

The sequence of the fetching operation can be divided into two parts. The first part is
an initialization part. The initialization part initializes the interface protocol between the
fetcher and the bus unit. The second part is the following up part. This part only takes
care of guiding the quads to the correct place in the fetch buffer. And when the last
quad is fetched then the cache status is updated by the fetcher. A register is used for
the guiding of the quads to the correct place in the buffer. The content of this register
is used to address the data registers of the fetch buffer. This register is called

quadpointer in the remainder of the text. The replacement and fetch algorithm are not
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very complicated and therefor they are converted to ASM charts. The ASM chart of the
prefetcher and the demand fetcher are illustrated in figure 22, 23 and 24.

(PREFETCHING) (_ INITIALIZE ) ( FOLLOW UP )

quadpointer := 1 valid' .= 1
count := 0 quadpointer := 1 Y
count := 7 startfetcher = +
quadpoiner := 1
count := 0
N ( RETURN ) loadcache := 1
N
ready = 1?
. l( RETURN )

( INITIALIZE ) quadpointer := quadpointer quadpointer := quadpointer+1
count := 7 count := 7

l |

( FOLLOW UP )

quadpointer = 9?

Y

(_RETURN )
Figure 22. The ASM chart of the prefetcher.

The prefetcher state controller is initialized by an active start signal. The start signal is
set, if the server did not started the fetcher (the used signal is named startfetcher), the
instruction unit required for data (request), and the next transfer block (trblock) is not
present in the cache. The initialization of the protocol is done by setting the valid and
count signal. The valid signal indicates the validity of the delivered address, the count
signal represents the number of required quads by the fetcher. Of course the
quadpointer points to the first quad place of the fetch buffer. Immediately after the
initialization the startfetcher and the ready signal are polled. If the startfetcher signal
is set, the prefetch actions have to be stopped ("stop prefetch" option) and the contents
of the fetch buffer are written to the data RAM. If the bus unit delivers a quad to the
cache, the bus unit sets the ready signal to indicate the presence of a valid quad. If the
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(DEMANDFETCHING1) (_ INITIALIZE )

quadpointer := 1 valid := 1
count := 0 1 <= quadpointer <= 8 Y
0 <= count <=
cancel := 1 +
quadpoiner := 1
count := 0O
RETURN loadcache := |
ready = 1? +
l( RETURN )
( INITIALIZE ) quadpointer := quadpointer quadpointer := quadpointer+1
count := 7 count := 7

( FOLLOW UP )

quadpointer = 9?

RETURN

Figure 23. The first ASM chart of the demand fetcher.

ready signal is set, the quadpointer has to point the next place in the fetch buffer. This
can be done by incrementing the quadpointer register. A last test is done to check if all
places in the fetch buffer are filled by comparing the quadpointer with 9. If the
quadpointer is equal to nine then the pointer reached over the end of the fetch buffer.
Thus a new transfer block can be fetched and the status of the fetch buffer has to be

stored in the tag/status RAM.

The same can be told about the ASM chart of the demand fetcher. There is only one
difference between these ASM charts. The count signal is this time not always 7, but
a value between 0 and 7. This is caused by the wrap around principle of the fetcher
algorithm. In case a demand fetch is started, the demand fetch starts if the startfetcher
signal is set, the count signal is calculated by the number of quads from the required
quad to the end of the transfer block. Two different demand fetch ASM charts are
illustrated in the figures 23 and 24. The reason of this difference is explained later in

text.
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(DEMANDFETCHING2) (_ INITIALIZE )

FOLLOW UP

quadpointer := 1 valid": = 1 ‘
count := 0 1 <= quadpointer <= 8 Y
0 <= count <= 7 ‘ +
¢ quadpoiner := 1
cancel =1 count := 0
1 <= gquadpointer <= 8 loadcache := 1

0 <= count <= 7

RETURN N

quadpointer := quadpointer quidpointer := quadpointer+1
count := 7 count := 7

I |

(__INITIALIZE )

( FOLLOW UP )

quadpointer = 9?

Figure 24. The second ASM chart of the demand fetcher.

The demand and prefetcher can not be active simultaneously. Therefor a fetch controller
is added to the fetcher. This controller arbitrates the two fetch modules. The controller
is also used for indicating in which mode the fetcher operates. This indication is
important to the MMU, and the rest of the implementation of the fetcher.

The state diagram of this fetch controller is illustrated in Figure 25. In this figure is the
demand fetching divided into two parts:

- initialization (DemandFetchl, DemandFetch2).

- resume part (DemandFetch).

The reason for splitting the demand fetch actions is the difference in initialization of the
demand fetch algorithm. In case the fetcher is in rest or prefetching, both valid and
cancel signals are set. The cancel signal indicates that the bus unit has to stop all the

-52-



Chapter six. The fetcher.

quest/\stortfetcher \/ stortfetcher /\trbiock /\request

stortfetcher

startfetcher /\{rblock /\
request

feteh
startfetcher startfetcher

Figure 25. The state diagram of the fetch controller.

fetch actions and start the required one. In case the fetcher is demand fetching then
the cancel signal is set first and afterwards the valid signal is set. The reason for this
delay is the fact that the demand fetch module first has to save the contents in the fetch
buffer and than it can start a new fetch cycle. Above mentioned is the promised
explanation of using two demand fetcher ASM charts.

The spheres in figure 25 represent the ASM charts of the fetching and replacement
methods. Thus, the sphere containing the name prefetch represents the ASM chart of
the prefetcher (see figure 22). The first demand fetch ASM is placed into the
DemandFetchl and DemandFetch spheres. The second demand fetch ASM chart is
placed into the DemandFetch2 and DemandFetch spheres. The startfetcher signal is
set by the server to indicate that the server could not detect the required quads in the
cache, thus the quads have to be fetched by the fetcher. The request signal is set when
the instruction unit requires for data and the trblock signal is set if the next transfer
block is detected inside the cache.
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Besides the fetching operation the demandfetch and prefetch sub modules have to take
care of the updating of the tag/status RAM with the correct status of the transfer block.
In case of a replacement of a new block the tag bits also have to be updated.

6.2. The implementation.

The implementation of the fetcher is also divided into three parts:

- comparators.

- prefetch.

- demandfetch.

As in paragraph 6.1. the sub modules have the same mentioned tasks. The "comparators"
sub module has to check if the next transfer block is available in case of a cache hit. If
the fetcher is busy, the result of the "comparators" is ignored. The "prefetch” sub module
takes care of the prefetch operations and the "demandfetch" sub module the demand
fetch operations. The schematic of the fetcher is drawn in Figure 26.

Furthermore, three IDaSS operators are implemented to merge the control signals of
both fetch sub modules together by multiplexers. In case of prefetching the multiplexers
select the "prefetch” sub module and in case of demand fetching the multiplexers select
the control signals of the other sub modules. Finally a operator is implemented to merge

some status signals into one control bus.

The fetch controller, mentioned in paragraph 6.1., is implemented as a state register
(see figure 26), which is controlled by a control connector. The content of this register
represents the present state. The value of this state register is used to start a prefetch
operation by the "prefetch” sub module or to start a demand fetch operation by the
"demandfetch" sub module. No real state controller is used, because if a state controller
is used, the following would happen (specific IDaSS problem). If a prefetch operation
has to be started then the fetch controller has to be set in the correct state. After this
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is done than the prefetch controller of the "prefetch” sub module has to be set in the
correct state. Thus, before the prefetch operation has been started two clocks have
passed. To avoid losing one unnecessary clock the input of the fetch controller is
connected to the input of the prefetch state controller. The fetch controller indicates
only in which fetch method the fetcher is operating. To make an output signal of the
state controller a constant generator is used. No combinatorial outputs on a state
controller are possible without constant generators in IDaSS. Thus there are two
independent state controllers implemented, which execute the algorithms, and one state
controller to inform the other modules in which mode the fetcher is operating.

A description of the used modules is described in appendix F.

6.3. The "prefetch" sub module.

A state controller is used to implement the "prefetcher” ASM chart of Figure 22. This
is very easy because the states can be described as text. Besides the state controller, an
operator is added to the "prefetch" sub module, which updates the status of the fetched
transfer block at the end of the fetch operation. It also updates the tag bits of the
transfer block in case of block replacement. The above mentioned operator is activated
by an active loadcache signal. A register is used as a pointer to the correct place in the
fetch buffer. This register is called quadpointer. This quadpointer has to increment if
and only if a quad is received. The ready signal is set by the bus unit to indicate the
presence of the required quad on the data bus. An operator is used to increment the
pointer register at the next clock edge if the ready signal is set. The control signals of
the interface protocol are implemented as constant generators, which are controlled by
the prefetch controller because the restriction is that no output connectors on state
controllers are available in IDaSS. The schematic of the "prefetch” module is drawn in
Figure 27.
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Figure 27. The implementation of the prefetcher.

6.4. The "demandfetch" sub module.

As in the "prefetch" sub module, a state controller is used to implement both
"demandfetch" ASM charts. An operator is also used to implement the updating of the
cache status. A register is also used to point to the correct place in the fetch buffer.
And even constant generators are used to implement the control signals. Only a more
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complex described operator is used to get the correct initialization of the pointer and
the correct count value. This is caused by the wrap around option. To control this
operator without unnecessary delays the state of the state controller, indicated by the
state register, controls this operator directly by control connectors. The schematic of
this sub module is illustrated in Figure 28.
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7.
CONCLUSIONS AND RECOMMENDATIONS.

7.1. The conclusions.

This mater thesis describes an implementation of an instruction cache based on the
master thesis of J.E.H.M. Bormans. J. Bormans presented a study on instruction caches
in general and developed a simulator to estimate the performance of caches with varying
the following parameters: cache size, set size, block size, etc. The conclusions of these
simulations are used to implement a prototype of the optimum instruction cache. The
simulations used an estimated trace, because there was and still is no realistic trace
available. The optimum cache organisation may be changed when real traces are used.
The implementation of the prototype is described in this master thesis.

The prototype was developed with the IDaSS CAD tool. The most important advantage
of using IDaSS was that interactive designing and simulation was possible. While
changing the implementation, it is possible to see the results of these changes
immediately. Changing the implementation in the Helix environment requires more time,
first the changes have to be compiled, the net list of the schematic has to be extracted
and a new simulation has to be ran. Further advantages are that state controllers can
be described textually. State machines are not very complicated to implement in IDaSS.
It is possible to describe the combinatorial logic textually in IDaSS. The text of this

descriptions are on a higher level than the complicated gate levels.
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IDaSS has also some disadvantages, but most of these will be removed in its next
version. One big disadvantage is the restriction that no combinatorial input connectors
are available at the state controllers. So, the system can not simulate real Mealy
machines, but also no Moore machines, if combinatorial inputs are used. No high level
text descriptions are possible for schematics. The consequence of this restriction is that
the test environment of the cache had to be implemented on register level. If the designs
are complicated, the simulation time grows exponentially. This disadvantage can be
reduced by using high performance machines, like the 80386 computers. The last major
disadvantage is the lack of timing information in IDaSS. Because of this restriction no

estimation can be made of the delay times of the combinatorial logic blocks.

The cache implementation had several functional tests. They are:

- sequential instructions with random jumps.

- the traces of Jos Bormans.

These tests are done successfully, only it is still not certain that the cache is
implemented correct for 100 %. Therefor it is better to test the cache with all the
situations that are illustrated in Figure 15. Because the lack of time, this is not done at
this moment.

7.2. Recommendations.

The total cache is implemented as a prototype. Several functions, which are mentioned
in chapter four, are not implemented. These are:

- transparent mode.

- cache flushing mode.

- self testing mode.

But the expectation is that this is not much work. Only some multiplexers and one
counter have to be implemented. The multiplexers can be used to select between the
normal mode and the transparent mode. The counter and some multiplexers are used
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to implement the cache flushing mode. By resetting all the block valid bits in the
tag/status RAM all data in the cache are lost. The counter is used to generate the
address of the tag/status RAM and the multiplexer can be used to select a zero bit as
input of the tag/status RAM to reset the block valid bits. By using scan flipflops the
testing of the combinatorial logic is no problem. The stuck_at fault model can be used
to generate the test patterns. This can be done manually, but it is better to use a
computer to calculate these patterns. Only the memories need a special treatment.
Because they will be generated by RAM generators, it is impossible to test the memories
with the stuck_at faclt model. Several test algorithms are developed and one of these
can be used. The RAM test algorithm can be implemented as a state controller in
IDaSS. This is very easy because the state controller can be described by a textual
description. Because of the use of the stuck_at fault model, the self testing can only be
implemented when the cache is implemented on gate level. In IDaSS the
implementation is on register level. This is the reason that developing self testing circuits
is not yet possible. Only the memory test algorithm can be developed, because this is
independent of the rest of the implementation.

To be able to vary the width of the buffers and the sizes of the memories, which is
needed for a cache generator, it is better to implement the cache in the Helix
environment. IDaSS is not yet suitable for this kind of flexibility.

Some timing aspects can be studied if the cache is implemented in Helix. The delay of
the combinatorial logic blocks has a big influence on the maximum clock rate of the

C-processor. This delay can be reduced by optimizing the combinatorial logic.
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A.1 The cache.

Module:

Name:

Pin Constraints:
Input:
Output:

Description:

A
THE TOP LEVEL.

a lower level schematic.
Cache.

Request, Address, Ack, Ready, MemData.
Ready2, Datal.ow, DataHigh, Valid, Cancel, Count, PreFAdd,
DemandPre.

The total instruction cache is implemented, except several functions of the cache. The

expectation is that this is not difficult to implement. The transparent function can be

implemented by using multiplexers. The flushing functions can be done by resetting the
BlockValid bits in the Tag RAM. Thus by using a simple address counter, from 0 to 15,
in 16 clock periods the total cache can be flushed.

The interface between the instruction unit and the cache contains the pins:

- Request,
- Address,
- Ack,

set if the instruction unit request for instructions.
the instruction address.
set if the instruction unit received the required data.
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- Ready?2 (2 bits),

- Datal.ow,
- DataHigh,

first bit is set if the cache delivered the first quad to the
instruction unit, second bit is set if the second quad is
delivered to the instruction unit.

the lower data bus.

the higher data bus.

The interface between the bus unit and the cache contains the pins:

Ready,

- Valid

- Cancel,

- Count (3 bits),
- MemData,

set if the bus unit delivered the required data to the
cache. ‘

set if the cache request for data.

set if the cache wants to stop the request for data.
indicates the number of quads, which the cache requires..
the data bus.

The interface between the MMU and the cache contains the pins:

- DemandPre (2 bits),

- PreFAd,

A.2 The bus unit.

if 00 no actions by the MMU are required,

if 01 translation of the prefetch address is required.

if 10 translation of the address delivered by the instruction
unit is required.

if 11 translation of the address delivered by the instruction
unit is required.

the address of the prefetch instructions.

Module; a lower level schematic.

Name: BusUnit.

Pin Constraints:

Input: Valid, Count, Cancel, Ready2, DemandPre, Address, PreFAdd.
Output: MemAd, Ready. |
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Description:

This module simulates the bus unit and the MMU. It is created for testing reasons. It
calculates the memory address (MemAd) from the address delivered by the instruction
unit in case of a demand fetch . And in case of a prefetch it calculates the memory
address from the prefetch address (PreFAd). The memory address has to be calculated,
because the width of the memory address is 11 bits instead of 46 bits.

A.3 The test data ROM.

Module: ROM, 2048 words of 32 bits each.
Name: Data.

Pin Constraints:

Input: Adl, Ad2, Ad3.
Output: D1, D2, D3.
Description:

The contents of this ROM is used to test the cache. The contents is used as data from
the main memory. The ROM is filled with its own addresses.

A.4 The test address decoder.

Module: an operator, 1 function.
Name: AdDec.
Pin Constraints:
Input: il.
Output: ol, o2.
Description:
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This module converts the address supplied by the instruction unit into a memory address
with width of 11 bits. The o1 output presets the higher quad address and the 02 output
presents the lower quad address.

Logical Description:

Function "Default”

"The higher quad address."

ol := il From:0 To:10.

"The lower quad address."

02 := il+1 From:0 To:10.

A.5 The test data comparator.

Module: an operator, 1 function.
Name: Compare.

Pin Constraints:

Input: inl, in2 d1,d2, Ack
Output out.
Description:

This module checks the outputs of the cache with the data in the Data memory. It
checks only in the case that the instruction unit received the data, thus only in the case
of an active ack signal. The inl and in2 pins are the data, which has to be checked.
The d1 and d2 pins are the test data.
Logical Desription:
Function "Compare”
out := ack if0:1

if1:( (in1 = d1) /\ (in2=d2) ).
"check the data from the cache with the data from the data ROM, if and only if ack is
active ."
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A.6 The clock counter.

Module: a register, 32 bits.
Name: teller.

Pin Constraints:

Input: none.
Output: no name.
Description:

This register is used as a counter for testing reasons. The value of the counter represents
the number of the clock. In case of a mismatch of the data from the cache with the data
from the ROM, the clock number is saved into a LIFO memory.

A.7 The test errors FIFO memory.

Module: FIFO, 8 words of 32 bits each.
Name: Errors.

Pin Constraints:

Input: in, no name.
Output: out.
Description:

This LIFO memory is used to store the clock number, delivered by the register "teller”,
for testing reasons. If a missmatch between the data from the cache and data from the
data ROM occurs, then the FIFO stores the clock number and generates an error to
stop the simulator. It is possible to continue the simulator until 8 missmatches are
detected. To do last mentioned, the incorrect function call has to be removed from the
control connector specification.

Control Connector Specification:
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%0 write;errorInCache.

"in case of a missmatch between data from the cache and from the data ROM, the
FIFO will store the clock number. By calling the function errorinCache, the simulator
stops."

A.8 The request signal generator.

Module: a register, 1 bit.

Name: Request.

Pin Constraints:
Input: no name (Control Connector).
Output: no name.

Description:

This register simulates the request signal of the instruction unit. If this register is set,
then the instruction unit requirs for data from the cache.

Control Connector Specification.

%1 Setto:1.

"If the ack signal is set, then the instruction unit has taken the data from the instruction

bus and a new request can start."

A.9 The acknowledge signal generator.

Module: a constant generator, 1 bit
Name: Ack.
Pin Constraints:
Input: no name (Control Connector).
Output: no name.
Description:
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This constant generator is used to simulate the asynchronuous ack signal of the
instruction unit. The ack signal is set in case the instruction unit has taken the data
from the instruction bus. It is assumed that the instruction unit takes the data
immediatly after delivering by the cache. Therefor the ack signal is set after setting the
ready signals.

Control Connector Specification.

"If the cache has not finished is actions, then the last ready signal (Ready2_2) is not
set.” %x0 Setto:0. .

"If the cache has delivered both quads, then both Ready2 1 and Ready2 2 are set."
%11 Setto:1.

A.10 The trace address counter.

Module: a register, 13 bits.
Name: Counter.

Pin Constraints:

Input: no name (Control Connector).
Output: no name.
Description:

This register is used as a address counter for the trace memory.

A.11 The trace ROM.

Module: ROM, 6545 words of 46 bits each.
Name: Trace.
Pin Constraints:

Input: ad.

Output: d.
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Description:

This ROM is used to store the test trace. The trace is generated by the trace genarator
of Jos Bormans. The trace generator is available in the directory
//station_6/user/stud/hu/bormans. The command to start the trace generator is
“tracegen”, it asks for the minimal length of the desired trace. A special convert
program is written to convert the trace output of Jos Bormans into Intel Hex format.
This format can be loaded into the IDaSS memories directly. The conversion program
is available in the IDaSS directory //station 6/user/stud/hu/idass and is named
"hu.exe". The object file and C source are also available in the IDaSS directory (resp.
bu.obj and hu.c).
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THE CACHE.
B.1 The fetcher.
Module: a lower level schematic.
Name: Fetcher.
Pin Constraints:
Input: TagOIn, StatusOIn, Taglln, Statuslln, CacheHit, StartFetcher,
StrtFetch2, QuadValid, FetchBufAd, ReadBufAd, Request, Address,

Ready.

Output: Tag0Out, StatusOOut, TaglOut, Status1Out, Set, StatusUpdate,
StatusUpdDem, Cancel, DemandPre, Valid, Block, QuadPointer,
WrCache, EnableFetch.

Description:
The fetcher fetches the quads from the main memory via the bus unit. There are two
ways to fetch the quads:

- Demand Fetching: Fetching quads, which are required by the instruction unit.
- PreFetching: Fetching quads, which are not yet required by the instruction unit.
The used prefetch algorithm is one_transfer block_lookup on hits and the used

placement algorithm is the Least Recently Used algorithm.
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B.2 The server.

Module: a lower level schematic.
Name; Server.

Pin Constraints:

Input: Tag 0, Status0, Tagl, Statusl, Quad_Valid, FetchBufAdres,
ReadBufAdres, Adres, Request, Ack.
Output: Stat0, Statl, Set, CacheHit, Start fetcher, StrtFetch2, StatusReg,

Ready, LoadReadBuf, Word, WrCache, CtrlS.
Description:
The server receives the request signal from the instruction unit. If the request signal is
set, then the server locates the required quads. If they are in the cache, then the server
delivers the required quads to the instruction unit and it sets the appropriate control
signals. If one or both quads are not in the cache, then the server starts the fetcher by
setting the start_fetcher signal. If the second quad is not in the cache then the server

sets also the StrtFetch2 signal to indicate the second quad is requested.

B.3 The tag RAM.

Module: a lower level schematic.
Name: TagRam.
Pin Constraints:
Input: TagOInF, StatusOInF, TaglInF, StatuslInF, SetF, TagOInS,
StatusOInS, TaglInS, Status1InS, SetS, Ctrl.
Output: TagOOutF, StatusOOutF, TaglOutF, StatuslOutF, Tag0OutS,
Status0OutS, TaglOutS, Status10utS.
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Description:

This module contains the tag/status memories. Not one wide memory is used, because
the restriction of a maximum width in IDaSS. Besides this restriction a memory, which
is very wide, is not realistic. Therefore the tag/status memory is divided into Tag0,
Tagl, StatusO and Statusl memories.

B.4 The data RAM.

Module: a lower level schematic.

Name: Data RAM.

Pin Constraints:
Input: Address, FetchAd, Ctrl, Block, Minl, Min2, Min3, Min4.
Output: Moutl, Mout2, Mout3, Mout4.

Description:

The fetched quads are stored in this module. The dimension of the used memory is: 128
word * 256 bits. This very wide memory is divided into four parts with dimension: 128
words * 64 bits. This is caused by the restriction of the memories. The memories can not

be wider than the maximum bus width (default 64 bits).

B.5 The prefetch buffer.

Module: a lower level schematic.
Name: PreFetchBuffer.
Pin Constraints:
Input: Cancel, Valid, Ctrl, in.
Output: QuadValid, DL, DH, Moutl, Mout2, Mout3, Mout4.
Description:

-73-



Appendix B. The cache.

This schematic is the implementation of the fetch buffer. Quad bypassing is also
implemented to speed up the delivering of the required quads to the instruction unit.
The fetch buffer is divided into a data part, which contains the quads, and a status part,
which contains the status information. A control unit is used to guide the quad to the
correct data register and set the appropriate status register. |

B.6 The read buffer.

Module: a lower level schematic.

Name: ReadBuf.

Pin Constraints:
Input: Min]l, Min2, Min3, Min4, Ctr], St0, St1, Ad.
OutPut: DH, DL, St.

Description:

This schematic is the implementation of the read buffer. In case of a cache memory
hit the quads are bypassed to the instruction unit. After this unit has taken the quads
off the instruction bus, the transfer block, which contains the delivered quads, is copied
into the data registers of the read buffer. Besides the transfer block also the status of
this transfer block is copied to the status registers of the read buffer. The reason of
copying the status of the transfer block is the fact that not all quads have been loaded
into the fetch buffer. So not all quads in the transfer block are valid.

B.7 The status register.

Module: a lower level schematic.
Name: Status_Reg.

Pin Constraints:
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Input: PreFAd, StReg, Ready, Address, StUpDem, StUpPre.
Output: FetchAd, ReadAd.

Description:

The addresses of the transfer block in the read buffer and in the fetch buffer have to
be stored. The reason is that the server and the fetcher has to distinguish which transfer
block is in the buffer. The addresses of the transfer block are stored in this module.

B.8 The prefetch address decoder.

Module: an operator, 1 function.
Name: PAdDec.
Pin Constraints:
Input: in.
Output: out.
Description:

This module extracts the prefetch address from the address, which is delivered by the
instruction unit. The prefetch address is used to set the appropriate transfer block
address into the status register, and it is delivered to the Memory Management Unit.
Logical Description:

Function: decode.

"The transfer block address is extracted from the address value and the extracted address
is incremented to get the next transfer block address. The Prefetch address is gotten by
a concatenation of 3 zeroes. The 3 zeroes represent the word field of the prefetch
address.”

out := (in from:3 to:45) inc, 3 zeroes.

-75-



C

THE MEMORIES.
C.1 The tag RAM.
Module: RAM, 16 words of 37 bits each.
Name: TagO0.
Pin Constraints:
Input: WrF, AdS1, AdS2, AdF1, AdF2, no name (Control Connector).
Output: RdS, RdS2, RdF.
Description:

This Ram contains the tag of the second block in the set. It controlled by a control
connecter, which enables the several write ports of the RAM.

Control Specification:

(13) "WrCacheF."

%1 Write.

C.2 The status RAM.

Module: RAM, 16 words of 34 bits each.
Name: StatusO0.
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Pin Constraints:

Input: WrS1, WrS2, WrF, AdS1, AdS2, AdS3, AdS4, AdF1, AdF2, no
name (Control Connector).
Output: RdS1, RdS2, RdF.
Description:

This Ram contains the status of the first block in the set. It is controlled by a control
connecter, which enables the several write ports of the RAM.

Control Connector Specification:

(15,14,13) "WrCacheS2, WrCacheS1, WrCacheF."

%10x Write: WrS1.

%11x Write: WrS1.

9%01x Write: WrS2.

%11x Write: WrS2.

%001 Write: WrF.

C.3 Splitting and merging busses.

Module: an operator, 1 function.
Name: Extract.
Pin Constraints:

Input: in.

Output: outl, out2.
Description:

The server delivers two addresses to the tag/status RAM. One merged bus is used
instead of two separated busses. This is done to reduce the number of I/O busses. This
operator divides the wide merged bus into two sub busses.

Logical Description:

outl := in From:0 To:3.

out2 := in From:4 To:7.
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Module: an operator, 1 function.
Name: Mergel.
Pin Constraints:
Input: inl, in2.
Output: out.
Description:

The server gets the tag bits of the first quad and the tag bits of the second quad. The
two busses are merged into one bus. This is implemented to reduce the number of the
1/0 busses.

Logical Description:

Function merge:

out := inl,in2.

Module: an operator, 1 function.
Name: Merge3.
Pin Constraints:
Input: i
Output: ol, o2.
Description:

The server delivers the status dependent of the first quad and the status dependent of
the second quad. One merged bus is used instead of two seperated busses. This is done
to reduce the number of I/O busses. This operator divides the wide merged bus into two
sub busses.

Logical Description:

Function merge:

ol := 1 From:0 To:33.

02 := i From:34 To:67.

Module: an operator, 1 function.
Name: Merge4.
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Pin Constraints:

Input: i1, i2.
Output: 0.
Description:

The server gets the status bits of the first quad and the status bits of the second quad.
The two busses are merged into one bus. This is implemented to reduce the number
of the I/O busses.

Logical Description:

Function merge:

out := il,i2.

C.4 The data RAM.

Module: 128 words of 64 bits each.

Name: Datal.

Pin Constraints:
Input: RdAd, WrAd, WrPort, no name (Control Connector).
Output: RdPort.

Description:

This RAM contains the quads, which are stored in the cache. It contains the seventh and
the eighth quad of the transfer block. The added control connector enables the write
port of the RAM.

Control Connector Specification:

%x1 Enable:RdPort. "set by default.”

%1x Write.
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C.5 The data RAM arbiter.

Module:

Name:

Pin Constraints:

Input:
Output:
Description:

an operator, 1 function.
Arbiter.

Block, Address, FetchAd, Ctrl.
MemCitrl, Ad.

The data RAM is implemented as a single ported RAM. Therefor a arbiter is used to

arbitrate when the server and the fetcher want to have access to the data RAM.

Logical Description:

"Ctrl : <QuadPointer>,<Ready>,<EnableFetch>,<WrCacheS2>,<WrCacheS1>,
<WrCacheF>,<Word>,<LoadReadBuf>,<Block0>,<Blockl>,<ReadHit>,
<FetchHit>,<CacheHit>,<ReadHit2>,<FetchHit2>,<CacheHit2>,<Next>."

"Generating the status signals.”

_CacheHit
_CacheHit2
_WrCacheF
_WrCacheS1
_WrCacheS2
_EnableFetch
_Next

:= Ctrl at:4.
:= Ctr] at:1.
:= Ctrl at:13.
:= Ctr] at:14.
:= Ctrl at:15.
:= Ctrl at:16.
:= Ctrl at:0.

"Generating the address of the requested transfer block."

_Address

:= ((Address From:0 To:2) ~= 7)
if1:(_CacheHit
if1:Address
if0:(_EnableFetch
if1:(FetchAd, 3 zeroes)
if0:Address))
if0:(_CacheHit /\ _CacheHit2
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ifl:Address
if0:( _CacheHit /\ _CacheHit Not
ifl1:Address
if0:(_CacheHit /\ _Next Not
if1:Address
if0:(_CacheHit2 /\ _CacheHit Not
if1:Address+1
if0:(_CacheHit2 /\ _Next
ifl:Address+1
if0: (_EnableFetch
if1:(FetchAd,3 zeroes)
if0:Address )))))).
_TrBlock := _Address From:3 To:4.
_Set := _Address From:5 To:8.
_Block := ((Address From:0 To:2) ~= 7)
ifl: ( _CacheHit
if1: (Ctrl at:8)
if0: ( _CacheHit2
if1:(Ctrl at:7)
if0:((_EnableFetch) if1: Block if0: 1 zeroes ) ) )
if0: ( _CacheHit /\ _CacheHit2
if1:(Ctrl at:8)
if0:(_CacheHit /\ _CacheHit2 Not
if1: (Ctrl at:8)
if0: (_CacheHit /\ _Next Not
If1: (Ctrl at:8)
If0:(_CacheHit2 /\ _CacheHit Not
If1:(Ctrl at:7)
If0:(_CacheHit2 /\ _Next
ifl: (Ctrl at:7)
if0: (_EnableFetch
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if1: Block
if0: 0) ) )) ) )

"Generating the write enable signal.”
_Write _WrCacheF /\ _WrCacheS1 not /\ _WrCacheS2 not.

MemCitrl := _Write,1 ones.
Ad := _Set, Block, TrBlock
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D
THE BUFFERS.

D.1 The data register of the read buffer.

Module: a lower level schematic.
Name: Quads.
Pin Constraints:
Input: In, Ctrl.
Output: Out.
Description:

This schematic is the implementation of a special data register. It contains a data
register and a multiplexer, which select between the input from the register or input
from the cache memory. The selection of the inputs and the control of the registers are

done by the ctrl input connector.

D.2 The status register of the read buffer.

Module: a register, 1 bit.
Name: Status8.
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Pin Constraints:

Input: no name, no name (Control Connector).
Output: no name.
Description:

This register contains the status of the quad in the transfer block. If the quad is present
in the loaded transfer block, then this bit is set. Other wise it is reset.

Control Connector Specification:

(9) "load read buffer signal”

%1 load.

D.3 The transfer block status.

Module: an operator, 1 function.
Name: StatusDetect.
Pin Constraints:

Input: St0, St1, Ctrl, Ad.
Output: Status.
Description:

This operator extracts the status of the transfer block, which is being loaded into the
read buffer.

Logical Description:

"Status signal generation.”

_CacheHit := Ctr] at:4,
_CacheHit2 := Ctrl at:1.
_BlockO := Citrl at:8.
_Block1 := Ctrl at:7.
"Transfer block field generation."
_TrBlock := _CacheHit ifl: (Ad From:3 To:4 )
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if0:(_CacheHit2 if1:((Ad+1) From:3 To:4)
if0:0).
"Block status of the second quad.”
St0 := St0 From:34 To:67.

_Stl := Stl1 From:34 To:67.
"Transfer block status of the first quad."
_Status] := _CacheHit if1: (_Block0
if0:(St0 At:(_TrBlock,3 zeroes) Width:8)
if1:(St1 At:(_TrBlock,3 zeroes) Width:8))
if0: ( 8 zeroes).
"Transfer block status of the second quad."
_Status2 := _CacheHit2 if1: (_Block1 if0: (_St0 At:(_TrBlock,3 zeroes) Width:8)
if1: (_St1 At:(_TrBlock,3 zeroes) Width:8) )
if0: ( 8 zeroes).

Status := _CacheHit ifl: _Statusl if0:_Status2.

D.4 The read buffer controller.

Module: an operator,1 function.
Name: ReadBufControl.
Pin Constraints:

Input: Ctrl

Output: HighCtrl, LowCtrl.
Description:

This operator generates the selection bits of the multiplexers.
Logical Description:

" C o n t T 0 1 B u s :
<QuadPointer>,<Ready>,<EnableFetch>,<WrCacheS2>,<WrCacheS1>,
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<WrCacheF >,<Word>,<LoadReadBuf>,<Block0>,<Blockl>,<Readhit>,
<FetchHit>,<CacheHit >,<ReadHit2 >, <FetchHit2 >, <CacheHit2>,<Next>."
"The word field of the address.”

_Word := Ctrl From:10 To:12.
"Status signals generation."
_ReadHit := Ctrl at:6.

_ReadHit2 := Ctrl at:3.
_CacheHit := Ctrl at:4.
_CacheHit := Ctrl at:1.
"Selection.’
HighCitrl := ((Word = 7) if0:((_ReadHit2 \/ _CacheHit2)
if0: %0000 "The quads are not located in the read buffer
or in the cache memory."
if1:((_word +1),1 ones))
if1:((_ReadHit2 \/ _CacheHit2)
if0: 900000 '"The quads are not located in the read buffer
or in the cache memory."
if1:((3 zeroes),1 ones)).
LowCitrl := (_Word = 7) if0:((_ReadHit \/ _CacheHit)
if0: %0000 "The quads are not located in the read buffer
or in the cache memory."
if1:((_word),1 ones))
if1:((_ReadHit \/ _CacheHit)
if0: 200000 "The quads are not located in the read buffer
or in the cache memory."
if1:((3 ones),1 ones)).

D.5 The multiplexers.
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Module: an operator, 8 function.

Name: multihigh.

Pin Constraints:
Input: inl, in2, in3, in4, in5, in6, in7, in8, no name (Control Connector).
Output: outhigh.

Description:

This operator is implemented as a multiplexer, which selects the higher quad. The
selection is controlled by a control connector, which selects the function of the operator.
The function selects the input connector.

Module: an operator, 8 functions.
Name: multilow.

Pin Constraints:

Input: inl, in2, in3, in4, inS, in6, in7, in8, no name (Control Connector).
Output: outlow.
Description:

This operator is implemented as a multiplexer, which selects the lower quad. The
selection is controlled by a control connector, which selects the function of the operator.
The function of the operator selects the input connector.

D.6 The fetch buffer controller.

Module: an operator, 1 function.
Name: FetchBufCtrl.
Pin Constraints:
Input: Cancel, Valid, Ctrl.
Output: CtrlQuad, CtriStatus, LowCtrl, HighCitrl.
Description:
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This module generates the control signals of the multiplexers and the registers.
Logical Description:

"Generating the status signals.”

_WrCacheS := Ctrl at:14 width:2.

_Qp := Ctrl From:18 To:21.
_Rst := Citrl at:16.
_Word := Ctrl From:10 To:12.

_FetchHit  := Ctrl at:5.

_FetchHit2 := Ctrl at:2.

"Checking if the cache can receive the data."

_Rdy := (Valid Not /\ Cancel) if0:(Ctrl at:17) if1:0.

"Generating the control signals."

HighCtr} := (_Word = 7) if0:((_FetchHit2) if0: %0000 if1:((_word+ 1),1 ones))
if1:((_FetchHit2) if0: %0000 if1:((3 zeroes),1 ones)).

LowCtrl := (_Word = 7) if0:((_FetchHit ) if0: %0000 if1:((_word),1 ones))

if1:((_FetchHit ) if0: %0000 if1:((3 ones),1 ones)).

CtrlStatus = ((_WrCacheS ~= 0) /\ _Rst) if0:(_QP,_Rdy, Rst) if1:(_Qp,_Rdy,1
zeroes).
CtrlQuad = _Qp, Rdy.
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THE SERVER.
E.1 The comparators.
Module: a lower level schematic.
Name: Comparators
Pin Constraints:
Input: readbufadres, fetchbufadres, ReadBufSt, adres, tag_0, tag_1, status0,
statusl, quad_valid, ack.
Output: word, readhit, fetchhit, cachehit, borderhit, quadhit_1, quadhit_2,

block0, block1, set, readhit2, fetchhit2, cachehit2, stat, stat0, statl.
Description:
This schematic is the implementation of the comparators. They locate the required

quads. In case of a cache memory hit, the LRU bit is updated.

E.2 The status signal merger.

Module: an operator, 1 function.
Name: SignalMerger.
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Pin Constraints:

Input: readhit, fetchhit, cachehit, borderhit, quadhit_1, quadhit_2, block0,
block1, readhit2, fetchhit2, cachehit2, request, next, ack, state.
Output: CacheHitF, Chit, contrbus2, contrbus, Control.
Description:

This operator generates three status signal bus and two other status signals. The most

of the status signals are delivered by the comparators sub module.

Logical Description:

"Merging of comparators status signals to input buses."

contrbus := readhit,fetchhit,cachehit,borderhit,quadhit_1,quadhit_2,next,
request,1 ones,cachehit2.

contrbus2 = readhit2 fetchhit2,cachehit2,quadhit_2,next,request,borderhit.
CacheHitF := Ack ifl:(cachehit \/ cachehit2) if0:0.

Control = block0,block1,readhit fetchhit,cachehit readhit2,fetchhit2,cachehit2 Next.
Chit := CacheHit,(CacheHit2/\borderhit).

E.3 The first combinatorial block.

Module: an operator, 16 functions
Name: Comb_1.
Pin Constraints:
Input: ctrl (Control Connector).
Output: out, go.
Description:

This module generates the servers control signals of the first quad. A control connector
is used to call a function of this operator. The functions set the appropriate signals. The
control signals are merged into one bus and the signals of this bus is extracted by the
module Comb_3.
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List of functions:
cachehitl
cachehit2
cachehit3
default
fetchhitl
fetchhit2
fetchhit3
memoryl
memory2
memory3
readhitl
readhit2
waitl
wait2
wait3

wait4

Control Connector Specifications:

Yox0000x001x default. "Rest state"

"No transfer block border cross"

%1000xx011x , %1000xx101x
%01000x011x , %01000x101x

%010010011x , 9%010010101x
%010011011x , 9%010011101x
2%0010xx011x , 9%0010xx101x
%00000x011x , %00000x101x
%000010011x , %000010101x
%000011011x , 9%000011101x

readhitl. "First quads is in the read buffer."

waitl.  "The transfer block is located in the fetch
buffer."

fetchhitl. "The first quad is located in the fetch buffer."

fetchhit2. "First quad is in the fetch buffer."

cachehitl. "First quad is in the Cache memory."

wait3.  "First quad is not in the Cache."

memoryl. "First quad is requested from the memory."

memory2. "First quad is requested from the memory."
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"Transfer block border cross."

%1001xx011x , %1001xx101x readhit2. "First quad is in the read buffer."
%01010x011x , %01010x101x wait2. "Transfer block is in the fetch buffer."
%01011x011x , %01011x101x fetchhit3. "First quad is in the fetch buffer.”
9%00011xx0111 , %0011xx1011 cachehit2. "Both quads are in the Cache memory."
%00011xx0110 , %0011xx1010 cachehit3. "First quad is in the Cache memory."
%00010x011x , %00010x101x wait3.  "First quad is not in the Cache."
900011x011x , %00011x101x memory3. "First quad is requested from the memory."

E.4 The second combinatorial block.

Module: an operator, 7 functions
Name: Comb 2
Pin Constraints:
Input: Ctrl (Control Connector), go.
Output: out.
Description:

This module generates the servers control signals of the second quad. A control
connector is used to call a function of this operator. The functions set the appropriate
signals. The control signals are merged into one bus and the signals of this bus is
extracted by the module Comb 3.

List of Functions:

cachehit

default

fetchhit

memory

readhit

waitl

wait2
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Control Connector Specifications:

Tox000x00x default.

%100x10x , %100x01x  readhit. "The second quad is in the read buffer."

%010010x , %010001x  waitl. "The transfer block of the second quad is in the fetch
buffer.”

%010110x , %010101x  fetchhit. "The second quad is in the fetch buffer."

%001x10x , %001x01x  cachehit. "The second quad is in the cache buffer."

%000010x , %000001x  wait2. "The second quad is not in the cache."

9%000110x , %000101x memory. "The second quad is requested from the memory."

E.5 The state controller.

Module: a state machine with 2 states.
Name: SContrroller.

Pin Constraints:

Input: no name (Control Connector).
Output: none
Description:

This state controller controls the wait cycles of the server by setting the "next" constant
generator to 1.

State Description:

Busy1:

Next setto:0;

ctristate setto:2;

<<

Busy2:

Next setto:1;

ctristate setto:3;
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<<
Control Connector Specification:

"control = <ctristate >, <wait>,<ack>,<request>."

%10000 goto: busyl. "no actions required by the instruction unit."
%10001 goto: busy2. "waiting for active ack sinal.”

%10x11 goto: busyl. "ack is set, server can go to the rest state.”
%10101 goto: busy2. "wait signal is set, server has not finished."
%11x00 goto: busy2. "waiting for active ack signal.”

%11x1x goto: busyl. "ack is set, server can go to the rest state."




F
THE FETCHER.

F.1 The comparators.

Module: an operator, 1 function.
Name: Comparators.
Pin Constraints:
Input: Address, ReadBufferAddress, FetchBufferAddress, Tag0, Status0, Tagl,
Status1.
Output: TrBlockHit.
Description:
This module locates the next transfer block of the requested one. If the next transfer
block is in the cache, the trblockhit output signal is set. If the next tranfer block is not
located in the cache, the trblockhit output signal is not activated.
Logical description:
Function Compare.
"Extracting the next transferblock address out of the delivered address."

_Address = (Address From:3 To:45) inc, (0 Width:3).
_TransferBlockAddress = _Address From:3 To:45.

_Tag = _Address From:9 To:45.

_TransferBlock = _Address From:3 To:4.
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“In case the requested transferblok is in the ReadBuffer.

_ReadHit := (_TransferBlockAddress = ReadBufferAddress). "
"In case the requested transferblok is in the FetchBuffer."
_FetchHit := (_TransferBlockAddress = FetchBufferAddress).
"In case the requested transferblok is in the Cache memory."
_Block0 := (Tag0 = _Tag) /\ (Status0 at:32) /\

((StatusO at:_TransferBlock , 3 zeroes Width:8) = OFFh).
_Block1 := (Tagl = Tag) /\ (Statusl at:32) /\

((Statusl at: TransferBlock , 3 zeroes Width:8) = OFFh).
_CacheHit := _Block0 \/ _Blockl.

"In case of the transferblock that realy is requested is in the fetchbuffer it has to
remain in the buffer."

_Test := (Address From:3 To:45) = (FetchBufferAddress).
"Mapping the temporal variables on the outputs."
TrBlockHit := _Test if0:(_FetchHit \/ _CacheHit) if1:1.

F.2 The prefetcher.

Module: a lower level schematic.
Name: PreFetch.
Pin Constraints:
Input: FetchBufAd, StOIn, St1In, Tag0In, TaglIn, QuadValid, Ready, Ctrl.
Output: CountQ, StUpdate, WrCache0, Set, Block, St0Out, St1Out, TagOOut,
Tag1Out, QuadP, EnabFetch, ValidPre.
Description:
This module is the implementation of the prefetcher. It is activated on the following
conditions:
* an active request signal of the instruction unit and
* a nonactive trblockhit signal of the comparators in the fetcher and
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* a nonactive startfetcher signal of the server.
After finishing prefetching a transfer block, this module has to update the status of the
block, which contains the transfer block. In case of a block replacement the tag bits of
the block has to be updated.

F.3 The demand fetcher.

Module: a lower level schematic.
Name: DemandFetch.
Pin Constraints:
Input: TagOIn, Taglln, StatusOIn, StatuslIn, Address, QuadValid, Ctrl, Ready,
Address, Strt2, FetchBufAd.
Output: EnableFetch, Set, WrCache0, Tag0Out, Tag1Out, StatusOOut, Status1Out,
CountQ, StUpdate, ValidDem, CancelReq, Block, QuadP.
Description:
This module represents the implementation of the demand fetcher. The demand fetcher
is activated by an active startfetcher signal of the instruction unit. When the demand
fetcher is activated, the count signal and the quad pionter have to be set to the correct
values. The following cases have to be distinguished:
- fetching both quads.
- fetching the second quad.
To be able to make this distinguish a signal is added to the interface between the
fetcher and the server. The added signal is named StrtFetch2.
After finishing the fetch cycle, the status and the tag of the fetched transfer block has
to be updated.
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F.4 The first signal merger.

Module: an operator, 3 functions.

Name:

SignalMerger.

Pin Constraints:

Input: BlockDem, ValidDem, St1Dem, TaglDem, StODem, Tag0Dem, SetDem,

WrCacheODem, BlockPre, ValidPre, St1Pre, TaglPre, StOPre, TagOPre,
SetPre, WrCacheOPre, no name (control connecior).

Output:  Block, Valid, St1, Tagl, St0, Tag0, Set, WrCacheO.

Description:

This module is implemented as a multiplexer, which selects between the signals of the

prefetcher and the signals of the demand fetcher. The following cases are possible:

The prefetcher is active and the demand fetcher is inactive. The multiplexer
selects the prefetch signals.

The demand fetcher is active and the prefetcher is inactive. The multiplexer
selects the demand fetch signals.

Both fetch modules are active. This happens when the prefetcher is stopped by
an active startfetcher signal. The prefetcher has to update the status of the
prefetched transfer block in the tag/status RAM. The multiplexer selects the
tag/status RAM signals of the prefetcher and the interface control signals of the
demnad fetcher. Mentioned interface is the interface between the cache and the
bus unit.

None of the fetch modules are active. The multiplexer selects the signals of the

demand fetcher.

Locical Description:

Function Prefetching:

"The prefetcher is active and the demand fetcher is inactive.”
WrCache0 := WrCacheOPre.
Tag0Out := TagOPre.
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Tag1Out := Tag1Pre.
StatusOOut  := St0Pre.
Status1Out  := St1Pre.

Valid := ValidPre.
Set := SetPre.
Block := BlockPre.

Function DemandFetching:
"The demand fetcher is active and the prefetcher is inactive."

WrCache0 := WrCacheODem.
Tag0Out := Tag0Dem.
Tag1Out := TaglDem.

StatusOOut := St0Dem.
Status1Out  := St1Dem.

Valid := ValidDem.
Set := SetDem.
Block := BlockDem.

Function DemandPreFetching:

"Both fetch modules are active. This happens when the prefetcher is stopped by an

active startfetcher signal. The prefetcher has to update the status of the prefetched

transfer block in the tag/status RAM."
WrCache0 := WrCacheOPre.
Tag0Out := TagOPre.

Tag1Out := Tag1Pre.

StatusOOut := StOPre.

Status10ut := St1Pre.

Valid := ValidDem.
Set := SetPre.
Block := BlockPre.

Control Connector Specification:

"Both fetch modules are inactive or only the demand fetch module is active.”

%10,%00  DemandFetching.
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"Only the prefetch module is active."

%01 PreFetching.

"Both fetch modules are active. This happens when the prefetcher is stopped by an
active startfetcher signal of the server. Before the prefetcher goes to its rest state, it has
to update the status of the prefetched transfer block.”

%11 DemandPreFetching.

F.5 The second signal merger.

Module: an operator, 4 functions.
Name: Merge2.
Pin Constraints:
Input: QuadPointPre, EnabFetchPre, QuadPointDem, EnabFetchDem, no name
(Control Connector).
Output: QuadPoint, EnabFetch.

Description:

This module selects between the quadpointer and enable fetch buffer signal of the
prefetcher and those of the demand fetcher. The following cases can occcur:

- The prefetcher is active and the demand fetcher is inactive. The multiplexer
selects the prefetch signals.

- The demand fetcher is active and the prefetcher is inactive. The multiplexer
selects the demand fetch signals.

- Both fetch modules are active. This happens when the prefetcher is stopped by
an active startfetcher signal. The prefetcher has to update the status of the
prefetched transfer block in the tag/status RAM. The multiplexer selects the
prefetch EnabFetch signal and the demand fetch QuadP signal.

- None of the fetch modules are active. The multiplexer selects the zero signals.

Logical Description:

“None of the fetch modules are active."
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QuadPointer := 0.
EnabFetch := 0.
“Both fetch modules are active. This happens when the prefetcher is stopped by an
active startfetcher signal."

QuadPointer := QuadPointDem.

EnabFetch := EnabFetchPre.

"The prefetcher is active and the demand fetcher is inactive.”
QuadPointer := QuadPointPre.

EnabFetch := EnabFetchPre.

"The demand fetcher is active and the prefetcher is inactive."
QuadPointer := QuadPointDem.

EnabFetch := EnabFetchDem.

Control Connector Specificaton:

"None of the fetch modules are active."

%00  Default.

"The demand fetcher is active and the prefetcher is inactive."

%10  Demand.

“The prefetcher is active and the demand fetcher is inactive."

%01  Pre.

"Both fetch modules are active. This happens when the prefetcher is stopped by an
active startfetcher signal."

%11  DemandPre.

F.6 The third signal merger.

Module: an operator, 3 functions.
Name: CountMerge.
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Pin Constraints:

Input: CountPre, CountDem, no name (Control Connector).
OutPut: Count.
Description:

This module operates as a multiplexer. The multiplexer selects between the count signal
of the prefetcher an the count signal of the demand fetcher. The following cases are
possible:
- The prefetcher is active and the demand fetcher is inactive. The multiplexer
selects the count signals of the prefetcher. ‘

- The demand fetcher is active and the prefetcher is inactive. The multiplexer
selects the demand fetch signal.

- Both fetch modules are active. This happens when the prefetcher is stopped by
an active startfetcher signal. The prefetcher has to update the status of the
prefetched transfer block in the tag/status RAM. The multiplexer selects the
count signal of demand fetcher.

- None of the fetch modules are active. The multiplexer selects a zero signal.

Logical Description:

Funtion Default:

"None of the fetch modules are active."

Count := 0.

Function Pre:

"The prefetcher is active and the demand fetcher is inactive."

Count := CountPre.

Function Demand:

"The demand fetcher is active and the prefetcher is inactive, or both fetch modules are

active."

Count := CountDem.

Control Connector Specifications:

"None of the fetch modules are active."

%00  Default.

- 102 -



Appendix F. The fetcher.

"The demand fetcher is active and the prefetcher is inactive, or both fetch modules are
active.”

%10,%11 Demand.

"The prefetcher is active and the demand fetcher is inactive."

%01  Pre.

F.7 The present state register.

Module: a register, 2 bits.
Name: State.
Pin Constraints:
Input: none, no name (control connector).
Output:  no name.
Description:
The content of this register represents the present state of the total fetch module. The
state of the prefetch, demand fetch and the fetch controller depends o the value of this
register. The following states are possible:
- rest state, indicated by the code 0Ob.
- prefetch state, indicated by the code 01b.
- demand fetch follow up state, indicated by the code 10b.
- demand fetch initialisation state, indicated by the code 11b.
Control Connector Specification:

"rest state."

Zox0xx1001010 Setto:0. "old state:prefetching.”
%x0xx1001100 Setto:0. "old state:demand fetching."
"demand fetch initialisation state."

%x 1xoooooe00x Setto:3. "old state:rest state."

%ox 1xoooocx 10x Setto:3. "old state:demand fetching."
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%x 10000001 Setto:3. "old state:prefetching.”
"prefetch state.”

%0100x000000x Setto:1.

"demand fetch follow up state."

Ypxooooox1 1x Setto:2.

F.8 The control signals merger.

Module: an operator, 1 function.

Name: ContrMerge.

Pin Constraints:
Input: Ready, QuadPointer, State, Request, TrBlockHit, StartFetcher, CacheHit.
Output: C.

Desription:

This operator merges all control signals into one control bus.

Locical Description:

C := Request,StartFetcher, TrBlockHit,Ready,QuadPointer,State,CacheHit.

F.9 The fetch controlier.

Module: a state machine with 4 states.
Name: FController.
Pin Constraints:
Input: no name (Control Connector).
Output  none.
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Description:

This state machine is implemented to indicate in which mode the fetcher is fetching.

Two ways of fetching are possible:

- prefetching: fet¢hing quads, which are not yet required by the instruction unit.

- demand fetching: fetching quads, which are required by the instruction unit.

The output signal is implemented as constant generator, named DemandOrPre.

State Description:

Rest:

DemandOrPre Setto:0;

<<
DemF3:

DemandOrPre Setto:3;

-> DemF

DemF:

DemandOrPre Setto:2;

<<
PreF:

DemandOrPre Setto:1;

<<

Control Connector Specification:

"The specification of the control connector input:
Request,StartFetcher, TrBlockHit,Ready,QuadPointer,State,CacheHit."

P%x0xx1001010
Zox0xx1001100
Pox 130000xx 00x
Yox 1xx000x 10x
Zox1xx100101x
Pox 1xx0xxx01x

%x1xx100001x

Goto:Rest.

Goto:Rest.

Goto:DemF.

Goto:DemF.

Goto:DemF.

Goto:DemF3."The prefetcher is stoppped by an active StartFetcher
signal.”

Goto:DemF3."The prefetcher is stoppped by an active StartFetcher
signal."
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%100x000000x Goto:PreF.

F.10 The demand and prefetching indication.

Module: a constant generator.
Name: DemandOrPre.
Pin Constraints:
Input: none.
Output: no name.
Description:
This constant generator is used to generate the output signals of the state controller,

named FController.
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