
 Eindhoven University of Technology

MASTER

Optimisation of combinatorial logic

van Paassen, P.T.H.M.

Award date:
1985

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/5da69856-46aa-4ac1-8a39-b24ff4401b72

Eindhoven University of Technology
Department of Electronic Engineering
Laboratory Automatic System Design

OPTIMISATION OF COMBINATIONAL LOGIC

P.T.H.M. van Paassen

Thesis performed during 1.2.1984 - 21.2.1985
by order of prof. dr. -ing. J.A.G. Jess
and supervised by ir. J.F.M. Theeuwen.

The Department of Electronic Engineering of the Eindhoven
University of Technology accepts no responsibility for the
contents of training and thesis reports.

ABSTRACT.

An optimisation of a set Boolean expressions, describing a
combinational network, is implemented in PASCAL. An
algebraic technique is used to decompose the expressions.
After identification of common subexpressions, these are
substituted by new variables. Owing to this a set of less
complex expressions is obtained, together with a set of
common subexpressions, represented by new variables.
A heuristic is presented for a realisation in NMOS random
logic. The realisation consists of a NAND/NOR gate
configurations and the (sub)expressions, obtained from the
optimisation, are decomposed and translated into a
description of such gates.

CONTENTS

1. INTRODUCTION. • • . 1

2. OPTIMISATION OF BOOLEAN EXPRESSIONS....... .••....... 2
2.1 Definitions.................................... 2
2.2 Algorithms..................................... 4

3. IMPLEMENTATION...................................... 9
3.1 Data structure................................. 9
3.2 Distillation 14
3.3 Kernel negation 21
3.4 Condensation................................... 23
3.5 Collapsing 25

4. REALISATION OF A BOOLEAN FUNCTION IN NMOS RANDOM
LOGIC. . • • . . . • • • • 26
4.1 Decomposition 26
4.2 Kernel realisation 28
4.3 Realisation of a 'big' cube 32

5. IMPLEMENTATION... • • • . • • . • • • • .. 35
5.1 Data structure................................. 35
5.2 Decompos i t 10n. 36
5.3 Kernels 38
5.4 'Big' cubes 39

6. CONCLUSIONS... 40

7 . REFERENCES.......... • • • • . • . •. 41
•

8. APPENDIX .•..•......•............... ·.•.•.....••....•. 42

- 1 -

1. IH~ODUCTIOH.

Design of digital circuits can be divided into three parts:
High-level synthesis, Logic synthesis and Physical
synthesis. The topic of this report should be placed in the
second part.
Logic circuitry can be categorised in terms of
combinational/sequential, static/dynamic and the way of
arrangement. The arrangement of logic circuitry varies from
completely random via structured random (gate structures) to
highly structured, for instance a Programmable Logic Array
(PLA) .
This report considers the design of combinational logic of
more or less random nature, which can be part of a larger,
different category. It handles an automatic optimisation of
a combinational network, given in a two-level-logic
(Boolean) description. The outputs of the network are given
as a Boolean function of the inputs and in a realisation,
many intermediate results, which can be common to several
outputs, are computed. This commonality implies a
minimisation of the network description and to some extend
of the circuit.
Since this synthesis process is automatic and does not
require designers intervention, it can be used as a
component of a larger system. However, the automatic
character holds a structured optimisation, which minimises
design time and with that the design costs at the expense of
physical performance. So it should be used only when
achievement of functionality is not too closely tied to
achievement of operatronal performance.
The second part of this report conside~s a network
description. A description in static logic, using
distributed input gate structures in NMOS technology. The
decomposition needed to obtain this description is based on
the same technique as used for the optimisation.

- 2 -

2 OPTIMISATION OF BOOLEAN EXPRESSIONS.

T obtain a minimal realisation of a set of Boolean
e pressions, we have to look for common subexpressions.
DfcompOSing the expressions will give us the subexpressions
a d by comparing them we obtain the common ones.
A common sUbexpression need to be realised only once and
t erefore can reduce area, the number of components and
p~wer consumption. The problem is to define a subexpression
w ich is easy to compute and by which all subexpressions can
b acquired.
B ayton and McMullen present in [1] a technique for the
d composition of Boolean expressions. By giving some basic
d finitions we will derive a suitable definition for a
s bexpression.

2.1 Definitions.

AI variable is a symbol (usually a character) representing a
cbordinate of the Boolean space. Variables and their
negations are called literals.
A function can be given as a sum of products. A product is a
set of literals such that it contains either a variable or
its complement and will be referred to as a cube.
A Boolean expression is a set (read sum) of cubes, which as
opposed to a function has to be nonredundant.
The support of an expression f (sup(f)) is the set of
variables which are appearing straight or as a negation in
that expression. '

E.g. let
f a A + B'C,

then
sup(f) • {A,B,C}.

Using the support of an expression we define that an
expression f is o~thogonal to g if their supports do not
hold common variables. This definition (orthogonality)
makes it possible to define the algebraic operation product
and its inverse operation, division.

(f) by
of cubes

(f) by
sup(f/g)

- 3 -

The product of two expressions f and g, containing the cubes
fl,f2, ... fn and gl,g2, ... fm respectively, consists of all
cross-terms fi*gj.

E.g.
f = A + B

and
g = C + D,

then
fg = AC + BC + AD + BD.

A zero product, a variable mUltiplied with its complement,
can never occur, because the product of two expressions is
only defined if they have disjoint supports and therefore
this product can be called algebraic.
The inverse operation, division of an expression
another one (g), is defined as the largest set
common to the results of dividing the 'numerator'
each cube of the 'denominator' (g), presuming that
is not empty.

Let
f = AB + AC + AD + BC + BD,

then
f/A = B + C + D

and
fiB = A + C + D.

When
g = ~ + B,

then
fig • C + D

and
f = (A + B)(C + D) + AB.

This division is called weak division as opposed to strong
division, which is used in [3] for simplification. The
result of strong division would have been:

f/A • B + C + D + BC + BD.

If (f/g)g • f holds, we say g divides f evenly. If only 1
divides f evenly then f will be called cube free (no cube
can be factored out, comparable with a prime number).
The set of cubes and subexpressions that divide an
expression will be called the set of primary divisors. From
this set a subset is taken, that satisfies the properties
that its elements are easy to compute and that the set is
large enough to obtain all sUbexpressions. This subset
consists of the cube free primary divisors and such a
divisor will be referred to as a kernel.

some expression.
of subexpressions
still a complex

- 4 -

Although the subset satisfies the two properties J still the
kernels can be difficult to manage.

E.g. k • A(B(C + D) + E) + F

Suppose k is a kernel J occurring in
Considering the comparison for acquisition
common to two or more expressions J k is
expression which is not easy to identify.
Further J k contains the kernel B(C + D) + E J which in its
turn contains the kernel C + D. By assigning a level to
these kernels J according their relation J the following table
is obtained.

A(B(C + D) + E) + F
B(C + D) + E

C + 0

level 2
level 1
level 0

Table: level assignment.

The motivation to choose the set of kernels of level zero is
twofold. In the first place J they have the property that
they are subexpressions containing at least two cubes which
do not have literals in common. ConsequentlYJ they are easy
to identify and therefore the change of finding a larger
number of equal kern~ls is bigger. secondlYJ it is easy to
retain (by collapsing) the kernels of a higher level J so
there is no loss of effectiveness.

2.2 Algorithms.

The minimisation of a set of Boolean expres~ions consists of
three stages. The first stage is finding common
sUbexpressions (kernels) and substituting them by new
variables. The next stage J called condensation J is
extracting common cubes J which will be substituted too.
Collapsing J the final stage J is a correction or finding a
certain balance between the first two.

- 5 -

Distillation.

Distillation, the first stage, consists of computing the set
of kernels of each expression. This set contains all
quotients f/c such that c is a cube, f/c is cube-free and no
literal in f/c appears twice. Now, having a set of kernels
of each expression, the comparison of these kernels can
start in order to acquire the common ones.
The comparison of two kernels consists of taking the
intersection of their set of cubes. If this intersection
contains at least two cUbes, a common subexpression is
found. This sUbexpression will be substituted by a new
variable and after all possible substitutions we obtain a
set of expressions with reduced complexity and a set of new
variables representing the substituted kernels.
Also complements of kernels are substituted. From each
kernel its complement is taken and all expressions are
divided by that complement. If an expressions contains the
complement, the negation of the new variable, representing
that kernel, is inserted. .
This procedure is repeated until no common kernels can be
found. At this stage the set of expressions is called
relatively kernel free, which means that only cubes are
their common divisors.

Condensation.

The relatively kernel free expressions have left only single
cubes as their common aivisors. Since the representation of
the expressions as sum of cubes, it is-straightforward that
these are much easier to identify than the kernels.
In this stage all cubes are compared and they will be pUlled
out when their intersections contain more than one literal,
After condensation only single literals are left as common
divisors.

Collapsing.

Collapsing is the reverse action of extraction. It is
possible, as shown in the example, that a new variable,
representing a sUbexpression, appears only once in another
subexpression and it is obvious that this does not optimise
that subexpression. Therefore the variable can be pushed
back into that expression. However, when such a
subexpression describes, in a certain technology, a cell or
gate, performing this back-substitution can be unnecessary
(chapter 4).
Pushing back a new variable reduces the number of delay
stages. Every new variable is an extra stage (an

- 6 -

intermediate signal) in the circuit, which implies an extra
delay. So, collapsing can also be used to control the number
of delay stages or to obtain a smaller set of somewhat
larger subexpressions. By the latter, kernels of a higher
level can be obtained.

Example.

Consider the expressions:

fl .. AB(C(D + E) + F+ G) + H
f2 .. AI(C(D + E) + F+ J) + K

For surveyability they are given in a factorised
representation.

First the kernels of level zero for both expressions are
computed:

fl
f2

(ABC)
(AIC)

D + E
D + E

They are equal and the,substitution of L .. D + E will result
in:

fl .. AB(CL + F + G) + H
f2 .. AI(CL + F + J) + K

The kernels obtained by the next pass of distillation are:

fl
f2

(AB)
(AI)

CL + F + G
CL + F + J

They are not equal, but they have two cubes in common and
consequently the substitution H .. CL + F is performed:

fl .. AB(H + G) + H
f2 .. AI(H + J) + K

- 7 -

Another pass gives:

f1
f2

(AB)
(AI)

M + G
M + J

They are not equal either, but now they do not have (at
least) two cubes in common and consequently the expressions
are relatively kernel free and condensation can start.
Condensation consists of comparing the cubes of the
expressions and substituting the common cubes, which contain
at last two literals.
Only the cubes:

f1 ABM
f2 AIM

are having such a cube in common. That cube is AM and by
substituting N • AM we obtain the expressions:

f1 • B(N + AG) + H
f2 • I(N + AJ) + K

and the new variables: .

L • D + E
M • CL + F
N • AM

The expressions are now relatively cube free, only single
literals are their common divisors.
Now the final stage, collapsing, can be started. Looking at
the new variables, we see that Land M appear only once.
This does not optimise the subexpressions and therefore they
can be collapsed (pushed back).

- 8 -

Collapsing will give the final result:

fl z B(N + AG) + H
f2 • I(N + AJ) + K

N • A(C(D + E) + F)

where N contains a kernel of level one.

An example with a small set of expressions is chosen
clear explanation of the algorithm at the expense of
a large gain. Furthermore, the gain depends on the
realisation.

for a
showing
way of

- 9 -

3. IMPLEMENTATION.

Before describing the implementation of the three stages of
optimisation, the internal representation of the expressions
and the necessary data structures are considered.

3.1 Data structure.

An expression is defined as a sum of products (cubes) and as
such its internal representation is chosen.
A literal is represented by an integer value obtained from
the Pascal ORO-operation. A cube, which is a product-term,
is a Pascal set of these integers.
A variable is usually represented by a character and the
ORO-operation gives the ASCII-code for that character.
E.g. ORD(A) • 65. By subtracting 64 we obtain 1 as a value
for the first character (A has the lowest ASCII-code). The
set of variables which can be used is:

A(l) Z(26) a(33) z(58),
#A(59) - #Z(84) , #a(91) - #z(116),
@A(117) - @Z(142), @a(149) - @z(174).

The numbers denote the value by which the variables are
represented. The highest value is 174 and will be used to
form the negations.
A negation is denoted 'by and the value for internal
representation will be the one of the-variable + 174, e.g.:
a' is represented by 33 + 174 = 207.

E.g. let
f • AB + C'D

then the internal representation is:

f = [1,2] + [4,175]

A cube is stored in a Pascal pointer record and an
expression is formed by a linked list of suchs records.
An expression consist of two kinds of pointer records. First
a pointer record (register), which contains information
about that expression and second a pointer record (link),
which contains a cube of that expression.

- 10 -

type register

'contents

type Unk

Figure 1. Internal representation of an
expression, a record of type
register and a linked list
of link records.

pointer record fields 9f type register:

union
contents
nextexpr

nextkernel

owner
numberofcubes

divisors

newvariable

.
set of all literals of the expression,
pointer to linked list of link records,
pointer to register record of next
expression in expression list,
pointer to register record of next
kernel in kernel list,
index of original expression,
number of cubes the expression
consists of,
divisors by which the expression
is obtained,
variable representing the expression.

Note: the use of the fields of register record depends
on being part of one of the expressions or of
one of their sUbexpressions (kernels).

- 11 -

pQinter recQrd fields Qf type link:

infQ
next

set Qf literals the cube cQnsists Qf,
pQinter tQ next link recQrd.

The 'head' recQrd (type register) Qf an expressiQn cQntains
the recQrd field cQntents, which is a pQinter Qf type link,
pQinting tQ the first cube Qf that expressiQn (fig. 1).
The new variables, representing the substituted
sUbexpressiQns, are stQred in these recQrds tQQ. The set Qf
expressiQns is cQntained in a list. This list is fQrmed
using the recQrd field nextexpr (fig. 2).
A kernel is stQred in a similar way as an expressiQn. The
recQrd field Qwner registers tQ which expressiQn the kernel
belQngs. The recQrd field divisQrs is a cube cQntaining the
divisQrs by whQse divisiQn the kernel is Qbtained.

Figyre ~. List Qf expressiQns.

All the cQmputed kernels Qf an expressiQn are alsQ stQred in
a list. The recQrd field nextkernel in the register pQinter
recQrd Qf an Qriginal expressiQn pQints tQ the first kernel
and in every kernel 'head' it pQints tQ the next kernel in
the kernel list. If a kernel appears mQre than Qnce in an
expressiQn, the recQrd field nextexpr in the 'head' Qf that
kernel will pQint tQ the 'head' Qf the equal Qne.

- 12 -

When the kernels of all expression are computed, we obtain
the structure given in fig. 3.

Figure ~. List of expressions with
kernels.

Comparison of these kernels gives strings of equal kernels.
Here the word string instead of list is used, to indicate
the difference with the list in which these strings are
stored. These strings are stored in a list of a third kind
of pointer record.

pointer record fields of type point:

equalkernel
next
previous
setofexpr
numofkernel

pointer to string of equal kernels,
pointer to next point pointer record,
pointer to previous point pointer record,
a set of expressions containing the kernel,
number of equal kernels in string.

- 13 -

A somewhat similar pointer record is used for condensation.

pointer record fields of type drip:

drop

setofexpr
amount
count
next

cube containing literals common to two
or more cubes,
a set of expressions containing the drop,
number of appearances of drop,
number of literals in drop,
pointer to next drip pointer record.

The lists are ordered according an object function. For the
result of distillation the object function is the number of
literals, which the kernel contains, multiplied by the
number of appearances of that kernel.

The results of condensation are sorted according the number
of literals in the cube and when there are cubes with that
number of literals, the number of appearances of that cube
is considered. The small difference is caused by the fact
that the list with equal kernel strings is always in the
right order. A new string is placed according the object
function. The list with the results of condensation is
sorted afterwards and its records are not provided with a
record field previous.

- 14 -

3.2 Distillation.

The structure of the program is shown in procedure 1:

procedure decomposition;

"read boolean expressions";

while "new equal kernels"
d2

distillation;
kernelnegation;

.Q.d. ;

condensation;
collapsing;

Procedure .1..

In this and the following sections will be dealt with
distillation, kernelnegation, condensation and collapsing.

The first step in the optimisation is distillation, this is
the extraction of s~bexpressions (kernels of level zero)
from each expression in the set of Boolean expressions and
substituting the common subexpressions by new variables.
This is described in the procedure distillation (proc. 2).

This procedure is repeated until no more common kernels can
be found.
As discussed before, the computed kernels are listed behind
their expression.
The kernels are computed recursively by the procedure kernel
(proc. 3).

The procedure divide executes the weak division and the
procedure leveltest tests if the subexpression is a kernel
of level zero.
The result (quotient) of the division consists of those
cubes of the expression containing the diVisor, with the
divisor left out. At the same time the number of cubes
(numcube) of the result is registered.
The procedure level test tests if the subexpression satisfies

- 15 -

procedure distillationj

12.1: "all expressions"
Q.Q.

"compute kernels"j
Q..Qj

"compare kernels"j
"replace equal kernels"j
"substitution of equal kernels"j

frocedure 1.-

procedure kernel(divisor,expression)j

while divisor <- 'highest' literal
Q..Q.
if divisor in expression
.tlwl

divide(divisor,expression,quotient,numcube)j
.il numcube > 1 .
.tJwl

.il divisor <> 'highest' literal

.tJwl
kernel(divisor + l,quotient)j

lin.
leveltest(quotient,divisor)j

llj
.e.l.H.

leveltest(expression,divisor)j
llj

.e.l.H.
it divisor • 'highest' literal
.t.b..e..n

leveltest(expression,divisor)j
llj

tij
divisor := divisor + 1j

.Q.Q j

Procedure ~_

- 16 -

the property of a kernel of level zero: a literal appears
only once. If it is a kernel it will be placed at the end
of the list of kernels except when it appeared before, then
it is placed 'under' that equal kernel (record field
nextexpr, fig. 3).
At the first call of the procedure kernel, it starts with
dividing an expression by its 'lowest' literal. Then a check
on the result (quotient) is performed. If the result
contains more than 1 cube, the procedure kernel will be
called recursively with the result of the previous division.
So the result will be divided by the next literal and
checked again. This will be repeated until the check
(number of cubes> 1) is negative or the divisor was the
'highest' literal (appearing in the expression). In the
latter case the procedure level test will check if the result
is a kernel of level zero.
However, if the result does not contain more than 1 cube (a
kernel of level zero has at least 2 cubes), the expression
on which the division was performed has to be checked by
procedure leveltest.
The procedure kernel will be left when the divisor reaches
its 'highest' value or a kernel is found.
In case all checks are positive the next call of the
procedure kernel will be with the result of the division of
the expression, whose previous quotient was involved in the
previous call of the procedure kernel.
Let an expression f contain amongst others the literals X
and Y (Y is 'higher' than X). When that expression f is
divided by X, the procedure kernel will be called with fiX
and divisor Y, assumtng that fiX at least two cubes. When
leaving this call, the one which was e~tered with fiX and Y,
f will be divided by the next literal Y and the procedure
kernel will be called with flY.
Following this procedure we achieve that an expression will
be divided by each possible combination of literals, which
could lead to a kernel of level zero.

E.g. let f • AB(G + H) + AC(I + J)

with the kernels of level zero:

flAB = G + Hand
flAC • I + J.

The procedure kernel will be called with f and divisor A,
then recursively with flA and divisor B. This leads to flAB
= G + H. flAB contains more than 1 cube and B is not the
'highest' literal. Consequently, the procedure kernel is
entered with flAB and divisor C. C is not contained in

- 17 -

f/AB, so the divisor is increased till it reaches the first
('higher') literal in f/AB which is G.
f/ABG • 1, which has only one cube. Now, leveltest is called
with f/AB. This is a kernel and is placed in the kernel
list. Leveltest raises the divisor to the 'highest' literal,
so the procedure kernel, entered with f/A and divisor B will
be left, because a kernel is found. Next the divisor, B, is
'increased' and procedure kernel is entered with f/A and
divisor C, which, eventually, leads to kernel I + J.

After computation of all kernels of each expression we start
to compare them in order to obtain the common ones. The
procedure comparekernel is performing this comparison (proc.
") .
It uses the boolean function equalcubes and the procedures
save, interkernel and place.
The function becomes true when the two kernels have two or
more cubes in common. If the kernels are equal,
same_expression will stay true .. When the kernels have at
least two but not all cubes equal, same_expression becomes
false.
The procedure interkernel is called when same_expression is
false. This means that not all kernels in the string are the
same and interkernel will take the intersection of the sets
of cubes of the kernels in the string.

E.g. If the string contains:

A + B + C
A + C + D
A + B'+ C

then the result will be a string
with 3 equal cubes A + C.

The procedure savekernels puts the basic and all its equals
according equalcubes in string. The procedure place places
that string of equal kernels in the equal kernel list
according the object function.

The procedure comparekernel starts to compare the first
(basic) kernel of the first (basic) expression with the
first (current) kernel of the second (current) expression.
It will run down the string of the current expression and
then the next expression of the current one will become the
next current expression. This continues until the last
expression has been the current one.
50 the basic kernel has been compared with all kernels of

- 18 -

procedure comparekernelj

"first basic expression"j

while "basic expression"
.QQ

"first basic kernel"j

while "basic kernel"
~

"first current expression"j
same_expression: - truej
equal :- falsej

while "current expression"
~

"first current kernel"j
while "current kernel"
QQ.

11 equalcubes(basic ~ernel, current kernel,
same_expression)

.t.hJm
savekernels(basic kernel, current kernel)j
equal :- true;
~

"next current kernel";
ll;

.QQ.;

"next current e'xpression";
.QQ.;

11 not same_expression
~

interkernel;
ll;

il equal
.t.Mn

place;
ll;

"next basic kernel";
.Q.Q ;

"next basic expression";
.QQ.;

Procedure i..

D,
ABE
of

are
the

with
are

less

the basic
of those
with the

- 19 -

the expressions following the basic expression in the
expression list.
Every time that equalcubes becomes true, the current kernel
or both the basic and the current one are put in the string.
After, if necessary, calling the procedure interkernel,
place will put the sting in the equal kernel list.
Further, the next kernel in the basic expression will become
the basic one and will be compared with all others kernels
that were not equal to previous basic kernels. When leaving
the procedure comparekernel a list of strings of equal
kernels as described in [2.1] has been formed.

After comparison a test has to be performed in order to find
out which kernels can be substituted together. It is
possible that two kernels of one expression appear in more
than one expression and both containing a part of the same
cube of that expression. If this is the case, only one of
the two kernels can be substituted.
Suppose an expression contains the kernels E + F and C +
which are obtained by dividing the expression by ABC and
respectively. It is clear that both kernel share a part
the cube ABCE of that expression. Therefore the kernels
replaced behind their expression. Before replacement of
next string of equal kernels, the test is performed
each kernel that already has been replaced. They
replaced before substitution to be able to test the
frequently appearing kernels.
The procedure replace (~roc. 5) is performing this by using
the procedures kernelt~st and execute.

The most frequently appearing kernels, which are stored in
the first string of the equal kernel list, can be replaced
without the test. The procedure execute places the kernels
behind their expression and assigns a new variable to them.
The basic string is the string whose kernels have to be
replaced and the basic set is containing the indices of the
expressions in which that kernel is appearing. The current
string is the one whose kernels have already been replaced.
The Boolean variable empty indicates if the contents of the
intersections of the expression sets of the basic string
with all the current strings, contains any expression
number.
If indices of expressions are appearing in both
and the current set, the kernels of each
expressions in the basic string have to be tested
already replaced kernels.
The procedure kernel test is performing this test and
disposes the kernels in the basic string which cannot be
substituted together with the already replaced kernels.
Further, the expression concerned will be removed from the
basic string (later this string will become a current one).

- 20 -

procedure replacej

"first basic string"j
execute(basic string)j

while "basic string"
~

empty :- falsej
"first current string";
while basic set * current set - (] and not empty
~

"next current string";
iL current string • basic string
.tM.n

empty :- true;
Uj

.Q.dj

.1.1 not empty

.tM.n
while current string <> basic string
~

iL basic set * current set <> []
.t.h.e.n.

kerneltestj
Uj
"next current, string"j

QQj
Uj

iL "more than 1 kernel left"
.t.h.e.n.

execute(basic string)j
Uj
"next basic string"j

QQj

Procedure ~.

If only one kernel survives the test, it will not be
replaced.
After replacing all the kernels the substitution can start.
The replaced kernels and their divisors are needed for
removal of the cubes concerned. Their divisors are inserted

- 21 -

together with the new variable, which represents the kernel.
At the same time a list with the new variables (in record
field newyariable) and what they represent, is formed.

3.3 Kernel negation.

After each pass of distillation the complement of the new
substituted kernels will be taken, to check if they appear
in the set of expressions or in the already substituted
sUbexpressions.
The complements are taken, using the fast recursive Boolean
function manipulation [4]. These manipulations have been
implemented by Ad Smits [3].

The complementation is based on the Shannon expansion:

where fAx and fAx' are the cofactors obtained by diViding f

Complementation and the strong division commute, therefore
the expansion can be written as:

and using that property:

f' .. x(fAx)' + x'(fA x ')'

By this expansion a function is broken down to unate
functions and because of that property only the unate
functions have to be complemented.
Using this tool the complement of the kernels are obtained.
The expressions will be divided by the complements and if a
complement is contained in an expression, the complement of
the variable representing that kernel will be substituted.
The procedure kernelnegation describes this (proc. 6).

Each kernel from the last pass of the distillation is
copied, by the procedure copy, to the data structure used
for the complementation [3]. The Shannon expansion and the
complementation are performed on this data structure. The

- 22 -

prQcedure kerne1negatiQnj

.f.2.I:. "each new kernel"
~

cQpy(kernel)j
kernelcQmplementatiQn(kerne1,cQmp1ement)j
cQPyback(cQmp1ement)j

.f.2.I:. "each expressiQn"
QQ

divisiQnQfexpressiQn(expressiQn,cQmplement,result)j

11. "result exists"
.tJwl

"substitute negatiQn"j
fij

.QQ. j

11. "cQmplement CQnta ins 1 c.ube"
.tM.n

.f.2.I:. "each kernel in list"
QQ

11. "cube in kernel"
.t.h.e.n

"substitute negatiQn"j
llj

.QQ.j
llj

~j

PrQcedure ~.

result will be cQpied back tQ the Qrigina1 data structure.
Each expressiQn is divided by the cQmp1ement Qf the kernel.
This is perfQrmed by the prQcedure divisiQnQfexpressiQn.
This prQcedure divides the expressiQn by the first and
secQnd cube Qf the cQmplement. If they cQntain CQmmQn cubes,
then the expressiQn will be divided by the next cube Qf the
cQmp1ement, assuming there is Qne. The result Qf the
divisiQn by the next cube will be cQmpared with the result
Qf the previQus divisiQns. As 1Qng as these result have
cubes in cQmmQn, the cQmp1ement can be cQntained in the
expressiQn. The final result will be the set Qf cubes CQmmQn
tQ the results Qf the separate divisiQns.

- 23 -

If there is a result, the complement is substituted in the
expression concerned. When the result contains only one
cUbe, e.g. the complement of A + B is A'B', then it is
possible that an already substituted kernel contains this
cube and it will be substituted too.

3.4 Condensation.

This stage is entered with a set of Boolean expressions
which are relatively kernel free, only cubes are their
common divisors. All cubes have to be compared (taking the
intersection) to obtain these common cubes. The cubes which
appear in more than one cube have to be substituted by a new
variable, which will be placed in the list of new variables.
This is described in the procedure condensation (proc. 7).

The structure of the comparison" of the cubes is similar to
the comparison of kernels in procedure comparekernel.
A cube (basic cUbe) is compared with all other cubes
(current cube). The first basic cube is the first cube of
the first (basic) expression and the first current
expression is the basic one too, because the first current
cube is the cube next to the basic cube.

The procedure comparecube compares the basic and the current
cube. It takes the' intersection of both cubes and this
intersection will be stored in the condensation list if it
contains more than one literal. However, if a basic cube
has equal intersections with two other cubes and when the
first of these two cubes becomes the basic one, then this
basic cube will have an equal intersection with the third
cube. This intersection has been registered before and
therefore it should not be registered again.
Suppose the first basic cube has been compared with all
other cubes and some common intersections have been found
and are registered in the condensation list. During changing
of basic cube the end of the condensation list is stored and
the comparison of the new basic cube can start. Every time a
new common intersections is found, we have to compare it
with the previous found ones. Starting with the first in the
condensation list, we run down that list till an equal one
is found or the end of the list is reached. When the end has
been reached, the intersection is stored in a newly linked
record. When, however, an equal one is found, depending on
having passed the previous stored end of the condensation
list, we can tell whether or not the new intersection has
been registered before. If the stored end is passed the
intersection has not been registered before.

- 24 -

procedure condensation;

"first basic expression";

while "basic expression"
QQ

"first basic cube";

while "basic cube"
~

"first current expreSSion";

while "current expression"
~

"first current CUbe";

while "current cube"
QQ

comparecube(basi~ cUbe,current cube);
"next current cube";

Q.Q;

"next current expreSSion";
Q.Q;

"next basic cube";
"store end of condensation list";

M;

"next basic expression";
M;

sortlist(condensation list);
cubesubstitution;

Procedure 2.

Thus, by using a Boolean variable, which tells if the stored
end has been passed, and storing the end of the condensation
list, when changing the basic CUbe, it is possible to avoid
this double registration.

The condensation list is sorted by the procedure sortlist.
The records are sorted according the number of literals in

- 2S -

the intersection and second according the number of
appearances. The largest cubes will be substituted first
and this substitution is performed by the procedure
cubesubstitution. Intersections with less literals can be
part of bigger ones and therefore they are only substituted
where they are not part of these bigger ones.

One pass of condensation does not guarantee that all common
cubes with at least two literals are substituted. E.g. let
the condensation list contain the following cubes:

ADEF
DHIJ
BCD

in expressions
in expressions
in expressions

[1 ,3]
[2 , S]
[1 ,2]

which are contained in the cubes ABCDEF and BCDHIJ of the
expressions 1 and 2 respectively. Further, the condensation
list does not contain the cube BC. So, if the first two
cubes are sUbstituted,then the cube BCD cannot be found any
more and the common cube BC will be left unsubstituted.
Therefore the list with the new variables is put at the end
of the expression list and the common sUbexpressions will be
numbered, like the original set of expressions. Then the
condensation is performed on this extended set of
expressions and the cubes which were not found in the first
pass will be found now. Also the cubes common to the cubes
which were found in the first pass of condensation will be
found.

3.5 Collapsing.

The collapsing starts with the determination of the
variables which appear only once. This is done by taking the
intersection of every combination of two sets of literals
(record field union) of expressions and subexpressions. The
union of these intersections contains the literals appearing
in more than one (sub)expression. So all variables in the
list of new variables, representing subexpression, which do
not appear in that union, appear only once and therefore can
be pushed back (collapsed).
However, if that variable represents a subexpression which
is easy to realise in a chosen implementation structure, it
is clear that it should not be pushed back. And if only the
negation of that variable is used, it should not either.

- 26 -

4. REALISATION OF A BOOLEAN FUNCTION IN NMOS RANDOM LOGIC.

The reason for choosing NMOS technology is that this process
is running in the EFFIC, the IC-fabrication laboratory of
EINDHOVEN UNIVERSITY OF TECHNOLOGY. In NMOS technology,
circuits can be constructed with NAND, NOR and inverter
configurations. The distributed input gate structure is
chosen to be able to use an automatic layout generations
followed by placement and routing. The constraints are a
maximum number of 3 drivers in series or parallel. A
function is represented as a sum-of-products and for
realisation in such gates, it has to be decomposed. We try
to do this using similar techniques as used before, namely
division. This can be either "weak" or "strong" division.
"Weak" division is a better choice, because realisation of
circuits using "strong" division leads to realisations with
redundancy. A network description for a realisation in the
gate structure is obtained and written down in a file called
gate file.

4.1 Decomposition

Decomposing a function f can be done in the following way:

f • x f~x + r. (1)

The function is represented as a product of a literal x and
its cofactor plus a remaining part r. Here, the cofactor f~x

is the result of dividi~g f "weakly" by x.
For a realisation in N~OS technology a function has to be
realised in universal logic gates (ulg:) like:

Figure ~. An example of a universal
logic gate.

- 27 -

Actually, the drivers are realising the complement of the
function. Therefore we can write (1) as:

(2)

Every gate contains a complementation and the drivers are
realising the function:

f' • (x fAx + r)'.

This can be written as:

or

(3)

(4)

f'. (x' +fAx') r'. (5)

Which of these possible notatio~s will be chosen depends on
realisation of fAx and r. These subexpressions can be
handled in a similar way as f. If for instance the literal
x is a complement of a variable, not yet realised, (5) could
be a right choice, because you do not need to invert the
variable.
On the other hand, when fAx is easier to realise than fAx',
(3) or (4) would be a better choice. So, depending on x and
fAx and in a same way on r a choice has to be made.
However, our starting-point is the output of the
optimalisation program' and therefore only r has to be
handled in the same 'way. The cofactor cannot contain
another literal twice, because this would indicate another
condensation result.
Another point is the choice of the literal x. It is not
difficult to see that to obtain a minimal realisation the
most frequently appearing literal should be chosen.

When to take a decision and what are the constraints?
Two constraints are:

- a maximum of 3 drivers in series,
- a maximum of 3 drivers in parallel.

Till a maximum of 3 drivers in series, it is possible to use
a standard load transistor for automatic layout generation.
The number of parallel drivers is limited to prevent a too
large delay. By dividing the function and the
sUbexpressions until no literal appears more than once we
obtain kernels of level zero and single cubes. When those
kernels are obtained decisions can be made on how to realise

- 28 -

them and doing so we are also taking decisions on a higher
level (stage).

First we look for one of the most frequently appearing
literals and divide the function by it. The cofactor will be
a kernel and for the remainder this process will be
continued until the remainder is a kernel of level zero
itself or a single cube. Depending on the obtained kernel
we have to determine if the kernel has to be realised on his
own or together with a driver of a former divisor in series.
The latter is the case if the kernel contains 3 cubes or
less each with no more than 2 literals. When a gate has been
formed, it can be considered as a single variable or a
negation.

4.2 Kernel realisation.

Now the problem of realising a kernel of level zero. A
kernel with less than 4 cubes and with cubes containing 3
literals or less can be realised in one ulg., which,
depending on the number of complemented variables, has to be
invertered (compare fig. 5 and 6).

B~

k

Figure ~. Realisation of
k • AB+CDE+FGH.

- 29 -

A kernel formed by 4 cubes or more has to be divided in
groups of preferable 3 cubes. Each group has to be handled
as a kernel of 3 cubes or less and on a higher level (stage)
it can be considered as a variable or a complemented one.

The realisation of a kernel depends on the number of
negations in that kernel. If a kernel does not contain any
negations, it is profitable to realise it with an inverter.
This can be seen in figure 5. The drivers realise the
kernel. However, if a kernel contains only negations, it is
realised as shown in figure 6. Now, the drivers are
realising the complement of the kernel.

D~

Figure ~. Realisation of
k • A'+B'C'+D'E'F'.

These are the two extreme situations, if not all literals
are only variables or only negations, an intermediate
solution has to be formed (fig. 7). Due to the constraints,
the 'big' cubes, containing more than 3 literals, have to be
decomposed and can be considered as a cube with 1 to 3
literals (possibly output of gates) as shown in the next
section. A kernel containing 'big' cubes can only be
realised after the decomposition of these 'big' cubes.

A close examination of the figures 5, 6 and 7 leads to the
following heuristics. A cube with only variables has to be
realised as a NAND whose output has to be complemented in

- 30 -

('4

Figure L. Realisation of
k = A'B'+CD'E'+F'GH.

the realisation of the kernel, containing that cube. A
with only negations has to be realised in a
configuration. The cubes containing both variables
negations can be realised in either a NAND or a
configuration.

cube
NOR
and
NOR

The following table contains some possible configurations.

cube of kernel inverted NAND NOR

1 ABC (ABC)' I

2 ABC' ((A+B+C') , , or ((AB) , +C) I

3 AB'C' (A (B+C) I) , , or ((A' +B+C) I

4 A'BIC (A+B+C) ,
5 AB' (AB') I , or (AI+B)'

Table. Realisation of single
cubes as part of a kernel.

The cubes in a kernel, which can be formed with an inverted
NAND, hold a realisation in 2 logic stage, indicated by a

- 31 -

double'. The NOR configuration holds a single stage.
When a kernel is realised, it is clear that this should be
done with as few stages as possible. Thus, whenever a NOR
configuration can be used, it should be. However, one of the
constraints is the maximum (depth) number of drivers in
series is 3. A NAND configuration with the necessary
inverter costs 1 driver in depth and one NOR configuration
too. So, in the cases 2, 3 and 5 of the table, the NOR
configuration is preferred, but if a depth of 3 is exceeded,
they possibly should be included in a NAND configuration
(see example). A NAND can contain a maximum of three cubes
(fig. 5).

This leads to the following algorithm. It starts with
sorting the kernels according the 3 groups. The order is
cubes without negations, cubes with both negations and
variables and at the end the cubes containing only
negations. The kernels are formed by filling up the gates
till maximum width (drivers p~rallel) or maximum depth has
been reached.
Every time a depth or width of three is reached, a new gate
is formed and these new gates have to be combined to realise
the kernel.

E.g. let k • BCD+EFG+KLH+NOP'+QRS+T'U'V'+HI'J'.

This kernel contains the following cubes in the chosen
order:

BCD
EFG
KLH
QRS
HI'J'
NOP'
T'U'V'

Grouping them gives:

(BCD+EFG+KLM) I

(QRS+H(I+J)'+NOP')'
(T'U'V')'

- 32 -

The kernel can be realised as a NAND of these 3 groups,
which leads to the gates:

1 (BCD+EFG+KLM) I

2 (I +,J) •

3 (QRS+H(2)+NOP')'
4 ((1)(3)(T+U+V))'

The kernel is realised by gate 4.

For realising this kernel a depth a depth of 3 has been
reached. In case k would have contained the cube A'W' too, a
depth of 4 would have been reached. This would lead to an
extra gate for realising A'W':

5 (A+W) ,

And the kernel would be realised as:

6 (4+5) I ,

The kernel realised by the complemented output of gate 6,
can be combined with the divisor by whose division this
kernel was obtained. Let Z be that divisor, a possible form
for gate 6 will be:

6 (Z '+4+5) I •

4.3 Realisation of a 'big' cube.

Cubes with more than 3 literals have to be decomposed into a
complemented sum of complemented product terms, preferably
containing 3 literals. Complemented variables should be
grouped together (fig. 8). When there are more than 3
complemented product terms, they in turn have to be grouped
too. When a cube has been grouped in such a complemented
sum, then such a sum can be considered as a complemented
variable on a higher level (stage).

The algorithm used for decomposing the 'big' cubes is quite
simple, because the complement of a cube is a kernel. So, a
simple form of the algorithm for the kernel realisation can

- 33 -

A-1

Figure ~. Realisation of 'big' cube
c • A'B'CDEF.

be used. Simple, because a cube of such a kernel contains
only one variable or one negation.

E.g. let c .. ABC',D'E'FGH'I'J'

and its complement is:

c' • A'+B'+C+D+E+F'+G'+H+I+J

This leads to:

1
2
3
4
5

(C+D+El I

(H+I+J) ,
«1)(2)A)'
(BFG) ,
(3+4)'

Gate 5 is the realisation of the 'big' cube and can be
considered as a variable in the kernel in which this cube
appeared.
Literals are taken out of the 'big' cube one by one. The
first literal will be the one with the 'highest' internal
representation value. Groups of 3 literals are formed. Such
a group will be written to the gate file and depending on
the contents of that group, the output of the gate is

- 34 -

considered as a variable or a complemented one.

- 35 -

5. IMPLEMENTATION.

5.1 Data structure.

The expansion:

where r has to be expand further, lends itself to a
recursive procedu~e. Before starting to describe that
procedure, the data structure for decomposition is given.
For the realisation, the following type of pointer record is
used.

pointer record fields of type net:

info
plus
product
ands
ors
negs
compl
gatenr
divisor

contains a cube,
pointer to other record,
pointer to other record,
number of literals in cube,
number of cubes in sUbexpression,
number of negations in cube,
complement of gate,
number of gate described in gate file,
divisor of expression.

Note that the storage, given in figure 9, would occur only
when an expression is converted into this data structure and
is not followed by the network description generation. In
reality the conversion of a kernel or a cube is immediately
followed by the translation into the network description.

An expression, internally represented as in the previous
chapters, is decomposed in order to obtain sUbexpressions,
which are easier to realise in universal logic gates. A
more clear use of the record fields is given during the
explanation of the recursive procedure network, which
describes the decomposition and network description in
universal logic gates. An expression is decomposed and
converted into these records as shown in figure 9. By this
conversion special data about is obtained, which is
necessary for the translation to the network description.
This data is stored in the records of type net.

- 36 -

net
plus~

r---..l.--....

G

Figure~. Storage of the expression:
A(B + C) + D(E + F) + G.

5.2 Decomposition.

The procedure network (proc. 8) is using the Boolean
function literalfordivision and the procedures division,
convert, writekernel and writenetwork.
The function literalfot~ivision is a boolean function and
becomes true when a iiteral appears more than once. If the
function is true, divisor will be the literal which appears
most frequently. If there is such a divisor, the procedure
division divides the expression by that literal and the
result will be a quotient and remainder. The quotient is a
cofactor of the expression and is a kernel of level zero.
During the division of the expression a part of the new data
structure is build up. The 'head' of this linked data
structure is net (see heading of procedure network). When
the expression is divided, which means that there was a
literal appearing more than once, a new record is created
and contains this divisor. It is contained in the record
field with the same name.
The record field~ of the 'head' record (net) of the list
is pointing to this new record (fig. 9).

The procedure convert converts cubes of kernels to the new
data structure. The record field iniQ contains the cubes and
in the fields ~ and ~ the number of literals and
negations are registered.
The record field product of the record, containing the
diVisor, points to a record which is the 'head' of a kernel

Qf the
cubes have
called by

- 37 -

prQcedure netwQrk(expressiQn,net)j

it literalfQrdivisiQn(expressiQn,divisQr)
t.Mn

divisiQn(expressiQn,divisQr,
qUQtient,remainder)j

cQnvert(quQtient,p_net)j
bigcubes(p_net)j
writekernel(p_net)j

.11 "remainder"

.t..h.!m
netwQrk(remainder,p_net)j

llj

Jllg
cQnvert(expressiQn,p_net)j
bigcubes(p_net)j
writenetwQrk(net)j

PrQcedure ~.

(p_net). The recQrd field~ Qf this 'head' pQints tQ the
linked list Qf recQrds, cQntaining the cQnverted kernel
(fig. 7) and the recQrd field ~ cQntains the number Qf
cubes Qf that kernel.
The prQcedure bigcubes checks if the cubes
subexpressiQn cQntain mQre than 3 literals. Such
tQ be decQmpQsed. The prQcedure decQmcube,
bigcubes, perfQrms this decQmpQsitiQn.
The prQcedure writekernel writes a netwQrk descriptiQn Qf
the kernel cQncerned tQ the gate file, which cQnsists Qf
lines with the number Qf a gate and the NAND/NOR
cQnfiguratiQn it represents.

E.g. let k ~ ABC + DE

then writekernel will write in the gate file:

1 (ABC+DE)'

Further, recQrd field gatenr Qf the 'head' Qf the kernel
will cQntain number 1 and the field cQmpI will becQme true.

- 38 -

This means that the divisor concerned ought to be mUltiplied
by the complement of the output of gate 1. The kernel can be
considered as a complemented variable.
For every call of network, a new record, containing the
divisor, is linked in the list of 'net' formed by the~
record fields. The procedure writenetwork can consider this
string as a kernel, because every record is representing a
cube formed by divisors, output of gates and original cubes.

5.3 Kernels.

The procedure writekernel writes the gates, which are
realising a kernel, to the gate file.
The procedure writekernel proceeds from cubes containing
less than 4 literals. These literals can be output of gates,
realising a 'big' cube, or original literals. If such a
gate number, an output of a gate, is stored in a record of
which the field compl is true, it is considered as a
complemented variable. The same applies to the procedure
writenetwork, every cube consists of literals represented by
a divisor together with a gate number, realising a kernel or
a single gate output or an original cUbe, whether or not
decomposed and consequently containing gate numbers.
First, the cubes are sorted in the right order and their
numbers are counted. Then the cubes without negations are
grouped together to form N~ND configurations. Every N~ND

configuration contrib~tes to the depth of the gate , which
combines the inverted N~ND and the NOR configurations. If
necessary, a N~ND, containing 1 or 2 cubes without
negations, can filled up with cubes, containing both
literals and negations, till a width of 3.
When all cubes without negations are implemented in gates,
the total depth (number of N~NDs and NORs left over) is
counted and till maximum depth of 9, the output of the N~NDs

and the NOR configurations are divided in groups, containing
a maximum depth of 3 and each group forms a N~ND

configuration, which are combined in 1 NOR, by whose
complemented output the kernel is realised. The procedure
writekernel, depending on the depth and whether or not the
divisor is a complemented variable, can included the divisor
in the realisation of the kernel.
The procedure writenetwork performs the same operations and
considers this inclusion as a single literal.

- 39 -

5.4 'Big' cubes.

The 'big' cubes have to be complemented and the cubes of
that complemented cube have to be ordered, first the ones
with a variable and next the ones with the negation. The
actual complementation is not performed, because the sorting
of these cubes comes to the same thing as taking out the
negations first and forming a NOR configuration of
preferably 3 drivers parallel. Each output of such a NOR
configuration is considered as a single variable. At the
moment that all negations are taken out and are realised in
gates, written down in the gate file, a cube with only
variables is left over. This cube is realised by grouping
preferably 3 variables together in a NAND configuration,
whose outputs are combined in a NOR configuration. However,
if more than 3 NAND configurations are created a larger
number of NOR configurations has to be formed. Their
outputs are forming a product, unless there are more than 3
NORs, they are combined in a NAND whose complemented output
is realising the 'big' cube.
This decomposition is performed by the already mentioned
procedure decomcube, which is called by the procedure
bigcubes.

- 40 -

6. CONCLUSIONS.

By running some examples, it can be stated that the
optimisation of a set of Boolean expressions, performed by
the three stages distillation, condensation and collapsing
leads, in a relative short time, to set of less complex
expressions and some sUbexpressions.
By the thi~d stage of the optimisation, collapsing, it is
possible to steer the optimisation to make the final result
more suitable for a particular circuit realisation, to
control the number of delay stages or to obtain a starting­
point for further optimisation, using Boolean instead of
algebraic substitution. This Boolean sUbstitution, which
makes use of substituting subexpressions, containing
redundant product terms, can lead to a better optimisation
at the expense of computation time [2].
The obtained network description can be used for automatic
generation of the layout of the gates and can be transformed
into a net list for their placement.

- 41 -

7. REFERENCES.

(1) R.K. Brayton, C.T. McMullen,
"The Decomposition and Factorization of Boolean
Expressions",
Proceeding of the International Symposium on Circuits
and Systems, Rome, 1982, pp. 49-54.

(2) R.K. Brayton, C.T. McMullen,
"Synthesis and Optimization of Multistage Logic",
Proceedings of IEEE International Conference on Computer
Design: VLSI in Computers, New York, 1984, pp. 23-28.

(3) A. Smits,
"Manipulation on Boolean Functions",
Thesis Report, Eindhoven University of Technology,
Eindhoven, October 1984.

(4) R.K. Brayton, J.D. Cohen, G.D. Hachtel, B.M. Trager,
D.Y.Y. Yun,
"Fast Recursive Boolean Manipulation",
Proceeding of the International Symposium on Circuits
and Systems, Rome, 1982, pp. 58-62.

(5) R.K. Brayton, G.D. Hachtel, C.T. McMullen,
A.L. Sangiovanni-Vincentelli,
"Logic Minimization Algorithms for VLSI Synthesis",
Kluwer Academic PUblishers, 1984.

,
(6) J. Mavor, M.A. Jack, P.B. Denyer,

"Introduction to MOS LSI Design",
Addison-Wesley Publishing Company, 1982.

(7) J. Welsh, J. Elder,
"Introduction to Pascal",
Prentice-Hall International, 1982.

(8) F.J. Hill, G.R. Peterson,
"Introduction to Switching Theory & Logical Design",
John Wiley and Sons, Second Edition, 1974.

- 42 -

8. APPENDIX.

An example of the optimisation.

The input is a set of 17 functions.

Fl· BCDEHI'JKL'+BCDFHI'JKL'+DEHIJKL'O+DFHIJKL'O+
D'EHIJKL'HN+D'FHIJKL'HN+ABCDE+ABCDF+AD'G+AE'F'G+
D'GI'JKL'+E'F'GI'JKL'+GH'IKL'+GH'JKL'+GH'I'J'K'+
H'I'JKLP'+DE'F'HIJKL'H

F 2 • D'EH'I'JKLHNP'+D'FH'I'JKLHNP'+DEH'I'JKLOP'+
DFH'I'JKLOP'+DEHI'JKL'O+DFHI'JKL'O+AD'EHN+AD'FHN+
ADEO+ADFO+D'I'JKL'Q+E'F'I'JKL'Q+DE'F'H'I'JKLHP'+
H'I'JKQ+H'IKL'Q+ADE'F'H

F 3 = AB'P'R+AC'P'R+B'HJKL'P'R+C'HJKL'P'R+AD'R+AE'F'R+
D'HJKL'R+E'F'HJKL'R+H'I'J'K'R+H'I'JKR+H'IKL'R+APS+
HJKL'PS

F 4 • AB'P'T+AC'P'T+B'HJKL'P'T+C'HJKL'P'T+AD'T+AE'F'T+
D'HJKL'T+E'F'HJKL'T+H'I'J'K'T+H'I'JKT+H'IKL'T+APU+
HJKL'PU

F 5 • AB'P'V+AC'P'V+B'HJKL'P'V+C'HJKL'P'V+AD'V+AE'F'V+
D'HJKL'V+E'F'HJKL'V+H'I'J'K'V+H'I'JKV+H'IKL'V+APW+
HJKL'PW

F 6 • AB'P'X+AC'P'X+B'HJKL'P'X+C'HJKL'P'X+AD'X+AE'F'X+
D'HJKL'X+E'F'HJKL'X+H'I'J'K'X+H'I'JKX+H'IKL'X+APY+
HJKL'PY

F 7 • AB'P'Z+AC'P'Z+B'HJKL'P'Z+C'HJKL'P'Z+AD'Z+AE'F'Z+
D'HJKL'Z+E'F'HJKL~Z+H'I'J'K'Z+H'I'JKZ+H'IKL'Z+APa+

HJKL'Pa ,
F 8 • AB'P'b+AC'P'b+B'HJKL'P'b+C'HJKL'~'b+AD'b+AE'F'b+

D'HJKL'b+E'F'HJKL'b+H'I'J'K'b+H'I'JKb+H'IKL'b+APc+
HJKL'Pc

F 9 • AP'x+HJKL'P'x+APd+HJKL'Pd+H'I'J'K'x+H'I'JKx+H'IKL'x
FlO • AP'e+HJKL'P'e+APy+HJKL'Py+H'I'J'K'e+H'I'JKe+H'IKL'e
Fll • AP'g+HJKL'P'g+APf+HJKL'Pf+H'I'J'K'g+H'I'JKg+H'IKL'g
F12 • AP'i+HJKL'P'i+APh+HJKL'Ph+H'I'J'K'i+H'I'JKi+H'IKL'i
F13 • AP'k+HJKL'P'k+APj+HJKL'Pj+H'I'J'K'k+H'I'JKk+H'IKL'k
F14 • AP'm+HJKL'P'm+APl+HJKL'Pl+H'I'J'K'm+H'I'JKm+H'IKL'm
F15 • AP'o+HJKL'P'o+APn+HJKL'Pn+H'I'J'K'o+H'I'JKo+H'IKL'o
F16 • AP'q+HJKL'P'q+APp+HJKL'Pp+H'I'J'K'q+H'I'JKq+H'IKL'q
F17 • AP'w+HJKL'P'w+APv+HJKL'Pv+H'I'J'K'w+H'I'JKw+H'IKL'w

Note: the variables are represented by characters of
the alphabet. A '#' in front of a character
denotes another variable.

- 43 -

The optimisation results in a set
expressions:

of less complex

F 1 & 1#J#Q+A#D'#F'+#F'#M+AG#D+G#N+I#0+J#0+GH'#5+#L
F 2 • A#J+#J#L+O#M+Q#B#T+Q#N
F 3 • R#K+5#P
F 4 • T#K+U#P
F 5 • V#K+W#P
F 6 • X#K+Y#P
F 7 • Z#K+a#P
F 8 • b#K+c#P
F 9 • x#H+d#P
FlO • e#H+y#P
Fll • g#H+f#P
F12 • i#H+h#P
F13 • k#H+j#P
F14 • m#H+l#P
F15 • o#H+n#P
F16 • q#H+p#P
F17 • w#H+v#P

and a set of subexpressions represented by
variables:

#A • A+#Q
#B • 1'J+1L'
#C • E+F
#D • D'+#C'
#E • K#B+#5
#F • B'+C'
#H • #U+P'#A
#J • DM#C'+D'MN#C+O#D'
#K • P'#A#F+#A#C'+D'#A+#U
#L • H'LP'#R
#M • 1'#D'#Q
#N • L'#D#R
#0 • GL'#T
#P • P#A
#Q • HJKL'
#R • !'JK
#5 IZ 1'J'K'
#T • H'K
#U = H'#E

the new

The optimisation of this set took approximately a cpu time
of 100 seconds.

	Voorblad
	Abstract
	Contents
	1 Introduction
	2 Optimisation of Boolean expressions
	3 Implementation
	4 Realisation of a Boolean function in NMOS random logic
	5 Implementation
	6 Conclusions
	7 References
	8 Appendix

