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Summary_

The purpose of this research is to construct a spatio-temporal

model for the transient chonnel of the humon visuel system. With

this model predictions can be made for the detection of

relatively large, and fast changing stimuli.

The model considered in this report consist of two parts; a

spatio-temporal filter and (in cascade) a temporal filter. The

spatio-temporal filter is called the lateral membrane. This

lateral membrane is a two-dimensional spatial structure modelled

as an electric transmission line.

For simplicity reasons the transmission line is chosen of a very

low temporal order. Several electric circuits (equivalents for

the transmission line) with appropriate order are investigated.

From these circuits one is chosen on qualitatively similarities

to the measurement data.

Quantitatively the membrane and the temporal filter are

parametrized on basis of the impulse response of disks with

relatively large diameter (1·- field).

Hereafter we simulate the transient system on a computer and

compare the simulations with the known measured data.

For not too large stimulus disk diameter our model gives good

results compared with the measured data.
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Chapter 1: Introduction

Nowadays visual perception takes an important place in a
man-machine relation. In various situations it is interesting and
often important to know, how the perception occurs in the human
visual system.
Having a model for the human visual system, predictions can be
made for the perception of an arbitrary stimulus. In this way one
can state technical demands, which have to be fulfilled by visual
apparatuses. For instance one could make predictions, how well
certain details on a display can be observed.
Another example is in the area of the print- and reproduction
techniques; here one is interested in the recognition of letters
and symbols, which often are distinctive by the presence of a
small detail. Here one wants to predict how the size, the shape
and the luminance of the letters and symbols influence the
observation.
Therefore a model of the visual perception is developed.

In the visual observation the ~p'atial as well as the tem~oral

luminance variations of the detail are of importance.
Models of the human visual system usually are spatial or temporal
only. Both spatial and temporal models mostly are split into
several channels operating in parallel, each tuned to specific
stimuli.
In the temporal domain there usually are two channels postulated:
the sustained and the transient channel. The first ch~~n~l gives
responses mainly to low temporal variations, the second to
relatively high temporal variations (see Roufs and Blommaert,
1981) .
The spatial models consist of four (e.g. Wilson and Bergen, 1979)
or more (e. g. Koenderink and van Doorn, 1978) parallel operat ing
channels, operating at every place of the retina.
It also is known that a coupling exists between temporal and
spatial characteristics of a channel. Spatially high tuned
channels (for detail vision) have sustained characteristics,
spatially low tuned channels are transient of character.
We think a unifying view might give more insight in the
operations of the visual system. Therefore a spatio-temporal
model is proposed. For the time being, this model is used for the
transient channel only. The reason for this is that a
spatio-temporal coupling is to be expected to be most pronounced
for channels that operate on spatially extended stimuli. For
instance a limited velocity of the transmission of signals from
one place of the retina to another would be particularly
influential for large distances.
To obtain insight in the processing in the visual system many
experiments are done using detection tasks at a certain
background level of luminance. The operation of the visual system
is then approached in a system-analytic manner; see figure 1.-1.
We have a certain input signal (the stimulus) of specified
spatial and temporal luminance course. Furthermore an output
signal exists in the form of answers of some subject signalling
h~ did or did not see the stimulus.
Between this in- and output we suppose some detection rule and
the blackbox of the system-analytic approach.
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In this blackbox all the important features of the visual system
are to be modelled.

answer: I did
input testperson

light pattern----------::...-----:...-------------I-I (not)

:::: I I see
_ fin(r,t) Visual I
=:- I ----f--' system

-I I--1 I

I
photo- I

receptors
I I
I

Figure 1.-1. The model of the human visual system for detection
tasks.

In this report we will discuss the following items:
The'chapter 2 is used to give a short overview of existing
(important) spatial and temporal models and subsequently our
model for the transient channel.
Then, in chapter 3, the measurement data are considered, that we
think are part of the transient channel and thus should be
incorporated in our model. From these data a qualitative notion
of the operation of the transient channel can be obtained.
In chapter 4 part of the already outlined data is quantitatively
analyzed. These analyses will later on be used to parametrize the
suggested model.
In chapter 5 the basic postulates of the model are stated and
discussed. Starting from these postulates a (quite general)
theory of system analysis in three dimensions (two spatial and
one temporal) is outlined.
Having a general theory, this is applied to a transmission line,
in the consequent section. This transmission line is a model for
the connections between the different receptors in the retina.
The transmission line itself can be modelled by different
electrical circuits. Several of these circuits are discussed. On
qualitative grounds one structure for the transmission line is
chosen. This transmission line is then parametrized on the basis
of the analysis of chapter 4.
In chapter 8 simulations of the chosen transmission line, which
we will call the lateral membrane, are shown. From the analysis
of chapter 4 it Tollows that in series with the lateral membrane
a pure temporal filter is needed. This temporal filter is
discussed and also parametrized in chapter 9.
Finally the total model can be simulated and the overall
responses are calculated. These can be compared to the measured
data.
As a last chapter the conclusions and recommendations on the
model analyzed so far, are given.
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Chapter 2: Several models for human vision

In this chapter we will discuss three models of the human vision.
As already stated in the introduction most models are spatial or
temporal only. Two of the models dicussed here are spatial
(Wilson and Bergen, 1979; Koenderink and van Doorn, 1978) and one
is temporal (Roufs, 1974; Roufs and Blommaert, 1981). These
models 2ive some idea alon2 which lines most of the present
modellin2 of the visual perception runs.
As a last part of this chapter we will introduce the model we are
2oin2 to investi2ate in the rest of this report. We will look at
the simularities and differences of this model with respect to
the others.

2.1) Temporal model (J.A.J.Roufs and F.J.J.Blommaert).

Here the visual system is analysed according to the temporal
properties. The visual system is assumed to consist of two
systems operating in parallel (figure 2.-1). A lowpass filter,
associated with ~he physiologically defined "sustained" cells and
a strict bandpass type of filter associated with "transient"
cells. In the case of sinusoidal modulation the output of the
former is suggested to cause the homogeneous brightness
variations at low frequencies ("swell") and the typical percept
seen at the high frequencies ("a2itation"). The bandpass filter
is found to process quasi-linearly at threshold level.

I-----c:;;... /
swell ., \

I \
s:: J 1
o I
j I ,

c~ I 'tJ.::' .p,
o .r-i ,
~ ~I't L.-.__ro _

----log frequency

Figure 2.-1. Schematic representation of the amplitude
sensitivity curves harmonically modulated light of a 1° -field as
a composite of the curves of two constituent processes.

Changes of retinal illumin~tion c~used by ~ stimulu6 on ~ 6te~dy

back2round level E will be described by f ... (t) = E:j:' f( t). (r is
the amplitude factor and f(t) the normalized time function.
We shall only consider small and fast changes of retinal
illuminance (transients).
For sufficiently large fields (1' -fields and larger) the6e evoke
perceptual changes in the visual field ("agitation"), which
cannot be identified as bri2htness changes. For small fields
clear brightness increments or decrements may be observed.
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The model used is illustrated in figure 2.-2.

get)
f -__- ---d.

Figure 2.-2. The operation of the hypothetical mechanism for
detecting fast luminance variations.

At the lower left an example of such a variation of retinal
illumination is shown. The si~nal, which is proportional to a
luminance variation, is processed linearly by the first part L of
the system. Response get) leads to perception, if the deviation
from the stationary state exceeds a certain amplitude d+ or -d-.
Two deterministic systems propertie~ are postulated. First small
changes are processed linearly:

L{~~f(t)} =€ g (t) =~(t)
r , F (2.-1)

L is a linear operator (dependent on E; see figure 2.-2) and
gF(t) the response from the linear system to f(t).
Second the stimulus E F f( t) is seen, if its response deviates at
least by a magnitude m from the stationary reference level (peak
detection). This might be a signal-to-noise criterion or an
internal threshold. Thus at threshold:

(2.-2)

If the extremum happens to be positive m=d+, otherwise m=-d-.
Equation (2.-2) states that if g~(t)/m, the response of f(t)
expressed in m units is known, the threshold value of the
amplitude factor ~f can be calculated. The magnitude d is in fact
thought to be a stochastic variable. Here the intrinsic
stochastic properties are not essential and therefore d will be
treated for convenience as a deterministic quantity. For all
stimuli the values EF corresponding with a 50% detection
probability will be defined as threshold (see chapter 3:
psychometric function).
As an example let us take a rectangular flash with an intensity
increment C;p and a duration e, which is short compared to the time
constont of ~ystem L. Denote this flosh bytpp(t). From its
response, Epgp(t), we obtain the threshold value by applying
equation (2. -2) :
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( 2. -3)

The linear system L is fully characterized by its unit impulse
response g, (t). If the flash is short, the response e,gp( t) can be
approximated by £p8g& (t)
The threshold condition becomes in this case

( 2. -4)a m£pB ext r {g, ( t)} .. £p e g S (t.x )

tax is the time after the stimulus onset, at which g,(t) attains
its extreme value. Thus at threshold the stimulus factors are
related to the extreme of the impulse response by

( 2. -5)

fast changing stimuli
value m is needed.
in the next form:

_ ,&(t'e)C)
-Epa M

g~(ttx)/m will be referred to as the norm factor of the unit
impulse response.
In order to predict thresholds of arbitrary
by means of (2.-2) only gS(t)/m and not the
This easily can be seen by rewriting (2.-2)

The function g~(t)/m can be written as a convolution with the
impulse response according to

t
= f F'c.~-1:.) li1;'t) c(:c

o (2.-6)
The function g~(t)/m can be directly measured as is shown in the
article of Roufs and Blommaert (1981). In chapter 3 we will show
some impulse responses measured in the way described by Roufs and
Blommaert, and use these data for the parametrization of our
model.

2.2) The Wilson-Bergen model (the four channel model).

This model is based on results, which are obtained from
measurements of linespread functions (LSF). A linespread function
is the response of the visual system on a small, lineshaped
stimulus.
Wilson and Bergen assume that at each location of the retina more
detection mechanisms contribute to the detection of a stimulus.
Each mechanism has a distinctive LSF.
They say that there are four different detection mechanisms and
so there are four different LSF's at each location of the retina.
The strength of the response of a mechanism is determined by the
way of stimulation: each mechanism has its own "preference
stimulus". Dependent on the temporal course of the stimulus the
so-called S- or T-mechanism gives the strongest response
(S=sustained, T=transient) The two used modulation forms are
drawn in figure 2.-3.
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o 0.5 0 0.5
TIME IN SECONDS

1.0

Figura 2.~3.Tha two u&ad modulation form~.

The spatial shape of the stimulus is also important: in the high
spatial frequencies the N-mechanism is stronger influenced, in
the low spatial frequencies the U-mechanism (N=narrow, U has no
special meaning).
These four mechanisms, or channels, always work in parallel. The
total response is a kind of co-operation of all four the
responses of the individual mechanisms.
The response of each mechanism can be calculated from its
linespread function. This LSF can be described as the difference
of two Gauss-functions. The LSF of the i~ mechanism has the
following shape:

LSFt(x,x')
(x - x')1. h

== A~ ( x) {e x p - - I.OJ' e x P -
a'~ (If) . "

L

}

(2.-'7)

x=location of the centre of the LSF on the retina.
x-x'=distance to the centre of the LSF.
A (x) = amp 1 i t u d e fa c tor: A~ ( x) .= Ai. ( 0) / ( 1+ a t. I x I )
0", (x) =width factor: <T(,(x) =1:r~(O)(1+Klxl).

~L and ~L are constants for a certain i.
i=N,S,T or U = index for a certain mechanism.
The factors Ai., G"L ,~~ and >I~ are different for each of the four
mechanisms. Further cr" ~i. and'lli seem to be invariant for different
testpersons, so that for one testperson still 9 parameters have
to be measured: AN' AS' AT' Au' aN' as' aT' a~ and K. These 9
factors are dependent on the way of modulation.
The LSF's of the four mechanisms on the same location of the
retina are different of shape and magnitude. The LSF of one
mechanism also varies with the excentricity. This is shown
schematically in figure 2.-4.
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~ ~-------~-~--

+
DISTANCE IN DEGREES

Figure 2.-4. The linespread functions of the four mechanisms.

The response R~(x) of a mechanism i on a stimulus with a
lumination L(x') is given by the convolution of L(x') and the
LSF: ..
R"t(x) = f LSF~(x,x') L(x') dx'-. (2.-8)

Assume now that only one mechanism responds. The stimulus will be
detected, when the response exceeds the internal signal
threshold. The detection value is then R~(x) ~ d.
The threshold d is stochastic; the probability distribution is
assumed as Gaussian shaped. The probability that this "early"
detection occurs is bigger, if the area of the response is
bigger. Therefore one must account for this "spatial probability
summation".
For example instead of 1 N-mechanism now two or more nearby
N-mechanisms will respond. For the other ch~nnels holds the same.
Because the relation between the response on a certain point and
the contribution to the spatial probability summation is not
linear, Wilson and Bergen take a number of arithmetic rules in
their model to describe this non-linearity. These arithmetic
rules (see Heynen, 1980) read as follows:
-the response R~(x) of each mechanism is raised to the fourth
power (the power 4 is in accordance with the steepness of the
psychometric curve of Wilson and Bergen). By this operation the
relation between response magnitude and the contribution to the
probability summation is linearized. (It is in fact a
transformation to a linear probability space).
-after that the response values of all response mechanisms of one
kind are summed over the whole visual field.
-finally the fourth root is taken of the sum (because of the
first operation this inverse transformation is needed).
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In this way the total effect of all the mechanisms i are created
(it is assumed that the mechanisms are not correlated spatially)
In formula:

(2.-9)}'4dx'L( x ')R' = [ t {
L v~ JI&~1.

F~.L4.
With this formula the effective magnitude of the responses of the
i~ mechanisms together on a stimulus L(x') can be calculated.
B~cause in reality the four kind of mechanisms work in parallel

•and so all respond, these four Rt s are summed. The total
response of the visual system on one certain stimulus can be
described as:

R ( R" Ric R"T+ R~.)·/'Ihtal = M+ S+ - (2.-10)

By the value of R tol:al a "thresholdmeter" determines, if the
threshold has been exceeded or not. In figure 2.-5 the model is
shown schematically in bloc form.

STIM.

b-"
J I\I--T -i 4l:;.- (Reap)

G-s
N

Summatio
over
visua1

field threshold

Figure 2.-5. Schematic representation of the four channel model.

5
MODULATION

T
MODULATION

:;...
en
z.....,.

5 2002 I 5 2C
SPATIAL FREQUEHCY_ IN CYCLES/OEGREE

Figure 2.-6. The summation over the four mechanisms (in
MTF-form). The lines are the calculated, the dots the measured
values. (MTF=Modulation Tranfer Function).
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In figure 2.-6 for each LSF the Fourier transform is drawn. The
horizontal axis is the spatial frequency axis and the vertical
axis the sensitivity (this is the reciprocal value of the
luminance threshold). This graph is called the (Spatial)
Modulation Transfer Function (MTF).

The four channel model can be seen as an "arithmetic model", with
which predictions of threshold values are obtained by a number of
arithmetic rules.

2.3) The Koenderink-Van Doorn model (the sunflower model).

This spatial model is more a "think model", by which a likely
more real situation is described, but by which quantitive
predictions are more difficult to obtain. Therefore here follows
only a qualitive description of this model. This so-called
"layer-model" is based on psychophysical, physiological and
electrophysiological experimental data.
The most important (electro-) physiological result that is
incorporated in the model, is the fact that receptive fields are
measured. This means that one certain receptor cell in the retina
is not represented at one point of the visual cortex, but that by
all kinds of connections between the cells, which the signal
passes on its way to the brain, finally a bigger field of the
cortex is stimulated.
These receptive fields have been shown to exist at cortex level,
but also at points closer to the receptor cells, for example at
ganglion cell level. One receptor cell stimulates thus more
ganglion cells. Reversed one ganglion cell is stimulated by a
small group of retina receptor cells. This small group is assumed
circular-shaped. The centre of this small group of cells has a
positive action on the activity of the ganglion cell (see figure
2. -7) .

inhibitive edge

'. .field diameter

Figure 2.-7. Schematic construction of a receptive field:
centre-surround structure.

In the edge of this small group the effects of the receptor cells
work against the activity of the ganglion cells. This is also
experimentally confirmed by measurements of signals of ganglion
cells.
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The model is derived from the fact, that near each location on
the retina receptive fields with different sizes are measured.
The receptive fiels, called "units", are presumed
circular-shaped. The unit diameter varies continuous between a
minimum value (for the fovea about 20 seconds of arc) and a
maximum value (about 1 degree).
In the model the units are divided into a number of groups,
dependent of the unit diameter. Such a "subset" contains units
with almost equal extension. There are 40 subsets. In a subset
all the units lie next to each other, such that an imaginary
layer arises that is constructed of equal units (thus 1 subset=1
layer). The number of units in a layer is always the same and

lotequal to 4.10
All units within one layer join to each other and lie circle
symmetric round the centre of the fovea. The result is that
consecutive layers will always be more extensive. The layer with
the smallest units will have a total extension of about 1 degree;
a measure which is comparable with the measure of the central
fovea.
In figure 2.-8 this is schematically shown. This figure also
shows that units of all kind of sizes appear in the centre of the
visual field. From the centre to the periphery with increasing
excentricity continually more small units drop out.
The minimal unit magnitude ~ increases also as a function of the
e x c e n t ric i t Y ace 0 r din g t 0 ~ l'I\i.n ( e xc.) =)... e xc, i n whie hex c (t h e
excentricity) and A are constants.

}layers with small units.

layers with large units.

excentricit y
o

Figure 2.-8. Schematic presentation of the layer-model. Drawn are
parts of nine successive layers. The units are for the simplicity
drawn as six angles instead of dots.

The response of one unit.
Each unit has a "centre-surround" structure: it consists of an
excitation centre, surrounded by an inhibitation margin area (see
figure 2.-6). This also has the following consequences: if a
stimulus only acts on the centre of an unit, then the unit will
respond strongly. If also a part of the inhibitation edge is
stimulated, then the response is smaller.
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If both edge ond centre ore completely covered by the stimulus,
then the actions of both parts are cancelled, so that there is no
response. This means that units which are smaller than the
stimulus (and are covered completely) give no contribution to the
response.
It will be obvious that the pointspread function and the response
of one unit are related to each other: the point spread function
is strongly determined by the neural (unit) action.
Koenderink and Van Doorn approximate the action of a unit with
the following function (see figure 2.-9): the excitation part has
an action, which is constant over the area; the inhibitation part
is "infinitely" narrow and has an "infinitely" negative action.
The total integral over both parts is however equal to zero.

·
~

i

'-='~c;;;
I•,·····

1

intersection of a receptive field.

real response (schematic) .

response according to Koenderink­
Van Doorn model.

response

spatial co-ordinate

Figure 2.-9. Response of a receptive field.

Through the combination of the both preceding models the results
of Wilson and Bergen are more reasonable:
a. The linespread function will be wider with increasing of the

excentricity, because there are continually less small units.
b. There will be more mechanisms active, because at one location

of the retina there are more unit sizes present. Wilson and
Bergen have explained their experimental data by assuming,
that there are four mechanisms present. This is the minimum
to come to satisfactory results. These four mechanisms
correspond with the 40 layers of the Koenderink-Van Doorn
model. One mechanism is thus in fact an average over about
10 unitlayers.

c. The spatial probability summation is a certain co-operation
of units, as well within one layer as between the layers
mutually.

A disadvantage of the Wilson and Bergen model is that the modal
is based on linespread functions instead of pointspread
functions. According to the Koenderink-Van Doorn model the use of
pointspread functions is preferable.
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2.4) A spatio-temporal model ~or the transient system.

The visual system is here analysed accordin2 to both dimensions:
spatial and temporal. The light which goes into the human eye, is
spatially sampled by the photo receptors (li2ht sensitive
elements) on the retina. In figure 2.-10 a model is shown o~ the
spatio-temporal model.

o

"..'"".."
i
::...
,"I..

Figure 2.-10. Schematic presentation o~ the spatio-temporal
visual model.

The signals f~" (r,t) are input to a layer o~ neural elements, on
which the ~ilaments lie in a lateral (parallel to the retina)
plane, where they make synaptic connection with each other.
We assume that the density of these neural elements is so large,
that the layer may be looked upon as a continuum (in lateral
direction). We shall call this layer the lateral membrane o~ the
visual system. Then the signals will be processed ~urther by
filters with an impulse response ~~(t).

In this report it is assumed that the lateral membrane can be
compared with a passive electrical transmission line: these lines
usually conduct the signal with a limited velocity and damp the
signal. This damping relates the interaction between two
spatially seperated inputsignals in the transmission line.
Therefore it is a measure of the distance, ~or which signals are
integrated through the transmission line.

The similarities and differences between the several models:
-a subdivision in parallel operating channels is used in every
model, each operating at every point o~ the retina.
-each channel is linear.
-we do not present a total model ~or vision, but we only consider
one channel.
-this one channel is simultaneously parametrized in the temporal
and spatial domain.
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-the model is spatio-temporal, i.e. its spatial and temporal
properties are interdependent. (The Wilson Bergen model is in a
certain sense also spatio-temporal: they used another
parametrization for each of the two different time modulation
methods, with which the experiments were performed).
-we do not go parafoveally, as the two spatial models.
-in our model no stochastic properties are incorporated.

Note that:
-the broadest channel of Wilson and Bergen changes with the
excentricity.
-the broadest channel of Koenderink and van Doorn stays the same.

We do not make any assumptions about changes going from fovea to
parafovea.
Secondly the Wilson and Bergen ond 0160 the Koenderink ond von
Doorn model have two antagonistic parts even in their broadest
channel. Although this antagonistic part is very shallow in the
Wilson and Bergen model for the broadest channel (see figure
2.-4), it still exists. We have no (spatial) inhibition in our
model.
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Chapter 3: Measurement data

In this chapter all the available data concerning the transient
system is presented. These consist of measurement of different
temporal variations to disk-formed stimuli of different diameter.
The following experiments are dicussed:
-temporal impulse response measurements.
-sensitivity measurements of impulse with different disk
diameter.

-sensitivity measurements of sinusoidal temporal modulation of
disks.

-phase characteristics of sinusoidal temporal modulation.
-sensitivity measurements of temporal pulse modulation with
variable duration.

The data shown here are from different subjects, and different
background luminances (E). And there is no surround luminance.
All data are obtained from psycho-physical measurements, which
are performed at the IPO (Institute for Perception Research).

Psychometric curve.
Offering any stimulus of a certain intensity a testperson can be
asked, if he sees, or does not see the stimulus. Doing this with
the same stimulus several times and also at different intensities
a psychometric curve is obtained; for certain small intensities
the testperson never detects the stimulus, for certain larger
stimulus intensities the stimulus is always seen. In between
there exists a range of intensities, where the stimulus is
sometimes seen and sometimes not. For these intensities the
percentage of seen stimuli can be plotted against the intensity.
A monotonically increasing curve is then obtained as shown in
figure 3.-1. The intensity at which 50% of the stimuli is
observed, is often called the threshold value.
All experments discussed in this chapter involve the measurement
of psychometric curves and its threshold value.

st~ulus intensity

Figure 3.-1. A psychometric curve.

The physical value at which 50% of the stimuli is observed, is
often called the threshold value.
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3.1) Impulse response measurements of disks.

The transient system of the visual system is assumed to be
linear: a filter in cascade with a peak detector. By this
assumption one can measure the impulse response of this linear
filter by using a perturbation technique. We will not discuss
this technique here. For more information about this perturbation
technique one can consult the article of Aoufs and Blommaert
(1981).
The consequence of this technique is that the measured impulse
responses are all normalized at an extremum equal to one and have
a time axis, which has its origin exactly at the moment of this
extremum. The starting point of the impulse response is lost.
The black dots are the mean values of the measurements. The
vertical lines through the dots are twice the value of the mean
variance of the mean value of the measurements.
In figure 3.-2 we show the impulse response of two different
subjects with two different background luminances and three
different disk diameters.

SOL.]. H•••R
llIIpoo.l", ru,...u.~ .0- 'i..Ld

; 0 .' "ot
...,. -, ...rrau-Iui

Figure 3.-2a)
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Figure 3.-2d)
figure 3.-2. The impulse response of the visual system as a
function of the time.

Figure 3.-2a shows the impulse response of 1 degree field of
subject H.d.A. and a background luminance E=9Std.
Figures 3.-2b, c and d show the impulse responses of subject H.D.
with a background luminance E=12DDtd and with different stimulus
disk diameters.
From these figures we see that for different background levels E
and different subjects the impulse response has essentially the
same form: a triphasic impulse response. Compare figure 3.-2a and
3.-2c.
Figure 3.-2b, c and d show the impulse responses for different
disk diameters (different spatial configurations). We see here
that the form remains the same but that the impulse response gets
faster for larger disks: larger time constants.
The negative phases increase and later decrease with the
increasing of the stimulus disk diameter.
From these figures we can conclude that the transient system must
be a spatio-temporal model, because temporal impulse response
depends on spatial configuration.

3.2) Sensitivity measurements of the transient system of the
visual system to impulses with variable disk diameter.

In figure 3.-3 the amplitude E of the impulse response is
measured for which a detection probability of 50% occurs, as a
function of the disk diameter. The input signal is here also a
Dirac-function as temporal modulation: a pulse with a small
durat ion e =2ms.
For subject H.d.A. and a background luminance of E=100td the
experimental data are shown in figure 3.-3. From this figure we
can conclude that in the intermediate values 1-3 degrees the
sensitivity (defined as 1/~) is here the strongest.
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Figure 3.-.3. The threshold measurement of flashed disks as
function of the stimulus diameter.

3.3) Sensitivity of the transient system to temporal sinusoidal
modulation of disks.

The input signal has now a sinusoidal time modulation "and has an
amplitude e. The reciprocal of the amplitude e is called
amplitude sensitivity (1/e). The amplitude e is measured of the
sinusoids, for which 50% peak detection occurs.
In figure 3.-4 the sensitivity 1/e as a function of the temporal
frequency is illustrated with the stimulus disk diameter as
parameter. These curves are called the De Lange curves. The
subject is H.J.M. and the background luminance E=62td.
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Figure 3.-4: temporal modulation
transfer as measured by 50%
theshold amplitudes of a
sinusoidal modulation as a

;1n'1-~.....,.....----:;;;...-s:;~---".----:;?'.....;~"lI;t--;~r-------i fun c t ion 0 f the t em po r a 1
~ frequency. The parameter is the
~ diameter of the foveal circular
".. stimulus (E=60td; dark surround)

(from Roufs and Bouma, 1980)
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From this figure we see that for smaller disk diameter the curve
is more smooth for small temporal frequency: there is less
bgndpass characteristic for smaller disks. The bandwidth also
decreases with smaller disks.
Because the temporal properties shift with the variation of the
spatial configuration (changing of stimulus disk diameter) we
again see that the transient system of the visual system is
spatio-temporal.

3.4) Phase characteristic of the transient system.

In figure 3.-5 the phase difference between the sinusoidal
stimulus and its response of the visual system is shown as
function of the temporal frequency. The phase characteristic is
measured using a pertubation technique (this is not discussed
here, see Roufs, Piceni, Pellegrino van Stuyvenberg, 1984).

-..
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Figure 3.-5. The phase characteristic as a function of the
temporal frequency for the human visual system.

The measurement oT figure 3.-5 is done for subject J.P. at one
luminance level CE=1200td) and with one stimulus disk
diameter C1°) .
We see that the phase curve decreases nearly linear with the
increasing of the temporal frequency. This is in agreement with
the nearly symmetrical impulse response shown in a) of this
chapter.
From Fourier analysis it can pe shown that signals symmetrical
with respect to some vertical axis t=T" have a linear phase
characteristic,4' =(;.) T, .

3.5) Sensitivity measurements using temporal pulse modulation
with different pulse duration.

As in 3.2) and 3.3) of this chapter the sensitivity e is measured
according to the 50% peak detection method for a certain stimulus
disk diameter and a certain pulse duration e in the time domain.
In figure 3.-6 the sensitivity ~ is measured as a function of the
pulse duration e for different stimulus disk diameter and three
different subjects at three different background level E.
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Figure 3.-6c) (From Aoufs and Bouma, 1980)
Figure 3.-6. The threshold sens1tivity ~ as a function of the
pulse duration for different stimulus disk diameter and three
different subjects at three different background levels E.

In figure 3.-6a the data for subject H.d.A. is shown with a
background luminance E=100td and a stimulus disk of 10

; figure
3.-6b shows data of subject H.D. with E=1200td and 3 stimulus
disks 17', 1 ° and 5.5 0

; in figure 3.-6c we have subject H.J.M.
with E=62td and different stimulus disks.
We see in these figures that fmr short pulse duration e the
sensitivity curves decrease linear with the increase of the
pulse duration: the detection is dependent on the area of the
pulse (Bloch's law).
For example if a pulse of sensitivity «:.. and duration 9, is
detected, then a pulse of sensitivity -iEI and duration 29,
will be also detected for small pulse durations. The angle of the
sensitivity curve and the vertical axis is 45 0 for small pulse
duration. This relation holds for any linear filter for durations
much smaller than the time constants of the observed filter.
For long pulse duration the sensitivity curve is constant, thus
independent of the pulse duration e. The two transients of the
on-set and the off-set of the rectangular pulse don't influence
each other anymore for long pulse duration.

For intermediate values of the pulse duration we see a dip; the
sensitivity curve goes down, comes up and becomes constant with
increasing pulse duration. This is called Broca-Sulzer effect.
From simulations of different subjects at different background
levels it can be shown that the measured impulse response is in
good quantitative agreement with the strength of the Broca-Sulzer
dip (Blommaert,F.J.J., J.A.J.Aoufs and A.C.den Brinker, 1986).
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Furthermore we see that with the variation of the disk diameter
the dip also varies. The dip has a largest value at 1o -field for
subject H.D. (see figure 3.-6b) (figure 3.-6c contains not enough
data-points to observe this effect).
The largest dip for 1°-field of the measurement of subject H.D.
is also in accordance with negative phases of the triphasic
impulse response for 1°-field (see figures 3.-2b, c and d); for
the negative phases of the impulse response also have their
largest values for 1o-field.

3.6) Comparison of pulse measurements and the frequency domain
measurements.

We are going to seek, if the frequency response measurements and
the pulse duration measurements are in accordance with each other
with the changing of the stimulus disk diameter.
The maximum of the amplitude sensitivity curve (for an
interpretation see Aoufs and Bouma, 1980) in figure 3.-4 is
defined as the sensitivity-factor S. In figure 3.-? this
sensitivity S is illustrated as a function of the stimulus disk
diameter (upper curve) .
The lower curve is the sensitivity factor F=1/E, this is defined
as the reciprocals of thresholds of the pulse response for long
pulse duration. Thus in figure 3.-4 there is also shown the
sensitivity factor F as a function of the stimulus disk diameter.

ftlbj. 8.J._.

g-6Ztt
4ar1f ~und.

10-''-- --'- ---J':- ~-----.J

100 '0' 102 ,0-3 10
4

----. atiltlUlu. 4i...hr (ai.f4 ot ara)

Figure 3.-? Sensitivity characterized by the
curves of figure 3.-4 or by F, the reciprocal
of long pulse duration flashes of figure 3.-6
stimulus disk diameter (from Aoufs and Bouma,

top, S, of the
of the threshold E.
as a function of
1980) .

In this figure we see that both curves have the same form: both
increase and for a certain stimulus disk diameter are constant
with a further increase of the disk diameter.
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In figure 3.-8 the reciprocal of the cutoff frequency f~ is given
as a function of the stimulus disK diameter. This cutoff
frequency f h is the frequency at which the amplitude sensitivity
has dropped to 5/2.
The lower curve is the critical duration T, as a function of the
stimulus disK diameter. The critical duration T, is the pulse
duration at the intersection of the constant line and the
decreasing line with a slope of 45· in figure 3.-6.
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Figure 3.-8. The time constants of the visual system
characterized by either the reciprocal of the cutoff frequency f h
of figure 3.-4 or the critical duration Tc of figure 3.-6 (from
Aoufs and Bouma, 1980).

From figure 3.-8 we see that both curves have the same form: both
curves have a minimum for a certain stimulus diSK diameter.
We conclude from this two last figures that the pulse and
frequency response measurements are in good agreement with each
other as a function of the stimulus diSK diameter (see Roufs and
Bouma, 1980). This is to be expected for a linear system.

3.7) Perceptual data.

When the impulse response of the stimulus diSK is viewed above
the threshold level a brightness is then seen which is largest in
the middle of the diSK and zero at the border.
On the basis of this Kind of considerations a transmission line
is suggested as a model for the transient system of the visual
system (see den BrinKer and van Aalst, 1984 and van Aalst, 1981)
This transmission line has a load impedance at the edge of the
diSK, which has a value equal to zero. The signals, travelling
along the transmission line and reaching this impedance are
reflected and are reversed of sign. The response at the edge will
therefore always be zero.
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Chapter 4: Analysis of temporal data

At the moment there are two different description available for
the triphasic impulse responses: as a fourth order filter, or as
a pseudo-matched filter configuration (see den Brinker, 1985A and
1985B) .

4.1) Fourth-order model.

Here we want to show that the triphasic impulse response of the
visual system can be modelled as a linear fourth order filter.
The response to an impulse of a 1°-field with a dark surround can
be modelled as a fourth order filter with four poles and three
zeroes according to:

\

:rr (s-z·)
G( s) = K* I.': I l. ( 4 . - 1 )n (s-p- )

. l.1.=,
with G( s) the
are the zeroes
multiplication

Laplace transform of the impulse response,
of the system, p. the poles and K* is a

'"factor.

while ZL

..
The parameters of this model (K, zj,' Pi.) were estimated from the
measurement data of subject H.D. uS1ng a Hankel estimation for
two different stimulus disk-sizes (1 0 and 5.5°). The plots are
shown in figure 4.-1a and 4.-1b together with the measured
responses for the same stimulus disk-sizes.
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Figure 4.-1b)
Figure 4.-1. The measurement data and the fourth order estimation
of the measurement data of subject H.D. at a background luminance
E=1200td for two different stimulus (a: 1°-field, b: 5.50 -field)
disk sizes.

The approximated poles are:

1°-field 5.5
0 -fie ld ratio of the imaginary

parts
Re{p' } Im{PL} Re{pi.} Im{p~}

-25.99 93.?8 -3?61 123.0 1 . 31
-20.8? 56.41 -25.23 60.31 1 .O?

In the first column are the real parts of the two pole pairs at a
1°-field and in the second column the imaginary parts.
In the third column are the real parts of the two pole pairs at a
5.50 -field is given and in the fourth column their imaginary
parts.
The last column shows the ratio of the imaginary parts with the
changing of the disk sizes.

From the table we conclude that the smallest imaginary part
(Im{p~}) doesn't change much with the increasing of the disk
size: the ratio of the imaginary parts is here 1.0? Meanwhile
the highest imaginary part does change very much with increasing
stimulus size: the ratio of the imaginary parts is 1 .31. Thus one
pole pair seems stationary and the other pole pair seems
dependent on the spatial configuration.

4.2) Matched filter model.

The triphasic impulse response of the visual system can also be
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modelled as a system with a matched filter configuration. It is
shown that the impulse response of a 1°-field with a dark
surround can be approximated by four in serie connected filters
with impulse responses f,(t), f,.(t), f 3 (t) and f&t(t) (see den
Brinker, 1985B).

first order

filter

(pseudo) matched
fil ter pair

Figure 4.-2. The pseudo-matched filter model.

f.(t) ae-CLl:.U(t)
f,,(t) = e-b,1: sin(wt){U(t)-U(t-T)} (4.-2)
f i ( t) - e- ba. t sin ( (.0,) t) {U ( t) - U( t - T) }

f .. (t) AfI(t)
with T = 27r/GJ
U(t) is the unit step function
a, b., A > 0 and b~< O.
If b1.= -b l then f1( t) and f l ( t) form a matched pair. If b], lies
in the order of -b, we call this a pseudo-matched filter pair.
This matched filter model is applied to the measurement data of
subject H.d.R. at a background luminance of E=100td. Figure 4.-3
shows this estimation of the matched filter model with the
measured data of H.d.R.

HR ; lOOTd.

Figure 4.-3. The estimation of the matched filter model from the
impulse response data of the subject H.d.R. at a background
luminance E= 1OOtd. (from den Brinker, 1985C).
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4.3) Conclusion.

The resemblance between the measurements and the response of the
two models is reasonable. The fourth-order model is better to
show the third phase of the measured impulse response, the
pseudo-matched filter model gives a better representation of the
dominant phase.
Further the fourth order analysis suggests that one complex pole
pair is dependent on the spatial configuration. We can see this
changing pole pair as a part of a spatio-temporal filter. The
other complex pole pair is stationary. This complex pole pair we
can think of as a pure temporal filter independent of the spatial
form of the stimulus.
Thus we derive from these analysis at a model of the transient
visual system which consists of a spatio-temporal filter in
cascade with a temporal filter. As seen from this analysis this
model is capable of producing a triphasic signal as a response to
a Dirac at the input of this model.
From parameter estimations for the matched filter model it can be
shown that the damping and frequency of the filter f~ are very
similar to the parameters of the largest pole in the fourth order
estimates.
This means that in case the pseudo-matched filter model is to be
elaborated into a spatio-temporal model, only the filter f~ has
to be changed into a spatio-temporal filter.
So we can use the pseudo-matched filter principle in our model;
the pseudo-matched filter principle gives an optimum signal/noise
in case of noise in the system (see Papoulis, 1968). This noise
is thought to be injected between f 1 -filter and the fJ-filter.
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Chapter 5: Theory

In this attempt to model the processing of the stimulus by the
human eye we make the following assumptions:
1) quasi linearity; we only look at small luminance variations,

this assumption we already used in chapter 4.
2) local homogeneity; we assume the fovea to be homogeneous and

all stimuli are so small that they fall within the fovea,
all experiments are foveally focused disks.

3) radial symmetry; within the fovea all the directions have the
same characteristics.

4) peak detection; this is a simplest detector, we already used
this assumption in chapter 3: the measurement of the impulse
response (see 3.1) and the phase characteristic (see 3.4) .

5.1) General theory.

Following assumptions 1) and 2) we can use linear theory with
time and space in variance properties. This means a partial
differential equation (p.d.e.) for a spatio-temporal filter can
be postulated with constant (time- and space-independent)
coefficients:

K+l.M
~ f ~n ( x , y , t)

)'" x ~l Y "?1ft'. t
(5.-1)

f .." ( x , y , t) i s the i n put s i g n a I 0 f the vis u a I s y s t em and
fo""l: (x,y,t) the output signal in X-, y- and t-domain. aKlrn and bfC'l~

are coefficients. k,l,m,n, ,n'1.,nl,n:,n~ and n; are integers. The
relation between input and output signal is shown in figure 5.-1
as a blackbox.

f (t) f t(x,y,t)
in x, y, ~,-- p

Figure 5.-1. The human visual system drawn as a blackbox.

(5.-2)

d'l. d ~

=

For the i n put s i g n a I f ion ( x , y , t) = ~ ( x) ~ ( y) lJ ( t) wed e fin e the
c a usa I fun dam e n t a Iso I uti 0 n ash ( x , y , t) = f 0 \A"t ( x , y , t). Wit h 6( x)
as an impulse in the x-domain and x,y,t€.ft,.. and as
causality-condition: h( x,y,t)=O for "'"I..l.t: t<O.
The relation between input and output signal for an arbitrary
input is the convolution integral:

fOIA.l:(x,y,t) = j j jh(X-V",y-'t,t-L)fi."'(V"'1.,~)dV
-- -CD -co '" 'f t:

h( x,y,t)-,,,,"'fi.n( x,y,t)
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For a causal system and an input signal, which starts at t=O the
convolution integral is:.. . ~

fOlA.t (x,y,t) = J J .fh(x-y,y-'Z,t-'t.)f~I\(Y",'t,·ddY' d'l d"t. (5.-3)
-CD -. 0

The system is completely described by the causal fundamental
solution. It is difficult to find the causal fundamental solution
h(x,y,t) by solving of the p.d.e. for an input signal f~~(x,y,t)

= !(x)&(y)~(t). Therefore we will use some transformation to
frequency domain.

The Fourier transformation is defined by:
GO

G(""p ) = ~ {g ( p)} =.f g ( p) e -'r.~,p d P ( 5 • - 4 )

-00

Applying this to the spatial variables x and y we get the
t ran sf 0 r mat ion va ria b 1 e s c:..J II and CN" ,whie h are spa t i a 1
frequencies.

The single side Laplace transformation of f(t) is defined by:
CIO

F(s) = f f(t)e-
st

dt =(.{f(t)} (5.-5)
fI

s is the variable in the Laplace domain.

We define now the following signals:

=~\, ~{fi.,,(x,y,t) }
=~ \, ,,{ f 0 v.to ( x , y , t) }
=1='\' c:. {he x,y,t)}

From the convolution relation (5.-3) follows the relation between
the three transforms:

(5.-6)

h(x,y,t)

Further we assume now that the visual system is isotrope, this
means that the causal fundamental solution is rotation symmetric:
h ( x , y , t) i son 1 y de pen den t 0 f the r ad ius r = J x a. + y&.' .
The consequence is that the transform H(~~,~y,s) is also no
longer dependent of ~ll and ~y separately, but of the norm w =J,,->";.+~;i.

w is called the spatial frequency. The angles e and ~ don't
play any role here; e=arctan( x/y) and tJ{ =arctan(~. /c..>.,)

h( Vx'l. + y"i ,t) = h(r,t)

= H(w,s)

Instead of the double Fourier transformation to x- and
y-variables we will use the Hankel transformation. This
transformation is specially defined for rotation symmetric
signals and is completely equivalent to a double Fourier
transformation for a rotatic symmetric signal (except for a
factor 2~).

The Hankel transformation is defined by:
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f~(r)rJo(wr)dr all {g(r)}
o

( 5 . -7)

with J o the zero order Bessel function of the first kind.

J o is a real function for real arguments, w is a
thus G(w) is a real function.
We can write the zero order Bessel function as:

= ~f~ei.,.wc.oS(e-«) d l'i

J 0 (wr) 1" Il:lI'

-n
wit h e = arc tan ( x I y) and ot = arc tan ( Go,))& I w y ) .

real argument,

( 5. -8)

'"'0-'The inverse Hankel transformation ~

Hankel transformation: ~-' =~.
By using the Hankel transformation we

H(w,s) = t::. [27t1[.{h(r,t)}]

has the same form as the

get the following relation:

(5.-9)

We only consider input signals that are rotation symmetric. The
result is then that the output signal is rotation symmetric.
The input signal is thus

f ~n ( x , y , t) = f ~I\ ( r, t)

and the transform of the input signal:

F ~ n ( w , s) 27\ t:. { ';It. { f ~l\ ( r , t) } }

The output signal is

f o",t ( x , y , t) .. f OVot: ( r, t)

and its transform is:

F 0 u.~ ( w, s) = 27t C{~ {fo....t: ( r, t) } }

The Hankel transformation tables are deflned_with£ut the factor 2~J

so we define the following functions; H, F~", Fell ....': to
distinguish them from the double Fourier transforms H, F(.I\' Fo~t:.-H(w,s)-(i.~ ( w, s)
F OlA.l: ( w, s)

~{).l{h(r,t)}} =

= ~ { }t {f "" ( r , t) }} =
= C {dol {fOll.to. ( r , t) }} =

H( w, s)

Fi.",(w,s)
FOll,\:' ( w , s)

Extended tables of Hankel transforms can be found in the book
"Tables of Bessel Transforms" by F.Oberhettinger.
The relation between the Hankel transforms follow from the
earlier given relation between the Fourier transforms (5.-6)

Fo... t ( w, s) '" 2 Tt H( w, s) Fi." ( w, e;)

5.2) Eigenfunction.

,..,
.. H( w , 6) F i.1\. ( W , e;) (5.-10)

Just as for a linear time invariant system sinus functions form
the eigenfunctions, so a linear place and time invariant system
has the zero order Bessel function as eigenfunction.
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We assume the input signal fi." (r, t) is separable in a function
TC t) and a Bessel function J.(~or):

(5.-11)

Then we get by transformations (see Papoulis, 1968, page 14?):

(5.-12)

with T(s) = t.{TCt)}

The output signal now becomes:
,." ,." j/IIffI #Iw _

F OI4ot. (w, s) = 2nH( w, s) Fi.f\ (w, s) = 2J1H( w, s) w: 1
~(w-w.) TC s)

l1t - -= - &( w-wo ) H( wo ' s) TC s)W o
( 5 . -13)

The output signal is now:
• •

fo", .. (r,t) = 27\J.(w.r) ~ {H(w ,s)TCs)} (5.-14)
Input and output signal have the same shape (Bessel function)
with the same spatial frequency woo For a general input signal
the time modulation of each Bessel function is different!
We assume now as time modutation a sinus (cosinus) function then:

With formula (5.-13) we get now:

f 01.1.1: ( r , t) ~ I H( w0 , i"o) I J 0 ( Wo r) sin (G.) 0 t - ~ ( w , ~o ) )

-i. +(.w.w~')
wit h H( w,iu.) = 27t I H( w , i'i) I e and s = i W t

(5.-15)

(5.-16)

Thus input and output signal are of the same shape, they are only
different in amplitude and are delayed in the time domain.

5.3) Excitations on uniform backgrounds.

We are going to derive some formulas, which we are going to use
for the simulation on the computer (see chapter 8).
Assume that the parameters of the visual system are dependent on
the mean illumination. We now consider the case of a completely
uniform background and excitation with disks (see figure 5.-2).

r

t fdiSk

fR~t :!~~X,y,~
o _L ~ ~

I
i

vi.sual

system

Figure 5.-2. Experiments with the visual system on an uniform
background with a disk stimulus. R St is the radius of the disk.
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We can wr i t e the in put s i g n a 1 fin ( r , t) as:

f~" (r, t) .. AE{U( r) -U( As!: -r) }T( t) (5.-17)

The transform of the input signal is:

... Rst
F ~I\ ( W , s) .. b E w J, ( w Alit ) T ( s) ( 5 • - 18)

The transform of the output signal is then:

(5.-19)

If the disk is sinusoidally modulated in the time:

f c.ft ( r, t) =

F01&. l:. (w, i"'c)

fCJIA.~ (r,t)

~ E{ U( r) - U( As I: - r) } sin ( W o t) ( 5 . - 2 0 )
.. (21tASl: AE) w- I J. (wAsl: ) H( w ,i.~o)..!:- {O(wt-Wo) -~(CoIt +'->.) }

~" (5.-21)
.. (2~Ast AE) [w-'J. (wAst) I H( w,~c.>.) I sine W o t-f( W,Wo)) ]

(5.-22)

5.4) Excitations on disk shaped background.

The parameters of the visual system are dependent of the mean
lumination at the location (see den 8rinker and van Aalst, 1984)
The response on the edge of the disk is always zero: in den
8rinker/Aalst (1984) is assumed that the linear filter
characteristics (lateral membrane parameters) are dependent on
the mean luminance.
For disk shaped background luminances with no surround luminances
it was assumed that the impedances seen from the disk to surround
side is zero. Consequently all responses at the border from
background illumination to no illumination are equal to zero.
Therefore this response can be written as a summation of 8essel
functions according to the theory of the Fourier-8essel series.
Each 8essel function has its own time function.
8ecause 8essel functions are eigenfunction, we write the input
signal also in the form of a summation of 8essel functions.

-
visuaJ.
system

I
I

I I
I I
I I

E E+ AE

o

r

t ?

Figure 5.-3. Experiments with the visual system on disk shaped
background with also a disk stimulus. A b is the radius of the
background disk.
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We can write the input signal fi." (r, t) on a disk shaped
background in the size of Ab as a summation of Bessel functions:

fi.,,(r,t) = A(r)T(t) (5.-23)

( 5. -24)

11.'1
A",,"t J I (j",) R~

( 5 . -25)

•
R( r) = ~ A",Jo ( ..!:. jill)

"'... Ab

(5.-24) is called a Fourier-Bessel series and jm is the m~
positive zero of the zero order Bessel function.
The coefficient AM is determined by the integral-relation (see
Papoulis, 1968 and Boersma, 1981):

~ Rb
J R( r) rJ. (j .!.) dr =f A J o (j .;-) rJ (j .J:-) dr =
o M A. b 0 '" ... "b 0 '" Q.b

The transform of fi.n(r,t) is:

( 5. -26)

(5.-2?)

~ 00 _

F~I\ (w, s) = {L ~ S( w-w",,) }T( s)
. "''' w,..

with wM = J", and res) =(,{TCt)}
R..

The Bessel functions are eigenfunctions of the visual system. The
output signal contains thus the same spatial frequencies and can
therefore be written as

co
f'ou.,t.Cr,t) = £

""= I

with coefficient

B",( t) J o (j", ;'0 )
"" -Brv.( t) = 2Jr A""C'{H( w",' s) T( s)}

( 5. -28)

Notice that though each Bessel function of the input signal is
modulated in the same way in the time, this doesn't apply to the
Bessel functions of the output signal. This is a direct result of
the inseparability of the transfer of the system.

We will derive the Fourier-Bessel series for a disk of size Rs~

on a background disk with radius A•.
The input signal is:
R( r) = A E{U( r) -U( Rst -r)}
and can be written as a Fourier-Bessel series with frequency w~=

j", / A b : 00

A( r) b.. E I:. AIIlJo ( j""~ ) } ( 5. -29)
"" ... , .... b

In case of A sl:. R b we get:
( 5 . -30)

(5.-31)
2

Aslr<A Ia •
(5.-25) we obtain:

~2R5~ J. ( jft" A.. )
A =

""

with
From

5.5) Disk excitations and a dirac pulse in the time.



38

The input signel for e disk stimulus end ~ diroc pulse in the
time domain is:

fi,ft (r, t) = b E{U( r) -U( Rst -r) }S( t) ( 5. -32)

The transform of the input signal is now:

,.. 00 A
F~ft ( w, s) = b E I. ~ ~( w-w"')

"'-'''''""
The transform of the output signal is:

,... CD AM '\#

Fu,,~ (w,s) = 2n ~E1: - H(wrn,s)&(w-W,.)
",_I ""ff\

This leads to the output signal:

f Ol&o~ ( r , t)

( 5 . -33)

5.6) Disk excitation and sinusoidal modulation in the time.

For a disk exitation in the spatial domain and a sinusoidal
modulation we get the following input signal:

f ~" ( r , t) = 6 E{U ( r) - U( Rst' - r) } sin Co)o t -= ~E{£ A_J o ( w/'lllr) }sine.".t
""':11 ( 5 . -34)

Its transform is:
_ GD A.. I
F:.. ( w, i ~t ) = 6 Et - ,( w- w"') -:- {~(GJ ~ - W o) - ~ (CcJ b + (..).) }

-", 'IUL,W"" 1 ..

{ ~ ( Wb - v.) H( w"" ' t.J. )

- M CoJI: + 4J.) H( w"", - w.) }

=AEr A""$(w_w )IH(w,"·">·)J{~(W -CAl )e-"~ - &((.,) +W )ei.~ }
"'e, W"" M '1. \. t 0 ~ 0

Hereby we get the transform of the output signal:

"'" CD Aff\ 'Fa .... ( w, i(W.. ) = 6 E'1: - ~(w-w ) ~
_.. .. ""':., 'NIP\. '" 1. ..

with H(w,i(..)t)

and H( w, - i Go)t )

Now we derive the following output signal:
fo""t;(r,t) = 211 I: {A",Jo(w",r)IH(wlf\,ic.>o)/ ~in(Co,,)ot -+(w",c...>o)

,,",al (5.-35)

Remark: In the cases when the stimulus disk is sinusoidal
modulated in the time, we have used the Fourier transformation
instead of the Laplace transformation. Therefore the spectral
functions have an argument iWt in stead of s.
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Chapter 6: Construction of the model for the transient system

In this chapter a model is outlined for the transient system. As
already shown in the introduction the model consists of two
parts: a spatio-temporal filter and a pure temporal filter. The
reason for this subdivision is given in the analysis of the
impulse response of disks of variable diameter (see chapter 4).
We will now discuss the spatio-temporal filter, for which a
transmission line is chosen as a model. Subsequently some rules
are given of how to evaluate the spatio-temporal properties of
such fiiter. Then the temporal filter is shortly discussed.

6.1) Model for the spatio-temporal filter.

As a model for the spatio-temporal filter an electric
transmission line is used. This is a quite common model for the
connections between light receptor cells.
The lateral membrane of the visual system is a two-dimension
neural network. The neural network that consists of many
elements, can be considered as spatially continuous. The
spatio-temporal filter will be modelled as an electric
transmission line for the two dimensional case.

Figure 6.-1. The electric analogy of the lateral membrane.
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---c:J- = ~" Z I,X is the impedance of the length-1AZ,Xy. ) in the x-direction with a width=1 in
the y-direction.

Q =
Ay Z I.V is the impedance of the length:1
~Z.,y

1& in the y-direction with a width:1 in
the x-direction.

Q = Z~
Z" is the impedance for an area:1 to

6"A y "earth".

m and n are integers; t is the time.
~ is the radius with r=111: Vx"A. + y" J.

A.is a infinitesimal piece of length of a unit in the x-direction
and 6 y in the y-direction.
For convenience we now assume A : 6.= ~T ...
In the figure 6.-1 the current source j(ro,t) suggests a synaptic
transmission: this transmission results in current going
throughout the membrane. In each of the junctions such a current
source exists, but for convenience we leave them out in the
figure 6.-1. j(to,t) is viewed as continuous in the r-domain. It
must be assumed as a space current density.
The current which goes through Z~/b~ at the location (mA,n~) is
called6~j (m6,n~,t). This current is directed to earth.

~~ .

The vector ~(~,t) = [i,,(1,t)] is an area current density.
i y (1,t)

Now we apply the one-side Laplace transformation and define the
next functions:..
J ( r o , s)...
J "'_ ( r 0 , s)
U( m6, n~, s)
I IC ( mA, n~, s)
I y ( mA, nA, s)

= '{j(~a,t)}
= t:. {j"'G( mA, nA, t)}
= t {u(mA,n6,t)}=, {i ll (m6,nA,s)}
= ~ {i y ( rnA , n A, s) }..

The parameter r doesn't play any role during the Laplace
transformation.
From the Kirchhoff current equation we get from figure 6.-1 at
poi n t (m A, n A) :

AIl&(m~,nA,s) + oIy(mA,nA,s) -OI lt ((m+1)b,nA,s)
-A2.J"",,(mA,n A,s) +A'1.J(mA,n6,s) = 0

- b I"f ( mb, ( n + 1) b, s)

(6.-1)
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This formula we can write as:[I xC ( m+ 1)"" nt>:l -I, Cm4\., nt>, OJ] _[I y( ml>, ( n+ 1)4\., ~ -I, (m 1>, n4\., OJ].

lZ J",Cl( mA, nA, s) -J( mA, nA, s)

For A" 0 we get:
~ +

'bIx(r,s) ~I,(r,s) ~ ~ ...
lZ -VIer,s) ... J (r,s)

""..

From the Kirchhoff voltage equation follows:

U( m4, nA, s) = Z~( s) J /lit .. ( mA, n A, S)

..
-J(r,s) ( 6. -2)

(6.-3)

From formula (6. -2) and (6. -3) :

bIll ( mA , ntlo, s)
6 IJr ( ( m+ 1)~, n~, s)
o I y (mA, n~, s)
li. I y (md, (n+ 1)6, s)

-t
... Z.(s){U((m-1)b,n~,s)-U(mA,n~,s)}

... Z~' ( s) {U ( mb, nob , s) - U( ( m+ 1) 6 , n b, s) }

... Z~'( s) {U( mA,( n-1).A, s) -U( mA, nA, s)}
lZ t;' ( s) {U ( m6 , nA , s) - U( mA , ( n + 1 ) A , s) }

( 6. -4)

~ ~ -,.. ...
-VIer,s) = Z1.(s)U(r,s) - J(r,s)

For6~O we get from formula (6.-4)

~ '"" -. ..I(r,s) ... -Z.(s)VU(r,s)

From (6.-5) and (6.-6) follow then:

-, 1..... -'... ....Z,(s)V U(r,s) = Z.. (s)U(r,s) - J(r,s)

or

2. .... -I.. ...
-V U(r,s) + Z,(s)Z~(s)U(r,s) ... Z,(s)J(r,s)

( 6. -5)

(.6 . -6)

( 6. -7)

According to the third basic postulate (see page 4) we can drop..
the arrow above r: the angle-dimension doesn't play any role in
our modelling. Therefore we can use the Hankeltransformation.
For the Hankeltransformation the next property holds (see
Papoulis, 1968)

I '" 2,-V l.f ( r) = f" ( r) + r f' ( r) --.. - w f ( w)

We apply the Hankel transformation on the differential equation
(6.-7):

w~U(w,s)
-I

+ Z~ s) Zto ( s) U( w, s) -Z.(s)J(w,s)

with
U( w, s)

-J( w, s)

U(r,s)

J(r,s)

We now define the following function H.(w,s)
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(w,9) =

-U(W,S)

J( w, 9)
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Z. ( S)
=

~ -I
w + Z,(S)Z~(9)

(6.-8)

and according to (5.-10)

The parameter s plays no role in the Hankel transformation.
By applying the inverse Hankel- and the inverse Laplace-transformation on H,(w,s) we can obtain the causal fundamental
function h.(r,t).
The inverse Laplace transformation is:

i..
f( t) = , . [F( s) est ds = ,-I {F( s) } ( 6. -9)

'11\" _••

h,(r,t) = ~-' {~.I(H,(W,9)}} (6.-10)

Remark: in our modelling most of the inverse transformations are
not solvable analytically, for they lead to too complex forms.
Therefore they must be determined numerically by the computer.

6.2) Spatio-temporal characteristics: root-locus.

Root-locus analogy.
We will call the characteristic equation of H,(w,s) the equation
with the denominator of H,(w,s) equal to zero:
1 +w·'l. Z, ( s) Z~' (s) =0
The solutions s=p of this equation are the poles of the
transmission and dependent on w: p"p(w). The roots of the
characteristic equation can be plotted in the s-domain with w as
parameter. This is a root-locus plot, which follows the same
arithmetic rules as the construction of the root-locus of a
feedback system.
To show the simularities we rewrite (6.-8):

H,(w,s) =

,
;iZ,(s)

I -,
+ -:;-a. Z ,( s) ZI.( s)

Suppose K=1/w~, G,(s) os Z,(s) and GL(s)
-I

.. Z1. ( s) .

Thus H,(w,s) =
KG,(s)

with K 1 /w~ ~ O.

This can be regarded as a feedback system. In figure 6.-2 we have
drawn the bloc-scheme of this system.
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Figure 6.-2. H,(w,s) is here illustrated as a feedback system. K
is here a function of the spatial frequency frequency w.

The poles of H (w,s) are found by the solution of the equation
1+I<G,(s)G1 (s)=O - G.(s)Gt(s) -11K.
By variation of K one can sketch the root-loci of the system.
From the course of the root-loci we get an impression of the
behaviour of the visual system with the changing of the spatial
frequency w.
The root-locus which arises hereby, gives an image of the
position of the poles of the impulse response with a Bessel
function that has a spatial frequency w as input signal.

Remark: K=1/w~. ·Thus K is inversely proportional to w~: if w
increases, K becomes smaller. K and w go the opposite directions.-,From the analogy G,,( s) =Z1. (s) we see that the poles of ll( s) are
the zeroes of G1 ( s) and the zeroes of It( s) are the poles
ofG1(S).

The zeroes of H,(w,s) are the zeroes of G,(s) and the poles of
G~(s). The poles of H,(w,s) are:

for w=O the poles of Z.( s) and the zeroes of It( s)
for w:a>the zeroes of Z,(s) and the poles of l2,(s)

6.3) Impedances in the transmission line.

Parametrisation.
We want to construct a two dimensional membrane, so that all
important properties fit in the model of figure 6.-6.
As electric network equivalence of the lateral membrane we use
the model from figure 6.-1. The transfer function H,(w,s) must be
in approximation of the second order in s, because f 1 (t) (see
figure 4.-2) is biphasic and f~(t) is generated by H,(w,s) (the
convolution of two biphasic sign~ls gives a triphasic signal).
Thus there m~y be ~t most two non-resistive elements (the spool L
and the capacitor C) in the circuit (see figure 6.-3). Because of
this limitation and parsimony principle we demand: maximum 2
elements in Z. and 2 elements in Z~.
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Z,ts)

Figure 6.-3. A segment o~ the transmission.

We can connect the two elements in the impedance in serie or
parallel. Thus there are the ~ollowing possibilities to construct
the impedance.

c)

R C

-eJ---1t--

'Z =R +~L

'Z.= .+sRC
sC
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R

'Z =
l+sRC

C

d)

L

~ :I
sl

t+ s1LC

C

e)

f)

C L

-U-.rvY"L- 1 = I 't sll C
sC

Case e) and f) drop off: these are resonance circuits and lead to
high resonance peaks, because these systems lie on the edge of
stability. This doesn't occur in the data (see chapter 3).
The other cases can be combined arbitrary. This gives 16
possibilities. The properties of each of the 16 combinations
considered in the next chopter.

6.4) Model for the temporal filter.

The temporal behaviour of 1~-fields (dark surround) can be
characterized by the impulse response. This can be measured w~th

the aid of the perturbation technique. The impulse response has a
triphasic course (see figure 6. -4) .
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I-h'.t)

t

-t

Figure 5.-4. ,o-field impulse response determined by threshold
measurements with the aid of a perturbation technique.

This impulse can be considered as a convolution of the response
of two filters, which are connected in serie The impulse
responses of these two filters are adapted to each other by the
matched filter principle (see Papoulis, '958 and den Brinker,
1985 and chapter 4) .

--1;:: I_~]I-se__·r~ l-----d't'CtiOn

Figure 5.-5. The matched-filter model.

In case of detection problems the influence of additive noise,
which is introduced between the two filters, is then minimum.
Filter 2 we suppose at the retina level and filter 3 at cortex
level. Between both levels there are connections of neural cells,
which cause noise.
The response of filter 2 is biphasic corresponding with the
physiologic measurements at the retina.
It has been shown that in the matched-filter model filter 2 and
filter 3 can be described respectively by the impulse response
f'2,( t) and f'l (t) .

fa ( t)
f) ( t)

_'-,I:
= e

-ba.l:= -e
sin(wt) {U( t)
sin(wt) {U( t)

- U( t - T)}
- U( t - T)}

with T=2~/~, b.>O and b~<O.

U(t) is the unit step function.
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Besides a temporal character we assume that filter 2 has a
spatial character. So that we can substitute filter 2 through the
lateral membrane (see figure 6.-6).

receptors

Figure 6.-6. Signal processing in a spatio-temporal model.

Notice that the original pseudo-matched filter scheme contained
an extra first order filter. This was for simplicity reasons left
out in the construction of the spatio-temporal model.
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Chapter ?: Examined models for the lateral membrane

In chapter 6 it was shown that several choices exist for the
impedances within the transmission line that is our model for the
spatio-temporal filter.
In this chapter all these specific choices are evaluated on their
spatio-temporal properties t using the root-locus plots as
9uigested in chapter 6.
From these analysis it is possible to make a choice for the
impedances that are to be used for the transmission line, on
basis of qualitative agreement with measurement data. Next the
parameter values for all impedances are chosen.

Here we consider only one specific choice of the impedances. All
the other cases are iiven in appendix 1.

Case II (see Appendix 1)

In fiiure ?-1 a segment of the transmission line (see figure
6.-1) is drawn with the following impedances:

l, ( s) =
1 + sA,C.

The current source is left out in this figure and also the second
dimension (oriiinally there were four l.(s) in figure 6.-1)
The dimensions of the elements in these two impedances are:
A, = [A]; C. = [F]; L~- [Hm'L]; A L - [Am"].

Figure ?-1. A segment of the transmission line is drawn here,
where l, (s) consists of A, and C I in series connected and l'1.( s)
of A~ and LLalso in series.

According to formula (6.-8) the transfer function can be given
by:

H,(wts) =
L C W1. s1. + {A C1. I , I + A~Clw2.}s +1

(?-1)

The two zeroes are:

The two poles are:

Z I = and z1.
L1.
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= {- { A1. CI i0oi
1

+ C, A, }!. 0 A~C I i0oi \.

2L~C,w1.

These poles are dependent on the spatial Trequency w. For two
special cases i0oi=0, w~COit is found:

For i0oi=0 we get: p, = -
A, C,

and p = -001. •

For W"CO: p. =0 and p"
L 1

We can draw the root-locus 1+KG, (s) G1.( s) =0 with

__ [1 + sA, C, J
G,(s) = Z,(s)

sC ,

This root-locus of case II is drawn in figure 7.-2.
Note: the indicated poles and zeroes (with crosses and little
circles) are those of a system the transfer function Z.(s)/~(s)

~""
t

w..,_

Figure 7.-2. Aoot-Iocus of II for
I

case - >
~,C,

The arrows illustrate the increase of K, thus
spatial frequency w.
x is the pole oT Z I ( s) or the zero of Z1. ( s)
a is the zero of Z, ( s) or the pole of Z1. ( s)

~
L.1.

the decrease of the

Iand centre (- -R, ,0), e. g. the zero of
,C I

We can prove that the root-locus has a circular shape for the
complex solutions of the characteristic equation (see appendix
2) .

The circle equation is:

w1.+ ....J....]1. I , It"
[ cr + ~,c., = -:z, [It,c., -""L;. )

wi t h p ..~ = <:T ~ i w ~ I
and radiusv.~[if- - --!: )
Z I ( s) / Z 2. ( s) . !tIC, ,(., L'I.

For ~~ >~we get the root-locus from figure 7.-3.
L,t. ~ Il,C,
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Figure 7.-3. Root-locus of case II for Ita. ~
L&,

In general we find that all the cases cen
transfer function H, (w,s) according to:

I

Ro, c.,
be described by the

H,(w,s) =

In all considered cases two of the A, 8-parameters are equal to
zero. This is summarized in table 7.-1, where also the zeroes z"
zl(independent of w) are shown.

Table 7.-1: the coefficients of the models with their zeroes.
zeroes

case s'l. s 1 z. z ...

I A • '" A1. Al
I

0+ w 8, -A:C.
RC-lateral II wI. 8, AI. + W" 8( Al -~ _.."/L",
RL to "earth" III w'l. 8, w1. 81. Al + w" 8\

ill, Co ,
- P.1./L t-oo

IV w" 8, Ar.+ w" 8 .. A, 00 0

V A A" A1 + W'" 8 - tl,/L, ClIO
I )

RL-lateral VI A, A." + W'" 8." W." 8, -A.,/L, \
-;l;c: 10

RC to "earth" VII A, + w1. 8, wI. 8." wI. 8 1 0 --!-
VIII A, A'L+ W." 8 " 0

A... C..

" w 8~ ~

IX A, + w'l.8, AI. + w1. 8."
,

- -'-- -~. Il L e ..RC-lateral X A, A... + wI. 8" A" --,- co
RC to "earth" XI wI. 8. A",+ W." 81. W" 8,

til, C. • _ .J-
00 /Ita.' &.XII - A.. + W." 81. A\+ w1.8\ co 00

XIII - Aa.+ w'l. 81. A\+ w1. 8 -~,/L, - R.,,/ L'l.)
RL-lateral XIV A, A,,+ w\ 8" A" - i.Il, 0
RL to "earth" XV wI. 8, AL + WI 8'1. W" 8) 0 -~l/l1..

XVI A, + w1.8. A,,+ w"8'1. - 0 0

From this table we see that the coefficients A and 8 of case II
and IV are identical, the coefficients A and 8 of case VI and
VIII, and the coefficients A and 8 of case X and XIV. Thus the
shape of the root-locus is the same in cases with same
coefficients A and 8.

Selection of the impedances of the transmission line.
For all the examined models there holds H,(w,s)=O for w.~. For
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resonance frequency always increasing
the peak will always increase.
possibilities for pole variations. Only
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increasing spatial frequency w the transfer function H,(w,s) goes
to zero as expected from the transient system. The spatial
frequency w is reversed proportional to the disk diameter
for smaller disk diameter ~ the amplitude transfer function
H.(w,s) also is smaller.
In the analysis of the temporal impulse response only complex
pole pairs occurred. Only in cases I to VIII complex pole pairs
occur, this means we cannot use IX - XVI.
From 3.1) and 3.3) we have concluded a spatio-temporal model is
needed with increasing bandpass character for decreasing spatial
frequency w (i.e. increasing field diameter).
Cases V to VIII show an initially decreasing bandwidth for
spatial frequency w going downward from w=oo.
So only cases I to IV are suitable for our purposes.
Case I: almost unstable for very small field sizes (two poles in
the origin).
Case III: straight lines
with decreasing w, hereby
Case II and IV: identical
the zeroes are different.

We shall examine case II further. Hereby we shall simulate model
lIon a computer and compare the simulations with the measured
diagrams.

-",~To obtain f 1 ( t) e sinw t (see chapter 4) we must remove the
two zeroes of H,( w, s). Therefore we put a bloc with transfer
fun c t ion H1. ( s) inc a sea dew i t h H I ( w , s). The z e roe s 0 f H I ( W , s) are
the poles of H1.(s) (see figure ?-4).

Figure ?-4. Zero cancellation of H,(w,s) by the aid of H1 (s).

o s1.,
=

H2,( s)
(s - z,)(s - zz,) s'J. + °l S

1;),

The total transfer function is now:
Hew,s) =

=
( A. + w1 8 I ) s z. + (A z. + w'l 82,,) s + (A \ + w1 8 3 )

+ w1. 8,A,

2-
'Yo =

the transfer function of the receptor.
A '\ + W... 8, A 'l. + W... 8 1.

and ~ = fWD
A~ + wI 8)

H1.( s) we can see as
K.O,

Wi t h Kl. =
A'\ + wl. 8 S
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We obtain: H( w, s)

for ~ < 1: p "a. = c.>o { - (\ ± i "1 - ~1.'} "" - b I ± i "'"
wit h b, = <..10 ~ and Go,) = vi 1 - (':,1. '

H( W, 6)
(s + b, + i CA» (s + b, - iw) w b ) 1, + ~.J

By the inverse Laplace transformation we obtain:

h(w,t) K1. -b,t::
= -e

W
sinew t) for t>O.

b, is the dampingj Co.> is the eigenfrequencyjW o is the natural
eigenfrequency; ~ is the relative damping (see figure 7.-5)
K1.' b, and (..0,) are dependent of the spatial frequency w.

jw
t

I
I

-~c.;,,1

_0-

C.oS CAl = l'

Figure 7.-5. The poles of a damped second order system.

The amplitude equation of H(w,s) is

The static amplification is I H(w,O) I Kt,..

For real W",,: ~"<~
The maximum of I H( w, ic.>t) I is the:
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The ratio of the maximum and the static amplification is:

I H(w,i""'\:) I
QR = =

IH(w,O)1 2l\V1-1\~'
This value indicates the peak in the Bode amplitude diagram.

r :II 0 - ,I)", = At = O. 707 1
f~'" and "-'.. =0

If :II arccos ~'" =
oBeneathc.e=45 no peak will occur in

45°
the Bode amplitude diagram.

To simulate our model of case II on the computer we must have
suitable values for the parameters A"A1 , C, and Lt. From
measurements the following values can be assumed:
for 1· -field: w :: o. 08 (min of arc. ft

Y.... Go) = 70 radls
x, = l\ Co)o = - 15

for 5 0 -field:
-I

W ~ 0.016 (min of arc.)
Yl= 93.33 rad/s
xl = -20

The circle equation for model II is:

(.A:)1. ",.. , )1.
t.+(V+~

assume: yl. + (x

I I
= -(-

R,C., A.,c.,
+ a)2. ... rio

A. 2,

- - )L",

e.." ~ 0 V1 - (\1. I

1\ Wo = -15

+ (x,

1­+ a)

+ a)'2. (390) ~ r

= 70

+ a)"'-+ a =-!- = 398.6
II, C. I

~1.390 _ -= 17.14
L",

0.2095
71.59 radlsec

~1 =o

AI
I.+ B,w

0.03049

= 0.5226

By choosing one parameter the other three are also determined. We
choose arbitrary A I = 2.n., then At. = 416.7A ml., L2., = 24.31 Hm1.

and C I = 0.001254 F.
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Chapter 8: Simulation of the lateral membrane model

The membrane structure found most suitable according to chapter?
is

(8.-1)

with parametrization:
R. = 2 A;
C, - 0.001254 F;

= 416.? Am&

24.31 Hm1.

The response of this membrane to various excitations is simulated
on a computer and discussed in this chapter.

8.1) Response to 8essel functions in the space domain.

The res po n set 0 an ex cit a t ion g i ve n as F i. f\ ( r , t ) = J 0 ( wS r) sin ( Gl)o t )
was already considered in chapter 5 and calculated as
FOII. t (r, t) = I H( w" iwo ) I J o (ws r) sin(wo t - 4> ), where
H( ws, iwo) = I H( w~, i4l.) I e-Lt .
The amplitude transfer function I H(ws,i~o) I is plotted in figure
8.-1 with ~S as a parameter.

1-"PR-Bl5
---W6-12I.12I1

l!I WS-I2I.G!2
J I ws-m.. "4

BOOE " ..PL.

=
~..~= WS-C2lI. GlIB

, WS-I2I. 18

l.E"l

l.E-el

I.E"4

T....P.FREQ.WT

Figure 8.-1. Amplitude diagram as a function of the temporal
frequency with the spatial frequency wsas parameter.
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From figure 8.-1 it can be seen that (as expected from chapter
7) :
-first the peak increases, then decreases with decreasing spatial

frequency wS'
-the bandwidth monotonically increases with decreasing spatial

frequency ws.

The response to a flashed Bessel function given by
F;.,,(r,t) == Jo(wsr)i(t) is F .....I:.(r,t) = Jo(w~r)t.-·{H(wS's)} and the
inverse Laplace transform (the impulse response) to a Bessel
function of spatial frequency Ws is plotted in figure 8.-2a and
b.
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-L '''-lIS L..-__'--__l...- J--__~__..l.___........__..l.__ ___'

Figure 8.-2a)
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Figure 8.-2b)
Figure 8.-2. The impulse response h(ws,t) as a function of the
time with parameter the spatial frequency. (in figure &.-2a Ws is
from 0.01 to 0.16 and in figure 8.-2b Ws is from 0.15 to 2.56).

In agreement with figure 8.-1 we see:
-faster responses for smaller frequency ws'
-most oscillatory behaviour for intermediate value Ws from slow
monophasic to damped sinusoid to fast monophasic impulse
response.
-maximum of response increases with increasing ws'

8.2) Responses to disk excitations in the spatial domain.

We now turn our attention to stimuli whose spatial form is a disk
and with arbitrary time modulation. As shown in chapter 5 such
stimulus can be considered as a summation of infinite series of
Bessel functions in case of an experiment without surround.
First the effect of truncation of the series is considered. In
figure 8.-3 a summation of 10 Bessel functions is shown for R.
Rst = 30 according to (5.-24). In figure 8.-4 the same summation
is shown for Rb = 30 and Rst=15. In both figures we see that the
truncation produces ripples on the input signal.
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Figure 8.-3. Input signal as a summation of 10 Bessel functions
with the stimulus diameter RSt equal to the background disk
diameter Rb .

The peak on the edge of the disk is higher than in the middle of
the disk stimulus.
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Figure 8.-4. Input signal as a function of the radius r with a
smaller stimulus diameter Rst = 15.

We now consider a disk that is flashed. As shown in C5.-32) the
response of the system will consist of a serie of Bessel function
each with its own time course. This is shown in figure 8.-5.
Figure 8.-5a shows the time course of the first Bessel function
in this series CJoC f;j,)) of a disk with R~= R b = 30, figure
8.-5b the second and figure 8.-5c the third in that series. In
figure 8.-5d the time course of the first Bessel function of a
disk with Rst= Rb = 50 is plotted.
For R~= 30 the impulse responses are smaller in magnitude with
smaller Bessel period r=Cj,/j~)Rb; the impulse response of of an
excitation with the form JoC R j,) has the largest magnitude of
the Bessel series. b

The period in the time-domain increases with smaller Bessel
period r=C j, / j",) Rb in the function of the form JQC ;:-,;-jlll) with
m>1; the impulse response of of an excitation with the
form JoC-f-j,) is the fastest.
The impul:e response of the excitation with the form JoC: j.)
has the longest Bessel period; the impulse response of th~
excitation with form JoC ,;: j),,) the second longest. The Bessel
period decreases with high~r m.

The sign of the impulse response of the excitation with the form
JoC :b j1 ) is negative with regard to the impulse response of the
e xci tat ion wit h the for m J o Cf;- j. ); the imp u 1 s ere s po n s e 0 f 0 f
the excitation with the form JoC R~ jl) starts with a negative
phase instead of a positive phasebliKe the impulse response of
the excitation with the form JoC~jl)

Rob
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The response of figure 8.-5d (larger excitation disk: A.=50) is
faster and higher than the impulse response of figure 8.-5a. The
impulse response of the lateral membrane is dependent upon the
coefficient s AM and the func t ion s J" (w",r) and h( w""t) (see formu 1 a
5.-33 and figure 8.-2).

In figure 8.-6 we plot the impulse responses as a function of the
radius r with the time as parameter. The time is chosen in the
neighbourhood of the maximum of the impulse response of the first
Bessel function of the summation (see figure 8.2).

ll5-A""-BB
..- III

• ,. 1:1.. "1

I"'O'..Il.SRES"ONS IE

:~:=: _- 121. ma
..- Ill. 11I4

1-

-
--

-II 5 15

Figure 8.-6. The impulse responses as a function of the radius r
with parameter the time.

Here the stimulus diameter A,t is equal to the background
diameter AIt ( Ast.= Ab=30). At t=O the impulse response is zero.
These curves move according to the curves of figure 8.-2.
In figure 8.-7 the stimulus diameter A\t= 15 and A b = 30.
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Figure 8.-7. Impulse responses as a function of the radius r with
the time as parameter and a stimulus radius RSt = 15 and
background radius R~= 30.

In figures 8.-6 and 8.-7 the summation of the first 10 Bessel
functions is shown.

In figure 8.-8 the amplitude diagrams of the impulse response (of
figure 8.-5) are illustrated as a function of the temporal
frequency. The input signal is a Bessel function. The plots are
taken at a radius: r=O. The plots are taken with different
spatial frequency w=jM/Rb' The phase diagrams of these impulse
responses are illustrated in figure 8.-9.
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These Bode diagrams are identical to the diagrams
because the Fourier transform of the input signal
(the input signal is a Dirac function in the time

of figure 8.-1,
is a constant
domain) .
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Remark: in the Bode amplitude dia2rams of figure 8.-8 we see that
the curve becomes a constant for hi2her temporal frequency. This
is due to the limited area of the impulse response, in which we
are samplin2. The sampled impulse response is transformed then
into the temporal frequency domain with the aid of a subroutine
of the NAGO library. The subroutine uses the Fast Fourier
Transformation.
Thus for hi2her frequency it looks like, there are zeroes
present, but this is not the case. The slope of the amplitude
diagram is approximately correct.

In figure 8.-10 the time course is plotted for r=O. From this we
see that the first Bessel function has the most important
contribution for r=O (for this particular stimulus diameter). The
second and higher order terms are relatively small.
For smaller diameters than Rst= Ab = 30 this is even more true:
the first term is the dominant term. For larger diameters the
hi2her order terms become relative more influential. See figure
8.-10a with Rb= 10 and figure 8.-10b Rb = 20.
Thus for even smaller disk diameters the first Bessel function is
the most influential, for larger disk diameters the higher terms
of the summation are more influential.
Larger fields have a faster response with smaller amplitude.
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We
and

see from these figures that the impulse responses are faster
larger in amplitude with increasing stimulus diameter Rst .
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This is confirmed by the plots of figure 8.-7.

Remark: for higher R St the impulse response start to oscillate,
because the Bessel functions with smaller Bessel period j~

becomes larger in amplitude. 10 Bessel functions are not enough
to describe the stimulus disk for higher disk diameter.
From the figures 8.-6, 8.-7 and 8.-10c we see that the total
response is inseperable.

As a last simulation for the membrane a disk is taken with a
sinuoidal time modulation. The transfer function is plotted in
figure 8.-11: the amplitude diagrams of the impulse responses of
the lateral membrane are illustrated as a function of the
temporal frequency. The input signal is a disk stimulus with R5~=

R b' The stimulus diameter R st: is varied between the plots.
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Remark: we see that for higher disk diameter R~r(=Rb) some
amplitude components are weakening. We think this is due to the
fact that there are not enough Bessel functions used in the
summation to describe the stimulus disK adequatly.
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Chapter 9: Temp-oral filter

In chapter? the lateral membrane structure was chosen including
its parameters. In chapter 8 simulations of the lateral membrane
were shown. The only thin~ that now needs to be done is to choose
the temporal filter. This is done in this chapter. Having done
this the overall response of the system can be calculated. This
will be done in the next chapter.

For simplicity reason the matched filter model is chosen. The
temporal filter has an impulse f)Ct) accordin~ to this model:

-b tf)Ct) = -e 2 sinCw t) {UCt) - U(t - T)} (9.-1)
with T = 2~ /~ and b~ < O.

In figure 9.-1 the root-locus of the lateral membrane is sketched
with the chosen parameters. The. filter f)(t) is now matched to
that point of the root-locus that has the highest peak in its
Bode-amplitude plot. This is the point where the tangent at the
circle goes through the origin of the s-plane (see chapter 6).
This point is also approximately, the 10 -field, because the first
term from the Bessel-serie for the 1°-field was chosen right
there in chapter ? So only for a 1~-field there is real
matching.

--~--------------l-H--ft:f'

Figure 9.-1. Part of the root-locus of case II.

We find that the point of highest Bode-plot-peak occurs for
w=O.O? (min. arc)-I and with damping ratio fJ and Ctemporal)
natural frequency c.w o of:

-I
w = O.O? (min. arc)
(.,)0= 83 rad/s
r.. = 0.2066



72

From this we obtein the demping b 1 end frequency w of the
matched filter by

The simulation of the impulse response of the temporel filter is
shown in figure 9.-2.

Z.S

1.5

LS .
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-1.5

......1 L.l LA L87
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Figure 9.-2. Impulse response of the temporal filter according to
the matched filter principle.

It is a damped sinusoid of one period. The maximum of the
positive phase is bigger than that of the negative phase. In
figure 9.-3 we illustrate the amplitude diagram of the temporal
filter as a function of the temporal frequency. And in figure
9.-4 the phase diagram as a function of the temporal frequency is
shown.
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Figure 9.-3. The amplitude diagram of the temporal filter as a
function of the temporal frequency.
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Remark: the phase curve makes jumps in figure 9.-4, because the
function arctan of the computer is defined for an interval from -~

to +~; in this figure the curve passes this limit several times.
Thus in reality the phase curve decreases continuously with
increasing temporal frequency.

The response of the system with the lateral membrane in serie
with the matched filter can now be calculated. The matched filter
is tuned to a certain frequency (w = 80.5? rad/s). We expect that
through convolution with the matched filter and other signals
the signals with period equal to the temporal filter are
amplified the strongest.

Remark: In the original pseudo-matched filter analysis (see
chapter 4) also a first order filter was present. This filter is
omitted here also for simplicity reasons. The effect of adding
such a filter in our model still has to be considered.

Remark: In chapter 10 the computer simulations of the transient
model using the matched filter principle are shown. In chapter 4
it was shown that also a second order temporal filter might be
considered to be used in serie with the lateral membrane. We did
not try this as yet.
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Chapter 10: Simulations of the total model

In this chapter we will consider the responses of the system to
various excitations.
By putting the temporal filter in cascade with the lateral
membrane we can iet the output signal of the total visual system
by the convolution of the input siinal of the temporal filter and
the impulse response of this filter.
The excitations are taken the same as in chapter 8. Now these
responses are processed by the matched filter, suggested in
chapter 9. While showing the simulated responses the similarities
to the phycho-physical data are simultaneously discussed.

10.1) Responses to a Bessel function.

flashed inputs.

If.the input signal is a Bessel function
r=~R. and a flash in the time domain we

Jillresponses shown in fiiure 10.-1a, band c
respectively) at a radius r=O.
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We have now a triphasic signal with a small oscillation behind.

The amplitude diagrams of the impulse responses of figure 10.-1
are shown in figure 10.-2 as a function of the temporal
frequency.
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The ripple in the Bode-amplitude diagrams is due to the
truncation of ~he sinus in the temporal filter (see also figure
9. -3) .

10.2) Responses to a disk stimulus.

flashed inputs.

In figure 10.-3 the impulse response of the visual system are
shown with a disk as input, here we vary the disk diameter (this
is equal with the backgroud disK diameter). (the radius r=O)
In Appendix 3 the main programme and the subroutines are given.
With this main programme we have simulated the impulse response
of the visual system with a disk as in~ut. By some small changing
in this programme we get the other simulations of this report.
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For increasing disk diameter RSt(=R b ) the triphasic impulse
response is Taster (smaller period) and the magnitude also
increases hereby. The second phase becomes deeper than the Tirst
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phase. For R St = 10 the first phase is deeper than the second,
but this is changed for larger stimulus disk diameter.
For R,.C=R. )=50 we see that after the third phase the signal is
not a damped sinus anymore.
For much larger RSt than 50 we get a heavy oscillating signal.
This is maybe due to that the summation of 10 Bessel functions is
not enough to describe the disk stimulus. Which means that more
Bessel functions are needed to describe the disk.

We will compare the simulations of the impulse response of the
disk stimulus with different stimulus diameter RStCsee figure
10.-3; here R St <50) with the data of the impulse response in
fiiure 3.-1.
The simulations have the same form as the data: triphasic and a
damped sinus hereafter. See figure 3.-1e and 10.-2c for 1·
-field.
The data of subject H.D. has a deeper first phase than the third
phase. His data has the same form as the simulation of a smaller
s tim u 1 u s d i a met e r CAst = Rb = 10) .

In figure 10.-4 the impulse response of the disk stimulus Cfigure
10.-3) are illustrated as a function of the temporal frequency
with parameter tha stimulus disk diameter RstC=Rb)'
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The weakening of some amplitude components of figure 8.-11 also
appears in figure 10.-4. Plus the ripples of figure 10.-2 this
is due to the one period sinus of the temporal filter.
For larger stimulus diameter the simulations of the
Bode-amplitude diagrams also have a higher top just like the data
of figure 3.-2 (De Lange characteristics).

The maximum of the impulse response is plotted against the
stimulus disk diameter (RSt:=R b ) in figure 10.-5.
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Figure 10.-5. Maximum aT the impulse responses as a Tunction aT
the stimulus diameter AS~'

We see there is a maximum in Tigure 10.-5 Tor a stimulus diameter
As~=35 . Here aTter the curve decreases Tor larger stimulus
diameter.

We will compare now the simulation aT Tigure 10.-5 with the upper
curve 5 aT Tigure 3.-3: the maximum aT the impulse responses as a
Tunction aT the stimulus diameter Ast .
Both curves are increasing with increasing aT the stimulus
diameter. Curve 5 aT the data is Tor a certain stimulus diameter
nearly constant, meanwhile the simulation begins to decrease Tor
a certain stimulus diameter; the maximum is about at Ast=35.
The Tigure 3.-3 has a horizontal axis with the stimulus diameter
in an angle-dimension (=A st /30 degrees).

In Tigure 10.-6 we plot the cutoTT Trequency 11Th by varying the
stimulus diameter Ast=Ab' The cutoTT values aT Th we get Tram the
Bode amplitude diagrams aT the impul.se response with diTTerent
s tim u Ius d i am e t erA lIt .
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Figure 10.-6. The cutoff frequency 1/f h as a function of the
stimulus diameter Rst

The cutoff frequency 1/fh decreases with increasing stimulus
diameter.

The simulation of the reciprocal of the cutoff frequency as a
function of the stimulus diameter is shown in figure 10.-6 and
the data in figure 3.-4 (upper curve). 80th curves decreases with
increasing of the stimulus diameter.
For small stimulus diameter the simulation curve of 1/fh
decreases very rapidly.
For large stimulus diameter the data curve begins to go up: the
bandwidth becomes smaller after increasing at the beginning.

10.3) Responses to pulses.

If we modulate the stimulus of the disk as a pulse in the time
domain, we will get the pulse response of figure 10.-7 with a
pulse width e = 0.05 s and a stimulus diameter R~t=R~=30.
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In figure 10.-8 the pulse duration is longer, the transients of
the two flanks of the pulse don't influence each other anymore.
The last phase is from the oscillation, which occurs behind the
triphasic signal.
For small pulse duration the pulse output con be seen os on
impulse response: the pulse response has the same shape as the
impulse response.
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In figure 10.-9 the simulations of the reQiprocal of the maximum
of the pulse response as a function of the pulse duration are
illustrated with as parameter the stimulus disk diameter.
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For greater pulse durdtion the two transient Of th~ two fl~nK~ of
the pulse don't inTluence each other thus the maximum is constdnt
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(the maximum is then the maximum of the first flank or the second
flank). Thus the curve is horizontal for larger pulse durations.
The negative phase is deeper for increasing stimulus diameter,
but longer for smaller stimulus diameter.

Comparison of figure 10.-9 and figure 3.-5 shows that the shapes
of both curves are alike. The negative phase of these curves is
longer and less deep for larger stimulus diameter. The negative
phase of the simulation also has a minimum for a certain stimulus
diameter just as the data.

In figure 10.-10 the critical duration T c is plotted against the
s tim u Ius dis k d i am e t e r (An = Rb ). The in put s i g n a lis a p u I s e in
the time domain.

3lil-MAY-1!I1!I
---To

CRITICA~ DURATION

Figure 10.-10

The curve decreases for larger stimulus disk diometer. After Rst
(=Rb) =50 this curve starts to increase. The number of samples is
small here, this is due to the long computing time.

When we compare this curve with the data in figure 3.-5 (lower
curve) we see that both curves decrease and start to increase
for 0 ~ertoin value of the stimulus disk diameter. The range of
the stimulus disk diameter of the simulation is smaller than of
the data.

In figure 10.-11 the maximum of the pulse response is plotted
against the stimulus disk diameter (Rst=R b ) with a pulse duration
of6 =0.11s.
The curve increases by small disk diameter. After Rst. =15 the



curve varies only in a small
here also small (11 samples)

3G1-",,,Y-ee
--- .~ '0.11 S

go

interval. The number of samples is
due to the long computing time.

II

• • • •

Figure 10.-11

The curve of the maximum of the pulse response as a function of
the stimulus disk diameter in figure 10.-11 increases faster than
the lower curve of figure 3.-3. The parameter of both curves is
the long pulse duration e , thus at the horizontal line of the
curves from figures 3.-5 and 10.-9.
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Chapter 11; Conclusions and recommendations

In this report a model for the transient channel of the human
visual system is considered. This model consists of two parts: a
spatio-temporal plus a temporal filter. The model is based on
several assumptions concernini the fovea: linearity, place- and
time-invariancy, and rotation symmetry.

For the spatio-temporal filter the class of (two-dimensional)
passsive transmission lines of low order is investigated. One
type of transmission line was chosen on the ground of
quantitative similarities with the measured data.

The chosen transmission line, colled the loterol membrone, ond
the temporal filter can be parametrized on the basis of parameter
estimation programs of two sets of temporal impulse responses for
different spatial disk diameter (see chapter 4).

The lateral membrane response, and the overall model response to
various stimuli, is simulated on a computer. The simulations show
that the essential properties of the model airee with the
measured data, for stimuli, that are not ~oo large spatially.

Only measurement data of different sources (i.e~ different
subjects and/or different background levels) are available.
Therefore a really quantative test cannot be performed with this
model at this moment.

A more general approach (by a more general formula like formula
(4.-1)) to the transmission line than the one suggested in
chapter 6, might add some degree of freedom to the lateral
membrane.

Temporal filters, other than the one chosen have to be
investigated; for example a second order temporal filter.

The model gives good results for a limited area (R~~ ~SO) of the
disk diameter Rst • We can enlarge this area by adding more Bessel
functions in the summation (the stimulus disk is approximated by
a summation of Bessel functions). This leads to more calculation
time for the computer. It has to be investigated whether this
truncation leads to significant errors.
Or we can define that the stimulus is only valid withi~ this area
and let the stimulus with larger disk diameter Rs~ also fall
within the area. This we can examine with further research with
the aid of this model of case II.
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Appendix 1: Examined models for the transmission line

Case I

Z, ( 5) =
1+5A,C I

Figure A1.-1.

Transfer function: H,(w,s) =

Zeroes: zl.= 0 Z, =

Special cases:w = 0: PI = - --
AI C,

W ~oo: PI = 0

Poles: P =
I,~

P ~ =

P'2. 0
L~

Breakawaypoints: CT. = 0 and 0"1. = -

radius:Centre:

Circle' W' + {a +

w.o ,1 POLES

W::a:I
_rT'

K

Figure A1.-2.
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Case II

1+sA, C,
Z ,( s) ,..

L'I/b.~ . sC,

R"/A'I.

Z 2. ( s) == Aa,+sL\.

Figure A1.-3.

Po 1 e s: p =
1,1.

Zeroes: z == ­,

=
L1"C, w1. s'" +{A, +A~w1}C, s+1

At

A,C, L~

/, t 'I. l'
-{A, +A1.w1.}C. ± V{A, +Aa,w"} C. -4L 1 C. W

2L1. C,w1

Special cases: W = 0: p, = - P'l. = -CD
AIC I

AI.
W~O' P , = 0 P1. = - -

~: }'
L1.

8 rea k a way poi n t s: a •." = _ ~... •~ [ __1_
A, C, - V~, C I AI C,

Circle, w'. {~. A:C' r·[A:C, - ::j A,C ,

0) . /1---_1 {_-1-----A1 J
radius: V;

, A.C, A,C, Ll,
Centre' (-



A'2
Figure A1.-4. >-

A, C, L'2

Figure A1.-5. ~

A I C, L1.

Case III

Figure A1.-6.

.... so

w••

LW

t

.... c:r

Transfer function: H, (w,s) =

Zeroes: Z = (lO
I z~ = -

L1.
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= -P'l= -

-{-= 0:

-{R I R1 C, +L,,)w1. t J{R, R1.C, +L1)1. w't- 4 R, C. L1.w1.{R1.w'1. +R. }'

2C, R. L1. w1.

A, Aa. C. +L2, ]
± i CO

2A I C, L",
1 Rt

p 't1. =

Breakawaypointg: ~ = -

Special cases: w

Poles:

t
Ie

Figure A1.-7.
k

Case IV

R,
R,

Z I ( s)
1+sR,C,

R~/AS.

sA1,L1.
Z t( 6) =

R1.+ sL1.

Figure A1.-8.

Transfer function: H.(w,s)

Zeroes: z = 0; z = 00

-{R1.w1+R, }L.d: ylL~{R1.W1+A,}'1-4R~Ricl L1.W1.'
Poles: P"2. =
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Special cases: w = - 00

8 rea k a way poi n t s: 0"'.,2. = - -- ±

L1.

P1. == a

f AI. 1 1
l L2" - A,C.

radius:~r:-:--[~-:'-~----A-'-~-'-}~'

A1.

== -

L1.

= --Circle: ~+ {cr + ::r
Centre: (- :: • a ) .

Figure A1.-9.

wao w .. -

K Ie

A1.
Figure A1.-10. ~
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Case V

Figure A1.-11.

Z').( S) =
1+sR~C1.

TranSTer Tunction: H,(w,s) =

Zeroes: z = ­,
L,

-{R,R1.C1+L. }t0R,Rl.C\,+LI}~-4Rl.C",L, {R I +R\,w1.}'
Poles: PI1.,

Special cases: w = 0: PI
L,

w -co: p =[- 2- {~
I.~

2 L.

1{ R I 1
8reakawaypoints: ~ = - -- --- +

2 L, R1.C1.

t
k

Wso WSo

K

Figure A1.-12.

+ --
R~C2.

!
:ti
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Case VI

FiiUl"e A1.-13.

Z2,( s) =
sC",

Tl"ans~er ~unction: HI(w,s)

Zeroes: z,= -
A,

Z2,= -

{A, +sL. }{ 1+sA",C 1 }

=
L.C~s"'+{A,+A~w~}C~s+w'"

1

Poles: p,.1. =
2L t C 'I.

Special cases: w = 0: PI .. - o

w - co: p I - - 00 i P1. .. -

Centre, (- o ) radius'
1 { 1- ---

A1.C&., A~C",
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'l.~

t
It

Figure A1.-14.

K

\N:l0

L,

w=_

k

k

...,=0

w-=o

Figure A1.-15.

Case VII

Figure A1.-16.

sR. L,
Z I ( s)

R I +sL,

Rs/b.'"
1+sR1. Cl

Z 1 ( 5)
ijC 1

TrOnilfer funotio,,: H.{w,s) ::. {RI+R2.w~}LIC1S1.+{R,R1.C1.+LI }w1. s +R
t

w2.

1
Zeroes: z = 0I
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= - --"I -00: PI

"I = 0:

- { L, + RI R1. C t } "11. ± ./{ L I + R t R"1. C 1.}1 "I" - 4 "I'\. R I L, C 1 { R I + R1 "1'2. }

2L,C2,{R I +R1. w'l.}

PI == 0 P 1. = 0
R I

P I.~ =

Special cases:

Poles:

Breakawaypoints: ~ = 0 and ~1.= -

Circle: (,u'1.

Centre: (-

r
2

R1. C 2,+L,/R,

- [A~C~+LI/A.r
radius:

t

lC

k

Figure A1.-17.

Case VIII

R,

Z, ( s)

=

Figure A1.-18.

TransTer Tunction: H,(w,s)

Zeroes: z,= 0; z~== ~

- {R, + R~ "11 } L I ±.

=
R I Rt.L, C1.s1. +{R, +R1~ }L, s+R, R1 w\

J{R,+R~w'l }'lr, -4R~R~L, C1.W1'

Poles: p ==
',2.



Special cases: w = = 0

103

= -

w .. CD: PI = - ; P1 = - 00

L, A, V1 A, 1 1 A,Breakawaypoints: 0",.1. . -
AtC l ~

-+ --

. {~ r La L,

Circle: w1
A,

{~
A:C l j

AI
+ -

L, L, L,

Centre' ( 0) J A, { A, rA,

- A~~'radius:- -
L, L I L,

"W
t

AI

"
"".0

Figure A1.-19. > ----

"".0

Figure A1 .-20. ~

k

wco
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Case IX

Figure A1.-21.

Z, (s) =
1+sA, C.

sC'1

Transfer -Function: H,(w,s) =
{A.+ A~w~}CIC'1s~+{C~+C,w~}s

1
Zeroes: z.= -

Poles: p = 0• .. -

Special cases: w = 0: P, .. - P~ .. 0
ArC,

Ie

Figure A1.-22.

PI. = - -
A~Cz.

"'~
t

"1'1 ..0
_ .. IICI

k ~ t:r
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Case X

R, t,
-D----1 t------r--.--

Figure A1.-23.

z, ( S)

Zl.( S) =

TranSTer Tunction:
R 1 {1+sR.C. }

H,(w,s)
R. RtC. Clos'" +{R. C, +R~Ca.+R. C1.w1.}s+1

1
Zeroes: z = ­•

Poles:
-{R I C. +Ra.C~+R1.C, w'l.} t V{R. C, +RZCz. +R 1 C. w'1.}'" -4R. R"C. C lo

P1,'1. =

Special cases: w = 0: p. = - - P1. = -
R , C. Ra,Cz.

w -00: PI = 0 P1. = -0)

t

Figure A1.-24.

k
_ tr
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Case XI

Z, ( s)

=
sC1-

Figure A1.-25.

Transfer function:

H,(w,s) ..
Zeroes: 2, = ClC ZI. = -

AI. C 2.

Pol e s: P "2. = ,..----------------------,
- {AI C2, +A I C, w'l +A 1. C1 wI. } ± V{ A, C1. + A, C I w... +A 2. C2, wI. }1. -4w" A, At C, C1.

=

Special cases: w .. 0: P, = 0 Pl, .. -00
1

w-.oo: PI = - - PI = - -
A. C, Al. C 1.

i.~

t

w.oo

Figure A1 . -26.

lC
_ 0"
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Case XII

Z t (s) ,.

Zl (s) =
1+sA",C1.

Figure A1.-2?

Transfer function: H.(w,s)

Zeroes: z = CO z = CO

=

Poles: PI

P1,

Special cases: w = 0: Pi = -co

w -Q): P,

CoCA,)

t

= -(X) P'1. =

i.w

t
W:O w~oo

w=o

.....,.a-

Figure A1.-28.
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R, L,

Z I ( S) AI + sL I
R1./41

L,.IA1..

Z1.(S) = A1 +sL'l.

Figure A1.-29.

Transfer function: HI (w,s)

Zeroes:
z~= -

{L,+L~w~}s+{A,+A~wt}
AI

Poles: PI = - 00

A. +A1 w1.
PI. =

L1 +L2,w1.

Special cases: w = 0: PI = - 00

w~ Q): PI = -00

c.w

t

""'=00 IH:O

Figure A1.-30.

AI
P'l = - -

L t

R2,
P'1 = - --

Ll

\"c...>

t
lH~o w~oo

~ ~cr

~1. Z!.l
Ll, L,
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Case XIV

Figure A1.-31.

Z I ( s) - R.+sL.

R,.//l&'l.

sRtLt
Z1 ( s) =

R,,+sLI.

Tranfer function:
sR3,.Lt.{R, +sL.}

H,(w,s) =

Zeroes: z. = 0

PI,,. -

Special cases: w = 0: PI

w:.o

k

Figure A1.-32.

= --

w:o

k

P'1

P1. = 0

i.e.."
t

Ll.,
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Case xv

It,

sA, L,
Z I ( s) =

R'I./A1 A +sL

L-/A'I.
Z \( s) = Al,+sL 1

Figure A1.-33.

TransTer Tunction:

H,(w,s) =
L. L1.w1. s~ +{A.1 L, +A1.L, w'l.+A 1 L1w~ }s+A IAl,w2.

Ll
Poles: p,.~ =

-{A, L 1 +A1.L, w1.+A. L1W1} t V{A 1 L, +A1.L, w1 +A. L1.w1.}'L -4A, A'2,.L, L1.w"'·
=

Special cases: w = 0: PI = 0

= --

.....,..
k

Figure A1.-34.

pl, = -00

A1.
P 1. =

L~

j,w

t
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Case XVI

sR I L,
Z I ( s)

RI +sL.

RtlA'"

sR 1 L1.
Z 1( S) =

R1.+ sL 1.

Figure A1.-35.

Transfer function:

H,(w,s)

Zeroes:

R I Rt. LILt. s1

{R,+R1W~}LILLSt.+R,R~{L,+L~W1}S

z,= 0 z1.= 0

Poles:
R,R~{LI+Llw'l} }

L,L 1 {R,+R1. W1 }

Special cases: w = 0: PI

k.

Figure A1.-36.

= OJ

= 0;

P"

P1.
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Appendix 2: Aoot-Iocus o~ the second order system

A characteristic equation of order two dependent on a continuous
parameter function B(w) in the following way:

B( w) {s 'I. + Q, s + Q.} + s'l. + AI S + Ao = 0 (A2.-1)

describes a piece of a circular curve in the s-plane for the
complex solutions s.

The characteristic equation has complex pole pairs for those
w-values with the discriminant O(w) smaller than zero:

I.O( w) = {B( w) Q I + AI} - 4{B( w) Q 0 + Ao } {B( w) + 1} < 0 ( A2 . -2)

(A2.-10)

( A2 . -7)

( A2 . -6)

( A2 . -4)

( A2 . -5)

- Q 1o (2x +

- A I

(A2.-3)
and then the imaginary part

Q,) +Q «>

( A2 . -8)
in this equation and hereby eliminate

f
A, - Q,}

+ x( 2x +
Q, - A,

-[. -[:~ -

Now substitute (A2.-6)
Be w) :

The equation (A2.-1) can be split into its real and imaginary
part for O(w)<O; we assume:
s 1,2. ( w) = x ( w) + i y ( w)
Substitute (A.-3) in formula (A2.-1)
of the equation is
2B(w)xy + B(w)Q,y + 2xy + A.y = 0

{

AI + B(W)Q,}
or x( w) =

2( 1 + B( w) )

From this B(w) can expressed as a function of x

tQ I - A, ]
B( w) + 1 -

2x + Q,
The real part of the equation (A2.-1) becomes:
B(w){x~ - y~ + Qlx + Qo } + {x 4 - y~ + A,x + Ao } = 0
or {B(w) + 1}y~ = {B(w) + 1} x l.+ {B(w) + 1}Q.x +

+ (A, - Q,)x + {B(w) + 1}QC) + Ao - Qo

__ _{A ° - Qoj
substituting a l
A'2. {AO- QOJ'+ Q.[R~I--Q:L Q.

QI Al lQI - A I J
it is easy to see that (A2.-10) is the equation of a circle:
yl + (x + a)1. = A'1.

{
AO - QoJwith centre ((-a,O) =( , 0»)
Q, - A,

and radius A.
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Appendix 3: Computer-programs

c
subroutine GEV(C,D,K)

c
c Berekening van membraanparameters m.b.v. de elektrische
c lange leidingparameters voor geval 2.
c

double precision C( 0: 2) , D( 0: 2) , K
double precision R1,R2,C1,L2,K1
write( 5,10)

10 Tormat(2x,'Lees R1,R2,C1,L2 in.')
read( 6,20) R1 , R2, C1 , L2

20 formate 4( d11 .4))
write(S,30)

30 format(2x, 'Lees de extra versterkingsfactor K1 in.')
read( 6,40) K1

40 Tormat(d1'.4)
c

K = R1*C1*L2*K1
C( 0) = 1
D( 0) - 0
C( 1) '" R1*C1
D( '1) = R2*C1
C( 2) = 0
D( 2) '" L2*C1
return
end

c
subroutine match(deltat,NT,f2)

c
c filter achter membraan
c

integer I,NT
double precision K,b2,wn,pe,t,deltat,pi,f2(0:NT)
pi = 3.1416
K = 10
b2 = 17
wn 80.57
pe = 2*pi/wn

c
do 10 I=O,NT
t = I*deltat
if (t.gt.pe) go to 100
f2(I) = -K*dexp(b2*t)*dsin(wn*t)

10 continue
100 return

end
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c
subroutine lMPRES(A,K,deltat,N,h)

c
c Bepaling van de impulsresponsie bij filter met
c H(s)=K/(AO+A1*s+A2*s**2) op tijdstip t.
c

integer l,N
double precision A(0:2) ,h(O:N) ,K,deltat
double precision p1,p2,ALFA,wn,OlSCR,t

c
c Bepaling van de discriminant.
c

olSCR = A( 1) **2-4*A( 2) *A( 0)
if (OlSCR) 10,50,100

c
c Complex poolpaar (OlSCR<O)
c
10 ALFA = A(1)/(2*A(2))

wn = dsqrt( -OlSCR) I( 2*A( 2))
do 20 l=O,N
t = l*deltat
h(l) = K*dexp(-ALFA*t)*dsin(wn*t)/(wn*A(2))

20 continue
go to 200

c
c Twee samenvallende polen (OlSCR=O)
c
50 ALFA = A(1)/(2*A(2))

do 60 l=O,N
t= l*deltat
h( I) = K*t*dexp( -ALFA{~t) IA( 2)

60 continue
go to 200

c
c Twee enkelvoudige reele polen (OlSCR>O)
c
100 p1 (A(1)+dsqrt(OlSCR))/(2{~A(2))

p2 (A( 1) -dsqrt( OlSCR)) I( 2*A( 2))
do 110 l=O,N
t =l*deltat
h(l) = K*(dexp(-p2*t)-dexp(-p1*t))/(A(2){~(p1-p2))

110 continue
200 return

end
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c
subroutine imres(C,O,K,W,deltat,NT,h)

c
c Bepaling h(W,t) impulsresponsie op Besselfunctie van
c spatiale frequentie W.
c Gebruikmakine van subroutine 1MPRES.FOR
c

integer 1,NT
double precision C(0:2) ,0(0:2) ,K,deltat,W
d o'u b 1 e precis ion h ( 0 : NT) ,A ( 0 : 2)

c
do 10 1=0,2
A(1) = C(1)+0(1)*W**2

10 continue
call impres(A,K,deltat,NT,h)
return
end

c
subroutine T1R(C,O,K,AM,W,NW,deltat,NT,deltar,NR,hwt,JO,h)

c
c Berekening impulsresponsie van membraan in r en t
c hierbij is ineanessienaal een sommatie van nulde
corder Besselfunctie van de eerste soort.
c

integer NT,NR,NW,1,J,M,1FA1L
double precision C(0:2) ,0(0:2) ,K,AM(NW) ,W(NW)
double precision deltat,deltar,r,h(O:NR,O:NT,
double precision hwt(O:NT),JO(O:NR)
external S17AEF
double precision S17AEF

c
do 10 J=O,NR
do 10 M=O,NT
h(J,M) = 0

10 continue
do 50 1=1,NW
call 1MRES(C,O,K,W( I) ,deltat,NT,hwt)
do 50 J=O,NR
r = J*deltar
1FA1L = 0
JO(J) = S17AEF(W(1)*r,1FA1L)
if (1FA1L.eq.O) go to 40
write(5,30)

30 formate 2x, 'FOUTMEL01NG 1FA1L')
go to 50

40 do 50 M=O,NT
h( J, M) = h( J, M) +AM( I) *JO( J) *hwt( M)

50 continue
return
end
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c

c
integer K,1,NT
double precision S,X(O:NT) ,Y(O:NT) ,H(O:NT) ,deltat
Y( 0) = 0
do 20 K=1,NT
S = 0
do 10 1=1,K
S = S+X(1)*H(K-1)

10 continue
Y(K) = deltat*S

20 continue
return
end

c
c Programma hoofd2.for
c Gebruikmaking van subroutine grad,geval,
c tir,match en conv.
c

integer NW,NT,NR,1,J,M,1FA1L1,1FA1L2
parameter(NW=10,NT=128,NR=4)
double precision jm( 10) ,AM(NW) ,C(0:2) ,0(0:2)
double precision K,W(NW) ,deltat,deltar,deltal
double precision RB,RST,J1 ,J12,h(0:NR,0:NT) ,pi
double precision A1(O:NT) ,B1(O:NT) ,C1(O:NT) ,01(0:NT)
double precision E1(O:NT) ,F1(O:NT) ,hwt(O:NT) ,JO(O:NR)
external S1?AFF
double precision S1?AFF

c

2.404826
5.5200?8

= 8.653?28
= 11.?91534
"" 14.930918
= 18.0?1064
= 21.21163?
"" 24.3524?2
= 2?493480
= 30.634606

del tat
del tar =
deltal =
RB "" 30
RST = 30
jm( 1)
jm( 2)
jm( 3)
jm( 4)
jm( 5)
jm( 6)
jm( ?)
jm( 8)
jm( 9)
jm( 10)

pi = 3.1416
0.0025

10
1

c
do 10 M= 1 , NW
W( M) = jm( M) IRB

10 continue
if (RST.gt.RB) go to 100
do 20 M=1,NW
1FA1L1 = 0
J1 = S1?AFF(W(M)*RST,IFA1L1)
if (1FAIL1.ne.0) go to 150
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1FA1L2 = 0
J12 = S1?AFF( jm( M) ,1FA1L2)
if (1FA1L2.ne.0) go to 200
AM(M) = (2*AST*J1)/(jm(M)*A8*J12**2)

20 continue
call gev(C,O,K)
c~ll tir(C,D,K,AM,W,NW,deltdt,NT,delt~r,NA,hwt,JO,h)

do 30 J=O,NA
do 30 1=O,NT
h(J,1) =: deltal*2*pi*h(J,1)

30 continue
call MATCH(deltat,NT,C1)
J = 0
do 40 1=O,NT
81(1) = h(J,1)

40 continue
call conv(deltat,NT,81,C1,01)

c
do 50 1=O,NT
A1( I) = 1*deltat

50 continue
c

call grade 'responT' ,NT+1 ,0,4,A1 ,81 ,C1 ,01 ,E1 ,F1)
go to 300

100 write(5,110)
110 format(2x, 'AST is groter dan A8.')

go to 300
150 write(5,160)
160 forma t ( 2x, ' FOUTMEL01NG 1FA1L 1 ')

go to 300
200 write(5,210)
210 format(2x, 'FOUTMEL01NG 1FA1L2')
300 continue

stop
end

c
subroutine grad(name,npts,minmax,ncols,A,8,C,0,E,F)

c
c door E.M.M.Ploemen.
c

character*( *) name
double precision A,8,C,0,E,F
integer npts,minmax,ncols length,ip2,1,nrec
real x,y1,y2,y3,y4,y5
dimension A( 1) ,8( 1) ,C( 1) ,D( 1) ,E( 1) ,F( 1)
intinsic sngl,maxO
nrec=maxO((ncols,3)
open(unit=9,file=name,status='new',access='direct',

* form='unformatted',recl=nrec)
c

write(9,rec=1) npts, ncols, 3
c

if (minmax. eq. 0) then
write (9,rec=2) 1,0,0
length=npts
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else
write (9,rec=2) 1,npts+3,npts+4
length=npts+2
end if'

c
do 10 I=1,len2th
ip2=I+2
if' (ncols.eq.2) then
x=sngl( A( I))
y1=sngl( B( I))
write (9,rec=ip2) x,y1
else if' (ncols.eq.3) then
x=sngl( A( I))
y 1=sngl( B( I) )
y2=sn2l( C( I))
write (9,rec=ip2) x,y1,y2
else if' (ncols.eq.4) then
x=sngl( A( I))
y1=sngl( B( I))
y2=sngl( C( I))
y3=sngl( D( I) )
write (9,rec=ip2) x,y1,y2,y3
else if' (ncols.eq.S) then
x=sngl( A( I))
y1=sngl( B( I))
y2=sngl( C( I))
y3~sngl(D( I) )
y4=sn'gl( E( I))
write (9,rec=ip2) x,y1,y2,y3,y4
else if' (ncols.eq.S) then
x=sngl( A( I))
y1=sngl( B( I))
y2=sngl( C( I))
y3=sngl( D( I))
y4=sngl( E( I))
yS=sngl( F( I))
write (9,rec=ip2) x,y1,y2,.y3,y4,y5
end if'

10 continue
c

close (unit=9,status='keep')
return
end
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