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Summary.

FORECASTING THE WATER CONSUMPTION USING THE ARIMA-MODEL.

This report gives a comprehensive survey of the methods, developed by Box

and Jenkins, to build, identify, fit and diagnose ARIMA-models for

stochastic time series.

Those methods are implemented on a VAX 11/750 computer. The software is

written in standard FORTRAN 77.

Experiments with simulated data, in order to test the programs and to

gain more insight in practical aspects using the methods, are discussed.

Finally the methods are applied to practical data. Model building and

forecasting time series obtained from the "NV Tilburgsche" water-company

will be described. The forecasting results are compared with results

obtained from a so-called 'naive' method.

Samenvatting.

HET VOORSPELLEN VAN HET WATERVERBRUIK MET BEHULP VAN HET ARIMA-MODEL.

Dit verslag geeft een uitvoerig overzicht over de door Box en Jenkins

ontwikkelde methoden om voor stochastische tijdreeksen ARIMA-modellen te

bouwen, te identificeren, te schatten en te testen.

Deze methoden zijn geimplementeerd op een VAX 11/750 computer. De

software is geschreven in standaard FORTRAN 77.

Experimenten met gesimuleerde data, uitgevoerd om de programma's te

testen en om meer inzicht te verkrijgen in de praktische aspecten van het

gebruik van deze methoden, zullen worden beschreven.

Tenslotte worden de methoden toegepast op praktijk data. Het modelbouwen

en het voorspellen van tijdreeksen, beschikbaar gesteld door de

NV Tilburgsche waterleiding-maatschappij, zullen uitgebreid worden

behandeld. De voorspelresurtaten worden vergeleken met de resultaten van

een zogenaamde 'naieve' methode.
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INTRODUCTION

Many data in business, economic and engineering occur in the form of time

series where the observations are dependent. Future values of such

stochastic time series can only he described in terms of a probability

distribution.

Forecasting of future values of a time series from current and past

values can provide a basis for e.g. economic planning, production

planning, inventory and production control, etc.

Planners and decision makers have a wide choice of ways to forecast,

ranging from purely intuitive or judgemental approaches to highly

structured and complex quantitative methods.

Yule proposed the idea that a stochastic time series usefully can be

regarded as the output from a linear filter whose input is a series of

independent observations, mostly called white noise. Based on this linear

filter model, Box and Jenkins developed methods to build, identify, fit

and diagnose the so-called ARIMA-models for stochastic time series. Once

an adequate model has been found, it can be used to compute forecasts.

Because those methods are rather close related to the work on system

identification and parameter estimation done within the group Measurement

and Control of the department of Electrical Engineering, they were chosen

to be studied and to examine their use to forecast the water consumption.

That is, in order to be able to plan and control the production of water

in an optimal way, the "Tilburgsche" water-company needs to have

forecasts of the consumption. A water-company has to satisfy the demand

for water at each moment. Especially due the limited store-capacity for

purified water the quality demands on the forecasts are rather severe.
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So the goal of the work, described in this report, was twofold.

First : to study the methods developed by Box and Jenkins and to

implement them on a VAX-computer.

Second to examine the usefulness and feasability of using the ARIMA-model

to forecast the water consumption as a solution for the water-company

problem.

In chapter 1 a survey of the methods to develop the ARIMA-model will be

given.

In chapter 2 the model building using the implemented interactive

programs will be described. Experiments with simulated data in order to

test the programs will be discussed. Finally attention is paid to some

practical aspects.

The results obtained by using the ARIMA-model in forecasting the water­

consumption will be described in chapter 3. The data of 1983, obtained

from the "Tilburgsche" water-company, is used for model building and

forecasting. The forecasting results will be discussed in detail and will

be compared with those obtained from a 'naive' method.

Some general conclusions are presented in chapter 4.
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FORECASTING BY USING THE ARIMA-MODEL.

1.1 Introduction.

The aim of this chapter is to introduce briefly the techniques described

by Box and Jenkins [1]. They developed methods to build, identify, fit

and diagnose models for time series and dynamic systems. Once an adequate

model has been found, forecasts can be computed of future values of the

series from current and past values.

Stochastic models and their forecasting will be discussed first~ after

that the stochastic model building section describes an iterative model

building methodology whereby the stochastic models are related to actual

time series. Finally seasonal models will be discussed.

Stochastic models and their forecasting.

1.2.1 Time series and stochastic models.

A time series is a set observations, generated sequentally in time. If the

set is continuous, the time series is said to be continuous. If the set

is discrete, the time series is said to be discrete. A discrete time

series may arise by sampling a continuous time series or by accumulating

a variable over a period of time, e.g. half-hourly demands of water.

We consider only discrete time series where observations are equispaced.

If future values of a time series can be exactly determind by some

mathematical function, the time series is deterministic.

If future values can be described only in terms of a probability

distribution, the series is non-deterministic or stochastic.

A stochastic process or probability model describes the probability

structure of a statistical series. Such a series z1'z2' ••••• ,zN of N

observations is regarded as a sample realisation from an infinite

population of such time series that could have been generated by the

process.

An important class of stochastic models for describing time series is

the so called class of stationary models, which assume that the process

remains in equilibrium about a constant mean level. Usually a stationary

time series can be usefully described by its mean, variance and auto-
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correlation function.

A stochastic process is said to be strictly stationary if its properties

are unaffected by a change of time origin. Hence it appears that a

stationary stochastic process has a constant mean
ell

~ = E[Z ] = f z.p(z) dz
t -...

which defines the level about which it fluctuates,

and a constant variance
ell

which measures its spread about this level.

Given N observations,

by : z = 1
N

the mean of the stochastic process can be estimated
N

I: Zt ( 1 • 1 )
t·: 1

and the variance by

1
N

- 2
0 2 = I: (z-

N
z)

Z t=1 t
(1. 2)

The covariance between Zt and Zt+k' separated by k intervals of time, is

defined by :
( 1 .3)

similarly the autocorrelation at lag k is

E[(Zt- ~)(Zt+k- ~)]
Pk = =

V E[ (Zt_~)2] E[ (Zt+k_~)2r ( 1.4)

since for a stationary process, the variance o~ = YO is the same at time

t+k as at time t.

Thus, the autocorrelation at lag k is P =k

The autocovariance matrix r and the autocorrelation matrix P
n n

associated with a stationary process for N observations are

r =
n

Yo Y1 Y2 Y3 ' • Yn - 1

Y 1 YO Y 1 Y2' • Yn-2

Y2 Y 1 YO = 0 2 P
Z n

For a statonary process both matrices are positive-definite.
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- Gaussian processes. If the probability distribution associated with

any set of times is a multivariate Normal distribution, the process is

called a Normal or Gaussian process. Since the multivariate Normal

distribution is fully characterized by its moments of first and second

orders, the existence of a fixed mean and an autocovariance matrix for

all n, would be sufficient to ensure the stationarity of a Gaussian

process.

Estimation of autocovariance and autocorrelation.

(1. 6)k= 0, 1 , 2 , ••• , K

From N observations we can estimate the k'th lag autocorrelation by
c
kr =- (1.5)

k Co
where c

k
' the estimate of the autocovariance Y

k
, is estimated by

1 N-k
ck = N ~ (Zt - i)(Zt+k- i)

t=1

For a stationary Normal process the variance of the estimated autocor­

relation coefficient is given by Bartlett [2J :
CI)

var[rk ] ~ i ~ { P~+ Pv+kP v- k- 4PkPvpv- k+ 2p~p~} (1.7)
-a>

For any process for which P are zero for v > q Bartlett's approximation
v

gives for lags k greater than q

( 1 .8)k > q
1 q

var[rkJ ~ - {1+2 ~ p2 }
N v=1 v

In practice, in equation (1.8) the estimated autocorrelation r
k

are

substituted for the theoretical P
k

•

1. 2.2 Linear stationary models.

The stochastic models, which will be employed, are based on the idea

(Yule [3]) that they can be usefully regarded as the output from a linear

filter, whose input is white noise.

The models will be described in the time domain using the following

operators :

- the backward shift operator B and
m

B Z = Z •t t-m
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The inverse operation is performed by

- the forward shift operator F

Later on we will use

- the backward difference operator V

and its inverse

- the summation operator S

1.2.2.1 The general linear process:

-1 and m
F = B F Z = Zt+m·t

Vz = Z - Zt_1= (1-B)Zt·t t

CXl

-1
Sz = V Z = r Zt .

t t j=O -J

= Zt + Z + Z +."t-1 t-2
= ( 1 + B + B2 +""") Z

t
=( -B)-lZt"

Wahti te nOise~__...:I:..:i:..n_e:..a:..:r:..- ........~
---.., filter Zt

fig.1.1 representation of a time series as
the output of a linear filter.

The white noise as input of the linear filter, as shown in fig.1.1,

consists of a sequence of uncorrelated random variables a
t

,a
t

_
1

, ••••

(also called "shocks") with mean zero and constant variance. Usually the

white noise is assumed to have a Normal distribution.

The linear filter tranforms the white noise process at to the process Zt.

The linear filtering operation takes a weighted sum of present and

previous values of the white noise process, that is

CXl

= a + E ~.at_'= ~(B) at
t j=1 J J

( 1 .9)

where in general, ~ is a parameter that determines the level of the

process, and ~(B)= 1+ ~lB+ ~2B2+ •••••••••

CXl

= 1+ E ~ .B
j

j=1 J

CXl

E ~.Bj
j=O J

with ~ = 1o

If the sequence ~1'~2'~3'••• is finite or infinite, and such that the

series ~(B) converges for all IIBII <; 1, that is on or within the unit

circle, the filter is said to be stable and the process Zt to be

stationary. Otherwise the process is non stationary"

The parameter ~ is the mean about which the stationary process varies.
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....
The model (1.9) implies that, under suitable conditions, Ztis a weighted

sum of past values of the ~t'S plus an added shock at' that is

Also

where

Zt= 1t
1
Z

t
_

1
+ 1t

2
Z

t
_

2
+ •••••••• + at

CD

Z = I: 1t,Z .+ at ( 1. 10 )
t

j=1 J t-J

CD

( 1 - I: 1t,Bj
Z = a 1t(B) Zt= a (1.11)

j=1 J t t t

CD

1t(B) = ( - I: 1t . B
j

) .
j=1 J

From (1.9) and (1.11) we obtain <jI(B).1t(B) = (1.12)

note

The relationship (1.12) ma~ be used to derive the 1t-weights, knowing the

<jI-weights and vice versa.

If the 1t-weights are such that the series 1t(B) converges for all HBII <; 1,

that is on or within the unit circle, the process is said to be

invertible.

To illustrate the basis idea of invertibility, consider the model

Zt= ( 1- aB ) at (1.13)

From now on we will write Zt instead of Zt' except if it is

necessary for understanding.

Whatever the the value of a, (1.13) defines a stationary process.

Expressing the at's in terms of the Zt'S, (1.13) becomes

that is

a
t

=(1+ aB+ a 2B2+ •••• +a kBk )(1_ ak+1Bk+1)-1 Zt

2 k k+1
Zt= - azt _ 1- a Zt-2- ••• - a Zt_k+ a t - a at - k - 1

(1.14)

and if lal < 1 , on letting k tend to infinity, we obtain the infinite

series Zt= - azt _ 1- a 2 Zt _2-·······+ at (1.15)

and the 1t-weights of the model in the form of (1.10), are 1t,= - a
j

•
J

However, if lal ) 1, Zt in (1.14) depends on Zt_1,Zt_2, ••• ,Zt_k which

weights increase if k increases. We avoid this situation by requiring

that lal < 1. The series is then invertible. In general the series is

invertible if 1t (B) converges for all II BII <; 1.
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The representations (1.9) and (1.10) of the general linear process are

not very useful in practice, because they contain an infinite number of

parameters. We will now consider some special cases of the general linear

process, which later turn out on to be very useful in practice.

1.2.2.2 The autoregressive process.

Consider the special case of (1.10) in which only the first p of the

weights are nonzero, that is

(1.16)

The process defined by (1.16) is called an autoregressive process of

order p , or more succintly an AR(p)-process.

We can write (1.16) in the equivalent form

( 1• 17) implies

or

(1- ~1B- ~2B2_••••• - ~pBP)Zt= at

~(B) Zt= at

-1
Zt=~ (B) at

(1.17)

(1.18)

~(B) can be written as : ~(B)=(1-GIB)(1-G2B) ••••• (1-GpB) (1.19)

-1
where G. are the roots of ~(B)= 0 , which may be referred as the zero's

1

of the polynomial ~(B).

Using (1.19) and expanding in partial fractions, (1.18) becomes

K.
1

p
= I:

i=1 (1-G.B)
1

is a convergent series

IGil < 1, i=1,2, •• ,p

saying that the zero's

-1
AR(p) process is stationary if ~(B)= ~ (B)

IBI ~ 1. Hence it appears that we must have

The

So the stationary condition may be expressed by

of ~(B) must lie outside the unit circle.

Since n(B)= ~(B) is finite,no restrictions are required on the parameters

for

of an AR(p) process to ensure invertibility.
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The autocorrelation function (a.c.f) of an AR(p) process.

By taking the expected values of

Zt_kZt= ~1Zt-kZt_1+ ~2Zt-kZt_2+····+ ~pZt_kZt_p+ Zt_kat

we obtain

Yk= ~1Yk-1+ ~2Yk-2+······+ ~pYk-p

dividing by YO:

Pk= ~1Pk-1+ ~2Pk-2+····'·+ ~pPk-p

We see that the a.c.f satisfies the equation ~(B)'Pk= o.

(1.20)

(1.21)

-1
where the G

i
are the roots of ~(B) = o.

Stationarity requires IGil < 1. If G
i

is real, a term

p
Writing ~(B) =TI (1- G.B) , the general solution of (1.21 ) is

i=1
J.

k k
A G

k
(1.22)P = A

1
G

1
+ A

2
G

2
+•••••• •• +

k P P

k
A.G. decays

J. J.

geometrically to zero as k increases. If a pair of roots is complex

contribute a term d
k

sin(2nfk+F) to the a.c.f. In general the a.c.f

they

of a

stationary AR(p) process will consist of a mixture of damped exponentials

and damped sine waves.

If we substitute k = 1,2, •••• ,p in (1.21), we obtain a set of linear

equations for ~1'~2'.' •• '~p in terms of

+

+
or = p ~p-

These are usually called the Yule-Walker equations. We obtain Yule-Walker

estimates of the parameters by replacing P
k

by the estimated autocor-

relations r
k

' that is
-11 = P rp -p

we obtainWhen k = 0 in (1.20), by taking the expected values
2

YO= ~1Y 1+ ~2Y 2+ ••• + ~ Y + a- - p -p a
2

On dividing throughout by Y = a , and substitutingo Z

variance may be written
2a =
Z

1- P ~ ­
1 1

2
aa
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The partial autocorrelation function (p.a.c.f).

The p.a.c.f is a device which exploits the fact that whereas an AR(p)

process has an a.c.f which is infinite in extent, it can by its very

nature be described in terms of p nonzero functions of the autocor­

lations.

AR(k) model, so that $kk is

satisfy the set of equations

Denote by

the last

$kj' the j'th coefficient in an

coefficient. From (1.21) the $kj

P j = $k1P j-1+ $k2Pj-2+·····+ $kkPj-k j=1,2, •• ,k (1.23)

Solving these Yule-Walker equations for k = 1,2,3, •••

we obtain $11' $22' $33' ••••••••

The quantity $kk' regarded as a function of lag k, is called the partial

autocorrelation function. ~or an AR(p) process $kk will be nonzero for

k less or equal to p and zero for k greater then p.

Estimation of the p.a.c.f.

By substituting estimates r. for the theoretical autocorrelations in
J

(1.23), and solving the equations by a recursive method (Durbin). It can

be shown that for an AR(p) process, the estimates for k ) p+1 are

approximately independently distributed and, if n is the number of

observations used in fitting, then: var[ ;kk J ~ ~ k ) p+1 (1.24)

1.2.2.3 The moving average process.

Consider the special case of (1.9) in which only the first q of the

weights are nonzero, that is

Zt= a
t

- 8
1
a

t
_

1
- 8

2
a

t
_

2
- ••••• - 8

q
a

t
_

q
(1.25)

(1.26)

This process is called moving average process of order q, or more

succintly a MA(q) process.

We can write (1.25) in the equivalent form

Zt= ( 1- 8
1

B - 8
2

B
2

- - 8q B
q

)at = 8(B) at

Since the series ~(B) = 8(B) is finite, no restrictions are needed to

ensure stationarity.

It can be shown that the invertibility condition is satisfied if the

roots of the characteristic equation 8(B) = 0 lie outside the unit

circle.
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The autocorrelation of an MA(q) process.

Using (1.26) the a.c.f of a MA(q) process is

Yk= E[( at - 8 1at _1-····- 8qat _q )( a t _k- 81at_k_1-····- 8qat _k -q)]

Hence, the variance of the process is :

YO= ( 1+ 8~ + 8~ + ••• +

and

2
aa

(1.27)

Y =k

thus

k = 1,2, ••• ,q

k > q

p =
k {

1 + 8 2 + ••••• + 82
1 q

o

+8 k8q- q
k = 1,2, ••• ,q

(1.28)

k > q

We see that the a.c.f of a MA(q) process is zero, beyond the order q.

- If P1'P 2' ••••• ,P
q

are known, the q equations (1.28) may be solved for

the parameters 8
1

,8
2

, ••••• ,8
q

• However, these equations are non linear

and have to be solved iteratively.

The partial autocorrelation of a MA(q) process.

Since a finite MA(q) process is equivalent to an infinite AR process its

p.a.c.f is infinite in extent and is dominated by damped exponentials

and/or damped sine waves.

1.2.2.4 The autoregressive-moving average process.

In practice, to obtain a parsimonius parameterization, it will sometimes

be necessary to include both autoregressive and moving average terms in

the model. Thus

that is

Zt= $1 Zt-1+ ••• + $pZt_p+ a t - 8 1a t _1­

( 1- $1B - ••• - $~) Z = ( 1- 8 B-
P t 1

( 1. 29)

(1.30)or $(B) Zt= 8(B) at

where ~(B) and 8(B) are polynomials of degree p and q in B.

We refer to this process as an ARMA(p,q) process.

(1.30) will define a stationary process if the roots of $(B)=O lie

outside the unit circle, and the process is invertible if the roots of

8(B)=0 lie outside the unit circle.

The autocorrelation function of an ARMA(p,q) process.

On multiplying throughout in (1.29) by Zt_k and taking expectations, we
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see that the a.c.f satisfies the equation:

(1.31)

k " 0

- e Y (k-q)
q za

Y (k) = 0
za

andk > q

where

Yk= ~1Yk-1+ •• + ~pYk-P+ Yza(k) - e1Yza (k-1) -

Y ( k) = E[ z •a J.
za t-k t

Since Zt_k depends only on shocks which have occured up to time t-k, it

follows that Y (k) = 0
za

(1.31) implies

and hence

Yk= ~1Yk-1+ ~2Yk-2+

Pk= ~1Pk-1+ ~2Pk-2+

. •• +

••• +

k ) q+1

k ) q+1

or ~(B) P = 0
k

k ) q+1

Thus, for an ARMA(p,q) process, the values

directly through (1.31) on the

p,p 1, ••• ,P
1

depend
q q-

q MA-, as well on the pAR-parameters.

Also the p values p,p 1' ••• 'P 1 provide the necessary starting
q q- q-p+

values for the equation ~(B) P
k
= 0 k) q+1 which then entirely

determines the autocorrelations at higher lags. If q-p < 0 , the whole

a.c.f p. , for j = 0,1,2, •••• will consist of a mixture of damped
J

exponentials and/or damped sine waves, whose nature is dictated by the

polynomial ~(B) and the starting values.

If, however, q-p) 0 there will be q-p+1 initial values which do not

follow this general pattern. These facts are useful in identifying mixed

series, as we will see later on.

-1 1
a

t
= e (B) ~(B) Zt and e- (B)

p.a.c.f of a mixed process is

The p.a.c.f of an ARMA(p,q) process.

The process (1.30) may be written:

an infinite series in B. Hence, the

is

infinite in extent. After the first p-q lags it will be dominated by

damped exponentials and/or sine waves.

Linear nonstationary models.

In the previous section we have seen that an ARMA process is stationary,

if the roots of ~(B) = 0 lie outside the unit circle. If one or more

roots lie inside the unit circle the process exhibits explosive

nonstationary behaviour. If, however, one of more roots lie on the unit

circle, the process turns out to be of great value in representing so

called homogeneous nonstationary time series. Such series behave as

though they have no fixed mean1 however they exhibit homogeneity in the

sense that, apart from local level, or perhaps local level and trend, one
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part of the series behaves much like any other. Fig.1.2 shows two kinds

of homogeneous nonstationary behaviour.

(a) A Snin Showins NonstAllonarity in l..t:wl luch as can bt
R.proonlrd by 1M Mod.1 .(B) V" - '(B)_ ,

(b) A~ Showing Nonstauonarity in LtvrJ .nd In Siopt 5uch AI can bf:

R.~ntrd by "'" Modol .IB)..-'" - 'IB)_,

fig.1.2 Two kinds of homogeneous nonstationary behaviour.

Consider the model U) (B) i = 0(B) a
1 t t

( 1 .32 )

where ~(B) is a nonstationary AR operator of order p+d with d roots equal

to unity and the remainder outside the unit circle. Then we can express

the model (1.32) in the form tp(B) i
t

= $(B)( 1-B )d i
t

= 8(B) at

where $(B) is a stationary AR operator of order p.

By using the backward difference operator, we can write

$ (B) Vd
z = 8(B) att

where Vd
z = V

d
Zt for d

t
Equivalently the process is defined by the two equations

w = 8(B)
t

) 1 •

( 1. 33)

(1.34)

d
wt = V Zt

By using the summation operator (1.35) can be written as

This implies that the process

(1. 35)

Z = sd w
t t

(1.33) can be obtained by summing ( or

"integrating") the stationary process (1.34) d times. Therefore the

process (1.33) is called, an autoregressive integrated moving average

(ARIMA) process.

- General form of the ARlMA(p,d,q) model:

dIf (B) Zt= $(B) V Zt= 8
0
+ 8(B) at (1.36)

where order of ~(B) is p+d, order of $(B) is p and order of 8(B) is q.

By permitting 8
0

to be nonzero, a deterministic polynomial trend of

degree d is included in the model.
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- A widening of the range of useful applications of the model (1.36),

is achieved by allowing the possiblity of some nonlinear transformation

of Zt'

1. 2.4 Forecasting with the ARlMA model.

We will now consider how the ARlMA model may be used to forecast future

values of an observed time series.

With e
O
= 0 , the general model (1.36) may be written in difference

equation form :

+LD Z +a-ea
~p+d t-p-d t 1 t-1 -e aq t-q

( 1.37 )

and in terms of current and previous shocks
CXl

'f (B) .q, ( B) = e ( B)

and thewhere

Z =
t

q, =o

q,(B) a =
t

L q"a
t
_,

j=O J J

q,-weights may be obtained by equating

(1.38)

( 1. 39)

We are concerned with forecasting a value Zt+1 ' 1 ) 1 , when we are

currently standing at time t. This forecast is said to be made at origin

t for leadtime 1.

Such an observation Z 0 ' generated by the process, may be expressed by
t+A

using (1.37):

Zt+1= Cf1z t +1-1+

or by using (1.38)
CXl

Z = L q,.a 0 '
t+1 '0 J t+A-J

J=
q, = 1o (1.41)

Now suppose, we are to make a forecast zt(l) of Zt+1 which is to be

a linear function of current and previous observations Zt'Zt_1'Zt_2' ••••

Then it will also be a linear function of current and previous shocks

a,a 1,a 2' •••• Suppose then, that the best forecast is :
t t- t-

* * *
zt(l) = q,l a t+ q,1+1 a t-1+ q,1+2 a t-2+

Then, using (1.41), the mean square error of the forecast is

•• +
2aa

( 1.42 )

which is minimized by setting
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We have then

Z =t+l

Z =t+l

(1. 43)

(1.44)

where et(l) is the error of the forecast zt(l) at leadtime l.

Denote by

that is

E[ Zt+l] the conditional expection of Zt+l at time t,
t

E[ Zt+l] E[ Zt+ll Zt'Zt_1'Zt_2'·····]
t

then certain important facts emerge :

( 1.45)

Thus, the minimum mean square error forecast at origin t, for leadtime l

is the conditional expection of Z 0 , at time t.
t+""

- The forecast error for lead time l is :

(1.46)

Since E[ et(l)] = 0 , the forecast is unbaised.
t

The variance of the forecast error is

- The one step ahead forecast error is

e
t

(1) = Z - zt(1) = a
t+1 t

• • •• + (1.47)

Hence, the residuals at which generate the process, turn out to be the

one step ahead errors.

So, for a minimum mean square error forecast, the one step ahead

forecast errors must be uncorrelated. As shown in [1] forecast errors

for longer leadtimes in general will be correlated.

Calculation of the forecasts.

It is usually simplest in practice to compute the forecast directly from

the difference equation (1.40), by taking the conditional expections,

that is
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•• + lD E[ Z J+ E [ a J-lp+d t+1-p-d t+1
t t

e1 E[at +1 - 1J - •• - e E[at +1 _ J
t q t q

( 1.48)

where E[Zt .J = Zt . j = 0,1,2, ••••
t -J -J

E[ Zt+jJ = Zt (j) j = 0,1,2, ••••
t

E[ at_jJ = a = Z Zt . 1 ( 1 ) j 0,1,2, •••
t

t-j t-j -J-

E[ at+jJ = ° j = 0,1,2, •••
t

Probability limits of the forecasts.

The variance of the 1 steps ahead forecast error is given by (1.47).

Assuming that the a's are Normal, it follows that, given information up

to time t, the conditional probability distribution p( Zt+1IZt,Zt_1'.'

of a future value

and standard deviation

of the process

VU)~ = { 1+

will be Normal
1-1
L <jJ~}~ a
j=1 J a

with mean zt(1)

Thus the limits for each desired level of probability E , are

Z (±) = Zt U )
t+1

1-1
± ~E/2( 1+ L <jJ~ )~ a

j=1 J a

where ~E/2 is the deviate exceeded by a proportion E/2

unit Normal distribution.

( 1.49)

of the

In practice a is replaced by an estimate s , of the standard
a a

deviation of the white noise process.

Updating.

When a new deviation Zt+1 comes at hand, the forecast may be updated

to origin t+1 , by calculating the new forecast error a
t

+
1

= Zt+1- Zt(1)

and using the difference equation (1.48) with t+1 replacing t.

To provide more theoretical insight in the nature of the forecasts we may

express them in another way.

Taking conditional expections at time t in (1.48) , we have, for 1 > q

( 1. 50)
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or \.f(B) ZtU) = 0

where B operates on 1 and Z .
t-J

j ) 0 •

(1.51)

(1.50) has the solution

+ ••• + 1 > q-p-d ( 1 .52 )

which is called the eventual forecast function ~ "eventual" because when

q > p+d , the function supplies the forecasts only for lead time

1 > q-p-d.

The function will pass through p+d "pivotal" values, which can consist

of forecasts or actual values of the series depending on the value of q.

We see from (1.51) that it is the general AR operator ~ (B) which

determines the mathematical form of the forecast function.

The MA operator is influential in determining how the function is to be

"fitted" to the data and hence how the coefficients b~t) , ••• ,b~~~_1

(constant for a given origin t) are to be calculated.

1.3 Stochastic model building.

We have seen that the general ARIMA(p,d,q) model provides a class of

models for representing time series which, although not necessarily

stationary, are homogeneous and in statistical equilibrium. Now we have

to relate a model of this kind to the data. Usually this is best achieved

by a three stage procedure based on identification, estimation and

diagnostic checking.

Basic idea in model building is the principle of parsimony, that is we

want to employ the smallest possible number of parameters for adequate

representation.

1. 3.1 Identification.

The aim is to identify an appropriate subclass of models from the

general ARIMA model, which is worthy of further investigation. In other

words to obtain some idea of the values of p,d and q needed to represent

a given time series.

Principal tools for identification will be the autocorrelation and

partial autocorrelation function.
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Degree of differencing.

We have seen that for a stationary ARMA(p,q) process the a.c.f satisfies

k > q

the solution is of the form
P

=IT (1-GB
i

i=1

Pk = A1G~+ A2G~+ •••• + ApG; k > q-p ( 1. 53 )

where because of the stationarity requirement.

Inspection of (1.53) shows, that the a.c.f will quickly "die out" for

moderate and large k.

Now suppose that a real root, say G
1

' approaches unity, so that G
i
= 1­

0, where 0 is some small positive quantity. Then, since for k large

P
k

~ A
1

(1 - ko) , the a.c.f will not die out quickly and will falloff

slowly and very nearly linearly. This tendency not to die out quickly, is

taken as indication that a root close to unity may exist. It is assumed

that the degree of differencing has been reached when the a.c.f of
d

wt = V Zt dies out fairly quickly.

The estimated a.c.f tends to follow the behaviour of the theoretical

a.c.f however7 it need not happen that the estimated correlations are

extremely high even at low lags.

Identification of the resulting ARMA process.

The characteristic behaviour of the theoretical a.c.f and p.a.c.f for AR,

MA and ARMA processes, as described in section 1.2 are summarized in

table 1.3.

process autocorrelation function partial autocor. function

infinite,
AR(p) damped exponentials and/or $kk = 0 k > P

damped sine waves.

infinite,
MA(q) Pk

= 0 k > q damped exponentials and/or
damped sine waves.

infinite, dominated by infinite, dominated by

ARMA(p,q)
damped exponentials and/or damped exponentials and/or
damped sine waves after damped sine waves after
first s..:.E. lags. first £:S lags.

table 1.3 Behaviour of theoretical a.c.f and p.a.c.f
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Using this knowledge, we now study the general appearence of the

estimated a.c and p.a.c functions of the ( differenced ) series to

provide clues about the choice of the orders for the AR- and MA­

operators.

- It should be noted here, that the estimated autocorrelations can have

rather large variances and can be highly (auto)correlated with each

other. In particular, moderately large estimated autocorrelations can

occur after the theoretical function has damped out, and apparent ripples

and trends can occur in the estimated function which have no basis in the

theoretical function.

Initial estimates of the parameters.

After the identification ,)f the model orders, initial estimates of the

parameters will be made. As already denoted in section 1.2.2 , for a

pure AR(p) process this can be done by solving the Yule-Walker equations.

Also for a pure MA(q) process this can be done by solving the non linear

equations (1.28) e.g. using a Newton-Raphson algorithm.

A general method for an ARMA(p,q) process is based on the first p+q+1
d

autocorrelations of wt = V Zt' and proceeds as follows:

i) Use ~(B) r
k

= 0 k ) q+1 , where r
k

is the estimated correlation,

to obtain initial estimates t for the ~ parameters.

ii) By writing w~ = ~(B) w
t

(1.54)

the process can be treated as an MA-process

(1.55)

Then the autocorrelations for the process (1.55) can be calculated

from (1.54) and used in an iterative calculation to obtain initial

estimates e for the e parameters.

1.3.2 Estimation.

Z = ( Z ,z2' ••••• ,z ), given by
1 N

In the identification stage we obtained a tentative formulation for the

model~ now we need to obtain efficient estimates of the parameters. This

is done by the maximum likelihood method.

The joint probability density function of N observations

p( ~I~ ) , depends on the unknown

parameters ~.
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After we have obtained a set observations ~ , the maximum likelihood

estimation ~ for ~ is that value of ~ , which maximizes the

likelihood function L( ~I~ ).
L( ~I~ is of the same form as p( ~I~ ) , in which now z is fixed

and ~ is a variable.

Now, from N observations z of an ARIMA(p,d,q) model we can generate a

series w of n = N - d differences, where w
t

= Vd
Zt

Thus the general problem of fitting the parameters ~ and e of the

ARIMA model is equivalent to fitting the w's to the stationary,

invertible ARMA(p,q) model which may be written

+ e at (1.56)
q ~

where w
t
= w

t
- ~ , ~ = E[W

t
]

If ~ * 0 , ~ is included as an additional parameter eO to be estimated.

The a's cannot be calculated immediately from (1.56) because of the

difficulty of starting up the difference equation. However, suppose that

the p values ~. and the p values ~. prior to the commencement of the

w series were given. Then a set values a t ( ~,~I~.,~.,~) t = 1,2, ••• ,n

could be calculated.

Assuming that the a's are Normally distributed,

n
exp{ -( L

t=1

Given a particular set of data w, the log-likelihood associated with

the parameter values ( ~,e,o ) , conditional on the choice of ( ~.'~.)
- - a

would then be - n In 0
a

where
n

s.( 1,~ ) = L a~( ~,~I~.,~.,~)
t=1

and the starscripts emphasize that the results are conditional to the

choice of the starting values.

We notice that on the Normal assumption the maximum likelihood estimates

are the same as the least squares estimates.
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For some purposes a sufficient approximation to the unconditional

likelihood which, strictly, is what we need for parameter estimation, is

obtained by using the conditional likelihood with suitable values

substituted for ~* and ~* • For example by setting the ~*'s and a 's
-*

equal to their unconditional expections, that is ~* = 0 and ~* = ~ •
Or to use (1.56) to calculate the a's from a onwards, setting

p+1
previous a's equal to zero.

However, certainly for seasonal series, discussed in section 1.4 , the

conditional approximation is not very satisfactory and the unconditional

becomes more necessary.

It is shown by Box and Jenkins that, corresponding to the N = n+d

observations, assumed to be generated by an ARIMA(p,d,q) model, the

unconditional likelihood is given

21t02 )-n/ 2 •
a

S( ~,e

exp{ - -
2 0

2
a

} (1.57)

is the nxn covariance matrix of the w's

of the resulting ARMA(p,q) process,

and (1. 58)

So the log-likelihood is given by

(1. 59)

Usually, f( 2'~ is of importance only for small n. For moderate and

large values of n, (1.59) is dominated by • So it follows

that minimizing the sum of squares (1.58) usually provide very close

approximations to the likelihood estimates.

A procedure which can supply the unconditional sum of squares to any

desired degree of approximation, for any ARIMA model is as follows.
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( 1. 60)

I: at_,ljJj
j=O J

a =
t

w =
t

can be written as

The stationary forward model generating the w's

~(B) ;t = 9(B) at

~ -1 (B) 9(B)

that is
Q

wt .. I: ljJ . a t- '
j=O J J

(1.61 )

because of the stationary character of the AR operator ~(B) , the ljJ­

weights die out rather quickly, so we can approximate (1.60) to any

desired accuracy by a MA(Q) process.

This implies that the E[ at] 's are negligible beyond the point t = -Q ,

and the infinite summation (1.58) can be replaced by a finite sum from

the point t = 1 - Q.

In the calculation of the sum of squares in practice, the E[ at]'s are

computed recursively by taking conditional expections in (1.60).

The values E[ -w.] , j = 0,1, ••• ,Q-1 are obtained by so called
J

"backforecasting". Using the fact that the probability structure of

w
1

' ••••• ,w
n

is equally explained by the forward model (1.60) , as by

the backward model: ~(F);t = 9(F) e
t

(1.62)

The value w , thus bears exactly the same probability relationship to
-J.

the sequence w
1

,w
2

' •••• ,wn ' as does the value w
i
+1 to the sequence

w
n

'w
n

_
1

' •••• 'w
1

• So the values w_
j

, j = 0,1, ••• ,Q-1 can be obtained

by forecasting the reversed series.

Due to the MA parameters the E[ at]'s are nonlinear functions of the

parameters. Minimizing of the sum of squares wil take place using an

iterative nonlinear least squares method, which is an extension of the

Marquardt-algorithm. For a more comprehensive discussion of the

estimation procedure, one is referred to Box and Jenkins.

1.3.3 Diagnostic checking.

Diagnostic checks are applied with the estimated model of uncovering

possible lack of fit and diagnosing the cause. Diagnostic checks must be

sensitive to discrepancies which are likely to happen. No system of

diagnostic checks can ever be comprehensive. However, if checks, which

have been thoughtfully devised, are applied to a model fitted to a
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reasonable large body of data and fail to show serious discrepancies,

then we shall feel more comfortable about using that model.

Overfitting.

One technique which can be used is overfitting. That is, to estimate a

more elaborate model containing additional parameters covering feared

directions of discrepancy and to analyse whether the additions are

needed. If the analysis fails to show that the additions are needed, e.g

if their values are less or equal to one or two times their standard

deviations, then it is only proved that we can not improve the model in

that direction. However it does not prove that the model is correct.

Analysis of the residuals.

Procedures less dependent upon the knowledge of feared discrepancies are

based on the analysis of residuals

at = ~-1(B) ;(B) VdZ
t

where ~,t) are the obtained M.L estimates.

It is possible to show that, if the model is adequate

As the series length increases, the at's become close to the white

noise at's. If the form of the model were correct and we knew the true

parameters ! and e , then the estimated autocorrelations rk(a) of

the a's would be uncorrelated and distributed approximately Normally
-~about zero with a standard error of n

In practice, we can calculate the autocorrelations rk(a)

It can be shown that for moderate and high lags the use of

of the a's.
-~

n as

standard error for rk(a) can be employed; for low lags, however, we may

seriously under-estimate the significance of apparent discrepancies,

because for low lags a reduction in variance can occur and at low lags

the rk(a) can be highly correlated.

Rather than considering the rk(a) 's individually, we can use the sum of

the first K correlations, taken as a whole, to indicate inadequacy of the

model. Box and Pierce showed that, if the fitted model is appropriate,
K 2 ~

Q = n L rk(a) (1.63)
k=1
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is approximately distributed as
2

X (K-p-q) , where n = N-d is the number

of w's used to fit the model. If the model is inappropriate, the average

value of Q will be inflated. Therefore, an approximate or general test

of the hypothesis of model adequacy may be made by referring an observed
2

value of Q to a table of the percentage points of X •

Cumulative periodogram check.

over

(1.64)

(1. 65)

2
2 0

a
the cumulative

2
running from ( 0,0 ) to (~,o )

a
defined asFor a time series a , t = 1 , 2 , •••• the periodogram I (f. )

t 1

2
n n

I (f. ) = [ ( E atcos 2nf. t )2 + E atsin 2nf.t )2 ]
1 n 1 1

t=1 t=1

where f.
i

is the frequency,
1 n

The power spectrum p(f) for white noise has a constant value

the frequency domain 0 - ~ cycles. Consequently,
f

spectrum for white noise: P(f) = J p(g) dg
o

plotted against f is a straight line

provides an estimate of the power spectrum at frequency f.

provides

Also
1 j

P(f.) =-E I(f.)
J n i=1 1

an unbiased estimate of the integrated spectrum.

( 1 .66)

We shall refer to C( f .) =
J

P( f .)
J

2
s

( 1.67)

where s is an estimate of 0 as the normalized cumulative periodogram.
a

Now, if the model were adequate and the parameters known exactly, then

the a's could be computed from the data and would yield a white noise

series. Model inadequacy would produce nonrandom a's , whose cumulative

peridogram could show systematic deviations from the straight line for

white noise.

For large samples the periodogram for the estimated residual a's, which

we have in practice, will have similar properties to that for the a's.

Thus inspection of the periodogram of the a's can provide a useful

check, particularly for indicating periodicities inadequately taken

account of.
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Use of the residuals to modify the model.

Suppose that the residuals b from the model

<l>O(B) vdo Zt

t
= 80 (B) b

t
( 1.68 )

appear to be nonrandom.

We may now identify a model
d

<I> 1 (B) V Ib
t

= 8 1 (B) a ( 1 .69)
t

for the b
t

series.

On eliminating b between (1.68) and (1.69) , we get a new model
t

<1>0 (B) <1>1 (B) vdo Vdl Zt = 80 (B) 81 (B) at

which can now be fitted and diagnostically checked.

1.4 Seasonal models.

In general, we say that a series exhibits periodic behaviour with period

s , when similarities in the series occur after s basic time intervals.

A model, which can provide a useful representation of such series with

remarkably few parameters is the general multiplicative seasonal model

where

and

<I> (B) ~p(Bs) V
d

V
D

Z = e ( B) 0
Q

(B
s

) at (1.70)
p s t q

<l>p (B) and 8 ( B) are polynomials in B of order p and q.
q

~p( B
S

) and 0
Q

(B
s

) polynomials in
s

of order and Q.are B P

V = VI = 1 - B

V = 1
s

period in basic time intervals.- B , s iss

This model, called an

elucidated.

ARIMA(p,d,q)x(P,D,Q) model, will now be
s

day: Sun. Mon. Tues. Wedn. Thurs. Frid. Satur.

week z1 z2 z3 z4 z5 z6 z7

2 z8 z9 z10 Z11 z12 z13 z14
3 z15 z16 z17 z18

Z
t

table 1.4 Seasonal data.
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The arrangement of the data in table 1.4 emphasizes that in periodic data

there are two time intervals of importance.

For this example we expect relationships to occur

i) between observations for successive days in a particular week

ii) between the observations for the same day in successive weeks.

Suppose, as denoted, the t'th observation Zt is for a Thursday.

The relationship between Zt and previous observations for

Thursdays t , k = 1,2 , ••••• can be described by an
t-ks

ARlMA model ~p( B
S

) V
D

Zt = 0
Q

(B
s

) At (1.71)
s

Similary, a model ~p (B
s

) V
D s
s Zt_1= 9Q(B ) At - 1

might be used to link curr~nt behaviour for Wednesday with previous

Wednesday observations, and so on, for each of the seven days. Moreover,

it would usually be reasonable to assume that the parameters ~ and 0

contained in these seven models would be approximately the same for each

day.

Now the error components A
t

,A
t

_
1

, ••••• in these models would, in

general, not be uncorrelated.

To take care of such relationships, a second model is introduced :

(1.72)~p(B) V
d

At = eq(B) at

is a white noise process.at

Substituting (1.72) in (1.71) , we obtain the general multiplicative

where

model (1.70).

One modification which is sometimes useful allows the mixed AR or MA

operator to be non-multiplicative.

The extension to the seasonal model does not fundamentally alter the

methods for identification, estimation and diagnostic checking as

discussed in the previous section. This will also become more clear in

the next chapters, where the described methods will be used with

mainly seasonal data.
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Chapter 2 KJDEL BUILDING : INTERACTIVE COMPUTING AND EXAMPLES WITH

SIMULATED DATA.

2.1 Introduction.

Based on the methods developed by Box and Jenkins, as described in the

previous chapter, a number of interactive programs to perform the various

steps in model building and forecasting were implemented on a VAX 11/750

computer. The programs will be discussed in detail in appendix v.
In this chapter these interactive model building procedures will be

discussed and demonstrated with examples on simulated data. The aim of

performing simulations is twofold. First, the examples can be seen as

test of the programs. Second, one gains experience with the methods.

Finally attention is paid to some practical aspects, which may be

important, if using these methods on real data.

2.2 The model building procedure and examples.

a tentative model

identification of

j---------------------------j
I I
I

I
I

I
I

I

I

program: DIFAC - differencing

- a.c.function

- p.a.c.function

I I

~---------------------------~

r---------------------------j

fig.2.1 Basic steps in

model building.

program: MEP - preliminary est.

- estimation

- X2 test residuals

- forecasting

r- estimation

diagnostic checks

byes
no

forecasting
I

I
I

I

I

~---------------------------~
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The main steps in model building for a stochastic process are shown in

the flow diagram in fig.2.1. Also the two main programs to perform these

steps are denoted. As mentioned already, the programs will be discussed

in detail in appendix V1 here only their use in the model building

procedure will be explained.

First step in identification is to plot the data and to examine on

possible nonstationary behaviour.

As described in section 1.3.1 a tentative model has to be identified by

studying the autocorrelation function (a.c.f) and the partial autocor­

relation function (p.a.c.f).

The program DIFAC is used to perform the differencing and to compute the

esimated a.c.f and the estimated p.a.c.f. The a.c.f and p.a.c.f are

stored in files, so that plots can be generated. As standard error for

the estimated a.c.f and p.a.c.f is used n-~, where n = N-d-D and N is the

number of observations of the series and d resp. D are the order of non­

seasonal and seasonal differencing.

After deciding on the degree of differencing and deciding on a seasonal

or a non-seasonal model, the orders of the remaining ARMA-model have to

be determined. A useful aid in model identification non-seasonal models

can be to compare the estimated a.c.f and p.a.c.f with plots of

theoretical a.c.f and p.a.c.f, as given in appendix VI. For the seasonal

case also in appendix VI the covariance structure for a number of

seasonal models is given. However these lists are not comprehensive and

it should be emphasized that in doubtful cases it is useful to determine

several possible tentative models to use for estimation.

The next steps in model building are performed with the program MEP.

Preliminary estimates of the parameters are obtained using the a.c.

function of the (differenced) data. Initial estimates for the AR-part are

generated by solving the Yule-Walker equations and initial estimates for

the MA-part are obtained by a Newton-Raphson quadratic convergence

procedure.

In the estimation routine an iterative modified Marquardt-algorithm is

used, to fit simultaneously all parameters. This is a non linear least­

squares fit. Parameter estimates are obtained together with appropriate

standard errors. If the estimated parameters violate the stationary or
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invertibility conditions the estimation program is stopped and the

program types out a warning.

The residual series, which are also returned by the estimation routine,

are used to perform diagnostic checking. The autocorrelation function of

the residuals will be calculated and the Box-Pierce value Q together with

the corresponding tail probability of the chi-square distribution is

computed. The a.c.f of the residuals has to be examined i.e. by plotting
~ -~

on significant values. A value is significant if rk(a) ) 2n • These

significant values indicate the remaining model of the residuals and so

they suggest in what way the model should be modified.

Overfitting as diagnostic checking can be performed by running the

estimation program with a more elaborate model.

Finally, if there is no doubt on the adequacy of the model left, it is

ready to be used in forecasting. The forecasting routine uses the 'state'

set as returned by the estimation routine. This state set contains the

minimum amount of time series information needed to construct forecasts.

Depending on the model-order that are samples of the differenced series,

data to reconstitute the original series and samples of the residual

series. If new observations come to hand this state set can be updated.

The program offers three possible ways of forecasting

- the so called modelfitting. The model is used to predict

the original time series used for estimation. This

prediction will be performed as one step ahead with

updating.

- one step ahead forecasting with updating.

- ~-steps ahead forecasting.

The model building procedure will now be demonstrated with some

simulation examples used to test the programs.

example 1.

Two time series were generated by a non-seasonal stationary

ARMA(2,O) model:

( 1+ 0.4B -0.32B2 ) Zt= at

or written in difference equation form

(2.1)

Zt= -0.4 Zt_1+ 0.32 Zt_2+ at

where : at is normally distributed with 0a

Series 1a has N = 100 observations,
a

series 1b has N
b

= 400 observations.

and 1.1 = o.
Z
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In future one is referred to appandix II for the figures of

chapter 2.

The a.c.f and p.a.c.f are shown in fig. 2.2. Also the ± 2 a lines are

drawn in the plots, where a is approximated by the large lag standard­
-I,

error : n

For time series 1b it is rather clear to identify the right model order

from the a.c.f and p.a.c.f in fig. 2.2 , however this is not true for

series 1a.

Table 2.1 shows the results of fitting an AR(2) model to the series.

series N ( a ) ( a ) res.
var.

Q df

1a
1b

100 - 0.436 (0.098)
400 - 0.397 (0.048)

0.264 (0,098)
0.318 (0.048

1. 14
1. 01

11. 8
28.4

13
35

0,544
0.697

table 2.1 Example 1 results of fitting an AR(2) model.

- note

a

res. var.

Explanation of abbreviations used in the tables.

estimated standard error of the estimates
*)

est. residual variance S. I N-p-q(-1 if c estimated)
nun

where S. is the final sum of squares (see page 25).
mJ.n

Q Box-Pierce
K 2-

(see page 27)value Q = n l: rk(a)

df degrees of freedom df
k=1 *)

= K-p-q

E tail probability E = pr[ l(df) > Q ]

*) for seasonal models the degrees of freedom have to be reduced
for the number of seasonal parameters.

A small value of the tail probability E means that there is ground for

questioning the randomness of the residuals.

From table 2.1 we see that for both series there is no doubt on the

adequacy of the model. Also the plots of the a.c.f of the residuals in

fig.2.3 show that there are no significant values.

If we compare the estimates of the parameters for both series, we notice

that the results for time series 1b closely approximate the true

parameter values. However this is not true for the series 1a1 yet the

estimates of the parameters are within in the 95 percent confidence

interval, that is ± 1.96 a.

Both from the estimated a.c.f and from the estimates of the parameters

it is clearly shown that the series 1b hold more information about the

generating model.
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example 2.

A seasonal series was generated by an ARlMA (0,0,2)(1,0,0)7 model, that

is a seasonal multiplicative model of order (0,0,2)(1,0,0)7 that is

(2.2)

with a non-seasonal MA-part of order 2 and a seasonal AR-part of order 1.

The period of seasonality is 7.

The model: 1 - ~ B7 )( Zt- j.l. ) = ( 1 - el B - e2 B2 ) at

or Zt- j.l. ) = ~( Zt_7- j.l.) + at - elat _1- e 2a t _2
where ~ = 0.92

e,= 0.60 , 0 2= 6.25 and N = 400.a

Fig. 2.4 shows the first 50 observations of the original series and of

the first order seasonal difference at period 7 of the series.

Fig. 2.5 shows the estimated a.c.f for the original and for the

differenced series. From those functions we see that is possible to

identify either the orignal model of order (0,0,2)(1,0,0)7 as given by

equation (2.2) or an alternative model of order (0,0,2)(0,1,0)7 ; that is

with a seasonal differencing and no seasonal parameters as given by

equation (2.2a).

(2.2a)

modelorder el e2 c ~ res. Q e:
0 ) 0 ) 0 o ) var. df

(002)(100)7 0.596 - 0.834 40.2 0.936 6.76 27.0 0.62
( 0.028) (0.028) 2. 1 ( 0.020) 30

(002)(010)7 0.597 - 0.832 7.03 29.5 0.49
(0.028) (0.028) 30

table 2.2 Example 2 estimation results.

The estimation results are shown in table 2.2. Fig. 2.6 shows the

estimated a.c.f of the residuals for both models. We see that there is no

doubt on the adequacy of both models. Looking at the residual variance,

which is equal to the residual sum of squares divided by the degrees of

freedom, the original model given by equation (2.2) should be preferred.

However on real data there may be an advantage in employing the

nonstationary model as given by equation (2.2a), because if ~ is near to

unity, it is not really known whether the mean of the series has a

meaning or not.
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Many more examples were performed, but will not be described here. On the

one hand to avoid confusion, on the other hand especially because they

all showed, like the two examples given, that for a stationary and

invertible generating model the estimated parameters closely approximate

the true parameter values. So there is no doubt on the programs.

2.3 Practical aspects.

In this section attention is paid to some practical aspects in order to

be alert to the difficulties that may occur and to avoid these

difficulties. First near-redundant factors will be discussed, then

attention is paid to the estimation of the mean of the series and to

aspects of differencing.

Finally simulation examples will be discussed of which the generated

data is disturbed by a deterministic trend, so that the model is outside

the model-set.

Although these last experiments were done on account of an examination of

the water-company data and on difficulties encountered during working

with this data, they will be discussed here as it concerns general

aspects.

Near redundant factors.

Instability in the parameter estimates can be expected in the estimation

procedure if a model is fitted which contains a near redundant factor.

In such a situation, combinations of parameter values yielding similar

residuals and consequently similar likelihoods can be found. A change of

an AR-parameter value can be nearly compensated by a suitable change of a

MA-parameter. This will be illustrated in example 3.

Example 3.

Five time series were generated by the ARMA(2,1) model:
2

( 1 + 0.40 B - 0.32 B ) Zt = ( 1 - 0.50 B) at (2.3a)

with ~z= 0 and at normally distributed with 0a = 1.

By factorizing the AR-part, this model can also be written as

1 - 0.40 B)( + 0.80 B) Zt= ( 1 - 0.50 B) at (2.3b)

So that the near cancellation factors ( 1 - 0.40 B) and ( 1 - 0.50 B)
become clear.

The results of fitting an ARMA(2,1) model to the generated series is

given in table 2.3.
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series N ~l h e res. Q degree e: numb.of

( ) ( ) ( a )
var. freed. iterate

a a

3a 200 - 0.32 0.30 0.56 1.09 16.0 22 0.82 20
(0.39) ( 0.32 ) (0.36 )

3b 200 - 0.34 0.65 0.87 1.13 12.3 22 0.95 11
( 0 • 17 ) ( O. 16) ( 0 • 14 )

3c 200 - 0.66 0.13 0.34 0.99 20.8 22 0.53 3
(0.42 ) ( 0.36 ) ( 0.40 )

3d 400 - 0.16 0.48 0.71 1.10 22.6 37 0.97 33
(0.25 ) (0.21 ) (0.23 )

3e 400 - 0.05 0.61 0.83 1. 01 38.7 37 0.39 14
(0.17) (0.15 ) (0. 15 )

true par. - 0.40 0.32 0.50

table 2.3 Example 3 results of fitting an ARMA(2,1) model.

From table 2.3 we notice the big variety of the estimated values of the

parameters, also the big values of the standard errors are remarkable.

However, the chi-square tests gives no reason to doubt on the adequacy

of the fitted models and none of the a.c.f of the residuals showed

significant values.

If we rewrite the model of equation (2.3a) as an infinite AR-model, that

is

Z = a
t t

- 0.50 B) at

••• )(1+0.8B)

- 0.40 B)( 1 + 0.8 B) Zt= ( 1

+ 0.10 B + 0.05 B
2

+ 0.025 B
3

+

2 B3+1 + 0.90 B + 0.09 B + 0.045 ••• ) Zt= at

We see that this model can be very nearly approximated by an AR(1) model:

( 1 - ~ B ) Zt= at where ~ ~ - 0.9 (2.4)

The results of fitting an AR(1) model to the series, as given in table

2.4 , confirm this statement.

series e ( a ) res.var. Q d.f. probe num.iter.

3a - 0.78 (0.045) 1.10 19.6 24 0.72 2
3b - 0.84 (0.039) 1.13 15.6 24 0.90 2
3c - 0.85 (0.037) 1.02 30.6 24 0.17 2
3d - 0.80 (0.030) 1 • 11 27.0 39 0.93 2

3e - 0.82 (0.029) 1. 02 44.5 39 0.25 . 2

table 2.4 Example 3 fitting an AR(1) model.



- 38 -

From table 2.4 we notice much more stability of the estimated parameters

and much smaller values of the standard errors. All these estimations

were performed in two iteration steps and except maybe series 3c there is

no reason to doubt on this model.

From this example we see that the instability of the estimates by fitting

an ARMA(2,1) model with 2 near redundant factors will occur, because we

are trying to fit three parameters in a situation that can be represented

by one parameter.

So we should avoid to fit ARMA-processes containing near common factors

and we should be alert to the difficulties that can result. In general

this can be done by using the identification and estimation procedures

with care.

For the series in this example, as they have a small number of

observations, their estimated a.c.f will hardly be distinguishable from

that from data generated by an AR(1)-model. As we can see from fig. 2.7 ,

which shows the a.c.f for series 3d and for a series generated with an

AR(1)-model with ~ = - 0.8.

So in the identification procedure corresponding to the parsimony

principle an AR(1) model will be identificated for the ARMA(2,1) model,

Which will turn out to be adequate.

Estimation of the mean and differencing.

The estimation procedure fits a model of desired order to the series w
t

where wt = v~~ Zt - c (2.5)

where the scalar c is the expected value of the differenced series and w
t

is assumed to follow a zero-mean stationary ARMA model.

The scalar c can be estimated as a additional parameter or can be given a

constant value.

One should take care of using the scalar in the right way, as now will be

illustrated.

i)If the orders of differencing are zero, then c = E[ z ] = ~ •
t z

Now, difficulties will appear if c is given a wrong value and so a

bias remains in the series w
t

' Due to this bias the fitted AR part of

the estimated model will contain a zero for B = 1 , so the fitted model
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is nonstationary and the program will stop, this is illustrated in

example 4. Although this result suggests a differencing of the data,

which will eliminate the bias, we should take care to do so, because

the data need not to be nonstationary at all.

Example 4.

A series Zt was generated with the ARMA(1,1) model

( 1 - 0.9 B )( Zt - 55.0 ) = ( 1 + 0.6 B

The results of fitting an ARIMA(1,0,1) model to the series w = Z - c
t t

with c as an additional parameter to be estimated were:

$ = 0.88 ± 0.03

e = -0.60 ± 0.04

c = 55.1 ± 0.7

and if c was taken a constant value equal to

the results were identical, that is

~ = 55.0 then
Z

$ = 0.88 ± 0.03

e = -0.60 ± 0.04

Both results were obtained after 5 iterations.

However, during fitting an ARMA(1,1) model with c = 0 the program

stopped after 34 iterations and typed out a warning that the estimated

parameters: $ = 1.0 and e = -0.578 violate the stationary

conditions.

A similar result was obtained after 33 iterations fitting an ARMA(2,1)

model with c = O. The final estimated parameters were: $1 = 0.4983

$2 = 0.5117

e = -0.9418

If we factorize the AR part, that is

1 - 0.4883 B - 0.5117 B2 = 1 - B )( 1 + 0.5117 B)

the zero for B = 1 is clearly seen.

ii) If d and/or D are nonzero, then by permitting c = ~ to be nonzero a
w

deterministic trend is included in the model. However, in many

applications, where no physical reason for a deterministic component

exists, the mean of w can be assumed to be zero unless such an

assumption is contrary to facts presented by the data.

Differencing or not in doubtful cases.

As we saw in example 2, if a root of the AR operator is rather near to

unity, it is almost equally well to use a stationary model with a root

near to unity or to use a nonstationary model, that is to perform a
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difference on the series. On real data, however, it may be an advantage

to employ the nonstationary model, which does not include a mean ~

because it is not really known wether the mean of the series has a

meaning or not. Using the nonstationary model to produce forecasts, these

forecasts will not in any way depend on an estimated mean, calculated

from a previous period, which may have no relevance to the future level

of the series.

Wrongly differencing.

It may be helpful to realize the effects of wrongly differencing, for

instance if it is not clear whether a seasonal or nonseasonal

differencing should be used. To illustrate consider the simple model

( 1 - ~B ) Zt = at

Nonseasonal differencing yields
1 - B

w = a = ( 1
t 1 _ ~B t

We now notice that if ~ is near to unity and thus (1-~) near to zero, the

result of the justly differencing is: w
t

~ at

However if ~ is near to zero the result is w
t

~ ( 1-B ) at • So the

process w
t

is non invertihle.

For values of ~ between 0 and 1 , the resulting process w
t

can be

approximated by a suitably chosen q-order MA process, because for higher
k

order ( 1- ~ ) ~ k = q+1,q+2, ••••• will be negligible. However because

of the superfluous differencing we violate the parsimony principle.

Data disturbed by a deterministic trend.

The watercompany time series of the daily consumption of water exhibits

not only an evident weekly periodicity but also an additional, however

relative small, yearly season, as we can see from fig. 2.8. That is the

consumption in winter is lower than in summer~ of course there is a

gradual change-over.

Theoretically it is possible, using similar arguments as in section 1.4,

to obtain multiplicative models with three or more periodic components to

take care of multiple seasonalities.

However such an extension of the program was abandoned because of the

availibility of only one year data and also lack of time.
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From an other point of view, this yearly trend can be seen as an

additional deterministic trend.

In order to gain insight of the possible aspects of such an deterministic

trend, several experiments were done, which will be discussed here.

example 5.

Time series z5
t

was generated by the stationary seasonal model of

order (2,0,0)(1,0,0)7

the mean of the series .1 = 32.0I"'z5
As deterministic trend was a sine wave added, in two slightly different

ways, that is :

trend each data sample was increased as follows

t = 1,2, •••• ,364

yielding the series: T1a
T1b

with A 4.0
with A = 8.0

trend 2 each sample of the same week was increased with the same

value

where k equals the number of integers
of (t-1)/7 t = 1,2, •••• ,364.

yielding the series : T2a
T2b

with A =
with A

4.0
8.0

The a.c.f of the series hardly show a difference, as is illustrated in

fig. 2.9 which shows the a.c.f of the series z5
t

, T1a and T2b.

A (2,0,0)(1,0,0)7 model was fitted to the series and in accordance with

the practically similar a.c.f also the estimated parameters do not differ

much, as is shown in table 2.5.
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series $1 (0.6) $2 (-0.4) If? (0.8) c ( a )

z5 0.671 - 0.446 0.781 32.2 0.8

T1a 0.673 - 0.436 0.793 34.4 0.8

T1b 0.679 - 0.414 0.824 36.5 1.0

T2a 0.673 - 0.436 0.793 34.4 0.8

T2b 0.679 - 0.414 0.824 36.5 1.0

for all estimates a ) ( 0.05

Table 2.5 Example 5,results fitting an (2,0,0)(1,0,0)7 model.

Also the a.c.f of the residual series showed no significant values for

all series.

We note that the estimated mean values c are roughly equal to

32 + 2A/n , where 2A/n is the mean of the trend.

Example 6.

Time series z6a and z6b were generated by the the stationary seasonal

model of order (2,0,0)(1,0,0)7 with: $1= 0.7

$ = -0.3
2

To both series a trend, similar to

iI> = 0.6 and mean I.l 20.0
series z6a a = 10.0

a
series z6b a = 1.0

a
trend 1 of example 5 now with A 10.0

was added.

Fig. 2.10 shows the first 182 samples of the series. We see that for

series z6b with a = 1.0 and A = 10.0 the trend clearly dominates.
a

Fig. 2.11 shows the a.c.f for both series. The dominating trend of series

z6b finds expression in the high correlation coefficients for the series.

Table 2.6 shows the results of fitting a (2,0,0)(1,0,0)7 model to the

series.
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series $1 (0.7) $2 (-0.3) It> (0.6) c ( a )

z6a 0.749 - 0.331 0.550 27.3 1.9

z6b 0.715 - 0.284 0.905 25.5 1 • 1
for all estimates ( a ) <: 0.05

Table 2.6 Example 6, results fitting an (2,0,0)(1,0,0)7 model.

Where this model was found to be adequate for series z6a : Q = 23.9 with

31 degrees of freedom so that the tail probablity E = 0.82 , the a.c.f of

the residuals of series z6b showed several significant values and the

chi-square test Q = 83.8 with d.f = 31 , E = 0.0 confirms the doubt on

the adequacy.

For series z6b the estimated value of It> is near to unity, therefore a

model (2,0,0)(0,1,1)7 , thus with seasonal differencing of order one,

was fitted. This resulted to : $ = 0.720
1

$ = -0.302
2

It> = 0.213

However, the a.c.f of the residuals still showed significant values and

also Q = 93.1 with d.f = 31 , E = 0.0 gives reason to doubt on the

adequacy of this model.

From both fitted models for series z6b, we remark that the nonseasonal

parameters seem not to be affected by the relative big trend, however the

estimation of the seasonal part fails.

Several other multiplicative models with different orders of seasonal

and/or nonseasonal differencing, turned out to be inadequate to fit the

series. Finally a non-multiplicative AR model of order 9 was fit :

$ = 0.771 $ = -0.051 $ = 0.531
for all estimates1 4 7

$ = -0.389 $ = 0.109 $ = -0.335 ( a ) <: 0.05
2 5 8

$ = 0.010 $ = 0.096 $ = 0.166 c = 21.4 ± 7.9
3 6 9

The a.c.f of the residuals showed no significant values and also

Q = 31.5 with d.f = 25 , E = 0.18 gives no doubt on the adequacy of

the fitted model.

Example 7.

The supposed yearly trend in the water company time series was

approximated by fitting an second order polynomial with (least squares)

coefficients to the series minus the mean. See fig 2.8 and also fig. 2.12

which shows the approximated trend.
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This trend was added to two time series generated with the same model as

used in example 5, however now with I.l = 3200 and different noise,

that is a = 250 yielding series z7a without and T7a with trend.
a

a = 50 series z7b without and T7b with trend.
a

Fig 2.13 shows the a.c.f for series z7a and T7b, where the a.c.f for

series T7a and z7b are similar to that for series z7a. We notice for

series T7b that the samples are high correlated.

The results of fitting an (2,0,0)(1,0,0)7 model to the series, are shown

in table 2.7.

series 4>1 (0.6) 4>2 (-0.4) ~ (0.8) c a ) Q d.f E

z7a 0.645 - 0.4~~ 0.752 3224 65 23.4 31 0.83

T7a 0.649 - 0.414 0.760 3201 69 23.4 31 0.83

z7b 0.645 - 0.420 0.752 3205 13 23.4 31 0.83

T7b 0.692 - 0.352 0.892 3150 35 46.2 31 0.04
all estimates ( a ) <: 0.050

Table 2.7 Example 7, results fitting an (2,0,0)(1,0,0)7 model.

From table 2.7 we see that for series T7a the trend does not affect the

estimation of the parameters, however this is not true for series T7b.

Also the chi-square check gives reason to doubt on this model for series

T7b. Just like in example 6, it was difficult to fit an adequate model to

series T7b. For a model with a second order seasonal differencing and a

nonseasonal AR(2), that is (200)(P2Q)7 we noticed, that the estimated

nonseasonal parametervalues 0.63 and -0.41 approximate closely to the

true values, however no adequate seasonal model could be fitted.

Based on the chi-square test, the best however still doubtful model

4>1= 0.68 , 4>2= -0.38

~1= -0.07 , ~2= -0.09

where for estimates a <: 0.06 , we can doubt on the seasonal parameters.

Chi-square value Q(31) = 40.1 so that E = 0.13.
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From example 5 and 6 we saw, that adding a relatively small sine wave

trend to a series does not affect either the a.c.f or the estimation of

the model, used to generate the series. By a relatively small trend is

meant the magnitude of the sine wave in proportion to the standard

deviation of the white noise. A relatively small trend is almost buried

by the randomness of the series and will be hard to distinguish.

However, from the series 6b we saw, that a relatively big and dominating

trend affects the a.c.f as well as the estimation. The dominating trend

finds its expression in high correlation coefficients and so the

identification of the model-order is obstructed. Also the finally

adequate model fitted to the series differs from the generating model.

Example 6 also shows that differencing, in contrary to data showing a

stochastic trend, need not to be an improvement in identification and

estimation.

Example 7 confirm these statements, here a second order trend fitted to

practically data was used to disturb the time series.

Although the experiment is too small to prove the observed behaviour, it

can be very useful to know the effect a deterministic trend might have on

the a.c.f, the identification and finally the estimation of an adequate

model. So, since for practical data, the variance of the noise is not

known, it might be possible to get an indication from the a.c.f whether

it is affected by a supposed trend or not.
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Chapter 3 THE WATER-COMPANY DATA MODEL BUILDING AND FORECASTING.

3.1 Introduction.

After implementing the methods and using them with simulated data, as

described in the previous chapters, we will now apply them to practical

data. As mentioned already in the introduction of this report the

"Tilburgsche" water-company made available the half-hourly readings of

the water consumption for one year, that is 1983.

In this chapter we will first briefly elucidate the background of the

need for forecasts by the water-company, and also discuss the data more

comprehensively.

Then the trials and errors leading to the final models, fitted to the

data, will be described.

Next forecasting results with these models will be evaluated and compared

with forecasts produced by a so called 'naive-method'. Also a cross

validation will be none with data of 1984, which meanwhile had become

availahle.

Finally conclusions will be given on the results and on the usefulness

of these methods as a solution for the water-company problem.

- note : One is refered to appendix III for the fi~lres of chapter 3.

3.2 The water-company.

3.2.1 The need for forecasts.

The water-company has to satisfy the demand for water at each moment. The

water has to meet certain requirements like sufficiently high pressure

and quality restrictions.

To meet the quality restrictions the spring-water has to be purified by,

among other things, filtering, etc. The production process should be

equable, to ensure a good and constant quality of the water.

A water-tower and high-pressure pumps are used to provide the sufficient

high pressure.

In order to avoid technical trouble, one should take care of limiting the

on and off switchinq of the spring-water-, filtering- and high-pressure

pu~ps. Also fro~ the point of view of efficiency a peak-consumption of

electricity, by switching on too many pumps simultaneous, should be

avoided. As a high peak-consumption increases the costs of electricity.
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For an average day the total consumption of water exceeds the capacity of

the water-tower and the store-basin for purified water. For the data of

1983 fig. 3.1 shows the graphs of the average daily consumption of water

for the various days of the week.

During the daytime the consumption will be greater than the production of

water, and the stock of water will decrease. This decrease is limited due

the quality requirements, especially due the requirement to satisfy the

demand for water at each moment. At night the stock will be filled up

again.

So, the production of water has to be controlled in such a way that at

all times a deficiency of water should be avoided. Also a too high, short

time, rapid increase of the production on account of a threating

deficiency should he avoided.

Now, it will be clear that it is very important to have a good forecast

of the water consumption, in order to control the production process in

an optimal way, that is to provide an equable production in the most

efficient way.

Due to the half-hourly readings of the water-consumption it is possible

to interfere with the production process at each half hour. This,

however, might lead to unnecessary switching of the pumps. Considering

the average daily pattern, a good and reliable forecast of the total

daily consumption might be sufficient for efficient control. Therefore

we have chosen to examine the possiblity to get a good forecast of the

total daily consumption by the Box-Jenkins methods, as will be described

in the next sections.

For the sake of completeness we will mention the way how the water­

company forecasted the water-consumption at the time the data became

available. Then they used the daily pattern of the corresponding day of

the previous week as starting point. During the day they adjusted their

prognosis to the actual consumption. Also weather changes were taken into

account immediatly. In spite of this adjusting the total daily

consumption differed considerably from the total final prognosis.

3.2.2 The water-company data.

The daily totals of the water-company data are listed in appendix IV.

It is recommendable to examine the data carefully, before starting the

identification and estimation procedures, in order to gain as much

insight and information about the data as possible. As it concerns the

water-company data, we can ask ourselves by what circumstances the demand
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for water will be influenced.

First of all we recognize the kinds of and the ratio between the various

consumers, as there are for example industries, (pig)-farmers and private

persons. However, such data can not be measured directly and we will

leave them out of consideration unless there is a strong indication of a

change from the data.

In the second place we notice the weather, that is the temperature and

the quantity of rainfall, which can both be measured directly. Especially

in spring and summer this might influence the use by private persons. The

question whether it is necessary to use these data, will be dealt with

later on.

It is also known that on feast- and other holidays like Carnival, Easter,

Ascension day, Whitsuntidc, Christmas and perhaps other days the

consumption is considerably lower and roughly equal to the consumption on

Sundays.

Fig. 3.2 shows the graph of the total daily consumption for 1983,

starting at Sunday 2 January, and fig. 3.3 gives a more clear plot of the

first 8 weeks of the same data.

From these two plots we notice :

- A rather regular pattern with a periodicity of 7~ of course this

seasonal character comes up to ones expections. The pattern looks so

regular because the consumption on Sun- and saturdays are considerably

lower than the other days and,on the contrary, the consumption on

Monday, the traditional washing-day, is higher.

- Except a period of about 10 weeks at the time of the summer-holidays

the data looks very stationary. During that summer-period the series

appears to be nonstationary in the level.

- As mentioned already in section 2.3 fig. 3.2 suggests an additional,

small, yearly trend~ that is in springtime the consumption gradually

increases and it decreases in autumn.

- In fig. 3.3 an example of the lower consumption during holidays can be

seen. Samples 44 and 45, that is Carnival Monday and Tuesday, the

consumption is considerably lower in comparison to other Mondays and

Tuesdays.

From fig. 3.1 we see that the average daily pattern for the various days

are quite similar, except the levels. Also we notice a time shift as it

concerns Saturday and Sunday-night.
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These average daily patterns were calculated without making allowance for

the deviations on holidays.

A graph of all Wednesdays, as shown in fig. 3.4 gives insight into the

spread about the average Wednes-pattern. Fig. 3.5 shows the graph of the

total daily consumption of these 52 Wednesdays and the mean of the daily­

totals for Wednesday and the whole year. From these two plots we notice

- Most Wednesdays follow the average pattern within a rather small

deviation and also the daily-total of these days do not differ much

from the mean value.

- As could be expected, the days which show the greatest deviations from

the average pattern are the same whose daily-total differs relatively

much from the mean total. These effects concern mainly holidays or days

within the summer-period.

The peak-days show a rather big deviation in the evening.

The weather influence.

The maximum temperature and the quantity of rainfall for each day of 1983

are also available. Using these we might get more insight about the

weather influence on the consumption, especially for the summer-period,

because the stationary pattern for the other parts of the year give no

reason to suppose a great influence.

For the summer-period, fig. 3.6 shows the graphs of the temperature, of

the daily totals, and of the deviations from the specific daily-means,

that is Sundays, etc.

During the summer-period there was very little rainfall during only a few

days.

From fig. 3.6 some influence from the temperature on the consumption can

be noticed. For instance if we consider the first two weeks then it is

very likely that the rather big difference is due the big rise of

temperature. However, a much more important fact which emerges from this

figure, is the influence of the summer-holidays. During this period, if

many factories etc. are for some time and many people are away on

holiday, we notice that the level of the consumption is considerably

lower in spite of high temperatures. In this period also the regularly

pattern fades away.

Summing up we can conclude that certainly during the summer-period the

temperature influences the water-consumption. During a great part of this

period, the summer-holidays, the consumption will be more influenced by

nonmeasurable causes like changes of kind and number of users.
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3.3 The way leading to the final models fit to the data.

In this section the way leading to the adequate models, fitted to the

data, will be described.

Although these models, and especially their forecasts-results are our

main goal, as illustration of the use of the methods on practical data,

it is worthwhile and interesting to know what problems had to solved to

attain this results. To avoid confusion and to avoid that the reader gets

buried under a torrent of tables, figures and results this road will be

described only in main lines.

From the examination of the daily-totals we noticed the following

deviations from the rather regular pattern with period 7 :

- the summer-period looks rather nonstationary.

- there might be an additional year-trend.

- a lower consumption occurs on holidays.

Because it was not clear whether and in what measure these deviations

would influence the fitting of an adequate model to all 52x7=364 samples

(the whole year New Yearsday excluded), it was first tried to fit a model

to the complete series, without making any adjustment on the data. It

turned out to be impossible to fit an adequate model. The estimation

failed in a rather peculiar way, which presently will be described. In

order to examine if this failure was due the nonstationary summer-period,

the next attempt was to fit a model to the first 182 samples. Also these

estimations failed in the same way, which will be illustrated now.

Example 3.1

Fig. 3.7a shows the estimated a.c.f for the undifferenced and for the

first order seasonal differenced series of the first 182 samples.

The a.c.f for the undifferenced series clearly indicate a first order

seasonal AR-model with a rather big parameter value and a first, maybe

second, order nonseasonal MA-model that is (0,0,1)(1,0,0)7 or

(0,0,2)(1,0,0)7. For the differenced series the a.c.f indicates a first

order seasonal MA-model. With respect to the nonseasonal model one can

doubt between a first order AR- or a second order MA-model. So the model­

order is (1,0,0)(0,1,1)7 or (0,0,2)(0,1,1)7.

note - With regard to the identification it should be noted here,

that it turned out to very useful to compare the estimated a.c.f
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with a.c.functions calculated from simulated data. This holds

particularly for seasonal models containing autoregressive

parameters. Appendix VI shows some examples of a.c functions of

simulated data.

Fitting a (2,0,0)(1,0,0)7 model turned out to be inadequate; that is, the

a.c.f of the residual series showed one rather big, significant value at

lag 7 r
7

= 0.38 ± 0.07

A model (0,0,0)(0,0,1)7 fittted to the residual series proved to be

adequate. According to the theory (section 1.3) a modified model

(2,0,0)(1,0,1)7 was estimated. However this estimation failed, because

the seasonal AR-para-meter became equal to unity independent from the

fact whether the constant c was estimated as an additional parameter or

not. Also it should he noticed that the preliminary estimates ~ = 0.91

and e = 0.38 give no reason to suppose near-redundant factors.

Next, based on the a.c.f of the first order seasonal differenced series a

model (0,0,2)(0,1,1)7 was estimated. Now the estimation failed because

the seasonal MA-parameter became equal to unity and so this result

suggests that the differencing is unnecessary.

This result is especially remarkable because the a.c.f of the residual

series of fitting an (0,0,2)(0,1,0)7 model, similar as above, showed only

one rather big significant value at lag 7. So it suggests a modified

model of order (0,0,2)(0,1,1)7.

So for the undifferenced series the estimation results for the seasonal

AR polynomial show a pole for B = 1.0 , suggesting a first order seasonal

differencing and, on the contrary, estimation results for the first order

seasonal differenced series suggest that the differencing is

unnecessary.

Similar contradictory results as described in example 3.1 were obtained

with other orders of differencing. Also model-extension, as overfitting

and fitting related model orders, in order to improve these results,

turned out to be useless.

To find out what causes this failure of fitting a multiplicative model to

the data we might start at the beginning of the procedure, that is to

doubt the identification.
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- First possiblity is to doubt the model orders identified on the basis

of the a.c. functions. This looks quite unlikely and therefore in the

first instance this possibility will not be taken in consideration.

- Second possibility is to suppose that the estimated a.c. funtion is

disturbed by, for example, an additional year-trend. However, referring

to the experiments described in section 2.3 and considering the a.c.f in

fig. 3.7a one can doubt this possiblity too.

Nevertheless, to find out if the supposed yearly trend disturbed the

a.c.f and/or the estimation, the data was adjusted by subtracting a

second order trend (see section 2.3). This turned out to be no

improvement. The a.c.f for the adjusted series hardly differs from the

a.c.f of the original series as can be seen from fig. 3.7b. In accordance

with this also the estimation results were quite similar.

- Considering the data it looked rather unlikely that the few deviations

at holidays would be the cause of the failure.

Summarizing it is quite unlikely that the failure of fitting a model to

the unadjusted, original data is caused by wrong identification.

Next (as it turned out later) a fruitful idea about the possible cause

did arise considering the data, the results as described in example 3.1

together with example 4 section 2.3 about differencing, and estimation of

the mean.

The idea is that the failure is caused by the big differences between the

mean values of the various days. This will be explained by the following

interpretation.

As we saw in section 1.4 the fundamental idea of the multiplicative

seasonal model is the assumption that the parameters of the models which

describe the seasonal behaviour are equal.

For example the model which describes the relationship between the

Sundays

and the model which describes the relationship between the Mondays

contain the same parameters ~ and 0. As the seasonal models only concern

Sundays, Mondays, etc. , we can write Zt_1= ~su+ i t _ 1 and Zt= ~m+ it
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where the mean ~ of the Sunday-samples and similar ~m of the Mondays
su -are the levels about which the data fluctuate and Zt in fact is the

process we want to model.

Now if D is greater than zero, the mean values will be eliminated.

However if the processes Zt are stationary no differencing is needed and

the different mean values remain in the data. That is, estimation of the

general multiplicative model fits a model to w = V~D Zt - c , as
t s

already seen in example 4 section 2.3, where c is the estimated mean of

wt ' So c will be the mean of the total data, that is of ~ , ~ , etc. andsu m
the series w

t
shows the similar regularly pattern as the series Zt'

In other words the extension to the general multiplicative model, that

is supposing the same seasonal model for each day, is only true for the

seasonal differenced series or in, case D is equal to zero, for the

deviations from the levels about which the data fluctuates.

From a somewhat different viewpoint one could say that we do not want to

model the rather deterministic regularly pattern but the stochastic

fluctuations about the mean pattern.

Table 3.1 gives a summary of the mean values for the various days and the

deviation from the mean value of the total data. All these means are

calculated from the original data whithout any adjustment for the

holidays.

i day mean ~i ~.
1

1 Sunday 2364 + 807
2 Monday 3518 - 347 ~.= ~ -~. , where
3 Tuesday 3387 - 216

1 w 1

4 Wednesd. 3390 - 219 ~w
= mean total data

5 Thurstd. 3358 - 187
6 Friday 3376 - 205
7 Saturd. 2806 + 365
total data 3171

Table 3.1 Mean values of the days and deviations from total mean.

From the estimation procedure it is clear that it will be quite similar

if the pattern is subtracted from the data so that the mean of the

remaining series equals zero or if the data is adjusted in a way so that

the mean of the adjusted series equals the mean of the total data.
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We have chosen for the latter by adding 6. as given in table 3.1.
1

Fig. 3.8 shows the adjusted series. From this plot it is obvious that now

the deviations on holidays can not be neglected any longer. This was

also confirmed by failing attempts to fit an adequate model; however

these attempts will not be described here. The adjusting of the holiday­

samples based on a priori knowledge will presently be discussed.

Also the nonstationary behaviour of the summer-period can be seen much

more clearly from fig. 3.8. As already discussed in section 3.2 this

nonstationarity is caused by the temperature and especially the summer­

holidays; it is questionable if it would be possible to adjust these data

even if data of more years were available. It is more likely to suppose

that we have to fit a separate model to the data of this period.

Adjusting the deviations at holidays.

Of course the best way to adjust the deviations at holidays would be to

use as much information as possible about the consumption on these days,

especially for those holidays which do not fallon a fixed day of the

week. To do so the data of more years should be available. However,

having only one year's data the adjustments will be rather arbitrary.

This will specially be true for doubtful cases as, for example, Saturdays

preceding feastdays, where it is not always clear if the deviation,

mostly not as big as on the holidays, is due the next holiday or is just

coincidence. However on deciding whether a sample value should be

adjusted or not, we should recall that from another viewpoint it is

desirable to limit the number of adjustments in order to avoid too much

manipulation of the data. We will meet this problem once more later on.

Also the question how to adjust can not always clearly be answered. One

possibility is to substitute the mean value for the particular day of the

week. More likely the best way to adjust is by interpolation, considering

the neighbouring sample values.

In accordance with these considerations only the very clearly deviations,

as they emerge from fig. 3.8 were adjusted to the mean values. Fig. 3.9

shows the first 168 samples of the obtained series.
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Based on the assumption that we have to fit a separate model to the

summer-period, a model was fit to these 168 samples which turned out to

be adequate and which will be described in the next section.

So we decided to use the series, adjusted for the average week-pattern

and additionally adjusted for the holidays, as a starting point to obtain

and to examine forecasts results. Also it was decided to divide the year

into three parts in order to check if a separate model has to be fitted

to the summer-period or to examine the changes in the parameter-values.

If this is true it is rather likely that the series might be explained

more exactly by the different models for each part. A disadvantage of

dividing the series is that the smaller series might contain less

information and that the estimated a.c functions have bigger standard

deviations because

3.4 Final models and forecasts results.

In this section we will first describe results for part one of the series

only adjusted for the clear deviations on holidays. Based on this result

the results for a series with additional adjustments will be described

and used for a cross-validation with the data of 1984.

As a criterion to evaluate the forecast results we will use two acuracy

measures which are defined as follows :

- the mean absolute £ercentage error

- the .!!!.ean .!quare ~rror

m.a.p.e

m.s .e

• 100

where x
t

is the actual value and x
t

is the one-step ahead forecast-value.

Also the forecast results will be compared with a so-called 'naive' or

'no-change' method. On account of the seasonality for model-fitting this

can be described as x
i

_
1

(1) = xi = x
i

_7
i = 8,9, ••• ,N.
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Series zca
t

•

We shall refer to series zC
t

as the series adjusted for the average week­

pattern, as described in the last section and to zca
t

as the series

additionally adjusted for only the clear deviations at holidays.

- note : See appendix IV for a complete list of the series.

These series zca
t

will be divided into three parts, that is

zca1
t

samples 1- 168 adjusted samples: 44,45,93,131,132,142

zca2
t

samples 169 - 245

zca3
t

samples 246 - 364 adjusted samples : 359-363.

Most samples are adjusted to the daily-mean or the general mean of all

days.

Looking at the residual va~iance and the Box-pierce chi-square test the

best model fit to series zca1
t

was a (0,1,2)(2,0,0)7 model. Table 3.2

shows the estimation results for both the scalar c estimated and not

estimated.

9
1

± a 0.72 ± 0.08 0.71 ± 0.08

9
2

± a 0.10 ± 0.08 0.08 ± 0.08

~1 ± a 0.22 ± 0.08 0.22 ± 0.08

~2 ± a 0.22 ± 0.09 0.23 ± 0.09

c ± a 2. 1 ± 1.9

Q(39) I e: 37.1 I 0.56 37.0 I 0.56

res .var. 0.66E+04 0.66E+04

table 3.2 Fitting a (012)(200)7 model to series zca1
t

From table 3.2 we see that both results are quite similar. The non­

seasonal second order parameter 9
2

differs hardly from the standard

error; however a (0,1,1)(2,0,0)7 model

( 1 - 0.21 B
7

0.25 B
14

) V zca1 a ( 1 - 0.75 B)
t t

turned out to be less adequate. Also a (2,0,0)(2,0,0)7 model

2 7 14
( 1 - 0.33 B - 0.29 B )( 1 - 0.29 B - 0.36 B ) zca1

t
= 3151

turned out to be adequate, having a bigger residual variance.

+ a
t

These 4 models were used for the so called 'model-fitting', that is to

predict the series used for estimation. Table 3.3 shows the accuracy

measures for the various models, and also for the naive method. The naive

method was performed on the original series z similarly adjusted for the
t
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deviations on holidays as series zC
t

' thus not adjusted for the average

week-pattern. In order to compare the naive method correctly with the

results of the other models, m.a.p.e
2

was calculated from the series

resulting from the modelfitting re-adjusted for the average week-pattern.

naive method

model

A: (012)(200)7

B: (012)(200)7

c: (200)(200)7

0: (011)(200)7

scalar c m.a.p.e
1

estimated 1.89

not est. 1.92

estimated 1.94

not est. 1.93

1.95

1.98

1.99

2.00

2.51

m.s.e

0.648E+04

0.675E+04

0.683E+04

0.684E+04

1.040E+04

Table 3.3 Model-fitting: a~curacy measures for the series zca1 •
t

note: In case of model-fitting it will take some time lags before the

forecasts 'adapt' to the series, due to the fact that the state set

contains a number (depending on the modelorder) of samples and

residuals to construct the forecasts. Because there is no real link

between the end and the heginning of the series the state set has

to be updated several times before the forecasts fit to the series.

Therefore calculating the accuracy measures of model-fitting mostly

will be done excluding the first 7 or 14 values.

From table 3.3 we notice that the accuracy measures differ hardly for the

various models; model A, the most adequate, has the smallest values.

The results obtained with models A-D are clearly better than those

obtained with the naive method.

Fig. 3.10a shows the series zca1
t

together with the predicted series and

fig. 3.10b shows both series re-adjusted for the average week-pattern.

From fig. 3.10a we notice that the predicted series follows the general

trend of the series however not the biggest peaks, which leads to rather

big errors as can be seen from fig. 3.11 which shows the absolute

percentage errors (a.p.e
1

) and the square errors (s.e) for this series.

From fig. 3.10 also the time needed to adapt to the series can clearly be

seen.

For the 'naive' method the original and the predicted series are shown in

fig. 2.12. Fig. 3.13 shows the plots of the errors for the naive method

as well for the re-adjusted series as shown in fig. 3.10b, thus a.p.e
2

and s.e which of course is not affected by the re-adjusting.
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Using these plots for comparison of both methods, it is remarkable that

both methods show the biggest errors for the same samples, that is where

the series deviates from the general trend. For the more complex or

sophisticated method the errors are smaller than those for the naive

method as already appeared from the mean error values.

From a further examination of those samples that lead to the biggest

errors it followed that an evident cause of the deviation can not be

indicated for all errors. The major part of the errors, however, are on

feast-days or days next to feast-days, which in the first instance do not

emerge as a clear deviation of the data.

As already discussed earlier from using only one year data it can not be

judged whether this is a coincidence or not. Based on the supposition

that the data of more years justifies the additional adjustment of these

deviations, later on the results for a series with additional adjustments

will be described.

So far we only considered the results of fitting models to the first part

of series zca
t

• Now the possible changes in parameters and/or models will

be examined.

Table 3.4 gives the results of fitting a (0,1,2)(2,0,0)7 model to the

various series.

series zca1
t

zca2
t

zca3
t

zca
t

n=N-d-sxO 167 76 118 364

e1 ± a 0.72 ± 0.08 0.01 ± o. 11 0.69 ± 0.07 0.17 ± 0.05

e
2

± a 0.10 ± 0.08 0.45 ± O. 11 0.36 ± 0.05

~1 ± a 0.22 ± 0.08 O. 19 ± 0.13 0.39 ± O. 10 0.19 ± 0.05

~1 ± a 0.22 ± 0.09 0.15 ± 0.12 0.12 ± O. 11 0.01 ± 0.05

Q/df/e: 39/37.1/0.56 15/9.6/0.84 29/21.3/0.85 39/71.7/0.001

res. var. 0.66E+04 6.5E+04 0.41E+04 2.1E+04

Table 3.4 Fitting a (0,1,2)(2,0,0)7 model to the parts of series zcaf

From table 3.4 we see that the model of order (0,1,2)(2,0,0)7 is adequate

for the three separate parts of the year but not for the whole series.

The estimated models show rather big changes in the nonseasonal
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parameters. This is especially true for the parameters fitted to series

zca2t compared with those for the other series.

To judge if a parameter-change is significant we can compare the

difference with the standard error of this difference. For example

For series zca2
t

~1 = 0.19 ± 0.13 and for zca3
t

~1 = 0.39 ± 0.10

V 2 2'
So the difference is 0.20 and the standard error: 0.13 + 0.10 = 0.164

The difference is 1.22 times its standard error and it is rather doubtful

to consider this as a real change.

However we have to remark that due the smaller number of observations in

the series the standard errors of the estimated parameters increase. So

for smaller series a difference sooner will be considered as not

significant due the bigger standard errors of the estimates.

Also remarkable from table 3.4 is the rather big residual variance for

the model fit to the series zca2 • Although these model turned out to bet .

adequate we should remember that it need not to be the best to series

zca2t because the model order was determined from series zca1
t

•

The fitted models were used for model-fitting in order to compare the

mean errors with those obtained with the naive method. These results are

given in table 3.5, together with, in the third column, the mean errors

calculated from forecasting (one step ahead with updating) the series

zca2t and zca3
t

using the model-parameters fitted to series zca1 t •

series modelfitting naive method forecasting

mape mse mape mse mape mse

zca\ 1.89 0.668E+04 2.51 1.04E+04

zca2
t

5.84 6.190E+04 11.5 22.70E+04 7.87 11.20E+04

zca3
t

1.63 0.419E+04 1. 91 0.60E+04 2.57 1.97E+04

zca
t

2.87 1.980E+04 4.40 5.93E+04

Table 3.5 Accuracy measures for the various parts of series zca •
t
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From table 3.5 we notice that for all series the results obtained with

the naive method are worse. Even for series zca
t

this is true, although

the model fit to this series was inadequate. As already mentioned,

according to the big residual variance the results for series zca2
t

are

rather bad. From fig 3.14 which shows the series zca2t and the series

resulting from the model-fitting, we notice that the predicted series

seems to be shifted in time. This is likely due the differencing and the

small values of the parameters of the model-fit to the series.

The comparison of the model-fitting and forecasting results shows clearly

the influence of the changes in the parameters. Especially for series

zca3
t

the mean errors are considerably bigger, as might be expected from

the comparison of the parameters.

Series zcb
t

•

Based on the assumption that the additional adjustments of those sample­

values which caused the biggest errors by modelfitting series zca
t

will

be justified by the data of more years, we will now consider series zcb
t

and examine the possible improvements obtained with these series.

Just like series zca
t

, series zcb
t

is obtained by adjusting series zc
t

;

where zC
t

is the original series adjusted for the average week-pattern.

Series zcb
t

will also be divided into three parts, different in

comparison to zca
t

, that is

zcb1
t

samples: 1 - 147 adjusted samples 42,44,45,92,101,130,132,

141,142.

zcb2
t

samples: 148 - 245

zcb3
t

samples: 246 - 364 adjusted samples : 358- 363.

Most of the samples are adjusted by interpolation.

In contrast with the procedure followed with series zca
t

we now fitted

the 'best' models to the various parts of zcb
t

• 'Best' means having the

smallest residual variance. The results are given in table 3.6.
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series

n=N-d-sxD

model

8
1

± a

82 ± a

8
3

± a

01 ± a
Q/df/e;

res.var

139

83-1: (011)( 011 )7

0.88 ± 0.04

0.80 ± 0.06

23.6/31/0.83

0.332E+04

97

83-2: (013)(001)7

- 0.02 ± 0.10

0.38 ± 0.10

0.26 ± 0.10

- 0.21 ± 0.11

13.6/20/0.85

5.327E+04

111

83-3: (012)( 011 )7

0.59 ± 0.09

0.20 ± 0.10

0.81 ± 0.07

16.8/20/0.67

0.401E+04

model-fiting:

(mape / mse)

naive meth.:

1.52

1.78

0.362E+04

0.569E+04

5.32

10.1

5.39E+04

18.50E+04

1.52

1.91

0.401E+04

0.603E+04

Table 3.6 : Series zcb • Models fit to the various parts, and accuracy
t

measures for model-fitting, using these models and a naive method.

As emerges from table 3.6 now models of different order are fitted to the

various series and it is meaningless to consider the changes in the

parameters. In contrast with the other series, series zcb2
t

does not need

to be seasonal-differenced.

In comparison to series zca1
t

, series zcb1
t

, which is additionally

adjusted most, shows a considerable reduction of the residual variance.

This may also be influenced by the different division of the samples by

which the data close to the summer-period now belong to series zcb2
t

•

Fig. 3.15 shows the accuracy measures for series zcb1
t

• Now the magnitude

of the peaks are considerably smaller.

Likely due to the greater number of samples and the fact that now the

best model is fitted to the series also the residual variance of series

zcb2
t

is smaller than those of series zca2
t

, however the improved

accuracy measures are still bad compared to the other series.

For series zcb3
t

, with only one additional adjustment, the best model-fit

turns out to give only a small improvement of the results obtained from

series zca3
t

•
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For the naive method quite the same conclusions can be drawn. The results

for series 1 are considerably improved; remarkable is the fact that the

difference between the two methods has become smaller.

Also for series 2 the mean errors are considerably smaller;

this, however, will mainly be due the greater number of samples.

For series 3 the only one additional adjustment does not improve the

results of the naive method.

Sofar the estimated models were mainly used to predict the series used

for estimation, the so called model-fitting.

Now we will describe the results of real forecasting that is using the

models fitted to the various parts of zcb t to forecast the corresponding

parts of data of 1984. Because meanwhile the data of 1984 had become

available, it is possible to produce forecasts by one step ahead

forecasting with updating. To do so, first the data of 1984 has to be

adjusted using of course the knowledge gained from the data of 1983,

that is :

i)- Adjusting for the average week-pattern.

The data of 1984 was adjusted in the similar way as the data of 1983

by using ~he average week-pattern of 1983, for the average week­

pattern of 1984 is, strictly, not yet known.

ii)- Adjusting the deviations on holidays.

Here we have to distinguish the holidays on a fixed day of the week

and the others. The fixed-holidays were adjusted in the similar way

as the data of 1983 by adding the similar difference-values. The

others were adjusted to the corresponding daily mean of 1983.

Two exceptions had to be made. First: New-years day, which was not

included in the 1983-data, had to be adjusted and second: Queen-day.

In 1983 Queen-day was on a Saturday and no deviation emerged from the

data however in 1984 Queen-day was on a Monday and the consumption

was considerably lower. This example emphasis the fact that for

optimum adjustment of the deviations on holidays, data of several

years should be availahle.

note : Some daily totals had to be determined by interpolation because

they were not measured due to technical trouhles. That is : the

samples 62, 63, 84, 90, 278, 288, 289, 296-299.
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To produce these forecasts the state set was initialized on the data next

to the part of the year to be forecasted. In this way the adapting­

phenomenon as occured performing model-fitting can be avoided.

Table 3.7 shows the mean errors of the forecasting results and also those

obtained with the naive method.

*data 1984 model forecasting naive method
sam les m.a • •e m.s.e m.a.p.e m.s.e

series 84-1: 1 - 147 83-1 2.42 1.26 E+04 3.16 1.97 E+04
series 84-2: 148 - 245 83-2 4.35 3.37 E+04 8.93 13.0 E+04
series 84-3: 246 - 364 83-3 1.78 0.651E+04 2.27 0.971E+04

Table 3.7 Mean errors forecasting time series 1984.

* see table 3.6.

At first sight the forecasting resuls look rather good, certainly

compared to the results of the naive method. However to gain more insight

we have to consider the a.p.e.'s and the s.e.'s instead of their mean

values.

Fig. 3.16 shows the plots for the a.p.e of the three series and fig. 3.17

the plots of the s.e. From these plots considerable peaks emerge. For

example for series 84-1 sample 71 shows an a.p.e. of 16.8 %, due to a

very big peak consumption on a 'normal' Sunday~ 'normal' that is there is

no clearly demonstrable cause. Also the a.p.e plots for series 84-2 shows

lots of values greater than 10 %. About the maximum error, which can be

accept we will discuss later on.

Fig. 3.18 a,b,c shows the adjusted series. From these plots also the

outliers leading to the greatest errors can be seen. Remarkable from

series 84-2 is the similar lower consumption during the summer-holidays,

as we also noticed for the data of 1983.

Examination of the errors of the adjusted samples shows: 5 that is 25 %

is bigger than 5 % and even 1 is greater than 10 %. Some of the other big

errors are on days before, or after feastdays, which showed no deviation

in 1983, as for example 5 May. These results confirm the doubt to adjust

these deviations based on only one year data.

In order to check the adjustment of the average week-pattern, this was

also calculated for 1984. Table 3.8 shows both for 1983 and 1984. We

notice a clear difference for the Saturday, which might have influenced
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the results. So one can doubt too about this adjustment based on year

data. We will discuss the adjustment more comprehensively in the next

section.

i day

1 Sunday
2 Monday
3 Tuesday
4 Wednesd.
5 Thurstd.
6 Friday
7 Saturd.

total data IJ.
w

1983 1984
mean lJ. i

V. mean lJ. i V. V.= IJ.w- lJ. iJ. J. J.

2364 + 807 2342 + 807
3518 - 347 3490 - 341
3387 - 216 3354 - 205
3390 - 219 3388 - 239
3358 - 187 3360 - 211
3376 - 205 3370 - 221
2806 + 365 2734 + 415
3171 3149

Table 3.8 Mean values of the days and deviations from the mean.

Finally we checked the changes in the parameters and/or model.

From table 3.9 we notice for series 84-1 a significant change in the

parameter 8
1

( difference is 2.1 times its standard deviation ). From the

diagnostic check we find this model of the same order adequate, however

having a considerable greater residual variance. This of course is due

the outliers as already described earlier.

model 83-1 : (011) (011)7 83-2 (013)(011 )7

series 84-1 84-2

8 1 0.73 ± 0.06 ( 0.88 ± 0.04 ) - 0.08 ± 0.10 (- 0.02 ± 0.10 )

8
1

0.13 ± 0.10 ( 0.38 ± 0.10 )

8 1 - 0.03 ± o. 11 ( 0.26 ± o. 11 )

9 1
0.80 ± 0.06 ( 0.80 ± 0.06 ) - 0.53 ± 0.09 (- 0.21 ± 0.09 )

Q/df/e: 9.8/20/0.98 10.3/20/0.96

res.var. 1.22E+04 2.96E+04

m.a.p.e 2.28 ( 2.42 4.35 4.45

m.s. e 1.25E+04 ( 1.26E+04 3.1E+04 ( 3.4E+04

Table 3.9 Estimation results and mean errors of modelfitting

series 84-1 and 84-2. Within brackets the parameters of the

models used for forecasting and the obtained errors.
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The esimated model was used for model-fitting and these results turn out

to be a rather small improvement.

For series 84-2 all parameters changed considerably; however the model of

this order is adequate. Similar to series 84-1 the model-fitting results

are only a small improvement.

For series 84-3 estimation of model 83-3 failed, that is the estimated

parameters turned out to be non-stationary. So for this series there is a

change of model order.

3.5 Evaluation of the results, conclusions and recommendations.

Summary of the results.

In order to estimate adequate models to the data of 1983 we had to adjust

the data for the average week-pattern. After this adjustment it turned

out to be necessary to adjust additionally for the deviations on

holidays.

Due the nonstationary summer-period the data had to be divided into ( at

least) three parts.

Using the estimated ARIMA-models for model-fitting the mean errors for

the part containing the summer-period were considerably worse than the

other parts.

Additional adjusting of more deviations improved the results.

Compared to a pure naive method the results with the ARIMA-models all

along the line were bettp.r, but the improvements were relatively small

especially for part 1 _.,.-' 3 (thus not the summer-period) after the

additional adjustments.

The estimated models to the various parts showed considerable changes in

the parameters.

Changes in parameters and model orders occurred due additional

adjustments and/or changing the number of samples a little.

Using the finally best models fit to the data of 1983 to forecast the

coresponding parts of the 1984 data, we noticed :

- Relative acceptable mean errors compared to the model-fitting results

of 1983.

- Considerable outliers. So the summer-period shows errors up to 22.9 %,

even part 1 and 2 showed some big errors.
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- Also important is the fact, that 25 , of the adjusted deviations on

holidays showed errors greater than 5 , and that still errors emerged

on days before or after holidays, for example Easter-Tuesday.

- Estimation of a model with the same model order as the model used for

forecasting on the data of 1984 showed considerable changes in the

parameters; for part 3 even the estimation failed.

Comparison of the average week-pattern of 1983 to that of 1984 showed

some small differences for Tuesday-Friday and a big difference for the

Saturday.

Remarks.

1 - Adjusting the data.

- As already mentioned before, it is questionable to use only one year's

data to adjust the data. This doubt is confirmed by the results

obtained. To gain more insight in the deviations at holidays, data of

more years should be used. However using more year data one should pay

attention to a possible change in the kind and number of the users,

which will influence these deviations. If there are such changes it is

questionable if more insight will be obtained.

- The means calculated of all data, so inclusive the deviations on

holidays, were used to adjust for the average week-pattern. As a matter

of course we can ask ourselves if the results can be improved by

calculating the means exclusive these holidays or by calculating them

of only those samples used for model building.

- Another more or less arbitrary chosen starting-point is the division

into the various parts. The, in comparision to the other parts,

different models fit to the summer-period confirm the dividing of the

data in at least three parts. At least suggests the question, whether

dividing in more parts will improve the results. However, smaller

series will contain less information and will have considerably bigger

standard deviations for the estimates. So it is very likely that the

results will not be improved by dividing the data into more parts.
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requirements on the accuracy.

Thus far we judged the obtained results by comparing them with those

obtained with a naive method or by considering the improvements in

comparision to other models.

However the judgement on the forecasting quality can be different

depending on the goal the forecast will be used for. So it is quite

possible that for one goal the mean errors will be sufficient and some

big errors do not matter. In contrast, for another goal the magnitude

of the biggest errors is the most important.

The latter is true in case of the water-company. The water-company has

to avoid a deficiency of water at all times and so the deviation will

be restricted by the capacity of the buffer-store. So the limit of the

absolute percentage error depends on the total daily consumption, and

this limit especially will be small (~ 5%) for peak-days in the summer­

period, etc. Thus errors as obtained by forecasting 1984 up to 22.9 %

can not be accepted.

It is not possible to compare correctly the obtained results with those

obtained by the water-company due to the different leadtimes; as

already mentioned they dated up their prognosis to the actual

consumption during the day.

3 - Practical aspects about the use of the Box-Jenkins method.

- It turned out that especially for the seasonal data the identification

caused some troubles, certainly for small series, due to the rather big

standard deviations of the estimated a.c.f this is true.

- The fact the identification of the right model order has to be done by

examination the a.c.f and p.a.c.f; this can be seen as a disadvantage.

That is the method can not be used automatically if it is likely that

changes of modelorders will occur, unless one fits all possible models

up to a specific order and one accepts the model having the smallest

residual variance as the best.
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Conclusions.

, - In view of the fact that the ARIHA-models fit to the series turned

out to be adequate, that is the residuals can be supposed to be white

noise and no information is left in the residual series, the ohtained

results have to be considered as the optimum results in model­

building and forecasting the daily totals of the water-company data.

2 - Forecasting results obtained with the ARIHA-model are considerably

better than those obtained with a 'naive' method.

3 - Although the results obtained with the ARIHA-model in comparison with

the results obtained ~ith a 'naive' method can provide a better

starting-point to control the production of water; it is

considering : - the requirements of the water-company to limit the

the magnitude of the errors,

- the obtained results, that is the rather big errors

in forecasting incidental deviations of the data,

- the problems met to adjust the data, in order to be

able to fit adequate models,

- the practical aspects(see remark 3),

- the time, costs and trouble using this method in

comparison to a 'naive' method,

questionable that these method, practised in the way used here, will be a

solution to the water-company problem.

Recommendations.

Finally some remarks about other ways to obtain eventually sufficient

results will be discussed.

- It is worthwhile to examine if better results will be obtained using

the ARIMA-model to forecast smaller periods than one day, for example

periods of 2,4 or 6 hours. In that way there will be some updating to the

actual consumption during the day. However in order to be able to fit the

models, we will meet again the problem of when and how the data has to be

adjusted.
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- Although the weather clearly has a influence it is questionable if

using a multivariate or transfer-model with the temperature as input­

variable, will sufficiently improve the results~ the weather-influence is

'disturbed' by unmeasurable influences, as can be seen from the summer­

holiday data.

- In view of the unmeasurable influences ( especially : changes in kind

or number of consumers, the deviations on holidays and the summer­

holidays) it is recommended to gain as much a priori knowledge as

possible about these deviations. Maybe this knowledge, together with a

more or less sophisticated 'naive' method and actual information about

the weather, will be sufficient to produce short-term forecasts. This

might be improved by updating during the day.
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CHAPTER 4. GENERAL CONCLUSIONS.

- In chapter 1 the ARIMA-model is described as a class of stochastic

models capable of representing equispaced, discrete, stochastical time

series which, although not necessarily stationary, are homogeneous and in

statistical equilibrium. The use of this ARIMA-model to produce minimum

square error forecasts is elucidated. Also described is the relation of a

model of this kind to a given series by a three stage interactive

procedure based on identification, estimation and diagnostic checking.

- The interactive programs DIFAC and MEP are implemented on a VAX 11/750

computer to perform the several stages in building the ARIMA-model, given

a time series and to use this model to produce forecast of future values

of the series. The programs are written in FORTRAN 77.

The program DIFAC can be used :

- to perform differencing of the time series

- to compute the estimated autocorrelation function

- to compute the estimated partial autocorrelation function.

The program MEP can be used

- to compute preliminary estimates of the parameters using

the estimated autocorrelation function

- to estimate the parameters

- for diagnostic checking by:- overfitting

- eximination of the residuals

- for forecasting:- modelfitting

- one step ahead with updating

- 1- step ahead.

The program PRER can be used to calculate forecast errors that is

- the mean absolute percentage error

- the mean square error.

The structure of all data-files satisfies the requirements of the

plotprogram GRA.
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- Experiments with simulated data showed very good results.

- Identification of seasonal practical data turned out to be rather

difficult.

- Forecasting results obtained with the ARIMA-model were considerably

better than those obtained with a 'naive' method.

- Using the ARIMA-model to forecast the daily totals of the water­

consumption we noticed :

- quite acceptable mean errors

- considerable outliers, that is, the fitted adequate ARIMA-model

turned out not to be able to produce forecasts of incidental

deviations of the data.
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Symbols.

input, white noise

output, time series

differenced time series

deviation of the estimated mean of the series

B B Z = Z
t t-1

F F Z = Zt+1t
V V Z = Z - Zt_1t t

d V
d= Vd- 1.V

-1
S S z = V Ztt
Vs~ V Z = Z - Zt_ss t t

V
D= V

D-1
.VD ~ s s s

backward shift operator

foreward shift operator

difference operator

order differencing

summation operator

seasonal difference operator

order of seasonal differencing

- 4> ~p
Autoregressive operator of order p

tp( B)

e(B)

d
4>(B)( 1 - B )

.... -
general AR-operator of order p+d

moving average operator of order q

so(B )=

_ ~ BS

1
s

- 0 B ­
1

~ sxP
- •••• - ""'pB

sXQ.... - 0
Q

B

seasonal AR-operator of order P

seasonal MA-operator of order Q

Zt (1)

e
t

(1)

at

e.g 4>

Z
2

s

c
k

r
k

4>k

prediction for leadtime 1 at origin t

forecast error for leadtime 1

residuals of estimation

estimated paramater

estimation of !J., mean of stationary process

estimation of
2 variance of stationary processa ,

estimation of Yk , autocovariance at lag k

estimation of P
k

, autocorrelation at lag k

estimation of 4>k' partial autocorrelation at lag k
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first order seasonal differenced series.
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fig. 2.4 Example 2 first 50 observations of original and first order

seasonal differenced series.
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fig. 2.8 Daily totals of the water-company data
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Figures of chapter 3.
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fig. 3.1 Average daily-pattern for the various days

of the week.
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The water-company data.

The original series of the daily totals of 1983 and 1984 are listed on

the next pages; that is page 99 series 1983,

page 100 series 1984.

To the adjusted series is refered as follows:

series zC
t

series zca
t

series zch
t

the original series of 1983 adjusted for the average

week-pattern of 1983. (see page 55).

series zc adjusted for only the clear deviations,
t

(see page 55), divided into

series zca\ samples 1 - 168

series zca2
t

samples 169 - 245

series zca3 samples 246 - 364.
t

series zC
t

adjusted more comprehensively in comparison

to series zca
t

, ( see page 60), divided into:

series zcb1 samples 147
t

series zcb2 samples 148 - 245
t

series zcb3 samples 246 - 364.
t

The adjusted series of 1984 (page 62) is divided into

series 84-1

series 84-2

series 84-3

samples

samples

samples

1

148

246

147

245

364.
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Computer programs.

The programs DIFAC and MEP, which can be used to perform the model

building procedure in an interactive way, are based on the routines of

the section G13 - Time series Analysis of the NAG - library. One is

refered to the NAG FORTRAN Library Routine Documents for further

information about these routines.

In this apppendix the structure of DIFAC and MEP will be discussed;

due to the comments added to the program-listings, this knowledge of the

structure also satisfies to read the listings of the programs.

As already mentioned the programs can be used to perform the model

building procedure in an interactive way; that is the user has to answer

the questions displayed on the screen. Due the straightforward character

of these questions they will not be dealt with in detail. Again the

knowledge of the structure of the programs will be sufficient to

understand the programs and to be able to run these programs.

The flow-diagram in fig. V-1 shows the main structure of the program

DIFAC. It is started by ~Ie call: r[un] DIFAC.

First the name of the data file containing the time series has to be

entered. The requir8ments on the structure of files will be dealt with

later on. It is possible to select each serried part of the series to be

used.

If differencing of the (selected part of the) series is desired, this is

carried out by the routine G13AAF. Before one has to enter the orders of

the differencing. The differenced series can be written into a file.

Next the routine G13ABF can be used to compute the autocorrelation

function of the (differenced) series. G13ABF also computes the sample

mean, the sample variance and the Box-Pierce statistic Q. These results,

together with information about the used time series (see structure of

the files later on), can be written into a so called AC-file.

The routine G13ACF calculates the partial correlation coefficients given

a set of autocorrelation coefficients. Also the calculated partial

autocorrelation function can be written into a so called PAC-file.

Finally, by selecting one of the options the user can either stop the

program or repeat any part of the program.
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option 5

input data file

option 4

select. data

yes

option 3

diff. orders

G13AAF

yes

option

no

)0001I......-- option 2 .

output AC-file

yes

options

6

,

~~-- option 6

DIFAC

output pAC-file
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The flow-diagram in fig. V-2 shows the main structure of the program MEP.

It is started by the call: r[unJ MEP.

First the program offers the possibility to calculate preliminary

estimates of the parameters of an AP~-model from an autocorrelation

function. This calculating is carried out by routine G13ADF.

To do so first the name of the AC-file and second the model order has to

be entered. The results of the preliminary estimation are displayed on

the screen.

If one has performed preliminary estimation, the name (if smaller than 8

characters; see file structure) and the the part of the samples, used for

calculating the a.c.f, will be known from the Ae-file. Otherwise one has

to enter the name of the data file containing the time series.

After entering or changing of the desired model orders the estimation of

the parameters of the ARIMA-model is carried out by the routine G13AEF.

The results of the estimation are displayed on the screen.

The model-fit can be tested by diagnostic checking. G13ABF is used to

compute the a.c.f of the residuals and the Box-Pierce statistic Q.

Routine G01BCF computes the tail-probability of the chi-square

distribution.

The residual series and the autocorrelation function of the residuals can

be written into files.

The fitted model can be used to produce forecasts. Routine G13AHF

calculates the forecasts and routine G13AGF is used for updating.

Forcasts can be written into a so called PRED-file.

Finally, by selecting one of the options the user can either stop the

program or repeat any part of the program.

File structure.

File type unformatted, direct access, fixed recordlength.

The recordlength = 8, except for the PRED-file reel. = 12.

The structure of the file satisfies the requirements of the plotprogram

GRA (see: "Gebruikershandleiding voor het plotprogramma GRA", by

E.M.M. Ploemen).
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yes

input a.c.f file

model order

G13ADF

yes

option

)4.....- option 5

file

4

3

diagnostic checking

G13ABF / G01BCF

forecasting ?

G13AGF

options

option 6 ---..-(

6

1

G13AHF

fig. v- 2 MEP
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data (time series) file

record 1 nsam, nvar, nstart

rec. 2 0, 0, 0

where nsam number of data samples

nvar = 1

nstart = start record ( contains first sample of the series)

By restricting nvar to 1 ( only one series in the file) it is possible to

permit the data to be either single precision or double precision.

AC-file (output from DIFAC).

nk, nvar, nstart, nsdat, nedat

0, 0, 0

xv, xm, stat

nk, nd, nds, nsea

name

nk = number of autocor. coeff. calculated

nvar =
nstart = 6

nsdat = first sample of series used to calculate the a.c.f

nsdat = last sample of input time series used

xv sample variance input time series

xm sample mean

stat Box-Pierce value Q

nd order non-seasonal differencing before computing the

a.c.f

nds

nsea

name

= order seasonal differencing

= periodicity

= first 8 characters of the name of the data file.

PAC-file (output from DIFAC)

rec.

rec. 2

where

nvl, 3, 3

0, 0, 0

nvl = number of calculated coefficients.

There are 3 variables, that is: 1 p.a.c.f

2 p.e.v.r

3 parameters AR(nvl) model

see routine

document
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PRED-file ( forecasts, output from MEP).

"monel-fitting" rec 1

rec 2

npred, nvar, nstart

0, 0, 0

= 6, that is : 1 true value of the sample

2 forecast

3 forecast + a

4 forecast - a

5 a = standard error forecasts

6 difference ( true - forecast)

npred = number of forecasts

nvar

where

"sea forecasting rec. 1

rec. 2

ntot, nvar, nstart, npre

0, 0, 0

whrer ntot = total number of samples

nvar = 6, (see "model-fitting")

nstart = 3

npre = number of forecasts

explanation : if ntot = 300 and npre = 100, this means that the first

200 (ntot - npre) samples are used for estimation and the

last 100 for one step ahead forecasting with updating.

Npre is used by the program PRER to distinguish between "model-fitting"

and "real forecasting".

Itt - steps ahead" see "real forecasting"

The program PRER can be used to calculate the forecast errors.

note : The program PRER and other programs, which can be used to read

files, for data adjusting, etc, are comprehensively explained by comments

in the program-listings.
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Identification tools.

As identification tools in this appendix are listed

theoretical correlation functions of non-seasonal models,

( page: 108, 109, 110 ).

2 covariance structures for a number of seasonal models,

( page: 111, 112 ).

3 some autocorrelation functions estimated from simulated data,

( page: 113 - 114 ).
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I.'\UIOCO\ ariances of 11',1 a; Special characteristics

111 \I, = 11- OBIII - 08',,/,

\I, = <I, - tI,/, . I - C:-)", ,- //0<1, , I

;0 = II - //')( I ~ 0' I

,I = -//(1 ~ 0',

,,_,=//0

:', = -011 - 11'1
.. -,
f ,- I - ., - 1

:\lllHher iW10CO\arianccs are zero,

(a I i" - I = ;', _ I

lbl P,-I = P,- I = P,P,

- //0<1,., ,

j ~ 5 + 2

For 5 ~ 4, i'2' i'3' ... , i', _ 2 are all zero.

la)i"-I=i"~l

j ~ 5 + 2

\\, 11/ O,U, I - tJ~d, ~ -- (-)1111

I.~l \I " II 1/, H - 1/,8'1
,I . (-) I R' - (-), H: '), I,

_. ",(C),,,,

(-) :.I, :.

0:(-):<1,

\ ?-' :'

I - 0,0,,/, .

/I, (-') : '/, :. I

;'" = (I ... tI; + (I~)( I + 0i + 03)

:1 = -0,11 - (/,)(1 .. 0; + 0~)

" = -//,11 ~ 0; + (-)~)

= (/,0,11 - 0 l )

" ,= (/,0,11 - (/,)(1 - 0,1

.', = -(-),11 - //; .,. (/3)( I - 0,1

,:. , = 11,(-):(1 - (/,)

.'~, = -0:11 - 0; - (/~I

(a) i',-2 = i',+2

(bl i',- I = }'J+ I

(c) 12, - 2 = i'2J- 2

(dl i'2,- I = ;'l,- I

- - -- ---_._---------- ---~ --- - - --- -~-- .. _"-- --- ._---_..__ .-

(3a) Special Case of Model 3
w, = (I - (/.B - 82B2)(1 - 0BJ )a,

W, = a, - 8.a, _. - 82a, _2 - 0a, - ,

+ 810a'_J-1 + 820a,_J-2

5 ~ 5

1'0 = (I + 8~ + 8~)( I + 02)

i'. = -8.(1 - 82 )(1 + 0 l
)

i'2 = - 82(1 + 0 2
)

i',-2 = 820

i',-l = 0.0(1 - 82 )

i', = - 0( I + 8~ + 8~)

fl.l = i',- I

;'.+2 = i',-2

All other aUlocovariances are zero,

lal i',-2 = i',+2

(bl i',- I = i',+ I

Covariance structures for seasonal models.
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(3b) Special Case oj Model 3
1'.', = (I - OB)(I - 0 1B' - 0 2B2')a,

W, = Q. - Oa,_1 - 0,£1,-. + 00,£1._._,

- O 2£1,-2. + 002£1.-2.-1

S ~ 3

(4) w, = (I - O,B - 8.B· - 0,. lB'· ')a,

1'.', = a, - 0,£1.-, - O,a,-.

s ~ 3

(4al Special Case of ,\1odel4

w, = (1 - OIB - O.B')a,

s ~ 3

(5) (/ - <1>B')" , = (I - (l,B - O,B'

-O,.,B··'kJ,

1\', - <1>1\",-, = (/, - (/ILI,_, - /I,ll,

- 0,. IlI,_,-,

(5a)' Special Case oj Model 5

(1 - <1>B·)I'.', = (I - OIB - o.s·)a,

s ~ 3

covariance structures

for seasonal models.
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(Autocovariances of 1'.',)/(1;

i'o=(1 +021(1 +0~+0~)

i', = -0(1 + 0~ + 0~)

i'.-, = 00,(1 - O 2 )

i', = -0111 + 02 )(1 - O 2 )

i's ... 1 = -"1- I

All other au[Ocovariances are zero.

i'o = 1 + O~ + 0; + 0;. I

i', = -0 1 + 0.0•• I

i"- I = 010.

i', = 0,0.+ 1 - O.

Y•• I = - 0•• I

All other au[ocovariances are zero,

i'o = 1 + O~ + 0;

j', = -0 1

i',-, = 0 10.

i'. = - O.

All other aUlocovariances are zero.

Fors ~ 4. i'2 •... '·I'.-2 are all zero.

1 + O~ + (O,--=.<!>!:
Yo = I _ <1>2

[
(0. - <1»JY, = -6, 1-<1>---
I - 412

0,(0. - (1)
Y.- I = --'--=-V

<1>6~ - (0. - (1)( 1 - <1>0.)
Y. = 1 - 412

YJ = cJ)yJ-' j ~ s + 1

For s ~ 4, Yl •... ' Y.-l are all zero.

Special characteristics

(a) i'.- I = i',. 1

(b) '2.- 1 = i'2.· I

(a) In general,

Y.-I =F }'.+ I

(a) Unlike model 4,

Y•• I = 0

(a) i" -, '" i'" 1

(a) Unlike model 5,

Y•• I = <1>-/1
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