
 Eindhoven University of Technology

MASTER

A SPICE input to NDML compiler

van Waes, R.J.J.

Award date:
1984

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/9acb44ba-7b4c-4218-ab3c-6f7e63eec109


EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Electrical Engineering
Research Group ES

A SPICE INPUT TO NDHL COMPILER

R.J.J. van Waes, December 1984

Professor

Coach

Dr. Ing. J.A.G. Jess

Ir. G.L.J.M. Janssen

The Eindhoven University of Technology accepts no
responsibility with regard to the contents of this report.



- 2 -

SUMMARY

A piece-wise linear simulator for electronic circuits

[1],[2] has been developed in the research group ES of the

Eindhoven University of Technology. To be able to accept

circuit descriptions prepared for the simulator SPICE [3]

and to compare the performance of the piece-wise linear

simulator and SPICE a compiler has been constructed. This

compiler translates input for SPICE to input written in NDML

(Network Description and Modelling Language) [4],[5] , which

is the input language of the piece-wise linear simulator.

This report describes the design of the compiler and how it
can be used.



3

CONTENTS

INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • . • • • . . . . 5

1. THE SOURCE LANGUAGE SPICE 2G INPUT.....•.••....... 6

1.1

1.2

The Syntax of SPICE 2G Input ...............•...

Semant i c s of SPICE 2G Input ......•.......•.....

6

7

2. THE OBJECT LANGUAGE NDML ••.•••••••••..•..••••••••. 9

2.1

2.2

The Syntax of NDML •••••••••••••••••••••••••••••

Semantics of NDML .

9

9

3.

4.

THE COMPILER. ........•...................•...•.......

LE::}{ I CAL ANALYSIS. . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

12

4.1

4.2

4.3

The Lexical Analyser Generator Lex .....•......•

SPICE Input .

Start Conditions .

12

14

14

5. THE PARSER. ......•............................•...... 17

5.1

5.2

Usage of Yacc .

Implementation .

17

17

6. SEMAN'TI CS ................•.......................... 18

6.1 Translating a Circuit Element ..•..•...•........ 18

6.2 Buffers Used for Temporary Storage. 20

6.3

6.4

6.5

6.6

The Translation of Subcircuits ....••••.•••••.•.

The Translation of Comment Cards ..••..•..•••••.

Cards That Are Not translated .....•....•.......

Leafcells Used .

21

22

22

23



- 4 -

6.7 The Contact List and the Hire List 23

6.8 The Translation of Numbers ...............•••... 24

7 • ER.ROR HANDL ING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 25

7.1 Errors Detected By The Lexical Analyser .•....•. 25

7.2 Errors Detected During Parsing ...........•..•.. 25

8. USAGE............................................... 27

LlTER.ATURE. . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . • . . . . . . . . . . • . . 31

APPENDIX 1: CONTEXT-FREE GRAMMARS AND BNF 33

APPENDIX 2: THE SYNTAX OF SPICE 2G INPUT...•............ 36

1. Higher Part...................................... 36

2. Subcircuit-calls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3. Cards Beginning With a Period 37

4. Resistor, Capacitor, (Coupled) Inductor .....••... 38

5. Transmission-line 40

6. Controlled Sources 41

7. Independent Sources 42

8. Semiconductors................................... 45

9. Lexical Rules.................................... 48

APPENDIX 3: DESCRIPTION OF FUNCTIONS, VARIABLES AND

MA.CROS USED......................................... 54

1. Funct ions Invoked by Main........................ 54

2. General Functions................................ 56

3. Error Handling................................... 59

4. Alphabet ic List................................. 62



- 5 -

INTRODUCTION

To be able to construct a compiler, one must know the syntax

and semantics of both the source language and the object

language. The source language, in our case the input

language for SPICE, is discussed in chapter one. The object

language, in our case the input language NDML for the

piece-wise linear simulator, is discussed in chapter two.

The compiler itself consists of three parts a lexical

analyser, a parser and the semantic functions called by the

parser. The chapters three to six deal with the compiler

and its three parts.

The way errors are handled is described in chapter seven.

Chapter eight describes how to use the compiler.

Appendix three contains a description of the semantic

functions, variables and macros used in the compiler. This

may be helpful for future modifications of the compiler.

In this report no special typographical notation is used for

names, characters, strings, expressions et cetera, except

for appendix three, where the names of functions, variables

and macros are written bold.



- 6 -

1. THE SOURCE LANGUAGE I SPICE 2G INPUT

SPICE is a general-purpose circuit simulation program for

nonlinear dc, nonlinear transient, and linear ac analyses.

Circuits may contain resistors, capacitors, inductors,

mutual inductors, independent voltage and current sources,

four types of dependent sources, transmission lines, and the

four most common semiconductor devices: diodes, bipolar

junction transistors (BJT), junction field effect

transistors (JFET) and metal oxide semiconductor field

effect transistors (MOSFET). SPICE has built-in models for

the semiconductor devices, and the user only needs to

specify the pertinent model parameter values.

SPICE can give the current and voltage at any point in the

circuit, in table form and plotted.

1.1 The Syntax of SPICE 2G Input

Appendix 2 contains a formal definition in the extended

Backus Naur form [6J (See appendix 1) of the syntax of SPICE

2G input. This definition has been derived from the rather

informal and incomplete information given in the SPICE

version 2G User's guide [3J.

In practice SPICE 2G appears to allow more than stated in

the User's guide:

The asterisk mark * marking a comment card doesn't have

to be placed in the first column. It may be preceded by

any combination of separators.

The plus + , indicating continuation of

card, may also be preceded by any

separators.

the previous

combination of

Alphanumeric strings and names

following symbols:

may contain the



- 7 -

We have included these peculiarities

definition listed in appendix 2.

in our syntax

SPICE 2G considers its input as divided into a set of cards.

The first card is a title card. The last card must be an END

card, only filled with the string .END •

The other cards can be divided in the following groups:

- control cards , that define the model parameters and

the run controls

- element cards , that define the circuit topology and

element values

1.2 Semantics of SPICE 2G Input

In this section only a brief overview of the semantics are

given. For further details see [2].

1.2.1 Control Cards

The control cards allow the user to specify

what kind of analysis is wanted: DC analysis, AC

analysis, transient analysis or analysis at different

temperatures

which currents and voltages are to be printed or

plotted in the output

where subcircuit definitions begin and end in the input

the models used for semiconductors

Subcircuits may be nested. The SPICE version 2G User's Guide

[3] states that there is no limit on the size or complexity

of subcircuits and on the nesting level.



- 8 -

1.2.2 Element Cards

An element card contains:

a reference to a specific kind of element (for instance

a resistor, a capacitor or an inductor)

the instance name of the element

the nodes of the element, which indicate where the

element is placed in the circuit

the values

temperature

like.

of parameters such

coefficients, initial

as resistance,.

conditions and the



- 9 -

2. THE OBJECT LANGUAGE I BDML

The Network Description and Modelling Language NDHL is the

input language for the piecewise linear simulator. The

simulator is mainly intended to simulate large integrated

electronic circuits, but in fact it can be used to simulate

any system that can be described mathematically in piecewise

linear models. See [1] and [2]. The simulator features

mixed-mode mixed-level simulating. Mixed-mode means that

both digital and analogue electronic circuits can be

simulated. Mixed-level denotes that any level of the system

can be simulated. AC small signal analysis of electronic

circuits is not yet implemented in the simulator.

2.1 The Syntax of NDHL

A formal definition in the extended Backus Naur form of the

syntax of NDML is given in appendix 3. The extended Backus

Naur form is explained in appendix 1.

2.2 Semantics of NDHL

A complete description of the semantics of NDML can be found

in [4] and [5]. This section only points out the main

features.

NDML supports a hierarchical structure of the circuit (also

called system) to be defined. Therefore the terms leafcell

and compound are introduced. Leafcells are the lowest

components in the hierarchy. A compound contains one or

more instances of leafcells and other compounds. These

instances are called subsystems.



- 10 -

A leafcell contains :

a list of contacts, with which connections can be made

with the outer world.

a list of parameters, through which each instance of a

leafcell can have its own behaviour

a leafcell body, that describes the behaviour

A compound contains :

a list of contacts, with which connections can be made

with the outer world.

a list of parameters, which can be passed to the

underlying compounds and leafcells

a list of subsystems (instances of compounds and

leafcells) used in this compound

a list of wires, through which connections can be made

in the compound itself

a compound body, that

contains the calls to underlying compounds and

leafcells

defines the interconnection between these

subsystems, the wires and the contacts of

both the subsystems and the compound itself

Note that only leafcells contain behaviour descriptions, and

that only compounds contain information about the

interconnection of the system and subsystems.

NDML does not know any predefined elenents as SPICE does.

However a library of commonly used leafcells is being

constructed.



- 11 -

3 . THE COMPILER

A compiler translates a text written in one language to a

text with exactly the same meaning in another language.

In our case the object language is not machine code

language, but a language of the same level. Such a compiler

is by some people called a translator.

A compiler can be divided in a lexical analyser, a parser

and a semantic part.

The lexical analyser scans the input to combine the input

characters to logical units of the source language, such as

for instance identifiers, numbers and keywords. These

logical units are called lexical tokens. Lexical tokens are

the input for the parser.

The parser checks if the input is written according to the

syntax of SPICE input as described in appendix 2.

So called semantic actions are embedded in the parser.

These actions perform the actual translation. They include

writing data from the input into a data structure,

operations on this data structure and writing from this data

structure to the output file.

The next three chapters describe our implementation of these

three parts of the compiler.

More about the theory of compilers and its parts can be

found in [6], [7] and [8].



- 12 -

4. LEXICAL ANALYSIS

4.1 The Lexical Analyser Generator Lex

The lexical analyser has

analyser generator Lex [9].

regular expressions of input

heen made using the lexical

The input for Lex is a list of

characters.

Backhouse, Aho and Ullman define a regular expression over

the alphahet T (i.e. the set of characters that are used in

a language) and the language denoted hy that expression

recursively as follows (See [6] from page 63 on, [7] from

page 85 on)

1. 0 is a regular expression denoting the empty set.

2. We use @ to denote the empty string.

@ is a regular expression denoting {@}, that is the

language containing only the empty string.

3. x, where x is an element of alphahet T, is a regular

expression denoting {x}, i.e. the language containing

only the string x.

4. If P and Q are regular expressions denoting the

languages LP and LQ respectively, then

PIQ is a regular expression denoting the union of

LP and LQ.

PQ is a regular expression denoting LP.LQ i.e.

all strings, which can he divided in two parts,

while the first part is in LP and the second part

is in LQ.

p* is a regular expression denoting the union of

{@} , LP , LP.LP , LP.LP.LP and so on.



- 13 -

The alphabet used in Lex consists of all printable and

control characters. Besides the regular expressions listed

above Lex also recognises the following expressions

1. [xy]

2. [x-y]

3. ["x]

4.

5. "x

6. <S>x

7. x$

8. x?

9. x+

10. x/y

11. (c}

12. x{m,n}

the character x or y

the characters x or y or any character

between them in the alphabet

any character but x

any character but newline

an x at the beginning of a line

an x when Lex is in start condition 5

(see section 4.3)

an x at the end of a line

an optional x

one or more instances of x

an x but only if followed by y

an instance of the macro denoted by c

(macros are defined in the so called

definition section at the beginning of

Lex input)

m through n occurrences of x

Note that the expressions 5, 6, 7 and 10 are context

sensitive.

The regular expression action for recognising identifiers

for instance is :

[a-zA-ZO-9][a-zA-ZO-9]*

Actions are added to each of the regular expressions in the

input for Lex. When the input for the analyser, in our case

SPICE input, matches one of these expressions, the

corresponding actions are executed. Usually these actions



- 14 -

include returning a so called token to the parser, to

indicate what kind of input has been found, for instance a

number or an identifier.

4.2 SPICE Input

We have made regular expressions to recognise any SPICE

input. An extra regular expression has been added for error

detection (See chapter seven).

SPICE input consists of a set of so called cards. Each

SPICE card ends with a newline. When this is followed by a +

at the beginning of the next line however, the card

continues here. Therefore the lexical analyser skips a

newline followed by a + , but returns the token EOC (end of

card) to the parser, when it finds a newline which is not

followed by a + .

The parts

analyser

the next

of SPICE input that are captured

using a so called start condition

section.

4.3 Start Conditions

by the lexical

are discussed in

A regular expression may be preceded by one or more so

called start conditions. This expression can in that case

only be matched, if one of the specified start conditions

has been set. A start condition can be set anywhere both in

the lexical analyser and in the parser. We have used this

feature of Lex in order to make the parser less complicated,

as will be explained below.

The first card in SPICE input is a so called title card.

The start condition TITLEBEGIN has been used to return the

title card in one token, called TITLE_EOC, to the parser.

When we would not have used this start condition, the parser

had to be extended to accept any token until the first

newline had been found. In our case one simple grammar rule

suffices to accept the token TITLE_EOC.



- 15 -

Next we have made regular expressions to recognise the

beginning of each possible SPICE-card. Thereby the parser

knows, from the first token after the token EOC, what kind

of card is currently being parsed. All the regular

expressions for recognising the beginning of a card are

preceded by the start condition CARDBEGIN. This start

condition is set after finding an end of a card. The SPICE

capacitor card, for example, begins with the capital letter

C . When this letter is found in the input at the beginning

of a card, the token CLIT is returned to the parser.

When a name, e.g. a letter followed by any combination of

letters, digits or underscores, is expected in the input,

the start condition NAMEBEGIN is set. The name CLR for

instance will be returned with the token NAME. If we would

not have used start conditions, this name would be returned

by the sequence of tokens for each character, in which case

the parser should be extended with grammar rules to reduce

this kind of sequences to the nonterminal name .

The start condition ANSTRINGBEGIN is set, whenever an

alphanumeric string is expected. An alphanumeric string may

begin with a digit or an underscore, while a name may not.

We use the start condition NOTBEGIN to catch keywords, that

do not appear at the beginning of a card , and may not be

returned with the token NAME.

When a number is found in the input, the start condition

AFTERNUMBERBEGIN is set to skip any letters that SPICE

allows just after a number. If there are no letters after a

number, the start condition NOTBEGIN will be set.

Some cards in SPICE can not (yet) be translated to NDML. The

start condition IGNOREBEGIN is set upon finding the

beginning of such a card. The rest of the card, whatever it

may be, will than be matched by a regular expression

preceded by the start condition IGNOREBEGIN. The total card

will then be skipped, e.g. no tokens will be returned to the

parser.



- 16 -

The last card in the input must be an END card, beginning

with the string .END . As soon as this string is found, the

token END is returned to the parser and the rest of the

input is skipped by the lexical analyser. Thus no error

message will be given if the END card is not the last card

of the input.



- 17 -

5 • 'DiE PARSER

The parser has been constructed using the

Yacc [10]. Terms like grammar rules

grammar are explained in appendix 1.

5.1 Usage of Yacc

parser generator

and context-free

The input for Yacc is a list of grammar rules with actions

to be performed when the concerning rule is applied.

Yacc can produce two output files:

a file containing the C source

constructed

of the parser

a file containing a description of the parser

constructed, in the form of a list with the states of

the parser and the actions to be done when a certain

lexical token is encountered

To the parser a lexical analyser must be added, that reads

the input and divides it into lexical tokens. This analyser

may be constructed by Lex. The parser calls the lexical

analyser each time it needs the next token.

Yacc can produce parsers for almost every language which can

be defined by a context-free grammar of class LALR(l).

5.2 Implementation

The grammar rules needed for Yacc can directly be derived

from the syntax definition of SPICE input (see appendix 3).

Only small modifications were needed to avoid reduce/reduce

conflicts and shift/reduce conflicts.

The parser calls the lexical analyser constructed by Lex

each time it needs the next token.

The way the parser handles errors and tries to recover after

an error has been found is described in chapter seven.



- 18 -

6. SEMANTICS

The semantic actions that have been added to the parser

perform the actual translation from SPICE input as described

in chapter one to NDML as described in chapter two. These

actions are put in functions that are called by the parser.

Because Yacc generates a parser written in C, the semantic

functions have been written in C too.

The semantic actions can be divided in the following

classes :

translating circuit elements

translating subcircuits

translating comments

In section 6.1 we will discuss translating a circuit

element. In this section the need of buffers is shown.

Section 6.2 deals with the use of buffers.

The translation of subcircuits and comments is described in

the sections 6.3 and 6.4 .

The translation of some SPICE cards is not yet implemented.

In section 6.5 a list is given of the cards that are not yet

translated.

In the following sections some additional aspects of

translating are described, such as the administration which

leafcells are used in NDML, the composition of the right

contact list and wire list in NDML, and the translation of

numbers.

An example of SPICE input and the corresponding translated

NDML text is given in figure 8.1 and 8.2 (See chapter 8).

6.1 Translating a Circuit Element

A circuit element,

semiconductor et

such as a

cetera, is

resistor, a capacitor ,a

in SPICE instantiated in one



- 19 -

card, which at the same time is a call to one of the built­

in predefined models of SPICE. In NDML each element type

used must first be defined in a leafcell, e.g. a resistor

with the resistance as parameter, a capacitor with the

capacitance and initial voltage as parameters et cetera.

When an circuit element is found in SPICE input the

following actions are executed

a leafcell definition is written to the beginning of

the NDML output file

to this leafcell is referred

declaration part

in the subsystem

the node numbers in SPICE input are converted to

contacts by preceding the numbers by the string n_ ,

and these contacts are added to the wire section (In

section 6.6 we will see that the latter will not be

done, if the contacts are already in the so called

formal contact list)

the element is placed in the compound body section

An example is given in figure 6.1 .



1eafce11

resistor(ref_node, node: e1ectr);

« resistance »;
external ;

SPICE INPUT:

R1 0 4 15K
\ \

- 20 -

NDML:

compound root () ;

subsystem

1 : resistor « r :=

e1ectr ;

begin

--~_-......R1(n_O ,n_4) ;

.,

Figure 6.1 Translation of a circuit element

6.2 Buffers Used for Temporary Storaqe

From the example given in figure 6.1 we see that information

from one SPICE card has to be stored in different parts of

the NDML output. Therefore we have defined a set of five

buffers to store the data for these parts.



- 21 -

These five buffers contain the text for

the compound heading

the comments

the subsystem declarations

the wire section

the compound body

When all circuit elements have been translated, these

buffers will be flushed in this order into the output file.

6.3 The Translation of Subcircuits

In SPICE subcircuits can be defined. Subcircuits in SPICE

may be nested. The definition and calls of these subcircuits

may appear in either order. NDML also supports nesting of

subcircuits. In NDML however a subcircuit (here called a

compound) must be defined before it is called. Therefore

the translated SPICE text related with another level of

subcircuit nesting is stored in another set of buffers. The

buffer set of a deeper nested subcircuit will be flushed

before the buffer set of a lower nested one. Hereby each

subcircuit in the NDML output will be defined before being

called.

A subcircuit definition in SPICE begins with a subcircuit

definition card and ends with an ENDS card. Each time a

subcircuit definition card is found, the text is directed to

a new (deeper nested) set buffers.

An ENDS card may contain a subcircuit name. The definition

of the subcircuit with that name and the definitions of all

deeper nested subcircuit are then terminated. When no name

is given, all subcircuits definitions terminate. Upon

finding an ENDS card the buffers sets of the subcircuit

definitions being terminated are flushed into the output

file in the right order. So if no name is given, all buffer

sets but the buffer set for the main circuit are flushed.



- 22 -

Two subcircuits may have the same name provided that they

are not defined within the same (sub)circuit. The compiler

should translate subcircuits that have the same name to

compounds with different names. This is not implemented

yet. In that case the output of our compiler will contain

two compounds with the same name, which is not allowed in

NDML. The piecewise linear input compiler PLCOM will detect

this error.

When an END card is found, a check is made to see whether or

not all subcircuit buffer sets have been flushed. If not,

an error message is generated. Next all buffers are

flushed.

6.4 The Translation of Comment Cards

Any comment found in SPICE is surrounded by NDML comment

marks (i.e. braces) and put in the comment buffer.

Braces in SPICE comment will be translated to brackets.

When flushing the buffers, the comment buffer is flushed

after the compound heading buffer, but before the subsystem

declaration buffer.

6.5 Cards That Are Not translated

The coupled inductor card and the transmission line card are

the only element cards that are not translated yet.

The SPICE control cards that specify certain parameters of

the models used and that specify what kind of output is

wanted are also not translated.

These cards are:

. TEMP

. NODESET

.DISTO

. PLOT

•WIDTH

.IC

.NOISE

• OPTIONS

.TF

.TRAN

.OP

.SENS

. FOUR

.DC

.AC

•PRINT

Warnings will be given both on the screen and in the list



- 23 -

file when such a card is found.

6.6 Leafcells Used

Information about which 1eafce11s are used is stored during

parsing. The definitions of the 1eafce11s must appear in

the output before the compounds. After the total input has

been parsed, the definitions of the 1eafce11s that have been

used are copied from a library to the beginning of the

output file.

All 1eafce11s are defined external, so standard leaf cells

can be used, as well as user defined ones. In either case

these real 1eafce11 definitions have to be linked by the

user with the output of this compiler.

6.7 The Contact List and the Hire List

In SPICE the connections between circuit elements are called

nodes and denoted by an integer number. In NDML bowever

connections inside a compound are made through 50 called

wires. Connections of a compound with the outer world are

made through so called contacts. Both contacts and wires

are denoted by names. Therefore we let the name of a

contact or wire in the output consist of the number of the

corresponding SPICE node, preceded by the strinq n_ .

The main circuit has no contacts, all the nodes in t.he main

circuit will be put in the wire list.

The nodes mentioned in the SPICE subcircuit definition card

are the only contacts of that subcircuit with the outer

world. Therefore all nodes in the definition that do not

occur in the subcircuit definition card are converted in

NDML to wires.

When a subcircuit definition card is found in the input, the

nodes found in this card are put in the formal contact list

of the compound corresponding with this subcircuit. Upon

finding a node in the fo110winq cards in the input, the



- 24 -

presence of this node in the formal contact list is being

checked. If this node does not occur there, it will be put

in the wire list. Besides the node is put in the actual

contact name list of the element concerned in the subsystem

declaration section.

In a subcircuit definition in SPICE node 0 (ground) is

always global, and may not appear in the subcircuit

definition card's node list. Therefore we make in the output.

node 0 the first element in every compound contact list,

except for the main compound.

6.8 The Translation of Numbers

A number in SPICE can be followed by a scale factor and

arbitrary letters for comments. NDML knows the same scale

factors, but not T (Tera) and MIL (milli inch). Milli is in

SPICE M, and in NDML ML. Mega is in SPICE MEG and in NDML M.

Care is taken of the right translation of the scale factors.

If there are no digits before the decimal point, a 0 is

placed there, because NDML does not accept numbers starting

with a decimal point.



- 25 -

7 . ERROR HANDLING

We expect the user to have run SPICE with the input file~

before he translates this input file with our compiler.

Therefore we may assume that a SPICE 2G input file, that is

to be processed by the compiler~ does not contain any

errors.

Nonetheless our compiler can detect some errors and try to

recover as explained in the next sections.

7.1 Errors Detected By The Lexical Analyser

We have made regular expressions to capture all legal SPICE

input symbols. Also we have added a regular expression for

characters that are not captured by one of the preceding

legal SPICE input regular expressions.

This means that when this last regular expression is

matched~ an unexpected character is found in the input. A

message will then be printed in the debug file~ the list

file and on the screen. When an unexpected character is

found~ nothing is returned to the parser and the lexical

analyser proceeds with the next input character(s). In

effect the unexpected character is skipped.

7.2 Errors Detected During Parsing

When the parser~ as constructed by Yacc~ discovers a syntax

error the user redefinable function yyerror is called. Our

version of yyerror causes an error message to be printed

both on the screen and in the list file. The parser will

then act as if it had received the token error ~ and will

pop its stack until it enters a state where the token error

is legal. Therefore we included a grammar rule

card error EOC ;

in the Yacc input. Hereby the parser recovers from a syntax

error by simply skipping the input until the first EOC (end



- 26 -

of card) is encountered.

Next we have included checks in the semantic functions, to

verify that all subcircuit definitions are terminated by an

ENDS card. If there are too many or too less ENDS cards an

error message will be printed. Superfluous ENDS cards will

be skipped. If there are not enough ENDS cards, they will

be inserted just before the END card.



- 27 -

B. USAGE

The compiler is started by executing the file

takes it input from the standard input.

produces three files. These file are:

spicendml. It

The compiler

an output file called output, which contains the

translated SPICE input, i.e. NDML text

a list file called 1ist.tmp , that contains the SPICE

input with error messages and warnings if any

a debug file called debug.tmp, which indicates what

tokens have been found by the lexical analyser, and

what cards have been processed by the parser

All 1eafce11s in the NDML output file are defined to be

external. Hereby the NDML output can be compiled by the

piecewise linear simulator input compiler PLCOM without the

real 1eafce11 definitions. The user has to link the PLCOM

output of the real 1eafce11 definitions with the PLCOM

output of the NDML output file constructed by the SPICE

input to NDML compiler. These real definitions may be both

standard 1eafce11s from a library and user defined ones.

The compiler does not translate SPICE transmission lines,

coupled inductors and cards that specify certain parameters

and what kind of output is wanted (See section 6.5).

Warnings will be given both on the screen and in the list

file when such a card is found.

Some subcircuits in

compiler does not

correctly.

See section 6.3 .

SPICE may have

translate these

the same name. Our

kinds of subcircuits

An example of the SPICE input to NDML translation

below. Figure B.1 gives the SPICE input, while

contains the NDML output of the compiler.

is given

figure B.2



- 28 -

ORIGINAL FILE B7700/(ELESIC20}PADDRIVER ON USER19

VDD 1 0 5V

CL 7 0 8PF

Xl 0 1 SUBCl

.SUBCKT SUBCl 1 2

C33 1 2 22PF

X12 1 2 SUBC2

.SUBCKT SUBC2 1 2

VIN 3 0 DC OV

Rll 1 2 2K

C21 2 7 10PF

Ml 1 2 2 7 MODD L=6U W=6U AD=78P

M2 2 3 0 8 MODE L=6U PD=12U PS=130U

.ENDS SUBCl

.PRINT I(Vl} V(l}

.MODEL MODD NMOS(LEVEL=2 VTO=-3.97)

.MODEL MODE NMOS(LEVEL=2 VTO=O.68 GAMMA=O.28)

•END

Figure 8.1 An example of SPICE input



source, bulk : electr) ;

VTO=-3.97 }

leafcell MODD(drain, gate,

{ NMOS ; LEVEL=2 ;

« L ; W ; AD ; AS

ICVDS ; ICVGS ;

»;
external ;

- 29 -

; PD ; PS ; NRD

ICVBS

NRS ; OFF ;

leafcell MODE(drain, gate, source, bulk: electr) ;

{ NMOS; LEVEL=2 ; VTO=0.68 ; GAMMA=0.28 }

« L ; W ; AD ; AS ; PD ; RS ; NRD ; NRS ; OFF ;

ICVDS ; ICVGS ; ICVBS

»;
external ;

leafcell v_source (plus,minus

external ; (voltage source}

electr); << E >>

leafcell resistor(ref_node, node electr);

« resistance »;
external ; ( electrical resistor }

leafcell capacitor(ref_node, node electr);

« capacitance;

V_init : default 0;

»;
external ; ( electrical capacitor }

( title in SPICE was :

ORIGINAL FILE B7700/(ELESIC20)PADDRIVER ON USER19

}

Figure 8.2.a The NDML output of the compiler.

See next page for figure 8.2.b .



- 30 -

compound SUBC2 (n_O,n_l,n_2 electr);

subsystem

VIN v_source« E:=O » ;
Rll resistor« r:=2K » ;
C2l capacitor« c:=lOP » ;
Ml MODD« L:=6U , W:=6U , AD:=78P » ;
M2 MODE« L:=6U , PD:=l2U , PS:=l30U » ;

wire n_3,n_7,n_8 : electr ;

begin

VIN(n_3,n_O) ;

Rll<n_l,n_2) ;

C2l< n_2 ,n_7) ;

Ml(n_l,n_2,n_2,n_7) ;

M2(n_2,n_3,n_O,n_8) ;

end ;

compound SUBCl (n_O,n_l,n_2 electr);

subsystem

C33 capacitor« c:=22P » ;
Xl2 : SUBC2 ;

begin

C33(n_l,n_2) ;

Xl2(n_O,n_l,n_2) ;

end ;

compound root () ;

subsystem

VDD : v_source « E:=5 » ;
CL capacitor« c:=8P » ;
Xl SUBCl;

wire n_O,n_l,n_7 electr;

begin

VDD(n_l,n_O) ;

CL(n_7,n_O) ;

Xl(n_O,n_O,n_l) ;

end ;

Figure 8.2.b The NDML output of the compiler.



- 31 -

LITERATURE

[1] van Bokhoven, W.M.G.

Piecewise Linear Modelling and Analysis

Eindhoven, Netherlands: Research Group ES, Eindhoven

University of Technology, 1981, Ph.D. Thesis.

[2] van Eijndhoven, J.T.J.

A Piecewise Linear Simulator for Large Integrated

Circuits

Eindhoven, Netherlands: Research Group ES, Eindhoven

University of Technology, 1984, Ph.D. Thesis.

[3] Vladimirescu, A et al.

SPICE Version 2G User's Guide

Berkeley, California: Department

Engineering and Computer Science,

California, 1981

of Electrical

University of

[4] Verschueren, A.C.

Storage Structures for the Eindhoven University of

Technology Network Description and Modelling Compiler

Eindhoven, Netherlands: Research Group ES, Eindhoven

University of Technology, 1984.

[5] Janssen, G.L.J.M.

Handleiding voor het gebruik van het Simulatiepakket

(In Dutch), 1st ed.

Eindhoven, Netherlands: Research Group ES, Eindhoven

University of Technology, 1984, Internal Report

[6] Backhouse, R.C.

Syntax of Programming Languages

London: Prentice-Hall, 1979

[7] Aho, A.V. and J.D. Ullman

Principles of Compiler Design

Reading, Massachusetts: Addison-Wesley, 1977

[8] Bauer, F.L. et al.

Compiler Construction, An Advanced Course, 2nd ed.

Berlin: Springer



- 32 -

[9] Lesk, M.E. and E. Schmidt

Lex - A Lexical Analyzer Generator

Murray Hill, New Jersey: Bell Laboratories, 1975.

Computer Science Technical Report No. 39.

[10] Johnson, S.C.

Yacc: Yet Another Compiler-Compiler

Murray Hill, New Jersey: Bell Laboratories, 1978.

Computer Science Technical Report No. 32.



- 33 -

APPENDIX 1: CONTEXT-FREE GRAMMARS AND BNF

The syntax of a language can be given

context-free grammar or in the extended

will give here a definition of both.

in the form of a
Backus-Naur form. We

A context-free grammar is defined by

(N,T,S,P), where (See [6], pages 7 and 13)

the quadruple

of all

from the

1. N is a finite set of non-terminal symbols

2. T is a finite set of terminal symbols

3. S is an element of N, called the start symbol

4. P is a set of productions (also called grammar rules)

each of which have the form A --) v where A is a non­

terminal and v is an arbitrary combination of non­

terminals and terminals, even zero non-terminals and

zero terminals is allowed.

The language defined by this grammar is the set

strings that can be derived with the productions

start symbol.

The extended Backus-Naur form EBNF also uses the following

special characters in the right part of a production:

to denote choice

the curly braces { and } to denote zero or more

instances of wtlat is between them

the brackets [ and ] to denote zero or one instance of

what is between them

the parentheses ( and ) to denote higher precedence for

what is between them

Instead of the right arrow --) EBNF uses ::= in a

production.

Non-terminals in EBNF are surrounded by < and) .

Terminals are surrounded by double quotes ..

A production is terminated wit1:l a period ••



- 34 -

We can now give a recursive definition of the extended

Backus-Naur form. Note that everything between (* and *) is

comment.

<syntax> ::= [ <production-rule> } .

<production-rule) ::=

<nonterminal-symbol> "::=M <expression> n II.
<expression> ::= <term> ( "I" <tenu) } •

(* The I denotes choice. The expression can be derived to

one of the terms listed.

<term>

<factor)

::= <factor> { (factor> ) •

..­.. -
<nonterminal-symbol>

<terminal-symbol)

II (" <expression> '.)"

(* The parentheses denote higher precedence

for <expression> *)

I "{" <expression) "}"

(* The curly braces denote zero or more

instances of <expression> *)

I "[" <expression) "]" .

(* The brackets denote zero or one instance

of <expression> *)

The language defined by this grammar is the set

strings that can be derived with the productions

start symbol.

of all

from the

A terminal is a character or sequence of characters

surrounded by double quotes. Every string between less than

and greater than characters < en ) is a non-terminal. We

use pseudo non-terminals for terminals that we can not



- 35 -

describe clearly with the double quotes notation.
<TAB) is a pseudo-non-terminal symbol denot.ing a tabulation.
<EOL> is a pseudo-nan-terminal 5y.bol denoting an end of

line.



- 36 -

APPElIDIX 21 THE SYliTAX OF SPICE ~G IJIPUr

The general form of each card as described in SPICE Version

2 G User's Guide precedes the head production rule of each

card.

We assume that newline + sequences in the input have been

skipped, i.e. a card~ followed by card(s) with + in the
first column, or card( s) start.ing with separators and + , is

seen now as one card. See [3], page 6 ).

There is now no limitation on the length of cards.

In the follo~ing sections everything between (* and *) is

comment.

1. Hiqher Part

<input-deck>

<card)

::= <title-card> {<card)} <end-card> .

: : =
[<separators)] <comment-card>

<element-card)

<period-card)

<subckt-call-card») .

<period-card) ;;=

<model-card>
<subckt-card)

<width-card>
<dc-card>

<tf-card>

<disto-card>

<four-card)

<ends-card)

<options-card>
(nodeset-card)

<sens-card>

<noise-card}

<print-card>

<temp-card)

(op-card)

<ie-card>

<ac-card>

<tran-card}

<plot-card)



- 37 -

<element-card> ::=

<resistor>

<inductor>

<transmission-line>

<lin-vcvs>

<lin-ccvs>

<independent-cs>

<bjt>

<mosfet>

2. Subcircuit-calls

See [3] page 8.

<capacitor>

<coupled-inductor>

<lin-vccs>

<lin-cccs>

<independent-vs>

<junction-diode>

<jfet>

(* XYYYYY N1 [N2 N3 ... ] SUBNAM *) ( See [3] page 29 )

<subckt-ca11-card> ::=

<XLIT> <alphanumeric-string>

<separators> <node>

<separators> [<next-node> <separators>]

<name-field>

[<separators>] <EDL> .

<next-node> ::= <node> <separators> [<next-node>] .

3. Cards Beqinninq With a Period

See [3] page 18-41. We use here the non-terminal any­

symbo1-not-EDL because we are not interested in the actual

contents, since we, for the time being, will not translate

these contents to NMDL.

<model-card> ::= ".MDDEL" {<any-symbo1-not-EDL>} <EDL> .

(* .SUBCKT subnam N1 [N2 N3 N4 ... ] *)

<subckt-card> ::=

".SUBCKT"

<separators> <name-field> <separators> <node>

[<separators> [<next-node-opt-separators>]]

<EDL> .



- 38 -

<next-node-opt-separators) ::=

<node)

[<separators) [<next-node-opt-separators)]] .

<ends-card) ::=

" •ENDS "

[<separators)] [[<name)] <separators)] <EOL) .

<temp-card)

<width-card)

::= ".TEMP" {<any-symbo1-not-EOL)} <EOL) .

::= ".WIDTH" {<any-symDo1-not-EOL)} <EOL) .

<options-card) ::=

".OPTIONS" {<any-symDo1-not-EOL)} <EOL) .

<op-card) ::=

" .OP"

[<separators) {<any-symbol-not-EOL)}] <EOL) •

<dc-card) ::= ".DC" {<any-symbo1-not-EOL)} <EOL) .

<nodeset-card) ::=

".NODESET" {<any-symDo1-not-EOL)} <EOL) .

<ie-card)

<tf-card)

::= ".IC" {<any-symDo1-not-EOL)} <EOL) .

: : = ". TF" {<any-symbo1-not-EOL)} <EOL) .

<sens-card)

<ac-card)

<disto-card)

<noise-card)

<tran-card)

<print-card)

<plot-card)

: : =

·.-· .-
: : =

· .-·.-
: : =

· .-·.-
· .-· .-

".SENS" {<any-symDo1-not-EOL)} <EOL) .

".AC" {<any-symDo1-not-EOL)} <EOL) .

".DISTO" {<any-symbo1-not-EOL)} <EOL) .

".NOISE" {<any-symbol-not-EOL)} <EOL) .

".TRAN" {<any-symbo1-not-EOL)} <EOL) .

".PRINT" {<any-symbo1-not-EOL)} <EOL) .

".PLOT" {<any-symbo1-not-EOL)} <EOL) .

4. Resistor, Capacitor, (Coupled) Inductor

See [3] page 9-11.



- 39 -

(* RXXXXX N1 N2 VALUE [TC=TC1 [~TC2]] *)

<resistor> ::=

<RLIT> <alphanumeric-string>

<separators> <node>

<separators> <node>

<separators> <number-field>
[<separators> [<TC-part>]] <EOL> .

<TC-part> ::=

<TCLIT> <equa1-sign-opt-separators>
<number-field> [<comma-part>] .

(* NOTE: TC = )= 0.4 () ~ .21 =) is allowed in SPICE 2G *)

<comma-part> ::=

«separators-not-comma>}

["~" [<separators>]

[<number-field> [<separators>]]] .

(* CXXXXX N+ N- VALUE [IC=INCOND] *)

(* CXXXXX N+ N- POLY LO L1 L2 •.. [IC=INCOND] *)

<capacitor> ::= <CLIT> <capacitor-inductor-common-part> .

(* LXXXXX N+ N- VALUE [IC=INCOND] *)

(* LXXXXX N+ N- POLY LO L1 L2 ... [IC=INCOND] *)

<inductor> ::= <LLIT> <capacitor-inductor-common-part> .

<capacitor-inductor-common-part> ::=

<alphanumeric-string>

<separators> <node>

<separators> <node>

<separators>
«number-field> [<separators> [<IC-part>]]

I <POLYLIT> <separators> <number-field>

<to-the-right-of-number-fie1d>

<EOL> .

<IC-part> ::=
<ICLIT> <equa1-sign-opt-separators>
<number-field> [<separators>] .



- 40 -

<to-the-right-of-number-field> ::=
<EOL>
I <separators> <EOL>

<another-number-field>

<IC-part> <EOL> ) .
<another-number-field> ::=

<number-field> <to-the-right-of-number-field> •

(~ KXXXXX LYYYYY L22222 VALUE ~)

<coupled-inductor> ::=

<KLIT> <alphanumeric-string>
<separators> <LLIT> <alphanumeric-string>

<separators> <LLIT> <alphanumeric-string>
<separators> <number-field> [<separators>]

<EOL> .

s. Transmission-line

See [3] page 11.

(~ TXXXXX Nl N2 N3 N4 ZO=VALUE
[TD=VALUE] [F=FREQ [NL=NRMLEN]] [IC=Vl,Il,V2,12] ~)

<transmission-line> ::=

<TLIT> <alphanumeric-string>

<separators> <node>
<separators> <node>
<separators> <node>

<separators> <node>

<separators> <ZOLIT> <equal-sign-opt-separators>

<number-field>

[<separators> [<after-ZO>]] <EOL> •

<after-20> ::=

<TD> [<separators> [<after-TD>]]

<after-TD> .



<after-TD>

<after-F>

<TD>

<F>

<NL>

<IC>

- 41 -

· .-·.-
<F> [<separators> ([<NL>

[<separators> [<after-F>]]]

<after-F> )]

<after-F> .

::= <IC> {<separator>} .

·.-·.-
<TDLIT> <equal-sign-opt-separators> <VALUE> .

: : =

<FLIT> <equal-sign-opt-separators> <VALUE> .

: : =

<NLLIT> <equal-sign-opt-separators> <VALUE> .

: : =

<ICLIT> <equal-sign-opt-separators>
<VALUE> "," <VALUE> 1\," <VALUE> "," <VALUE> .

6. Controlled Sources

See [3] page 12-17,47-49.

(* GXXXXX N+ N- NC+ NC- VALUE *)

(* GXXXXX N+ N- <POLY(NDl>
NCl+ NCl- ... PO <Pl ... > <IC= ... > *)

<lin-vccs> ::= <GLIT> <volt-cntrld-sources-common-part>.

(* EXXXXX N+ N- NC+ NC- VALUE *)

(* EXXXXX N+ N- <POLY(NDl>
NCl+ NCl- ... PO <Pl ... > <IC= ... > *)

<lin-vcvs> ::= <ELIT> <volt-cntrld-sources-common-part>.



- 42 -

<volt-cntrld-sources-common-part> ::=
<alphanumeric-string>
<separators> {node>

<separators> <node>

<separators> <node>

<separators> <node>

<separators> <number-field>
[<separators>] <EOL> .

(-It FXXXXX N+ N- VNAM VALUE -It)

(* FXXXXX N+ N- <POLY(ND»

VNl <VN2 ... > PO <Pl ... > <IC= ... > *>
<lin-cccs> ::= <FLIT> <curr-cntrld-sources-common-part>.

(* HXXXXX N+ N- VNAM VALUE *. >

(* HXXXXX N+ N- <POLY(ND»

VNl <VN2 ... > PO <Pl ... > <IC= ... > *>
<Iin-ccvs> ::= <HLIT> (curr-cntrld-sources-common-part>.

<curr-cntrld-sources-common-part> ::=
<alphanumeric-string>
<separators> <node>

<separators> <node>

<separators> (alphanumeric-string>

<separators> <number-field>

[<separators>] <EOL> .

7. Independent Sources

See [3] page 14-17.

(* VXXXXX N+ N- [[DC] DC/TRAN VALUE]

[AC [ACMAG CACPHASE]]] [<after-AC>] *)

<independent-vs> ::= <VLIT> <independent-sources-common-
part> .

(* IXXXXX N+ N- [[DC] DC/TRAN VALUE]

[AC [ACMAG [ACPHASE]]] [(after-AC>] *)

<independent-cs> ::= <ILIT> <independent-sources-common-
part> .



- 43 -

<independent-sources-common-part> ::=

<alphanumeric-string>
<separators> <node)

<separators> (node>

[<separators> [(independent-sources-last-part>]]

<EOL> .

<independent-sources-last-part> ::=

<DC> [<separators> [<after-DC>]]

<after-DC> .

<DC)

<after-DC>

::= [(DCLIT> <separators>] <number-field> .

.. ­.. -
<ACLIT> [(separators)

([<number-field>

[<separators>

I <after-AC>
<after -AC > .

([(number-field>

[<separators>
[<after-AC>]]]

<after-AC> ) ]]
) ]

<after-AC> ::=

(* PULSEtVl V2 TO TR TF PW PER) *)

<PULSELIT> (lpar-opt-separators>

<number-field)

<separators) (number-field)

<separators) <number-field>

<separators) (number-field)

<separators) <number-field)

<separators) (number-field)
<separators) <number-field>
<rpar-opt-separators)

(* SIN (VO VA FREQ TD THETA) *)

<SINLIT) {{separator-not-lpar)} "("

«separator)} (number-field)

<separators> <number-field)
<separators) (number-field)



- 44 -

<separators> <number-field)
<separators> (number-field)

<rpar-opt-separators)
(~ EXP(Vl V2 TDl TAUI TD2 TAU2) ~)

<EXPLIT) <lpar-opt-separators)

<number-field)

<separators> (number-field>

<separators> <number-field)

<separators) <number-field)

(separators> <number-field>

<separators> <number-field>

<rpar-opt-separators)

(* PWL(Tl VI [T2 V2 T3 T4 .•. ]) *)

<PWLLIT) <lpar-opt-separators)

<number-field>

<separators) <number-field)

<pwl-right-recursion)

(~ SFFM<VO VA FC MDl FS) *)

(SFFMLlT) {<separator-not-lpar>} "("

{<separator>} <number-field>

<separators> <number-field>

<separators> (number-field)

<separators) <number-field>

<separators> <number-field)

<rpar-opt-separators) •

<pwl-right-recursion) ::=

")" [(separators)] [<extra-Ti-Vi-pair)]

<separator-not-rpar) {<separator-not-rpar)}

")" [<separators)] [<extra-Ti-Vi-pair)]

<extra-Ti-Vi-pair) ) .

<extra-Ti-Vi-pair) ::=

<number-field) <separators)

<number-field> <pwl-right-recursion) •



- 45 -

8. Semiconductors

See [3] page 18-21.

(* DXXXXX N+ N- MNAME [AREA] [OFF] [IC=VD] *)

<junction-diode> ::=

<DLIT> <alphanumeric-string>

<separators> <node>

<separators> <node>

<separators> <name-field>
[<separators> [<diode-after-string>]] <EOL> .

<diode-after-string> ::=

<number-field>

[<separator> [<diode-after-area>]]

<diode-after-area> .

<diode-after-area> ::=

<OFFLIT> [<separators> [<diode-after-off>]]

<diode-after-off> .

<diode-after-off> ::=

<ICLIT> <equa1-sign-opt-separators>

<number-field> «separator>} .

(* QXXXXX NC NB NE [NS] MNAME [AREA] [OFF] [IC=VBE,VCE] *)

<bjt> ::=

<QLIT> <alphanumeric-string>

<separators> <node>
<separators> <node>
<separators> <node>

<separators> [<node> <separators>]

<name-field>

[<separators> [<bjt-after-string>]]

<EOL> .



- 46 -

<bjt-after-string) ::=

<number-field) [<separator) [<bjt-after-area)]]

I <bjt-after-area) •

<bjt-after-area) ::=

<OFFLIT) [(separators) [(bjt-after-off)]]

I <bjt-after-off) •

(bjt-after-off) ::=

(ICLIT) (equal-sign-opt-separators)

<number-field) (comma-opt-separators)

(number-field) (separator}} •

(* JXXXXX ND NG NS MNAME [AREA] [OFF] [IC=VDS,VGS] *)

(jfet) ::=

(JLIT> (alphanumeric-string)

(separators) (node)

(separators> <node)

(separators) (node>

(separators) (name-field)

[(separators) [(jfet-after-string)]]

<EOL> •

(jfet-after-string> ::=

(number-field) [(separator) [(jfet-after-area)]]

<jfet-after-area) .

(jfet-after-area> ::=

(OFFLIT) [(separators> [(jfet-after-off)]]

I <jfet-after-off> .

<jfet-after-off)::=

(ICLIT) (equal-sign-opt-separators>

<number-field) <comma-opt-separators>

<number-field) «separator)}.



- 47 -

(* MXXXXX NO NG NS NB MNAME [L=VALJ [W=VAL] [AD=VAL]

[AS=VALJ [PD=VALJ [PS=VAL] [NRD=VAL] [NRS=VAL]

[OFFJ [IC=VDS,VGS,VBSJ *)

<mosfet) : :=
<JLIT) (alphanumeric-string)

<separators) <node>

<separators) (node>

<separators) <node>

<separators) (node)

<separat.ors> (name-field)

[<separators) [(mosfet-after-string)]]

<EOL) .

<mosfet-after-string> ::=

<LLIT) <equal-sign-opt-separators) (number-field)

[<separators) [(mosfet-after-l)]]

<mosfet-after-l) .

<mosfet-after-l) ::=

<WLIT) (equal-sign-opt-separators) <number-field)

[<separators) [(mosfet-after-w)]]

(mosfet-after-w) •

<mosfet-after-w) ::=

<ADLIT><equal-sign-opt-separators) <number-field)
[<separators) [(mosfet-after-ad)]]

<mosfet-after-ad) .

<mosfet-after-ad) .. ­.. -
<ASLIT)(equal-sign-opt-separators) <number-field)

[<separators) [(mosfet-after-as)]]

<mosfet-after-as) •

<mosfet-after-as) ::=

<PDLIT)<equal-sign-opt-separators) <number-field)

[<separators) [(mosfet-after-pd)]]

<mosfet-after-pd) •



- 48 -

<mosfet-after-pd> ::=

<PSLIT><equal-sign-opt-separators> <number-field>

[<separators> [<mosfet-after-ps>]]

<mosfet-after-ps> .

<mosfet-after-ps> ::=

<NRDLIT> <equal-sign-opt-separators> <number-field>
[<separators> [<mosfet-after-nrd>]]

<mosfet-after-nrd> •

<mosfet-after-nrd> ::=

<NRSLIT> <equal-sign-opt-separators> <number-field>
[<separators> [<mosfet-after-nrs>]]

<mosfet-after-nrs> .

<mosfet-after-nrs> ::=

<OFFLIT> [<separators> [<mosfet-after-off>]]
<mosfet-after-off> .

<mosfet-after-off> .. ­.. -
<IeLIT> <equal-sign-opt-separators>

<number-field> <comma-opt-separators>

<number-field> <comma-opt-separators>
<number-field> {<separator>}.

9. Lexical Rules

See [3] page 6-8.

<title-card> ::= {<any-symbol-not-EOL>} <EOL> .

<comment-card> :: = ",It" {<any-symDol-not-EOL>} <EOL> .

<end-card> : : = ". END" {<any-symbol-not-EOL>} <EOL> .

<name-field> ::= <letter> {<alphanumeric-element>} .

<node> ::= <digits> .



- 49 -

(*" NOTE :

Spice allows the separators to be placed between any pair of

adjacent fields.

Therefore we define the following 4 non-terminals, to denote

that, if one of the separators has to occur as a field

(as in TC = TCl, see the resistor card), this separator has

to occur at least once between to two neighbour fields

(TC and TCI in this case).

TC =( = TCI is allowed I
,.. )

<equal-sign-opt-separators) ::=

«separator-not-equal-sign)} "=" «separator)}.

<comma-opt-separators) ::=

«separator-not-comma)} II II, «separator)} •

<lpar-opt-separators) ::=

«separator-not-lpar)} "(" «separator)} .

<rpar-opt-separators) ::=

«separator-not-rpar)} ")" «separator)} .

<separators)

<separator)

::= <separator> «separator)} .

: := <separator-not-comma) I "," •

<separator-not-comma> : := " " 1)=11 II ( II U ) II

<separator-not-lpar) : := " " II =U It ) n II II,

<separator-not-rpar) : : = II " 11=" II ( II " II,

<separator-not-equal-sign) .. - " II II ( II .. ) II II II.. - ,

<number-field> : := [<sign)] <unsigned-number-field) .
<unsigned-number-field) ::=

<digits) ["." [(digits)]] [<number-field-part)]

"." <digits) [<number-field-part)] •



- 50 -

<number-field-part) ::=

<integer-exponent) [<letters)]

<scale-factor-not-M) [<letters)]

"M" [<eg-il-letters)]

<letter-not-EFGKMNPTU) [<letters)] •

<integer-exponent) ::= "E" [<sign)] <digits) .

<scale-factor-not-M) ::= "T" I"G" I"K" I"U" I"N" I"P" I"F" •

<eg- i 1-1e t t e r s ) :: =
"E" [<letters-after-HE)]

"I" [<letters-after-HI)]

<letter-not-EI) [<letters)] .

<letters-after-ME) ::=

"G" [<letters)]

I <letter-not-G) [<letters)] •

<letters-after-HI) ::=

"L" [<letters)]

<letter-not-L> [<letters)] .

(any-symbol-not-EOL) ::=

<letter)

<digit)

<TAB)

<special-character) .

<sign)

<digits)

::= 11+11 I II_II •

::= (digit) {<digit)} .

(alphanumeric-string) ::=

<alphanumeric-element) {<alphanumeric-element)}.

<alphanumeric-element) ::=

<letter)

<digit)

<spice-special-character) .

<letters) ::= (letter) {<letter)} .



- 51 -

<special-character) ::=

<spice-specia1-character)
11[11

II II

.. II,
U ( II

II ) II

U=II

(~ separators are" II I "," I "(" I ")" I "=" "-)

(~ SPICE 2G on the Burroughs 7700 fails to create an output

file if it finds a left bracket [ in the input file. ~)

<spice-specia1-character) ::=
II ! .. .. II II II I "t ll 11$11 11%11 11&'11 II I II 11"-11

"+" " - " I " " II I" u : u ... II N II <.. II) II. ,
II? .. II@II I "
.. I .. II ) II I

n ,., II

<period) : : = II II.
<left-parenthesis) : : = 11 ( It ·
<right-parenthesis) : : = U ) II ·
<left-curly-brace) : := " { II ·
<right-curly-brace) · .- .. ) .. ··.-
<left-bracket) ·.- II[U·.-
<right-bracket) : : = "]" ·
(~ lower-case letters are not allowed in SPICE input ~)

(letter) ::= (letter-not-G) I "G" •

<letter-not-G) ::= <letter-not-EGIL)

<letter-not-L) ::= (letter-not-EGIL)

liE II

liE"

111 11

UGJI

ilL II •

.. I II

<1e t t e r - not - EI) :: = <1e t t e r - not - EG I L) I II G" I II L" •

<letter-not-EGIL) ::=

<letter-not-EFGIKLMNPTU)

"F" I "K" I "M" I liN" 1 "P" I "T" I "U" •



- 52 -

<letter-not-EFGKMNPTU) ::=

<letter-not-EFGIKLMNPTU) I "I" I "L" .

<letter-not-EFGIKLMNPTU) ::=

<digit>

IIA II

I "R"

liB II

"S"

: : =

lie II

"V"

-ID"

"Wit

"HI!

UXII

IIJII

flY"

"0"

uz" .
IIQ"

IIOU liltt "2" I "3" I "4" I "5" I "6" I "7"

<ACLIT>
<ADLIT>
<ASLIT>
<CLIT>
<DLIT>
<DCLIT>
<ELIT>
<EXPLIT>
<FLIT)
<GLIT)
<HLIT>
<ILIT)

<ICLIT>
<JLIT>
<KLIT>
<LLIT>
<MLIT)

<NLLIT>
<NRDLIT>

<NRSLIT>
<OFFLIT>
<PDLIT>
<POLYLIT>
<PSLIT>

<PULSELIT>
<PWLLIT>
<QLIT>

1t811 "9 11
•

· := "AC"· ·
· := IIAD n·
· := "AS"·
· := "ell·
· := nDIl·
·: = "'OC II·
· := liE II ··
·:= "EXP" ··
· := uFu ··
· : = UGH· ·
· : = UHIt· ·
· := "IH· ·
·:= "Ie"· ·
· := IIJII· ·
·:= 11K"· ·
· := ilL II·
· : = HM U ··
· := "NL" ··
· := "NRD" ··
· : = "NRS" ··
·: = "OFF" ··
· := "PD" ··
·:= "POLY" .·
· := "PS" ··
· := "PULSE" .·
· := "PWL"· ·
·.- IIQII·.- ·



- 53 -

<RLIT> ·.- uRIl·.- ·
<SINLIT> : : = "SIN" .
<SFFMLIT> · .- "SFFM"·.- .
<TLIT> : := IIT ti ·
<TCLIT> ·.- "Te"·.-
<TDLIT> : := "TD" .
<VLIT> : : = UV II ·
<WLIT> : := uN" ·
<XLIT> ·.- IIX II·.- ·
<ZOLIT> : : = "ZO" .



- 54 -

APPENDIX 31 DESCRIPTION OF FUNCTIONS, VARIABLES AND MACROS

USED

This appendix contains a short functional description of the

most important semantic functions, variables and macros used

in the compiler.

An alphabetic list of the names of these items and the page

numbers where they are described is included at the end of

this appendix.

All semantic functions called by the parser have a name that

starts with sem. When the title card has been found, the

function semTITLE is called. When a comment card has been

found, the functions semCOKMlO and semCOKM999 are called, et

cetera.

1. Functions Invoked by Main

The main function of the compiler is called main. Main

initialises some arrays and file pointers. Next it calls the

function generated by YACC yyparse (see chapter .) to parse

the input. After parsing, the definitions of the leafcells

used are copied into the totaloutputfile named output and

summaries for errors and warnings are printed, if there are

any, on the screen. Hereafter the outputfile of the parser

named output.tmp is appended to the totaloutputfile. Three

more files are produced by main, which will be discussed

below.

1.1 Listing File

The compiler produces a list file with name list.tmp. This

file contains a listing of the input read, with line numbers

and error messages. The input is echoed to the listfile by

the lexical analyser through the predefined macros ECHOA and

ECHOO. These predefined macros invoke the function

copylist, to echo the input found by the lexical analyser to

the listing file. ECHOO (ECHO Only) echoes the input only

to the listing file. ECHOA (ECHO Also) also copies the input



- 55 -

to the debug file. Copylist has an character array as its

argument. It copies this array to the list file. When it

encounters a newline character, the following actions are

executed

the predefined macro CHECKLINENRONPAGE is called, which

checks if there is still space for a next line on the

current page. Otherwise it will send a form feed to the

list file.

the predefined macro NEWLINE is called, which sends a

newline character to the list file, and calls the

function copyerror (see error handling and recovery) if

an error message or warning has been issued in the

line, terminated by this newline. This is indicated by

the as boolean used integer errorinthisline.

After parsing, main calls the functions errorsUDDary and

endlist. The first function will print an error summary on

the screen and in the list file, the latter will print the

number of lines processed.

1.2 Debug File

Extra information about the actions of the lexical analyser

and the parser is stored in the debug file with name

debug.tmp The lexical analyser prints in this file a

message each time a regular expressions is matched by a part

of the input. The parser prints which cards are found.

Besides this file contains all error messages and warnings.

1.3 Statistics File

This file contains information about the space used by the

buffers. These figures can be compared with the maximum

buffer length, which is also given in this file.



- 56 -

2. General Functions

2.1 The Translation Of Subcircuits

The nesting level of subcircuits is during parsing stored in

the extern variable actbufnr (actual buffer number).
actbufnr determines in which buffer level text is put.

Initially this variable has got the value 0, denoting the

main circuit.

The function copystrinq stores a string in one of the

buffers. This function has three parameters. The first

parameter must be the nesting level and determines in which

buffer level the string will be stored. The second denotes

in which buffer the string is stored: the compound header,

the comment section, the subsystem declaration part, the

wire section or the compound body. To denote these buffers

we have defined the macros COMP, COMH, SUBS, WIRE and BODY.

A subcircuit definition in SPICE begins with a subcircuit

definition card and ends with an ENDS card. Each time a

subcircuit definition card is found, actbufnr will be

incremented by one, and the name of the subcircuit is stored

in the character pointer array subcktname.

An ENDS card may contain a subcircuit name. This name

indicates which subcircuit definition is terminated. When

no name is given, all subcircuits definitions terminate.

Upon finding an ENDS card actbufnr is decremented until the

name in the array subcktnaDe at index actbufnr corresponds

with the given name. If no name is given, actbufnr is

decremented to o. In either case, for each decrement by one

of actbufnr, the corresponding set of buffers is flushed

into the output file using the function fprintfbuf. This

function has the number of the buffer to be flushed as its

argument. When an END card is found, the function flushbuf

is called. This function checks if all subcircuit

definitions have been closed, by inspecting the variable

actbufnr. If not, an error message is generated. All



- 57 -

buffers are flushed, using the function fpr1ntfbuf.

2.2 The Translation Of Comment Cards

Any comment found in SPICE is surrounded by NDHL comment

marks (braces) and put in the comment buffer. Braces is

SPICE comment are converted to brackets. The function

coamenttobuf takes care of these actions.

2.3 The Translation Of Numbers

A number in SPICE can be followed by a scalefactor and

arbitrary letters for comments. NDML knows the same

scalefactors, but not T (Tera) and MIL (milli inch). Milli

is in SPICE M, and in NDML ML. Mega is in SPICE MEG and in

NDML M. The function copyvalue takes care of the right

translation of the scalefactors. If there are no digits

before the decimal point, it places a "a" there, because

NDML does not accept numbers starting with a decimal point.

2.4 Leafcells Used

Information about which leafcells are used is stored in the

as boolean array used integer array leafcellused. Therefore

the macro TRUE is defined to be 1, while FALSE is defined to

be O. Each leafcell is assigned an integer number by a C

define statement. If a certain leafcell is used, the element

in the array leafcellused at the index that corresponds with

the number assigned to the leafcell concerned is set to

TRUE. The definitions of the leafcells must appear before

the compounds. After the total input has been parsed, the

array leafcellused is checked by the function

collectleafcells. For each leafcell that has been used,

e.g. whose value in the array leafcellused is TRUE, the

corresponding file, which contains the definition of this

leafcell, is copied to the totaloutputfile. Thereafter the

the outputfile is appended to the totaloutputfile.



- 58 -

2.5 The Contact List and The Wire List

In SPICE the connections between circuit elements are called

nodes and denoted by an integer number. In NDML however

connections inside a compound are made through so called

wires. Connections of a compound with the outer world are

made through so called contacts.

We store the node numbers found in the input in the three

dimensional integer array node. The first dimension of this

array denotes in which subcircuit nesting level we have

found the node concerned. The second dimension denotes if

the node is an internal one or an external one, e.g. in NDML

terms if it is a contact or a wire. Therefore we have

defined the constants INT and EXT to be used as indices for

this dimension. An two dimensional integer array nodeffi is

used to store the indices of the first free element (first

free indices) in the third dimension of the array node.

The main circuit has no contacts. The nodes mentioned in the

subcircuit definition card are the only contacts of that

subcircuit. All nodes in the definition that do not occur in

the subcircuit definition card are converted in NDML to

wires. Therefore we have the functions nodein and addnode.

The function nodein returns an as boolean used integer, and

has 3 parameters. These 3 parameters are respectively the

subcircuit nesting level, the index for the second dimension

of the array node, and a node number. The function returns

TRUE if the node number is in the subarray of node

corresponding with the given nesting level and given index

for the second dimension. The function addnode has the same

parameters. It adds the node number to the subarray

concerned and returns in that case TRUE. If the node number

already exists in this subarray it returns the value FALSE.

When a subcircuit definition card is found in the input, the

nodes found in this card are put in the array node using the

function addnode. Upon finding a node in other cards in the

input, the function processnode is called. This function

puts the name of the node in the actual contact name list of



- 59 -

the element concerned in the buffer for the compound body.

Besides it calls the function nodein to check if the node is

already in the formal contact list of the compound being

constructed, or in other words, if the node occurred in the

subcircuit definition card in SPICE input. If not, the

function addnode is called to add this node in the wire

list. The name of a contact or wire in the output consists

of the number of the corresponding SPICE node, preceded by

the string "n_".

In a subcircuit definition in SPICE node 0 (ground) is

always global, and may not appear in the subcircuit

definition card's node list. Therefore we make in the output

node 0 the first element in every compound contact list (see

function semSUB30 ), except for the main compound.

3. Error Handling

A two dimensional array called errorlist has been created

for recording the errors made in each input line. At the end

of each input line, a message is printed in the debug file

and on the screen, when errors have been found. In the first

column of the array errorlist the column number where the

error occurred is saved. The second column contains the

type number of the error. This array can be filled using

the function fillerrorlist. This function needs one

parameter, namely the type number of the error. When the

array errorlist is not full, this type number is stored in

the first free place in the second column, while the global

variable colnr, which is the column number in the list file,

is stored on the same row in the first column of this array.

To be able to print the whole line on the screen, each line

is temporarily stored in the character array lastline.

When an error occurred the function copyerror will be called

at the end of the current line either by the macro NEWLINE,

which is called when a newline character has been send to

the list file, or by the function contonnextline, which is

executed when the number of characters send to the list file



- 60 -

exceeds the maximum column number HAXCOL. The function

copyerror displays the current line on the screen using the

character array lastline and prints both on the screen and

in the list file below the current line the place and the

type number of the error(s) found, using the array

errorlist. The function errorsummary, which is called by

the main program main, will print an error summary on the

screen and at the end of the list file.

3.1 Errors Detected by the Parser

When the parser, constructed by Yacc, discovers a syntax

error the user redinable function yyerror is called. In our

case this function calls the function fillerrorlist. Also

the parser will act as if it had received the token error ,

and will pop its stack until it enters a state where the

token error is legal. Therefore we included a grammar rule

card : error EOC ;

in the Yacc input. Hereby the parser can recover by skipping

the input until the first EOC (end of card), when it finds a

syntax error. When finding this first EOC the statements

yyerrok and BEGIN CARDBEGIN, and the function aftererror are

executed. The statement yyerrok resets the parser to its

normal state. Otherwise a syntax error at the beginning of

the next line might not be reported by the parser. The

statement BEGIN CARDBEGIN enables Lex to find the right

token at the beginning of the next card. The function

aftererror calls the function undo which undoes the text in

the buffers related with the current card, by placing

comment marks. Also the function aftererror resets the as

boolean used integer variable to_be_undone to FALSE.

3.2 Errors Detected by the Lexical Analyser

Errors detected by the lexical analyser are handled in the

following way. A message will be printed in the debug file.

If in the current line did not occur a syntax error until

now and if there are more than 5 spare places for errors in



- 61 -

the array error11st, than also a message will be printed on

the screen and in the listfile. The last 5 places in the

array error11st are reserved for more important errors.



4. Alphabetic List

name page

- 62 -

name page

actbufnr 56 f1ushbuf 56

addnode 58,59 fprintfbuf 56,57

aftererror 59,60 INT 58

BODY 56 1ast1ine 59,60

CHECKLINENRONPAGE 55 1eafce11used 57

co11ect1eafce11s 57 main 54,55,60

co1nr 59 MAXCOL 60

COMM 56 NEWLINE 55,59

commenttobuf 57 node 58

COMP 56 nodeffi 58

contonnext1ine 59 nodein 58,59

copyerror 55,59,60 processnode 58

copy1ist 54,55 semCOMM10 54

copystring 56 semCOHM999 54

copyva1ue 57 semSUB30 59

ECHOA 54 semTITLE 54

ECHOO 54 subcktname 56

end1ist 55 SUBS 56

errorinthis1ine 55 to_be_undone 60

error1ist 59,60,61 TRUE 57

error summary 55,60 undo 60

EXT 58 WIRE 56

FALSE 57 yyerror 60

fi11error1ist 59,60 yyerrok 60

yyparse 54


	Voorblad

	Summary

	Contents

	Introduction

	1 The source language: SPICE 2G input

	2 The object language:NDML

	3 The compiler

	4 Lexical analysis

	5 The parser

	6 Semantics

	7 Error handling

	8 Usage

	Literature

	Appendix 1

	Appendix 2

	Appendix 3


