

MASTER
Electrical stresses on a selfsupporting metal-free optical fibre cable in high voltage networks
Berkers, A.G.W.M.
Award date: 1987
Link to publication

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration.

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain

DEPARTMENT OF ELECTRICAL ENGINEERING

High Voltage Laboratory (EHO)

Electrical stresses on a selfsupporting metal-free optical fibre cable in high voltage networks.

EH.87.A.88.

A.G.W.M. Berkers April, 1987.

The Department of Electrical Engineering of the Eindhoven University of Technology does not accept any responsibility for the contents of this report.

Report of project for Ir. degree. Supervisors:

dr.ir. J.M. Wetzer prof.dr.ir. P.C.T. van der Laan

Abstract

Electricity companies need telecommunication for measurements and control. Today optical fibre systems are more and more used for this purpose. A possible way to install optical communication link is to suspend a selfsupporting metal-free optical fibre cable in the high voltage overhead transmission and distribution lines. Electrical mechanisms give an important contribution to the ageing of the cable. Corona at the end of the suspension spiral and tracking are the two most important mechanisms. lations and measurements show that the choice of an optimal suspension position of the cable in the tower can prevent corona and considerably decrease the amount of tracking. The amount of tracking can also be decreased by a lower resistance of the cable sheath or by the application of a somewhat conductive layer underneath the sheath. The use of a strongly tracking resistant sheath material will decrease the damage to the cable surface caused by tracking discharges.

Contents

1. Introduction	4
2. Definitions	6
3. Ageing of optical fibre cable (literature study)	7
3.1. Ageing mechanisms	7
3.2. Cables in HV OH lines	9
3. 3. Material properties of polyethylene	12
4. Model calculations	17
4.1. Potential distribution perpendicular to	
the HV lines	17
4.2. Potential distribution along the optical	
fibre cable	25
4.3. FEM calculations	34
5. Material property measurements	36
5.1. Surface resistance	36
5. 2. Tracking resistance	37
6. System measurements	39
6.1. Current	40
6. 2. Corona	41
6.3. Insulated suspension	43
6.4. Tracking	44
7. Discussion	46
8. Conclusions	49
9. References	50
Appendix A: Surface resistance measurements	
Appendix R. Text "POTCALC" computer program	

1. Introduction

Electricity companies need to know the present status (voltage, current, cosø) of their transmission and distribution lines at any moment. Also the status of the ambient air is important (temperature, wind velocity, etc.). Furthermore, telecommunication is required for remote controlled switches and, of course, audio and video signals. Until recently, information was transmitted by copper wires, carrier waves on phase lines, microwave systems and telephone lines. Because of the recent developments in optical fibre systems, these systems are now commercially available for the electricity supply industries.

Some important benefits of the use of optical fibre systems, compared to the wire systems mentioned above, are[4] the high obtainable bandwidth, low attenuation and the insensitivity to EMI (electromagnetic interference). Comparing optical fibre systems to microwave systems is more difficult because of the different legal limitations that are involved. Comparing the costs of telecommunication systems is outside the scope of this work, though important.

There are various methods to install an optical fibre cable in a high voltage network, e.g. fibres in the earthwire (or a phase conductor), fibre cable lashed around the earthwire (or a phase conductor) and metal-free selfsupporting cable. The last is more advantageous[i] for later-on installation on existing over-head (OH) lines. The first cable of this type was installed autumn 1982 at the "Rheinisch-Westfälischen Elektrizitätswerk AG" in a 110/220/380 kV line.[2] Subject of this report are the electrical stress mechanisms that cause ageing of a metal-free, selfsupporting, aerial, optical fibre cable. First a literature study was performed which is reported in chapter 3. In order to quantify the stress mechanisms, calculations were made in chapter 4. Evaluation of the results of these calculations requires knowledge on material and system properties. Report on the measurements of these properties is given respectively in chapter 5 and 6. Discussion and conclusions are given res-

This study was performed on request of and in cooperation with "NKF Telecommunicatiekabels B.V.", which company also supplied the cable samples of the type shown in figure 1.1 and 1.2 [3].

pectively in chapter 7 and 8.

Aerial optical fibre cable cross section:

figure i.i: NKF optical fibre cable.

figure 1.2: NKF optical fibre cable.

2. Definitions

ageing: deterioration in time as a result of stresses.

arc: relatively stable electrical discharge carrying a high current.

<u>arcing=scintillation</u>: the (repetitive) ignition, extinction and movement of arcs. Arcing can result in tracks or erosion.

carbon black: high purity carbon powder.

<u>dry arc resistance</u> = <u>corona resistance</u>: a quantitative expression of the time required to make an arc of specified current penetrate into the nearby insulating surface.

<u>electrical discharge</u>: conductive path in a gas, bridging a gap between electrodes, carrying a small current.

corona(2): often luminous and audible partial discharges in a non-uniform field.

<u>flashover[i]</u>: an electrical discharge at the surface of electrical insulation or in the surrounding medium, which may cause permanent damage to the insulation.

<u>partial</u> <u>discharge</u>: conductive path, bridging part of a gap. Though not carrying a conductive current, it may carry a significant capacitive current due to the small risetimes involved.

stress: all forces and other phenomena that may effect a specimens characteristics in a negative way.

surface conductivity[i]: the apparant DC conductance between two electrodes in contact with the surface of a specimen of insulating material related to the surface dimensions, when the current involved is limited to a thin film of moisture or other semi-conducting material on the surface of this specimen. (Some volume conductance is unavoidably included in actual measurements.)

surface resistivity: the reciproke of the surface conductivity.

track[1]: a more or less conducting path of localized deterioration on the surface of an insulating material.

tracking[1]: the process that produces tracks as a result of the action of electric discharges on or close to the insulation surface.

tracking resistance[1]: the quantitative expression of the voltage and time required to develop a track under specified conditions.

3. Ageing of optical fibre cable (literature study)

Equipment for high voltage networks is usually designed for 30 years life-time. Until now there is no such long service experience in the case of optical fibre cables.

The sheath of an aerial cable suffers from meteorological (uv radiation, water, wind, temperature, etc.), environmental (pollution accumulation) and mechanical (own weight, shot-gun damage, bird damage) influences, which cause surface degradation. Partial discharges on or near the surface enhance the ageing. The life-time of a cable depends on the combination of stresses on one hand and the construction of the cable and the choice of materials, on the other hand. Because of the limited amount of literature related directly to the subject, (organic) outdoor HV insulators are studied also since they are subject to the same kind of stress.

3.1. Ageing mechanisms.

An important electrical stress mechanism is arcing along an insulator surface, because it can cause tracks or erosion and thus deteriorate the insulator surface. An essential condition for the occurrance of tracks is the presence of carbon On HV insulators this mechanism can cause flashover. Therefore the deterioration of an artificially aged insulator is often measured in terms of flashover voltage (f.o.v.)[2-9]. Arcing, or scintillation can start in two ways[31], which can occur simultaneously:

- A conductive film (water, possibly polluted) bridges an increasing part of the gap. The field along the remaining, dry, part increases until arcing is initiated (figure 3.1.1). Even though the distance is small, in the order of micrometers, the ignition voltage is relatively high; that is about 400 V, which is about the minimum breakdown voltage in Paschen's law.
- A relatively high leakage current may cause evaporation at locations where the current density is high or the conductivity is low (figure 3.1.2). This high current density will produce locally a lot of heat. Therefore a considerable number of charge carriers will be produced at the instant of disruption. The arc needs now a relatively small voltage to continu.

In both cases arcing may be extinguished when the gap increases by further evaporation.

from non conducting state.

figure 3. 1. 1: Arc initiation figure 3. 1. 2: Arc initiation from conducting state.

The literature, e.g. references [10,11,12], that reports the research on the process that leads from arcing flashover, is important for insulators, but not for cables, because the optical fibre cable doesn't bridge two electrodes.

The probability and intensity of arcing depend, in addition to the voltage, also on the properties of the conductive film that surrounds the insulator[10]. The conductive film consists of water with different soluble salts (most sulphates and chlorides[4]) and can vary in thickness from 0.1 to 600 µm[13]. The thickness of the layer depends on the surface characteristics of the insulator and on the properties of the salts that are present. The surface characteristics can be described by a set of parameters:

- water repellency[12] can be expressed in the angle between a drop of water and the technical clean surface (contact angle) (figure 3.1.3).
- apparant porosity[4] is expressed as the ratio of the volume of open pores of the specimen (freshly crushed fragments of insulator skirts) to its exterior volume.
- water absorption[4] is expressed as the ratio of the water absorbed to the weight of the dry specimen.

a: moving drop

b: drop in rest

figure 3.1.3: water repellency

The water repellency of an insulator surface decreases during ageing[4,13], because of corrosion and chemical attack caused by weathering conditions (pollution and irradiation[9]). Chemical nature and physical form of pollutant strongly affect the rate of detoriation[4]. The roughness of the insulator surface also has an influence on arcing. Lewis et al.[34] found that a rough insulator surface exhibited considerable tracking resistance compared to a smooth surface. This can be understood by looking at it as an increase in creepage distance.

There are also some electrical properties to characterize the surface of an insulator (defined in chapter 2):

- surface resistivity (IEC 93 [32])
- tracking resistance (IEC 112, 587 [21, 33])
- dry arc resistance (corona resistance) (ASTM D495 [19])

In non-uniform electric field configurations various manifestations of luminous and audible discharges are observed long before the complete breakdown occurs[35]. These discharges may be transient or steady state and are known as "corona". The phenomenon is of particular importance in HV engineering where non-uniform fields are unavoidable. It is responsible for power loss from HV transmission lines and often leads to deterioration of insulation by the combined action of the discharge ions bombarding the surface and the actions of chemical compounds that are formed by the discharge. The electric field strenght, at the surface of the conductor in air, required to produce a noticeable AC corona in air is about 25 - 30 kV/cm.

3.2. Optical cables in HV OH lines

In literature, 3 manufacturers of metal-free selfsupporting optical fibre cables (for OH lines) were found:

- NKF Telecommunicationcables (devision of NKF KABEL B. V.)[14]
- F&G (Felten & Guillaume) Telecommunicationcables and
 -systems (devision of Philips Kommunikations Industrie A. G.)[1]
- Standard Electric Lorenz AG [15]

All of them use PE (polyethylene) for the outer sheath of the cable. Recently NKF switched from LDPE (Low Density PE)

to HDPE (High Density PE)[16], because of the better transference of pulling force and the smaller sensibility to corona, see paragraph 3.3.1.

The importance of the HV fields to the ageing of the cable is described by Haag[17]. Because of the electrical properties of the sheath, the surface of the cable in the elecfield of the phase conductor gets charged by capa-The citive coupling (figure 3.2.1). capacitances shown the figure depend on the geometry of the optical cable, HV lines and earth.

Modell für die Berechnung der kapazitiven Aufladung und Entladungsströme für metallfreie Luftkabel auf Freileitungsgestängen

figure 3.2.1.

The capacitance from the cable to earth is not constant over the whole lenght of the cable because of the influence of the grounded tower and the sag of the cable. This influence not shown in figure 3.2.1. Since the surface resistance 1014 high (2.108 Ω/m _ Ω/m)[17], the induced cannot flow away. At each tower the cable charge Near the clamps at the tower high electric fields grounded. the cable gets polluted and When wet, occur. paragraph 3 (arcing, tracking) problems described in capacitively induced voltage is considered[17] not important for 20 kV lines, in 110 kV lines no problems are expected, whereas it is the determining factor, for 250 KA and especially 380 life-time of the cable, in lines.

In ref. [1] equipotential lines and electric field were determined graphically for a cable in a 110 kV OH line (see figure 3.2.2 and 3.2.3).

figure 3. 2. 2. figure 3. 2. 3.

et al.[36] state that the main problem area selfsupporting cables at the higher transmission voltages degradation caused by the effect of the electric field on а sheath polluted bу prevailing climatic conditions. It. that be seems unlikely this can prevented by insulated The U.K. support clamps[36]. approach[36] to prevent electrical degradation of the cable sheath, which limits the use οf metal-free selfsupporting cables to tages below about 110 kV. is to study sheath materials rather than to attempt to modify the cable or fittings near Two approaches, of producing non-tracking and partowers. conducting sheaths. being investigated. tially are Looking for remedies against tracking, engineers mens[37] find а solution bу providing the cable with 107 109 longitudinal resistance of t.o Ω / m and а relatively insensitive to tracking corona. Bejacket and of the lowered resistance, areas Of high electrical cause between the borders of adjacent moist areas less electrically bridged thereby reducing tracking. jackets with a high Special outer content of aluminum have[37] the suitable combination of the required In al. physical properties. addition to Barlett et engineers of Siemens[37] also reject the method of insulated suspension.

A corona discharge close to the optical fibre cable can

cause deterioration as described in paragraph 3.1. Figure 3.2.4 shows the end of the Al/St (Aluminum/Steel) spiral that is often used to suspend the cable. Figure 3.2.5 shows the suspension spirals used for the NKF cable. Sharp edges at the end of the spiral might enhance the electric field strength above the corona onset level.

figure 3.2.4: End of spiral for cable suspension.

figure 3.2.5: Suspension spirals (a: suspension, b: tension) for NKF cable.

Furthermore[37] protruding irregularities on a possibly conducting cable surface can also cause radial discharges (corona), which erode and degrade the surface of the cable sheath.

Another electrical phenomenon that can damage the cable is caused by the possible soaking of the strenght member (aramide or FRP) when the outer sheath is damaged. The strength member of the NKF cable, aramide, has filaments of 12 μm with holes in between of 8 $\mu m [16]$. If these holes are filled with water, the resistance decreases. A problem occurs when the heat generated inside, by the resulting current, cannot flow away, or when the conductive area suddenly ends.

3.3. Material properties of polyethylene.

3.3.1. Arcing resistance

The dry arc resistance of a material can be determined by using the standard test procedures ASTM D495 or DIN 53 484. Mark[18] gives values for natural PE using the ASTM D495[19] method. In this test the arc resistance is described as the total elapsed time of operation until failure. Failure occurs when the arc, of specified current pattern, disappears into the tested material.

LDPE 135 - 160 s MDPE 200 - 235 s HDPE ---

3.3.2. Tracking and erosion resistance

To determine the tracking and erosion resistance different tests are used:

ASTM D2132

IEC 112

ASTM D2303

Parr and Scarisbrick[20] compared the IEC 112[21] with the ASTM D2132 test. The results are listed below.

	IEC 112(1959)		ASTM D2132	(1962)
C	omparative	erosion	failure	life
trac	king index	index	mechanism	
	v	V	-	h
LDPE	> 500	>750	erosion	60. 0
LDPE + 2 X				
carbon black	> 500		tracking	0. 9

The indices given by the IEC 112 test are the voltages at which failure (I > 0.5 A for 2 s) occurs before the 50 drops of test solution have fallen on the test surface. For the ASTM D2132 test the test specimen are artificially contaminated and placed in a specified fog. The time after applying 1500 V is measured until failure (I > 2 A). Parr and Scarisbrick concluded that the ASTM D2132[22] method is more adequate than the IEC 112 method.

Clabburn et al.[23] used the ASTM D2303[24] test to determine the influences of additives to the tracking behaviour of PE, see table 3.3.2.1. This tracking behaviour is expressed in the "initial tracking voltage" (ITV), which is determined in the test at a specified rate of contamination application.

Exposing PE to outdoor environment can also cause loss of tracking resistance, see also paragraph 3.3.6.

Absorber	
None	3.0
1% Carbon Black	2.0
2% Carbon Black	1.5
1% Fe ₂ 0 ₃	2.75
1% Zn 0	2.25
0.5% Uvinol 410 (substituted benzophenone)	2.5
0.5% Tinuvin P(substituted benzotriazole)	2.75

Trade Name	Antioxidant Type	ITV in KV
None	None	3.0
Agerite Resin D	Polymerised dihydro	1
	quinoline	2.5
Irganox 858	High molecular weight hindered phenol	3.0
Nonox WSL	Medium molecular	l
	weight hindered phenol.	2.0
Akroflex CD	Substituted diphenyl-	
	amines	2.25
2246	Low molecular weight]
	hindered phenol	2.75

table 3.3.2.1: Effects of additives on ITV of PE.

3.3.3. Water repellency = Hydrophobocity

The water repellency of a material can be expressed in the contact angle between a water-drop and the surface.

McNicoli et al.[25] measured the contact angle between a water-drop and a PE surface:

- molded 94.3
- cut by microtome 103.5

When the PE suface is aged the contact angle becomes slowly smaller.

3.3.4. Surface resistance

The surface resistivity of PE depends strongly on the relative humidity (RH) of the surrounding air. Field[26] found that the surface resistivity decreases steadily to its equilibrium value, which is reached in about 100 minutes. Figure 3.3.4.1 shows the surface resistivity of PE as a function of RH. The resistivity at 100 % RH is $1.3 \cdot 10^9~\Omega$. Licari[27] measured the surface resistivity of PE at 96 % RH:

fingerprint contaminated $5 \cdot 10^7 \Omega$ freshly shaved surface 2.2 $\cdot 10^{11} \Omega$

figure 3. 3. 4. 1: Surface resistivity of PE (1 KM $\Omega = 10^3 \cdot 10^6 \Omega$, etc.).

3.3.5. Water absorption

Several figures of water absorption in (natural) PE found in literature (weight percentages):

[27]: in 24 h < 0.01 X [28]: in 30 days 0.095 % [29]: in 24 h, 1/8 inch thick: LDPE < 0.015 % MDPE < 0.01 %

HDPE No comments are given on these figures.

3.3.6. Outdoor behaviour

Clabburn et al.[23] described the adverse effects on properties because of long term outdoor exposure. The contributing factors to these adverse effects are:

< 0.01 %

- 1. weather: UV component of sunlight
 - atmospheric oxygen
 - moisture: rain, dew, etc.
- 2. pollution: natural: sand, dust, salt, etc.
 - industrial: ash, gaseous wastes, etc.
- 3. thermal effects
- 4. mechanical effects

ad 1: UV light can break several different types of chemical bonds and thus cause chain scission in a polymer. results in degradation of the polymer which may be recognized as loss of both mechanical and electrical properties such as strength, elongation, track resistance and the like. Free radicals are created also by UV light. In the presence of oxygen the formation of free radicals can lead to an auto-catalytic reaction by the generation of several further types of radicals i.e. a chain reaction of degrading radicals is initiated. Moisture can enhance this effect. An other effect of moisture is that the freezing of water in surface imperfections can cause cracks. The tendency towards oxidation can be largely prevented[18] by the incorporation of antioxidants into the polymer. Gilroy[30] found that the use of carbon black of over 1 % and of particle size of less than 35 μ m has been found to be adequate to protect PE for over 38 years outdoor exposure.

ad 2: The main kinds of pollution that attack the polymer are: ozone and oxides of sulphur and nitrogen. The reaction of PE with ozone can proceed very rapidly at 60 C with gross chain scission. In the presence of UV light and sulphur dioxide PE gets crosslinked. Exposure to nitrogen dioxide results in incorporation of nitro groups into the backbone. This can cause a decrease of tracking resistance as shown in table 3.3.6.1.

Polymer	ITV, in KV
Polyethylene	3.0
Nitrated Polyethylene I	2.75
Nitrated Polyethylene II	2.25

Nitrated polyethylene I contained one nitro group per 430 carbon atoms

Nitrated polyethylene II contained one nitro group per 220 carbon atoms

table 3.3.6.1: Nitration of PE.

ad 3 and 4: High, low and suddenly changing temperatures can be expected. Problems can arise from the fact that different components of the cable have different coefficients of linear expansion, for example:

PE $2.5 \cdot 10^{-4} \text{ K}^{-1}$ aramide $-2 \cdot 10^{-6} \text{ K}^{-1}$

The consequence is that stresses will be present between PE and aramid. The stresses and strains may open and close micro cracks on the surface of the polymer. Moisture and solid pollutants become trapped in surface cracks. The trapped matter enhances tracking. These effects will clearly be accelerated by additional stresses resulting from wind, snow and ice loadings.

4. Model calculations

All computer calculations reported of in this chapter were performed on the B7900 system of the Technical University Eindhoven in the programming language Algol 60. The text of the "POTCALC" program (paragraph 4.1) is given in Appendix B.

4.1. Potential distribution perpendicular to the HV lines

4.1.1. Calculation method

For line-charges it is possible to calculate analytically the electric field. If the diameters of the conductors are small compared to the distances involved, then each conductor can be represented by one line charge.

The three phase sinusoidal system is represented by complex voltages as shown in figure 4.1.1.1. If U is the systems phase-phase voltage, then

$$v_R = \sqrt{3}U/3$$

 $v_S = -\sqrt{3}U/6 - JU/2$
 $v_T = -\sqrt{3}U/6 + JU/2$

figure 4.1.1.1: Three phase sinusoidal system.

In the following, calculations are made using the effective voltages and the method of reference [i].

 V_i (i = 1, 2, ... n) are the known voltages of the conductors

and \mathbf{Q}_{i} are the line charges calculated out of the voltages.

The elements of the matrix P are:

$$P_{ii} = -\frac{1}{2\pi\epsilon} \ln \left[\frac{d_i}{4y_i} \right]$$

$$P_{i,j} = -\frac{1}{4\pi\epsilon} \ln \left[\frac{(x_i - x_j)^2 + (y_i - y_j)^2}{(x_i - x_j)^2 + (y_i + y_j)^2} \right]$$

where

 y_i (m) height of conductor i above ground d_i (m) diameter of conductor i $(x_i,y_i),(x_j,y_j)$ (m) are the coordinates of the conductors i and j and y>0

It is convenient to consider a bundle of conductors as one single conductor having an equivalent diameter given by [1, 2]

$$d_{eq} = D \left[\frac{md}{D} \right]^{1/m}$$

where D is the bundle diameter, m is the number of subconductors, and d is the diameter of the subconductors.

The voltage in a point (x, y), somewhere in the conductor field can be derived from the superposition of the contributions of the individual conductors:

$$V(x, y) = \sum_{i=1}^{n} -\frac{Q_{i}}{4\pi\epsilon} \ln \left[\frac{(x_{i}-x)^{2}+(y_{i}-y)^{2}}{(x_{i}-x)^{2}+(y_{i}+y)^{2}} \right]$$

In the same way the electric field strength is calculated

$$E_{X} = \sum_{i=1}^{n} \frac{Q_{i}}{2\pi\epsilon} \left[\frac{x - x_{i}}{(x - x_{i})^{2} + (y - y_{i})^{2}} - \frac{x - x_{i}}{(x - x_{i})^{2} + (y + y_{i})^{2}} \right]$$

$$E_{Y} = \sum_{i=1}^{n} \frac{Q_{i}}{2\pi\epsilon} \left[\frac{y - y_{i}}{(x - x_{i})^{2} + (y - y_{i})^{2}} - \frac{y + y_{i}}{(x - x_{i})^{2} + (y + y_{i})^{2}} \right]$$

The complete set of capacitances, $C_{i,j}$, of the system is:

$$C_{ii} = \sum_{j=1}^{n} K_{ij}$$
 capacitance between conductor i and earth $C_{ij} = C_{ji} = -K_{ij}$ capacitance between conductors i and j
$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} P \end{bmatrix}^{-1}$$

4.1.2. Calculations on practical towers

Equipotential-lines were calculated for two PNEM (Noord Brabant Electricity Company) towers (one for 150 kV and one for 380 kV) and one (380 kV) EZH (South-Holland Electricity Company) tower. Results are shown in figures 4.1.2.1 to 4.1.2.3. For the EZH-tower there are three different phase distributions in use. They all give the same potential distributions.

Conductor diameters were calculated from the cross-section areas with

$$d = 2F\sqrt{(A/\pi)}$$
 where $F = 1.15$

The factor F was introduced because a phase or ground conductor is composed of twisted steel and aluminum wires. F was obtained by relating calculated diameters with real diameters given in a list of German standard conductors [4]. The standard deviation in F is (N = 8) 0.007.

The figures 4.1.2.1 to 4.1.2.3 show the situations in the middle between two towers, so the sag (different for phase

conductors and earth wires) is taken into account. When an optical fibre cable with a slightly conducting sheath is suspended between the wires, the capacitances between cable and phase conductors, and between cable and ground will result in a cable potential which depends on the values of the capacitances. A typical set of capacitances is given in table 4.1.2.1. It is assumed that the sag of the cable is the same as the sag of the phase wires.

		capacitance	(pF/m)
		sag	no sag
phase-cable:	RC	2. 09	2.14
	SC	1.89	1.94
	TC	1.84	1.88
cable-ground		1.48	1.34

table 4.1.2.1: Capacitances in tower 170 (cable in position (x = -8.53, y = 33.3), see figure 4.1.2.2).

The maximum radial electric field strength at the suspension spirals is calculated near the tower (no sag), without taking the influence of the tower into account. At the spiral-end this field strength will be enhanced. The enhancement factor can be determined in the measurements by calculating the electric field strength at the discharge onset voltage, and relating this value to the electric field strength needed for (corona) discharges, i.e. about 30 kV/cm.

Figure 4.2.1.1 shows a type of tower in which $8.5~\rm km$ of optical fibre cable is suspended. The cable is suspended in position (0,12.75) which results in a potential of $15.6~\rm kV$. From the figure it can be seen that ($\pm 8.5,12.9$) is a better position to suspend the cable because the potential there is $1.51~\rm kV$. The maximum radial electric field strength at suspension spiral is $1.57~\rm kV/cm$ in (0,12.75).

Figure 4.1.2.2 shows a clear minimum in the potential distribution. This minimum is located in position (-8.53,33.3) and has a potential of 7.03 kV. The maximum radial electric field strength at the suspension spiral in this position is 0.89 kV/cm. This configuration, see also table 4.1.2.1, is used for the calculations in paragraph 4.2.

In the tower shown in figure 4.1.2.3 the suspension of an optical fibre cable is planned. There were three possible suspension positions, (0,28.35) and $(\pm 4.08,49.4)$. From the

figure it is clear for the reason of cable potential, position (0,28.35) with a potential of 3.43 kV has to be chosen. The maximum radial electric field strength at the suspension spiral in this position is 0.27 kV/cm.

tower type = 163PNEM112.540-1

 $d_{eq}(phase) = 3.61$ cm

d(ground) = 1.17 cm

U = 150 kV

EQUIPOTENTIAL LINES FOR V= 0.5.1.2.5.10.15.20.25.30.40.60.80 % OF 86.6 KV(PH-OR)

figure 4.1.2.1.

tower type = 170PNEM43.686 $d_{eq}(phase) = 26.15$ cm

d(ground) = 2.05 cm

U = 380 kV

EQUIPOTENTIAL LINES FOR V= 0.5.1.2.5.10.15.20.25.30.40.60.90 % OF 219.4 KV(PH-GR)

figure 4.1.2.2.

tower type = EZH/FD/432 $d_{eq}(phase) = 39.3$ cm

d(ground) = 2.18 cm

U = 380 kV

EQUIPOTENTIAL LINES FOR V= 0.1.0.5.1.2.5.10.15.20.25.30.40.60.80.95 % OF 219.4 KV(PH-GR)

4.2. Voltage distribution along the optical fibre cable.

4.2.1. Calculation method.

The optical fibre cable is suspended parallel to the phase conductors. In the calculations these phase conductors are considered to be "ideal" voltage sources, i.e. with neglegible output impedance. The system of m phase conductors (figure 4.2.1.1) can be replaced by one Thevenin equivalent voltage source, calculated as follows (c in F/m)

$$c_s = c_1 + c_2 + c_3 + \dots c_m$$

 $V_s = (c_1V_1 + c_2V_2 + \dots c_mV_m)/c_s$

figure 4. 2. 1. 1.

A small piece, Δx , of the cable can be replaced by

figure 4. 2. 1. 2.

where $r[\Omega/m]$ and c_S , $c_e[F/m]$. This leads to the following differential equations ($\Delta x \rightarrow 0$)

$$\frac{\partial V}{\partial x} = -rI$$

$$\frac{\partial I}{\partial x} = c_s \frac{\partial V_s}{\partial t} - (c_e + c_s) \frac{\partial V}{\partial t}$$

$$\frac{\partial^2 V}{\partial x^2} = -rc_s \frac{\partial V_s}{\partial t} + r(c_e + c_s) \frac{\partial V}{\partial t}$$

When the excitation is sinusoidal and $c_{\rm S}$, $c_{\rm e}$ and r are constant then the differential equations become

$$\frac{dV}{dx} = -rI$$

$$\frac{dI}{dx} = j\omega c_S V_S - j\omega (c_e + c_S)V$$

$$\frac{d^2V}{dx^2} - j\omega r(c_e + c_S)V = -j\omega rc_S V_S$$

and have a solution

$$V(x) = Ae^{\gamma x} + Be^{-\gamma x} + V_p$$

$$I(x) = -AZ^{-1}e^{\gamma x} + BZ^{-1}e^{-\gamma x}$$

$$E(x) = rI(x)$$

where

$$V_{p} = \frac{c_{s}V_{s}}{c_{s}+c_{e}}$$

$$Z = \sqrt{\frac{r}{j\omega(c_{s}+c_{e})}}$$

$$\gamma = \{[j\omega r(c_S + c_e)]$$

This model is similar to the transmission line model of Thomson (Lord Kelvin).

The cable is grounded at each suspension tower and the system is assumed to be symmetric around x=L (figure 4.2.1.3), so

figure 4.2.1.3.

$$V(0) = 0$$

 $V(2L) = 0$
 $I(L) = 0$

Because of the symmetry, calculations are performed for $0 < \kappa < L$.

So far r and c_e were assumed independent on x. In order to extend the model to x-dependent impedances the cable-half is divided into n pieces of variable length, with resistance and capacitance values $r_i[\Omega/m]$ and $c_{ei}[F/m]$:

Now for each section the solution is represented by constants A_i , B_i , V_{pi} , Z_i , y_i , where P_i , Z_i and y_i follow directly from the impedance values and the source voltage. A_i and B_i have to be calculated from the boundary conditions of each section:

$$V_{i}(x_{i}) = V_{i+1}(x_{i})$$

 $I_{i}(x_{i}) = I_{i+1}(x_{i})$

or

$$A_{i}e^{\gamma_{i}x_{i}} + B_{i}e^{-\gamma_{i}x_{i}} + V_{pi} = A_{i+1}e^{\gamma_{i+1}x_{i}} + B_{i+1}e^{-\gamma_{i+1}x_{i}} + V_{pi+1}$$

$$-\frac{A_{i}}{Z_{i}}e^{\gamma_{i}x_{i}} + \frac{B_{i}}{Z_{i}}e^{-\gamma_{i}x_{i}} = -\frac{A_{i+1}}{Z_{i+1}}e^{\gamma_{i+1}x_{i}} + \frac{B_{i+1}}{Z_{i+1}}e^{-\gamma_{i+1}x_{i}}$$

for
$$i = 1, \ldots, n-1$$

and

$$V(0) = 0$$

$$I(L) = 0$$

This results in a set of 2n equations for the determination of $A_1 \dots A_n$ and $B_1 \dots B_n$.

The grounded tower influences the electric field nearby and changes the cable-earth capacitance. The cable is suspended to the tower with a 2 m Al/St spiral. So the point were the cable is grounded is about 2 m away from the tower. With help of reference [6] it is possible to calculate the capacitance between an infinite surface and a rod of length 1

perpendicular to that surface. The distance between rod and surface is assumed to be negligibly small. To calculate the capacitance per unit of length, the derivate to the length l is taken. The result is

$$\frac{dC}{d1} = \frac{2\pi\varepsilon\left[1n\frac{21}{d\sqrt{3}} - 1\right]}{\left[1n\frac{21}{d\sqrt{3}}\right]^2}$$

This capacitance gives the absolute maximum of the tower influence. For practical situations, i.e. a frame-work tower, the real influence of the tower is approximated to be half of this limit value. Then the total capacitance from cable to earth is for x=0 at 2 m from the tower

$$x = 0$$
 $c'_{e} \approx \frac{1}{2} \cdot \frac{dC}{d1} (1=2) + c_{e} = 4.5 \text{ pF/m} + c_{e}$

4.2.2. Results.

In paragraph 4.1 a preferable place is given for suspending the optical fibre cable in PNEM tower 170,43.686 (380 kV). The cable-phase and the cable-ground capacitances of this system are:

c_{RC} = 2.09 pF/m c_{SC} = 1.89 pF/m c_{TC} = 1.84 pF/m c_e = 1.48 pF/m

which results in

 $V_S = 8.62 + j(-1.86) kV$ $c_S = 5.82 pF/m$

These capacitances result in a cable potential of V_p = 7.03 kV when there is no current flowing on the cable. Knowing the span-length to be 400 m (L = 200 m), calculations can be made for different values of r. Three typical shapes of the voltage distribution can be distinguished,

which are also valid for other systems. They are shown in figure 4.2.2.1.

- 1. Re(yL) << 2.15
- 2. Re(yL) = 2.15
- 3. Re(yL) >> 2.15

figure 4. 2. 2. 1.

Figures 4.2.2.2 to 4.2.2.3 show some examples of calculation results on tower 170PNEM43.686 for r having values of 10^3 , 10^5 and 10^7 Ω/m , respectively. A longitudinal cable resistance of 10^5 Ω/m can originate from either a surface resistivity of 4800 Ω or a volume resistivity of 0.066 Ω cm of the sheath, assuming the cable has a diameter of 15.4 mm and the sheath is 1.5 mm thick.

It is also possible to show, with this calculation method, how tracking occurs. Suppose the cable is wet with a relatively high conductivity. If a small piece of the cable is dry and therefore bad conducting, a high electrical field strength in this dry zone will occur. Figure 4.2.2.5 and 4.2.2.6 show two possible situations.

Because of the calculation method that is used, the situations described in figure 4.2.2.5 and 4.2.2.6 are assumed to be symmetric around x=L. In both figures the resistance of the cable is $10^5~\Omega/m$. The 2 mm dry spot at x=30 has a resistance of $10^7~\Omega/m$ in figure 4.2.2.5 and $10^9~\Omega/m$ in figure 4.2.2.6. This results in an electric field strenght at x=30 of 0.08 kV/cm in figure 4.2.2.5 and 7 kV/cm in figure 4.2.2.6.

For controlling the voltage along the cable it could be possible to apply a better conducting layer inside the outer sheath of the cable. Because of the grounding through the capacitance layer-spiral the voltage and field strenght could be reduced depending on the conductivity of the layer. To calculate the voltage distribution in this situation the

model described in paragraph 4.2.1 has to be changed because the (more or less) conducting part of the cable is now not grounded directly at x=0 (tower), so $V(x=0) \neq 0$. Assuming an infinite HV line with many towers, the system can be assumed symmetric around each tower. Then the boundary conditions are:

$$I(x=0) = 0 \equiv E(x=0) = 0$$

 $I(x=L) = 0 \equiv E(x=L) = 0$

The results of this calculation are shown in figures 4.2.2.7 and 4.2.2.8, where the cable has a resistance of $10^5~\Omega/m$ and $10^7~\Omega/m$ respectively. From figure 4.2.2.7 we see that the voltage at $0<\kappa<2$ is in the order of 2.5 kV. This results in a high electric field strenght (20 kV/cm) between the conducting layer and the spiral because the insulating jacket is only 1.5 mm thick. A calculation with the finite element method would show the problems that can arise at the end of the spiral in this situation.

figure 4. 2. 2. 2: $r = 10^3 \Omega/m$; $E_{max} = E(x=0) = 3.22 V/m$.

figure 4.2.2.3: $r = 10^5 \Omega/m$; $E_{max} = E(x=0) = 10^7 V/m$.

figure 4.2.2.4: $r = 10^7 \Omega/m$; $E_{max} = E(x=0) = 1065 V/m$.

figure 4.2.2.5: Tracking, $r = 10^5 \Omega/m (10^7 \Omega/m \text{ at } x=30)$; $E_{max} = E(x=30) = 0.08 \text{ kV/cm}$.

figure 4.2.2.6: Tracking, $r = 10^5 \Omega/m (10^9 \Omega/m \text{ at } x=30)$; $E_{max} = E(x=30) = 7kV/cm$.

figure 4.2.2.7: $r = 10^5 \Omega/m$; $E_{max} = E(x=2) = 78 V/m$.

figure 4.2.2.8: $r = 10^7 \Omega/m$; $E_{max} = E(x=2) = 908 V/m$.

4.3. FEM calculations

In order to illustrate the effect of field enhancement by the spiral-end, electric field strength calculations were performed using the Finite-Element-Method (FEM) [5,7]. The computer program that was used presumes a coaxial geometry. Because the optical fibre cable in the HV system may be assumed coaxial only very close to the cable, the calculation can only illustrate the effects at the end of the spiral.

Figure 1 shows the original situation and figure 2 shows a spiral-end which is shielded with a ring. The effect of the shielding can be evaluated by measuring the distance to the first equipotential line.

The cable is assumed to have the relative dielectric constant of PE, i.e. $\epsilon_r=2.3$.

In both figures the grounded spiral shows triangles that are generated by the plotting program when the potential is very low. These triangles are the same as those generated as the computational mesh.

figure 4.3.1: Original spiral-end; equipotential lines at 5 % intervals.

figure 4.3.2: Shielded spiral-end; equipotential lines at 5 % intervals.

5. Material property measurements

The material property measurements were performed on the following materials:

- i. HDPE (DGDS 3420); sheath material of PNEM-cable
- 2. Megolon Si; copolymer filled with Al(OH)3
- 3. 80%/20% mix of 2/1
- 4. 60%/40% mix of 2/1
- 5. LDPE (ALK 9211)
- 6. HDPE (Vest 5042)

5.1. Surface resistance

In this paragraph only the results of the surface resistance measurements are given. The complete report is given in appendix A.

specimen	surface resistivity	σ	(Ω)
2	1. 2·10 ⁹		
5	1.7.1010		
3	2.8.1010		
4	5. 1·10 ¹⁰		
1	1.9.1011		
6	8. 7·10 ¹¹		

table 5.1.1: Surface resistivities.

The results of the measurements on material nr. 2 are given in figure 5.1.1 as a function of the relative humidity.

figure 5. i. i: Surface resistivity as a function of relative humidity.

Table 5.1.2 gives the the results of measurements performed elsewhere on UV aged samples. Resistivity was measured immediately after conditioning (>24 hours) at 100 $^{\times}$ RH and 23 $^{\circ}$ C.

No information was given on the accuracy and the reproducibility of these measurements. Ageing usually results in a decrease of surface resistivity. The aged sample of material nr. i has a higher surface resistivity than the new one, this could not be explained.

specimen	σ (Ω , new)	$\sigma(\Omega, aged)$
1	2.0·10 ¹³	9.9.1013
2	3.5.1010	6.7·10 ⁶

table 5.1.2: Resistivity of aged samples.

5.2. Tracking resistance

Tracking resistance was measured by KEMA on the materials 2 These tests were done in accordance with IEC publication 112 [1]. For all 5 materials the comparative tracking index (CTI) was determined in 3 tests using test solution B. This solution has a resistivity of 170 Ω cm and is more aggressive than the other solution, A (395 Ω cm). The CTI is defined as: the numerical value of the maximum voltage in volts at which a material withstands 50 drops without Failure is detected when a current of 0.5 A tracking. more has persisted for 2 seconds. Tracking may occur during this test when voltage is applied between a defined electrode arrangement (figure 5.2.1) on the surface of a material and drops of electrolyte are applied between them at defined intervals of time (2 drops per minute). The number of drops needed to cause failure increases with the reduction of the applied voltage and, below a critical value, tracking ceases to occur. Figure 5.2.1 shows the measuring set up of IEC 112.

figure 5.2.1: Set up for tracking 4 tip of dropping device resistance tests.

All five materials with stood the test three times at 600 V, so they can be quallified with: CTI 600 M.

6. System property measurements

Building a laboratory setup with similar capacitance values as in paragraph 4.2.2 is not practicle because of the large distances required. It is possible, however, to built a setup in a laboratory with higher capacitances, that induces the same potential on the cable as in practical situations, using a lower source voltage. For this a brass tube of 8 cm diameter was used. The complete measuring set-up is displayed in figure 6.1 and 6.2. The length of the cable between the spirals (2L) is 2.17 m.

 $R_2 = 1100 M\Omega$

 $R_3 = 10 \text{ k}\Omega$

 $R_{\mu} = 10 \text{ k}\Omega$

figure 6.1: Measuring circuit.

Z: ERA measuring impedance

figure 6.2: Cable arrangement.

For the detection and analysis of the discharges an ERA Model 3 discharge detector was used together with a multi channel analyser. The system without cable was found to be free of discharges until 50 kV. The sensitivity of the discharge measurement is determined by the presence of internal and external noise. High sensitivity (0.3 pC apparant charge) is possible when the ERA is connected to the spiral. When the ERA is connected to C_1 , however, the whole HV circuit acts as an antenna and therefore the sensitivity is limited to about 10 pC.

The capacitances of the system in figure 6.2 were calculated with the method given in paragraph 4.1.1. They are

 $c_{te} = 15.2 pF/m (tube to earth)$

 $c_{tc} = 6.9 \text{ pF/m} \text{ (tube to cable)}$

 $c_{ce} = 8.0 \text{ pF/m} \text{ (cable to earth)}$

when

 $h_t = 382 \text{ mm}$

 $h_C = 304 \text{ mm}$

x = 162 mm

The solution that is used for wetting the cable consists of i g NH $_{4}$ Cl and 4 ml T-pol (wetting agent) in 1 l distilled water. The resistivity of this solution is 400 ± 30 Ω cm. This solution resembles the ones used in the IEC tracking tests (IEC 112 and IEC 587).

6.1. Current.

The current to one spiral was measured in order to compare it with the calculations of paragraph 4.2. The calculated current, related to the source voltage, as a function of the cable resistance is given in figure 6.1.1.

figure 6.1.1: Calculated current.

The measured current also contains a capacitive current from the source to the spiral. So this current should be measured and substracted from the other measurements. For this the cable was grounded close to the spiral-end (at a distance of about 5 mm). The measured currents are:

correction current i. $08 \cdot 10^{-9}$ A/V dry cable i. $26 \cdot 10^{-9}$ A/V wetted cable 3. $2 \cdot 10^{-9}$ A/V

Thus the corrected values are:

dry cable 1. $8 \cdot 10^{-10}$ A/V wetted cable 2. $1 \cdot 10^{-9}$ A/V

The current on the wetted cable is in accordance with figure 6.i.i for $r<2\cdot i0^8~\Omega/m$. The current on the dry cable indicates that $r\approx 3\cdot i0^{10}~\Omega/m$, which value is too low for a clean dry cable, see paragraph 5.i. An explanation for this can be found in the used model. At high values of r the longitudinal capacitance of the cable is probably more important than the resistance, whereas this capacitance is not included in the model. More experimental information may be derived from experiments at different frequencies.

6.2. Corona

The purpose of the corona measurements was to determine the corona onset voltage in different system configurations. From the corona onset voltages the maximum electric field strenght on the spiral can be calculated compared to the values given in paragraph 4.1.2. The different system configurations were obtained by changing h_{C} and κ within the margins given in figure 6.2.

The current pulses resulting from the discharges were measured between the spiral and ground, see figure 6.1. In each measurement, before recognizable[2] corona discharges started, other discharges, with a similar magnitude, occurred. These could not be recognized. Corona discharge pulses are spread symmetrically around the positive voltage peaks. Table 6.2.1 gives the results of these measurements.

h_{C}	x	$\mathbf{v_i}$	E ₁	٧ ₂	Ε ₂
mm	mm	kV	kV/cm	kV	kV/cm
304	151	25.0	3.94	29.5	4.65
304	128	24.5	4.39	27. 5	4.93
304	162	28.8	4.29	31.5	4.69
287	195	31. O	3.77	41.0	4.99
287	179	37. 5	4.89	40.0	5. 22
287	153	34. 3	5.04	35.8	5.26

V₁: discharge onset tube voltage

 E_4 : maximum electric field strenght on spiral at V_4

V2: corona onset tube voltage

 E_2 : maximum electric field strenght on spiral at V_2

table 6.2.1: Corona onset.

Knowing the discharge field strength to be about 30 kV/cm,

the field strength enhancement factor related to the values E_1 of table 6.2.1 is about 7. Here the axial electric field strength is not taken into account, which is realistic for r values up to about $10^{12}~\rm Q/m$.

The field strength enhancement factor of the the spiral-end is not constant over the complete circumference. Also the condition of the surrounding air influences the onset voltage.

A typical discharge pattern of corona is shown in figure 6.2.1. The following values apply to this figure:

time (duration of measurement) = 200 s

tube voltage = 41 kV

 $h_C = 287 \text{ mm}$

x = 195 mm

The peak at the end of the scale (N = 6497) contains all discharges larger than 185 pC.

figure 6.2.1: Corona discharge pattern.

Shielding the spiral-ends would increase the corona onset voltage significantly; as can be seen in paragraph 4.3. Figure 6.2.2 shows the (copper) rings that were used for the shielding.

figure 6.2.2: Shielding ring.

After applying the rings it was not always possible to raise the voltage high enough for corona onset. The maximum vol-

tage was determined by the flashover probability between tube and spiral. In practice such a situation is not realistic because of the larger distances and smaller conductor sizes involved.

Occasionally corona pulses were observed, with shielding ring mounted. This resulted in a typical discharge pattern as in figure 6.2.3.

figure 6.2.3: Corona on ring.

Although the measured (or apparant) charge may be smaller than the actual charge involved, discharge magnitudes of a few pC are considered harmless.

6.3. Insulated suspension

Insulated suspension was achieved by disconnecting one spiral from ground. The other one was grounded and shielded. Discharges were measured at the low voltage side of capacitor C_1 (figure 6.1). Discharges started at 30 kV and were recognized[2] as discharges from a floating metal object. Figure 6.3.1 shows a discharge pattern for this situation with

time = 200 s

tube voltage = 40 kV

 $h_c = 287 \text{ mm}$

x = 153 mm

Because of the different kind of discharge measurement, the amplification of the ERA had to be increased. This resulted in more noise. Therefore a bigger part of the lower side of the scale is surpressed.

figure 6.3.1: Insulated suspension.

6.4. Tracking

Tracking discharges can be measured after checking that all other discharges are excluded by the shielding of the spiral-ends. Because the solution that is applied on the cable evaporated quickly, tracking could be observed for periods of only one to three minutes. The tracking discharges produced more sound than the corona discharges. The current pulses resulting from the discharges were measured between the spiral and ground, see figure 6.1.

Figure 6.4.1 shows tracking discharge patterns for two voltages.

continuous line: V_{tube} = 41 kV

dashed line: V_{tube} = 23 kV

time = 1000 s h_C = 287 mm x = 195 mm

In both plots, the peaks at the end of the scale contain all discharges that are larger than 185 pC. Discharges started 200 s after applying voltage. Small discharges followed the large ones. After 400 s the discharges extinguished.

7. Discussion

Three electrical phenomena contribute to the ageing of an optical fibre cable:

- i. corona
- 2. arcing/tracking
- 3. high currents in wet aramide strength members ad i. Corona can occur on the end of the suspension spiral and on the cable. Corona at the cable's surface may occur conducting, it is and contains protruding irregularities on the surface. Whether corona occurs depends the electric field strength on the spiral. Corona can prevented either by choosing a suspension position with low electric field strength, or by shielding the spiral-end. unperturbed electric field strength at maximum the spiral tolerated is about 3 kV/cm. that can be At this field strength the field enhancement of the spiral-end will not cause discharges. Shielding the spiral-end can not prevent corona on the cable surface. From the corona measurements it where the discharges take place. clear at close to the cable, or at the outer side of the spiral. latter will have less influence on the cable.
- ad 2. Arcs resulting in tracks can also occur when the potential of the cable is low. Material properties influence the process in two ways:
 - material properties have an influence on the occurrence of tracking
 - material properties influence the possible damage when tracking occurs

The contributing material properties for the tracking phenomenon are:

- electrical conductivity of cable
- tracking resistance of the sheath material

A reduction of the occurrence of tracking can be obtained by reducing the axial electric field strength on the cable. The most important method for this is the choice of a low potential suspension position. Other methods are: reducing the resistivity of the cable sheath, applying a more conducting layer underneath the cable sheath and insulated suspension.

109 cable resistivity from Ω/m Reducing the to Ω/m reduces the axial field strength with about a factor (the maximum axial electric field strength is approximately Adding a large amount of carbon black proportional to \sqrt{r}). material will reduce the resistivity, the sheath will also reduce the tracking resistance and some important mechanical properties. The aluminum hydroxide filled polymer

that was tested in paragraph 7.1 has a lower surface resistivity than HDPE. However, because the reduction is small and because this material's other properties are inferior, it is not considered as an alternative.

The second method, the addition of a layer with a higher conductivity underneath the cable sheath, can give rise to the problems already described in paragraph 4.2, i.e. a high radial electric field strength depending on the resistivity of the layer. When properly designed however these fields are harmless.

The axial field strength reduction obtained with insulated suspension is about a factor 10.

The damage caused by tracking can be decreased by choosing a more tracking resistant sheath material. The IEC 112 test method is not severe enough for the comparison of new sheath materials with the original, see paragraph 7.1. A better test method is the "inclined-plane tracking" test method (ASTM D2303, IEC 587).

ad 3. The maximum power dissipation in/on the cable at the tower, p(x=0), is always smaller than i W/m, so no damage is expected. The sudden grounding of the wet (conducting) cable could result in higher current impulses. No calculations were made on this subject but it is expected that the impulses are damped by the capacitances involved.

Tracking discharges show a larger charge, but appear at a lower rate, than corona discharges. Therefore from the measurements it can not be concluded that tracking is more important for the deterioration of the cable than corona. However, in literature tracking is seen as the most important problem for metal free optical fibre cables. Comparing the tracking with the corona measurement results, it can be seen that in practical tracking situations (i.e. continuous wetting and drying) larger discharges are present than with corona. Because tracking produces irregularities on the cable surface, subsequent tracking will often take place on the same spots.

Possible electrical failure situations that can damage the cable are:

- cable touches phase wire
- impulse voltages (resulting from switching or lightning) on phase or ground wire
- lightning strike on cable

In situations where the cable has a high resistance the first gives the same results as given in figure 4.2.4/1 where $V_{\rm p}$ is now the phase voltage.

The impulse voltages have components of high frequency and therefore the parameter y will be higher.

Resuming, proposals for modifications and further research are:

- i. Installation of a part of an optical fibre cable with correctly dimensioned insulators (about 20 kV) in about 5 successive towers makes it possible to compare both types of installation after a few years of service.
- 2. Shielding rings should be mounted on the spiral-ends not only when the radial field strength can be high, because failure situations may result in a much higher field strength.
- 3. A more conductive jacket which has high tracking resistance offers many advantages, but is not yet available. More research is needed therefore.
- 4. Applying a conductive layer underneath the jacket separates the requirements for conductivity and tracking resistance, but can result in high radial electric field strength. An optimal value for the resistivity should be found.

8. Conclusions

The calculation of the potential distribution perpendicular to the optical fibre cable is possible using the line charge simulation method. These calculations can give information about the choice of a suspension position, radial electric field strength's and capacitances between wires, cable and ground.

The calculation of the potential distribution along the cable is only usefull for cable resistivities that are not too high. Measurements indicated that the model that is used is not accurate for high resistivities ($10^{10} \Omega/m$ or higher).

The measurement of high surface resistivities is difficult. The method used in this report was accurate enough for the comparison of the different materials.

In laboratory experiments it was possible to visualize and measure corona and tracking discharges separately.

Tracking was found to be the most serious electrical mechanism that can deteriorate the optical fibre cable. Corona can also cause damage to the cable surface, close to the end of the suspension spiral.

Tracking can be reduced by choosing a low potential suspension place, increasing the conductivity of the sheath, applying a conductive layer underneath the sheath and by insulated suspension. The choice of a tracking resistant sheath material reduces the damage caused by the arcs on the cable surface.

Corona at the spiral-ends can be prevented by choosing a suspension place where the radial electric field strength on the spiral is low, and by shielding the spiral-ends.

9. References

Chapter 1.

- 1. Brüggendieck, S. et al.
 - 25 KM OPTICAL AERIAL CABLE LINK ON 110 KV OVERHEAD LINE. CIGRE, 1984, 35-09
- 2. <u>Haag</u>, H. G. and P. E. <u>Zamzow</u> LUFTKABEL MIT LICHTWELLENLEITERN.

etz. Vol. 106(1985). No. 4. p. 154-160

3. OPTICAL FIBRE CABLE FOR AERIAL APPLICATION IN HIGH VOLTAGE NETWORKS.

brochure, NKF Telecommunication Cable Systems, Waddinxveen, Holland, 1986.

4. <u>IEEE</u>, 83 WM 025-4

FIBER OPTIC APPLICATIONS IN ELECTRICAL SUBSTATIONS.

IEEE Microwave Radio Subcommittee & Research Subcommittee of the Power System Communication Committee

Chapter 2.

1. ASTM D1711-79a

STANDARD DEFINITIONS OF TERMS RELATING TO ELECTRICAL INSULATION.

1980 Annual book of ASTM standards, part 39

2. Kuffel, E. and W.S. Zaengl

HIGH VOLTAGE ENGINEERING.

Oxford: Pergamon, 1984

Chapter 3.

1. Bruggendieck, S. et al.

25 KM OPTICAL AERIAL CABLE LINK ON 110 KV OVERHEAD LINE. CIGRE, 1984, 35-09

2. Chandler, R. L. J. et al.

STRESS CORROSION FAILURE OF COMPOSITE LONG ROD INSULATORS.

Fourth Int. Symp. HV Eng., Athens, 1983, 23.09

3. Cojan, M. et al.

POLYMERIC TRANSMISSION INSULATORS: THEIR APPLICATION IN FRANCE, ITALY AND U. K.

CIGRE, 1980, 22-10

4. El-Arabaty, A. et al.

AGEING OF HV EPOXY RESIN INSULATORS UNDER SERVICE CONDITIONS AND ITS EFFECTS ON THEIR ELECTRICAL CHARACTERISTICS

Third Int. Symp. HV Eng., Milan, 1979, 23.01

5. Cortina, R. et al.

DIAGNOSTIC TECHNIQUES TO EVALUATE THE PERFORMANCE OF POLYMERIC INSULATORS.

Fourth Int. Symp. HV Eng., Athens, 1983, 22.12

6. Weihe, H. et al.

FIELD EXPERIENCE AND TESTING OF NEW INSULATOR TYPES IN SOUTH AFRICA.

CIGRE, 1980, 22-03

7. SERVICE EXPERIENCE WITH THE GERMAN COMPOSITE LONG ROD INSULATOR WITH SILICONE-RUBBER SHEDS.

CIGRE, 1980, 22-11

8. El-Arabaty, A. et al.

EFFECTS OF INSULATOR SHAPE DIMENSIONS AND MATERIAL ON ITS FLASHOVER CHARACTERISTICS.

Fourth Int. Symp. HV Eng., Athens, 1983, 46.04

9. Steinort, E.

SURFACE DEFECTS OF FILLED EPOXY RESINS CAUSED BY IRRA-DIATION AND PARTIAL DISCHARGE STRESS.

Third Int. Symp. HV Eng., Milan, 1979, 23.08

10. Kärner, H. et al.

TRACKING AND EROSION OF POLYMERIC INSULATING MATERIALS FOR OUTDOOR APPLICATION.

Third Int. Symp. HV Eng., Milan, 1979, 23.09

11. El-Arabaty, A. et al.

MEASUREMENT OF TEMPERATURE OF HIGH-VOLTAGE POLLUTED INSULATORS USING INFRA-RED TECHIQUES.

Third Int. Symp. HV Eng., Milan, 1979, 54.02

12. Kind, D. and H. Kärner

HOCHSPANNUNGS-ISOLIERTECHNIK.

Braunschweig/Wiesbaden: Vieweg, 1982.

13. Müller, B.

BEHAVIOUR OF ORGANIC INDOOR INSULATION UNDER ELECTRICAL AND CLIMATIC STRESSES.

Fourth Int. Symp. HV Eng., Athens, 1983, 46.06

14. OPTICAL FIBRE CABLE FOR AERIAL APPLICATION IN HIGH VOL-TAGE NETWORKS.

brochure, NKF Telecommunication Cable Systems, Waddinxveen, Holland, 1986.

15. Blahma, J. et al.

LICHTWELLENLEITER-EINSATZ IN DER ENERGIEVERSORGUNG.

etz, Vol. 106(1985), No. 4, p. 174-177

- 16. private communication at NKF.
- 17. <u>Haag</u>, H. G. and P. E. <u>Zamzow</u> LUFTKABEL MIT LICHTWELLENLEITERN.

etz, Vol. 106(1985), No. 4, p. 154-160

18. Mark, H. F. (editor)

ENCYCLOPEDIA OF POLYMER SCIENCE AND TECHNOLOGY

Vol. 6, p. 275 - 313

Interscience Publishers, New York, 1967

19. ASTM D495-73

HIGH-VOLTAGE, LOW-CURRENT, DRY ARC RESISTANCE OF SOLID ELECTRICAL INSULATION.

1980 Annual book of ASTM standards, part 39

20. Parr, D. J. and R. M. Scarisbrick

PERFORMANCE OF SYNTHETIC INSULATING MATERIALS UNDER POLLUTED CONDITIONS.

Proc. IEE, Vol. 112(1965), No. 8, p. 1625 - 1632

21. IEC Publication 112, Third edition, 1979

METHOD FOR DETERMINING THE COMPARATIVE AND THE PROOF TRACKING INDICES OF SOLID INSULATING MATERIALS UNDER MOIST CONDITIONS.

22. ASTM D2132-68(1979)

DUST-AND-FOG TRACKING AND EROSION RESISTANCE OF ELECTRICAL INSULATING MATERIALS.

1980 Annual book of ASTM standards, Part 39

23. Clabburn R. J. T. et al.

THE OUTDOOR PERFORMANCE OF PLASTIC MATERIALS USED AS CABLE ACCESSORIES.

IEEE Trans. on PAS, Vol. PAS-92(1973), p. 1833 - 1842

24. ASTM D2303-73(1979)

LIQUID-CONTAMINANT, INCLINED-PLANE TRACKING AND EROSION OF INSULATING MATERIALS. (equivalent to IEC 587) 1980 Annual book of ASTM standards, Part 39

25. McNicoll, Y. et al.

CONTACT ANGLE MEASUREMENTS IN POLYETHYLENE AND HIGH-VOLTAGE EXTRUDED CABLES.

IEEE Conf. Rec. of 1983 Interfacial phenomena in practical insulating systems, Gaithersburg, Sept. 19-20, 1983. p. D1

26. Field, R.F.

THE FORMATION OF IONISED WATER FILMS ON DIELECTRICS UNDER CONDITIONS OF HIGH HUMIDITY.

Journal of Applied Physics, Vol. 17(1946), p. 318-325

27. Licari, J.J.

PLASTIC COATINGS FOR ELECTRONICS

New York: McGraw-Hill Book Company, 1970

28. Nagofis, I.M.

PLASTICS INSULATING MATERIALS

Princeton: P. Van Nostrand, 1966

29. Gross, S. (editor)

MODERN PLASTIC ENCYCLOPEDIA

New York: McGraw-Hill, 1971

30. Gilroy, H. M.

POLYOFIN LONGITIVITY FOR TELEPHONE SERVICE.

ANTEC 1985, p. 258 - 260

31. Stimper, K. and W. H. Middendorf

MECHANISMS OF DETERIORATION OF ELECTRICAL INSULATION SURFACES.

IEEE Trans. on El. Ins., Vol. EI-19(1984), No. 4, p. 314 - 320

32. IEC Publication 93, second edition, 1980

METHODS OF TEST FOR VOLUME RESISTIVITY AND SURFACE RESISTIVITY OF SOLID ELECTRICAL INSULATING MATERIALS.

33. IEC Publication 587, second edition, 1984
TEST METHODS FOR EVALUATING RESISTANCE TO TRACKING AND
EROSION OF ELECTRICAL INSULATING MATERIALS USED UNDER
SEVERE AMBIENT CONDITIONS.

34. Lewis, J. et al.

PRE-BREAKDOWN AND BREAKDOWN PHENOMENA ALONG PMMA SURFACES IN VACUUM AND NITROGEN GAS STRESSED BY 60 HZ VOLTAGES.

IEEE Trans. on El. Ins., Vol. EI-19(1984), No. 6

35. <u>Kuffel</u>, E. and W. S. <u>Zaengl</u>

HIGH VOLTAGE ENGINEERING.

Oxford: Pergamon, 1984

36. Barlett, et al.

THE DEVELOPMENT OF OPTICAL COMMUNICATION SYSTEMS IN THE UNITED KINGDOM ELECTRICITY SUPPLY INDUSTRY.

9th Int. Conf. on Electricity Distribution: CIRED 1987, Liège, Belgium, d. 12.1

37. FIBER OPTIC AERIAL CABLES IN HIGH-VOLTAGE-LINES. Siemens report, NK 8506 E LWL 1

Chapter 4.

Zaffanella, L. E. and D. W. <u>Deno</u>
 ELECTROSTATIC AND ELECTROMAGNETIC EFFECTS OF ULTRA HIGH
 VOLTAGE TRANSMISSION LINES.
 EPRI EL-802, Project 566, Final Report, june 1978
 Palo Alto, Ca.: Electric Power Research Institute

2. <u>Hochrainer</u>, A.

SYMMETRISCHE KOMPONENTEN IN DREHSTROMSYSTEMEN.

Berlin: Springer, 1957

4. Flosdorff, R. and G. Hilgarth ELEKTRISCHE ENERGIEVERTEILUNG. Stuttgart: B. G. Teubner, 1973

5. Koelman, J. M. V. A.

FINITE ELEMENTS IN ELECTRIC FIELD PROBLEMS.

Group EHO, Dept. of Electrical Engineering, Eindhoven University of Technology, 1983

stageverslag EH. 83. S. 181

6. <u>Kuepfmueller</u>, K.

EINFUEHRUNG IN DIE THEORETISCHE ELEKTROTECHNIK.

Berlin: Springer, 1984

7. <u>Kuffel</u>, E. and W. S. <u>Zaengl</u> HIGH VOLTAGE ENGINEERING.

Oxford: Pergamon, 1984

Chapter 6.

1. <u>IEC Publication 112</u>, Third edition, 1979
METHOD FOR DETERMINING THE COMPARATIVE AND THE PROOF

TRACKING INDICES OF SOLID INSULATING MATERIALS UNDER MOIST CONDITIONS.

2. RECOGNITION OF DISCHARGES.
CIGRE, Electra No. 11, 1969, Working Group 21.03

Appendix A: Surface resistance measurements

1. Introduction

From model and literature study it was found that surface resistance is an important material property[Ai]. For this reason the surface resistance of 6 different materials has been measured. These materials are:

- 1. HDPE (DGDS 3420); sheath material of PNEM-cable
- 2. Megolon Si; copolymer filled with Al(OH)₃, expected to have a lower surface resistance than PE
- 3. 80%/20% mix of 2/1
- 4. 60%/40% mix of 2/1
- 5. LDPE (ALK 9211)
- 6. HDPE (Vest 5042)

At NKF some measurements were done on aged samples of the specimens 1 and 2.

The measurements were performed with help of IEC standard 93[A2].

Surface resistance cannot be measured accurately, only approximately, because more or less volume conductance is nearly always involved in the measurement. The measured value depends to a large extend on the contamination of the surface of the specimen at the time of measurement. However, the dielectric constant (e.g. polarisation) of the specimen influences the deposition of contaminants, and their conductive capabilities are effected by the surface characteristics of the specimen. Thus the surface resistivity is not a bulk material property, but can be considered to be related to material properties when contamination is involved.

Surface resistance, especially when high, often changes in an erratic manner, and in general depends strongly on the time that the voltage is applied to the specimen; this time is called electrification time.

2. Measuring method

Resistance was measured by measuring simultaneously the direct voltage applied to the unknown resistance and the current through it (voltmeter-ammeter method). The measuring circuit is shown in figure 1.

apparatus:

- DC source: EH911 PS53

- Voltmeter: Keithley 177 microvolt DMM

- Ammeter: Keithley 610C solid state electrometer

- Dewpoint: Endress + Hauser, hydrolog WMY 170

- Temperature: mercury thermometer

- wires: extra teflon insulated

- C: 1...100 nF

figure 1: Measuring circuit.

All specimen were 3 ± 0.3 mm thick

figure 2: Electrodes.

Before attaching the electrodes the specimen were cleaned with dry, dustfree, cleaning tissue paper and not touched anymore.

The electrodes were attached by sticking a plastic mould on

the specimen and painting silver paint on it. When the paint was dry, the mould was pulled off, leaving no traces behind. This method of electrode attaching gave very accurate electrode sizes for all specimen, see figure 2.

During the measurement the specimen was placed on a clean teflon structure, see figure 3.

figure 3: Measurement set-up.

The capacitance applied to the input receptical of the ammeter damped out several kinds of low frequency oscillations, most of them resulted from moving things in the neighbourhood of the wires. A changing capacitance is created then, giving rise to a displacement current, d(CV)/dt.

Simultaneously with current and voltage the characteristics of the surrounding air were measured, i.e. temperatue and dew point. Normal and moistened climate was used. The moist climate was created by placing a glass cap over the specimen and a container with water. In the water some filtrating paper accelerated the evaporation. Because of changes in the outside temperature and humidity, relative air humidities (RH) were measured from 14% to 47%.

The measurements at NKF were done with a "megohm" meter with electrodes of slightly different sizes. The samples were aged by intense UV light comparable with 6.5 years of middle European sunlight.

3. Results

The surface resistivity is calculated with the following formula:

$$\sigma = R_X \frac{\pi (d_1 + g)}{g} \tag{3.1}$$

where:

 σ is the surface resistivity (not to be interpreted as conductivity) in ohms, or $\Omega m/m$

 $R_{\mathbf{x}}$ is the measured (surface) resistance

 $\pi(d_1+g)$ is the effective perimeter in metres of the guarded electrode

g is the distance in metres between the electrodes

The results of the complete set of measurements are given in table 5. In that table the parameter $\mathfrak d$ gives an indication about the relation resistivity/voltage. The parameter is defined as:

$$\partial = \frac{R_{75} V}{R_{300} V}$$
 (3.2)

The logarithmic mean values at RH = 43 ± 2 % are given in table 2. Only resistivities measured at long enough electrification times are used for this table. The electrification times until steady state current are given in table 1.

specimen	time (min.)	for steady state (\pm^{χ}) current
1		
2	30	5
3	40	10
4	100	5
5	100	5
б	180	13

table 1: Electrification times until steady state current.

specimen	surface resistivity	σ	(Ω)
2	1. 2·10 ⁹		
5	1.7·10 ¹⁰		
3	2.8·10 ¹⁰		
4	5. 1.1010		
1	1.9.1011		
6	8. 7·10 ¹¹		

table 2: Surface resistivities.

The results of the measurements on specimen nr. 2 are given in figure 4 as a function of the relative humidity.

figure 4: Surface resistivity as a function of relative humidity.

The measurements done at NKF are reported in table 5. Resistivity was measured immediately after conditioning (>24 hours) at 100 % RH and 23 °C.

No information was given on the accuracy and the reproducibility of these measurements. Ageing usually results in a decrease of surface resistivity. The aged sample of material nr. 1 has a higher surface resistivity than the new one, this could not be explained.

specimen	σ (Ω, new)	$\sigma(\Omega, \text{ aged})$
1	2.0.1013	9.9.1013
2	3. 5·10 ¹⁰	6.7·10 ⁶

table 5: NKF measurements.

4. Reproducibility and accuracy

The error sources are:

- 1. error in voltage
- 2. error in current
- 3. error in dew point
- 4. error in temperature
- 5. error in electrode sizes
- 6. contact potential
- 7. contact resistance
- 8. leakage current
- 9. time of electrification
- ad 1. The maximum relative error in the voltage measurement is 1 \times .
- ad 2. The maximum relative error in the current measurement is 2×2 .
- ad 3. The maximum absolute error in the dew point is 1

degree.

ad 4. The error of the thermometer is not known; it could be read with an accuracy of 0.2 degree.

ad 5. The width of all moulds was measured on 6 places spread over the circumference. In table 1 the results for each specimen are given.

specime	$en_{1} = ed_{1} - d_{2} = e$	mm) p (mm)	
1 S	5. 43	0. 07	
2 A	5. 27	0. 10	
2 S	5. 38	0. 12	
3 S	5. 37	0. 11 A	= aquadag
4 S	5. 49	0. 09 S	= silver
5 S	5. 46	0. 13	paint
6 S	5. 39	0. 09	

table 3: Mould sizes.

<u>ad 6.</u> To check the contact potential, current was measured with different ammeter-settings resulting in different voltages across the ammeter. An eventually present contact potential was found to be smaller than 0.01 V and therefore could not influence the measurement. this way.

ad 7. It is very difficult to check the measurement for contact resistance. Norman[A3] states that contact resistance varies with the resistivity of the sample, the type of contact, the applied voltage and the mechanical pressure. The influence of the type of contact could be checked by attaching also an aquadag (graphite) electrode on the specimen 1 and 2. The measurements with the aquadag electrodes did not differ from the measurements with silver paint electrodes.

ad 8. Leakage current was minimized by using extra insulated wires and a guarding electrode on the specimen, see figure 2. The effect of leakage current was checked by measuring the resistance of the complete circuit without specimen. This resistance was higher than $10^{14}~\Omega$. The highest measured resistance was $9\cdot10^{12}~\Omega$.

<u>ad 9.</u> The influence of the electrification time was examined by recording the current at constant voltage as a function of time. In that way the time for a steady state value of the current could be determined.

From the above described error sources no over-all accuracy of the measurements can be concluded. IEC standard 93[A2] prescribes an accuracy of the measuring device of 10 % for resistances below 10¹² Ω , and 20 % for higher values. The accuracy of the measuring device can be determined from

the points 1, 2, 5, and 8 with help of equation 3.1.

 $R_{X}(\Omega)$ rel. error $10^{12} - 10^{13}$ $15 \times 10^{11} - 10^{12}$ 7×10^{11} 6×10^{11}

table 4: Measuring device error.

Because of the variability (spread) of the resistance of a given specimen with test conditions determinations are[A2] usually not reproducible to closer than $\pm i0$ % and are often even more widely divergent (a range of values of 10 to 1 may be obtained under apparently identical conditions).

The reader can get an idea of the reproducibility of the measurements on one specimen by looking at the complete set in appendix 1.

With help of point 3 and 4 the error in the relative humidity can be determined. This leads to a relative error of 8 %.

5. References

- A1. FIBER OPTIC AERIAL CABLES IN HIGH-VOLTAGE-LINES. Siemens Report, NK 8506 E LWL 1
- A2. <u>IEC Publication 93</u>, second edition, 1980 METHODS OF TEST FOR VOLUME RESISTIVITY AND SURFACE RE-SISTIVITY OF SOLID ELECTRICAL INSULATING MATERIALS.
- A3. Norman, R. H.

CONDUCTIVE RUBBERS AND PLASTICS.

London: Applied Science Publishers, 1970

1
1
1 16 4.5·10 ¹¹ 22.5 9 43 3.84 * 1 17 4.3·10 ¹¹ 22.6 9 43 3.63 * 1 20 4.6·10 ¹¹ 23.2 9 40 4.29 1 21 1.3·10 ¹¹ 20.5 7/8 43 5.35 * 1 22 1.8·10 ¹⁰ 21.2 9 46 1.45 ** 1 54 1.0·10 ¹² 21.0 8 44 2.39 * 1 55 1.7·10 ¹² 22.1 10 47 4.17 2 1 2.1·10 ⁰⁹ 23.8 9 39 1.06 2 3 1.5·10 ⁰⁹ 22.2 8 40 1.03 2 8 8.4·10 ¹⁰ 24.0 1 22 1.60 2 9 3.9·10 ¹¹ 21.1 -2 22 1.45 2 24 6.1·10 ¹¹ 22.1 0/1 24 1.74 2 25 1.5·10 ⁰⁹ 18.9 6 41 1.16 2 26 1.2·10 ⁰⁹ 20.4 7 42 1.06 * 2 27 1.2·10 ⁰⁹ 20.9 8 43 1.06 * 2 27 1.2·10 ⁰⁹ 20.9 8 43 1.06 * 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.10 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.00 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.00 ** 2 52 4.3·10 ¹³ 20.2 -5 18 2 53 9.3·10 ¹³ 20.2 -5 18 3 44 1.8·10 ¹⁰ 20.1 7 43 1.10 ** 3 44 1.8·10 ¹⁰ 20.1 7 43 1.10 ** 3 44 1.8·10 ¹⁰ 20.1 7 43 1.10 ** 3 44 1.8·10 ¹⁰ 20.1 7 43 1.10 ** 3 44 1.8·10 ¹⁰ 20.1 7 43 1.10 ** 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 ** 3 45 2.0·10 ¹⁰ 21.0 8 43 0.95 ** 3 46 1.4·10 ¹³ 20.5 7 42 0.99 3 45 2.0·10 ¹⁰ 21.0 8 43 0.95 ** 3 46 1.4·10 ¹³ 20.5 7 7 22 3 56 2.3·10 ¹⁰ 22.8 10 44 0.91 ** 4 47 2.8·10 ¹⁴ 20.6 -3 21 4 48 5.1·10 ¹⁰ 20.4 8 45 1.09 **
1 17
1 20
1 21 1.3·10 ¹¹ 20.5 7/8 43 5.35 * 1 22 1.8·10 ¹⁰ 21.2 9 46 1.45 ** 1 54 1.0·10 ¹² 21.0 8 44 2.39 * 1 55 1.7·10 ¹² 22.1 10 47 4.17 2 1 2.1·10 ⁰⁹ 23.8 9 39 1.06 2 3 1.5·10 ⁰⁹ 22.2 8 40 1.03 2 8 8.4·10 ¹⁰ 24.0 1 22 1.60 2 9 3.9·10 ¹¹ 21.1 -2 22 1.45 2 24 6.1·10 ¹¹ 22.1 0/1 24 1.74 2 25 1.5·10 ⁰⁹ 18.9 6 41 1.16 2 25 1.5·10 ⁰⁹ 18.9 6 41 1.16 2 26 1.2·10 ⁰⁹ 20.4 7 42 1.06 * 2 27 1.2·10 ⁰⁹ 20.9 8 43 1.06 * 2 28 7.8·10 ⁰⁸ 21.8 9 44 1.10 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 52 4.3·10 ¹³ 20.2 -5 18 2 53 9.3·10 ¹³ 20.2 -5 18 2 53 9.3·10 ¹³ 20.2 -5 18 3 44 8·10 ¹⁰ 20.0 7 43 1.10 * 3 42 4.8·10 ¹⁰ 23.9 1 22 1.60 2A 12 3.4·10 ¹¹ 21.5 -2 21 1.39 3 41 5.5·10 ¹⁰ 20.0 7 43 1.10 * 3 42 4.8·10 ¹⁰ 20.1 7 43 1.10 * 3 43 2.2·10 ¹⁰ 19.5 7 44 1.10 * 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 * 3 45 2.0·10 ¹⁰ 20.5 7 42 0.99 3 45 2.0·10 ¹⁰ 21.0 8 43 0.95 * 3 46 1.4·10 ¹³ 20.5 -3/-2 22 3 56 2.3·10 ¹⁰ 22.8 10 44 0.91 *
1
1 54 1.0·10 ¹² 21.0 8 44 2.39 * 1 55 1.7·10 ¹² 22.1 10 47 4.17 2 1 2.1·10 ⁰⁹ 23.8 9 39 1.06 2 3 1.5·10 ⁰⁹ 22.2 8 40 1.03 2 8 8.4·10 ¹⁰ 24.0 1 22 1.60 2 9 3.9·10 ¹¹ 21.1 -2 22 1.45 2 24 6.1·10 ¹¹ 22.1 0/1 24 1.74 2 25 1.5·10 ⁰⁹ 18.9 6 41 1.16 2 26 1.2·10 ⁰⁹ 20.4 7 42 1.06 * 2 27 1.2·10 ⁰⁹ 20.4 7 42 1.06 * 2 27 1.2·10 ⁰⁹ 20.9 8 43 1.06 * 2 28 7.8·10 ⁰⁸ 21.8 9 44 1.10 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 3 43 1.10 * 3 44 1.8·10 ¹⁰ 23.9 1 22 1.60 2A 12 3.4·10 ¹¹ 21.5 -2 21 1.39 3 41 5.5·10 ¹⁰ 20.0 7 43 1.10 * 3 42 4.8·10 ¹⁰ 20.1 7 43 1.10 * 3 43 2.2·10 ¹⁰ 19.5 7 44 1.10 * 3 44 1.8·10 ¹⁰ 20.1 7 43 1.10 * 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 * 3 45 2.0·10 ¹⁰ 21.0 8 43 0.95 * 3 46 1.4·10 ¹³ 20.5 -3/-2 22 3 56 2.3·10 ¹⁰ 22.8 10 44 0.91 *
1 55 1.7·10 ¹² 22.1 10 47 4.17 2 1 2.1·10 ⁰⁹ 23.8 9 39 1.06 2 3 1.5·10 ⁰⁹ 22.2 8 40 1.03 2 8 8.4·10 ¹⁰ 24.0 1 22 1.60 2 9 3.9·10 ¹¹ 21.1 -2 22 1.45 2 24 6.1·10 ¹¹ 22.1 0/1 24 1.74 2 25 1.5·10 ⁰⁹ 18.9 6 41 1.16 2 26 1.2·10 ⁰⁹ 20.4 7 42 1.06 * 2 27 1.2·10 ⁰⁹ 20.9 8 43 1.06 * 2 28 7.8·10 ⁰⁸ 21.8 9 44 1.10 ** 2 28 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 29 7.1·10 ¹³ 20.2 -5 18 2 53 9.3·10 ¹³
2 1 2.1·10 ⁰⁹ 23.8 9 39 1.06 2 3 1.5·10 ⁰⁹ 22.2 8 40 1.03 2 8 8.4·10 ¹⁰ 24.0 1 22 1.60 2 9 3.9·10 ¹¹ 21.1 -2 22 1.45 2 24 6.1·10 ¹¹ 22.1 0/1 24 1.74 2 25 1.5·10 ⁰⁹ 18.9 6 41 1.16 2 26 1.2·10 ⁰⁹ 20.4 7 42 1.06 * 2 27 1.2·10 ⁰⁹ 20.9 8 43 1.06 * 2 28 7.8·10 ⁰⁸ 21.8 9 44 1.10 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 52 4.3·10 ¹³ 20.2 -5 18 2 53 9.3·10 ¹³ 21.5 -2 21 1.39 3 41 5.5·10 ¹⁰ 23.9 1 22 1.60 2A 12 3.4·10 ¹¹ 21.5 -2 21 1.39 3 41 5.5·10 ¹⁰ 20.0 7 43 1.10 * 3 42 4.8·10 ¹⁰ 20.1 7 43 1.10 * 3 43 2.2·10 ¹⁰ 19.5 7 44 1.10 * 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 * 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 * 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 * 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 * 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 * 3 44 1.8·10 ¹⁰ 20.5 7 42 0.99 3 45 2.0·10 ¹⁰ 21.0 8 43 0.95 * 3 46 1.4·10 ¹³ 20.5 -3/-2 22 3 56 2.3·10 ¹⁰ 22.8 10 44 0.91 *
2
2 8 8 8.4·10 ¹⁰ 24.0 1 22 1.60 2 9 3.9·10 ¹¹ 21.1 -2 22 1.45 2 24 6.1·10 ¹¹ 22.1 0/1 24 1.74 2 25 1.5·10 ⁰⁹ 18.9 6 41 1.16 2 26 1.2·10 ⁰⁹ 20.4 7 42 1.06 * 2 27 1.2·10 ⁰⁹ 20.9 8 43 1.06 * 2 28 7.8·10 ⁰⁸ 21.8 9 44 1.10 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 52 4.3·10 ¹³ 20.2 -5 18 2 53 9.3·10 ¹³ **14 2 53 9.3·10 ¹³ **14 2 53 9.3·10 ¹³ **14 2 A 5 8.6·10 ¹⁰ 23.9 1 22 1.60 2 A 12 3.4·10 ¹¹ 21.5 -2 21 1.39 3 41 5.5·10 ¹⁰ 20.0 7 43 1.10 ** 3 42 4.8·10 ¹⁰ 20.1 7 43 1.10 ** 3 43 2.2·10 ¹⁰ 19.5 7 44 1.10 ** 3 44 1.8·10 ¹⁰ 20.1 7 43 1.10 ** 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 ** 3 42 A 1.7·10 ¹⁰ 20.5 7 42 0.99 3 45 2.0·10 ¹⁰ 21.0 8 43 0.95 ** 3 46 1.4·10 ¹³ 20.5 -3/-2 22 3 56 2.3·10 ¹⁰ 22.8 10 44 0.91 ** 4 47 2.8·10 ¹⁴ 20.6 -3 21 4 48 5.1·10 ¹⁰ 20.4 8 45 1.09 **
2 9 3.9·10 ¹¹ 21.1 -2 22 1.45 2 24 6.1·10 ¹¹ 22.1 0/1 24 1.74 2 25 1.5·10 ⁰⁹ 18.9 6 41 1.16 2 26 1.2·10 ⁰⁹ 20.4 7 42 1.06 * 2 27 1.2·10 ⁰⁹ 20.9 8 43 1.06 * 2 28 7.8·10 ⁰⁸ 21.8 9 44 1.10 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 52 4.3·10 ¹³ 20.2 -5 18 2 53 9.3·10 ¹³ 20.2 -5 18 2 A 5 8.6·10 ¹⁰ 23.9 1 22 1.60 2A 12 3.4·10 ¹¹ 21.5 -2 21 1.39 3 41 5.5·10 ¹⁰ 20.0 7 43 1.10 * 3 42 4.8·10 ¹⁰ 20.1 7 43 1.10 * 3 43 2.2·10 ¹⁰ 19.5 7 44 1.10 * 3 44 1.8·10 ¹⁰ 20.1 7 43 1.10 * 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 * 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 * 3 44 1.8·10 ¹⁰ 20.5 7 42 0.99 3 45 2.0·10 ¹⁰ 21.0 8 43 0.95 * 3 46 1.4·10 ¹³ 20.5 -3/-2 22 3 56 2.3·10 ¹⁰ 22.8 10 44 0.91 * 4 47 2.8·10 ¹⁴ 20.6 -3 21 4 48 5.1·10 ¹⁰ 20.4 8 45 1.09 *
2 24 6. 1·10 ¹¹ 22. 1 0/1 24 1. 74 2 25 1. 5·10 ⁰⁹ 18. 9 6 41 1. 16 2 26 1. 2·10 ⁰⁹ 20. 4 7 42 1. 06 * 2 27 1. 2·10 ⁰⁹ 20. 9 8 43 1. 06 * 2 28 7. 8·10 ⁰⁸ 21. 8 9 44 1. 10 ** 2 29 7. 1·10 ⁰⁸ 22. 0 9 44 1. 09 ** 2 52 4. 3·10 ¹³ 20. 2 -5 18 2 53 9. 3·10 ¹³ *14 2 A 5 8. 6·10 ¹⁰ 23. 9 1 22 1. 60 2 A 12 3. 4·10 ¹¹ 21. 5 -2 21 1. 39 3 41 5. 5·10 ¹⁰ 20. 0 7 43 1. 10 * 3 42 4. 8·10 ¹⁰ 20. 1 7 43 1. 10 * 3 43 2. 2·10 ¹⁰ 19. 5 7 44 1. 10 * 3 44 1. 8·10 ¹⁰ 20. 1 7 43 0. 92 * 3 42A 1. 7·10 ¹⁰ 20. 5 7 42 0. 99 3 45 2. 0·10 ¹⁰ 21. 0 8 43 0. 95 * 3 46 1. 4·10 ¹³ 20. 5 -3/-2 22 3 56 2. 3·10 ¹⁰ 22. 8 10 44 0. 91 * 4 47 2. 8·10 ¹⁴ 20. 6 -3 21 4 48 5. 1·10 ¹⁰ 20. 4 8 45 1. 09 *
2 25 1.5·10 ⁰⁹ 20.4 7 42 1.06 × 2 26 1.2·10 ⁰⁹ 20.9 8 43 1.06 × 2 28 7.8·10 ⁰⁸ 21.8 9 44 1.10 ×× 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ×× 2 52 4.3·10 ¹³ 20.2 -5 18 2 53 9.3·10 ¹³ ×14 2A 5 8.6·10 ¹⁰ 23.9 1 22 1.60 2A 12 3.4·10 ¹¹ 21.5 -2 21 1.39 3 41 5.5·10 ¹⁰ 20.0 7 43 1.10 × 3 42 4.8·10 ¹⁰ 20.1 7 43 1.10 × 3 43 2.2·10 ¹⁰ 19.5 7 44 1.10 × 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 × 3 42A 1.7·10 ¹⁰ 20.5 7 42 0.99 3 45 2.0·10 ¹⁰ 21.0 8 43 0.95 × 3 46 1.4·10 ¹³ 20.5 -3/-2 22 3 56 2.3·10 ¹⁰ 22.8 10 44 0.91 × 4 47 2.8·10 ¹⁴ 20.6 -3 21 4 48 5.1·10 ¹⁰ 20.4 8 45 1.09 ×
2 26 1.2·10 ⁰⁹ 20.4 7 42 1.06 * 2 27 1.2·10 ⁰⁹ 20.9 8 43 1.06 * 2 28 7.8·10 ⁰⁸ 21.8 9 44 1.10 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 52 4.3·10 ¹³ 20.2 -5 18 2 53 9.3·10 ¹³ *14 2A 5 8.6·10 ¹⁰ 23.9 1 22 1.60 2A 12 3.4·10 ¹¹ 21.5 -2 21 1.39 3 41 5.5·10 ¹⁰ 20.0 7 43 1.10 * 3 42 4.8·10 ¹⁰ 20.1 7 43 1.10 * 3 43 2.2·10 ¹⁰ 19.5 7 44 1.10 * 3 44 1.8·10 ¹⁰ 20.1 7 43 1.10 * 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 * 3 42A 1.7·10 ¹⁰ 20.5 7 42 0.99 3 45 2.0·10 ¹⁰ 21.0 8 43 0.95 * 3 46 1.4·10 ¹³ 20.5 -3/-2 22 3 56 2.3·10 ¹⁰ 22.8 10 44 0.91 * 4 47 2.8·10 ¹⁴ 20.6 -3 21 4 48 5.1·10 ¹⁰ 20.4 8 45 1.09 *
2 27 1.2·10 ⁰⁹ 20.9 8 43 1.06 × 2 28 7.8·10 ⁰⁸ 21.8 9 44 1.10 ×× 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ×× 2 52 4.3·10 ¹³ 20.2 -5 18 2 53 9.3·10 ¹³
2 28 7.8·10 ⁰⁸ 21.8 9 44 1.10 ** 2 29 7.1·10 ⁰⁸ 22.0 9 44 1.09 ** 2 52 4.3·10 ¹³ 20.2 -5 18 2 53 9.3·10 ¹³ **14 2A 5 8.6·10 ¹⁰ 23.9 1 22 1.60 2A 12 3.4·10 ¹¹ 21.5 -2 21 1.39 3 41 5.5·10 ¹⁰ 20.0 7 43 1.10 * 3 42 4.8·10 ¹⁰ 20.1 7 43 1.10 * 3 43 2.2·10 ¹⁰ 19.5 7 44 1.10 * 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 * 3 42A 1.7·10 ¹⁰ 20.5 7 42 0.99 3 45 2.0·10 ¹⁰ 21.0 8 43 0.95 * 3 46 1.4·10 ¹³ 20.5 -3/-2 22 3 56 2.3·10 ¹⁰ 22.8 10 44 0.91 * 4 47 2.8·10 ¹⁴ 20.6 -3 21 4 48 5.1·10 ¹⁰ 20.4 8 45 1.09 *
2 29 7. 1·10 ⁰⁸ 22. 0 9 44 1. 09 ** 2 52 4. 3·10 ¹³ 20. 2 -5 18 2 53 9. 3·10 ¹³
2 52 4. 3·10 ¹³ 20. 2 -5 18 2 53 9. 3·10 ¹³
2 53 9.3·10 ¹³ 814 2A 5 8.6·10 ¹⁰ 23.9 1 22 1.60 2A 12 3.4·10 ¹¹ 21.5 -2 21 1.39 3 41 5.5·10 ¹⁰ 20.0 7 43 1.10 * 3 42 4.8·10 ¹⁰ 20.1 7 43 1.10 * 3 43 2.2·10 ¹⁰ 19.5 7 44 1.10 * 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 * 3 42A 1.7·10 ¹⁰ 20.5 7 42 0.99 3 45 2.0·10 ¹⁰ 21.0 8 43 0.95 * 3 46 1.4·10 ¹³ 20.5 -3/-2 22 3 56 2.3·10 ¹⁰ 22.8 10 44 0.91 * 4 47 2.8·10 ¹⁴ 20.6 -3 21 4 48 5.1·10 ¹⁰ 20.4 8 45 1.09 *
2A 5 8. $6 \cdot 10^{10}$ 23. 9 1 22 1. 60 2A 12 3. $4 \cdot 10^{11}$ 21. 5 -2 21 1. 39 3 41 5. $5 \cdot 10^{10}$ 20. 0 7 43 1. 10 * 3 42 4. $8 \cdot 10^{10}$ 20. 1 7 43 1. 10 * 3 43 2. $2 \cdot 10^{10}$ 19. 5 7 44 1. 10 * 3 44 1. $8 \cdot 10^{10}$ 20. 1 7 43 0. 92 * 3 42A 1. $7 \cdot 10^{10}$ 20. 5 7 42 0. 99 3 45 2. $0 \cdot 10^{10}$ 21. 0 8 43 0. 95 * 3 46 1. $4 \cdot 10^{13}$ 20. 5 -3/-2 22 3 56 2. $3 \cdot 10^{10}$ 22. 8 10 44 0. 91 * 4 47 2. $8 \cdot 10^{14}$ 20. 6 -3 21 4 48 5. $1 \cdot 10^{10}$ 20. 4 8 45 1. 09 *
2A 12 3. $4 \cdot 10^{11}$ 21. 5 -2 21 1. 39 3 41 5. $5 \cdot 10^{10}$ 20. 0 7 43 1. 10 * 3 42 4. $8 \cdot 10^{10}$ 20. 1 7 43 1. 10 * 3 43 2. $2 \cdot 10^{10}$ 19. 5 7 44 1. 10 * 3 44 1. $8 \cdot 10^{10}$ 20. 1 7 43 0. 92 * 3 42A 1. $7 \cdot 10^{10}$ 20. 5 7 42 0. 99 3 45 2. $0 \cdot 10^{10}$ 21. 0 8 43 0. 95 * 3 46 1. $4 \cdot 10^{13}$ 20. 5 $-3/-2$ 22 3 56 2. $3 \cdot 10^{10}$ 22. 8 10 44 0. 91 * 4 47 2. $8 \cdot 10^{14}$ 20. 6 -3 21 4 48 5. $1 \cdot 10^{10}$ 20. 4 8 45 1. 09 *
3 41 5.5·10 ¹⁰ 20.0 7 43 1.10 \times 3 42 4.8·10 ¹⁰ 20.1 7 43 1.10 \times 3 43 2.2·10 ¹⁰ 19.5 7 44 1.10 \times 3 44 1.8·10 ¹⁰ 20.1 7 43 0.92 \times 3 42A 1.7·10 ¹⁰ 20.5 7 42 0.99 3 45 2.0·10 ¹⁰ 21.0 8 43 0.95 \times 3 46 1.4·10 ¹³ 20.5 -3/-2 22 3 56 2.3·10 ¹⁰ 22.8 10 44 0.91 \times 4 47 2.8·10 ¹⁴ 20.6 -3 21 4 48 5.1·10 ¹⁰ 20.4 8 45 1.09 \times
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3 42A 1.7·10 ¹⁰ 20.5 7 42 0.99 3 45 2.0·10 ¹⁰ 21.0 8 43 0.95 * 3 46 1.4·10 ¹³ 20.5 $-3/-2$ 22 $$ 3 56 2.3·10 ¹⁰ 22.8 10 44 0.91 * 4 47 2.8·10 ¹⁴ 20.6 -3 21 $$ 4 48 5.1·10 ¹⁰ 20.4 8 45 1.09 *
$egin{array}{cccccccccccccccccccccccccccccccccccc$
$egin{array}{cccccccccccccccccccccccccccccccccccc$
3 56 2.3·10 ¹⁰ 22.8 10 44 0.91 * 4 47 2.8·10 ¹⁴ 20.6 -3 21 4 48 5.1·10 ¹⁰ 20.4 8 45 1.09 *
4 47 2.8·10 ¹⁴ 20.6 -3 21 4 48 5.1·10 ¹⁰ 20.4 8 45 1.09 *
4 48 5.1·10 ¹⁰ 20.4 8 45 1.09 *
4 49 5.6·10 ¹⁰ 20.1 8 46 1.06
5 31 1.2·10 ¹⁰ 20.2 8 46 2.27 **
5 34 1.7·10 ¹⁰ 21.5 9 45 1.65 *
5 36 1.8·10 ¹⁰ 21.5 9 45 1.67 *
5 37 4.6·10 ¹² 20.2 6 39 2.36
5 38 3.9·10 ¹¹ 20.0 7 43 1.52 **
5 39 1.3·10 ¹² 18.6 6 44 2.50
5 40 1.9·10 ¹² 18.9 6 43 2.06
6 50 8.7·10 ¹¹ 21.1 8/9 45 2.60 *
6 51 1.3·10 ¹² 20.0 8 46 1.69

* measurement used for table 2.

** condensed water on surface.

table 5: Complete set of measurements.

```
POTCALC/13I
DATE & TIME PRINTED: THURSDAY, APRIL 16, 1987 @ 13:43:24.
```

```
1.00
         BEGIN
 200
         $ INCLUDE "PLOTTER/ALGOL/DECLARATION ON APPL"
 300
         $ INCLUDE "PLOTTER/ALGOL/NEWOBJECT ON APPL"
 400
         $ INCLUDE "PLOTTER/ALGOL/CONTOUR1 ON APPL"
         $ INCLUDE "PLOTTER/ALGOL/POLYGON ON APPL"
 500
 600
         $ INCLUDE "PLOTTER/ALGOL/STRAIGHTLINEPIECE ON APPL"
 700
         $ INCLUDE "PLOTTER/ALGOL/MAPANDDRAWOBJECT1 ON APPL"
 800
         $ INCLUDE "PLOTTER/ALGOL/CLEAROBJECT ON APPL"
900
         $ INCLUDE "PLOTTER/ALGOL/AXISCOMPLETE ON APPL"
         $ INCLUDE "PLOTTER/ALGOL/COMMENTTEXT ON APPL"
1000
         $ INCLUDE "PLOTTER/ALGOL/COMMENTINUMBER ON APPL"
1100
         $ INCLUDE "PLOTTER/ALGOL/DRAWOBJECT ON APPL"
1200
1300
         $ INCLUDE "PLOTTER/ALGOL/DISPOSEOBJECT ON APPL"
1400
         $ INCLUDE "NUMLIB/ALGOL/DECLARATION ON APPL"
1500
         $ INCLUDE "NUMLIB/ALGOL/DEC ON APPL"
         $ INCLUDE "NUMLIB/ALGOL/DECINV ON APPL"
1600
         $ INCLUDE "NUMLIB/ALGOL/AMAALV ON APPL"
1700
1800
           FILE IN(KIND=REMOTE), OUT(KIND=REMOTE);
1900
         % THIS VERSION OF THE POTCALC PROGRAM IS MADE FOR INTERACTIVE USE
         % THE FILES THAT ARE USED ARE: IN(REMOTE), OUT(REMOTE),
2000
2100
         % PR(PRINTER), PLOT(PRE VIEWER)
2200
         %----**** START INPUT
2300
2400
2500
           INTEGER N;
           WRITE(OUT, <"NUMBER OF WIRES (HV-LINES + GROUND WIRES)">);
2600
2700
           READ(IN,/,N);
2800
2900
           BEGIN
3000
             REAL ARRAY L[1:N,1:3], VLR, VLI, QR, QI[1:N], P[1:N,1:N];
3100
             REAL F1, F2, EPS, VM;
3200
             INTEGER I, J, Q;
3300
             STRING PHASE;
             WRITE(OUT, <"CHOOSE: PHASE (R,S,T,O) INPUT = 1. VOLTAGE".
3400
                          " (COMPLEX) INPUT = 2">);
3500
             READ(IN,/,Q);
3600
3700
             IF Q=1 THEN
               BEGIN
3800
3900
                 REAL PHV;
                 WRITE(OUT, <"GIVE PHASE VOLTAGE (KV)">):
4000
4100
                 READ(IN,/,PHV);
                 WRITE(OUT, <"SPECIFY EACH WIRE: DIAM.(M), X(M), Y(M), PHASE",
4200
4300
                              "(R,S,T,0)">);
                 FOR I:=1 STEP 1 UNTIL N DO
4400
4500
                    BEGIN
4600
                      READ(IN, /, L[I, 1], L[I, 2], L[I, 3], PHASE);
4700
                      IF PHASE="R" THEN BEGIN VLR[I]:=PHV; VLI[I]:=0; END;
                      IF PHASE="S" THEN BEGIN VLR[I]:=-1*PHV/2;
4800
4900
                                             VLI[I]:=-1*PHV*SQRT(3)/2; END;
5000
                      IF PHASE="T" THEN BEGIN VLR[I]:=-1*PHV/2;
5100
                                             VLI[I]:=PHV*SQRT(3)/2; END;
5200
                      IF PHASE="O" THEN VLI[I]:=VLR[I]:=0;
5300
                    END;
5400
               END;
             IF Q=2 THEN
5500
5600
               BEGIN
5700
                 WRITE(OUT, <"SPECIFY EACH WIRE: DIAM.(M), X(M), Y(M),"
5800
                              " VR(KV), VI(KV)">);
```

```
5900
                   FOR I:=1 STEP 1 UNTIL N DO READ(IN, /, L[I, 1], L[I, 2], L[I, 3],
 6000
                                                          VLR[I], VLI[I]);
                 END;
 6100
 6200
 6300
           %----**** END INPUT / START CALCULATIONS
 6400
 6500
               EPS:=1000*8.8543@-12:
                                            % BECAUSE: V(KV) AND Q(C)
 6600
               F1:=1/(4*EPS*ARCSIN(1));
               F2:=F1/2;
 6700
 6800
               FOR I:=1 STEP 1 UNTIL N DO
 6900
                 BEGIN
 7000
                   FOR J:=1 STEP 1 UNTIL N DO
 7100
                     IF I=J THEN P[I,I]:=F1*LN(4*L[I,3]/L[I,1])
 7200
 7300
                         P[I,J]:=-F2*LN(((L[I,2]-L[J,2])**2+(L[I,3]-L[J,3])**2)/
 7400
                                         ((L[1,2]-L[J,2])**2+(L[I,3]+L[J,3])**2));
 7500
                END:
 7600
 7700
              BEGIN
 7800
              % DETERMINING THE LINE-CHARGES
 7900
 8000
                INTEGER ARRAY PP[1:N]; REAL CA; BOOLEAN SINGULAR;
 8100
                DEC(1, N, P, PP, SINGULAR, CA);
                IF SINGULAR THEN WRITE(OUT, <"SINGULAR=TRUE">):
 8200
                WRITE(OUT, <"CA=", E8.1>, CA);
 8300
 8400
                DECINV(1,N,P,PP);
                AMAALV(1,N,P,VLR,QR);
 8500
 8600
                 AMAALV(1,N,P,VLI,QI);
 8700
              END:
 8800
 8900
              RECTN
 9000
              % DETERMINING THE MAXIMUM VOLTAGE VM
 9100
 9200
                REAL VI;
 9300
                I:=1; VM:=0;
                WHILE I <= N DO
 9400
 9500
                   BEGIN
 9600
                     V1:=SORT(VLR[I]**2+VLI[I]**2);
 9700
                     IF V1>VM THEN VM:=V1;
 9800
                     I:=I+1:
 9900
                   END;
10000
              END;
10100
              WRITE(OUT, <"OR[1:N] AND QI[1:N] ARE KNOWN NOW">);
10200
10300
          %----*** END CALCULATIONS / START OUTPUT
10400
10500
              BEGIN
10600
              % OUTPUT PROGRAMM:
              %
                   OUTPUT 1: COMPLEX VOLTAGE IN ANY POINT X, Y IS GIVEN
10700
              7
10800
                             ON THE TERMINAL
              Z
10900
                   OUTPUT 2: COMPLETE SET OF CAPACITANCES, LINE-GROUND
              %
11000
                             AND LINE-LINE, IS GIVEN ON PAPER
11100
              %
                   OUTPUT 3: FIELD STRENGHT CALCULATION IN POINT X, Y
              %
11200
                   OUTPUT 4: AN ARRAY IS FILLED WITH VOLTAGES IN AREA
              %
11300
                             -XMAX: XMAX, 0: YMAX AND PRINTED
              %
11400
                   OUTPUT 5: EQUIPOTENTIAL LINES ARE DRAWN IN AREA
              7
11500
                             -XMAX: XMAX, 0: YMAX BY ELECTROSTATIC PLOTTER
11600
11700
                INTEGER OUTPUT, Q;
                REAL X,Y, VRXY, VIXY, VXY;
11800
11900
                STRING TONA;
12000
```

```
12100
                PROCEDURE VRI(PX, PY, PVRXY, PVIXY);
12200
                 % THIS PROCEDURE CALCULATES THE REAL AND IMAGINAR
12300
                  Z PART OF THE VOLTAGE (PVRXY AND PVIXY) IN A GIVEN POINT PX.PY
12400
                  % WHEN ALL QR[1:N] AND QI[1:N] ARE KNOWN.
12500
                  % IF PX.PY IS INSIDE A WIRE, THEN THE GIVEN WIRE-VOLTAGES
12600
                  % ARE COPIED IN PVRXY AND PVIXY.
12700
                   VALUE PX, PY; REAL PX, PY, PVRXY, PVIXY;
12800
                   BEGIN
12900
                     INTEGER I.J;
13000
                     REAL K: BOOLEAN F:
13100
                     J:=1; F:=FALSE;
13200
                    WHILE (NOT F AND J<=N) DO
13300
                       BEGIN
13400
                         IF ((PX-L[J,2])**2)+((PY-L[J,3])**2) \le (L[J,1]/2)**2
13500
                           THEN
13600
                             RECTN
13700
                               PVRXY:=VLR[J]; PVIXY:=VLI[J];
13800
                               F:=TRUE
13900
                             END:
14000
                         J:=J+1;
14100
                       END:
                     IF NOT F THEN
14200
14300
                       BEGIN
14400
                         PVRXY:=0:
                         PVI XY: =0;
14500
14600
                         FOR I:=1 STEP 1 UNTIL N DO
14700
                           BEGIN
14800
                             REAL K:
14900
                             K:=-LN(((L[I,2]-PX)**2+(L[I,3]-PY)**2)/
15000
                                    ((L[I,2]-PX)**2+(L[I,3]+PY)**2));
15100
                             PVRXY := PVRXY + QR[I] * F2 * K;
15200
                             PVIXY := PVIXY + QI[I] * F2 * K;
15300
                           END;
15400
                       END;
15500
                  END;
15600
15700
                WRITE(OUT, <"GIVE NAME OF TOWER">);
15800
                READ(IN,/,TONA);
15900
                WRITE(OUT, <"WHAT OUTPUT DO YOU WANT (1-5)?">);
16000
                WRITE(OUT, <"1: COMPLEX VOLTAGE IN X, Y (TERMINAL)">);
16100
                WRITE(OUT, <"2: CAPACITANCES (PRINTER)">);
16200
                WRITE(OUT,<"3: FIELD STRENGTH IN POINT X,Y (TERMINAL)">);
16300
                WRITE(OUT, <"4: ARRAY OF VOLTAGES (PRINTER)">);
16400
                WRITE(OUT, <"5: EQUIPOTENTIAL LINES (PREVIEWER)">);
16500
16600
                READ(IN, /,OUTPUT);
16700
                WHILE (OUTPUT<6) AND (OUTPUT>0) DO
16800
16900
                  BEGIN
17000
                     IF OUTPUT=1 THEN
                                        17100
17200
                       BEGIN
17300
                         INTEGER A;
                         WRITE(OUT, <"TOWER = ", A12>, TONA);
17400
17500
                         A:=11;
                         WHILE A=11 DO
17600
17700
                           BEGIN
                             WRITE(OUT, <"GIVE: X(M), Y(M)">);
17800
                             READ(IN,/,X,Y);
17900
                             VRI(X,Y,VRXY,VIXY);
18000
                             VXY:=SQRT(VRXY**2+VIXY**2);
18100
                             WRITE(OUT, <"VR(X,Y)=",E10.3," KV">, VRXY);
18200
```

```
WRITE(OUT,<"VI(X,Y)=",E10.3," KV">,VIXY);
18300
                            WRITE(OUT, <"V(X,Y) =", E10.3," KV">, VXY);
18400
18500
                            WRITE(OUT,</,"MORE POINTS? YES=11, NO=5">);
                             READ(IN, /, A);
18600
18700
                          END:
18800
                      END:
18900
19000
                    IF OUTPUT=2 THEN
                                        19100
                      REGIN
19200
                        FILE PR(KIND=PRINTER);
19300
                        REAL ARRAY C[1:N,1:N];
19400
                        INTEGER II:
19500
                        FOR I:=1 STEP 1 UNTIL N DO
19600
                          FOR J:=1 STEP 1 UNTIL N DO
19700
                            BEGIN
19800
                               IF I=J THEN
19900
                                BEGIN
20000
                                  C[I,I]:=0;
                                  FOR II:=1 STEP 1 UNTIL N DO
20100
20200
                                              C[I,I]:=C[I,I]+P[I,II]*10-3;
20300
                                END
20400
                               ELSE C[I,J]:=P[I,J]*10-3;
20500
20600
                        WRITE(PR,<"TOWER = ",A20>,TONA);
                        WRITE(PR,<"WIRES:">);
20700
20800
                        WRITE(PR, \langle X2, "X(M)", X5, "Y(M)", X4, "DIAM(M)", X9,
20900
                                     "VOLTAGE">);
21000
                        FOR I:=1 STEP 1 UNTIL N DO
21100
                          WRITE(PR, \langle F6.2, F9.2, F11.5, F11.3, +J(,F8.3, )KV' >,
21200
                                L[1,2],L[1,3],L[1,1],VLR[1],VLI[1]);
                        WRITE(PR,</,"CAPACITANCES OF ",A20," ARE (F/M):",/>,
21300
21400
                              TONA);
21500
                        FOR I:=1 STEP 1 UNTIL N DO
21600
                         IF N>9 THEN WRITE(PR, */, N, C[I, *])
                                ELSE WRITE(PR,<*E14.5>,N,C[1,*]);
21700
21800
                        WRITE(OUT, <"USE: 'U$SERVICE/BACKUP ON APPL' TO PRINT">):
21900
                      END;
22000
22100
                                       22200
                    IF OUTPUT=3 THEN
22300
                      BEGIN
22400
                        INTEGER CALCTYPE, CN;
22500
                        REAL ARRAY E[1:2];
22600
22700
                        PROCEDURE EFIELD(X,Y,EA);
22800
                            %
22900
                            % THIS PROCEDURE CALLCULATES THE ABSOLUTE VALUES
23000
                            % OF THE COMPLEX EL. FIELD STRENGTH IN (X,Y);
23100
                            % DELIVERED IN EX AND EY
23200
                         VALUE X, Y; REAL X, Y; REAL ARRAY EA[*];
23300
                           BEGIN
23400
                            COMPLEX ARRAY E[1:2]:
23500
                            E[1] := E[2] := COMPLEX(0,0);
23600
                            FOR I:=1 STEP 1 UNTIL N DO
23700
                              BEGIN
23800
                                COMPLEX F;
23900
                                F:=250*COMPLEX(QR[I],QI[I])/(EPS*ARCSIN(1));
24000
                                E[1]:=E[1]+F*(X-L[I,2])/((X-L[I,2])**2)+
24100
                                                          ((Y-L[I,3])**2))
24200
                                           -F*(X-L[I,2])/(((X-L[I,2])**2)+
24300
                                                          ((Y+L[I,3])**2));
24400
                                E[2]:=E[2]+F*(Y-L[I,3])/(((X-L[I,2])**2)+
```

```
24500
                                                               ((Y-L[I,3])**2))
24600
                                              -F*(Y+L[I,3])/(((X-L[I,2])**2)+
24700
                                                               ((Y+L[I,3])**2));
24800
                                 END;
24900
                               EA[1]:=CABS(E[1]);
25000
                               EA[2]:=CABS(E[2]);
25100
                           END:
25200
25300
                          WRITE(OUT, < "CHOOSE: FIELD STRENGHT CALCULATION ",
25400
                                       "IN POINT = 1">);
25500
                          WRITE (OUT, \langle X8, "MAX. FIELD ON CONDUCTOR = 2" \rangle);
25600
                          READ (IN, /, CALCTYPE);
25700
                          IF CALCTYPE=1 THEN
25800
                             BEGIN
                               WRITE(OUT, <"GIVE: X, Y">):
25900
26000
                               READ(IN,/,X,Y);
26100
                               EFIELD(X,Y,E);
26200
                               WRITE(OUT, <"EX=", E10.3," V/M">, E[1]);
                               WRITE(OUT, <"EY=", E10.3," V/M">, E[2]);
26300
26400
                               WRITE(OUT, \langle "/E/=", E10.3," V/M" \rangle, SQRT(E[1]**2+
26500
                                                                        E[2]**2));
26600
                             END;
26700
                          IF CALCTYPE=2 THEN
26800
26900
                                % EMAX ON CONDUCTOR CN IS DETERMINED WITH THE
27000
                                % METHOD OF THE GOLDEN CUT
27100
27200
                           BEGIN
27300
                             REAL A, B, T, T2, Z, ZA, F, FA, AN;
                             A:=1@-5; B:=360; T:=1.618; T2:=1.618**2;
27400
27500
                             Z:=A/T+B*(1-1/T); ZA:=A/T2+B*(1-1/T2);
                             WRITE(OUT, <"GIVE INPUT SEQUENCE NUMBER OF CONDUCTOR">);
27600
27700
                             READ(IN,/,CN);
27800
                             WHILE ABS((Z-ZA)/ZA)>1@-7 DO
27900
                              BEGIN
28000
                               AN: =ARCSIN(1)*4*Z/360;
28100
                               X: = L[CN, 2] + L[CN, 1] * COS(AN) / 2;
                               Y:=L[CN, 3]+L[CN, 1]*SIN(AN)/2;
28200
28300
                               EF IELD(X,Y,E);
                               F := SQRT(E[1]**2+E[2]**2);
28400
28500
                               AN: = ARCSIN(1) * 4 * ZA/360;
28600
                               X: = L[CN, 2] + L[CN, 1] * COS(AN) / 2;
28700
                               Y:=L[CN, 3]+L[CN, 1]*SIN(AN)/2;
                               EFIELD(X,Y,E);
28800
28900
                               FA:=SQRT(E[1]**2+E[2]**2);
29000
                               IF FA<F THEN
29100
                                         BEGIN
                                          B:=ZA; ZA:=Z;
29200
29300
                                          Z := A/T + B*(1-1/T);
29400
                                         END
29500
                                        ELSE
29600
                                         BEGIN
29700
                                          A:=Z; Z:=ZA;
29800
                                          ZA:=A/T2+B*(1-1/T2);
29900
                                         END;
30000
                              END;
                             AN: =ARCSIN(1)*4*Z/360;
30100
30200
                             X: =L[CN, 2]+L[CN, 1]*COS(AN)/2;
                             Y:=L[CN,3]+L[CN,1]*SIN(AN)/2;
30300
30400
                             EFIELD(X,Y,E);
30500
                             WRITE(OUT, <"EMAX ON CONDUCTOR", 13," IS", E12.4," V/M">,
                                   CN, SQRT(E[1]**2+E[2]**2));
30600
```

```
30700
                           WRITE(OUT, \langle"IN: (X,Y)= (",E10.3,",",E10.3,
                                 ") (M,M)">,X,Y):
30800
                           WRITE(OUT.<"AND ALPHA =",F7.1," DEG">,Z);
30900
31000
                          END:
31100
                       END:
31200
                                        IF OUTPUT=4 THEN
31300
31400
                       REGIN
31500
                         REAL XM, YM, SF;
31600
                         INTEGER M;
                         WRITE(OUT, <"GIVE: XMAX(M), YMAX(M)">);
31700
31800
                         READ(IN,/,XM,YM);
31900
                         SF:=2*XM/32; M:=YM DIV SF;
32000
                         BEGIN
32100
                           FILE PR(KIND=PRINTER);
32200
                           REAL X, Y; REAL ARRAY V[-15:15];
32300
                           WRITE(PR, <"TOWER = ", A12, />, TONA);
                           WRITE(PR,<"Y(M)", X4,"V(X,Y)(KV)">);
32400
32500
                           FOR I:=1 STEP 1 UNTIL M DO
32600
                             BEGIN
32700
                               Y := (M+1-I)*SF;
                               FOR J:=-15 STEP 1 UNTIL 15 DO
32800
32900
                                 BEGIN
33000
                                   X:=J*SF;
33100
                                   VRI(X,Y, VRXY, VIXY);
33200
                                   V[J]:=SQRT(VRXY**2+VIXY**2);
33300
                                 END;
33400
                               WRITE(PR, \langle 14, X2, *14 \rangle, Y, 31, V[*]);
33500
33600
                           FOR J:=-15 STEP 1 UNTIL 15 DO V[J]:=J*SF;
33700
                           WRITE(PR, </, X6, *14>, 31, V[*]);
33800
                           WRITE(PR, <X126, "X(M)">);
33900
                           WRITE(PR,</,"WIRES:">);
                           WRITE(PR, <X2, "X(M)", X5, "Y(M)", X4, "DIAM(M)", X9,
34000
                                       "VOLTAGE">);
34100
34200
                           FOR I:=1 STEP 1 UNTIL N DO
                             WRITE(PR, < F6.2, F9.2, F11.5, F11.3," +J(", F8.3,")KV">,
34300
                                   L[1,2],L[1,3],L[1,1],VLR[1],VLI[1]);
34400
34500
                         END;
                         WRITE(OUT, <"USE: 'U$SERVICE/BACKUP' TO PRINT">);
34600
34700
                       END;
34800
                                        IF OUTPUT =5 THEN
34900
35000
                       BEGIN
                         REAL XM, YM, SF; INTEGER M;
35100
35200
                         WRITE(OUT, <"GIVE: XMAX(M), YMAX(M)">);
35300
                         READ(IN,/,XM,YM);
                         SF:=2*XM/81; M:=YM DIV SF;
35400
                         BEGIN
35500
                           FILE PLOT(KIND=PREVIEWER);
35600
35700
                           INTEGER OBJ, I, J, Q1, NPARTS, PART;
                           REAL ARRAY XA[0:80], YA[0:M], VA[0:80,0:M],
35800
35900
                                       XISO,YISO[1:85,1:900], XB,YB[0:80,0:M];
36000
                           INTEGER ARRAY NPOINTS, PKIND[1:85];
                            % DECLARATION OF THESE ARRAYS IN THIS WAY
36100
36200
                            % FIXES A MAXIMUM NUMBER OF CONTOURPARTS (FOR ONE
36300
                            % VALUE OF FO) OF 85 AND A MAXIMUM NUMBER OF POINTS
                            % FOR ONE CONTOUR OF 900.
36400
36500
                           REAL VX, VY, VV, FO:
                           STRING STR1, STR2, STR3;
36600
                           FOR I:=0 STEP 1 UNTIL 80 DO
36700
36800
                               XA[I]:=(-40+I)*SF;
```

```
36900
                            FOR I:= 0 STEP 1 UNTIL M DO
37000
                                 YA[I]:=I*SF:
37100
                            FOR I:= 0 STEP 1 UNTIL 80 DO
37200
                              FOR J:=0 STEP 1 UNTIL M DO
37300
37400
                                   VRI(XA[I],YA[J],VRXY,VIXY);
37500
                                   VA[I,J]:=SQRT(VRXY**2+VIXY**2)/VM;
37600
                                 END:
37700
                            01:=11:
                            NEWOBJECT(OBJ);
37800
37900
                            FOR I:=0 STEP 1 UNTIL 80 DO
38000
                              BEGIN
38100
                                 FOR J:=0 STEP 1 UNTIL M DO
38200
38300
                                     XB[I,J]:=XA[I];
38400
                                     YB[I,J]:=YA[J];
38500
                                   END;
38600
                              END:
38700
                            FOR F0:=0.001,.005,.01,.02,.05,.1,.15,
38800
                                     .2, .25, .3, .4, .6, .8, 0.95 DO
                              BEGIN
38900
39000
                                 CONTOUR1(FO,0,80,0,M,XB,YB,VA,1,NPARTS,NPOINTS,
39100
                                          PKIND, XISO, YISO);
39200
                                 FOR PART:=1 STEP 1 UNTIL NPARTS DO
39300
                                   BEGIN
                                     POLYGON(OBJ, I, 1, NPOINTS[PART], XISO[PART, I],
39400
39500
                                              YISO[PART, I], 1);
39600
                                     IF PKIND[PART]=1 THEN
39700
                                        STRAIGHTLINE PIECE (OB J, XISO [ PART,
                                                            NPOINTS[PART]], YISO[PART,
39800
39900
                                                            NPOINTS[PART]], XISO[PART,
40000
                                                            1], YISO[PART, 1], 1);
40100
                                   END;
40200
                              END:
                            MAPANDDRAWOBJECT1(PLOT, OBJ, 2, 2, 8, 5*YM/XM+2, 19,
40300
40400
                                                -1*XM,0,XM,0,XM,YM,2,19,2,2,
40500
                                                8.5*YM/XM+2.2);
40600
                            CLEAROBJECT(OBJ);
40700
                            AXISCOMPLETE(OBJ, 2, 2, 2, 19, 20, 1, XM, -1 *XM, TRUE,
                                           FALSE, .2,"X(M)");
40800
40900
                            AXISCOMPLETE(OBJ, 2, 2, 8.5*YM/XM+2, 2, 20, 0, 0, YM,
                                          FALSE, FALSE, .2,"HEIGHT Y(M)");
41000
41100
                        STR2:="EQUIPOTENTIAL LINES FOR V= 0.1,0.5,1,2,5,10,15,";
                        STR3:="20,25,30,40,60,80,95 % OF
41200
                                                                   KV(PH-GR)";
41300
                            STR1:=STR2 CAT STR3;
                             COMMENTTEXT(OBJ, 8.5*YM/XM+3, 19, -90, .2, 0, STR1);
41400
41500
                             COMMENTINUMBER(OBJ.8.5\pmYM/XM+3.4.6.-90..2.0.
                                             "F6.1", VM);
41600
41700
                            COMMENTTEXT (OB J, 8.5*YM/XM+3+(N+2)*.4, 19, -90, .2,
                                         0,"WIRES:");
41800
                            STR2: ="TOWER = ":
41900
                            STR1:=STR2 CAT TONA;
42000
42100
                            COMMENTITEXT (OBJ, 8.5*YM/XM+3+(N+3)*.4,19,-90,.2,
42200
                                         0,STR1);
                            FOR I:=1 STEP 1 UNTIL N DO
42300
42400
                              BEGIN
                                 STR1:="V(
                                                                   +J(
                                                                              )KV";
42500
                                                         )=
                                 STR2:=", DIAM.=
                                                          CM";
42600
                                 STR3:=STR1 CAT STR2;
42700
                                 COMMENTTEXT (OBJ, 8.5*YM/XM+3+(N+2-I)*.4, 19, -90, .2,
42800
42900
                                              0,STR3);
                                 COMMENTINUMBER(OBJ, 8.5*YM/XM+3+(N+2-I)*.4, 18.6,
43000
```

```
-90,.2,0,"F6.2",L[1,2]);
43100
43200
                                COMMENTINUMBER(OBJ, 8.5*YM/XM+3+(N+2-I)*.4,17.2,
43300
                                                -90,.2,0,"F6.2",L[1,3]);
                                COMMENTINUMBER(OBJ, 8.5*YM/XM+3+(N+2-I)*.4,15.6,
43400
                                                -90, .2, 0, "F7.2", VLR[I]);
43500
                                COMMENTINUMBER(OBJ, 8.5*YM/XM+3+(N+2-1)*.4, 13.6,
43600
43700
                                                -90,.2,0,"F7.2",VLI[I]);
43800
                                COMMENTINUMBER(OBJ, 8.5*YM/XM+3+(N+2-1)*.4, 10.0,
43900
                                                -90, .2, 0, "F7. 2", L[I, 1]*100);
44000
                              END:
44100
                            DRAWOBJECT(PLOT, OBJ, 0, 0, 8.5*YM/XM+4+(N+2)*.4, 20);
44200
                            DISPOSEOBJECT(OBJ);
                            WRITE(OUT, <"PLOT IS READY">);
44300
44400
                          END:
44500
                       END;
44600
44700
                     WRITE(OUT, \langle"ANOTHER OUTPUT? (1,2,3,4,5), 0 = STOP ">);
                     READ(IN, /, OUTPUT);
44800
44900
                   END;
45000
               END:
45100
             END;
45200
          END.
```