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SUMMARY

A possibility for modelling a ~IMO-system is a representation based on
the multivariable impulse responses: the Markov-parameters.
In this report several estimation schemes are derived for these paramete
res. The difference in these schemes is either the numerical implementa
tion or the more detailed use of the noise model.
All estimation Qrocedures are based on the Least Squares principle and the
Maximum Likelihood principle.
For the estimation of the parameters of a noise model a non-linear Least
Squares function has to be minimized.To accomplish this, three non-itera
tive procedures have been derived, approximately arriving at the minimum,
and three iterative procedures have been developed, which are theoretical
ly reaching the exact minimum.

All these procedures are compared theoretically and many simulations have
been performed to test their properties such as accuracy and efficiency.
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CHAPTER 1. INTRODUCTION
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In the world around us, we notice an increasing interest in describing
complicated systems. Examples are biomedical, economic, technical sys
tems and many others that may possess a high degree of complexity.
All those systems have the following in common: They are multivariable
and dynamical. In this case, Imultivariable l reflects the property
that they have more than one input and more than one output, and that
the inputs may influence more than one output at a time;
such a system is called a MIMO-system (Multi Input,Multi Output).
It can be represented by a block diagram as is shown in fig. 1.-1.

u1 -~-------- ---------.--- Yl' .....--- ------;:.,.
.......... - - -:-:...--...---- - ","

_--~c: ---~--tt!t'... ----- .. - --_.__,-. ":.'""a.-
------...... ............ ",,' .... ",.-

~ ...,
" ", .......... , .... '

,""'....... "'"'-'t";'~ ....

""",..",." .....
",. " , '" "'-

..... ~........ "' ..... ::::
...... -:. :'10_.1--_ yq

fig. 1.-1 block diagram of a MIMO-system

Because of the internal complexity of many systems it is often necessary
to look at them in a Iblack box l approach: This means that we are not in
terested in the internal behaviour but only in the relations between the

input variables Ul,U2""'Up' that we assume to represent the excitation
of the system, and the output variables Yl'Y2, ••. yq representing the res
ponse of the system to the excitation. These relations can be formulated
in several ways, that result in several kinds of models.
The problem of system identification is to find a mathematical descrip
tion or model that describes the behaviour of a system. Information that
can be used to solve this problem is a priori information of the system
and measurements of the input- and output variables.
The choice of a certain model is dependent on the intended use but, once
we have chosen for some model that is able to represent the system, the
unknown parameters of that model have to be estimated, based on noisy ob-
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servations of the behaviour of the system.

In engineering situations, the results of system identification are main
ly used for control purposes, which justifies the choice of a 'black box'
model or input-output model, but it also restricts the choice of models
in the sense that a model suited for system identification will not al
ways be applicable to controller design.
In practice we have to cope with the phenomenon of noise that consists
of measurement-noise and of errors due to a discrepancy between the mo
del and the actual process.
For control purposes often not only a description of the process is nee
ded, but also some information about the character of the noise. This is
one of the reasons why we not only pay attention to the identification
of the process but also to the noise.

In chapter 2 some possibilities are described for modelling a MII10-sys
tern and extra attention is given to the model that will be used in this
report. In chapter 3 some estimation methods are described and these me
thods are extended in chapter 4 and 5 to be able to cope with more com
plicated structures of the noise model.
Chapter 6 gives a short description of a method to change the chosen mo
del into another description that is better suited for control purposes.
In chapter 7 some results are given of simulations.
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CHAPTER 2. MODEL DESCRIPTION

In the first section of this chapter attention will be paid to the

modelling of MIMO-systems. From the set of models described. a model
is chosen which gives an approximate description of a multivariable
system. This approximate description however, will appear to be well
suited for estimation purposes.

2.1 Possibilities for modelling a MIMO-system

Analogous to SISO-systems, (Single Input Single Output ), it is
possible to. present several kinds of models of multivariable ~ystems.

But, before we start our review. we will make some assumptions to
limit the number of systems that we shall take into account. From
now on, we only consider: linear, time-invariant, discrete-time and
stable systems of finite dimension.
These limitations are fairly heavy compared to the processes. we deal
with in practice. Nevertheless, it is often possible to linearize a
real system in the neighbourhood of a working point and approximate
it by a linear system. Time-invariance is not allways required, since
the model can be adapted when the process is observed in an on-line
manner.
The restriction to stable and finite dimensional systems is quite
trivial; and the same for discrete-time systems, because we merely
deal with sampled in- and output signals.

The way of modelling, which is best known, is the one using a
transfer function:

eq. 2.1. (1)

where rT(k) is the output vector (Yl(k), ...• yq(k)) and ~T(k) the
input vector (u1(k), ...• up(k) ), at time instant k, or a system
with p inputs and q outputs.
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K(z-1) is a rational matrix of variable z of dimensions qxp.This means
that the relation between every input and every output can be described
by a single transfer function as we know it from the SISO-case (see fig.
2.1.-1).

U
1

(k) -~~---l
I....--=-::'__....J

~ (k)

Thus:
-1Kn (z )

in wich Kij (z-1) is the transfer function from input j to output i.

Another possibility is a state space description. In a state space model,
state variables ~ are introduced that contain information about the past
of the system. Using this information it is possible to construct the out
put signal l(k). based only on the input ~(k) and the state of the sys
tem at time instant k:~(k).

By means of these variables we can represent a system in the following way:

~ (k+1) = A ~ (k) + B ~ (k)

l (k) = C ~ (k) + 0 ~ (k)

eq. 2.1. (2a)

eq. 2. 1. (2b )
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the (nxl)- state vector! at time instant k
the (pxl)- input vector y at time instant k

the (qxl)- output vector ~ at time instant k

(nxn)- system matrix, where n is called the dimension
of the state space or dimension of the system
(nxp)- distribution matrix
(qxn)- output matrix
(qxp)- input- output matrix
resp. the number of inputs and outputs of the system

The dynamical behaviour of this system is defined completely by the
set of matrices {A,B,C,D} which is called a realization of the system.
In this report we will restrict ourselves to 'controllable' and
'observable' systems. A process is called 'controllable' when it is
possible to find an (unconstrained) control vector which brings the
system from any initial state to any specified final state in finite
time.
A sufficient condition for controllability is that the controllabi
1ity matri x t::.

eq. 2.1. (3)

has rank n.
A process is called 'observable' when it is possible to determine the
state of that process from the measurements of the output. A sufficient
condition is that the observability matrix r :

C

CA
CA2

eq. 2.1. (4)

CAr- 1

has rank n.
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A third model that may be used in describing the behaviour of a
MIMO- sytem is the so- called Hankel- model, which is based on the
impulse responses of the system.
This model can be derived from the state space model as follows:
Substitute eq. 2.1.(2a) in eq. 2.1.(2b), which results in:

k k i-1 .l (k) = CA ~(0) \ ~1 C. A .B•.!:!(k-1) + D..!:!(k) eq. 2. 1. ( 5)

where ~(O) is the initial state of the system.
Or with ~(O) = 6. [r].ao ; where 6. [r] is the controllability matrix with

rank n: 6. [r] = [BIABI ... tAr-1B] ,.
r is an integer such that 6. [r] has rank n

k k i-I .
l(k) = CA 6.[r].~ +ih C.A .B ..!:!(k-l) + D•.!:!..(k) eq. 2.1. (6)

In eq. 2.1.(6) we can distinguish the matrix products C.Ai .B, which are
in fact the multivariable impulse responses of our system. The part of
this equation, containing the summation sign, may be regarded as a con
volution sum of impulse responses and all input signals since time in
stant zero. These multivariable impulse responses are called Markov
parameters, which are defined as:

Markov-parameter at time

M(l) J~ .
lC.A1

-
1 .B

instant i:
, i<O
, i =0

, 1>0

eq. 2.1. (7)

An example of a series of Markov-parameters of a first-order 5150
system can be found in fig. 2.1.-2.
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stMarkov-parameters of a 1 -order system

Using the definition of Markov- parameters, eq. 2.1.(6) can be

rewritten as~

Or in matrix notation~

eq. 2.1. (8)

l(O) M(O) 0 . 0 ~(O) M(1) . M(r)

l(l) M(1) M(O). </> ~(1 )
y = = + . ~

-m .:;;.r

l(m) M(m) M(m-1) .M(O) ~(m) M(m+1). .M(m+r)

eq.2.1.(9)

where the index m points to the sample moment under conderation.
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Eq. 2.1.(9) can be abbreviated to:

.!:m = T(o,m) . ~ + H(r,a» . Pr eq. 2. 1. (10)

where

M(O)

~~(m) •

. 0

. .
.M(O)

~ T(0 ,m) and

M(1)

M(m+1).

. M(r)

~ H(m,r)

M(m+r)

Matrix T(O,m) is called the Generalized Toeplitz matrix and H(m,r)
the Generalized Hankel matrix.
When we substitute the expression M(i) = C.Ai-l.B in the Hankel matrix,
we find a relation between the Hankel model and the state space model
which makes it possible to find a state space description from a
Hankel model using impulse responses:

M( 1)

M(m+1).

. M(r)

M(m+r)

=

CB CAB • • CAr-1.B

eq.2.1.(11)

From eq. 2.1.(6)-eq. 2.1.(9) we see that this matrix is built up as follows:

CB
CAB

CAB . . CAr-l.B C
CA

= •[B AB A2B. . Ar-l~ = r[m].6[rJ

CAm+r-l.B CAm

eq. 2. 1. (12)

which can be seen as the product of respectively the extended observa-
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bility matrix and the extended controllability matrix of the system
{A,B,C} (cf. eq. 2.1.(3) and eq. 2.1.(4)).
Although the matrices at the right hand side of eq. 2.1.(12) have
larger dimensions, they still have a rank equal to the rank of the
system because we have restricted ourselves to observable and con
trollable systems.
Therefore, when we are able to find the Markov- parameters of a system,
it is possible to create a Hankel matrix and then by applying the right
decomposition of this Hankel matrix it might be possible to find a

realization {A,B,C} of our system. In chapter 6 it will be pointed out
that this realization, indeed, can be found.

2.2 A model for the estimation of Markov- parameters

In this section we will derive a model from the Hankel model which is
better suited for the estimation of Markov-parameters.
Because of the uniqueness of the impulse responses of a system, Markov
parameters give a unique representation of the system. And thus is this
way of modelling very attractive for estimation purposes. Another advan
tage of this method is that we need no knowledge about the order of the
system beforehand; this is in contradistinction to models based on
transfer functions or state space models.

When we suppose that the initial conditions of the system are zero i.e.
~(o)=~ (so ~=~), eq.2.1.(8) can be rewritten in matrix notation as
follows:

IT(O) ~T(O) 0 MT(O)

~ .
= eq. 2.2.(1). . .

IT(m) ~T(m) .~T(O) MT(m)
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A great disadvantage of both descriptions, eq. 2.1.(9) and 2.2.(1) is
the length of the impulse responses which have to be taken into account.
In eq. 2.2.(1) m+2 Markov-parameters are unknown and this number increa
ses when more samples become available.
From the equation above, it is easily seen that we have as many equations
as unknown parameters. This implies that we don't have any redundancy
in our information, so we are not able to eliminate noise influences,
which are present in the measured data.
The nature of impulse responses makes it reasonable to suppose that after
e.g. k samples of such an impulse response the influence is so small
that we may neglect its contribution to the convolution sum (see
fig. 2.2.-1).

~p ... S-ft ......~

--_._~--_..,.

A.

A"

~
~ 0.4

-
0.

I
A

.
..

' ...'.
'.'. '. '.

--",pl••

fig. 2.2.-1 truncated impulse response

Using this property of the impulse response eq. 2.2.(1) can be written

as:
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l,T (m) :!.T (m)

0 MT(O) 0 .0
~MT~k+l1, ,

. uT(0) + ;!.T(O). • ",T(m)
MT(k)

T' T : ';!.T(O).:!. (m-k) :!. (m-k-l)

(1) eq. 2.2. (2)

In the equation above, (1) represents the influence of what is called
the 'tail' of the Markov-parameters, so the part of the impulse res
ponse that is negligibly small.

From now on, we assume that the contribution of the 'tail' and the
part caused bij the initial state is so small that it can be interpreted
as a negligible part of the noise at the output.
This means that we must take care that we take into account enough
Markov-parameters and k is chosen big enough to assure that the con
tribution of the tail can be omitted.

Using the assumptions, stated above, eq. 2.2. (2) becomes:

rT(O) J:!T(O) c/> [MT(OJ ~T(O)

= ~T(O)
. MT(k) + eq. 2.2. (3)

.
~T(m) .i(m-k) ~T(m)rT(m)

in which ~T(~) = (~l(~)""'~q(l)) is additive output noise, that
consists of tail influences and influences of the initial state of the
system, i.e. highly dependent 'noise l

• If we want to take into account
measurement noise, we are only able to cope with output noise and input
noise that is independent of the input signal and it is reasonable to
suppose that these are also part of the additive output noise.
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When the tail influence is small enough, the measurement noise, which
is supposed to be white noise, has such a large influence that from now
on ~ is assumed to be white channel independent noise, due to measure
ment errors.

From eq. 2.2.(3) we learn that we have more input- and output data
than unknown parameters, so we are dealing with an estimation problem,
which will be treated in chapter 3 and following chapters.

Rewriting eq. 2.2.(3) in matrix notation results in:

y = S T M
k

+ :::m . eq. 2.2. (4)

where: Y
S T.m .

( (m+1) x q)- matrix containing the output data
( (m+1) x (k+1).p)- matrix containing the input- and
shifted input data
( (k+1).q x p)- matrix containing (k+1) Markov- parameters
( (m+1) x q)- matrix that contains the additive output noise

This equation gives us the model which we will use for the estimation

of the Markov- parameters (fig. 2.2.-2) .

S T
m

"

~ 'I
+..

Mk
... ,>'- ...

~ A ) ~
r+ - Y

fig. 2.2.-2 model for the estimation of Markov- parameters



- 17 -

2.3 An extension of the model for the estimation of noise parameters

Until now, we have only considered additive output noise which was as
sumed to be white (see eq. 2.2.(4)). Because this property is almost
never met in practice, we shall loosen our restraints to the assumption
of additive output noise which may be coloured noise (see fig. 2.3 -1) .

S T
m

..!o.

~ noise filter-

r----------, E
I t v+
I ..... I .. .lio<l ....

Mk
:l I J}

I I ....+
y

I I

~ .£lr~c:s.: ~<:d:'l __ ~

eq. 2.3. (1)independent in time: E { .f(i)

fig. 2.3 -1 extended model

In fig. 2.3.-1 E represents the equation error: E = Y - SmT. Mk i.e.
that part of the output signal that couldn't be explained by the process
model. This equation error may be coloured noise, which can be presumed
to be the output of a noise colouring filter with white noise at the
input. The white noise is a noise sequence of which the samples are
i:ndependent in time and place and also independent of the input signal.
This means that the following expressions are valid:

T O, if i;!j
.f (j) } = {

0 2 .1, if i=j

independent in place: E { ~k(i) . ~n(i)}

0, if k;!n
= {

1, if k=n
eq. 2.3. (2)

As a criterion for the estimation of the parameters of our model, we a

dopt the following:
- try to find as much correlation between the input and out-
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put of our system as possible
- in order to accomplish this,correlation between the samples

of the equation error or between the equation error and ~

is allowed.

Having performed this procedure we hope that we have minimized the de
pendencies that remain in ~. If this is not the case, the procedure
should be repeated until these dependencies are minimized, and ~ beco
mes white gaussian noise in the end.
Using this procedure the estimated noise model gives us a better es
timate of the Markov-parameters of the process and the noise model can
also be used for control purposes.

As we have seen in section 2.1, there are several possibilities to
describe the dependencies in the equation error or the dependencies
between the equation error and ~.

The most important property of our model must be uniqueness because,
we want to find only one specific parameterization of our model, given
a set of input and output signals. This implies that a full description
in terms of transfer functions is not possible, because this wouldn't
give us a unique solution (e.g. adding a pole to the denominator and a
zero to the numerator would give us the same in- and output relation,
but a different parameterization).
What remains is a noise model using either the Markov-parameters (a Mo
ving Average (MA) model), which, in fact, only describes the numerator
of the transfer function or an Auto-Regressive (AR) model that gives a
description according to the denominator of the transfer function (see
also appendix A).
The first model describes a relation between the input signal of the
noise model and the output signal and this causes a problem, for we
don't know the input signal beforehand. This implies that we must 'esti
mate' the input signal ~ and correct it later.
The second model doesn't give rise to such a problem because we try to
find correlation between the samples of the equation error only.
So we have to know, only, the equation error E. For this reason, we have
chosen for an Auto-Regressive model for the noise filter.
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In the following part of this section this model will be developed.
As has been mentioned before, for an Auto-Regressive description of the
noise model we need to find correlations between the samples of the out
put signal E of the noise filter.
This can be regarded as finding the auto-regressive parameter matrices
A(l), A(2), ... ,A(r) that fulfil the following equation:

~(i.) = A(l).~(i-l) + A(2).~(i-2) +..+ A(r).~(i-r) + ~(i) eq. 2.3. (3)

where ~(i): is a (qxl)-vector that stands for the equation error at sam
ple moment i

A(i): is a (qxq)-matrix, representing the dependency between ~(i)

and ~(i-l)

r is the number of auto-regressive parameters that we take in
to account, which means that we neglect the contribution of
~(i-i) to ~(i) for i>r. This neglection has an effect which
is similar to the neglection of the Itail I of the Markov

parameters as described in 2.2.

Comparing this equation with eq. 2.2.(3) of section 2.2, we see immedi
ately a great similarity between them. Suppose we start observing our
system at time instant i-k. Then it is possible to describe the model
(fig. 2.3.-2) in the following way.
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fig. 2.3. -2 an extended model for the estimation of Markov- parameters
and AR- noise parameters

y = 5 T Mk + Em

E = H T A + -m r

Or combining these two equations:

y = 5 T . Mk + H T A + ;:;
m m . r

y = (5 T 1 H T) . [:: ]+ ;:;
m m

eq. 2.3. (5)

eq. 2.3. (6)

eq. 2.3. (7)

eq. 2.3. (8)

• ~T(l_r) 1MT(O). .
: • MT~k)

• ~T (l+m-r) A • ( 1)

A T(r)

eq. 2.3. (9)
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Taking a good look at eq. 2.3.(8) and eq. 2.3.(9), we see that we, in
fact, have extended the signal matrix SmT with the lequation error matrix '
H T and the same for the parameter matrices Mk and A .m . r
This is why this method is called the Extended Matrix Method (EMM).
This model will be of good use to us for estimation purposes, as will be
shown in chapter 4.

2.4 The modelling of an offset

In this last section of this chapter, we shall pay some attention to the
offset phenomenon which can be found at the input and the output. Suppose
that the observed input vector ~(t) differs from the actual input by an
offset ~o, caused by measurement errors, which leads to the next expres
sion:

k
y(t) = 1: M(i) (~(t-i) +~} + ~(£)

i=o
eq. 2.4. (1)

In this equation, ~(£) may be white noise or coloured noise, which is not
important at this moment.
Rewriting eq. 2.4.(1) in matrix notation we find:

T ] [T It T J [T I [T I• ~ (I.-k) M (0) ~. '. • ~o M (0) ~ (.q

. !!.T('~_k) • HT;kJ + ~T. . ~T . HT;kJ + ~T;H.J

eq. 2.4. (2)

Because the second term of the right hand side of eq. 2.4.(2) is a con
stant term, it may also be regarded as an offset at the output signal:
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T
~

eq. 2.4. (3)

SUbstituting eq. 2.4.(3) in eq. 2.4.(2) and rearranging this equation
results in:

T 1 ~TCq,), ~T(t-k) l yT ~T (9.)l (t) =Y.:l

=

~T~.+m-k)j .
MT(O)

+.
IT(t+m) 1 ~T (t+m) MT(k) ~T (Hm)

eq. 2.4.(4)

From this equation it is easily seen that we have used the same idea
as in section 2.3, where we used the extended matrix method. So when
we extend the signal matrix SmT by a column filled with ones and the
parameter matrix Mk with the offset vector loT, it is possible to esti
mate an offset on both the input- and the output signal. After estima
tion it is not possible to discover whether the estimated offset has
been an offset on the input or on the output signal or. whether it has
been the sum of offsets on both.
In the following chapters, concerning the estimation schemes, no atten
tion will be paid to the problem dealing with offset, because it is clear
from the derivation above that the solution of this problem needs very
few changes, which are not essential for the understanding of the esti
mation techniques. In the final results however this offset approach
wi 11 be used.
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CHAPTER 3. LEAST SQUARES ESTIMATION OF MARKOV-PARAMETERS

3.1 Introduction

This chapter will deal with the problem of the estimation of Markov-para
meters. We suppose that we are given a set of input and output data, that
may be corrupted by measurement noise, that is not correlated with the
input signal and which is assumed to be white (see also eq. 2.3.(1) and
eq. 2.3.(2)).The problem is to find a set of Markov-parameters which des
cribes the input-output relation of the system.
The function by which such an estimate can be obtained is called an esti
mator. To be able to say something about the quality of such an estimate,
it is necessary to define when an estimate can be considered to be a
good one (Eykhoff (1974)).

Suppose i is an estimator of the unknown parameters !. That is, when eva
luated with data values z. e(z) provides a specific estimate of e.- - - -
It is clear that considerations about the quality of ~ are based on the
errors, that occur in the estimate:

eq. 3.1. (1)

A reasonable property for a good estimator is, of course, that the ave
rage value of the error should be zero:

eq. 3.1. (2)

Or, equivalently, that the expected value of the estimate is equal to the
value of the parameter:

eq. 3.1. (3)

Estimators with this property are called unbiased.
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An estimator is said to be consistent if for an increasing number of
samples k, the probability that the estimate !(z) equals the true value
of the parameter! tends to one:

with E arbitrary small.
An estimator is called a minimum variance estimator if for all unbiased

estimators 1.:

cov{8} = E{(~{~)-!).C~(~)-.§JT} s; E{(r.(~)-!).{r.{!.)-!)T} = cov{r.}

eq. 3.1. (5)

This means that such an estimator has the 'smallest' error covariance

among all unbiased estimators of !.

More about the properties of estimators in chapter 5, where we shall deal
with the Maximim Likelihood method.

3.2 Least squares estimation using an explicit method

The starting point of this section will be the model, eq. 2.2.(4) which

we derived in 2.2 :

TY = Sm . Mk + - eq. 2.2.(4)

The basic idea of parameter estimation is:
Given a set of input samples (denoted by S T) and a set of output sam-m
ples (Y), that may be disturbed by white-noise (=f' that is channel inde-
pendent, how can we find an estimate MKwhich is as close as possible

to th: true parameters Mk.
This Mk will satisfy the following expression:

. T·
v = Sm . Mk eq. 3.2.{1)

where Ycontains the reconstructed output signal.
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.
Our main interest is to find Mk in such a way that the error Y-Y is, in
some chosen sense, as small as possible.

I
I -
I Y-Y
I..... ......

~--------~. T-
.....-' Y= Sm .Mk",

fig. 3.2.-1 geometrical interpretation of LS-estimation

A criterion to minimize Y-Y is the criterion of Least Squares (LS). In
fig. 3.2.-1 the idea behind the least squares estimation is illustrated
for the vector case. Suppose that we have an Euclidean space. which is
formed by the input vectors u, and the parameter vector ~ is mapped into
this space by S T. Because the output vector Y is dtsturbed by noise, itm -
will not fit in this space. The best approximation i to a vector r is the
projection of r on the space formed by the input signal. This means that
the Euclidean distance between rand r is minimized. Therefore, when we
were dealing with vectors rand i, we would have to minimize the loss
function V:

eq. 3.2. (2)

This is the same as minimization of the sum of all squared error vectors
e(i) = y(i) - ;(i).
But because Y and Yare matrices, instead of vectors, we must minimize:
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- T -V = trace { (Y-Y) .(Y-Y) } eq. 3.2. (3)

This can easily be verified by writing out eq. 3.2.(3), with E = Y-Y :

v = tr (ET.E) = tr {(~(R.),... ,~(t+m».

~T (Hm)

which is identical to:

}

eq. 3.2. (4)

m
V = tr { .r e(Hi).eT(t+i) }

1=0 - -

q m
=.1: .1: e. 2 (t+i)

J=l 1=0 J
eq. 3.2. (5)

Thus to find a LS-estimate Mk LS of the Markov-parameters, it is necessa-
, -

ry to minimize the loss function V with respect to Mk. This minimum is
found as follows: (for a table containing formulae of matrix calculus:
see Appendix D)

eq. 3.2. (6)

eq. 3.2. (7)

T -= 2,Sm,Sm .Mk - 2.Sm·Y

Th 1 • M- t . f . aV ae east squares est1mator k LS sa 1S 1es ~=
, 'OM

k

eq. 3.2. (8)

eq. 3.2. (9)

. T -
From eq. 3.2.(9) it can be seen that the error matr1x E = Y - Sm .Mk,LS
is orthogonal to the columns of SmT ; something we already expected
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from fig. 3.2.-1 .

To be sure that the solution of eq. 3.2.(9) is unique and minimizes
eq. 3.2.(3) , the following expression has to hold:

eq. 3.2.(10;

for all 6Mk .

Writing out V(Mk¥)

T T T T T= tr { (Y - Sm Mk - Sm 6Mk) .(Y - Sm Mk - Sm 6Mk) }

eq. 3.2.(11)
leads to :

eq. 3.2.(12)

Since Mk has to satisfy eq. 3.2.(9) :

¥ T TV(M k ) = V(Mk) + tr {AMk SmSm 6Mk} eq. 3.2.(13)

This implies that tr {6MkTSmSmT6Mk} has to be greater than zero, for all
6Mk, to satisfy eq. 3.2.(10). A necessary and sufficient condition is
that SST is a positive definite matrix:mm

eq. 3.2.(14)
for all x ; O.

And this will always be the case as long as S has maximal rank.m

Concluding we may say that the least squares estimator that satisfies
eq. 3.2.(9) results in a unique minimum if Sm is a matrix of full rank.

From eq. 3.2.(9) we know that we have to find a solution in the least
squares sense of the following set of equations, to find a least squares
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-
estimate Mk,LS:

eq. 3.2. (15 )

This least squares solution can be found, using two methods:

1) a direct method, using Householder transformations
2) a solution by computing the pseudo-inverse (SmT)+ of SmT,

using Singular Value Decomposition.

- TBoth methods lead to the same Mk,LS. The first method reduces the Sm -
matrix, which is a (m+l)x(k+l).p-matrix (m+l»(k+l).p), to a matrix of
which the upper square part is a non-singular, upper triangular matrix
and the lower part only contains zeros. The transformation is also used
for Y and then, Mk,LS is found by back-substitution and computation of
corrections via an iterative procedure.
In the second method, Singular Value Decomposition (SVD) is used to de
compose SmT:

eq. 3.2. ( 16)

where W: column orthogonal matrix of dimensions (m+l)x(k+l).p

L: (k+l).px(k+l).p-diagonal matrix containing the singular values
of S T

m
V: column orthogonal matrix of dimensions (k+l).px(k+l).p

For more information about SVD cf. Appendix B.

Using the decomposition, it is possible
the pseudo-inverse of S T : (S T)+m m

(SmT)+ = (W.L.VT)+ = (VT)+.L+

T Tsince V .V=I and W .W=I .

to compute, what is called,

eq. 3.2.(17)

eq. 3.2.(18)

With this pseudo-inverse we are able to find a LS-estimate Mk,LS

- T + -1 T
Mk, LS = (Sm) . Y = V. L •W.Y
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This method is very useful to gain some insight in the mapping of Y into
the space formed by Sm .
Another advantage of the use of SVD is the ability to compute the con-

dition number of Sm f • which is defined as (see also Appendix B):

cond(S T) = IIA-l~ . IIAJ
m S s

eq. 3.2.(19)

which equals the biggest singular value divided by the smallest one:

cond(S T) = r(l,l)
m r(p.(k+1),p.(k+1))

eq. 3. 2. (20 )

Because SmT is of full rank, r will ~lso have full rank and thus:
r(p.(k+1),p.(k+1)) 1 0 . But when Sm l is nearly singular the smallest
singular value will be very small, which may result in a large condi
tion number and we are dealing with a badly conditioned problem. This
leads to an inaccurate solution, since a small change in the solution
Mk results in a much bigger change in the output Y. When the input vec
tors are nearly orthogonal, and thus we have a well conditioned input
signal, the condition number will be small. This leads to small compu
tational errors in the computation of Mk,LS'

A treat disadvantage of solving Y =SmT.Mk,LS is the size of the Y- and
Sm -matrix, for they are dependent on the number of samples taken into
consideration. Because the data are processed simultaneously, this pro
cedure normally has to be done by batch-processing. On the other hand,
very old samples of the input- and output signals are not very interes
ting so it might be possible to shift a 'window' of, for example, 1000
samples along the data being gathered, with an overlap of 500 samples
(see fig. 3.2.-2).

o

fig. 3.2.-2 'on-line' use of an explicit method

samples
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3.3 Recursive Least Squares

The approach described in the previous section has the disadvantage,
that when an estimate has been determined based on m samples and new data
become available, all computations have to be repeated; thus reprocessing
old data. To avoid this highly inefficient procedure it would be attrac
tive to determine an estimate after m+1 samples, based on the estimate
after m samples and the new data of sample moment m+1. As will be shown
in this section, this can be accomplisnea oy ~ne metnod tnat is callea

Recursive Least Squares.

Before discussing this recursive method, we first mention a matrix iden
tity wnich we will need and that is called: the matrix inversion lemma:

-1 -1 -1 -1 -1 -1 -1(A + B.C.D) = A - A .B.(C + D.A .B) .D.A

eq. 3.3. (1)

Verification of this lemma can be obtained by multiplying left and right
hand side of eq. 3.3.(1) by (A + B.C.D) which results in the identity
matrix I.

According to eq. 3.2.(9) the LS-estimate Mk,LS has to satisfy:

eq. 3.3. (2)

Let us now introduce the following notations

eq. 3.3. (3)

This means that Pm is the inverse of the covariance matrix of the input
samples (uncorrected for the number of samples that are used).
Using this notation, eq. 3.3.(2) can be written as:

eq. 3.3. (4)
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Now that we know Pm and Gm ' and thus also Mk,LS at sample moment m,
we would like to finds in an easy ways Pm+1 and Gm+1 which will give us

Mk,LS at sample moment m+1.

Pm+1 satisfies the following equation:

eq. 3.3. (5)

where ~+1 is a (k+1).px 1-vector containing the most recent input data:

T T T
~+1 = (~ (m+1), ... ,~ (m-k+1))

Working out eq. 3.3.(5) results in :

eq. 3.3. (6)

eq. 3.3.(7)

-1Looking at eq. 3.3.(4) we see that we need Pm+1 instead of Pm+1

P (P -1 T)-1
m+1 = m + ~+1·~+1 eq. 3.3.(8)

When we compare eq. 3.3.(8) with the matrix inversion lemma (eq. 3.3.(1))
we see that the right hand side of eq. 3.3.(8) has a lot in common with
the left hand side of eq. 3.3.(1). Let us now substitute the following
expressions in the matrix inversion lemma:

A = P -1
m s B = ~+1 ,C = 1

T
, 0 =~+1 eq. 3.3. (9)

These substitutions result in:

eq.3.3.(10)
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This expression is, in fact, a recursive procedure to compute P l'
m+

when P is known.m
Now, we only have to derive an expression for Gm+1:

eq. 3. 3. ( 11 )

So it is possible, indeed, to compute Pm+1 ~nd Gm+1 when Pm and G
m

are
known and new data represented by ~+1 and l (m+1) become available.
Multiplying Pm+1 and Gm+1 results in a new estimate of the Markov-para
meters:

-
Mk,m+l

eq. 3.3. (12)
Define:

eq. 3.3.(13)

and eq. 3.3.(12) reduces to:

eq. 3. 3 . (14 )

eq. 3. 3. (15 )

Here we see that the new estimate of Mk is formed as the linear combina
tion of the old estimate and a correction term:

- T T -
cMk,m+l ~ Km+1 • (I (m+1) - ~+l .Mk.rJ

The residual(yT{m+1)-s + T' Mk m) can be regarded as the difference be-
- -m 1 • T

tween the new output sample I (m+1) and the output sample predicted
by the old estimate Mk . This is why such estimators are often called,m
Prediction Error Estimators. Thus the residual gives us a correction which
is proportional to the magnitude of the error. The expression for ~+l

can be seen to be a direct function of Pm'
This means that the Ilarger l the error covariance, the more weight is
given to the residual.
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A problem of this method is that at the beginning of this recursive pro
cedure we don1t know Go and Po. A reasonable initial value of Go is zero,
since Mk,o=O , and the choice of a starting value of Po can be made, ac
cording to the following consideration.
In the beginning of the estimatlon procedure, we expect large errors
between the measured output and the predicted one, based on an old esti
mate. It is, therefore, sensible to give a large weight to the residual
and this can be accomplished by choosing a large initial value for Po.

Resuming, we can formulate the following algorithm (see fig. 3.3.-1)

Select values for

Po and Go

Collect lJO) , ... ',l.(k+1)
and ~(O) , .. .,~(k+1)

Compute Pi +1 and Gi +1 ,

giving a new estimate of

Mk,LS after i+1 samples

y

fig. 3.3.-1 block diagram of recursive estimation procedure
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A very pleasing property of this recursive method is that we don't need
to compute the inverse of a matrix. From eq. 3.3.(12) we see that the in
version reduces to a simple scalar division, which makes it possible to
implement this method on a computer very easily.

3.4 An updating algorithm for LS-estimation

Let us recapitulate the most important properties of the methods descri

bed in the preceding sections.
The explicit method of 3.2 has the great advantage to be numertcally
stable and accurate, but needs to process all data simultaneously.
The recursive method, however, computes an estimate based on older esti
mates, thereby saving a lot of computational time. The great disadvantage
of this method is that it may lead to inaccurate results, because of a
bad starting point; specially when few samples are available.

The updating algorithm for LS-estimation. which will be described here~ is
more or less a compromise between the methods of 3.2 and 3.3
Our starting point is the same as for the recursive method:

eq. 3.3.(2)

This equation is referred to as the 'normal-equation'.

Because the matrix Y and SmT.Mk,LS are premultiplied by Sm ' the dimen
sions of this equation are not anymore a function of the number of data
samples that are taken into account, but only of the number of inputs and
outputs of the system and the number of Markov-parameters that we want
to estimate.
It is possible to solve this normal-equation as described in 3.2 by apply
ing Singular Value Decomposition (SVD) or Householder-transformations.
Because the dimensions of the matrices are limited, this method needs less
computational effort than the explicit method of 3.2 . Another advantage,
compared to the recursive method, is that we don't need to know a star
ting value which could lead to inaccurate results.
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The third advantage is the possibility for updating, when new data becollie

available; since it is possible to adapt Sm'Y and Sm'SmT when sample m+1
is measured.

Analogous to the procedure, we used in 3.3, we can write:

Sm>l'Sm+/ = (Sml.~m+l)J Sm

T

) = Sm'Sm
T

+ ~l'~+lT
l~+1 J

eq. 3.4. (1)

The same for Sm'Y

eq. 3.4. (2)

So it is possible to recompute the matrices needed for the normal equation
based on old data. A disadvantage of this method, in contrast to the re
cursive method, is that for every estimate a set of equations has to be
solved. Another problem causes the premultiplication by Sm which leads
to eq. 3.3.(1). This premultiplication leads to a condition number of the
set of equations, which is the square of the condition number of
eq. 3.2.(9), that is used by the explicit method. When the input signal
is badly conditioned (e.g. a slowly varying pseudo binairy random signal),
this leads to a matrix which is nearly singular and thus to a large con

dition number of Sm'SmT . This may lead to inaccurate solutions for Mk,LS'
This remark is, of course, also valid for the recursive method which uses
also the normal-equation.

So far we have only taken into consideration the estimation of Mar
kov-parameters, assuming that the output noise = is white and channel
independent. In the next chapter the three methods, discussed here,
will extended to cope with coloured noise.
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NO~-LINEAR LEAST-SQUARES ESTIMATION

4.1 Introduction

In 2.3 we have derived an extended model for the estimation of Markov
parameters of the process and auto-regressive parameters of the noise
model.
This extended model can be described by eq. 2.3.(7):

y = ST. M + H T . Ar + ~m k m----
eq. 2.3. (7)

1 2

The first term of the right hand side represents the part of the output-
signal that can be explained by the process. Part 2 stands for the
contribution of the noise model to the output and what remains, ~ , is
supposed to contain no information anymore about the dynamical proper
ties of the system and thus to be white noise.
Part 2 of eq. 2.3.(7) is not 'known l until part 1 has been determined.
We will show that this will lead to a loss function which is non-quadratic
and which can not be minimized in a simple way.

Let us take a look at eq. 2.3.(9):

T! (1-1) •• . !T (t_r)] H
T

(0). .
• • MT' k

. !T~1+m-r) ~)
AT(r)

eq. 2.3. (9)

The equation errors e can be computed according to eq. 4.1.(1):
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eq. 4.1. (l)

From this equation. it is clear that e is a function of the Markov
parameters:

eq. 4.1. (2)

When the equation error is a function of Mk then, of course, also Hm
T is,

which is formed by 'older ' equation errors.
This leads to the following equation of our model, that is non-linear in
the parameters, since both Mk and Ar are unknown:

eq.4.1.(3)

Our main goal is to find estimates Mk and Ar ' of respectively Mk and Ar •
that sati sfy:

eq. 4.1. (4)

and that minimize the loss function V. which is defined as:

eq. 3.2. (3)

Because the expression for Y is not linear in the parameters, the loss
function will not be a simple quadratic function, but of the fourth or
der. Hence. it will, in general, not be possible to find a minimum of V
in a closed form and we will need some iterative procedure to determine
the minimum of V by varying Mk and A . Such a procedure is illustratedr .
in fig. 4.1.-1. When it is possible to approximate Y, in some point, by
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a linear function, the approximate loss function will be quadratic in
Mk. The minimum of this quadratic function may give us a better estimate,
and using this estimate a new approximate loss function can be obtained.
Continuing this procedure, we hope that it will converge to the exact
minimum of the non-quadratic loss function. Having found this minimum, we
have the best possible estimate of Mk and Ar in the least squares sense.

N ~2

fig. 4.1.-1 approximation of the loss function by a quadratic curve

4.2 Non-linear LS using an iterative explicit method

As we have seen in the introduction of this chapter, Hm
T is a function

of the Markov-parameters Mk . To gain some insight in this dependency of
Mk, we shall have to write Hm

T explicitly as follows:

!T(i_1). !T(i-r)

H T = eq. 4.2. (1)m
!T(Hm-1) !T(Hm-r)

Since the equation errors !T(i) are the difference between the measured
output and the predicted output based on the Markov-parameters:

eq. 4.1. (1)
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T T _r~T,'-1) T 1 tT1H1
.

T

1l (1-1) . l (1-r-l) . ~ (1-k-l) . !!. (1-k-r)

H T =
. r' l{<~-,) .

.M~
m

T: IT T .
l~T(Hm-l) . . ~T (Hm-k-l)Jl (Hm-l) . . 'L (Hm-r-l) • U (1+m-k-r) I

- J

y • T
A Sm,1-r

T
~ m II. Sm,1-1

where M· = eq. 4.2. (2)

Using the shorter notations, suggested above, this equation reduces to:

eq. 4.2. (3)

Now, suppose that we have a starting point Mk,O
ting MO~ , then it is possible to linearize eq.

eq. 4.2. (3):

and A a and a resulr.
4.1.(4), using

(ST 1y 1!_[S TI
m m m,£-l

(,Ym'* - [Sm,£_lT I

(ym'* - [Sm,t_/ I

T • [Mk,O 1
.•. , ISm, i-r J. MO ) • -A- J

r,O

T • [t.Mk ]ISm i-r J. MO ) . -
, t.A

r

A +r,O

1
S T ] t.M'*) Am,.t-r . t. r

+

+

(a)

(b)

(c)

(d)

eq. 4.2. (4)
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We shall approximate this equation by neglecting term (c) and (d):
(d): because it contains higher order parts and
(c): since neglection of this implicit term leads to

comparable conditions for the N that minimizes the
loss function (eq. 4.2.(12)) as we found in section

3.2 for Mk (eq. 3.2.(9)).

These simplifications result in:

Y = (5 T IV • - [s T1 Is TJ M -)m m m,R.-l"· m,R,-r • a .

yielding:

'if = (5 T IH T(M » fMk ]m m k,O .

Ar

eq. 4.2. (5)

eq. 4.2. (6)

Substitution of this equation in the expression for the loss func

tion V, eq. 3.2.(3) gives:

.
A necessary condition for Mk and Ar to minimize V is:

eq. 4.2. (7)

= a and = a eq. 4.2. (8)
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Computation of the derivatives leads to:

and
av
aA

r

eq. 4.2. (9)

eq. 4.2. (10 )

Combining these two equations, using the following notation:

we get:

eq. 4.2. (11)

aV
aN

= eq. 4.2. (l2)

This equation is very similar to eq. 3.2.(7) that is generally valid,

while eq. 4.2.(12) refers to the neighbourhood of Mk,O .

.
Hence, the Mk and Ar that minimize the approximated loss function can be
found by solving the following set of linear equations in least squares
sense:

y
T . T .

= Sm .Mk + Hm (Mk,O)·Ar

which is the same as:

y T N= 13m (Mk,O)

eq. 4.2.(13)

eq. 4.2. (l4)

The LS-solution of this equation gives us the possibility to update Hm
T,

and thus 13 T I which results in a new set of equations to be solved ..
m
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This leads to an iterative procedure to refine the estimate of Mk
and A

r
The solution of eq. 4.2.(14) can be obtained by using one of the methods
described in 3.2; the use of the Householder transformation is here the

more attractive one since it needs less computational effort than the
singular value decomposition.
When many iterations are needed to reach the minimum of V, the method as
described above will cost very much computation time and is, therefore,
not recommendable, although it has the advantage of being numerically
stable.

As in 3.2 it is possible to give a geometrical interpretation of this
iterative non-linear least squares procedure for the vector case.

y

(b)(a)

fig 4.2 -1 Geometrical interpretation of NLLS-estimation

For the vector case eq. 4.2.(14) reduces to:

y = eq. 4.2. (15 )

The first time we compute the LS-solution of this equation, an Eu
clidean space (a) is formed by the input vectors ~(i) and estimated
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obtained by the projection

A

vector R1=[ ;k.l ].
r,1

Tilt! parameter

~

equation errors e(i). The parameter vector N is mapped into this space
by e T(M" a). Si;ce the output vector Y contains noise influences, itm --1\, - ~

doesn't fit into this space. An approximation! of ! is the projection
of Yon space (a); thus minimizing the Euclidean distance between Y and
~ -
Y .

TY = em (Mk,a)'~1 ' can be used to recompute the estimated equation errors

according to ! = ! - SmT.~,1 . Together with the input vectors ~(i) the

se updated equation errors form a new space (b). The output vector Y
A -

can now be projected on this space (b); resulting in an estimate ~ and
so on. This iterative procedure can be stopped when the estimated equa
tion errors have converged to the exact values e, resulting in the esti- .

A -

mated parameter vector N that minimizes the loss function V. During this
- A

itt!rative procedure, the estimated noise vector = is always orthogonal
to the columns of e T(N) and this implies that at the end ~ is orthogonal

mT - T -
to the columns of Sand H ,built from the exact equation errors.m m
Hence, having reached the minimum of the loss function there will be no
correlation anymore between ~ and the input signals ~(i) and between =
and the equation errors !(i).

4.3 Recursive non-linear least squares

In 3.3 we introduced a recursive least squares method, because of the
advantage that not all data need to be reprocessed when new data be
come available.
For the same reason we will develop a non-linear version of this re

cursive method.

In 4.2 we found that the set of Markov-parameters, Mk ' and auto-
A ,

regressive parameters, A ,'which minimize the approximated loss func
r

tion in the neighbourhood of Mk,a and Ar,a ' is given by the solution
of eq. 4.2. (12), that is identical to:
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eq. 4.3. (1)

where the subscript m of Nm points to the number of samples taken into
consideration.

In exactly the same way as in section 3.3 it is possible to derive a re
cursive solution method for eq. 4.3.(1).

Define:

so:

P -1
m eq. 4.3. (2)

eq. 4.3. (3)

eq. 4.3. (5)

w T will be defined as the extension of em
T when a new sample m+1 be-m+1

comes avail ab 1e:

~+1T = (~..T(Hm+1) ... .~? U.+m+1- k) I~T(Hm) ... ! T(Hm-r+1) )

eq. 4.3. (4)

By substituting the extended matrix S T for SmT and the extended vector
T T • m

~+1 for ~+1 1n resp. eq. 3.3.(10) - eq. 3.3.(12), we get:

T -1 T
Pm+1 = Pm - Pm . ~+1·(1+~+1 ,Pm'~+1) '~+1 'Pm

eq. 4.3. (6)

and finally:

~ ~ T -1 T T ~

Nm+1 = Nm + Pm·~+1·(1+~+1 ,Pm'~+1) ·(l (Hm+1)-~+1 .Nm)

eq. 4.3. (7)

For the choice of a starting value Po and No we refer to 3.3, where some
remarks on this topic were made.
Thus, having a good starting value for P and N. it is possible to compute
a new estimate Nm+1 based on old data, a new output sample and a new value

for ~+1'
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At this point arises a problem: The new estimate is determined using
w + and this vector contains:
-m 1

T T Te (t+m) = y (t+m) - s- - ~
eq. 4.3. (8)

Formally, the equation error at sample moment m+1 must be computed based
on the Markov-parameters as known after m+1 samples, which is of course
due to the non-linearity of eq. 4.1.(4).
But this computation can't be performed since we don't know these Markov
parameters yet. The best prediction, that we are able to, is w IT based

-m+
on the Markov-parameters as known after m samples:

T T T·e (Hm) :: y (Hm) - s . Mk eq. 4. 3. (9)- - m ,m
(This is why this method is also called a prediction error method).

To be sure that this approximation is reasonable we must have a good
estimate of the Markov-parameters before we can start estimating the auto
regressive noise-parameters using these approximated equation errors.
This can be obtained by not estimating the auto-regressive parameters at
the beginning, but only Markov-parameters, using the procedure of 3.3.
After a number of samples the estimate of the Markov-parameters is fair
ly reliable and a prediction, of the equation error can be computed,
using eq. 4.3.(9).
After an estimate Mk,m+l has been obtained, eq. 4.3.(8) can be com
puted and be used in ~l; so that in a next recursion step the errors
in the equation error are as small as possible.
This recursive method has the following properties which decrease the
reliability of the final estimate of the parameters, we are looking for:

1) The recursive method executes only one iteration; so the minimum
of the loss function that is found, is only the minimum of a qua
dratic curve, that is an approximation of the exact loss function
after m samples. ~hen sample m+1 is known, a new approximate loss
function is computed, of which the minimum can be determined, etc ..
There is, however, no guarantee that the final estimate of the pa
rameters has converged to the value belongina to the exact minimum
of the non-quadratic loss function.
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2) The equation errors, that are computed during the estimation proce
dure are corrected nowhere, although at the end a much better esti
mate of the Markov-parameters is determined. This is due to the fact
that this recursive method doesn't reprocess old data, but only the
most recent data.

In spite of these disadvantages of this method, it may be very useful;
specially because it doesn't need much computational effort.

4.4 An updating algorithm for NLLS-estimation

In 4.1 we have seen that we needed an iterative procedure to minimize the
non-quadratic loss function. The explicit method of 4.2, however, appea
red to be a very inefficient procedure, because for every iteration all
data had to be reprocessed and the solution of the extended set of equa
tions was very time consuming.

In 3.4 we introduced an updating algorithm for LS-estimation, which was
a compromise between the explicit and the recursive solution method.
Here we shall use the same idea for an iterative updating algorithm for
non-linear least squares estimation, which is, in fact, numerically the
same as the iterative method of 4.2.

Recalling eq. 4.2.(12):

aV
aN

eq. 4.2. (12)

we see that in the first iteration, the N that minimizes the approxima
ted loss function is found by solving: .

T •
8 (Mk o).Y = 8.8 (Mk ).Nm, In m ,0

-
where Mk,O is an initial estimate of the upper part of N

4.3. (1)

This equation is similar to the 'normal-equation' (eq. 3.3.(2)), with
which we started in 3.4, except for the difference that the equation above
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is an approximation that is only valid in the neighbourhood of Mk .
,0

Having found an initial estimate Mk ' an iterative procedure can be
,0 T

started very easily by computing B (Mk o).Y and $.$ (M k 0)' solving
In, m m ,

eq. 1.3.(1) and by back substitution of the upper part of the solution

N= Mk,l
Ar,l

This results in an iterative solution procedure using successive substi
tution. A disadvantage of this method is that convergence is slow and
can not be guaranteed.

Using the notation of eq. 4.2.(11):

eq. 4.2. (11)

eq. 4.3.(1) can be written as:

T J
5 .H (M k )m m ,0

H (Mk ).H T(Mk )
m ,0 m ,0

eq. 4.4. (1)

We choose Mk =0 as a starting point, which is the same as solving:
,0

T S .V = 5.5 .Mkm m m eq. 4.4. (2)

that is ordinairy least squares estimate, that we used in section 3.4.
This gives us a useful approximation of the Markov-parameters to start
the iterative procedure, that also estimates the auto-regressive parame
ters of the noise-model.

Until now, we have only treated how to solve eq. 4.3.(1). For the upda
ting of this equation we refer to appendix C, because the derivation of
the algorithm is so complicated that it doesn't fit in the context of
this section.

To conclude this updating algorithm we shall consider some of its pro-
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perties.
As we have already found in section 3.4, the dimensions of the set of
equations that had to be solved, are not a function of the number of sam
ples, taken into consideration, but only of the number of parameters that
we want to estimate.
Because of this property, the solution of N, found by iteration, is ob
tained much faster than by the method of 4.2.
Compared with the recursive method, this updating algorithm has the ad
vantage that for every iteration all the equation errors are recomputed,
using the most recent estimate Mk. This means that no errors are intro
duced by old predictions of the equation errors. The price, we have to
pay, is that more computation time and more storage facilities than for
the recursive version are needed.
As already pointed out in 3.4, both the recursive and the updating itera
tive algorithm may cause more numerical problems than the explicit method
because of the premu1tip1ication of 8m

T by 8m, when a badly conditioned
input signal is used.
Instead of solving eq. 4.3.(1~ by successive substitution, it is also
possible to minimize the loss function

v = trace {(V-V)T.(V-V)} eq.3.2.(3)

by using a Newton method for the minimization of a non-linear function.
This method has better properties concerning convergence than a method
using successive substitution.

Substitution of

results in:

- T - -.V = 8m (Mk).N ln eq. 3.2.(3)

Which is the same as minimizing
-T V = tr.C: .:=:}

eq. 4.4.(3)

eq. 4.4. (4)

where is an estimate of the noise that can1t be explained by the pro

Cess model nor the noise model.
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Working out eq. 4.4.(3) results in:

eq. 4.4. (5)
that is identical to:

,T AT AT T A
V = tr (' .V) - 2.tr(N 'Sm'V) + tr {N .am.am .N} eq.4.4.(6)

Since we already computed Sm(Mk).V and Sm(Mk)SmT(Mk) for the updating
algorithm (see eq. 4.3.(1)), the computation of the loss function V is
not so difficult.
For minimization of V we need an initial estimate, which can be found by
performing 1 iteration of the updating algorithm.
A disadvantage of this method is that to minimize V, first order deriva
tives with respect to all parameters have to be computed. So a1thouqh the
advantage of a better convergence, this method is not very efficient be
cause of practical computational aspects. The reason for describing this
method becomes clear in the next chapter, where we shall see that this
method can be used to compute a maximum likelihood estimate.

Before finishing this chapter, we give a short enumeration of the al
gorithms that we derived in this chapter, and their properties:

a) an explicit method, which is a numerically stable and iterative proce
dure resulting in a least squares estimate of the Markov-parame-
ters and the auto-regressive noise parameters. However, this method
needs much computer storage and a lot of computation time.

b) a recursive method, that results in an approximated least squares
estimate of the parameters, since only one iteration is carried out.
A great advantage of this method is that not much computational ef
fort or storage is needed.

c) an updating iterative procedure leading to a least squares estima
te of the parameters being, in fact, a compromise between the ex
plicit and the recursive method, as far as accuracy, needed compu
tation time and storage is concerned.
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d) by small changes to the updating iterative procedure we can find
a least squares estimate by minimization of the loss function, u
sing a 'hill-climbing l method. The execution of this method is very
time comsuming, but it has better properties concerning convergence
than the methods using successive substitution (a and c).
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CHAPTER 5 MAXIMUM LIKELIHOOD ESTIMATION

In this chapter we shall pay attention to the Maximum Likelihood-method
(ML), which is one of the generally applicable methods for parameter es
timation. In the first section we will work out the ML-method for the
two different models, discussed in chapter 2. Also, the relation between
the maximum likelihood method and the methods based on least squares
estimation techniques, described in chapter 3 and 4, is pointed out.
In the second section the maximum likelihood method will be derived for
the estimation of the parameters of a third model. This third model is
introduced to be able to deal with additive output noise, which is co
loured by a filter that contains a direct term.
This means that the output noise of channel i may be correlated with
the input noise of channel j, at the same moment, which is a phenomenon
that is often met in practice.

5.1 Maximum likelihood estimation and its relation with least squares

The method of least squares estimation, which was treated in chapter 3
and 4, was introduced independently of probability theory. In fact, we
only minimized a sum of squares of the error between the observed output
and the output predicted by the model. Therefore, this method is often
called a least squares prediction errOr method (PEM).
The criterion of this method can also be derived from a probabilistic
point of view, using the maximum likelihood method.
First, we shall derive the ML-method for the model of fig. 2.2.-2 that
has been used in chapter 3. This means that the additive output noise E

is assumed to be stationary, white, Gaussian noise, that is 'white' in
time and in place (cf. eq. 2.3.(1) and 2.3.(2)),(the case where this
additive output noise is coloured, Gaussian noise will be dealt with la

ter on).

S T
m

y

fig. 2.2.-2 model for the estimation of Markov-parameters
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Our model can be described by

eq. 2.2. (4)

where: is assumed to contain noise vectors i(i) that have a Gaussian dis
tribution N(O,a2 .I) for all sample moments i that are taken into account,
which means that:

eq. 5.1. (1)

Because the vector ~ has a normal distribution and because it is statio
nary noise, it has a multivariate probability density function p(~):

1
p(i) =-----

21Tq/ 2 (detR) i
[ T -1 ]. exp -Hi.R .~) eq.5.1.(2)

where q = dimension of the (q x 1)-vector ~ .
According to the assumption about the whiteness of the noise, all m+1
samples of i are independent.
The joint probability density function can, therefore, be written as the
product of the density functions of each sample i(i):

m .
p(:) = p(~(R.), ... ,~(Hm))=.II p(~(H'))- - ,=0 -

which results in:

eq. 5.1. (3)

eq. 5.1. (4)

p(E) = 1 m+1 • eXP[-i~ _~T(Hi).R-1._~(.Hi)]g(m+1)
(21T) 2 • (detR)-Z- i=o

Using: iT(R.+i) =IT(R.+i) - ~T(i+i).M(O) 

=IT(R.+i) - IT(R.+i)

- ~T(Hi-k).M{k)

eq. 5.1. (5)

we see that p(:) can be presented as a function of the Markov-parameter.s

M(O) •...•M(k) that have to be estimated.
Eq. 5.1.(4) can be regarded as a measure of the 'likelihood l for a parti
cular value of E, when given a value of the Markov-parameters.
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When we substitute the observed output samples tT(i+i) in eq. 5.1.(4),
this results in eq. 5.1.(6) that is called the 'likelihood function' L:

1L(Y;Mk) ::: ------
q(m+i) m+l

(21T} 2 • (detR) 2 eq. 5.1. (6)

where l(j) is a function of the Markov-parameters.
A good estimate of the Markov-parameters is such an estimate that it is
the 'most likely' value for Mk, given the data substituted in the likeli
hood-function. This estimate of Mk can be found by maximizing L(Y;~k).

Instead of maximizing L(Y;Mk), we will minimize -In L(Y;Mk):

Hm
-In L::: q(m+l).ln 21f + m+lln(detR) + ~ I: [(tT(j)-£T(j)).R-1.(t(j)-£(j))]

2 2 j:::i

eq. 5.1. (7)

Substituting the a priori information R:::02.I and using tr(AT.B):::tr(A.BT),
we find:

-In L ::: (m+l).(~· ln 21T + ~.ln q + ln 0) + __1__ tr{(Y-V)T(y-V)}
2 202

eq. 5.1. (8)

• T •
where Y ::: Sm .Mk
A necessary condition for minimization of (-In L) is:

a(-~nL) ::: 0 and a(-ln L) ::: 0
a Mk ao

Computat,on of the last part gives us:

a(-ln L) ::: m+l _ 1- . tr{(y-y)T.(y_y)} ::: 0
ao 0 0 3

This leads to:

eq. 5.1. (9)

eq. 5. 1. (IO)

1
m+l

• T -
tr{(Y-Y) .(V-Y)} eq. 5. 1. (11 )
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Substitution of eq. 5.1.(11) in eq. 5.1.(8) and computation of a(-ln L)
results in the following condition for Mk: a Mk

atr{(y-y)T.(y_y)} = 0

aMk
eq. 5. 1. ( 12 )

When we compare this result with eq. 3.2.(4) we find that the maximum
likelihood estimate Mk,ML that fulfils eq. 5.1.(12) is the same as the
least squares estimate Mk•LS .
This implies that in this special case, where ~ is white, channel inde
pendent, stationary, Gaussian noise, the least squares estimate that we
discussed in chapter 3 is the same as the maximum likelihood estimate,
although the least squares principle makes sense even if no: probabilistic
assumptions are made.

The maximum likelihood estimator has some nice properties, which are in
this case also valid for the LS-estimator: (Eykhoff,(l974))' When there
is no dependency between the noise and the input signal of the system,
both estimators give us a consistent and asymptotically (i.e. m~~)

efficient estimate of Mk (cf. section 3.1).

The derivation of a maximum likelihood method for the model, used in chap
ter 4, is very similar to what we have done before in this section.

,- - - - - -""'" - - - - - - --,
I noise modelt

- I .. +...-... I
----.",?<. }

:'~ :
: A C- I
I r.... I

~------------'

fig. 2.3.-2 of Markov-parameters

S T
m

E
,- - - - - - - - - - - - - - -I
I I ~ V
I, I ,~+ ,

---:-------."r/ Mk l-----,--...,..,.)tL.Jl)~-...,..,,~ Y
I t '+- or

I
I I
I process dynamics I1- •

an extended model for the estimation
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This model is described by:

Y= S TM + HTA + ~
m k m r eq. 2.3. (7)

where, again, ~ is presumed to be Gaussian, white, channel independent
noise. This extended model can be treated the same as the first model,
which results in the same likelihood function L:

t'J 1· T •
-In L = (m+l).(~ln2~ + iln q + lncr) + ---2 tr{(Y-Y) .(Y-Y}}

2 2cr eq. 5.1. (8)

but here: Y T . T·· T··
= S •Mk + H (Mk) •A = a (N) •Nm m r m

a(-ln L)

a N
and a(-ln L) = 0

ocr
eq. 5. 1. (13)

Using the results of eq. 5.1.(10) and 5.1.(11). minimization of (-In L)
is obtained by that value of Nthat fulfils:

atr{(y-y)T.(y_y)}= 0

aN
eq. 5.1. (14)

This results in the minimization of the same non-quadratic function as in
chapter 4. The estimate NML , fulfilling eq. 5.1.(14), is identical to the
solution of NLS that is found when using one of the iterative procedures.
The recursive method of 4.3, however, gives us an approximate estimate of
NML · Since the equation errors are not corrected during each update, it is
not possible to guarantee that the maximum of the likelihood function is
found. This means that the estimate given by the recursive method is in
most cases not asymptotically efficient, but is a consistent and unbiased

estimate.
The ML-estimate and the estimators provided by the iterative least squa
res methods are also asymptotically efficient, which means that among
the unbiased estimators no other one has a smaller asymptotic (co)vari
ance.
Estimation of Markov-parameters, wether or not with estimation of noise
parameters, results in an unbiased estimate if the noise is independent
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from the input signal of the system. This implies that we will get a bia
sed estimate when the effects of truncation of the impulse response can
not be neglected: This can be proved as follows:

Suppose T TY = S .Mk + S .M + Em 00 00
eq. 5.1. (15)

where S~T.Moo represents the Itail I of the impulse response.

Rewriting eq. 5.1.(15) leads to:

M = (S S T)-l S Y - (S S T)-l S E - (S S T)S S TMk mm ·m mm ·m mm moo 00
eq.5.1.(16)

l

M~
Since SST is positivemm
thus be unbiased, when:

definite, the estimate Mk will tend to Mk, and

lim S E =° and lim SST =°
ITJ'+<X> m IJl-+'<'O m 00

eq. 5. 1. (17)

The first condition says that no dependence is allowed between the input
signal of the system and the additive output noise and the second condi
tion can only be fulfilled when S T=O, i.e. that the effects of trunca-

00

tion of the impulse response may be neglected or when the input signal
consists of white noise samples.

Concluding this section we may say that in the cases as describe~ in chap
ter 3 and 4, the maximum likelihood method coincides with the least
sqaares method.

5.2 An updating algorithm for ML-estimation of Markov-parameters

In this section, we will extend the model that was derived in 2.3.
In the model of 2.3 the following equation was valid:

~(i) = A(I).!(i-l) +...+ A(r)!(i-r) + §Ji) eq. 5.2. (1)

From this equation we learn that the only dependence of the output of the
colouring filter !(i) with the input noise i(i) at the same moment i, is
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a dependence from input channel j to output channel j. Hence, there is
no cross coupling from input channel j to output p at the same moment

(Pf j ) .

To be able to take into account such a direct coupling over the channels,
eq. 5.2.(1) must be changed into:

~(i) = A(1)~(i-1) +... + A(r)~(i-r) + B(O).i(i) eq. 5.2. (2)

where B(O) is a (qxq)-matrix that is a moving average (MA) parameter.
Because of this, our model, now, contains 1 MA-parameter and a number of
auto-regressive parameters.

The model described in 2.3 is now modified to that of fig. 5.2.-1

S T
m

E

I
I
I. .------- -- - - - -- - ---- - - - - - - - - - - - - - - - - - _.-

y

fig. 5.2.-1 model, extended for dependence over the noise channels

According to fig. 5.2.-1 and eq. 5.2.(2), we find:

Y = SmT.Mk + H T. A + :.B(O)Tm r t I

Z

In eq. 5.2.(3) Z is defined as:

Z =.::.B(O)T

eq. 5.2. (3)

eq. 5.2. (4 )

In this equation.:: is assumed to be white noise which is independent in
time and place. Because of the multiplication of .:: by B(O)T, Z is white
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noise that is only white in time, but not in place.

Using eq. 5.2.(3) we would like to estimate Mk, Ar and 8(0).
\ihen we would try to solve this problem like we did in the previous sec
tion, we would have to minimize a function, with respect to Mk, Ar and
B(O), that contains ~. This, however, would be a big problem, since we
don't know ~.

In the previous section the input noise was assumed to have a covariance
matrix R=a 2 I. But the method used in the previous section will also work
without this assumption. Hence, let us pay attention to the probability
density function p(Z) instead of p(~):

p(Z) = .9lm+
1
j m+l eXP[-i.~ iT (Hi) .R-

1
'i(Hi)J eq. 5.2. (5)

- - - 1-0
2n 2 .(detR) 2

where Z = (i(2)t",i(2+m))T and R is the covariance matrix of ~(i).

Taking the logarithm of eq. 5.2.(5) results in:

) Urn T -1

-In L = (m+l q ln2n + ~.ln detR + ~ I s (j).R .S(j)
2 2 j=Q,--

eq. 5.2. (6)

The likelihood function is now a function of R and of the parameters Mk
and Ar since:

eq. 5.2. (7)

The necessary conditions which have to be fulfilled for the minimum of
(-1 n L) are:

where N

a(-ln L) =

aR

=~:l

o 'and a(-1n L) = 0
aN

eq. 5.2. (8)

Taking the derivative of (-In L) with respect to R gives us:
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eq. 5.2. (9)

which can be rewritten to:

T Hm TIT 1 T
(R- 1) .(!: r;(j).~ (j)).(R-) = (m+1).(R-)

j=i- -

Um
This means that R = __1__ !: r;(j).r;T(j)

m+l j:ili - -

eq. 5.2.(10)

eq. 5. 2 . (11 )

is a necessary condition for minimization of -In L.
Substitution of this necessary condition in eq. 5.2.(6) results in:

RHS 1

-In L =
I

i+m T 1 i+m T -1
l t r;; (j). (-- !: r;; (k) r;; (k)) • r;; (j) +
j=i - (m+1) k=t - - -

(m+1)q ln 21T +
2

i+m
+ m+ 1 1nrdet (( 1) ~ r;; (k) . r;;T(k) )1

2 ~ m+1 k=i - - ~
eq. 5.2. (12)

Since the first part of the right hand side of eq. 5.2.(12) is a scalar,
it can be written as:

( 1) Hm T 1 um T -1 .
RHS 1 =m+ tr{ ~ r; (j).(--- !: r;;(k).r;; (k)) .r;;(J)}

2 j=i - (mt 1) k=i - - -

eq. 5.2. (13)

+1 Hm T - 1 um T '
::: m

2
tr[(k!: .;.(k) ..5. (k)) .(.!: .;.(j).5. (j))]

=i J=i

eq.5.2.(14)

eq.5.2.(15)
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RHS
1

= m+1 tr[I] = (m+1)q
2 2

Substituting this result in eq. 5.2.(12) gives:

m+1 1 i+m T
-In L : --2-- [1+1n(det(m+~ . k:i i(k)i (k))] + q.ln 2~

eq. 5.2. (16 )

eq. 5.2. (17)

The minimum of (-In L) can easily be seen to be the minimum of:

i+m T T
det t ~(k)~ (k) = det Z .Z eq. 5.2.(18)

k=i - -

So it is possible to find an estimate N by minimization of det(ZT. Z) with

respect to N.
From eq. 5.2.(19):

det ZT. Z : det(B(O).ET.E.B(O)T) = cr 2 .det (B(O).B(O)T)

eq. 5.2. (19)

it can be seen that this minimum does not results in an unique solution
of B(O). since it is always possible to include an orthogonal matrix
(W.WT:I) that can be regarded as an amplification factor.

In chapter 4 we introduced an updating algorithm that minimized,tr(ETE)
with respect to N; where E was defined as:

T· •
E : V- 8m (N).N.

But in the case described above Z is defined as Z = V - 8m
T(N).N.

Thus Z and E coincide in these two different models.
This means that instead of minimizing the tr(v-V)T.(V-V) we must minimize
det(v-V)T.(V-V). which is only a small modification, to be able to cope
with direct coupling over the noise channels.

The estimate of N, that is obtained by this method, is again a maximum
likelihood estimate, having the nice properties already mentioned in the
previous section.
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In the chapters 4 and 5, we have discussed some algorithms that are able
to deal with coloured additive output noise. In chapter 7 we will present
the results of simulations that have been obtained by the use of these
a1gorithms.
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CHAPTER 6. SOME ASPECTS OF THE REALIZATION PROBLEM

Until now we have only paid attention to the estimation of Markov-para
meters from input and output data of a system.
Having determined such a sequence of Markov-parameters, it would be very
attractive if we were able to find a set of matrices A,B and C, where A
has a certain dimension n, in such a way that the reconstructed series
of parameters, by using the definition eq. 2.1. (7):

[

0 , ; <0

M(i) = 0 , i=O
i -1C. A •B, i >0

eq. 2.1. (7)

is, in some sense, as close as possible to the exact impulse response ot
the system. This problem is called the (naive) partial realization problem
and the set of matrices {A,B,C} is called a realization. We shall not
take into account the D-matrix, because this is immediately known, when
given a series of Markov-parameters, since D=M(O).

In chapter 2 we introduced the Generalized Hankel matrix as a matrix con
sisting of Markov-parameters.
Here we shall give a definition of the Hankel matrix H[j] which is a
part of the Generalized Hankel matrix:

H[j] =

M(l) M(2)

M(2) M(3)

M(j) M(j+l)

M(j)

M(j+l)

M(L-l)

eq. 6. (l)

Using a noise-free Hankel matrix of the system of sufficient dimensions
(j>n), Ho and Kalman introduced an algorithm that constructs a realiza
tion {A~B,C} of a linear, time-invariant, state-space model.
For the description of some other methods, which have a lot in common
with the Ho-Kalman algorithm, we refer to an extensive report on rea-
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lization methods of Van den Hof (1982).

In the deterministic case, i.e. when the Markov-parameters are not con
taminated with noise, the Ho-Kalman algorithm leads to an exact solution:
So we find an exact realization {A,B,C}, which has also a minimal dimen
sion.
This dimension can be found from the rank of the Hankel matrix as follows_
from the theorem 1 and theorem 2: (Van den Hof (1982)).

Theorem 1: The sequence of Markov-parameters {M(k)}, k=1,2, ... has a
finite dimensional realization {A,B,C} if and only if there
are an integer r and constants a. such that

1

M(r+j) =.£ a .. M(r+j-i) for all j>O
1:1 1

eq. 6. (2)

the minimum value of r is called the realizability index.

Theorem 2: If {M(k)} has a finite dimensional realization then
n = rank H[r] eq. 6. (3)

where n is the minimal dimension of the state space, and
H[r] is the Hankel matrix built up from 2r-1 Markov-para
meters.

These theorems imply that, in the noise free case, no extra information
is added to the Hankel matrix when it is built up from a sequence of
Markov-parameters with length L~2r-1 :

n = rank H[r] = rank H[r+kJ for a11 k~O eq. 6. (4)

The basic idea of the Ho-Kalman algorithm is the following:

When given a series of Markov-parameters {M(k)}. k=1 •... ,L+1, having
a finite dimensional realization, the Hankel matrix HL~ can be decom
posed in the following way, using the definition of the Markov-parame
ters (eq. 2.1.(5)):
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C

CA
CA2

H[r] =

CAr - 1

eq. 6. (5)

= r[r). tI[r)

where r[r] is the r-observability matrix and
tI[r] the r-controllabi1ity matrix.

We assume that {A,B,C} forms a minimum realization of the given se
quence of dimension n.
According to eq. 6.(4) the Hankel matrix has a rank equal to n, and there
for both r[r] and tI[r] have at least rank n. Because we only take into
consideration observable and controllable systems, the rank of both ma
trices can not exceed n, which leads to:

rank r[r] = rank tI[r] = n eq. 6. (6)

Resuming we can say that we need to decompose the Hankel matrix H[r]
in two matrices, both of full rank.
Having achieved this, it is possible to obtain the matrices C and B di
rectly from respectively the first q rows of the first matrix and the
first p columns of the second matrix found by decomposition.
To obtain matrix A, we need a shifted matrix, indicated by an arrow. A
shift of one block row is indicated by a vertically pointing arrow, and
a shift of one block column by a horizontally pointing one.
This leads to:

M2 M3 M4 Mj-l- 1

M3 M4 Ms Mj +2+-
H[j] t = H[j] = eq. 6. (7)

Mj +1 Mj +2 Mj +3 ML+1
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+-

Ht = H = r. A . ~ eq. 6. (8)

+From eq. 6.(8) A can be obtained by using the pseudo-inverse r of rand
~+ of ~:

A = r+ . H. ~+ eq. 6. (9)

From the construction of the shifted Hankel matrix (eq. 6.(7)) it can
be seen that we need an extra Harkov parameter M(L+1).

The triplet (A,B,C) found by this procedure is only one possibility of
an equivalence class of the system under study.
This can be seen easily by extending the decomposition of eq. 6.(5) by
an invertable matrix T:

H[r] = r [ r] .T-1 .T.~ [r] = (r [r] .T- 1) . (T .~ [r] )

eq. 6. (10)

which results in C~=C.T-l and B·=T.B and (using 6.(9))

This triplet (A·,B~,C~) is equivalent to (A,B,C) since
same sequence of Markov parameters.

~ -1
A =T.A.T .

it gives us the

According to Hajdasinski and Damen (1979), we can use the Singular Value
Decomposition to decompose the Hankel matrix as follows:

H = W. r . VT eq. 6. (11)

where H: is a gxt matrix
p: p = min(g,.t)
W: is a gxp matrix, consisting of p orthonormal eigenvectors of

H.HT

V: is a txp matrix, consisting of p orthonormal eigenvectors of
HT.H

r: is a pxp diagonal matrix: diag(01,02'''''o )
p

°1 ~ °2 ~ ••• ~ 0p ~ 0
, T T

and 0i is the square root of an eigen-value of H .H (or H.H ),
and is called a singular value.
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Because of the special properties of W, V and [, mentioned above, we
can write:

rank H = rank [ ~ p eq. 6.(12)

This means that the rank of H is equal to the number of singular values
unequal zero.
Because all singular values unequal zero are positive, eq. 6.(11) can
be written as:

H i [i . VT= W. [ .

where
6 i a a1

[i = 6 i
n

a
a a (pxp)

and n = rank H.

eq. 6.(13)

eq. 6.(14)

Choosing r=w.[i and ~=[~.VT, we have found a decomposition of H into
two matrices of full rank n, which is the product of observability and
controllability matrix.
Thus, by using SVD it is possible to find an observability and control
lability matrix that can be used in the Ho-Kalman algorithm to obtain a
realization {A,B,C} of the system under consideration.

Until so far, we have only treated the deterministic case, but we want to
find a realization built of estimated Markov-parameters which are, of
course, disturbed by noise.
In this noisy situation, there does not exist anymore a finite dimensional
realization that reconstructs {M(k)}, k=1,2, ... in an exact way.
The rank of the Hankel matrix will, therefore, always increase when
more Markov-parameters are used to build up that Hankel matrix.
The realization problem can now be formulated as finding a finite dimen
sional (n) realization that generates a sequence of Markov-parameters,
that is, in some way, as close as possible to the given sequence ( of
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length L»n ) of estimated Markov-parameters. This can be obtained by
reduction of the rank of the Hankel matrix to rank n. This reduction
can be regarded as a noise filter that operates on the Hankel matrix
and thus on the Markov-parameters, in such a way that we can recon
struct {M(k)}, k=1,2, ... with a finite dimensional realization.
A reduction of the rank of the Hankel matrix can be obtained by neglec
ting the smallest singular values and putting them to zero, because
they are considered to be caused by the noise of the estimated parame
ters. This is illustrated for an example with n=3 (Van den Hof (1982))
in fig. 6. -1.

~.s; i o

x 0

X o
x

n=3

min(g,tl ..a
X noisefree sing. value l5i
o noisy sing. value h.

o

(f v max(g,tl ~ - - - - - - - - - 9 - -0... --El- -0-

2 3 4 5 8 7 a

fig. 6.-1 singular values of a 3rd order system in the deterministic and

in the noisy case.

where crl max(g,t) is the expected noise level on the Markov-parameters.

One of the reasons for choosing a model based on Markov-parameters in sec
tion 2.2 was that we did not need any knowledge about the order of the
system beforehand. Now, it appears that this characteristic of the system
under study is found automatically by solving the realization problem.
For more extensive information about the realization problem we refer to
publications of Van den Hof, Hajdasinski and Damen (cf. the list of refe

rences) .
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CHAPTER 7 RESULTS OF SIMULATIONS

In the chaoters 1, 4 and 5 we have described some alqorithms for the esti

mation of Markov-parameters. To be able to test the qualities of these
algorithms. many simulations have been done. A great advantage of simu
lations above estimations on real data is that all external influences
on the simulated process can be controlled. This means that we can choose
the properties of the systems. used for simulation. or of the input data
in such a way that the results of the simulations are well suited for
drawing conclusions on the properties of the methods.

In section 7.1 we shall give a description of the systems that we used
for the simulations. a short enumeration of the methods used for esti
mating the Markov-parameters and the criteria for the quality of a method.
The sections 7.2-7.5 deal with the results of the experiments as obtai
ned by simulations of 4 systems. Finally. we shall give a short summary
of the results in section 7.6.

7.1 Description of simulations and processing

To be able to estimate the Markov-parameters of a system. we need. of
course. input and output signals. Because of the assumptions we made about
the character of the noise (cf. chapter 2). we suppose that only the out
put is corrupted by noise. This means that we use an undisturbed input
signal for the system and an output signal. that i~ the sum of the res
ponse on this input signal and additive output noise that may be colou
red noise.
After an input and output signal have been simulated. an estimation pro
cedure is executed. estimating a number of Markov-parameters of the pro
cess and auto-regressive parameters of the noise colouring filter. These
estimated Markov-parameters will be denoted as {M(i)}L' i=1.2 •...• L in
contra-distinction to the exact Markov-parameters which are denoted as

{M(i)}L' i=1.2 •...•L.
A measure for the quality of the estimated parameters is the relative
error in the estimated Markov-parameters sequence: ERRO (see also Van den

Hof (1982)):
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L ~ 2
ih II i~ ( i) - M(i ) II E

ERRO =---------

i ~ 1 II M( i ) [I ~
eq. 7.1. (1)

From these estimated parameters a Hankel matrix is built and the reali
zation algorithm, as described in chapter 6, is applied to this Hankel
matrix. This algorithm results in a realization {A,B,e} that generates
a sequence of Markov-parameters {M(i)}L' i=1,2, •..• L (filtered by the
realization algorithm).
The error of these filtered Markov-parameters in comparison to the exact
values is defined as (cf. Van den Hof (1982)):

ERR1

L 2
i~lIM(i) - M(i)1I E

=......;;;..--:--------
L 2

i~l IIM(i)11 E

eq. 7.1. (2)

Schematically, the simulation and the identification can be presented as
is shown in fig. 7.-1, with the following explanation:

1. The input signals, that were used for simulation, existed of 3 kinds
of signals:
- a white Gausian noise sequence with cr=1.0 and ~=O

- a Pseudo Random Binairy Noise Sequence with an amplitude sWitching
between -1 and +1.
a Pseudo Random Binary Noise Sequence that is filtered by a first
order low pass filter.

2. The input signals of the noise filter were sequences of white, chan
nel independent Gaussian noise with cr=O.l and ~=O.

3. To simulate the process the following systems were chosen:

SYSTEM 1 • has 2 inputs. 2 outputs and dimension 2:

A= ,.3 o·l
La: .2J

B= C= r· 0.]
Lo. 1.

eq. 7.1. (3)
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generation of input
l. "

generation of white noise sequence
.-- ~.

signal for the process as input for the noise filter

,II

Simulation of output signal Simulation of coloured output noise
by the system {A,B,C,D}

3.
signal with noise filter {F,~,H,DN}

--------- ~addition of coloured
noise to output signal

,
Estimation of Markov- Computation

4. . ,
parameters M of ERRO

,It

Determination of a
5. - - -

realization {A,B,C}

,
Reconstruction of fil tered Computation-
Markov-parameters M of ERR1

fig. 7.-1 flow chart of simulations and identification

SYSTEM 2 and SYSTEM 3 have both 3 inputs, 2 outputs, dimension 4 and the

same B- and C-matrix (according to Damen and Hajdasinski (1982)):

1. O. 1.

-1 .5 .5 [oS O. l. 1.]B = C = eq. 7.1. (4)
O. l. -.5 l. -.5 .5 -.5

O. .5 -1.

For a clear view on the eigenvalues of the systems, the A-matrices are
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chosen in a diagonal way:

SYSTEM 2: A = diag(O.7, 0.6, 0.2, 0.1)

SYSTEM 3: A = diag(O.9, 0.8, 0.3, 0.2)
eq. 7.1. (5)

For the simulations we have restricted ourselves to a strictly proper
system which means that the D-matrix of the system is chosen to be zero.

As is seen very easily from eq. 7.1.(3) SYSTEM 1 is a MIMO-system con
sisting of two decoupled SISO-systems in parallel.
For SYSTEM 2 and SYSTEM 3 we have chosen 2 large and 2 small eigenvalues
to be able to find out what happens to the smallest eigenvalues after

estimation.
The biggest eigenvalues of SYSTEM 3 are so large that we deal with a very
slowly decreasing impulse response. This implies that we should take
into consideration many Markov-parameters to avoid any influence'of the
Itail I of the truncated impulse response. When not enough Markov-para
meters are estimated, we expect to notice this tail influence in the es
timation results.

For the noise colouring filter we have also chosen 3 systems:

NOISE SYSTEM 1, having 2 inputs, 2 outputs and dimension 2:

F = ro.85 0.0 J
lo.o 0.75 ~

.O O'OJ
G = H =

0.0 1.0
eq. 7.1. (6)

and an input-output matrix DN equal to zero. This noise system is also
a combination of 2 decoupled SISO-systems in parallel. The noise genera
ted by this system is only used in combination with SYSTEM 1, where the
noise is low frequent with respect to the system at hand.

NOISE SYSTEM 2, has also 2 inputs, 2 outputs and dimension 2:

F = ,0.3 O'Ol
lo.o o. 2J [

1..0 O. OJ
G = H=

0.6 0.5
eq. 7.1. (7)
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and again ON equal to zero. The noise coloured by this system is ad
ded to the outputs of SYSTEM 2 and SYSTEM 3 and is no longer channel
independent.

NOISE SYSTEM 3 is the same as NOISE SYSTEM 2 except for the input
output matrix, that is now unequal to zero:

~
1.0 0.3J

ON = B(O) =
0.4 0.6

eq. 7.1. (8)

The noise coloured by this system is only added to the output of
SYSTEM 2.

4. The algorithms applied to the simulated input and output data are
based on the methods described in chapters 4 and 5. This implies
that in all cases we will deal with algorithms that are able to es
timate auto-regressive parameters of a noise colouring filter. To
recapitulate the chosen methods and the names given to the algo
rithms, we present the following list:

method
nr.

name explanation

1 REC~AKI Estimation procedure based on the recursive algorithm
as described in section 4.3.

2 MARKEST-l Estimation procedure based on the updating algorithm
that solves: em'Y=Sm'SmT.N, as described in section
4.4; only 1 iteration is executed.

3 EXACTMARK Procedure based on the explicit iterative algorithm
T .

that solves: Y=Sm .N, as described in section 4.2;
only 1 iteration is executed.

4 MARKEST-25 Estimation procedure based on the updating algorithm
of 4.4. This method is exactly the same as method 2,
except for the fact that MARKEST-25 carries out 25
iterations.
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This estimation procedure minimizes the loss function
tr{=T.=} by the use of 'hill-climbing'-techniques
as described in 4.4. The parameters estimated by MAR
KEST-1 are used as a starting value.

6 MARKMIND Estimation procedure based on the maximum likelihood
principle as depicted in section 5.2. In this algorithm
the loss function det(ZT. Z) is minimized ( ...MINQ) by
using a 'hill-climbing'-technique and the parameters
estimated by MARKEST-1 are chosen as a starting value.

5. To the estimated Markov-parameters a realization algorithm is ap
p~ied based on a decomposition of the Hankel matrix. We used the
Ho-Kalman algorithm, modified by Damen/Hajdasinski (Van den Hof
(1982)) as was briefly described in chapter 6.

Finally, it can be remarked that all experiments have been carried out
for 20 different input-output signals sequences to be able to draw rea
sonable conclusions from the results obtained by the estimation proce
dures and the realization algorithm.
The experiments were done on a VAX 11/750 computer and double precision
arithmetics were used throughout all computations.

7.2 Results of simulations using SYSTEM 1

SYSTEM 1 has small eigenvalues (cf. eq. 7.1.(3)) and thus a fast de
creasing impulse response. This implies that we don't have to estimate
many Markov-parameters to avoid 'tail '-influences.
Two kinds of input signals have been used to excitate SYSTEM 1:

- white noise signals (cr=1.0, ~=O.O)

- Pseudo Random Binairy noise sequences (PRBNS) with an amplitude
switching between +1.0 and -1.0 (switch time ~ sample time).

The responses on these input signals have been disturbed by noise that
was coloured by NOISE SYSTEM 1. The input signal of this noise system
was white, channel independent noise with cr=O.l and ~=O.O.
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Comparing the properties of SYSTE~ 1 and NOISE SYSTEM 1, we see that a
high-frequent output signal is distorted by a low-frequent noise signal.
The signal-to-noise ratio at the output is approximately 3. This means
that we have a high noise level on the output signal and when estimating
8 Markov-parameters, the noise due to 'tail I-influences is small compa
red to the added output noise. Estimation of 2 auto-regressive noise pa
rameters will be sufficient to give an exact description of NOISE SYSTEM 1.

First we shall give the estimation results when the input signal consists
of 20 white noise sequences of 1000 samples each.

RECMAKI MARKEST-l EXACTMARK MARKEST-25 MARKMIN MARKMIND

ERRO 20 0.7325 E-3 0.4348 E-3 0.4352 E-3 0.3602 E-3 0.2512 E-3 0.2514 E-3

s.d.ERRO 0.3672 E-3 0.1777 E-3 0.1764 E-3 0.1294 E-3 0.1126 E-3 0.1128 E-3

tab. 7.2./1
fi g. 7.2.-1

Estimation results of SYSTEM 1; input: white noise

~
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In all bar charts in this chapter the mean values of errors in the esti
mated (ERRO) or in the reconstructed (ERRl) Markov-parameters will be pre
sented together with this value! its standard deviation (s) based on 20
simulations.
As can be seen from these results, the recursive method RECMAKI gives us
the least accurate result. An obvious improvement in the accuracy of the
estimated parameters can be obtained by using one of the other two non
iterative methods: MARKEST-l or EXACTMARK.
As was depicted in chapter 4, in case of a well conditioned input signal
these two algorithms should give the same result and this can, indeed, be

noticed from these results.
The method r~RKEST-25, using 25 iterations by successive substitution, gi
ves a better estimate then the non-iterative methods, while MARKMIN and
MARKMIND,that minimize the loss function by 'hill-climbing'-techniques,
give the best estimates. From this it can be concluded that 25 iterations
were not sufficient to reach the minimum of the loss function. The im
provements per iteration in the estimates, however, are so small that it
can be doubted whether the exact minimum would be reached, in this case,

using successive substitution. The energy represented by tr[=T.=] , that
is found by these iterative methods agrees well with the energy of the
white noise that was supplied to the noise system.
In this case, where the input noise of the noise filter is channel inde
pendent, both MARKMIN and MARKMIND give the same results, as could be ex
pected from the theory.
After analyzing the estimation results, we shall now take a look at the
quality of the reconstructed Markov-parameters after noise filtering by
the realization algorithm of chapter 6 (tab. 7.2./2 and fig. 7.2.-2).

RECMAKI MARKEST-l EXACTMARK MARKEST-25 MARKMIN MARKMIND

ERRI 20 0.1944 E-3 0.1467 E-3 0.1465 E-3 0.9401 E-4 0.9161 E-4 0.9173 E-4

s.d.ERRl 0.1086 E-3 0.1304 E-3 0.1287 E-3 0.7287 E-4 0.7204 E-4 0.7210 E-4

tab. 7.2./2 Realization results of SYSTEM 1; input: white noise
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fig. 7.2.-2 Realization results of SYSTEM 1; input:white noise

In fig. 7.2.-2 we notice that the differences in the quality of the Mar
kov-parameters, as obtained by the use of the different estimation algo
rithms, have decreased. This is due to the filtering effect of the real,iza-

tion algorithm.

The same experiment has been repeated for the case that the input signals
were PRBN-sequences. The results of the experiment are presented in
tab. 7.2./3 and fig. 7.2.-3.

RECMAK1 MARKEST-1 EXACTMARK MARKEST-25 MARKMIN MARKMIND

ERRO 20 0.8016 E-3 0.3399 E-3 0.3400 E-3 0.3000 E-3 0.2599 E-3 0.2595 E-3

s.d.ERRO 0.4532 E-3 0.1055 E-3 0.1054 E-3 0.1131 E-3 0.1093 E-3 0.1092 E-3

tab. 7.2./3 Estimation results of SYSTEM 1; input: PRBNS
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fig. 7.2.-3 Estimation results of SYSTEM 1; input: PRBNS

The results of the realization are shown in tab. 7.2./4 and fig. 7.2.-4.

RFCMAKl MARKEST-1 EXACTMARK MARKEST-25 MARKMIN MARKMIND__ 20

ERR1 0.2003 E-3 0.1358 E-3 0.1338 E-3 0.9828 E-4 0.9624 E-4 0.9606 E-4

s.d.ERR1 0.1352 E-3 0.8469 E-4 0.8376 E-4 0.7203 E-4 0.7087 E-4 0.7082 E-4

tab. 7.2./4 R~alization results of SYSTEM 1; input: PRBNS

This experiment gives us similar results as the first one with white noise
as input signal and this is caused by the fact that the PRBN-sequences
were not filtered, which means that enough information was present in
these input signals to fully excitate SYSTEM 1.
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fig. 7.2.-4 Realization results of SYSTEM 1; input: PRBNS

From the results of both experiments we can conclude that the use of a
non-recursive method results in better estimates of the Markov-parameters
and in case of a bad SIN-ratio, use of iterative methods can further im
prove the estimated parameters.

7.3 Experiments with SYSTEM 2

In the previous section we have discussed the situation of a bad Signal
to-Noise ratio at the output. Now, we will take a look at the effects
when we deal with a low noise level at the output. SYSTEM 2 is a 4th _
order system with two large eigenvalues (0.7 and 0.6) and two small ones
(0.2 and 0.1). To avoid much influence of 'tail I-effects, 14 Markov-para
meters have been estimated.

To excitate SYSTEM 2, 2 kinds of input signals have been chosen:
- white noise signals (0=1.0, 1-1=0.0).

- filtered Pseudo-Random binairy noise sequences (PRBNS)
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The PRBN-sequences are filtered using a low pass filter with such a cha
racteristic that a part of the energy at frequencies needed to excitate
the smallest eigenvalues has disappeared. The responses on these input
signals have been disturbed by noise that was coloured by NOISE SYSTEM 2.
The input noise of this noise filter was white Gaussian and channel inde
pendent, with 0=0.1 and ~=O.O.

This results in a SIN-ratio that is greater than 10. The noise level is
so small that the Itail I-effects are of the same magnitude as the noise
influences; Here, also 2 auto-regressive noise parameters have been es
timated. The estimation results found by estimating the Markov-parameters
of SYSTEM 2 can be found in tab. 7.3./1 and fig. 7.3.-1.

RECMAK1 MARKEST-1 EXACTMARK MARKEST-25 MARKMIN MARKMIND

ERRO 20 0.9904 E-4 0.9201 E-4 0.9206 E-4 0.9198 E-4 0.1004 E-3 0.9223 E-4

s.d.ERRO 0.2051 E-4 0.1998 E-4 0.2004 E-4 0.1983 E-4 0.2403 E-4 0.2026 E-4

tab. 7.3./1 Estimation results of SYSTEM 2; input: white noise

From these results we can again conclude that the recursive method gives
a result which is worse than the other 2 non-iterative methods.
It is also clear that, in this case, the use of an iterative method
doesn't give any significant improvement. MARKMIN even gives a result that
is a little worse than that of the recursive method. An explanation of
this phenomenon will be given in section 7.4.
The deviation in the estimated AR-parameters of the noise model is smal
ler than 5% and the tr~T.=J that is found, agrees with the noise level
that was present at the input of the noise filter.
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fig. 7.3.-1 Estimation results of SYSTEM 2; input: white noise

The results of the realization, using the estimated Markov-parameters,
are presented in tab. 7.3./2 and fig. 7.3.-2.

RECMAK1 MARKEST-1 EXACTMARK MARKEST 25 MARKMIN MARKMIND-
__ 2.0

ERR1 0.3638 E-4 0.3247 E-4 0.3251 E-4 0.3252 E-4 0.3297 E-4 0.3254 E-4

s.d.ERR1 0.1419 E-4 0.1376 E-4 0.1389 E-4 0.1370 E-4 0.1387 E-4 0.1387 E-4

tab. 7.3./2 Realization results of SYSTEM 2; input: white noise

From these results we can draw the same conclusions as in section 7.3,
which means that the differences between the estimation results are
smoothened by the realization algorithm.
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fig. 7.3.-2 Realization results of SYSTEM 2; input: white noise

Now, we shall pay attention to an experiment where the input signals are
filtered PRBN-sequences. In this experiment we did not apply MARKMIND,
because it would, in this case, give a result similar to that of MARKMIN.
The estimation results are shown in tab. 7.3./3 and fig. 7.3.-3.

RECMAK1 MARKEST-1 EXACTMARK MARKEST-25 MARKMIN

ERRO 20 0.1479 E-1 0.1351 E-1 0.1347 E-1 0.1368 E-1 0.1354 E-1

s.d.ERRO 0.1348 E-1 0.1147 E-1 0.1157 E-1 0.1196 E-1 0.1396 E-1

tab. 7.3./3 Estimation results of SYSTEM 2; input: filtered PRBNS

Looking at these results, the first thing we notice is that the error ERRO
is much larger than in the first experiment, where was dealt with white
noise as input. This is caused by the character of the filtered PRB~-signal,
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fig. 7.3.-3 Estimation results of SYSTE~ 2; input: filtered PRSNS

~ecause it does not contain enough enerqy of high frequenties to fully

excitate the orocess.

From the results of the realization, tab. 7.3./4 and fig. 7.3.-4, we learn
that application of the realization algorithm to the estimated parameters

even worsens the Markov-parameters when the dimension is chosen equal to
the dimension of SYSTEM 2 (n=4).

RECMAK1 MARKEST-l EXACTMARK MARKEST-25 MARKMIN
-20
ERR1 0.1899 E-1 0.1805 E-1 0.1801 E-1 0.1816 E-1 0.1770 E-1

s.d.ERR1 0.1256 E-1 0.1095 E-1 0.1103 E-1 0.1135 E-1 0.1286 E-1

tab. 7.3./4 Realization results of SYSTEM 2; input: filtered PRBNS
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Looking at one of the estimated impulse responses t fig. 7.3.-5 t we see
that oscillations around the exact impulse response occur with a fre
quency equal to the sampling frequency. Thisphenomenon is found in all
results of this experiment.

REALIZATION RESULTS
14 104arkov-para:n:1eter.
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fig. 7.3.-4 Realization results of SYSTEM 2; inout: filtered PRBNS
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fig. 7.3.-5 'oscillating' estimated impulse response and exact impulse
response of SYSTEM 2; input: filtered PRBNS

From the results of both experiments it is clear that in case of a large
SIN-ratio the iterative methods don't give much improvement of the esti
mated Markov-parameters, while the non-recursive and non-iterative methods
give us an accurate result, that is obtained very simply.

7.4 Simulations using SYSTEM 3

In the experiments, so far, we have chosen the noise level, that is added
to the output in such a way that 'tail '-influences could be considered to
be small in comparison to the noise.
In this section, we will notice what happens when the effects of the 'tail I

of the impulse can not be neglected compared to the noise that ;s added
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to the output.
When we consider the eigenvalues of SYSTEM 3 we see that this system has
two very large eigenvalues and two small ones. Because of this property~

this system will have a very slowly decreasing impulse response.
When we~ now~ only estimate 14 Markov-parameters and add a little bit of
noise to the output, it is clear that the experiments must snow effects
of neglect of the 'tail'.
In this experiment only one kind of input signal is applied to the input
of SYSTEM 3: white Gaussian noise (a=1.0, ~=O.O).

The noise that is added to the output is obtained by filtering white,
Gaussian channel independent noise (0=0.1 and ~=O.O) with NOISE SYSTEM 2~

resulting in a signa1-to-noise ratio, caused by the noise~ that is much
smaller than the SIN-ratio caused by 'tai1 1 -inf1uences: SIN ~ 5.
Tab. 7.4./1 and fig. 7.4.-1 give the results of this experiment (ex
periments using MARKMIND have not been done).

RECMAK1 MARKEST-1 EXACTMARK MARKEST-25 MARKMIN

ERRO 20 0.3609 E-2 0.1390 E-2 0.1374 E-2 0.9443 E-3 0.4610 E-1

s.d.ERRO 0.1773 E-2 0.8245 E-3 0.8219 E-3 0.4585 E-3 0.2859 E-2

Tab. 7.4./1 Estimation results of SYSTEM 3; input: white noise

These results show a phenomenon that we already encountered in the previous
section: The iterative procedure MARK~IN results in very bad Markov-para
meters~ although the minimum of the loss function~ that is found~ coin
cides with the noise level as supplied to the noise filter. This ad-
ditive noise, however, is only a small part of the noise at the output
because of the truncation of the impulse response. In this experiment
we see aqain that the recursive method gives a much worse result than
the other non-iterative methods, and minimization of the loss-function

by successive substitution gives a small improvement~ compared to the
non-iterative methods. The minimum that ;s found is different from the
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fig. 7.4.-1 Estimation results of SYSTEM 3; input: white noise

minimum that is found is different from the minimum found by MARKMIN and
convergence to that minimum is very slow. The minimum is not always found.
The same remarks are valid for the results of the realization~ using the
estimated Markov-parameters (tab. 7.4./2 and fig. 7.4.2).

RECMAK1 MARKEST-1 EXACTMARK MARKEST-25 MARKMIN
20

0.4813 E-1ERR1 0.2991 E-2 0.1056 E-2 0.1041 E-2 0.6333 E-3

s.d.ERR1 0.1942 E-2 0.8119 E-3 0.8067 E-3 0.4532 E-3 0.2451 E-2

tab. 7.4./2 Realization results of SYSTEM 3; input: white noise

;\lhen we take a look at one of the ~1arkov-parameter series Nll(i) ~ as estima

ted by ~ARK~IN~ we notice that this series tends to zero at the end~ while the
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fig. 7.4.-2 Realization results of SYSTEM 3; inputs: white noise

series estimated by MARKEST-25 fluctuates around the exact impulse response
M11(i}*. This is probably caused by the effect that ~ARKMIN tries to ex
plain the Itail I of the impulse response by the ~arkov-parameters of the
system and the AR-parameters of the noise system.

The noise parameters that are estimated are not able to give a reasonable
description of the noise model, as could be expected because of the trun
cation of the impulse response, which was not negligible.
The conclusion from these results is that the iterative procedure MARKMIN
does not result in an unbiased estimate when Itail I-influences occur,
although the input is excited with white Gaussian noise.
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fig. 7.4.-3 Estimated imoulse response by MARKMIN and MARKEST-25

7.5 Simulations when the additive noise contains a ~irect term

In this section we shall discuss an experiment which is the same as the
first one of section 7.3, except for the character of the additive input
noise. In this case, the output noise is not channel independent and thus
the only method that gives an exact solution in the sense of a maximum
likelihood estimate, is the one that minimizes det(ZT. Z) as is described
in 5.2 (MARKMINO).

The experiment of 7.3 with white noise as inout of SYSTEM 2, has been re
peated under the same condition except for the input-output matrix ON
of the noise model that is now chosen to be:

ON = r·o 0.3l
Lo.4 o. 6J

eq. 7.5. (1)

This implies that the output i of the noise filter is dependent of input
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j at the same moment. Thus, in this case the moving-average parameter
B(O) is unequal to the identity matrix, but

B(O) = ON eq. 7.5.(2)

The results of this experiment are pres~nted in tab. 7.5./1 and fig. 7.5.-1.

REC~AKI ~~RKEST-l EXACTMARK MARKEST-25 MAR~11N MARK~INDI •. ., ' , ., ..
--.20

0.1575 E-3 0.1573 E-3 0.1515 E-3 0.1538 E-3 0.1505 E-3ERRO 0.2553 E-3

s.d. ERRO 0.6170 E-4 0.4306 E-4 0.4231 E-4 0.3926 E-4 0.3939 E-4 0.3909 E-4

tab. 7.5./1
fig. 7.5.-1

Estimation results of SYSTEM 2 + B(O); input: white noise

~
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When we compare tab. 7.3./1 and tab. 7.5./1, the error in the estimated
~arkov-parameters has increased relatively more for the recursive method
than for the other methods. The difference between MARK~IN and the other
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iterative methods, as noticed in section 7.3 and 7.4, has vanished becau
se the output noise is now larger than the noise due to truncation of the
impulse response. Looking at fig. 7.5.-1, we see that, in case of a large
SIN-ratio, an iterative method doesn't give much improvement, as was al w

ready found in section 7.3. From this experiment it is not possible to
say, whether MARKMI~D gives a better estimate or not, and thus more expe
riments with different noise levels and channel dependent noise are nee

ded.
The same remarks can be made for the results of the realization that are

presented in tab. 7.5./2 and fig. 7.5.-2.

20
ERR1

s.d.ERR1 0.3132 E-4 0.2948 E-4 0.2942 E-4 0.2676 E-4 0.2691 E-4 0.2722 E-4

tab. 7.5./2

fig. 7.5.-2
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Realization results of SYSTEM 2 + B(O); input: white noise
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7.6 Remarks

The main results of this chapter will be briefly summarized here.
In case of a small Signal-to-noise ratio (1 < SNR < 10) the use of an i
terative method is very useful since it can give a substantial improvement
of the quality of the estimated Markov-parameters under the condition that
the noise is not caused by truncation of the impulse response.
When the signal-to-noise ratio at the output of the system is large
(SNR ~ 10), the use of an iterative method does not result in a much bet
ter estimate and, therefore, in this case a non-iterative method may be
good enough.
When we don't have any information about the signal-to-noise ratio,
1 iteration can be excuted resulting in an estimate of the parameters
and of the residual,which gives an indication of the noise level. After
determination of the eigenvalues of the system by applying the realiza
tion algorithm to the estimated Markov-parameters, we are able to find
out whether more iterations are useful.

The auto-regressive noise parameters are well estimated by all methods
if the noise level of the Itail I-influences is small compared to the
magnitude of the additive output noise.
In all experiments we find that the error in the estimated Markov-parame
ters, obtained by the recursive method is larger than the error in the pa
rameters as found by any other method.
When the main part of the noise is caused by Itail I-influences, the
noise parameters are not found, but the auto-reqressive parameters belon
ging to the process model (Except for the recursive method that was not
able to find the auto-regressive parameters of the process from the noise
caused by Itail '-effects.). When the 'taill-influences could not be ne
glected, iterations using 'hill-climbing ' techniques resulted in a bad
estimate of the Markov-parameters, due to the biasedness of the esti
mator (system not in model set}.
When the input noise of the noise filter was not channel independent we
didnlt find very much difference from the case, where it was channel in
dependent. This is probably caused by the large signal-to-noise ratio
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in that particular experiment.
In the cases were we dealt with well conditioned input signals, the noise
filtering by the realization algorithm resulted in a significant improve
ment of the estimates.

In case of output noise that is not caused by neglect of the 'tail I of
the impulse response, the following table can be used that summarizes the
most important properties of the estimation methods (tab. 7.6./l).

accuracy needed comoutation
large SIN-ratio small SIN-ratio time and storaae

no tail effects no tail effects tail effects capacity

RECMAKI - -- - ++

MARKEST-l + - + +

EXACTMARK + - + +

MARKEST-25 ++ + ++ -

MARKMIN ++ ++ -- --

MARKMIND
C-t

++ ++ --

(.): not tested

tab. 7.6./1 Summary of the oroperties of the estimation methods
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CONCLUSIO~S

In this report several procedures have been developed for the estimation
of ~arkov-parameters and noise parameters, based on the Least Squares and
Maximum Likelihood principle. The modelling of the noise leads to a non
linear least squares problem. An aoproximate solution of this problem has
been obtained by three non-iterative procedures and an exact solution
was found by three iterative methods.
The properties of these methods have been investigated in theory and
in simulation results, from which the following conclusions can be drawn:

- Dealing with a large Signal-to-noise ratio of the output signal, the
Markov-parameters of the system and the parameters of the noise model
are well estimated by both iterative and non-iterative methods, pro
vided that the output noise is not caused by 'tail '-influences. This
'tail I-influence occurs when the system does not fit into the model
set, since not enough Markov-parameters have .been taken into account.

- A small Signal-to-noise ratio of the output signal leads to less ac
curate results for the non-iterative methods than for the iterative
ones, under the condition that this Signal-to-noise ratio is not due
to Itail l effects.

When not enough Markov-parameters are estimated, noise caused by 'tail l


influences will be present in the output signal. This leads to a bi
ased estimate of the Markov-parameters for the iterative ML-estimation
procedure using 'hill-climbing' techniques. The iterative LS-method
using successive substitution, however, leads to an improvement of
the estimated parameters compared to the results of the non-iterati-
ve methods.

- When Itail'-influences have to be dealt with, the parameters of the
noise model can not be determined by any of estimation procedures.

- In all cases, the recursive method results in an estimate that is less
accurate than the ones, obtained by the alternative non-iterative

procedures.



- 94 -

- In case of a process with a slowly decreasing imoulse resoonse that
is observed with a high samoling rate, estimation of Markov-parame
ters is not very efficient because many parameters have to be esti
mated to eliminate Itail '-influences. It is also not efficient because
no use is made of the relation that exists between the Markov-parame
ters.
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LI ST OJ=" SYMBOLS

System matrix (nxn)
Auto-reoressive "1I"10-parameter

Matrix containing r auto-reoressive MIMO-oarameters

'latrix containino (shifted-) inout data and (shifted-)
equation errors
~istribution matrix (nxp)
Movinq-averaoe MIMO-parameter
Output matrix (qxn)
(extended) observability matrix
Inout-outout matrix (q p)
Inout-outout matrix of noise model
(extended) controllability matrix
Singular value (oi)
Equation error matrix «m+l)xq)
equation error vector at time instant
System matrix of noise model
~istribution matrix of noise model
Hankel matrix
Output matrix of noise model

Matrix containing (shifted-) equation error vectors «m+l)xr.q)

Transfer function matrix

G

8

B( i)

C

r

o
')N

t:.

o
E

~(i )

F

Number of Markov-oarameters
Likelihood function
Number of Markov-oarameters used for a realization
Markov-parameter with index i
Estimated Markov-parameter with index
Reconstructed "1arkov-parameter with index i
Matrix containino (k+l) ~arkov-parameters

Matrix containino (k+l) estimated Markov-parameters
Matrix containino (k+l) reconstructed Markov-oarameters

Diagonal block matrix containing the matrices with Markov-
parameters

m Number of samoles

H

H

Hm
K(z-l)

k

L

L

M(i)

M(i )

~(i )

Mk
~k
Mk

"1-



N

N

n

p

q

~

r

r

T(0,m)

!( i)

V

V

W

~(i )
y

y ~

m
l( i)

i( i)

z
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Parameter matrix containinq the ~arkov-oarameters and the auto
regressive noise narameters
Parameter matrix containing the estimated ~arkov- and AR-para
meters
System dimension, order
Number of inputs
Number of outouts
Covariance matrix
Realizability index
Number of Auto-reqressive noise oarameters
Inout matrix ((m+l)x(k+l).o)
Oiaqor.~l matrix of singular values
Variance of the noise
Generalized Toeolitz matrix
Inout vector at time instant i (oxl)
Loss function
Matrix of riqht sinqular vectors
Matrix of left singular vectors
State vector at time instant i (nxl)
Outout matrix ((m+l)xq)
~atrix containinq output and shifted outout data ((m+llxq.rl

Qutout vector at time instant i (qxl)
Noise matrix containing white, channel indep~ndent, Gaussian
noise ((m+l)xq)
Noise vector at time instant i, containing white, channel
independent noise
Matrix containjnq white Gaussian noise that is not channel
independent
Noise vector containinq white Gaussian noise that is not
channel indeoendent
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Some aspects of transfer matrix t state space and
ARMA representations

In this appendix we shall describe some aspects of a representation
using the transfer function or state space representation and their
relation to Auto Regressive (AR) and Moving Average (MA) models.

A.I A representation using the transfer function and its relation to
ARMA-models

The input-output relation of a MIMO-system can be described by a
model, using the transfer matrix K(z-l) as follows:

eq. A.(I)

where K(z-l) is a rational matrix of variable z-l of dimensions qxp :

KII(z-l) KIp(z-l)

K(z-l) = eq. A.(2}

Kql(z-l) Kqp(z-l)

and K.. (z-l) is the transfer function from input j to output i.
lJ

A disadvantage of this type of description with respect to identifica
tion procedures is the problem of non-uniqueness; by adding a pole to
the denominator and a zero to the numerator of a transfer function we
get the same input-output description, but, when estimating the coef
ficients of the transfer function, we get a different parameterization.

For this reason often models are used that represent only a part of
the transfer function. When the transfer function is approximated by a
polynomial, the model is called a Moving Average (MA) model. An
approximation by the inverse of a polynomial is called an Auto Regressive
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(AR) model.
-1To make this more clear, we decompose K(z ):

eq. A.(3)

where: A(z-1) = (I+A(1)z-1).(I+A(2)z-1) ... (I+A(r1)z-1)

B(z-1) = B(0).(I+B(1)Z-1).(I+B(2)z-1) ... (I+B(r2)z-1)

r 1 = rank A(z-I). r2 = rank B(z-1)

A(i) :. qxq -matrix, B(i): .. pxp -matrix, B(O): qxp -matrix.

Hence, A(z-1) represents the denominator part of K(z-1) and B(z-1) the
numerator part.

It is possible to approximate K(z-1) by a Moving Average model by wri
ting A- 1(z-1) as:

-1 -1 -1 -1 -1 -1= (I+A(r1)z ) .(I+A(r1-1)z ) ... (I+A(1)z )

eq. A.(4)

Since we only take into account stable systems, we will deal with sys
tems of which the eigenvalues have an absolute value smaller than one.
Hence we can use the series expansion as described by Gantmacher (1959):

(I - A-I) = r Ai
i=o

eq. A.(S)

to write A- 1(z-1)t for Izl=1, as follows:

A-1 (z-1) = (I-A(r1)z-1+A2(r1)z-2- ... ).(I-A(r1-1)z-1+

2 -2 (( -1 A2 ) -2 )A (r1-1)z - ... ) ... I-A 1)z + (1 z ...

eq. A.(6)
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r z ri
'" B(O) + [B(O). L B(i) - L A(i).B(O)] .Z-1 +

i=1 i=1

i -1

L
j=1

rz
A(i).A(j).B(O) + B(O). L

i=1

i -1

L B(i).B(j) +
j=1

r 1 rz r1
- L L A(i).B(O).B(j) + L AZ(i).B(O)] .Z-2 +

i=1 j=1 i=1

eq. A. (7)

The coefficients B~(i) of dimension qxp , of z-i, i= 0,1, ...

are called the moving average parameters.

Hence, it is possible to approximate eq. A.(l) by an infinite Moving
Average model, where the tail, i>nr, can possibly be neglected.

nr
,l(k) = L

i =0

• -i
B (i).z .~(k) eq. ,d.. (8)

which is the same as:

•• •,l(k) = B (O)~(k) + B (1)~(k-l) +•.. + B (nr)~(k-nr)

eq. A. (9)

(nr is the number of parameters of the MA-model that we take into
account) .

It is also possible to approximate K(z-1) by an Auto-Regressive model.
Instead of

we write

B- 1(z-1).A(z-1).,l(k) = ~(k)
, ,

eq. A. (10)

eq. A. (11)
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-1 -1
B(z ) and A(z ) are redefined as:

A(Z-I) = A(0).(1+A(1)z-I).(1+A(2)z-I) ... (1+A(r
1
)z-l)

B(Z-I) = (1+B(1)z-I).(1+B(2)z-I) ... (1+B(r2)z-l)

and A(i): qxq -matrix, A(O): pxq -matrix, B(i): pxp -matrix.

Under the restriction Izl= 1 and using A.(5), B- 1(z-l) can be expan
ded into:

B- 1(z-l) (I B( ) -1 B2( ) -2 ) (I B( 1)-1= - r2 z + r2 z - .... - r2- z +

B2(r2-1)z-2_ ... ) ... (1-B(1)z-I+B2(1)Z-2 ... )

eq. A.(l2)

Substitution of A.(12) in A.(ll) leads to the following expression for
• _1

K (z ) of dimension pxq :

• -1 rl r2
K (z )::: A(O) + [A(O). E A(i) - E B(i).A(O)] .Z-1 +

i=1 i=1
r2 r2 i-I

[ E B2(i).A(0) + E E B(i).B(j).A(O) +
i=1 i=1 j=1

rl i-I r2 rl
+ A(O). E E A(i).A(j) - E E

i=1 j=1 i=1 j=1
]

-2
B(i).A(O).A(j) .z +...

eq. A. (13)

The coefficients A·(i) of dimension pxq, of z-i , i=O,l, ... , are called
the auto-regressive parameters.

Thus it is possible to approximate eq. A.(ll) by an infinite Auto Regres
sive model, where we may possibly neglect the tail i>mr

• • -1 • -mr(A (0) + A (l).z + ... + A (mr).z ).r(k) = ~(k) eq. A. (14)

(mr is the number of auto-regressive parameters that is taken into account)
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Eq. A.(14) cao also be written as

~. .
A (O).t(k) = -A (l).~(k-l) + ... - A (mr).y(k-rnr) + ~(k)

eq. A.{l~)

Premultiplication of this equation by the pseudo-inverse (A~(O))+ of A·(O}
leads to the auto-regressive model that has been used in section 2.3 for
the description of the noise model.

A.2 The relation between a state space representation and ARMA-models

In this section we shall describe how we can obtain the auto-regressive
parameters of an AR-model. when we have a state space description of a
system.

Suppose, we have the following state space representation:

!(k+1) = A !(k) + B . ~(k)

~(k) = C !(k) + 0 . ~(k)

eq. 2.1.(2a)

eq. 2.1.(2b)

(For the meaning of the symbols is referred to section 2.1).
Combining eq. 2.1.(2a) and 2.1.(2b) we get a representation using a trans
fer function in terms of {A,B,C,O} :

l(k) = ( C . (zI - A)-I. B + 0 ) . ~(k) eq. A.(16)

Since all eigenvalues of A are assumed to have an absolute value smaller

than one. we can use eq. A.(5) to expand eq. A.(16) for IzI=l :

-1 -1 -2 2 (
~(k) = z .C.(I+z .A+z .A +... ).B.~ k) + O.~(k)

Which is the same as :

eq. A.(17)

2= O.~(k) + C.B.~(k-1) + C.A.B.~(k-2) + C.A .B.~(k-3) + .,.

eq. A.(18)
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In eq. A.(18) we immediatily recognize the convolution sum of the input
signal with the Markov-parameters.
The model of eq. A.(18), using the Markov-parameters, is in fact a Mo
ving Average model as can be seen by comparing eq. A.(18) with A.(9).
Thus, it is very easy to obtain a Moving Average model, when having a
state space description since the moving average parameters coincide with
the Markov-parameters of the system.

\lie could transform eq. A. (18) to an auto-regressive model by the proce
dure explained in section A.I.
An alternative method we get by substituting eq. A.(18) in the right hand

side of eq. A.(15):

- -(A (2).D+A (1).C.B).~(k-2) - ... + ~(k)

eq. A. (19)

Comparing eq. A.(19) with eq. A.(18), premultiplied by A-(O), gives us the
following relation between the auto-regressive parameters A-(i) and
{A,B,C,D} :

i-I . .
and A*(i).D =- E (A-(j).C.A'-J-l. B)

j=o
eq. A.(20)

The solution of the recurrent relation eq. A.(20) gives us the auto
regressive parameters A-(i) in terms of {A,B,C,D}. Because of the complex
ity of eq. A.(20) it is clear that this kind of changes from one model to
another one is very unattractive.
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Appendix B. Description and properties of the Singular Value
Decomposition

In this appendix we shall give a review of the Singular Value Decompo
sition (SVD) and some of its properties. The SVD is an eigenvalue-like
concept with remarkable numerical qualities, that is defined as follows:

Theorem 1. For any mxn matrix A, there exists a factorization:

A = W • r VT eq. B. ( 1)

~ is a

Wis a
V is a

(mxm)-orthonormal matrix (i.e. W.WT=I),
T(nxn)-orthonormal matrix (V.V =1),

(mxn)-pseudodiagonal matrix: r = diag(a1,aZ""'crp );

p = min(m,n) , CJl.~cr2~""~crp~O. (cf. eq. B.(4))

The diagonal elements of r are called the singular values of A and the
columns of Wand the columns of V, the left respectively the right sin
gular vectors of A.

where

The singular structure of A is very closely related to the eigen-struc
tures of A.AT and AT.A . This can easily be seen by substitution of
eq. B.(1) and using the properties of V and W:

TA.A =W.>:. eq. B. (2)

eq. B. (3)

Hence the left (resp.right) singular vectors are the eigen-vectors of
A.AT (resp.AT.A), and the singular values of A are the positive square
roots of the eigen-values of A.AT and AT.A.

Because Wand V are non-singular matrices, the rank of A is equal to the
rank of r. This implies that the rank of A is equal to the number of non
zero singular values (counting multiplicities).
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Let this rank be r ~ min(m,n) then it is possible to partition A
as follows:

r m-r

rEI 01) r

La oj )m-r

r n-r

V T
1

eq. B. (4)

Using this partitioning it is also possible to approximate A by a matrix
B with rank r(B) < r, so that !IA-BI\ E is minimal, by setting the smal
lest r-r(B) singular values in E, equal to zero.

When the matrix A is regarded as an operator that maps a (n x 1)-vector
x into the range of A, which is a subspace of the m-dimensional space,
by y = A.x, this operator is one-to-one and invertible:

eq. B. (5)

eq. B. (6)

whe re A+ ,. s th d' f Ae pseu o-,nverse 0 .

So A+ is an operator that maps an (mx 1)-vector r into an n-dimensional
space and eq. 6.(6) gives us the least-squares solution x of the set of
equations r = A . x.

Finally, we shall give some results concerning the relation between the
spectral-norm (s-norm) of a matrix and its singular values.

\I A~ll E
~ max ----

YQ. U!oll
E

= C1
1

eq. B. (7)
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IIA+lIIElIA+n s ~ max --

l#Q. ~llIE

= 0 -1
r eq. B. (8)

This means that the s-norm of a matrix A is equal to it's biggest sin
gular value and the s-norm of it's pseudo-inverse A+ is equal to the
inverse of the smallest singular value of A unequal to zero.

Suppose A~ = l and ~~ is the error in the solution ~ when l changes to
l + ~l' so A(~ + ~~) =l + ~l' Then the following expression is valid
for the ratio between the relative errors in ~ and l:

11~~IIE ! 11~IIE

1\ ~lllE I Illl! E

cr.
= _1

Or
eq. B. (9)

and IIA+II s' II AII s ~ C(A) is called the condition number of A. It is the
most severe increase in relative inaccuracy when solving ~ from A~ = l.

For more i nformati on about SVD and it's properti es we refer to the exten
sive literature on this topic (e.g. Staar and Vandewalle (1982)).
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Appendix C. Derivation of an updating algorithm for NllS-estimation

In section 4.2 we found that an estimate N= [~kr] could be found by
solving:

This non-linear equation is based on m samples and the exact solution is- -
found by successive substitution of N in 6m(Mk) resulting in an iterative
process that may converge to the exact solution of eq. C.(1) (if i-)oO»:

- - T - -
6 (Mk .).Y = 6 (M k ,.).6 (Mk ,.).N'·+lm " m, m , eq. C. (2)

where the indices i and i+1 point to the number of iterations that has been
executed. Having found the solution of eq. C.(1), it is possible to update
the matrices of this equation using a new sample m+1 and the final estimate- -N as it was found after m samples. This estimate is from now on called Nm,
where the index m points to the number of samples that is used to obtain
this estimate.

In this appendix we shall only describe how the matrices Sm+l(Mk).Y and
- T-. -

Sm+!(Mk)'~mtl (Mk) can be obta,ne~ based on old data: Sm(Mk).Y,
Sm(Mk),Sm (Mk), the old estimate Nm and a new sample of the input and out
put data. The set of equations that can be built by these matrices, may
lead to an estimate Nm+1 based on m+1 samples.

Using the notation of eq. 4.2.(11):

[~k .m+1 ,0]
r,m+l,o

eq. C. (3 J

Eq. C. (1) can be rewritten (based on m+l samples} as:

. [:k.m<l'ol

r,m+l,o_

eq. C. (4)
-

Solution of eq. C.(4) results in a first estimate N that may convergem+l'o
to Nm+

1
by s~ccessive substitution in eq. C.(4).



- 107 -

~

NOTE: From now on Ar is assumed to contain r+l auto-reqressive oarameters.

To 'build uo' this equ~tion we need to find resn. Sm+l'Ym+l ' Hm+1 .vm+1 '

T T T
Sm+l, Sm+l ' Sm+l· Hm+l and Hm+1.Hm+1
Let us start with the updating of H .H T to H H T

m m m+l' m+l
As we have seea in section 4.2 HT can be written as:

m

eq. 4.2. (3)

where the 'shorthand' notation is used that was introduced in 4.2.

Using this equation H I.H IT leads to :m+ m+

T .T • .T [T TJ •
Hm+l· Hm+l = Ym+1T 'Ym+1 - Ym+1 . Sm+l,t-l 1",!Sm+l.t-r-l .M +

- M· • [Sm+1, i - / I· .. ISm+1, t - r-l1 T. Xm+1· +

+ M·T [ TI TJ T
. Sm+l,t-l ···I Sm+l,t-r-l .

eq. C. (5)

.T •
First, we take a look at Ym+1 'Ym+1

r(um-r)

eq. C. (6)

eq. C. (7)

T T( r (um)···r (urn- r )= Y • T Y. ~y (urn ) ]
m • m + .

r( ~+m-r)

T
From eq. C.(7) we see that Y~ .Y • is updated by addition of a dyadicm m
product of a vector containing the last r+l output signals.

The second term of the right hand side of eq. C.(5) will not be compu
ted since it is equal to the transpose of the third term.
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To be able to compute this part we need

T
1

ITT •
(Sm+1,t-1 .,. Sm+1,t-r-1 ) 'Ym+1 =

,.. ~(Hm)

T T T •
(Sm,t-1 1· .• 1Sm,t-r-l ) . Ym +

~(Hm-k)

~(Hm-r)

~(Hm-r-k)

T T'(l (t+m)"'l (t+m-r))

eq. C. (8)

This can be regarded as the addition of a dyadic product of two vectors
to a matrix containing the data, known after m samples. The entire'third
term of the right hand side of eq. C.(S) is found by premultiplication
of C.(8) by M· containing the Markov-parameters as known after m samples.
The last part we have to compute is:

T T T T T
(Sm+l,t-l !... ISm+1,t-r-l) ,(Sm+l,t-l 1",[Sm+l,t-r-l) =
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T T T T T
= (Sm,t-1 I ..• ISm,t-r-1 ) ,(Sm,t-1 I ... ISm,t-r-1 ) +

~(um)

~(Um-k)

+

~(um-r)

~(um-k-r)

T T T T. (~ (um) ...~ (um-k) I... I~ (um-r) ...~ (um-k-r))

eq. C. (9)

Pre- and postmultiplying C.(9) by M· gives us the last term of the right
hand side of eq. C.(5).

TResuming, we need 3 matrices to be able to compute Hm+1.Hm+1
1. a matrix containing the sum of the dyadic products of vectors

consisting of output signals
2. a matrix containing the sum of the dyadic products of a vector

of output signals and a vector consisting of input signals
3. a matrix containing the sum of the dyadic products of vectors

consisting of input signals.

The next block matrix which has to be updated is

eq. C. (10)

Using eq. 4.2.(3) we find:

eq. C. (11)

Working out this equation, we get
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m+ I t£.· m+ 1
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= Smt£"Ym• + [U(H~+I) ] . (yT(Hm) ...yT(Hm-r)) +
~(Hm-k+l) - -

- [Smt£"Sm,£,_/\."ISmt£"Sm,£._r_lT] . M· +

[
~(Hm+l) ]

. T T T T- . (~ (Hm) ...~ (Hm-k) I.. 'I~ (Hm-r) ...~ (Hm-k-r))
~(Hm-k+l )

TSm+l'Sm+l can be found as follows:
eq. C. (12)

[

U(Hm+l) ]- T T
. . (~ (Hm+1)...~ (Hm+ 1-k))

~(Hm-k+l)

eq. C. (13)

When we compare the matrices needed in eq. C.(12) and C.(13) with the ma
trices that we needed for the updating of Hm.HmT we see that they can be
obtained by extension of the vectors that were used to update Hm.Hm

T

The same remark can be made for the matrices that we need to update

Sm+l' Ym+l and Hm+1.Ym+1, as:

r«_I) 1
Sm+l' Y = Sm+l' Ym+1 = Sm,£"Ym + -. . (rT(Hm+l)) eq. C.(14)

~(Hm-k+l)l

and

.T •T[T TJ THm+1· y = Hm+1· Ym+1 = Ym+1 'Ym+1 - M . Sm+l.£.-1 1",\Sm+l,t-r-l 'Ym+1 =

[

y(Hm) ] T- T • T TT
... \ ·r (Hm+l) - M ,[Sm,t-l 1",\Sm.t-r-l] 'Ym+

y(Hm-r J
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~(Hm)

~(Hm-k)

T. 'l (Hm+l)

~(Hm-r)

~(Hm-k-r)
~

eq. C. (I5)

Taking into account all matrices,we need to update the following three
matrices:

~(Hm+l)

~(Hm+l-k)

WUUm+1 = WUUm+

~(Hm+l )

~(~+m+ l-k)

~(Hm-r)

~(Hm-k-r)

r T T T J'L'l (Hm+l)ll (Hm) .. ·l (Hm-r)

eq. C. (17)

+ 1----1. [~T(Hm+l)...~T (Hm+l-k) I .. 'I~T (Hm-r) ...~T (Hm-k-r)]

~(Hm-r)

~(Hm-k-r) eq. C. (I8)
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where TYY is an (r+l).qx(r+2).q-matrix
VUY an (r+2).(k+l).px(r+2).q-matrix and
WUU an (r+2).(k+1).px(r+2).(k+1).p-matrix

These three fairly large matrices contain all information that is needed

to update resp. Sm'Y , Hm.Y , Sm'SmT , Sm.HmT and Hm.HmT . So eq. C.(1)
can now be solved based on m+1 samples, which gives us the possibility
to compute a new estimate N every time a new sample becomes available.
This leads to the following algorithm:

START

!
I m = 0 I

-,j,

collect samples of input
and output signal

1 -

update TYY, VUY and WUU
J
'J,

compute Sm+1' Y' Hm+1.Y,

T T dSm+1, Sm+1 'Sm+1.Hm+1 an

Ii = i + 11 Hm+1.Hm+1T, using M- as

known after m samples

1
solve the normal equation:

Sm+1' Y
T ~

= Sm+ l' Sm+1 .N

1
one more iteration

y needed

N1
I m = m + 1 I

1
Y N\ STOP\ m s.mmax
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Appendix 0 Formulae concerning matrix calculus

In this appendix we shall give an enumeration of a number of formulae
concerning matrix calculus, that have been used in this report.

First we will deal with some properties of the derivatives of a vector
with respect to a vector.
The derivative of the vector l with respect to the vector x is the matrix
that is defined as:

ay 1 ay 2 aYm

aX I ax aX
II

alT ay ay aYm
~

I 2 eq. D. (1)
ax ax aX

2
aX 22

ay I ay2 aYm

aXn ilXn aXn

of order (nxm) where Y
1

'Y
2
""'Ym and x

l
,x

2
, ••• ,xn are the components

of l and ~ respectively.
Using this definition the following properties can be derived:

eq. D. (2)

eq. D. (3)

eq. D. (4)
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T--- = A.x + A .x eq. D. (5)

where A is an arbitrary matrix with the correct dimensions for multi

plication.

Secondly, we shall consider the derivative of a scalar function of a
matrix with respect to a matrix.

Let X be a matrix of dimension (mxn) and let y = f(X) be a scalar func
tion of X. The derivative of y with respect to X, denoted by ~ is the
following matrix:

~ .21- ... ~
aXIl aX 12 aX 1n

ay
~

ay ay 2:1... eq. D. (6)
"IT aX 21 ax22 ··· aX 2n

ay ay ay
aXm1 axm2 ··· aXmn

Given this definition, it is possible to derive the following expressions:

T
ac~ .X.~) T
---- = a.a

aX
, eq. D. (7)

T Ta(~ •X •X. ~)

aX

T
= 2.X.a.a

-1 T -1 T= -(X .~.~.X )

eq. D. (8)

eq. D. (9)
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a tr(A.X) = AT
aX

TT
a tr(A .X .X.A) = 2.X.A.AT

aX

T T
a tr(X .A .A.X) =2.AT.A.X

aX

a In(detX) = (X-1/
aX

eq. D. (10)

eq. D. ( 11)

eq. D. (12)

eq. D. (13)

Proofs of the formulae stated in this appendix and more information a
bout matrix calculus can be found in Graham (1981).
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