
 Eindhoven University of Technology

MASTER

Implementation of algorithms into hardware

Klemann, O.M.R.

Award date:
1988

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/36b3cde4-1c92-4cb6-9b85-3fb8eb569995

Eindhoven University of Technology
Department of Electrical Engineering
Digital Systems Group (EB)

IMPLEMENT ATION OF

ALGORITHMS INTO

HARDWARE

by O.M.R. Klemann

2

Master thesis report by: O.M.R. Klemann
Coach: Prof. ir. M.P.J. Stevens

Eindhoven, The Netherlands
July 1988

The department of Electrical Engineering of the Eindhoven
University of Technology does not accept any responsibility
regarding the contents of student projects and graduation rep~rts.

£8116

ACKNOWLEDGEMENTS

I would like to thank:

- my parents for everything

- prof. ir. M.P.J. Stevens. He has not only been an excellent coach
but a very good personal adviser as well. I hope the nice
contact will remain after leaving the EDT.

- all members of the Digital Systems Group for their help and
friendship

- Dominique for her support and love

Title page: hardware implementation of W. Shakespeare's

" (2B) OR NOT(2B) "

SUMMARY

Since designing of VLSI devices has become more and mOre complex
while the time to design ICs has to be reduced, powerful design
tools have become very important.
The Digital Systems Group of the EUT is working on a new
approach to design digital systems by implementing algorithms
directly into silicon.
Starting at the top level using a high level programming language
the system has to generate a complete digital system design
automatically.

This report describes the lower part of such a system.
The high level programming language has to be compiled to an
Register Transfer Language (RTL).
Then the algorithm written in that RTL can be implemented in
hardware, using the method described in this report.

Procedures will be mapped onto finite state machines.
These finite state machines consist of a control part and an
in forma tion processing part.

2

CONTENTS

I.INTRODUCTION

2.THE DIGITAL DESIGN PROCESS.
2.I.History
2.2.Top down . . .
2.3.A new approach.

3.BEHAVIORAL LEVEL.

4.REGISTER TRANSFER LEVEL.
4.I.Purposes. . .
4.2.Requirements .
4.3.Language

5.FROM BEHAVIOR TO RTL
5.I.Data unit
5.2.Control unit

6.DATA UNIT ...
6.I.Storage
6.2.Information transfer.
6.3.0pera tions
6.4.Decisions.
6.5.Modular and bit-slice organiza tion .

7.CONTROL UNIT
7.1. Mealy-type implementation
7.2. Moore-type implementation.
7.3. Microprogramming
7.4. Pipelining.
7.5. Conditional instruction modules

7.5.I.If..then ..else
7.5.2.CASE . .
7.5.3.FOR loops.
7.5.4.WHILE . .

7.6.Decremental register.
7.6.I.General subtractor
7.6.2.Decremen ta I register (bi t-sl ice)

8.DATA PATH SYNTHESIS .
8.I.Clique partitioning
8.2.Alloca tion of registers

8.2.I.A procedure for combining variables.
8.2.2.Construction of the compatible table.
8.2.3.Grouping registers into scratch pad memories
8.2.4.Example.

8.3.Alloca tion of da ta opera tors
8.3.I.Grouped operator categories
8.3.2.Example .

8.4.Allocation of interconnection units

3

5

6
6
6
7

9

II
II
I I
12

13
13
14

15
15
17
18
19
21

22
22
23
24
24
25
26
26
27
28
29
30
31

33
33
34
35
35
35
35
37
37
38
39

8.4.1.Example .
8.5.Implementation
8.6.Example. Implementation of the abc formula
8.7.Conclusion

9.IMPLEMENTAnON OF HIGH LEVEL ALGORITHMS
9.1.Methods

9.1.1.METHOD I
9.1.2.METHOD 2

9.2.Examples.
9.2.1.Example 1. A receiver
9.2.2.Example 2. Video controller

9.3.Parallel processing.
9.4.Comm unica tion and synchroniza tion

9.4.1.Alternately performing state machines
9.4.2.Parallel performing state machines
9.4.3.Communication with the environment

10.CONCLUSIONS

LITERATURE

APPENDIX A clique-partitioning algorithms

APPENDIX B Output files of the examples

4

40
42
43
45

46
46
46
46
47
47
52
55
56
56
56
57

58

59

I.INTRODUCTION

In general, the problem faced by digital designers is to create a
hardware implementation of a digital system which exhibits a
specified behavior, and is "optimal" with respect to some set of
design goals.
Often, the design goals compete (cost and performance, for
example).

Representations of a digital system have been defined at several
different levels of abstraction to describe a design at different
stages of the design process.

The level of abstraction on which a designer works is dependent
on his contribution to the design process. System architects
rarely deal with transistors and logic gates, and logic designers
may not have access to a whole system level description.
However, in the context of the whole design process, each
designer must be able to understand the effect that design
decisions at his level of the design process have on the product
as a whole.

The evaluation of a design which may be represented at several
different levels of abstraction requires a multilevel representation
and analysis aids which can effectively use it.

Several multilevel analysis aids have been developed that require
more than one level of abstraction as input. One of these aids,
multilevel simulation is being used by the Digital Systems Group
of the EUT. In general, simula tion at a low level of abstraction
is accurate but slow and expensive, while simulation at a higher
level of abstraction is less expensive but delivers less detailed
information.

To avoid simulation at all levels between behavior and hardware
description an other methodology has to be used: "correctness by
construction". In this report such a methodology is introduced.
A way to come to automatic synthesis hardware, starting with an
algorithm is described.

5

2.THE DIGITAL DESIGN PROCESS

2.l.H istory

Until a few years ago, the normal method of designing a digital
system was not a strict way.
Starting with a specification, the problem was divided into
functional blocks. Then one would try to find a realization of
these blocks by "gluing" standard pieces of hardware together.
A so called "bottom-up" approach. It was almost impossible to
find out what the consequences of changes in one part of the
design would be in other parts.
Only small digital systems can be made this way, since the only
way of testing the design is to build it.

2.2.Top down

Considering the high complexity of modern systems new design
strategies have become necessary.
We need a structural design method using a hierarchy of design
representations organized by levels of abstraction.
This section describes a traject that is used by the Digital
Systems Group of EUT. From the top level down, this hierarchy
typically includes the following levels of abstraction:

l. Specification
2. Behavioral level
3. Functional level
4. Structural level
5. Physical level

Specification
Starting to design a digital system, we need the desires of the
customer. In general this will be a description in a common
language.
At this place tasks and performance of the system have to be
known.
This informal description must be transformed into a formal
description in order to be able to make decisions and to be able
to test if the system will meet the specified constraints.

Behavioral Level
At this level the behavior of a digital system is described without
specifying its structure or implementation. More about this level
can be found in Chapter 3.

Functional level
At the functional level the architecture is defined using abstract
components (functional blocks) and their interconnections. A
control sequence is often included to specify how the abstract
components are invoked.

6

Structural level
The functional blocks are translated into logic circuits, functional
cycles, microprogramming, finite state machines and boolean
expressions.

Physical Level
At this level the digital system implementation is described in
terms of physical devices, their placement and their interconnec­
tions.

Designs-in-progress move between these levels of representation
through three basic design activities:

Synthesis: This activity is the creative act of generating a new
lower level of representation of information based on a
higher level (more abstract) specification

Optimization: This activity involves adding detail within a level
or altering the representations within a level to effect
a better design. Transforming a behavioral description
to be more parallel could be an optimization to
increase speed.

Analysis: This is the activity of evaluating a design
representation to indicate where optimization or better
synthesis could be performed to better meet specified
design goals. This evaluation often includes functional
correctness, cost, performance, and testability measure­
ments.
Performance analysis often will be done by system
simulation.

2.3.A new approach

The method described above is a systematic way to come to a
good digital system design. Considering this systematic approach,
thoughts arOse to automate the traject. Starting with an
algorithm there might be ways to come to automatic generation
of hardware. In the literature one can often find the word
"silicon-compilation" to describe this process.

Since the behavioral description does not implicate an
implementation, there must be an intermediate level do describe
functional blocks with their communication and synchronization.
This level combines the functional level an structural level of the
top down method.
An intermediate language has been chosen to describe the data
transformations and control operations at that level. This
language is called a register transfer language (RTL).

Since the RTL is closely related to a hardware description, this
language can be used to generate a hardware design.

7

At the RTL level, optimization can be realized by clustering
variables, operators and interconnection. This will be described in
Chapter 8. At this level statements can be executed in parallel,
which also has to be considered when translating the functional
blocks into R TL.
Figure 2.3.1 shows the total traject of the new approach.

/ OptiMizer

Fig. 2.3.1. General diagram of automatic system design.

8

3.BEHAVIORAL LEVEL

There are many ways to describe the behavior of a system.
The Digital Systems Group of the EUT has chosen for a Pascal­
like hardware description language 'HHDL'.
Using a software package of Silvar-Lisco 'SL2000' a system
described in 'HHDL' can be simulated at this level.

At this level one has to describe:
- which actions can be distinguished e.g. subprocesses, proce­

dures, functions, and da ta exchange
- which actions can be executed in parallel
- synchronization and relative timing of subprocesses, procedures

and functions
- shareability of data communication lines

The problem to be implemented is split up into functional blocks.
The program obtained will look like this:

Program(input, output)

declaration of global variables

Proced ure I(header variables)
Procedure2(header variables)

ProcedureJ(header variables)

(co)begin
procedurel (global variables)
procedure2(global variables)

procedureJ(global variables)
(co)end

In general the algorithmic description of a procedure looks like
this:

Proced u re I(h I, .. ,hm)
var hl,.. ,hm /* header variables */
(co)begin

/* statements, flow-control, procedure calls,
synchroniza tion.

/* communication up by using global variables
1* communication down by using header variables

(co)end

Figure 3.1 shows a schematic diagram of a program

9

(> COMMLAniCo. tion o.nd synchrOniZo. tion

Fig.3. I. Algorithm composed of functional modules

It is built up by modules(procedures). Modules have entry and
exit points. Through these points procedures communicate and
synchronize. In the program this is done by global and header
variables. These variables will lead to buses between the modules.
Communication and synchronization among modules is beyond the
goal of this report. For further information, see [23].

Splitting up a program into functional blocks does not implicate
that the implementation in hardware will use the same functional
blocks.

10

4.REGISTER TRANSFER LEVEL

The behavioral language has such a high level that the system
cannot directly be implemented from this language. We need a
language that describes the functions in such a way that they
can be implemented directly in hardware. Several languages of
this type have been proposed in the literature (AHPL, ISPS,
KARL).[6, 7, 12, 22]

4.I.Pu rposes

The language can be used for the following purposes:
- Functional specification of the system, without concern for the

implemen ta tion.
Description of a specific implementation. In this case the

description corresponds to the implementation as close
as possi ble.

Aid in the process of designing a system. Different realizations
can be tested on costs, speed, and size.

4.2.Requirements

At this level data transfers and transformation (register
transfers) are described. Also the control sequence is included.

For this reason the following elements in such a language are
necessa ry:

- Data objects (data elements or structures of data elements)
with a set of allowable values.

- Opera tors, to perform actions like AND, OR, ADD, and
SUBTRACT.

- Functions, having objects as arguments. For example sqrt(x) is
a function to calcula te the square root of x.

- Assignments, which assign the results of a operation to an
object.

- Structuring constructs, which allow the construction of
algorithms as a composition of other algorithms.

- Special separators to enable parallel execution of statements.
- Comments, for documentation.

A function can be implemented by using standard operators or
by using dedicated hardware (for example a high speed
multiplier). When using composed operators it is necessary to
know sources and destination and the time needed for the
opera tion. The control unit has to take care of the right timing
and control signals. Sometimes it is possible to perform a
function in-register. An example of a function that can be
performed in-register is a decremental register. In stead of using
an ALU for decrementing the value in a register, a special
register can be used which has a special input to decrease the
value directly by one.

I I

4.3.Language

In this report a C-like language has been used as the register
transfer language.
A new element has been introduced:

--> 2

means go to state 2.
It is a control function, which must be executed by the control
unit.

12

5.FROM BEHAVIOR TO RTL

We now want to project the behavioral description onto the
register transfer language. This could be done by a compiler.
Since it was not the goal of this project to design such a
compiler, only the specifications are given below.

Functions of the compiler:
- compile the behavior description to RTL

use standard elements (modules) of a library (registers,
opera tors etc.)

trade off costs and speed; find an optimum between number of
operators and time to execute an algorithm

supply a control part representation (the micro-operation
sequence)

supply timing information

For the methodology developed the system is divided into a data
subsystem and a control subsystem, which is closely related to
the RT language nature itself.
So the RTL synthesis has two tightly coupled facets: the design
of the data paths, and the design of the finite state machine
which controls these data paths. Fig. 5.0 shows a diagram of a
system described this way.

.&.

ContrOl outputs

Data outputs

------------l
I I
I I Data I I -
I I subsystem I I

I
I

Control II Cond itlons

I
Signals I

! I
I Control I I

I I subsystem I I

Data Inputs

Control Inputs

I IL J

Fig. 5.0. Structure of a system with data and control subsystems

The compiler translates a design from the behavioral description
to the functional structure (RT) level. Procedures in the behavior
language will be mapped on basic blocks (see Chapter 8).
Designs entering the logic synthesis and module selection step are
represented at a behavioral level which may contain operations
that are not directly realizable by devices in a module set. In
cases a match between members of the module set and operations
in a design cannot be found, some methodology must be applied
to reduce the difference until the available modules can be used
to implement the description.

5.I.Data unit

The data unit contains registers, operators and interconnection.
The elements are part of a library, so the problem to be solved

13

by the compiler is a mapping problem. During compilation an
optimum solution has to be found in that sense that the number
of registers, operators, and interconnection units has to be
minimized. A trade off between speed and cost has to be made.
Parallel solutions will be fast but take a lot of chip area since
they will cost more elements. Using less elements will decrease
the speed of the system. So speed and costs are input vectors to
the compiler. More a bout optimiza tion can be found in Chapter 8.

5.2.Control unit

The control information for a design is provided in a form
separate from the data path.
For representing the control flow, a precedence graph could be
used [I].
Labeling methods and calculation of the critical path can also be
found in [I]. During compilation such a description could be used
to find the maximum number of operations that can be performed
at any time.
The control flow (e.g. a micro-operation sequence) has to be
made by hand, since we are not able to generate it automatically.
The micro-operation sequence is a list of operations with sources,
destinations, and interconnection links.
The problem to be solved is to map control specifica tions into
hardware implementations.
The data paths of the system under design must have been fully
defined, device primitive operation times must be known, and the
sequence of control signals necessary for each primitive operation
must be accessible to the synthesis routines. The required
opera tion of the machine must be specified as a linear, ordered
list of micro-operations which affect either the control flow or
the da ta path. The synthesis routines must determine micro­
instruction format, control store word width and length, cluster­
ing of micro-operations into microinstructions, and controller
hard wa re pa ra meters.

Automatic synthesis of microprogrammable control hardware is
different from microcode compilation because there are more
degrees of freedom available to the synthesis program. Microcode
assembly. optimization, and compilation assume knowledge of
existing control hardware, with word widths, branching strategies
and formats predefined. Conventional optimization routines
perform either word optimization or bit optimization but do not
take into account the influence of one on the other. Synthesis
must consider both optimizations at once.
Timing and clocking are the most difficult part of this synthesis.
More a bout the control unit can be found in Chapter 7.

14

6.DATA UNIT

The data unit performs the information processing tasks. The
data unit cannot perform any computation by itself; it has to be
controlled by a controller. The controller determines the sequence
in which operations must be performed. The controller sends the
appropriate control signals and transfer pulses to the data unit.
The next step of the controller may depend on the current status
of the information being processed. See Fig. 6.0.

Con \ '0
riO ..

Co'- t ~o

S'g"'C 5

I" fl; ,

1 I 1 !
I I 5\0\ uS I !

_-----''''"''''-'__--,'r. for r""'"" at, or- r----...~?'---,

I

, i..,,~~r~c~,>or;

P'ccess,,-,g
I Un ~

I ¢ Z
CO t ... O'

S,g n O'5

c

I
,

I, I
I

\1,
\j./

'.:::c':::

Figure 6.0 Basic model of a digital system

The basic tasks of the data unit are:

I. Storage of da ta
2. Information transfer
3. Operations
4. Decisions (status)

6.I.Storage

The storage components provide storage for da ta and condition
values, using registers build up by elements that can store bits
(flip-flops). The basic storage component is a register, with a
LOAD and a RESET opera tion. The LOAD signal is used to load
the input vector into the register, synchronized with the clock.
This corresponds to the assignment instruction of the RT
language. For initialization (reset) purposes a RESET operation
can be implemented. An output ena ble line can be added to the
register when buses are used. The register contents are only
available at the output when the READ signal is present;
otherwise the outputs are undefined (three state).
An n-bit register with LOAD and RESET operations is shown in
Figure 6.1.1.
Because of the synchronous mode of operation, when loading a
new input vector, the old contents of the register is also

15

available for that clock period. That is, the old contents of a
register is also available at the time it is being loaded [2, 22).

x

elK

y

LOAD

RESET

Fig. 6.1.1. Register.

The LOAD operation could be described as
'if LOAD then Y := X',

The RESET operation could be described as
'if RESET then Y := 0'.

The storage function can be implemented by using individual
(separate) registers or arrays of registers or a combination of
both. The access to an individual register requires separa te
datapaths and control signals. The more concurrency in a system
the more individual registers are necessary. On the other hand
they need more interconnections. If a large number of registers
is required, an array of registers is used to reduce the number of
datapaths. In an array of registers, see for example Figure 6.1.2,
some datapaths are shared so that only one operation involving
the shared datapath can be performed at a time, imposing a
limita tion on the concurrency achievable by the system.
Figure 6.1.3 shows an array of registers organized as a Random­
Access Memory (RAM). By supplying an address at the A input a
register can be selected. Then a READ or a WRITE opera tion can
be performed.

k
A

READ

WRITE

Fig. 6.1.3. Random-Access Memory

16

6.2.Informa tion tra nsfer

Two types of transfers are possible:
- transfer of information from outside the system to a register

or vice versa.
- transfer of information from register to register.

Information transfer is initiated by the receipt of a control
vector and accomplished a transfer pulse (clock).
Figure 6.2.1 shows an example of a transfer network. Control
vector Z determines which transfer from the inputs to the
registers will occur. The values of the input and control signals
must be stable before the transfer pulse occurs. Control and
input signals may change between transfer pulses.

r,

..,

c
C>

Fig. 6.2.1 Example of a transfer network.

The contents of registers not referenced remain unchanged. The
external behavior of the data unit of the example is defined by
the specification table (also in Fig. 6.2.1). The specification
table can be used to write the logic equations at the logic level.
The width of a datapath is the number of bits that can be trans­
mitted simultaneously. Transmission of data on datapaths can be
parallel (all bits simultaneously) or serial (one bit at a time).
Parallel transmissions are fast but require wider datapaths. Uni­
and bi-directional datapaths are possible. Bidirectional datapaths
reduce the number of connections but the transmissions are
limited to one at the time. A shared datapath, or bus, provides
for transmission between several sources and destinations. At one
time only one source can be active but more than one
destinations are possible. A multiplexer is used to connect several
sources to one destination (Figure 6.2.3.).

17

lNl

IN2

IN3

lN4

INn

OUT

Fig. 6.2.3. A multiplexer.

A demultiplexer connects one source to one of several possible
destina tions. Its block diagram is shown in Figure 6.2.4.

s

IN

OUT!

OUT2

Dun
OUT4

DUTn

Figure 6.2.4. A demultiplexer.

6.3.0pera tions

An operation (function) at the implementation level has bit­
vectors as operands and bit-vectors as results. An operator is
implemented by a combinational network. Standard operations
correspond to standard modules like AND, OR etc. More complex
operators (multipliers, dividers etc) are implemented by a
sequential network: in this case the operator includes the
corresponding control sequence (semicentralized control).
Such a complex operator can be seen as a subsystem, see Figure
6.3.1.
The operator P accepts the inputs when initiated by the START
signal, performs the operation selected by the control signals (Co,
C l), and generates the signal DONE when the output bit-vector Y
is compu ted.

18

START

CO

CI

X2

DONE

y

Fig. 6.3.1 Opera tor as a subsystem.

The operator is specified by the function it performs. The
specification can be given by function tables, switching express­
ions, etc.

Figure 6.3.2 shows an example. By supplying a control vector Z
the data unit will perform the action specified in the specifica­
tion ta ble.

,
I :

I '
I)

:>d':

Log;co:
NetworK

I i
I I
I I

:s,>

B

5=,e:::· :::C· 2'- ~ e

IK'--------,
Co"'t'o
5;q"'0:

-Z

C

---------.-- '-- '---

Fig.6.3.2. Example of an operational network

It is also possible to feed back the output of a register to the
input of the operational network. In this case the register used
as feedback must be of the master-slave type or an edge
triggered flip-flop to avoid races. In examples of Chapter 8 we
will see that this construction reduces the number of registers.

6.4.Decisions

In our general model of a digital system (Fig. 6.0) there is also
an signal from the data unit to the control unit. This is a status

19

signal. After having executed an operation the data unit can set
some signal lines. The control unit can supply the next state
vector by using these status signals. Since the next state now
depends on the status signals of the data unit, decisions can be
made, see Figure 6.4. In Chapter 7, this is worked out in detail
to implement 'if then else', 'while', and 'for' instructions.
Figure 6.4.2 shows the corresponding specification table and
status signal table. The status X is independent of the control
signal, so in fact the combinational network can be split up into
a part producing the status signal X, and a part processing the
da ta con trolled by the vector Z.

Ii
! I

:>?

L.. 0 -; . C 1'", e ~ Ih 0'" ;..:

:1("<;: ~
I · I i

=<, cO =<.,?

A a

l:'----,

S~atus

5,g"'0:
x

CO""1tro'
S;or,c,

"z

Fig. 6.4.1 Structure of an operational network with a status
signal X

~ ,.--.:=..- .. ,-~. -,-- "- '- - ~

" : :. ~, :: ;: --
'0"

L :..- - L

~ L E :.. -c:- -~ .. A, - 6

A B
A < a
A > E

x~

x,
X3

Fig. 6.4.2 Spec if ica tion a nd sign alta ble

20

6.5.Modular and bit-slice organization

The data subsystem can be partitioned in two basic ways:
- a modular organization
- a bit-slice organization
In a modular organization each module implements a function. For
example, separate modules could implement data storage and
arithmetic operations. Each of these modules can be implemented
as a network of components.
In a bit-slice organization a module implements all functions for
one bit in a datapath. Several of such modules are required for
the complete processing part.

21

7.CONTROL UNIT

There are many ways to implement the control unit. In the next
paragraphs some approaches are described.
To be able to design a control unit there are two requirements.
The first requirement is a description of all the devices used in
the data path and how the device must be controlled for each
operation.
The second requirement is a description of the control sequence.
A control sequence is a representation of the proper order of
events which should occur in the digital system. This sequence
may be represented in a RTL language, a state table or it may
be expressed in detail by specifying the actual bit patterns used
to control the devices used in the data path.

A two-phase clock is assumed. Phase one invokes controller sta te
changes; phase two invokes data path operations.

The Digital Systems Group of the EUT has software tools to
minimize the number of states of a controller. It also has tools
to minimize the combinatorial part of the controller.

A general procedure for designing a control unit, given a
register-transfer algorithm and a data path, consists of the
following steps:
- assign a state to each line of statements of the RTL algorithm;
- construct the state diagram according to the precedences

specified in the RTL algorithm.
- for each state determine the outputs (control signals)

that are active in the state, depending possibly on
conditions and external inputs.

- determine the inputs (conditions and external inputs) causing
the state transition.

- create the state table
- use tools to minimize the state table
- construct the control unit.

There are two types of implementations of a finite state machine:

I. Mealy-type
2. Moore-type

7.1. Mealy-type implementa tion

Using a Mealy-type implementation, the output is a function of
the present state and the inputs. This means that if the inputs
are not stable, the output is also not stable. This could be a
disadvantage. An advantage of this type of implementation is that
usually less states are necessary than with a Moore-type
implementation to implement the same function.
Figure 7.1. shows a general diagram of a Mealy-type implementa­
tion of a control unit.

22

TSOUTPU
.... ": '"

" "NEXT MEMORY OUTPUT ~

STATE ELEMENT DECODER
----7 DECODER ~

----:;.
ClKI>r

mpUTS

Oui:pui: f(presE'ni: si:c. tE', inpui:s)

Fig. 7.1. Mealy-type implementation of a control unit.

7.2. Moore-type implemen ta tion

Typical for a Moore-type implementation of a finite state
machine is the fact that the output only depends on the present
state, see Figure 7.2.

INPUTS OUTPUTS
.... "'"

" "~ NEXT MEMORY ./ OUTPUT '"
" STATE ElEHEhlT DECODER" "
~ DECODER '" '" ~

~ - >r elK

Fig. 7.2. Moore-type implementation of a control unit.

In the examples in this report Moore-type implementations of
control units have been used.

23

\ tnst r l.'c1,cr-­

I p .. g "e'

7.3. Microprogramming

By using an instruction controlled controller the controller
becomes very flexible.

I !
StctL.S 11 Cortrc

x (:~ j~:0__----..:

1
'\-c-orn-,-b-;n""o.L

t
'---,0-""'-0-'-~~,0' 5 Z(\)

r---~' N;~2~~k RI
""5-'-0-\e-'-e-g'-5-\e-,--~ II

O(I) I \

LJ
L c

Fig. 7.3 Instruction controlled controller.

Figure 7.3 shows a basic form of such an instruction controlled
controller. The instruction sequence is called a "micro program".
By loading an instruction in the instruction in the instruction
register the controller will perform a function. In cooperation
with the status signals supplied by the data unit, the next
instruction can be loaded. This approach can lead to a full micro­
controller, which basically has the same structure.
This kind of controller has not been used in the examples in this
report, since the primary goal of the research has been to
implement algorithms with a minimum amount of hardware. This
kind of controller will lead to an overcapacity of the hardware.

7.4. Pipelining

If data is delivered in a stream form and the system has to
perform the same computation on every element of the stream,
there are methods to increase the speed of the system. If we use
the implementations discussed until now, each instance of the
computation would begin after the previous one has finished.
A method to increase the speed is called "pipelining".
The data units performing a step of a computation all work in
parallel. If the time to compute in a step is called 'T', then after
the first computation has been done, after every time 'T' a result
is delivered.
In more sophistica ted systems there could also be a piece of
controller in each stage. This could be used when the processing
time per stage is not equal for all stages. Then we need com­
munication between the control units (Figure 7.4) [2].

24

s

do-to- out
.... ,

3~'" Proc 1 ,- Proc 2 ...- Proc

/1\ /1\ 1\

ste-tus ste-tus statu

\1/
do-to- 1/ do-to- \1J
e-ve-ile-ble e-ve-ile-ble

.... ,

..- ..-
CONTROL CONTROL CONTROL

,- ./

......
e-ckn e-ckn

Figure 7.4 Pipelined system with decentralized control.

7.5. Conditional instruction modules

Until now we have seen implementations with a centralized
controller. As said before it is also possible to put a part of the
controller in the da ta pa th.A general diagram of a controller
could be like Figure 7.5

l fr-=,~

pro..: u~':)

I)':c::::-:c-=-=c-'=-~-=o-=-:-:-:~o::-~=-.-=0-:-';.--~>
I LOg;C

,\---) Net",crv

Ii0 I Slcle G9 ROO "" rv--_C_t_'__----I

Preser-,t Next
State State

Fig. 7.5 General diagram of a control unit with conditional
instructions

Now, let's take a closer look at conditional instructions like:

while {condition} do {statement}
if {condition} then {statement I} else {statement2}
for {condition} do {statement}
repeat {statement} until {condition}

25

Conditions and statements can be calculated and executed by the
processing part. But branching has to be done by the control unit
since the control signals depend on the conditions.

The processing unit will supply a status after having calculated
the condition. This status signal is used to calculate the next
sta teo

7.5.I.If..then ..else

This statement can easily be implemented by using a multiplexer.
There are two possibilities to use such a multiplexer. The control
word can be switched, or a flow token (bit) can be switched.
Figure 7.8. La shows token flow model; Figure 7.8.l.b shows the
control word switching method. Normally this function is
integrated in the state machine itself. The next state depends on
the status signal of the processing unit. For this reason only the
token flow switching will be used in examples to implement an
'if..then ..else' statement alternatively.

enQble

stQter>ent 1

enQble
stQter>ent 2

control
word 1

control
signQls

(b)

control
word 2

if (condition) then (statement]) else {statement2}

Fig. 7.8.1 Implementation of if0 then 0 e1seO. (a) token flow
switching. (b) control word switching.

7.5.2.CASE

Now that we have a implementation for an 'if..then ..else'
statement, the implementation of a 'case' statement is easy.
Figure 7.8.2. shows a diagram. The token flow model and the
control word switching model are given. Again only the token
flow switching will be used in examples.

26

control 1
signo.ls ~

CASE

log n

sto.ter'lent (0.)

control

C:::f~ JY----b
log n

Fig.7.8.2 Implementation of a 'CASE' statement. (a) token flow
switching. (b) control word switching.

7.5.3.FOR loops

Incremental 'for' loops are of the same type.
A choice can be made to put the counter into the processing unit
or the control unit.
To reduce the communication overhead, the loop counter will be
placed in the control unit.A general diagram could be like Figure
7.8.3.a
The module can be pre-loaded with the begin and end values of
the counter. The value of the counter (i) is available on the
outside.

S1:o.r-1: done
lOQdin;t end

elk FOR

enable next

Fig. 7.8.3.a For {init condition} to {end condition} do Module

Figure 7.8.3.b shows the inside of the module. There are to steps
to be executed in a 'for' module. The module is started by
making the 'enable for' signal high.
The first step is to compare the counter (i) and the end
condition register. These where pre-loaded with start values. If
the condition is false, then the ena ble process signal becomes
high.
After a next signal from the ena bled process the flip-flop will
toggle and step 2 is executed: the counter is decremented.

27

If the counter has the same value as the end condition register
the enable process signal becomes low and the done signal
becomes high.

elk

eMble
proc;-;.s

Fig.7.8.3.b For {init condition} to {end condition} do
implementa tion.

Figure 7.8.3.c shows an implementation of the comparator

x y)(, y,)('1. >It

xy c.

~
i I

00 I ,.J..-J.::
, 010 n~ 100 S

I I I V
y '1
~ I

I r----
'J(~ J',

Fig. 7.8.3.c Comparator

7.5.4.WHILE

If we want to implement a 'while' statement, we need status
information of the data unit. For example a comparator as shown
in fig. 7.8.2.c can be used to calculate conditions. Using the
token flow method we can again use the multiplexer to continue
or stop the while loop depending on the condition.
Of course the enable process signal can be expanded to a series
of enable signals to implement more statements inside the while
loop.

28

nE'X t eno.lol e
process

Fig. 7.8.4. (a) WHILE implementation (b) expansion of the enable
signal

7.6.Decremental register

In the last section we have used a decremental register. An
implementation of such a register could be like Fig. 7.9.0. This is
a Moore-type implemen ta tion.
When using the bit-slice method, we obtain modules to implement
a decremental register of any size.
In both cases the L input is used to load an initial value; the D
inpu t is used to ena ble decrementing the register.
To come to an nit-slice implementation we first make a general
subtractor.

12 ".,
11 -----';;>I
10 ".,

COMB.

L

Dc

Dl

DO

FFs

Y2

Yl

YO

LOAD =
Decrement =
NOP =

LD
LD
LD

D 2 = (DY 2 + Y 2Yo + Y 2Y 1 + Y 2Y 1YoD) L + I 2LD

Dl = (Y1Y o + DY 1 + DY1Y O) L + I1LD

Do = YoLD + IoLD

Fig. 7.9.0 Decremental register (Moore type)

29

7.6.I.General subtractor

Using the bit-slicing method we need a unit that can subtract
two bits using a borrow-in (BI) and generating a result (R) and a
borrow-out (BO), see Figure 7.9.l.a.

Fig. 7.9.l.a Symbol of an subtractor-bit

In Figure 7.9.l.b the state table is given.

x Y BI R BO

0 0 0 0 0
0 0 I 0 I
0 I 0 I I
0 I I 0 I
I 0 0 I 0
I 0 I 0 0
I I 0 0 0
I I I I I

R = BI (XY + XY) + XYBI

BO = YBI + XY + XBI

Fig. 7.9.l.b State table subtractor

The next figure shows the implementation of one element of the
subtractor.

Br

X

y

-- 5/)

Fig. 7.9.l.c Implementation of a subtractor-bit element

30

7.6.2.Dccremental register (bit-slice)

Now that we have designed a subtractor element it is easy to
design a decremental register. Using these elements the value of
Y is I for the first element and 0 for all others, see Figure
7.9.2.a.

x...,

T

o o

x,

o

Xo

Fig. 7.9.2.a Decremental register, bit-slice method.

The subtractor element of the last section can be used to
implement the decremental register. Substitution of the Y values
gives the following equations:

Element X o: R=X
BO = X
BI = 0
Y = I

BO = XnBI

LOAD = LiS
Decremen t = LD
NOP= In

31

L 1>

J,1

..,. I

~-----t----+-++-t•. r

~o

XJD Q 1--------'---

elk

GI----l....---+---

Fig. 7.9.2.b Implementation of the decremental register, bit-slice
method.

32

8.DAT A PATH SYNTHESIS

The input to the synthesis system is a code sequence, written in
the R TL language.
This sequence contains variables and operators. We now want to
reduce the number of registers, operators and their interconnection,
and then generate the hardware design by a mapping procedure.

A basic block is a linear sequence of operation codes having one
entry point (the first operation executed) and one exit point (the
last operation executed). A code sequence generally contains a
number of basic blocks linked by conditional or concurrent control
constructs. For example see Table 1; this is a code sequence which
consists of a single basic block.
Code statements appearing on the same line are executed in parallel
by a single control step.
This code sequence, adopted from [8], will be used as an example
illustrating the synthesis procedure.

TABLE 1 Code sequence

1. R2 = R I + R2 ; R 12 = R 1
2. R5 = R3 - R4 ; R 7 = R3 * R6; R 13 = R3
3.R8 =R3+R5; R9 =Rl+R7; Rll=RIOjR5
4. R14 = RII AND R8; R15 = RI2 OR R9
5. R 1 = R 14

The resources for data paths are registers, data operators, and
interconnection units. Using the code sequence as input, data paths
synthesis involves three tasks: assigning a variable to a suitable
number of registers, data operators, and interconnection units. Two
varia bles can be assigned to the same physical resource if and only
if there is no conflict in the use of the two resources. Of course
this rule can be expanded to N variables. (N > 2)
N variables can be assigned to the same physical resource if and
only if each pair of these N variables does not have usage conflict.
Let each variable be represented as a node in an undirected graph.
The relationship of shareability can be represented by the connecti­
vity of the two nodes. Mapping of registers, data opera tors, and
interconnection units can all be formulated into the clique-partitio­
ning problem whose rna thematical definition is presented now.

8.I.Clique partitioning

Let G be a graph consisting of a finite number of nodes and a set
of undirected edges connecting pairs of nodes. A nonempty
collection C of nodes of G formes a complete graph if each node in
C is connected to every other node of C. A complete graph C is
said to be a clique with respect to G if C is not contained in any
other complete graph contained in G. The clique partitioning
problem is to partition the nodes in G into a number of disjoint

33

clusters such that each node appears in one and only one cluster.
Furthermore, each of these clusters itself forms a complete graph
(clique). See fig. 8.1. This figure shows an undirected graph. The
nodes are variables which must be combined. There are more than
one solutions to this problem. The following clusters can be formed:
(1,2,3) , (4,5) , and (6). An other solution could be: (1,3) , (2,4),
and (5,6).

C)
(

The search for cliques in a graph has been proved to be
NP-complete.[3,4]
In Appendix A algorithms can be found to find cliques in a
undirected graph.

8.2.Alloca tion of registers

As indica ted, it is generally beneficial to assign more than one
variable to the same physical registers. This section describes how
to minimize the number of registers.
Given a set of variables of a code sequence, the problem of storage
allocation is to combine those variables which can share a register.
Two variables can be combined if they have disjoint lifetimes. A
variable is live between the time of its definition and last use. A
varia ble is dead between the time of its last use and the next
definition. If the live periods of two variables are not overlapped,
they ha ve disjoint lifetimes.
In reality this constraint can be relaxed. Two variables X and Y
can be combined if their lifetimes are overlapped in such a way
that one of them is used as a source and the other is used as a
destination or vice versa in the same statement. In addition, the
variable which is used as the source is dead in the next time
interval, i.e., the use is a "last use". Lifetime analysis is an
essential process for constructing the table which identifies the
constraints of storage sharing. Automatic lifetime analysis has not
been solved in this report. More about solutions can be found in
literature about compiler design. In the examples described in this
report, lifetime analysis has been done by hand.
Pure da ta transfers are special cases.

34

8.2.l.A procedure for combining variables.

If there are n variables and each pair of variables are proved to be
combinable (there are n(n-I)/2 different pairs), then these n
variables can be assigned to the same physical register. Let the
nodes of a graph be the variables and each pair of nodes which
can be combined be joined by an edge. Then a graph which
contains the lifetime relationship among all the variables can be
constructed. In the method used this information is transformed to
a table. Since the goal is to assign these variables to the minimum
number of physical registers, this is translated into the clique­
partitioning problem.
The combination of each pair of variables which are related by
pure data transfers would cause these operations to be eliminated.
This improvement reduces the number of control functions. If a
horizontal list in the code sequence is occupied by pure data
transfers, the control step can be deleted resulting in a faster
implementation. To take this property into account, during clique
partitioning with the cp-algorithm version 2, one can indicate
which variables belong to pure data transfers. The program will
give these variables a higher priority to be combined.
Once the variables have been compacted, the code sequence is
updated. The names of variables which are grouped together are
assigned to the same name. Then operations of moving the content
of a variable to itself are deleted.

8.2.2.Construction of the compatible table

The live/dead status of all variables are represented by a lifetime
list. The compatible table is the table which contains a "I" if
variables are combinable and a "0" if not. To construct a
compatible table the lifetime list and the code sequence are traced
and inspected. Variables are compared two by two (the columns
are compared). Unless the conditions given above are satisfied, the
crosspoints combining variables which are live in the same time
interval are marked "0". Combinable variables are marked "I". Those
pairs which associate with pure data transfers in some time
intervals are marked "2".

8.2.3.Grouping registers into scratch pad memories

Having assigned all the variables to suitable physical locations, the
next step is to investigate the possibility of grouping several
registers into sets of scratch pad memories. Those variables which
have disjoint access time can be grouped together. This allocation
problem has been worked out in detail by M. Balakrishnan et al.
[5].

8.2.4.Example

Let the code sequence of Table I be given. Assume that the
program is itself a loop. Having executed the statements in the last

35

line, the control flow is passed back to the statements in the first
line. Applying the lifetime analysis algorithm to the example, this
must be done by hand, the status of these variables in each time
interval is indicated in Table 2.

TABLE 2 Lifetime trace

Time
Entry
1
2
3
4
5
Exit

RI R2 R3 R4 R5 R6 R7 R8 R9 RIO RII R12 R13 RI4 R15
1 1 0 1 0 1 0 001 0 0 0 0 0
1 1 1 1 0 1 0 001 0 1 0 0 0
10111 1 1 0 0 1 0 1 0 0 0
1 0 1 1 1 1 1 1 1 1 1 1 0 0 0
o 0 0 1 0 1 0 1 1 1 1 1 0 1 1
1 1 0 1 0 1 0 0 0 1 0 0 0 1 1
1 1 0 1 0 1 0 0 0 1 0 0 0 0 0

Having derived the life/dead history of each variable, the compa­
tible ta ble can be constructed. This ta ble called "CONNECT". Two
variables are compared for every point in time (so the columns are
compared). If two variables do not have usage conflict, their
crosspoint will be marked by "I" in the table "CONNECT". If not
so, the crosspoint will be marked by "0". The nodes R2 and R3 are
used as a source and destination in the statement. In addition, the
source variable is dead in the next time interval. Therefore, the
crosspoint (2,3) is marked "I". Repeatedly applying the procedure to
the entire lifetime, the resulting compatible table is given in Table
3.

TABLE 3 Compatible variable pairs

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
1

2

1

3

1

4

1

5 6

1
1

7

1

8 9
1

1 1

1

1
1

1

10 11 12 13
1

1 1
2
1

1 1
1
1
1
1

1 1
1 1

1 1
1

14 15
2

2
1 1

1 1

1 1
1

1

1
1

1 1
1

1

Among these compatible variable-pairs, those pairs associated with
pure da ta transfers in some time intervals are marked with "2" (by
hand). Applying the cp-algorithm, the variables are partitioned into
eight clusters. They are:

36

clique = 2 7 9 15
clique = 3 8 13
clique = I 14
clique = 5 II
clique = 4
clique = 6
clique = 10
clique = 12

The variables in each of these clusters can be assigned to the same
physical location. The code sequence in Table I can be redefined
into the form in Table 4.
There are fifteen variables in the original code sequence. They
ha ve been compacted into eight. Furthermore, the last step has
been eliminated. The program can now be realized in four steps.

TABLE 4. Improved Code sequence

l.R3=Rl+R2;
2. R5 = R3 - R4 ;
3. R3 = R3 + R5 ;
4. R 1 = R5 AND R3 ;

RI2=Rl
R2 = R3 • R6
R2 = RI + R2 ;
R2 = RI2 OR R2

R5=RIOjR5

8.3.A Iloca tion of da ta opera tors

If an operation is used more than once grouping those operators to
one reduces the hardware needed to implement the sequence. This
can be done if the operators are not used at the same time.
It is also possible to combine operators performing different
operations into an ALU.

8.3.I.Grouped operator categories

An important issue for the allocation of data operators is choosing
an appropriate set of operators to group together. In order to
minimize the number of multiplexers and demultiplexers, not only
the operations must be compared but the relation between their
sources and destina tions as well. By inspecting the rela tionship
between two operations, there are sixteen cases. These sixteen
cases can be classified into eight categories [8]. They are listed
below.

C8 The operations and the three pairs of variables are
all the same

C7 The operations are different but the three pairs
of variables are the same

C6 The operations and two pairs of variables are the
same. The third pair of variables is different

C5 Two pairs of variables are the same. The operations
and one pair of variables are different.

C4 The operations and one pair of the variables are
the same. The other two pairs of variables are
different

37

C3 One pair of the variables is the same. The operations
and the other two pairs of varia bles are different

C2 THe operations are the same. All three pairs of
variables are different.

CI The operations and all three pairs of variables are
different

The algorithm for allocating data operators can be described as
follows:
1. Trace through the code sequence and mark the crosspoints of
combinable operators with the category number and non-combinable
operators with "0" (operators used simultaneously).
2. Collect crosspoints of category 8. Use the cp-algorithm to reduce
ta ble G and table C8.
3. Having reduced the table C8, table G together with the subtables
of categories 7, 6, 5, 4, 3, 2, and] are reduced one by one.

8.3.2.Example

Let each opera tion in Ta ble 4 be assigned to a specific name. An
assignment is given in Table 5. Using the code sequence and
operator assignment, the compatible table G is shown in Table 6.
The integer in the matrix identifies the category of the pair.

TABLE 5 Operator identifiers

2 3 4 5 6 7 8

The crosspoints of category 6 in G is retrieved to form the
subtable C6. C6 only consists of one pair; it is (1,5). The original
table G and the subtable C6 are reduced. The variables I and 5 are
combined. In the reduced table the categories of the pairs (1,3) and
(l,8) are updated to 3 and 5 respectively. The reduction procedure
is continued until the tables becomes empty. The data operators
are finally grouped into three clusters. They are: (l,3,5,8) ,
(2,4,7), and (6).

38

TABLE 6. Compatible pairs categories

C5 OP 1 2 3 4 5 6 7 8

C6 OP 1 2 3 4 5 678

1 6
2
2
4
5
6
7
8

G op 1 2 3 4 5 6 7 8

1 1 1 4 611 3
2 3 113 1
2 3 313 3
4 3 1
5 1 5
6 3 1
7
8

clique = 1 5

G op 1 2 3 4 5 6 7 8

1 1 3 4 1 1 5
2 3 1 1 3 1
2 3 3 1 3 3
4 3 1
5 1 5
6 3 1
7
8

clique = I 8
clique = 5 8

1
2
2
4
5
6
7
8

5

5

This procedure has to be continued until category CI has been
partitioned.

Total result:
clique = 1 3
clique = 2 4
clique = 6

5 8
7

(forms ALUI)
(forms ALU2)

(forms ALU3)

8.4.Allocation of interconnection units

The procedure to reduce the amount of interconnection units
involves two steps:
- alignment of operands
- allocation of interconnection units.

An operation may be either commutative or noncommutative. For
commutative operations the position of the two operands can be
flipped, in order to save multiplexers. Alignment of operands
decreases the number of interconnection units.
Interconnection variables which are never used simultaneously can
be grouped together to form buses. The goal is to group the
interconnection variables into the minimum number of clusters. The
problem is again formulated into the clique-partitioning problem.

39

Trying to reduce the number of multiplexers and demultiplexers,
during optimization interconnection variables with the same source
and variables with the same destination have a higher priority to
be combined then other interconnection variables.
There is no profit in combining two interconnection variables which
originate from different sources and connect to different sinks,
since this will introduce more multiplexers. On the other hand, it is
generally beneficial to group those interconnection varia bles which
origina te from the same source or connect to the same sink to
share a common bus. The details of the formula tion are given
below.
A lifetime trace is constructed. Then the code sequence is traced
through. The columns of variables are compared two by two. If in a
time interval two interconnection variables are used simultaneously
the crosspoint formed by these two variables is set to "0", else it
is set to "1". Those interconnection variables which are associated
with the same source, even when they are used concurrently, can
still share a common interconnection. Therefore, when the compa­
tible ta ble is constructed, these crosspoints can be set to "I fl.

Crosspoints combining variables with the same source or connect to
the same sink, are marked with "2". Then the cp-algorithm is
applied.
If more than one bus is connected to a single input port, a
multiplexer in front of the input port must be inserted.

8A.I.Example

The example is based on the code sequence in Table 5 and the
ALUs allocated in section 8.3. Inspecting the operands of the

I operations associated with ALU2, it is found that the positions of
the two operands of the statement "RI = R5 AND R3" can be
flipped to the form of "R I = R3 AND R5". Using the indices in
Table 7 the compatible table (G) in Table 8 is constructed.

Table 7. Indices of interconnection variables

source
RI
RI
R2
R3
R3
R4
R5
R5
R6
RIO
Rl2
ALU 1.0ut
ALUI.Out
ALU2.0ut
ALU2.0ut
ALU2.0ut
ALU3.0ut

destination
RI2

ALUI.Inl
AL U I.In2
ALUI.Inl
ALU2.In 1
ALU2.In2
AL U2.In2
ALU3.In2
AL U I.In2
ALU3.Inl
ALUI.Inl

R2
R3
RI
R3
R5
RIO

index
I
2
3
4
5
6
7
8
9
10
II
12
13
14
15
16
17

40

Table 8.Compatible interconnection pairs

INT 1 2 3 4 567 8 9 10 11 12 13 14 15 16 17

1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1
3 1 1 2 1
4 2 1 1 1 2 1 1 1 1
5 1
6 2 1 1 1 1 1 1 1 1
7 2 1 1 1
8 1 1 1 1 1
9 1 1 1 1 1 1

10 1 1 1 1
11 1 1 1 1
12 1
13 1 2 1 1
14 2 2 1
15 1
16 1
17

In Table 8 those crosspoints of compatible interconnection variables
with the same source or the same sink are marked with a "2". In
version 2 of the cp-program this will give them a higher priority.
So nodes 14 and 16 are combined. We obtain the following clusters:

clique = 13 14 15 16
clique = I 2 4 II
clique = 6 7 8
clique = 3 9
clique = 5
clique = 10
clique = 12
clique = 17

(forms MUXI)
(forms MUX2)

(forms MUX3)
(forms MUX4)

Now the complete processing unit can be drawn.
Figure 6.3.1 shows the completed allocation of the data part.

41

'..

Fig. 8.4.1. Data processing unit of the example

8.5.lmplemen ta tion

As indicated in the first section, the input to the synthesis is a
value trace.
For the operator allocation only the cp-algorithm can be used:
composing the special subtables C8 ..CI has to be done by hand.
For the interconnection alloca tion alignment has to be done by
hand. Also creating the matrix containing the compatible pairs
(crosspoints) has to be done by hand. Then the cp-algorithm can be
applied.
Sometimes a lot of clusters (cliques) are generated. It is difficult to
supply rules for picking out the minimum covering set. The problem
can be compared to the covering problems of maximum compatibles
in state minimization strategies. This could be a point of research.

At the Carnegie Mellon University a similar system called "Emerald"
has been developed. More of the traject has been implemented, but
for the clique-partitioning problem an other algorithm has been
used, which is a lot slower than the algorithm used in this report,
see [8].
In the next examples, when finding more clusters then desired, a
set is picked out applying two rules:
- if an node only can be found in one clique, always pick this
clique.
- try to find clusters that cover other (smaller) clusters.

42

8.6.Example. Implementation of the abc formula

To demonstrate the possibilities of the synthesis method the abc
formula is implemented in hardware.

Formula:
xl = (-b + sqrt(b2-4ac))/2a
x2 = (-b - sqrt(b2-4ac))/2a

In RTL there are many ways to describe this formula. We give two
possible methods. The first method tries to reduce the number of
ALUs, the second method tries to perform as many concurrent
statements as possible.
Let us describe the algorithm in RTL without taking care of the
number of registers. Every time we think we need a new register
we use it, without trying to be too smart to save registers, since
the reduction of the number of registers is the task of the cp­
algorithm.

Code sequence I:

l.E=4*A
2. F = E * C
3. G = B
4. H = B * G
5. D = H - F
6. I = SQRT(D)
7. K = 2 * A
8. L = I . B
9. M = -I
10. N = M - B
II.O=L/K
12. P = N /K

Code sequence 2:

l.E=4*C;G=B
2. F = E * C ; H = B * G
3. D = H - F
4. I = SQRT(D) ; K = 2 * A
5. L = I - B ; M = -I
6. N = M - B ; 0 = L / K
7. P = N / K

We now use the cp-algorithm to reduce the number of registers in
both sequences.
The trace table and the other tables produced during the session
can be found in Appendix B.
After reduction with the cp-program we find:

Reduced code sequence I:

l.E=C*4
2. E = C * E
3. C = B
4. C = C * B
5. C = C - E
6. C = SQR T(C)
7. A = 2 * A
8. E = C - B
9. C = -C
10. C = C - B
II.B=E/A
12. C = C / A

43

Reduced code sequence 2:

I.E=4*A;F=B
2. E = E * C ; C = B * F
3. C = C - E
4. A = SQRT(C) ; C = 2 * A
5. F = A - B ; A =-A
6. B = A - B ; A = F / C
7. B = B / C

2 13
f--------,

I

"'10'11,1
2

1

MUXI

3

7

~--r---7\ 0
~------r---?\ 1

8 2I: MUX2

Fig. 8.6.1.a Processing unit of code sequence 1.

ALU:
CODE:

* /
2

SQRT
3

+
4 5 6

transparent
o

.-----~

T LOAD MUXI MUX2 ALU Istruction
ABCE X 2X 1 Y2Y1 Z3Z 2Z 1

I o 0 0 I 0 I I I o 0 I E=C*4
2 o 0 0 I 0 I I 0 o 0 I E=C*E
3 o 0 I 0 I 0 XX o 0 0 C=B
4 o 0 I 0 0 I o 0 o 0 I C=C*B
5 o 0 I 0 0 I I 0 I 0 I C = C - E
6 0 010 o I XX o I I C = SQRT(C)
7 I 000 o 0 o I o 0 I A=2*A
8 0 o 0 I o I o 0 I 0 I E = C - B
9 0 010 o I XX I I 0 C =-C
10 0 o I 0 o I o 0 I 0 I C = C - B
I I 0 100 I I o I o I 0 B=E/A
12 0 010 o I o I o I 0 C=C/A

Fig. 8.6.1.b Control table of code sequence 1.

44

Fig. 8.6.2 Processing unit of code sequence 2.

This is an example of a typical space-time tradeoff in the imple­
mentation of digital systems: the faster implementation requires
more components and, therefore, occupies a larger space.

8. 7.Concl usion

The suggested method for minimization of registers, operators and
interconnection units out of a code sequence has been proven to
deliver nice results. The whole traject could be automated. In this
report only the clique-partitioning problem has been translated to
an algorithm in the C-Ianguage (see Appendix A). The cp-algorithm
can be used to find clusters containing maximum compatible
registers, operators or interconnection units very fast. Sometimes it
is hard to find the minimum covering set.

45

9.IMPLEMENTATION OF HIGH LEVEL ALGORITHMS

9.I.Methods

Until now we have seen implementa tions of algorithms described in
RTL.
Now we want to implement algorithms described in a higher level
programming language.
To break down an algorithm into blocks that can be implemented
by structures from a library we can use two methods.
The first method uses a 'normal' compiler. The code obtained is a
kind of assembly, but with typical RTL instructions.
The second method searches for conditional blocks, in order to
implement each block as a state machine.

9.I.I.METHOD I
I. input and output variables obtain their own register.
2. the program must be compiled. Conditional statements, like
'for','while', 'if then else', and 'case' must all be translated to
RTL branch instructions.
3. Optimize registers, ALUs, datapaths, and states.

9.I.2.METHOD 2
I. input and output variables obtain their own register.
2. search for the following conditional statements:

for
if
while
case

3. These sta tements form special blocks which must be implemented
as a unit. Some of them can be combined. To do so we must
examine the variables inside the blocks. Two blocks containing
the same variables cannot be implemented as parallel blocks. They
must be evaluated sequentially. The advantage is that the
hardware for implementing the first block can also be used by the
second since the conditional statements consume quiet a lot of
chip area.
Two blocks tha t do not contain the same variables can be proces­
sed in parallel.
As usual velocity and chip area can be exchanged.

4. When the units have been chosen, further optimization of the
blocks can take place.
5. Optimize registers, ALUs, datapaths, and states.

If we want to use method 2, we need special hardware implemen­
ta ble blocks to perform the conditional statements. In chapter 4 we
have already seen a general description of such a statement
implementa tion.

46

9.2.Examples

We now give some simple algorithms and their implementation in
hardware. The results of the cp-algorithm used for minimization can
be found in Appendix B.

9.2.I.Example I. A receiver for serial reception of packages with
variable length.

We want to design a receiver for packages of 8, 7, 6, or 5 bits.
The receiver must be set in the right mode in advance.
The packages are transmitted in a serial way, LSB first.
After reception, the package must be available in parallel form. If
the package is smaller than 8 bits, the rest of the receiving
register is filled with O's.

The following algorithm describes the function:

• Algorithm

int size;
int reg[8];
in t i;

input size;

1* size of a package • /
1* register for serial in; parallel out· /

for (i= size; I > 0; i--)
{

reg» 1; 1* shift ./
reg[7] = data;

};
for (i= 8 - size; i > 0; i --)

{

};

reg » 1;
reg[7] = 0;

1* shift ./

When we use method I we obtain the following RTL:

1. size = input
2. i = size
3. shift(reg); reg[7] = data; decr(i);
4. if (i == 0) continue else -> 3
5. i = 8 - size
6. shift(reg); reg[7] = 0; decr(i);
7. if (i == 0) continue else -> 6

In Appendix B more about the results obtained during the design
process can be found. Figure 9.2.1.1 shows the final result.
Remark: Filling the register with zeros this way could lead to loss
of channel capacity, unless special clocking is used.

47

shift

S6

S3

o doto

QV C S6SSS4 SgS2 SlSO Y2YI YO C
o I 0 1

a I I 0 0 o 0 0 0 0 I o 0 1
1 2 2 0 0 1 o 0 1 0 1 1 o I 1
2 3 3 0 I I 0 o 1 1 0 1 0 010
3 4 4 I I 0 0 0 1 0 1 0 0 100
4 3 5 0 I 0 0 1 o 0 0 1 0 1 0 1
5 6 6 0 I 1 o 0 I o 1 I 1 1 1 1 1
6 7 7 I o 0 0 1 1 1 1 1 0 1 1 0
7 6 2 Q'" 0 I 0 0 1 I 0 1 1 1 o 1 1

Presen t Next

So 0)'1 Y,
SO

S, ~)', s,

S1 :: 'i-'/, 'r. ~YlY,r s.
~, ~ Y.... YlY, 3.

5, , I ~"
~5 = I Sf

5' :it 'I,y.... r.l:t. s'"
'---+--+--+--1"\)-......

'.---' ~
! I

~i
t--t---+--L ../1 I

I

Fig. 9.2.1.1. Implementation of Alg.1 using method 1 (a) data unit
(b) state table (c) controller

48

Examining the algorithm one finds that the for loops cannot be
evaluated parallel, but that the structure is similar. This means that
the same piece of hardware can be used for these loops.
We also need a register to store the size and a register to store
the received bits.

Using method 2 we obtain the following implementation:
First we translate the program to RTL:

1. size = input
2. i = size
3. enable forI
4. i = 8 - size
5. enable for2

Then we generate the hardware:

S3

$1

$2 $4

elk

o

Fig. 9.2.1.2.(a) Implementation of Alg.1 using method 2 data unit

49

QV Ready Control
J U

0 I I So
I 2 2 Sl
2 3 2 S2
3 4 4 S3
4 1 4 Qv+l S4

D

so
D Q DECODE

Sl
COMB. sO'

S3
D Q S4

reody
Frs

Fig. 9.2.J.2.(b) Implementation of AIg.I using method 2
sta te table and con troller

Of course this is not the only algorithm to describe the controller.
The algorithm determines a great part of what the hardware will
look like .

• Algorithm 2

int size;
size = input;

for (i=8; i>O;i--)
{

reg[O] = reg[I]; reg[I] = reg[2]; reg[2] = reg[3];
reg[3] = reg[4];

switch (size) {
case 5 : reg[4] = data; reg[5] = reg[6]; reg[6] = reg[7];

reg[7] = 0;
case 6 : reg[4] = reg[5]; reg[5] = data; reg[6] = reg[7];

reg[7] = 0;
case 7 : reg[4] = reg[5]; reg[5] = regI6]; reg[6] = data;

reg[7] = 0;
case 8 : reg[4] = reg[5]; reg[5] = reg[6]; reg[6] = reg[7];

reg[7]=data;
};

};

Using method 1 we obtain this RTL:

1. size = input; i= 8;
2. reg[O] = reg[l]; reg[l] = reg[2]; reg[2] = reg[3]; reg[3] = reg[4];

switch(size) {
case 5 : reg[4] = data; reg[5] = reg[6]; reg[6] = reg[7]; reg[7] = 0;
case 6 : regI4] = reg[5]; reg[5] = data; regI6] = reg[7]; reg[7] = 0;
case 7 : regI4] = reg[5]; reg[5] = regI6]; regI6] = data; reg[7] = 0;
case 8 : reg[4] = reg[5]; reg[5] = reg[6]; reg[6] = reg[7];reg[7]
=data;

}; decr(i);
3. if c continue else -> 2;

50

SO
SI
S2
S3
S4
S5
S6
S7

3

D Q

r---
CD~B

D Q DECODE -
- -
~

~ -
D Q -

/

C
Size

FFs

Q'I C 5ize Control
0 1

0 1 1 x x x x
1 2 2 x x x x 50
2 3 3 0 1 0 1 534 51
2 3 3 0 1 1 0 533 51
2 3 3 0 1 1 1 532 51
2 3 3 1 0 0 0 531 51
3 2 0 x x x x 57

Fig. 9.2.1.3.(a) Alg.2; control unit and state table.

so

size

SO
SI

deer

S2
o

doto 0

Fig. 9.2.1.3.(b) Implementation of Alg.2 using method 1; data unit.

51

9.2.2.Example 2. Video controller

The next example is a video controller. This controller must be able
to load a video ram memory and then supply the bit patterns of
the lines to be displayed on screen. We could describe the display
process by the following algorithm:

Algorithm video

#define N 35 /* number of characters */
char video[80][25]; 1* RAM */
int disp[8][N] 1* ROM, contains bit patterns characters */

for(x=O; x<=24; x++)
for(z=O; z<=7; z++)

for(y=O; y<=80; y++)
out = disp[video[x][y]][z]; 1* points to bit in ROM */

Using method I the RTL can be compiled out of the algorithm.

RTL:

e: x==25
d: z="'=8
c: y==81

j* conditions */

I. x = 0;
2. z= 0;
3. y = 0;
4. out = disp[video[x][y]][z]; incr(y);
5. if c incr(z) else -> 4;
6. if d incr(x) else -> 3;
7. if e continue else -> 2;

Q"'" Control

Q'"
C D E C I D E

0 1 0 1 0 1 o I 1 I 0 I 1 011
0 1 1 1 1 1 1
1 2 2 2 2 2 2 50
2 3 3 3 3 3 3 54
3 4 4 4 4 4 4 52
4 5 5 5 5 5 5 5- 5.,
5 4 6 - - - - 15 l; r
6 - - 3 7 - - ! I 51
7 - - - - 2 0

Fig.9.2.2.l.a State table Alg. video method I.

52

elK

so reset 0 reset 0 reset 0, S2 S4

Sl
Incr X Incr Y Incr Z

S3 S5

Ay I
5

5 3

~
7

I "
-;.. t" I

~ S7

1<' n I
vldeo[x][y)

~y RAM write ROM
/\ 12

111
elK

FFs

Conirol READ

DECODE

SO
Sl
S2
S3
S4

S5
S6

COMB

~c

.,----3;0
:: t- --¥ ---.J

FFs

Conirol \oIRITE

,------, T1

T2
DECODE

Fig.9.2.2.Lb Implementation of Alg. video using method L
Here incremental registers are used

53

Using method 2 we obtain the following R TL after compilation:

RTL:
Controller 1
1 enable for2
2. if e continue else ->

For2
1 enable for3
2. if d continue else -> 1

For3
1. out = disp[video[x][y]][z]; incr(y);
2. if c continue else -> 1

For 2 For 3

UT

e

ClK

l
I

II
V v V

eno.ble eno.ble eno.ble eno.bl~ eno.ble
process for process

for
process

next next next ~ 1c~c~-Ie done done

xi y1 zt
eno.bl

video[x][y]
/ "-

r-L-
./ diSplo.y 0

8
~

D Q~RAM RON
ClK

Fig.9.2.2.2. lmplementation of Alg. video using method 2.

The two examples show that when using method 2, a need for
synchronization arises.

54

9.3.Parallel processing

Until now we have seen systems to be implemented by one data
path and one control unit. But we have seen in chapter 3 that it is
possible to have more than one process. How to implement systems
with processes running in parallel?
Figure 9.3.1 shows methods. Each process is implemented as a
subsystem consisting of a data path and a control unit.
Communication and synchronization has to be done by the control
units. One possibility is to have one main controller controlling the
others; an other way is to have a control bus with a protocol for
communica tion among the controllers.
The data paths are also connected by a bus. In this way data can
be transported from one subsystem to another. "Expensive" units
like multipliers and dividers can be shared by processes (if it is
possible to arrange that two or more processes do not need such a
unit at the same time).

ARBITER

Fig. 9.3.1. (a) Implementation of parallel processes with arbiter

cootrol
,I

Fig. 9.3.1. (b) Implementation of parallel processes with control
bus

It is beyond the goal of this report to work this out further.

55

9.4.Communica tion and synchronization

Consider an algorithm with multiple procedures or multiple
procedure calls.
Since every procedure will be implemented as a finite state machine
some kind of communication has to take place since the whole
system consists of linked state machines.
Suppose we use vectors to start and stop processes. The processes
can be protected by semaphores.
We now can distinguish two sorts of implementations;

I. alternately performing state machines
2. parallel performing state machines

9.4.I.Alternately performing state machines
The arbiter implements the main program.
State machine B implements a special procedure.
When running the main program the special procedure has to be
started. State machine A will send a start vector to state machine
B. State machine B needs the operands and will open the input
ports. After ha ving executed the procedure sta te machine B will
send a "done vector". Now state machine A will open the input
ports for reading the result.
Using this method means that state machine A will not run when
state machine B is running and vice versa.
Advantage is that synchronization is easy to implement. Disadvan­
tage is the waste of time.

9.4.2.Parallel performing sta te machines

See Figure 9.4.2. State machine A represents the main program.
State machine B implements a special procedure.
When running the main program the special procedure has to be
started. State machine A will send a start vector to sta te machine
B. State machine B needs the operands and will open the input
ports. After having executed the procedure state machine B will
send a "done vector". Now state machine A will open the input
ports for reading the result.

control

Fig.9.4.2. parallel performing sta te machines

56

Using this method means that state machine A will run when state
machine B is running and vice versa. Only at specific times when A
needs the results of B or vice versa the state machines will wait
until the "done vector" from the other has been received. So
sometimes the performance will be the same as by using method 1.
On the other hand state machine A now can start multiple
procedures. So a same problem implemented with this method could
be solved much faster.
Disadvantage of this method is that synchronization is difficult to
implement and the danger for deadlock. Advantage is the fast
operation because processes can run in parallel.

9.4.3.Communica tion with the environment

Since a digital system has its own system clock, special technics
must be used to communica te with other systems. There are many
methods to synchronize two systems, but we only give one at this
place. It is the handshaking protocol. Figure 9.4.3 shows the signals
and timing. More about this protocol can be found in the literature.

Environment System

Data accepted-;-----

Data ready --t--_o~

Data --+----.-

Fig. 9.4.3 Handshaking protocol

11
Data--~\

Data accepted (SLAVE)

See also the master thesis report of E.J. van Dort, Digital Systems
Group, TUE. In this report more about parallel processing and
timing can be found.

57

IO.CONCLUSIONS

The top-down approach for designing digital systems as used by the
Digital Systems Group of the EUT has been the basis for
investigating possibilities for automatic implementation of algorithms
into hardware. This approach relies on seeing a digital system as a
control part and a processing part.

Some modules have been proposed to implement statements of
algorithms written in a register transfer language. Also modules for
implementing higher level statements like 'iLthen..else' and 'for­
loops' have been introduced.
An algorithm for clique-partitioning has been written to help to
minimize registers, operators, and interconnection in the processing
unit. This algorithm has shown nice results in examples. Only the
covering problem is a point of further study.

It has been shown that an algorithm written in a RTL, can directly
be implemented in hardware.

Timing and clocking is still a problem.

So the main object for further research will be a compiler, to
transform a high-level description into an RT description.

58

LITERATURE

[I] Davio, M.
Digital systems with algorithm implementation.
Wiley-Interscience, 1983. - XVII, 505 p.
Electro-bibl. : LLP 83 DA V

[2] Ercegovac, Milos Draguin
Digital systems and hardware/firmware algorithms.
Chichester: Wiley, 1985. - XIX, 838 p. - ISBN 0-471-8­
8393-X
Electro-bibl. : LLP 85 ERC

[3] Even, S.
Graph algorithms.
Computer Science Press, 1979. - IX, 249 p.
(Computer software engineering series)
Electro-bibl. : CHK 79 EVE

[4] Christofides, N.
Graph theory: an algorithmic approach.
Academic Press, 1975 (Computer science and applied mathem­
atics)
Rekencentrum bibl. : CHK 75 CHR

[5] Balakrishnan, M. et al.
Allocation of multiport memories in data path synthesis
IEEE Trans. CAD, Vol. CAD-7(1988), No.4, p536-540

[6] Hill, F.J. and Peterson, G.R.
Digital systems: hardware organization and design
John Wiley & Sons, New York, 1973.

[7] Hafer, L.J. and Parker, A.C.
Automated synthesis of digital hardware.
IEEE Trans. Compu ters, Vol. C-31 (1982), No.2, p.93-1 09.

[8] Chia-Jeng Tseng and Siewiorek, D.P.
Automated synthesis of data paths in digital systems.
IEEE Trans. CAD, Vol. CAD-5(1986), No.3, p.379-395.

[9] Nagle, A.W. et al.
Synthesis of hardware for the control of digital systems.
IEEE Trans. CAD, Vol. CAD-I(l982), No.4, p.201-212.

[10] Tricky, H.
Flamel: a high-level hardware compiler
IEEE Trans. CAD, Vol. CAD-6(l987), No.2, p.259-269.

[II] Bron, C. and Kerbosch, J.
Algorithm 457: Finding all cliques of an undirected graph.
Comm. ACM, Vol. 16(1973), No.9, p.575-577.

59

[12] Hafer, L.J. and Parker, A.C.
A formal method for the specification, analysis, and design of
register transfer level digital logic.
IEEE Trans. CAD, Vol. CAD-2(1983), No. l, p.4-I7.

[l3] Thomas, D.E. and Nestor, J.A.
Defining and implementing a multilevel design representation
with simulation applications.
IEEE Trans. CAD, Vol. CAD-2(1983), No.3, p.135-144.

[l4] Shin, K.G. and Ramanathan, P.
Clock synchronization of a large multiprocessor system in the
presence of malicious fa ults.
IEEE Trans. Computers, Vol. C-36(1987), No. l, p.2-l2.

[l5] Kanakia, H.R. and Tobagi, F.A.
On distributed computations with limited reSOurces.
IEEE Trans. computers, Vol. C-36(J 987), No.5, p.517-528

[l6] Jahanian, F. and Mok, A.K.-L.
A graph-theoretic approach for timing analysis and its
implementation.
IEEE Trans. computers, Vol. C-36(J987), No.8, p.96l-975.

[17] G ran ski, M. eta I.
The effect of operation scheduling on the performance of a
data flow computer.
IEEE Trans. computers, Vol. C-36(l987), No.9, p.IOI9-I029.

[18] Zurawski, J.H.P. and Gosling, J.B.
Design of a high speed square root multiply and divide unit.
IEEE Tra ns. computers, Vol. C-36(l987), No. l, p. 13-23.

[l9] Hill, F.J. et al.
Hardware compilation from an RTL to a storage logic array
target.
IEEE Trans. CAD, Vol. CAD-3(J984), No.3, p.208-2J7.

[20] Hirayama, M.
A silicon compiler system based on asynchronous architecture.
IEEE Trans. CAD, Vol. CAD-6(J 987), No.3, p.297-304.

60

[21] Nakamura, Y.
An integrated logic design environment based on behavioral
description.
IEEE Trans. CAD, Vol. CAD-6(l987), No.3, p.322-336.

[22] Hartenstein, R.W.
Fundamentals of structured hardware design; a design
language approach at register transfer level.
North-Holland, Amsterdam, 1977.

[23] Dort, E.J. van,
master thesis report:Description and implementation of digital
systems.

61

APPENDIX A

Clique partitioning algorithm

A maximal complete subgraph (clique) is a complete subgraph that
is not contained in any other complete subgraph.
In this backtracking algorithm a branch-and-bound technique has
been used to cut off branches that cannot lead to a clique. It has
been based on the procedure "extend" of algorithm 457 [II).

Version 1.0

The input is expected to be a file which must be calIed 'cliq.in'.
The forma tis:

[number of variables] [number of time slots]
[Oil] [all] etc 1* the number of columns must be equal to the number

*1
[Oil] [Oil] etc 1* of variables. column I for variable I
[all] [Oil] etc 1* the number of rows must be equal to the number of

*1
[Oil] [Oil] etc 1* of time slots, row I = time 1. *1
-I

a 'I' in the matrix is used to indicate that the variable is 'live' at
this point of time.
a '0' in the matrix is used to indicate that the variable is 'dead' at
this point of time.

Example:
4 5
100 I
I I 0 I
I I I 0
I I I 0
a I I 0

-I

#define N 20
#define CE 20
#include <stdio.h>
FILE *cliqin, *cliq;
int c;
int connect[N+I][N+I];
int compsub[N + I],all[N + I];
int tab[N+I][N+I];
int t;

1* 4 variables; 5 time slots *1
1* var I and var 4 are live *1
1* vars 1,2, and 4 are live *1
1* vars 1,2, and 3 are live *1
1*
1* vars 2 and 3 are live

1* end of file *1

*1
*1

extend(old,ne,ce) 1* extracts cliques from graph *1
int old[];
int ne,ce;
{

int new[CE+I]; 1* local variables. no need to be *1
int nod,fixp; 1* declared recursively *I
in t newne,newce,i,j,cou n t,pos,p,s,sel,mi n nod;
int loc;
minnod=ce;
nod = 0;

for (i=I;(i<= ce)&& (minnod !=O);i++)
{ 1* determine each counter value and look ·1

p=old[i]; count=O; 1* for minimum
for (j=ne+I;(j <=ce)&& (count < minnod) ;j++)

A-

* I/

if (connect[pHold[j]]==O) 1* count disconnections ./
{coun t++; pos= j;}; 1* sa ve position of poten tia I candida te

./
if (count < minnod) 1* test new minimum • /

{fixp=p; minnod=count;
if (i<=ne) s=pos;
else {s=i; nod=I;}

}; 1* if fixed point initially chosen from ./
}; 1* candidates then number of disconnections·/

1* will be preincreased by one • /
for (nod=minnod + nod;nod>= I;nod··) 1* backtrack cycle • /
{

p=old[s]; old[s]=old[ne+ I]; 1* interchange • /
sel=old[ne+ I]=p;
newne=O; 1* fill new set 'not' • /
for (i=l;i<=ne;i++)

if (connect[seIHold[i]]==I)
{++newne; new[newne]=old[i];};

newce=newne; 1* fill new set 'candidates' • /
for (i=ne+2; i<=ce; i++)

if (connect[seIHold[i]]== I)
{ newce++;new[newce]=old[i];};

c++; compsub[c]=sel; 1* add to compsub • /
if (newce==O)

(
fprintf(cliq,"\n clique=");
for (Ioc= I;loc<=c;loc++)

fprin tf(c1iq,"\t%d ", compsu b[loc]);
}
else

if (newne < newce)
ex tend(new,newne,newce);

s++; 1* look for candidate ./
while (connect[fixp][old[s]]== I) s++;

1* end selection • /
1* end back track cycle • /
1* end extend ./

./

c--",
ne++;
if (nod> I)

{s=ne; 1*

1* remove from compsub
1* add to 'not' • /

select a candidate disconnected to the fixed point

./

subgraph(m)
int m;
(

for (c=l;c<=m;c++)
all[c]=c;

c=O;
extend(a II,O,m);

}

A - 2

output(m) 1* writes array connect */
int m;
{
in t I,n;
fprintf(cliq,"\n\n CONNECT \n\n");
for (l=I;I<=m;I++)

{fpr in tf(cl iq,"\n");
for(n= I;n<=m;n++)

fpr in tf(cl iq,"%2d",con nect[1][n]);
}

}

intrace(m,t) 1* reads the value trace table */
int m;
{

int k,l;
f or(k=O;k <=t;k++)

(
for (l=I;I<=m;I++)

fsca nf(cl iq in,"%d",& ta b[k][I]);
};

fclose(cliqin);
fprintf(cliq,"\n TRACETABLE \n\n"); 1* print tracetable */
for (k=O;k<=t;k++)

{
for (l=I;I<=m;I++)

fprin tf(cl iq,"%2d", ta b[k][1]);
fpri n tf(cl iq,"\n ");

};
}

comptrace(m,t)
int m,t;

1* checks which variables can be combined */

int camp;
int i,j,k;
for (i=l; i<m ;i++)

{
connect[i][i] = I;
for (j=i + I ;j<=m;j++)

{ comp=l;
k=O;
while «k<=t) && (comp== I»

{
if (tab[k][i] && tab[k][j])

if (tab[k+I][i] && tab[k+I][j])
comp=O;

k++;
};

can n ect[i][j]=con nect[j][i]=comp;
};

};
connect[m][m]= I;

}

A - 3

mainO
(
int m,t;
cliqin = fopen(" c liq.in"," r ");
fscanf(cliqin, "%d%d",&m,&t);
c1iq = fopen(" c liq.lst"," w");
t+=];
in trace(m, t);
comptrace(m,t);
output(m);
subgraphO;
fclose(cliq);
}

Version 2.0

1* number of variables, timeslots *1

1* of variables. column I for variable]
1* the number of rows must be equal to the number of

This version tries to mInImize the number of cliques produced.
The input is expected to be a file which must be called 'cliq.in'.
The format is:

[number of variables] [number of time slots]
[OIl] [0/]] etc 1* the number of columns must be equal to the number
*1
[0/]] [Oil] etc
[0/]] [0/]] etc
*1
[0/1] [01 I] etc 1* of time slots, row] = time I. *1
[special variable] [special variable] etc.
-I

a '] , in the matrix is used to indicate that the variable is 'live' at
this point of time.
a '0' In the matrix is used to indicate that the varia ble IS 'dead' at
this point of time.

a special variable is the number of a variable which must be combined
to another special variable for optimum's sake. Usually these numbers
are obtained from the G I graph.

Example:
4 5 1* 4 varia bles; 5 time slots *1
I 0 0] 1* var I and var 4 are live *1
I] 0] 1* vars] ,2, and 4 are Ii ve *1
I 1 I 0 1* vars] ,2, and 3 are live *1
] 1] 0 1* *1
0]] 0 1* vars 2 and 3 are live *1
2 3 1* if possible var 2 and var 3 must be combined *1
-] 1* end of file *1

A - 4

#define N 20
#define CE 20
#include <stdio.h>
FILE ·cliqin, ·cliq;

int
int
int
int
int
int
int

c;
connect[N+ I][N+ I];
conmain[N+ I][N+l];

compsub[N+ I],all[N+ I];
tab[N+I][N+I];
t;
spec2[N+I];

extend(old,ne,ce) r extracts cliques from graph ./
int old[];
int ne,ce;
{

int new[CE+ I]; r local variables. no need to be • /
int nod,fixp; r declared recursively • /
in t newne,newce,i,j,coun t,pos,p,s,sel,minnod;
int loc;
minnod=ce;
nod = 0;

for (i=I;(i<= ce)&& (minnod !=O);i++)
{ r determine each counter value and look • /

p=old[i]; count=O; r for minimum • /
for (j=ne+ I;(j <=ce)&& (count < minnod) ;j++)

if (connect[p][old[j]]==O) r count disconnections • /
{count++; pos=j;}; r save position of potential candidate

./
if (count < minnod) r test new minimum • /

{fixp=p; minnod=count;
if (i<=ne) s=pos;
else {s=i; nod=I;}

}; r if fixed point initially chosen from • /
}; r candidates then number of disconnections·/

r will be preincreased by one • /
for (nod=minnod + nod;nod>= I;nod--) r backtrack cycle • /
{

p=old[s]; old[s]=old[ne+ I]; r interchange • /
sel=old[ne+ I]=p;
newne=O; r fill new set 'not' • /
for (i= I ;i<=ne;i++)

if (connect[sel][old[i]]== I)
{++newne; new[newne]=old[i];};

newce=newne; r fill new set 'candidates' ./
for (i=ne+2; i<=ce; i++)

if (connect[sel][old[i]]== I)
{ newce++;new[newce]=old[i);};
c++; compsub[c]=sel; r add to compsub ./

A - 5

s++; 1* look for candidate */
while (connect[fixp][old[s]]== I) s++;

} 1* end selection */
1* end backtrack cycle */

} 1* end extend */

*/

1* NEW in this version • /
1* record used cliques • /

1* remove from compsub
1* add to 'not' */

select a candidate disconnected to the fixed point

c--',
ne++;
if (nod> I)

{s=ne; 1*

if (newce==O)
{

fprintf(cliq,"\n clique=");
for (Ioc=I;loc<=c;loc++)

{i f (c != I)
spec2[compsub[loc]] = I;

fprin tf(cliq,"\ t%d", compsu b[loc]);
};
}

else
if (newne < newce)

ex tend(new,newne,newce);

*/

subgraph(m)
int m;
{

for (c=l;c<=m;c++)
alI[c]=c;

c=O;
ex tend(all,O,m);

}

1* fill all */

1* call extend */

output(m) 1* writes array connect */
int m;
{
int I,n;
fprintf(cliq,"\n\n CONNECT \n\n");
for (I=I;I<=m;I++)

{fprin tf(cl iq,"\n ");
for(n= I;n<=m;n++)

fpri n t f(cl iq, "%2d ",con nect[l][n]);
};

A - 6

intrace(m,t) 1* reads the value trace table */
int m;
(

int k,l;
f or(k=O;k<=t;k++)

(for (I=l;l<=m;I++)
fscan f(cl iqi n,"%d ",& ta b[k][1]);

};
fprintf(cliq,"\n TRACETABLE \n\n"); 1* print tracetable */
for (k=O;k<=t;k++)

(for (I=I;I<=m;I++)
f pr in tf(cl iq,"%2d ", ta b[k][l]);

f pr in tf(cliq,"\n ");
};

}
comptrace(m,t) 1* checks which variables can be combined */
int m,t;
{ nt comp;

int i,j,k;
for (i=l; i<m ;i++)

{
conmain[i][i] = 1;
for (j=i+l;j<=m;j++)

{ comp=l;
k=O;
while «k<=t) && (comp==l))

{
1* conditions for compatibility

*/
sw i tch(ta b[k][i])

case 0
case 1

: comp = 1; break;
: switch(tab[k][j])
{

case 0
case 1
case 2

comp = I; break;
comp = 0; break;
if «k+l<=t) && (tab[k+l][i]==O))

comp = 1;
else {comp = 0;printf("YES2");};
break;

}; break;
case 2 : switch(tab[k][j])

{ case 0 : comp = 1; break;
case I : if «k+l<=t) && (tab[k+l][j]==O))

comp = 1;
else comp = 0; break;

ease 2 comp = O;break;
}; break;

}; k++;
}; 1* end while */

con rna in[i][j]=con rna in [j][i]=comp;
}; 1* end for J */

}; 1* end for */
conmain[m][m]= 1;

}

A - 7

mainO
(
int m,t;
in t k,l;
int g,spec[N+1];

cliqin = fopen(" c liq.in"," r");
fscanf(cliqin, "%d%d",&m,&t);

c1iq = fopen("cliq.lst"," w");
t+=I;

/* number of variables, timeslots */

1* reset spec2 */
1* calculate reduced cliques */

intrace(m,t);
comptrace(m,t);

for(k= 1;k<=m;k++)
for(l= 1;1<=m;I++)

connect[k][1]=conma in [k][I];
output(m);
subgraph(m); 1* calculate all cliques */

fsca nf(cliqin,"%d",&g);
while (g != -1)
(

printf("\t %d",g);
spec[g]= 1;
fsca n f(c1iq in,"%d ",&g);

};
for(k= 1;k<=m;k++)

{
for (l=I;l<=m;I++) 1* remove all edges not connected */

if (spec[l] != I) /* to the special nodes */
connect[k][l] = connect[l][k] = 0;

connect[k][k] = 1;
};

output(m);
for(k= I;k<=m;k++)

spec2[k] = 0;
subgraph(m);

for (k= l;k <=m;k ++)
printf(" \t %d%",spec2[k]);

for (k=l;k<=m;k++)
for (1= I;1<=m;I++)

con nect[k][1]=conma in[k][I];
for (k=l;k<=m;k++)

{for (I=I;I<=m;I++)
if (spec2[l] == I)

connect[k][l] = connect[l][k] o·,
};

output(m);
subgraph(m);
fc10se(cliq);
fclose(cliqin);
}

1* cliques after reduction */

A - 8

• Example ABC formula sequence 1

stepl.Numbering the variables:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ABC D E F G H I K L M N 0 P

TRACETABLE

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

CONNECT

1 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 1 1 0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 1 1 1 1 1 1 1
0 0 1 1 1 0 1 1 1 1 1 1 1 1 1
0 0 1 1 1 0 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 0 0 1 1 1 1
1 0 1 1 1 1 1 1 0 1 0 0 0 0 1
1 0 1 1 1 1 1 1 0 0 1 0 0 1 1
1 0 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 0 1
1 1 1 1 1 1 1 1 1 0 1 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
clique= 15 4 3 7 8 9 12 13 "
clique= 15 4 3 7 8 10
clique= 15 4 3 7 8 11
clique= 15 4 3 6 9 12 13
clique= 15 4 3 6 10
cliaue= 15 4 3 6 11
cliciue= 15 4 5 7 8 9 12 13
clique= 15 4 5 7 8 10
clique= 15 4 5 7 8 11
clique= 15 4 5 6 9 12 13
clique= 15 4 5 6 10
cl ique= 15 4 5 6 11
clique= 15 2 13
clique= 15 1 12 13
clique= 15 1 11
clique= 15 1 10
clique= 14 4 3 7 8 9 12
clique= 14 4 3 7 8 11
clique= 14 4 3 6 9 12
clique= 14 4 3 6 11
clique= 14 4 5 7 8 9 12
clique= 14 4 5 7 8 11
clique= 14 4 5 6 9 12
clique= 14 4 5 6 11
clique= 14 2
clique= 14 1 11
clique= 14 1 12

B - 1

)..3
)..4

)..c:,

9)..0
)..)..

)..'2-
~

0
?

1.'t-
1.>

~
"/.

"/.
"/.

"/.
"/.

"/."/. "/.

)1::> o-pe1:(3."C.
0

1:
~ o"(\e

_o"(\"(\ec"C.).o"(\

--

)..

'2-

3
6
c:,

1
~

9
)..0
)..)..

)..'2­

)..3

! F- , f i :-"

'I,
,J, 1

I

,1 If I "

, I 1

, ,, '.I , I

I I I ,
, (I I I

(, 1 (I ,I

I , , I , , (

,',

c. 1 1 ~ LI E--.

Ll~qIJe::::

CllqUC'''=

,_ 1] QU>7':;":

C1 1 Ci...le­

L l l ,] '.1 e:::
L 1] Cj:...lt:.J

:'::

~ 1 1 qlle":::;

C] 1 qt,e::­

cl,""p'·o

c. J 1 q ~I t",:::::

cl 1 q'.';o::-­

'-- :] .:.J, '_' ':-- ,

1
j

1
, I 1

1

,oj

6

,~,

c-

1 1
1 j

1 ~

//

to ':, 1 (J l~ X
E~ '0" 7
8 1 1 ~'

S 1 - 1 (:J

t~ 1 -:-'
4 q 1 (:' 1:.
'j e, ,
4 1 -:-' 1 ' '
11 1 c' ?::l

s 9 1(:1
~.: D

--,
.)

1

1

B-3

• Example ABC formula sequence 2

Stepl.Numbering the variables:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A B C D E F G H I K L M N 0 P

TRACETABLE

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

CONNECT

1 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 1 1 0 1 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 0 1 1 1 1 1 1 1 1
0 () 1 1 1 1 1 0 1 1 1 1 1 1 1
0 0 0 1 0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 0 1 1 1 1 1
1 0 1 1 1 1 1 1 0 1 0 0 0 0 1
1 0 1 1 1 1 1 1 1 0 1 0 1 1 1
1 0 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1 1 0 1 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
clique= 15 13 9 4 6 11 7
cl ique= 15 13 9 4 6 11 3
cl ique= 15 13 9 4 6 11 5
clique= 15 13 9 4 6 12 3
clique= 15 13 9 4 6 12 5
clique= 15 13 9 4 6 12 7
clique= 15 13 9 4 8 11 5
cl ique= 15 13 9 4 8 11 3
clique= 15 13 9 4 8 11 7
clique= 15 13 9 4 8 12 3
clique= 15 13 9 4 8 12 7
clique= 15 13 9 4 8 12 5
clique= 15 13 9 1 11
cl ique= 15 13 9 1 12
c1ique= 15 13 2
clique= 15 10 4 6 5
clique= 15 10 4 6 7
clique= 15 10 4 6 3
clique= 15 10 4 8 7
clique= 15 10 4 8 5
clique= 15 10 4 8 3
clique= 15 10 1
clique= 14 9 4 6 11 7
clique= 14 9 4 6 11 3
clique= 14 9 4 6 11 5
cl ique= 14 9 4 6 12 3
clique= 14 9 4 6 12 5
clique= 14 9 4 6 12 7
clique= 14 9 4 8 11 5
clique= 14 9 4 8 11 3
clique= 14 9 4 8 11 7

... clique= 14 9 4 8 12 3
clique= 14 9 4 8 12 .,
c1ique= 14 9 4 8 12 5
clique= 14 9 1 11
clique= 14 9 1 12
clique= 14 2

B - 4

Combine:
2,13,15
1,9,12,14
3,4,8,10
6,7,11
5

Reduce:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ABC D E F G H I K L M N 0 P

A x x x x
B x x x
C x x x x
E x
F x x x

Step2.0perators

*1 *2 *3 -1 SQRT *4 -2 -1 -3 /1 /2
1 2 3 4 5 6 7 8 9 10 11

I "

"' ~
,

~ I , rf:' r

l
~i I

~, ,
I I;

11,i ()
,.,

I I),.
1 l,Q ') I.

~
\

"

~ / :3 5 '~ I I J
I) I 3 () , "

I)

I 4 '1 4 :$ 0 :, } I I

J 3 3 :, I , 3 0 I]

.' :3 I I .'3 J ~ < I I

, 3 / 3 2 I 3~3 u S

'. I 3 3 5 3 I I I 0 '<
\, '/3 -:. I , I r:- -I ~

~) , ., :..t

c~.;,,>(; 0
I j ~3 J'? ,~
{i,: JjO

~ j ? j f I~A"~
tv :. -"' . 0 " /.

I.' :I j)' / ') , I' '$'}
l - i,

ALUI
ALU2

= (7,9,3,4,11,1,6)
(5,8,10,2)

B - 5

Step3.Interconnection

Source Destination Label

2
4
A
A
B
B
C
C
E
F
F
F
ALUl.0UT
ALUl.0UT
ALUI. OUT
ALUI. OUT
ALU2.0UT
ALU2.0UT

ALUl.IN2
ALUl.IN2
ALUl.INl
ALU2.INI
F
ALUl. IN2
ALU2.INI
ALUl.INl
ALU2.IN2
ALUl.INl
ALUl. IN2
ALU2.INI

E
C
F
B
F
A

4
1
2
3
5
6
7
8
9
10
11
12
13
14
15
16
17
18

,> l) C \) (1 (I I) l'

1 1 (~I r) 1 I) (~l 0 (l

(~ (J 0 {.' () 1 1 U 1
(! (I () " r)

1 1 U (J (i

0, 1 1 (! r~\

C' 1 1 0 {-;

(J (J 0 (I

<) I~) (I (i ,

(J () ()

1 (I (\

I.' 1 (I

(, 0 (J

(~I f) U U (l (;

0 I) (J 0 0 I)

(i (I (> 1 0
(J (l ,j (J

(, (> (J 0
0 (J 1 (> 0
(> 0 (1 1 l)

(l 0 (I 1 (J (l

(J 0 (> (J 0 (>

COrJNEC1

1 U 1 ,) 1 (, 1 (I (J 1 1 1 (l

(J 1 0 (l () (J () (J (J 0 {) 1 I)

1 I) 1 (1 1 (J 1 (J

1 1 1 1 1 1
\., ('1 1 1 l (I 1
1 1 1 (.I I) () (! (J 1 (j (! 0 0 \)

r) U 1 1 (J 1 0 () (I 1 II 1 (J (.. (,

1 1 1 U 1 1 () 1 f~i 1 (! 1
1 1 0 (1 1.1 1 (, 1 I)

1 1 1 ,") '.' (1 1 1 \) 1 u
1 1 1 1 1 () (.! 1 1

I.-) 1 1 (J '.I 1 1 '-' 1 '.'
(\ (J 1 1 0 1 1 1 1 1 1
(1 I) I 1 (l (J U () 0 (l 1 1 (; u
1 r~ i U 1 1 1 1 1 1 1 1 c'
1 " 1 1 (\ I) 1 1 (, 1 1 1 '.I

1 1 1 1 '.' 1 1.-1 I~ , 1 1 1 I) 1 1
\J 1 Cl 1 \ \ 1 () 1 1.:1 "

Il

B - 6

- , J .J'_,

-'

1 :..] ,
~..l-____ --,

1 ~ U '.1'.- ~ '.' , .
~' ; ,:. L,

. I .1 L.i L ,(1 1 .. ' 1~ I c, 1,.

-= .l. , ~-1 -' t
,: , .. 1'0 .~~

C 1 1 L~ I , l'::: 'I 1 J ._' 1 ~J 16 1 ..
., : '~'-" . 1 J -' 1.:) 1\.1

c 1] ylt12 t 1 1 , 1b 17
'.1 1 ,~ ..:'::"7 ~ 1 \ r.:.j 18 9
ell qUl - -I 11 1 12 1'-'
._11 qd>:''':~ ,j 1 1 1 .3 12 9
c J] qL1E~:-:- '1 1 1 1 1'"' 17
..: 11 qdt=.l: 1 I 1 .3 16 9
c I 1 qu~ ., 1 1 1 :!' 16 1(>

c 1 \ ·.~ue=- " 1 1 1 ::; 16 17. I 1 qUi:-- 4 Q} 1 =:D (])
ell l~ lltJ-- 4 1 1 I 15 1"' 10
C 11 qUt-:;::;- 4 1 1 1 15 12 9
,.:. 1 1 iJ ue-:.:; 4 1 1 1 15 12 17
CllqU....?- 't 1 1 1 15 16 9
clIque-=- 4 11 1 15 It> 10
c.llque~- 4 11 1 15 16 17
clIque:::. 4 11 9
c.1lque~ 4 1 1 2 10
ell que·::.: 4 1 1 ~ 17
CllquE3;:" 4 1 1 1:' 3 12 10
clIque..:: 4 11 13 3 12 9

C1lqllP~ 4 1 1 1" 3 12 17
clIque..=: 4 1 1 n 7
C1lqUP~ .j 1 1 13 16 9

c1\qLle~ 4 1 1 1 3 3 16 10
c1lque~ 't 1 1 13 3 16 17
c1lqlle~ 4 1 1 13 6
c 11 qle:::: -j 1 1 1: 15 12 9

c1)que~ 4 1 1 1:' 15 12 10
ell qlle-·· 'I 1 1 13 15 12 17
Cllql'P.-= 4 1 1 13 15 7
ell qL1e-:- 4 1 1 13 15 16 10
ClIqUE'=: 4 1 1 13 15 16 9

c1lqlle= 4 1 1 13 15 16 17
c1lque= 4 11 13 18 9

c1lque= 4 1 1 13 18 10
c1lque= 4 1 1 13 18 17
c1lque= 4 8 5 3 12 9
c 11 que-::- 4 8 5 3 12 10
ell ql1e=-'" 4 8 5 ~ 12 17'-'
c1lque= 4 8 5 Q 7J
c1lque~ 4 8 5 15 12 10
CllquP=: 4 8 5 15 12 9
ell qlle::~ 4 8 5 15 12 17
c1lque= 4 8 5 15 7
c1lque~ 4 8 5 18 10
c1lque= 4 8 C 5 18 17:::>
cllque= 4 8 5 18 9

c1lque o 4 8 1 12 3 10
cllque= 4 8 1 12 3 9
cllque= 4 8 1 12 3 17
c1lque= 4 8 1 1"' 15 9
c1lqu,,= 4 8 1 12 15 10
c1lque~ '4 8 1 12 15 17
c1lque= 4 8 :' 9
c1lque~ 4 C}i :: W
c1lque= 4 8 2 17
c1lque= 4 8 13 12 '" 9
c1lque~ 4 8 13 12 -' 10
c1lque~ 4 8 13 12 3 17
c1lque= 4 8 1~ 12 15 10
c1lqu,,= 4 8 1:' 12 15 9

ell que·-c 4 8 1::', 12 15 17
c1lque= 4 8 n 7 3
C1lqU"" 4 8 13 7 15
c J I que c 4 8 1:, 18 9
clIque::: 4 8 13 18 17
cllque~ 4 8 1:' 18 10
(:.11 qup::..- 4 14 5 c 12
c1lqlle~ 4 14 ~ 16-,
C1lq,'E'c, 4 14 ~, 15 1=
c l 1 quC:"--- 4 14 5 15 16
cllque= 4 14 1.::, 1:'
CllqUl:'= 4 14 1~ 1::- j 0'

f)c1lque~ 4 <!4 ~;'
16 <9

cllque= 4 14 16

B - 7

advice:
same destination:
1,6,11 ALU1.IN2
5,15,17 F
2,8,10 ALU1.IN1
3,7 ALU2.IN1
9,12 ALU2.IN2

combine:
1,6,11
3,7
5,17,18
2,8,10
13,14,15,16
9,12

MUX1
MUX2
MUX3
MUX4
MUX5
MUX6

B - 8

• Example algorithm 1 method 1.

Step1.Numbering the variables:
1. size
2. i
3. reg7

c, 0, and 'data' are single signals
0000 and 1000 (8) are constants and must always be implemented as a
single register.

Step2.Trace table

123
110 0
2 110
3 111
4 1 1 1
5 1 1 1
6 0 1 1
701 1

clique = 1
clique = 2
clique = 3

Step3.0perators

- comp1 comp2
1 2 3

123
1
2 8
3

clique = 2,3

/* one comparator can be used */

Step4.Interconnection

Source Destination Label 1 2 3 4 5 6 7 8 9

size i 1 1 1 2
data reg7 2 2 2
0 REG7 3 3
8 ALU1.IN1 4 4
size ALUl. IN2 5 5
i ALU2.IN1 6 6
0000 ALU2.IN2 7 7
ALU1. OUT i 8 8
ALU2. OUT c 9 9

clique = 1,5 /* same source */
clique = 4

clique = 1,6 /* same destination */
clique = 2,3

B - 9

• Example algorithm 2 method 1.

Step1.Variables
'size' and' i' are not compatible, they are both used at the same times.
reg [0], reg [1], etc. are all one bi t long. They are also used at the
same times (parallel load), so they cannot be combined.

Step2. Operators
There is only one operator

Step3. Interconnection

Source Destination Label 1 2 3 4 5 6 7 8 9 10 11 12 13
8 i 1 1
reg[l] reg[O] 2 2
reg[2] reg[l] 3 3
reg[3] reg[2] 4 4
reg[4] reg[3] 5 5
data reg[4] 6 6 2 1 1 1
reg[6] reg[5] 7 7 2
reg[7] reg[6] 8 8 2
0 reg[7] 9 9 2
reg[5] reg[4] 10 10
data reg[5] 11 11 1 1
data reg[6] 12 12 1
data reg[7] 13 13

i comp1.IN1 14
o comp1.IN2 15
comp1.0UT C 16

clique = 6,11,12,13 /* same source */

clique = 6,10 /* same destination */
clique = 7,11
clique = 8,12
clique = 9,13

B-IO

	Voorblad

	Acknowledgements

	Summary

	Contents

	1. Introduction

	2. The digital design process.

	3. Behavioral level.

	4. Register transfer level.

	5. From behavior to RTL.

	6. Data unit.

	7. Control unit.

	8. Data path synthesis.

	9. Implementation of high level algorithms.

	10. Conclusions

	Literature

	Appendices

