
 Eindhoven University of Technology

MASTER

Building a tool for the first PIMS prototype

Wissing, R.F.

Award date:
1988

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/d6859ee8-6f60-4e7a-909f-67662c3d28d4

Afstudeerverslag

BUilding a tool for the

First PIMS prototype

R.F. Wissing

Keywords: artificial intelligence, expertsystem, Lisp,
frames, message/objectmode~ modelling
languages, object oriented programming,
Project Integrated Management System,
project management.

Hoogleraar:

Mentoren:

Prof. Ir. A. Heetman, TUE

Ir. A.G.M. Geurts, TUE

Ir. H. Frijters, aSO/ATE

Eindhoven, junl 1988

WHAT DOES PIMS
HAVE THAT OTHER

SYSTEMS DON'T?

PROJECT INTEGRATED MANAGEMENT SYSTEM,
ESPRIT PROJECT 814.

If we want to learn anything. we
mustn't try to learn everything.

The Lump Law.

Summary

This report provides a brief overview of the ESPRIT project
814, entitled "Project Integrated Management System" (PIMS). The
ultimate goal of this project is to realize a prototype system
capable of assisting, in an intelligent way, the manager of a
software development team. This means, techniques in artificial
intelligence (AI) play an important role in PIMS.
The PIMS system consists of three main parts:

- the set of project management tools;
- the information manager;
- the front end (user interface).

Project management tasks are carried out by tools. In PIMS a
tool is a set of procedures which perform the necessary processing
related to a project management task. A tool does not perform any
transput, and it has no detailed user interaction or communication
with another tool.

All globally accessible
maintained by an object base
mation manager. The chosen
frame based objects.

data within the PIMS-system IS

management system, called the infor­
structure is a semantic network of

The front end handles the user interaction and is responsible
for selecting the tool functions to be called. This part has access
to knowledge about the way the PIMS system can be used.

This report highlights the PIMS software development environ­
ment, including its impact on the work of a tool builder. The PIMS
system will be implemented in Common Lisp with an object oriented
shell: Flavors.

Each tool is a Flavors object with "methods" representing the
tool functions. PIMS possesses modelling languages both for the data
model and for the project management tools, they are called the
Data Modelling Language (DML) and the Tool Modelling Language
(TML). The TML description is illustrated with parts of the tool,
which supports the project manager in tracking the works progress
and forecasting the amount of work to do. It is clear, that the PIMS
object oriented software development environment makes the design
and implementation of the tool easier, because it transfers work
from the tool builder to the system. That is why, it improves the
productivity of the tool builder. The disadvantage of such a system
is, that its performance is low.

The first PIMS prototype 1

Contents

Summary

1. Introduction.

2. PIMS

3. Domain of PIMS.
3.1. Initiation
3.2. Workbreakdown
3.3. Estimating
3.4. Scheduling
3.5. Resource Allocating
3.6. Tracking
3.7. Diagnosis
3.8. Predicting

4. Artificial Intelligence and Lisp
4.1. Artificial Intelligence
4.2. Lisp

5. Object Oriented Programming
5.1. Introduction
5.2. The operator/operand model
5.3. The message/object model
5.4. Object oriented design

6. The architecture of the PIMS # 1 prototype

7. Data Modelling Language

8. Tool Modelling Language

9. Using a tool in PIMS

10. References

Appendix 1

Appendix 2

Index

The first PIMS prototype

1

3

4

5
5
6
7
7
8
9
9
9

11
11
14

17
17
17
18
20

22

24

27

34

37

39

41

42

2

Problems worthy of attack prove their
worth by bitting back.

Piet Hein.

1. Introduction.

This report gives an impression of the activities, which the
author has performed within the framework of his graduation.
These activities took place from April 1987 till February 1988 at
BSO/AT in Eindhoven. The supervisors were Ir. A.G.M. Geurts of
the Digital Systems Group of the Eindhoven University of Techno­
logy and Ir. H. Frijters of BSO/AT.

The aim of the above mentioned activities was to specify,
design and implement a tool, which supports the manager of a
software project in tracking the work progress and forecasting the
amount of work to do according to the data available.

This tool is part of the ESPRIT project 814, entitled Project
Integrated Management System or PIMS. The ultimate goal of this
project is to realize a prototype system capable of assisting the
manager of a software development team in an intelligent way.

After this introduction Chapter 2 gives some general informa­
tion about PIMS. In Chapter 3 a description is given of the project
management domain. Since Artificial Intelligence plays an important
role in PIMS, Chapter 4 gives a short introduction in this subject.
Further the features of Lisp will be described in this chapter.
Chapter 5 tells something about object oriented programming.
Chapter 6 describes the architecture for the ftrst PIMS prototype.

In PIMS, modelling languages both for the data model and for
the project management tools are defined, these languages are
called the Data Modelling Language (DML) and Tool Modelling
Language (TML) respectively. These languages are described in
Chapter 7 and 8. Finally, Chapter 9 describes how the PIMS system
controls the execution of tools and how it makes use of the infor­
mation contained in the Tool Modelling Language description of the
tools.

The first PIMS prototype 3

2. PIMS

The European Community Commission launched the European
Strategic Programme for Research and development in Information
Technology (ESPRIT) in 1984. The main objectives of ESPRIT are:

- to make the European Information Technology competitive in
the 1990's;

- to stimulate the European cooperative pre-competitive
research and development in information technology.

ESPRIT project nQ 814, entitled "Project Integrated Management
System" (PIMS) is a project in the field of project management.

It has almost become an accepted fact of life that software
development projects over-run their budgets. Despite much effort
being invested to support the design and construction of software
systems, little attention has, as yet, been given to helping the
project manager. The PIMS system will provide this support by:

- offering an integrated, compatible set of tools such as
estimators, resource allocators and schedulers, progress
tracking tools and report generators;

- linking this tool set together with an intelligent interface
which will suggest possible courses of action;

- having an understanding of the manager's job. This under­
standing will be achieved by studying literature and applying
knowledge engineering techniques to various aspects of the
field of project management.

CAP Sogeti Innovation, France.
BSOIAutomation technology, The Netherlands.
PA Computers and Telecommunication, Great
Britain.
The Turing Institute, Great Britain.
University of Amsterdam, Department of Social
Science Informatics; University College London,
Computer Science Department; London School of
Economics, Social Psychology Department;
London Business School.

The four companies and the four universities on this 3.5 years
project (effort: 56 man-years), which started in January 1986, are
the following:
Prime contractor:
Partners:

Sub Contractors:

During the time the author was working at the project, the
task of BSOIAutomation Technology, with respect to the tools, was
mainly to develop the scheduler, resource allocator, tracker and
predictor tools.

The first PIMS prototype 4

The trouble with people is not that
they don't know, but they know so
much that ain't so.

Henry Wheeler Shaw.

3. Domain of PIMS.

The domain of PIMS is the management of software projects.
Because of the vastness of the subject PIMS is restricted in some
respects:

- Only technical activity management will be considered, for
instance motivation team members and making project con­
tracts will not be a topic.

- The main research is the daily management of the project.
- One person, the project manager, is in charge of the daily

management.
- The project team has no sub-hierarchy.

In this limited domain the task of the project manager can be
decomposed in the following (iterative) sub-tasks:

- initiation;
- workbreakdown;
- scheduling;
- resource allocating;
- tracking and forecasting;
- diagnosis.

Figure 1 shows these tasks in the waterfall model of the project
management life cycle. Besides tools to support the tasks of figure
1, in PIMS #1 the following three tools have been implemented too:
Resource Definition, Project Calendar and Risk Analysis Tool.

3.1. Initiation

The general function of lDltIatlon is to initiate a new project
or to complete an already existing view on the project. This is
achieved by setting the project name, the client name, the external
milestone(s) and their dates, one or more (external) deliverables, and
so on. Before starting a new project (accepting the contract) the
project risk analysis tool in PIMS can be used to support the
project manager in determining the risks of a certain project.This
tool helps the project manager in characterizing the project's rela­
tions with its environment. Here, the project is viewed 'from the
outside': its internal structure is not yet known, its functionality
and costs (in the widest sense) are like those of a product which
the organization is considering producing. The environment involves
linkages with both the host organization of the project and with the
client for its deliverabies.

The first PIMS prototype 5

initiation

wbd

estimating

scheduling

diagnosis

Figure 1: Waterfall model of the project management life
cycle.

3.2. Workbreakdown

Because it is impossible to oversee the project as a whole, the
project has to be decomposed functionally into small, uncomplicated
components, each of which carries out a specific activity which has
to perform a task. This means an initial workbreakdownstructure
(wbs) has to be made. This structure is composed of two hierarchies:
namely the product hierarchy (system, modules, submodules, subsub­
modules and so on), and the activity hierarchy (analyzing, designing,
coding, testing, integrating and so on). These hierarchies can be
connected in which ever way best fits the project. There are three
criteria which should be used as objectives for achieving a good
decomposition:

-1. Maximize the cohesion within a low level (bottom) activity.
-2. Minimize the coupling between the low level activities.
-3. Aim at a balanced overall control structure.

Criteria in the first two areas, cohesion and coupling, have
been proposed by Constantine and Yourdon (Yourdon et al., 79).
Cohesion is a description or measure of the internal strength and
consistency of an activity; this consistency should be as high as
possible in order for an activity to be considered good. (Consis­
tency here means, that the elements of an activity should be
functionally related, as far as possible) Coupling, on the other
hand, is a measure of dependence of one activity upon the others;
it is kept as low as possible in a good decomposition. A further
criterion is that of 'balance' in the hierarchical structure of the
activities (figure 2): A balanced structure is preferable to an
unbalanced one.

The first PIMS prototype 6

balanced

figure 2: A graphical representation of a balanced and
unbalanced structure.

Coupling, cohesion and balancing are not the only metrics
available for measuring the quality of a decomposition, although
they are the most well documented and the most quantifiable, rela­
tively speaking. Other, less exact metrics (better: characteristics) of
functionally decomposed system structures are complexity and
correctness. Complexity is a subjective characteristic at best, but
less complexity is generally considered to be better than more
complexity. A complex activity can usually be rendered less complex
by dividing it into subactivities. Correctness of a decomposition
would seem to be quantifiable, but in practice it is almost impossible
to prove.

3.3. Estimating

The aim of each activity (workbreakdownelement) is to
perform one or more tasks. The lowest level elements of the work­
breakdown have a one to one relation to a task. (Note, for a good
decomposition all the lowest level tasks should cover the entire
project.) To each of these tasks an effort and a time (and thus
indirectly the staffing level) have to be estimated with the aid of
an estimation model.

In [Wissing, 87a] some known methods and practices in soft­
ware estimating are listed, along with advice on practices to be
avoided. Further, research in parametric estimation models is
discussed. A view is given on the relationship between effort and
time in software engineering.

3.4. Scheduling

Information about logical relations and time estimates of each
task is used to construct a network diagram, which is a graphical
model for analysis of the scheduling problem. In PIMS activity-on­
node diagrams are used. In these diagrams each node represents an
activity (or better: task) and each arc shows logical precedence.

The first PIMS prototype 7

This approach is used with the so-called Critical Path Method
(CPM). This is the most favoured method in practice today. The
longest path in such a network is called the critical path. It
determines the project length in the sense that precedence relations
permit no earlier completion of the project.

The activities along a critical path are called critical activities,
because a delay in anyone of them will cause a delay in the com­
pletion of the entire project. By contrast it may be possible to
absorb some delay in noncritical activities without affecting the
project completion date. The scheduler in PIMS takes the project
calendar into account. This calendar should be defined with the aid
of the so-called Calendar DefInition Tool. With this tool it is
possible to defIne the days which are special, like company holidays
and public holidays.

3.5. Resource Allocating

In practice many tasks in a project require resources of
various types. It is quite usual to have a resource limit that is not
fIxed at the same level throughout the project duration. The
availability of manpower (and machinery) can be at different levels
of availability during the working days.

Resource proffies can be defined with the aid of the Resource
DefInition Tool. With this tool it is possible to define the name of
a resource, the characteristics of this resource (a list of properties),
the daily costs to use the resource and the time intervals for not
availability of the resource. Obviously, these resource proffies could
be taken into account during allocating the resources to tasks. In
PIMS #1 the resource allocator is a manual one.

So, it does not use a resource constrained project scheduling
algorithm. These algorithms are based on heuristics. The idea
behind heuristic algorithms is to rank the tasks by some rule and
to schedule the tasks in that ranking order ensuring that the
resource limits on the project are never exceeded. Thus tasks
considered to be important in some sense are scheduled as soon as
possible.

When resources are constrained, the scheduling algorithm
cannot readily produce 'float' values for each of the tasks in the
schedule, as were available in the unconstrained case. When task
delays occur, the project manager must often reschedule the
resource constrained project to determine new task start and fInish
dates. These may vary quite dramatically from those in the original
schedule, thus causing the reorganization of future plans in the
project, often at considerable cost. There is clearly a need therefore
for a stable schedule, i.e., one that does not drastically alter task
start and finish times, or at least alters them uniformly, when the
project is rescheduled under the same resource constraints with a
few changed tasks durations.

The first PIMS prototype 8

3.6. Tracking

The tracker provides the means to feed the user's actual
knowledge of the running project into the PIMS system and it
indicates to the user the status of the project. This has been
described extensively in [Wissing, 87a]. The specification of the
tracker tool in PIMS #1 can be found in [Wissing, 8Th].

3.7. Diagnosis

The diagnosis tool tries to determine why a certain discre­
pancy between plan and reality occurred. There are several possible
causes for this, like:

the value of one or more project metric, that was attached
during estimating the values of them, appears to be

incorrect;
the model, which is described by the metrics, is incorrect
(for example the metrics are weighed wrong);
The chosen metric set is incorrect.

In most cases the diagnosis will lead to reconsidering the
plan. In PIMS #1 a diagnosis tool is not available.

3.8. Predicting

If there is a (serious) discrepancy between the plan and
reality, generally the projectmanager wants to know what the
influence of this delay will be on the scheduled project completion
date. In this case a new prediction of the effort and timescale has
to be made.
For that we see the next three possibilities:

- starting a re-planning process
- extrapolating the measured values on the basis of the

project curve
- exponential smoothing (short-term forecasting).

The first possibility needs a diagnosis tool to determine the
cause(s) of a certain discrepancy between plan and reality. If the
cause(s) is (are) found and there is no remedy that does not affect
the plan, a replanning process has to start by which one or more
of the following things can be needed: completing or re-structuring
the workbreakdown, re-estimating the effort and duration of
task(s), re-scheduling the tasks, re-allocating the resources. The
foregoing shows, if there is (or seems to appear) a serious deviation
from plan, the planning tools can be used to make a new and hope­
fully more accurate, (long-term) prediction of the effort and time­
scale of the project. This possibility will be discarded in this
report, because in PIMS #1 a diagnosis tool is not available and re­
planning is beyond the scope of the planning tools.

The first PIMS prototype 9

The second possibility to make a long term prediction extra­
polates the measured values on the basis of the equation (curve),
that is assumed to represent the project model (for project
modelling techniques, see for instance [Wissing, 87aJ). So, in this
case we suppose that a project follows the curve that is described
by this equation. Since in PIMS #1 the project curve is unknown,
the predictor will also not cover this long-term prediction.

The third possibility makes only short-term prediction possible.
To predict for this immediate future, forecasting techniques will be
used to estimate the effort/cost to complete a task. The reason, that
those techniques are only useful for short term prediction is, that
they are based on the assumption that existing pattern will continue
into the future and this assumption is more likely to be correct over
the short term than it is over the long term.

The third possibility will be the one that will be supported by
the predictor in PIMS #1. It will be based on the revised effort (the
revised effort is equal to the effort spent plus the remaining effort).
From this and the average utilization of the resource in the past, a
prediction is made of the expected finished date. The prediction
mechanism will never by itself modify any scheduling or allocation
data.

In the fact a forecast can be considered as an extra variable
belonging to the reports generated in the tracker [Wissing, 87b].
So, in order to minimize the number of tools in PIMS #1, both
tools will be integrated. The specification of short-term predicting
in PIMS #1 can be found in [Wissing, 88].

The first PIMS prototype 10

Today's expert systems are more akin
to idiot savants than to real human
experts.

R.I. Brachman at al.

4. Artificial Intelligence and Lisp

4.1. Artificial Intelligence

Since the stated aims of PIMS, it will be obvious techniques
in artificial intelligence should play an important role in PIMS.

As early as 1947, British mathematician Alan Turing grappled
with the meaning of machine intelligence [Turing, 50]. Turing
concluded that if a user could sit at a computer terminal, type
questions and not be able to tell whether a machine or hidden
human operator was answering those questions, the machine could
be said to have intelligence. This level of intelligence has not been
achieved yet, but research into artificial intelligence has produced
many examples of good computer science. The term artificial
intelligence was originated in a 1956 conference at Dartmouth
College. John McCarthy, who coined the term, attended a confe­
rence with Marvin Minsky, Nathaniel Rochester and Claude Shannon
to discuss ways to simulate human intelligence using machines.

Early artificial intelligence (A.I.) research was based on
theories of how the brain functions. Computer scientisu tried to
give machines intelligence by making them imitate the manner in
which the brain processes information. But the working of the
brain are still not fully understood. In addition, may aspects of
human intelligence that are understood have yet tot be implemented
on a machine. Consequently, artificial intelligence accomplishments
were small. Over the last several years, artificial intelligence has
delivered its fIrst practical results, especially in the fIeld of expert
systems (an exploratory, rule-of-thumb approach to problem solving).
Not only researchers are leaving the academic environment to start
A.I.-fmns, but also large corporations (in the Netherlands for
instance Shell, Philips and Akzo) are conducting in-house AJ.
research.

The knowledge in an expert system is stored in a so-called
knowledge base. A knowledge base contains the domain knowledge;
this is both factual and heuristic knowledge. Consequently, the
knowledge base consists of two parts: a declarative knowledge part
and a rule base with a set of production rules. In PIMS the
declarative knowledge will be represented by a semantic net of
frame based objects (see next chapter). A production rule is able to
express specialized knowledge in the form of a relation between a
premiss (condition, antecedent) and a conclusion, augmented with a
degree of certainty.

The first PIMS prototype 11

In practice, production rules have demonstrated to be an ade­
quate mean to represent heuristic knowledge. A rule states that
certain conclusions (its consequents) will occur if specified premisses
(its antecedents) are met. The rule's antecedent contains facts
(eventually derived from previous conclusions) on which the rule's
consequent can be concluded. If an antecedent is true, the conse­
quent is accepted; that is, the rule fIres.

An important part of a rule-based system is the inference
engine. This mechanism uses the knowledge base (facts and rules)
to infer conclusions. The inference engine acts on many rules. If
one rule fIres, its consequent might cause additions to the factual
part in the knowledge base, that could to satisfy the other rules.
When used with an inference engine rules are potentially more
powerful than sequences of IF-THEN statements in conventional
programs. To draw conclusions from conditional statements in a
conventional program, a single consequent must describe each
possible condition contributing to that conclusion.

Each antecedent-consequent pair must be known in advance and
hard-coded into the program. In contrast, each rule in a rule­
based system does not necessarily have to lead to a fmal con­
clusion. A rule can instead represent one in a series that must be
fIred to reach a conclusion. The inference engine contains the
reasoning methods used in the system. The two methods often em­
ployed with production rules are forward chaining (data driven) and
backward chaining (goal driven).

Forward chaining starts with facts about a problem makes all
inferences possible and draws conclusions. Backward chaining, on
the other hand, starts at the goal and works backward, as in
diagnostic applications. When a combination of backward and
forward chaining is used, the reasoning process will be quite
efficient; this is the way how human reasoning commonly works.

In PIMS the knowledge acquisition is mainly done by the
University of Amsterdam by interviewing the domain experts
(experienced project managers). Knowledge acquisition is difficult,
because domain experts often do not know how they solve problems
or are unable or unwilling to verbalize their insight. As described in
[Wissing, 87a] the management science literature gives us a lot of
management rules too. Here, we will illustrate how an expert can
classify a discrepancy between the initially estimated effort of the
work performed and the actual effort for that work [Wissing, 87a].
In fIgure 3 we see a simplified decision tree of that problem. (The
(abstract) factor quality, for instance, has been omitted although
without this factor it is almost impossible to access the progress
accurately: slow progress during the design stage may be because
the program is larger as we thought or it may be that the designers
are producing a particular good design that will be easy to code and
test.) The decision tree of fIgure 4 is a rewrite of figure 3 and is
easy to translate to rules.

The first PlMS prototype 12

Figure 3: Simplified decision tree of classifying a discrepancy

Figure 4: Another presentation form of figure 3

The first P!MS prototype 13

Logic Theorist, one of the first expert systems, performed
mathematical calculations. It was developed by Alan Newell, Herbert
Simon and J.C. Shaw, and announced at the 1956 Dartmouth College
Conference on machine intelligence. Expert systems later emerged in
medicine and chemistry. Dendral, developed at Stanford in the
1960's, deduces the chemical structure of molecules. It was one of
the first expert systems to achieve widespread use. Mycin, also
developed at Stanford, was used for diagnosing infectious diseases.
The first commercially successful expert system did not appear until
1980. Developed by John McDermott at Carnegie-Mellon University
[McDermott, 821

R1 is a confIguration program for all VAX systems and most of
the PDP-ll systems. This expert system determines whether the
components can be assembled into a usable system. Its number of
rules has grown from 500 in 1980 to 4700 in 1988 and it contains a
database of information covering about 9500 computer components.
When Digital Equipment Corp. took over the program for daily use,
it was renamed XCon (for eXpert ConfIgurer). DEC's use of XCon
has reportedly reduced the amount of time, and expense needed to
confIgure new systems. What has emerged from these and later
expert system projects is a basic modus operandi for expert system
construction and a working defInition of expert systems.

Compared with the processing algorithms found in conventional
computing, expert systems are characterized by the combination of
heuristic and factual knowledge. Unlike conventional programs which
mingle data and instructions, expert systems separately maintain
factual knowledge that is manipulated and the rules governing reaso­
ning. Although conventional computing concerns itself mainly with
numbers or at least with the ability of the computer to represent
data using numbers, an expert system must concern itself with
processing symbols.

4.2. Lisp

All the groups of the PIMS consortium have agreed to use Lisp
as programming language. Lisp was the first popular language for
performing experiments in artificial intelligence. E.W. Dijkstra has
said once about Lisp:

Lisp has jokingly been described as "the most intelligent
way to misuse a computer". I think that description is a
great compliment, because it transmits the full flavour of
liberation: it has assisted a number of our most gifted
fellow humans in thinking previously impossible thoughts.

One of the earliest third generation programming languages,
Lisp was devised initially as a notation for solving logic problems.
Lisp, shorthand for List Processing, features symbol structures as
its primary variable. These symbol structures have atoms, either
numbers or symbols, as their most basic element. Lisp's functions
and data structures are composed of lists, which can contain atoms
and other lists. These lists are represented by lists of pointers. In
structure, these lists are binary trees of pointer pairs. In each

The first PIMS prototype 14

pointer pair, one pointer points to the data word for that element,
the other to the next element (or node) in the list. Any node, that
does not have another node following, it contains a pointer to the
terminator NIL, which is the empty list.

In processing lists Lisp does not distinguish between functions
(in general: code) and data. Stated in more conventional terms, Lisp
is one of the few languages that permits passing functions as
parameters. Functions are composed of lists just as complex symbols
are. Since the only syntactic rule of Lisp is that parentheses must
balance, all expressions containing balanced parentheses will be
evaluated, no matter how nonsensical the operations performed may
appear. That seems less nonsensical when one realizes that NIL is a
valid response. Attempts at symbolic manipulations, that most
language interpreters or compilers reject, are taken in stride by the
Lisp interpreter. The object operated on could as easily be a
program (note, a program is also a list), even the program currently
running, as it could be numerical data or a symbol.

Since, as mentioned before, Lisp does not distinguish between
data and code, it is possible that a program constructs another
program dynamically. This ability is important in AI applications, in
which a program generates and tests solutions and does not simply
execute algorithms. Lisp's peculiarities may make it the AI software
designer's life easy, but in some ways it occasions the hardware
designer much brain-racking. Because list processing is the heart of
Lisp, the normal limits placed by most language implementations on
the size of data structures are totally unacceptable in Lisp. Lisp
may construct enormous linked lists to achieve simple operations
and the system's memory resources must make that possible or
processing will grind to a halt. Thus, Lisp requires an enormous
amount of memory.

At BSO we use a SUN/3 (based on a 24 Mhz 68020 micro­
processor) containing 16 Mbytes of RAM, nevertheless the perfor­
mance of the PIMS system was low. For this reason, Lisp is merely
used for (rapid) prototyping in a research environment, while the
ultimate commercial version will be (re)written in an conventional
language, like Pascal and C.

Lisp also uses what is known as heap memory. Memory words
in Lisp are not seen as portions of large, contiguous memory
blocks, but as entities in themselves. They can be linked together
to form lists and each list becomes a separate portion of memory
in itself, totally unrelated to any other list. Each element of the
heap memory consists of a data word and a link pointer. In Lisp,
therefore, memory assignment is accomplished by removing a
memory element from the heap or free list and linking it to an
existing list or to other free memory elements from the heap to
form a new list. When a portion of a list is no longer needed, it is
discarded by returning it to the heap or list of free memory
elements. This arrangement allows lists to grow, programmers don't
need to allocate memory for the lists in advance. Considering how
memory intensive it is for Lisp programs to assemble and process
lists, advance allocation would be impossible.

The first PIMS prototype 15

Deallocation of memory, or garbage collection, also presents its
own set of problems. Lisp deals with garbage collection by ignoring
it until there is no more free memory. Then it takeS' time out to
check the entire memory for the free elements that can be returned
to the heap. Garbage collection (gc, get coffee) is a time consuming
process, because the only way to detect free memory elements is to
process all the atoms in memory to fmd what lists are pointed to by
those atoms. Because all lists have names, which are atoms, all valid
lists are pointed to by one or more atoms that name them. On the
fIrst pass, garbage collection marks each element it can reach by
scanning every function and value pointed to by each atom. During
the second pass, the entire memory is scanned, those elements that
were not marked on the fIrst pass are returned to the free list or
heap. Obviously, avoiding garbage collection is one way of speeding
execution in Lisp coded applications.

The major problem that arises in Lisp, aside from the hard­
ware demands, stems from all the Lisp dialects. The reason for
these dialects is the simplicity of extending Lisp; once defined,
functions become part of the environment and can be used by the
programmer to defme other functions. Such extensibility provides
an almost irresistible temptation to create a wholly personalized
environment.

Among Lisp dialects, MacLisp, developed at MIT in 1966 is
known for its efficiency and its programming facilities. InterLisp,
developed a year later by Bolt, Beranek and Newman (Cambridge),
emphasizes user interfaces. Xerox's Palo Alto Research Center
currently supports InterLisp. Other popular dialects include Scheme
from MIT, TLisp from Yale, ZetaLisp (originally derived from
MacLisp) from the University of Utah and FranzLisp, originally
developed by Digital Equipment Corp. (distributed by Franz Inc.).

Because there are so many dialects, portable Lisp software is
virtually nonexistent. Fortunately, the Defense Advance Research
Projects Agency (DARPA), which has a vested interest in AI
research, stepped in to oppose this trend toward divergence in
1981. DARPA brought together a consortium of companies and uni­
versities working in Lisp, that included Symbolics, LMI. Dec, Bell
Laboratories, Xerox, Hewlett-Packard, Lawrence Livermore Labora­
tories, Carnegie-Mellon University, Stanford University, Yale, MIT
and UC Berkeley. This consortium defmed Common Lisp, an attempt
at a universal dialect, that is a subset of ZetaLisp, but most will
continue to provide their own customized, extended version of the
language. In PIMS we use an extended version Franz Lisp or
Extended Common Lisp [Steele, 84}. Part or this version is a
powerful feature, called Flavors, which supports object-oriented
programming (see next section).

The first PIMS prototype 16

Some programs are elegant, some are
exquisite, some are sparkling. My claim
is that it is possible to write grand
programs, noble programs, truly
magnificent ones.

Donald Knuth

5. Object Oriented Programming

5.1. Introduction

Object oriented programming can improve software develop­
ment. The object oriented approach increases programmer produc­
tivity by enhancing software maintainability, extensibility, and reus­
ability. Object-oriented programming replaces conventional opera­
tor/operand concepts with new ones, namely messages/objects.
Objects are private data, attributes, and operations, methods,
supported on these attributes and messages are a request for an
object to perform one of its methods. A message specifies what to
do, but not how that method should be performed. Object-oriented
programming can be considered either revolutionary or evolutionary,
depending on the degree to which access to conventional program­
ming techniques is retained.

Purely object-oriented languages such as Smalltalk [Goldberg,
83] represent the revolutionary approach and provide the advantage
of conceptual simplicity. The programmer works in a computational
environment that contains only objects, so the break with the past
is clean and crisp. The evolutionary approach, by contrast, consists
of adding object-oriented concepts on the top of conventional lan­
guages. A number of these hybrid languages exists today including
Flavors (Lisp), Clascal (Pascal), and Objective C (C). These lan­
guages do not offer the conceptual consistency of Smalltalk, but
they offer the possibility to switch between object-oriented and
more traditional programming styles.

5.2. The operator/operand model

Programmers are taught very early that computers do opera­
tions on operands and this computational model is preserved through
everything they learn subsequently. Generally, programmers think of
the computer as two disjoint compartments, one containing operators
and the other operands, and they express their intention by
selecting what operators are to be applied and to what operands in
what order. This conventional model of computation is called the
operator/operand model. This model applies at every level. At the
machine level we deal with instructions and data; at the language
level, expressions and variables (and also statements and data); at
the library level, subroutines and parameters; and at the command
level, programs and data meso The implementation changes at each
level, but the concepts remain the same:

The first PIMS prototype 17

- operators are active and make some predetermined change to
whatever operand is supplied them;

- operands are passive and change only when affected by
some operator;

- the environment determines what operators are to be applied
to what operands in what order; the term environment stands
for whatever determines what happens next.

The operator/operand model treats operators and operands as
if they were independent. But in practice, operators place strong
restrictions on the types of operands they handle correctly; for
example, operators like text editors depend on their operand being
text fIles and numerical functions (like square root) assume their
operands being numbers.

The operator/operand model provides no way to record this
dependence, so the environment must take on the task of deter­
mining the type requirements of the operators and the data type of
the operands. Imagine what would happen if electricians used this
model to design electrical systems, if they treated electrical
operators (power sources) and operands (power sinks) independently,
the user would be responsible for remembering the pair that carry
high-voltage power and those carrying low-voltage signals (in other
words buildings would be wired with standard interchangeable plugs
and sockets).

Yet in computing, programmers have to handle this type of
knowledge manually. Under the message/object approach, by
contrast, objects record their type (class) explicitly. This record is
used at runtime to determine the set of operations (methods) that
can be performed on objects of this class. The traditional opera­
tor/operand concepts remain in tact, but they are submerged with a
thin layer of new structure (in PIMS: Flavors) that records what
operations are valid for what operands. (This can be compared with
the incompatible plugs and sockets electricians use.)

5.3. The message/object model

The message/object model decouples the environment from the
data types it contains by moving responsibility for operator/
operand interdependencies out of implicit storage in the environ­
ment and into explicit storage in data structures called classes. The
unit of modularity in a message/object system is the class (meta­
object), so programmers speak of developing classes rather than
programs or modules. Each class has a name, describes the type of
objects its instances represent and dermes the behaviour of its
instances. A class includes a method (procedure) for each type of
operation its instances can perform.

The environment manipulates objects by selecting an object
and telling it what to do. The object decides how to carry out its
assignment by selecting the message implementation in the table of
messages its class supports. This is generally called sending the
object (instance of a class) a message. So, the environment in the

The first PIMS prototype 18

message/object model is responsible only for deciding what should
be done; the object decides how to do it.

Type dependencies cannot spread through the system, since
they become permanently encapsulated within classes. A fundamental
concept of object oriented programming is a technique that allows
new classes to build on top of older less specified classes instead of
being rewritten from scratch. In this way, classes can be organized
in a hierarchy, where each new level introduces some specialization
of the level immediately above. When a class is created, its position
in the hierarchy is established by defInition of its so-called super­
classes, it inherits all the attributes and methods from its superclas­
ses, and it may be augmented by adding increasingly specialized at­
tributes and methods. In the PIMS Project Conceptual Schema, for
instance, the three classes Human Resource, Durable Resource, and
Consumable Resource have as superclass the class Resource (figureS).

(superclass)

Figure 5: Simple object hierarchy: all the attributes and
methods of Resource will be inherited.

In PIMS, all superclasses are partial types, that means, they
are designed to have subclasses. When a subclass has multiple
superclasses, the superclasses combine to form a type that includes
all their individual behaviours. One has to proceed with caution by
using superclasses. For instance, one could create type Allocation
(the allocation of one particular resource to a particular task) out
of the superclasses Task and Resource. But an allocation is composed
of these parts, it is not the sum of the behaviour of these parts. In
such a case object-oriented languages offer another aggregation
mechanism: object attributes. The class Allocation should have attri­
butes that contain the task and resource of the allocation. Achieving
aggregation through attributes, instead of through inheritance, also
allows more than one instance of a particular class, such attributes
are called multivalued attributes; a superclass cannot be inherited
more than once. Unlike, for example, relational databases, in an
object base normalizing the data is not needed; m:n relations are
allowed.

The first PIMS prototype 19

5.4. Object oriented design.

In the software life cycle, object oriented programming concen­
trates on the design and implementation stages of software develop­
ment [Booch, 86]. A more comprehensive approach would combine
object-oriented techniques with methods such as NIAM (Nijssen
Information Analysis Method, see [Verheyen, 82] and [Nijssen, 82]).
Because object oriented programming encompasses both design and
implementation, it tends to blur the distinction between the two. As
Meyer [Meyer, 87] points out, this is an advantage since design and
implementation are essentially the same activity: construction soft­
ware to satisfy a certain specification. The only difference is the
level of abstraction: during the design certain details are left un­
specified, but in an implementation everything is expressed fully.

In an object oriented design specifying the relevant objects in
the application domain is the fll'st task in designing the system. In
PIMS some conceptual objecttypes are ProjectView, Task, Deliver­
able, Resources and Allocation. After specifying the major types of
objects, the next task of the design is to develop an interface for
each type by describing the methods that make up the type's beha­
viour. Last, an implementation for each type has to be developed by
describing how the type's behaviour is achieved.

An important benefit of the object-oriented style is, that it
lends itself to a particular simple and lucid kind of modularity.
Modular programming constructs and techniques help and encourage
the programmer to write programs that are easy to read and under­
stand, and so are more reliable and maintainable. Object-oriented
programming lets a programmer implement a useful facility that
presents the caller with a set of external interfaces (methods),
without requiring the caller to understand how the internal details
of the implementation work. In other words, a program that calls
this facility can treat the facility as a black boX; the calling
program has an implicit contract with the facility guaranteeing
external interfaces, and that is all it knows.

A lot of object-oriented programmers think that object­
oriented programming is grouping data and methods on that data
into a class and they believe that modelling a process as an object
goes against the grain of the object-oriented paradigm. By 'process',
a procedural mechanism is meant rather than a concrete entity. For
example, tracking the work progress is usually thought of as a
process, but tasks and resources are considered concrete entities.
Should tracking be modeled as an operation on tasks and resources?
Or should it be modelled as an independent process defined as a
separate type? In PIMS we have decided, in view of their com­
plexity, that management tasks, like tracking, should be modeled as
separate object-types (functional objects); this is, in our view, not
contrary to the object-oriented style.

Objects should be used to model entities in the application
domain. This does not mean, that the only types that should exist
are ones that model the external view of the application. A program

The first PIMS prototype 20

can be viewed as a model of a piece of the real world. In moving
from real world to a computer system, entities are introduced that
do not necessarily correspond to visible 'real-world' entities. For
example, in the PIMS system there is a functional object called the
Front End (see next chapter). This object handles the user inter­
action. The concept of the Front End is artificial and is introduced
only to help code the application.

The first PIMS prototype 21

People don't do serious work on UNIX
systems, they send jokes around the
world on UUCP-net and write
adventure games and research papers.

Anonymous.

6. The architecture of the

PIMS #1 prototype

All the groups of the PIMS consortium have agreed to stan­
dardize upon a SUNI3 workstation running under UNIX. This helps
ensure that the results of PIMS could be widely available, par­
ticularly through eventual compatibility with the ESPRIT directed
initiative into a Portable Common Tool Environment (PcrE). The
architecture separates the PIMS #1 prototype into three main parts
with different responsibilities [Fernstrom, 86]:

- Tools
Management tasks are carried by tools. In PIMS a tool is a

set of procedures which perform all the necessary processing
related to a project management task, like scheduling, resource
allocation and tracking. A tool does not perform any input/output,
user interaction or communication with another tool directly, but
relies on other parts of PIMS for doing this. Treating tools and
other parts of PIMS as objects means, that new tools or new
versions of existing tools or other functions may be dynamically
connected to PIMS without the need for modifying the existing code.

- Information Manager
All globally accessible data within the PIMS system is

maintained by an Object Base Management System, called the
Information Manager. The Information Manager provides a format
for the internal representation of entities within PIMS. This format
is mainly used to define the PIMS Project Conceptual Schema, it is
capable of representing the range of concepts, that exist within
PIMS and the relations between these concepts. The chosen
structure is a semantic net of frame based objects. The Information
manager possesses methods to access the objects which are
manipulated by PIMS, and all the necessary functionalities for
managing the PIMS tools. Obviously, any data that is produced by a
tool is stored in the earlier mentioned PIMS Project Conceptual
Schema.

- Front End
The Front End handles the user interaction and is responsible

for selecting the chosen tool functions. The Front End has been
split into three components:

The first PIMS prototype 22

• Dialogue Manager
The aim of this component is to interpret the user interaction
in order to activate a tool or a tool command (if the user is
allowed to activate this tool or command and the evaluation of
the activation conditions is successful), to obtain help
information, or to determine a PIMS session.

• Visualizer
This is an Information manager object that implements a
display action and an associated user interaction. A visualizer
is connected to a subwindow and handles display requests
(messages) sent to a subwindow instance. The visualizer
definitions for form, list and text windows are fIXed (their
display action and interactions are always the same), but a set
of different visualizers are available for graphical subwindows;
for instance, there are special visualizers for displaying Gantt
Charts, networks and trees.

• Display manager
This component is concerned with the windowing and graphics
system. In PIMS #1, the Programmable Computing Environment
[Anjewierden, 86], PCE, is used as Display Manager. PCE is a
completely object oriented interface to the standard windowing
system on Sun workstations, the Sun VisuaVIntegrated
Environment for Workstation, Sunview.
PCE is written in C and it runs as a separate process form
the rest of PIMS. The communication with PCE is performed
via UNIX-pipes.

The overall architecture of PIMS #1 is shown in figure 6.
~----- --------------1

I " '. I
I __ _ tool _ I
I Front ... - object ,. Information I
I End Manager I
I P oa ~ I

: I
data I

I o~ect

L--,,-------------PIMS -~

SUNVIEW - - UNIX

Figure 6: The overall architecture of PIMS #1
(a"ows indicate messages to send)

The first PIMS prototype 23

7. Data Modelling Language

The Information manager provides a format for the internal
representation of entities within the PIMS system. This format for
formalizing the entities within PIMS is called the Data Modelling
Language (DML) and is mainly used to define the PIMS Project
Conceptual Schema. The DML must be capable to describe the
objects that exist within the PIMS system and their relations. The
chosen model is a semantic net of frame based objects, comparable
with the structure available in commercial expert shells, like Kee
and Goldworks.

A frame is a structure that contains a set of named attri­
butes, called slots, which together describe a concept, object, in
much the same way as fields in a record. Slots can be attached to
simple facts, rules, frames and procedures. Unlike records in
conventional languages, which can contain only declarative infor­
mation (such as integers), slots can have procedural information
(methods). Slots can contain subslots, called facets, which contain
knowledge about the information in the slots. A frame in PIMS
contains commonly used facets, such as Type, Value. IfNeeded,
Default, and AfterModify.

The IfNeeded facet gives a procedure for calculating the value
of the slot if no other value is attached to the slot. For example,
when an attribute of the class Task is EffortSpent, an IfNeeded
facet can be used to calculate the value of this attribute, because
this value is equal to the sum of the effort spent of the resources
allocated to the task. Default facets are available to provide a slot
value if no other method is successful or available.

An AfterModify facet can contain procedural information. It
specifies an action to be taken when the value in the slot is
modified. Such procedural attachments, called demons, provide data
driven infering (forward chaining) by causing procedures to execute,
whenever the slot is modified. Demons are triggered automatically;
the system checks for the existence of an AfterModify facet when
it attaches a new value to a slot. Frames that describe slots and the
types of values they have are called classes. Frames that represent
actual objects are instances of a frame.

In the following we will describe the syntax used to define a
physical class in the PIMS system. This description gives a clear
impression of the PIMS frames and the possibilities of the Data
Modelling Language [Doize, 87].

The first PIMS prototype 24

< physicalclass > :: = (DefClass < classname >
< superclasses >
< classdescription >
< attributes>
< instance-constraints>
<methods>

)

< classname > :: = symbol of the user package

< superclasses > :: = ({ < classname > })
A class inherits the attributes, methods and constraints of
its superclasses.

< instanceconstraints > :: = ({(< predicate> [< comment>])})
These predicates are Lisp forms describing relations
between attributes of the same instance.

< classconstraints > :: = ({ (< predicate> [< comment>])})
These predicates are Lisp forms describing relations
between instances of the same class.

< methods> :: = ({«< methodname > < arguments> { < Lispforms > })
[< comment> D})

These methods are Lisp functions which are executed
when an instance of the class receives the appropriate
message. The forms are the function body; the value of
the last form is returned, when the method is applied.

< attribute> :: = « attributename > { < facet> })

< attributename > :: = symbol of the user package

<facet>:: =
(AttributeDescription < string>) I

This facet provides an informal description of the attribute.

(Type < type > I(< type> [< cardmin> [< cardmax>]])
[< typerestriction >]) I

This facet specifies the type of the attribute. When the
attribute is multivalued, its value must be a list of
elements of type < type >. The number of elements of this
list must be between < cardmin> and < cardmax). If
< cardmax > is not provided or nil, there is no maximum
cardinality. If neither < cardmin> or < cardmax> are provided,
there is no cardinality condition.

The first PIMS prototype 25

< typerestrictioIl):: = (Range{(< min> < max>)}) I
(SetONalues{ <values>})

The first alternative means a value of the attribute must
be contained in one of the intervals [< min > , < max>]. The
second alternative means only the listed values are
allowed for the attribute. These values must be of the
same type of the attribute.

(AttributeConstraints {(< predicate> [< comment>])}) I
Each predicate is a Lisp form representing a condition
which must be verified by the attribute value.

(Value[< initvalue >]) I
This facet indicates. that the attribute is settable. If there
is no such facet associated to the attribute, this is not
settable and its value can be obtained only through the
IfNeeded or the Default facets. < initvalue > allows to
defme a default initialization value for the attribute.

(IfNeeded{(< Lispform > [< comment>])}) I
When an attempt is made to read an attribute whose value
is undefmed, the functions given by the IfNeeded facet are
used. They are applied in the order they have been given,
until one of them succeeds.

(Default < defaultvalue >) I
This facet allows to define a default value for the
attribute. It is used, if the attribute value is undefmed
and could not be calculated by an IfNeeded function.

(AfterModify{«{ < event}) <Lispform>[< comment>])})l
This facet allows to define data propagations. The given
Lisp forms will be automatically applied after every
modification of the attribute's value. According to the
event which has resulted in the modification the corres­
ponding functions are applied.

(ReverseAttribute < attributename >)
The attribute for which this facet is defined has a reverse
attribute; this means they represent semantically the same
relation: if a link is created, its reverse link has to be
created too; on the other hand if a link is suppressed. its
reverse link must be suppressed too.

The first PIMS prototype 26

Any programmer who fails to comply
with the standard naming, fonnatting
or commenting should be shot.

M. Spier

8. Tool Modelling Language (TML)

In order to formalize the PIMS system view of a tool, a Tool
Modelling Language has been defined. In principle, a tool could be
described as a class using the Data Modelling Language, but since
many of its characteristics must be known to the Front End, a
specified Tool Modelling Language has been defined [Fernstrom, 87).
A TML description of a tool contains all the information related to
a tool that is needed for the Front End to build up a user interface.

The formal TML description of a tool is processed by the Tool
Compiler that produces a tool class and other information used at
run time. The TML supports the description of the following aspects
of a tool:

- object description of the tool: attributes and methods
textual information about the tool: used for short or long
help
activation condition of the tool: criteria that must be
verified before activation
specification of the commands (functions that may be
activated by the user): the syntax of the commands and
their relation with tool methods
state transition table describing precedence rules between
commands
deftnition of the static tool window: deftnition of all the
static subwindows used by the tool
language dependency: how user messages have to be
expressed in different (natural) languages

A tool definition contains two kinds of information:
- internal information used by the PIMS system, which is

independent of the (natural) language used in communication
with the user

- text that will be displayed on the screen; this text is
dependent of the user language

For each language a number of user messages is dermed in the
form of strings or lists of strings. Each user message has a
reference number. This number is used in the language independent
part to associate the user message.

To give an impression of the possibilities of the TML we give
a short description of this modelling language. On the highest level,
the syntax of a TML description is as follows:

The first PIMS prototype 27

< ToolDescription >:: =
(:Tool < Toolldentifier >

(:ToolExternalName < StringNumber >)
[(:Languages {< Language> })]
[(:Toollcon <FileName»]
[(:SuperTools {<Toolldentifier>})]
[(:ImportClass {< ClassName > })]
[(:ToolShortInfo < StringNumber »
[(:ToolAims < PacketNumber >)]
[(:ToolPreConditions < PacketNumber >)]
[(:ToolEffects <PacketNumber»]
(:UserStatus {< UserStatus > })
[(:ToolActivationCondition {< ActivationConditions > })]
(:ToolCommandSpecification {< CommandGroup > })
[(:TransitionTable {<StateTransition>})]
[(:SubWindows <WindowDescription»]
[(:Attributes {< Attribute> })]
(:Methods {< Method> })
(:DependentPart {< LanguageDependency > })

)
The slot Tool contains the internal name of the tool: this
symbol is used as name of the Information Manager class of
the tool.

The slot 'It>ol ExternalName refers to the name that the PIMS
user will see in a button in the PIMS main window (see next
chapter).

The slot Languages contains the list of languages for which
external strings are described.
The slot DependentPart describes the strings for the languages
taken into account by the tool.

The slot Toollcon contains the definition of a small graphical
object used to represent the tool on the user's screen.

The object description of the tool has four slots: SuperTools,
ImportClass, Attributes and Methods. After the keyword SuperTools
appears a list of Toolldentifier's; the current tool inherits all the
attributes and methods of the tools dermed in this list. After the
keyword ImportClass appears a list of ClassName; these classes are
used by the tool, but dermed in other modules. All the classes
dermed in this list can be used as type for tool attributes.

After the keyword Attributes appears a list of slots Attribute.
Except for the keyword Attribute an attribute has the same syntax
as in the DML (see previous chapter). An attribute may be typed
by using a predefined type of the Information Manager (e.g. string
or integer) or a class dermed in the PIMS Project Conceptual
Schema.

After the keyword Methods appears a list of slots Method. A
slot Method has the following syntax:

The first PIMS prototype 28

< Method> :: =
(:Method < MethodName >

([{ < Parameter> }])
< Lispcode>

)

The methods are the entry points of the tool. In the TML des­
cription of the Tracker Tool, the < Lispcode > is a function call; in
this way it is possible to compile the TML part and the functions
(representing the methods) separately. A method is activated either
by the Front End after the user has given the corresponding com­
mand or directly by a tool through a message.
The textual information about the tool (help) has four slots:

- ToolShortInfo, which refers to a string representing a short
help text about the tool.

- ToolAims, which refers to a list of strings describing the
aims of the tool.

- ToolPreConditions, which refers to a list of strings describing
when the tool can be activated.

- ToolEffects, which refers to a list of strings describing the
modifications of the Information Manager objects made by
the tool.

The activation condition of the tool is defmed by the slots
UserStatus and ToolActivationCondition. The keyword UserStatus is
followed by a list of user statuses; only users that have one of
these statuses can activate the tool.

ToolActivationCondition is a list of ActivationCondition's:

< ActivationCondition > :: =
(:ConditionCheck < Predicate> < StringNumber >)

The predicate is a Lisp expression that will be evaluated. If it
fails, the user message referenced by the StringNumber is displayed
and the tool will not be activated, otherwise an instance of the tool
is created.

The command specification of the tool is a two level structure.
Each first level description describes a command group. The
specification of the commands is defmed by the slot ToolCommand­
Specification. This slot contains a list of CommandGroup's, where
each element defmes a group of commands.

< CommandGroup >:: =
(:CommandGroup < GroupIdentifier>

(:GroupExtemalName < StringNumber »
(:GroupShortInfo < StringNumber >)
[(:GroupAims < PacketNumber»]
[(:GroupEffects < PacketNumber»]
< CommandDescriptor > {< CommandDescriptor > }

)

The first PIMS prototype 29

GroupIdentifier is the internal name of the group of commands.

The slot GroupExternalName refers to the external name, the PIMS
user will see in a menu bar of the tool dialogue subwindow (see
next chapter).

The slot GroupShortInfo refers to a short help string describing the
group; it can be displayed using the help facilities.
The slots GroupAims and GroupEffects refer to the textual explana­
tions with respect to the commands of the group.

A < CommandDescriptor > contains the complete description of a
command, it describes how a method defined in the slot method can
be activated.

< CommandDescriptor > :: =
(:Command < CommandIdentifier >

(:MethodName < Methodname >)
(:CommandExternalName < StringNumber >)
(:CommandWriteAccess < WriteAccess »
[(:UserStatus {< UserStatus > })]
(:CommandShortInfo < StringNumber >)
[(:CommandAims < PacketNumber»]
[(:CommandPreconditions < PacketNumber >)]
[(:CommandEffects < PacketNumber >)]
[(:CommandActivationCondition {< ActivationCondition > })]
[(:ParameterDesc {< Parameterdescriptor > })]
[(:CommandRestriction {< ConditionCheck > })]

)
The < CommandIdentifier > contains the unique internal name of

the command; it is used to reference the command in the state
transition table and in popup menus defined in subwindows (see next
chapter).

The slot CommandExternalName refers to the external name, which
appears in a popup window when the PIMS user selects a group.

The slot CommandWriteAccess defines if the tool function (method)
will modify data in the Information Manager.

The slots UserStatus, CommandShortInfo, CommandAims, Command­
PreConditions, CommandEffects and CommandActivationCondition
mean the same as the with these 'command' slots comparable 'tool'
slots (see above).

If a command has parameters, they are described by the
< ParameterDescriptor > that contains information used by the Front
End to build a parameter acquisition window for the parameter
input. The list of the < Parameterdescriptor > in the command
specification, must be ordered as the parameters mentioned in the
associated method.

The first PIMS prototype 30

< ParameterDescriptor > :: ==
< AtomParameter > < ListParameter >

An AtomParameter has only one value, a ListParameter has a
list of values.

< AtomParameter > :: ==
(:AtomParameter < ParameterIdentifier >

(:ParameterPrompt < Stringnumber >)
(:ParameterShortInfo < StringNumber >)
[(:ParameterLonginfo < PacketNumber »]
(:ParameterType < ParameterType »
[(:SelectionPath < SelectionPath >)]
[(:DefaultValue < LispCode»]
[(:Optional)]
[(:ConditionCheck < Predicate> < StringNumber >)]

)

< ListParameter > :: ==
(:ListParameter < ParameterIdentifier >

(:ParameterPrompt < StringNumber »
(:ParameterShortInfo < StringNumber >)
[(:ParameterLonginfo < PacketNumber»]
(:ParameterType < ParameterType >)
[(:SelectionPath < SelectionPath >)]
[(:DefaultValue < LispCode»]
[(:EachParCbeck < Predicate> < ErrorMessage »]
[(:AllParCheck < Predicate> < ErrorMessage >)]

)

A < ParameterIdentifier > is the local name of the parameter.

The slot ParameterPrompt refers to a short string used as prompt in
the parameter acquisition window.

The slot ParameterType is the type of the Parameter.

The slot SelectionPath is the name of an attribute of the class
dermed in the slot ParameterType. The value, given by the PIMS
user via the keyboard, is replaced by the Information Manager
instance of the class (defined by the slot ParameterType) for which
the attribute SelectionPath has the value given by the PIMS user. If
the slot SelectionPath is not provided the Key of the class is used.

The slot DefaultValue is the value assigned to the parameter before
the user gives a value.

For an AtomParameter, if the slot Optional is present, nO value has
to be given by the PIMS user for this parameter; in this case the
DefaultValue is used.

For an AtomParameter, the slot ConditionCheck describes the
condition that the parameter value must fulfU.

The first PIMS prototype 31

For a ListParameter the slots EachParCheck and AllParCheck
describe conditions that each new value and the list of values must
satisfy.

The slot CommandRestriction defines checks on the parameter
values; the command can be activated only if these checks are
successful.

In Appendix 1 the command EnterEndDate of the Tracker Tool
is shown. This command, which is one of the commands of the
group EnterResourceData, has three atom parameters:

- PersonKey (the name of a resource).
- TaskName.
- EndDate.

The Front End performs the following parameter condition checks:
- if the PersonKey belongs to a human resource which has

been allocated to at least one task, that belongs to the
current project status (check_task_allocated function 10

Appendix 1)
- if the TaskName is the name of a not acknowledged task.

that belongs to the current project status
(check_task_not_ack function in Appendix 1)

- if the EndDate is an existing date and is not later than the
current date (valid_date_check_function in Appendix 1)

There is one CommandRestriction:
- if the PersonKey belongs to a resource that has been

allocated to the task which belongs to the entered TaskName
(check_ResAllocation function in Appendix 1)

The with the command associated method ENTER_END_DATE
performs the following additional checks:

- if the EstimateToComplete value is zero
- if the entered EndDate is equal to or later than the

StartDate of the resource on the task
If the parameter values are valid the method stores the EndDate
and its display in a textwindow data related to the tasks allocated
to the entered resource.

The state transition table, dermed in the slot TransitionTable,
is to express a logical dependency between command activation
conditions.

The slot SubWindows contains a static description of the tool
main window and the subwindows of the tool. It describes the
tool's window as it will (initially) appear on the screen. It dermes
the size of the main window in pixels and the relative position and
the size of the subwindows that appear inside the tool main
window.

The first PIMS prototype 32

In addition to statically defmed windows, a tool can deal with
Popup windows. These windows can be dynamically created and
destroyed by the tool. For their manipulation a set of functions has
been defmed. Most dynamic subwindows are completely defmed in
the code of the methods of the tool. The exception of this is the
popup FormSubWindow, used for forms, which needs a
< SubWindowDescriptor > in the TML description.

In PIMS, four types of subwindows have been defmed:
- TextSubWindow, which can be used for displaying text

(strings). It has a vertical scroll bar.
GraphicalSubWindow, which can be used for displaying
graphics, like Gantt charts, networks, and trees. The user
may pick with the mouse displayed PIMS objects, which can
be used as parameter values to tool commands. Such a
window has vertical and horizontal scroll bars.
ListSubWindow, which can be used to display lists of items.
These are displayed as a list of strings, each referring to a
PIMS object. A displayed item may be picked with the
mouse and the corresponding object can be used as a
parametervalue to a tool command. It has a vertical scroll
bar.
FormSubWindow, which can be used to display forms, which
have to be filled in by the user. This is an alternative way
for the tool builder to acquire information from the user
(the other way is the command acquisition handled by the
Dialogue Manager).

The syntax of the < WindowDescription > 15:

< WindowDescription > :: =
(:WindowSize < HorizontalSize > < VerticalSize >)
(:WindowType {< SubwindowDescriptor > })
(:WindowGrid < SubWindowTopology >)

< SubWindowDescriptor >:: =
(:SWDescriptor <String>

(:SWType < SubWindowType >)
[(:SWPopup < SubWindowPopup >)]
[(:GDisplaySize < HorizontalSize > < VerticalSize >)]

)
< SubWindowtype >:: =

:TEXTSUBWINDOW I
:GRAPHICALSUBWINDOW I
:LISTSUBWINDOW I
:FORMSUBWINDOW I

In Appendix 2 the main window description of the Tracker
Tool is shown. This window will be described further in the next
chapter.
To give an impression of the size of the Tracker Tool (including
forecasting), the lines of code will be given:

- TML description: 1400 lines of code;
- Lisp functions: 3500 lines of delivered source instructions.

The first PIMS prototype 33

9. Using a tool in PIMS

When a PIMS environment (Information Manager, Dialogue
Manager, Visualizers, tools) is invoked, a PIMS main window is
created. For each tool present in the environment, this window
contains a button in which the string defined by the ToolExtemal­
Name is displayed. This button is used to activate or to display
information about the associated tool.

In the PIMS main window, two lines are reserved to display
error messages and help text.

To activate a tool the PIMS user has to select the associated
button in the PIMS main window. This activation is only possible if
the preconditions have been evaluated, i.e. the status of the PIMS
user appears in the slot UserStatus and the evaluation of the
predicates defined in the slot ToolActivationCondition are success­
ful. If the tool activation is possible, an instance of the tool (­
class) is created. This means, among other things, the tool main
window, which contains the tool dialogue subwindow ('automatically'
built by the Front End) and the tool subwindows (defined in the
TML description of the tool), is created. In figure 7 the tool main
window of the Tracker Tool is shown.

Dialogue subwindow

Workbreakdown Activity-on-node
Tree Diagram

used listwindow textwindow
resources (not editable by user)

Figure 7: The tool main window of the Tracker Tool

The first PIMS prototype 34

The tool dialogue subwindow is used by the Dialogue Manager
for command processing. It contains a menu bar with a button to
QUIT the tool, and two lines to display error messages and help
information. Further the menu bar contains the GroupExtemalName
of all the command groups. When the user selects, with the left
button of the mouse, one group, a popup menu, that contains all
the CommandExtemalName of the commands belonging to the group,
will appear. The selection of one of these commands is sent to the
Dialogue Manager as a wish to activate the command. A command
can only be activated if the status of the PIMS user is correct
according to the content of the slot UserStatus and if all the
ActivationCondition's are verified.

If the command has no parameters the with the command
associated method is activated. Otherwise the so-called Parameter
Acquisition Window is shown. This window has two main goals:
display all the parameter values yet furnished (including default
values) and allow the user to modify these values. The acquisition
window consists of:

- two buttons for Validate and Cancel the command input and
two lines to display error messages and help information

- a parameter prompt, containing the string dermed in the
slot ParameterPrompt; the help information is the string
dermed in the slot ParameterShortInfo. Initially, the editable
field of the parameter is either empty or it contains the
default value optionally specified by the slot DefaultValue

- for every ListParameter there is also a list subwindow
displaying all the values given so far. One of these is the
current value (highlighted) which is the one shown in the
editable field of the parameter

The actions the PIMS user can perform are:
- select a parameter prompt using either the keyboard or the

mouse; the parameter belonging to this prompt becomes the
current parameter

- use the keyboard to enter a new or to modify an existing
value in the editable field

- use the left button of the mouse to select an object in any
other subwindow, containing selectable objects. The object
selected will be assigned to the parameter associated with
the current editable field, and a textual representation of
the object will be displayed

- update the list of values of a ListParameter (add or delete
values)

- select one of the buttons Validate or Cancel; a Cancel
aborts the command processing and a validate triggers the
final check of all the parameter values according to the
condition check in the slot CommandRestriction. If this is
successful the associated method is activated

The first PIMS prototype 35

Obviously, each new value for the current parameter is checked
according:

- to the ParameterType
- to the ConditionCheck for an AtomParameter or to the

EachParCheck and AllParCheck for a ListParameter.

If the new value is incorrect an error message is displayed and
nothing is changed for the command currently handled. When the
new value supersedes the previous value, for a ListParameter the
new value is added at the end of the previous list of values.

The first PIMS prototype 36

10. References

[Anjewierden, 86]
Anjewierden, A, "PCE-Prolog Reference Manual", University of
Amsterdam, 1986.

[Booch, 86]
Booch, G., "Object-Oriented Development", IEEE Trans.
Software Engineering, Feb. 1987.

[Doize, 87]
Doize, M., Fernstrom, C., "User's manual for the PIMS #1
Information Manager", CSI, CSI-F-SP-004f, 1987.

[Fernstrom, 86]
Fernstrom, C., "System Architecture", CSI, CSI-E-SP-002, 1986.

[Fernstrom, 87]
Fernstrom, C., Konc, S., Paris, J., "Tool Builder's Handbook for
PIMS #1", CSI, CSI-F-SP-003c, 1987.

[Goldberg, 83]
Goldberg, A, Robson, D., "Smalltalk 80: The language and its
implementation", Addison-Wesley, 1983.

[McDermott, 82]
McDermott, J., "Rl: A Rule-Based Configurer of Computer
Systems", Artificial Intelligence, Vol 19, N~ 1, 1982.

[Meyer, 87]
Meyer, B., "Reusability: The case for Object-Oriented Design",
IEEE Software, March 1987.

[Nijssen. 82]
Nijssen, G.M., Vermeir, D., "A procedure to define the object
type structure of a conceptual schema", Inform. Systems, Vol
7, N~ 4, 1982.

[Steele, 84]
Steele, G.L.Jr., "Common Lisp: The Language", MA: Digital
Press, 1984.

[Turing, 50]
Turing, A, "Computing machinery and intelligence", Mind, 59,
October 1950. Reprinted in Feigenbaum, E., Feldman. J.,
"Computer and Thought", McGraw Hill, 1963.

The first PIMS prototype 37

[Verheyen, 82]
Verheyen, G.MA., Van Bekkum, J., "NIAM: An Information
Analysis Method", in Olle, T.W., So~ H.G., Verrijn Stuart, A.A.,
"Information System Design Methodologies - A Comparative
Review", North Holland Pub!. Co., 1982.

[Wissing, 87a]
Wissing, R, 'Modelling, tracking and predicting 10 software
project management",BSO, BSO-G-RR-102, 1987.

[Wissing, 87b]
Wissing, R, "Tracker Tool Specifications", BSO, BSO-G-SP·
104, 1987.

[Wissing, 88]
Wissing, R, "Predictor Specifications", BSO, BSO-G-SP-108,
1988.

[Yourdon, 79]
Yourdon, E., Constantine, L., "Structured Design", Prentice
Hall, 1979.

The first PIMS prototype 38

Appendix 1

The TML description of the command EnterEndDate.

(:Command EnterEndDate
(:MethodName ENTER_END_DATE)
(:CommandExternalName 73)
(:CommandWriteAccess t)
;(:UserStatus {<UserStatus>})
(:CommandShortlnfo 74)
;(CommandAims < PacketNumber »
;(:CommandPreconditions < PacketNumber >)
;(:CommandEffects < PacketNumber >)
;(:CommandActivationCondition {< ActivationCondition > })
(:ParameterDesc

(:AtomParameter
PersonKey
(:ParameterPrompt 62)
(:ParameterShortInfo 63)
;(:ParameterLongInfo < PacketNumber >)
(:ParameterType Person)
(:SelectionPath Key)
;(:DefaultValue

< Lispcode >
;) ;end DefaultValue
;(:Optional)
(:ConditionCheck

(tr::check_task_allocated $*PersonKey*$
user::selflDSt

)64
)

)
(AtomParameter Taskname

(:ParameterPrompt 52)
(:ParameterShortInfo 53)
;(:ParameterLongInfo <PacketNumber»
(:ParameterType Task)
(:SelectionPath Name)
;(:DefaultValue < LispCode>)
;(:Optional)
(:ConditionCheck

(tr::check_task_not_ack $*TaskName*$)
54

) ;end ConditionCheck
) ;end AtomParameter

The first PIMS prototype 39

(:AtomParameter EndDate
(:ParameterPrompt 75)
(:ParameterShortInfo 76)
;(:ParameterLongInfo < PacketNumber >)
(:ParameterType Integer)
;(:SelectionPath < SelectionPath »
;(:DefaultValue < LispCode >)
;(:Optional)
(:ConditionCheck

(tr::valid_date_check $*EndDate*$
user::selfmst)

)77
) ;end ConditionCheck

) ;end AtomParameter
) ;end ParameterDesc
(:CommandRestriction

(:ConditionCheck
(tr::check_ResAllocation $*PersonKey*$
$*TaskName*$ user::selfinst

)
78

) ;end ConditionCheck
) ;end CommandRestriction

) ;end Command

The first PlMS prototype 40

Appendix 2

The TML description of the Tracker Tool's main window.

(:SubWindows
(:WindowSize 1100 732)
(:WindowType

(:SWDescriptor ResList
(:SWType :LISTSUBWINDOW)

)
(:SWDescriptor ItemList

(:SWType :LISTSUBWINDOW)
)
(:SWDescriptor Sched

(:SWType :GRAPHICALSUBWINDOW)
(:GDisplaySize 6000 3000)

)
(SWDescriptor Wbd

(:SWType :GRAPHICALSUBWINDOW)
(:GDisplaySize 4000 3(00)

)
) ;end SubWindows

Sched)
Sched)
Sched)
Sched)
Text)
Text)

Sched
Sched
Sched
Sched
Text
Text

Wbd Sched
Wbd Sched
Wbd Sched
Wbd Sched
ItemList Text
ItemList Text

)
(:SWDescriptor Text

(:SWType :TEXTSUBWINDOW)
)

)
(:WindowGrid

(Wbd
(Wbd
(Wbd
(Wbd
(ResList
(ResList

The first PIMS prototype 41

Activity hierarchy
Activity-on-node diagram
AfterModify facet
Antecedent
Architecture
Artificial Intelligence
Atoms

Backward chaining
Balance
Binary trees

Calendar Deftnition Tool
Class
Cohesion
Common Lisp
Conclusion
Consequents
Coupling
Critical activities
Critical path
Critical Path Method

Data Modelling Language
Decision tree
Declarative knowledge
Default facet
Demon
Diagnosis
Dialogue Manager
Display manager
Domain knowledge

Empty list
ESPRIT
Estimating
Expert systems
Extended Common Lisp

The first PIMS prototype

Index

6
7

24
11
22
11
14

12
6

14

8
18
6

16
11
12
6
8
8
8

24
12
11
24
24
9

22
23
11

15
4
7

11
16

42

Facet
Facts
Flavors
Forecasting
FormSubWindow
Forward chaining
Frame
Franz Lisp
Front End

Garbage collection
GraphicalSubWindow

Heap memory
Heuristic knowledge
Hierarchy

IfNeeded facet
Inference engine
Information Manager
Initiation
Instance

Knowledge acquisition

Language dependency
Lisp
Lisp dialects
Lists
ListSubWindow

Message
Message/object model
Meta-object
Method
Modularity
Multivalued attribute

NIAM
NIL

Object
Object Base Management System
Object oriented design
Object oriented programming
Operator/operand model

The first PIMS prototype

24
12
16
10
33
12
24
16
22

16
33

15
11
19

24
12
22
5

18

12

27
14
16
14
33

17
18
18
17
20
19

20
15

17, 18
22
20
17
17

43

Parameter Acquisition Window
PCE
PCTE
PIMS
PIMS Project Conceptual Schema
Popup window
Predicting
Premiss
Product hierarchy
Production rules
Project manager
Prototyping

Resource Allocating
Resource DefInition Tool
Reverse attribute
Rule base
Rule-of-thumb

Scheduling
Semantic net
Size of the Tracker Tool
Slot
State transition table
Subwindow
Superclass

TextSubWindow
Tool
Tool dialogue subwindow
Tool main window
Tool Modelling Language
Tracking

UNIX

Visualizer

Workbreakdown

XCon

The first PIMS prototype

35
23
22

4
22, 24

33
9

11
6

11
5

15

8
8

26
11
11

7
24
33
24
27
33
19

33
22, 27

35
32
27
9

22

23

6

14

44

Modelling, tracking, and predicting in software project management

ABSTRACT

This document discusses an analysis of modelling, tracking and
predicting in software project management. It serves as starting
point for describing the specifications of two tools, concerning
tracking and predicting respectively.

Authors
Reader
Level
Status
Identifier:
Created
Printed

RF Wissing, BSO/Eindhoven
RK Dixon
BSO/Eindhoven BV
InCircu1ation
BSO-G-RR-102
87/10/01
22 January 1988

(Release
(Edited

1. 6)
88/01/22)

This document is part of a project partially funded
by the Commission for the European Communities ESPRIT
programme, as project number 814.

6 1988 BSO/Eindhoven BV

Modelling, tracking, and predicting

Distribution List

Christer Fernstrom CS1
John Hawgood PA
Robbert de Hoog UvA
Patrick Humphreys LSE
John Jenkins 938
Hans van de Klok BSO
Frank Land LBS
Eirik Naess-Ulseth SI
Mark Reilly tTl

BSO-G-RR-102 -Page 2- 22 January 1988

Modelling, tracking, and predicting

Revision Information

Creation Date:
Author
Reader
Modifications:

Old idea. give way slowly; for they are
aore than abstract logical forms and cate·
gories. They are habit., predispositions,
deeply ingrained attitudes of aversion and
preference.

John Dewey

Modelling, tracking, and predicting

Table Of Content--- --
1 Modelling.. 5
1.1 Introduction... 5
1.2 Macro-models for cost/effort estimation 5
1.2.1 Historical-experiential models 6
1.2.2 Statistically-based models 9
1.2.2.1 Linear statistical models '" 9
1.2.2.2 Nonlinear statistical models. 11
1.2.3 Theoretically-based models 19
1.2.3.1 The SLIM-model (Putnam) 19
1.2.3.2 The Jensen - model................................. 23
1.2.4 Composite models..................................... 24
1 . 2 . 4 . 1 COCOMO 24
1 . 2 .4. 2 COPMO.. 30
1.2.5 The P938 estimating tool.... 31
1.3 Some conclusions ·............ 32
2 Tracking... 34
2.1 Introduction... 34
2.2 Measuring objectively... 34
2.3 Selecting the metrics to track.. 35
2.4 Discrepancy cl as ses 37
2.5 Determining the state of a task , 37
2.6 Quality Assurance 38
2.7 Schedule, cost, and resource tracking 39
2.8 Graphs 43
3 Predicting... 45
3.1 Introduction... 45
3.2 Predicting on the basis of the project model........... 45
3.3 Forecas ting 48
4 Glossary ' . 51
5 Bibliography... 54

BSO-G-RR-102 -Page 4- 22 January 1988

Lord K.lvin

Wh.n you c.n ••••ur. wh.c you .r. .p.aking
abouc, and .xpr••• ic in numb.r., you know
ao••thing .bout it; but wh.n you cannot
.e••ur. it. wh.n you c.nnoc .xpr••• it in
number•• your knowl.dge i. ofg.r .nd
~.ti.f.ctory kind.

Modelling, tracking, and predicting

1. Modelling

1.1. Introduction

When a computer system has to be suitable for helping the project
manager to manage his software project in an intelligent way, it is
clear that a model must be made of the project (software development
process). A model is a miniature representation of a complex reality
[DeMarco, 82). A model reflects certain selected characteristics of the
~iece of the real world it stands for. Obviously, a model is only useful
if it represents accurately those characteristics that are of interest
at a certain moment. If there is a need to examine different charac­
teristics at different times, it may be necessary to build several
models of the same 'system' (project). Naturally, these models have to
be consistent.

Because it is impossible to oversee the project as a whole, one has to
divide the project into pieces, the tasks, and define the interfaces
between them, the deliverables. This means an initial York Breakdown
Structure (YBS) has to be made. To each task identified in the YBS an
effort must be allocated. This task-effort will be estimated with the
aid of an effort estimation model. Naturally, this model has to fit in
the overall project model. Part of building an effort estimation model
is specifying the parameters which are assumed to be relevant for the
tasks, and allocating appropiate values to them. It is quite possible
that the values of the estimation model parameters must be corrected
during scheduling the tasks and/or resource allocation.

Since the models give the manager a way to study essential aspects of
the project, such models play an important role in making the project
plan. This plan will be used in tracking the work progress. When track­
ing indicates that there is a serious deviation from the plan, one has
to know how the project plan has been made (in particular, what parame­
ters are used and what values are assigned to them).

1.2. Macro-models for cost/effort estimation

Models can be grouped in four categories [Conte et a1., 86):

- historical-experiential models;
• statistically-based models;
- theoretically-based models;
- composite models.

In the next sections the above mentioned kinds of models will be dis­
cussed.

BSO-G-RR-I02 -Page 5- 22 January 1988

Modelling, tracking, and predicting

1.2.1. Historical-experiential models

Most of the effort estimation methods commonly used today fall into the
category of experiential models. In its simplest form, one or more
experts are asked to make estimates about the effort required, either
for the total project or for the pieces into which the project has been
divided. In doing so, the 'estimators' rely on their own experience with
similar projects, and/or on intuition, and/or on historical information
about completed projects. If more than one estimator is involved, there
are a number of ways to combine them to the 'best' starting estimate.
One way is simply to compute the mean or median estimate of all the
individual estimates. This method is quick, but subject to adverse bias
by extreme estimates. Another way is to hold a group meeting to get the
'estimators' to converge on, or at least agree to a single estimate.
This procedure has the advantage of filtering out uninformed estimates
in general, but it has two main drawbacks. Firstly, group members may be
influenced by the more glib and assertive members. Secondly, group
members may be overly influenced by figures of authority or political
considerations. One technique that has been used to avoid the drawbacks
of the group meeting is the Delphi method, a method of multi-source
estimating [Boehm, 81]. The steps involved in the standard Delphi tech­
nique are the following:

1. Coordinator presents each expert with a specification and a
form upon which to record estimates.

2. Experts fill out forms anonymously. They may ask questions
of the coordinator, but should not discuss the situation
with each other.

3. Coordinator prepares a summary of the experts' estimate, and
the rationale behind the estimate (see figure 1.1).

4. Experts fill out forms, again anonymously, and the process is
iterated for as many rounds as appropriate.

5. No group discussion is to take place during the entire process.

Boehm has proposed an alternative method which he called the Wideband
Delphi method. The steps of this methods can be summarized as follows:

1. Coordinator presents each expert with a specification and an
estimation form.

2. Coordinator calls a group meeting in which the experts discuss
estimation issues with the coordinator and each other.

3. Experts fill out forms anonymously.
4. Coordinator prepares and distributes a summary of the estimates

on an iteration form (similar to figure 1.1, but excluding the
written rationale).

5. Coordinator calls a group meeting, specifically focusing on
haVing the experts discuss points where their estimates varied
widely.

6. Experts fill out forms, again anonymously, and Steps 4 to 6 are
iterated for as many rounds as appropriate.

The Wideband Delphi method has subsequently been used in a number of

BSO-G-RR-102 -Page 6- 22 January 1988

Modelling, tracking, and predicting

DELPHI COST ESTIMATION ITERATION FORM

PROJECT: Oper,ting Synem DATE: 6121/83

HERE IS THE RANGE OF ESTIMATES FROM THE lit ROUND

o

, Your Medi.n
/ est,m,tl /estim.te

II

®)([E])()(
I ! I Mln,months

20 .0 60 80 100

PLEASE ENTER YOUR ESTIMATE FOR THE NEXT ROUND 35 MM

PLEASE EXPLAIN ANY RATIONALE BEHIND YOUR ESTIMATE:

This 101סס1 likl • n.nd"d process control opef.ting system. The development 11l8rll ha had
• lot of Illperienel with IUch svstems, ,nd should MYe no trouble with this one.

Figure 1.1 Typical Delphi iteration form [Boehm, 81]

studies and cost estimation activities [Boehm, 81]. It has been success­
ful in combining the free discussion advantages of the group meeting
method and the advantages of anonymous estimates of the standard Delphi
method.

Naturally, the estimating methods, discussed above, are subjective
working-methods, which are highly dependent on the competence and objec­
tivity of the 'estimators'. Such methods run the ~sk of overlooking
activities which may be unique to the current pro t. The methods just
described can be applied at either the overall pro. c level or at the
task level. These are commonly referred to top-down estimating
(overall project level) or bottom-up estimating (tas~ level). The major
advantage of top-down estimating is its overall project level focus. So,
it will not miss the top level tasks such as integration, users' manu­
als, configuration management, quality assurance, project management,
etc. The major disadvantages of top-down estimating are, that it often
does not identify some low level problems that are likely to escalate
costs, that it sometimes misses components of the software product to be
developed, that it provides no detailed basis for cost justification and
iteration, and that it is less stable than a multicomponent estimate, in
which estimation errors in the components have a change to balance out
[Wolverton, 74]. All in all the top-down method (with expert judgement)
is not recommended for substantive estimates. Its principal use is for
early, quick, and cheap (and inaccurate) estimates at the outset of a
product development.

Bottom-up estimating is complementary to top-down estimating, in that
its weaknesses tend to be top-down 's strengths, and vice versa. Thus
the bottom-up estimate tends to cover just the effort associated with
the bottom-level tasks, and to overlook many of the top-level functions.
In the bottom-up estimate, the effort of each software component is
estimated by an individual, often the software engineer, who will be
responsible for developing the component. The usual way to ensure that
all the tasks are included in a bottom-up estimate is to organize the
software product into a Work Breakdown Structure (WBS) which includes

BSO-G-RR-102 -Page 7- 22 January 1988

Modelling, tracking, and predicting

not only the product hierarchy of the software product components, but
also the activity hierarchy of projects jobs to be done. This ensures
that the costs of such activities as integration and configuration
management are included. From the WBS, very accurate estimates can be
done by experienced software engineers. The drawback to the bottom-up
method is, that it requires much more effort than a top-down estimate
does.

A well-known historically based model is
[Wolverton. 74J. It derives the software
software cost matrix (see figure 1.2).

the TRW Wolverton
development cost

model
from a

The elements of the matrix (Ci.j) are costs per line of code (clearly,
effort per line of code is also possible), which depend on software type
and software difficulty. The first step in the TRW - Wolverton method is
to identify the types of all modules within the proposed software pro­
duct. Six types are proposed: control, Input/Output, pre/post processor,
algorithm. data management, and time critical. The second step is to
estimate the complexity or difficulty of the module based on a six-point
scale. The scale proposed in the Wolverton model consists of old-easy,
old-medium, old-hard, new-easy. new-medium. and new-hard. The costs
(Ci.j) are derived from historically maintained data from completed pro­
jects. The third step is to estimate the size of each module in lines of
code. If k is a module with an estimated lines of code S(k) ,and if this
module is of type i(k) and difficulty j(k), then the cost of developing
module k is:

The overall software product cost will then be obtained by summing the
cost over the modules:

Overall Cost -[C(k)........._.
Although this approach does introduce a certain amount of objectivity,
there remains a great deal of subjectivity in the entire method. Furth­
ermore, the influence of several other factors on cost is not adequately
taken into account (for instance computer availability). One could, of

old old old
easy medium hard

new new new
easy medium hard

1. control
2. I/O
3. pre/post processor
4. algorithm
5. data management
6. time critical

Cl.l
C2.l

Cl. 2
C2.2

Cl.3

Figure 1.2 A software cost matrix

BSO-G-RR-I02 -Page 8- 22 January 1988

E - c. +

where E
factors
include
assumed
hundreds
software
cant and
and can

Modelling, tracking, and predicting

course, enlarge the size of the matrix by additional attributes that
affect cost, but that would make the calibration of the matrix elements
much more difficult.

Estimating based on historical-experiential models is also called
estimating by analogy. The main weakness of estimating by analogy is the
risk of a mistaken analogy. It is not clear to what degree the compari­
tive project is actually representative of the constraints, techniques,
personnel, and functions to be performed by the software product of the
project being estimated.

Finally, one has to be alert for tvo pseudo-estimating methods, namely
Parkinsonian estimates and Price-to-Win estimates. The Parkinsonian
estimate is based on Parkinson's Law [Parkinson, 57], that runs as fol­
lows: "Work expands to fill the time available for it". Clearly, this is
not a way of estimating. but a philosophy of despair. The Price-to-Win
estimate is, like Parkinson 's Law, not an estimating method at all.
With this method an estimator determines. what the market (client or
manager) will bear and then underbids that limit. This method has won a
large number of software contracts. The inevitable result is, that the
money or schedule runs out before the job is done, everybody gets mad at
each other, a lot of compromises are made about the software product to
be delivered, and a lot of programmers work long hours just trying to
keep the job from a complete disaster. Whatever the reasons are for
using the Price-to-Win estimate, establishing effort and timescale budg­
ets on this basis is very perilous practice in software engineering. One
must never take the Price-to-Win estimate as the factual estimate of
effort and timescale required.

1.2.2. Statistically-based models

Regression analysis is often used to determine the relationship between
programming effort and other parameters. A large number of models, both
linear and nonlinear, is known for effort estimation. Some of these
models will be discussed in this section.

1.2.2.1. Linear statistical models----

A general linear model will have the form
n

r-c• x• ,t,;l

is some unit of effort (e.g. man-months), c~s are weighing­
and ~'s are software attributes (other names for this term

cost driver, compensation factor and bias factor), that are
to affect the software development effort. There are literally
of factors that may affect effort. However, for a specific
product many of these factors are in all probability insignifi­
can therefore be ignored. Other factors are strongly correlated
be combined into a single factor. In this way the number of

BSO-G-RR-102 -Page 9- 22 January 1988

Modelling, tracking, and predicting

factors can be reduced. One of the earliest studies of linear models was
conducted at the Systems Development Corporation (SOC) in the mid-1960's
[Nelson, 66). This study investigated 104 candidate attributes. Using a
database of 169 projects an attempt was being made to determine the
relevant coefficients using the least squares method. Different combina­
tions of attributes were investigated, resulting in a regression model
based on 14 attributes and leading to the formula:

E - -33.63 + 9.15x,+ lO.73x1 + O.51x,+ O.46X-+ O.40~+

7.28Xc - 21.45x,+ 13.5x.+ 12.35~+ 58.82x..+
30. 61Xot + 29. 55xll - O. 54x.,+ 25. 2x,,,

where E is effort in Man-Months (MM). The attributes x and their possi­
ble values are as follows:

attribute
XI lack of requirements
Xl stability of design
x, percent math instructions
~ percent storage/retrieval instructions
XI number of subprograms
Xf programming language
xJ business application
x, stand alone program
~ first program on computer
~ concurrent hardware development
x.. random access device used
X. different host, target hardware
x., number of personnel trips
~ developed by military organization

scale of value
0-2
0-3
actual percent
actual percent
actual number
0-1
0-1
0-1
0-1
0-1
0-1
0-1
actual number
0-1

Even when applied to its own database of 169 projects, this model has a
standard deviation which was unacceptably high; in other words this
model is not a very accurate predictor. Further, we see in this model
more remarkable things, for instance: a project, in which all the fac­
tors are rated at zero or near zero, has a negative effort; changing
language from a higher-order one to an assembly language adds 7 MM to
the effort, independent of the product size. The conclusion one can draw
from the SOC-study was, that there are too many nonlinear aspects of
software development for a linear cost-estimation model to work very
well. Still, the SOC-study provided a valuable base of information and
insight for effort estimation and future models.

BSO-G-RR-102 -Page 10- 22 January 1988

Modelling, tracking, and predicting

1.~.~.~. Nonlinear statistical models

Kost of the nonlinear models that are described in literature can be
expressed in the form:

E - (a + bS~)m(X),

where S is the estimated size of the software product expressed in
(thousands of) lines of code; a, b, and c, are constants usually derived
by regression analysis; and m(X) is an adjustment multiplier that
depends on one or more compensation factors denoted in the formula by X.
In some cases a, b, and c may also be functions of one or more compensa­
tion factors. Since m(X) can also be a nonlinear function of several
variables, the given nonlinear function is too complex to lend itself
readily to standard regression analysis techniques. Instead, it is more
customary to derive a nominal estimator (usually based on least squares
techniques) of the form:

and then to adjust this nominal effort with the compensation factor
m(X) .

Some nominal estimators that have been reported in literature are:

E 5.2So
." IBK-FSD model [Walston - Felix, 77]

E 3.5 + 0.73Su·University of Kary1and model [Bailey-Basili,8l]
E 2.4S Lor eOeOKO-mode1, organic mode [Boehm, 81J
E 3.0S'·'& eOeOKO-mode1, semidetached mode [Boehm, 81J
E 3.6S·& eOeOKO-mode1, embedded model [Boehm, 81]
E 5. 288S··'I' (S~10) Doty-mode1 [Herd et a1., 77 J

In these models the primary factor affecting effort is assumed to be the
size of the software product in lines of code in thousands. However,
when comparing models, we must be alert that the definition of lines of
code can be different. The eOeOKO and Doty models, for instance, do not
consider comment lines. On the other hand the IBM-FSD model does
include comment lines. Further. S must be adjusted when a software pro­
duct contains both new code and old or adapted code. Unfortunately,
there is no general agreement about how to do this. Bailey and Basil!
for instance, define S as the sum of the new code plus 20 percent of all
old code, including comment lines. However, eOeOKO uses a much more com­
plicated formula that takes into account the percentage of design, code
and integration changes required to adapt the old code, excluding com­
ment lines. Similary, we must be aware of just what effort is being
estimated: that is, E may represent simply the coding effort or at the
other extreme E may represent the total specification, design, coding,
testing, and maintenance effort.

The most serious objection to any model, that uses lines of code as an

BSO-G-RR-102 -Page 11- 22 January 1988

Modelling, tracking, and predicting

indication of volume, is that one cannot count lines of code at the
beginning of a project; one has to estimate it. But it is highly ques­
tionable whether an estimator is better at estimating lines of code than
he is at estimating resultant development cost.

One ought to realize, the fact that a model cannot be used quite suc­
cessfully from the beginning of a project, this does not mean that it is
of no use at all. It may still be a valuable aid for producing predic­
tions while the project is in progress.

A suggestion to avoid the 'lines of code'
points as proposed by Albrecht [Albrecht
Albrecht's Function Point's is counting the
made available to the final user of the
five function types:

- external input;
- external output;
- logical internal files;
- external enquiry;
- external interface file.

problem is using function
79, 83]. The main concept of
number of discrete functions
software product. There are

It is believed that this often relates to the work involved, at least
after compensating for complexity and other characterizations.

To get the total (unadjusted) function point count
are multiplied by the values shown in figure
together.

the
1.3

various counts
and then added

The table given in figure 1.3 originated with Drummond [Drummond, 85].
The initial matrix proposed by Albrecht has, for instance, only three
classes of complexity.

COMPLEXITY
very

Function Type simple moderate average complex complex TOTAL

External Input EICx2 EICx3 EICx4 EICx5 EICx6
(Count)
External Output EOCx3 EOCx4 EOCx5 EOCx6 EOCx7
Logical internal LFCx5 LFCx7 LFCxlO LFCx13 LFCx15
File
External Enquiry EECx2 EECx3 EECx4 EECx5 EECx6
External inter- EFCx4 EFCx5 EFCx7 EFCx9 EFCxlO
face File

Total unadjusted function points count (FC)-

Figure 1.3 Complexity ratings for function point~

BSO-G-RR-102 -Page 12- 22 January 1988

Modelling, tracking, and predicting

The total function points count may be adjusted with compensation fac­
tors. The compensation factors used by Albrecht are given in figure 1.4.

To calculate the resulting compensation factor, PCA, one has to use the
following formula:

PCA - 0.65 + (0.01 x PC)

For a 'normal' product the resulting compensation factor will be PCA-l.

To get the total adjusted function points, FP, one has to make the fol­
lowing calculation:

FP - FC x PCA

The effort needed to realize a certain project can be expressed in the
form:

E - a + b FP

characteristic rating (0 to 5)

data communications
distributed functions
performance
heavily used configuration
transaction rate
online data entry
end user efficiency
online update
complex processing
reusabili ty
installation ease
operational ease
multiple sites
facilitate change

Total PC

ratings: 0: not present, or no influence,
1: insignificant influence,
2: moderate influence,
3: average influence,
4: significant influence,
5: strong influence throughout

Figure 1.4 Compensation factors for function point~

BSO-G-RR-102 -Page 13- 22 January 1988

Modelling, tracking, and predicting

where FP is the total adjusted function points; a, b, c are constants
usually derived by regression analysis.

The drawback of counting function points is, that it often is costly and
difficult. With this method it is neccessary to have a clear and
detailed idea of what the software product is expected to do: this can
normally only be achieved after the initial stage of design. To gain the
experience needed to make estimates of the expected function points
count for a new software product, function points must be repeatedly
used for measuring size.

" 0..'The equation E - 5.2 S is calculated in the standard way by assuming
a relation of the form:

Taking logarithms of both sides, we obtain:

Clog E 'log b + c Clog S

Setting Y - Clog E, B - 'log b, and X - t log S, we obtain the linear
relationship:

Y - B + cX

Given a database of projects for which effort (E) in man-months and size
(S) in lines of code are available, we can now obtain by the linear
least square method the best values of Band c. Finally, we can calcu­
late b using the exponential function.

The IBM-FSD model is not especially good, even when applied to its own
database of 60 projects; it suggests that estimators based on size alone
cannot be expected to produce good predictions [Conte et al., 86J.

In an attempt to explain the observed disparity between predicted and
actual effort based on lines of code (the program size), Walston and
Felix made a study of factors other than size. Initially, they identi­
fied 68 factors that might account for the disparity. A multilinear
regression analysis showed that only 29 of these factors were signifi­
cantly correlated with productivity (is lines_of_code_produced divided
by effort in MM). Project managers were than asked to indicate to what
extent each of the 29 factors applied to their own project. For each
factor, the responses were rated as normal, less than normal, or greater
than normal. From these responses, Walston and Felix composed the table
given in figure 1.5. This table lists each of the 29 variables, the
rating scale used, the mean productiVity for each rating, and the pro­
ductivity change. Although the productivity ranges in figure 1.5 are
useful indicators, we must remember that they reflect the projects in a
specified environment. The impact of a particular factor may be

BSO-G-RR-I02 -Page 14- 22 January 1988

Modelling. tracking. and predicting

substantially different in another environment. When we interpret the
given factors, it is important to realize that no attempt was made to
factor out the interactions among the different factors; many of the
factors are strongly related, thus making it difficult to isolate the
effect of anyone factor.

BSO-G-RR-102 -Page 15- 22 January 1988

Modelling, tracking, and predicting

""'PO"I. Group PrOOUC1lYlIy
Me.n PrOOUClIV,Iy Chlnge

OueIl1OII or V'''''1lle :;tl......'" L;••c>
(Pq

o s09' to MM
I e:.-_ <NormIII NorIMl > NormIJ
~ 50CI 2t5 124 37ll

1 II.- I*1ICIPeI>On in .". None r.tucIl
....-01.....-1. 481 .7 105 2M

, eu.- ongoneled F_ IoAeny
""",.m cInogn _ ... 217 1M 101

~ c:u.-.~ Wllh None Wuch
lIle applocal>On _ 01 318 3060 aoe ,,2
lIle ClfOIeCt

"00enIII~ ~ A-. High-- 132 157 410 278
~

,~." lII"Ya ,._* <1I5~ ~ 5O~

~~'*"' 153 242 ., 238
1*I1C'IlIled In cInogn of
tunebonaI IllIOlica_

1 "'-.xpenence..", IoIilwnaI A-. ex.-
oper........' CC>mIlUlir 141 Z70 312 I.

a"'- expenence ..", --- A-. ex-
~ li/l9Uillft 122 225 385 2e3

~ "'-out .xpenence _ IoIilwnaI A_. E$nIHi
eppIIcilJOll 01 _ or 141 221 410 2&l
grMl. lIZ. _ compIilo1y

.0 A8lio 01-. Ita" lIZ. <0.5 O.~., >0.'
10 cllntion (piOpIif_1 305 310 173 132

, • .-.-. ...- concurfInl No v.
~"I 217 177 120

'1~I computw O~ 1-25~ >25~

-.. open ...- IPIOel 22e 27. 357 131_I
Il~~ o-IO~ 11....5~ >85~

........- 3D3 25' '70 133
,., 0iaiIiecl MCUftlY No v•

.....01"'*'1 tor computw a, 156 133_ 25~ 01 progtaml _

~18

'so Strue1ured 1l'OV1I"'"""ll D-33~ :u..-~ .~

188 310 141., 0iIlgn _ code__
D-33~ :u..-~ >1l6~

220 300 339 I"I? TOP«lwn eli ...op:'....l 0-33~ :u..-~ >
1M 237 32, 125.1 0lIil""",__ .-ge

0-33~ :u..-'llo >.~

2" 060& 189
'9c....~dcode <~ >~

diwIclcled ". 185 121
14 Con'IlIiXilV d ---. <-...... A-. >A_.
~ 34' 345 I. 181

11 CornpleIlily 01 pruy.m IIow <A-. A_lge >A_Ig.
a, nt 208 80U Ovirill _tr_ on

IiIlirwniJ A-. s.-.
Il'OV1Im Cli*'lI" 213 2M I. 127

1.) Program cliIl9n __on, A_Ig. s.-._....... ., 277 18~1 1M
"mcliip_ Min...., A_lge s.-.

on-.g 303 :"1 111 132
11 COOl lor .--01' _. <10'lro 1~ >40~

- ___ 01' IUCIIinQ 27' 337 203 711
\lI'IClII-.1Ift'irlQ_

J' Pen:in18O* ." code tor o-.o~ 81.....~ l00~

~ 15' 327 a5 1011
11COOl cIUMiicI U ,*"",'-li- D-33~ :u..-'llo '7-100'llo

cal eppIIcil>On _ 110 ","""I. ,. 311 a7 78

1inQ """'.....1.9....- 01 ciaIMI d in 0-15 16-«l >10
... eli...... per 1000 334 243 183 ,.,
.... dcode

'l.,:!~.,,","oI~ 0-32 33-18 >.
~perlooo 320 252 lIS 125
.... ."edcode

Figure 1.5 IBM - FSD Software productivity ranges
[Walston-Felix, 77J

Based on the 29 factors of figure 1. 5, Walston and Felix define a pro-
ductivity index I:

BSO-G-RR-I02 -Page 16- 22 January 1988

Modelling, tracking, and predicting

u
I -[Wl Xl ,

i.'
where W, is a weight defined by:

In the latter (PC), is the Productivity Change between the
rating for the i-th factor in figure 1.5; the rating X is
or +1, depending whether the factor i indicates increased,
decreased productivity.

low and high
either -1, 0,
nominal, or

Next, project managers were asked to rate the values of the productivity
factors for their particular project from which an index I was produced
for each project. Using linear regression Walston and Felix found the
least squares best fit constants in the equation:

log L - a + bI

The actual values found for a and b have not been described in
ture. So, one has to calculate these values with the aid of
(historical) database.

litera­
a known

Finally, by using the estimated size S and productivity L, one can
obtain an effort estimate from the formula:

E - S/L

An important result of the Walston-Felix study is the table of figure
1.5, which gives a valuable insight into the factors potentially affect­
ing software development. Finally, one has to realize, that in any sin­
gle domain, many of these factors will be constant, and thus can be
ignored.

The University of Maryland model (Bailey-Basili)

Bailey and Basi11 were interested in deriving a methodology for effort
estimation. Their contention was, that the constants in any effort esti­
mator were very dependent on the environment and personnel, and conse­
quently, that an estimator validated on a local database would more
nearly reflect the local environment. They used as a database a set of
18 fairly uniform projects developed in the NASA-Goddard Software
Engineering Laboratory. The formula:

E- O.73S~+ 3.5

gives the best fit to the NASA-Goddard database. To obtain the constants
in their formula, they minimize the 'standard error estimate':

standard_error_estimate -t[1
..1

_ a + bS~' 1

E',

BSO-G-RR-102 -Page 17- 22 January 1988

Modelling, tracking, and predicting

Bailey and Basi1i obtain a 'standard error estimate' of 1.25. Hence, any
estimate obtained from the Bailey and Basi1i equation must be multiplied
by 1.25 and divided by 1.25 to obtain the upper and lower bounds respec­
tively.

Bailey and Basi1i also suggest a methodology for attempting to account
for the differences between their equation and the actual effort. Their
methodology for attempts to adjust for the error ratio are defined by:

ER.... - [R - 1 if R > 1
J 1 _ R-4 if R < 1

where R - E/E, the ratio between actual (E) and predicted (E) values.
After an estimate, we can improve the estimated effort using the formu­
las:

(1 + ER..j)E,
E

I 1 + ER.". I
I

R > 1
R < 1

Bailey and Basili use some other project attributes to determine effort
multipliers which account for as much as possible of the error in their
equation. They combine significant attributes into three categories:

Total METHodology Attribute (9 subattributes). This attribute
includes tree charts, top-down design, formal documentation,
chief programmer teams, formal test plans, formal training,
design formalisms, code reading, and unit development folders.

Cumulative CoMPleXity Attribute (7 subattributes). This attri­
bute includes customer interface complexity, application com­
plexity, program flow complexity, internal communication com­
plexity, database complexity, external communication complexity,
and customer-initiated program design changes.

Cumulative EXPerience Attribute (5 subattributes). This attri­
bute includes programmer qualifications, programmer machine ex­
perience, programmer language experience, programmer application
experience, and team experience.

For each attribute, a score is obtained by assigning to each subattri­
bute in the group a score of 0 to 5 depending on the extent to which
that subattribute was judged by project managers. The METHodology group
(METH) had a maximum score of 45 (9 x 5), the cumulative CoMPLeXity
group (CMPLX) had a maximum score of 35, and the cumulative EXPerience
group (EXP) had a maximum score of 25.

The methodology then consists of using multilinear least squares

BSO-G-RR-102 -Page 18- 22 January 1988

Modelling. tracking, and predicting

regression to find the best fit constants, a. b, c, and d, in the equa­
tion:

ER a x METH + b x CMPLX. + c x EXP + d,

where METH, CMPLX, and EXP are estimated by project personnel and where
ER is calculated from the prior given equation. If the constants are
obtained, we can use the above equation to calculate the error ratio.
These ratios can then be used to obtain an adjusted effort, which, in
theory, should be closer to the actual effort.

1.2.3. Theoretically-based models

In this section we will discuss two models, those we call in imitation
of Conte et al., theoretically-based models. These two models are:

• the SLIM - model [Putnam 78, 79];
- the Jensen model [Jensen 83, 84].

1.£.1.1. The SLIM-model (Putnam)

One of the earliest time-sensitive models was developed by P.V. Norden
of IBM [Norden, 63]. He has shown that the Rayleigh distribution gives
a good approximation to the labor distributions for many types of
research and development activities. A Rayleigh curve (see figure 1.6)
is modelled by the differential equation:

. ..{~

y(t) - 2Kate-

where y is the manpower utilization rate, t is the elapsed time, a is a
parameter that affects the shape of the curve, and K is the area under
the curve in the interval [O.~). Integrating the differential equation
over the interval [O,t], one obtains:

y(t) - K(l - e--'·}.
where y(t) is the cumulative manpower used up to time t. Note, Norden's
observations were entirely emperical; there was no evident reason why
manpower should exhibit a Rayleigh characteristic as a function of time,
it just did. Norden's results were extended by Putnam [Putnam, 78, 79],
who showed that the labor distributions for a number of software pro­
jects were approximated rather well by the Rayleigh distribution. Putnam
has also derived relationships between the software development effort
and software development schedules, based on analysis of the Rayleigh
distribution. Actually, if one divides the life cycle of a project into
phases, each phase can be modelled by a curve of the form given in fig­
ure 1.7. The overall life cycle curve for manpower utilization then
becomes a composite sum of all the individual phase manpower curves.

BSO-G-RR-102 -Page 19- 22 January 1988

manpower
fo.8S....J;

Modelling, tracking, and predicting

,,
;' ~initia1 slope

- - - oJ _.~r-_,

Figure 1.6 Rayleigh distribution

manpower

1

design implementation and maintenance

curve

-t

Figure 1.7 Rayleigh curve for software development

So
Put a - 1/(2T), then T is the point at which the manpower utilization
rate y is a maximum. Putnam found that the point T on the timescale
corresponds very closely to the total project development time. For
smaller projects, T can be expected to occur to the right of the peak.
If we substitute T for t in the Rayleigh equation, we can obtain an
estimate of the development effort:

E - 0.4 K (E is the cumulative manpower)

In the Putnam theory, the difficulty metric

D - K
T1

, where K is the total man-months of effort
(area under the Rayleigh curve),

plays an important role in determining software development
Putnam assumed that there must be a relationship between D and
ductivity of the form:

L - CD-

effort.
the pro-

BSO-G-RR-102 -Page 20- 22 January 1988

Modelling, tracking, and predicting

Previously, L was defined as

L - S (see section 1.2.2.2)
E

By using a nonlinear regression analysis applied to several
projects, he found, that- must be -2/3 for some constant C.
the previous equations, we get

U.S. Army
Combining

S L y(T)
_t

CD' (. 3945K)

Using D - K/T& , we find that

S C [K/T& i~ K - CK\ T1

The constant C is called technology constant. This constant reflects the
effect on productivity of numerous factors such as hardware constraints,
program complexity, personnel experience levels, and the programming
environment. Typical values of Care C - 4984 for 1973-style development
and C - 10040 for 1978-style development [Boehm, 81]. Putnam has incor­
porated his approach to cost estimation into a software product called
SLIM (Software LIfe-cycle Methodology; note that SLIM also includes a
number of estimation aids). SLIM allows one to calibrate C to a histori­
cal project for which S, K, and T are known or to estimate it as a func­
tion of modern practices, hardware constraints, personnel experience,
interactive development, and other factors. The required development
effort is estimated as 40% of the life cycle effort, that is 0.4K. Using
the latter equation with S, we obtain:

K - T-tI[S/C]J

For a software project of a given size and fixed development environ­
ment, the equation implies that the effort K varies inversely as the
fourth power of the development time. Clearly, one cannot expect this
equation to apply over a very wide range. Doubling the development time
will probably not allow one to decrease effort by a factor of 16
[DeMarco, 82]. Although it is well-known that compressing development
times leads to greater total effort. For example, Boehm estimates that a
compression of the development time by 20% to 25%, may increase total
effort by a more nominal 23% [Boehm, 81].

Putnam [Putnam, 78] gives the following relationship for the minimum
development time of a stand alone software project

K/T':" - cc ,

which is essentially the magnitude of the gradient of D. For
consisting of all new code and high complexity, the value of
about 7.3, while for a relatively easy system with a large
reused code, the value of~ would be about 27.

The two equations

a system
would be

amount of

BSO-G-RR-102 -Page 21- 22 January 1988

Modelling, tracking, and predicting

~ T~. - SIC_..
K/T~ .. - oc.

can be solved for T...... and for K, which is designated the minimum time
solution (if at least S, C and~ are given). Of course stretching out
the development time will reduce the effort substantially.

From the foregoing, it appears, there is a limit beyond which a software
project cannot reduce its development time by 'buying' more personnel
and equipment. Such a limit has been described by Boehm as an "Impossi­
ble Region" for development (figure 1.8 [Boehm, 81]).

In figure 1.8 we see, projects that try to squeeze effort into less than
circa 1.9 x (effort in MM)"months are in the so called "Impossible
Region". That does not mean they cannot possibly succeed, only that the
emperica1 evidence is strongly against them. Tom DeMarco [DeMarco, 82]
has once said in relation to this:

I feel that I've spent half my professional life slogging away
in the Impossible Region. I wish I've had the evidence of figure
1.8 fifteen years ago.

An alternative curve has been proposed by F.N. Parr of the Imperical
College, London [Parr, 80]. This curve predicts essentially the same
work profile as the Rayleigh curve, exept during the early part of the
project (figure 1.9)

According to Parr the manpower utilization rate at time t is given by
yet) - 0.25 secht«at + c)/2) .

72

o IBM

C PUTNAM: USA·CSC

• TRW
o

350030002500

T." r 60 0

i. Months
C

48

0 T"IO"'· 2.5 ~IMM•
36 •

, , ,
24

"Impossible region"

Tolv < 0.75 T..o..
12

_ Man·months

Figure 1.8 The "Impossible Region" [Boehm, 81]

BSO-G-RR-102 -Page 22- 22 January 1988

Modelling, tracking, and predicting

manpower

t

Figure 1.9 Parr and Rayleigh curve compared

For a sample of some two dozen such projects studied in the Yourdon
1978-1980 Project Survey, the Parr curve fits the composite manpower
curve quite well [DeMarco, 8l}.

Note, both Parr and Putnam reflect observed evidence.

Acceleration of
possible, even
context one may
75] :

a project, in particular a late project, is mostly not
when we stay outside the "Impossible Region". In this

think of the following popular law of Brooks [Brooks,

Adding manpower to a late software project makes it later.

The argument supporting this law is that, when tasks are partitioned
among several programmers, the effort associated with the coordination
of the programmers must be taken into account. This additional effort
may include programmer training, so that new members may be assimilated
into the existing team, and the necessary communication between team
members.

1.2.3.2. The Jensen - model

Jensen [Jensen 83, 84} has proposed a model that is very simular to Put­
nam 's model. His model has the following form:

where T is the development time, K is the development effort, S the code
size and ~ the so called effective technology constant. This constant
must be computed by using the following equation:

C. - c"t fi.
i.1

BSO-G-RR-102 -Page 23- 22 January 1988

Modelling, tracking, and predicting

where C~ is the basic technology constant and f. is a measure
i-th environmental adjustment factor. These factors are similar
used by Boehm (see section 1.2.4). They take into account the
that affect effort.

1.2.4. Composite models

of the
to those
factors

Composite models incorporate a combination of analytic equations, sta­
tistical data fitting (linear or nonlinear), and expert judgement to
estimate software effort. Putnam's SLIK model, although based on the
Rayleigh curve, is in fact a composite model. Another such model is the
RCA PRICE S model [Freiman-Park, 79J. PRICE S uses project size, type
(platform), and complexity as primary attributes to produce a top-down
estimate of the cost of system functions for each phase of the project.
The best known and best described of all composite models is COCOKO
(COnstructive COst KOdel) [Boehm, 8lJ. In the next section we will dis­
cuss COCOKO and the recently published COPKO (COoperative Programming
KOdel).

1.2.4.1. COCOKO----

There are three versions of COeOKO, namely the basic model, the inter­
mediate model, and the detailed model. The development effort estimation
equations are of the form:

E - aS~ .m(X),

where S is source lines of code in thousands excluding comments and m(X)
is a composite multiplier that depends on 15 cost driver attributes. The
principal cost driver in the above equation is program size. Three
development modes are identified by Boehm: the organic mode, the semide­
tached mode, and the embedded mode.

In the organic mode relatively small software teams develop software,
needing little innovation, having relaxed delivery requirements, being
small in size, in a stable in-house environment. An embedded software
project must operate within tight constraints. The end-software product
is embedded in a strongly coupled complex of hardware, software, regula­
tions, and operational procedures, such as an air traffic control sys­
tem. Projects of the semidetached mode fall somewhere in between the
organic and embedded modes.

In the basic-model m(X) is 1. This is, thus, a simple model for a rough
estimate of effort (in MM) and development time within the software pro­
ject phases. The effort and time development equations for the organic,
semidetached, and embedded modes of software development are as follows:

BSO-G-RR-102 -Page 24- 22 January 1988

Modelling, tracking, and predicting

mode effort development time

organic KK 2.4 (KDSI)'.0' T.... 2.5 (MM)""
semidetached KK 3 . 0 (KDS I)"'· T.... 2.5 (MMt"
embedded KK 3 . 6 (KDS I tao Tor- 2.5(MMtl&

In these effort equations KOSI is delivered source instructions in
thousands.

Figure 1.10 shows the estimated percentage distribution of project
effort and development time for the three modes [Boehm, 81]. The inter­
mediate model considers, besides size, 15 cost driver attributes which
could effect the effort. These attributes are the following [Boehm, 81]:

Product attributes
RELY required software RELiabilitY
DATA DATA base size
CPLX product ComPLeXity

Computer attributes
TIME execution TIME constraints
STOR main STORage constraints
VIRT VIRTual machine volatility, for a given software

product this is the complex of hardware and soft­
ware (OS, DBMS, etc) it calls upon

TURN computer TURNaround time

Personnel attributes
ACAP Analyst CAPability
AEXP Applications EXPerience
PCAP Programmer Capability
VEXP Virtual machine EXPerience
LEXP programming Language EXPerience

Project attributes
MODP MODern programming Practices
TOOL use of software TOOLS
SCED required development SChEDule

Each of these cost driver attributes determines a multiplying factor
which estimates the effect of the attribute on software development
(figure 1.11). Of course m(X) - 1, if all cost drivers are given a nomi­
nal rating.

On comparing the COCOMO cost drivers with the Walston and Felix factors,
we see that the reduction in the number of attributes was achieved par­
tially by combining some attributes that appear highly correlated, and
partially by omitting some. Since the COCOMO has fewer attributes, this

BSO-G-RR.-102 -Page 25- 22 January 1988

Modelling. tracking. and predicting

Size

Efforl dlstrrbutlon Inler- Very
Small mediate Medium Large Large

Mode Phase 2 KOSI 8 KOSI 32 KOSI 128 KOSI 512 KOSI

Organic Plans and requirements ('%0) 6 6 6 6
Product design 16 16 16 16
Programming 68 65 62 59

Detailed design 26 25 24 23
Code and uM test 42 40 38 36

Integration and test 16 19 22 25

Semidetached Plans and requirements (%) 7 7 7 7 7
Product des'gn 17 17 17 17 17
Programming 64 61 58 55 52

Detailed design 27 26 25 24 23
Code and unit test 37 35 33 31 29

IntegratIon and test 19 22 25 28 31

Embedded Plans and reqUirements ("!o) 8 8 8 8 8
Product deSign 18 18 18 18 18
Programming 60 57 54 51 48

Detailed deSign 28 27 26 25 24
Code and unit test 32 30 28 26 24

Integration and test 22 25 28 31 34

Schedule dlslrlbutlon 2 KOSI 8 KOSI 32 KOSI 128 KOSI 512 KOSI

OrganiC Plans and reQurremenls ('%oJ 10 11 12 13
Product deSign 19 19 19 19
Programming 63 59 55 51
Integration and test 18 22 26 30

Semidetached Plans and requirements ("!o) 16 18 20 22 24
PrOOlJet deSIgn 24 25 26 27 28
Programming 56 52 48 « 40
Integration and lest 20 23 26 29 32

Embedded Plans al1f1 reqIJilements (%) 24 28 32 36 40
Product deSign 30 32 34 36 38
Programming 48 44 40 36 32
Integratlon and test 22 24 26 28 30

Figure 1.10 Phase distribution of effort and time development
[Boehm, B1)

BSO-G-RR-102 -Page 26- 22 January 1988

. Modelling, tracking, and predicting

Rillngs

Very very Exlr.
CoSl Dr,,,ers Low Low NomInal Htgh HogIl High

Producl AnntlulK
RELY Requtled sottw... IWlieblIlty .15 ... 1.00 1.15 1.40
DATA Oala base sa. .84 1.00 1.08 1.16
CPU(Producl cornpIeXlty .70 .85 1.00 1.15 1.30 1.65

Compuler Altnbul.s
TI...E ExtlCUbOn lime conSlraan, 1.00 1.11 1.30 1.66
STQRn &tot. constraonl 1.00 1.06 1.21 1.56
VlflT Virtual mact.ne \IOla1llt1y" .87 1.00 1.15 1.30
TURN Compul... unaround lime .87 1.00 1.07 1.15

~Altnbu1.s

ACAP Analysl capaDility 1.4. 1.19 1.00 .86 .11
AEXP ApplicabOns .xpenence 1.29 1.13 1.00 .111 .12
PCAP Programmer capability 1.42 1.17 1.00 .86 .70
VEXP Virtual ma~ .xp....nc.. 1.21 1.10 1.00 .110
l.EXP Programrnong language .xperience 1.14 1.07 1.00 .15

~ A11ribuI.s
MOOP Use 01 modem progr~pracllC.s 1.24 1.10 1.00 .111 .12
TOOL Use 01 sottw...e 10015 1.24 1.10 1.00 .111 .83
SCED Requored deY.'opmenl~ 1.23 1.08 1.00 1.04 1.10

10'"
~"Iooo

---­1'-,----
----_.._. ...".

~'I,-----leo""130""

..-­..
lOO~~ < 1000

..-­10~~< 100

.....­8nc"""f-"-

~__01_ 7O'r. as""----C50""_01_ 70"" as""_......... '".",.....,_ 2_._2_. _,_ 'Clllya

1_

low

3511I_4_4_

....-. ...
...,12 __1_---­'-

very LOW

Eltect *1" ... u..., _.
COI"N...a IOUeI

!!!..!!%!!! ~ 10
Prov OS'

15th_
.. rnonI'hS ••­

penonc.
15"'1*""­
«1 montf't ezpe·......
~1 __

....,.

See nil''' 1.""..... _

....­8nc_----

V1RT

STOR

PCAP
YEXP

Figure 1.11 Software development effort multipliers and Cost
Driver Ratings [Boehm, 81)

BSO-G-RR-102 -Page 27- 22 January 1988

Modelling, tracking, and predicting

Ral"'g

SlrAlglltllne cade_.'_non­
Mated $Po oper.
.I~: 00..
CASEs.
IFTHENELSEs.
StmpIe ",.,.
cat.

Slr.~

....""llOf !>Pop­

....I~. Mo.lly
swnp4e predicates

Mostly smpIe1·

'"9. Some tn'.·
module conuot
Deosion \able.

119'ly nes1ed SP
aper.I~­

many c:ompouncl

predicates.
a.- ItId .lACk
conlrOI Con5ld­
._,nlermo­
llUI. eonuOl

RMnu.nt .nd r.
CUr'$lYI eodlng
FlXed-pnonty in­
terrupt handling

Muf!lllIe resource
SCheduling _

dynartNCally

cnanll'ng pnon.
beS. Microcode­
.....1 canuOI

Evaluation 0I1lftlPIe
exprnIIOnI: •.g..
A-S+C'
(0- El

fvW.-tion at IIIOIf.
..1e-Ie\Iej ...

pt8UIOnI.••g..
0- SORT
(8..2.... •... ·C)

U.. 01 Ilanclatd
matll .nd .tall.ti­
cal routl..... S.·
Iic malrlxNector
oper.-.

Buoc:--.
-'YS!S: multlvW­.Ie inllfPOlalllln.
ardnaty drlferen·
.. equatJonl S.­
IIC truneatlOn.
rauncIotf c:on­-...

Dolfleult but 1lnIC·
ved N..... ne.,·
sangul., matllx
equatoon•. pattIal
doff••nnal 1IQUa­

lions

Dolficult and lit­

strucnnd N A.'
IliOf'Iy accurate
-'YSIs of _y.
stocha.1IC data

No CCl9NZI"­
needed Of 1*'
IicuIet pro.
__ ori/O

de\Iica charec­
.....-:s.1I0
done.t GETI
PUT~ No
c:ognaance Of
-'AP

110 procauing in­
dudes de\IIc:e
MIectJon••tatu.
c:Md<'"lI and
en'orproc:eQlng

Clpernont at
ptlywIcal 1/0
..... lphysocal
stor.t,Itl addreSS
lranslalJ()n,;

....5. 'uels.

.tel· Optimized
110 overtap

Routrnes tor ""••
rupt dlagno....
-.ng.muI<­
;"g. Com_..
cation line

~

O.la
Management
~.llOns

Single filet·

lin; - no data
saruc:ture
e:twlges. no eG­
a. no tn'enMdo­
ate IiIn

Wulb-file I~ .nd
~ file out­
put. SompIe
atructur.1
etIangn. IlftlPIe
edr\I

5!leaal~

IUbtOulIneI ac·
....ted by data
IIrMmeon­
*,ta. Complex
data _lrUClUr·
"'9 .Ir~.....

... lI8'*'llized. pa.
,.",.t...~
file.truetunng
routine. File
building. com­
IlWld proc...•
"'9. -en
aptIrNZatal

HigNy eoupIed.
~,....
lIOnat 1lnIC·
vn. N.tur.1
IanglAt,Itl data
management

.51'-_"'..._,.....

Figure 1.12 Complexity Ratings [Boehm, 81J

model should be easier to manage. For the rest, the attributes in the
COCOMO appear to be more independent of each other. As we have seen ear­
lier, Walston and Felix use multilinear regression in order to reduce
the large number of candidate factors; on the contrary Boehm uses a more
heuristic approach combined with a study of other models.

In the intermediate model the
the organic, semidetached,
are as follows:

effort and time development equations for
and embedded modes of software development

BSO-G-RR-102 -Page 28- 22 January 1988

Modelling, tracking, and predicting

mode effort development time

L.r
2.5 (MMt"organic MM 3.2(KDSI) .X(m) TN"

semidetached MM 3.0(KDSIt~.X(m) Tw" 2.5(MMjU
embedded MM 2. 8(KDSI)LW.X(m) T.." - 2. 5 (MMfll

In intermediate eOeOMO, the phase distribution of effort is determined
solely by the size of the product. In practice however, factors such as
required reliability. applications experience, and interactive software
development affect some other phases more than others. That is why,
detailed eoeOMO provides a set of phase-sensitive effort multipliers for
each of the 15 cost drivers. Further, detailed eoeOMO provides a three
level product hierarchy, for which [Boehm, 81]:

- some effects, which tend to vary with each bottom level module, are
treated at the module level;

- some effects, which vary less frequently, are treated at the sub­
system level;

- some effects, such as the effect of the total product size, are
treated at the system level.

A complete description of the detailed eoeOKO is given in [Boehm, 81].
According to Boehm detailed eoeOMO is not noticeably better than inter­
mediate eoeOMO for estimating overall development effort. However,
detailed eoeOMO yields better phase distribution estimates.

A number of possible software cost driver attributes have not been
included in eOeOKO, for instance type of application, language level,
management quality, personnel continuity, customer interface quality,
amount of documentation, security and privacy restrictions, and require­
ments volatility (the amount of changes in the software requirements
between the beginning and end of a software development project). Some
justification for these omissions has given by Boehm in his book [Boehm,
81) .

The eOeOMO cost driver ratings and nominal effort equations were
obtained by a process of calibration. So, it is possible, that one
develops a specially calibrated and tailored version of eoeOMO which
will be more accurate and easy to use within a particular environment.
The major actions for calibration and tailoring are:

- calibrating the nominal effort equations to the particular environ­
ment;

- consolidating or eliminating redundant cost driver attributes
within the model;

BSO-G-RR-102 -Page 29- 22 January 1988

Modelling, tracking, and predicting

- adding further cost driver attributes which may be significant in
the new environment.

COPKO uses an estimate of code size (S) and an estimate of the average
personnel level (P) to predict the effort (E). The general model has the
form:

-.I'E - a. + b, S + c, P .

Using the definition P - E/T, where T is the project duration in months,
and re-arranging the equation:

Jo .I-
E • Ci E IT' - a, + b. S

feE) - E - c.E~/T"i - (a, + b.S)

The subscript i is used to denote an effort complexity class ECL . The
values of a; , ~ , c~ and d; can be found by a process of calibration,
when a historical database with sufficiently large number of projects
falling into class EC l are known. The determination of complexity
classes could be based on various software attributes that are believed
to affect productivity; one can use the attributes given 1n the Walston
- Felix model or COCOKO. If one has determined the complexity class,
then the model parameters (a; , b., c., and d4 are fixed. Conte et al.
have shown, that if T - T.i~ , one must have both feE) - 0 and feE) - o.

On setting f~E) - 0 and solving for T, we obtain:
.t tIC.,

T - (c. di t E T'"

Then substituting into feE) - 0, we get:

E - (c. I ci.d,)(£..../£....,) - ai + b. S

..
E(l - d.) - B. + bi.S

or

This is, thus, the effort required if the project is completed in time T~i"

. Substituting this effort in the above equation for T, we get
, ~A

T...;~ - (c, d .. f «ai. + bi. S)/(l • d-~»"'34 or

~Tift; .. - (c.d,) «a. + b. S)/(c. (d. - 1»)

If one has calculated ~;.. , one has to choose some duration time 1- >T and
J -~

BSO-G-RR-l02 -Page 30- 22 January 1988

Modelling, tracking, and predicting

solve f(E) for the corresponding required effort Ei and ~ (-E/T).

To solve f(E) one can use Newton iteration method:

E.... - E" - f(E")/f' (E,,)

An initial approximation to E is given by:

Conte et al. have tested the performance of the COPMO model on the
COCOMO database. From this it appears that COPMO performs slightly
better than Intermediate COCOMO, and clearly demonstrates that it is
capable of producing acceptable estimates.

1.l.~. The P938 estimating tool

Within the ESPRIT project P938, entitled "INTEGRATED MANAGEMENT PROCESS
WORKBENCH", an estimating tool will be developed that gives a flexible
approach to software cost/effort estimating. It allows the projects to
adapt existing estimation models to their own needs or to create new
ones. Within this estimating tool the Fleximate modelling interpreter
plays an important role. To be flexible in its model definition, Flexi­
mate uses command files containing instructions of how to calculate the
cost. These instructions would be written in a syntax similar to that
used in spreadsheets, but using predefined names for the variables, such
as EFFORT and COST. A Fleximate system might include example command
files for a few already known estimation models, for instance COCOMO.
Fleximate supports the project manager making cost/effort estimates by
analogy (see section 1.2.1) as well.

In the near future expert systems may be used within the estimating tool
to help with the modification and design of command files. The main sup­
port will be for the choice of estimating and modelling techniques, and
their implication. The estimating tool could call an expert system to
help the estimator to select the most suitable cost estimation model
from the range of command files available. P938 has no plans to provide
expert system support for the selection of suitable attribute values.
Instead an extensive menu-help system will be provided [Cowderoy, 86].

In his book Tom DeMarco has proposed a concept for building cost estima­
tion models [DeMarco, 82]. In this concept 'bangs' play an important
role. A 'bang' is a quantitative indicator of a net usable function
from the user's point of view; it is implementation independent (within
the domain). The 'bang' metric has two major uses [DeMarco, 82]:

It is used as an early, strong predictor of effort. Bang is the
independent variable, that drives the cost estimation model to
project development costs.

BSO-G-RR-102 -Page 31- 22 January 1988

Modelling, tracking, and predicting

It is used to calculate useful, productive effectiveness: Bang
Per Buck (BPB); this is a metric, that measures the total func­
tion delivered by the project per 'dollar' invested from project
beginning until the system is retired. Optimization of the pro­
ject BPB is the first of two quantitative goals that should be
established for any development effort.

DeMarco has formulated bangs for function-strong, data-strong and hybrid
projects; for the latter he suggests to treate such projects as two pro­
jects, one function-strong and the other data-strong. An immediate
impression of DeMarco's bang is, that there is a long list of things to
measure. But in practice, most of the metrics can be ignored or simpli­
fied.

Obviously, even when we have a method for building (new) cost estimation
models, it will not be easy and takes a lot of time to set up such a
model and thoroughly test it.

1.3. Some conclusions

When a computer system has to be suitable for helping the projectmanager
to manage his software project, a model must be made of the project. A
part of building an estimation model is specifying the parameters and
their weights that are assumed to be relevant for a specific task and is
asserting estimated values to these chosen parameters. In the literature
a lot of parameters are known (see for instance [Boehm, 81] and [Walston
and Felix, 77]), that influence the effort. These parameters have
derived of real projects. So, in first instance, we can use these param­
eters. If we have built our own historical project database, we can use
this to select the parameters which are relevant in the domain we work.
Further, this historical database makes it possible to make estimates by
analogy.

The system must be alert for pseudo estimates (or better try to avoid
them), like Parkinsonian and Price-Io-Win estimates. To avoid that a lot
of parameter values has to be estimated, one has to classify the several
tasks which share the same parameter values. So, one has to choose the
overall project parameters and thereupon one has to specify the parame­
ters that are assumed to be relevant for each (sub)class of tasks. (In
fact this can be compared with the product hierarchy in detailed
COCOMO.) In this way one can reduce the number of estimates. What's
more, these classes simplify within a running project the use of histor­
ical data derived from that project.

Finally, we have seen that also in this case the literature can give us
'management'-rules. Such an important rule is, that effort and duration
are closely related to each other, and that there exists a global limit
to acceleration. In his book Boehm has given a formula for this limit
[Boehm, 81]. This formula runs as follows:

BSO-G-RR-102 ·Page 32- 22 January 1988

Modelling, tracking, and predicting

.n
T - 1.9 x (effort in MH)

That does not mean projects that try to squeeze effort into less than
this limit cannot possibly succeed, only that the empirical evidence is
strongly against them. Another important rule is, that for a lot of
software projects, manpower seems to follow a Rayleigh curve as a func­
tion of time. If a project is governed by such a curve, the 'progress'
as a function of time is given by figure 1.13 (Integral of the Rayleigh
distribution function).

-

'progress'

1

Figure 1.13 The integral of the Rayleigh distribution function

Note, that this figure looks like the figure which the University of
Amsterdam found for a 'good' project in their knowledge acquisition
[Jong et a1., 81J. Obviously, one can use these rules with planning,
risk analysis, tracking, and diagnosis.

BSO-G-RR-102 -Page 33- 22 January 1988

Measuring any project parameter and attach­
ing evident significence to it will affect
the usefulness of thet perameter.

Heisenberg's Uncerteinry Principle
<.lightly revi.ed by Tom DeMarco)

Modelling, tracking, and predicting

2. Tracking

2.1. Introduction

Tracking comes into the picture during the actual running of the pro­
ject. In figure 2.1 we see in a simplified scheme where we should place
this tool with respect to the other tools of the project management pro­
cess.

diagnosis

schedule risk
analysis

planning stage

execution stage

Figure 2.1 Tools of the project management process

The tracker tool indicates to the user and the system the status of the
project. The main aim of the tracker is finding out, whether there exist
discrepancies between the values of the model-metrics (variables and
parameters), attached in the planning stage, and the reality. The input
of the tracker consists, thus, of the data gathered from the actual run­
ning process and the project plan.

2.2. Measuring objectively

To be able to compare the predicted metric values, we are only
interested in metrics that can be obtained more or less objectively.
Naturally, it is possible to define metrics that are measured subjec­
tively, such as the quality 'on a scale of 1 to 10' of a software pro­
duct. But subjective measurements have a lot of disadvantages. These
measurements are, by definition, based on individual ideas about what

BSO-G-RR-I02 -Page 34- 22 January 1988

Modelling. tracking. and predicting

the metric should be; most probably they will differ with different
observers. Further, assigning a value can change as an observer changes
over time; that means, given the same situation, an observer may asssign
the metric different values today in comparison with, for example, one
year from now. Obviously, it is then difficult for the tracker to com­
pare the predicted values with the actual values. Thus, for tracking any
observer at any time should assign the same value to the same metric.

It needs no explaining, that purely objective measurements are impossi­
ble. In fact, we must try to make the measurements so objectively as
possible. A serious problem with this is, there are abstract factors for
which there are no good procedures to transform the so called observ­
ab1es into these desired factors. For instance, to measure an abstract
concept as software 'quality', one could measure this based on such
observab1es as the number of errors discovered in testing per thousands
lines of code, the time between the last two software failures, and so
on. It is also possible to create a formula in which these observab1es
are combined. Certainly, it can be argued, that to count the number of
errors found in testing is objective. But, the question is, what is the
relation between that number and the abstract factor 'quality'? Don't we
measure in that case one characteristic of 'quality', namely reliabil­
ity? Most users for example, do not consider 'error free code' that is
not entirely complete. difficult to understand, use and modify, to be of
a high 'quality'. Just as you select the characteristics that are
assumed to be relevant for the project, the transformations have to be
formulated in the planning stage as well.

l.l. Selecting the metrics to track

In the tracker the project manager has to select the project model
characteristics (with their Metrics and possibly required transforma­
tions), such as complexity and quality, which he wants to track for
helping to determine the progress and costs. It is, for example, diffi­
cult to assess the progress accurately if we do not know what the qual­
ity of the delivered work is: slow progress during a design stage may be
because the program is larger as we thought or it may be that the
designers are producing a particularly good design that wi1 be easy to
code and test.

An expert (knowledge based) system, which supports forward chaining, in
view of the needed what-if character, can be used for the selection of
the wanted characteristics. This expert system should give advice to the
projectmanager concerning which influences the several characteristics
possess with respect to the progress. This advice together with a deci­
sion support system, for instance based on the so-called Multi Attribute
Theory (MAUT) , can help the projectmanager to make the right decision
with selecting the characteristics. The reason why mostly a selection
will be made is to reduce the number of inputs. These inputs must be
given to the tracker on a timely basis, probably weekly, so that the
tracker is able to compare the predicted values with the actual ones.

BSO-G-RR-102 -Page 35- 22 January 1988

Modelling, tracking, and predicting

One of the most important inputs, which will always be tracked, is the
time each team member has spent on a project task. The time spent for
other work related to the project, such as meetings, should also be
given. Obviously, it is important, that lost time is reported correctly,
rather than hidden; and that time spent on unanticipated tasks is
reported correctly, rather than allocated to the nearest approximately
similar task. In respect of this DeMarco has quoted in his book K.T. Orr
[DeMarco, 82]:

It is not the tasks you planned for that kill you (by costing
more or taking longer than you expected); it is the things you
never planned for at all.

In a Yourdon project survey [DeMarco, 81] unanticipated, unclassified
and miscellaneous activities constituted fully fifteen percent of
effort. Apart from that, it appears that, unanticipated other work tends
to take up a disproportionate amount of near the end of the project. One
way to handle unanticipated work is to build a profile of amount and
timing of such work (during making the Work Breakdown Structure), and
assume that projects will follow this pattern. When during tracking it
appears that this assumption is not right this pattern must be
corrected.

It is important to know the quality of the estimations that have been
made. This means, we have to calculate a so called Estimate Quality Fac­
tor (EQF). A simple EQF can be defined as the reciprocal of the average
deviation between estimated value and actual one, or:

EQF - ~ Actual-Value x Duration(T)
JIEstimated_Value(t) - Actual_Valueldt
•

In his book DeMarco has defined an alternative formula:

Time_Weighed_EQF - .5 x Actual_Value x Duration&

~--------------------------
JrI(Estimated_valUe(t)-Actual_ValUe)X(DUration-t)ldt

o

Exactly which formula one chooses to represent estimating quality does
not matter much. What does matter is, that such a formula exists and is
consistently applied.

BSO-G-RR-102 -Page 36- 22 January 1988

Modelling, tracking, and predicting

2.4. Discrepancy classes

If the tracker notices a discrepancy between the estimated value and the
actual value of a metric, this discrepancy should be classified. The
discrepancies can range from 'not serious' to 'very severe'. So, these
classes tell whether an action should be undertaken or not [Jong et al.,
87]. The main criterion for determining the severity of a discrepancy is
the influence of the delay at the finish time of the project. Since the
classification into discrepancy classes depends, among other things, on
the history of a task, it is clear, that the previous states of the task
must be stored. It makes a lot of difference when one notices a
discrepancy between the amount of work planned and the amount of work
completed, whether there is an improvement compared with the previous
monitoring state [Jong et al., 87].

The classifying into discrepancy classes can be done with the aid of an
expert system. Analyzing complex resource-constrained task schedules is
not easy. (Note tasks possess both resource and deliverable dependen­
cies.) The schedule analysis must be done in the schedule risk analysis
tool. Remember with this, the nlmpossible Regionn (see figure 1.8) found
by Boehm [Boehm, 81). The results of the risk analysis will be needed
to determine what the effect of a delay is on related tasks.

£.1. Determining the state of ~ task

In the scheduling/resource allocating tool a number of tasks is assigned
to each of the team members. For each task a number of hours is
estimated. Team members may work on several tasks at a time, so during
one day or week it is possible time is booked on several tasks. The
units of measurement are hours. During the execution of a task it is
nearly impossible to determine whether a person is working on schedule
or not. In this connection you might think of the so called 90' finished
syndrome [Boehm, 81]. This means, that for instance a programmer says in
his weekly progress report, that his task is 90' complete, but later it
becomes clear, that this estimate was far too optimistic. Hence, it fol­
lows that only when a task is finished the projectmanager can determine
the exact state of the task. One has to realize with this, that it is
very important to have explicit standards for the quality of a deliver­
able. ~ithout strict standards it is almost impossible to ascertain
whether a task is 'finished' or not [Jong et al., 87]. Mostly the pro­
ject manager is only interested in the tasks (better: milestones) on or
near the critical path, because they will lead to a schedule delay.
(~at does it matter in general that a non-critical task of a project
with an overall duration of three years goes on one week longer.) Natur­
ally, the progress of the non-critical tasks must be observed as well.
If enough of these fall behind, the lower production rate will eventu­
ally have an impact on the critical schedule dates. Obviously, there
can be other reasons to observe a non-critical task, if for instance a
task requires expensive equipment that has been hired per day, it is
also important to observe that task conscientiously. To detect overrun
early the tasks may not be too long. Tasks with an estimated duration

BSO-G-RR-I02 -Page 37- 22 January 1988

Modelling, tracking, and predicting

of 40 - 80 hours are generally seen as optimal [Jong et al., 87;
Tausworthe, 80l, anything less being excessively bureaucratic and any­
thing longer insufficiently precise. Because, in practice, it is often
not possible to break down all the workpackages into such small tasks,
incompleteness (in meaning of level of detail) with respect to the work­
breakdown (and thus the schedule) must be allowed until more knowledge
is available. Therefore a typical schedule might consists of a detailed
plan covering for example three months. As often as needed the project
manager has to create a revised plan. (This working method is termed a
rolling horizon procedure.)

2.6. Quality Assurance

The tracker tool has to signal when a watch-dog goes off. A watch-dog
can be set for project-related events that require action before the set
time. The tool has to check whether data, that should be available at
the time the tool is activated, is indeed available. If it is not, the
project manager is requested to make that data available. If the project
manager is not able to render the requested data, he is requested to
give the reason. This reason will be logged for Quality Assurance (Q.A.)
purposes. Other important points for Quality Assurance can be the fol­
lowing:

- deviations from standards (system, designing, coding, testing,
documentation): kind, description, detector_name, detection_date,
tasks involved (these must be logged for each deviation);

- recognized new precedence links (incompleteness of the workbreak­
down): description, recognizer_name, recognition_date, tasks in­
volved;

- detected defects: detector_name, detection_date, sympton_descript­
ion, removal date, hours spent, domain of each defect;

- addition of new tasks (incompleteness of the workbreakdown):
description, start_date, finish_date, hours_spent;

- required changes in the specification, design or program: kind,
description, applicant, request_date, domain of impact (tasks
affected), implemented_change_date, hours spent;

- re-planned milestones, tasks or resources: kind, date, indicator;

- recognized new risks: description, recognizer_name, recognition_date,
tasks involved.

- requested changes by the user: description, user_name, request_date,
domain of impact, implemented _change_date, hours spent;

BSO-G-RR-102 -Page 38- 22 January 1988

Modelling, tracking, and predicting

This information may be of some use in the diagnosis tool as
going to explain. The diagnosis tries to determine why a
discrepancy between plan and reality occurred. There are several
ble causes for this:

we are
certain
possi-

- the value of one or more metric, that was attached during
ing, appears to be incorrect;

estimat-

. the model, which is described by the metrics, is incorrect" (for
example the metrics are weighed wrong);

- the chosen metric set is incorrect.

Now, the Q.A.-Iog can be helpful to determine what the main reason(s) is
(are) for a noticed discrepancy. So, this log may lead to new metric
values, a new model, or new metrics. Obviously, a decision support sys­
tem and an expert system, which supports both forward and backward
chaining, can be of some use in the diagnosis tool too.

2.7. Schedule, cost, and resource tracking

Progress can be
ment (one or
entire project)
part.

reported in many ways. For a task or work breakdown ele­
more tasks, remember that the top node represents the
that is in progress the following variables can play a

Budgeted Work (BW):
The initial budget for a task, workpackage or the entire project in
MM.

Work Spent To Date (WSTD):
At any specified point in time the actual effort incurred for the
work.

Work Remaining Estimate (WRE):
An estimate of the effort needed to complete the remaining work.

Projected !otal York (PTW):
The SUD of the actual effort to date, plus the estimate to complete
(PTW - WSTD + WRE).

Budgeted Effort of Work Scheduled (BEWS):
At any specified point in time the percent complete that the item
is scheduled to be at that time, times the BW, for that item (BEWS
- Item_planned%C.xBW).

Budgeted Effort of Work Performed (BEWP):
At any specified point in time the actual percent complete,
the BW, for that item (BEWP Item_actual%C. xBW,

times
where

BSO-G-RR-I02 ·Page 39- 22 January 1988

Modelling, tracking, and predicting

Item_actual'C&is YSTD/PTW).

ProductiViTY (PVTY):

BEWP/BEYS - Item-Actual'C.
Item_Planned,C\

Effort Overrun To Date (EOTD):
The difference between the actual effort spent to date and the
value of the work that had been planned to be performed, at the
measurement time (EOTD - YSTD - BEYS).

Projected Effort Overrun (PEO):
The difference between the projected total work and the budgeted
work (PEO - PTW - BY).

Effort Variance (EV):
The difference between the value of the work performed and the
actual effort spent for that work (EV - BEWP - YSTD).

Forecasted Effort To Complete (FETC):
A forecast of the effort to be incurred to complete the remaining
work. Forecast refers to a computerized extrapolation of the per­
formance to date, based on a built-in algorithm, and estimate
refers to a judgmental expression of the effort of the remaining
work (see section 3.3).

Forecasted Effort At Completion (FEAC):
The sum of the actual effort to date plus the forecasted effort to
complete (FEAC - WSTD+FETC)

A problem here is to attach a value to WRE (in fact this has to be a
task of the estimating tool), since any estimate is a mixture of facts
and opinions. During the actual running of the project the project
manager should modify the estimates to account for errors in the
observed estimates. The eventually corrected project model can help the
project manager to produce more accurate estimates of effort.

Clearly. for resource tracking the values of the variables mentioned
above can be calculated for each task the resource is involved.

A way to look at the cost performance is the so called earned value
approach. Earned value is the budget for any item times the percent com­
plete of that item. A protocol that is based on the earned value
approach is the Performance Measurement System (PHS) developed by the US
Department of Energy. The performance measurement approach is to period­
ically measure progress and cost in comparable units against the plan.

The following variables are used in PHS:

BSO-G-RR-102 -Page 40- 22 January 1988

Modelling. tracking. and predicting

Budget At Completion (BAC):
The initial budget for a task, workpackage or the entire project

Actual Cost of Work Performed (ACWP):
At any specified point in time the actual cost incurred for the
work

Estimate To Complete (ETC):
An estimate of the cost to be incurred to complete the remaining
work

Estimate At Completion (EAC):
The sum of the actual cost to date. plus the estimate to complete
(EAC - ACWP + ETC)

Budgeted Cost of Work Scheduled (BewS):
At any specified point in time the percent complete that the item
is scheduled to be at that time, times the BAC for that item (BewS
- Item_planned%C,xBAC)

Budgeted Cost of Work Performed (BCWP):
At any specified point in time. the actual percent complete, times
the BAC for that item. This is the earned value of the work per­
formed (BCWP - Item_actual%~xBAC. where Item_actual%C~isACWP/EAC)

Production Rate (PR):

BCWP/BCWS - Item actual%C~

Item_planned%Cc.

Cost Variance (CV):
The difference between the value of the work performed and the
actual cost for that work (CV - BCWP - ACWP)

Schedule Variance (SV):
The difference between the value of the work performed. and the
value of the work that had been planned to be performed. at the
measurement time (SV - BCWP - BCWS)

Forecast To Complete (FTC):
A forecast of the cost to be incurred to complete the remaining
work.

Forecast At Completion (FAC):
The sum of the actual cost to date plus the forecast to complete
(FAC - ACWP + FTC)

We have added to this two other variables:

Cost Overrun To Date (COTD):
The difference between the actual cost to date and the value of the

BSO-G-RR-I02 -Page 41- 22 January 1988

Modelling, tracking, and predicting

work that had been planned to be performed at the measurement time
(COTD - ACWP - BCWS)

Projected Cost Overrun (PCO):
The difference between the projected total cost and the budgeted
cost (PCO - EAC - BW)

The resource costs (often the most important costs of a software pro­
ject) are calculated by multiplying the resource use by the resource
rate. A negative aspect with this is, that when the rates change from
the plan, the PHS-method loses accurancy.

For the calculating of the variables related to the overall project pro­
gress we have two possibilities. Whether we include the tasks that are
finished only or we include all the tasks that are started at any time
(so also the tasks that are not finished yet).

In the first case we can calculate Work Spent To Date, Work Remaining
Estimate, Actual Cost of the Work Performed, and Estimate To Complete in
the following way:

Work Spent To Date -l:Actual Effort Spent belonging to the
tasks that have been finished

Work Remaining Estimate -l:Initial budget of all the tasks
in MM that are not finished yet

Actual Cost of Work Performed -l:Actual Cost belonging to the
tasks that have been finished

Estimate To Complete -~Initial budget of all the tasks in
money that are not finished yet

In the second case we can calculate the value of these variables as fol­
lows:

Work Spent To Date -l:Actual Effort spent belonging to
all the tasks that are started

Work Remaining Estimate -~Remaining Effort of all the tasks
that are started and not finished yet
+

[Initial budget of all the tasks in MM
that are not started

BSO-G-RR-102 -Page 42- 22 January 1988

Modelling, tracking, and predicting

Actual Cost of Work Performed -f Actual Cost belonging to all
the tasks that are started

Estimate To Complete -[Remaining Cost of all the tasks that
are started and not finished yet
+

~Initial budget of all the tasks that
are not started

It is clear, that in the tracker a spreadsheet can
further calculations by the project manager. The
be needed to show the project status in reports.
from graphs (see next section) to tabular ones.

2.8. Graphs

be useful to make
report generator will
These reports range

Bar charts (or Gantt charts, so known after their originator Henry
Gantt) can be used to show the current schedule against the target
schedule. In these bar charts we can make links to show the dependencies
between the workpackages. In figure 2.2 we see an example of a linked
bar chart. Another important graph is the PercentComplete against time
diagram (figure 2.3).

The curves in figure 2.3 enable the manager to compare the actual per­
centage complete with the planned percentage.

Other graphs that can be useful to determine the status of the project
are a manloading histogram, a productivity against time diagram, cost

week 8 9 10 11 12 13 14 15 16 17 18 19

Project

• • + • • ...
workpackagel

~I.ink
workpackage2 •••

The activities on .actual time
the critical path .earliest start/finish date
should be high - .planned start/finish date
lighted. +latest start/finish date

Figure 2.2 Instance of a bar chart

BSO-G-RR-102 -Page 43- 22 January 1988

percent
complete

Modelling, tracking, and predicting

I completion
: date

100 planned I __ '

90 IC _I- ...

80 ... '
70 " , ·, I

60 ",
"50 / I

40 / actual I
/

30 "IC I
20" I

... " I10 ,

O.-::~_~~_~~_....."....~~~---,~I--:,...."....~
2 3 4 5 6 7 8 9 10 11
weeks from start

date

Figure ~.1 Instance of a progress chart

performance diagram (see figure 2.4), and so on.

In the tracker the Work Breakdown Structure (in the form of a tree) can
be of some use to determine the (in)completeness of the work breakdown.
The activity-on-node diagram, made in the scheduler can be used to show
the assumed dependencies between the tasks. These two graphs can also be
helpful with selecting the workpackages/tasks the project manager wants
to see.

BAC

money

r

Figure ~.~ Cost performance diagram

BSO-G-RR-102 -Page 44- 22 January 1988

Modelling, tracking, and predicting

3. Predicting

3.1. Introduction

If there is a (serious) discrepancy between the plan and the reality,
generally the projectmanager wants to know what the influence of this
delay is on the scheduled project completion date. In this case a new
prediction of the effort and timescale has to be made. For that we see
three possibilities.

The first possibility needs a diagnosis tool. As mentioned in section
2.5, a diagnosis tool tries to determine the cause(s) of a noticed
discrepancy. If the cause(s) is (are) found and there is no 'remedy'
that does not affect the plan, a replanning process has to start by
which one or more of the following things can be needed: completing or
re-structuring the workbreakdown, re-estimating the effort and duration
of task(s), re-scheduling the tasks, re-allocating the resources. This
replanning process produces a plan which appears more realistic. It will
be useful, when the planning tools (especially the estimating tool) give
the project manager the possibility to calculate the effects of changing
the values of one or more model-parameters (like a spreadsheet does).
Obviously, if the project manager has some knowledge that in the (near)
future something will happen that may have an influence at the plan, he
can use the planning tools as well. The foregoing shows, that if there
is (or seems to appear) a serious deviation from plan, the planning
tools can be used to make a new and hopefully more accurate, (long-term)
prediction of the effort and timescale of the project.

The second possibility to make a long term prediction extrapolates the
measured values on the basis of the equation (curve), that is assumed to
represent the project model. So, in this case we suppose that a pro­
ject follows the curve that is described by this equation.

The third possibility makes only short-term prediction possible. To
predict for the immediate future, forecasting techniques will be used.
The reason that those techniques are only useful for short term predic­
tion is, that they are based on the assumption that existing pattern
will continue into the future and this assumption is more likely to be
correct over the short term than it is over the long term.

In this chapter we will discuss only the latter two possibilities.

3.2. Predicting on the basis of the project model

When the project is running the actual values can be used for (re­
)calibrating the equation that represents (a part of) the project model.
This calibrated equation can be used then to get an impression of the
expected completion date. To calibrate the model equation, y-f(x) least
squares techniques may be used.

BSO-G-RR-I02 -Page 45- 22 January 1988

Modelling, tracking, and predicting

Suppose, we have m sets of measured y and x and we want to determine the
optimal k coefficients c. • c .. , ... c. (c. _ R-) in the equation f. then we
have to minimize the following equation:

...
-~o(fi (l:) - Y.)"
- I I ; (~) - ~ I I'
- [;(£) - y]'" [!"(c:) - il] [3.1]

So. we have to minimize the sum of squares. Assume for example, that a
project follows a curve like figure 1.12. The equation of such a curve
is given by:

E(t) _ K(l _ e-··
a

)

If E(t) is measured in to , t .. , .. , t_ and we have to find the coeffi­
cients a and K, we have to minimize the function:

.. a

lI(a,K) -[.(K(l - e--tj) - E(t)t
I j-'

To minimize the sum of squares given in [3.1], we have to find the gra­
dient F and the Hessian G of the function f:

F.. (c) -~ (~) - 2U (~) [g(!?) - ~] (a K - vector) [3.2]
~ ClIC.

[3.3]

If f(~) - a en G(~) is definite positive, then S is a relative minimum
of tf .
The method of Newton to determine a zero point of f(l:) - 9 is as fol­
lows.

If ~__, is the last fixed approximation of ~, 9A can be computed from:

[3.4]

As next approximation we can take:

As stop criterion can be chosen:

,where (must be small

When the project equation is linear, for instance

BSO-G-RR-102 -Page 46- 22 January 1988

Modelling, tracking, and predicting

y - c,x + c~ (eventually after a simple transformation),

it is quite simple to minimize equation (3.1]. We will show this .

If (co ,ca) -l (c. XL + C a - Y.)a, wherel'
...

meansL
L. ,

To minimize we have to solve the following equation:

df<C) -L 2x. (c, XL + c a - y.) - 0
ac:-
~ -r 2(c, X, + c a - y.) - 0

~

After converting we find:

c.r X, + cJ M -

So that

Yi.

Co ca - L xtfy. -I x~l'x;. y.
(1: x~)M - (lx. 'f

Clearly.(rx~)M - arx.t must be unequal to zero.

There exists several relationships that are intrinsically linear: even
though they are not linear, linear regression can be used to obtain the
appropiate coefficients.

Take, for instance, the following equation:

y - C, X'L (For example, the effort estimator found by Boehm
(Boehm, 81l has this form)

This power equation can be linearized by taking the natural logarithm of
both sides to yield:

e log y - ~log c, + c~log x

If we set

e. eo e.
Y - log y, Cl - log c~, X - log x,

we obtain the linear form:

Y - Cl + c"X

BSO-G-RR-102 -Page 47- 22 January 1988

Modelling, tracking, and predicting

After we have obtained the best fit constants Cl and c we can return to
the power form by taking the inverse logarithm of Cl:

c, - exp(Cl)

When the obtained coefficients of the different calibrations fluctuate
heavily. we may assume the model is not correct.

3.3. Forecasting

We focus in this section on the method of exponential smoothing which is
a simple but powerful approach to short-term forecasting. The so called
simple exponential smoothing technique uses the following formula:

At -oLdt. + (1 -ac.)A•.1 I where 0 ~ O(~l [3.4]

In this equation At., is the old average, d. the actual observation in
period t and ~ the so called smoothing constant. So, At is a weighed
average of the actual observation in period t and At~ the old average.

The forecast for all future periods is equal to the forecast for the
next period:

k 1, 2, 3, ... [3.5]

Equation [3.4] can be rewritten as:

[3.6]

Since F. - A•., , the term (d.. - At.,) represents the forecast error in
period t; it is the difference between what actually occurred and what
had been forecasted one period previously. The choice ofoc, the smooth­
ing constant, indicates how much the new forecast has to be influenced
by the size of the error. If we substitute in equation [3.6] A4_1 and At.
by F, and ~., respectively, this equation runs as follows:

[3.7]

The equation [3.4] can be expanded as follows:

At. -01- d. + (1 - 0(,)At .,

So At., - DC dt., + (1 - c<.)A•.,

so that A~ -~dt + (1 - _) [Oldt., + (1 - lit) A~t.l

or A. --cit +0' (1 - 0()~.,+ (1 -0(.)1. At."

Clearly,A•.1.-Clt~.,,+ (1 --)At.,

so that ~ - ~ d.. + -' (1-0,> d-t., +0' (l--td.... + (I-a.)' At.,

BSO-G-RR-102 -Page 48- 22 January 1988

Modelling, tracking, and predicting

Finally, we can obtain:

Ft... - At -o«.d.+oc.(l-oI.)d•.• +o(",(I-ec.)"d•.,+ ... + ec.(l-.Sd•.•+ ... [3.8]

So, At is an average of all previous observations.

A way to select~ is to take the one that produces the most accurate
forecasts. However, one should be cautious about using an equation with
an_ higher than about 0.5. If the most accurate forecast is for an ~
greater than this value, it is often the case a better model exists.

If the historical data have a trend in it, a simple exponential smooth­
ing will not provide good forecasts. As long as this trend lasts, the
forecast will lag the actual. By accounting for the trend pattern in the
data, better forecasts can be produced. A method, that does so, is the
Holt's method (Holt et al., 60). This method uses the following equa­
tions:

Lt - ~d~ + (1-~) (4-, + T._~)
and Tt -Ii (4 - 4.,) + (1 - fJ)T t _.

[3.9]
[3.10]

Where _ is the smoothing constant used for the base level, and ~ is the
smoothing constant used for the trend.

To get started the model requires initial estimates L. and T.. These
estimates can be based either on judgement or on past data. The forecast
made at the end of period t for period t+k, k periods in the future, is
therefore:

In this equation we add one unit of trend for each future period we con­
sider. A special case of the Holt method uses the same smoothing con­
stant for smoothing both the level and the trend. The advantage of this
is, that there is only a single constant to worry about. The disadvan­
tage is, that the method may not produce forecasts that are as accurate
as those produced by Holt's method, which uses two smoothing constants.

Other smoothing methods use nonlinear trend models for short-term fore­
casting. These may not do any better than Holt's method, because over
short horizons a linear trend may be a good approximation of any trend.
However, more complicated trend models may be useful for forecasting
over longer horizons.

The quality of the forecasts/estimates should be evaluated how
perform in the application for which the forecasts/estimates
For this purpose we can use a formula as given in section 2.3.
we will give here a more statistical approach.

well they
are used.

However,

BSO-G-RR-102 -Page 49- 22 January 1988

Modelling. tracking. and predicting

To see how the actual value of d and F relate to each other. we define
the relative error in period t by:

If F. > d •• then REt is negative and if F.< d~, then REt is positive.
When RE. ~ 0, it must be between 0 and 1. but when RE.< O. it is essen­
tially unbounded in magnitude. We can also define the mean relative
error of a set of n forecasts/estimates by the formula:

..
RE - l/n~ RE l'. ,
If the estimates/forecasts are good, they will lead to small values of
RE and generally to a small RE. However. since it is possible, th~
large positive REt's can be balanced by large negative REt's. a small RE
may not imply that the estimates/forecasts are good ones.

In view of this problem with REt and RE we define the magnitude of the
relative error as:

Thus. the smaller the value of HRE t • the better the prediction. Now,
positive and negative relative errors do not balance out. For a set of n
forecasts/estimates, we can calculate the mean magnitude of the relative
error by:

..
HRE - l/nL HRE i.

i.'

If MRE is ~ll. the forecasts/estimates are good predictions. However.
even when HRE is small. there may be one or more predictions that can be
very bad. We consider MRE < .25 as acceptable.

If k is the number of forecasts/estimates in a set of n forecasts esti­
mates whose HRE. ~ x. then we define a measure as:

PRED(x) - kin

For example, if PRED(.25)-.83. then 83% of the predicted values fall
within 25' of their actual values. An acceptable criterion seems to be
PRED(.25) ~ .75.

BSO-G-RR-I02 -Page 50- 22 January 1988

Modelling, tracking, and predicting

4. Glossary

The terms in this document are generally those of the Glossary of
Software Engineering Terminology (ANSI/IEEE Std 729-1983) [IEEE, 84].
Extensions to this list include the following:

activity
Individual item of work which along with other items of. work
comprises the project.

activity-on-node diagram
A network diagram, where each node represents an activity and each
arc shows logical precedence. This approach is most commonly used
with the critical path method (CPM).

availability
The time interval in which a resource can be used.

consumable resource
A resource that can be used only once, e.g. processor time; thus a
resource that is not re-usable (durable).

critical activities
The activities along the critical path. A delay in anyone of them
will cause a delay in the completion of the entire project.

critical path
The longest path in a network. It determines the project length in
the sense that precedence relations permit no earlier completion of
the project.

deliverable
The final object of a task.

dependency
The logical relationship between activities within a project due to
time or causality or both.

durable resource
A resource that can be used more than once. Contrast with consum­
able resource.

early finish time
The earliest time at which the task can be completed.

early start time
The earliest time at which the task can begin.

estimate
A judgement that is equally likely to be above or below the actual
result.

BSO-G-RR-102 -Page 51- 22 January 1988

Modelling, tracking, and predicting

event
The fact of a thing's happening, where the thing is not directly
influenced by the project, like the delivery of a machine.

forecast
An estimate of something in the near future based on a computerized
extrapolation of the past.

free slack
The allowable delay in a task start time that can be absorbed
without delaying another task.

late finish time
The latest time at which the task can finish without delaying the
project.

late start time
The latest time at which the task can begin without delaying the
project.

milestones
A point during the life cycle of a project at which actual progress
is monitored against planned progress.

model
A miniature representation of a complex reality.

monitoring the work progress
The means by which feedback on actual progress against planned pro­
gress is provided to the users to inform them of the budgetary and
technical development of the project. Monitoring can be undertaken
at random intervals or at pre-determined points.

network diagram
This is a graphical model for analysis of the scheduling problem.
All diagrams use nodes and arcs.

path
This is a sequence of connected activities in a network diagram,
following a set of precedence arrows from the start of a project to
its completion.

prediction
A long term estimate.

project manager
The individual who is responsible for the successful running and
completion of the project.

proj ect metric
A quantify attribute of the project.

BSO-G-RR-102 -Page 52- 22 January 1988

Modelling, tracking, and predicting

resource allocation
The apportioning of the available and required resources to the
various activities which form the project.

Software project
A series of activities whose major deliverable is an item of
software.

standards
Prescribed rules that have to be followed during the development of
a software product.

task
Activity within the project (see activity)

total slack
The allowable delay in a task start time that can be absorbed
without delaying the project, assuming that all other tasks begin
as early as possible.

tracking the work progress
The recording and monitoring of how much work has been done, what
resources were utilized, and what costs were incurred. At any
update or measurement point, which should occur at regular inter­
vals or at pre-determined points (milestones). It also entails
keeping track of any changes in the project plan.

user
The person or persons who operate or interact directly with the
system.

Work Breakdown
The organizing of the project activity elements into a hierarchical
structure. This structure is composed of two hierarchies, which can
be connected in whichever way best fits the project. These two
hierarchies are:

-the product hierarchy;
-the activity hierarchy.

BSO-G-RR-102 -Page 53- 22 January 1988

Modelling, tracking, and predicting

5. Bibliography

[Albrecht, 79]
Albrecht, A.J.,
Proceedings of
83-92

"Measuring application development productivity",
the Joint SHARE/GUIDE Symposion, October 1979, pp

[Albrecht, 83]
Albrecht, A.J., and Gaffney Jr., J.E., "Software function, source
lines of code, and development effort prediction: a Software Sci­
ence validation.", IEEE Transactions on Software engineering SE-9,
6, November 1983, pp 639·647

[Bailey-Basili, 81]
Bailey, J.W., and Basili, V.R., "A meta-model for software develop­
ment resource expenditures", Proceedings of the Fifth International
Conference on Software engineering, IEEE/ACM/NBS, March 1981, pp
107 -116

[Boehm, 81]
Boehm, B.W., "Software engineering economics", Prentice Hall, 1981

[Conte et al., 86]
Conte, S.D., Dunsmore, H.E., and Shen, V.Y., "Software engineering
metrics and models", The Benjamin/Cummings Publishing Company, 1986

[Cowderoy, 86]
Cowderoy, A., "The Fleximate estimation tool", Imperial College,
IMPC-WP5-W-003(3), 1986

[DeMarco, 81]
DeMarco, T., "Yourdon 1979·80 project survey final report", Yourdon
inc., September 1981

[DeMarco, 82)
DeMarco, T., "Controlling software projects", Yourdon Press, 1982

[Drummond, 85)
Drummond, S.• wKeasuring applications development performance",
Datamation, February 1985

[Freiman-Park, 79]
Freiman, F.R., and Park, R.E., "PRICE software model-version 3 an
overview", Proceedings, IEEE-PINY workshop on quantitative Software
models, IEEE Catalog No. TH0067-9, October 1979, pp 32-41

[Holt et al., 60]
Holt, C.C., et al., "Planning production, inventories and work
force", Prentice Hall, 1960

BSO-G-RR-102 ·Page 54- 22 January 1988

Modelling. tracking. and predicting

[IEEE, 84]
IEEE, "Software engineering standards", IEEE Inc, 1984

[Jensen. 83]
Jensen, R.W., "An improved macrolevel software development resource
estimation model", Proceedings Fifth ISPA Conference, April 1983,
pp 88-92

[Jensen, 83]
Jensen, R.W., and Lucas S., "Sensitivity analysis of the Jensen
software model", Proceedings Fifth ISPA Conference, April 1983, pp
384-389

[Jensen, 84]
Jensen, R.W., "A comparison
cost estimation models",
Analysis, 1984, pp 96-106

of the Jensen and COCOMO schedule and
Proceedings of the Int. Soc. Parametric

[Jong et al., 87]
Jong, de T., Hoog, de R., and Schreiber, G., "Monitoring, Diag­
nosis, and Forward Tracking in Software Project Management",
University of Amsterdam, UVA-D-RR-005a, 1987

[Nelson. 66]
Nelson, E.A., "Management handbook for the estimation of computer
programming costs.", Systems Development Corporation, 31 october
1966

[Norden, 63]
Norden, P.V., "Useful tools for project management", Operations
Research in Research and Development, John Wiley & Sons, '1963

[Parkinson, 57)
Parkinson, G.N., "Parkinson's Law and other studies in Administra­
tion", Houghton-Miffin, 1957

[Putnam. 78]
Putnam, L.H., "A general emperical solution to the macro software
sizing and estimating problem", IEEE Transactions on software
engineering SE-4, 4, July 1978, pp 345-361

[Putnam, 79]
Putnam, L.H., and Fitzsimmons. A., "Estimating software costs",
Datamation, September 1979, pp 189-198, Continued in Datamation,
October 1979, pp 171-178, and November 1979, pp 137-140

[Tausworthe. 80]
Tausworthe, R.C.,
management". The
181-186

"The work breakdown structure in software project
Journal of System and software, Vol. 1, 1980, pp

BSO-G-RR-l02 -Page 55- 22 January 1988

Modelling, tracking, and predicting

[Walston-Felix, 77)
Walston, C.E., and Felix, C.P., "A method of
ment and estimation.", IBM System Journal,
1977, pp 54-73

programming measure­
Vol. 16, No.1, January

[Wolverton, 74)
Wolverton, R.W., "The cost of developing large-scale software",
IEEE Trans. Computers, June 1974, pp 615-636

BSO-G-RR-102 -Page 56- 22 January 1988

Specifications of tracking in software project management

Synopsis

This document describes the specifications of the tracking tool.

Authors
Reader
Level
Status
Identifier:
Created
Printed

RF Wissing, BSO/Eindhoven

BSO/Eindhoven BV
Draft
BSO-G-SP-104.n
19 october 1987
12 February 1988

(Release
(Edited

1.14)
88/02/12)

This document is part of a project partially funded
by the Commission for the European Communities ESPRIT
programme, as project number 814.

6 1988 BSO/Eindhoven BV

Tracker Tool Specifications

Distribution List

Christer Fernstrom CS1
John Hawgood PA
Robert de Hoog UvA
Patrick Humphreys LSE
John Jenkins 938
Hans van de Klok BSO
Frank Land LBS
Eirik Naess-Ulseth SI

BSO-G-SP-104.n -Page 2- 12 February 1988

Creation Date:
Author
Reader
Modifications:

BSO-G-SP-104.n

Tracker Tool Specifications

Revision Information

-Page 3- 12 February 1988

Tracker Tool Specifications

Table Of Content--- --
1 Introduction Tracker Tool Specifications .
2 PIKS #1 Tracker Tool Specifications .
2.1 Tracker Part .
2.1.1 Inputs .
2.1.1.1 Inputs required from the other tools and the sys-

tem .
2.1.1.2 User inputs .
2.1.2 Outputs .
2.1.2.1 Outputs to the system .
2.1.2.2 User outputs .
2.1.3 Tools required by the tracker .
2.1.4 Process ing .
2.1.4.1 Enter Project Data .
2.1. S Enter Task Data .
2.1.6 Enter Resource Data .
2. 1. 7 Control Reports .
2.1.8 Graphs .
2.2 Predictor Part .
2.2.1 Introduction .
2.2.2 Inputs and Outputs .
2.2.3 Processing .
3 Future extensions of the tracker .
3.1 Inputs .
3.1.1 Inputs required from the other tools and the system

3.1.2 User inputs .
3.2 Outputs .
3.2.1 Outputs to the system .
3.2.2 User outputs .
3.3 Tools required by the advanced tracker .
3.4 Processing .
4 Glossary .
S Abbreviations .
6 References .

S
6
6
6

6
7
8
8
9

11
11
12
13
17
20
26
29
29
30
30
32
32

32
33
33
34
34
3S
3S
37
40
43

BSO-G-SP-104.n -Page 4- 12 February 1988

Tracker Tool Specifications

1. Introduction Tracker Tool Specifications

This chapter discusses the specifications for the tracker. The tracker
is one of the PIMS-tools. It provides the means to feed the user's
actual knowledge of the running project into the PIMS system and it
indicates to the user the status of the project. This has been described
extensively in document BSO-G-RR-102 [Wissing, 87].

It is (often) effective to specify the required behavior of a software
product by a description of the inputs, outputs and processing
(transforming the inputs into the outputs). Hence, the tracker tool
requirements will be expressed mainly through a detailed description of
these. The specifications will be split into two parts:

- PIMS #1 tracker tool specification;
- future extensions.

Since in PIMS #1 the tracker and the predictor will be integrated, the
latter will be described in this document too. Only short term predic­
tion will be possible in PIMS#l. To make a clear distinction between
predicting and tracking, they will be discussed in separate sections.

BSO-G-SP-104.n -Page 5- 12 February 1988

Tracker Tool Specifications

2. PIMS #! Tracker Tool Specifications

2.1. Tracker Part

2.1.1. Inputs

In the first instance we divide the inputs into two groups:

- Inputs required from the other tools and the system;
- User inputs.

1.!.!.!. Inputs required from the other tools and the system

To be able to determine the project status the tool requires the follow­
ing inputs of the other tools via the information manager:

- System input:
- Actual Date

- Session:
- Current Project
- Current Project View
- Current Project Status

- Proj ect:
- Key

- ProjectView:
- external Milestones

- ProjectStatus:
- Workbreakdown
- Schedule:

- links
- tasks scheduled

- Workpackage data:
- Father
- Sons
- Key
- Needs (a list of deliverables from other workpackages

needed by the workpackage)
- Produces (a list of deliverables produced by the work­

package)
- Realisation (The task that implements the workpackage. We

suppose that only the workpackages without
sons have a task as realisation. With the
other workpackages their sons represent their

BSO-G-SP-104.n -Page 6- 12 February 1988

Tracker Tool Specifications

realisation.)

- Task data:
- Name
- Description
- W'orkpackage
- Proj ectStatus

AllocatedResources
- Status
- Schedule Dates: Early Start, Early Finish, Late Start,

Late Finish, Planned Start, and Planned
Finish Date

- EstimatedEffort (initially estimated effort, BW')
- EstimatedCost (initially estimated cost, BAC)

- Human Resource data:
- Person:

- Key
- Cost by Hour
- Reservations

- Allocation (Reservation) data:
- Resource
- list of:

- planned start date
- planned end date
- percent of usage of the resource

- Task

- Milestone data:
- Key
- NotLaterThan
- Deliverables

- Deliverable:
- ProducedBy (workpackage)

2.1.1.2. User inputs

The user may give the tool the following kinds of inputs:

- Overall project data:
- External Milestones acknowledged date (The date

a milestone has been formally achieved. An
external milestone has been informally
achieved when all its deliverables have been
acknowledged.)

- Task data:

BSO-G-SP-104.n -Page 7- 12 February 1988

Tracker Tool Specifications

- Task Finish Date
- Task Acknowledged Date
- Deliverable Finish Date
- Deliverable Acknowledged Date

(Internally a deliverable is the document that synchronizes
the different tasks. So, it is possible a deliverable has
been delivered, but the task is not finished yet. For in­
stance, one has done a literature study and has finished
the document belonging to it, but one has to bring the books
back to the library.)

- TaskfHumanResource data:
- Measurement date
- Effort Spent per task, per resource
- Estimate of the effort to complete the work by resource, by

task (Remaining Effort)
- Actual Start Date of a resource on a task
- Actual End Date of a resource on a task

- User query:
- Graphs (see section 2.1.2.2)
- Project/Task Control tabular Reports
- Resource Control tabular Reports
- data that can be useful for entering data (see section

2.1.2.2), a list of names of not_acknow1edged_mi1estones
for instance, can be useful with selecting these milestones

2.1.2. Outputs

Ye divide the outputs, just like the inputs, into two groups:

- outputs to the system;
- user outputs.

~.!.~.!. Outputs to the system

The tool will give the system the following kinds of outputs:

- Task data:
- Status (A task has the status NotStarted as long as

no effort has been carried to the task. Yben
effort is spent on the task the status goes
to InProgress. In the tracker the user can
change the status in Finished (on the
condition the deliverable has been finished)
The Status goes back from Finished to Progress
when effort is again spent on the task.
If the deliverable is Finished the user can

BSO-G-SP-104.n -Page 8- 12 February 1988

Tracker Tool Specifications

change the status from Finished to Acknow­
ledged. The Acknowledged status means that
completion of the task is formally acknowledged,
so the work is absolutely finished.

- Start Date
- Finish Date
- FinishCount

(For Q.A. reasons (note, a Q.A. tool is not available
in PIKS #1) the system has to know how many times one
thinks the task is ready, i.e. how many times its
status has changed from InProgress to Finished.)

- Acknowledged Date
- Estimated Effort (BW)
- Effort Spent (WSTD)
- Remaining Effort (YRE)
- Cost Spent (ACWP)
- Remaining Cost (ETC)
- Measurement Date (This date may be different from the dates

the data have been entered)

- Human Resource data:
· Actual Start Date of a resource on a task
- Actual End Date of a resource on a task
- Effort Spent (WSTD) by task
• Remaining Effort (YRE) by task
• Measurement Date

- Deliverable:
- Finish Date
- Acknowledged Date

Note, most of these outputs will also be required by the tracker as
well.

2.1.2.2. User outputs

The tracker tool indicates to the user the status of the project. The
user can get the following kinds of outputs:

- Tabular reports:
- Overall project:

- Time/Date, Project_Name
- Effort/Cost Control Report: see Project Control Report

(The top-node-workpackage of the WBS represent
the total project)

- Milestone:
- Not Later Than Date
- Acknowledged Date
- Deliverables (needed to achieve the milestone) with

BSO-G-SP-104.n -Page 9- 12 February 1988

Tracker Tool Specifications

their tasks
· Acknowledged Date of the deliverables (a milestone has

been informally achieved when all its deliverables
have been acknowledged)

• Project Control:
- Effort Control Report: BW, WSTD, WRE, PTW, FETC (see

section 2.2), BEWP (earned value), PVTY, PEO, EV by
workpackage by task or summarized (The abbreviations
are explained in Chapter 5.)

- Cost Control Report: BAC, ACWP, ETC, EAC, FAC (see
section 2.2), BCWP, PR, CV, PCO by workpackage by
task or summarized

- Task Control:
- Effort Control Report: BW, WSTD, WRE, PTW, FETC (see

section 2.2), BEWP (earned value), PVTY, PEO, EV by
task by resource or summarized (The abbreviations
are explained in Chapter 5.)

- Cost Control Report: BAC, ACWP, ETC, EAC, FAC (see
section 2.2), BCWP, PR, CV, PCO by task by resource
or summarized

- Task/Deliverable Dates
- Early Start, Early Finish, Late Start, Late Finish,

Planned Start, Planned Finish, Actual Start, Task
Actual Finish, Forecasted Finish (see section 2.2)
and Task Acknowledged Date

- Deliverable Finish and Acknowledged Date

- Human Resource Control:
- Reserved Time Interval by resource by task
- Actual Start Date of a resource on a task
- Actual End Date of a resource on a task
- Effort Control Report: BW, WSTD, WRE, PTW, FETC (see

section 2.2), BEWP (earned value), PVTY, PEO, EV by
resource by task or summarized

- Cost Control Report: BAC, ACWP, ETC, EAC, FAC (see
section 2.2), BCWP, PR, CV, PCO by resource by task
or summarized

- Lists:
- Used Resources (resources which are allocated to one

or more tasks)
- Tasks where a resource has been allocated to
· Milestones Not Acknowledged
· Started but Not Acknowledged Tasks
- Not Acknowledged Tasks (project to do list)

- Graphs:
- Overall project:

- Work Breakdown Structure (helpful with selecting the

BSO-G-SP-l04.n ·Page 10- 12 February 1988

Tracker Tool Specifications

workpackages the PIMS user wants to see)
- Activity-On-Node diagram (helpful with selecting the

tasks the PIMS user wants to see)

- TaskjWorkpackage:
- Gantt chart of tasks

- Resource:
- Gantt chart of resources

~.!.l. Tools required ~ the tracker

The tracker requires the following tools:

- Information Manager for providing the access to the objects that
are read and written by the tracker [Fernstrom et a1. ,87a]

- Front End tool for handling communications with the user
[Fernstrom et a1., 87b]

2.1.4. Processing

The processing in the tool will be described with the help of the com­
mands the tool offers. These commands can be grouped into five command
groups:

- Enter Project Data
- Enter Task Data
- Enter Resource Data
- Control Reports
- Graphs

When a tool is activated these commands will be shown in the so-called
Dialogue subwindow. Further, two static graphical subwindows containing
an Activity-On-Node network and a Work Breakdown Tree respectively, and
a list subwindow with the used resources will be created. (A resource is
called used when he has been allocated to one or more tasks, which
belong to the current project status.) This list window will have the
header "USED RESOURCES" (figure 1) and the resources will be shown in
alphabetical order.

BSO-G-SP-104.n -Page 11- 12 February 1988

WORKBREAKDOWN-TREE

Tracker Tool Specifications

1--1
I I
I DIALOGUE SUBWINDOW I
I I
I I
1-----------------------------1--]

I I
I I
I I
I I
I I
I ACTIVITY-ON-NODE DIAGRAM I
I I
I I
I I
I I
I I
I I
I I
J I

------ 1 I
USED RESOURCES I LISTWINDOW I TEXTWINDOW I

I I (not editable) I
I I I
I I I
I I I

------------------------ 1

Figure I Display lay-out tracker

The PIMS-user can use the left button of the mouse to make a selection
of the elements shown in the above mentioned windows. With the middle
button of the mouse the user can get help information about the clicked
element.

When the PIMS-user selects with the left button one of the command
groups in the Dialogue subwindow, a pop up menu that contains the com­
mands of the group will appear. Next, the user can select one of these
commands.

In the following the commands of the tracker will be discussed by group.

~.l.~.l. Enter Project Data

Show Milestones Not Acknowledged List
This command has no parameter. When it is selected the tracker
calls the Information Manager to obtain the keys and the not later
than date belonging to the external milestones which have not been

BSO-G-SP-104.n -Page 12- 12 February 1988

Tracker Tool Specifications

acknowledged yet and belongs to the current project status. These
keys, ordered by the not later than date, are displayed in the list
subwindow. This listwindow, that gets the header WMILESTONES NOT
ACK". can be helpful with selecting the milestones.

Show Milestone Data
This command has as parameter an external milestone key. If this
key is the key of milestone that belongs to the current project
view (checked by the front end), the tracker calls the information
manager to obtain the milestone key value, the not later than date,
the acknowledged date (which may be undefined) and the deliver­
ables, needed to achieve the milestone, with their name, their pos­
sibly acknowledged date, and the workpackages that produce them.
These data will be shown in the text subwindow, that is not edit­
able.

Enter Milestone Acknowledged Date
This command has two parameters:

- Milestone Key
- Acknowledged Date

The front end performs the following parameters checks:

- if the entered key is the key of an external milestone,
which belongs to the current project view

- if the date is an existing date and is not later than
the current date

The tracker verifies:

- if on the entered date all the deliverabIes that belong
to the milestone have been acknowledged (An external
milestone has been informally achieved when all its
deliverables have been acknowledged.)

If the parameters are valid, the tracker calls the Information
Manager to store the acknowledged date and to obtain the milestone
key value, the not later than date, the acknowledged date and the
deliverables with their name, their acknowledged date, and the
workpackages that produce them. Next, these data will be shown in
the text subwindow, that is not editable and the possibly shown
list of milestones not acknowledged will be updated.

2.1.5. Enter Task Data

Show Started Tasks But Not Acknowledged
This command has no parameter. Yhen it is selected the tracker
calls the Information Manager to obtain the data belonging to the
tasks which have been started but have not been acknowledged yet
and belong to the current project status. The names of these tasks,
ordered by actual or planned finish date, are displayed in the list

BSO-G-SP-104.n -Page 13- 12 February 1988

Tracker Tool Specifications

subwindow with the header "STARTED TASKS BUT NOT ACKNOYLEDGED".

Show Task Data
This command has as parameter the name of a task which belongs to
the current project status (checked by the front end). If the
parameter is valid the tracker calls the Information Manager to
obtain the following task data:

- the name and the description of the task
- Early Start, Early Finish, Late Start, Late Finish,

Planned Start, and Planned Finish Date of the task
- if the task has been started:

- the Actual Start Date
- if the task has been finished or acknowledged:

- the Finish and the possibly Acknowledged Date
of the task

- if the task is in progress:
- the Forecasted Finish Date of the task

(this date is derived from an extrapolation
of the Estimate At Completion values and
the average utilization of the allocated
resources in the past, see section 2.2)

- if the deliverable of the task has been finished:
- the Finish and the possibly Acknowledged Date

of the deliverable

- the last measurement date
- if the estimated effort is available:

- the estimated effort in manhours of the task
- the effort allocated in manhours
- if there has been spent effort on the task:

- the effort spent in manhours
- if the remaining effort has been filled in:

- the remaining effort in manhours
- if the task is in progress:

- the forecast to complete in manhours
(this forecast is derived from the
built-in forecast algorithm, see
section 2.2)

These data will be shown in the text subwindow. that is not edit­
able.

Enter Deliverable Finish Date
This command has two parameters:

- Task Name
- Finish Date

The front end performs the following parameters checks:

- if the entered name is the name of an InProgress task

BSO-G-SP-I04.n -Page 14- 12 February 1988

Tracker Tool Specifications

which belongs to the current project status
- if the date is an existing date and is not later than

the current date

The tracker verifies:

- if the deliverable Finish Date is later than the
task Start Date

- if the deliverable has not been acknowledged yet

If the parameter values are valid, the tracker calls the Informa­
tion Kanager to store the Finish Date. When the task finish date
has been filled in and is earlier than the deliverable finish date,
then this date is changed in undefined. Next, the tracker calls the
function which generates the output for the command "Show Task
Data n

•

Enter Deliverable Acknowledged Date
This command has two parameters:

- Task Name
- Acknowledged Date

The front end performs the following parameters checks:

- if the entered name is the name of an InProgress
or a Finished task which belongs to the current
project status

- if the date is an existing date and is not later
than the current date

The tracker verifies:

- if the Acknowledged Date is later than the Finish
Date of the deliverable

If the parameter values are valid, the tracker calls the Informa­
tion Manager to store the Acknowledged Date. Next, the tracker
calls the function Which generates the output for the command "Show
Task Data".

Enter Task Finish Date
This command has two parameters:

- Task Name
- Finish Date

The front end performs the following parameters checks:

- if the entered name is the name of an InProgress
or a Finished task which belongs to the current
project status

BSO-G-SP-104.n -Page 15- 12 February 1988

Tracker Tool Specifications

- if the date is an existing date and is not later
than the current date

The tracker verifies:

- if the Finish Date of the task is later than or
equal to the Finish Date of the deliverable
(which must be filled in)

If the parameter values are valid, the tracker calls the Informa­
tion Manager to store the Finish Date, update the FinishCount and
to change the Task Status in Finished. Next, the tracker calls the
function which generates the output for the command "Show Task
Data".

Enter Task Acknowledged Date
This command has two parameters:

- Task Name
- Acknowledged Date

The front end performs the following parameters checks:

- if the entered name is the name of an InProgress
or a Finished task which belongs to the current
project status

- if the date is an existing date and is not later
than the current date

The tracker verifies:

- if the Acknowledged Date is later than the Finish
Date (which must be filled in)

- if the Acknowledged Date of the task is later than
or equal to the Acknowledged Date of the deliverable
(which must be filled in)

- if the Acknowledged Date of the task is later than or
equal to the End Dates of the allocated resources on
the task

If the parameter values are valid, the tracker calls the Informa­
tion Manager to store the Acknowledged Date and to change the task
status in Acknowledged. Next, the tracker calls the function which
generates the output for the command "Show Task Data" and updates
the possibly shown list with the header "STARTED TASKS BUT NOT ACK­
NOWLEDGED".

Enter Task Revised Budget
This command has two parameters:

- Task Name
- Estimated Effort (optional) in manhours

BSO-G-SP-104.n -Page 16- 12 February 1988

Tracker Tool Specifications

The front end performs one parameter check:

- If the entered name is the name of a NotStarted
task which belongs to the current project status

If the parameter values are valid, the tracker calls the informa­
tion manager to store the estimated effort; by default the amount
of allocations is taken. Next, the tracker calls the function
which generates the output for the command "Show Task Data".

2.1.6. Enter Resource Data

Show Task Allocated List
This command has as parameter a Person Key. The front end verifies
if this key belongs to a human resource which has been allocated to
one or more tasks, which belong to the current project status. If
the parameter is valid the tracker calls the Information Manager to
obtain the names of the tasks allocated. The names of these tasks,
ordered by actual or planned start date, are displayed in a list
subwindow with the header "ALLOCATIONS OF" followed by the person
key.

Show Allocations
This command has as parameter a Person Key. The front end verifies
if this key belongs to a human resource which has been allocated to
one or more tasks, which belong to the current project status. If
the parameter value is valid, the tracker calls the Information
Manager to obtain the following data per task allocated:

- a list of:
- the start date, end date, and degree of using

in percent
- if the Actual Start Date of the resource on a task

has been filled in:
- the Actual Start Date

- if the Actual End Date of the resource on a task has
been filled in:

- the Actual End Date
else:

- the Forecasted End Date
(this date is derived from an extrapolation of
the Estimate At Completion values and the
average utilization of the resource in the
past, see section 2.2)

- the last measurement date
- the estimated effort in manhours
- the effort reserved in manhours
- if there has been spent effort on the task:

- the effort spent in manhours
- if the remaining effort has been filled in:

- the remaining effort in manhours

BSO-G-SP-104.n -Page 17- 12 February 1988

Tracker Tool Specifications

- the forecast to complete in manhours
(this forecast is derived from the built-in
forecast algorithm, see section 2.2)

These data will be shown in the text subwindow, that is not edit­
able.

Enter Start Date
This command has three parameters:

- Person Key
- Task Name
- Start Date
- Revised estimated effort (optional) in manhours

The front end performs the following parameters checks:

- if the Person Key belongs to a human resource which has
been allocated to one or more tasks, which belong to the
current project status

- if the Task Name is the name of a not acknowledged task,
which belongs to the current project status

- if the date is an existing date and is not later than the
current date

The front performs one command check:

- if the key belongs to a resource which has been allocated
to the task which belongs to the entered Task Name

The tracker verifies:

- if the End Date has not been filled in

If the parameter values are valid the tracker calls the Information
Manager to store the Resource Start Date. If the task status is
NotStarted, the tracker calls the Information Manager to store this
date as Task Start Date. When the task status is InProgress or Fin­
ished, the tracker searches the minimum of the start dates of the
resources allocated to the entered task. This minimum start date
will be stored as Task Start Date. Next, the tracker calls the
information manager to store the revised estimated effort; by
default the amount of reservations is taken. Finally, the tracker
calls the function which generates the output for the command "Show
Allocations".

Enter End Date
This command has three parameters:

- Person Key
. Task Name
. End Date

BSO-G-SP-104.n ·Page 18- 12 February 1988

Tracker Tool Specifications

The front end performs the following parameters checks:

• if the Person Key belongs to a human resource which has
been allocated to one or more tasks, which belong to the
current project status

- if the Task Name is the name of a not acknowledged task,
which belongs to the current project status

- if the date is an existing date and is not later than the
current date

The front performs one command check:

- if the person key belongs to a resource which has been
allocated to the task which belongs to the entered Task
Name

The tracker verifies:

- if the RemainingEffort is zero
- if the End Date is equal to or later than the Start Date

If the parameter values are valid the tracker calls the Information
Manager to store the End Date. Next, the tracker calls the func­
tion which generates the output for the command "Show Allocations".

Enter Task Allocated Data
This command has five parameters:

- Person Key
- Task Name
- Measurement Date (default: the last measurement date,

or, when this date is not
available, the current date)

- Effort Spent in the last period in manhours
- Remaining Effort in manhours

The front end performs the following parameters checks:

- if the Person Key belongs to a human resource which has
been allocated to one or more tasks, which belong to the
current project status

- if the Task Name is the name of a not acknowledged task,
which belongs to the current project status

- if the date is an existing date and is not later than the
current date

The front performs one command check:

- if the person key belongs to a resource which has
been allocated to the task which belongs to the
entered Task Name

BSO-G-SP-104.n -Page 19- 12 February 1988

Tracker Tool Specifications

The tracker verifies:

- if the resource has a filled in Start Date
- if the resource has not a filled in End Date
- if the Measurement Date is later than the Start

Date

If these parameter values are valid the tracker calls the Informa­
tion Manager to update the Effort Spent and the Remaining Effort
per resource and to update the Effort Spent, Cost Spent, the
Remaining Effort and Remaining Cost per task, and to store the
Measurement Date, which belongs to the resource data. When the
Resource Remaining Effort has not been filled in, then this effort
is calculated from the reservations made for this resource. If the
Resource Measurement Date is later than the Measurement Date, which
belongs to the task, then the latter date is changed in the entered
date. If the finish date of the task has been filled in and this
date is earlier than the measurement date, then the Task Status
will be changed in InProgress. Next, the tracker calls the func­
tion which generates the output for the command "Show Allocations".

2.1.7. Control Reports

Resource Control Report
This command has three parameters:

- Person Key (a list of values) (the tracker removes
all the entered duplicates)

- unit of measure (manhours, mandays and money)
(default: manhours; money is not implemented in PIMS#l)

- summarized (yes or no) (default: no)

The front end performs one parameter check:

- if the Person Key belongs to a human resource which has
been allocated to one or more tasks, which belong to the
current project status

If the parameter values are valid, the follOWing variables by
resource by tasks allocated are shown in a popup textwindow, that
is not editable:

- Effort/Cost Spent
- Remaining Effort/Cost
- Revised Effort/Cost
- Forecast At Completion
- Estimated Effort/Cost
- Projected Overrun
- Earned Value
- Variance
- Production Rate

BSO-G-SP-104.n ·Page 20- 12 February 1988

Tracker Tool Specifications

The Effort Spent and the Remaining Effort can be found in the PIMS
Project Conceptual Scheme via the Information Manager. The
Estimated Effort is calculated from the reservations made for the
resource. The Forecast At Completion refers to an extrapolation of
the Estimate At Completion values in the past, based on the built­
in forecast algorithm (see section 2.2). The remaining variables
can be calculated as follows:

Revised Effort - Effort Spent + Remaining Effort

Projected Overrun - Revised Effort - Estimated Effort

Earned Value -
Effort Spent

Revised Effort
* Estimated Effort

Variance - Earned Value - Effort Spent

Estimated Effort
Production Rate -

Revised Effort

If the unit of measure is money the cost can be easily calculated
by multiplying the resource use by the resource rate. The shown
tasks where the resource is allocated to, will be ordered by
resource actual or planned start date. Summarized means that for
each resource the Revised Effort, the Effort Spent, the Remaining
Effort, the Forecasted Effort, the Estimated Effort, the Earned
Value of every task allocated to the resource are added together.
Further, the Resource Control Report will include one of the fol­
lowing triples of dates:

Actual Start - Actual Finish of a resource on a task - Late Finish of a task

or, if the task has not been Finished:

Actual Start . Forecasted Finish of a resource on a task - Late Finish of a tas

or, if the Actual Start date is not available:

Planned Start - Planned Finish of a resource on a task - Late Finish of a task

(How the forecasted finish date is calculated, will be explained in
section 2.2.) If one of the succeeding tasks are delayed beyond
their late start date (in other words these tasks become critical),
the user will be warned.

BSO-G-SP-104.n -Page 21- 12 February 1988

Tracker Tool Specifications

Task Control Report [random task selection]
This command has three parameters:

- Task Name (a list of values) (the tracker removes
all the entered duplicates, the names can be picked
everywhere on the screen, except from the workbreakdown
tree.)

- unit of measure (manhours, mandays and money)
(default: manhours; money is not implemented in PIMS#l)

- summarized (yes or no) (default: no)

The front end performs the following parameter check:

- if every task belong to the current project status

If the parameter values are valid, the following variables by task
are shown in a popup textwindow, that is not editable:

- Effort/Cost Spent
- Remaining Effort/Cost
- Revised Effort/Cost
- Forecast At Completion
- Estimated Effort/Cost
- Projected Overrun
- Earned Value
- Variance
- Production Rate

The Effort/Cost Spent, the Remaining Effort/Cost and the Estimated
Effort/Cost can be found in the PIMS Project Conceptual Scheme via
the Information Manager. The Forecast At Completion refers to an
extrapolation of the Estimate At Completion values in the past,
based on the built-in forecast algorithm (see section 2.2). The
remaining variables can be calculated as follows:

Revised Effort - Effort Spent + Remaining Effort

Projected Overrun - Revised Effort - Estimated Effort

Earned Value -
Effort Spent

Revised Effort
* Estimated Effort

Variance - Earned Value - Effort Spent

Estimated Effort
Production Rate -

Revised Effort

BSO-G-SP-104.n -Page 22- 12 February 1988

Tracker Tool Specifications

If the user has chosen for Not Summarized, the tracker generates a
report by task by resource. The resources are ordered by actual or
planned start date. The variables per resource are calculated as
described in the section "Resource Control Report". Note, the sum
of the Effort Spent of the resources allocated to a particular task
must be equal to Effort Spent of that task. The sum of the Remain­
ing Effort of the resources allocated to a task does not neces­
sarily have to be equal to the Remaining Effort of that task. The
reason for this is, that the resource allocator does not verify if
the allocation is complete and consistent with the task data.

Further, the Task Control Report will include one of the following
triples of dates:

Actual Start - Actual Finish - Late Finish of a task

or, if the Actual Finish date is not available:

Actual Start - Forecasted Finish - Late Finish of a task

or, if the Actual Start date is not available:

Planned Start - Planned Finish - Late Finish of a task

(How the forecasted finish date is calculated, will be explained in
section 2.2.) If one of the succeeding tasks are delayed beyond
their late start date (in other words these tasks become critical),
the user will be warned.

Task Control Report {workpackage selection)
This command has three parameters:

- Workpackage (a list of values) (the tracker removes all
the entered duplicates, the names can only be picked
from the workbreakdown tree.)

- unit of measure (manhours, mandays and money)
(default: manhours; money is not implemented in PIMS#l)

- summarized (yes or no) (default: no)

The front end performs the following parameter check:

- if every workpackage belong to the current project status

If the parameter values are valid, the following variables by task
are shown in a popup textwindow, that is not editable:

- Effort/Cost Spent
- Remaining Effort/Cost
- Revised Effort/Cost
- Forecast At Completion
- Estimated Effort/Cost

BSO-G-SP-l04.n -Page 23- 12 February 1988

Tracker Tool Specifications

- Projected Overrun
- Earned Value
- Variance
- Production Rate

The Effort/Cost Spent, the Remaining Effort/Cost and the Estimated
Effort/Cost can be found in the PIMS Project Conceptual Scheme via
the Information Manager. The Forecast At Completion refers to an
extrapolation of the Estimate At Completion values in the past,
based on the built-in forecast algorithm (see section 2.2). The
remaining variables can be calculated as follows:

Revised Effort - Effort Spent + Remaining Effort

Projected Overrun - Revised Effort - Estimated Effort

Earned Value -
Effort Spent

Revised Effort
* Estimated Effort

Variance - Earned Value - Effort Spent

Estimated Effort
Production Rate -

Revised Effort

If the user has chosen for Not Summarized, the tracker generates a
report by task by resource. Tasks can be found directly via the
Realisation of the workpackage or indirectly via the sons of the
workpackage. The tracker removes all the duplicated tasks. The
shown tasks are ordered by actual task start date or by planned
task start date. The resources are ordered by actual or planned
start date. The variables per resource are calculated as described
in the section "Resource Control Report-. The resources are
ordered by actual or planned start date. Note, the sum of the
Effort Spent of the resources allocated to a particular task must
be equal to Effort Spent of that task. The sum of the Remaining
Effort of the resources allocated to a task does not necessarily
have to be equal to the Remaining Effort of that task. The reason
for this is, that the resource allocator does not verify if the
allocation is complete and consistent with the task data.

Further, the Task Control Report will include one of the following
triples of dates:

Actual Start - Actual Finish - Late Finish of a task

BSO-G-SP-104.n -Page 24- 12 February 1988

Tracker Tool Specifications

or, if the Actual Finish date is not available:

Actual Start - Forecasted Finish - Late Finish of a task

or. if the Actual Start date is not available:

Planned Start - Planned Finish - Late Finish of a task

(How the forecasted finish date is calculated. will be explained in
section 2.2.) If one of the succeeding tasks are delayed beyond
their late start date (in other words these tasks become critical).
the user will be warned.

Project Control Report
This command has three parameters:

- Workpackage (a list of values) (the tracker removes all
the entered duplicates, the names can only be picked
from the workbreakdown tree.)

- unit of measure (manhours, mandays and money)
(default: manhours; money is not implemented in PIMS#l)

- summarized (yes or no) (default: no)

The front end performs the following parameter check:

- if every workbreakdown element belong to the current
project status

If the parameter values are valid, the following variables by task
are shown in a popup textwindow, that is not editable:

- Effort/Cost Spent
- Remaining Effort/Cost
- Revised Effort/Cost
- Forecast At Completion
- Estimated Effort/Cost
- Projected Overrun
- Earned Value
- Variance
- Production Rate

The Effort/Cost Spent, the Remaining Effort/Cost and the Estimated
Effort/Cost can be found in the PIMS Project Conceptual Scheme via
the Information Manager. The Forecast At Completion refers to an
extrapolation of the Estimate At Completion values in the past,
based on the built-in forecast algorithm (see section 2.2). The
remaining variables can be calculated as follows:

Revised Effort - Effort Spent + Remaining Effort

Projected Overrun - Revised Effort - Estimated Effort

BSO-G-SP-104.n -Page 25- 12 February 1988

Tracker Tool Specifications

Earned Value -
Effort Spent

Revised Effort
* Estimated Effort

Variance - Earned Value - Effort Spent

Estimated Effort
Production Rate -

Revised Effort

Tasks can be found directly via the Realisation of the workpackage
or indirectly via the sons of the workpackage. The shown tasks are
ordered by actual task start date or by planned task start date.

If the user has chosen for Not Summarized, the tracker generates a
report by workpackage by task. Summarized means that for each
workpackage the effort/cost spent, remaining effort/cost, fore­
casted effort/cost, estimated effort/cost, earned value and the
revised effort/cost of every task belonging to the workpackage are
added together.

Show project to do list
This command has no parameter. When it is selected the tracker
calls the Information Manager to obtain data belonging to the tasks
which have not been acknowledged yet. The names of these tasks,
ordered by actual or planned finish date, are displayed in a list
subwindow.

Destroy popup window
This command has no parameters. When it is selected, it destroys
all the popup windows generated.

2.1.8. Graphs

Resource Gantt Chart
This command has as parameter a list of Person Keys. The front end
checks if the Person Key belongs to a human resource which has been
allocated to one or more tasks, which belong to the current project
status. If the parameter values are valid, the tracker displays a
TimeGraph with the following dates by resource by tasks allocated:

- the Planned Start Date, the Planned End Date
- if the Actual Start and the Actual End Date have

been filled in:
- the Actual Start Date, and the Actual End

Date
- if only the Actual Start Date has been filled in:

- the Actual Start, the Current, and the
Forecasted End Date

BSO-G-SP-104.n -Page 26- 12 February 1988

Tracker Tool Specifications

This TimeGraph will be displayed in a pop up graphical subwindow.
The tasks per resource are ordered by actual start date or planned
start date.

Task Gantt Chart [random task selection]
This command has as parameter a list of Task Names. The tracker
removes all the entered duplicates, the names can be picked every­
where on the screen, except from the workbreakdown tree. The front
end checks if the entered tasks belong to the current project
status. If the parameter values are valid, the tracker displays a
TimeGraph with the following dates of the tasks:

- the Planned Start, the Planned End, and the Late
Finish Date

- if the planned dates have not been filled in:
- Early Start, Early Finish, and Late Finish

Date
- if the Actual Start and the Actual End Date have

been filled in:
- the Actual Start, the Actual Finish and the

Late Finish Date
- if only the Actual Start Date has been filled in:

- the Actual Start, the Current, and the
Forecasted Finish Date

This TimeGraph will be displayed in a pop up graphical subwindow.

Task Gantt Chart [workpackage selection]
This command has as parameter a list of workpackages. The tracker
removes all the entered duplicates, the names can be picked only
from the workbreakdown tree. The front end checks if the entered
workpackages belong to the current project status. If the parame­
ter values are valid, the tracker displays a TimeGraph with the
following dates of the tasks:

- the Planned Start, the Planned End, and the Late
Finish Date

- if the planned dates have not been filled in:
- Early Start, Early Finish. and Late Finish

Date
- if the Actual Start and the Actual End Date have

been filled in:
- the Actual Start. the Actual Finish and

the Late Finish Date
- if only the Actual Start Date has been filled in:

- the Actual Start, the Current, and the
Forecasted Finish Date

This TimeGraph will be displayed in a pop up graphical subwindow.
Tasks can be found directly via the workpackage or indirectly via
the sons of the workpackage. The shown tasks are ordered by actual
or planned task start date.

BSO-G-SP-104.n -Page 27- 12 February 1988

Tracker Tool Specifications

Project Gantt Chart
This command has as parameter a list of workpackages. The tracker
removes all the entered duplicates, the names can be picked only
from the workbreakdown tree. The front end checks if the entered
workbreakdown elements belong to the current project status. If
the parameter values are valid, the tracker displays a TimeGraph
with the following dates by workpackage by tasks:

. the Planned Start, the Planned End, and the Late
Finish Date

. if the planned dates have not been filled in:
- Early Start, Early Finish, and Late Finish

Date
- if the Actual Start and the Actual End Date have

been filled in:
- the Actual Start, the Actual Finish and the

Late Finish Date
- if only the Actual Start Date has been filled in:

- the Actual Start, the Current, and the
Forecasted Finish Date

This TimeGraph will be displayed in a pop up graphical subwindow.
Tasks can be found directly via the workpackage or indirectly via
the sons of the workpackage. The shown tasks are ordered by actual
or planned task start date.

Destroy popup window
This command has no parameters. When it is selected, it destroys
all the popup windows generated.

BSO-G-SP-I04.n ·Page 28- 12 February 1988

Tracker Tool Specifications

2.2. Predictor Part

2.2.1. Introduction

If there is a (serious) discrepancy between the plan and reality, gen­
erally the projectmanager wants to know what the influence of this delay
will be on the scheduled project completion date. In this case a new
prediction of the effort and timescale has to be made. For that we see
the next three possibilities:

- starting a re-planning process
- extrapolating the measured values on the basis of the project curve
- exponential smoothing (short-term forecasting)

The first possibility needs a diagnosis tool to determine the cause(s)
of a certain discrepancy between plan and reality. If the cause(s) is
(are) found and there is no 'remedy' that does not affect the plan, a
replanning process has to start by which one or more of the following
things can be needed: completing or re-structuring the workbreakdown,
re-estimating the effort and duration of task(s), re-scheduling the
tasks, re-allocating the resources. The foregoing shows, if there is (or
seems to appear) a serious deviation from plan, the planning tools can
be used to make a new and hopefully more accurate, (long-term) predic­
tion of the effort and timescale of the project. This possibility will
be discarded here, because in PIMS#l a diagnosis tool is not available
and re-planning is beyond the scope of the planning tools.

The second possibility to make a long term prediction extrapolates the
measured values on the basis of the equation (curve), that is assumed to
represent the project model (for project modelling techniques~ see for
instance [Wissing, 87a1). So, in this case we suppose that a project
follows the curve that is described by this equation. Since in PIMS #1
the project curve is unknown, the predictor will also not cover this
long-term prediction.

The third possibility makes only short-term prediction possible. To
predict for this immediate future, forecasting techniques will be used
to estimate the effort/cost to complete a task. The reason that those
techniques are only useful for short term prediction is, that they are
based on the assumption that existing pattern will continue into the
future and this assumption is more likely to be correct over the short
term than it is over the long term.

The third possibility will be the one that will be supported by the
predictor in PIKS#l. It will be based on the revised effort (the revised
effort is equal to the effort spent plus the remaining effort). From
this and the average utilization of the resource in the past, a predic­
tion is made of the expected finish date. The prediction mechanism will
never by itself modify any scheduling or allocation data.

BSO-G-SP-104.n ·Page 29- 12 February 1988

Tracker Tool Specifications

2.2.2. Inputs and Outputs

To be able to extrapolate the past performance using forecasting tech­
niques, the following inputs are required:

- Overall project Data:
- the project calendar

- list of Reservations:
- Task
- the Remaining Effort at the measuring points

of time (We assume that the measurements are
performed at regular time intervals, for
instance weekly; this assumption is not essen­
tial, but increases the reliability of the
forecasting)

- the Effort Spent (WSTD) at the measuring points
of time

- actual start date of the resource (where the
reservation belongs to) on the task

- actual finish date of the resource (where the
reservation belongs to) on the task

- list of
- planned startdate
- planned finish date
- percent of usage of the resource

- Task Data
- the Task Estimated Effort
- actual finish date
- planned finish date
- status

The forecasting mechanism gives the following outputs:

- the Forecasted Effort To Complete of a resource
on a task

- the Forecasted Effort To Complete of a task (this
Forecast is based on the forecasts made per resource
allocated)

- forecasted finish date of a resource on a task
- forecasted finish date of a task

2.2.3. Processing

For forecasting the revised effort (the revised effort is equal to the
effort spent plus the remaining effort) we use the Holt's method as has
been described in [Wissing, 87]. On the basis of this forecasted
effort, the average effort spent in the previous period and the project
calendar, the expected finish date of the resource on the task will be
calculated.

BSO-G-SP-l04.n -Page 30- 12 February 1988

Tracker Tool Specifications

The forecasted effort and forecasted finish date of a task will be
derived from the forecasted effort and forecasted finish date of the
allocated resources on the task (if the forecasted effort and thus the
forecasted finish date of a resource on task is not available, the ini­
tially estimated effort and the planned finish date will be taken as
the forecasts).

The forecast algorithm fails, when according to the historical data the
remaining effort increased more than the effort spent, in other words:
one has made negative progress. No sensible forecast can be made· then.
since in this situation, the task would never be completed.

BSO-G-SP-l04.n -Page 31- 12 February 1988

Tracker Tool Specifications

3. Future extensions of the tracker

In view of the time available and the possibilities of the planning
tools in PIKS#l the possibilities of the tracker have been reduced to
what is mentioned in Chapter two. In the document BSO-G-RR-102 there has
been described what a tracker might do. In this chapter will be dis­
cussed the supplemental inputs and outputs required to make the tracker
more advanced. Further, the processing in the advanced tracker will be
described globally.

3.1. Inputs

Again, we divide the inputs into two groups:

- Inputs required from the other tools and the system;
- User inputs.

3.1.1. Inputs required from the other tools and the system

The advanced tracker requires the following supplemental inputs of the
other tools via the information manager:

- Project:
- list of Project Risk Factors and their predicted values

(derived from the Risk tools)

(In PIKS#l none of the planning
milestones, the scheduler/resource
not take them into account)

- ProjectStatus:
- list of WatchDogs (In the PIKS#l

have not been implemented)
- list of Internal Kilestones

tools 'works' with internal
allocator for instance does

architecture WatchDogs (Deamons)

- Project Kodel data:
- the Project Kode1
- list of Project Ketrics, their predicted values, and eventually

needed transformations (see section 2.3 in [Wissing, 87]) by
task/workpackage class

- Workpackage data:
- class where the workpackage belongs to

- Task data:
- slack (with respect to the milestones)
- class where the task belongs to

- Risks:
- list of Schedule Risk Factors and their predicted values

BSO-G-SP-104.n -Page 32- 12 February 1988

Tracker Tool Specifications

. Durable, Consumable Resource data:
- Name
. Resource Availability
- Cost by Hour
- list of tasks that have reserved the resource and a (list of)

degree of use and slack per task
- Measurement Date

- Human Resource data
- Slack per task

- Deliverable:
- the milestone where the deliverable belongs to

3.1.2. User inputs

The user may give the tool the following kinds of additional inputs com­
pared with Chapter two:

- Overall project:
- Internal Milestones Achieved Date
- New WatchDogs

- Project Model data:
- the Project Metrics which have to be tracked
- actual values of the selected Project Metrics, by task/work-

package class

- Task data:
- New one-off costs (In PIMS#l none of the planning tools works

with one-off costs)

- Task/Resource (Durable, Consumable) data:
- Hours Spent per task, per resource
- Current Estimated Time to go by resource, by task
- Actual Start Date of a resource on a task
- Actual End Date of a resource on a task

3.2. Outputs

We divide the outputs, just like the inputs, into two groups:

- outputs to the system;
- user outputs.

BSO-G-SP-104.n -Page 33- 12 February 1988

Tracker Tool Specifications

1.1.!. Outputs to the system

The tool will give the system the following additional outputs:

- Overall project:
- Milestones Achieved Dates
- New WatchDogs

- Project Model:
- the Project Metrics which have to be tracked

actual values of the selected project metrics at the measuring
points of time

- Resource (Consumable, Durable) data:
- Actual Start Date of a resource on a task
- Actual End Date of a resource on a task
- WSTD by task
- WRE by task

- quality assurance data:
- quality of the estimates
- quality of the model
- warnings from WatchDogs
- anticipated slippages (for instance milestones that never can

be reached on time according to the data now available)

Note, most of these outputs will also be required by the tracker as
well.

3.2.2. User outputs

The user can get the following kinds of additional outputs (compared
with chapter two):

- Tabular reports:
- Overall project:

- Milestones Achived Dates
- Warnings from WatchDogs
- Anticipated slippages

- Project Model:
- The help to select the project metrics
- The advices concerning the influences the several metrics

posses with respect to the progress
- Discrepancies between the actual and estimated metric

values and their class (indicating the severity of the
observed discrepancy)

- Resource (Consumable, Durable) Control:
- Reserved Time Interval by resource by task

BSO-G-SP-104.n ·Page 34- 12 February 1988

Tracker Tool Specifications

- Actual Start Date of a resource on a task
- Actual End Date of a resource on a task
- BW, WSTD, WR.E, PTW, BEYP, PVTY, PED, EV by

resource by task or summarized

- Quality Assurance:
- quality of the estimates
- quality of the model

- Graphs:
- TaskfWorkpackage:

- PercentComplete diagram: Item_Actual%C, Item_Planned%C
against time ('Against time' diagrams are not possible
in PIMS #1, because historical data is a problem.)

- EffortPerformance diagram: BEYP, WSTD against time
- CostPerformance diagram: BCWP, ACWP against time
- Productivity diagram: PVTY against time

- Resource:
- EffortPerformance diagram: BEYP, WSTD against time
- Productivity diagram: PVTY against time

3.3. Tools reguired £y the advanced tracker

Besides the Front End tool and the Information Manager the advanced
tracker requires the following tools:

- Report Generator for generating the formal reporting
- Decision Support System for helping to select the project

model metrics that must be tracked
- Expert System:

- for giving advices concerning what influences the
several metrics possess with respect to the progress

- for determining the severity of discrepancies
- Spreadsheet for making further calculations by the user.

3.4. Processing

In this section the processing in the advanced tracker will be described
globally. Initial the PIMS-user has to select the project model metrics
he wants to track for helping to determine the progress and costs. An
expert (knowledge based) system, which supports a forward reasoning
strategy, in view of the needed what-if character, can be used for the
selection of the wanted metrics. This expert system should give advice
to the PIMS-user concerning which influences the several metrics possess
with respect to the progress. This advice together with a decision sup­
port system can help the user to make the right decision with selecting
the metrics [Wissing, 87]. During the folloWing runs of the tool the
user has to enter the new data that are available at that time. If the

BSO-G-SP-104.n -Page 35- 12 February 1988

Tracker Tool Specifications

tracker notices a discrepancy between the estimated value and the actual
value of a metric, this discrepancy should be classified. Since the
classification into discrepancy classes depends, among other things, on
the history of a task, it is clear, that the previous states of the task
must be stored. It makes a lot of difference when one notices a
discrepancy between the amount of work completed whether there is an
improvement compared with the previous state [Jong et al., 87]. The
classifying into a discrepancy class can be done with the aid of an
Expert System. For expressing the performance of cost and effort the
tool has to calculate the values of the several variables (see Chapter
5). These values together with the slack can be used to determine
future slippages, like milestones that never can be reached on time,
according to the data now available.

BSO-G-SP-104.n -Page 36- 12 February 1988

Tracker Tool Specifications

4. Glossary

The terms in this document are generally those of the Glossary of
Software Engineering Terminology (ANSI/IEEE Std 729-1983) [IEEE, 84].
Extensions to this list include the following:

activity
Individual item of work which along with other items of work
comprises the project.

activity-on-node diagram
A network diagram, where each node represents an activity and each
arc shows logical precedence. This approach is most commonly used
with the critical path method (CPM).

availability
The time interval in which a resource can be used.

consumable resource
A resource that can be used only once, e.g. processor time; thus a
resource that is not re-usable (durable).

critical activities
The activities along the critical path. A delay in anyone of them
will cause a delay in the completion of the entire project.

critical path
The longest path in a network. It determines the project length in
the sense that precedence relations permit no earlier completion of
the project.

deliverable
The final object of a task.

dependency
The logical relationship between activities within a project due to
time or causality or both.

durable resource
A resource that can be used more than once. Contrast with consum­
able resource.

early finish time
The earliest time at which the task can be completed.

early start time
The earliest time at which the task can begin.

estimate
A judgement that is equally likely to be above or below the actual
result.

BSO-G-SP-l04.n -Page 37- 12 February 1988

Tracker Tool Specifications

event
The fact of a thing's happening, where the thing is not directly
influenced by the project, like the delivery of a machine.

forecast
An estimate of something in the near future based on a computerized
extrapolation of the past.

free slack
The allowable delay in a task start time that can be absorbed
without delaying another task.

late finish time
The latest time at which the task can finish without delaying the
project.

late start time
The latest time at which the task can begin without delaying the
project.

model
A miniature representation of a complex reality.

monitoring progress
The means by which feedback on actual progress against planned pro­
gress is provided to the users to inform them of the budgetary and
technical development of the project. Monitoring can be undertaken
at random intervals or at pre-determined points.

network diagram
This is a graphical model for analysis of the scheduling problem.
All diagrams use nodes and arcs.

path
This is a sequence of connected activities in a network diagram,
following a set of precedence arrows from the start of a project to
its completion.

predicting
A long tera estimate.

project manager
The individual who is responsible for the successful running and
completion of the project.

project metric
A quantifiable attribute of the project.

resource allocation
The apportioning of the available and required resources to the
various activities which form the project.

BSO-G-SP-l04.n -Page 38- 12 February 1988

Tracker Tool Specifications

Software project
A series of activities whose major deliverable is an item of
software.

standards
Prescribed rules that have to be followed during the development of
a software product.

task
Activity within the project (see activity)

total slack
The allowable delay in a task start time that can be absorbed
without delaying the project, assuming that all other tasks begin
as early as possible.

tracking progress
The recording and monitoring of how much work has been done, what
resources were utilized, and what costs were incurred. At any
update or measurement point, which should occur at regular inter­
vals or at pre-determined points (milestones). It also entails
keeping track of any changes in the project plan.

user
The person or persons who operate or interact directly with the
system.

York Breakdown
The organizing of the project activity elements into a hierarchical
structure. This structure is composed of two hierarchies, which can
be connected in whichever way best fits the project. These two
hierarchies are:

-the product hierarchy;
-the activity hierarchy.

BSO-G-SP-104.n -Page 39- 12 February 1988

Tracker Tool Specifications

5. Abbreviations

In this document the following abbreviations are used:

ACWP (Actual Cost of Work Performed):
At any specified point in time the actual cost incurred for the
work

BAG (Budget At Completion):
The initial budget for a task, workpackage or the entire project

BCWP (Budgeted Cost of Work Performed):
At any specified point in time, the actual percent complete, times
the BAC for that item. This is the earned value of the work per­
formed (BCWP - Item_actual%C,xBAC, where Item_actual%C,is ACWP/EAC)

BEWP (Budgeted Effort
At any specified
the BW, for
Item_actual%C,is

of Work Performed):
point in time the actual percent complete,
that item (BEWP Item_actual%Cc xBW,

WSTD/PTW) .

times
where

BW (Budgeted Work):
The initial budget for a task, workpackage or the entire project in
MM.

CV (Cost Variance):
The difference between the value of the work performed and the
actual cost for that work (CV - BCWP - ACWP)

EAG (Estimate At Completion):
The sum of the actual cost to date, plus the estimate to complete
(EAC - ACWP + ETC)

ETG (Estimate To Complete):
An estimate of the cost to be incurred to complete the remaining
work

EV (Effort Variance):
The difference between the value of the work performed and the
actual effort spent for that work (EV - BEWP - WSTD).

FAG (Forecast At Completion):
The sum of the actual cost to date plus the forecast to complete
(FAG - ACWP + FTC).

FEAG (Forecasted Effort At Completion):
The sum of the actual effort to date plus the forecasted effort to
complete (FEAC - WSTD + FETC).

FETG (Forecasted Effort At Completion):
A forecast of the effort to be incurred to complete the remaining
work. Forecast refers to a computerized extrapolation of the

BSO-G-SP-104.n -Page 40- 12 February 1988

Tracker Tool Specifications

performance to date, based on a built-in algorithm, and estimate
refers to a judgemental expression of the effort of the remaining
work.

incurred to
computerized
a built-in

expression of

ITC (Forecast To Complete):
A forecast of the cost to be
work. Forecast refers to a
formance to date, based on
refers to a judgemental
work.

complete the remaining
extrapolation of the per­
algorithm, and estimate
the cost of the remaining

PCO (Projected Cost Overrun):
The difference between the projected total cost and the budgeted
cost (PCO - EAC - BAC).

PEO (Projected Effort Overrun):
The difference between the projected total work and ~e budgeted
work (PEO - PTW - BW).

PTW (Projected Total Work):
The sum of the actual effort to date, plus the estimate to complete
(PTW - WSTD + WRE).

PR (Production Rate):

MC

EAC

PVTY (ProductiViTY):

BW

PTW

SV (Schedule Variance):
The difference between the value of the work performed, and the
value of the work that had been planned to be performed, at the
measurement time (SV - BCWP - BCWS)

WBD (Work Break Down):
The organizing of the project activity elements into a hierarchical
structure. This structure is composed of two hierarchies, which can
be connected in whichever way best fits the project. These two
hierarchies are:

-the product hierarchy;
-the activity hierarchy.

BSO-G-SP-104.n -Page 41- 12 February 1988

Tracker Tool Specifications

WBS (Work Breakdown Structure):
The result of a WBD.

WRE (Work Remaining Estimate):
An estimate of the effort needed to complete the remaining work.

WSTD (Work Spent To Date):
At any specified point in time the actual effort incurred for the
work.

BSO-G-SP-104.n -Page 42- 12 February 1988

Tracker Tool Specifications

6. References

[IEEE, 84]
IEEE, "Software engineering standards", IEEE Inc, 1984

[Fernstrom et al., 87a]
Fernstrom, C., Doize, M., "User's manual for the PIMS Information
Manager", CSI, CSI-F-SP-004d, 1987

[Fernstrom et al., 87b]
Fernstrom, C., Konc, S., Paris, J., "Tool builder's handbook for
PIMS#l" , CSI, CSI-F-SP-003c, 1987

[Jong et al., 87]
Jong, de T., Hoog, de R., and Schreiber, G., "Monitoring, Diag­
nosis, and Forward Tracking in software Project Management",
University of Amsterdam, UVA-D-RR-OOSa. 1987

[Wissing. 87]
Wissing. R.• "Modelling. tracking. and predicting in software pro­
ject management". BSO, BSO-G-RR-102. 1987

BSO-G-SP-l04.n -Page 43- 12 February 1988

Specifications of predicting in PIMS#l

Synopsis

This document describes the specifications of
predicting in PIMS#l.

short-term

Authors
Reader
Level
Status
Identifier:
Created
Printed

RF Wissing, BSO/Eindhoven
H vd K10k
BSO/Eindhoven BV
InCircu1ation
BSO-G-SP-108.n
88/01/05
22 January 1988

(Release
(Edited

1.4)
88/01/22)

This document is part of a project partially funded
by the Commission for the European Communities ESPRIT
programme, as project number 814.

6 1988 BSO/Eindhoven BV

Predictor Specifications

Distribution List

Christer Fernstrom CS1
John Hawgood PA
Robert de Hoag UvA
Patrick Humphreys LSE
John Jenkins 938
Hans van de Klok BSO
Frank Land LBS
Eirik Naess-Ulseth S1

BSO-G-SP-108 -Page 2- 22 January 1988

Creation Date:
Author
Reader
Modifications:

BSO-G-SP-108

Predictor Specifications

Revision Information

-Page 3- 22 January 1988

Predictor Specifications

Table Of Content--- --
1 Introduction... 5
2 Inputs and Outputs 6
3 Changes required in the tracker .. 8
4 Processing... 9
5 Glossary... 11
6 References 13

BSO-G-SP-108 -Page 4- 22 January 1988

Predictor Specifications

1. Introduction

If there is a (serious) discrepancy between the plan and reality, gen­
erally the projectmanager wants to know what the influence of this delay
will be on the scheduled project completion date. In this case a new
prediction of the effort and timescale has to be made. For that we see
the next three possibilities:

- starting a re-p1anning process
- extrapolating the measured values on the basis of the project curve
- exponential smoothing (short-term forecasting)

The first possibility needs a diagnosis tool to determine the cause(s)
of a certain discrepancy between plan and reality. If the cause(s) is
(are) found and there is no 'remedy' that does not affect the plan, a
replanning process has to start by which one or more of the following
things can be needed: completing or re-structuring the workbreakdown,
re-estimating the effort and duration of task(s), re-scheduling the
tasks, re-a110cating the resources. The foregoing shows, if there is (or
seems to appear) a serious deviation from plan, the planning tools can
be used to make a new and hopefully more accurate, (long-term) predic­
tion of the effort and timescale of the project. This possibility will
be discarded here, because in PIMS#l a diagnosis tool is not available
and re-p1anning is beyond the scope of the planning tools.

The second possibility to make a long term prediction extrapolates the
measured values on the basis of the equation (curve), that is assumed to
represent the project model (for project modelling techniques, see for
instance [Wissing, 87a]). So, in this case we suppose that a project
follows the curve that is described by this equation. Since in PIMS #1
the project curve is unknown, the predictor will also not cover this
long-term prediction.

The third possibility makes only short-term prediction possible. To
predict for this immediate future, forecasting techniques will be used
to estimate the effort/cost to complete a task. The reason that those
techniques are only useful for short term prediction is. that they are
based on the assumption that existing pattern will continue into the
future and this assumption is more likely to be correct over the short
term than it is over the long term.

The third possibility will be the one that will be supported by the
predictor in PIMS#l. It will be be based on the revised effort (the
revised effort is equal to the effort spent plus the remaining effort).
From this and the average utilization of the resource in the past, a
prediction is made of the expected finished date. The prediction mechan­
ism will never by itself modify any scheduling or allocation data.

In fact a forecast can be considered as an extra variable belonging to
the reports generated in the tracker [Wissing, 87b]. So, in order to
minimize the number of tools in PIMS#l, we propose to integrate both
tools.

BSO-G-SP-108 -Page 5- 22 January 1988

Predictor Specifications

2. Inputs and Outputs

To be able to extrapolate the past performance using forecasting tech­
niques, the following inputs are required:

- Overall project Data:
- the project calendar

- Resource Data:
- the NonAvailability of a Resource

- list of Reservations:
- Task

the Remaining Effort at the measuring points
of time (We assume that the measurements are
performed at regular time intervals, for
instance weekly; this assumption is not essen­
tial, but increases the reliability of the
forecasting)

- the Effort Spent at the measuring points of
time

- actual start date
- actual finish date
- list of

- planned startdate
- planned finish date
- percent of usage of the resource

- Task Data
- the Task Estimated Effort
- actual start date
- actual finish date
- planned startdate
- planned finish date
- the Late Finish Date
- status

The forecasting mechanism provides for the following additional outputs
in the reports generated in the tracker:

- Resource Control Report:
- the Forecasted Effort To Complete
- actual start date or planned start date
- actual finish date or forecasted finish date or

planned finish date of the resource on a task
(see Chapter 4)

- late finish date of a task as produced by the scheduler
- warnings with respect to the anticipated difficulties

(see Chapter 4)

- Task Control Report:
- the Forecasted Effort To Complete (this Forecast is based

on the forecasts made per resource)
- actual start date or planned start date
- actual finish date or forecasted finish date or planned

BSO-G-SP-108 -Page 6- 22 January 1988

Predictor Specifications

finish date
- late finish date as produced by the scheduler
- warnings with respect to the anticipated difficulties

BSO-G-SP-108 -Page 7- 22 January 1988

Predictor Specifications

3. Changes required in the tracker

Forecasting requires a few minor changes in the tracker:

- the tracker has to store the Remaining Effort per re­
source and the Effort Spent per resource at the measure­
ment points of time in a historical sequence [Dixon, 87]

- when the allocated resource starts working on a task, it
must be possible to change the initially estimated effort
of every resource per task. (By default the amount of
allocations will be taken.) To allow a good forecast,
the person who makes this revised initial estimate has
to be the same person who makes the further estimates.

- it must be possible to change the estimated effort of
every task, as long as the effort spent is equal to O.

BSO-G-SP-108 -Page 8- 22 January 1988

Predictor Specifications

4. Processing

For forecasting the revised effort (the revised effort is equal to the
effort spent plus the remaining effort) we use the Holt's method as has
been described in [Wissing, 87a]. On the basis of this forecasted
effort, the average effort spent in the previous period and the project
calendar, the expected finish date of the resource on the task will be
calculated. With the help of the expected finish date and the fore­
casted effort several checks will be made. If any check fails, the user
will be warned in the resource control report and in the task control
report for the potential difficulties. These checks refer to:

• the availability of a resource when a task is delayed or
takes longer than planned (check if the availability of
the resource is sufficient; this check will be based on
the assumption that the average utilization in the past
still follows this pattern in the future)

- the succeeding tasks that are delayed beyond their late
start date (in other words these tasks become critical)

Further, the resource control report will be extended with one of the
following triples of dates:

Actual Start - Actual Finish of a resource on a task - Late Finish of a task

or, if the task has not been Finished:

Actual Start - Forecasted Finish of a resource on a task - Late Finish of a tas

or, if the Actual Start date is not available:

Planned Start - Planned Finish of a resource on a task - Late Finish of a task

The task control report will be extended with one of the following tri­
ples of dates:

Actual Start - Actual Finish - Late Finish of a task

or, if the Actual Finish date is not available:

Actual Start - Forecasted Finish - Late Finish of a task

or, if the Actual Start date is not available:

Planned Start - Planned Finish - Late Finish of a task

The forecasted effort and forecasted finish date of a task will be
derived from the forecasted effort and forecasted finish date of the
allocated resources on the task (if the forecasted effort and thus the

BSO-G-SP-108 ·Page 9- 22 January 1988

Predictor Specifications

forecasted finish date of a resource on task is not available, the ini­
tially estimated effort and the planned finish date will be taken as
the forecasts).

The forecast algorithm fails, when according to the historical data the
remaining effort increased more than the effort spent, in other words:
one has made negative progress. No sensible forecast can be made then,
since in this situation, the task would never be completed. If this
occurs, the reason why no forecast is given, will be displayed in the
reports.

BSO-G-SP-108 -Page 10- 22 January 1988

Predictor Specifications

5. Glossary

The terms in this document are generally those of the Glossary of
Software Engineering Terminology (ANSI/IEEE Std 729-1983) [IEEE, 84].
Extensions to this list include the following:

availability
The time interval and percentage in which a resource can be used.

critical activities
The activities along the critical path. A delay in anyone of them
will cause a delay in the completion of the entire project.

critical path
The longest path in a network. It determines the project length in
the sense that precedence relations permit no earlier completion of
the project.

deliverable
The final object of a task.

dependency
The logical relationship between activities within a project due to
time or causality or both.

early finish time
The earliest time at which the task can be completed.

early start time
The earliest time at which the task can begin.

estimate
An approximate judgement that is equally likely to be above or
below the actual result.

forecast
An estimate of something in the near future based on a computerized
extrapolation of the past.

free slack
The allowable delay in a task start time that can be absorbed
without delaying another task.

late finish time
The latest time at which the task can finish without delaying the
project.

late start time
The latest time at which the task can begin without delaying the
project.

BSO-G-SP-I08 -Page 11- 22 January 1988

Predictor Specifications

model
A miniature representation of a complex reality.

monitoring progress
The means by which feedback on actual progress against planned pro­
gress is provided to the users to inform them of the budgetary and
technical development of the project. Monitoring can be undertaken
at random intervals or at pre-determined points.

network diagram
This is a graphical model for analysis of the scheduling problem.
All diagrams use nodes and arcs.

path
This is a sequence of connected activities in a network diagram,
following a set of precedence arrows from the start of a project to
its completion.

prediction
A long term estimate.

project metric
A quantifiable attribute of the project.

resource allocation
The apportioning of the available and required resources to the
various activities which form the project.

software project
A series of activities whose major deliverable is an item of
software.

tracking progress
The recording and monitoring of how much work has been done, what
resources were utilized, and what costs were incurred. At any
update or measurement point, which should occur at regular inter­
vals or at pre-determined points (milestones). It also entails
keeping track of any changes in the project plan.

user
The person or persons who operate or interact directly with the
system.

BSO-G-SP-108 -Page 12- 22 January 1988

Predictor Specifications

6. References

[Dixon, 87]
Dixon, R.K., "The Maintenance of Historical Project Data in
PIMS#l" , BSO, BSO-I-RR-102, 1987

[Holt et al., 60]
Holt, e.G., et a1., "Planning production, inventories and work
force". Prentice Hall, 1960

[IEEE, 84]
IEEE, "Software engineering standards", IEEE Inc, 1984

[\Jissing, 87a]
\Jissing, R., "Modelling, tracking, and predicting in software pro­
ject management", BSO, BSO-G-SP-102, 1987

[\Jissing, 87b]
\Jissing, R., "Specification of tracking in software project manage­
ment", BSO, BSO-G-SP~104, 1987

BSO-G-SP-108 -Page 13- 22 January 1988

	Voorblad

	Summary

	Contents

	1. Introduction

	2. PIMS

	3. Domain of PIMS.

	4. Artificial intelligence and lisp.
	5. Object oriented programming.

	6. The architecture of the PIMS #1 prototype.

	7. Data modelling language.

	8. Tool modelling language (TML).

	9. Using a tool in PIMS.

	10. References

	Appendices

