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ABS TRA C T

In the first stages of preparation, working towards a design of a

communication channel between Waterloo Port and Unix, a survey was

made to compile an inventory of communication protocols in general

use throughout the networking community.

Aside from the proprietary protocols from IBM (SNA) and Digital

(DNA), the main protocols available were X.25 from OSI, and TCP/IP

from DARPA.

TCP/IP was chosen because X.25 already

Waterloo Port environment, and because X.25

used throughout the Unix world.

The functionality of the principal protocols from the TCP/IP set is

important, because a functional design should incorporate all

functions present in the definitions.

lP is seen to offer a datagram oriented (Connectionless) service,

fragmentation and reassembly to accomodate networks with a small

maximum frame size, Internet-wide addressing, and, most important,

routing.

The ICMP definition provides error

management within the network layer, a

the connectionless orientation of lP.

ARP bridges the gap between Internet (lP) addressing and hardware

addressing (eg. Ethernet), but only if the hardware is capable of

broadcasting.

Finally, TCP does the rest: Connection management, acknowledgements

and retransmissions, end-to-end flow control, and stream-oriented

delivery.

In the final sections of this report a functional design for the

TCP/IP protocol suite is presented using the access-graph method.

The design is discussed in a top-down fashion, the interface

functions are bundled in an appendix.
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The functional design is a first step towards the eventual

implementation. An important conclusion has to be that TCP/IP is a

very complex structure, even for a set of communication protocols,

and if this report can contribute to a better understanding of

TCP/IP, it serves a good purpose.

The functional design itself serves another purpose: It is intended

to be first in a series of design stages, each being more detailed

than the previous one. Eventually a set of programs can be written

(eg. for Waterloo port) as an implementation of TCP/IP.

iii
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1. INTRODUCTION

YT88

As the need increased to provide a means of communication between

the Waterloo Port network system and the Unix environment, PC Robo

Automation , the Dutch distributor of the Waterloo Port products,

started looking for a solution. The target for a solution should be

something like 'an open communication channel between the Waterloo

Port network system and a Unix system.'

In designing a communication channel the choice of which protocols

to use is a maj or one. Therefore a study has been made of the

protocol sets available, in order to make a sound choice, both

technically and commercially (Chapters 3 and 4).

Chapter 3 discusses the OSI reference model and the related

protocols, while in chapter 4 two large network architectures apart

from the OSI structure are covered in some detail: SNA (IBM) and

DNA (Digital) .

On technical as weIl as commercial grounds a choice has been made

(chapter 5), the TCPjIP protocol suite seemed to qualify best.

A short overview of the history of ARPANET is presented next

(chapter 6), to provide some background on TCPjIP.

In order to understand a design for TCPjIP it is necessary to have

some insight in the functionality offered by the various protocols.

For this reason the Internet Protocol is discussed in chapter 7.

Two supplemental network layer protocols, ARP and ICMP, are covered

in chapter 8, and finally, in chapter 9, the functionality of the

Transmission Control Protocol is elaborated on.

The functional design presented in chapter 10 is the first maj or

step towards the realization of a communication channel between the

Unix and Waterloo Port environments.

1
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The assignment for this graduation proj ect came from a need to

connect a Waterloo Port network to a Unix host, in addition to the

modem connection already possible.

Waterloo Port, or Port for short, also offers a general solution

based on the X.25 protocol set. However, many Unix hosts have no

X.25 link instalIed, so suggesting X.25 as a solution can present a

commercial disadvantage: For an X.25 link to a Unix host both Port

and the host need an extension in the form of an X.25 driver set.

A more viabIe option as far as the Unix side is considered would be

Ethernet. The problem in this possibility lies with Port: There is

no Ethernet support for Port.

This line of reasoning resulted in an assignment for a graduation

proj ect. The proj ect was to have a somewhat broader scope than

simply creating an Ethernet implementation for Waterloo Port, the

reason why the original problem was chosen as the basis for the

assignment.

The goal for this project can thus be formulated:

Design a communication channel for Waterloo Port, to enable the

Port network to gain access to a wide range of Unix computers.

The effort on the Unix side should eventually be minimal, so

established (industry-)standards seem to be the most viabIe

building blocks because of the degree of acceptance in the market.

The broader scope of the project was meant to avoid other feasible

solutions from being overlooked. A small study, about networking

and standards, seemed appropriate.

2



3. THE OS1 REFERENCE MODEL
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A short summary of the OS1 reference model will be presented here.

1t is assumed that the reader is familiar with the layered

structure of the model, and that hejshe also has some basic

knowledge of the terminology used in network discussions.

3.1 The OS1 layering

The seven defined layers in the OS1 reference model are pictured

below. (Fig. 1)

A short discussion of each of those layers will be given.

7 Application message

6 Presentation message

5 Session message

4 Transport message

3 Network packet

2 Data Link frame

1 Physical bit

Fig. 1 The OS1 layers and corresponding communication units

Physical layer:

This layer has the task to get the bits

to be recognized on the other side.

voltage assignments, bit-duration,

connector shapes, pin assignments and

with here usually are of mechanical,

nature regarding the subnet.

3

over in good enough shape

Typical issues here are

full- or half-duplex,

so on. The details dealt

electrical or procedural
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Data Link layer:

Frames are the information units dealt with by the data link

layer. lts task is to ensure error free transmission over the

physical channel. To achieve that goal it usually breaks up the

incoming data into frames, and then adds extra information to

each frame, like checksums, to be able to distinguish a damaged

frame from a correctly received one. This layer also deals with

acknowledgements, retransmissions, duplicate frames and lost

ones. This way the next layer can assume to be working on an

error-free (virtual) line. Other issues addressed here are

synchronization of receiver and transmitter, and acknowledgement

piggybacking.

Network layer:

The network layer accepts messages , converts them into packets

(the unit of information dealt with by the network layer) and

sees to it that the packets get to the other side undamaged. The

main issue here is routing, with an additional issue for larger

networks, namely accounting functions. The routing functions also

deal with congestion on the network, evading bottlenecks in some

cases, while the accounting functions provide for billing the

customer using the network.

Transport layer:

Multiplexing several virtual links onto one real link and vice

versa can be done at several levels in the structure, but the

transport layer is the highest layer in which it is allowed to

occur. lt is the first true end-to-end layer, where the previous

lower layers deal only with their immediate neighbors, this layer

communicates directly with its equivalent on the destination

side. The transport layer also is the layer determining what

functions will ultimately be available to users of the network.

Typical transport protocols offer Connection Oriented Network

Services (CONS), meaning that for all the layers above this one

the communication seems to be over a dedicated link, permanently

accessible for as long as the connection is left intact, like a

human telephone call. The other possibility is connectionLess

Network Service (CLNS) , where isolated messages are guaranteed to

arrive at the other end, but no commitment on the order of

arrival is made. Another feature can be broadcasting messages (to

4
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multiple destinations). Only when the connection is established

is the type of service determined.

Session layer:

The session layer provides the basic functionality of the user's

interface to the network, ie. it determines what the user can and

cannot do with the network. The issue of userfriendliness is

addressed by the presentation layer, which only transforms the

data going back and forth from the user to the session layer.

Session layers are address-translators converting user-provided

addresses to the required transport addresses. In communicating

with their equivalent on the other side, session layers are

negotiators, starting on a basic level of communication, and from

there they ask the other session layer what extensions to the

basic communication set can be used. This way the user can

specify how the communication link must be used, if possible:

Full- or half-duplex, reverse billing (only if the other side

agrees, therefore negotiators) among others. This setting up a

session is sometimes called binding.

Presentation layer:

This layer provides some commonly needed functions that have

1 i ttle or nothing to do with the network i tsel f , but are in

themselves useful in combination with the network. Prerequisite

f"or inclusion in the presentation layer is that the functions

will be used often enough to warrant a general solution instead

of leaving it up to the user. Examples can be text compression,

encryption/decryption, and several kinds of conversions such as

character set conversion , file format conversion and terminal

handling conversion.

Application layer:

The application layer can be seen as the network interface

routines needed in an application, to be able to access the

network facilities. The application alone determines what

messages are allowed, in combination with the destination side's

application layer of course, and also what actions will be taken

upon reception of a message. Network transparency can be an issue

here, hiding the network for the user so that, apart from the

extended delays, if any, the user might think to be accessing

5
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local resources. Other issues here are in the field of

distributed storage and processing.

For more information on the OSI reference model see [Tan 1981].

These short descriptions indicate astrong tendency to separate

functions into strictly functional groups: Each layer represents a

different level of abstraction, performs a set of weIl defined

functions and provides consistent interfaces towards the layers

above and below.

strict definitions offer a lot of advantages. One of the most

promising is that different implementations for the same layer may

be interchangeable if the interfaces are adhered to. One of the

disadvantages apparent here is that all existing protocols will

experience problems trying to fit in this tight scheme.

We will take a look now at some OSI protocols.

3.2 Some protocols in perspective

The OSI reference model has been established by the International

Standardization organization (ISO) in the late seventies, without

any existing protocol available to demonstrate i ts feasibil i ty:

None of the existing protocols fitted in the reference model. Since

that date many protocols have been adapted or specially defined for

use in an OSI environment.

The first protocols fitting in the OSI structure were protocols for

the lower layers, most notably the data link layer.

Later other layers were filled in, like layers three and four,

network and transport. These extensions enabled some network

architectures to conform to the only partially complete OSI

standards, while filling in the higher layers with specific

protocols. This increased the acceptance of the OSI standards even

before the definitions were complete.

Only very recently some definitions have been approved of for the

higher layers, and even these definitions are subject to constant

revision as technology offers steady improvements over the existing

network options. This is one of the main areas of concern with

standardization efforts as big as these: To be fully compatible

6
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some sacrifices have to be made in respect to using the latest

technology available.

We will now discuss some weIl known standards adopted by the ISO

OSI committees as OSI standards. Please be aware however, that the

information presented here, about protocols being standard to OSI,

is subject to constant change.

3.2.1 Ethernet

The Ethernet definition is an implementation of the physical and

data link layers according to the OSI standard, although Ethernet™

(Ethernet is a trademark of Xerox corporation) does not itself

belong to the OSI standards. It is, however, widely used in the

corporate environment, and sufficiently weIl defined to be called a

standard in the usual sense. Furthermore, Ethernet is on the list

of OSI protocols-to-be, in a slightly different format. It is

relatively easy to make it fit the OSI structure.

An Ethernet connection consists of coaxial cable operated in

baseband with a data rate of 10 Mb/s. Connections to Ethernet are

standardized, and hardware is available from various manufacturers

and resellers, often including the circuitry to provide CSMA/CD as

the data link layer. Although a standard, Ethernet is available in

two main forms, thick Ethernet and thin Ethernet, differing only in

the wiring and the connectors. Conversion boxes are available, as

are repeaters, making the number of stations that can be connected

considerable.

3.2.2 Media Access Control

Media Access Control (MAC) is a generaI expression covering a

number of protocol definitions. Each of these definitions is a

protocol definition for part of the data link layer, the part that

interfaces with the physical layer. They exist in a mutually

exclusive fashion: If one is used the others are not.

Some of the currently adopted OSI standards were originally defined

by the standardization committee of the IEEE, the Institute of

Electrical and Electrotechnical Engineers. Standarqs are IEEE

802.3, IEEE 802.4, IEEE 802.5, meaning CSMA/CD, Token Bus, and

7
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Token Ring respectively. CSMA/CD is most frequently used in

combination with Ethernet or derivatives, Token Ring mostlyon

shielded twisted pair at 1 or 4 Mb/s. Token Bus is known under

several different names, with ARCNET as a prominent example. The

terminology used mostly in this context is: ' Operating with "the"

token-passing mechanism.' This can be confusing at the very least.

The most common implementations use coaxial cable at a bit rate of

5 Mb/s.

The ISO has added some other definitions, especially for fiber

optic networks, and improved some of the IEEE definitions to fit

into the OSI structure. These are of minor importance for now.

3.2.3 Logical Link Control

The Logical Link Control (LLC) definitions, in combination with the

MAC definitions, form a full definition for OSI layer 2, the data

link layer: Where the MAC deals with the hardware, the LLC deals

with the data reliability. This could mean that the MAC should

belong to the physical layer, but that would be a wrong conclusion.

The hardware is perfectly capable to transmit bits on the medium,

but if no MAC protocol is used, no one would know when to send a

message, so chances are that anyone will start at random with no

one to supervize and control the access to the medium. This

function does not belong in the physical layer, therefore the MAC

is present. The LLC protocol then provides for frame

acknowledgements, duplicate frame suppression, and retransmission.

If the interfaces to the various MAC protocols are consistent, the

LLC can be identical no matter what MAC definition is used.

The LLC definition offers three distinct modes of operation:

LLC type 1 offers connectionless service, type 2 connection­

oriented service, and type 3 single frame service. Types 1 and 2

are most often used, which one is dependent on the use of the

network and on the specific choice of the designers. Type 3 is

useful only in very specific environments.

8
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3.2.4 Link Access Procedure

There are a couple of variations on the basic Link Access Procedure

(LAP) protocol, depending on the way they are used, but the basic

LAP protocol is a full featured data link layer definition, mainly

associated with X.25 access to a telephone network (circuit­

switched physical layer), or to a dedicated Packet Data Network

(PDN) .

LAP and LAPB (LAP Balanced) are derived from IBM's SDLC

(Synchronous Data Link Control) , used with SNA (Systems Network

Architecture). These 'standards' and many other derivatives are all

almost mutually compatible, so: Not compatible at all.

All are bit-oriented protocols applying bit-stuffing for data­

transparency. Frames can be of arbitrary bit-length, with checksums

and flag sequences as delimiters.

This relatively simple definition of the data link layer uses a

control field per frame to accomodate sequence numbers,

acknowledgements and other information, and uses a sliding window

technique size 8 to prevent frame loss from causing excessive

performance degradation, because retransmission of all frames since

the lost one would be necessary.

The LAP protocol can be used in combination with the Mul tiLink

Procedure (MLP) to provide multiplexing of several channels over

one link.

3.2.5 X.25

The X.25 definition effectively spans layers 1, 2 and 3 of the OSI

model. The layer 1 definition in X.25 is not an actual new

definition but rather a reference to some existing definitions. The

CCITT (Consultative Committee on International Telephony and

Telegraphy) had previously defined two standards, X.21 and X.21bis,

for digital and analog interfaces respectively between hosts and

directly connected intermediate nodes. The protocols used between

two intermediate nodes are not defined. The data link protocols

used for X.25 connections are LAP and LAPB as discussed before.

Most standards belonging to the X-series are to this date not

9
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adopted as OSI standards, except for both LAP standards and the

X.25 network layer definition.

The underlying structure of an X.25 network, layers 1 and 2, make

up a datagram based network, the network layer definition offers

both connectionless as connection-oriented service. Permanent

virtual circuits are possible with X.25.

3.2.6 Some other OSI protocols

The ISO has defined several other protocols. Many more at the

layers discussed; they are omitted because the generaI acceptance

of these protocols is still low. Some more at higher levels;

detailed discussion is avoided about them because these adopted

standards are relatively new, still subject to a lot of changes and

not generally accepted in wider areas. However, I will name a few,

just for reference.

The OSI transport Protocol provides transport encryption and five

classes of operation: Simple (type 0), basic error recovery (1),

mul tiplexing (2), error recovery and multiplexing (3), and error

detection and recovery (4). Provisions have been made for both

connectionless as connection-oriented operation.

The most visible achievements of ISO have been on the application

layer. Several protocol-using applications have been adopted, and

some have even been tested successfully in a multivendor

environment. Among them are:

MHS (Message Handling System), corresponding to X.400 of CCITT;

FTAM (File Transfer, Access and Management);

VTS (Virtual Terminal Service).

10
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The OSI reference model is relatively young, it was established

only in the late seventies. Some larger computer companies already

had establ ished their own networking architectures I with large

instalIed bases. These architectures could not be abandoned as OSI

appeared, because extended support would remain necessary for

current customers. Notably, IBM has claimed that the OSI reference

model is not going to take the pIace of its own SNA because that

was not the primary objective for the OSI standards: OSI is going

to be the glue between multivendor networks, but the internal

architecture of one network is totally up to the manufacturer of

that network as long as the possibility of an OSI gateway is

provided.

Because of the impact of other architectures besides OSI ,and

because of the fact that these architectures have been fully

functional for quite some time now, it seems appropriate to devote

some effort to a short description of two major contenders besides

OSI, IBM's SNA and DEC/s DNA (Digital Network Architecture). TCP/IP

has been seriously considered as weIl, but the TCP/IP discussion

has been expanded beyond the scope of this chapter , see chapter 6

et seq. This description will not be more than an overview , in

relation to the OSI reference model.
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4.1 Systems Network Architecture

The IBM network architecture SNA has a layered structure like the

OS! reference model. with some effort of will a correspondence can

be seen between the two modeIs, looking somewhat like pictured in

figure 2.

7 App1ication End user

6 Presentation NAU services

5 Session Data flow control

Transmission control
4 Transport

Path control
3 Network

2 Data Link Data link control

1 Physical Physical

OS! SNA

Fig. 2 The relation between OSI and SNA

The correspondences indicated here are, and should be,

approximations. Especially the layers 3, 4, and 5 do not match

weIl. Other people might map SNA differently.

The physical links used for SNA are not standardized.

IBM's Data link control layer consists of SDLC, a bit-oriented

protocol, later adopted by several other manufacturers and

standardization cornrnittees. (See chapter 3.4.2). To achieve data

transparency SDLC and all derivatives use bit-stuffing.

The Path control layer in SNA offers virtual circuits to the layers

above, reason why the layer cannot be fully equivalent to the OSI

network layer; it also offers some functions of the OSI transport

layer.
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The Transmission control and the Data flow control layers extend

this functionality by providing session control, as equivalent to

the OSI Session layer. The role of the Data flow control layer is

not to control the flow of data in the usual sense, but more with

arbitration of which side is the next one to talk during asession.

Also error recovery is an important task.

The NAU services layer provides two classes of service to user

processes, in addition to the network services for dealing with the

network itself: Presentation services like in the OSI Presentation

layer, and session services for setting up connections.

4.2 The Digital Network Architecture

The correspondence between DNA and the OSI reference model is

illustrated graphically in figure 3, below. Like with SNA, the

indicated correspondences are approximations.

7 Application
Application

6 Presentation

5 Session (None)

4 Transport Network services

3 Network Transport

2 Data Link Data link control

1 Physical Physical

OSI DNA

Fig. 3 The relation between OSI and DNA

The DNA definition is provided so that individual customers can

construct their own network using Digital products. In this respect

DNA is equivalent to SNA. DNA, however, is considerably simpIer

than SNA, resulting in smaller implementation modules with less

options.
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The first four layers of DNA correspond perfectly with the OSI

layers, although Digital calls layer 3 the Transport layer instead

of layer 4. DNA has no session layer, and the Application layer

covers aspects of both the OSI Presentation layer and the OSI

Application layer.

The options for the physical link supported by DNA are almost the

same as for SNA. The DNA Data link control layer serves the same

objectives as IBM's, but the implementations differ in several

ways. For instance, Digitals implementation uses frames with a

multiple of eight bits for length, the actual length is recorded in

the header, while SNA uses bit-sequences to determine the actual

frame length.

DNA's Transport layer (in OSI terms the Network layer) uses

independent routing for all packets.

Because of this the implementation of the Network services layer is

in no way similar to, say, SNA's Path control / Transmission

control layers, although the resulting sets of services offered to

higher layers are comparable.

As stated before DNA has no session layer. The presentation

services offered by DNA are very basic, not like SNA at all. The

only information conversion offered is with some file transfer

option, where conversions are called upon when necessary.

It is important to notice that both the IBM and the Digital

architectures have been developed with a specific idea about what

customers would want, in the early seventies, with commercial

motives. The OSI standards have been designed to be (come)

everything for everyone, in as far as this was considered feasible.

Main issue there was to provide network designers with a set of

basic specifications to enable them to connect their network to

others adhereing to the same set of rules. This divergence in

objectives makes it possible that IBM does not consider OSI as

opponent to their SNA, but as a valued addition to their own

internetworking capabilities.
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4.3 TCP/1P

The TCP/1P protocol suite is an industry standard not belonging to

the OS1 definitions. For a full discussion of TCP/1P see chapter 6

and subsequent chapters. 1t is mentioned here only because it was

one of the protocols considered seriously; it is not discussed here

because the extensive discussion in chapter 6 et seq would be

necessary anyhow.
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5. THE SELECTION PROCESS

In this chapter a choice will be made as to which protocol(s) are

best suited for internetworking between Waterloo Port and a Unix

host.

5.1 Selecting a set of protocols; requirements

A first selection has been made on grounds of the original target:

Waterloo Port is a networking system for IBM PC's and compatibles,

so protocol sets used exclusively in mainframe to mainframe

communication are of little relevance here.

fromdesignedforbid any protocol

protocol may beo

have.

scratch, however optimal such

Let's see what options we may

At the same time a Unix host is the target machine. This implies

that if a protocol set is chosen for which no direct support is

available for Unix machines, this protocol set must be implemented

on the Unix host as weIl as on the Port system; such solutions are

not discussed any further.

A third criterion in the first rough selection is an estimate of

the instalIed base of the chosen protocol set: If only a very small

amount of Unix users has instalIed the protocol set being

considered for (inter-)network communication the choice must be a

wrong one because the market potential for a Port gateway using

those protocols is very low.

These three selection rules

5.1.1 Protocol options

Only the lower four layers of the OSI model need be considered,

since the session, presentation and application layers will have to

be adapted to the specific target Unix environment. If we start at

the lowest level we can summarize the overview presented in the

previous chapters as follows:
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5.1.1.1 physical and data link layers

The choice of the physical layer is a choice of hardware. Several

options are available. The most feasible choices will be Ethernet

and X.25. All other options can be excluded on grounds of speed

restrictions (serial lines) or costs (fiber optic cabIe). The two

token-passing systems (Token ring and token bus) are not very weIl

known outside the LAN-environment.

Both Ethernet and X.25 define some of the higher layers of the OSI

model.

If a choice has to be made with only the physical layer in mind,

the choice is Ethernet for several reasons:

- Ethernet is heavily used in unix environments.

- X.25 is already available for the Waterloo Port environment.

- X.25 is not used much in Unix environments.

The data link layer is not very special, the only requirement is

that it should fit in with the choice of the hardware used, since

also the media access layer is part of the data link layer.

5.1.1.2 network layer and higher

If the physical layer offers only two realistic solutions, with one

clear winner, the only issue to deal with at the network layer

level and higher up is whether this solution is a winner in the

higher range of protocol levels too.

In this case: Yes. Ethernet is used extensively in a Unix

environment, mainly with TCP/IP on layers three and four. TCP/IP is

an established industry standard, and the specifications are in the

public domain. This more than compensates the possible drawback

that TCP/IP is not an OSI standard.

In fact, it's even better. TCP/IP has always been under development

following a simple rule:

Use existing protocol standards whenever such standards

apply; invent new protocols only when existing standards are

insufficient, but be prepared to migrate to international

standards when they become available. [Com 1988; p. 8]

17



YT88

5.2 Conclusions

The conclusion can be simpIe: Ethernet TCP/IP is the best

combination in the given case.

This general solution has three components, Ethernet, TCP/IP and

the Port interface to both.

In view of this graduation project is seems unrealistic to suppose

that all three components can be realized, if any at all, in the

restricted amount of time available. Choices must be made.

5.2.1 How to proceed

In the next chapter an overview will be presented of the TCP/IP

environment, ARPANET, and of the protocol suite itself. In

subsequent chapters the functionality of the main protocols will be

discussed.

After a first understanding of the TCP/IP basics has been acquired,

a functional design of the TCP/IP protocol suite will be the next

step.
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The ARPANET network is one of the oldest networks still in

operation. It served as a testbed for operational research since

1969, and through the years several protocol sets in many versions

have been used on the network. The TCP/IP protocol suite is now the

required set of protocols for all of ARPANET as weIl as for all

networks connected. A little history will show how TCP/IP is a

naturaI step in the continuous development of ARPANET.

6.1 The ARPANET protocol family

The structure of the ARPANET architecture as compared to the OSI

structure can been seen in figure 4, below. The boundaries are

known to be rough approximations, and the IMP-IMP layer does not

fit into the OSI reference model too weIl.

7 Application User

6 Presentation Telnet, FTP

5 Session (None)

4 Transport Host - Host

Src - Dst IMP
3 Network

IMP - IMP
2 Data Link

1 Physical Physical

OSI ARPANET

Fig. 4 The relation between OSI and ARPANET

This view represents the ARPANET in general. The protocols used in

implementations differ, and their subdivision in layers can lead to

different pictures than the general one in figure 4.
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The physical layer can be implemented in many ways, to be chosen by

the implementor . The IMP-IMP protocol (IMP - Interface Message

Processors, the nodes in the ARPANET) does not fit in the OSI

reference model. It comprises the Data link layer and also

extensive routing information belonging to the Network layer. The

protocol that is related to the IMP-IMP protocol is the Source-to­

Destination-protocol, it verifies the correct reception of every

packet sent by the source IMP at the destination IMP.

The Host to Host protocol is more or less equivalent to the OSI

Transport protocol. In figure 4 this protocol is usually

implemented with NCP (Network Control Protocol). NCP offers an

error-free virtual circuit to higher levels, requiring a perfect

subnet from the lower levels.

ARPANET does not have any session layer, and no specific

presentation layer either, although some presentation services are

available in the application layer protocols: Telnet for remote

login, FTP (File Transfer Protocol) for file transfer over the

network.

6.2 TCP/IP

In the early days the scheme devised functioned perfectly, the 50

kbps leased lines offered good quality connections, and the

assumption of a perfect subnet made by the NCP protocol was valid.

However, as the ARPANET started expanding, and other types of

networks had to be connected, the perfect subnet assumption became

too restrictive. A new family of protocols evoluated from the

original ARPANET protocols, offering the same error-free virtual

circuits to layers above the transport layer, but using a transport

protocol capable of using imperfect subnetworks.

Along with this TCP protocol (Transmission Control Protocol), a new

network layer protocol was developed. The new functionality

implemented in the new transport protocol required arearrangement

of functionality in the lower layers too. The lP protocol (Internet

Protocol) corresponds more to the OSI network layer, offering the

possibility to use any physical layer with an appropriate data link

layer for the basic communication facilities needed.

20



These arrangements will

Ethernet as an example,

configuration.

be explained

since that

YT88

in some more detail using

is going to be our target

6.3 TCP/IP and Ethernet

The correspondence between OSI and TCP/IP with Ethernet is pictured

in figure 5, below.

7 Application
Telnet, FTP

6 Presentation

5 Session (None)

4 Transport TCP / UDP

3 Network lP
I ICMP

ARP I
2 Data Link

Ethernet
1 Physical

OSI TCP/IP - Ethernet

Fig. 5 The relation between OSI and TCP/IP-Ethernet

In figure 5, ignore the blocks ARP and ICMP for the moment. They

will be explained a little later on.

The new figure then fits the OSI reference model rather weIl.

Ethernet covers two layers with one name, but even in Ethernet the

two-Iayer functionality is easily separated, as the IEEE has

indicated with its vers ion of the original Ethernet, embedded in an

IEEE 802 definition.

The other difference is the upper layer, covering presentation

layer services in network applications.
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Both extra blocks in the network layer are present out of a

necessity.

The lP protocol was not designed specifically for use with

Ethernet. A problem with interfacing Ethernet and lP (one of the

very few) has been the address mismatch: Ethernet uses 48-bit

addresses, lP uses 32-bits per address. To solve this problem, a

new protocol has been introduced.

ARP, the Address Resolution Protocol, is a quite general protocol

for network address mapping and can be used on any network hardware

supporting broadcasting. It is not restricted to address lengths of

48 or 32 bit, but only used that way with Ethernet. In later

chapters the functionality of ARP will be covered.

The ICMP protocol (Internet Control Message Protocol) offers a

means of communication for the subnet. The subnet may not be able

to transmit packets reliably, so it is possible that packets are

lost. The transport protocol has the functionality to counter such

loss with acknowledgements and retransmissions.

However, the routing mechanism is part of the unreliable subnet. If

some intermediate router discovers an error, for instanee an

address cannot be reached, the packet can be discarded without

further thought because of the assumption of an unreliable subnet.

The transport protocol will then, after a timeout, decide that the

packet must be lost, and retransmit the packet. This will lead to

aborting the connection, eventually, but not after a considerable

delay and a high network load.

It would be desirable to have a mechanism to notify the sender when

such an event occurs. The ICMP protocol is used for such purposes.
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fragmentation)

or routes thatloops)

(after

when invalid routes (routing

are being used.

when reassembly timeouts

are too long

- Notification

A few highlights from ICMP:

- Notification if the destination cannot be reached.

- Subnet flow control ; end-to-end flow control can be (and is)

implemented in TCP, but if some intermediate router cannot handle

the load, ICMP provides a way to notify the sender(s) to slow

down the traffic on that link.

- Notification of the source when inefficient routes are being

used.

- Notification

occur.

In short, many problems that can occur within the subnet and lead

to discarding of packets, can be reported back to the sender using

ICMP, especially when retries will not solve the problem. For a

more detailed discussion of the ICMP protocol, refer to section

8.2.

In the next chapter the functionality of the Internet Protocol will

be discussed in more detail. The Ethernet functionality is rather

simpIe, and i t will be discussed briefly. This only to offer a

full overview for reference.
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In this chapter a short overview will be presented of the Ethernet

functionality; the IEEE 802.3 definition is functionally the same,

the details are not covered here.

The main emphasis of this chapter will be the lP tunctionality,

with references to the next chapter for the separate ARP and ICMP

protocols. The lP functionality will be clarified by explaining the

use of the IP-header fields.

7.1 Ethernet as a basis for the lP protocol

The interface of Ethernet with higher protocol levels provides a

relatively modest set of services:

- Ethernet provides its own addressing scheme, 48-bits addresses.

47 bits are used for node-addressing. When the most significant

bit zero is, the other 47 bits indicate a node-address.

When not, the address is a multi-cast (some zero's) or a

broadcast (allone's) address.

- An Ethernet frame contains a 2-byte type-field, used to indicate

the level three protocol using Ethernet. This makes it possible

to use several network layer protocols on the same Ethernet link

in the same host: The type field indicates the destination

network layer protocol.

- A4-byte CRC check is appended to every Ethernet frame tor error

detection.

Except for the mul ti-cast facili ties, the features mentioned are

used by the Internet Protocol, and a sufficient basis. The CSMA/CD

principle used in the Ethernet Media Access Control implements 15

retries after a collision detect. When that is not sufficient, the

transmission attempt is aborted with an error interrupt or

equivalent.
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7.2 The lP header

The Internet Protocol header is a block of data, 160 through 480

bits in length (20 through 60 bytes), appended to every lP packet.

The data block contains information necessary for the correct

operation of the Internet Protocol layer. A representation of the

various fields contained in the header is given in figure 6.

Some fields of the header are meant to assist in offering a

specific functionality feature; these fields will be discussed in

one of the subsections of this chapter.

Other fields are useful to the lP protocol in general; they will be

discussed first.

The official definition (the latest) of the Internet Protocol can

be found in RFC 7911 )2).

VERS I LEN I TYPE OF SERVICE TOTAL LENGTH

IDENTIFICATION FLAGS I FRAGMENT OFFSET

TTL I PROTOCOL HEADER CHECKSUM

SOURCE lP ADDRESS

DESTINATION lP ADDRESS

OPTIONS I PADDING

Fig. 6 Internet Protocol header

VERS (4 bit)

Indicates the vers ion number of the used lP implementation. If the

version number in an incoming packet does not correspond with the

supported version(s), the message is better discarded than

incorrectly processed. The current version number is 4.

1) References to RFC's can always be outdated because of new
issues. When the information is of vital importance, always check
the validity of a reference.

2) Indicated are the main references, eg. containing the
specifications. For full details, more RFC's can be of importance.
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LEN (4 bit)

Indicates the length of the lP header, in 32-bit words. The OPTIONS

field has a variabIe length, but always a multiple of 32 bits using

PADDING bits. The value of this field can vary from 5 up to 15.

TOTAL LENGTH (16 bit)

Indicates the length of the lP datagram in bytes (8 bits, octets),

including both the header and the data portion of the datagram.

HEADER CHECKSUM (16 bit)

contains a simple checksum of all header bytes. The header is

divided in 16-bit words, and the checksum is then calculated as

follows: The one's complements of all words are added, then the

one's complement of the result is the checksum.

7.2.1 Type Of Service field

The Type Of Service field is meant as a hint to the routing

algorithm, to provide a means of discriminating between two or more

equally valid routes. The 8-bit field consists of five sub-fields,

as indicated in figure 7.

Precedence~ (Unused)

Fig. 7 Type of Service field

- Precedence (3 bits) provides a way to distinguish important

messages from less important ones. The US Department of Defense

(000) has defined all eight levels, the amateur community uses

four of those under different names. The top two levels are

intended for internal use within the network; see table 1. Fact

is that only very few routers have implemented precedence

routing, although the precedence field could gain some importance

in the future : It is possible to develop a congestion control

protocol using the two topmost precedence levels, without

disturbing the protocol with the congestion it is trying to

control.
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Table 1. Precedenee levels

Value

000
001
010
011
100
101
110
111

000 names

Routine
Priority
Immediate
Flash
Flash Override
Critical
Internet Control
Network Control

Amateur names

Routine
Welfare
Priority
Emergency
N/A
N/A

- Oelay (1 bit) indicates a desire for a low delay in favor of high

throughput or reliability. A value of 0 is 'off', 1 is 'on'.

Keystrokes entered in a terminal emulator program, sent in an lP

datagram, typically have this bit set to 1.

- Throughput (1 bit) is used (set to 1) in situations where a bulk

of data is to be transmitted, eg. file transfer. The overall

delay is not too important, neither is reliability in the case of

a large text-file, whereas the total transmission time is

proportional to the cost.

- Reliability (1 bit) requests a highly reliable connection. This

is useful in the case where a code-file is transmitted: Every

bit-error can be fatal to the program. Again, 1 is 'on', 0 is

, off' .

The two least significant bits are not used.

It is important to remember the TOS-byte is only a hint to the

routing algorithm; if the router cannot comply with the request, it

may simply ignore it (as many routers do). It should, however, copy

the TOS-byte into all routed datagrams, to indicate the requested

service to every subsequent router capable of providing such

service.
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7.2.2 Time To Live field

In a datagram based subnetwork providing routing functionality,

every datagram may be routed individually. This can present

problems if some available route is not correct. (It could occur

theoretically that two routers transmit a particular datagram back

and forth to each other because of a faulty routing tabIe.) In such

a case a datagram could stay in the network forever without ever

being delivered.

The Time To Live field in the lP header is meant to aid in the

destruction of such a runaround packet. It is simply a counter, set

to the number of seconds a packet will be allowed to exist in the

network before being delivered or destroyed. That means that every

router checks for the TTL-field being zero, and every packet with a

TTL value of zero is removed from the subnetwork. (See chapter 8.2

for the notification method used.)

One problem has risen this way: How can a unit of time, in this

case a second, be determined accurately over a number of routers,

without an enormous amount of overhead? For the time being the

answer is not given. Effectively another unit of 'time' is used,

equivalent to the "hop-count": Every router in the internet that

receives a message, decrements the TTL-field before checking

whether it is zero or not, and discarding the packet if it is. So

the expression ' seconds' as a unit of measurement is at least

confusing.

The overall effect, however, is the same: After a certain amount of

time a packet still not delivered is destroyed.

7.2.3 Protocol field

If in a host several transport level protocols are active at the

same time, the lP protocol needs some method to separate incoming

messages and lead them on to the correct level four protocol. The

protocol field is intended for this purpose.

A request for lP service by, say, TCP must specify the TCP protocol

ID. This ID (6) is included in the transmitted lP header's protocol

field. The receiving lP process can determine from thi~ protocol ID

that the TCP handling routines are the target protocol for this
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Class C
Class D
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message, and forward the data correctly. The principle is analogous

to the Ethernet type-field (Chapter 7.1), and also to the TCP ports

(Chapter 9).

7.3 Internet addressing

The addressing scheme used with lP is a simple one, basically.

However, the possible expansions on this basic scheme are manyfold,

and so are the possibilities of using them. Only the most important

features of lP addressing will be covered.

7.3.1 Network-based addressing

In order to achieve hierarchy within the 32-bit address space, the

32 bits are subdivided. The subdivision permits three formats to

accomodate both small networks with few hosts (Class C) and large

networks with many hosts (Class A). An intermediate format for

medium-size networks with a considerable number of hosts is

provided also (Class B).
To determine the format the first few bits of the address are used,

as indicated in figure 8.

Y4Ep""---_""-1_1.&..-\_0I
o X X
1 0 X
110
111

Fig. 8 Network types

In figure 8 the bit-values for the three most significant bits are

shown to be the indicators for the rest of the lP address layout.

Class D is included only for completeness. Network class D is not

used yet except in experiments considering the possibility of

internet broadcasting. No standards have emerged yet.
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The subdivision of the lP address in network number and host number

is different for all three classes to accomodate for the different

number of hosts to be expected in a network of the specific class.

Table 2 lists the differences.

Table 2. lP address fields

Class Initial Number of Number of Network mask
bits network bits host bits 32-bit

A OXX 7 24 FFOOOOOO
B 10X 14 16 FFFFOOOO
C 110 21 8 FFFFFFOO

This division of the address space has some

concerning routing (obvious) and gateways

routing issues will be pursued first.

7.3.2 Internet routing

consequences, mainly

(less obvious). The

The way

arrange

network,

network.

routing tables are set up within the Internet Protocol

for routing on network number only outside the target

and host specific routing solely within the bounds of that

Defaul t routing further helps to restrict the size of

routing tables.

For networks capable of broadcasting on the physical/data link

levels, an additional method is given in chapter 8.1.

7.3.3 Internet gateways

The introduction of networks and hosts within a network poses an

addressing problem for hosts connected to more than one network at

once.

A host might be

different network

numbers first, the

may depend on which

addressed by two or more node-numbers, with

numbers. The routing mechanisms using network

efficiency of routing a packet to such a node

node-number is used.
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Even more important is the fact that such a host must keep track of

the interface on which a message arrived, to provide the correct

source address for a reply, if any. AIso, a message can arrive at

an interface with a different target address that the address of

interface indicates, but still intended for that host. Such a

message may not be forwarded onto the other network.

This consideration, while far from complete, serves to indicate

that the overview presented here must inevitably be lacking detail.

Interested readers may refer to the literature overview.

7.4 Fragmentation and reassembly

Physical networks tend to restrict their frame size. For instance,

Ethernet imposes a strict frame size maximum of 1518 bytes.

If a message is routed over various networks with different

physical characteristics, chances are that a packet arriving at a

router is too big for the network it should proceed on. The source

host cannot possibly know this, because every packet may be routed

differently.

A possible solution adopted by the Internet protocol designers is

fragmentation and reassembly.

The fields in the lP header involved in this functionality are the

following:

The identification field (16 bits) is meant to identify all the

parts of the original datagram (may be only one). All fragments,

if more than one, have the same identification number.

The fragment offset field (13 bits) indicates the relative offset

of the first byte in the fragment in respect to the original

datagram. unit of measurement is 8 bytes, so that with 13 bits

(range 0 - 8191) the largest offset is 65,528. This is consistent

with the maximum datagram size of 64k bytes.
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- The flags field (3 bits) contains two flags and an unused bit.

The "don't fragment"-flag, when set, indicates that the datagrams

must not be fragmented, when, for example, the target host is not

capable of reassembling the original datagram. If there is no

possibility of transmission without fragmentation, an error is

signalIed to the source of the message (See chapter 8.2) .

The "more fragments"-flag indicates that more fragments follow

this one, in sequence rather than in time. The order of arrival of

the various fragments cannot be guaranteed. Therefore the MF-flag,

when reset (no more fragments follow), indicates that the fragment

offset of this fragment is the highest FO occurring with this ID

number, so with that and the length of the fragment the length of

the original datagram can be calculated.

Fragmentation should be avoided if possible, because there are

great disadvantages involved:

- From the point of fragmentation onward,

sincere datagrams themselves, are routed

common destination, to be reassembled only

The overhead for the network is increased.

very convincing argument on its own, but

- When only one of the fragments making up the original datagram is

lost, the whole datagram must be discarded, because the lP

protocol is datagram based, and does not provide for

acknowledgements or retransmissions. This could increase the

overhead considerably.

To avoid fragmentation, usually

size it uses to submit data

datagram size of lP.

7.5 Internet options

The option field in the

absent ( 0 ) to 40 bytes.

internet header length,

length is not a multiple

with zero's.

lP header is of variabIe length, from

The length can be determined from the

in units of four bytes. If the actual

of four bytes, the free space is padded
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bytes. The two

o meaning "end

"no operation"

do nothing,

1 being the

Every internet option is a sequence of one or more

options of one byte length effectively

of option list", used for padding, and

code.

The other options consist of an opcode of one byte, a byte

indicating the length of an option in bytes, and further data.

The opcode contains a field, the most significant bit, indicating

whether the option should be copied to all fragments when

fragmentation is necessary (1), or only to the first fragment

sequentially (0).

In short, options are defined for the following functions:

- Security enforcement

Routing along predefined paths

Recording the followed route for debugging purposes

Timestamping datagrams for debugging purposes

Identifying a stream (This is used to allocate resources when a

certain amount of traffic is expected to use the same route, and

the resources needed can be claimed only with difficulty, as in

satellites)
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In addition to the Internet Protocol two other protocols are of

importance in the network layer. One is a required protocol for

every lP implementation offering subnet error signalling. The other

is an address mapping protocol for linking lP addresses with

hardware addresses, optional, and requiring a physical/data link

layer capable of broadcasting.

The latter will be discussed first, considering an implementation

on Ethernet.

8.1 The ARP protocol

Ethernet addresses of 48 bits length are not easily mapped to lP

addresses or vice versa: The Ethernet addresses are fixed for every

controller, while the lP addresses of the nodes using these

controllers are dependent on the network in which they are used.

What is more, when a controller is replaced the Ethernet address

changes, but the lP address does not.

Therefore the mapping must be made in a tabIe, linking every known

local lP address to their respective Ethernet addresses. (This does

not mean that some central site, or worse: every host, should

contain all the mappings for every host in the global Internet,

because of the network-based routing algorithms.)

For large Ethernet networks this could resul t in large tables

resident in every host, with most of the information unused for

most of the time.

The Address Resolution Protocol was created to make the table

maintenance dynamic: Information needed is obtained, from the

table if possible, from the network if necessary. If the

information is obtained from the network, it is stored in the table

for later reference, because it is reasonable to suppose that the

information will be needed again in the near future. On the other

hand, information that has not been used for a specified amount of

time is removed from the tabIe.
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S.l.l ARP messages

The ARP protocol is implemented as a protocol directlyon top of

the data link layer. This means that for an Ethernet

implementation, a special Ethernet type number is assigned for use

in Ethernet frames: OS0616. The protocol can therefore send and

receive its own frames.

The message format used has no fixed header-data separation. Refer

to figure 9 for the message format used with lP on Ethernet.

HARDWARE PROTOCOL

HLEN I PLEN OPERATION

SENDER HARDWARE ADDRESS (Bytes 0 - 3)

SENDER HA (Bytes 4 - 5) SENDER IA (Bytes o - 1)

SENDER IA (Bytes 2 - 3) TARGET HA (Bytes o - 1)

TARGET HARDWARE ADDRESS (Bytes 2 - 5)

TARGET INTERNET ADDRESS (Bytes 0 - 4)

Fig. 9 ARP message format for use of lP on Ethernet

The fields in figure 9 have functions as follows:

- HARDWARE (16 bits) indicates the physical/data link subnetwork

used. A value of 1 indicates the 10 Mbit/s Ethernet.

- PROTOCOL (16 bits) indicates the layer 3 protocol using ARP for

address resolution. The values used in this field are dependent

of the way the hardware uses to identify the protocol. In the

case of Ethernet, the type value OS0016' as used by Ethernet,

indicates the lP protocol.

- HLEN (S bits) and PLEN (S bits) indicate the lengths of the

hardware address and the protocol address respectively, measured

in bytes. In this case the HLEN is 6 for Ethernet addresses, the

PLEN value is 4 for lP addresses.
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- OPERATION (16 bits) indicates the aim of the message . It may

indicate a request (Value 1) or a response (Value 2). Other

values are possible too, but these values are not part of the ARP

definition; the Reverse ARP (RARP) protocol uses the same message

format, however, on Ethernet a different type value of 803516 is

used. See chapter 8.1.2.

- SENDER HARDWARE ADDRESS (Size dependent on HLEN) contains the

hardware (Ethernet) address of the sender of the message.

- SENDER INTERNET ADDRESS contains the layer 3 protocol address of

the sender. (If known, see chapter 8.1.2.)

- TARGET HARDWARE ADDRESS contains the Ethernet address of the

receiver. If this ARP packet is a request, this field is empty.

- TARGET INTERNET ADDRESS contains the lP address of the receiver.

It should contain a value always.

In case of a request, the TARGET HA is empty and should be provided

by the host identified with the TARGET IA. To reach the intended

target machine, a physical broadcast is used: Stations with a

different lP address simply ignore the request, and only the target

issues a reply.

In case a reply is issued, the OPERATION field should be changed to

reflect this, and the two TARGET fields should be swapped with the

two SENDER fields, to reflect the direction in which the message is

passed.

The previously mentioned RARP protocol has a functional link with

ARP, and in implementation the similarities are great. A brief

discussion is justified.

8.1.2 The RARP protocol

For diskless workstations in a network using TCPjIP as network

protocol it may present a problem to find out its own internet

address: It is the basis for all useful network communication.

The Reverse Address Resolution protocol (RARP) provides a solution.
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As stated previously, the RARP protocol uses the same packet layout

as the ARP protocol, refer to figure 9. The means to differentiate

the two protocols, both being self-contained protocols on top of a

service like Ethernet, is the Ethernet type field. RARP uses a

value of 803516.

The values of the OPERATION field (figure 9) are request (3) and

reply (4). A request contains only the SENDER HARDWARE ADDRESS

field, the other fields are empty. A request is broadcast over the

network to all stations.

At least one RARP server should exist on every network using RARP.

The RARP knows the physical address to lP address link, completes

the message and returns the reply. After that the diskless station

can communicate using its own lP address to communicate with the

host offering the RARP service, since its lP address and Ethernet

address can be learned from the RARP reply too.

8.2 The ICMP protocol

The very nature of the datagram-oriented lP protocol implies that

no guarantees can be made regarding delivery of packets. As soon as

a packet is transmitted successfully over to the first intermediate

router , i t is out of the hands of the source host. The network

layer protocol will never know whether the message was received by

the destination host, or not. And if not, why not.

The source host may know why, but only if the target host detects

the problem on a higher protocol level than the network layer, and

notifies the source. If a router in between detects a problem, lP

itself does not provide a way to report that.

The Internet Control Message Protocol (ICMP) does.

8.2.1 Message format and delivery

The ICMP protocol was designed to provide network control and error

reporting within the network sublayer. A source host needs to know

that a destination cannot be reached, or i t will keep sending

retries, using network resources senselessly.
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A network layer protocol can only use the functionality offered by

the data link layer, as can be seen with the ARP protocol, chapter

8.1; in that situation nothing else is needed.

However, if the last router in a series detects the error to be

reported, the error message needs to be transferred over one or

more routers, functionali ty offered by the lP protocol, but most

definitely not by the data link layer.

That is why the lCMP protocol is functionally a part of the network

layer, though implemented as if it were a layer four protocol using

lP for network layer services.

One important difference is that if an lCMP packet causes an error

to occur, preventing delivery, no lCMP message is generated. This

keeps routing errors from generating lCMP messages in a circular

fashion, not shut down by the regular use of the Time-To-Live field

within lP, or congestion reporting messages from generating aflood

of similar messages adding to the congestion, instead of reporting

them.

Although all lCMP messages have their own format, they all start

with the same three fields:

- a TYPE field, 8 bits, indicating the function of the message;

- a CODE field, 8 bits, further specifying the function if

necessary;

- a 16-bit checksum field covering the complete lCMP message.

For the lCMP messages reporting an error the lP header of the

packet causing the error is part of the message, as is the first

part (8 bytes) of the data contained in the message. This can be of

help to identify the source of the error more precisely.

The format of the rest of the message is dependent of the value

contained in the type field. The defined numbers are listed in

table 3.
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Table 3. ICMP defined type numbers

Type Number

o
3
4
5
8

11
12
13
14
15
16
17
18

ICMP Message

Echo reply
Destination unreachable
Source quench
Redirect
Echo request
Time exceeded
Parameter problem
Timestamp request
Timestamp reply
Information request
Information reply
Address mask request
Address mask reply

The functions of these ICMP messages will be discussed in short.

The Echo Request (8) and Echo Reply (0) messages are used to test

whether a destination can be reached. The CODE field is zero

always, and aside from TYPE and checksum fields the sent and

received messages should be identical.

The Destination Unreachable (3) message is returned whenever a packet

cannot be delivered to the ultimate destination. The CODE field

is used to specify the entity that cannot be reached, or the

reason why the delivery has failed:

o Network

1 Host

2 Protocol (Transport layer; see chapter 9.)

3 Port (See chapter 9.)

4 Fragmentation needed, DF set on packet

5 Source route failed (when a routing option was specified)

The Source Quench (4) message is sent to the source of a packet when

the router is too busy to handle it properly. This should

indicate that the transmission rate of the transport protocol

should be lowered for that connection because of congestion.
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for the host only, when this type-of-service is

0 Redirect

1 Redirect

2 Redirect

required

3 Redirect

The Redirect (5) message is sent to the source of a packet if a

router discovers that the host could use a more efficient path to

the destination. It indicates the router (TCP/IP-gateway) to

which all packets for the original destination should be sent in

the future. The CODE field indicates what 'part' of the

destination should be involved in the routing change:

for the network

for the host only

for the network, when this type-of-service is

required

So 0 and 2 indicate routing changes for all hosts on the network

(The original IP-header is included in the message and contains

the original destination IP-address and the TOS-byte), while 1

and 3 refer to packets for the specific destination host only. At

the same time, 0 and 1 are generaI updates, while 2 and 3 only

apply to packets with a specific TOS-field.

The Time Exceeded (11) message is generated by a router when a

datagram is discarded because of a zero TTL(time-to-live)-field.

This hints at a faulty route. Also when a fragmented packet is

not received intact (a fragment takes too long before arriving) a

message type 11 is generated (by the receiving host, this time).

The CODE field distinguishes the two cases: 0 for a zero TTL­

field, 1 for an exceeded fragment reassernbly time.

A Parameter Problem (12) message is returned whenever a problem is

experienced in processing an IP-header. A pointer is provided as

to where in the header the problem seems to beo

Other messages provide means to calculate the round-trip-time of a

message (Timestamp Request and Reply), to obtain a network address

from a router as an al ternat i ve to the RARP protocol with the

Inforrnation Request and Reply (see chapter 8.1.2), and to obtain a

subnet-mask (Address Mask Request and Reply).

For more inforrnation about the ICMP-messages, layout and usage,

refer to [Com 1988], chapter 9. The subnetting principles are

covered in more detail in [Com 1988], chapter 16.
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Layer four in the TCP/IP protocol suite offers a few options to

choose from. The two main protocols in this layer are the

Transmission Control Protocol (TCP), and the User Datagram Protocol

(UDP).

UDP offers datagram service to higher protocol layers and users, is

not connection oriented and offers no acknowledgements. The main

feature UDP can offer in addition to the lP functionality (see

chapter 7) is a mechanism to have many points of entry to the

protocol, using the same technique as TCP for that: Ports are used

in both TCP and UDP. A description of this mechanism is included in

this chapter.

The main subject discussed in this chapter is TCP. It is the most

widely used protocol within a TCP/IP environment, and is included

in every TCP/IP implementation.

TCP offers areliabIe, connection-oriented service between two

sides of the link. As with the Internet Protocol in chapter 7, TCP

will be discussed along the lines of the TCP header-structure.

9.1 The TCP header

A TCP protocol unit, usually called a 'segment', is packed

completely in the data portion of an lP packet. The TCP header is

just plain data as far as the lP protocol layer is concerned. For

the transport layer, however, the TCP header contains valuable

information concerning acknowledgements, final destination and

connection state changes.

~irst, the fields used solely for the TCP protocol itself will be

discussed, after which the TCP functionality offered to higher

level protocols will be covered in several subsections, each

referring to the fields of the header it uses for achieving such

functionality.

The format of the TCP header is presented in figure 10.

The various flags in the FLAGS-field are laid out in figure 11.
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SOURCE PORT DESTINATION PORT

SEQUENCE NUMBER

ACKNOWLEDGEMENT NUMBER

DATA OFFSET I RESERVED I FLAGS WINDOW

CHECKSUM URGENT POINTER

OPTIONS (If created) I PADDING

Fig. 10 The TCP header format

I URG I ACK I PSH I RST I SYN I FIN I

Fig. 11 The FLAGS-field layout

DATA OFFSET (4 bit)

Indicates the length of the TCP header in 32-bit units, including

the options field. Thanks to the PADDING field after the options,

the TCP header always is an integral number of 32 bits long. This

field is used to compute the beginning of the data.

RESERVED (6 bit)

This area is reserved for future use. It should be zero always.

RST (FLAGS field, 1 bit)

The RST flag indicates a connection reset when ' 1'. This can be

used in extraordinary situations, such as host crashes, to try to

agree on a connection abort. It should only be used when

resynchronization is bound to fail anyhow.
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CHECKSUM (16 bit)

The CHECKSUM field covers the complete header and all data in the

TCP message. In addition it also covers a so called 'pseudo-header'

consisting of the source lP address, destination lP address, the

PROTOCOL field value used by the Internet Protocol, and the TCP

segment length. These data are placed as indicated in figure 12,

and conceptually prefixed to the TCP header in calculating the

checksum.

The pseudo-header is not transmitted with the TCP segment, it is

just used in the calculation of the checksum, while its fields are

to be extracted from the lP header of the packet carrying this

segment.

The purpose of such a pseudo-header is to enable the TCP layer to

verify that the segment has arrived at its correct destination;

that destination consists of an lP address and a port number (see

chapter 9.5), but also a protocol identification, since the UDP

protocol uses the same port numbering mechanisme

SOURCE lP ADDRESS

DESTINATION lP ADDRESS

ZERO (0) I PROTOCOL I TCP LENGTH

Fig. 12 The TCP pseudo-header

The ZERO field consists of eight zero-bits, the PROTOCOL field is

the same 8-bit value used in the lP header to signify the TCP layer

four protocol, and the TCP LENGTH field simply contains the total

length of the TCP segment.

In order to calculate the checksum, the CHECKSUM field is defined

to be zero, and the pseudo-header is prefixed to the actual header.

In addition to the PADDING field in the header to make the header

an exact multiple of 32bits long, the field containing the data

transmitted by TCP can be of arbitrary length. For the purpose of

computing the checksum the data field is padded with zero bits

until the length is an exact multiple of 16 bits (not 32 !), and
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the checksum can be computed. These padding bits (a byte of value 0

is appended or not) are different from the PADDING field in the

header in that they are not part of the data field, they are not

transmitted at all. They are just a mechanism to aid in the

computation of the checksum, just as the pseudo-header.

The algorithm used to compute the checksum is the same as used for

the lP header checksum: The 16-bit one's complement of the one's

complement sum of all 16-bit words in pseudo-header, header and

data.

9.2 Reliable service and flow control

TCP offers reliable service to higher layer protocols or

applications. To do this i t uses the services of the Internet

Protocol: Datagram oriented unreliable packet transfer, on a

connectionless subnet.

This mismatch between services offered by lP and services expected

from TCP determines most of the TCP functionali ty. This required

functionality calls for some means of acknowledgements.

TCP uses a technique called the 'sliding window' concept to send

and acknowledge data, or to retransmit data in case of failure.

This concept has been extended to provide a flow control mechanism.

Both parts of the concept will be discussed separately.

9.2.1 The sliding window concept

The simplest form of 'Positive Acknowledgements with

Retransmission' has at most one unit (message, byte, ... ) waiting

for an acknowledgement from the receiving side. The next unit is

not 'sent until an ACK(nowledgement) for this one has been received.

This method tends to result in a poor bandwidth efficiency,

especially when packets are lost occasionally.

The sliding window principle tries to improve on the PAR-method. It

establishes a window indicating the units that can be transmitted

without receiving acknowledgements. See figure 13; the double-lined

box indicates the window.
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Fig. 13 A 'sliding window'

The window size here is five units. This means that units 1 through

5 can be sent without receiving any acknowledgements. As soon as an

ACK for unit 1 has been received, the window slides, taking unit 1

out and bringing unit 6 in. It is now waiting for ACKs on units 2,

3, 4, 5, and 6 (after transmitting unit 6 of course).

This concept can be enhanced further by accepting cumulative

acknowledgements. This means that the receiver, after receiving

units 1 and 2 correctly, can send an acknowledgement for both units

in one time: It is implied that by acknowledging a specific unit,

all units with sequence numbers lower than the acknowledged one are

also ACK-ed. This can reduce the number of ACK-packets

dramatically.

9.2.2 A variable-size window

The window size used in this sliding window concept is an important

parameter in determining the resource consumption of a connection.

The administration of the sliding window should keep track of

acknowledgements for all units that have been sent but not yet ACK­

ed, and what is more, the sending side should keep all units handy,

just in case a retransmission is necessary.

This feature enables the designer of the communication protocol to

include flow control in the sliding window concept: By making the

window size a variabIe rather than a constant, flow control is

rather easily implemented.
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9.2.3 The TCP variant

The Transmission Control Protocol uses the methods indicated above.

The SEQUENCE NUMBER field indicates the sequence number of the

first byte contained in the data field following the header. Every

byte in the data stream has its own sequence number, so the unit in

the TCP case is a byte. This SN field is used to regulate the

traffic towards the receiving side.

The WINDOW field and the ACKNOWLEDGEMENT NUMBER field take part in

controlling the communication towards the sender of this message,

in addition to the ACK flag in the FLAGS field of the header.

The ACK flag indicates whether the ACKNOWLEDGEMENT NUMBER field

contains a valid ACK number.

The ACK number signifies, in the numbering scheme used by the other

party, the sequence number of the first byte that was not yet

received (correctly), implying that all bytes before that were:

Cumulative acknowledgement.

The WINDOW field represents the number of bytes this side is

willing to accept, starting with the one indicated in the

ACKNOWLEDGEMENT NUMBER field. This window size is thus made

variabIe, successfully implementing flow control (Only end-to-end;

for flow control on a lower level see chapter 8.2 on the ICMP

protocol).

9.3 Connection management

The TCP protocol covers a small part of the OSI session layer in

that it covers connection (= session) management.

TCP uses the SYN and FIN flags in the FLAGS field for this purpose.

Also the SEQUENCE NUMBER field and the ACKNOWLEDGEMENT NUMBER field

are used, to implement the three-way handshake synchronization

procedure.

The three-way handshake serves two purposes:

- It synchronizes both sender and receiver, verifying that both are

ready to start a connection.

- It establishes the initia1 sequence numbers both sides will use

in transmitting and acknowledging data.

To terminate a connection the FIN (for final) flag is used.
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Connection setup and connection breakdown will be discussed

separately.

9.3.1 Connection setup

The three-way handshake used in connection setup with TCP can be

used when one side initiates the connection, the other one

listening, but also when both sides try to initiate a connection at

the same time. The basic principles of the three-way handshake will

be covered here, the reader is referred to the protocol

specification for the details. 3 )

A synchronization message is identified by a SYN flag equal to 1.

The sequence number in i ts TCP header is the number of the SYN

message , the data in that message starts with a sequence number

that is one higher. In this way the SYN flag itself can be

acknowledged.

The sequence numbers used to start the connection are not fixed,

because delayed duplicate messages from other connection attempts

might be mistaken for belonging to this attempt, thereby leaving

one side confused as to the connection status.

The simplest exchange of messages to establish a connection looks

as follows:

3) The TCP specification can be found in RFC 793.
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site 1:

Send SYN with sequence number X.

\
site 2:

Receive SYN, record sequence

number X.

Send SYN with sequence number Y,

include ACK for X+1.

/

sequencerecordSYN,

site 1:

Receive

number Y.

Accept ACK for X+1.

Send ACK for Y+1.

\
site 2:

Accept ACK for Y+1.

In this way both sides know the sequence numbers the other side

will use, and they know (from rece1v1ng the correct

acknowledgements) that the other one knows and is ready to send and

receive data. The connection has been established.

Keep in mind that and ACK for X+1 means that the sending side has

received everything including X correctly, and is expecting X+1 as

the next sequence number.

The fact that SYNs have their own sequence numbers makes it

possible even for the handshake messages to contain data. If that

is the case, the data should be held until the connection has

successfully been established. Details can be found in the protocol

specification.
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9.3.2 Connection breakdown

A TCP connection is a full duplex link: Both sides can transmit

data to the other on the same link.

The TCP connection, however, can best be viewed as a double half­

duplex link: Both sides can terminate their side of the connection

without affecting the other side.

If one side has no more data to send, and does not need the

connection any longer, it can close the link. The other side can

continue to send data (the data being received in the normal way)

indefinitely. The connection is not fully closed until also the

other side has decided to close its side of the connection.

It is not possible, after having closed down one side of the

connection, to change your mind and reopen it, not even when the

link in the other direction is still busy.

The mechanism used in closing down one side of the connection is

quite simpIe: The FIN flag from the FLAGS field in the header is

used to indicate that no more data is being sent over the link,

after the data contained in the message of the active FIN flag has

been correctly received.

To achieve a clean connection close, the FIN flag itself has been

assigned a sequence number: One more than the sequence number of

the last data byte in the message . The FIN flag can thus be

acknowledged.

If an ACK for the FIN flag is received, that side of the connection

is closed. The other side continues to transmit, expecting ACKs in

return, until a FIN is sent.

Keep in mind, that once a FIN is sent, the side wishing to close

the connection should wait for the corresponding ACK, because it

might be necessary to retransmit some data, or even the FIN flag

itself.
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9.4 Forcing data delivery

As far as the application using TCP is concerned, the protocols

transmit a stream of bytes from one host to another. How the

protocol does it is not important.

However, there are some situations where the application wants some

control over the TCP buffering mechanisms, especially in

interactive use (eg. TCP terminal emulation).

For this purpose the TCP protocol uses the PSH flag in the FLAGS

field (PSH for push). It forces TCP to transmit the data received

so far immediately. But it does more: It also forces the receiving

TCP host to deliver the data in that segment to the higher layer

protocols or applications immediately (that is the reason why a

flag in the TCP header is used: The other side should get the same

note, to force delivery).

In addition to the PSH flag, an application can send urgent data

using TCP. The feature is not implemented very often.

The URG flag in the FLAGS field (URG for urgent) indicates whether

the URGENT POINTER field contains a valid pointer or not. This

pointer, when valid, indicates the last urgent byte in the segment.

It is to be interpreted as a positive offset from the SEQUENCE

NUMBER field value.

It can be used to increase the priority with which the data is

being processed.

9.5 TCP ports

On small microcomputers operated under a single-tasking operating

system such as MS-DOS, the need to have several TCP connections

open at one time may not be great. On large multi-user multi­

tasking hosts, however, i t would be a grave shortcoming i f such

would not be possible.

TCP does have the capability for maintaining multiple links, if

necessary with as many different hosts as there are connections.

TCP communicates with higher layer protocols and applications

through the use of ports, abstractions of entry po-ints to the

protocol. A port can be seen as the number of an application within
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the host. Numbers are assigned to applications on request, if and

when the number is not currently assigned to another application.

(A higher layer protocol can be seen as an application as far as

TCP is concerned.)

The application opens a connection in the following way:

- Request permission to use local TCP port <1> for communication.

lf the port <1> is not currently involved in active communication

for another application process, the request is granted.

- lnitiate the three-way handshake to synchronize with a remote

port. The remote host needs be specified by issuing a remote lP

address <ipr>, and a remote port number <r>, a port local to the

remote host indicated by <ipr>.

lf the remote host is within reach using <ipr>, the remote port

<r>, local to host <ipr>, is not engaged in active cornrnunication

but listening to any incoming traffic, (the port must be willing

to passively initiate cornrnunications, otherwise the connection

request is denied!) the three-way handshake is completed and a

connection established.

A connection is established between two hosts using both lP

addresses and ports: An lP address for the local host plus a

corresponding port number, the combination called a (local) socket,

and an lP address plus a port number for the remote application,

also called a (remote) socket.

Since the lP addresses are contained in the lP header and not

directly part of the TCP protocol definition, only the source and

destination ports are contained in the TCP header.

Once a connection is established between two ports, it could occur

that a stray TCP segment on the network would mistakenly be

accepted as belonging to that connection, just because the port

numbers match: The lP layer has mis-routed the message.

To avoid this, the concept of the pseudo-header has been invented:

A message transmitted by a UOP protocol, using the same soekets for

source and target, is singled out by the PROTOCOL field of the

pseudo-header. TCP has a different protocol-id than UOP, therefore
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the message has to have a different checksum when calculated by a

different protocol. (UDP uses the same pseudo-header as TCP does.)

For the same reason both lP addresses (source and target) are part

of the pseudo-header.

Another problem in the usage of ports as indicated above can be the

establishment of a connection when two newly acquainted hosts want

to communicate: What ports do they use ? Misunderstandings are all

around

A way to solve the problem used by TCP and UDP is to

standardize some of the port numbers for some equally standard

applications: A mail server, no matter on what kind of host, always

listens on port number 25 (SMTP, decimal) for requests in respect

to electronic maili the SMTP definition takes care of what requests

can be honored, and how they should be formatted i a terminal

emulation server always listens to port number 23 (TELNET).

A list of preassigned port numbers (only numbers between 0 and 255

inclusive are assignedi 256 and above are free for use) can be

found in [Com 1988], p. 149, figure 12.11.

9.6 The 'Maximum Segment Size' option

The Maximum Segment Size (MSS-) option is the only TCP option

generally accepted (Apart from the End-Of-Option-List, one byte,

OXOOi No-Operation, one byte, Ox01).

lt simply consists of the Option number (Ox02), an option length

byte (always 4), and the actual value of the requested maximum

segment size. The value used is negotiated between communication

partners, details can be found in the TCP specifications.

Segment size negotiation can be useful when a host has only very

little resources available for connections: Buffer space can be at

a premium there. An absolute minimum MSS of 576 is recommendedi

less is possible, though efficiency is at risk then.
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10. A FUNCTIONAL DESIGN FOR TCP/IP

The descriptions of the various protocols, as presented in the

previous chapters, have served as a set of specifications r the

official specifications of TCP and associated protocols were not

available at the time.

According to these specifications a functional design has been

constructed, to be expanded later, up to the implementation level

eventually.

can be made from this design to a Waterloo Port­

design, simplified examples are presented in

are

and

through 24)

definitions

The design is presented here using the so-called ' access-graph'­

method, a simple though not formal way of describing a design. Time

constraints have been the main reason for not choosing a formal

methode

The figures representing the design (Fig's 14

explained in plain English here; interface

functionality overviews in algorithmic form can be found in

appendix B.

As to how the link

specific detailed

appendix C.

10.1 Top-level design

clearly shows the layered

protocol suite: Every main

with a few simple interface

The first level of design (figure 14)

structure of the TCP/IP communication

protocol a separate functional entity,

functions.

The interface offered to applications (AP) using TCP is similar to

the interface of a Unix pipe: A channel must be opened before it

can be used, then an indeterminate number of reads/writes may

occur, after which the connection should be closed.
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One important difference is that the close_tcp function4 ) only

closes the sending-side of the connectioni if the application is

designed that way, i t is perfectly legal to read from a closed

channel.

The other interface functions simply represent send- and receive­

primitives for the respective layers.

4) This terminology does not imply implementation details.
All interface entities are referred to as functions.
Regardless of how the modules actually communicate over the inter­
faces, all interfaces can be packaged in library functions. To the
programmer using the interface a set of functions is available.
Those functions are meant here.
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10.2 First level of expansion: Hardware module

The functional blocks in figure 14 can be expanded further, even

without the need to make implementation dependent assumptions. The

size of the pictures is not sufficient however to expand the whole

global design in one step.

The first expanded module is the 'HW' module from figure 14 (see

figure 15).

A new concept is introduced here in respect to the 'access-graph'

design method. The circles indicate ' active' parts (eg. software

performing some function), while the rectangles indicate 'passive'

entities controlled by actions from the circles.

In figure 15 the 'HWline' module is a rectangle. This means that

the functionality offered by HWline is fixed; the module cannot do

anything without directions from other modules, and when directed,

performs some predefined, unalterable function. In this case the

Ethernet functionality is fixed, and contained in HWline.

The same goes for 'Sem', a semaphore with two interface functions

corresponding to a P-operation and a V-operation as indicated.

The small circles at the top of the picture are just meant to

indicate the relative position of this expanded picture in the

picture representing the previous level.

A functional design can be expanded up to the level where

implementation details become important; expanding further violates

the purely functional aspect of the design.

This is the case with the 'HWstore' module: The functionality of

the two interface functions can be described in a more or less

algorithmic form (see appendix B), but expansion of the module

itself is only feasible if more details are taken into account

regarding the nature of the storage method that will be used.

So this module is the end of a line.

The 'HWTx' transmit module is also not expanded further, but for

different reasons: HWTx can be expressed in a (reentrant) function
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(This time a real function, not just a library-version of something

different), 50 there is no need to expand it further.

The last module, 'HWRx', has to be expanded further.

The reason for that is not simple, because the principal

functionality can be expressed in algorithmic form just as with

HWTx. The difference, however, is a protocol-discrimination issue:

The layer 3 protocol calling a real function 'receive_frame' cannot

know beforehand that the first frame arriving over the hardware

will actually be directed to it: An ARP frame may arrive if lP is
waiting for one. This separation of protocols is hard to achieve

when HWRx is not expanded into smaller modules.
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Analog lines of reasoning have determined whether or not other

modules needed expansion; I will not elaborate on these issues as

widely as with this example, an expansion will be presented if it

seems logicalor inevitable.

10.2.1 The HWRx receiver module

In figure 16 the 'HWRx' module from figure 15 has been expanded.

The functionality will be presented here.

'receive fr' is a process (not a procedure or function), repeating

a steady cycle:

- wait for an interrupt from the hardware; this indicates that a

frame has been received over the communication line. The HWline

module only has limited buffer space, so:

- Transfer the frame from HWline to main memory, using 'fetch fr'.

- Immediately transfer the frame to the 'HWstore' module using

'put_fr'; this function (real) stores the frame temporarily.

- Signal the semaphore corresponding to the value of the Ethernet

type-field; this takes care of notifying the consumer of the

frame. The 'Sem' module (note the dots) is one of the possibly

many semaphores, one for every layer 3 protocol expecting frames.

After this cycle the process starts again.

On the other side the 'take fr' module should provide the

functionality required by 'receive frame'. It can be a reentrant

procedure if and only if the function is called only once at the

same time per layer 3 protocol: If two processes call

'receive frame' from the lP protocol, both start waiting for the

same semaphore; the decision for whom the frame will be is a hard

one.

In this case the precondition holds true (see figures 17, 18, 19),

so 'take fr' can be (is) a reentrant procedure.

A last remark about the 'get_fr' functionality: In order not to

nullify the effect of having multiple semaphores, 'get_fr' should

only get messages from storage with matching type~fields/type­

identifications. (See appendix B.)
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10.3 First level of expansion: lP module

The lP module seems somewhat complex. It is not really.

One new concept is introduced, a mailbox ('MBX' module). A mailbox

is a sort of synchronizing mechanism: Reading an empty mailbox

blocks the reader, as does writing to a full one. The mailbox

stores messages passed between writer and reader, so that a writer

does not block usually, nor does a reader.

A mailbox can be used to synchronize reading and writing messages.

Messages are the unit of information contained in a mailbox.

The functionality of the 'lP' module can be described as follows:

* , IProute' determines the destination of a packet by looking at

the destination lP address, and uses 'lookup_address' to

determine the hardware address to be used in calling

, send frame'.

* 'IPlookup' implements a lookup-table, as weIl as the ARP protocol

in the cases where the table does not contain the information.

* The 'MBX' module is used to mediate requests for reporting an

error (through ICMP). The 'ICMP' module monitors this mailbox and

sends ICMP messages using lP where necessary.

* The 'IPRx' module is the local receiver of lP packets. ('IProute'

accepts all packets, rerouting packets for other hosts, and

passing on the packets for its own host to 'IPRx'.)

* The ' ICMP' module performs two functions: It accepts incoming

ICMP messages indicating errors reported on by other hosts or

routers; and it packages ICMP messages to report errors found by

its own host, and transmits them using lP.

Aside from the passive module 'MBX', the 'IPTx' module is the only

one not expanded in the pictures that follow. It can be implemented

as a reentrant procedure, compiling an lP header and transferring

the packet to IProute.

Details will surface in the discussion of the various expanded

modules.
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10.3.1 The IPlookup module

The 'IPlookup' module is relatively simpIe:

The 'ARPserver' waits for incoming ARP messages (Thus a process).

If an ARP request is encountered, the server replies using ARP if

our host is the target of the broadcast message. If an ARP reply

arrives, the data contained in the message is entered in the

'Address-Table', ensuring mutual exclusion through using the

semaphore ' Sem' .

- The 'lookup' module uses the 'Address-Table' to find the hardware

address (Ethernet ) of a target, 9 i ven an I P address. I f the

address cannot be found, it issues an ARP request with

'send_frame'. (The reply will be picked up by 'ARPserver', making

the address available when the next request for it is made.)

'ARPserver' must be a process (it waits for ... ), while 'lookup'

can be a real function (not even necessarily reentrant).
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10.3.2 lProute: Router functionality

The 'route receiver' module is a process waiting for an lP packet

to arrive. lt performs no other function than to forward the packet

to the 'router' module.

The 'router' module can be a reentrant procedure. lt should do the

following when a packet comes in:

Look if the packet is intended for this host: if so, put it in

themailbox.MBX.using 'put_ip' and quito

Otherwise, use 'lookup_address'. lf an address is returned, use

i t to send the packet in a frame: if not, discard the packet

(retries and ARP will take care of it).

- Quit.

lf an incoming packet triggers an error, use 'request_icmp' to

report the error to the originating host using lCMP.

'route_ip' can be called for all packets, packets from layer 4

protocols, as weIl as packets arriving over the (a) network.

The functionality of 'router' is somewhat more extensive than

indicated here: Only the functionality relevant for explaining the

pictures is mentioned: for more details, see appendix B.
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10.3.3 lP receiver

The 'IPreceive' module performs protocol separation on the network

level. lt is a process accepting all lP packets intended for this

host, trying to determine what level four protocol should be

triggered, reporting a non-existent protocol using 'request_icmp',

and finally placing the packet in one of the two mailboxes,

depending on the lP header's PROTOCOL field.

This interface is not general enough to serve other layer four

protocols, but a series of mailboxes, one for every protocol, is

easy to imagine; the underlying principles do not differ at all.

In order to achieve separation of (TCP-) ports on a higher level it

may be necessary to create multiple mailboxes for TCP (one for

ICMP). Every TCP-mailbox then corresponds to a TCP port.

The strict functional separation between lP and TCP would be

slightly violated, but not unacceptably so.

This method is indicated by the dots around the 'MB1' module in

figure 20.
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10.3.4 ICMP error reporting

The expanded ' ICMP' module effectively consists of two separate

submodules, instead of linked in some way.

One ('ICMPprocess') receives the incoming ICMP messages, processes

them or passes them up to TCP (should be generalized to include

UDP, NVP, ... ) if the message is intended for a specific protocol

or port-connection.

It should be implemented as a process (It has to wait for a

message).

The other, 'ICMPsend' , acts on behalf

Internet Protocol. It monitors a mailbox,

to hosts responsible for a detected error,
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10.4 Transmission Control Protocol

Expansion of the TCP module in the global design (figure 14) is

shown in figure 22.

The 'TCPserver' module organizes TCP functionality. For every

connection (all using a different TCP port) it creates a new

process, the 'TCPport' module, and initializes it. A pointer to

this process is then passed back to the process calling 'open_tcp'.

This pointer is then used to issue further requests (read, write,

close).

The 'TCPRx' and 'TCPTx' modules perform simple transmission and

reception functionsi procedures are sufficient to implement them.

The other two modules are expanded further in the next sections.
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10.4.1 The TCPserver module

The 'TCPserver' module is expanded in figure 23.

The ' server' modul e is a true server:

service by monitoring the mailbox 'MBX',

continues.

The kinds of requests fall into two categories:

- Requests to pass on ICMP messages to a specific TCPport process.

- Requests to open a new connection.

These are processed using calls to 'init-port' and 'icmp_mess'.

The 'wait' module is also a process. It waits for ICMP messages

coming in that the 'ICMP' module cannot handle by itself.

As soon as such a message comes in, it is passed to 'server'.
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10.4.2 The TCPport module

The 'TCPport server' module in figure 24 is once again a true

server process:

- Use 'get_SC' (Service Code) to get a request

- Process it using 'get_tcp' and 'put_tcp'

- Then quit if the request came from 'TCPserver', otherwise return

the result in 'MB2' using 'put_result'

The operations read, write, and close, belonging to the module

'tcp_IF' (InterFace) can be implemented as true functions, issuing

the request and waiting for the result.

The method of waiting for the result is important in this part of

the design: It means that the function 'read_tcp' actually blocks

until the response from 'TCPport server' is received.

And 'tcp_read' blocking means that 'get_tcp' is allowed to bloek,

because no other 'read_tcp', 'write_tcp' or 'close_tcp' calls can

occur in that time.

If that is not appreciated, the design should be adapted

correspondingly.
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10.5 Final remarks

The design presented here is explained in algorithmic form with

much more detail in appendix B.

If some assumptions made in this design are not valid for the

target environment, the design should be adapted to suit different

needs.

An example is the blocking 'read_tcp': See figure 24 and chapter

10.4.2.

Finally, in appendix C an example is given suggesting ways how to

implement certain constructs (a semaphore and a mailbox) in the

Waterloo Port development environment.
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with the design presented in this report a first step in the

direction of a TCP/IP implementation is taken.

The Waterloo Port angle is a little undervalued, as it should be

when a functional design is being discussed. Appendix C is intended

to hint at the environment where TCP/IP should eventually become

operational, and to offer a first impression concerning the

translation of this functional design into a detailed design

specifically for Waterloo Port.

When another environment is chosen for a target, this design could

be used as a basis. The assumptions should be examined, and if

invalid the design may need some modifications. Finally the

synchronization primitives, semaphore and mailbox, may not be

present. It is then necessary to find some mapping to the

mechanisms available in the new environment, as is done with

Waterloo Port (Appendix Cl.

It might be a good idea, depending on the development time

available to implement this design, to translate this design first

to a similar design using a forma I design methode And if the time

constraints are strict I would strongly advise to do so.

The access-graph method can represent a good design in an easy to

understand way, but it cannot give any indication whether a design

is good or bad; this is similar to structured programming in

assembly language: It is possible but requires a lot of discipline.
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"network" has no rigid definition to help deterrnine what

a network, and what should be cal led an "internetwork"

more interconnected networks). The boundaries are not

The confusion concerning network interconnection options is

certainly not alleviated by a consistent vocabulary. To illustrate

this, and to provide a framework for this report, a separate

chapter may be useful.

1.1 Definitions

The word

is still

(two or

trivial.

To start bottom up:

A basic network segment is a collection of hosts directly

connected to one another by physical wiring only.

This means that a direct link is available for all possible

cornrnunication between hosts within the basic network segment.

A single configuration of only one basic network segment is

certainly a network, and not an internetwork.

The difficulties arise when a single basic network segment is no

longer sufficient in terrns of geographical span, nurnber of hosts or

network capacity: Interconnecting two or more basic network

segments can be done in various waYSi a natura1 way to group the

interconnections is the highest level of the OSI Reference Model

they cover.

1.1.1 Repeaters

Repeaters are the simplest way to interconnect two basic network

segments. They operate at the OSI physical level, and can be seen

as two-way signal boosters. They do not need any local

intelligence, and are pure hardware devices.

Every frame presented on one side of the repeater is transmitted

onto the other side, no partitioning other than electrical is

created between the two connected segments. It simply_ extends the
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range over which the signals can be transmitted without too much

deterioration of signal quality.

A repeater may connect more than two basic network segments.

Other common words found for repeaters are "hub" or "active hub";

the expression "hub" does not always indicate a repeater, it can

also be an even simpIer impedance-matching device. Two or more

basic network segments connected with these impedance-matching

"passive hubs" are still considered one basic network segment.

Two or more basic network segments connected with repeaters only

are considered one "network segment".

A single configuration of basic network segments interconnected

with repeaters only is definitely not an internetwork.

1.1.2 Bridges

Bridges operate at the data link level (Media Access Control) of

the OS1 Reference Model. They not only boost the signal power, but

they also provide partitioning of the network.

A bridge should forward all packets destined for

segments connected to another side of the bridge,

indirectly. All other packets should be discarded.

This required functionality involves some sort of routing. One of

the big differences is that a bridge should perform its forwarding

as transparent as possible, 50 that the host protocols do not need

to know bridges are used, not even the host data link protocols.

Routers are discussed in the next section.

The transparency requirement leads to other demands:

- A bridge should monitor all traffic on all its lines to determine

what frames need to be forwarded on another link.

- A bridge should, if possible, operate at the same speed as the

network segments it connects.

- A bridge should not introduce extra duplicates of frames being

delivered (in case of two bridges parallel 1).

The first two requirements indicate the performance a bridge should

ideally offer. The latter requirement indicates clearly the need

for some routing facilities and a bridge-management protocol.
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More on these subjects can be found in [Bac 1988], discussing the

so called 'spanning tree' algorithm, [Dix 1988] and [Ham 1988] on

a non-transparent source routing mechanism, and [Zha 1988]

comparing the two approaches.

The functionality of a bridge is easily extended to include some

features belonging to the network layer; this has caused a lot of

discussions recently. The dividing line between the layers two and

three of the reference model is not very clear.

Sometimes a bridge may be called a level two gateway or a data

link gateway, bridge is a commonly accepted expression, however.

In this report a set of network segments connected with bridges

will be called a "bridged network segment." It is still considered

one network.

1.1.3 Routers

Routers connect bridged network segments to other bridged network

segments; those segments may have bridges internally, but even

basic network segments fall into the bridged network segment

category.

Routers are addressed directly, in contrast to bridges, and execute

the network layer protocol. Their function is known to (some) hosts

in the networks they connect to, so that hosts can send their

packets for other networks through these routers.

Routers have to process only the packets that need forwarding

thanks to the direct addressability of a router , and can thus

handle a specific load with less computing power.

They need more storage space than bridges, because they have to

accomodate for larger differences in transmission speeds between

the connected networks (eg. 10 Mbit/s Ethernet vs. 56 kbit/s leased

lines).

The terminology used for routers is the most confusing: A gateway

(TCP/IP terminology), an intermediate system (OSI terminology), a

network relay, and an interface message processor (IMP, dated

ARPAnet terminology) are expressions for the router. Here gateway

is the most confusing because the word gateway is generally used
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for connections on the higher protocol levels, levels four to

seven.

The expression gateway is also used to indicate a simple store-and­

forward system, like in "mail-gateway."

[Bos 1988] discusses the problems of routers (and bridges) in large

LANs, with general examples from experience with TCP/IP networks.

It may be very enlightening.

[Sei 1988] compares the functionality and requirements for bridges

and routers, with examples from TCP/IP, DECnet (DNA), and XNS, the

Xerox Network System.

[Per 1988] clearly draws the picture and suggests various

approaches, while [Pad 1988] offers a refreshing look at the

subject.

Various bridged network segments interconnected by routers are

called an internetwork, or internet. However, when someone talks

about an Internet (capitalized) while discussing TCP/IP or ARPAnet,

she/he will probably mean the collection of networks connected to

the ARPAnet using TCP/IP.

1.1. 4 Gateways

Gateways are hosts that perform a special task in connecting two or

more networks (if the expression is not used to indicate a router;

see Appendix A, 1.1.3). This means that gateways operate on levels

four through seven of the OSI reference model.

They can connect to two completely different networks, offering

protocol conversion when necessary (eg. IBM's SNA to OSI

protocols). This type of connection is not very clearly described,

and therefore it can mean various things.

A common expression is, for instance, a mail-gateway, usually

indicating a host capable of sending and receiving messages on

behalf of its users, and sometimes also forwarding on behalf of

other mail-servers.
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1.2 Terminology used in this report

In this report the following expressions are used without further

explanation:

Repeater

Bridge

Router

A gateway is a host providing internetwork connections on level

four or higher (OSI reference model).

A TCP/IP-gateway is a router, as is an IP-router.

Deviations from these definitions will be clearly indicated.

Be aware, however, that in TCP/IP terminology a router is usually

called a gateway, most definitely in the literature too.
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ALGORITHMIC DESCRIPTION OF THE FUNCTIONAL DESIGN

2.1 Index to functions, procedures and processes

In this subsection an overview is presented of the functions,
procedures and processes of which an algorithmic description is
included in this section.

open_tcp
close_tcp
read tcp
write_tcp
send_ip
receive_ip
await_icmp
send frame
receTve frame
put_fr
get_fr
await int
fetch fr
transmit
receive_icmp
request icmp
receive-request
accept Tp
route Tp
lookup_address
inityort
icmp_mess
get_tcp
put tcp
check fr
signaI_fr
access
release
put_ip
push to tcp
put_Temp
transfer_icmp
get
icmp_req
put_result
get_result
receive fr
arpserver
route receive
ipreceive
icmpprocess
icmpsend
wait
server
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2.2 Application - TCP interface

function open_tcp(
local socket socket, { lP address plus port no. }
remote socket socket, { Destination }
active- boolean, { Active or listening }
window integer, { Window size, send , receive, in

bytes }
type_of_service byte { Bit values }

): tcp_handle; { For future reference }

Begin {open_tcp}

{ Ask TCPserver to open connection }
put_in_mailbox(OPEN_TCP, local_socket, remote_socket, active,

window, type_of_service);
{ wait for it to do it }

delay(3000) ; { milliseconds }
{ Get process ID of TCPport process, to communicate with }

tmp_handle.pid := ask_global_name_server( TCP_PORT, local_socket,
remote_socket) ;
{ Check if I am really connected, by sending empty message }

result := write_tcp(tmp_handle, NULLPOINTER, 0, FALSE, 0);
{ If all OK return process ID in handle, else NULL }

if result = OK then open_tcp := tmp_handle
else open_tcp := NULLHANDLE;

End; {open_tcp}

function close_tcp(
circuit_handle : tcp_handle

): integer;
{ Returned by first open_tcp() }
{ Error code }

Begin {close_tcp}

{ Submit request for closing connection (svc : service) }
ask_svc(CLOSE_TCP, circuit_handle, NULLPOINTER, 0); {One sided

c los e
only }

{ wait for the result and return the code }
close_tcp := get_result(circuit_handle, NULLPOINTER, 0);

End; {close_tcp}
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): integer;

function read tcp(
circuit handle
bufferJ)"ointer
bUffer_length

tcp_handle,
pointer,
integer
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( Returned by first open_tcp() }
{ Storage space }
{ Length of available storage space

}
{ Error code }

Begin {read_tcp}

{ Submit request for a read }
ask_svc(TCP_READ, circuit_handle, NULLPOINTER, bUffer_length);

{ wait for the result and copy the data }
read_tcp := get_result(circuit_handle, buffer-pointer,

bUffer_length);

End; {read_tcp}

function write_tcp(
circuit_handle tcp_handle,
buffer-pointer pointer,
bUffer_length : integer,
push_flag : boolean,
urgent data : integer

- ): integer;

( Returned by first open_tcp() }
{ Data buffer }
{ No. of bytes }
{ Data needs be PUSHed }
{ First <n> bytes are urgent }
{ Error code }

Begin {write_tcp}

{ Submit write request }
ask_svc(TCP_WRITE, circuit_handle, buffer-pointer,

buffer_length);
{ Indicate urgent data }

ask_svc(URGENT, circuit_handle, NULLPOINTER, urgent_data);
{ Indicate PSH or not }

if push_flag then ask_svc(PUSH, circuit_handle, NULLPOINTER, 0)
else ask_svc(NOPUSH, circuit_handle, NULLPOINTER, 0);

{ Then wait for the result and return it }
result := get result(circuit handle, NULLPOINTER, no_of_bytes);

{ and check-the transmitted number of bytes}
if no_of_bytes = bUffer_length then write_tcp := result
else write_tcp := result I I NOT_ALL;

End; {write tcP}
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2.3 TCP - lP interface

procedure send_ip(
source

destination
protocol_id

type_of_service

time to live
fraqmentation allowed

datayointer
length

) ;

ip_address,
byte,

byte,

integer,
boolean,

pointer,
integer

{(one of) our own
address(es) }

{ Tarqet lP address }
{ lD-byte trom transmittinq

protocol }
{ Bit-field indicatinq the

services requested }
{ Max. no. ot router hops }
{ Router traqmentation

allowed }
{ Where to tind it ••• }
{ ••• and how much it is }

Begin {send_ip}

assemble_ipyacket() ;
route_ip(packetyointer, length, destination);

procedure receive ip(
circuit handle { To determine the correct

mailbox for this
connection }

var datayointer pointer,
var length integer,
var rxbroadcast boolean,

protocol_id byte,
) ;

Begin {receive ip}

{Received packet is
hardware-broadcast }

{ Caller's protocol-lD }

{ Read mailbox for this connection (address, protocol, port) }
get_message_from_my_mailbox(circuit_handle, protocol_id,

datayointer, length, rxbroadcast);

End; {receive_ip}
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procedure await_icmp(
var icmp_type byte,
var icmp_code byte,
var icmp-pointer pointer

var iph_included
var iph-pointer

boolean,
pointer,

) ;
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{ lCMP message type }
{ Elaboration on type }
{ pointer to first 12 bytes of lCMP

message }
{ Validates ipb-pointer variable }
{points to offendinq lP beader

plus 8 bytes of lP data }

Begin {await_icmp}

{ Read tbe lCMP message ••• }
read_icmp_mailbox(icmp-pointer, tmp_length);

{ ••• and disseet it }
extract_variables(icmp-pointer, tmp_length, icmp_type, icmp_code,

iph_included, iph-pointer);

End; {await_icmp}

2.4 lP - HW interface

procedure send_frame(
destination : hw_address,
source hw address,
type word,
broadcast boolean,
data-pointer pointer,
length integer

) ;

Begin {send frame}

{ Etbernet address }
{ Os }
{ Layer 3 protocol lD }
{ HW broadcast message ? }

assemble_frame() ;
{ Mutual exclusion }

access hw();
transmIt(frame-pointer, length) ;
release hw() ;

End; {send_frame}
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procedure receive_frame(
var source hw address,
var destination hw:address,

var type

var data-pointer :
var length
var broadcast

word,

pointer,
integer,
boolean

) ;

{ Them }
{ Our interface HW address, or

broadcast }
{Their sending level 3

protocol, should match ours }

{ Incoming broadcast message ?
}

Begin {receive_frame}

check_fr(type);
{ A frame for us has arrived; take it }

get_fr(type, data-pointer, length);
{ Extract data items }

extract_variables();

End; {receive_frame}

2.5 HWRx - HWstore interface

{ Layer 3 protocol }
{ Error code }

pointer,
integer,
word

): integer;

function put_fr(
frame-pointer :
length
type

{ First-come-First-Served storage, but per type ! }
result := store-per_type_fcfs(frame-pointer, length, type);

{ Report success or failure }
if result = OK then put fr := OK
else put_fr .- OUT_OF_MEMORY;

End; {put_fr}
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): integer;

function get_fr(
var frame-pointer
var length
var type

pointer,
integer,
word

YT88

{ Retrieve frame for protocol
ID <type> }

{ Error code }

Begin {qet_fr}

{ Get a frame with type-field equal to the qiven 'type' }
result := fetch_next_frame(type, frame-pointer, length);

{ If result is OK, return frame; otherwise return INVALID }
if result = OK then get fr := OK
else get_fr := INVALID;-

2.6 HWRx - HWline interface

procedure await_int(
semaphore_id : semaphore

) ;
{ HW module semaphore 'Sem' }

Begin {await_int}

{ Wait for interrupt driven semaphore }
P_operation(semaphore_id);

{ Terminate interrupt processinq directly }
end_of_interrupt() ;

End; {await_int}

function fetch fr(
var frame-poInter : pointer, {provide storaqe space}
var length : integer,

): status; { Return status}

Begin {fetch fr}

{ Interrupt could have meant error: so check status first }
if Rx_status = OK then retrieve_frame_from_hwline(frame-pointer,

length) ;
else process status();

fetch_fr := Rx_status;

End; {fetch_fr}
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2.7 HWTx - HWline interface

function transmit(
frame-pointer : pointer,
length : integer

): status;

{ Data to be transmitted }

{ Did it work ? }

Begin {transmit}

{ Prepare hardware for transmission }
setup_hardware();

{ Offer frame to hardware }
setup frame();

{ Make hardware transmit the frame }
start_transmission();

{ Return the hardware status }
transmit := Tx_status;

End; {transmit}

2.8 ICMP - IPRx interface

{ lCMP message ••• }
{ with length }

{ Source of lCMP message }
{ And destination (We) }

can be useful in processing }

integer,
: integer,

ip_address,
: ip_address,

byte {TOS

procedure receive_icmp(
var message-pointer
var length
var source
var destination
var type_of_service

) ;

Begin {receive_icmp}

{ Get lCMP message, maximally one lP packet: no fraqments }
read_icmp_mailbox(message-pointer, length);

{ Extract addresses and type-of-service, check protocol lD }
if protocol_field (message-pointer, length) <> ICMP_PROT then
begin

message-pointer := NULLPOINTER; { lndicates error }
length := 0;

end
else extract (source, destination, type_of_service,

message-pointer, length);

End; {receive_icmp}
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boolean,
pointer,

iph included
iphyointer

procedure request_icmp(
icmp_type byte, { lCMP message type }
icmp_code byte, { Elaboration on type }
connection tcp_conn_structure, {Contains connection

specific data }
{ Validates ipb-pointer variabIe }
{ Points to offending lP beader plus 8

bytes of lP data }
) ;

Begin {request_icmp}

{ Pass request on to lCMP }
place_available_data_in_mailbox(icmp_type, icmp_code, connection,

iph_included, iph-pointer);

End; {request_icmp}

boolean,
pointer,

var iph_included
var iph-pointer

procedure receive request(
var icmp_type - byte, { lCMP message type }
var icmp_code byte, { Elaboration on type }
var connection tcp_conn_structure, {Contains connection

specific data }
{ Validates ipb-pointer variabIe }
{points to offending lP header

plus 8 bytes of lP data }
) ;

Begin {receive_request}

get_available_data_from_mailbox(icmp_type, icmp_code, connection,
iph_included, iph-pointer);

End; {receive_request}

2.9 IPRx - IProute interface

procedure accept ip(
var packet-pointer
var length

pointer,
integer

{ lP packet intended for us }
{ ... }

) ;

Begin {accept_ip}

read_mailbox_from_iprouter(packet-pointer, length) ;

End; {accept_ip}
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2.10 lPTx - lProute interface

{ To make routinq possible }

pointer,
integer,
ip address

): integer;

function route_ip(
packetyointer :
length
target_address

Begin {route ip}

{ Decide if packet is for us }
if target address = OUR lP ADDRESS then
begin - - -

put_ip(packetyointer, length);
route_ip := OK;

end
else
begin

HW_addr := lookup_address(target_address);
if HW addr <> NULL HW ADDR then
begin- -

if HW addr = DELAYED then route_ip := OK:
{ Let TCP ( •.• ) decide that messaqe has not arrived properly }

else
begin

if length <= MAXlMUM_PACKET_LENGTH then
send frame(HW addr, OUR HW ADDR, lP_TYPE, FALSE,

packetyointer, length) -
else
begin

{ Take care of fraqmentation }
loosen_header_from_data();
total_length := 0;
while total_length < length do
begin

assemble_fragment();
set_fragment_flag();
send frame(HW addr, OUR HW ADDR, lP TYPE, FALSE,

fragmentyoInter, fragment_length);
{ Update total lenqth of transmitted fraqments }

total_Ïength := total_length + fragment_length;
end; {while}

end; {else}
route_ip := OK;

end; {else}
end {if}
{ No possible way to transmit the packet }
else route_ip := lNVALlD_TARGET;

end; {else}

End; {route_ip}
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2.11 IProute - IPlookup interface

function lookup_address(
ip_target : ip_addr; { Address to look up }

): hw_addr; { Result of searoh }

Begin {lookup address}

{ Hutual exolusion }
access();

{ Look for address in Address Table }
tmp_addr := search_table();

{ Release table for use by otbers }
release();

{ If table oontains address, searob is over, ... }
if tmp_addr <> NULLHWADDR then lookup_address := result;
else

{ .•. otberwise an ARP searob is required: }
begin

assemble_arp_request();
send frame(HW BROADCAST ADDRESS, OUR_HW_ADDRESS, ARP_TYPE,
{ Braadcast is true} -

TRUE, data-pointer, length);
{ Special return value to IProute, indioating tbe ARP search }
lookup_address := DELAYED;

end;

End; {lookup_address}

2.12 TCPserver - TCpport interface

procedure init-port(
local-port tcp-port ,
remote socket socket,
type_of_service byte,

active
window

: boolean,
integer

) ;

{ To identify tbe correct process }
{ Destination }
{ Parameters to open tbe connection

witb }

Begin {init-port}

{ Find tbe requests-mailbox of tbe TCpport process managing
, local-port' }

mailbox_id := mailbox_dehash(local-port);
{ Tben dump tbe information in tbat mailbox }

write_to_mailbox_tcpport(mailbox_id, INIT, remote_socket, active,
window, type_of_service);

End; {init-port}
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procedure icmp_mess(
local-port tcp-port ,

icmp_type
icmp code
iph_Included
iph-pointer

byte,
byte,
boolean,
pointer

) ;

YT88

{ To identify the process' mailbox
}

{ lCMP information }

{ lP header present or not ? }
{ Length is known }

Begin {icmp_mess}

{ Find the requests-mailbox of the TCpport process managing
'local-port' }

mailbox_id := mailbox_dehash(local-port) ;
{ Copy data in mailbox }

write_to_mailbox_tcpport(mailbox_id, ICMP, icmp_type, icmp_code,
iph_included, iph-pointer);

End; {icmp_mess}
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{ On return i t contains a pointer
to a complete TCP segment }

integer
) ;

var tcp_length

2.13 TCPport - TCPRx interface

procedure get_tcp(
var tcp-pointer : pointer,

Begin {get_tcp}

{ First get an lP packet }
receive ip(our circuit handle, tcp-pointer, tcp_length,

broadcast, TCP_PROT):
{ As long as a series of fragments is not completely received,

assemble them }
if fragmented(tcp-pointer, tcp_length) then
begin

start timer () ;
{ Bere the actions on timer-overrun are specified: }
on timer overrun do
begin

discard_all_fragments();
notify_icmp () ;

end;
{ And here the timer overrun instructions end }
fragment_complete := FALSE;
while not fragment complete do
begin -
{ Assemble all fragments }

temporarily_store_fragment();
{ Get next packet }

receive ip(our circuit handle, tcp-pointer, tcp_length,
broadcast, TCP_PROT):

{ Check for completeness }
fragment_complete := all_fragments_assembled();

end; {while}
compose_fragments_to segment();

end;
fill_out_variables();
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2.14 TCPport - TCPTx interface

procedure put_tcp(
connection tcp_conn_structure,

segrnent-pointer : pointer,
length integer

) ;

{Contains data fixed
for the duration of
the connection },

Begin {put_tcP}

{ simply extract the correct data and call send_ip: }
send_ip(OUR_IP_ADDR, connection.remote_ip, TCP_PROT,

connection.type_of_service, connection.time_to_live,
connection.fragrnentation_allowed, segrnent-pointer, length);

2.15 take fr - receive fr interface

procedure check_fr(
semaphore_id : semaphore

) ;

Begin {check_fr}

{ The 'Sem' in HWRx }

{ The KWRx semaphores are countinq semaphores, initialized to
the number of frame slots available in BWstore }

P_operation(semaphore_id);

procedure signal_fr(
semaphore_id : semaphore

) ;

Begin {siqnal_fr}

V_operation(semaphore_id);

End; {siqnal fr}
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2.16 ARPserver - lookup interface

This includes access to the IPlookup semaphore ' Sem' only; both
modules have access to the 'Address TabIe', subject to the use of
the semaphore, but both use their own routines for such access.

procedure access(
semaphore_id : semaphore

) ;

Begin {access}

{ The lPlookup semaphore is a binary semaphore, controlling the
mutual exclusion of 'Address Table' }

P_operation(semaphore_id) ;

End; {access}

procedure release(
semaphore_id :semaphore

) ;

Begin {release}

V_operation(semaphore_id) ;

End; {release}

2.17 MBX - router interface

procedure put_ip(
packet-pointer pointer,

length integer
) ;

{ lP packet intended for this host
}

{ ... }

End; {put ip}
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2.18 IPreceive - MB interfaces
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procedure
port
pointer
length

push_to_tcp(
tcp-port ,
pointer,
integer

) ;

{ To identify the aailbox }

Begin {push_to_teP}

{ Find the right aailbox first }
mailbox_id := iptcp_mailbox_dehash(port);

{ Then dump the data in aailbox }
write_mailbox(mailbox_id, pointer, length) ;

procedure put_icmp(
data-pointer pointer,
length integer

) ;

Begin {put_iemp}

{ Transfer the data to ICMP through 'KB2' of IPRx }
write_mailbox_MB2(data-pointer, length) ;

End; {put_iemp}

2.19 ICMPprocess - MBX interface

procedure transfer_icmp(
message-pointer integer,
length integer,
source : ip_address,

) ;

{ ICMP message ••• }
{ vith length }

{ Souree of ICMP message }

Begin {transfer_iemp}

{ Put ICMP message in mailbox for TCP to proeess }
write_mailbox_MBX_in_ICMP(message-pointer, length, source);

End; {transfer iemp}
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2.20 server - wait interface

procedure get(
var item-pointer : pointer

) ;

Begin {get}

{ Supposed to point to an i tem in
the mailbox, not exactly messages
}

{ Read one item from mailbox and have 'item-pointer' point at
it. Caller should know what it should be; first in a series
is a byte always. }

{ Accepted are: TCP OPEN, lCMP }
item-pointer := Aread=mailbox_MBX_in_Tcpserver();

End; {get}

procedure icmp req(
icmp_type - byte,
icmp_code byte,
icmp-pointer pointer

iph included
iphJ>0inter

Begin {icmp_req}

boolean,
pointer,

) ;

{ lCMP message type }
{ Elaboration on type }
{ Pointer to first 12 bytes of lCMP

message }
{ Validates iph-pointer variable }
{ Points to offending lP header plus 8

bytes of lP data }

{ Copy the data into the mailbox as items, not as one
message; code lCMP indicates an lCMP message }

write_to_MBX_as_items(ICMP, icmp_type, icmp_code, icmp-pointer,
iph_included, iph-pointer);

End; {icmp_req}
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2.21 tcp_IF - TCPport interface

procedure ask_svc( { Ask service}
code byte, { Code of requested operation }
handle tcp_handle, { To identify the right mailbox }
data-pointer pointer,
length integer

) ;

Begin {ask svc}

{ Find the mailbox belonging to the 'handle' TCpport process }
mailbox_id := mailbox_dehash(handle.local-port) ;

{ Transfer a message into MBl of Tcpport (the request-mailbox)
}

write to mailbox MB1 of TCPport(mailbox id, code, data-pointer,
length); - - - -

procedure get_SC(
var code
var data-pointer
var length

) ;

byte,
pointer,
integer

{ Get Service Code }
{ Code of requested operation }
{ Data, if any }

Begin {get_SC}

{ Find my mailbox }
mailbox_id := mailbox_dehash(local-port) ;

{ Transfer a message from MBl (the request-mailbox) }
read_from_mailbox_MB1(mailbox_id, code, data-pointer, length) ;

procedure put_result(
result integer,
data-pointer : pointer,
length : integer

) ;

{ Result code of operation }
{ Data, if any }

Begin {put_result}

{ Find my mailbox }
mailbox_id := mailbox_dehash(local-port);

{ Transfer the results into it }
write_to_mailbox_MB2(mailbox_id, result, data-pointer, length) ;

End; {put_result}
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tcp_handle,
pointer,
integer

): integer;

function get_result(
handle :

var data-pointer
var length

Begin {get_result}

{ Pind the mailbox of the right TCpport process }
mailbox_id := mailbox_dehash(handle.local-port);

{ Then read the results from that mailbox }
read_from_mailbox_MB2_of_TCPport(mailbox_id, result,

data-pointer, length);
get_result := result;

End; {get result}

2.22 receive_fr functionality

process receive_fr();

repeat
{ wait for an interrupt to occur }
await_int(HWSem) ;
{ Then take the frame }
if fetch_fr(frame-pointer, length) = OK then
begin
{ Find out protocol type }

type := type_field(frame-pointer, length) ;
{ store frame }

put_fr (frame-pointer, length, type);
{ And signal the higher protocols (Semaphores arranged in an

array, per protocol. Maybe hashing is cheaper, but not
secure. )
signal_fr(Sem[type]) .

end; { Discard if an error occurred }
{ And then again: }

until forever;

End; {receive_fr}
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2.23 ARPserver functionality

process arpserver();

repeat
{ Receive an ARP frame }
type := ARP_TYPE;
receive_frame(source, destination, type, data-pointer, length,

broadcast);
{ Check it }
if (type = ARP TYPE) then
begin -
{ A request is always a broadcast ••• }

request := request_field(data-pointer, length);
if (broadcast and (request = ARP_REQUEST» or

{ and a reply is never a broadcast ••• }
(not broadcast and (request = ARP REPLY» then

begin -
{ Reply or request ? }

case request of
ARP REQUEST:

begin
{ Check if they mean us }

if target_ip_address(data-pointer, length) =
OUR lP ADDRESS then

begin- -
assemble_response() ;
send_frame( {destination is} source,

{souree is} OUR HW ADDRESS,
FALSE, ARP_TYPE~ data-pointer, length);

end;
end;

ARP REPLY:
begin

{ Mutual exclusion in accessinq Address Table }
access();

{ Update table with new information }
update_table () ;

{ And release the table for other users }
release();

end;
otherwise { ERROR: do nothinq }

end; {case}
end;

end;
{ Then keep at it ••• }

until forever;

End; {arpserver}
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2.24 route receive functionality

process route_receive();

repeat
{ Get lP frame }
type := lP_TYPE;
receive_frame(source, destination, type, data-pointer, length);
{ Check if really lP TYPE }
if type = lP_TYPE then
begin
{ Convert frame into packet }

extract_ip-packet();
{ Examine lP target address }

target_ip_address := get_target_address(ip-pointer,
ip_length) ;

{ Then pass it on to the router }
route_ip(ip-pointer, ip_length, target_ip_address);

{ And go on ••• }
until forever;

End; {route receive}
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2.25 IPreceive functionality

process ipreceive();

repeat
{ First qet a packet }
accept_ip(packet-pointer, length) ;
{ Then check it: ICMP request on error }
if check_ip(packet-pointer, length) = ERROR then
begin

assemble_icmp_message() ;
tmp_connection.remote_ip := source_field(packet-pointer,

length) ;
request_icmp(type, code, tmp_connection, iph_included,

iph-pointer) ;
end
else
begin
{ Extract protocol field }

protocol := protocol_field(packet-pointer, length) ;
if protocol = ICMP then put_icmp(packet-pointer, length)
elseif protocol = TCP then
begin

{ Extract local port number: TCP functionality }
port := tcp-port_field(packet-pointer, length) ;

{ Then use the correspondinq mailbox to drop the packet }
push_to_tcp (port, packet-pointer, length);

end;
{ Other layer 4 protocols qo here }
end;
{ Then start aqain: }

until forever;

End; {ipreceive}
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2.26 ICMPprocess functionality

process icmpprocess();

repeat
{ Get lCMP messaqe }
receive_icmp(data-pointer, length, souree, destination, tos);
{ Process the messaqe if possible }
process_icmp_message();
{ Transfer upward if necessary }
if tcp-processing_needed then transfer_icmp(data-pointer,

length, souree) ;

{ AD incominq lCMP messaqe is never allowed to triqqer another
lCMP messaqe ! }

{ Repeat this cycle forever }
until foreveri

End; {icmpprocess}

2.27 ICMPsend functionality

process icmpsend();

repeat
{ Accept a request }
receive_request(icmp_type, icmp_code, connection, iph_included,

iph-pointer);
{ ADd execute it }
assemble_icmp_message();
if iph_included then append_ip_header(iph-pointer);
{ Send off in an lP packet }
send_ip(OUR_IP_ADDR, connection.remote_ip, ICMP_PROT,

connection.type_of_service, connection.time_to_live, FALSE,
frame-pointer, length );

{ ADd look for new requests }
until forever;

Endi {icmpsend}
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2.28 wait functionality

process wait();

repeat
{ Wait for an ICKP messaqe cominq in }
await_icmp(icmp_type, icmp_code, icmp_message-pointer,

iph_included, iph-pointer);
{ And pass it on to the TCP server throuqh a mailbox }
icmp_req(icmp_type, icmp_code, icmp_message-pointer,

iph_included, iph-pointer);
{ Forever and ever aaa }

until forever;

End; {wait}

108

YT88



YT88

2.29 server functionality

process server();

repeat
{ Get a request }
get (itemytr) ;
{ Proeess it }
case Aitemytr of

TCP OPEN:
begin

{ Try to open a TCP-eonneetion }
in use := FALSE;

{ Is loeil soeket in use ? }
( A : Fill variable with value of item pointed at by the result

of qet() }
get(local_socketA);
if not local_socket_in_use(local_socket) then

{If not ereate the proeess to handle aeonneetion, and
initialize it }

begin
create_tcpyort(local_socket);
get(remote_socketA);
get(activeA);
get(windowA);
get(type_of_serviceA);
inityort (local_socket. port, remote_socket, active,

window, type_of_service);
end; {if}

end;
ICMP:

begin
{ Get the items }

get(icmp typeA);
get(icmp:=codeA);
get(iph includedA);
get(iph~ointerA);

{ Get loeal port number from lP paeket }
lport := extract_localyort_from_tcp_bytes(iphyointer);

{ And transfer: }
icmp mess(lport, icmp type, icmp_code, iph_included,

iphyointer) ; -
end;

otherwise: { Error: iqnore ! }
end; {case}

until forever;

End; {server}

These are the algorithmic descriptions. They have not been tested
in any way, their sole purpose (for now) is to augment the pictures
given in chapter 10.
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3.1 Introduction

WATERLOO PORT
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evoluated

real-time

Waterloo Port is a network-oriented operating system,

from the Thoth system (See (Che 1982]). It contains a

multitasking kernel for use on IBM PC and AT systems.

The computers can be connected into a Local Area Network using

various different types of network hardware. Using the interprocess

communication facilities offered, also capable of interprocess

communication over the network, the system has successfully

implemented a distributed computing environment.

The process structures of the Waterloo Port system will be

introduced here, to give a basis for understanding the

implementation examples presented in a later section of this

appendix. The implementation examples themselves have been chosen

in such a way as to provide a link between the functional design

presented in chapter 10 and an eventual implementation in Waterloo

Port.

The main point of discussion will be how to map the synchronization

and communication structures used in the design to the structures

available in Waterloo Port.

3.2 Waterloo Port process structures

The design of the Waterloo Port system is based on the concept of

message passing as an interprocess communication methode

The specific variant uses blocked message passing. This implies

that once an initiative to send a message to another process is

taken, the sending process blocks until the rece1v1ng process

issues a reply message. This is illustrated in figure 25.

When a process expects a message from someone else and initiates a

receive from that process, the receiver will become blocked until

the expected message is actually sent. This is illustrated in

figure 26. Again, the sender of that message will get blocked until

the receiver, who becomes ready at receiving the message, completes

the task requested from him, and returns a reply.
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This blocking principle when used with message passing has two main

advantages:

- The transfer of the message does not require extra data space to

store messages in transit: The sender has to prepare a message in

its own memory in order to send it anyhow, as has the receiver to

provide some data space in its memory to store the incoming

message. The message passing primitives are operations built into

the kernel of the Waterloo Port (or Port, for short) system, so

the kernel can pass the message using the respective data spaces

of the processes involved, without the need of intermediate

storage.

- A second big advantage of the sender of the message being blocked

while the receiver handles the incoming message is that its data

space is frozen between the send and the corresponding reply. The

kernel can (and does) provide a way for the receiver to transfer

data from the sender's data space into the receiver's data space,

and vice versa. This means that the messages themselves can be

relatively small, even when large chunks of data need to be

transferred between the processes.

Processes that receive all sorts of messages will benefit:

As long as simple messages are received, no space is being held in

reserve for an occasional large message coming in. Instead, a large

message is divided in a control part with all transfer information,

and the actual information resides some place else. Only the

control part is sent in the message, the data is then transferred

by the receiver, if required. Only if and when such a message

arrives, the receiver claims the data space needed (the actual

amount needed is passed along in the message) and transfers the

data. Allocate-on-demand is much more economical this way.

The principle of data transfer in bulk is graphically illustrated

in figure 27.
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One last feature of the message passing system is of importance.

The message passing primitives of Port return a result-code on

completion . This result-code distinguishes two cases: Success or

failure.

Failure can occur in two cases:

- The process the message is targetted at does not exist on the

moment of the request. The primitives do not block in that case,

because it would result in some sort of deadlock, creating

unrecoverable resources.

- The targetted process did exist at the moment of the request, but

was destroyed before the corresponding send/receive was executed.

This implies that the requesting process has been blocked on

completion of the message passing primitive, but the primitive

is aborted because the other partner died prematurely.

These failure possibilities apply for all but one of the primitives

within Port: The regular primitives 'send', 'receive', and 'reply'

can all be aborted. (Reply can fail because some external event may

have wiped out the blocked sender to which a reply is addressed.)

One primitive exists that cannot fail: 'receive_any'

The receive_any returns a process identification instead of a

result-code, the process-id of the sending process.

This primitive is provided for server-like purposes: A server

executes one 'receive_any' in its main working cycle, notes the

process-id of the requesting process to be able to return a reply

later, executes the request on behalf of the sender, replies and

starts again. Or:

repeat

pid = receive_any( <args> )i

execute() i

reply( pid, <args> ) i

until FOREVERi

This kind of offering service to all could not be accomplished

easily without some 'receive_any' primitive.
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3.3 Port process types

Port distinguishes several different process types. These

subdivisions are made on the interrelationships of these processes

with their direct environment, and for some cases they are too

vague. But all in all they provide a useful classification

mechanisme

In figure 28 a legend is presented for use with the next series of

pictures. The double-arrow and i ts function will be explained in

the chapter on the 'vulture' process type. The initialization arrow

indicates the hierarchy of process creation and has no other

function.

The send arrow points in the 'direction' of the send primitive: The

process pointed at executes a receive, and later a reply, the other

executes a send.

The rest will be clear when the text to the pictures is examined.
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3.3.1 Proprietor

The proprietor is the simplest classification for a server. It

accepts requests from client processes (client is not in the

classification system, but indicates that the process called

'client' uses the services of another process), uses an algorithm

of the kind presented at the end of section 3.2 of this appendix to

service all requests, and replies . In this way a proprietor can

handle only one request at a time. See figure 29.

3.3.2 Administrator and worker

The administrator is somewhat more complex. The administrator can

handle more than one request at a time; for this purpose worker

processes are used. eperation is generally as follows:

(See figure 30)

The administrator accepts requests from the clients, one at a time.

To handle the request it creates a worker process, initializes it

with the information from the client, the worker replies

immediately, thereby freeing the administrator for other work.

At this moment the worker can do its job, and the administrator can

proceed with accepting requests.

When the worker has the results, it sends a special request to the

administrator, say weRKER_READY, whereupon the administrator

accepts the results from the worker and transfers them to the

waiting client. The worker then destroys itself.
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A prototype administrator could look like this:

repeat

pid = receive any( <args> ); {This comes from client or

worker }

case request of

CLIENT_REQUEST:

begin

wid = create_worker();

send( wid, <init data> );

end;

{Use worker to

multiple clients }

support

WORKER READY:

begin

transfer_from( wid, <args> );

reply( wid, <args> );

transfer_toe pid, <args> );

reply( pid, <args> );

end;

end; {case}

until FOREVER;

{ Accept results }

{ Kill worker }

{ Report results }

{ Free client }

Largely simplified, of course. One of the things missing here is a

way to distinguish more than one client; important in practice, but

not for our purpose.
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A worker could look like this:

for

{ How could he know his master

yet ? }

{ First release master }

{ Perform actions

administrator }

WORKER_READY, <args> );

{ Report results are ready, and offer possibility

to transfer them from worker to administrator }

{ When ready, destroy yourself }

receive_any( <args> );

reply( mid );

work () ;

send( mid,

suicide() ;

end;

begin

mid =

These two server types, proprietor and administrator, form the

basis for all servers. More complicated variants exist, in which

for example the worker is allowed to communicate with the client it

services, but the principles are the same.

Some process types exist with a special function; they will be

discussed in the next few subchapters.

3.3.3 Courier

A courier provides an indirection mechanism for data transfer.

When two servers have to communicate, it is not desirabIe to have

one server block on a message pass to the other, because servers in

general have a community-serving function: They should be available

whenever possible. That is also the reason why servers receive

messages rather than send them, because senders bloek, but never a

receive_any.

To let two servers communicate, a courier is inserted (see figure

31). The courier is initialized by the server wishing to

communicate, and both process-id's of the server processes are

given to it. The courier then sends a special request to the

sending server, asking for information to transfer. When that has

arrived, the courier sends a related request to the other server

indicating that information has arrived.
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Somewhat like this:

begin

mid = receive_any( target_server_id, <args> );

{ To receive both process id's }

repeat

send( mid, <args> );

{ To get the data }

send( target_server_id, <args> );

{ To pass the data on }

until FOREVER;

end:

When the services of the courier are not needed anymore, the

courier is destroyed.

3.3.4 Notifier and vulture

Two special couriers have their own classification. See figure 32.

The notifier serves as a synchronized version of an interrupt. As

stated previously, the server cannot be expected to block on some

event, whether it be a message pass or an external event.

The message pass block is circumvented with the courier , in the

most general case.

The special case of an external event is circumvented with the

notifier. A notifier is initialized by a server by passing the

server's process-id on to the notifier. The notifier starts waiting

on an event (implemented in the system as akernel operation; the

notifier becomes event-blocked), and as soon as the event occurs,

the notifier performs a send to his server, with a special request.
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Like this:

begin

mid = receive_any( <args> );

event wait( <event> );

send( mid, EVENT OCCURRED, <args> );

suicide () ;

end;

This notifier is intended for a one-time event. Others may repeat

forever, like a simple courier.

A vulture is an insurance policy for a server. It checks whether a

client, on whose behalf the server has allocated expensive

resources, is still alive and kicking. It may work like this:

A server receives a request from a client, and with the request

comes the process-id of that client. The server knows that

expensive resources have to be allocated for this request, and

therefore calls upon a vulture. This vulture gets the process-id of

the client, and of course of the server itself, and then blocks on

a receive from the client.

Now a nice feature works for the server: Normally the client does

not know that someone is interested in receiving something from

him, so the client does not send anything. Strangely enough, the

vulture doesn't expect anything being sent.

Only, when the client happens to kill himself, during a prolonged

client-server relationship in which the client continues to use the

server's facilities, or is killed by someone else, the receive

executed by the vulture fails, unblocking the vulture.

The vulture then sends a special request, say CLIENT_DIED, to the

server, whereupon the server can harmlessly free the resources

taken by that specific client.

So a vulture is a sort of a death courier.
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3.4 lmplementing semaphores in Waterloo Port

The most generaI way to implement semaphores in Port could be to

create a I semaphore server I. This server is implemented as a

process to which requests can be sent. Some possible requests could

be, for instance:

- CREATE_SEMAPHORE, indicating a binary/counting semaphore,

initialization value (0/1 for binaries, non-negative for counting

semaphores); the request would return a 'semaphore lO', for later

reference in all the other kinds of requests.

- P_OPERATlON, to decrement the semaphore if the current value is

greater than zero, or to block until an increment is done when

not.

- V_OPERATlON, to increment the semaphore.

- OESTROY_SEMAPHORE, to free the semaphore resource when not needed

anymore.

The most interesting request in this structure is the P_OPERATlON.

A process sending such a request will be blocked until the

semaphore server replies. lf the current semaphore value is zero,

the server should not reply until another process has completed a

V_OPERATlON. So, instead of replying, it remembers the process-id

of the requesting process in a First-come-First-Served structure,

and resumes operations. As soon as a V_OPERATlON is executed on

behalf of another process, the semaphore value could be incremented

from zero to one; however, if the structure of waiting processes

contains any valid entries, the first process in line will get its

reply, while the semaphore value stays zero. The latter process

becomes unblocked and can assume correctly that the POPERATION

request is finally honored.

If the server maintains integrity at all times, the preemptive

scheduling of processor time cannot interfere with the operations

based on the use of semaphores.

A big advantage of this approach can be that once the server is

written and operational, everyone who needs a semaphore can request

one from the server. This can very weIl be a good solution for all

those cases where multiple semaphores are used for every protocol

involved, see for the design pictures chapter 10.

An algorithm for such a server could look something like this:
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repeat

pid := receive_any( request, <args> );

case request of

CREATE SEMAPHORE:

begin

semlD := create_semaphore_structure( type);

initialize_sem( semlD, value );

reply( pid, semlD );

end;

P OPERATlON:

if value( semlD ) > 0 then

begin

decrement_value( semlD );

reply( pid );

end

else store_id_of_requestor( pid );

V OPERATlON:

begin

if (value( semlD ) > 0) and (value( semlD ) < semlD.max )

then begin

increment_value( semlD );

reply( pid );

end

elseif value( semlD = 0 then

begin

next_id := retrieve_and_delete_next_p_request();

reply ( next id ); {Unblock next P_operation request

}

reply( pid ); {The report success of V_operation }

{ This works because the V_OPERATlON requestor is blocked as

long as the second reply is not given; it can thus not take

advantage of the fact that officially it is still in control

of the protected resource (for instance) }

end

else

do_something_about_exceeding_the_maximum_value();

end;
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DESTROY SEMAPHORE:

begin

remove_semaphore_structure();

reply ( pid ); { ALWAYS REPLY to unblock the process

friendly enough to indicate an

unnecessary semaphore }

end;

otherwise { Illegal request }

reply( pid); {So issue a dummy reply }

end;

until FOREVER;

The picture of such a semaphore server would be identical to the

proprietor picture in section 3.3.1 of this appendix. Please refer

back.

Another way to implement a semaphore in waterloo Port is to omit it

altogether. This may seem rather strange, but in fact it is not.

The blocking message passing mechanism is ideal for synchronizing

two processes, so if the sole purpose of a semaphore is to

synchronize, it is cheapest to implement when a semaphore is not

used at all. Silent assumption is that the semaphore in the design

is a binary one, counting semaphores are mostly not used for

synchronizing.

The process waiting for the other one with a P-operation on the

semaphore could perform a receive from the other process. The

equivalent of the V-operation would then be a send to the first

process; both sides block if the other side is not ready, both

sides unblock when the other side becomes ready, and the

synchronizing is in effect.

A different way of solving the problem can be found in the notifier

process: A notifier waits for some external event, and then

proceeds (with notifying its master). This structure can replace a

synchronizing semaphore as seen in the hardware module presented in

chapter 10 (figure 15). In that picture it is assumed that the

operating system can convert an interrupt into a semaphore action.

The semaphore action can be reacted upon by the softwa~e.
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In the Waterloo Port environment the possibilities are different

but not less powerful: Software can react directlyon a hardware

interrupt, thereby eliminating the need for an extra semaphore.

3.5 Implementing mailboxes

Some kinds of mailboxes are as easy to implementas semaphores:

Just leave them out. In this case, however, that has some

consequences.

The 'receive_any' primitive of Port can be used to serve as a

mailbox. Only, the storage capacity usually associated with a

mailbox is zero. That means that everyone who has a message for a

mailbox has to wait his turn. When that is not a disadvantage the

solution can be used.

When i t is a disadvantage and another solution has to be found,

problems arise: An extra process has to be provided to supply extra

storage facilities.

That process could be a server accepting two kinds of requests:

- A MAILBOX DEPOSIT request from clients who want to store a

message for another server to process them: and

- A MAILBOX RETRIEVAL request from that server to process the

message.

An algorithm for such an intermediate process will be presented

below. The example illustrates a single mailbox: extensions can be

made to create a general process administering all mailboxes in the

system if that is desired, but the principles are similar to the

semaphore case and therefore we will not discuss that further.

Here is the algorithmic description:
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repeat

pid := receive_any{ request, <args> );

case request of

MAILBOX_DEPOSIT:

begin

store_message_in_FCFs_structure{) ;

reply{ pid );

end;

MAILBOX RETRIEVAL:

begin

get_next_message_from_storage{):

reply{ pid );

end;

otherwise {Illegal request }

reply{ pid ): { Dummy reply }

end;

until FOREVER:

If mailboxes are used to transfer data between processes, while at

the same time synchronizing them, again it is possible to omit the

actual mailboxes at no additional cost (although the 'receive_any'

primitive is not necessarily used, since we are not talking about a

server accepting requests through mailboxes; j ust two processes

knowing eachother and with a desire to synchronize and transfer

data at the same time).

3.6 Conclusions

Waterloo Port offers a set of interprocess communication primitives

that can be used to simulate virtually every other sort of IPC.

The implementation of semaphores and mailboxes can be done in a

very general way using semaphore respectively mailbox servers;

these servers are modelled analogous to the proprietor process

structure.
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mailboxes or semaphores can be omitted

because the blocking message passing

many of the essential features of both

Very often , however, the

from the implementation,

system used incorporates

mailbox and semaphore:

- Synchronization

- Data transfer

Mutual exclusion facilities, in some cases at least

This will make it easy to make a detailed, Waterloo

design from a general one.

132

Port oriented



Appendix D ABBREVIATIONS

YT88

ARP

Address Resolution Protocol

CCITT

Consultative Committee on International Telephony and Telegraphy

CONS

Connection Oriented Network Services

CSMA/CD

Carrier Sense Multiple Access with Collision Detect

DNA

Digital Network Architecture

FTAM

File Transfer and Access Management

FTP

File Transfer Protocol

ICMP

Internet Control Message Protocol

IEEE

Institute of Electrical and Electrotechnical Engineers

IMP

Interface Message Protocol

lP

Internet Protocol

IPC

InterProcess Communication

ISO

International Standards organization

LAP

Link Access Procedure

LAPB

Link Access Procedure - Balanced

LLC

Logical Link Control

MAC

Medium Access Control
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MHS

Message Handling System

MLP

MultiLink Procedure

NCP

Network Control Protocol

OS1

Open Systems 1nterconnection

PON

Packet Data Network

SDLC

Synchronous Data Link Control

SMTP

Small Mail Transfer Protocol

SNA

System Network Architecture

TCP

Transmission Control Protocol

UDP

User Datagram Protocol

VTS

Virtual Terminal Service

XNS

Xerox Networking System
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Digital Network Architecture

DNA

Ethernet

thick-wire
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File Transfer Protocol

File Transfer, Access and Management
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data link
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Network Service
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Source routing
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Synchronous Data Link Control

Systems Network Architecture

TCP/IP
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Transmission Control Protocol

Virtual Terminal Service
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[1 J :
The TCP/IP protocol suite is a research project. Intermediate
results are used for implementation, and many people regard the
suite as an industry standard.
The intermediate results are published in the so called 'Request
For Comment' papers, in a quite informal way. Some of these RFC's
contain the definitions of the current protocols, others just some
test results. The whole history of the ARPANET can be found in
RFC's. In [Com 1988J a considerable number of pages is devoted to
some descriptions and overviews of the available RFC's. Ordering
information by phone, mail or E-mail can be found there too.
For completeness sake:

DON Network Information
SRI International

333, Ravenswood Avenue
USA - Menlo Park, CA 94025

Center Phone: 1 (800) 235-3155
outside USA/CON: 1 (415) 859-3695

This center can provide the RFC' s as
Handbook, which contains many of the
1985) .
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weIl as the DON Protocol
relevant RFC's (December
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