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ABSTRACT

In application specific VLSI designs e.g. real-time and complex data
transformation applications, it is essential to implement concurrent
processes, which access shared data, share resources, communicate with
each other and are synchronized to execute their functions. The number
of transformations and events is Iimited and known. But even in this
class of problems deadlock and starvation can occur.

This master thesis report presents a solution for modeIing, locating,
implementing parallel processes and their synchronization and
communication in one VLSI circuit. Only process synchronization,
scheduIing, mutual exclusion, request/acknowledge synchronization and
data communication primitives are required to specify parallel processes in
a VLSI design. These primitives based on simplified software techniques
are implemented in hardware using architecture modules to execute the
control.

A digital system design starts with agiobal functional description. The
concurrent processes have to be recognized to fullfil that function. A
tooI consisting of two models (requirements and architecture model)
locates these parallel processes focussing on the data flow and
transformation's data processing. The function of the digital system is
defined and further specified in the requirements model. The
transformation's description specifies the data transformation, but also
contains the necessary primitives for the process interaction. The method
avoids an implementation bias and sequentialization of processes. The
description should prevent deadlock and starvation, but this can't be
guaranteed.

In the next phase all transformations are allocated to parallel operating
architecture modules in the architecture model. The allocation may
sequence the transformations, when the timing requirements allow this. It
redefines process descriptions especially the required synchronization and
mutual exclusion and introduces new transformations to implement the
allocation. Data transformations are allocated to processing architecture
mod ules (PAM); the con trol transforma tions for synchroniza tion, mutual
exclusion to resource management (RMAM) and to scheduling architecture
modules (SAM). To simplify implementation and to avoid too much
synchronization overhead process knowledge may be implemented in these
modules.

Often encountered identical transformations in the requirements model are
allocated to special modules redefining the model. The transformation is
started by other modules (shared processing). The requests are
scheduled/served by the server architecture module (SVAM), which
connects the caller with the executer, so that both can exchange data
(parameters and result) and synchronization signais. Instead of direct
information exchange connections, a buffer for the parameters and results
can be used reducing the waiting time of the partners and increasing
flexibility.

To prevent busy-waiting for synchronization and shared processing events
a simple dispatching scheme can be implemented in the PAM using
interrupts to react immediately to events. The contents of the datapath is
not effected by the interrupt handling. Primitives divide the
transformation into tasks, which are made runnable by the occurrence of
an interrupt event or by the SAM.
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1. INTRODUCTION

A digital system, a VLSI circuit is a combination of hardware and
software with a number of programmabie parallel processing modules. The
applications are real-time systems, multiprocessor systems, distributed
operating systems, signal processing and data oriented processors.

Since the early days of digital system design a trend has been seen in
which the complexity of digital system design constantly increases. At the
same time as the lifetime of products is getting shorter, the product
development cycle is lengthening. So today we are trying to manage the
ever growing complexity of digital systems in such a way that the period
needed to specify and design those systems can be reduced.

The digital system group of the Eindhoven University of Technology is
working on the development of a methology for capturing the complexity.
To get con trol of the complexity we should make use of the intrinsic
hierarchical character of the system and the design cycle should be
structured so that computer tools can be used. Common design steps
should be automated. This requires a formal language to describe systems
and a forma1 method to translate the system description into a digital
design.

In this master thesis report we will discuss the implementation probiems
of parallel processes in a VLSI circuit using a structured design
methology. [Slenders, 1987] describes a structured approach for the
functional decomposition of a digital system.

The development process of a digital system consists of several phases.
The system design is the conversion of the algorithmic design into an
architecure with concurrent operating modules (functional level). The logic
design is the conversion of the architecture into a structure. We
concentrate on a dedicated VLSI design implementing parallel processing
modules.

In all the development phases a designer will encounter problems
concerning concurrency. In this report the main subject is a model for
locating and implementing parallel processing in one VLSI circuit. We will
tackle the following problems:

- how can we find implementable parallel processes?
- how can we di vide a process into more processes without losing
any potential concurrency?
- how can we describe those processes and their concurrency?
- how can we model the architecture?
- can we introduce hierarchy and leveling of processes into that
archi tecture?
- what are the required synchronization and communication
primitives for parallel operating processes in hardware?
- how should we model shared processing?
- what are the required synchronization and communication
primitives for shared processing?

The forma1 description of parallel processes and the system is no part of
th is project. Other members of the project group are working on this
subject. We will use the structured methology and focus on the parallel
functional blocks and primitives to implement parallel operating modules.
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We will discuss a tooi to locate parallel processes and to find
implementable functions. We will see how synchronization and
communication is introduced in translating the requirements into an
architecture. In every phase we use an algorithmic description for the
design. Several phases of the design will be mixed. Sometimes a next
phase will require changes in aD earlier model or phase. After the
discussion of parallelism we focus on the necessary primitives.

After discussing the usefulness of software techDiques for synchronization
and mutual exclusion in hardware we introduce primitives for
synchronization and communication, which are used in the process
descriptioD. An implementation of the software techniques is presented in
aD appendix. The use and consequences of the techniques are illustrated
in aDother appendix.

Chapter two (concurrent process modeling) is based on [Hatley,1987] and
[Ward,1985]. All examples and pictures are from these references unless
stated otherwise. We use the terminology of Hatley. The goal of that
chapter is to translate their methods to application specific VLSI design.
Chapter three is a comprehensive discussion of opera ting system
techniques based on [Janson,1985]. All examples, nomenclature are taken
from his work. We focus on the dedicated hardware requirements and the
usefulness of the operating systems features in VLSI design.

Another important item is shared processing. A processing module is used
by other modules to execute a special process, which requires dedicated
hardware. We will talk about the shared processing architecture. Finally
we will discuss the implementation of the scheduli!lg primitives in the
processing module.
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2. IDENTIFICATION OF PARAllEL PROCESSES AND

SYNCHRONIZATION USING A MODELING TOOl

2.1. introduction to system development and specification

A modern chip requires a system approach. A digital system consists of
synchronized processing modules (datapath, control logic and a data
structure). The development process of a VLSI circuit is top-down with a
strong feedback while designing. The complexity of digital systems can be
controlled by decomposition into a layered structure of systems plus
inter-su bsystem interactions. [Stevens,1987]

The current VLSI development process consists of three phases:
- requirement and specification phase
- design phase
- implementation phase

and a validation during all phases. The validation process checks
completeness, consistency, correctness and invariance.

We have four development levels: behavior, functional, structural and
physical. The behavior level is the specification of the requirements and
behavior description of functions, which should be unambiguous. The
functional level defines the architecture and the decomposition in
functional modules. The structured level translates the subfunctions into
logic circuits, functional cycles, microprogramming, finite state machines,
boolean expressions. The physical level is the translation of submodules
into physical devices, placement and interconnection of these physical
modules.

The first phase (specification) has four subphases: requirement elaboration
and specification, system attributes, process definition and verification.
First we transform the user needs into a form that is precise, consistent,
verifiable and analyzable. We define functional needs, trade-off criteria
and the required performance. The functional and performance system
requirements are the objectives of the design and also the constraints for
the design. The system attributes are evaluation criteria for quality
comparison (reliability, availability, flexibility, reconfigurability,
modularity, cost etc).

The next subphase is the process definition: the characterization of input
stimuli and required responses. The functional requirements decompose
into data processing, communication requirements and precedence
constraints. The performance requirements decompose into reSOurce
requirements and scheduling. The information and control flow is modeled
and the major operations and their locations of occurrence are identified.
The results of the process definition are: definitions of processes,
resource requirement of processes and interactions among processes. The
last phase is to verify specified process definitions against users
requirements. We need an analyzable specification language. Until now we
weren't interested in the implementation.

The second phase (design) has three subphases: decomposi tion, functional
specification and verification of the design. The defined required
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processes are converted into implementable specifications. The resulting
functional models should satisfy requirements specification. The top-down
approach uses hierarchy of abstraction levels and stepwise refinement. In
the decomposition phase we identify the tightly coupled processes and
di vide the system into subsystems corresponding to these processes. The
decomposed system must hide local information, be consistent, complete,
unambiguous, testable, satisfy corresponding requiremen ts, satisfy the
parametric logic specifications (minor changes in requirements may not
require a redesign of the entire system) and be expandable.

We group the submodules or subprocesss into different sets (partitioning),
which become functional modules. So we increase the modularity and
testability, reduce complexity of interfaces and reduce the inter-subsystem
communications. The optimal partitioning is difficult and heuristic.

The subphase functional specification of the partitioned processes defines
the characteristics of the functions to enable minimization. Characteristics
of the functions are types of operations to be performed (matrix, floating
point, integer), resource requirements (processing power) and speed
requirements (frequency/execution speed of the function).

The last subphase is the verification of the design. The behavior of the
models is checked (verification of correctness, evaluation of the
effectiveness) by analytica I and simulation modeling. In this phase the
design is described in blocks.

The last major phase has also three subphases: implementation of
architecure, mapping of functions in hardware/software and validation.
The implementation of the architecure has several levels:
archi tectural/functional, register transfer, logic, circuit and physical
level. Regular structures simplify implementation. The mapping depends on
physical constraints, the architecture chosen and the available technology.
Validation is the verification of a design by simulation. Testability is a
limiting factor in VLSI development.

2.2. the model and the modeling techniques

Modeling and modeling techniques are used in all development phases. We
will discuss these techniques and the characteristics of the modeis.
Before we can design a dedicated hardware system, we have to define the
problem. This problem definition should be implementation independent.
We need to know the data flow, the data transformations and the control
of the data transformations. It is essential to define parallel processes. A
model should focus on these aspects.

To simplify the implementation and redesign we try to locate parts that
are independent. We organize our model for maximum independence and
try to partition the problem into parts with minimum interfaces. We will
present a model and a modeling tooi based on [DeMarco,1987J, [Ward,1985]
and [Hatley,1987]. The method is called structured analysis and design.

For the modeling it is vital to provide a nota ti on that facilitates a
conception of the problem with minimal artificial restrictions. The model
is capable of formulating problems and expressing solutions in terms of
parallelism and data structures as weil as in terms of sequences and
operations.
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The modeling language is capable of separating the data needed by a
process from the control that actually makes the process operate. It
distinguishes the time-continuous and time-discrete behavior and is able
to model the interactions between the two (real time problems!).

The final model is produced by a structured method, consisting of
modeling tools and techniques that illuminate certain aspects of the
desired system during the specification process. The model is useful for
real-time processing, data processing and process con trol.

The system specification process must define the system as a whole as
weil as its partitioning into processes. The system development process
has three phases:

- definition of what problem the system is to solve (requirement
model)
- deciding how that system is to be structured (architectural or
design structure, architecture model)
- actual implementation of the design structure.

Specially how to structure the system is a difficult trade off process,
which can't be executed using rules. To state the problem and to capture
its solution, we build two modeIs of the system on paper: the
requirements model and the architecture model. The requirements model
(essential model) is built as a technology independent model of the
system's essential requirements and the architecture model is a technology
dependent model of the system's structure.

The requirements model describes what the system must do (essential
activities) and what data it must store, so that the description is true
regardless of the technology used to implement the system. First the high
level essential details are determined, the corresponding details are
created at a next lower level (information hiding!).

Each successive model is derived from the previous model by
incorpora ting addi tional information tha t was suppressed or ignored in the
previous model. The requirements model consists of two parts (modeis): a
model, which focusses on defining what the system must interact with and
a model describing the required behavior of the system (transformation
schemes, data flows). The first model is a description of the boundary
between the system and the environment showing the interfaces between
the two parts and a description of the events to which the system must
respond. The most important task in developing the environmental model
is to specify the events to which the system must respond. This is the
basis for the creation of the behavioral model.

Our tools use rules, techniques and heuristics to check the consistency of
the models (specially the levels). Heuristics are used to esta blish and to
check the completeness of the model, the partitioning and the usefulness
of the interfaces [Ward,1985]. These techniques, rules, heuristics won't be
discussed in detail, because we are mainly interested in the model
description to identify the necessary primitives for synchronization and
communication of parallel processes and in the mapping of these processes
into parallel operating hardware units.

After discussing the method and its benefits. we need to address the
reasons for selecting this tooi. The main reason is that the tooi focusses
on the data flow and the external events. Th is removes a possible
implementation bias. Because of this data approach we are able to find
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figure 1: components of the requirements model

intrinsic concurrency in the data processing. The composition of the data
flow indicates a functional decomposition of the system. The use of
graphics to display the system and to indicate potential concurrency
makes the system easy to understand and makes the decomposition easy
to grab. The methad clearly differentiates between logical and physical
considera tions, bu t still addresses a number of aspects (processing,
con trol, timing, architectures specifications, hierarchical and iterative
nature of the system) in an integrated manner.

2.3. the requirements model

2.3.1. THE STRUCTURE OF THE REQUIREMENTS MODEL

We use the requirements model to specify the system. It is a tooi to
decompose the system description into functional blocks. The model
consists of several components (figure I). The whole system requirements
model describes the system's data flow (shown in the data flow diagrams;
DFDs), data processing (shown in the process specifications; PSPECs) and
the con trol processing (shown in the controt specifications; CSPECs).
These components interconnect with each other as shown in figure 2.

The components are:
- DFDs; data flow diagrams decompose the system and its functions
- PSPECs; process specifications specify in concise terms each
detail of the system's functional requirement. Con trol flows
generated inside PSPECs through test on data flows are ca lied data
cÓnditions. They flow to CFDs (con trol flow diagram), where they
are treated as any other control flow.
-CFDs; con trol flow diagrams map con trol flows along the same
paths as the data flow may tra vel. CFDs mirror the processes and
the stores of the DFDs, but do not show data flows
-CSPECs; con trol specifications specify control processing controls
for the processes on the DFD.
- the response time specification defines the limits on response time
allowed between events at the system input terminals and the
resulting events at the system output terminals
- the requirements dictionary completes the model. It con ta ins an
alphabetical listing of all the data and control flows in the DFDs
and CDFs along with their definitions.
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figure 2: the structure of the requirements model

The requirements model is built as a layered set of DFDs and CDFs with
associated PSPECs and CSPECs. Each successive level of diagrams and
specifications expresses a refinement of the higher level diagrams (see
figure 3). Only on a new level a process of the upper level is further
specified. The goal of building a leveled set of diagrams is to make a
clear concise requirement statement at each level of detail and to
partition the requirements into mutually exclusive subsets with precisely
defined relationships. All redundancy has to be removed.

The context diagrams (see figure 3) establish the boundary bet ween the
system under specification and the environment. It is used to show com
munication between the system and the environment and the entities in
the environment with which these systems communicates. They are the
highest level diagram. We have process control and data context diagrams.
([Ward,1985] volume 2) discusses the development of these diagrams. Most
important is the modeling of the external events, because the system must
react to these events. An external event is something arising in the
systems's environment at a specific point in time and requiring a
preplanned response.

Naming issues of flow and process, specifying data relationship, modeling
stored da ta, execu tion schemes and consistency checking are all discusses
in [DeMacro,1987], [Ward,1985] and [Hatley,1987].

2.3.2. THE DATA PROCESSING MODEL

The processing model f ocusses on the data flow of the requiremen ts
model. A data flow is a pipeline through which data of known composition
flows. It may consist of a single element or a group of elements. A flow
can be time-continuous or time-discrete. The data flow diagram (DFD) is
a primary tooi depicting functional requirements. It partitions these
requirements into component functions, processes and represents them in
a network interconnected by data flows. lts main purpose is to show how
each process transforms its input data flows into output data flows, and
to show the relationship between those processes (transformations). A
process is represented by a bubble, a data flow by an arc.
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Besides the bubbles and the data flow we use data stores to define the
system. A data store is a data flow frozen in time. The data information
it con ta ins may be used any time after storing information and in any
order. An arrow head pointing from a store to a transformation means
th at some output flow of the transformation uses something from the
store. An arrow head pointing from a transformation to a store means
that the store is changed in value. A data store is represented by a pair
of parallel lines.

Starting with the context process, processes are progressively decomposed
into more detailed diagrams: a procedure ca lIed leveling. The data flow
decomposes in parallel with the levels of detail of the DFDs.

However, partitioning a transformation into a set of lower level
transformations carries the risk of introducing an implementation bias
into the model. A transformation can be partitioned without introducing
implementation dependence, if the partitioning makes use of the structure
of the transformed data. Usually if we find a good name to cover the
function, we have reached the bottom level in the requiremen ts model. In
the implementation phase such a function can be so complex, that it
should be divided into smaller functions.
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The processes without children are called functional primitives. A
primitive process and its PSPEC share the same inputs and outputs. Every
input to the process is used within some expression in the specification,
which shows how every output from the process is generated. Essential is
that a (parent) process can be broken down into smaller (children)
processes on a lower level. The interfaces of these groups of processes
are already defined in the upper level. So we look only at the children of
the process that is split up and neglect the other processes defined on
the higher level. The inputs and outputs of aparent and its child DFD
must match. Verifying that is called balancing and is a principle
consistency check.

Each primitive process has a process specification (PSPEC) and a
requirements dictionary (RD) that specifies every data flow. We describe a
primitive process in a pascal like language using "cobegin" and "coend" to
indicate parallel actions and some primitives defined for the events
handling. Processes that are not primitive, are broken down into more
detailed DFDs and have global PSPECs. PSPEC use a pseudo programming
language: structured English. The in ten tion of structured English is to
combine the rigor of a programming language with the readability of
english. The structures are simple single-entry, single-exit constructs:

- concurrency: more than one activity takes pIace simultaneously;
- sequence: activities occur in a specified time sequence;
- decision: a branch in the flow of activities is made based on the
results of a test on an input;
- repetition: the same activity is repeated until some specified limit
or result is reached.

It is not the final description, but it is just a functional description using
input and output flows. At a high level the specification can also be in a
pre- and postconditions specification.

One use of the data structure is to expose potential parallelism in the
required processing. Parallelism may be indicated when a transformation
has a composite input flow whose elements can be acted on
independently. Parallelism mayalso be indicated when a response requires
the production of two or more independent output flows. The
partWoning shown in DFDs should not he read as a prescription for
parallel processing. ft is merely a statement that the transformations are
required in any implementation and have no necessary sequence.
([Ward,1985], vol urne 2).



14

DFD 2 : COMPUTE F1.2

figure 4: example of leveling process 2 and 4 are decomposed

2.3.3. THE CONTROL MODEL

The control model focusses on the con trol flow between the processes
defined in the data flow diagrams. These DFDs iIlustrate what functions
the system is to perform, but don't teU under what circumstances, it wiU
perform them. We need to enable and to disable the processes on the
DFDs under some specific circumstance. We even need processes to
transform events into con trol signais. Some transformations need data
about the previous operation of other event responses for correct
operation. Data transformations may need to be synchronized via a
con trol transformation. The control transformation enables and disables
the data transformation to enforce the constraint.

Control flow diagrams (CFDs) show the flow of con trol signals (events) in
the system. Con trol specifications (CSPECs) indicate how the control
processing takes place. The processes in CFD are the same as on the
DFDs, but the CFD shows the con trol signals associated with each
process. Con trol signals are represented as dashed arcs. The CFD contains
control stores, which don't differ from the data store. A given store may
be unique to a DFD, a CFD or used in both. The control structure is
integrated with the process structure in such a way that it inherits aU
the leveling, numbering and balancing properties.

CSPECs describe the con trol processjtransformations. We define a CSPEC
bar as a symbol used on a CFD to indicate the interface between the
CFD and its CSPEC. The inputs of CSPECs are control flows from the
CFDs and the outputs are process activa tors and control flows entering
the CFDs. Process controls are generated from the logic in the CSPECs
and activate and deactivate process in the corresponding DFD.
Information from the PSPEC flows to the control structure. This



in format ion consists of control flows that are derived from data. They
provide the link between DFDs and CFDs and are called data conditions.
A requirement dictionary contains the definition of all the control signals
in the system. CSPECs contain diagrammatic and tabu lar representations
of finite state machines. The control signaIs (always discrete) flowing to
and from the CSPEC bars on the CFDs are the inputs and output of these
finite state machines. The control transformation must combine the flow
with internal memory to produce the selected output flow.

OFO 0: COMPVTE FI

figure 5: DFD and CFD
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Possible diagrams for the CSPEC are a state transition diagram (STD) or
a process activation table (PAT). STDs show the states of the system and
how they are influenced by con trol signais. They respond to events
represented by control flows and show the corresponding actions that the
system must take. Events and actions are represented on STDs as
event/action labels on each of the transitions between the states. PATs
show the circumstances under which the process on a DFD are enabled
and disabled.

The actions from an STD enter a PAT, which enables and disables the
appropriate processes. We are just describing control. You should not
confuse this with the implementation. The description is a tooI to specify
the function of the contro!. A fini te state machine is usually easier to
read then a pascal language, if we are describing a con trol
transformation. Figure 6 contains an example from [Hatley,1987].

Processes that are not controlled from a CSPEC are data triggered. They
are enabled each time there is sufficient data at their inputs to preform
the specified function.

The con trol flows labeled enable and disable from the con trol
transformations to the data transformation have a special function in the
mode!. They are not truly inputs to the data transformations, but simple
switch the data transformations on and off. For a control transformation
only event flows are allowed as inputs and outputs. Incoming event flows
for data transformations labeled enable, disable, trigger are interpreted as
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prompts not as inputs. Only con trol transformations may prompt other
transforma tions.

We have three types of events:
- flow direct: the arrival of the control flow signaIs the event
- flow indirect: a control flow may require an event recognition
mechanism. A flow triggers an event recognition mechanism that in
turn triggers a response.
- temporal: the event is indirectly recognized by the passage of time

A strategy for constructing state transition diagrams from an event list is
descri be in [Ward,1985].

OBJECT

Vending machine DFD.

figure 6a: example
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The con trol models and CSPEC close the loop of the system. The whole
requirements model is a feedback control loop.
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figure 7: feedback control

Data flows enter the model through the DFDs. Some processes in the data
structure produce con trol signals (data conditions), which feed into the
con trol structure; signals fr om the CFDs drive the CSPEC and the
CSPECs con trol some of the processes on the DFDs. (Note the analogy
with the operating unit and control units of the basic model for hardware
implementation of a transformation)

We try to minimize interfaces in our model, so the con trol
transformations (CSPEC) of the transformation's scheme may need to be
reorganized to achieve the best grouping. Incorporating a control
hierarchy into the leveling is useful, because it allows grouping together
processes that are activated and deactivate at once.

A few remaining remarks. A transaction center is a set of primitive
processes of which one is selected by the con trol. Multiple instances of
transformation centers are denoted by a double circle. The control flow
can be connected directly to a con trol store with no intervening
transformation. It is not necessary that a data transformation has a
control flow.

Certain situations that commonly occur in systems, can greatly increase
the complexity of a state transition diagram. (e.g. a con trol signal can
arrive in all states, but cause only act ion in one state). The con trol store
will be used to avoid complex state modeis. It is used to remember
information about events that have occurred, but are not yet to be used.
Three operations are defined that effect the con trol store (see fig 8) The
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reset operation changes the value of the store to its initial value and
also cancels any process "wait" in progress. The signal operation increases
the value of the store by one. The process wait operation carries out
the following logic:

decrement value of store by 1
if value of store >= 0 then

issue PASS
else

do until(SIGNAL) walt
issue PASS

The control store (dashed lines) with these processes is equivalent to a
semaphore.
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2.3.4. TIMING REQUIREMENTS

Beside the data and control transformations we need to specify the timing
of the system. Timing requirements relate only to external timing.
Internal timing is a design issue. Three types of timing are specified:
external response timing; reception rates and recomputation rates of
external inputs and outputs respectively; and timing required as part of
the functionality of a user-required process.

Starting the response time specifica tion early helps to understand the
system as an event driven model. The response time specification is likely
to be subject to re-examination during the design phase. These
specifications must balance with the dictionary: all inputs and output
signals must be defined in the dictionary.

2.3.5. REQUIREMENT DICTIONARY

To understand the system specifications we described all transformations
and data flows. The dictionary defines all control and data flows in the
diagrams. Flows or signals are either primitive or non primitives, the
later consisting of groups of the former. Definitions of primitives describe
their physical form or information content, including a list of attributes.

A special set of symbols is used to define the way primitives are
structured into a group flow. A possible set of construction symbols is:

+
{}
[I]
o
ti "

••
\\

2.4. the architecture model

composed of
together with
iteration of
select one of
optional
literal
comment field
description of primitive elements

2.4.1. THE STRUCTURE OF THE MODEL

The functional requirements at one level must be alloca ted to a physical
structure with non functional requirements added. Af ter describing the
systems requirements we have to specify how the system will fulfill those
req uiremen tso

The tooI for capturing this process is the architecture model, whose
principal purposes are:

- to show the physical entities that make up the system;
- to define the information flow between these physical entities;
- to specify the channels in which the information flows;

These purposes are fulfilled using diagrams supported by specifications
and a dictionary.



22

The requirements are mapped into an architecture
design constraints into account. These constraints
requirements, growth and expansion capability,
implementation technology.

model taking all the
include performance
testability and the

The architecture model is equally applicable to any level of system
definitions. The upper levels show partitioning of the system into
architecture modules regardless of hardware and software allocations.
Lower levels show the hardware and software modules derived from that
system partitioning. The architecture modules operate in parallel. All
processes alloca ted to an architecture module ha"Je to be execu ted
sequentially.

The physical model consists of parallel operating (processing) units called
architecture modules. The requirements model, data processes and PSPECs
and CSPECs are divided into groups, that are allocated to architecture
modules. For the description of the architecture model we introduce
several components (see figure 9). The architecture flow diagram (AFD)
depicts the system architecture. It shows the physical partitioning of the
system into its component pieces or modules and the information flow
between them. lts main purpose is to allocate the functional processes of
the requirements model to physical units of the system and to add more
processes as needed to support the new physical interfaces.

The AFDs are supported by an architecture module specifications (AMSs)
and an architecture dictionary (AD). Module specifications define the
inputs, outputs and processes allocated from the requirements model for
each architecture module. The architecture dictionary contains the data
and con trol flow definitions of the requirements dictionary plus the
allocation of these flows to architecture modeis.

In addition to the physical entities and the information flow between
them, we need to capture how the information flows from one
architecture module to another. For this we use the architecure
interconnections diagram (AID). The AID shows the actual physical
information channels between the AFDs architecture modules and to and
from the environment. The AID is supported by architecture interconneet
specifications (AISs), textual specifications that specify the characteristics
of the communication channels. In VLSI design the AIS is just an

AACHITECTURE
OCMEXT
DIAGRAM

•
~ +

ARCHITECTURE f4' ~
ARCHITECTURE

FLOW IN1'ERCO\NECT
DIAGRAMS DIAGRAMS

AACHm:CTURE ARCHITECTURE
MOOUI..E M"ERCOolNECT

SPECIFICAT~ SPECIFICATION

I ARCHITECTURE DlCTONARY

figure 9: architecture model components
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electrical bus/signal description. (The method can be used for the design
of several kinds of systems). The architecture dictionary also captures the
allocation of data and control flows to specific interconnect channels
(flow name, compose of, origin, destination, channel).

Anc:::HITECTURE
'-Dll.E
SPECIFICATIQNS

~1URE

NTERCCtH:CT
SPECifICATIQNS

figure 10: the structure of the architecture model

The system architecture model is a statement of the system's physical
modules, the information flow between them, and their interconnections
(see figure 10). The architecture modules are in our context parallel
operating circuits in a VLSI design, but a physical module could also be a
computer or a micro.

An information flow vector represents all the information that flows
between any two architecture modules. These flows may be either single
elements or grouping of elements and may contain data flows, control
flows or both. In our model only one type of information flow channel
exists (the electrical bus), but in other applications a mechanicalor
optica I link can be used.

The system architecture model consist of a layered set of AFDs and AIDs
and their associated AMSs and AISs. Each successive layer refines the
configurations defined by the higher level diagram. To describe the
architecture we need three new symbols to represent the architecture
modules, the information that these physical processes communicate and
the channels by which this communication takes place.
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An architecture module is either a fundamental entity or a grouping. A
fundamental entity corresponds to an individual physical module. A
grouping of fundamental entities represents a subsystem, that contains
several physical modules. The mapping between the architecture modules
and the data and con trol transformations in the requirements model can
be one-to-one or one-to-many in either direction. The reason for the
latter is that several hardware and software technology decisions might
have to be made. What may have been a primitive process from require
ments perspective may turn out to be non primitive from the architecture.

2.4.2. THE STRUCTURING OF ARCHITECTURE MODULES

The system requirements and architecture are interrelated and must be
developed in parallel. A given set of requirements can have many possible
solutions depending on the decisions and trade offs made when
transforming a technology-independent requirements statement into a
technology-dependent architecture model. These decisions and trade offs
cause iterations between the requirements and architecture modeis.
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figure 11: requirements and architecture template

In developing the architecture model, we allocate the requirements model
to architecture modules and add the following:

- user interface processing
- input processing
- output processing
- maintenance, self-test, initialization and redundancy processing

The architecture module doesn't always contain these blocks. It depends
on the problem and its implementation form. A problem that would
require distributed systems with several micros, will have many blocks. In
our problem field only input and output processing are of interest.
The input and output processing blocks represent the additional
processing beyond that of the requirements model, needed for each
architecture module to communicate with the other module and to
transform the information to and from an internally usabie form.
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figure 12: architecture model layering

The user interface block is a special case of the input and output
processing blocks. The environment access requires that we have specific
interfaces between the system and its environment. It needs to be
separated from the input and output blocks, because there are many
special considerations, such as human factors, that affect the definition
of the user interface.

TECHNOlOGY. ~. TECHf'O.OGY· -----I... TECHN:X.OOY·
INDEPENDENT .. NONSPECFlC DEPENDENT

figure 13: architecture developing process

Suppose we have four processes described in one CFD and one CSPEC
(one finite state machine). The allocation process resulted in allocating
process land 2 to architecture module Pand process 3 and 4 to
architecture module Q, then the decision would have to be made about
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how to split the corresponding CFD and CSPEC. This depends entirely on
the needs of the particular system and its architecture.

While allocating certain processes from the requirements model to the
architecture model. it will be necessary to repartition the existing
requirements. The architecture model is a hierarchical layering of modules
that are defined by successive applications of the architecture template to
each of the blocks in the model (see fig 12). Several template blocks
won't be needed in chip design. The template is a tooI.

We try to map the technology independent requirements model into a
technology non specific physical model. The method is to insert a buffer
between the requirements model core and the environment. (see fig 13).
This is done to ensure that the essential requirements core is preserved
wherever possible. Our reasons are:

- we want to be able to change the technology dependent buffer
without changing the entire model, when interface technology
changes;
- we want to be able to locate the system requirements and
determine the impact when they change;
- we want to facilitate the task of testing the system's core
requirements, both independent of and integrated with technology
decisions.

2.4.3. ARCHITECTURE DIAGRAMS AND SPECIFICATIONS

A major component of the architecture model is the architecture diagram.
An architecture flow diagram (AFD) is a network representation of a
system's physical configuration. There is no predetermined relationship
between the processes in the requirements model and their eventual place
in the system architecture. The AFD is decomposed to show the next
level of system architecture definition. The decomposition of the
architecture model is not the same as the functional decomposition of the
system. It is a decomposition in the sense that the architecture template
is applied successively to each of the modules in the parent AFD. The
template is used as an allocation guide at each level, but recall there is
no requirement that every level of the system has modules in every block.
The newly defined data and control transformations should be specified
and added to the requirements model.

The highest level AFD is the ACD. The architecture context diagram
(ACD) gives an overview of how the systems physically fits in its
environment. The elements of the ACD are: one architecture module,
representing the system; terminators that represents entities in the
environment with which the system communicates, and information flow
vectors that represent the communication taking place between the
external entities in the environment.

The timing specifications from the requirements model are inherited by
each architectural module affected by those requirements. The desired
architecture must also meet the system's timing requirements. This is a
consideration in the trade off process by which the system's
implementation architecture is developed. The allocating procedure for the
timing requirements is repeated through the architecure layers, until each
module has a specification of the overall timing constraints allocated to
it.
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The AMSs can be written in a variety of ways; at the very least, it
identifies requirements model components to show their allocation. An
AMS consists of three parts: first, a brief narrative specification of what
the module is required to do; second, a listing of any architectural
requirements for the system and third a statement of the allocation of
the requirements model component to the architecture module.
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figure 14: layering

2.4.4. ALLOCATION TO HARDWARE AND SOFTWARE

Now the requirements model components are allocated to architecture
modules, we will see how these architecture modules will accomplish
their allocated tasks. Each module will be implemented in either hardware
or software or a combination.

The completed architecture model with the hardware and software
partitioning brings the system specification one step closer to
implementation. Now we have system, hardware and software requirements
and system. hard ware and software architecture.
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2.5. the mapping process and its problems

The biggest problem is mapping the data and control transformations on
the architecture and into software and/or hardware. The heuristics of
top-down allocation states that allocation to higher level implementation
units should precede the allocation to lower levelones. Our implementa
ti on model consist of several parallel operating architecture modules. The
bottom level modules operate sequentially.

We still have to implement in the architecture module the alloca ted
processes. We classify the implementation process into three stages: the
architecture module stage, the task stage and the program module stage.
The overall organization of the implementation model is based on these
stages.

The bottom level architecture module can carry out instructions (actions)
and store data. The architecture module stage is represented as a network
of architecture modules to which the requirements model has been
allocated using the architecture model. Because the unit provides its own
execution and storage resources, true concurrency of operation is possible
within th is stage.

A task is a set of instructions (actions), that is manipulated (started,
stopped, interrupted and resumed) as an unit by the hardware and
software implementation of synchronization primitives. The task stage is
represented as a set of tasks networks, one network per architecture
module. If required the task can be implemented sharing resources to
simulate concurrency.

A program module is a set of instruction (actions) that is activated as an
unit by the con trol logic within the task in a mutually exclusive fashion
(only one program module may be active at a time). The program module
stage is represented as a set of module hierarchies, one hierarchy per
task. The program modules are function, procedures, subprograms. But it
won't be usual, that an architecture module executes a procedure, since
the problems don't require it. That kind af problems can be easier
implemented on a general purpose CPU. The method for designing program
modules is called structured design [Yourdon et al, 1978].

Classification at the architecture module stage will typically involve
physical characteristics of the hardware (available arithmetic and logica1
units, special arithmetic logic, accessibility of data, execution speed,
proximity to the physical environment of the system and so on). Task
level classification may be made on the basis of activation and timing
aspects of a task. Classification at the program module level is more
likely to focus on logicalor mathematical characteristics.

2.5.1. ARCHITECTURE MODULE ALLOCATION

It is possible that a primitive process appears several times on a DFD.
This transformation can be implemented just once. Every time an
activation event occurs, the process is started. The request for execution
can be generated in several architecture modules. The transformation is
called a shared process and the phenomenon shared processing. The
heuristic of data abstractions from the requirements model states that the
essential model should be searched for common elements, that will



29

identify potential implementation resources. The goal is effective resource
utilization.

In a multi architecture module allocation, it is possible for the allocation
criteria determined by the processing characteristics to conflict with the
essential model structure. The al/ocation can introduce synchronization
requirements (example fig 15,16; a train tunnel with one track;
decentralized con trol using two modules with a semaphore store; above
the bar the event and below the actions). The casts and benefits of the
effective use of shared processing resources versus essential model
distortion must be taken into account. Allocation should be regarded as
an interactive process, that allows the visualization and evaluation of
alternatives. The identification of the architecture modules is a design
aspect, which can't be captured with rules and guidelines.
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The allocation of an entire transformation to a architecture module means
that:

- the data of the input flows must be captured and provided to the
logic that carries out the transformation;
- the output data must be sent to the appropriate destination;
- the work described by the transformation must be carried out by
the logic;
- data corresponding to connections between the transformations and
store must be retrieved or placed in storage by the module.

The allocation becomes more complex, when a low-level transformation
must be split between modules. To split a transformation it is necessary
to represent the work done by one part to the other part. The
representation may be in terms of data already manipulated by the other
part or in terms of flags representing the outcome of logic performed by
the other part of the specification. [Ward,1985] volume 3 describes a
splitting procedure of a data transformation. The splitting requires a
control store and sometimes even semaphore operations. We need
synchronization primitives to describe the result.

The stored data model allocation can give problems (shared use). There
are a number of possible mechanisms for making a collection of stored
data available to two or more architecture modules. In the case of
sharing, a physical data storage mechanism (such as a multiport memory)
is accessible to the modules. Although some synchronization is necessary
(to prevent modules from accessing the same item together) the modules
are equal in their ownership of the data. In the case of exclusive
ownership, only one module has access to the physical data store. The
other module can obtain or modify data only with the cooperation of
two processes, that transfer and receive data. This means that if a
transformation does its work in one module, but needs data owned by
another module, the process that actually accesses the store must be
allocated to the other module. In the case of duplication, each module has
access to a data store containing a copy of the data. A module can only
change stored data with the cooperation of the other module, since
consistency of the duplicated data must be maintained.

2.5.2. TASK MODELING

The architecture model provides a specification of the transformations and
stored data assigned to each module used to implement a system. The
portion of the requirements model assigned to an architecture module still
has no internal organization. Now we will reorganize and elaborate the
model to adapt it to the internal organization of each architecture
module. We discuss the application of the implementation modeling
heuristics to construct a model, that describes the organization of data
and control transformation tasks within a sequential module (bottom level
architecture module). We don't differentiate between a data or control
task, because it doesn't exist at this level.

An al/ocation to architecture modules doesn't change its contents of a
requirements model. but simply redistributes the content. Neither does the
architecture module al/ocation centraUze control nor restriet any potential
concurrency described by the model. The number of control
transformations is at least as large as in the requirements model. Any
potentially concurrent transformation remains potentially concurrent in
the allocated model. Allocating portions of a model to a single task
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changes this situation, since control must then be centralized and
concurrency is prohibited. Task allocation will therefore involve
modifications of the model to combine control transformations and their
associated state diagrams, and to impose sequences on potentially
concurrent data transformations, ([Ward,1985] volume 3). We discuss
several situations requiring task allocation.

The control transformations in several modules have to be combined to
execute the tasks (transformations) sequentially. The combination of state
diagrams centralizes con trol, but does not remove concurrency of these
tasks. The concurrently enabling of transformations has to be sequenced.
This is a design decision. The limitations on the number of tasks, that
may be scheduled to run and the costs of switching between the tasks
may lead to group several transformations together in one task.

A problem arises when a task is a continuous transformation and has to
share the module with other tasks. The technique used is to allocate the
continuously operating transformations to a task that runs periodically.
The task samples the continuously available data, processes the data to
produce outputs, and is then disabled, to be enabled again after a fixed
interval. The sampling rate and therefore the interval can be computed
for each transformation by examining the environmental constraints.

The situation becomes more complex, when several continuous
transformations are allocated to a single periodic task, and the enabling
and disabling actions are asynchronous. Each transformation is to be
enabled or disabled independently. Therefore the transformations control
must be implemented by enabling and disabling the entire task. We
introduce flags to represent control information, that states which portion
has to run. A task implementing the con trol transformation is responsible
for setting and resetting the flags, which are an implementation of the
enabling and disabling logic.

Tasks incorporating transformations of discrete data must run, when the
data becomes available. We have an adequate implementation of a discrete
transformation, if the time needed to process an input value is within
response time constraints. The inputs should arrive at intervals longer
than the time needed to process input values. If this is not true, then
the average interval between the arrival of inputs should be less than the
average time needed to process an inpu t.

In the first case, a task containing discrete transformations executes
until it requires input, at which point it must go idle or pass control
back to the module control and enter the waiting for input state.
Alternatively the task may idle until aflag indicating that the data is
present, is set.

If the data arrives more rapidly than the task can transform data, a
queuing mechanism can be introduced. The transformations perform the
essential task and the task that queues the arriving input (a queuing
task).

Scheduling can be necessary to use the hardware efficiently. When a task
waits for the occurrence of an event, it can be suspended and another
task could be activated. Another possibility is that a module has to
execute several tasks depending on external events. The following figures
contain a few scheduling examples of tasks allocations to one module.
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taak A ---000---000---000---000---000--
taak B 000---000000000---000000000---000

~time

figure 17: two tasks (a dashed line indicates activity)

taak A ---00000000000000---00000000000000---0000000000

taak B 000---00000000000000---00000000000000---0000000

taak coooooo---oooooooooooooo---oooooooooooooo---oooo
taak D 000000000---00000000000000000000000000000000000

taak E 0000000000000000000000000000000---0000000000000

figure 18: several tasks
~time

A more complicated scheme is necessary for the next example. Task A
needs thirty units of execution time. Task B needs 5. Task B should be
executed every ten units. Task A should be executed every 90 units. If
we could split up task A, we could use the scheme in figure 19.

taak A 00--00--00--00--00--00--0000000000--00--000

taak B --00--00--00--00--00--00--00--00--00--00--0

-4 time
figure 19: scheduling scheme

Because all the scheduling schemes are known on forehand, we can
implement them in hardware. A problem arises when we have to wait for
an event, which occurs at an unexpected moment and we have to meet
the timing requirements. If those requirement are so strict, that we have
to interrupt a running task, we need a context switch. Since a context
switch requires saving the processing status, we should try to avoid this
situation by allocating the processes to another module. We can also try
to reprogram the other tasks, to allow them to be interrupted at a
convenient moment without having the trouble of a context switch. For
scheduling techniques see ([Ward,1985] volume 3) and [Janson,1985]. Since
these processes are hard to implement in state machines, we should i/
possible implement parallel hardware.

Task allocation is an activity similar to architecture module allocation, in
that it involves reorganization around a set of chosen modules for
implementation. However, the requirements that tasks be sequential, have
centralized control, operate discretely, model data arrival rates and
maintains stored data integrity, may require substantial modi/ications to
the model used as input to the allocation process.

2.5.3. INTERFACE MODELING

The allocation of transformations to architecture modules and tasks tends
to fragment the transformations and to introduce additional inter module
and inter task data flows and stores. The interfaces between modules and
tasks must therefore be examined for potential problems involving data
exchange, stored data, access and control synchronization. The
requirements model only showed the net flow of data. We must drop this



33

now. If inter task flows must be sequenced, the cooperating control
interactions between the tasks should be modeled.

figure 20: DFD requirements model: two processes, one supplier
and one consumer
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figure 21: solution for the communication tasks (semaphores are
associated with the contro' stores) IWard,1985)

We only discuss synchronization, because communication is a data flow
accompanied with synchronization con trol. We will talk about task
synchronization. A task is executed in an architecture module, so tasks
communicate and not architecture modules. Tasks cao be active at the
same moment or at va rio us points in time. We focusses on inter-task
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interfaces independently of whether the tasks are in the same or in
different architecture modules.

SYNCHRONIZATION OF DATA FLOW
A general problem is the data flow synchronization between two tasks, of
which one operates on the data of the other. How do tasks interact
having data flow in common? These tasks have to be activated and
deactivated at the right moment. We model data flows consisting of two
components: the data itself and an associated trigger that signals the
presence of data.

The two transformations can be synchronized in several ways. The second
receiving task could be executed after the first. They can both be
executed at the same time using pipelining. Even a store can be
introduced to store the result of the first transformation (fig 21,22). The
second task could be activated several times in succession until the store
is empty.

SYNCHRONIZATION OF ACCESS TO STORED DATA
A fundamental requirement for implementing a queue for communication is
that the reading and writing of the smallest transferrable data unit to or
from the queue once initiated is uninterrupted. The other fundamental
requirement is that no tasks have access together. Tasks in one
architecture module though can never access a store at the same moment.
Only the action can be interrupted. The read and write actions should be
atomie.

Another problem is that a task can attempt to read data, which has not
yet been produced. We introduce aflag to signal, if data is ready. A few
solutions for the access problem will be discussed.

A solution is to make a task uninterruptable. The writing of data becomes
an atomie operation by making the sections of the code (called critical
sections), that write the data items uninterruptable. If this is impractical,
aflag may be used to loek the data items. All tasks that share the data,
must test the flag before using the data. The reset and set operations
must be atomie actions. This solution can be used with tasks in the same
or in different modules.

The implementation of an atomie actions for cooperating modules is
difficult, because the partners can try to access the store at the same
instant. Some unit/program has to arbitrate between the together arriving
requests and avoid starvation. Starvation is the situation, where other
requesters always loek out one requester for the access to the shared
data. In the other situation only one task is active in the same module
and this task should not be interrupted, so the atomie actions is easily
implemented.

A second solution is the introduction of an intermedia te task, a data
server. Requests to read and write data are given to a task, that owns
the data Since a task can by definition, carry out only one operations at
time, each operation on the data can be guaranteed to be atomie.

SYNCHRONIZATION OF CONTROL
The sequencing and control of data that crosses the interface of the
modules, may be modeled using two interlocked control transformations.
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This causes no problems as long as both task are active at the same
moment.

First we describe the interlocked control transformations to show the
problem [Ward,1985]. Task A produces an event flow R, when P occurs.
Depending on the state of task B an S event flow mayor may not be
produced. Task A responds differently to subsequent flow Q depending on
whether an intervening S has been received. In the requirements model,
the arrival of a flow instantaneously triggers all the transformations, that
operate on that flow and all subsequent transformations with discrete
flow connections to the first. In an implementation, task B may be
suspended to allow A to run and task A may therefor respond to an Q
event flow before it can receive an S. If task B is in the other module,
the task can be inactive, since another task is running. This problem
occurs because of the chosen implementation.

TASf< A TASK B

p

Q

figure 23: two communicating con trol transformations

Three solutions are introduced. The first is only possible when the tasks
reside in the same module. Task B may run with a higher priority if it
must always finish its activity, before task A runs. This may not be
possible, if the S event flow then causes another event flow to be
produced, that then must be completely processed (possibly by task B).

Second, the con trol transformation specifications may be modified to send
and receive positive confirmations of the communicating event flow. We
would add a control store with semaphores operations for Q and an event
flow from task B, whose interpretation is "there is no S" and modify the
specifica tions.

Third, the transformations may be combined into a single task. This may
be cumbersome. We will usually use solution two, which is easier to
implement then a complex scheduler with priori ties. Besides, we usually
have inter module communication because of the requirements model.

2.6. summary and conclusions

The technique used to find an implementation of a digital system is to
generate a requirements model and an architecture model using guidelines
of implementation. The requirements model describes only required
synchronization and communication for the problem definition. In
developing the architecture model, we redefine these descriptions and
introduce where necessary synchronization and communication primitives
for the introduced partitioning. At each level we only concentrate at the
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interaction in that level. We hide the lower level synchronization. While
refining the model we are introducing the implementation.

When implementing the requirement model on architecture modules, an
effective implementation strategy requires careful separation of subject
matter-specific details from details that can be handled by general
modules. To attend this goal, it is important to be able to visualize such
a module as a system in its own right. Shared processes which several
architecture modules want to execute, are separated from the subject
matter-specific architecture module and allocated to a separate module.

The requirements and architecture model consists of data and control
flows, date and control stores, data and control transformations.
Transformations share data (resources and signalling, control information).
requiring mutual exclusion. Events start data and control transformations
(activation and deactivation), but we had to schedule tasks to avoid
starvation and to meet the timing requirements.

The data and control transformations are tasks in the implementation,
where we don't see any difference between a control and data
transformation, executing on the same hardware, if they are allocated in
the same architecture module. Data processing tasks require a control and
processing (datapath) unit.

The timing requirements can require coprocessing or
Coprocessing is a form of shared processing, where a task is
another private architecture module and executed after
Pipelining needs parallel operating architecture modules.

pipelining.
allocated to

a request.

Just mapping every con trol transformation into finite state machines and
every data transformation into a datapath and a control unit, would be
the simplest implementation and would guarantee a maximum of
parallelism. The basic idea is that for control transformations separate
finite state machine can be built. This can cause an inefficient use of our
resources. The data transformations aren't all active at the same moment,
so we can allocate several transformations to a module without reducing
the concurrency. We try to optimize the resources usage, but this
requires synchronization and communication.

We only need some simple synchronization primitives for task and
architecture module synchronization and communication, a few primitives
to control shared resource use, shared data and shared processing and to
execute process management. The corresponding control transformations
are implemented on parallel operating modules called scheduler, arbiter,
resource manager and server.
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3. SOFTWARE SOLUTIONS TRANSLATABLE INTO

HARDWARE?

3.1. introduction

Parallel computer processes are a conseQuence of the nature of the
problem (e.g. rea I-time and operating systems). The interactions of a set
of parallel programs cause difficulties. Aigori thms f or parallel processes
solve these problems and their main objective is mutual exclusion and
synchroniza tion.

Several algorithm have been proposed for synchronization and mutual
exclusion [Andre,1985], [Raynal,1985]. Programming languages were
introduced to solve the problem, especially for operating system and real
time applications. These languages introduce structuring the design and
checking access to shared data at compilation time by defining data types
for the synchronization. [Brinch Hansen, 1975] [Brinch Hansen, 1977],
[Hoare, 1978], [Kylstra,1984]

But basically all these programs have to be executed using low level
primitives to control the hardware. We will study these primitives in this
chapter using [Janson, 1985].

3.2. operating systems and process management

An operating system implements the reQuired low level primitives for
synchronization and communication. The two main operating system
objectives of interest to us are: multiplexing the system's resources
among all processes (users) and allowing these processes to share
information. In the context of processor management, the objectives mean
multiplexing the physical processors among users and allowing user
computations to interact with one another. In the following discussion
users can be replaced by processes and physical processors by
architecture modules.

Operating system consist of programs, which take care of the orderly
sharing, multiplexing and protection of resources [Janson, 1985],
[Joseph, 1985]. The control of sharing, multiplexing and protection is based
on maintenance of detailed status information about resource use.

Physical processors are multiplexed over time. Time slots are allocated to
each process. From a macroscopie point of view, each user has the
impression that he executes on a processor of his own in parallel to
other users. This form of processor multiplexing is called
multiprogramming. As a result of multiprogramming, each user sees a
virtual processor. Multiprocessing covers all issues rela ted to
communication and concurrency con trol among parallel virtual processors
(i.e. parallel or pseudo parallel physical processors).

We study some operating system's processor management features to see,
if we can translate software solutions into hardware. The problems are
identical except that the pseudo concurrency introduces problems, we
usually won't encounter in VLSI design.
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3.3. mutual exclusion

A first multiprocessing problem is the need for mutual exclusion. The
sections of code in which process 1 writes into B (variabIe) and process 2
reads from Bare called critical sections, meaning that they are mutually
exclusive. Only one process can be executing its critical section at any
time. One mechanism to enforce mutual exclusion consists of using
Dekker's primitives. They are a purely software primitive and the
drawback is the busy-waiting of a processor locked out of its critical
section. Processor cycles are wasted testing flags over and over again
instead of allowing inactivity until the critical section can be entered.

In monoprocessor systems mutual exclusion can be achieved by inhibiting
or masking interrupts. During the execution of a critical section all
interrupts are disabled so guaranteeing the exclusive access. In a
multiprocessor system masking the interrupts on one physical processors
cannot prevent a virtual processor running on another physical processor
fr om entering its critical section.

In multiprocessor systems, the most basic mutual exclusion mechanism is
based on hardware instructions called locks or test and set (TAS). A TAS
primitive takes three parameters: a test value, a set value and the
address of a word in the memory [Janson, 1985]. Interrupts are disabled
from the start of the test operation to the end of the set operation.
Locking suffers from the busy-waiting problem. The user programs need
an ability to stop, when encountering a locked critical section
(scheduling, synchronization). In system programs a lock instruction is
used, when the busy waiting time can be kept short.

Mutual exclusion is essential in concurrent systems. So we will need to
implement primitives for mutual exclusion. The implementation will be
based on the mentioned methods. Only the TAS operation seems too
complicated for our purpose. We won't need a memory value to test, but
just one bit (free or occupied). We will need an arbiter to keep track of
the requests and to give every request a fair chance.

3.4. serialization

The second multiprocessing problem is serialization. We will illustra te the
problem using an example [Janson, 1985]. Processor PI waits to transfer
money from an account A to an account b, while process P2 is trying to
compute the sum of A and b. Clearly PI and P2 will want to lock A and
b, to guarantee mutual exclusion while using them. Imagine that PI locks
a, releases it and locks b. P2 locks a, releases it and locks b, which can
give the wrong result. What we want is called serialization, i.e. that PI
and P2 while operating in parallel, preserve the illusion that they operate
in series. The solution is called two phase locking. Two-phases locking
states that a processor wanting to preserve the illusion of serial access
must hold all locks it acquires, until it releases any of them.

Although serialization is a serious problem, it can't be solved in
hardware. It should be solved in the process description using
synchronization and mutual exclusion primitives.



3~

3.5. synchronization

Two parallel operating processes need synchronization (e.g. a process has
to read the result of another process and it needs to know when a new
result is ready). A mechanism should enable processes to communicate and
synchronize themselves. so they will know when to wait and when to
restart. We discuss synchronization techniques.

3.5.1. SEMAPHORES

The Pand V primitives are designed to manage variables called
semaphores. A semaphores is a cell of memory. that resides inside the
processor management mechanism and is accessed only by the primitives
for handling semaphores. The P(S) primitive works like a lock instruction.
It tests semaphore S and sets it to 0 if it now equals 1. Otherwise it
puts the name of the process in a waiting list associated with S and
stops it. An execution of the V(S) primitive would then restart the
stopped processor and reset the semaphore to its initial value.

The implementation of semaphores primitives is based on the use of locks
and interrupt masking inside the processor management mechanism.
Problems will arise. if two processors invoked the primitive at the same
time. Pand V primitives are also critical sections. They are protected by
a common lock. The interrupts are masked between locking and unlocking
time. Semaphores eliminate the problem of busy-waiting. a processor
trying to enter a critical section when it should not. is stopped.

The semaphore concept can be generalized. Suppose we have a buffer
holding several messages and several processes produce and read
messages. Counting semaphores can be used to coordinate all processes.
The semaphore equals the number of messages in the buffer. A V
operation increases the semaphore by one. A Poperation increases the
semaphores by one. if that semaphores is strictly positive.

The main disadvantage of semaphores in operating systems implementation
as synchronization primitives is the number of variables they require
which are stored in primary memory. The number depends on the
programs in the system.

In application specific VLSI design the number of semaphores is known.
so they can be implemented in hardware. We should also solve the critical
sections problem of the V and Poperators and the danger of executing
two Pand V operations together. We will have to implement a list of
processes. but in dedicated hardware design the list is limited. If it gets
too complex. we can always use a queue.

3.5.2. BLOCK AND WAKEUP

The BLOCK(B) and WAKEUP(W) primitives. which operate on the virtual
processors solve the problem that semaphores present in operating
systems. They require only one bit per virtual processor. Since the
maximum number of virtual processors is always limited in practice. the
number of bits required is also limited and known in advance. The B
primitive simply stops the process. that invokes it and puts it in agiobal
list of waiting processors. Band Ware mutually exclusive. They are
executed under a lock to protect the integrity of the list of blocked
processes.
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In the case of semaphores, waiting was associated with a particular event.
Here processors do not wait for events, they just wait and expect their
partners to wake them up. These partners have to know one another's
identity as opposed to knowing semaphore names.

A problem is to ensure that the event for which the process is blocked,
has occurred and not an event for that process for which it will be
blocked later.

Because in VLSI design we don't have the disadvantage that semaphores
require too much memory and block and wakeup require extra checks as
mentioned, we choose the semaphore implementation for the
synchronization.

3.5.3. HIGH LEVEL MECHANISM: MONITOR

The discussed primitives are of a very basic level in the sense, that
processors programmed by the users are responsible for the correct usage.
Failure to properly use the primitives may result in loss or destruction of
shared data or inconsistency in shared data. To solve these problems
several mechanism of a higher level have been proposed. These
mechanisms have been invented in the context of parallel programming
languages. The realization of these high-level synchronization mechanism
uses the low-level primitives. [Raynal,1986], [Andre,1985], [Hoare,1976]

Monitors are a synchronization mechanism based on abstract data types.
With abstract data typing, variables can not be manipulated directly.
Instead, variables of a given type may be manipulated only through
primitives provided for that effect. A monitor also specifies the necessary
synchronization conditions for accessing data. The primitives composing
the monitor are mutually exclusive. Synchronization signals are exchanged
inside the monitor by the processors, that successively penetrate the
fence, through some primitive signalling mechanism (such as a semaphore).
So a monitor can cause the processors to be queued at various piaces,
waiting for different events, once they invoke the monitor and enter it.
[Hoare,1974] In the original defini ti on of monitors synchronization is
achieved through the use of signa I and wait primitives. An important
issue is the fair scheduling of waiting processes.

The implementation in an architecture module would require queues,
arbiters, semaphores and a program to manipulate data. The main
advantage of monitors is that they are an abstraction, which has been
designed to be safely shared between processes, as it can be accessed
only in a disciplined way and which removes the problem from the user,
who only has to deciare some data as a monitor! But a monitor isn't a
suited solution for our problems. We will use the concept of disciplined
access and a separate controller for a resource manager (an architecture
module), which controls the access to the shared resource. Deadlock can
be fought using prevention, avoidance or detection. [Janson, 1985]. But in
applications specific VLSI we knowon forehand if deadlock can occur and
we can avoid it using a software synchronization technique.
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3.6. scheduling/dispatching

Now we have discussed the part of the processor management mechanism
dealing with multiprocessing issues, we will have a brief discussion of
how to multiprogam one or a small number of physical processors to
support the abstraction of a multiplicity of virtual processors. The task
that schedules the virtual processors is called dispatcher. We are
interested in a solution for scheduling a few tasks in an architecture
module depending on external events to start the program or to run a
few tasks having timing constraints.

Multiprogramming consists of multiplexing physical processor among
virtual processors.

Two possibilities exists for stopping a virtual processor:
• a processor may be stopped when it asks to be stopped i.e. when
it ca lIs a primitive P, Block or when it is finished
- a virtual processor may be forced to stop if it has had a physical
processor for a long time (clock interrupt) or if an event occurs
that demands the attention

The state information must be saved when a physical process switches
virtual processors. Processor states are saved and stored in a table YPT
(virtual processor tabIe)

The size of the YPT is limited, because it has to remain in primary
memory. The algorithms to execute scheduling and dispatching are
discussed in [Janson, 1985] and [Kylstra, 1984].

Some discussed techniques are too complex, because of the requirements
of an operating system. An operating system should handle unknown
processes and events (character and number), should simulate concurrency
for the user, should not allow busy-waiting and should optimize resource
use and response time. The restrictions in hardware design are less
demanding and so easier to fulfill.

The multiprogramming can be implemented in the architecture modules. It
requires a process to keep track of the schedulingjdispatching. We need
to save the lists of tasks and task status information (YPT). Fortunately
we know which processes to schedule and the number of processes is
limited. We choose a process using algorithms, which try to fulfm every
timing constraint. If we would al/ow processes to he interrupted at every
point in their program, we have to save an enormous amount of
information for the processing state.

SimpIer features are required after reduction of interrupt situations. We
allow stopping the task execution only, when the task allows this itself.
A task may only be interrupted, when we can't allocate that interrupt
handling to another architecture module, or the task state doesn't have
to be saved and after the interrupt handling the task win be resumed.

The number of processes is fixed (no creation of processes). Ir in an
architecture module several processes are runnable, one will be selected.
A primitive can put a process in a wait state and restart the execution of
another process only under very special circumstances. Running processes
can be busy-waiting. We have to decide, what to do if a process is
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waiting for an event. Because the possibilities are limited, the solution is
easy to implement.

A clock interrupt should not occur, which simplifies the dispatching and
reduces the amount of state information to save.

Because the required scheduling is known and the number of processes is
limited, we can implement the scheduling algorithms in hardware. One
feature of all the scheduling algorithms we will frequently use, is task
priority. The only problem with using priorities is starvation. Since
another process has always a higher priority at the scheduling moment, a
process is never started.

3.7. conclusion

The problems encountered by the implementation of parallel operating
architecture modules are solved in operating systems using software. Some
solutions used in operating systems are implementable in hardware.
Several techniques are too complicated to use or to implement, since more
complex situations occur in operating systems then in hardware. The main
difference is that the number and characteristics of the processes and
events in a VLSI design are known. In dedicated hardware we have more
information about the timing of events.

As in operating systems we define low level primitives for mutual
exclusion, synchronization, scheduling and dispatching. For
synchronization the semaphore primitive is used. The concepts of the
monitor for shared resources is translated in a parallel operating unit to
con trol the access to shared resources avoiding starvation.

Although we have primitives, the synchronization problems still remain.
They are solved using parallel programming techniques to synchronize
critical sections and to implement mutual exclusion for critical sections.
Deadlock should be avoided.

The control implementations of mutual exclusion and synchronization
primitives are special architecture modules (arbiters, resource managers,
schedulers). The module will avoid starvation using a rotating priority
scheme.

The schedulingjdispatching in the architecture module is solved with a
dispatching algorithm. The context switch is avoided by restricting the
blocking and interrupting of tasks. A task should be interrupted without
having to save the datapath contents.

The dispatching variations are reduced. Avoiding the saving of the
processor state reduces the size of the VPT. By restricting the interrupt
of tasks to situations where only little status information has to be
saved, reduces the size of a VPT. Only a few tasks are allocated to one
module and the number is known. The status of these tasks has to be
recorded. The VPT has only a few entries. So we don't need large tables.
This simplifies the dispatcher.

Ir a requirements model needs a more sofisticated operating system
feature, we can built that feature using hardware primitives and a parallel
control transformation module.
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4. SYNCHRONIZATION AND COMMUNICATION

PRIMITIVES

4.1. introduction

When formulating PSPEC and CSPEC we encountered the problem of
introducing synchronization. At higher levels in the model it is not even
clear how the synchronization will be implemented. The CSPECs and
PSPECs can contain synchronization and communication actions. When
synchronization primitives activate or deactivate transformations, they
describe control actions. But the event processing to generate a data
condition (CF) is performed in data transformation. CSPECs only activate
and deactivate processes and don't process any control or event flow. At
every level one CSPEC coordinates the transformations. We are focussing
on actions between the transformations, so the primitives are introduced
in the PSPEC. During further transformation decomposition the
synchronization primitives can be allocated to a CSPEC.

Primitives to capture the necessary synchronization and communication
will be introduced in th is chapter. After the synchronization requirements
model we discuss the allocation problem of the synchronization execution
at the bottom level. We restrict the primitives definition to the ones
needed for describing synchronization in the requirements model trying to
capture concurrency. Primitives for task synchronization in one sequential
module will be discussed later.

For further discussion on synchronization, communication, communicating
finite state machines and mutual exclusion problems see [Raynal,1986],
[Andre,1985], [Dykstra] and other publications on these subjects. For
protocols and protocol implementations in VLSI see [Haynes,198l] and
[Mead, Conway,1980].

4.2. process synchronization

Process execution can be waiting for the occurrence of an event or for a
condition getting true. This condition check is a control transformation.
Figure 25 contains the requirements model for the condition scheduling of
one condition identifier. CFs can be events or control signals generated
after processing an event. The condition can be quite complex requiring
information of several modules, timers, calcula tions, logical expressions. If
data should be processed, a data/control transformation is introduced.

The CSPEC is allocated to a separate module (SAM, scheduling
architecture module) to take care of the asynchronous events. A required
data/control transformation will also be allocated to the SAM. The
process itself will be allocated to a PAM (processing architecture module),
where another process can run, if this process is not runnable. Another
allocation is to transform the CSPEC into a task running in the P AM. But
it is questionable, if the PAM is suited for the condition checking and it
also removes concurrency. For every condition a SAM will be
implemented.
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A process signals another process when a part of the condition is
satisfied. The process shouldn't signal the other process that it can start,
because the process can't know, what the synchronization condition is.
We define a primitive SIGPROC(IDENT) (signal process) to signal the
event (CF):

SIGPROC
IDENT

CF2
, CF3

\

C~l ~/.~~..~./ /"

'-V
CFD LEVEL N

= signal process
= schedule condition identifier;

CFl CF2 CF3 CFl CF2 CF3
"- / " I

\ f \ I SAM\ ( \ (
'V

A
Y '*'

'V
A

Y
\
'i

I \ REQI \ GRT
\ I I Ie 8 PAM

CFD LEVEL N+1 AFD

tigure 25: model proc:ess sync:hronization

An identifier can refer to a schedule condition for several processes. The
SIGPROC should be given directly after the action satisfying the
constraint preventing that the execution of the other process has to wait
unnecessarily.

The process walttng for the condition becoming true executes the
primitive WAITPROC(IDENT) until it receives a signal to continue,
depending on the condition to which the identifier refers.

WAITPROC(IDENT): REPEAT SKIP UNTIL CONDj
CONDITION:= FALSE;

An implementation using a handshake protocol:

REQ:=TRUE;
REPEAT SKIP UNTIL GRTj

REQ:=FALSE;

If for example a semaphore is used. the primitives are simplified to:

SIGPROC(IDENT) :lO:=lO+1j

WAITPROC(IDENT) :REPEAT SKIP UNTIL lO=Oj

10:=10-1;

Both actions (increment and decrement) are executed in the SAM
introducing a data transformation. The implementation of SIGPROC and
WAITPROC are signais, which can be tested by the modules. The monitor,
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a con trol process of the processing module tests all grant signals for
allocated processes and selects a process. A monitor can receive several
signals at the same moment. so a priority scheme selects the process to
start. The scheme should prevent starvation. After process execution the
monitor selects a new process.

Appendix B contains implementations of the SAM using several techniques
for process synchronization.

4.3. request/acknowledge synchronization

Request/acknowledge synchronization existing only between two partners
is used to request something from another process (coprocessing) or to
signaI the partner to take action for some event (e.g. pipelining). (see fig
26).

REQ

8ROC
:------Q

ACK V-- ---
figure 26: requirements model for RIA synchronization

The requesting process expects an acknowledge from the requested
process, af ter the action has been performed, so that it can genera te a
new request. We define the following primitives:

REQ(lDENT)
WREQ(lDENT)

ACK(lDENT)

WACK(lDENT)

: sends a request to the partner (request)
: the partner waits for a request (wait
for request)
: sends a acknowledge to the requesting
partner (acknowledge)
: the requesting partner waits for an
acknowledge (wait for acknowledge)

The request and acknowledge combination of two processes has an
identifier (IDENT).

PSPEC 1:

REQ(ID);

WACK(ID);

PSPEC 2:

WREQ(ID)j

ACK(ID);

figure 27: process specifications

The process specifications (figure 27) contain also the actions on the
dataflows between the processes. If both processes are allocate to
different architecture modules, a real parallel execution is possible,
otherwise the PSPECs have to be rewritten, since the processes are
executed after each other. We will use other primitives.
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An implementation description using a boolean SIG is :
REQ(IDENT) SIG:=TRUEi
WREQ(IDENT) REPEAT SKIP UNTIL SIG;
ACK(IDENT) SIG:=FALSE;

WACK(IDENT) REPEAT SKIP UNTIL NOT(SIG);

4.4. mutual exclusion and correct synchronization

We should protect programs against wrong mutual use (shared variables).
Mutual use of resources occurs when several processes want to access the
same information (variabie) or when a process wants to give information
to another process or several other processes. Parameter communication is
a mutual exclusion probiem. Several processes access the identical
varia bie. Parameters can be located in one resource. Communicating
processes consisting only of critical sections (ie the program can't release
the resource during the total execution time) should copy the parameters.
The copying is a mutual exclusion action.

Mutual exclusion doesn't guarantee, that the contents of the resource is
correct. The programmer should synchronize mutual exclusion resources
using process or RIA synchronization, when the processes have to access
the resources in a sequence.

'4'
GlIT I ,10

I I

;r9
PAM

(PROC2)
, ,

-.........---/

figure 28: model of mutual exc:lusioD (RMAM= resource manager
architecture module)

Figure 28 describes the requirements model introducing the problem of
mutual exclusion. Only after the allocation of the processes la separate
architecture modules the mutual exclusion problem occurs. In the
requirements model we already try to describe the problem in terms of
concurrency and describe mutual exclusion. Processes allocated at the
bottom level to one architecture module can't be active at the same
moment and so can't access the resource together. The process
synchronization in that module should guarantee the correct sequencing of
the access.

To indicate sharing of resources we introduce as early as possible the
protection for the resource. We define mutual exclusion primitives:

WAITRES(ID): REQ:=TRUE;

REPEAT SKIP UNTIL GRTi

(wait for grant access resource)

RELRES(ID): REQ:=FALSE; (release resource)
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ID is an identifier for the resource or the group of resources.

A weaker form of mutual exclusion allows all requesters to read a
variabIe, but for changing the value only one process gets access. An
implementation is setting a bit, which is tested before writing and
reading. If more requests are generated at the same instant, conflicts
arise. We introduce the following primitives:

WRDRES(ID):

WWRRES(ID):

RLRDRES(ID):

RLWRRES(ID):

WAlT UNTIL ALLO WED TO READ

(wait for read access resource)
WAlT UNTIL ALLO WED TO WRITE

(wait for wait access resource)
RELEASE RESOURCE AFTER READ

(release resource after read action)
RELEASE RESOURCE AFTER WRITE

(release resource after write action)

A read is allowed, when no process is writing or reading. All waiting
READ requests are granted together. Only one process may write at the
same moment. Starvation may not occur and reading and writing should
be handled with the same priority.

The duration of the resource locking depends on the program. To avoid
too much overhead by requesting several resources after each other, it is
allowed to request together a group of resources. This technique also
solves the serialization problems.

PSPEC;

WAlTRES(ID);

MANIPULATE RESOURCE

RELRES(ID);

figure 29: process specification using mutual exclusion

The primitive execution introduces critical sections, since several
processes can try to access the resources at the same moment. If the
process sequence accessing the resource is known, a simple solution is
process synchronization deciding whose turn it is.

We introduce a module, an arbiter granting the access. This arbiter is a
parallel process, since requests can arrive at every moment. The
allocation model introduces the resource manager module (RMAM) (see fig
28). The RMAM implements the identifier relations and the types of
request (single access or read/write access). The arbiter tests the signals
asking access and grants it to an architecture module. It takes a while
before a request is acknowledged, checking all requests sequentially. A
solution is a test on all signaIs, requiring priori ties or conflict resolving
request schemes.

The resource manager is a control transformation, whose goal is to avoid
starva tion making the implementa tion of the transformation difficult,
needing a rotating priority scheme.
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The CSPECs of the resource manager aren't easy to formulate. A finite
state description can be very complex, if several (more then two)
requesters exist. We formulate the CSPEC as follows: select the request,
which has the highest priority and give that request after granting the
lowest priority. For every set of resource identified by one identifier a
manager is used. Only if identifiers have arelation, they are allocated to
one RMAM (e.g. 3 resources, sometimes they are all requested together,
or just one, or two independently, whose access may be granted together.
These relations are implemented in the resource manager; see appendix B).

Locking the resource doesn't assure correct operation of the program,
since the access sequence of the resources isn't synchronized. The
following examples illustrate that mutual exclusion doesn't guarantee
correct program execution. We wiII indicate a few solutions. In the
Iiterature several techniques are introduced for these problems. They also
discuss the mutual exclusion access synchronization for more than two
processes. [Raynal,1986], [Andre,1985]

PROC P;
REPEAT ....

BEGIN

(* CS *)

WAITRES(IDENT);

RESA:=

RELRES(IDENT) ;

(* NCS *)

END;

PROC Q;
REPEAT ....

BEGIN

(* CS *)

WAITRES(IDENT);

:=F(RESA,.. );

RELRES(ID ENT);

(* NCS *)

END;

figure 30: example 1; CS is critical section; NCS is non critical section.

Process Q in example I should use the information prepared by PRoe P
in resource RESA. It can process the identical information of RESA
several times, while it expects new data. This is caused, when PRoe P
isn't activated. The solution is using req/ack synchronization and the
mutual exclusion primitives can be dropped, if no other process has
access to the resources.

PROC P;
(* INIT ACK *)

REPEAT ....

BEGIN

(* CS *)

WREQ(ID);

RESA:=

ACK(ID);

(* NCS *)

END;

PROC Q;
(* INIT REQ *)

REPEAT ....

BEGIN

(* CS *)

WACK(ID);

:=F(RESA,..);

REQ(ID);

(* NCS *)

END;

figure 31: solution for example 1 using RIA synchronization

By initializing the request and acknowledge stores correctly the critical
sections are executed aiternately.
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When two communicating processes consist of only critical sections, the
information in the identical resource has to be copied, so that the critical
sections are shorted and non critical sections are introduced. The
programs change into (RESA is only changed in the es of PRoe P during
that period PRoe Q can't copy RESA):

PRoe P;
(* INIT ACK *)

REPEAT ....

BEGIN
(* CS *)

WREQ(ID);

COPY;

(RESA:=RESA1)
ACK(ID)j
(* NCS *)

RESA1:=

END;

PRoeQ;
(* INIT REQ *)

REPEAT ....

BEGIN
(* CS *)

WACK(ID)j

COPYj

(RESA2:=RESA)
REQ(ID)j

(* NCS *)

:=F(RESA2,..);

END;

figure 32: solution for example 1 using copies

Sometimes processes access identical varia bles but not alternately. PRoe
P needs the variable only after PRoe Q has processed it a fixed number
of times. A synchronization solution for this problem is:

PRoe P;

LOOPA

BEGIN

WACK(ID);

LOOPB

BEGIN

WAITRES(RESA)i

RESA:=F(RESA, .. );

RELRES(RESA);

END;
REQ(ID)j

END;

PROCQ;

LOOP

BEGIN

WREQ(ID)j

WAITRES(RESA);

:=F(RESA,.. )j

RESA:=G(RESA•... )j

RELRES(RESA)j

ACK(ID)j

END;

The synchronization prevents that the resource is accessed by both
partners at the same instant, so the mutual exclusion primitives can be
dropped. But if another process reads RESA at unexpected times (e.g. to
check the evaluating of variable RESA) the primitives are essential. Read
and write mutual exclusion could be implemented.
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4.5. communication

Processes communicate with each other. Communication means glvmg
information to other parties or exchanging information between at least
two partners. In a hardware design several types of communication
occur:

- communication to the external world;
- communication between processes scheduled after each other in
time. These processes are allocated in different modules or in one
module;
- communication between parallel processes in different modules;
otherwise the processes aren't concurrent.

In every situation the integrity of the data should be guaranteed.

The only difference between the nrst type and the others is that the
expected event doesn't have to occur, since the external world doesn't
need to react. For the second type the timing is no problem. The
information should be ready before the receiving partner can accept it.
The allocation must assure th is, otherwise synchronization must be
introduced. The sender produces the information and stores it somewhere,
but will never know if the receiving party gets the information. When the
sender is active again and has to know if the information is fetched,
synchronization e.g. RIA synchronization must be used. The receiver
should be able to access the store. Communication between processes in
the several modules requires that the information is accessible indicating
that the resource is part of several datapaths. For processes in the same
module the store needn't be accessible for other modules.

~~8I ?ReCI ) DF! PROC2
\~

DFD

CFD

~
DF2

DFD

DAV!
.... -----

6ROC1 / =~R?~!~~e-"PROC2
-.. RFD2 /

-.. ------
DAV2

CFD

figure 33: requirements model Cor communication

The receiver knows the store's address (direct access) or knows the
address of a store containing an address (indirect access). Several
addressing methods can be used. Because the information exchange occurs
in the time, it is possible that the information is changed by another
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process before the receiver fetches it. The allocation redefining PSPECs
and CSPECs should avoid this.

For the third type the communication takes place while the processes are
both running requiring synchronization. A handshake transports the data
over a resource (databus). The receiver translates the protocol signals
into con trol signals for its datapath, or another architecture module
accesses directly the resource belonging to the datapath of the receiver,
which requires that the control Hnes are multiplexed, but the exchange is
still synchronized. An objective for this third type is to minimize the
number of resources. Only if the required program flow /execution is
slowed down, the information is exchanged using copies.

Exchanging information between two parallel processes requires that both
partners are ready for the transaction. Otherwise the receiver can miss
the information. Besides we should try to minimize busy-waiting of one
partner in the exchange, happening when only one partner is ready. The
partner should be signalled, that the correct data is presents. A
handshake protocol is introduced to synchronize the communication (see
fig 34).

PROCl;

SETUP LINK
SEND INFO

REMOVE LINK

PROC 2;

ACK SET UP LINK

RECEIVE INFO
ACK REMOVE LINK

figure 34: specification of communication

RFD
DAV

figure 35: data communication protocol using handshake and ready
for data (RFD) and data available (DAV).

In the architecture model a data bus conneets modules. Several modules
can try to access that bus (shared resource) at the same instant. The
allocation introduces a resource manager for the bus (bus arbiter module
BAM). In the implementation a method is needed to select the correct
partner. The sender can select the receiver by generating a
synchronization signal (e.g. DAV for AMl). A DAV Hne is connected to
every architecture module where to data will be sent. A more common
method is the put an address on the bus, which selects the receiving
module.

The data is put on the bus af ter the grant of the arbiter. The protocol
can be found in figure 35. So we use the handshake of (see figure 36):

l. ready for data (RFD)
2. data available (DAV)
3. data copied
4. no data available anymore

This protocol is necessary because of the parallel operating processes.

If both modules use the same clock frequency. the protocol can be
simplified. After making the data available, the data will be copied in a
fixed period. So the signal data copied is redundant. Even so no data
available any more. The implementation of the synchronization and
communication depends on the process allocation.
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BGRT
BREQ
RFD
DAV

figure 36: data communication protocol using handshake and a
resource manager.

The PSPEC or CSPEC use program structures, synchronization and mutual
exclusion primitives to guarantee the data integrity.

Sometimes the PSPEC of the communicating processes don't require a
protocol for the exchange. The necessary synchronization (e.g. critical
sections) assures correct information exchange avoiding problems in the
allocation as long as an information channel is allocated exclusively to
the communicating modules. With an exclusive channel only some hardware
register control signals are generated for the datapath belonging to the
other module or communication synchronization signals are generated for
the control unit of that module, where they are translated into control
signal for the resources in the datapath. Otherwise the channel is shared
requiring mutual exclusion.

La ter we will discuss in detail the communica tion f or shared processing,
which has a parameter and result phase. Mutual exclusion and a correct
synchronization is needed, so that the process receives the correct
parameters/results at the correct moment.

THE DATA COMMUNICATION PRIMITIVES
We define primitives for the data transport on a private channel using a
handshake protocol. When the channel is shared, we use a bus arbiter.
The number refers to actions in figure 36.

PUTARB :=
REPEAT SKIP UNTIL RDF; (·1·)
WAlTRES(BUS)j (.%.)

COBEGIN
DAV:=TRUE; (·3·)
ENBUS:=TRUEj (. Enable data on bUI·)

COEND;
REPEAT SKIP UNTIL NOT(RDF); (••• )

COBEGIN
DAV:=FALSEj (·S·)

ENBUS:=FALSEj

RELRES(BUS);

COEND
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PUTARB (SOURCE) :=
REPEAT SKIP UNTIL RDFj (*1*)

WAITRES(BUS); (*2*)

COBEGIN
DAV:=TRUEj (*3*)

EN[SOURCE):=TRUE; (* Enable data on bUI *)

COENDj
REPEAT SKIP UNTIL NOT(RDF); (*4*)

COBEGIN
DAV:=FALSEj (*5*)

EN[SOURCE):=FALSE;

RELRES(BUS);

COEND

This last primitive will be used, when several registers can put data on
the bus. Using a private channel they change into: (see figure 36 data
communication protocol).

PUT :=
REPEAT SKIP UNTIL RDFj (*1*)

DAV:=TRUE; (*2*)

REPEAT SKIP UNTIL NOT(RDF); (*3*)

DAV:=FALSE; (*4*)

PUT (SOURCE) :=
REPEAT SKIP UNTIL RDF; (*1*)
COBEGIN

DAV:=TRUEj (*2*)

EN[SOURCE):=TRUE; (* Enable data on bus *)

COEND;
REPEAT SKIP UNTIL NOT(RDF); (*3*)

COBEGIN
DAV:=FALSEj (*4*)

EN[SOURCE] :=FALSE;

COEND

The data owner puts the data on the bus, since the bus should be
requested when the actual transport will take pIace to a void locking the
resource unnecessarily long. The receiver doesn't request the bus, so the
primitives don't differ for a private or shared channel.

GET :=
REPEAT SKIP UNTIL NOT(DAV);

RFD:=TRUE;
REPEAT SKIP UNTIL DAV;

COBEGIN
LDREGj (* load reg *)

RFD:=FALSE;

COEND

G ET (DEST) :=
REPEAT SKIP UNTIL NOT(DAV);

RFD:=TRUE;

REPEAT SKIP UNTIL DAV;

COBEGIN
LD[DESTJ; (* load destination register *)

RFD:=FALSEj

COEND
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5. 5HARED PROCESSING

In the requirements model identical transformations can be found at
various places operating on different data flows of the same composition
(fig 37). This process can be allocated to one architecture module
redefining the requirements model and introducing the shared process (fig
38). To simplify the discussion and the figures we allocate one process to
one module, which is divided into several calling processes, or shared
processes and con trol transformations at the next level.

A shared process is called by processes allocated to processing
archi tecture modules (PAMs). Different shared processes are allocated to
one architecture module. So the process SP in figure 38 can contain
several shared processes at the next level. Shared processes are allocated
in one module, since they require special hardware to communicate with
the ca liers (requesters). In some applications a transformation is
encountered so often. that the identical shared process is implemented in
more modules. In both configurations it is not yet defined, how the
architecture module selects a call.

DFD LEVEL N

DFD LEVEL N+l

figure 37: identification of sbared process

We distinguish three partners: the caller (calIing process (CP», the shared
process (SP) and a serving process (server). A calling process is executing
its program when it encounters a set of instruction to execute a
transformation allocated in another architecture module, better fit to
execute the ca lied job (specialized hardware e.g. multiplier) or speeding
up the program execution (parallelism, pipelining) or just saving resources
in the implementation. The calling process gives its request to the server,
which schedules the requested process on the sbared processing
architecture modules (SPAM), af ter they request a partner.

During process execution the caller and shared process communicate, so
synchronization signa Is are exchanged between the partners to assure
correct communication requiring redefinition of the requirements model
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in trod ucing new processes, since an input and ou tpu t flow of the shared
process must be directed to the caller.

9L
'----< '"
~

CPAM

DrD or rDUR PRDCESSES
"JH[CH CALL DNE
SHARED PROCESS

CPAM .

\'IBJ\///
, SP ',__ SP AM
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[éJ/tBJ
CPAM CP AM CPAM CPA'"

figure 38: shared process and its allocation

In a SPAM containing several shared processes. a program (monitor) will
start the correct process after requesting from the server the process
identity. The server knowing all the pending service requests and their
priori ties gives the identity of the requested process can be given to the
SPAM by raising a signal identifying the process. A CPAM can have more
request lines (one for every shared process). Another method is to
generate a command word included in the parameter communication phase.
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We introduce three kinds of servers: first, the hardwired server, which
selects the process to start and sets up the synchronization link and
gives the SPAM the identity of the requested process, second, the arbiter
server, which is only an arbiter and where the caller gives the shared
processing module a command indicating the requested process and third,
the buffer server, where buffers for the input and output communication
are used. The first two servers require a direct connection between the
CPAM and the SPAM to synchronize actions.

:;PAI1

,

8 8
~

~~~I SVAM

SPAH

CFD TOR ONE SPAM CFD FOR ONE SPAM
WITHOUT OWN SERVER

(LEVEL M+I)

figure 39: allocation to one SPAM

The task of the server is to decide, which request will be granted, after
the shared processing module requests a new process. If no call is
pending, the server keeps testing all the inputs until a call is received.
The server selects the call with the highest priority (no starvation is
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possible using a rotating priority scheme). Using a hardwired server the
call will be decoded into the correct SPID (shared process identifier), for
the monitor the identity of the process to execute. The calling process
will receive a grant.

First we discuss the allocation of the shared processes in to one SPAM.
Several calling process architecture modules (CPAM) operate in parallel.
Out of the generated requests one is chosen, then the called process must
be determined and started. The SPAM has to synchronize and to
communicate with the correct CPAM requiring a muItiplexer. The server
executes these functions. Figure 39 contains the CFD for one SPAM.

SVAH

DFD

figure 40: alloca tion to senral SPAMs

We won't de fine the con trol fIows at this point, since they depend on the
communication and synchronization protocols. CF land 2 combine all
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control signaIs of all CPAMs. CFs 10,11,12,13 contain all control flows of
the selected CPAM. CF3 signals the selection of a caller and CF5 gives
the identity of the requested process. Using one SPAM the server can be
allocated to that SPAM or to a separate module (SVAM server
architecture module).

In an allocation with several SPAMs the server has to be allocated to an
architecture module (fig 40). The second control flow from the server to
the SPAM exists of the identity of the called process. Since a databus is
used, all modules are connected with each other. The data communication
synchronization is allocated to the control flow directed to the
multiplexing server making the connection.

Every allocation depends on the method of generating the identity of the
called process, the server type implemented, the number of SPAMs and
the data parameter/result communications method. We will see several
allocations in the next chapters. Because of the complexity we won't
discuss the techniques separately, but they will be illustrated in
implementa tions combining several methods.
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6. DIRECT CONNECTION SHARED PROCESSING

METHODS

6.1. the primitives for starting a shared process

6.1.1. SERVER AND CALLER SYNCHRONIZATION

A purpose of concurrency is to caU a shared process and still execute a
program. The caller doesn't know when its call will be served, so it is
essential to execute a parallel program while generating a request to
activate the shared process. The request will be active until it is served.
After a while the server grants the request signalling it to the caller,
which removes the request. The caller should start testing the grant
immediately af ter the request generation, so that actions (e.g. parameter
preparation) can be started after the grant receipt causing an efficient
use of the shared processing module. A four phase signaling is used with
two lines called service request (SVREQ) and service grant (SVGRT).
Because of the parallel execution, the receipt of a signal should be
acknowledged, otherwise the sender doesn't know, if its signal is received
and if the correct action will be started.

SVREQ -----..J I

SVGRT 12

figure 41: svreq and svgrt

The synchronization between the server and caller:

CALLER
1 SVREQ(IDCPAM)

2/3 WSVGRT(IDCPAM)

IDCPAM

SVREQ(IDCPAM)

SVG RT(IDCPAM)

WSVGRT(IDCPAM)

REMSVREQ (IDCPAM)

WREMSVREQ(IDCPAM)

SERVER

2 SVGRT(IDCPAM)

4 WREMSVREQ(IDCPAM)

: IDENTIFIER OF THE CPAM

: SVREQ:=TRUEj (service request)

: SVGRT:=TRUEj (service grant)

: REPEAT SKIP UNTIL SVGRTj ( wait for service grant)

: SVREQ:=FALSEj (remove service request)

: REPEAT SKIP UNTIL NOT(SVREQ);

SVGRT:=FALSEj (wait remove service request)

The caller has the responsibility to remove the request indicating that the
SVGRT has been received and the next phase can be started. After the
request removal, the grant will be removed.
The requirements model of the calling process:

CALLER PSPECs:

svreq(idcpam)j
cobegin

begin
prog; (- parallel program -)

end
begin

wsvgrt(idcpam)
prog comj (- communication necessary for spam -)

end -
coendj
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The part PROG_COM contains the REMSVREQ(IDCPAM). This statement
can be executed with WSVGRT(IDCPAM).

6.1.2. SPAM MONITOR AND SERVER SYNCHRONIZATION

A monitor and several processes are alloca ted to the SPAM. After
process execu tion the SPAM monitor requests a new partner and starts
the new program after receiving a server acknowledge, generating the
correct handshake signals and getting the identity of the requested
process. We introduce again a four phase signaling with one monitor
request line (MNREQ) and one monitor acknowledge line (MNACK). A
handshake is used to signal the receipt.

MNREQ _------l=~~t~===~3~17l==MNACK _ I. .l-..-

figure 42: synchronization monitor and server

The communication between both parties:

MONITOR
1 MNREQ(IDSPAM)

2 WMNACK(IDSPAM)

3 REMMNREQ(IDSPAM)

4

IDSPAM

MNREQ(IDSPAM)
MNACK(IDSPAM)

REMMNREQ(IDSPAM)

WMNREQ(IDSPAM)

WMNACK(IDSPAM)

WREMMNREQ(IDSPAM)

SERVER
WMNREQ(IDSPAM)

MNACK(IDSPAM)

WREMMNREQ(IDSPAM)

REMMNACK(IDSPAM)

: IDENTIFIER FOR MONITOR AND

SERVER SYNC
: MNREQ:,=TRUE; (monitor requelt)

: MNACK:=TRUE; (monitor acknowledge)

: MNREQ:=FALSE; (remove monitor request)

: REPEAT SKIP UNTIL MNREQ; (wait for monitor request)

: REPEAT SKIP UNTIL MNACK; (wait for acknowledge)

: REPEAT SKIP UNTIL NOT(MNREQ); (wait for removal

mnreq)

To illustrate the synchronization, we use a server generating the SPID
(shared process identity) out of the service request and giving it to the
monitor. The SPID decoding starts the correct process. The monitor
acknowledge (MNACK) signals the partner selection and the SPID
generation. How this SPID is fetched, depends on the implementation.

The requirements model of the monitor (example):
SPAM MONITOR PSPECs:
while true do

begin
mnreq(idspam); (* requelt new procesi to execute *)
wmnack(idspam); (* wait for spid to execute *)
fetch Ipid;
remnÜÏreq(idlpam); (* remove requelt for new procesl*)
wrmnack(idspam); (* wait for end of protocol *)
case Ipid do

idl : proc idl;
id2 : proc id2;

ëöd;..···
end;

od;
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The server acknowledge will be held active, until the monitor has fetched
the SPID. Otherwise it could be removed too early causing the generation
of a new SPID by the server. Therefor the server will test the SVREQ
line, before the grant will be removed.
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figure 43: the requirements model for shared process execution
using a SPID server.

If only one SPAM is used, the allocation can change redefining the
handshaking, since no parallel operation is possible allocating the server
to the SPAM.

6.2. parameter and result communication protocol

A shared process needs data to operate on (parameters). The output flow
(the result) is directed to the caller. To exchange this information
synchronization is required, because both modules operate in parallel. We
will discuss two synchronization schemes. The first one uses multiplexed
control lines for the datapaths. Another module can control resources in
the datapath. The shared process doesn't know the caller's identity, so it
can't access the caller, which has the responsibility for the data
transport (putting the parameters in the registers and getting the result
out of the registers of the shared processing module). The caller will
request the bus for the transactions and generate the control signals for
the registers. The data transport doesn't need any handshaking accessing
the resources correctly, since the SPAM is waiting for parameters and
afterwards will be waiting until the result is fetched. In the other scheme
we will introduce a handshake protocol for data transport using the
process knowledge how much data will be transferred.

First we discuss the result and parameter communication, which
multiplexes control lines. We introduce the PTR (parameter result) line
and the RDY (ready) line.
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figure 44: synchronization between called and shared process

The communication between the caller and the shared process.

CALLER
1. WREQPA;

2. RDYPA;

3. WSIGRSU;

4. RDYRSU;

SHARED PROCESS
REQPA; (* ready to receive parameters *)

WRDYPA; (* wait until all parameters are received *)

SIGRSU; (* aignal reault ia ready *)

WRDYRSU; (* wait until reault fetched *)

Implementation:

REQPA

WREQPA

RDYPA

WRDYPA

SIGRSU

WSIGRSU

RDYRSU

WRDYRSU

: PTR:==TRUE; (requeat parameters)

: REPEAT SKIP UNTIL PTR; (wait for requeat parameters)

: RDY:==TRUE; (ready parameters)

: REPEAT SKIP UNTIL RDY; (wait for ready parameters)

: PTR:==FALSE;(aignai reault ready)

: REPEAT SKIP UNTIL NOT(PTR); (wait for aignal reault)

: RDY:==FALSE; (reault fetch ready)

: REPEAT SKIP UNTIL NOT(RDY); (wait for ready reault fetch)

figure 45: data protocol using multiplexed con trol Hnes to
resources.

In the other scheme the data communication protocol is implemented. This
protocol requiring DAV and RFD signals indicating that parameters or
results will be transmitted, which is allowed since the result and
parameter phase have a known sequencing. The DAV and RFD stores are
exclusive for the specified communication between the selected CPAM and
SPAM and are only used for result and parameter communication.

CALLER: SHARED:

PUT(PAR2);
PUT(PAR3);

GET(PAR2);
GET(PAR3);

figure 46: example of parameter communication
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figure 47: requirements model for parameter and result
communication using DAV and RFD.

: : : : l : : ~ :
I I I I I I I I I
• , I I 1 I I I I
! I I I 1 I I I I
L_~_~ ~_~~ __~ ~_~_~,,

I

figure 48: alloca tion of con trol stores for ptr communication

Both schemes will be illustrated, when the servers are discusses.
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6.3. a hardwired proeess eall identity alloeation model
and pspees

6.3.1. ONE SPAM

The hardwired process identity server avoids starvation of the request
calls and builds up the link between the CPAM and the SPAM, which
doesn't know the caller's identity. The partner of the caller is the server,
which has more partners (the shared processing module and other callers).
A request for a shared process is generated by raising a signa!. The
caller can select the shared processing module registers using address
without needing the protection of a mutual exclusion primitive.

For the moment, we will use just one shared processing module. The
server determines the caller and the identity of the requested process.
The service request indicates the ca lIers identity and the requested SPAM
process, so one CPAM can generate different service requests.

figure 49: allocation model
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CALLER PSPEC:
svreq(idcpam);(* request shared process *)
cobegin

begin
wsvgrt(idcpam); (* wait until process a8signed and grant this receipt *)
wreqpa;(* wait until parameters are requested*)
(* transmit parameters (including bus request) *)
waitres(bus) ;
regl:=parl; (*Ioad parameter I in register I of shared processing module *)
reg2:=par2;
reg3:=par3;

cobegln
reqn:=pam;
relres(bus);
rdypa; (* signal parameters transmitted *);

coend;
prog; (* program execution *)
wsigrsu; (* wait until result is ready *)
(* copy result; (includes bus requests)*)
waitres(bus);
rrsul:=rsul; (* load result I contained in register rsul of the shared

processing module in the register rrsul of the caller *)

cöi)-égin
rrsum:=rsum;
relres(bus);
rdyrsu; (* signal result copied *)

coend;
end
begin

prog (parallel program)
end

coend;
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The PSPEC of the called shared process:

PROCESS SPID PSPEC:
begin

cobegin
initj (. starts some initialization independent of the parameters .);
begin '

reqpaj
wrdypaj
init2; (·initialization depending on the parameters .)

end
coendj
processing;
co begin

exitl; (. statements independent of the result communication to leave the process·)
begin

sigrau;
wrdyrsuj
exit2; (. exit statements, which cao only be executed alter the reauit is fetched·)

endj
coend;

endj

SPAM MONITOR PSPEC:
while true do

begin
mnreq(idspam); (. request new process to execute .)
wmnack(idspam)j (. low active .)
load spid:
remnnreq (idspam);
case spid do

idl : proc idl;
id2 : proc id2;

endj
end;

Combining the introduced PSPECs we produce an AFD containing the
primitive signals (figure 50). The calling process module controls some
resources in the SPAM (z-bus). The SVREQ is decoded by the server into
a SPID. When the server is active, the shared processing module is idle.
Hence the server could be implemen ted in the SPAM.

DATA
:BUS

SERVER MODULE

SPID

I /1' I 'Î' I 'Î' I'Î'I'Î' I'Î'I'Î'
IPIRISISISIS IP,RIS,S IRIP1MIM
ITID'VIVIV,V ,TIDIV,v IDIT,NIN
,RIY,GIRIG,R ,R1Y,G,R IYIR,A,R
I I IRIEIRI E , I IR,E I I ,elE
I I ITIQ IT,Q I I IT,Q I I IKIQ

,'/ I ,'JI~ 11 ~1-J)11 ~I,I/I ,1/

CPAM CPAM SPAM

/:'-
12 /1' IZ F' 2 'Î'L ___________

------~---------------_..1

'v ,1/ ,1/

figure 50: AFD of the hardwired calls shared processing model
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SERVER PSPEC:
begin

while true do
begin

wmnreq(idspam);
repeat skip until request;
select request idcpam;
svgrant(idcpam);
mnack(idspam)j
cobegin

wremmnreq(idspam);
wremsvreq(idcpam);

coend;
remmnack(idspam);
connect; (* select the primitive signals of the cpam *)
wrdy; (* the controller monitors the changes of mnack/rdy line *)
wremrdy; (* necessary to keep track of the state *)
disconnect; (* disconnect the primitive signals of the cpam for the spam *)

end;
od;

end;

The server monitors event af ter each other SVREQ, removal SVREQ,
MNREQ, removal MNREQ, WRDY, WREMRDY. In appendix C the protocol
execu tion is discussed.

6.3.2. PARALLEL OPERATING SPAMS

When several shared processing modules operate in parallel, they can
generate a MNREQ in the same moment requiring an arbiter to select the
MNREQ to serve. After the service grant, the SPID and the CONID (the
id of the CPAM to serve and to build up the connection with) are ready.

The server module should monitor several events at the same instant
(SVREQ, removal SVREQ, MNREQ, removal MNREQ, WRDY, WREMRDY),
now SPAMs operate in parallel. The monitoring of several WREMRDY and
WRDY signals means that parallel processes are running in the server; a
server process is active for every SPAM . Using one sequential module
these processes have to be scheduled making them semi parallel
introducing waiting time. One server module for every SPAM doesn't
work, because a request can be granted by more modules at the same
moment. The solution is to introduce logic to generate the con trol signals
af ter the event occurrence. Only separate logic can guarantee parallel
operation. The event (e.g. MNACK) is translated by the logic into a
con trol signal (e.g. load SPID and CONID). This introduces a large amount
of logic which is difficult to design and can give timing and hazards pro
blems. We conclude that the technique used for one SPAM isn't useful
here.

If the connect module is located in the server module, the server has to
know the identity of the SPAM to build up the correct link between the
SPAM and the CPAM. The SPAM has the knowiedge to break down the
link, hence it will con trol the connect module. No problems arise anymore
abou t what multiplexer to select to serve the correct SPAM. After
selecting a CPAM for granting a SPAM, the SPAM consisting of a
connect and process module, getting the SPID and the CONID sets up
the link. The server had already to send data to the SPAMs (SPID) and
now it sends more information (CONID).
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figure 51: requirements model SVAM and SPAM

A resource manager gives access to the server module. After being
granted the server, the SPAM generates a MNREQ resulting in the server
generating the SPID and the CONID. The SPAM clocks the data. The
resource manager is the arbiter for the MNREQs, which are changed into
a start signal for the server arbiter. Only one PAM picking up the
signais, has access to the server module. Because the other SPAMs don't
have a grant for the server module, they ignore the generated signais.

For the specification we define the following identifiers:

SA
IDSPAM
IDCPAM

: resource management and SPAM
: id of shared processing module
: calling cp
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: proc idl;
: proc id2;
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figure 52: hardwired caUs AFD/AID using resource management

SPAM MONITOR PSPEC:
while true do

begin
cobegin

res conid; (. problerns can arise, if this conneetion isn't reset, when another
- spam serves this conid, and no new svreq can be assigned to this spam,·)

waitres(sa);
coend
mnreq(idspam); (. request new process to execute .)
wmnack(idspam); (. spid and conid are ready·)
cobegin

remnnreq(idspam);
load conid;
\oad-spid:
re\reä[sa);

coend
case spid do

idl
id2

end;
end·

od; ,

""TA
lUS
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PROCESS IDt PSPEC:
begin

cobegin
init; (* starts some initialization independent of the parameters *);
begin

reqpa;
wrdypaj
init2; (*initialization depending on the parameters *)

end
coend;
processing;
cobegin

exitl; (* start statements to leave the process independent of the result communication*)
begin

sigrsu;
wrdyrsu;
exit2

end;
coend;

end;

The caller specifications don't change. The CONID and SPID can be
transported on the data bus, if the server requests the bus and the
MNACK is used as DAV lines (twice). In appendix C the protocol
execution, server implementation and optimization for the AID/AlF are
discussed.

6.4. command allocation model and ps pees

6.4.1. INTRODUCTION

The shared processing module was only able to execute a few processes.
Now th is module gets a commando The module wants a number of
parameters depending on the received commando The calling process knows
the required number of parameters. The shared processing module will
signal the caller, when it is ready with the execution. First it will send
some status information telling the caller how many results bytes will be
transmitted. This byte transported using the databus and DAV and RFD
primitives, is decoded by the controller of the calling processing module.

A direct link exchanging synchronization signaIs exists between the caller
and processing module. The server selects a calling processing module to
serve and initiates the connection set-up. We discuss several situations
(one SPAM and several SPAMs). We give first a simple solution, that is
optimized (speed and silicon) in appendix C.
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6.4.2. ONE SPAM

Several calling processing modules are connected to a server module
serving as a buffer between the caller and the server processor (figure
53).

CPAMl CPAM2 CPAM3

/ '" / I" / "-

"1/ "1/ " /

SERVER MODULE
(SVAM)

/ "-

"/

SPAM

figure 53: general model

We describe the calling and the shared process actions using primitives
sending the generated signals over dedicated lines. Again we introduce
th e iden tif iers:

IDSPAM
IDCPAM

: identifier oC shared process
: identifier oC calling process

THE CALLING PROCESS PSPEC:
prog;
svreq(idepam);
cobegin

begin
wsvgrt(idepam);
remsvreq(idepam) ;
put(parl); (* put eommand on bus *)
put(par2); (* put parameter on bus *)

prog
get(resl); (* get status oC bus *)
deeode(resl,ok); (*decode the status inCo *)
iC ok

then
begin

get(res2); (* get next result byte *)
get(res3);

end
else proe errorhandling

end
prog; (* parallel program *)

coend;
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In this description a parallel program is executed during the
communication with the SPAM. The implementation should take care of
the correct sequencing. The result can be ready before the CPAM can
accept it, because of the parallel process execution. So the get primitive
can only be executed by the CPAM after checking its own state looking
for allowed interruption of its own program.

Using only one register for all parameters (put), af ter each put the
register has to be loaded with a new parameter before the next put can
be executed. This is also true for the get primitive. The SPAM wait until
the CPAM is ready to receive the result.

THE SHARED PROCESSING PSPEC:
begin

init
get(par2); (* Cetch parameter *)
get(par3)j
execute
status(resl.ok);(* generate status inCo; ok is Calse indicates that no result is produced.*)
put(resl)j (* put status on the bus *)
iC ok then

begin
put(res2)

end;
end;

THE SP AM MONITOR PSPEC:
while true do

begin
mnreq(idspam)j(* request new caller *)
init; (* some initialization *)
wmnack(idspam) ;
cobegin

remmnreq(idspam);
get(parl)j

coend
deccmd(procnumb,part); (* decode cmd *)
case procnumb do

1 : proc Ij

end;
end;

end;
coendj
connect; (* set the connection between the partners*)

end;

SERVER PSPEC:
while true do

begin
wmnreq(idspam);
disconnectj (* break down the connection*)
repeat servarb(svreq[l..Ml,true,rdy,idcpam) until rdYi
cobegin

begin
svgrt(idcpam) ;
wremsvreq(idcpam);
remsvgrt(idcpam)j

end;
beglD

mnack(idspam);
wremmnreq(idspam);
remmnack(idspam) i

od;
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The program SERVARB selects out of the SVREQ[ I..M] one request and
grants it while generating the identity of the calling processing module
(IDCPAM). The variabIe RDY indicates, that a SVREQ is found. If no
request is pending, the program SERVARB keeps executing until a request
is received. The value true is given to the arbiter's STR signal (appendix
B). The DISCONNECT should be executed as early as possible to avoid
that the SPAM receives signals from the wrong partner (see appendix C).
In appendix C (implementation and allocation) separate signals for the
data transport by the caller (CDA V, CRFD) and the SPAM (SDAV, SRFD)
are introduced (C=CALLER, S=SHARED). SRFD requests a parameter and
CRFD requests aresuIt. Knowing the state a signaI is interpreted
correctly. So one line is used for SVREQ, CDAV, CRFD (CMES: caller
message) and one line for SVGRT, SDAV, SRFD (SMES: shared processing
message); as long as the implementation has only one SPAM. The
allocation gets a separate server started by a signal STR. Figure 54 gives
an allocations for direct connection command shared processing using one
SPAM.

CPAM CPAM CPAM

1 2 3

I ti 12 I 31 I. I :ll 16
I I

I : ; II I
I I',=-~~~~~~...=-"-.J I I
II1 ,--------- I--- ____ -..JI

I I I: 1'--------
_______ ...J
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SERV
If------

CU \--
9!'", -L OU\-----~

SPAM \? .2Rr~~':..._ SPAN 1('-- MC- SPAN
CRf"D/CDAV

L __

PROCESS CONTROL

SHARED PROCESSING

DATA
BUS

1. GRTlISRFDlISDAVl
2. REQI/CRFDlICDAVl
3, GRT2/SRFD2/SDAV2
4, REQ2/CRFD2/CDAV2
5, GRT3/SRFD3/SDAV3
6, REQ3/CRFD3/CDAV3

figure 54: AFD/ AID CMD direct connection shared process
using one SPAM
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begin

mnack(idspam);
wremmnreq (idspam);
remmnack(idspam);
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6.4.3. SEVERAL SHARED PROCESSING MODULES

The server in figure 55 containing several SPAMs with their own
connection module, is a shared resource managed by the resource manager
(RMAM). The caller and shared process description don't change.

Using several SPAMs we should make the correct connections. The server
is no part of the shared processing module, since giving each module its
own server requires them to ensure that no requests are granted twice by
accounting which requests are served by who. Because allocating the
connect module to the server requires bookkeeping of the mapping
between the CPAM and the SPAM, the connect module is moved to the
SPAM, which has only to pick its IDCPAM to set-up the connection.

The server is a shared resource given to a SPAM until the SVREQ is
removed of the selected CPAM. After protocol execu tion with the caller,
the server gives the IDCPAM to the SPAM f or setting up the connection.
A disadvantage of this solution is that the server can't be used again
before the SVREQ removal (see appendix C).

The new process descriptions for the monitor and the server are (using
SA as identifier for the server arbiter):

PSPEC OF THE SPAM MONITOR:
while true do

begin
disconnect; (* reset *)
waitres(sa) ;
mnreq(idspam); (* request idcpam *)
wmnack(idspam); (* idcpam ready *)
cobegin

remmnreq (idspam);
relres(sa);
conneet; (* load idcpam*)

coend;
init;
get(parl);
deccmd(procnumb,parl); (* decode cmd *)
case procnumb do

1 : proc 1;

end;
end;

The SPAM knows that the IDCPAM is the correct one, because no other
SPAM can access the server (resource management). So no confusion can
occur about the MNREQ and the MNACK.

SERVER PSPEC:
while true do

begin
wmnreq(idspam);
repeat servarb(svreq[l..MI,true,rdy,idcpam) until rdy;
cobegin

begin
svgrt(idcpam);
wremsvreq (idcpam);
remsvgrt(idcpam);

end;
coend;

end;
od;
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figure 55: AFD/AID command shared processing using resource
management

In the appendix C we arrive at the following conclusions. The MNACK
can be a pulse and the handshake can be removed, since the SPAM
monitor is waiting for the event. The IDCPAM can be transported via
the data bus. The server will request the bus. The MNREQ signal is then
a RFD signal and the MNACK is a DAV. No separate lines are necessary,
because only one SPAM can be in that state (resource management). The
CDAV and CRFD would be seen by the server arbiter as a SVREQ, so
the SVREQ and the CDAV/CRFD aren't multiplexed. Using the data bus
for the IDCPAM communication the description changes into (MNREQ
line=RFD, MNACK line=DAV):



end;
begin

waitres(bus) ;
dav:=true;
en idcpam on bus;
repeat skip W;:til~ot(rfd);
co begin

dav:=ralse;
relres(bus);

coend;
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MONITOR PSPEC:
while true do

begin
disconnect; (- reset -)
waitres(sa);
rfd:=true;
repeat skip until dav;
cobegin

rfd:=ralse;
relres(sa);
connect; (- load idcpam-)

coend;
init;
get(parl);
deccmd(procnumb,parl); (- decode cmd -)
case procnumb do

1 : proc 1;

end;
end;

end;

SERVER PSPEC:
while true do

begin
repeat skip until rfd;
repeat servarb(svreq[l..M],true,rdy,idcpam) until rdy;
co begin

begin
svgrt(idcpam);
wremsvreq (idcpam);
remsvgrt(idcpam) ;

end;
coend;

end;
od;

In the same appendix C the implementations of the server are discussed
introducing architecture models for the CMD direct shared processing and
trying to optimize the modeIs. The model bottlenecks are the waiting time
for the SVREQ and for data communication depending on the programs in
the CPAM (critical section, shared resources) and on bus traffic, which of
course depends on the same programs. Only a simulation can teIl, if an
allocation is the best for that problem. A reaI parallel server reducing the
waiting time, has a very expensive implementation.
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7. SHARED PROCESSING USING BUFFERING

7.1. the model

Tbe sbared processing module and the calling processing module have to
wait, wben a partner isn't ready to receive data. To increase the
independence of the processes execution we introduce buffers having an
input and output process operating concurrent. Tbe calling process
knowing tbe number of required parameters and the address of the buffer
BUFCMD, sends a command, tbe parameters and an identification
(IDCPAM) to that buffer. A buffer allows a CPAM to generate more
service requests, while an old request isn't processed yet. Tbe SPAM
won't know the results destination, because no direct connection exists
between tbe SPAM and CPAM. Therefore the calling process sends an
identification of the requesting processing module to the BUFCMD.

The processing result can be ready before the CPAM can receive it. So
tbe SPAM sends tbe results, tbe corresponding IDCPAM of tbe caller and
tbe number of reSUlt bytes to tbe buffer BUFRSU.

Since the data is transmitted by the owner of the data, the CPAM puts
tbe commands in tbe BUFCMD and tbe BUFRSU puts tbe result on tbe
data bus using the data communication handshake protocol (DAV, RFD).
Only tbe data owner can generate tbe bus request efficiently requesting
tbe bus, when the receiver is ready to accept the data.

CPAM CPAtv1 CPAM

,
I I

I I

BUFTER BUFFER
CMD RSU

I I
I I I

SP AM SPAM SPAM

figure 56: AID for buffer communication

We define a shared processing bloek (SPB) containing two buffers (the
BUFCMD and tbe BUFRSU) and one or several sbared processing modules.
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The SPB generates a signal, af ter the result is ready for the CPAM,
requests the bus for the result communication and puts the result bytes
on the bus after an acknowledge.

Starting a new process, a SP AM in the SPB requests access to the
BUFCMD, waits when no data is available in the buffer. It knows after
decoding the first command how many parameters to fetch in the
BUFCMD. When a process is executed, the SPAM puts the result bytes in
the BUFRSU.

7.2. resource management

When a CPAM starts sending its parameters to the BUFCMD, it should be
the only module to have access. Avoiding mixing of commands and
parameters we introduce a resource manager for the BUFCMD. The
results are stored in the buffer BUFRSU, whose controller translates
the calling process IDCPAM into a SIGRSU signal for the corresponding
CPAM. Resource management isn't needed for the result communication,
because only one source puts the result bytes on the data bus until all
bytes for that CPAM are transmitted. After an acknowledge using RFDCP
the result bytes are put on the bus (figure 57).
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We define the channels ("\" indicates low active signaIs for the AIS):
REQBCMD

GRTBCMD

BREQCP

BGRTCP

DAVCP\

RFDCMD\

SIGRSU

BREQRSU

BGRTRSU

DAVRSU\

RFDCP\

: request for buffer

: grant for buffer

: bus request of cp

: bus grant for CPAM

: low active; CPAM has data available (shared Hne)

: low active; command buffer can receive data

: signal result ready for this CPAM

: bus request of BUFRSU

: bus grant for BUFRSU

; low active; BUFRSU has put data on bus

: low activej shared Hne; CPAM ready for data
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Several shared processing modules are allocated in the SPB. After
fetching the parameters using resource management a SPAM releases the
BUFCMD. After process execu tion, the SPAM req uests access to the
BUFRSU to store the result bytes re leasing it af ter putting the last
result in the buffer (figure 59).

A requirements model of both buffers using the buffer introduced in
appendix A can be found in figure 58. The BUFCMD IN process generates
a RFDCMD, when it can accept a new data byte (the buffer is not fuH).
The CPAM puts the data on the bus using DAVCP (shared line) af ter
buffer access is granted to the processing module. The SPAM will signal
with the RFDSP line, that data can be received (after requesting the
buffer from the resource manager). The BUFCMD IN generates a bus
request, when data is available. After being granted the bus, DAVCMD
signals to the SPAM that the data is on the bus.

III
1"1I~

DFD CENERAL BUFFER MODEL

CFD FOR BUFCMD CFD FOR BUFRSU

figure 58: requirements model buffer
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The BUFCMD OUT process puts a data item on the bus, when a shared
processing module is ready for data. The Hne (RFDSP) should be only
active, if a SPAM wants data. The responsibility to release the
BUFCMD_OUT is for the SPAM, since the BUFCMD doesn't know what it
is putting on the bus.

Having the result a SPAM will request access to the BUFRSU. After
receiving the grant the bus is requested, when the RFDRSU is active. The
BUFRSU_IN process fetches the data.

Since for all mentioned buffer processes a resource manager is
implemented, the requester terminates the communications. The processes
only transport data from source to destination, so that they could be
implemented in the buffer itself (see appendix C). Only the BUFRSU_OUT
is more complex.

The CPAM knows how many result data bytes will be transmitted after
decoding the result status byte, so it seems logical to give the CPAM the
responsibility to fetch the results. But the CPAM is not allowed to
request the bus, if it is not sure that it will get a data byte requiring a
new protocol in which the buffer raises the DAV Hne. The CPAM tests
this Hne and generates a bus request. Still we haven't solved the problem
of transmitting the first data byte to the correct CPAM. The out process
decoding the IDCPAM and signaling the CPAM that its result is ready, is
the only logical solution.

The BUFRSU OUT generates a signal (SIGRSU) for the correct CPAM and
waits for the-RFDCP. After requesting the bus it puts the data on the
bus using DAVRSU. The SPAM has given to the buffer the IDCPAM and a
number count telling how many bytes the result is. The out process uses
this to track down the moment to genera te a new SIGRSU.

A buffer is connected with two interfaces. We don't choose an
implementation yet. (see appendix C).

In the allocation a bus arbiter is needed, since more data is transported
beside the parameter and result bytes. If only two buffers access the
data bus, the bus could be given to one buffer for the total
communication period. But if the buffer sizes are too small, a deadlock
can occur. A CPAM wanting to put bytes in the BUFCMD, which is fuH.
It has to wait until a SPAM has fetched bytes. But no SPAM fetches
data, because the SPAM can't store any result bytes as long as the
BUFRSU is fuH. The BUFRSU can't be emptied, while the CPAM is
locking the bus. The bus must be requested for every data byte.

All process specificati ons are given in appendix C. The main difference
for the caHer and shared process description in chapter 6 is that mutual
exclusion primitives are introduced. The appendix discusses the
communication protocol specification and its execution.
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figure 60: buffer implementation

7.3. without resource management

To reduce waiting problems we introduced buffers. We used the old
synchronization primitives needing resource managers for the buffers en
suring that the data is put in the correct order in the buffer or is send
in the correct order to a CPAM or SPAM.

Having an identical requirements model, we use another arbitration
technique resulting in a different allocation and in different PSPECs. For
this allocation new primitives describing the process synchronization and
interaction are needed. To optimize the number of resources, we try
another allocation.

This allocation is a demonstration
requirements model and architecture
complexity of the allocation process.

of the iterative
model. It also

loop between
illustrates the
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Servers are introduced instead of resource management. A buffer server
selects a partner out of the pending requests and gives the selected
partner's identity to the input or output process of the buffer, which
uses the id to signal and to select the correct channels of the new
partner.

()(J
r \ I
\ \ I
\ I \ I\8/\ /, /

BurRSU

/ ,
/ > / \

" ; I \/ \ \
/ \ \

dt)
PRIlv-CIPLE OF SERVING

figure 61: protocol ror server buffer

Because only one module is communicating with the server during a
certain period and the sequencing of events is know, several lines are
muItiplexed (see appendix C and fig 61). Hence the receiver has to know
how many bytes will be sent. A number count is transmitted beside the
IDSPAM. The server decodes the necessary information. Another solution
uses the SVREQ and MNREQ protocols to signal the end of the
communication.

The BUFCMD has two servers: CMD IN SERV and the CMD OUT SERV.
The CMD IN SERV gets service requests and generates the SVGRT. After
sending a-SVGRT the input process fetches the command words of the
bus and puts them in the buffer. The CMD_OUT_SERV gets monitor
requests and serves them requesting the bus and putting the bytes on the
bus. Since the IDCPAM and the number of bytes are known, the output
process knows when the communication is finished and a new MNREQ can
be served.
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The BUFRSU has also two access servers: RSU IN SERV and
RSU OUT SERV. The first one gets REQRSUs of the SPAMs. The SPAM
requests thebus and puts the bytes on the bus after the server selected
the SPAM and sent a RFD. The first byte contains the IOCPAM and the
n umber of bytes is used by the RSU IN SERV to detect the end of the
communication and to select a new partne~

All buffer processes until now use a number count to generate an enable
for the server arbiter to select a new partner. The process counts the
bytes exchanged with the partner and compares it with the number count.

The RSU OUT SERV generates the signal result ready (SIGRSU) for the
correct CPAM out of the IOCPAM After the acknowledge (ACKRSU) and
requesting the bus, the server transmits the data bytes. When it has
transmitted the indicated number of bytes, another SIGRSU is generated.

Before describing the processes we define new primitives and protocols:

A commun1cation protocol between the SPAM and BUFRSU for
getting access to the buffer BUFRSU:

WGRTRSU(IDSPAM)

GRTRSU(IDSPAM)

REMGRTRSU(IDSPAM)

WREMGRTRSU(IDSPAM)

REMREQRSU (IDSPAM)

: REQRSU:=TRUEj

REPEAT SKIP UNTIL RFDRSU;
(wait grant access BUFRSU)

: RFDSP:=TRUEj

(grant access BUFRSU)
: RFDSP:=FALSEj

(remove grant access BUFRSU)
: REPEAT SKIP UNTIL NOT(RFDSP)j

(wait for remove grant BUFRSU)
: REQRSU:=FALSEj

(remove request access BUFRSU)

A communication protocol between the BUFRSU and the CPAM for
the result signalling:

SIG RSU(IDCPAM)

WSIGRSU(IDCPAM)

REMSIGRSU(IDCPAM)

WREMSIGRSU(IDCPAM)

ACKRSU(IDCPAM)

REMACKRSU(IDCPAM)

: SIGRSU:=TRUEj
(signa) result ready)

: REPEAT SKIP UNTIL SIGRSUj

(wait for signal result ready)

: SIGRSU:=FALSEj
(remove signal result ready)

: REPEAT SKIP UNTIL NOT(SIGRSU)j

(walt for remove signal result ready)

: RFDCP:=TRUEj

(acknowledge result ready)

: RFDCP:=FALSEj

As before a handshake signal ensures the signal receipt. For the BUFCMD
we use the service request and grant to get access for the CPAM and
MNREQ and MNACK to get access for the SPAM.
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figure 62: requirements model Cor buffer server
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SHARED PROCESS PSPEC:
begin

init
get (par2); (* fetch parameter *)
get(par3);
execute
cobegin

status(resl,ok);(* generate status info *)
coded(id); (* generate idcpam and number entrsu to indicate the number of

result bytes *)
coend
wgrtrsu(idspam); (* request the bufrsu by raising reqrsu, wait for the grant rfdsp*)
remreqrsu(idspam); (* remove request; implemented in hardware *)
wremgrtrsu(idspam); (* this is not necessary, because signal will be raised again to

indicate that the buffer is ready after the lines are set up *)
putarb(id);
putarb(resl); (* put status on the bus *)
if ok then

begin
putarb(res2) ;

end;
end;

THE SPAM MONITOR PSPEC:
while true do

begin
mnreq(idspam);(* request new caller *)
init; (* some initialization *)
wmnack(idspam) ;
cobegin

remmnreq(idspam); (* this is necessary to remove mnack, which could be seen
lUl a davsp by the get primitive, so that wrong data is fetched. *)

get(id); (* must be saved to be decoded into the result identifier *)
get(parl);

coend
deccmd(procnumb,parl); (* decode command *)
ClUle procnumb do

1 : proc 1;

end;
end;

end
else proc errorhandling;

THE CALLER PSPEC:
prog;
svreq (idcpam);
cobegin

begin
wsvgrt(idcpam) ;
remsvreq(idcpam);
wremsvreq(idcpam); (* necessary to reset logic *)
putarb(id); (* put the idcpam and the number count of parameters on the bus*)
putarb(parl); (* put command on bus *)
putarb(par2); (* put parameter on bus *)

prog
wsigrsu(idcpam); (* wait until a result is ready *)
ackrsu(idcpam); (* this necessary when a parallel program is executed, which can't

be interrupted. And also to remove the sigrsu signal, which can be seen as a
dav, so that the get primitive is never executed *)

wremsigrsu(idcpam) ;
remackrsu(idcpam) ;
get(resl); (* get status of bus *)
decode(resl,ok); (*decode the status info *)
if ok

then
begin

get(res2); (* get next result byte *)

end;
prol{; (* parallel program *)

coend;
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The buffer processes are described
implementation and the protocol
conclusion in the appendix is that
model is easier for modeling, but
compared with the server buffers.

in appendix C, where also the actual
execution is discussed. The final

the resource management architecture
has no profit in the implementation
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8. A SUMMARY OF THE METHODS

FOR SHARED PROCESSING

We discussed shared processing in the last chapters and in appendix C.
During this discussion we introduced several methods f or data transport,
serving the request, result/parameter communication, identity of the
requested process, and connecting the caller and the shared processing
module. These methods can be used in several combinations depending on
the problem using primitives, which functions don't differ; only the
implementation. We introduced service request, service grant, monitor
request, monitor grant and a few result/parameters primitives.

For the data transport we can choose between the data available and
ready for data protocol and control Hnes to the destination datapath. This
last solution requires that the transmitter knows the state of the
receiver. The data communication protocol stimulates the partners
independence.

The serving arbitration can be implemented by resource management, a
server arbiter or a parallel server. A server arbiter contains service
request and monitor request arbiters and generates information for the
SPAM about the shared processing request. Resource management gives a
SPAM access to server, but doesn't generate any information. Resource
management generates a clearer partitioning of modules. A parallel server
processes requests concurrent and speeds up the serving. The execution is
faster, but requires an enormous amount of logic.

The requested shared process can be identified by signals and by
command words. The command words method can implement shared
processes more economical. The first solution should be used, when only a
few processes can be requested.

The result and parameter communication can be implemented by a
PTR/RDY protocol, a signal result and data handshaking protocol or
buffers with communication protocols. The first protocol requires that the
caller can access the shared processing module to put and fetch the data.
The others improve the communicating modules independence. The
DAV/RFD protocol differs from the normal DAV/RFD, because these
signals indicate that shared processing data is present (e.g. result ready).
The buffer introduces even more flexibility. A buffer speeds up the
program execution and allows a module to generate more service request.
The buffer can be implemented using resource management or servers.
The server solution needs more hardware and an identifier to indicate the
number of bytes to transmit.

The shared modules select the correct partner (and so the signal lines)
with a multiplexer. Several primitive channels caD be multiplexed on one
physical line. A multiplexer isn't redundant for buffer communication
involving resource management.

Combining the methods we introduced three main techniques. First, the
hardwired calls model: the service request identifies the requested shared
process. A special module (server) controls the set up and maintenance of
the connection and gives the SPAM the requested process ID. To simplify
the solution we moved the responsibility for the connection's maintenance
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to the SPAM. The disconnection and connection has to be done in the
right moment otherwise signals will be misinterpreted.

In the next solution we introduced the command word. After getting a
start signal the server takes care of scheduling the partners (requester
and SPAM) and set up of connections by generating an requester's ID.
The connection unit is allocated to the SPAM. Still the connection and
disconnection of the primi ti ve signal lines between the CPAM and the
CP had to be executed very carefully.

In the last model we don't have a direct connection between the CPAM
and the SPAM, but a buffer reducing the waiting time of the several
modules. Giving the buffer a server requires request and signal lines.
and multiplexers, which need more hardware and an identifier to teil the
server how many bytes belong together. These problems could be solved
introducing resource managers. Beside the resource managers aresuit
primitive and some special DAV/RFD protocols between partners were re
quired. More physical lines are needed in this solution, which is easier to
design.
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9. AN ARCHITECTURE MODEL OVERVIEW

An architecture model is defined with several modules communicating with
each other using synchronization primitives.The final requirements model
transla tes into several processing modules executing parallel processes.
Each final module processes transformations sequentially. The scheduler
module checks process scheduling conditions. The processing modules are
designed to execute application specific processes and so they can't be
reprogrammed. The program is located in a memory/state table in the
module. The bus can't become a bottleneck, since the modules don't need
to access shared memory to fetch the program code, but a module can
access external resources. Local memory implementation is only possible,
because of the transformations allocation to modules reducing flexibility.
In the next chapter we discuss a technique introducing more flexibility. A
resource manager processes the requests to access shared resources,
executing several requests in parallel.

In the final implementation the calling (CPAM) and the shared processing
modules (SPAM) don't dijfer. Every module can execute requested and
normal processes. The process execution depends on scheduling and
dispatching information in a pure calling module (CPAM) and on a
command/request and dispatching in a shared processing module (SPAM).

The SPAM, buffers and CPAM can use the same data bus and bus arbiter,
since the different levels introduced for the shared processing buffers
don't exist. In the implementation the busses are reduced to one by
mapping the two logical busses on a physical bus. If different levels are
used, a SPAM module could not call another module unless this module is
on a third level or extra server buffers connect the two levels in the
opposite direction. We use two levels, if the bus traffic is very heavy
requiring a second data bus, allowing introduction of other processing
modules at the SPAM level.

The archUecture model is recursive (fig 65). Each PAM can consists of
identical modules at the next level. Besides using the mutual bus modules
can exchange information in a private channel using RIA synchronization.
Therefore info lines, data lines and control lines are implemented between
the two modules.

A difficulty in visualizing the model is that methods are chosen in the
alloca tion (e.g. shared processing, con trol of shared resources: protocol or
multiplexed control lines), but a generaI model has to contain them all.
Our goal is to give an overview of the model and to show the
interconnections (channels) between the modules. Depending on the
requirements these channels are connected to a module. Figure doesn't
contain all possible channel connections.

The model and the synchronization statements are illustrated in appendix
A using the producer/consumer problem. The techniques for SAMs and
RMAMs implementation are discussed in appendix B. A bottom level PAM
consists of a datapath and controller. The datapath contains private
resources, shared resources protected by the RMAM, shared resource
control by the RIA synchronization and shared resource that don't need
any protection. The controller generates control signals for Us own
datapath, for datapaths containing shared resources and for
synchronization. The controller tests the information of Us datapath,
shared resources, RMAM, BAM and SVAM.



The following channels are defined:
BAM = BGRT+BREQ
RMAM = {GRT+REQ}
SAM = {REQ + GRT} + {SIG}

* arbiter channei *
* resource management *
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SVAM
* scheduling *
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= {\register controi signai\}

={\data bit\}

* shared processing *
* data exchange *
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figure 65: general architecure model
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10. PROCESSING ARCHITECTURE MODULE

IMPLEMENTATION

10.1. introduction

We already discussed a few special architecture modules: the bus arbiter,
the resource manager, the scheduler and some units for shared processing.
To all these units con trol transformations executing the synchronization
primitives were allocated. Now we will address two problems of the most
importan t archi tecture module (PAM): the tasks execu tion (dispatching)
and the implementation of the primitives.

All final architecture modules are sequential circuits. Concurrency is
implemented by allocating the concurrent program to separate modules.
This allocation assigns tasks to the module and produces timing
requirements for the internal module task execution. The process
condition checking using the process timing requirements based on events
generated by other modules is done by the scheduling module. The tasks
still have to be scheduled in an execution order in the processing
architecture module. We will call that selection process dispatching as in
operating systems. A special task (monitor) takes care of the task
dispatching; a consequence of the allocation trying to optimize resource
use. The timing requirements for the task execution are extended with
implementa tion restrictions.

We discuss implementation restrictions caused by the problem definition
and by the trans format ion allocation and also a solution for these
problems. The final implementation of the primitives can be deduced from
the methods described in appendix B.

10.2. task dispatching

A process describes a functional unit of statements, the result of the
functional problem decomposition. A task is an unit used for dispatching
and is an implementation result. A process can be a complete task, but
can also be divided into several tasks.

We allocated several tasks to one PAM and so to one datapath. The
monitor task chooses one runnable task using selection criteria depending
on the problem and the implementation requirements. Whenever a new
task is needed, the monitor is started calling the selected task and
checking the tasks scheduling condition status (true or false) or the
status (runnabie or waiting) of tasks without external scheduling
conditions. The scheduling module indicates which task is allowed to be
executed after checking the scheduling conditions. A schedule module
(SAM) communicates with several architecture modules taking care of
asynchronous events. We implement one module for every independent
scheduling condition.

Processes are redefined, avoiding idling of the module caused by busy
waiting of synchronization primitives. During the busy-waiting period,
another task can be executed, as long as the status of the busy-waiting
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task is saved. Processes are split in several tasks using the primitives
REMTASK and SIGTASK signalling dispatching conditions using other
names for process synchronization to stress that these primitives aren't
introduced by the problem but by the implementation. They don't require
handshaking. since the signals aren't exchanged between two parallel
operating modules. but are used in one module.

SIGTASK(ID)
REMTASK(ID)

: TASKID:=RUNNABLE;

: TASKID:=WAITING;

The SIGTASK primitive signals that a task waiting for the detected
synchronization event is now runnable and the REMTASK primitive is
executed by the running task to reset the runnable flag. A task bit is
reset by REMTASK and set by the interrupt routine using SIGT ASK
primitives.

10.3. primitive implementation

A synchronization primitive either signals events to other tasks or waits
for the occurrence of an event (busy-waiting implementation). Using a
con trol unit and datapath to implement the PAM, the con trol unit checks
the event occurrence. Using an interrupt mechanism busy-waiting is
avoided. The event is an interrupt starting a task (interrupt routine).
After the interrupt handling, the interrupted task is resumed.

The interrupt routine takes care of sensitive program parts, which have
to be executed quickly. A new interrupt during interrupt handling can
cause the partner architecture module to stay busy-waiting. Therefore we
won't allow that an interrupt routine is interrupted. The event signalled
by the interrupt is handled without saving the contents of the datapath
(the control status is saved). This restriction can be dropped and then a
special task saves and restores the processing architecture module
(datapath and control) status.

Some program parts containing handshake primitives may not be
interrupted causing contention and slowing down task execution in other
modules. The mutual exclusion section for shared resource protection
starting with WAlTRES primitive and ending with SIGRES primitive may
not be interrupted (bus traffic including). The request for the shared
resources disables and the removal of the request enables the interrupt
handling.

DIH

GET(PARl)
GET(PAR2)

GET(PAR3)

EIH

DIH

PUT(RESl)

PUT(RES2)

PUT(RES3)

EIH

figure 67: example of DIH and EIH

Data communication specially the parameter and result communication of
shared processing should not be interrupted. We can't use the data
communication primitives (put and get) to disable and enable interrupt
handling, since the interrupt handling will be enabled between two
primitives. The whole section should be protected by new primitives. We
introduce DIH (DISABLE INTERRUPT HANDLING) and EIH (ENABLE
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INTERRUPT HANDLING), internal module primltlveS telling the control
unit of the PAM what to do with a pending interrupt (see fig 67).

Using the new primitives the mutual exclusion primitives are defined
(allowing busy-waiting):

WAlTRES: DIHi (. disable interrupt .)

REQ:=TRUEj
REPEAT SKIP UNTIL GRT;

RELRES: REQ:=FALSE;
EIHj (. enable interrupt .)

REPEAT SKIP UNTIL NOT(GRT);

The interrupt mechanism fits in two situations. During the program
execution, a result is available, before the program can process it. To
avoid idling of the producer module, the interrupt routine fetches the
result and stores it temporally. This technique is used with RIA
synchronization and for shared processing.

In the second situation a module program is busy-waiting being at a
point, where it needs results, but they aren't ready yet. So the module
starts executing another task, which is interrupted when the result is
ready. The interrupt routine stores the results temporally. After finishing
the required task, the suspended process can be resumed depending on
the dispatcher algorithm and timing constraints. Other idling situation are
the SVGRANT and WAITPROC primitive execution and where no call is
pending in a SPAM. The process has to be split into several tasks.

A module waiting for a service grant of a shared processing module,
executes another task and when the grant arrives, an interrupt routine
puts the parameters on the bus. A WAITPROC primitive will have to be
removed by task redefinition, if several processes are executable in one
PAM.

If a SPAM can also execute normal tasks, which aren't caIled, the result
and parameter communication can be given to an interrupt routine.
Requesting a new calIer, busy-waiting can occur, since no call is pending
or the serverlbuffer is serving another SPAM. The parameters are fetched
on interrupt basis, so that another task executes while waiting.

The result communication doesn't cause problems. When no buffer is
used, the caller is interrupted. The handshake signal implements an
interrupt in a SPAM to increase the flexibility. A buffer implementation
can cause busy-waiting, serving another module or being full (design
error). It is usually a waste of resources to implement interrupt handling,
since the buffer is introduced to speed up execution and to reduce
waiting. If the buffer is a bottleneck, just expand the size.

An interrupt routine can't be implemented for parameter communication in
a SPAM using a resource manager to protect the buffer communication.
After requesting the command buffer, the module waits for the access
grant, but keeps waiting, when the buffer is empty. We can't execute
another task, because the shared resource primitives forbid interrupts. We
would like to treat the access grant and the communication signal as an
interrupt. The interrupt routine fetches the parameters and releases the
buffer. By introducing an interrupt routine the SPAM can execute an
allocated task, which isn't ca lIed by another module.
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The WAlTRES primitive changes into a REQRESI primitive, stopping the
task's execution. The GRTRESI primitive generates an interrupt. The
partner of the REQRESI is the RELRESI primitive. The character I
indicates that interrupts implements the primitives. Only the parameter
communication in a SPAM with a command buffer will be on interrupt
basis. See for further discussion about this technique appendix D.

10.4. process/task synchronization

To avoid idling we di vide processes into several tasks and implement the
event as an interrupt. Now we pay attention to the technique and
redefine synchronization schemes for primitives.

The WAITPROC(ID) primitive requests the scheduling module to check the
scheduling condition (see fig 69). A handshake protocol ensures that a
grant isn't interpreted more then once. The signalled task implements the
synchronization protocol. When in a module only one process can be
executed, we will still use WAITPROC(lD) and won't implement the
monitor. Busy-waiting is allowed, since no other tasks can be executed.

The synchronization schemes are (the corresponding CF can be found in
figure 69):

TASK:
REMREQPROC(IDPROC); (* 3j CFlj remove request for scheduling process *)

WREMGRTPROC(IDPROC)j (* 4j CF4; wait for removal of running grant *)

PROG (* contains no process and taak synchronization*)

REQPROC(IDPROC)j (* Ij CFlj start again the check of the scheduling condition *)

THE SCHEDULER: (* parallel running with the processing architeeture modules, one for

every condition, busy-waiting allowed *)

WHILE TRUE DO

BEGIN
WREQPROC(IDPROC)j(* Ij CFllj wait for the request to check scheduling

condition*)

REPEAT SKIP UNTIL SCHEDULE_CONDITIONj (* test timer signal, extemal

event, sigproc signal *)

GRTPROC(IDPROC)j (* 2j CFl3; signal condition true *)

WREMREQPROC(IDPROC); (* 3j CFllj wait for acknowledge receipt of

condition true signal *)

REMGRTPROC(IDPROC); (* 4; CFl3j remove signal *)

END

T ASK PRIMITIVES
1 REQPROC

2 -
3 REMREQPROC

4 WREMGRTPROC

SCHEDULE PRIMITIVES
WREQPROC

GRTPROC

WREMREQPROC

REMGRTPROC

1. start the check of the

scheduling condition

2. condition is true

3. taak is started

4. removal grant

figure 68: relation of primitive actions
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The task is started after the monitor noticed the grant of the schedule
architecture module. The primitive SIGPROC doesn't change. In figure 69
the scheduler is the con trol transformation described with CSPEC enabling
and disabling processes. Every independent REQPROC identifier gets one
CSPEC.

The internal prtmltIveS SIGTASK and REMTASK remove the WSIGRSU
(shared processing without buffer), WSIGRDY (with buffer), WSVGRT
(shared processing), WAITPROC (process synchroniza tion) primi ti Yes.

We discuss an example to illustrate the technique. We have the following
requirements model process description:

PROCA
BEGIN

REMREQPROC(ID PROCA) ;

WREMGRTPROC(IDPROCA);

PROG Al

WSIGRSU(IDSPAMI);

PROG A2

REQPROC(IDPROCA);

END

Somewhere a request is generated for the shared process, but this is of
no interest for the illustration. The implementation description is:

TASK Al;
BEGIN

REMREQPROC(IDPROCA);

WREMGRTPROC(IDPROCA);

PROG Al

SAVE(PROC_STAT); (* save taak status *)

END

TASK A2;
BEGIN

REMTASK(IDTASKA2);

RESTORE(PROC_STAT)j (* restore taak status *)

PROG A2

REQPROC(ID PROCA) ;

END

An interrupt routine takes care of the SIGRSU signal and the
corresponding actions and makes T ASK A2 runnabie. The primi ti yes SAVE
and RESTORE depend on the process and the PAM implementation
structure (datapath and con trol). In complex situation these primitives can
be implemented as a task with parameters.

The same technique is used for RI A synchronization executing between
two parallel tasks allocated to different architecture modules. It is a
simple form of process synchronization in which a condition isn't
checked. A request is a start, while in the process scheduling
synchronization it only starts the condition check.

The technique is introduced in two applications. Either the data flow
between the two processes is in one direction or in both. Dataflow in
both directions occurs when one process requests the other process to



execute a function reqUlrlOg result
(coprocessing). The control structure
requirements model of coprocessing:

PROC 1
BEGIN

PROGlA

PAR COM (DF2)

REQ(ID)

PROG lB

WACK(ID)

FETCH (DF3)

PROG IC

END
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and parameter communication
is defined in figure 70. The

PROC2
BEGIN

WREQ(ID)

PROG 2A

ACK(ID)

PROG 2B

END

The processes don't contain any other synchronization then mentioned.
The allocation description is:

TASKIA
BEGIN

REMREQPROC(IDPROCl);CF5

WREMGRTPROC(IDPROC2);CF6

PROG IA

PARCOM
REQ(IDPROC2); CF4

PROG lB
SAVE(PROC_STAT); DFlO

END;

TASKIB
BEGIN

REMACK(ID); CF3
RESTORE(PROC_STAT); DFIO

FETCH

PROGlC
REQPROC(IDPROCl); CF5

END;

DFD COPROCESSING

PROC2
BEGIN

REMREQ(IDPROC2); CFI

PROG 2A
ACK(ID); CF2

PROG 2B
END;

DFD PIPELINING

J~L JRL en

c."l ~r",= CT;-'l ~ r""
8 8JGL / '- JAL /';,-1 ~ r -- cr. ciî l~ I;.

CFD OF COPROCESSING
AND PIPELINING

figure 70a: DFD and CFD Cor ria synchronization
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We introduced a set of four primitives: REQ, REMREQ, ACK and
REMACK. Because of the dispatching in the modules, the wait primitives
are replaced by primitives gene rating the acknowledge signa I. The
monitor detects the REQ and the ACK. We don't need any protection for
the con trol stores (REQ and ACK) accessed by the primitives. Note that
we haven't protected the parameter and result communication, so the
implementation must allow this.

lFt

....
'"'

....

~~b
~,SJ.....

0...

DFD COPROCESSING
(LEVEL 2)

DFD PIFELINING
(LEVEL 2)

CFD FDR BDTH
(LEVEL 2)

figure 70b: redefined requirements model

The RIA synchronization can be used for pipelining and so to increase
the throughput. The allocation description is:



TASKIA
BEGIN

REMREQPROC(IDPROCI);

WREMGRTPROC(IDPROCI);

PROG IA
REQ(IDPROC2);

PROG IB
SAVE(PROC_STAT)j DFll

END;

TASKIB
BEGIN

REMACK(ID);
RESTORE(PROC_STAT);

PROG IC
REQPROC(IDPROCI);

END;

PROC2
BEGIN

REMREQ(IDPROC2);

(NO HANDSHAKE)

PROG 2A

ACK(ID)

PROC 2B
END;
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This doesn't differ from coprocessing. Somewhere the result of T ASK IA
is given to PRoe 2. The program takes care of the correct sequencing.
A busy-waiting implementation can be used in proc I (task 1 and task 2
together), if the architecture module containing proc 2 stores the result
of procl quickly.

10.5. the monitor

Tasks are run na bie af ter an interrupt occurrence or when the scheduler
signals the occurrence of the condition. Selecting a task to run, the
monitor tests outputs from the scheduling module and information about
internal tasks. Primitive executions changes the state of the task (see
figure 71).

TASK

RUNNABLE

INT ROUTINE EXECUTED
(SVGRT, SIGRSU
SIGRDY, HS ACK)

SIGTASK

GRANT TASK
SCHEDULE MODULE

TASK

SLEEPING

INT

DISPATCHER

figure 71: task states

TASK

RUNNING

TASK FINISHED
(REQPROC, NEXT
TASK OF PROCESS
HAS TO VAlT FDR
INTERRUPT)
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MONITOR
BEGIN

WHILE TRUE DO

BEGIN
DIH; ('" to avoid that the taak info is c:hanged during the exec:ution of the

dispatch algorithm '")

DISPATCH(PROCIO, SHEDINFO,TASKINFO);

EIH;

CASE PROCID DO

101 : TASK 101

END;
END;

END;

The task's selection depends on an algorithm using the timing
requirements of the allocated tasks. All constraints must be met and the
allocation must make this possible. Several selection algorithms exists in
the literature. [Janson,1985] [Kylstra,1984] The solution will be dictated
by the problem.

The chosen dispatcher algorithm is called DISPATCH. A task id (PROCID)
gives the identity of the selected task. The dispatcher program uses two
lists. The list SHEDINFO contains tasks, whose schedule condition are
true and the list T ASKINFO contains all tasks, for which interrupts have
occurred indicating that these tasks are runnable.

The dispatcher should be simpIe, but it can be implemented in a separate
architecture module. The execution is faster requiring protection of the
task store (shared resource), extra logic and synchronization signaIs.
Since the dispatching was introduced to save resources, the allocation of
the program to another module makes no sense.

R T
AE ~- ,/ S -........ .......

Q / "'-"'- I K "-
"'" /

I
I INT
f /

/
./ I /

/'
I f // I \ IG / I I I

I I IR I I /
\ I JT \ \ I

......... \ I I \k
~ ~ I 'IV Y

CSPEC

figure 72: CFD of AM allocation.
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Beside the monitor the module has an interrupt handier (see figure 72).
After detecting the interrupt the control logic starts the main interrupt
routine. The literature describes several architectures for the interrupt
logic.

The interrupt is removed by the handshaking mechanism implemented in
the primitive generating the interrupt.

INT MAIN;
BEGIN

DIR;
SAVE_ID_INT_TASKi C* save identity and controlstatus of the interrupted taak *)

CASE INTTYPE DO
I : TASK INTI; C* procedure caU *)

ENDi
RESTORE_ID_INT_TASK; C* restore taak execution *)

EIHi
END;

To keep the interrupt architecture simple and because of the type of
interrupt handling programs (communication), we don't allow the interrupt
handling to be interrupted. The save and restore implementation depends
on the architectural implementation of the module. An interrupt logic
block generates an interrupt identity (INTTYPE). Since all possible
interrupts are known, we design for every event its own interrupt
handier.

The general interrupt task structure:
INT TASK;
BEGIN

PROG

SIGTASKCIDTASK)i C* indicating that the task is runnable now, since the event has

occurred where the taak was waiting for *)

END;

Two examples illustrate the interrupt handling technique. Appendix D
contains more examples.

EXAMPLE
INT_SHARED_PROC_RESULT_COM; (* interrupt is SIGRSU *)

BEGIN
GETCRESI);

IF STATUSCRESI)=OK TREN
BEGIN

GET(RES2)

GETCRES3)

END;
SIGTASKCID...);

END;
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We need extra resource to store the result temporally.

EXAMPLE
INT_SHARED_PROC_PAR_COMj (* interrupt is the SVGRT signa! *)

BEGIN
REMSVREQ(IDCP); (* handshake signa! to indicate that the interrupt signa! is received *)

PUT(PAR1); (* put comrnand on bus *)

PUT(PAR2); (* put parameter on bus *)

SIGTASK(ID ...)

END;

The SIGTASK pnm1tlve is not always necessary. In the last example we
can skip it, if the main program task isn't stopped at the point, where
the parameters are communicated.

The complete description of the control transformation for a datapath has
the following structure:

BEGIN
INTMAIN

INTl

INT2

DISPATCH

TASKl

TASK2

MONITOR

BEGIN
INITj (* initialize requests to schedu!er *)

MONITOR;

END;
END;

In figure 73 we see the CFD and DFD of an imaginary processing
architecture module. The figure is a refinemellt of figure 72. Every task
is enabled by the CSPEC and generates control flows for the CSPEC (e.g.
ready). The CSPEC sequences the tasks, since the allocation forbids
parallel implementation except for interrupt recognition. Two control
transformations are introduced, the monitor and the main interrupt
routine. No link exists between the two control transformations at this
level. The implementation using a control unit and a datapath will
connect them.

No difference exists between the con trol and data transformations
implementations. At this point we don't know, if a task is implemented in
the control unit as a finite state machine or a microprogrammed machine.
The basic implementation architecture is shown in figure 74. Several
techniques can be used to implement the control unit [Davio,t983]
[Stevens,1987]. If we use a finite state machine implementation, all
control and data tasks are combined into one big machine generating the
control signals for the datapath.
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figure 74: basic implementation of the PAM

Figure 75 is the implementation of a control unit using a
microprogrammed machine. The controller fetches a microcode and decodes
the code to generate the con trol signaIs. The CSPEC is the datapath and
the execution con trol. This transformation detects an interrupt and starts
the main interrupt routine.
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11. CONCLUSION

The requirements and architecture modeling tooI presented is capable of
locating concurrent processes and describing synchronization and
communication interaction for application specific VLSI design. Both
models use leveling to hide unnecessary low level details and concentrate
on concurrency. The method avoids process sequencing and an
implementa tion bias.

The final requirements model is a detailed functional specification of the
digital system and is the starting point for the architecture model, which
is recursive and consists of parallel operating modules. Data
transformations, data synchronization, mutual exclusion and scheduling
con trol transformations are allocated to modules implementing data
processing, shared processing, coprocessing and pipelining.

The architecture model consists of several modules (PAM, SVAM, BAM,
SAM, RMAM). It is recursive for the PAMs introducing several data
channels. In the implementation these logica I channels can be mapped on
one physical channel (one databus). The control modules may consist of
other modules, but it introduces too much overhead and delay
implementing only basic techniques.

In the easiest allocation one module implements one transformation
usually wasting resources. The allocation should fulfill the requirements,
optimize silicon and the number of the resources. Concurrent processes
can be sequenced as long as the (especially timing) requirements are met.
A chosen allocation changes the requirements model, which may change
the allocation again. The development process is an iterative loop.

In processing architecture modules, a dispatching process tries to fulfill
the timing requirements, when several tasks are allocated. To avoid busy
waiting for an event, a process is divided into tasks, which don't contain
any busy-waiting primitives except for resource mutual exclusion. An
interrupt routine handles the event occurrence without causing a context
switch or even changing the datapath contents and makes runnable a task
waiting for that event. The interrupted task is finished and then the
dispatcher is started.

The allocation of shared processes introduces special synchronization
primitives and a server architecture module. Both partners (requester and
executer) must communicate parameters and results and synchronize
actions on a direct connection, which is set up by the SV AM after a
processing architecture module requests the execution of a shared process.
Buffers storing parameters and results and generating synchronization
signals are another solution for shared processing increasing flexibility.
The actual implementation and techniques depend on the requirements
model. To describe the interaction we use logical modules (CP AM and
SPAM), which don't differ in the implementation. Multiplexing
synchronization lines can save wiring and a clever arbiter allocation saves
resources.

The defined simple primitives describing synchronization between modules
and tasks, mutual exclusion, scheduling and data exchange require a
handshake protocol, since the communicating parties operate in parallel
and can be unable to detect an event during aperiod. To store the
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information and to take care of the asynchrounous events the primitives
implementation uses flipflops.

All synchronization and communication situations can be described
preventing starvation and introducing fairness with software techniques
using the defined process synchronization, request/acknowledge
synchronization, mutual exclusion and data communication primitives.
Requiring synchronization primitives, data is exchanged on private
channels or shared channels using a resource manager.

The software synchronization and mutual exclusion techniques are
complicated, because the number and character of processes and event are
unknown. In application specific design this information is available, so
every situation can be implemented. Software techniques are implemented
after simplification. The corresponding control transformations are
allocated to separate modules (resource manager, bus arbiter, scheduling)
containing parallel executing units; one for every independent identifier
of a resource/event or a group of resources/events. Some control
transformations are sequenced using a centralized implementation to avoid
too much overhead and delay. At a certain level parallelism doesn't
improve the performance, but even degenerates it.

The synchronization using software techniques should prevent deadlock
and starvation and implement serialization. Starvation of requests is
avoided by implementing a rotating priority scheme. Deadlock must be
solved in the design program text. Critical sections are synchronized with
software methods using the hardware primitives. A con trol transformation
selects the module to execute its critical section.

Using application knowledge simplifies the synchronization schemes and
implementations. The difference between resource management and
scheduling/synchronization for a problem can than be very small. A wrong
synchronization technique may cause too much delay, but still several
techniques produces suitable solutions and good implementations depending
on the application design.

Finally, I recommend to use the tooi for specifying a few example
applications, to actually implement them, to study the consequences of
the allocation decisions especially for the control transformations, to
measure the performance and to determine the idling periods of modules.
The model rules and checking should be formalized to automate
generation of model parts and to check consistency. The PSPEC can be
simulated to check the functional descriptions, leveling and timing
requirements. Unfortunately a large part of the design process (parallel
detection) can't yet be captured in a silicon compiler at this stage ( e.g.
introducing concurrent transformations using an interpretation of
PSPECs).
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GLOSSARY

ACD; architecture context diagram gives an overview of how the systems
physically fits in its environment. The elements of the ACD are: one
architecture module, representing the system; terminators that represents
entities in the environment with which the system communicates, and
information flow vectors that represent the communications that take
place between the external entities in the environment and helps
identifying their type.

ACK(lDENT); Acknowledge; RIA synchronization primitive. The module
sends an acknowledge to the requesting partner to signal that the
expected action identified by IDENT has happened.

WACK(lDENT); Wait for acknowledge; RIA synchronization primitive. The
requesting partner waits for an acknowledge generated by the primitive
ACK.

ACKRSU(lDCPAM); Acknowledge of buffer. A communication protocol
primitive between the BUFRSU and the CPAM granting access to the
result buffer.

AFD; architecture flow diagram depicts the system architecture. It shows
the physical partitioning of the system into its component pieces or
modules and the information flow between them. lts main purpose is to
allocate the functional processes of the requirements model to physical
units of the system and to add more processes as needed to support the
new physical interfaces. An architecture flow diagram is a network
representation of a system's physical configuration.

AID; architecure interconnections diagram shows the actual physical
information channels between the AFDs architecture modules and to and
fr om the environment.

AISs; architecture interconnect specifications
textual specifications that specify the
communication channels.

support the
characteristics

AID
of

by
the

AM; architecture module. A physical entity that either is a grouping of
other physical entities or is a fundamental physical entity to which
logica1 flows and processes have been allocated; could be a hardware or a
software unit. A hardware unit operates concurrently with others.

AMSs; architecture module specifications define the inputs, outputs and
processes allocated from the requirements model for each architecture
module.

Architecture model is derived from requirements model by applying design
criteria that map functional requirements into an architecture showing
physical entities, defining information flow between them.

architecture dictionary captures the allocation of data and control flows
to specific interconnect channels (flow name, compose of, Oog1O,
destination, channel). The architecture dictionary contains the data and
con trol flow definitions of the requirements dictionary plus the allocation
of these flows to architecture modeIs.
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BAM; bus arbiter module; module of architecture model. CSPEC
implementation for data bus access.

BUFCMD; buffer containing the requested process identity and parameters
for shared processes execution. The logical unit BUFCMD contains also
the data transport executing processes.

BUFRSU; buffer containing the results of the executed shared processes.
The logical unit BUFRSU executes the data transport.

CFDs; con trol flow diagrams map con trol flows along the same paths as
the data flow may tra vel. CFDs mirror the processes and the stores of
the DFDs, but do not show data flows

CONID; connection identity needed for connection set up between
requester and shared process executer for direct connection
synchroniza tion.

CPAM calling process architecture modules; logicaI module identifying a
physical PAM containing a task calling a shared process allocated in a
logical module SPAM.

CSPECs; con trol specifications specify control processing controls for the
processes on the DFD.

Data condition; Control flow flowing fr om the PSPEC to a CSPEC.

DAV; data available; information flow jsignal used for data transport
between concurrent modules.

DFDs; data flow diagrams decompose the system and its functions showing
transformations and data flows between those transformations.

GRTRSU(IDSPAM); Grant access for buffer BUFRSU. A communication
protocol primitive between the SPAM and BUFRSU for getting access to
the buffer BUFRSU granting access. IDSPAM identifies the SPAM getting
access.

MNACK(IDSPAM); Monitor acknowledge. Shared process synchronization
primitive. IDSPAM identifies the shared process module. Primitive (CF) for
signaling the monitor that a shared process can be started.

MNREQ(IDSPAM) monitor request. Monitor request. Shared
primitive (CF) of PAM requesting a new shared process to execute.

monitor; (hardware) a control process of the processing module
all grant signals for allocated processes and selecting a
(software) synchronization mechanism based on abstract data types.

process

testing
process.

PAM; processing architecture module; am with allocated data
transformations.

Process; a process is the transformation of incoming data flow into
outgoing data flow.

PSPECs; process specifications specify the system's functional requirement.
Control flows generated inside PSPECs through test on data flows are
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called data conditions. They flow to CFDs (control flow diagram), where
they are treated as any other control flow.

RELRES(ID); Release resource. Primitive which releases the locked
resource or group of resources identified by ID.

REMACKRSU(IDCPAM); Remove acknowledge for buffer access. A
communication protocol primitive between the BUFRSU and the CPAM
removing the access grant.

REMGRTRSU(IDSPAM); Remove grant for buffer access. A communication
protocol primitive between the SPAM and BUFRSU for getting access to
the buffer BUFRSU removing the grant.

REMMNACK(lDSPAM); Remove monitor acknowledge. Shared process
synchronization primitive removing the monitor acknowledge. IDSPAM
identifies the shared process module.

REMMNREQ(IDSPAM); Remove moni tor req uest. Shared process
synchronization primitive removing the monitor request. IDSPAM identifies
the shared process module.

REMREQRSU(IDSPAM); Remove request for access to buffer BUFRSU. A
communication protocol primitive between the SPAM and BUFRSU for
getting access to the buffer BUFRSU removing the request.

REMSIGRSU(IDCPAM); Remove signal result ready and access for buffer.
A communication protocol primitive between the BUFRSU and the CPAM
removing the access request.

REMTASK; Primitive for task synchronization in a sequential PAM
executed by a running task to reset the runnable flag.

REQ(IDENT); Request. Primitive for RIA synchronization sending a request
to the partner requesting execution of an action identified by IDENT.

requirements model describes what the system must do (essential
activities) and what data it must store so that the description is true
regardless of the technology used to implement the system.

requirements dictionary; It contains an alphabetical listing of all the data
and con trol flows in the DFDs and CDFs along with their definitions.

response time specification defines the limi ts on response time allowed
between events at the system input terminals and the resulting events at
the system output terminals.

RFD; ready for data; Information flow Isignal used for data communication
between concurrent modules.

RMAM; resource manager module. An AM implementing the resource
management CSPECs regulating access to resources, while implementing
identifiers relations and types of request.

SAM, scheduling architecture module. AM implementing CPSEC for
process condition checking after receiving a request of a PAM.

shared process; primitive process appearing several times on a DFD and
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implemented only a few times in the architecture module.

SIGPROC(IDENT); Signal process. Primitive for process synchronization
signalling an event (CF) to the SAM making a part of a condition
identified by IDENT true.

SIGRSU(IDCPAM); Signal result ready. A communication protocol primitive
between the BUFRSU and the CPAM for the result signalling.

SIGTASK; Task synchronization primitive in a sequential PAM signalling
that a task waiting for an event is now runnable.

SPAM; shared processing architecture modules; logica I module identifying
a PAM containing only shared processes requested by a CPAM

SPD; shared processing block A logical module containing buffers and
SPAMs.

SPID; executable shared process identity.

SVAM; server architecture module. Architecture module implementing a
server necessary for shared process execution. The unit is responsible for
caller and executer selection and the execution start.

SVGRT(lDCPAM); Service grant. Primitive generating a service grant for a
calling PAM; IDCPAM identifies the ca lIer.

SVREQ(IDCPAM); Service request. Primitive requesting a service
(execution of a shared process). ICPAM identifies the requester.

Task. A set of instructions manipulated (stopped, interrupted and resumed)
as an unit by the hardware and software implementation of
synchronization primitives.

WAITPROC(IDENT). Process synchronization primitive. The process waits
until it receives a SAM signal to continue, which depends on the
condition where to the identifier refers.

WAITRES(ID); Wait for access resource granted. Primitive requesting
access to a resource or a group of resources identified by ID processed
by the RMAM

WGRTRSU(IDSPAM); Wait for grant access to buffer BUFRSU. A
communication protocol primitive between the SPAM and BUFRSU for
getting access to the buffer BUFRSU; It first generates a request and
than waits for access grant.

WMNACK(IDSPAM); Wait for
synchronization primitive waiting
iden tifies the shared process mod ule.

monitor request. Shared process
for monitor acknowledge. IDSPAM

WMNREQ(IDSPAM); Wait for monitor request. Shared process
synchronization primitive waiting for monitor request. IDSPAM identifies
the partner.

WREMGRTRSU(IDSPAM); Wait for removal grant access to buffer. A
communication protocol primitive between the SPAM and BUFRSU for
getting access to the buffer BUFRSU waiting for the removal of the
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grant.

WREMMNREQ(IDSPAM); Wait for removal of monitor request. Shared
process synchronization primitive waiting for removal of monitor request.
IDSPAM identifies the shared process module.

WREMSIGRSU(IDCPAM); Wait for removal of signal result ready and
access to buffer. A communication protocol primitive between the
BUFRSU and the CPAM waiting for the removal of the request.

WREMSVREQ(IDCPAM); Wait for removal service request. Shared process
synchronization primitive waits for acknowledge (wait remove service
request).

WREQ(IDENT): Wait for request. RIA synchronization primitive. The
partner waits for a request of an action identified by IDENT.

WSIGRSU(IDCPAM); Wait for signal result ready and access to buffer
allowed. A communication protocol primitive between the BUFRSU and the
CPAM waiting for an access request.

WSVGRT(IDCPAM); Wait for service grant. Shared process synchronization
primitive. (wait service grant) executed by the caller.
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A. SYNCHRONIZATION AT THE LOWEST ALLOCATION

LEVEL: CONSUMER PRODUCER PROBLEM

1. introduction

After allocating all transformations to modules the implementation phase
starts. At this level several problems occur especially when modules
containing one transformation access shared resources. We study the
consumer producer problem and using software techniques we try to solve
the problems [Dykstra, 1982], [Raynal,1986] [Andre, 1985]. Discussing these
solutions we find criteria to choose implementations or even to change
alloca tions.

2. problem definition

We have two transformations at level n: a consumer and a producer
process. The processes share a resource (a buffer). The process READ, a
transforation of the consumer fetches an item out of the buffer and the
process WRITE, a transformation of the producer stores an element in
that buffer. The number of buffer locations is limited. The processes are
executed in parallel and independent of each other.

We introduce a pointer PNTR that points to the buffer location where the
next element can be read. Also, we introduce a pointer PNTW pointing to
the buffer location where the next element can be written. Af ter reset
the pointers have an identical value indicating that an element should be
put in the buffer. When the pointers are identical again, the buffer is
empty or full. If READ was the last active process, the buffer is empty.
Otherwise it is full.
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figure 76: requirements model

The RE AD transformation can ask for an element, when the buffer is
empty. The transformation waits until the producer has put a new element
in the buffer.

The process execution is shown in figure 77 (timing chart). RREQ: read
request, RACK: acknowledge of the read. WREQ: write request, WACK:
acknowledge of the write act ion. We call this semi-parallel execution,
because the processes access the memory after each other (mutual
exclusion). Accessing the buffer by the two processes at the same instant,
the execution is parallel (process synchronization). We concentrate on the'
subprocesses studying the interaction and introducing several solutions.
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figure 77: semi-parallel process exeeution

3. structural model design

A simple allocation stressing the existence of levels is shown in figure 78.
In the first level (n) we find the processing modules (consumer and
producer). At this level a resource and scheduling architecture module
controls the module synchronization. In every processing module we see
at level n+l more processing architecture modules and again a resource
and scheduling module.

A part of the consumer and producer process is allocated to a separate
module, because of the many interactions and the sharing of the datapath
(a buffer and some pointers). The shared resources are tontrolled by the
RMAM or SAM at level n. The buffer module isn't sequentia I indicating
that a better allocation to put the buffer and the controllers in separate
module. But the buffer can't operate on his own. The datapaths of the
processes are interconnected so tightly, that we have to allocate them to
one module to get a comprehensive allocation. In the final implementation
we get four modules (the datapath, both controllers and the
synchronization module).

The module READ executes only one process, started af ter reset. If just
one process asks for an element, we use RIA synchronization to start the
READ process. Otherwise a server (arbiter) will be needed. This last
allocation is more logical, since it makes no sense to allocate the READ
process to a separate implementation module to fetch an element once in
awhile.

A solution cont:l1ntng mistakes will be presented to show problems
occurring when the synchronization isn't efficiently introduced.
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3.1. THE STRAIGHT FORWARD SOLUTION

First we describe the process WRITE without synchronization except for
the request synchronization. (the READ has the same structure.)

RIA SYNCHRONIZAnON IDENTIFIERS
IWR = identifier for the process write
IRD = identifier for the process read

LOCAL VARIABLES
SUC = boolean indicating if process action has succeeded
REG = variabie containing the data

SHARED VARIABLES
PNTW = integer, value of memory location where the next element will be written
PNTR = integer, value of memory locat ion where the next element will be read
RPRIO= boolean, indicating which process had last access to the memory (True indicates

that the WRITE process was the last active process, RPRIO=read priority)

GLOBALCONSTANT
SIZE = the number of memory locations

figure 79: requirements model



end;
od;

ack(iwr); (* write succeeded *)
endj

od;

WRITE;
while true do

begin
wreq(iwr); (* request for write action *)
suc:=false; (* no access succeeded *)
while not(suc) do

begin
if «pntwIPntr) or not(rprio»

then
cobegin

rprio:=truej
suc:=true;
begin

buC(pntw]:=reg;
pntw:=(pntw+l) mod size;

end;
coend;
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Now we introduce synchronization for the shared resources. Every shared
resource gets an identifier.

RESOURCE MANAGEMENT IDENTIFIERS:
IPNTR = identifier for the pointer PNTR
IPNTW = identifier for the pointer PNTW
IRPRIO = identifier for the variabie RPRIO
IMEM = identifier for the buffer memory
IALL = identifier for a group of resource (PNTW,PNTR,RPRIO)

WRITE PSPEC:
while true do

begin
wreq(iwr); (* request for write action *)
suc:=false;
while not(suc) do

begin
cobegin

waitres(ipntw);
waitres(irprio) ;
waitres(ipntr);(* request access to the pointer of the other process *)

coend;
if «pntwIPntr) or not(rprio»

then
cobegin

relres(pntr);
rprio:=true;
suc:=truej
relres(irprio) ;
begin

waitres(imem)j
cobeglD

buC(pntw]:=reg;
relres(imem) ;

coend
cobegin

pntw:=(pntw+l) mod size;
relres(ipntw) ;

coendj

end·
odj'

ack(iwr);
end;

odj

end
coend

else
cobegin

relres(ipntw);
relres(irprio) j

relres(ipntr);
coend;



end;
od·

ack(ird);
end·

od; .
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READ PSPEC:
while true do

begin
wreq(ird); (* request for read action *)
suc:=false;
while not suc do

begin
co begin

waitres(ipntw);(*request access to the pointer of the other process*)
waitres(ipntr);
waitres(irprio)j

coend;
if ((pntrI=Pntw) or (rprio»

then
cobegin

relres(ipntw); (* release resource *)
rprio:=false;
suc:=true;
relres(iprio)j
begin

waitres(imem) j
cobegm

reg:=buf'[pntr];
relres(imem) ;

coendj
cobegm

pntr:=(pntr+l) mod sÎzej
relres(ipntr) ;

coend;
end

coend;
else

cobegin
relres(ipntw);
relres(ipntr) ;
relres(iprio);

coendj

A request for the buffer memory isn't necessary, because the other
process can't be active. The active process uses RPRIO, so the other
process has to wait until RPRIO is released. We will differentiate between
the read and write access to allow more processes to read one variabIe.

A deadlock problem could be introduced, when several resources are
requested one after another and the other process needs the same
resources. A process has already a few variables and is waiting for some
others, which have been granted to another process waiting for this
process to release its variables. The design should avoid this. Therefore
the resource identifier IALL is introduced representing a cluster of
resources (RPRIO, PNTR and PNTW). This identifier isn't independent of
other identifiers and this relation has to be implemented in the resource
manager module.
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WRITE PSPEC:
while true do

begin
wreq(iwr);
suc:=false;
while not(suc) do

begin
wrdres(iall); (* request to read all shared var*)
if «pntw#:pntr) or not(rprio»

then
begin
(* when allowed to write the read process can't change the condition *)
co begin

rlrdres(iall);
waitres(imem); (* wait until read proc is finished *)

coendj
cobeglD

buf{pntw]:=reg;
relres(imem);

coend;
co begin

begin
\Ywrres(ipntw);
cobegin

pntw:=(pntw+l) mod size;
rlwrres(ipntw) ;

coend;
end;
begin

wwrres(irprio);
cobegin

pprio:=true;
rlwrres(irprio);

coend;
end;
suc:=true;

coend
else rlrdres(iall);
fi

end;
od
ack(iwr);

end;
od;

This imp1ementation requires protection of the buffer.
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READ PSPEC:
while true do

begin
wreq(ird)j
suc:=faise;
while not(suc) do

begin
wrdres(iall); (* request to read all shared var*)
if «pntwkmtr) or rprio)

then
begin

(* when allowed to read the write process can't change the condi
tion *)
cobegin

rirdres(iall);
waitres(imem); (* wait until write proc is finished *)

coend
co begin

reg:=buflpntr];
reires(imem);

coend;
cobeglD

begin
wwrres (ipntr);
cobegin

pntr:=(pntr+l) mod sizej
riwrres(ipntr);

coend;
end;
begm

wwrres(irprio);
cobegin

rprio:=faise;
riwrres(irprio)j

coend;
end;
suc:=true;

coend;
end;

eise rirdres(iall);
fi

end;
od
ack(ird);

end;
od;

Both processes have a long critical section excluding each other's
activity. A solution is to copy criticaI variables. The copy is only used
during the manipulation of the original by the other process. This seems
possible in the programming text, but we shouldn't forget that for
example PNTR and RPRIO are changed together. To use the pointer's
copy effective, RPRIO should be copied also. At least two clock cycles
(see appendix B) are needed (claim, copy and release) to make these
copies. The other process uses at least two clock cycles (claim and copy
and release) to increment PNTR. These two clock cycles could be won
implementing a copy, but to produce the copies two extra cycles are
needed.

Figure 80 contains the AFD/AID/IMPLEMENTATION schematic of the
modules and the necessary communication and synchronization signaIs.
This schematic is a result of the program description and the
implementation of the communication and synchronization primitives.
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The following identifiers are used:
RWR : request write
A WR : acknowledge write
RRD : request read
ARD : acknowledge read
RMEMA/B : request of partner A/B for memory
GMEMA/B : grant for partner A/B for memory
RALLA/B : request of partner A/B for all resource
GALLA/B : grant for partner A/B for alle resource
RWPNW : request to write in pointer PNTW
G WPNW : grant to write in pointer PNTW
R WPNR : request to read in pointer PNTR
G WPNR : grant to read in pointer PNTR
R WPRA/B : request of partner A/B to write priority FF
G WPRA/B : grant for partner A/B to write priority FF

The resource manager implements the difference between a read and write request
and will grant several read request& when possible.

This simple program rcquires a lot of synchronization statements. So we
start scarching for a solution that docsn't use so much synchronization.
(see simulation figure 86)
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In the parallel implementation the buffer can be accessed by the two
processes as long they don't access the same location. This won't happen,
because the problem definition doesn't allow it. When the pointers have
the same value, the buffer is either empty or full. When the buffer is full
the WRITE process has to wait and when the buffer is empty the READ
process has to wait. The WAITRES(IMEM) and RELRES(IMEM) statements
are redundant.

3.2. INTEGER SEMAPHORE SOLUTION

Now we will present another solution using integers semaphores
controlling the resource buffer and at the identical moment the process
execution. The process synchronization doesn't allow access to the same
buffer location. So the buffer doesn't need any protection. A counter CRD
contains the number of locations, where an element can be read and
another counter CWR conta ins the number of locations, where an element
can be written. We introduce process execution conditions. The process
WRITE can be executed, if CWRFQ. Then the counter CWR should be
decreased and the counter CRD should be increased. So one element more
can be read. The process READ can be executed if CRDFQ. Then the
counter CRD should be decreased and the counter CWR should be
increased.

IDENTIFIERS
ICRD : identifier for read semaphore
ICWR : identifier for write semaphore

WRITE PSPEC:
begin

while true do
begin

wreq(iwr);
waitproc(icwr);
co begin

sigproc(icrd);
begin

buf[pnt-:v1:=reg;
cobeglR

pntw:=(pntw+l) mod size;
ack(iwr);

coend;
end·

coend; ,
end;

od;

READ PSPEC:
begin

while true do
begin

wreq(ird)j
waitproc(icrd)j
co begin

sigproc(icwr) ;
begin

reg:=butfpntrj;
cobegin

pntr:=(pntr+l) mod size;
ack(ird);

coend;
end·

coend; .
end;

od;
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The corresponding counters should be initialized to CWR=SIZE OF THE
BUFFER and CRD=O.
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figure 81: AFD/AID/IMPLEMENTAnON

The semi-parallel schema tic can be found in figure 81 using a R for
request and a G for grant.

3.2.1. process management

The process synchronization implementation depends on the concurrent
buffer access. The process management synchronization regulates the
semi-parallel memory access. Accessing the buffer together the process
management module (SAM) implementation is difficult. A counter can be
incremented and decreased at one instant requiring a resource manager.

The semi-parallel solution is very simple to implement. The schematic is
presented in figure 82. The counter is incremented, when an acknowledge
is given. The logic decides which process is active.
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figure 82: implementation oC SAM Cor semi-parallel access

The logjc function8:
SGIWR:= NOT(ZEROCWR) AND (RIWR AND ( RIRD OR FIRST))
SGIRD:= NOT(ZEROCRD) AND (RIRD AND (RIWR OR NOT(FIRST)))
RGIWR:= NOT(RIWR)
RG1RD := NOT(RIRD)
SFIRST:= GIRD
RFIRST:= GIWR

In the parallel situation we have to introduce resource management. As
the increment can't make the zero line true, the increment can be
executed in parallel with a test on the zero line. The zero line won't be
tested, when the counter is decreased.
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mutual exclusion identifiers:
ICRD : counter read
ICWR : counter write

PROCESS MANAGER PSPEC:
cobegin

while true do
begin

repeat skip until riwr; (*wait until request to execute process write *)
repeat skip until not(cwr=O)j (* check condition *)
cobegin

Jiwr:.=true; (* grant prae write *)
begID

waitres(icrd);
cobeglD

crd:=crd+l; (* update read counter *)
relres(icrd);

coend
end
begin

waitres(icwr)j
cobeglD

cwr:=cwr-l;
relres(icwr);

coendj
end·

coend;
endj

od;
while true do

begin
repeat skip until rirdj
repeat skip until not(crd=O);
cobegin

ti~~i~rue;
waitres(icwr);
cobeglD

cwr:=cwr+lj
relres(icwr) ;

coend
end
begin

waitres(icrd);
cobeglD

crd:=crd-l;
relres(icrd);

coend;
endj

coendj
end;
od;

coend;

The process manager executes two processes concurrently. The resource
management prohibits the parallel access of the buffer.

3.3. critical section synchronization

The analysis of the solution A.3.I, which uses read and write claims for
the resource management shows that quite a lot of time is wasted by
requesting access. The memory access shifts the parallel requests in time,
so that PNTR and RPRIO also are accessed together not requiring
differen t resource identifiers.

In our model every process state has outputs controlling the datapath.
Introducing synchronization means that new states are introduced. Before
we synchronize a problem, we fist minimize the description containing
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unsynchronized problcm uses only thrce statcs.

The minimized program READ is:
READj
begin

while true do
begin

wreq(ird);(· request a new process·)
while not(pntw;l:pntr or rprio) do skip; (••• )
cobegin

reg:::buf(pntrl;
ack(ird);(· this is allowed, because only in the next clockcycle a new request

can be assigned .)
rprio:::false;

coend;
pntr:::(pntr+l) mod size;

end;
end;

The critical scctions contain statements executed in two clockcycles. We
have seen that synchronizing statements of a small critical section
introduces a large amount of overhead. So now we will synchronize the
complete critica I section. One identifier (ICS) is used for all shared
resources.

EN LD

A\/R ~

R\/R

\/RITE
CON TROL READ

CONTROL
----- ---) ARD

----- ---- RRD

figure 85: critical section implementation
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IDENTIFIERS:
IRD : READ process identifier
les : critica! seetion of READ and WRITE
IWR : WRITE process identifier

READ;
begin

while true do
begin

waitproc(ird);(* request a new process*)
waitres(ics);(* request the resources *)
while not(pntw;lpntr or rprio) do

begin
relres(ics);
waitres(ics);(* give other process a chance *)

end·
od- •
cobegin

reg:=buf{pntrli
sigproc(ird)i
rprio:=falsei

coend;
cobegin

pntr:=(pntr+l) rood size;
relres(ics);

coend;
endi

od;
end;

WRITE;
begin

while true do
begin

waitproc(iwr);(* request a new process*)
waitres(ics);(* request the resources *)
while not(pntw;lpntr or rprio) do

begin
relres(ics);
waitres(ics);(* give other process a chance *)

end;
od-
cobegin

buf{pntw]:=reg;
sigproc(iwr) ;
rprio:=true;

coendj
cobeglD

pntw:=(pntw+l) rood size;
relres(ics) ;

coend;
end;

od;
end;

Unfortunately, we must divide an one clock cycle statement (marked ***),
otherwise we introduce deadlock. The resources are assigned, but the
process is waiting until the resources contents is changed. This will never
happen, since the resources are exclusive for this process. The other
process can change the contents, but can't execute its CS, because th is
process is in its critical section.The solution using critical section is
pictured in figure 85. GCPI: grant process I, RCPI: request of processl.

3.4. program progress

Figure 86 contains the timing of the straight forward solution and the
critical section solution.
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Explanation of the timing chart.

The controller of the resource manager knows that it is executing a
read/write resource management scheme. The writing of PNTR and PNTW
are independent. The requests to read all resources are implemented in
the priority scheme as one request. After a grant, the read request is
assigned the lowest priority.

Read/write synchronization.
1/2 request of read (A) and write (B) process to read all variables
3/" both processes are granted the resource
5/6 both processes request memory access
7 process A is granted access to the memory
8 the memory action
9 process A requests new actions (to write pointer and pri)
10/U process READ is granted new actions and process WRITE is granted the

memory access
memory action of process WRITE and update pointer
request to update pointer of WRITE and pri
request granted
new request of A to read all variables
granted
new request of B

Critical section synchronization
1/2 request for access to critical section
3 cs granted for process Read
" process READ is ready
5 the grant for process READ is removed
6 process WRITE is granted
7 new request for cs of process Read
8 process WRITE is ready
9 critical section is released
10 process READ is allowed to execute the critical section.

No solution is really faster. But the logic to implement R/W
synchronization is enormous compared to the critical section
implementation. The logic for the R/W synchronization is tricky, because
the relations between the several identifiers have to be implemented
correctly and starvation should be a voided. So using process knowledge in
the description phase can be advantageous (introducing critical sections).

4. van de weij solution

A solution is presented in figure 87, which doesn't use the
synchronization primitives. The description of the modules is as follows:

ACT = boolean, indicating that an action has to be performed
ACK = boolean, indicating that the action is completed
REQ = boolean, indicating that the action is requested
CONT = boolean, indicating that the action has succeeded



HS MODULE (HS= HANDSHAKE)
while true do

begin
cobegin

act:=false;
ack:=false;

coend;
repeat skip until req; (* wait until request *)
act:=true;
repeat skip until cont; (* wait until action succeeded *)
cobegin

act:=false;
ack:=true;

coend;
repeat skip until not(req); (*wait until request is withdrawn *)

end;
od;

This can be implemented as a state machine.
The description of the logic in van de Weij solution is:

PROC LOGIC;
cobegin

while true do
cobegin

if (wr and (not(rprio) or not( eq or rd)))
then wsucc:=true
else wsucc:=falsei

if (rd and (rprio or not( eq or wr)))
then rsucc:=true
else rsucc:=false;

coend
od;
while true do

cobegin
if wsucc

then
begin

cobegin
rprio:=true; ,
ram[pntw1:=in;

coend;
pntw:= (pntw+l) mod size;
end;

if rsucc
then

begin
cobegin

rprio:=false;
out:=ram[pntr];

coendi
pntr:= (pntr+l) mod sin;

end·
coendi .

od;
coend;

135



136

IJsuee

BUFFER

EQUAL Rsuee

DUT

ACCESS
CON TROL

IJRI TE READ

cant act

HS

~
UNIT UNIT

req aek

\Jreq \Jack Rreq Raek

figure 87: UD de weij solu tiOD

The bloek ACCESS CONTROL is just logie. The logie funetions are:
Wsuee= WRITE AND «NOT(RPRIO) OR NOT(EQUAL OR READ»
Rsuee= READ AND « RPRIO OR NOT(EQUAL OR WRITE»

The ASM chart in figure 88 shows the difference between the solution of
critical section synchronization and the van de Weij solution (the numbers
indicate corrcsponding actions). We can't concluded from th is figure which
is the best solution. The van de Weij solution is probably the fastest.

In the normal operation the execution of a process using an arbiter takes
at least six clockcycles. The reason for the long execution time is, that
the para1lel processes need communication. Communication requires a
request and an acknowlcdge, V'j ich takes two c10ck cyc1es each.
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5. comparison of the solutions

It is difficult to compare the several solutions, since no information is
available about the timing. We have seen two groups of solutions: semi
and rea1 parallel. The semi-parallel solutions are the Critica1 Section
solution, the resource management solution, the process manager solution
and the van de Weij solution. In each solution the arbiter (RMAMjSAM)
has knowledge about the processes. Parallel solutions are the process and
the resource manager implementation. The best solution depends on the
design goals. If the manager may only be an arbiter, then only cs and
resource management can be used. (process knowledge isn't required)

In the final implementation phase we have knowledge about which
resources will be shared, what kind of modules are allocated and what the
processing conditions are. We have several tools to synchronize the
processes and processing modules. The boundaries between several
solutions aren't clear. It depends on the responsibility given to a module
and if copies of some vital information are kept. A trade-off appears
between parallelism and synchronization overhead. At some point the
increase of parallelism causes only more overhead and more delay.

We have seen that we should cluster resources, which are used together.
This causes application knowledge to be implemented in the resource
manager. It is also quite useful to cluster resource that are requested at
short intervals af ter each other. We can use critical section synchroni
za tion to red uce overhead.

The solution of van de Weij is projected on our model in figure 89. He
has integrated several modules by using process knowiedge. It is a very
clever solution, that can be used for buffer design, since buffers are
needed frequently in parallel processing to speed up the processing. Our
solutions use a structural design method with pre-defined building blocks
(arbiters and manager).

The van de Weij solution can be modeled as follows: the access control
executes several functions: server, processing condition control. Two
processing modules (a producer and consumer) request a service (read or
write). The server starts one of the processes after arbitration. The
processing module containing the buffer requests the SAM to check if the
processing conditions are satisfied. If no grant is given another condition
will be checked. Only when a process is executed, the service
acknowledge will be given.

A central module (access contro!) controls the process progress. In our
solu tions the resource managemen t is execu ted separa te, while the process
and resource management in van de Weij are identical. Because of th is
separate management the priority is saved at two locations.
Decentralization requires more hardware. The advantage of
decentralization is that the manager doesn't need specific process
knowledge allowing a straight forward implementation and aHowing
perhaps silicon compilation.
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figure 89: modeling solution van de Weij

The presented interpretation using the building blocks of our model to
represent the solution of van de Weij is a tricky and cumbrous one. It
was only to show that the solution mixes several functions, which speeds
up the processing, but is difficult to find using a structural functional
approach.



140

The main conclusion is that for synchronization problems the access
solutions don't differ from synchronization solutions. They can be
implemented in the SAM as well as in the RMAM. We also saw that it is
important to analyze the synchronizationjmutual exclusion problems
correctly. Very often a software synchronization technique a better
result, then a straight forward solution using hardware primitives for
every mutual exclusion access.
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B. THE SYNCHRONIZATION MANAGEMENT

IMPLEMENTATION

1. introduction

The first step is to optimize the process description with only the
requirements synchronization. After analyzing the critical sections and the
necessary mutual exclusion synchronization the synchronization statements
are chosen, so that as few as possible restrictions are introduced. The
different names for the several synchronization kinds make the program
tex t reada bIe and even easier to check.

All software techniques for mutual exclusion and synchronization are
implementable in hardware, but the limited number of process and the
dedica ted process execu tion require only simple f orms. In this appendix
we translate the basic techniques into hardware. The application is
discussed in the literature [Dykstra, 1982], [Raynal,1986], [Andre,1985]. We
should keep in mind, that a technique can be implemented in several
ways, but one implementation can be faster than another.

We discuss only one identifier implementation. In the architecture module,
more identifiers are implemented executing concurrent. The execution can
be sequenced slowing down the reaction time and restricting the
concurrent execution of processes (the module becomes a bottleneck in
the processing). In appendix A, we concluded that the difference between
SAM and RMAM is not great, especially when implementing process
knowIedge. We won't discuss th is further, since it depends on process
specifica tion and rela tions between identifiers.

In our design we requires at least a two phase clock. Af ter the
generation and clocking of the control signals for the datapath, the result
of an earlier action in the datapath or external info can be tested. This
information is needed for the determination of the next state (action).
Programming the synchronization we use information about the response
time of the synchronization. The response on a request will arrive in the
next clock period or later, so the removal of a request for a resource
can be executed at the moment the final clock cycle access to the
resource is started.

2. resource management architecture modules/arbiters.

We did define the following mutual exclusion primitives:

WAITRES(ID): REQ:=TRUEj

REPEAT SKIP UNTIL GRT;

The request and the waiting for the grant are one statement, so that the
resource won't be requested before it is really needed.

RELRES(ID): REQ:=FALSE;
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The imp1ementation assures, that the GRT is removed before the request
is raised.

REQ FF
CNTRL S
SIG R

FIl

RES
MAN

~ PROC )( RES MAN
)

figure 90: implementation
synchronization

of the mutual exclusion

2.1. TWO REQUESTERS FOR ONE RESOURCE.

The situation where two requesters want access to one resource is
encountered very often. We introduce a resource management logic
functional description of a set of resources identified by an identifier
IDRQ. Two transformations access these resources. One requester is
identified by IDRQ 1 and the other by IDRQ2.

IDENTIFIERS:
REQIDl:

GRTIDl:

REGID2:

GRTID2:

PRIOID:

IDRQ 1 REQUEST

GRANT OF THE IDRQ 1 REQUEST

IDRQ 2 REQUEST

GRANT OF IDRQ 2 REQUEST

BOOLEAN, INDICATING WHO HAS THE HIGHEST

PRIORITY

PROC 2REQBINSEM(REQIDl,REGID2,GRTIDl,GRTID2,PRIOID);
cobegin

while true do
iC (reqidl and not(grtid2) and (prioid or not(reqid2))) then grtidl:=true;

od;
while true do

iC (reqid2 and not(grtidl) and (not(prioid) or not(reqidl))) then grtid2:=true;
od;

while true do iC grtid2 then prioid:=true;
while true do iC grtidl then prioid:=Calse;
while true do

begin
while reqidl do skip;
grtidl:=ralse;

end;
od;

while true do
begin

while reqid2 do skip;
grtid2:=ralse;

end;
od;

coend;
This program contains six parallel processes, which are easily implemented
in hardware.
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figure 91: 2REQBINSEM implementation

RQl : RSFF CONTAINING REQIDI
RQ2 : RSFF CONTAINING REQID2
GRI : RSFF CONTAINING GRTIDI
GR2 : RSFF CONTAINING GRTID2
PRI : RSFF CONTAINING PRIOIO, BOOLEAN INOICATING WHICH REQUEST

HAS HIGHEST PRIORITY

In this simple solution Reset Set flipflops are used. Beca use the GRT
flipflops are clocked on FIl (on FI2 the processing module preforms test
on inputs and grants), the reset and set lines are never active together.In
a faster solution th is can happen, so JK flipflops should be used. If the
set is still present during the arrival of the reset, the JK flipflop
inverts its state. The GRT flipflop is clocked to ensure a stabie test
input.
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figure 92: timing of 2REQBINSEM

AcnON:
1. set req 1
2. set req2
3/4. response on set req
5. grant given to 1
6. clocking grant
6a. the set is not trne anymore, because pri changed
7. removal of request (release)
8. req removed
9. release
10. set grt2
11. grt2 clocked
12. set grt2 removed.

The periods:
4-5 decision time
6-7 delay of resource
7-8 response time ff
8-9 clocking delay
10-11clocking delay.

The waltmg time of the processing module
(l,6). Serving two requests, the second

is a tIeast
request is

two clock cycles
served in four
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clockcycles and the number of clockcycles used by the other requester
(2,11). The response on a release is given in one clockcycle. In a RMAM
several 2REQBINSEM units can be implemented, operating parallel. If the
response time is unimportant, a sequential implementation is possible. The
module checks one after another the requests of every set of resource
identifiers allocated to the RMAM.

2.2. SEVERAL REQUESTERS

The most encountered situation with several requesters is the access to a
databus. Starvation should be avoid in granting requesters using a
rotating priority scheme. Hardware generates a grant in one clockcycle.
The result should be ready on FI2 (tests are executed in the PAM).
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figure 93: imptementation of simpte RM or bus arbiter

A rotating priority arbiter is started by an enable line. Otherwise the
result can change, when a new request arrives, the ID is changed and a
new grant is set. To store the arbiter's result, the logic is disabled.
During the arbiter response time no new request arrives, since the result
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is generated in one clockcycle. A resource manager can be used in PSPEC
writing RESMAN(REQ,GRT). Every time a grant is generated its identity
is Ia tched to determine the new priori ty scheme.

The encode block (ENC) translates the outputs into a request identity,
which wiII be translated into a new priority scheme by the decoder
(DEC). The granted request wiII get the lowest priority.

FREE:=NOT( GRTI OR GRT2 OR GRT3 ...)

LATCH:= SGRTI OR SGRT2 OR SGRT3 ....

The ID is latched on the first edge of signaI lateh, which is delayed to
give the encode logic enough time to generate the id. The set grant
signaI has to be active long enough to set the grant FF. The logic has to
be disabled before the next FII on which a new request can arrive. The
ID's latching and ID's decoding into a new priority scheme may not
change the set input before the ff is set. The arbiter is at least during
one clock period idle, because the resource has to be released.
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figure 94: pla implementation

The arbitration in one clockcycle can be implemented using two schemes.
The first one uses building blocks containing a priority scheme is
implemented. Depending on the last served request, a building block
ha ving the correct priority scheme is selected. The second scheme uses a
daisy chain. The start number of this chain is selected by decoding the
last served request. This solution uses less hardware, but the number of
requests is Iimited, because of the ripple through time. (see figure 95)
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A building block contains the following funetions:
input requests: PRO, PR1, PR2, PR3 and the outputs: RQO, RQ1, RQ2, RQ3.
RQO:=(EN AND SELSCH) AND PRO
RQ1:=(EN AND SELSCH) AND NOT (PRO) AND PRl
RQ2:=(EN AND SELSCH) AND NOT(PRO) AND NOT(PR1) AND PR2
RQ3:=(EN AND SELSCH) AND NOT(PRO) AND NOT(PR1) AND NOT(PR2) AND PR3

Logic can be saved by implementing the enable in the decoder.
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R(Q3
Ral

Dym

figure 95: daisy chain

The building block of the daisy chain has the following inputs and outputs:
DYIN := daisy in
DYOT := daisy out be given before the signal is reset.
DYOT := NOT(REQ) AND DYIN.

When no request is present, all DYOTS and DYINS are active. Several
SET GRTS become active, when several requests arrive. The DYOT will go
low, so the grant ff will have to be clocked on FI2. The enable can be
moved to the decode logic.

Now we introduce a special arbiter called server arbiter defining a
process SERVARB(REQ[ I..M],STR,ID,RDY). Often a request is selected.
Sometimes we only want the request id, which will be used by other
modules. STR is the start/enable signal. The RDY signals the production
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of an ID, the identity of the process to serve. The RDY should be latched
and be implemented with a handshake with STR. The result must be ready
before FI2.

ID

REQ

STR

PAR
ARB

LOGIC

ENABLE

figure 96: server arbiter

LATCH

RDY

2.3. THE SEQUENTIAL ARBITER

The next solution checks the requests one af ter another (fig 97a). This
check is started, when the resource is free. After a request selection the
grant will be set. When FREE is true again, the last served request will
be checked last using a circular scheme. The request are checked, until
one is f ound to serve.

IDRQ : identifier of seleeted request.
FREE : boolean indicating if the resource is free
SIZID : number of ids

PROC MORREQSEMONEID(REQ[1..Nl,GRT[1..N))
cobegin

while true do free:=not(grt[l..N]);
while true do

begin
while not(free) do skip;
idrq:=(idrq+l) mod sizid;
while not(req[idrq]) do idrq:=(idrq+l) mod sizid;
grt[idrq]:=true;

end·
od; •

while true do
(. reset gunt if request is removed .)

od·
coend; ,

Each group of resources will be checked sequentially. After inspecting
all possible requests of an identifier and finding no request the module
starts checking another identifier resource group avoiding that processes
keep waiting to get a free resource. The request of that ID group is not
granted, because the processor would keep checking another identifier
wherefor no requests are generated.
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NDR

LD

INC

FREE

REQ:=SEL VEC AND REQVEC
SET GRT:= SEL VEC AND REQVEC

figure 97: sequential arbiter for one identifier

SELSET
SIZSELSET
FREE
RAM[I]
DUMP

: number of resource identifier group
: total number of existing groups
: boolean indicating if selected group is free
: memory containing the pointers of the resource groups
: variabie holding the pointer start value to check if all requests are
checked

od;

SEQ RESOURCE MANAGER PSPEC:
pro~ resman(req,grt);
begin

while true do
begin

selset:=(selset+l) mod sizselset; (0 select next group of semaphores 0)
if free then

begin
dump:=ram[selset]; (0 copy start number 0)
ram[selset]:=(ram[selset]+l) mod sizram[selset]; Co set pointer to new set of

resources 0)
while (not(grt[ram[selset]) and ram[selsetJPiump) do

(0 stop condition: a grant is given or all rt!quest are checked 0)
if req[ram[selsetll

then grt[ram[selsetll:=true
else ram[selset]:= (ram(selset]+l) mod sizram[selset];

end;
end·
od; •

end;
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FF REQ A

SET
RES REQ B

REQ C

INV

LDGIC

FF GRT A
S
R

SET GRT B

SET GRT C

FREE

SELN

R
A
M

figure 98: sequential arbiter

2.4. READjWRITE RESOURCE MANAGEMENT

The readjwrite synchronization allows several processes to read a shared
variable together. A process requesting to write, will be the only process
allowed to access the resource. Therefore all read requests are translated
into one requested. (see figure 99)
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RDWRRM(REQR[l ..N),GRTR[l .. N),REQW[l ..M),GRTW[l ..M));
cobegin

while true do free:::::nor([grtrd,grtw[l..MlJ);
resman([reqw[l ..M] ,reqrdJ ,[grtw[l ..M] ,grtrd]);
while true do

begin
while not(grtrd) do reqrd:::::or(reqr[l..NJ);
CO(or i:::::l to m do grdrd[i]:::::reqrd[i];
while not (ree do skip
reqrd;::::false;
while grdrd do skip;

end;
od;

coend;

GRANTS

figure 98: implementation of rjw management

A handshake protocol is used otherwise a newly arrived read request
could keep the REQRD active and cause starvation ror the write process.
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3. scheduling architecture modules

In the scheduling architecture module several identifiers combinations and
even data/control transformations are allocated. Every identifier is
processed in parallel. In the following paragraphs we discuss the basic
technique for signalling and requesting, required to implement process
synchronization techniques introduced in the literature for parallel
processes, restricted to signal and wait, semaphore techniques. The SAM
has at least two partners: a requester and a signaller.

The processing module statements.

WAITPROC(ID): WHILE GRT DO SKIP;

REQ:=TRUE;

WHILE NOT (GRT) DO SKIP;

REQ:=FALSE;

In the implementation the GRANT signal is removed in the clock period
following the removal of the request making the first statement
redundant.

The request may be placed in the wait loop, since a request once set
won't be reset until the GRANT is set. The statement signalling to the
SAM that a part of the condition is true, is:

SIGPROC(ID): SIG:=TRUE;

THE SCHEDULER PSPEC FOR ONE ID:
WREQPROC(ID); (* wait for request for c:ondition c:hec:king*)

TEST

GRTPROC(ID); (* grant Id *)

WREMREQPROC(ID);(* wait for removal request *)

REMGRTPROC(ID);(* remove grant *)

We will start with a boolean implementation of process synchronization,
that can be simplified to implement a boolean semaphore. This semaphore
is an important tooI for the split binary semaphore used to implement
mutual exclusion and synchronization of critical sections [Dykstra]

3.1. THE BOOLEAN PROCESS SYNCHRONIZATION.

The scheduler receives a request (req) and several information signals
(sigl, sig2,....). The grant is given to the requesting process when all
signal info is correct.

Using a boolean implementation restricts the signaling. No new signal may
be given before the signal is reset. One process can't signal two
processes together using one signal, so a second identifier is needed. Ir
one identifier signals several processes, it is implemented with separate
identifiers (the number is equal to the number of processes). Depending
on the trade off between speed, silicon area an integer semaphore can be
used.
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figure 100: one request, several signals

PROC BOOLEAN SCHEDULING PSPEC;
cobegin

while true do
begin

while not(req) do skip;
while not(sigl and sig2 and sig3..... ) Do skip;
cobegin

grt:=true;
sigl,sig2 :=Faise;
req:=false;

coend;
end;

od;
while true do

begin
while not(ssigl) do skip;
sigl:=true;

end·
od; .
while true do

begin
while not(ssig2) do skip;
sig2:=true;

end·
od; .

coend;
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3.2. THE INTEGER SEMAPHORE SCHEDULER

WAITPROC(ID)

SIGPROC(ID)

: WHILE CNT=O DO SKIP;

CNT:=CNT-l;

: CNT:=CNT+l;

The independent actions (sigproc, waitproc) use the same resources, which
can be accessed at the same moment needing resource management. The
test cnt>O doesn't have to be protected. The parallel process doesn't
change the status cnt>O. The variabie SSIG (set signal) is a control signa1
setting the signal FF and increasing the counter. We describe only one
signal source.

PROCINTEGERSCHEDULER;
cobegin

while true do
begin

while not(req) do skip;
while not(sigl>O) do skip;
cobegin

grt:=true;
req:=false;
begin

waitres(sigidl);
cobeglD

sigl:=sigl-l;
relres(sigidl);

coend;
end·

coend; ,
grt:=false;

end;
od;
while true do

begin
if ssigl

then
begin

waitres(sigidl);
cobeglD

sigl:=sigl+l;
ssigl :=false;
relres(sigidl);

coend;
end;

end·
od; •

coend;
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figure 101: integer semaphore SAM.
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One identifier can also be signalled by several processes. To process these
signals we introduce an arbiter. But the signalling process never knows, if
its signal is processed. In th is configuration it takes at most 8
clockcycles to process the signa!. If it is necessa ry to genera te an
acknowledge, an identical protocol as for the waitproc can be used. This
scheduler is an example where parallelism introduces so much overhead,
that the cen tralized con trol scheduier is faster.

centralized solution.
PROC CENT ID SCH PSPEC:
while true do

begin
if req and sigl>O

then
cobegin

grt:=true;
req:=false;
sigl:=sigl-l;

coend;
fi;

if ssigl
then

begin
sigl:=sigl+l;
ssigl:=false;

end;

end;
od;

fi;

C
N
T

[Ne

o

SAM
CONTRDLGRT rr

SIGL fT

PAM

PAM

DEC

figure 103: implementation centralized integer semaphore
con trol

In this solution the signal can be processed every two clockcycles.
Finally, where several identifiers should have an correct value. For one
requester and several identifiers the program description is:
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PROC INTEGER SCHEDULER;
cobegin

while true do
begin

while not(req) do skipi
while not(sigl>O and sig2>O) do skip;
cobegin

grt:=true;
req:=falsej
begin

waitres(sigidl);
cobeglD

sigl:=sigl-l;
relres(sigid1);

coendi
endj
beglD

waitres(sigid2)i
cobeglD

sig2:=sig2-1;
relres(sigid2);

coend;
end;

coend;
grt:=false;

end·
Odi '
while true do

begin
if ssigl

then
begin

waitres(sigidl) ;
cobeglD

sigl:=sigl+l;
ssigl:=falsei
relres(sigidl) j

coendi
end i

end;
while true do

begin
if ssig2

then
begin

waitres(sigid2) i
cobeglD

sig2:=sig2+1i
ssig2:=false;
relres(sigid2);

coend;
end;

end;
Odi

coendi

Several identifiers can be used
When a process isn't allowed to
event, the count initialization
negative.

in the split binary semaphore solutions.
start, before processes have signaled an
of the integer semaphore should be
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3.3. SEVERAL REQUESTERS AND SIGNALERS ON ONE IDENTIFIER

The most used forms of scheduling are the boolean implementation and
the integer semaphore with one ID, where processes execute a Pand V
opera tion. Several processes can execu te a Poperation on the same
semaphore, requiring a module to serve the requesting processes. The
server sees the request, gives the request to the scheduler, waits until a
grant arrives and signals this to the requesting process and tries to serve
another requester. Starvation is avoided.

PAM

PAM

PAM

SERVER

......

SAM

n.....

PROC
SCHEDUlER

'DiJ ...

SIM"

figure 104: SAM using server

-co

oor

RESOURCE
MANAGER

Generalizing the last remarks and also introducing several processes
signalling the same identifier, we get the model pictured in figure 105.

All solutions can be reduced to a centralized system by removing all
resource management statements by putting the processes in a sequentia I
order. The server arbiter will be used to avoid starvation. The
centralized solu tion is the best solution, because it avoids resource
management which causes too much overhead.
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Signalling an identical sig identifier, signals could be lost. A server
arbiter could be used, giving probabie long serving time. It is easier to
introduce several boolean identifiers, one for every signalling process.
(this is only true for parallel implementation) When a signal can be lost,
then the signaling processes should be acknowledge af ter processing the
signal.

4. request acknowledge synchronization.

REQ(lD):

WACK(lD):
WREQ(ID):
ACK(lD):

REQ:=TRUE;

ACK:=FALSE
WHILE NOT(ACK) DO SKIP;

WHILE NOT(REQ) DO SKIP;

ACK:=TRUE;

REQ:=FALSE;

REQ FF
SET REQ

~
REQ

ACK FF RES REQ

DJ
SET ACKACK

RES ACK

( )( )
PROC A PROC B

figure 107: implementation of ria synchronization

This implementation can be simplified by just using one FF and wire or
the set and reset inputs.
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C. SHARED PROCESSING PROTOCOL EXECUTION

AND SERVER IMPLEMENTATION

1. introduction

In th is appendix the protocol execution between the server, the CPAM
and the SPAM is discussed. For every allocation we try to multiplex lines
between modules, to simplify the protocol and to optimize the resource
allocation. An implementation of the server is presented. We also
introduce a parallel server. This appendix is a supplement to the chapters
5,6,7.

2. direct connection shared processing

2.1. HARDWIRED PROCESS CALL MODEL

2.1.1. one spam
We discuss the timing of the allocation presented in figure 108.

SERVER MODULE

SPID
, /i' , /i" , /j" I /1' I /1' I/i" , /i'
IPIR1S,S,SIS ,P,R,S,S ,RIP1MIM
IT,D\VIV,VIV ,T,D,V,V IDIT1N,N
IR'YIG1RIG,R ,R,y,G,R ,y,R1AIR
I I IRIE IR, E I I jR,E , , IelE
I \ IT IQI T, Q I I IT IQ , I ,K,Q

,1/ I ,12'~')11 ,J/ ' ,I) 11 ,1/ 1,1/ I ,,1/

CPAM CPAM SPAM

/1"- IZ 11'
I Z /1"- Z Ij"

L. ___________

------~----------
______ .J

,1/ 1/ ,,1/ DATA
BUS

figure l08a: hardwired call process AFD

When a caller isn't ready to fetch the results, the shared processing
module will be idle for awhile. In the timing diagram we see that it is
possible to multiplex PTR en RDY line with the REQ and ACK lines, as
long as we can interpreted the signals correctly.

After selecting the requester the protocols between the server and SPAM
and the server and CPAM are executed independently. So action 8 can
happen before action 4. This can give misunderstanding during
multiplexing.
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1 I I I
I I 1 I

MNREQ ---l1 1bi 112 U-
I ~7 I 1rMNACK
1 I

PTR I I 18 110
I

RDy I I 19 \13 I
~3 I I r+-SVREQ1

~4 I I I
SVGRTl I I I
SVREQ2 I I I I I

I I I n I
SVGRT2

I I I I

figure l08b: hardwired eaU proeess timing

ac:tion:

l.
2.
3.
4.
S.
6.
7.
8.
9.
10.
U.
12.

periods:
1-2
2-3

3-4
3-S
2-S
S-6
6-7
7-8
8-9

9-10
10-11

U-12

request of the shared proc:ess monitor for a new partner
signal to new partner
c:alling proc:ess ac:knowledges rec:eipt of grant
remove grant
ac:knowledge to monitor that partner is found
monitor ac:knowledges rec:eipt of ac:knowledge
remove ac:knowledge
request for parameters
parameters transmitted
result ready
result c:opied
new request

dec:ision time of the server (one c:loc:kc:yc:le if request is pending)
response time depending on the c:alling proc:ess was already waiting for
the grant or not
one time unit, just response
one time unit; sequential proc:essing
set up c:ommunic:ation between c:aller and proc:essor
depends on monitor program (c:ould be one c:loc:k)
one time unit, just response
response time depends on initialintion
minimal time for parameter c:ommunic:ation, whic:h c:an c:ontain waiting
time
proc:essing time
result c:ommunic:ation and perhaps some waiting time depending on
program
response time

We introduce a server and a connect block in the server architecture
module (SV AM). The server has the structure of the server arbiter
presented in appendix B. Some hardware is required to translate the
identity of the called process request into the correct SPID. The request
lines can be used for other signals, since the server won't monitor them
unless it is in the correct state. (see figure 109).
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figure 109: server module implementation

After the calling process and monitor request are removed, the pointer of
the multiplexers wil! be set, so that the MNREQ, MNACK, SVREQ and
SVGRT lines can be used for the parameter and result synchronization.
The numbers in the description refer to the timing chart (fig IlO).

EXTENDED SVAM PSPEC:
cobegin

while true do (. grant logic·) od;
while true do

begin
wmnreq(idspam); (. 4 wait for the request for anew process to serve·);
while not(rdy) do servarb(svreq[l..M),true,id,rdy);
svgrt[idj:=true; (. 4a; correct process spid is ready·)
cobeglD

engrt:=true; (. 5; set ack up line .)
mnack(idspam);

coend;
cobegin

wremmnreq(idspam); (. 6·)
wremsvreq(idcpam); (. 7; while not(free) do skip, so no wrong interpretation is
possible. When the connect is set-up before the svreq is removed, the svreq
will be seen aa rdypa·)

coend;
cobegin

engrt:=false; (. 9·)
remmnack(idspam) ;

coend
mux:=id; (. 10; set up link, now reset mnack .)
wrdYi (. 12; the controller monitors the changes of mnack/rdy line .)
wremrdy; (·14 necessary to keep track of the state·)
mux:=0;(·3/15; so no svreq will be seen aa mnack·)

end;
od·

coend; ,

The specification produces the following timing:
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MNREQ I
MNACK --\,,--2...,.1_~/s

I
SVREQA \ 2,
SVREQB I
SVGRTA \---:1__-;.1 --1 _

I
SVGRTB ---+I---.J/s

~~;D =======r-r:=~~=-~'.:--A~~~~~~~~----j_+_-----------
ENGR T __---II_~;.~S------i

I

MNACK
MUL TIPLEXED

figure 111: timing hard wired server

action:
1. result ready
2. result fetched
3. reset of pointers;(tristate for PTR/MNREQ and the RDY line goes high)
4. MNREQ
4a. SPID ready
5. SVGRT and MNACK given
6. removal of MNREQ
7. removal of SVREQ
8. removal of SVGRT
9. enable low because of 6 and 7
10. set multiplexer, MNACK goes low
11. request for parameters
12. parameter transported
13. result ready
14. result fetched
15. connection break down

The periods:
1-2 unknown
2-3 one c1ockcyc1e
3-4 depends on SPAM
4-5 one c1ockcyc1e, if requests depending
5-6 depends implementation to start up a process
5-7 depends on implementation; 8 is the bottleneck
7-8 one c1ockcyc1e
8-9 ..ero c1ockcyc1es (see implementation)
10-11 can be ..ero, depends on the implementation of the SPAM, This doesn't

introduce any problem
14-15 one c1ockcyc1e

No problems arise the muItiplexing SVREQ with PTR, because when PTR
is active the arbiter is always disabled. Some signa is can be changed into
pulses, since the handshake isn't used. When a module is waiting for a
signa I, a pulse is sufficient. The MNACK and the start signaI for the
server can be a pulse.

2.1.2. parallel operating spams

2.1.2.1. USING RESOURCE MANAGEMENT
The connect module of the SPAM can be found in figure 112. Simplifying
the server's control logic by moving the cannect module to the SPAM
shauld be introduced in the ane-one situation. The connection module
doesn't need a muItiplexer for the z's signa Is in the one-one situation.
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figure 112: connect module

Since we separated the conneet module from the server, we get a new
server description, which will be presented af ter discussing a few further
improvements. The server won't be given free by the SPAM, before the
SPID and CONID are fetched.

SAREQ
SAGRT
MNREQ
MNACK
SVREQ
SVGRT
PTR
RDY

8
12I

/I' 9

II 8

('7 10

r"- cl 11

l! r14
I I

\

figure 113: the communication protocol using resource
management.

action:
1 : request for the shared resource: the server
2 : request granted
3 : MNREQ starts arbiter
4 : the pending SVREQ is granted
5 : acknowledge of CPAM for the SVGRT
6 : SVGRT rernoved
7 : MNACK given
8 : request for server rernoved. This is only possible, when the SPIO and CONIO

are clocked at the rising edge of the MNACK
11 : the result are fetched. The CPAM requests a new service
12 : the SPAM requests the server. It wants a new process. (NO relation exists

between eleven and twelve)
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Remark: the period between seven and eight can be longer than one clockcycle. This
depends on the identifier's storing implementation.

The reSOurce managemen t allows the several MN ACK and MNREQ lines to
be multiplexed becoming low active lines. The resource management timing
chart indicates that even more lines can be multiplexed. SVGRT, MNACK
and SAGRT can be multiplexed, because the receiver knows which answer
to expect. SAREQ, SVREQ and MNREQ can't be multiplexed. Every new
pulse is interpreted as a new request. We will multiplex the SVGRTand
PTR lines (low active). We use n\n to indicate a low active signal.

The data bus can be used for the SPID and CONID transport. The MNREQ
line is a RFD (ready for data), the MNACK line is a DAV (data
available). This is allowed, since the sequencing is known. When already
RFD and DAV lines exist, they can be used. The advantage of this
solution is a simpier server and less lines. Several sources activate the
RFD and DAV line, so these lines are low active.

SPAM SPAM

I1 11
"TA

• 1 I • • I I •
....

• I I • • I I •
~ I I! ~ I 1!

I1 I1

I

'* IW

RESOURCE MANAGER

SERVER

• I I .. • I ~ I" ~ I I :
~ I I~; ~ I "I In D I I '!
li I I ~ \ li I lil I~ \ \ •

I I ) 1 I 2, I) : :

I ~I--=- -=-= -=-=-=-=.:r.:::j.:r-=-=-=-=-==-=.=. -=--=-~I: ======.-=--=-=--=,I I I
I' I I t-r--------~ ---------, I 11
I11 I I I--------t"iît----------l l ,'

I I I, I 1 11 I I I I I I I I : :
I I ~ I I I I; I , I I I I I I I I
I I I' I 1 I IY I I I I I I I I 11
I I I I I I 1 I I I I I I I I 11
11' I II1 11I 1 r----.L~.L---- .. I
/11 1 I1 I I1I I I r----i-rri-----,i
111 r----htt-l--r-------!-I-t-!---T"z---tt----4Hi--, z 11

figure 114: AFD/AID optimized configuration

The calling process description doesn't change, only the shared process
monitor.
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: proc id1;
: proc id2;

SPAM MONITOR PSPEC:
while true do

begin
eobegin

res conid;
waitres(sa) ;

eoend
get(spid)j
get(conid);
relres(sa)j
case spid do

id1
id2

endj
end·

odj .

eod
odj

SERVER CONTROL SPEC:
while true do

begin
while not(rdy\) do skip; (0 wait until request 0)
str_sv:=true; (0 start svreq logic 0)
while not(rdy_sv) do skip; (0 wait until a service request is found 0)
str sv:=fa\se;

- (0 rdy\ already active 0)
eobeglo

en spid:=truej
dav\:=truej (0 spid on the bus 0)

eoeod
while rfd\ do skip; (0 wait untilloaded 0)
eobegio

en conid:=false;
da0; :=false;

eoeod;
while not(rfd\) do skipj
eobegio

en conid:=true;
dav\:=truej

eoeod
while rfd\ do skipj
eobegin

en spid:=false;
da0;:=falsej

eoeod;
while not (free sv) do skip;

(0 waituntil acknowledge of svgrt 0)

SAREQ

SAGRT
RFD\
DAV\
SVREQ
SVGRT\/PTR\
RDY

,---------------,13

figure 115: hardwired eaU AFD usiog multiplexed Iioes

action:
1 : request for the shared resource: the server
2 : request granted
3 : SPAM ready for data, starts arbiter
4 : the pending SVREQ is granted
5 : acknowledge of CPAM for the SVGRT
6 : data byte put on bus
7 : data c10cked
10 : next data byte
13 : request for server removed after c10cking the SPIO and CONIO.



168

-~----------;;/r.-,-------'---r---T--'-------"'------""""""/,,-----'

S
T
R
S
v

R
D
Y

S
v

SVREQ ARBITER LDGIC

'V
D R
A F
v D
\ \

RESET CONlO SPlO

INV
S R

" '7

FRECSV

SVREQ SVGRT\
PTR\

'" 7
BUS

figure 116a: server with resource management
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2.1.2.2. NO RESOURCE MANAGEMENT
We remove the resource management and introduce a second arbiter in
the server module multiplexing SVGRT and PTR. Multiplexing MNACK/RDY
makes no sense. These lines are connected af ter the muItiplexer.

SERVER (USrNG r\olo ARBlTERS)

• I I •• • I ., ,.. • I I • • I I. I D.
~llv~ vl"llv~ NI': "11: I'{
ijll~\ fllll~\ ~II~ f'l~ I

I,: ~------~l..J1?_------l.L--f-------!-l__ ., I
$-I-------~-I_I_-------l_I-- ... .J..~-..., I I

II I 11 r------t"I-"""h -------jj-, I I
III I In------rrtii --------n-.., 11'
lilt I III I I 1I1 II I1 II :
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figure 117: AFD/ AID withou t RMAM
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SPAM MONITOR PSPEC:
while true do

begin
res eonid;
mnreq(idspam); (* request new proeess to exeeute *)
wmnaek(idspam); (* spid and eonid are ready *)
get(spid);
get(eonid)j
remnnreq(idspam);
case spid do

idl
id2

end;
end·

od; .

SERVER CONTROL PSPEC:
while true do

begin
str_mn:=true; (* enable mnreq logie *)
while not (rdy_mn) do skip; (* wait until mnreq *)
str mn:=false;
str-sv:=true; (* feteh a svreq *)
while not(rdy sv) do skip;
str sv:=false;
(* rdy\ already aetive *)
co begin

en spid:=true;
dav\:=true;

coend
while rfd\ do skip;
cobegin

en eonid:=false;
dav\:=false;

coend;
while not(rfd\) do skip;
co begin

en eonid:=truej
dav\:=truej

coend
while rfd\ do skip;
co begin

en spid:=false;
dav\:=falsej

coend;
while not (free sv) do skip;

(* waituntil acknowledge of svgrt *)
remmnreq(idspam);

end
od;

The communication protocol is identical with the resource management
timing chart. Only some lines have other names.(fig 119) This solution
isn't really better. The number of lines doesn't differ. A few clockcycles
are saved, because the same module that serves the monitor request
executes the resource management.
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figure 119: timing hardwired call using two server arbiter and
id on the bus.

2.2. COMMAND MODEL

2.2.1. one spam

2.2.1.1. THE PROTOCOL EXECUTION AND OPTIMIZATION
Af ter requesting the SPAM and giving the parameters, CPAM executes its
program until it needs the result and starts waiting for the result.

CPAM CPAM CPAM
1 2 3

\

"-

I Iti 12 31 I. 51 16
I I 1 I

I I I I 1 I

1 I 1 r=---=--=--=--=---=--=-~-.J I I
111

1
,--------- f--------.JI

I1I I 11--------
_______ ...J

SERV
I?- _ --=r~ __

CU 1-- ~r~_~ OU1------'
SPAM v_ SRfD/SDAV SP AM ~- ---- SPAM~----- I,*"C

CRf"D/CDAV

PROCESS CONTROL

SHARED PROCESSING

DATA
BUS

1. GRTl/SRFDl/SDAVl
2. REQ1/CRFDlICDAVl
3. GRT2/SRFD2/SDAV2
4. REQ2/CRFD2/CDAV2
5. GRT3/SRFD3/SDAV3
6. REQ3/CRFD3/CDAV3

figure 120: cmd shared processing allocation
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We use separate signals for the data transport by the caller (CDAV,
CRFD) and the SPAM (SDAV, SRFD). (C=CALLER, S=SHARED). SRFD
active means requesting the parameters and CRFD active requesting for
the results. In figure 121 a timing and sequencing description of the
communication using one caller (SVREQ, SVGRT) and one SPAM (MNREQ,
MNACK) is given. In figure 122 you can find the connections between the
modules.

MNREQ 23

1'1NACK
,
I

SVREQ 22,,
SVGRT <)

,
CDAV

I I

SRFD ,
1

I I I

CMDBUS I I ,
, I I I

SDAV I I

'~i!CRFD I"
k I

I I' 20 ~

RESBUS I I b--------o----dI I
I I I I

ID 0 I' I ,, , , ,
I I I I
I I I I

PHASE A I I C D I E :F, I I

Bl B2

figure 121: basic sequencing

action:
1 : SVREQ of the CPAM, the SPAM is executing a program (no MNREQ exists)
2 : MNREQ; the SPAM asks for a new caller proceaa
3 : SVREQ is granted
4 : monitor acknowledges that a caller is found.
5 : MNREQ removed; start-up of SPAM
6 : Server removea the MNACK
7 : SPAM is ready for the command word
8 : CPAM removes the request
9 : server removes grant
10 : CPAM puts CMD on the data bus
11 : SPAM copies data from bus
12 : CPAM removes the data
13 : SPAM aaks for next parameter
14 : SPAM asks for another parameter
15 : CPAM removes the last parameter from the data bus
16 : CPAM signals that it can receive the first result (status)
17 : result ready; SPAM put status on the bus
18 : status removed from the bus
19 : CPAM aaks for next result
20 : CPAM aaks for another result byte
21 : last result removed from the bus
22 : CPAM generates a new request
23 : SPAM asks for a new CMD word (new caller)

The periods:

2-3
2-4
4-5
5-6
5-7

: one dockcyde; (arbiter response)
: response time could be one dockcyde;
: one dockcyde; monitor start the process preparation
: one dockcyde;
; depends on preparation actions
==================================

3-8
8-9

: depends on program in CPAM
: one dockcyde;
==================================

21-22
21-23

: depends on program
: depends on actions in SPAM
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Sequencing:
(2,3,4,5,6,7) parallel with (2,3,8,9)
(7 and 8),10,11,12,13,14,15,16,17,18,19,20,21
Action 7 and 8 should be executed before act ion 10.
(21,22) and (21,23) No relation exists between 22 and 23.

Phases:
A : arbitration to find partner and to start handshake protocol
BI : initialization of SPAM
B2 : SPAM ready while CPAM not ready (can be empty)
C : parameter communication
D : execution
E : result communication
F : clear action of SPAM

I

I
I
I
I

HNREQ _.J

I
I
I
I
I
I

HNACIC I______ J

DAV

CllAV_ ~

RF"D SPAtv1
RF"D_ ~

SERVER
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,
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~
C

"~ S
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-~ SERV f- -
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I

I
I
I
I
L SVI1E~_

I
I
I
I
I
I
I SV~TL _

CPAM

CllAV

l<:==
" SRtD

CRtD

t -=--=-r' SllAV
L.-~_---,--'

figure 122: con neet signals

Normally a resource is locked for the duration of the action. So the
caller would remove the service request af ter receiving the results. But
we will try to multiplex several signals, which is impossible, when the
request is still active during the process execution. The difference
between resource mutual exclusion and the shared processing is that the
shared resource (SPAM) knows when the processjaction is finished. So no
necessity exits to maintain the request/loek.

Af ter the SVREQ and SVGRT handshake, the CPAM wants to pass the
parameters to the SPAM, which should be ready to receive data. After
receiving all parameters, the SPAM starts executing the process, while
the CPAM executes its process until it needs the results. For the result
communication we use a handshake protocol. The first active CRFD
indicates that the CPAM is waiting for the result. It is unnecessary to
introduce a separate primitive for the result communication, since the
sequencing is known. The caller generates the first CRFD and tests the
SOAV. When all results are sent to the caller, the SPAM starts a new
process.
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Sometimes a few phases of th is protocol are redundant. After the grant
the handshake REQ/GRT protocol can't give any information unless the
grant could be missed. If the processing module is not able the react to
the grant, because of the execution of a critical section, we need a
complete handshake protocol.

The monitor requests a caller using MNREQ and waits for an
acknowledge, which is redundant. The monitor needs only a new commando
We change the handshake into a start signal signalling the server that a
new CMD is necessary. The SPAM prepares itself for the new CMD and
signaIs SRFD and waits until CDAV is received. The new descriptions are:

SPAM MONITOR PSPEC:
while true do

begin
str:=true; (* start pulse *)
str:=false;
init; (* some initialization *)
get(parl);
deccmd(procnumb,parl); (* decode cmd *)
case procnumb do

1 : proc Ij

end;
od;

end;

The connect unit breaks down the connection after the start signal,
before a new SVREQ is generated. Otherwise this signal can be
interpreted by the SPAM as a CDAV signalling the SPAM the selection
of a partner.

2.2.1.2. THE MULTIPLEXING IMPLEMENTATION
The SVREQ and the SVGRT signals can be removed before the start of
the parameter communication (C.l). The sequencing of events allows to
implement only two lines connecting every CPAM to the server of the
SPAM by two lines. We combine the SVGRT, the SRFD, the SDAVlines
into one line (SMES) and the SVREQ, CRFD, CDAV into one line (CMES).

SVAM CTRL SPEC:
while true do

begin
while not str do skip;
cobegin

enable:=true
mux:=O (* disconnect *)

coend;
while not rdy do skip;(* wait until newcaller is found *)
cobegin

enable:=false;
en able grt lines i

coendi
test grt lines (whiIe not(free) do skip;)(* wait for caller to notice grant if needed*)
mux:=[idcpam] ;

end;
od;

The server module sets up the connection between the caller and the
SPAM (figure 124). The server arbiter generates af ter a start signa1 the
caller's IDCPAM, which is loaded in to a register af ter the handshake
execution between the server and the caller. This register sets the
multiplexer.
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figure 123: multiplexed signals
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figure 124: server implementation
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figure 125: cmd timing

action:
1. signal to find a new cal1er and to reset the old connection
2. the SPAM is ready to receive data
3. the grant is generated
4. the SVREQ is removed
5. the grant is removed
6/7. the connection is set up
S. data is put on the bus (parameter)
9. data is c10cked
10. data is removed
11. calling proce88 is ready to receive results
12. status info put on the bus
15. new request of the calling process, before the connection is broken down. This

signal is ignored
16. disconnected
17. because of the break down of the connection
IS. another cal1er is granted
19. SVREQ removed
20. granted removed
21. connected
22. shared processing module ready for data (the processing module has done some

work before generating this signai).

Response time:
1-3 arbitration
1-2 proce88 start-up; We don't know which action will occur fint 2 or 3.
3-4 one clockcyc1e
4-6 one clockcyc1e
5-6 one c1ockcycle; this period can he longer, when the handshake between SVREQ

and SVGRT includes four phases.
reaction ca!ling process, the duration is application depended
this can he awhile.
signal given to SPAM. Because the SPAM doesn't expect a signa! anymore
until STR is raised, this signa! is ignored.

It seems possible to reduce the handshake to SVREQ, LDMUX and use
SRFD as SVREQ, but SVREQ win be seen as CDAV raising conflicts.
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2.2.2. severaI spams
See also discussion in 2.1.2.

2.2.2.1. USING ARBITERS
We remove resource management and introduce an arbiter in the server.
Our goal is to reduce the number of lines needed for the communication.
Masking the SVREQ after the SVGRT gives an opportunity to multiplex
this line, but the server module has to remove the mask requiring the
server module to know which SPAM is serving which CPAM. U's easier to
introduce a separate SVREQ line and to multiplex the
SVGRT /SDAV /SRFD. Because of the even t sequencing the SPAM can only
generate a signal af ter giving a grant. Now we need only three lines for
the CPAM.

Primitives starting an arbiter should not be multiplexed. (SVREQ and
MNREQ). The acknowledge signaIs can be multiplexed, since the receiver
is in a state where only one event can occur. We will use the MNACK
as load signa1 for the connect module. The new configuration can be
found in figure 126.

SERVER CONTROL PSPEC:
begin

while not«or mnreq» do skip; (* test if any mnreq; no request of spams to get partner*)
strl:=true; (* the svreq module fetches a partner for the cpam *)
while not (rdyl) do skip;
cobegio

strl:=false;
str2:=true; (* fetch the spam partner *)

coend;
while not(rdy2) do skip;

end;

Informal description of
SERVER ARBITER I:

- select SVREQ
- SVGRT
- WREMSVREQ
- REMSVGRT
- RDYI

SERVER ARBITER 2:
- select MNREQ
- MNACK
- WREMMNREQ
- REMMNACK (*load IDCPAM *)

See the server arbiter in appendix B.

The CPAM's description isn't changed, but the new description of the
SPAM monitor is as follows:

while true do
begin

mnreq(idcpam);
wmnack(idcpam) ;
remmnreq(idcpam);
init;
get(parl);
deccmd(procnumb,parl); (* decode cmd *)
case procnumb do

1 : proc li

end;
end;
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figure 126: AFD/AID no resource management

The IDCPAM can be transported on the bus requiring a data protocol.
The function of MNREQ/MNACK changes altering the server control.
After the SVREQ removal, the bus should be requested. But the
implementation must select the correct MNREQ and MNACK to generate
the signals requiring extra hardware, which is probably more expensive
then to use two separate RFD and DAV (shared lines).

2.2.2.2. A PARALLEL SERVER MODULE

Suppose it takes awhile before the calling process module acknowledges
the service grant. The response time of the calling process depends on its
program. During th is period the server module has to wait, while in the
mean time another SPAM has generated a new MNREQ. We solve this
problem by using an interrupt technique. The outline of the server module
is:
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- when the server module is idle wait for a MNREQ.
- find the IDCPAM of the SPAM.
• save this ID
- start searching f or a partner CPAM
- find the IDCPAM
- generate SVGRT
- mask SVREQ of IDCPAM, so that this SVREQ won't be assigned to
another SPAM avoiding two SPAMs handling the same SVREQ.

This program is interrupted, when the SVREQ is removed af ter receiving
the SVGRT. The SPAM starts its execution. The server's request removal
interrupts the processing. No interrupts can arrive, if no MNREQs are
generated. The outline of the interrupt program is:

- find IDCPAM of the interrupt (several interrupts can arrive
together)
- remove mask of the corresponding SVREQ
- fetch an IDCPAM of a SPAM
- load MUX[IDSPAM]:=IDINT

The SPAM can be given an IDCPAM, that is different from the CPAM
that was given a grant af ter the MNREQ.

The server's module program outline is:
MAIN
begin

end;

enable int;
while true do

begin
str spam arb serv
while not (rdy spam arb serv) do skip;
load idspam in buf; -
str -;Vreq arb B;"rv:;
while not (rdy svreq arb serv) do skip;
set idcpam in mask; -

end· - - -
od; ,

INT ROUTINE;
begin

disable int;
str_int_arb_serv;(*no wait on rdy required, because at least one signal is pending *)
remove idspam from buf;
cobeg1D - -

dec idspam in sel mux;
load- idint in muxpnt;

coend - --
enable int;

end;

This solution shows what it costs to speed up the service of the SPAM.
It is not clear, if the overall performance is better, since we introduced
a certain amount of bookkeeping. But the costs in the hardware are
enormous. A solution for masking the SVREQ can be found in the
literature (interrupt's masking). We should be aware of the complexity of
the connect module (two level multiplexing; the IDSPAM must select the
correct MUX f or the SPAM and for the IDCPAM loading).
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figure 127: parallel server



3. buffering

3.1. RESOURCE MANAGEMENT

3.1.1. process specification

We introduce the following identifiers:
IBUFCMDO : for the communication bet ween the BUFCMD and a SPAM
IBUFCMDI : for the communication bet ween the BUFCMD and a CPAM
IBUFRSU : for the result ready signalling
IBUFRSUI : for the communication between the BUFRSU and a SPAM
IDCPAM : identifier for the caller

CALLER PSPEC:
cobegin

begin
parallel program;

end
begin

waitres(ibufcmdi); (* request access to the bufcmd *)
putarb(id) ;
putarb(cmdl);
putarb(cmd2)j

cobegin
putarb(cmdn);
relres(ibufcmdi); (* release buffer *)

coend
prog
wsigrdy(ibufrsu); (*wait until the bufrsu signals that the result is ready*)
get(resl); (* get status of bus *)
decode(resl,ok); (* decode the status info *)
if ok

then
begin

get(res2); (* get next result byte *)
get(res3);

end
else proc errorhandling;

end;
coend;

SHARED PROCESS PSPEC:
begin

init;
get(par2); (* fetch parameter *)
get(par3);
relres(ibufcmdo);(* all parameters fetched release the bufcmd,so that other can fetch
parameters *)
execute
status(resl,ok)j(* generate status info *)
waitres(ibufrsui) ;
update(id); (* the number cntpar is replaced by the number cntrsu *)
putarb(id); (* send idspam of cpam to buffer *)
putarb(resl); (* put status on the bus *)
if ok then

begin
putarb(res2);

end;
relres(ibufrsui);

end;

181
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SPAM MONITOR PSPEC:
while true do

begin
init; (* some initialization *)
waitres(ibufcmdo) ;
get(id); (* id saved to send back, when ready *)
get(parl); (* command fetched *)
deccmd(procnumb,parl); (* decode commands *)
case procnumb do

1 : proc 1;

end;
endj

We define two primitives for the data communication with the buffer (see
appendix A):

PUTBUF(REG):
WHILE WACK DO SKIP;
WREQ:=TRUE; (* request the buffer to write the byte into the buffer *)
WHILE NOT (WACK) DO SKIP;
WREQ:=FALSE;

GETBUF(REG):
WHILE RACK DO SKIP;
RREQ:=TRUE; (* request the buffer to read a new byte *)
WHILE NOT(RACK) DO SKIP;
RREQ:=FALSEj

We start with the interface process for the BUFCMD.

THE BUFCMD MODULE

PROC INTF IN COMMANDS; (* interface for the in process *)
begin - --

while true do
begin

get(reg); (* feteh the data of the bus and put it in a register *);
putbuf( reg) ;

end;
od;

end;

PROC INTF OUT COMMANDS; (* interface for the out process *)
begin - - -

while true do
begin

getbuf(reg); (* fetch an element in the buffer *)
putarb(reg)j (* put the fetched element on the bus *)

end·
od; •

endj

THE BUFRSU MODULE

PROC INTF IN RSU;
begin - --

while true do
begin

get(reg); (* fetch the data of the bus and put it in a register *)j
putbuf(reg)j

end;
od;

end;
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This is identical to INTF IN COMMAND. All processes are so simple, that
they can be combined -;ith- the buffer read and write processes (see
appendix A).

PRoe INTF OUT RSU;
while truedo - -

begin
(. feteh an element in the buffer .)
getbuf( reg);
cobegin

load entj (. a part of the idspam is used to teil how many data bytes the result
- bloek eontains·)

set sigrsu[idepam]; (. set the signal result is ready for the correct epam using
- the idepam .)

coend
cobegin

begin
while not(rfdep) do skip; (. used as aeknowledge signaI·)
reset sigrsu[idepam]; (. this is no problem, beeause only one sigrsu is set .)

end -
while ent <> 0 do

begin
(. feteh an element in the buffer .)
getbuf(reg)j
(. put the fekhed element on the bus .)
putarb(reg)j
ent:=ent-l;

end;
od;

coend;
end;

od;
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figure 128: BUFRSU out implementation
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3.1.2. the communication protocols
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figure 129: the communication protocol with CPAM

action:
1. request for the shared resource BUFCMD
2. the shared resource is granted to this CPAM
3. the CPAM requests the bus after testing if the BUFCMD can receive the data

(RFDCMD). It has data ready otherwise it won't request the bus
4. bus granted
5. data put on the bus
6. data copied
7. data removed from the bus and the bus request removed
8. bus given to another requester
9. the BUFCMD is ready for a new data byte, because the buffer has received

data
10. the CPAM has a new data byte and requests the bus
11. the last parameter is removed from the bus and the bus request is removed.
12. bus given to somebody else
13. request for the shared resource BUFCMD removed
14. shared resource given to somebody else
15. result is ready; signal to the CPAM
16. CPAM is ready for the data byte
17. signal that resu!t is ready is removed
18. bus is requested
19. bus is granted
20. the BUFRSU puts the data on the bus
21. the CPAM copies the data
22. the bus request is removed and the data is removed from the bus
23. bus given to another requester
24. the CPAM can receive another byte
25. bus request
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2-3

9-10

11-13
13-14
16-16

3-4
4-5
5-6
6-7
7-8
6-9

16-17
17-18
21-24
24-25

the response time:
1-2 depends on the number of requests. When only one request is depending

one c10ckcycle
one c1ockcycle, the CPAM is waiting for this event, when the buffer can
receive data
one c10ckcycle
one c10ckcycle
one c1ockcycle, when both module use the same clock
one c10ckcycle
one c10ckcycle
depends on the implementation of the buffer (WREQ and WACK) and if
the buffer isn 't full.
depends on the fact if the CPAM has the data ready and is ready to put
it on the bus. Ir data is ready then one c1ockcycle.
could be sero
one c10ckcycle
depends on what the CPAM is doing. This is one c1ockcycle, when the
CPAM is waiting for the result
one clockcycle
one c10ckcycle
depends on implementation of CPAM
depends on buffer. Ir data available (it can be that the SPAM hasn't put
a next data byte in the buffer), this depends on the implementation of
the buffer.

Remark: Notice the difference between the RFDCMD\ and RFDCP 16. This
is essential for the protocol. 16 can only happen after 15, while
RFDCMD\ can be active before the resource is granted.
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figure 130 communication protocol for SPAM



2-3
3-4

4-5
5-6
6-7
7-8
8-9
7-10
17-19

186

action:
1. request for the shared resource BUFCMD
2. the shared resource is granted to this SPAM
3. the SPAM is ready to receive a new data byte
4. the BUFCMD requests the bus after testing if the SPAM can receive the data

(RFDSPAM)
5. bus granted
6. data put on the bus
7. data copied
8. data removed from the bus and the bus request removed
9. bus given to another requester
10. the SPAM wants a new data byte
11. the last parameter is copied
12. data removed of the bus and bus request removed
13. bus given to somebody else
14. request for the shared resource BUFCMD removed
15. shared resource given to somebody else
16. result is ready and the BUFRSU is requested
17. BUFRSU is granted
18. the buffer can receive data
19. bus requested
20. bus granted
21. data on bus
22. that copied
23. dav and bus request removed
24. last result byte removed of bus
25. bus given to another partner
26. shared resource given free
27. given to somebody else

the response time:
1-2 depends on the number of requests. When one request is depending one

c10ckcycle
one c1ockcycle, the SPAM is waiting for this event
one c1ockcycle, if the buffer has data ready. Otherwise it will wait until
a data byte is ready.
one c10ckcycle
one c10ckcycle
one c10ckcycle
one c10ckcycle
one c10ckcycle
depends on the implementation of the buffer (RREQ and RACK)
one c1ockcycle, if the SPAM is ready and the buffer can receive data.
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3.2. WITHOUT RESOURCE MANAGEMENT

A scheme of the buffers can be found in figure 131 and 133. We
describe the functions of the servers.

(CPAM LEVEl)

DB
AU
TS
A

SD SR
VA VF
RV GD
EC RC
QP TH
I I D

BUFCMD OUT CONT D • I. , I. I. lil lil $

B \/IlEQ • , D[DDEDT
v D C • y.

U c c
OAQ( p "F D

OAQ(

D F
SIRL(I.D •

_.
ETJ(DNDE "• f S C c R BUFCMD IN CONT"D

MD MR DB
NA NF AU
AV RD TS
CC ES A
KM QP
I D I

figure 131: bufcmd model

(SPAM LEVEL>

In the protocol (figure 132) a STR signal is introduced, to make the
protocol easier to read. In the implementation this signal doesn't exist.
We see that during the period 1-5 the handshake for the service request
is executed. The duration depends on the parallel program the CPAM is
executing, when a SVREQ is pending (period 3-4). Action 5 is a
conseQuence of the server arbiter implementation, but is not functional.
The buffer can always fetch the first byte, since the input register is
empty, when the program reaches this point. Actions 6,7,8,9 make up the
normal data communication handshake protocol.
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The CMD IN SERV;
cobegin

while true do (* grant logic *) Odj
while true do

begin
while not(rdy) do servarb(svreq[l..Ml.true,idcon,rdy);
svgrt[idconJ:=true;
wremsvreq(idcpam)j (* while not(free) do skip, so no wrong interpretation is
possible*)
cobegin

engrt:=fa\se;
mux:=id; (* set up link, now reset mnack *)

coend
get(id)j (* the byte containing the id of the cpam and the number of bytes

that will be transmitted *)
load cnt; (* this statement could be executed at the moment the id is cIocked,

- but this requires a special get primitive *)
putbufj (*put received byte in buffer *)
while cnt<>O do

begin
get(reg);
cobegin

putbuf(reg)j
cnt:=cnt-l;

coend
end
od;

cobegin
mux:=O; (* a new request can be served *)
engrt:=true;(* enable arbiter response logic*)

coend
end;

od·
coend;

STR
SVREQ/DAVCP
SVGRT IRFDCMD
BREQCP
BGRT
BUS
MUX

C>

RES 5 CON

PROTOCOL DATA CoM FRoM CP To BUFCMD

STR
MNREQ/RFDSP
MNACK/DAVCMD
BREQCMD
BGRT
BUS C>
MUX

1 RES 5 CON

PROTOCOL DATA CoM FRDM BUFCMD TO SP

figure 132: protocol data communication with bufcmd
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cobegin
enaek:=falsej
mux:=idspam;(* set up link, now reset mnaek*)

coend
getbuf(reg)j(* this register is part of the buffer*)
load ent;
putarb(reg)i(* give the id of the epam to the spam*)
while ent<>O do

begin
getbuf(reg)j
cobegin

putarb(reg)j
ent:=ent-lj

coend
end
od·

cobegin
mux:=Oj
enaek:=truej

coend

THE CMD OUT SERV;
co begin - -

while true do (* grant logie *) odj
while true do

begin
while not(rdy) do servarb(mnreq[l..M],true,idspam,rdy)j
mnaek[idspam]:=truei
wremmnreq(idspam);(* while not(free) do skip, so no wrong interpretation is

possible*)

end·
od· '

coend;

The executed protocol is identical with the protocol for the CPAM and
BUFCMD (fig 132). Only the duration of periods will differ. The reset
period (the handshake of monitor request and grant) will be shorter.

The RSU IN SERV;
cobegin -

while true do (* grant logie *) od;
while true do

begin
while not(rdy) do servarb(reqrsu[l ..M],true,idspam,rdy)j
grtrsu[idspam]:=truej
wremreqrsu(idepam) ;
co begin

engrt:=falsej
mux:=idspamj(* set up link, now reset mnaek *)

coend
get(id);
load entj (* eould be exeeuted in parallel *)
putbuf(reg)j (*put reeeived byte in buffer *)
while ent<>O do

begin
get(reg);
cobegin

putbuf(reg)j
ent:=ent-lj

coend
end
od·

cobegin
mux:=Oj
engrt:=truei

coend
endj

od;
coendj
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figure 134: protocol data communication between shared process
and buffer
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The protocol doesn't differ from the other ones. The period 1-5 will be
short, because the SPAM is waiting for the moment when the buffer is
granted.

STR
SIGRSU/DAVRSU
GRTRSU/RFDCP
BREQRSU
BGRT
BUS
MUX

1 3
RES

CON

C>

figure 135: protocol data communication between buffer and
CPAM

This protocol really differs. The period 1-3 is very short, and could be
removed, since no signal will be interpreted wrong. The period 4-5
depends on the program the CPAM is executing at the moment it gets the
SIGRSU. When the SIGRSU is an interrupt for the CPAM, the reaction
will be very quick.

THE RSU OUT SERV;
cobegin

while true do (0 grant logic 0) od;
while true do

begin
getbuf(reg);
co begin

load cnt;
mux:=id;

coend
sigrsu[id]:=true; (0 signal the cpam 0)
wackrsu(id); (0 wait for the acknowledge, the cpam can be in a critical section

when it receives the sigrsu 0)
remsigrsu; (0 finish handshake protocol 0)
wremackrsu(id);
while cnt<>O do

begin
getbuC(reg);
cobegin

putarb(reg);
cnt:=cnt-l;

coend
end
od;

mux:=O;
end;

od;
coend;
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3.3. CONCLUSION

We will compare the two buffer solutions. The number of Hnes used in
server buffer model is:

#CPAM (prot bufcmd) + #CPAM (prot bufrsu) + #CPAM (busreq)
+ #SPAM (prot bufcmd) + #SPAM (prot bufrsu) + #SPAM (busreq) +
2 busreq bufcmd + 2 busreq bufrsu =

6#CPAM + 6#SPAM + 4

between brackets stands an identification for Hnes
# CPAM is the number of CPAM
# SPAM is the number of SPAM
prot means protocol

The resource management model:

#CPAM (resource management bufcmd) + #CPAM (sigrsu) + #CPAM
(busreq) + #SPAM (resource management bufcmd) +#SPAM(resource
management bufrsu) + #SPAM (busreq) + 4 (data prot at CPAM level)
+ 4 (data prot at SPAM level) + 2 busreq bufcmd + 2 busreq bufrsu

5#CPAM + 6 #SPAM + 16

It depends on the number of modules to find the m1ll1mum. Until twelve
CPAMs are used, the buffer servers model uses less Hnes. We can only
conclude that a clear and a simple model using resource management
doesn't make much difference.

The logic needed is different. The arbiters are moved from the resource
management to the buffer servers. The only difference is the number
count in the buffer server model. Another disadvantage is the number of
multiplexers.

The resource management model is conceptual easier, but doesn't give a
great implementation profit. In the buffer servers model the handshakes
are a bit unnatural. All primitives are more logical in the resource
management model.
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D. PROGRAM STRUCTURES FOR SHARED PROCESSING

AFTER TASK ALLOCATION

Using the techniques introduced in chapter, we change the programs for
shared processing and focus on the program structure and
synchronization. The implementation of the techniques depens on the
requirements model. The interrupt handling costs extra resources, so if
the requirements model doesn't request it, we don't implement it.

1. hardwired eaUs

1.1. CALLER PROGRAMS

The interrupt handiers:

INT SVGRT; (* the SVGRANT is the interrupt *)
begin

remsvreq
endj

Purpose: avoid waiting until a spam is free.

INT PAR; (* the REQPA is the interrupt *)
begin

waitres(bus) ;
regl:=parl;
reg2:=par2;
reg3:=par3;

endj

cobegin
reqn:=parn;
relres(bus) j
rdypaj

coendj
sigtask(idtask2);

(* signal parameters transmitted *)j

Purpose: increase flexibility in cpam. The parameter request folows
quickly after the SVGRT.

INT RES; (* interrupt SIGRSU *)
begin

waitres(bus) ;
rrsul:=rsulj

endj

cobegin
rrsum:=rsum;
relres(bus);
rdyrsy; (* signal result copied *)

coendj
sigtask(idtask3); (* make task waiting for the result runnable *)

Purpose: avoid wai ting f or result
The implementation of the interrupts changes the tasks into:
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The tasks:

TASK 1;
begin

prog
svreq(idcpam);(* request shared process *)
save(proc statl);

end; -

TASK 2;
begin

remtask(idtask2);
restore(proc_statl);
prog
save(proc_stat2);

end;

TASK 3;
begin

remtask(idtask3);
restore(proc_stat2);
prog
(* further statements depend on task function *)

end;

Remark: Task 2 can be executed in task I, if the resources where the
parameters reside aren't used. The monitor doesn't change.

1.2. SPAM PROGRAMS

1.2.1. one spam

The structure of the called shared process (not including the monitor)
doesn't change, because we don't allow the SPAM to execute another
task, when it is running a requested process. slowing down other
programs. The monitor doesn't change unless we can schedule processes,
which aren't requested by other modules. Every executed requested
process signals the server with a MNREQ that a new caller can be
served. Because, the module can be running another task, we introduce an
interrupt routine:

INT SERV; (* interrupt MNACK *)
begin

load spid:
remnnreq (idspam);
case spid do

idl : sigtask(idl)
id2 : sigtask(id2)

ënd;····
end;

Purpose: increase flexibility, execute another task when no call is
pending.



: sigtask(idl)j
: sigtask(id2);
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MONITOR SPAM;
while true do

begin
dih;
dispateh(proid, shedinfo,taskinfo) j
eih;
case procid do

idl : task idl

end
end

PROCESS SPID;
begin

cobegin
initj (. starts some initialization independent of the parameters .)j
begin

reqpaj
wrdypa;
init2; (·initialization depending on the parameters .)

end
coend;
processing
cobegin

exitl; (. statements independent of the result communication to leave the process·)
begin

sigrsu;
wrdyrsyj
exit2j (. exit statements, that can only he executed after the result is fetched .•)

end;
coend;
mnreq(idspam)j (. request new process to execute .)

end;

1.2.2. several spam

1.2.2.1. RESOURCE MANAGEMENT
The requested process resets the connection and requests a new caller.
The grant for access of the server will activate an interrupt routine. We
allow the mutual exclusion resource primitive to be interrupted using
REQRESI and RESRESI. This is implemented in an interrupt routine to
a void busy-waiting, when no calls of a process is pending and the module
can execute other tasks.

INT SERV1; (* grant Cor server *)
begin

mnreq(idspam); (. request a caller .)
end;

INT SERV2: e MNACK interrupt, it can take a while beCore it occurs,
- when no eaU is pending *)

begin
remnnreq(idspam);
load conidj
load-spid:
relresi(sa) j
case spid do

idl
id2

end;
end;
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The monitor is identical with the one for one spam.
The requested process:

PROCESS SPID;
begin

cobegin
init;
begin

reqpa;
wrdypa;
init2j

end
coend;
processing
cobegin

exitlj
begin

sigrsUj
wrdyrsy;
exit2j

end;
coend;
res conid; (* problems can arise if this connection isn't reset, when another spam

- serves this conid, while no new svreq can be assigned to this spam. *)
reqresi(sa); (* request server to get a new caller *)

end;

1.2.2.2. RESOURCE MANAGEMENT AND MULTIPLEXING
We define a new primitive GETNOI. This primitive gets data but can't be
interrupted. We will use it also in interrupt routines, which can't be
interrupted any way. But the name stresses the function.

G ETNOI (DEST) :=
BEGIN

DIH;

WHILE DAV\ DO SKIP;

RFD\:=TRUE;
WHILE NOT DAV\ DO SKIP;

CO BEGIN
LD[DEST]:=TRUE; (* load destination register *)

RFD \ :=FALSE;
COEND
EIH;

END;

The requested process id and the conid are transported on the databus.

: sigtask(idl);
: sigtask(id2);

INT SERV2: (* MNACK
begin

remnnreq(idspam);
getnoi (spid) j
getnoi (conid);
relresi (sa);
case spid do

idl
id2

is the interrupt *)

end;
end;

Purpose: a void waiting when no caB is pending or the server is busy.



197

1.2.2.3. NO RESOURCE MANAGEMENT
The primitives RES CONID and MNREQ(IDSPAM) are introduced at the
end of the requestedprocess. The MNACK is an interrupt, which actives:

INT SERV;
begin

getnoi(spid) j
getnoi(conid);
remnnreq(idspam);
case spid do

idl : sigtask(idl);
id2 : sigtask(id2);

endj
endj

2. command direct connection

2.1. CALLER PROGRAMS

We will use PUTNOl, which is the put primltlve executed with the
interrupt handling disabled. We introduce aresult signalling to implement
an interrupt.

INT GRT; <- the SVGRT is the interrupt *)
begin

remsvreq(idspam);
putnoi(parl)j

putnoi(parn);
sigtask(idtask2)j

endj

INT RSU; <- interrupt is SIGRSU signa I *)
begin

ackrsu(idcpam)j (* handshake protocol *)
wremsigrsu(idcpam)j
remackrsu(idcpam) j
getnoi(resl);
decode(resl,ok)j
ifok

then
begin

getnoi(res2);

endj

getnoi(resm)j
sigtask(idtask2);

end
else sigtask(iderr)j

Because every grant is assigned to one interrupt line, the number of
result bytes for the specific interrupt routine is known. If we wouldn't do
this, we have to introduced tables to keep track of the destination of the
data and which tasks has requested the process. The tables have to be
used for task signalling.
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TASK 1;
begin

prog
svreq(idcpam);(* request shared process idsc *)
save(proc statl);

end; -

TASK 2;
begin

remtask(idtask2);
restore(proc_statl);
prog
save(proc_stat2);

end;

TASK 3;
begin

remtask(idtask3);
restore(proc_stat2);
prog
(* statements depend on task structure *)

end;

Remark: Task 2 can be executed in task 1, if the resources where the
parameters reside aren't used.

2.2. SPAM PROGRAMS

2.2.1. one spam

CALLED T ASK;
begin

init
execute
status(resl,ok);(* generate status info *)
sigrsu(idcpam);
wackrsu(idcpam);
wremack(idcpam);
remsigrsu(idcpam);
dih; (* to speed up the communication, the task may not be interrupted. Otherwise

putnoi is sufficient *)
put(resl); (* put status on the bus *)
if ok then

begin
put(res2)

end;
eih;
mnreq(id);

end;

end
case procnumb do

1 : sigtask(idl);

INT ACK; (* the MNACK is the interrupt *)
begin

rernmnreq(idspam);
getnoi(parl);
deccmd(procnumb, #par); (*decode cmd *)
while #par>O do

begin
getnoi(par(#par]);
#par:=#par-l;

end;
end;

Purpose: avoid waiting when no call is pending.



cobegin
putarb(cmdn);
relres(ibufcmdi)j (* release buffer *)

coend
prog
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2.2.2. several spams

The MNREQ line is RFD and the MNACK line is DAV

INT SERV1; (* SVGRANT is the interrupt *)
begin

rld:==true;
while not (dav) do skip;
cobegin

rld:==falsei
relresi(sa)i
connect; (* load id *)

coend
end;

Purpose: avoid waiting when no caB is pending or server is busy.

The interrupt routine for fetching the command and the parameters was
already described. The request process executes at the end a
REQRESI(SA) and a DISCONNECT primitive.

3. buffers and resource management

3.1. CALLER PROGRAMS

The parameter phase can be implemented as an in terrupt routine to avoid
waiting or introduce more flexibility.

TASK 1:
begin

waitres(ibufcmdi)j (* request access to the bufcmd *)
putarb(id)i
putarb(cmdl)i
putarb(cmd2)i

endi

INT RDY; (*interrupt is SIGRDY *)
begin

getnoi(resl)i (* get status of bus *)
proc decode(resl,ok,#par)i (*decode the status info *)
if ok

then
begin

while #par>O do
begin

getnoi (par[#par]) ;
#par:==#par-l;

endi

end
od;
sigtask(id"')i

endi
else sigtask(iderr)j



end
relresi(ibufcmdo);(* all parameters fetched release the bufcmd,so that other can
fetch parameters *)
case procnumb do

1 : sigtask(idl);
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3.2. SPAM PROGRAMS

The parameter communication is an interrupt routine to avoid busy
waiting, when no calls are pending. The spam program changes into:

INT BUFFER PAR; (. interrupt is access grant Cor buffer·)
begin

getnoi(id); (*id saved to send back, when ready *)
getnoi(parl); (* command fetched *)
proe decemd(procnumb, #par); (*decode cmd *)
while #par>O do

begin
getnoi(par[#par]);
#par:=#par-l;

end;
ënd;

Purpose: avoid waiting when buffer is in use or no request is pending.

CALLEDTASK
begin

init
execute
status(resl,ok); (* generate status info *)
waitres(ibufrsui) ;
putarb(id); (* send id of cpam to buffer *)
putarb(resl); (* put status on the bus *)
if ok then

begin
putarb(res2)

end;
relres(ibufrsui)j
reqresi(ibufcmdo);

end;

It makes no sense to put the result communication in an interrupt
routine, because we won't gain much flexibility.

MONITOR SPAM;
while trne do

begin
dih;
dispatch (proid, shedinfo,taskinfo);
eihi
case procid do

idl : bsk idl

end·······
end
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4. buffer without resource management

See remarks buffer with resource management. The mutual exclusion
primitives for the buffer are replaced by handshake signais.

4.1. CALLER PROGRAMS

TASK;
begin

prog;
svreq(idcpam);
prog;
save(proc_statl);

end;

TASK 2;
begin

remtask(idtask2);
restore(proc_statl);
prog
(* further statements depend on task function *)

end;

INT GRT; (* the interrupt is the SVGRT *)
begin

remsvreq(idcpam);
wremsvgrt(idcpam); (* necessary to reset logic *)
putarb(id); (* put the id and the number count on bus*)
putarb(parl); (* put command on bus *)
putarb(par2); (* put parameter on bus *)

sigtask(id...)
end;

This last routine can be implemented in T ASK I, since we don't have to
wait long for the access of the buffer. The routine just gives more
flexi bili ty.

INT RES; (* the interrupt is the SIGRSU signal *)
begin

ackrsu(idcpam); (* this necessary when a parallel program is executed, which can't
be interrupted. And also to remove the sigrsu signal, which can be seen as a
dav, so that the get primitive is never executed *)

wremsigrsu(idcpam) ;
remackrsu(idcpam) ;
getnoi(resl); (* get status of bus *)
decode(resl,ok); (*decode the status info *)
ifok

then
begin

getnoi(res2); (* get next result byte *)
getnoi(res3);

end;

Sigtask(idtask2);
end

else sigtask(iderr);
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4.2. SPAM PROGRAMS

INT PAR; (* interrupt is the MNACK signal *)
begin

remmnreq(idspam);
getnoi(id) i
getnoi(parl);
deccmd(procnumb,#par);
while #par"::>;O do

beglD
getnoi(par[#par]) i
#par:=#par-1i

end
case procnumb do

1 : sigtask(idl);

ëndi
end;

CALLED PROCESS;
begin

init
execute
cobegin

status(resl,ok) ;(* generate status info *)
coded(id); (* generate id and number ent *)

coend
wgrtrsu(idspam); (* request the bufrsu by raising reqrsu and wait for the grant

rfdcp*)
remreqrsu(idspam); (* remove request; implemented in hardware *)
wremgrtrsu(idspam); (* this is not necessary, because signal will be raised again to

indicate that the buffer is ready after the lines are set up *)
putarb(idspam)
putarb(resl)i (* put status on the bus *)
if ok then

begin
putarb(res2)

end;
mnreq(idspam);

end;

The communication with the result buffer is not implemented as an
interrupt routine. This is not necessary, while the spam will be served
quickly. Implementing an interrupt routine gives more flexibility, but
requires more resources.
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E. EXAMPLE TRANSCATION CENTER

We will discuss to illustrate the techniques introduced in chapter the
con trol transformation transaction center. Usually all the processes will
be allocated to the same processing module.

figure 136: transaction center

Functional description:
TRANSACTION CENTER;
begin

testval:=func(input); (*depending on input and intemal info a task will he seleded*)
case testvai do

1 : taakl;

end;
end;

we introduce synchronization:

PROCTC
begin

remreqproc(idtc);
wremgrtproc(idtc);
testval:=func(input) ;
case testval do

1 : sigtask(idl);
2 : sigtask(id2);
S : sigtask(idS);

end;
end;

We choose to move the REQPROC primitive to the signa lied task to avoid
that an event will be missed. If we introduce a counting semaphore for
the process scheduling we can move the REQPROC to the end of task TC.

TASK 1
begin

remtask(idl);
prog
reqproc(idtc)j

end;

TASK2
begin

remtask(id2);
prog
reqproc(idtc)j

end;
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Suppose that task 2 is allocated to another architecture module.

PROCTC
begin

remreqproc(idtc);
wremgrtproc(idtc);
testval:=func(input );
case testval do

1 : sigiask(idl)j
2 : sigproc(id2)j
3 : sigtask(id3);

endj
endj

TASK2
begin

remreqproc(idtask2)j
wremgrtproc(idtask2)j
prog
cobegin

reqproc(idtc) j
reqproc(idtask2)j

coend;
end;

If the scheduling condition is simple (only signalling), we can signal the
event directly to the architecture module using RIA synchronization.

In the last example we will start two processes on one condition.

PROCTC
begin

remreqproc(idtc);
wremgrtproc (idte);
testval:=func(input);
case testval do

1 : sigtask(idl)j
2 : cobegin sigproc(id2a);sigproc(id2b)j coend
3 : sigtask(id3);

end;
end;

TASK 2A
begin

remreqproc(id2a);
wremgrtproc(id2a)j
prog
cobegin

reqproc(idtc);
reqproc(idtask2a)j

coend;
end;

The schedule module has to check that
before it can start process TC again. More
a counter semaphore for the scheduling.

TASK 2B
begin

remreqproc(id2b);
wremgrtproc(id2b) ;
prog
cobegin

reqproc(idtc);
reqproc(idtask2b);

coend;
endj

both processes are executed
flexibility is introduced using
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