
 Eindhoven University of Technology

MASTER

COMPAC : Compaction of hierarchical chip layouts based on a constraint graph method with
double-sided constraints

Timmermans, X.I.M.

Award date:
1983

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/4d41dc69-59f3-4599-8753-be27e5210087

, / '-/ 1
~; i f

/

AFDELING DER ELEKTROTECHNIEK
TECHNISCH HOGESCHOOL
EINDHOVEN

VAKGROEP AUTOMATISCH SYSTEEMONTWERPEN

COMPAC

Compaction of hierarchical
chip layouts

based on a constraint graph method
with double-sided constraints

X.I.M. Timmermans

Rapport van het afstudeerwerk
uitgevoerd 'Ian juni 1982 tot mei 1983
in opdracht van prof.dr. i"9. J. Jess
en ira M. varl der Woude

CONTENTS

Summar-y 3

1. Intr-oduction 4

2. Methods for- compaction 6
2.1. Shear- line or- compr-ession
2.2. Vir-tual gr-id compaction
2.3. Cr-i tical path compact ion

r-idge compaction
7

8

6

PAGE 2

3. Objectives 11
3.1. Hier-ar-chy 11
3.2. Repr-esentation
3.3. Inter-activity
3.4. Design r-ules

of layout elements
15

16

13

4 . The compaction pr-ocess 19
4.t- Over-view 19
4.2. Input the layout elements 20
4.3. Sor-t the elements and sear-ch for- over-lap --:..-:'... ~

4.4. Par-tit ion the elements into featur-es 28
4.5. Gener-ate the constr-aint gr-aph 30
4.6. Deter-mine an ST or-der-ing of the nodes of the gr-aph 33
4 .7. Compac 34
4.8. Constr-uction of the compacted compound eel l 37
4.9. Examples 37

5. Extensions 43

6. Conclusion 44

References 45

Appendix: Pr-ogr-am Documentation (not included)

PAGE 3

SUMMARY

In this report the compaction program Compac is des
cribed. Compaction is a useful tool in interactive
computer-aided generation of layouts of integrated cir
cuits. With a layout editor the layout designer can
construct a layout in a fast way by approximate place
ment of the layout elements. With automatic compaction
and design rule checking he can generate a compact lay
out with no design rule violations.

The compaction method applied in Compac is based on a
constraint graph. Compaction is achieved in one ore
more subsequent steps by grouping the layout elements
into features and then shifting these features together
in horizontal or vertical direction. The nodes and
edges of the graph represent the features and the con
straints between the features.

The compaction algorithm presented can handle both
one-sided constraints and two-sided constraints. The
two-sided constraints are resolved by backtracking.
Constraints on the shift of layout elements which over
lap each other are determined with a linear method.
For determination of constraints of non-overlapping
elements windowing and shadowing techniques are used to
reduce computation time.

1. Introduction

1. INTRODUCTION

PAGE 4

The compactor described in this report is a part of the
Interactive Design System (IDS) for integrated circuits
C1J. The system will be used for the IC production
unit at the THE. The participants in the design of IDS
are the researchgroup ES of the department of EE and
the computing centre of the THE. They co-operate under
NELSIS C14J with the universities of technology of
Delft and Twente. Further it is intended to co-operate
with Philips Physical Laboratory.

Portability of circuit and layout designs is one of the
requirements. Therefore standards such as standardized
design description languages will be defined. This en
ables the spread-out of a large layout project over
several centres, as well as the use of pieces of lay
outs which are develloped in other centres and stored
in local libraries. The hierarchical approach in IDS
facilitates the editing of layouts and all other phases
in the design of layouts for VLSI.

The design system IDS will encompass in the near future
the following modules:
1. PL-simulator, a mixed-mode mixed-level simulator

based on Piecewise Linear Modelling, which can
simulate integrated circuits at circuit level,
logic level and behavioural level C2J.

2. ISLE, an Interactive Symbolic Layout Editor for ed
iting and drawing symbolic layouts with a graphics
terminal or digitizer C3J.

3. Colormask, a geometric layout editor, for editing
pieces of geometric layout which can be used as
leave cells in ISLE [4J.

4. Compaction C11J.
5. Design rule checking.
6. Circuit verification.
7. Circuit extraction.

The modules will partly use common databases. Besides
interactive input via terminal or graphics tablet, tex
tual input and output with description languages will
be possible.

The program COMPAC has been develloped on the PDP-tt of
the researchgroup ES. The language used is Fortran 4.
The Burroughs version of ISLE has been implemented on
the PDP-lt, to assure gDod interaction between COMPAC
and ISLE. This has been done in co-operation with stu
dent A.G.J. Slenter.
Main differences between the B7700-version of ISLE and

1. Introduction
PAGE

the PDP-version are:
- On the PDP an overlay table is needed,

The drawing with GINO-routines is on the PDP done in
a separate process.

2. Methods for compaction

2. METHODS FOR COMPACTION

PAGE 6

All the various methods for compaction use a topologi
cal placement of layout elements as starting point.
Due to the complexity of the layout compaction problem,
all published algorithms perform compaction in seperate
steps in horizontal and vertical direction. Compaction
algorithms introduce only marginal changes in the to
pology of the layout. Presently attempts are made to
use the concept of simulated annealing for
two-dimensional compaction algorithms [5].

In this chapter brief descriptions are given of compac
tion methods which are or have been used in several la
yout design systems. Chapter 4.1. gives an overview
of the compaction process used in the IDS system; the
compaction algorithm is presented in chapter 4.7.

2.1. Shear line or compression ridge compaction

One of the first compaction algorithms published is
based on a coarse grid (fixed grid) method (Akers [6]).
The layout elements are represented as entries in a ma
trix. Compaction is achieved by searching for and el
iminating a path of blank cells across the matrix
(fig.2.1.a). Figure 2.1.b gives the example used by
Akers.

llIiMi.....,~ SHUR LINES

COMPACTED GRID
LAYOUT

t
COMPACTION PATH

Fig.2.1.a Shear line compaction

2. Methods for compaction

A

o
~

-<:, ,
.~ " '\"'. ,', .',,,
.~.. ".'

E

c

F

PAGE 7

Fig.2.1.b Example of shear line compaction used by
Akers

The algorithm for finding compression ridges often runs
into dead endsl which causes time-consuming backtrack
i ng.

Dunlop [7] uses the shear line method in the
SLIM-system during the global compaction phase. In
this system a relative grid symbolic layout method is
used. The global compaction is preceded by a local
compaction phase in which a kind of clustering of lay
out elements takes place based on a critical path meth
od such as in the CABBAGE-system [8].

2.2. Virtual grid compaction

This method is used in the MULGA-system (Weste [9]). A
relative grid approach is used in order to avoid waste
of mask space inherent to the fixed grid compactors
such as mentioned above. Howeverl to minimize design
ruLe type calculations! adjacency information is treat
ed on grid basis.

The symbolic layout is drawn on a virtual Qrid. The
layout elements are all pLaced on virtuaL grid lines.

2. Methods for compaction PAGE 8

During compaction the spacing between two adjacent grid
lines is determined based on spacing requirements of
the elements which are resident on these grid lines.
So all elements on the same vertical virtual grid line
will shift over the same horizontal distance. After
compaction all spacings has been determined, and the
virtual grid is in fact transformed into a geometrical
grid.

2.3. Critical path compaction

The critical path method (also known as the longest
path method) originates from research in the field of
operations research and network planning. In the field
of layout compaction this method is (o.a.) applied by
Hsueh in the CABBAGE-system [8J.

The layout is represented by a constraint graph. There
are various ways to map the layout into the graph.

One way is to map the edges of elements (building
blocks and interconnection lines) into nodes, and the
sizes and spacing requirements into branches (fig.2.2).

c ~--
~'~ --

Fig.2.2 An example of a graph representation of a lay
out

In the Cabbage system another mapping has been applied.
In this system, those layout elements that are fixed
with respect to each other in the direction of compac
tion, are partitioned into groups (features). All to
pologically connected elements sharing the same verti
calor horizontal center line wi II shift as a single
block during compaction. As a consequence of this ap
proach the groups are mapped into nodes and the separa
tion requirements between groups are mapped into
branches (fig.2.3). So the weight assigned to the

2. Methods for compaction PAGE 9

branch represents the constraint between two groups.
Note that the sizes of elements are not mapped into the
graph.

I I
I I

n1""1
I I
I ,
1 I
I ,

I I ' I
I I I I I I I I
I --t..,------~ I It--l1-------- \1

1.. • 1
I I I I

U U

I I
I I

II
I I
I I

U

n r - - - - - - - ~- - - -
I I I 'r - - - - - - r-,..., I""
I I I I 1 I

Fig.2.3 Graph representation for horizontal
in Cabbage.

compaction

The graph is a-cyclic and can be resolved with a
single-pass algorithm. For horizontal and vertical
compactionl different graphs are used. As depicted in
fig.2.4 the result of compaction may be improved by al
lowing jogs in straight lines. Insertion of a jog
means splitting of a straight line into two parts con
nected by a perpendicular line of initially zero
length. In the constraint graph this implies the
splitting of one node into two. This splitting is only
useful for nodes on a critical path. A critical path
is defined as a path from the graph source to the sink,
where a change of the position of an arbitrary node on
the path results in a change of the position of the
sink. If a node on the critical path is SRlitl the
path no longer goes from source to sink. Another crit
ical path that is shorter will turn up. Automatic jog
insertion implies the recalculation of the critical
path each time a jog is inserted.

2. Methods fo~ compaction

-~

PAGE 10

Fig.2.4 Jog inse~tion caused by the "to~que" applied by
neighbou~ing st~uctu~es on the c~itical path.

com
much
sin-

(domain-) separation
or easy editing should

illustrated in fig.
long global intercon
at several places,

3. Objectives PAGE 11

3. OBJECTIVES

In this chapter the concepts of hierarchy and interac
tivity as implemented in the IDS-system and the influ
ence of these concepts on the design of the compactor
are discussed. An introduction to the symbolic
list ick-based" representat ion of a layout whi ch serves
as input for the compactor is given in section 3.2.

3.'1. Hierarchy

An hierarchical approach for design systems for very
large integrated circuits is very useful C10J.

The advantages of such an approach are clear:
the designer will keep survey over what he is doing

since the number of detai ls at a particular hier
archical level can be kept within the limits of
t r-,e human mind.

- standard cells (gates, flip-flop, register, multi
plier) have to be designed only once and can be
instantiated at several places in the same or
another IC-layout.

- storage requirements are reduced by storing the de
finition of each cell only once.

layout editing will be easier since instances of
cells of a lower hierarchical level can be shift
ed, rotated and mirrored as a single block.

- computational tasks such as network verification
paction and design rule checking will run
faster since their scope can be limited to a
gle hierarchical level.

However, there are some difficulties and disadvantages
which arise with an hierarchical approach:
- advantages disappear after module expansion

some loss in efficiency of chip area due to necessary
domain separation

restricted freedom in design
extra efforts must be made to generate a well struc

tured hierarchical separation which can be used
both for the network description and the layout
description. In general the lower echelons in the
hierarchy will differ.

decisions must be made wether
between hierarchicat levels
have prevalence. This is
3.1. It is easier to draw
nections which make contact

3. Objectives PAGE 12

than to draw a great number of small line-pieces.

\I
'-' I-l ~

~P t:

Fig. 3.1 Strong hierarchical separation versus
simple editing

However, if wires are allowed to overlap instances
of compound cells, the scope of design rule check
ing and compaction must be extended to more than
one hierarchical level. Or, alternatively the de
signer must use a different layer for global in
terconnections (e.g. metal) than is used for
internal connections in the cell (poly or diff.)
to avoid possible design rule violations.

- extra symbols must be introduced to symbolize domain
and connection areas (terminals) of the cells.
Special terminal symbols may be introduced to im
plement concepts like "shared buses", see fig.3.2.
A shared bus denotes a terminal area where overlap
of compound instances is allowed.

Fig. 3.2 A cell definition with a shared bus, and
connection of compound instances via shared buses.

Since for VLSI design the advantages of a hierarchical
approach are dominant, the IDS system is hierarchically
oriented. In the present implementation a strong sep
aration between h}erarchical levels is used.

The consequences for the compactor are:
Compaction can be performed at a single hierarchical

level. During compaction of a particular compound
the instances of subcompounds are not resolvedl
rather the subcompounds are treated as black boxes
of ~hjch only the terminals are of interest.

3. Objectives PAGE 13

The number of elements in a hierarchical compound is
rather small. This leads to a fast compaction and
opens the way to iterative editing and compaction
cycles.

- The graph representation of the layout can no longer
be resolved with a single-pass algorithml due to
the introduction of double-sided constraints in
the graph. As is shown in fig. 3.3 the shift of
compound cell C2 with respect to the position of
C1 is double-contrained. Compound C2 may shift 10
units to the left or 5 units to the right relative
to the place of C1. The compactor uses a modified
critical path algorithm to solve the graph with
double-sided constraints.

CJ.

I
I

1< '")1

3 .-....::. .

Fig. 3:3 The use of hierarchical cells introduces
double-sided constraints.

Representation of layout elements

One of the major advantages of a symbolic layout method
is the enormous reduction in design time (about a fac
tor 10). The layout editor ISLE [3J uses a symbolic
representat ion of layout elements. These symbols are
,:::alled "sticks". In fig.3.4 the symbols presently
used in ISLE are given.

3. Objectives PAGE 14

e h ha. M"e "' '1 n t
I: Y fA VI { /r f:. C) yo

deple (;OVl
(yo. I'l ! if tOY

rR-j
~tJ~

-0--: ,"e,.' :_ _ oJ

VIa.. ~
~

o

D
Fig.3.4 Basic symbols used in ISLE

The symbols are adapted to NMOS technology. The dimen
sions shown are in lambda unitsl and are default va
lues. Lambda is the characteristic minimal distance,
e.g. a half minimal line spacing. In a actual symbol
ic layout a great number of variations on these symbols
can be found:

The user can specify greater dimensions in both hor
izontal and vertical direction of transistors and
other sticks.

Different symbols are used according to the layers
involved:
- three different dashings for wires, symbolizing

diffusion,polysilicon or metal
- three types of vias: diffusion-metal contact,

poly-metal contact, and burried contact
transistor: crossing of horizontal poly and

vertical diffusion, or the other way round.

In the near future some new symbols may be introduced.
For instance, a terminal symbol to symbolize shared
buses. Further extensions are various symbols to in
struct the compactor:
- jog symbol, to instruct the compactor that a particu

lar wire may be bent,
- expansion symbol to instruct the compactor to add

room for extra logic.

The layout designer may introduce self defined basic
layout elements (basic cells) with the geometric layout
editor Colormask [4J. These basic cells will be sym
bolized with a symbol similar to the compound-box sym
bol.

The wire symbol mentioned above deserves somewhat more
attention. The simple form of the wire symbol leads to
a clear symbolic drawing. However, the wire symbol is
too simple since wires of various width are all symbol-

3. Ob j e c t i v e s PAGE 15

ized with the same line. In the example of fig. 3.5.a
two abutting vertical wires of width 2 and 4 lambda are
drawn. After compaction the wires may be placed as in
fig. 3.5.b.

1
I

(~) (6) (C)

Fig.3.5 In the symbolic drawing geometrically connected
wires sometimes seem to be split.

Geometrically the wires are still fully connectedl but
in the symbolic representation the wires seem to be not
connected. Similar problems occur with wires abutting
or overlapping other basic symbols.
A solution could be the introduction of another
wire-symbol as in fig.3.5.c.

For the moment an extra symbolic design rule is
The compactor prevents the symbolic splitting of
by putting those wires into the same feature and
shifting the wires over the same distance.

used.
wires

thus

3.3. Interactivity

Interactivity is an important feature of the
IDS-system. Tasks for designing a layout are distri
buted among man and machine in such way that each of
them does the tasks that suit him best. As in other
layout design systemsl tasks such as drawing, compac
tion and design rule checking are performed by the sys
tem, and topology design is left to the designer.

With the IDS Layout editors a designer can input the
layout in a fast way. Changing the layout topoLogy is
faciLitated by various commands such as shift, rotatel
mirror and deLete. SOl since the IDS editors fuLLy
support topology changesl the changes in topoLogy in
troduced by the compactor can be restricted to shift
i n9 .
The advantages of this approach are:

the designer wiLL not be confrontated with unappreci
ated changes in topoLogy!

- the compaction prOCESS will be speeded up. So the
designer can fl..ll ly ut i Lize the opt ion of

3. Objectives

3. it •

re-editing a compacted compound.

Design rules

PAGE 16

Constraints on the shift of elements are based on:
- geometric design rules
- symbolic design ruLes
-. compaction rules

Geometric design rules follow from the technology used
(NMOS). (See f.i. Mead and Conway). These rules give
the minimum distances between and the minimum overlaps
of wiring, transistors and vias. Overlap requirements
are satisfied by the compactor by preserving the origi
nal overlap situation! or by placing restrictions on
the relative shift of pairs of elements based on the
geometrical dimensions of the elements.
At the moment the separation requirement for each pair
of layout elements is set at 2 lambda. Compound in
stances are allowed to abut. A future improvement of
the compactor is to introduce more variation in spacing
requirements, and to make the compactor table-driven,
so that changes in technology can easily be implemented
in the program by reading in a new table of design
rules.

Symbolic design rules and compaction rules are less un
iversaLly as the geometric ones, and are therefore dis
cussed below in more detail.

Symbolic design rules

Symbolic design rules follow from the hierarchical de
sign of the layout editor and from the use of special
symbols (e.g. transistor) [11J, [3J, [lJ.

The most important rules are:
a) Crossing of poly and diffusion only if there is a

p-d via or a transistor at that place
b) Instances of compounds may not overlap, abutment is

all.o ed.
c) Terminals are the only places where a compound is

allowed to make contact with the "outside world".
The connection can be a wire or a via. The (geo
metric) area of the wire or via may not exceed the
terminal boundary.

d) The distance between transistorsl vias, wiring and
the surrounding compound box must be at least 1
lambda. Also the distancE between a layout ele
me1t and the box of an instantiated compound must

3. Ob j e c t i v e s PAGE 17

be greater than lambda. This is to ensure a sep
aration of at least 2 lambda between a layout ele
ment and the elements of an instance of a com
pound.

e) Termi~als must abut on the (inside of) the surround
ing compound box.

f) Terminals may not be placed in the corner of a com
pound box! so may not abut on two sides of the
box! in order to avoid conflict of rule d) and the
minimum overlap requirements.

g) Geometric design rules may allow overlap of metal
with f.i. diffusion lines. However, problems
with the symbolic drawing occur if metal and dif
fusion totally overlap (fig. 3.6.a).

DOD
I i il.

---'.... - -1

(b)

Fig.3.6 (a) Metal line apparently disappeared in
the symbolic drawing after compaction. (b)
Suggestion for an alternative wire symbol.

Therefore (at the moment) the compactor always
generates constraints between elements! without
looking to the layers the elements occupy. In
fig.3.6.b a suggestion is presented to overcome
disappearing of lines in the symbolic drawing:
represent one line-type by a center-line! and the
other two by a line which is placed a little left
or right of the center-line.

Compaction rules

In this subsection the compaction rules are discussed.
These rules gjve ne restriction on the freedom of the
layout designer, rather they show some internal
processes of the compactor.
Compaction rules:
aJ The position of subterminals relative to the corres

ponding compound box is fixed.
b) Terminals of the compound under compaction:

- at the !.eft side of the box ",'on't move

3. Objectives PAGE 18

r, .. - at the bottom and top side may shift left
- at the right side of the box may shift left if

the follo~ing conditions are satisfied:
- each of them shifts over the same distance
- they stay the rightmost elements of the

c ell.
c) T~o elements of ~idth W1 and W2 (f.i. a via and a

~ire), ~hich abut on each other have relativ~

freedom of abs(W1-W2), see fig.3.7.a.

(b)

Fig.3.7 (a) The relative shift of abutting or
overlapping elements is abs(W1-W2). (b) If the
overlap is greater than dmin, the compactor does
not allo~ a larger shift.

If there is overlap of more than dmin
(=MIN(W1,W2)), the freedom is the same as above,
altough the geometric design rules ~ould tolerate
a larger shift, see fig.3.7.b.

d) A line terminating on a perpendicular line of the
same layer must (at the moment) cover it complete
ly. This is necessary since telescopic elements
won't generate constraints on shifts. This re
quirement is not fl..oIllfilled automatically by the
layout editor ISLE. At the moment the user him
self must take care of it. Further, the user must
place a horizontal line-piece at the place ~here

t~o vertical lines make contact.

! Y m be> I i ~

Fi~.3.8 Complete covering of perpendicular lines

4. The compaction process

4. THE COMPACTION PROCESS

PAGE -19

, . In this chapter the various actions wi II be discussed
which are performed before and after execution of the
compaction algorithm discussed in section 4.7. Section
4.1. gives an overview of the compaction program.
Since the program treats compaction in horizontal or
x-direction, and vertical or y-direction in the same
way, only the case of horizontal compaction is dis
cussed.

4.1. Overview

The compaction program will be initiated after an ap
propriate instruction to the interactive symbolic lay
out editor ISLE (3). The program asks the user to
enter the filename and the name of the compound to be
compacted. By default, the names used in the previous
editing or compaction cycle will be used. After names
are entered or defaultedl the user may choose one of
the following options: 1) horizontal compaction, 2)
vertical compaction, 3) return to the menu of the edi
tor.

The first action performed is input of the N layout
elements of the compound. Of all elements the type of
the element and geometric information (i.e. a sur
rounding rectangle) is needed from the database.

The second step is to sort the elements and search for
overlap
gorithm
cribed
N.

and abutment. For this search we use the al
for finding intersections of rectangles as des
in (12), which is linear "in the average" with

In the third step the elements are partitioned into
features. Overlapping elements which are not allowed
to shift relatively to each other are put in the same
feature. So elements belonging to the same feature
will move as a single entity during compaction.
Horizontal pieces of ~iring (telescopic elements) are
not put into featuresl because these wires can be
stretched and shrunk according to the shift of elements
conr:ected to it.

l~ the fourth step the constraint graph is generated.
The features correspond with the nodes, and the con
straints correspond with the edges of the graph. The
constraint betwee~ two features F1 and F2 results from

4. The compaction process PAGE 20

the constraints between the eLements of F1 and the eLe
ments of F2.

An 5T-ordering of the nodes of the constraint graph is
determined in the fifth ste~. In an ST-ordering the
nodes are numbered so that each edge points from a
Lower to a higher number. The doubLe-sided constra
ints, which can be considered as bidirectionaL edges,
are not taken into account when the ST-ordering is de
termined. An 5T-ordering can be determined Linear in
time, f.i. with a depth first search. The aLgorithm
used in Compac is given in section 4.6.

In the stxth step the compaction aLgorithm is executed.
It is an extension of the criticaL path aLgorithm.
Backtracking is used to satisfy the max-constraints.
The algorithm is presented at I5CAS-83 [13], In sec
tion 4.7. the algorithm and a compLete description are
given.

In the last step of the compaction process the compact
ed compound is constructed. The eLements of the fea
tures get their new pLace according to the distance the
features have been shifted. After this is done the new
length of the horizontaL wires is calculated and the
compacted compound is stored in the database.

4.2. Input of the eLements of a compound cell

The compactor requires as input a compound celL which
is free of design rule errors. Further requirements
are that each Line terminating at a perpendicuLar line
must contact it by complete overla~ (fig.3.8), and that
a horizontal line is pLaced at the Location where two
vertical lines make contact.
If the input contains a design ruLe error, the error
will be reflected into the compacted compound. If the
other requirements have not been obeyed, then the com
pactor sometimes causes design ruLe errors, depending
on the topoLogy of the layout.

A compound cell of the hierarchicaL I5LE database con
sists of various types of eLements:
- point-type sticks: transistors (horizontaL or verti

cal, enhancement or depletion) and vias (p-m, d-m,
or burried)

line-type sticks: wiring in horizontaL and vertical
direction (~oly, diffusion or metal). Each
Line-piece is a separate eLement.

pins or terminals
instances of sub-compound ceLLs

4. The compaction process PAGE 21

Further, a domain is used to indicate the total chip
area occupied by the elements of the compound. In the
present version of ISLE the domain is a rectangle sur
rounding all eLements. This rectangLe is called the
box of the compound. In future, a more complex domain
will be used.

The pLace and the dimensions of each element, including
compound instances, are given by a rectangle.
The type of an eLement (e.g. horizontaL enhancement
transistor) is denoted by a number. The type-number of
a compound instance is used as a pointer to the com
pound definition. More information about the various
types can be found in []].

A similarity between point-type sticks and wiring is
that for both the geometric representation consists of
a rectangle. However, the compactor treats both types
of elements in a different way: In the case of hori
zontaL compaction wiring in horizontaL direction will
be treated as telescopic (or elastic) elements: the
length of the horizontal connections is variabLe. On
the other hand, the shape of the point-type sticks and
the shape of the verticaL connections will be pres
erved.
We don't use automatic jog insertion for two reasons:
- it takes more computer time, and
- the designer may not be pLeased with 'unexpected'
compaction resuLts.
With ISLE, jogs can aLways be inserted manually.

The eLements of a compound are stored in a Linked list.
Input of the elements can be described as foLlows.

domain of the compound
% pointer to the first eLement

Yo REC contains element description
Yo REC(l ... 4) contains a rectangLe

PT:=REC(6) Yo pointer to next element
TYPE:=REC(S) Yo type of element
lE TYPE <> CITYPE Yo compound instance type
THEN BEGIN

enlarge rectangle REC(1 •.• 4)
ELEMCN,l ... 6) := RECC1 ..• 6)

DOMAINC1. •• 4):=
PT:=PTl
N:=Q
WHILE PT <> NILL
DO

N:=N+l
GET(PT,REO

END
E:""SE BEGIN

I. store domain of compound without enlargement
ELEMCN,l •.• 6) := REC(1 ... 6)
FOR each terminal of this compound

4. The compaction process

DO
get terminal description
enlarge rectangle
N:=N+1
store description in ELEM

OD
END

PAGE

In order to detect abutment of elements at the same
time when overlap is detected, the rectangle of each
element is enlarged by an amount MARGE in all direc
tions (fig.4.1). MARGE will also be used for the sep
aration requirements, it is currently set to 1 lambda.
Of a compound instance, the domain and the terminals of
the compound are retrieved from the database (no other
elements). The rectangle corresponding with the domain
of a compound instance is not enlarged.

, .. - - - - - - - - - -,

~ I I:
~. .-J

:"0-- --;. ., .
• I
I •

1- '

~t-±::H

.. .

Fig.4.1 In the compactorl elements are represented by
an enlarged rectangle.

4.3. Sorting the elements and detecting overlaps

In order to compose the features efficientlYl the pro
gram first generates a list of overlaps for each rec
tangle. Finding all pairwise intersections among rec
tangles is called the 'rectangle intersection problem'.
Checking each element against each other element would
give an algorithm of order n**2. In the program COMPAC
the s Q l u t i.o n for' t his pr· 0 b l e m pro p -0 sed by Ben t ley ,
Haken and H-on [12] is used. (lineair expected time).

4. The compaction process

t
~

I 1:
I

c ! ~

____L_
-f-L b fb

(c.

~1I a...] I

I

I
I
I

1. 2. 1

c

PAGE 23

b

6
b

I:. c
6 c

c..

Fig.4.2 Illustration of the scan-Line aLgorithm.

In this method a verticaL scan Line moves from Left to
right over the layout. At each point in the scan, aLL
rectangLes currentLy intersecting the scan Line are re
presented as one-dimensionaL Line segments. As shown
in fig.4.2 these "active" Line segments are stored in
bins aLong the Y-axis. The Y-axis is divided in NBINY
bins of width WY. In the paper of BentLey is argued
that a good choice for WY is the average width of a
rectangle, so that each segment is pLaced in two bins
on the average. For each bin a chain (Linked List) is
used to store the Line segments which totaLLy or partLy
overlap this bin. ALL bin chains together give the
totaL set of Line segments intersecting the scan Line.
This set is catLed the segment set and is stored in
array SS.
When the scan Line encounters a Left segmentl first the
bottom and top bin (IBYB and IBYT) corresponding with
this segment are determined (projection onto the
Y-axis). Second each line segment aLready present in
bin layS through ISYT is reported, and at Last a po
inter to the rectangle corresponding to the Left seg
ment is stored in the chains of bin IBYS trough IBYT.
Note that if two line segments are in the same bin,
this does not necessarily mean that they actuaLLy over
lap.

When a right segment is er,cQuntered the Line segment is
deleted from the corresponding bin chains.

In the aLgorithm beLowl the next three arrays are used:
EL: Event List~ contains a sorted list of Left and

4. The compaction process PAGE 24

right segments. For each segment a record with
three fields is used:
- ELPT: pointer to next segment,
- RL: indicating left or right segment!
- ILM: number of element the segment belongs to.

SS: segment set, contains a chain for each bin IBY.
SSCIBYJ points to the first link of the chain for
IBY. Each link (record) has two fields:
- SSPT (linkpointer), and ILM.

CHECK: this array and the variable LAST are used to
report overlapping segments only once, although
they may be resident in more than one bin chain.
The reported elements in CHECK are organized in a
'backward' chain: if segments 3 and 8 have been
reported, then LAST=8, CHECKCBJ contains 3, and
CHECKC3J contains ZERO.

The scan-line algorithm:

FOR 1:=1(1)N DO CHECKCIJ:=NIL % initialize
FOR IBY:=1(1)NBINY DO SSCIBYJ:=NILL % initialize bin chains
FOR J:=NBINY+1 (2) FLMAX DO SSCJJ:=J+2 % init free chain
LAST:=ZERO
ELPT:=ELPT1 % pointer to first segment in EL
WHTLE ELPT <> NILL
DO

I. take segment S from EL
ILM:=ELCELPT+2J; RL:=ELCELPT+1J; ELPT:=ELCELPTJ
IBYB:=(YB(ILM)-YBC)/WY I. determine bottom and top bin of S
IBYT:=(YT(ILM)-YBC)/WY % YBC = bottom of compound
l[RL = left segment
THEN

BEGIN
FOR IBY:=IBYB(1)IBYT
DO

SSPT:=SSCIBYJ
WHILE SSPT<>NILL % report possible overlap by
DO % setting flags for resident segments

JLM:=SSCSSPT+1J
SSPT:=SSCSSPTJ
IF CHECt<CJLMJ=NIL
THEN BEGIN CHECKCJLMJ:=LAST; LAST:=JLM END

OD
~,~ insert S in IBY, use link from free chain
FLN:=SSCFLJ
SSCFL+1J:=ILM X FL points to free link
SSCFLJ:=SSCIBYJ I. insert in front of bin-chain
SSCIBYJ:=FL
FL:=FLN I. update frae link pointer

0[1
~report the flagged segments in CHECK
WHILE LAST<>ZERO
DO

4. The compaction process PAGE 25

CHREPORT(LAST,ILM) i. check if rectangLes overLap
JLM:=LAST i. and report overLap in OLLIST
LAST:=CHECKCJLMJ
CHECKCJLMJ:=NIL i. reset fLag

or>
END

ELSE i. right segment
FOR IBY:=IBYB (1) IBYT
DO

SSPT:=SSCIBYJ
WHILE SSCSSPT+1J(>ILM i. search for segment S
DO SSPTL:=SSPT; SSPT:=SSCSSPTJ 00
SSCSSPTLJ:=SSCSSPTJ i. remove Link from bin-chain
SSCSSPTJ:=FL; FL:=SSPT i. add Link to free chain

OD

The overLaps are stored in a overLap List (OLLIST:J. If
two eLements ILM and JLM overLap, then the eLement with
the higher number (JLM) wiLL be stored in the overLap
List of the eLement with the Lower number (ILM). An
exception is made for teLescopic eLements: if one of
the eLements is a horizontaL Line, then overLap is re
ported in the List of the horizontaL Line. OverLap of
two verticaL Lines wiLL not be reported, in order to
aLlow two verticaL Lines overLapping a horizontaL Line
to shift apart (fig.4.3.a).

rLM I,
,

)(L(r£ M} xR() L NJ

(0.) (6)

Fig.4.3 (a) No constraint is generated between two
verticaL Lines overlapping the same horizontal line.
(b) ALLowed shift of overLapping eLements.

8esides overLapl the maximum shift of JLM reLative to
the curr-ent position of ILM l,.,Iil.l. be determined and
Etored in OLLIST. For exampLel the left shift and
right shift of JLM in fig.4.3.b is caLcul.ated ~s fol
1.0l,.,lS:

LSH = XLCJLM) - XL(ILM)
RSH = XR(ILM) - XR(JLM)

4. The compaction process PAGE 26

• f

So LSH and RSH are both positive in this case. In case
of a fixed constraint, LSH and RSH are both zero. If
there is no constraint, LSH and RSH will be assigned
infinity.

A sorted "event list" has first to be generated before
the algorithm above can be applied. In the event list
(or segment list) all segments (left and right sides of
the rectangles) are stored. The segments are sorted
lexicographically (fig.4.4). The sortparameters are in
lexicographical order:

- x-value of the segment
- type of segment (right before left segment)
- y-value of the bottom end of the segment

Fig.4.4 Lexicographical numbering of
segments of the rectangles.

left and right

For this sorting and storing of segments, the
bin-method of Weide (15J is used. This method works as
follows.
- divide the X-axis in NBINX bins of width WX

initialize for each bin a chain in which the segments
will be stored

- for each element do:
- determine bin numbers IBX1 and IBX2 of both left

and right segment (IBX=entier(X/WXJ)
- insert the segments in the chain of bin IBX1 and

IBX2 lexicographically
- couple all the bin chains in order to construct the

event l isto

At the end of the aLgorithm
titioned into bins. Each
ments which have an x-vaLue
right boundary of the bin.
to reduce the Lenght of the

aLL line segments are par
bin contains a List of seg
falling within the Left and

The bin width WX is small,
Lis t •

Fot-· the foLL.::>wing steps in the compaction process it is
necessary that aLso the elements (rectangles) them-

4. The compaction process PAGE 27

.. ~ selves are sorted. This sorting is very simpLe, since
the sequence in wich we Like the eLements to be sorted
is the sequenoe of the Left segments in the event List.
A possible way to gain access to the eLements in this
sequence is to use an extra array of pointers to the
description of each eLement. However, in order to fa
ciLitate the (frequentLy) access to the eLement des
criptions in further steps, we choose for actuaLLy
re-organizing the List ELEM in whioh the eLements have
been stored.
This re-organizing is performed in the foLLowing way:
DO

eLements
exchange

or more
have to

two
which

-find a oLuster of
(a,b,o, .. .,kd)
pLaoes,

- store the first eLement of this oLuster tempo
rariLy at pLace S (a-)S),

- oopy the other eLements of the oLuster to their
new pLaoes (b-)a, o-)b, ••• ,L-)k),

- oopy the first eLement of the oLuster to its new
pLace (S-)L)

UNTIL totaLly sorted.

Note that if there is onLy one eLement in a cLuster,
this eLement was aLready at the pLaoe according to the
new sequenoe from the beginning.

The amount of work to be done is worst case as much as
copying the entire array ELEM into a temporary array,
and then copying back in the new sequenoe into ELEM.
The advantage of this "cLuster-method" is that no extra
array is necessary.

The aLgorithm for the oluster method is as foLLows.

I. NCCJJ gives number of eLement that has to move to
I. ELEMCJd ... 6J (NC = !Lew Q.ontents of pLace J)

CLPT:=Q I.pointer in ELEM to first eLement of cLuster
WHILE CLPT < N
DO

CLPT:=CLPT+t
.!...E. NCCCLPTJ=CLPT
THEN eLement with number CLPT aLready at right pLace
ELSE

BEGIN
STORECt •.. 6J:=ELEMCCLPT,1 ... 6J
FP:=CLPT I. free pLaoe pointer in ELEM
FPN:=NC(FP)
WHILE FPN <) CLPT
DO

ELEMCFP,1 ... 6J:=ELEMCFPN,1 ••. 6J
NCCFPJ:=FP I. eLement now at right pLace
FP:=FPN I. update free pLaoe pointer

4. The compaction process PAGE 28

FPN:=NCCFPNJ
OD
ELEMCFP,1 .•• 6J:=STOREC1 ••• 6J

END

. .. 4.4. Partition the elements into features

Elements ~hich overlap each other and which are not al
lowed to shift relative to each other (as reported in
the. previous step) are put in the same feature.
Horizontal lines are not represented in the graph.

A simple extension to the present version of the com
pactor is that the user can specify a Left bound and a
right bound (vertical lines) between which compaction
~ill take place. Default values for LBOUND and RBOUND
are the left and right side of the compound box. The
eLements left of LBOUND or intersecting this line, will
not move during compaction, and are therefore put in
the same feature.

The p~rtitioning can be performed Linear in time with
N, bye applying a breadth first search (8FS).

ALgorithm:

totaL number of eLements
belongs to a feature then
teLescopic then put in TLIST

not
be
the

- ILM=1
while XL(ILM) <= LBOUND do

.ii. element is a teLescope then put in TLIST
- else put element ILM into feature 1
- ILM=ILM+1

put all other elements into feature 1 which are
alLo~ed to shift relative to elements already
Longing to feature 1 (use information from
overtap LisU.

whiLe ILM <= N do I. N =
- it ILM not already

- i1.. eLement is
else
- create ne~ feature FTR
- Pl..lt ILM in FTR
BFS(FTR) I. see belo~

= ILM + 1- ILM
wr,ere,
XL(ILM) is the teft side of eLement ILM (The elements

has been sorted LexicographicaLly on x- and
i-value of left-bottom point, cf. section 4.3.)

TLIST is the list of tetescopic (horizontaL) Lines.

A consequence of this algorithm is that the features

The compaction process PAGE 29

FTR
the
If

wit h

are ordered in the same way as the elements. After the
execution of the algorithm above, the features on or
right from the right bound are merged.

With bread first search all elements belonging to
are also put in FTR. This is done by searching
overlap list of each element ILM belonging to FTR.
an element JLM is found with a fixed constraint
ILM, then JLM is added to FTR.
Elements belonging to a feature are stored in the fea
ture list FL. For each feature a separate chain is
used with records <FLPT,ILM> (FLPT = linkpointer, ILM
denotes the element). FLCFTRJ points to the first link
of the chain of feature FTR. FNUMCJLMJ gives feature
number FTR where JLM belongs to. (FNUMCJLMJ is ini
tially zero).

BFS(FTR)
FLPT:=FTR
WHILE FLPT <> NILL
DO
--FLPT:=FLCFLPTl

ILM:=FLCFLPT+1J
OLPT:=OLLISTCILMJ I. get pointer to first element in

I. the overlap list of ILM
WHILE OLPT <> NILL
D(I

JLM:=OLLISTCOLPT+1J I.get JLM overlapping with ILM
OLPT:=OLLISTCOLPTJ
i[FIXED(ILM,JLM)
THEN i[FNUMCJLMJ = 0

THEN ADD(FTR,JLM) I. add JLM to chain of FTR
ELSE ~ FNUMCJLMJ = FTR

THEN JLM has been added earlier
ELSE MERGE(FTR,FNUMCJLMJ)

In the overlap list of ILM only the overlapping ele
ments JLM with a higher number have been stored. So,
not all elements belonging to feature FTR1 can be found
with a single call to 8FS. This implies that in a
latter phase, when feature FTR2 is created, FTR1 and
FTR2 must be combined into one feature, if a fixed con
straint is detected between elements of FTR1 and FTR2.
This is done with the procedure MERGE. Since MERGE is
not yet implemented, FTR1 and FTR2 stay apart, which
leads to a fixed constraint in the graph.

The compaction process PAGE 30

- . 4.5. Generate the constraint graph

In this step the separation requirements between fea
tures are determined. These are stored as constraints
between the origins of the features. The origin of a
feature is the left-bottom point of the surrounding
rectangle. As a consequence, a constraint may get a
negative value. Single constraints are stored in a
min-constraint list (MINCLS), double-sided constraints
are stored in a min-max-constraint list (MIMALS).

4

[] ?

-- -----G
Fig.4.5 Constraints of feature 4. A window is used to
reduce the number of comparisons. Each rectangle de
notes the surrounding box of a feature.

Because windowing in combination with shadowing is
used, the algorithm for determination of constraints is
expected to be linear. The example of fig.4.5 illus
trates how the constraints of feature 4 are determined.
Min-constraints are generated from feature 4 to feature
7,9, and 10. Constraints to features 6,8, and 11 need
not to be calculated, since these features fall outside
the window set up for feature 4.
At the moment only one window is used for all the la
yers together. An improvement would be, the applica
tion of a separate window for each layer.
Checking feature 4 against 5 may! depending on the con
tents of the features! generate a double constraint or
a min-constraint.

The compaction process

I
I

(a.) ,
I :

~l(1=4) I xl. (FS)

PAGE 31

Fig.4.6 Three possibLe situations when feature boxes
overLap.

As is shown in fig.4.6 overLapping features can gener
ate a min-constraint from feature F4 to FS (a), a
min-constraint from FS to F4 (b), or a
min-max-constraint (c). The constraints for these
three cases are caLcuLated as folLows:
a) LSH1 is the maximum Left shift of feature F5 rela-

tive to the current position of feature F4
(LSH1)=O). The constraint between F4 and FS is:
MINCON(F4,FS) = XL(FS) - XL(F4) - LSH1

b) RSH2 is the maximum right shift of feature FS reLa
tive to F4 (RSH2)=O).
MINCON(F5,f4) = - (XL(FS) - XL(F4) +RSH2)

CJ In case of a doubLe constraint, the two constraints
wiLL temporariLy be named [11 and D2, since it is
not cLear yet which one must be considered as a
min-constraint and which one as a max-constraint.
01 = XL(FS) - XL(F4) - LSH3
[12 = XL(FS) - XL(F4) + RSH3
After generation of the ST numbering this double
constraint is spl.it into a min- and a
max-constrairlt.
If F4 becomes a Lower ST-number than FS, then:
MINCON(F4,FS) = 01; MAXCON(F4,FS) = 02.
Otherwise, if FS gets the lowest ST-number,then:
MINCON(FS,F4) = - 02; MAXCON(FS,F4) = - [11.

The aLgorithm for determination of the constraints of
feature 1 through NF is as foLLows.

FOR FTR:=1(1)NF
[It)

YHIN8:=Y8(FTR)
nJINT:=YT(FTR)
FTRN:=FTR
WHILE YWINT-YWINB

I. NF = number of features

f. bottom and top of feature box
I. give bottom and top of window

) RWMIN .AND. FTRN < FTR

% RWMIN is min. width of rectangle
% determine constraints of FTR

The compaction process

DO
FTRN:=FTRN+1
IE YB(FTRN)}YWINT .OR. YT(FTRN)(YWINB
THEN no interaction
ELSE
BEGIN % determine constraints of FTR with

CONSTR(FTR,FTRN,YWINB,YWINT,D1,D2,ICASE)
CASE ICASE
OF

PAGE 32

FTRN

1: 7. no constraint
2: ADMINCCFTR,FTRN,D1)
3: ADMINC(FTRN,FTR,-D2)
4: ADMINMAX(FTR,FTRN,D1,D2)

I. (a)
I. (b)

I. (c)

feature FTRN
interaction.
feature FTRN

END
% make window smaller if possible (shadowing)
!.E XL(FTRN)(XR(FTR) .OR. OVERLAP(FTRN)
THEN do not adjust window
ELSE BEGIN

l[(Y8(FTRN)(=YWINB) THEN YWINB:=YT(FTRN)
!.E (YT(FTRN)}=YWINT) THEN YWINT:=YB(FTRN)

END

The features have been ordered LexicographicaLLy on x
and y-vaLue of the Left-bottom point of the feature
box. Constraints of FTR and FTRN are onLy determined
for FTRN}FTR.
Th~ appLication of a window enabLes that a
is skipped if it wiLL not cause
UnfortunalLy, it is necessary to test each
if it faLLs outside or within the window.
The window is reduced by shadowing, if FTRN overLaps
one of the window boundaries. ALL constraints have
been determined when the window becomes smaLLer than
the minimum width of a rectangLe (RWMIN, i.e. 4 Lamb
da). This shadowing can onLy be appLied if the box of
FTRN does not intersect the box of FTR. In addition, a
feature FTRN can not reduce the window, if it overLaps
with a feature with a higher number. This can be de
termined by the function OVERLAP(FTRN), which is not
yet impLemented.
A consequence is that the window stays Longer 'open'
than necessary. Shadowirlg can poss.ibLy be improved if
constraints are determined in the sequence in which the
eLements have been ordered: rather than in the sequence
of the features.

The compaction process PAGE 33

4.6. Determine an ST ordering of the nodes of the graph

The ST ordering of the nodes of the graph is based on
the graph without the double-sided edges. The aLgor
ithm used for this numbering of the nodes is as
foLl.ows:

- determine for each node N the number NPCN) of prede
cessors (incoming arrows)

pLace aLL nodes with no predecessors in a list of
candidates named CAND

- 1:=0
- whiLe CAND not empty do

begin
- take candidate C from CAND
- 1:=1+1
- assign ST-number: ST(I):=C
- I. remove node C from the graph:

for each successor node S of C do
begin NP(S) := NP(S) -'1

if.. NP(S) .E(L 0 then add S to CAND

In general there will be more than one alternative for
an ST numbering.
After each node has been assigned an ST-number by the
aLgorithm above! the double-sided constraints are added
to the graph. Each double-sided constraint is split in
a min- and a max-constraint in such way that the
min-constraint points from a Lower to a higher
ST-number.
User-defined constraints may also be added at this
point! e.g. constraints for expansion! or fixed con
straints between pairs of elements. These options are
not yet implemented! but can easily be added to the
porgram.

The compaction process PAGE 34

4.7. Compac

The criticaL path aLgorithm can be appLied to resoLve
the graph if the graph has onLy min-constraints.

DO XCFTRJ:=O;FOR FTR:=1(1)NF
FTR:=1
WHILE FTR (= NF
DO

FOR
pO

each successor FTRS of FTR
i. push successor to the right
XCFTRSJ:=MIN(XCFTRSJ, XCFTRJ+MINCON(FTR,FTRS)

FTR:=FTR+1
00

This aLgorithm is Linear in the number of constraints.
In the graph representation of the Layout used by the
compaction aLgorithm, the nodes are ST-numbered. A
min-constraint MINCON(FTR1,FTR2) is directed from a
node FTR1 with a Lower ST-number to a node FTR2 with a
higher number. A max-constraint MAXCON(FTR2,FTR1) is
directed from a higher to a Lower numbered node. The
Lo~er numbered node is caLLed predecessor, the other
successor. It ~iLL be cLear that the min-max constra
int graph contains cyLcLes of constraints. The cycLes
wiLL never be overconstrairled if the input for the com
pactor is a correct Layout. An overconstrained cycLe
or a cyclic constraint may occur if constraints are
added to the graph by the user. Therefore a test has
been buiLt in to detect such a cycLic constraint.

The compaction aLgorithm (see next page) can be Looked
upon as an extension of the criticaL path aLgorithm.
Before min-constrained successors of a node FTRC are
pushed to the right, first the max-constraints ~ith its
predecessors are satisfied. This is done by puLLing
the max-predecessors of FTRC to the right, if this is
required by the max-constraint. If one of the
max-predecessors has been actuaLLy moved to the right,
backtracking is initiated. UntiL backtracking has been
compLeted, the pLace of FTRC remains fixed, as is indi
c3ted with the variabLe XMAXCFTRCJ. A node ~hich has
;~itiated a backtracking step, is not aLLowed to move
f~rther to the right. If it does has to move in order
to satisfy the min-constraints, a cycLic constraint
l,.J it!. be rep'Jrt ec~.

Further, each puLLed predecessor FTRP, of which aLL
constraints were satisfied (indicated by
PLACE[J[FTRP]=TRUE), has to be reconsidered. This is
ir,dicated by resetting PLACE[J[FTRPJ. At the time FTRP
is reconsidered, onLy the nodes which are pushed or
pulted further to the right by this node have to be re
~ons;dered Later. So, if backtracking occurs from node

The compaction process PAGE 35

10 to node 3, and node 3 has min-constraints to nodes
8, 10, 12, 17, only node 8 has to be considered for the
second time. Other nodes between 3 and 10 are skipped
by the algorithm, because the variable PLACED for these
nodes remains set.

After execution of the compaction algorithm, XCFTRJ
contains the new place of each feature. The time com
plexity of the algorithm is exponential with the number
of constraints. Each time a new node is placed, back
tracking can occur. The subsequent replacement of pre
decessors may cause further backtracking cycles, initi
ated by those predecessors. Each cycle possibly taking
as much work as the initial placement of that predeces
sor. However, since the graph is not fully connected,
and if the number of max-constraints is low, the ex
pected time of the algorithm is linear or slightly more
than linear in the number of constraints.

The compaction process PAGE 36

Compaction algorithm

I. pointer in array ST

I. initialize each feature FTR

Yo true if all cons satisfied
I. new place after compaction
I. < infinity at backtracking

feature with ST-number Ii. STCIJ =

PT:=MIN(PTC,PTP)
END

OD
ELSE I.E. XCFTRCJ(=XMAXCFTRCJ

THEN max cons have been already satisfied
ELSE exit and report cyclic constraint

FOR FTR:=1(-1)NF
DO

PLACEOCFTRJ:=FALSE
XCFTRJ:=O
XMAXCFTRJ:=infinity

0[1

PT=1
WHILE PT (NF
DO

FTR:=STCPTJ
I.E. PLACEOCFTRJ
THEN PT:=PT+1
ELSE
8EGIN

PTC:=PT; FTRC:=FTR Yo FTRC = current feature
lE XMAXCFTRCJ = infinity
THEN

FOR each max predecessor FTRP of FTRC
DO Yo check max constraints

I.E. XCFTRCJ-XCFTRPJ > MAXCON(FTRC,FTRP)
THEN Yo pull max pred.
8EGIN

XCFTRPJ:=XCFTRCJ - MAXCON(FTRC,FTRP)
PLACEDCFTRPJ:=FALSE ~ cons of FTRP have to

I. be re-checked
Yo PTP=ST-number of FTRP

I.E. PT (PTC
THEN XMAXCFTRCJ:=XCFTRCJ I. initiate backtracking
ELSE
8EGIN

FOR I. each min successor FTRS of FTRC
DO I. check min constraints

I.E. XCFTRSJ > XCFTRCJ + MINCON(FTRC,FTRS)
THEN 8EGIN ~ push min succ. of FTRC

XCFTRSJ:=XCFTRCJ + MINCON(FTRC,FTRS)
PLACEDCFTRSJ:=FALSE

OD
PLACEDCFTRCJ:=TRUE; XMAXCFTRCJ:= infinity
PT:=PT+t

END
END

OD

The compaction process PAGE 37

4 .8. Construction of the compacted compound cell

The new place of the origins of the features is stored
in array X by the compaction algorithm. Since the ori
ginal x-position XL(FTR) of the origin of each feature
FTR is still known, the actual shift of the elements of
each feature can easily be computed:
XSHIFT = X(FTR) - XL(FTR).
After each element is shifted to its new position, the
length of the telescopic elements can be calculated.
Information from the overlap list OLLIST is used to de
termine the left-most and the right-most element over
lapping with the horizontal line.
If one of these elements is a vertical line, then the
horizontal line is laid down so that full overlap oc
curs. Otherwise the original overlap situation with
the leftmost or rightmost element is maintained.
Horizontal lines which are not connected to something
else are deleted.

4.9. Examples

In this section some results of compaction are present
ed.
The first example is a JK-flip-flop which consists of
four inverters, some pass-transistors and wiring.
Double-sided constraints occur f.i. at the points
where vias have been placed. The inverters are com
pounds of a lower hierarchical level (fig.4.7.a).
Figure 4.7.b shows the flip-flop with the inverters un
packed. In fig.4.8.a the flip-flop is shOwn after a
single x-compaction. A subsequent y-compaction gives
the result of fig.4.8.b.

We will use this result to illustrate a drawback of the
hierarchical symbolical approach.
The p-d via at x=44,y=26 in fig.4.8.b causes some waste
of area because this layout element is not necessary.
This becomes clear when we look at the expansion of the
inverter in fig.4.7.b. Another thing which causes some
waste of area is the symbolic design rule mentioned in
section 3.4.g., which (for the time being) forbids
overlap of f. i. metal and diffusion. This is illus
trated with the horizontal diffusion line at v-value 11
and the horizontal metal line at y=7 in fig.4.8.b.

The sEcond example «(ig.4,9.a) shows that the compactor
also can be used to compact a piece of interconnection.
The result after a vertical and a subsequent horizontal
compaction is shown in fig.4.10.b. The separation
bet~een the vertical lines at x=51,x=55 (at the place

The compaction process

of the jog at y=72) is greater than necessary.
because the compactor does not use electrical
tivity information at the moment.

PAGE 38

This is
connec-

COl'IPOlJliD' J

7e
I I!

i'i if

I t I

60

I'

:~~~: ~J
',' I______~--------L-----~------

I I

20 30

I [

10
[I \

><

L_.!-'"
I 00_",

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

-~----

I

COPIf'IX.IlIl· J

l_'" ~

I
I
I,
I
I
I

I -----~, I
I I
I I
I I
I I

I '
, r'1
I I

: 10, I ","'
-~ ~'*I ~ L __- __~_- _

I I I

8

7

6

S

"

:t
I~
~......
t

(bJ:
1f

, I! I
0

iar-' Ii

11

10

9

S

7

6

S

..

3

E
at
it
tr

(CA.) :1
i-

1a

11

10

40
12t-r"l"T"l"TTTTTTTTT"l"T"l"T"l"TT"T""T"'T'.,..,.....,...,....,...,.."T"'T'T"T'·rT'"T'"l'"'T"T"'T"T""T"'T',,..,,....,...,,~....,.. .,..,...,...,...,..,....,..,..,..,..,.,....,...,

11

10

8

---- ~

COl'POUtID· Jlll

.. _I.
I
1

'--"'+'---' ,
I
I
I

,1.
.,. I ...

____~- L __-~-~
, I

~ -: : : r--r+r---,
I,,
I
I
I
I
1
I,
I
1
I
I
I,
I..,..-,

2

3

7

6

s

1~
r
i...
~
~

(a J :1tJ.'-~~~.1....l..l.:::!~~~~:=±-U-~....L...l-.l::±-'--L-J..I:!:-l-~~"=±-J-l....L;J;-±-~~~

:frrr-:-.'r"'rr'I"'1·,...,I,...,',..."...,I""1·,...,/,...",.,...,.."I""1,...,'...,...,...""-,,...,...,-,,-r/·..,,..,.....,.....,"'Tj.....'""T"'T'·r'"'T/"'Ti"'T"'T-;-r..,...,..,.......-p-r"T'"TI

gt
8

?

6

s

3

~=m---,--- -8

. -;.
I

I,,
,'.

---~~----~--~~-~I ,

rJ rJ

COl'POUND' J 1xv

4-/
, \ ' ii' I i~iii t tit j (i

----(J

-----0-----

- -- ---(]- --

-- ----[]
2

3~i , I , j iii iii i i j J iii i j , I I iii

12

1'"

15

11

In-I.,...,..,"Tj"""-in-!T"'''''"T'''""1,n-1T",T"j"""-,"""""r,"T',""-""""""-'''''''''1T"'''''-"""'1"""""""'"...,..,.....,l·~' I I

(a]
:l,........."""""'7..............~....l..l;;-';~~~7U-'-'::±-'~~..J.:-I:±..L...I....l.:~~:-'-"-l'~~±-I--I-~u-I.;-\~

(hJ

s

COflPOUtiD· lUX

4Z
lS·"",...,..,...,.....,..,...,..,...,..,...,..,...,..,...,..T"'!""T"'!"",...,...,...,...T"T'"T"T'"rrrrrrrrrrror-r-'..,...,M""'l,..,...,"T"I'"'T"'l...,...,...,...,....,........,........,........,........,....,....,....,...,

17

15

6

(J
eONPOUND· R1V

tt :1~...w..J....~.u...L..L~u,.!,-.L...L.J....l-.l~~J..J".l..L.~~l...W....L..~..J.....L..J".~~~~!:-'-J

17

(bi

lS

12

11

s

li

:t
at

l
f
r
r:

:If' I ! I ~ ! ! I !1~ I I ! 3~ I I , ~b I ! I 6~ I

5. Extensions PAGE 43

5. EXTENSIONS

The compaction program described in this report can be
extended with several options.
Electrical connectivity information should be extracted

from the layout in order to prevent that constra
ints are generated between vertical line-pieces of
the same layer which initially do not overlap, but
which are connected with each other via another
path.
Some problems which will arise are:

the generation of constraints will become
super-linear, because shadowing will become com
plicated or impossible.

terminals of compounds should provide
net-information.
- diffussion lines must be split if a transistor
is placed on the line.

A second option is that the compactor tells the user at
which points u~eful jogs may be inserted. A use
ful jog point is always a point on a vertical line
which is part of the critical path. In general
there will be another critical path after the user
has inserted one jog. So in most cases the user
will compact again after each jog insertion.

A third possible extension is the use of 'affinity' in
order to minimize the weighted length of wiring (a
metal wire has a lower weight than poly and diffu
slon). Features which are on the critical path
have a certain 'free float' and may shift a little
to the left or to the right depending on the type
and the number of wires connected at the left and
the right side of the feature.

Besides jog insertionl other types of influence of the
layout designer on the compaction process may be
useful. For instance adding constraints between
layout elements in order to save or generate room
for extra lvgic (expansion). This can be done by
adding extra edges in the graph. These user- de
fined constraints may lead to constraint cycles.
The compaction algorithm can detect these cyclic
c,,,nstraintsI3nd, at the moment, reports one of
the nodes involved in the cycle. A possible ex
tension is that the algorithm can 'recover' from a
cyclic constraint evoked by the user, by not fully
sattsfying the user- defined constraint. This im
plies that the user- defined constraints should be
~sstgned a lower priority than the constraints ex
tracted from the layout.

6. ConcLusions PAGE 44

6. CONCLUSIONS

The compaction program can compact hierarchicaL ceLLs
with doubLe- sided constraints as is shown in the exam
ples of section 4.9. The compounds of these exampLes
consist of approximateLy 100 Layout eLements. The cal
culation of the compacted compound is performed in ap
proximateLy one second. The compacted compound can be
re-edited.

The compactor can be improved on the foLLowing points:
- improvement of shadowing and the appLication of a

separate window for each Layer.
impLementation of more design rules (the ruLes cur

rently used are too conservative), and the appLi
cation of a tabLe of design ruLes, to make the
program independent of changes in technoLogy.

eLimination of the restriction on the input that each
line terminating at a perpendicuLar Line must con
tact by complete covering. This can be done by
inserting for each horizontal line two extra nodes
in the graph, representing Left and right side of
the Line.

eLimination of the restrictions currentLy used to
prevent the apparentLy disappearing ofl and dis
connection between symboLic Layout eLementsl and
eLimination of the restriction that a horizontal
Line-piece must be present at the pLace where two
verticaL Line-pieces abut.

PAGE 45

References

["1J M.van der Woude, "IDS: an Interactive Design Sys
tem for Integrated Circuits", THE Computing Centre
Note 11, Eindhoven University of Technology, Oc
tober "1982.

[2J W.M.G. van Bokhoven, "Piecewise-Linear Modelling
and Analysis", Thesis Eindhoven University of
Technology, 1981.

[3J C.A. De lhi j, "ISLE, an Interact ive Symbol ic Layout
Editor", Eindhoven University of Technology, 1982

[4J A. Borgt, "Een geometrische IC-Layout Editor in
Fortran", Eindhoven University of Technology,
1982.

[5J R.C. Mosteller, private documentation.
[6J S.B. Akers, J.M. Geyer and D.L. Roberts, "IC

Mask Layout with a Single Conductor Layer",
Proceedings of the 7th. Design Automation Work
shop, San Francisco, pp.7-"11, 1970.

[7J A. Dunlop, "SLIM- The Translation of Symbolic Lay
out into Mask Data", Proceedings of the 17th.
Design Automation Conference! 1010.595-602, 1980.

[8J M.Y. Hsueh, "Symbolic Layout and Compaction of In-
tegrated Circuits", Ph.D. Thesis University of
California, Berkeley, UCB/ERL M79/80 Memo 1979.

[9J N. Weste! "Virtual Grid Symbolic Lay.:>ut", Proceed
ings of the 18th. Design Automation Conference,
Nashvi lle, 1010.225-233, 198"1.

[10J C. Niessen, "The Role of CAD Tools in VLSI Design
Methodology", ESSCIRC 1981 Digest of Technical Pa
pers, Freiburg! 22-24 sept. 198"1, pp.75-86.

["11J T.G.M. van Ooyen, "An Interactive Layout
Editcr/Compactor", Eindhoven University of Tech
nology, 1982.

['12J J.L. Bentley, D. Haken and R.W. Hon, "Fast Geo
metric Algorithms for VLSI Tasks", VLSI New Archi
tectural Horizons, Compcon Spring IEEE, 1980,
pp.88-92.

[13J M. van der Woude and X. Timmermans, "Compaction
of Hierarchical Cells with Minimum and Maximum
Constraints", Proceedings of the IEEE Internation
al Symposium on Circuits and Systems (ISCAS),
Newport Beach, 2-4 may, 1983.

[14J p. Dewilde, J.A.G. Jess! "NELSIS, a Co-operative
System f()r- Large! Integr-ated Circuit Design".

['15J B.W. Weide, "StatisticaL Methods in Algorithm De
si~(1 and Arlal.ysis"l Ph.D. Thesis, Carnegie-Mellon
University! August 1.978.

	Compaction of hierarchical chip layouts based on a constraint graph method with double-sided constraints
	Contents
	Summary
	1. Introduction
	2. Methods for compaction
	3. Objectives
	4. The compaction process
	5. Extensions
	6. Conclusions
	References

