EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

COMPAC : Compaction of hierarchical chip layouts based on a constraint graph method with
double-sided constraints

Timmermans, X.I.M.

Award date:
1983

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/4d41dc69-59f3-4599-8753-be27e5210087

AFDELING DER ELEKTROTECHNIEK

TECHNISCH HOGESCHOOL
EINDHOVEN

VAKGROEP AUTOMATISCH SYSTEEMOMTWERPEN

COMPAC

Compaction of hierarchical
chip layouts
based on a constraint graph mesthod
with double-sided constraints

X.1.M. Timmermans

Rappert van het afstudeerwerk
uitgevoerd van juni 1982 tot mei 1783
in opdracht van preof.dr.ing. J. lJess
en ir. M, van der Woude

308814 .

CONTENTS

Summary 3

Introduction 4

Methods for compaction b

2.1. Shear line or compression ridge compaction b
2.2, Virtual grid compaction 7

2.3. Critical path compaction 8

Objectives 11

3.1. Hierarchy 11

3.2. Representation of layout elements 13

3.3. Interactivity 15

3.4, Design rutles 16

The compaction process 19

4.1, Overview 19

4.2. Input the layout elements 20

4.3, Sort the elements and search for overlap 22
4.4, Partition the elements into features Z8

4.5. Generate the constraint graph 30

4.6, Determine an 57 ordering of the nodes of the graph
4.7. Compac 34

4.8, Construction of the compacted compound cell 37
4,9. Examples 37

Extensions 43

Cenclusion L4

Refsrences 45

Appandix?! Program Documentation (not included)

PAGE Z

33

PAGE 3

SUMMARY

In this report the compaction program Compac is des-

cribed. Compaction s a wuseful teoel in interactive
computer—aided generation of layeuts of integrated cir-
cuits. With a Llayout editor the layout designer can

construct a layout in a fast way by approximate place-
ment of the layout elements. With automatic compaction
and design rule checking he can generate a compact tay-
out with no design rule violations.

The compaction method applied in Compac is based on a
constraint graph. Compaction is achieved in one ore
more subsequent steps by grouping the Llayout elements
into features and then shifting these features together
in horizental or vertical direction. The nodes and
edges of the graph represent the features and the con-
straints between the features.

The compaction algorithm presented can handle both
one-sided constraints and two-sided constraints. The
two-sided constraints are resolved by Dbacktracking.
Constraints on the shift of layout elements which over-
lap each other are determined with a Linear methed.
For determinatioen of constraints of non-overlapping
elements windowing and shadowing techniques are used to
reduce computation time,

1.

Introduction PAGE 4

1. INTRODUCTION

The compactor described in this report is a part of the
Interactive Design System (IDS) for integrated circuits
C13. The system will be used for the IC production
unit at the THE. The participants in the design of IDS
are the researchgroup ES of the department of EE and
the computing centre of the THE. They co-operate under
NELSIS [14] with the wuniversities of technology of
Delft and Twente. Further it is intended teo co-operate
with Philips Physical Laboratory.

Portability of circuit and layout designs is one of the
regquirements. Therefore standards such as standardized
design description languages will be defined. This en-
ables the spread-out of a large layout project over
several centress as well as the use of pieces of Lay-
outs which are develloped in other centres and stored
in Lecal libraries. The hierarchical approach in 108
facilitates the editing of layouts and all other phases
in the design of layouts for VLSI.

The design system IDS will encompass in the near future

the following modules:

1. PL-simulators a mixed-mode mited-tevel simulator
based on Piecewise Linear Modellings which can
simulate integrated circuits at circuit Llevels
logic level and kehavioural level C23],

ISLEy an Interactive Symholic Layout Editor for ed-
iting and drawing symbolic layouts with a graphics
terminal or digitizer [31.

3. Colormasks a geometric layout editory for editing

pieces of geometric Layeut which can be used as
lLeave cells in ISLE C41.

[

4. Compaction [C111.

5. Design rule checking.

&. Circuit verification.

7. Circuit extraction.

The modules will partly use common databases,. Besides

interactive input via terminal or graphics tablets tex-
tual inputl and output with description Llanguages will
be possible,

Trhe program COMPAC has been develloped on the PDP-11 of
the researchgroup ES. The language used is Fortran 4.
The Burroughs version of ISLE has been implemented on
the PDP-11y to assure gooed interactiorn between COMPAC
and ISLE. This has been done in co-operation with stu-
dent A.G.J. Slenter.

Main differences bhetween the B7700-version of ISLE and

1. Introduction PAGE 5

the PDP-version are:

- On the PDP an overlay table is needed:

= The drawing with GINO-routines is on the PDP done

in
3 separate process.,

2. Methods for compaction PAGE 6

2. METHODS FOR COMPACTION

All the various methods for compaction use a topologi-
cat placement of layout elements as starting point.
Due to the complexity of the layout compaction problem:
all published algorithms perform compaction in seperate
steps in horizontal and vertical direction. Compaction
algorithms introduce only marginal changes in the to-
pology of the layout. Presently attempts are made teo
use the concept of simulated annealing for
two-dimensional compaction algorithms T51.

In this chapter brief descriptions are given of compac-—
tion methods which are or have been used in several la-
yout design systems. Chapter 4.1. gives an overview
of the compaction process used in the IDE systemi the
compaction algorithm is presented in chapter 4.7.

2.1. Shear line or compression ridge compaction

One of the first compaction algerithms published is
based on a coarse grid (fixed grid? method (Akers [C&12.
The layout elements are represented as entries in a ma-
trix. Compaction is achieved by searching for and el-
iminating a path of blank cells across the matrix
(fig.z2.1.a2. Figqure 2,1.b gives the example used by
Akers.

SHEAR LINES

COMPACTED GRIO
LAYOUT

COMPACTION PATH

Fig.2.4.a Shear line compaction

2. Methods

for compaction PAGE 7
SUTEKTRESIEEN .“i‘_"\‘\(
PR U NS W Se e~ N - qudia o
.\a\ \\ A
A c
N
N
N . = .
.t‘.‘ IRREN X b W SN
L= L1 | (-
[a} E F
Compression vidge __ :\:}\:\:\\:\;
Sheav [ing ————s! .
SRANES
DS DU Y
Fig.2.1.b Example of =shear line compaction used by

Akers

The algerithm for finding compression ridges often runs

into dead endsy which causes time—-consuming backtrack-
ing.

Dunlop LC£73 wuses the shear Lline method in the
SLIM-system during the global compaction phase. In
this system a relative grid symbolic layout method is
used. The global compaction 1is preceded by a tltocatl
compaction phase in which a kind of clustering of Llay-

out elements takes place based on a critical path meth-
cd such as in the CABPBAGE-system [83.

xR
E

Virtual grid compaction

in the MULGA-system (Weste [?3). A
is used in order to avoid waste
of mask space inherent to the fixed grid compactors
such as mentioned above. Howevers to minimize design
rute type calculaticnss adjacency information is treat-
ed on grid hasis,

This method is used
relative grid approach

The
Layout

is drawn on a virtual agrid. The
all placed on virtual grid lines.

symbolic layout
elements are

-~
&

Methods for compaction PAGE 8

During compaction the spacing betws2en two adjacent grid
tines is determined based on spacing requirements of
the elements which are resident on these grid Llines.
S0 all elements on the same vertical virtual grid line
will shift over the same horizontal distance. after
compaction all spacings has been determineds and the
virtual grid is in fact transformed into a geometrical
grid.

2.3, Critical path compaction

The ecritical path method (also known as the Longest
path methodY originates from research in the field of
operations research and network planning. In the field
of Llayout compaction this method is (o.a.) applied by
Hsueh in the CABBAGE-system [C&7].

The layout is represented by a coenstraint graph. There
are various ways to map the layout into the graph.

One way is to map the edges of elements fhuilding
Elocks and interconnection lines) into nodess and the
sizes and spacing requirements into branches (fig.2.27.

Q"‘“‘%@O?M”v‘ >

I

Fig.2.2 An example of a graph representation of a \lay-
out

In the Cabbage system another mapping has been applied.
In this systems those Layout elements that are fixed
with respect to each other in the direction of compac-
tiens are partitioned into groups (features). ALl to-
pclogically connected elements sharing the same verti-
cal or horizontal center Lline will shift as a single
block during compaction. As a consequence of this ap-
proach the grcups are mapped into nodes and the separa-
tien requirements between groups are mapped into
branches (fig.2.3). So the weight assigned to the

2. Metheods for compaction PAGE 9

branch represents the constraint between two groups.

Note that the sizes of elements are not mapped into the
graph.

Fig.2.3 Graph representation for horizontal compaction
in Cabbage.

The graph is a-cyclic and can be resclved with a
single-pass algerithm. For horizontal and vertical
compactiony different graphs are used. As depicted in
fig.2.4 the result of ccmpaction may be improved by al-
lowing joegs in straight Llines. Insertion of a jog
means splitting of a straight Line intc twoe parts con-
nected by a perpendicular tine of initially =zero
length. In the constraint graph this implies the
splitting of one node into two. This splitting is only
useful for nodes on a critical path, A critical path
is defined as a path frem the graph source to the sinks
where a change of the position of an arbitrary node on
the path results in a change of the position of the
sink. If a node on the critical path is splits the
path no longer goes from source to sink. Another crit-
ical path that is shorter will turn up. Automatic jog
insertior implies the recalculation of the critical
path each time a jog is inserted.

2. Methods for compaction PAGE 10

Fig.2.4 Jog insertion caused by the "torque'" applied by
neighbouring structures on the critical path.

3. Objectives PAGE 11

3. OBJECTIVES

In this chapter the concepts of hierarchy and interac-
tivity as implemented in the IDS-system and the influ-
ence of these concepts on the design of the compactor
are discussed. An introduction to the symbolic
"stick-based" representation of a layout which serves
as input for the compactor is given in section 3.Z.

J.1. Hierarchy

An hierarchical approach for design systems for very
large integrated circuits is very useful [103.

The advantages of such an approach are clear:

- the designer will keep survey over wha! he is doing
since the number of details at a particular hier-
archical level can be kept within the Llimits of
the human mind.

- standard cells (gates»y flip-flops» registers multi-
plier) have to be designed only once and can be
instantiated at several places in the same or
another IC-layout.

- storage requirements are reduced by storing the de-
finition of each cell only once.

- layout editing will be easier since instances of
cells of a lower hierarchical level can be shift-
eds rotated and mirrored as a3 single block.

- computational tasks such as network verification com-
pactien and design rule checking will run much
faster since their scope can be limited to a sin-
gle hierarchical level.

Howevers there are some difficulties and disadvantages

which arise with an hiszrarchical approach:

- advantages disappear after module expansion

~ some loss in efficiency of chip area due to necessary
demain separation

- restricted freedem in design

- extra efforts must be made to generate a well struc-—
tured hierarchical separation which can be used
both for the network description and the Llayout
description. In general the lower echelons in the
hierarchy will differ,

- decisicns must he made wether (domain-} separation
between hierarchical levels or easy editing should
have prevalence. This is illustrated 1in fig.
3.1. It is easier to draw long global intercon-

rnections which make ©contact at several places:

3.

Gbjectives PAGE 1Z

than to draw a great number of small line-pieces.

T =T] IL

|- \ed ™ |

Fig. 3.1 Strong hierarchical separation versus
simple editing

Howevers if wires are atlowed to overlap instances
of compound cellssy the scope of design rule check-
ing and compaction must be extended to more than

one hierarchical level. Ors alternatively the de-
signer must use a different layer for global in-
terconnections (e.g. metal) than is wused for

internal connections in the cell (pely or diff.)
te avoid possible design rule violations,

- gxtra symbols must be introduced to symbolize domain
and connection areas C(terminalsd of the cells.
Special terminal symbols may be introduced to im-—
plement ceoncepts like "shared buses"s see fig.3.Z2.
A shared bus denotes a terminal area where overlap
of compound instancas is allowed.

= Z I

vd < -

[- ~

% =

g “ A
N

Fig. 3.2 A cell definitien with a shared buss and
connection of compound instances via shared buses.

Since for VL51 design the advantages of a hierarchical
approach are dominants the 1IDS system is hierarchically
oriented. In the present implementation a strong sep-—
aration between hierarchical levels is used.

The conseguences for the compactor are:

- Lompacticn can be performed at a single hierarchical
level. During compaction of a particular compound
the instances of subcompounds are not resolved:
ratrer the subcompounds are treatad as black boxes
af which only the terminals are of interest.,

3. Objectives PAGE 13

-~ The number of 2lements in a hierarchical compound 1is

rather small. This leads to a fast compaction and
opens the way to iterative editing and compaction
cycles.

- The graph representation of the layout can no Llonger
he rescolved with a single-pass algorithms due te
the introduction of double-sided constraints in
the graph. As is shown in fig. 3.3 the shift of
compound cell €2 with respact to the position of
€1 is double-contrained. Compound CZ may shift 10
units to the lteft or 5 units to the right relative
to the place of €C1. The compactor uses a modified
critical path atgerithm teo solve the graph with
double-sided constraints.

= =

| c2 |

§

{
| 1
| |
le—2

1
\ \
-]
< > l——
Fig., 3.3 The use of hierarchical cells introduces
double-sided constraints.,

3.2, Representation of layout elements

One of the major advantages of a symbolic layout method
is the enormous reduction in design time (about a fac-
tor 100, The layouwt editor ISLE [31 wuses a symbolic
representation of layout elements. These symbols are
called "sticks" . Inm fig.3.4 the symbecls presently
used in ISLE are given.

3. Objectives PAGE 14

wire

enhhanecement r[jﬂ tevymina | []

Evansisboyr

™
v
N

deP’e!;OV\ !

tvansiclor

COwn Poumol

"
La.b

Fig.3.4 Basic symbols used in ISLE

The symbols are adapted to NMOS technology. The dimen-
sions shown are in Llambda unitss and are default va-
lues. Lambda is the characteristic minimal distance;
e.g. a half minimal line spacing. In a actual symbol-
ic layout a great number of variations on these symbols
can be found:

-- The user can specify greater dimensions in hoth hor-
izontal and vertical direction of transistors and
other sticks.

-- Different symbols are used according to the Layers
invalved:

- three different dashings for wiress symbolizing
diffusionspolysilicon or metat

- three types of vias: diffusion-metal contacts
poly-metal contact» and burried contact

- transister: cressing of horizontal poly and
vertical diffusion: or the other way round.

In the near future some new symbols may be introduced.
For instancesy a terminal symbol to symbolize shared
buseas. Further extensions are various symbols to in-
struct the compactor:

- jeg symboly to instruct the compactor that a particu-
' lar wire may be bent.

- expansion symbel to instruct the compactor to add
) rcom for sxtra logic.,

The layocut designer may introduce self defined basic
layout elements (basic cells? with the geometric layout
editor Colormask [43. These basic cells will be sym-—
boclized with 3 symbol similar to the compound-box sym-
botl.

The wire symkol mentioned above deserves somewhat more
attention. The simple form of the wire symbol leads to
a olear symbolic drawing. Howevers the wire symbol 15
tco simple since wires of varicus width are all symbol-

3. Objectives PAGE 15

jzed with the same line. In the example of fig. 3.5.a

two abutting vertical wires of width 2 and 4 lambda are
drawn. After compaction the wires may he placed as in
fig. 3.5.b.

A

4 0 1

(a) (b) (c)

Fig.3.5 In the syamabolic drawing gecometrically connected
wires sometimes seem to be split.

Geometrically the wires are still fully connecteds, hbut
in the symbelic representation the wires seem to be not
connected. Similar problems occcur with wires abutting
or overlapping other basic symbols,.

A scolutien could be the introductien of another
wire-symbol!l as in fig.3.5.¢c.

For the moment an extra symbholic design rule is wused.
The compactor prevents the symbeolic splitting of wires
by putting those wires into the same feature and thus
shifting the wires over the same distance.

3.3, Interactivity

Interactivity is an impertant feature of the
I1DS-system. Tasks for designing a layout are distri-
buted among man and machine in such way that each of
them does the tasks that suit him best. As in other
Layout design systemss tasks such as drawings compac-
tion and design rule checking are performed by the sys-
tems and topology design i5 left to the designer.

With the IDS layout editors a designer c¢an input the
tayout in a fast way. Changing the laycut topelogy is
facilitated by various commands such as shifts rotates
mirror and delete. S0y since the IDS editors fully
support topoclogy changess the changes in topology in-
troduced by the compactor can bhe restricted to shift-
ing.

The advantages of this approach are:

- the designer will not be confreontated with unappreci-
' ated changas in topologys

- the compaction precess will be

speeded up. 50 the
designer gan fully utiliz

e the option of

3.

Objectives PAGE 164

re-editing a compacted compound.

J.4. Design rules

Constraints on the shift of elements are based on:
~ gecmetric design rules

~ symbolic design rules

~.compaction rules

Geometric design rules follow from the technolegy used
{NMOS)., (See f.i. Mead and Conway). These rules give
the minimum distances between and the minimum overlaps
ef wirings transistors and vias. Overlap reguirements
are satisfied by the compactor by preserving the corigi-
nal overlap situations or by placing restrictions on
the relative shift of pairs of elements based on the
geometrical dimensions of the elements.

At the moment the separation requirement for each pair
ef Llayout elements is set at Z lambda. Compound in-
stances are allowed tec abut. A future improvement of
the compacter is to introduce more variation in spacing
regquirementsy and to make the compactor table-drivens
sa that changes in technology can easily be implemented
in the pregram by reading in a new table of design
rules.

Symbolic design rules and compaction rules are less un-
iversally as the geometric oness and are therefore dis-
cussed below in more detail.

Symbolic design rules

Symbolic design rules follow from the hierarchical de-
sign of the layout editer and from the use of special
symbols (e.g. transistord C111s [31s [13.

The most important rules are:

a’ frossing of poly and diffusion only if there is a
p-d via or a transistor at that place

by Inztances of compounds may not overlap: abutment is
allowed.

c} Tearminals are the only places where a compound Jisg
allowed toc make contact with the "ocutside world".
The connection can be 3 wire or a via. The (geo-
metric) arza of the wire or via may not sxceed the
terminal boundary.

d) The distance between transistors: viass wiring and
the surrounding compound box must be at least 1
Lambda. Also the distance between a layout ele-
menti and the box of an instantiated compound must

3. Objectives PAGE 17

be greater than lambda. This is to ensure a sep-

-

aration of at least Z lambda between a laycut ele-
ment and the elements of an instance of & com-
pound.

e) Terminals must abut on the (inside of) the surround-
ing compound box.

f) Terminals may not be placed in the corner of a com-
pound boxsy so may not abut on two sides of the
boxs in order to aveid conflict of rule d) and the
minimum overlap requirements,

g) Geometric design rules may allow overlap of metal
with f.i. diffusioen Llines. However: problems
with the symbolic drawing occur if metal and dif-
fusion tetally overlap (fig. J.6.a7).

T T
]

|
| dift. welal difl. +
M Hul o mmetal il

L;ﬂJ

r

ca) (b)
Fig.3.& (a) Metsi Lline apparently disappeared in
the symbolic drawing after compaction. (bl

Suggestioan for an alternative wire symbol.

Therefore (at the moment) the compactor always
generates constraints between elementsy without
Leoking to the layers the elements occupy. In
figed.b.b a suggestion is presented to overcome
disappearing of lLlines in the symbolic drawing:
represent one line-type by a center-lines and the
other two by a Line which is placed a Little Lleft
or right of the center-line,.

Compaction rules

In this subsection the compaction rules are discussed.
These rules give nc restriction on the freedom of the
Layocut designers rather they show some internal
processes of the compactor.
Compaction rules:
a' The pesition <¢f subterminals relative to the corres-—
’ ponding compound box is fixed,.
B} Terminals of the compound under compaction:

- at the left side of the box won't move

3-

Objectives

c)

PAGE 18

- at the bettom and top side may shift left
- at the right side of the box may shift teft if
) the following conditions are satisfied:
- each of them shifts over the same distance
= they stay the rightmost elements of the
cell.

Two elements of width W1 and W2 (f.i. a via and a

wirel: which abut on each other have relative
freedom of abs(W1-W2)s see fig.J3.7.a.

dmmt ,;*g

wi
&—>

IR

w2 () (b)

Fig.3.7 (a)> The relative shift of abutting or
overlapping elements s abs{W1-WZ2). (b) If the
overlap is greater than dmins the compactor does
not allow a larger shift.

If +there is overlap of more than dmin
(=MIN(W1sW2})sy the freedom is the same as 3bove:
altough the gecmetric design rules would tolerate
a Larger shift: see fig.3.7.b.

lLine terminating on a perpendicular Line of the
same layer must (at the moment) cover it complete-
ly. This is necessary since telescopic elements
wan’'t generate constraints on shifts. This re-
guirement is not fullfilled automatically by the
tayout editor ISLE. At the moment the user him-
self must take care of it. Furthers the user must
place a horizontal line-piece at the place where
two vertical lines make contact.

M

geomebvic symbolic

Fig.3.8 Complete covering of perpendicular lines

4, The compaction process PAGE 19

4, THE COMPACTION PROCESS

In this chapter the various actions will be discussed

T which are performed before and after execution of the
compaction algerithm discussed in section 4#.7. Section
4.1, gives an overview of the compaction program.

Since the program treats compaction in heorizontal or
x-directionsy and vertical or y-direction in the same
ways only the case of horizontal compactien s dis-
cussed.

4.1, Qverview

The compacstion program will be initiated after an ap-
propriate instruction te the interactive symbolic lay-
out editeor ISLE [31, The program asks the wuser to
enter the filename and the name of the compound teo be
compacted. By defaults the names used in the previous
editing or compaction cycle will be used. After names
are entered or defaulteds the user may choose one of

the following options: 1} horizontal compactions 20
vertical compacticns 3) return to the menu of the edi-
tor.

The first action performed is input of the N Llayout
elements of the compound. Of all elements the type of
the element and geometric information (i.e. a sur-
rounding rectangle? is needed from the database,

The second step is to sort the elements and search for
overlap and abutment. For this search we use the al-
gerithm for finding intersections of rectangles as des-
cribed in C[123y which is linear "in the average" with

N,

In the third step the elements are partitioned into
features. Overlapping elements which are not allowed
to shift relatively to each other are put in the same
feature. Sc elements belonging to the same feature
will mecve as & single entity during compactioen.

Horizontal pieces of wiring (telescopic elements) are
net put into featuresry because these wires can be
stretched and shrunk acccording te the shift of elements
conrected to it.

In the fourth step the constraint graph 1is generated.
The features correspond with the nodessy and the con-
straints correspond with the edges of the graph. The
corstraint between twe features F1 and FZ results from

4, The compaction process PAGE 20

the constraints between the elements of F1 and the ele-
ments of F2.

An ST-ordering of the nodes of the constraint graph is
determined in the fifth step. In an ST-ordering the
ncdes are numbered so that each edge points from a
lower te a higher number. The double-sided constra-
intsy which can be considered as bidirectional edgess
are not taken into account when the ST-ordering is de-
termined. An ST-ordering can be determined Llinear in
times f.i. with a depth first search. The algorithm
used in Compac is given in section 4.6.

In the sixth step the compaction altgorithm is executed.
It is an extension of the critical path algorithm.
Packtracking is used to satisfy the max-constraints.
The algerithm is presented at I5CAS-83 CL133. In sec-—
tion 4.7. the algerithm and a complete description are
given,

In the last step of the compaction process the compact-
ed compound is constructed. The elements of the fea-
tures get their new place according to the distance the
features have been shifted. After this is done the new
length of the heorizontal wires is calculated and the
coempacted compound is stored in the database.

* 4.2, Input of the elements of a compound cell

The coempactor requires as input a compound cell which
is free cof design rule errors. Further requirements
are that each line terminating at a perpendicular Lline
must contact it by complete overlap (fig.3.8)y and that
a horizeontal tine is placed at the location where two
vertical Llines make contact.

If the input contains 3 design rule errors the error
will be reflected into the compacted compound, If the
other reguirements have not been obeyeds then the com-—
pactor sometimes causes design rule errorssy depending
on the tcpoleogy of the layout.

A compound cell ¢f the hierarchical ISLE database con-

sists of various types of elements:

- point-type sticks: transistors (horizental or verti-
calsy enhancement or depletion? and vias (p-my d-ms
or burried?

- Line-type sticks: wiring in horizental and vertical
direction tpoly: diffusion or metal?, Each
Line-piece 15 a separate element.

- pins or terminals

- instances of =zub-compound cells

4, The compaction process PAGE 21

Further: a domain is used to indicate the total chip

area occupied by the elements of the compound. In the
present version of ISLE the domain is a rectangle sur-
rounding altt elements. This rectangle is called the
box of the compound. In futures; a more complex domain
will be used.

The place and the dimensions of each elements including
compound instancess are given by a rectangle.

The type of an element (e.g. horizontal enhancement
transistor) is denoted by a number. The type-number of
a compound instance is used as a pointer to the com-
pound definition, More information about the various
types can be found in [31.

A similarity between point-type sticks and wiring is
that for both the gecmetric representation consists of
a rectangle. Howevers the compactor treats both types
of elements in a different wayt: In the case of hori-
zontal compaction wiring in horizontal direction will
be treated as telescopic (or elastic) elements: the
tength of the horizontal connections is variable. On
the other hand, the shape of the point-type sticks and
the shape of the vertical connections will be pres-
erved.

We don’t use automatic jog insertion for two reasons:

- it takes more computer times and

- the designer may not be pleased with ‘unexpected’
compaction results.

With ISLEs jogs can always be inserted manually.

The elements of a compound are stored in a Linked list.
Input of the elements can be described as follows.

DOMAIN(L...4):= domain of the compound
PT:=PT1 %“ pointer to the first element
=0
WHILE PT <> NILL
po
N:i=N+1
GET(PTsREC) % REC contains element description
%Z REC(1...4) contains a rectangle
PT:=REC(4) % pointer to next element
TYPE:=REC(5) % type of element
IF TYPE <> CITYPE % compound instance type
THEN BEGIN
enlarge rectangle REC(1...4)
ELEMIN.1...5) = REC(1.,..&)
END
ELSE BEGIN
store domain of compound without enlargement
ELEM(Ns1.,..4) = RECC(1...4)
FOR each terminal of this compound

.
=2

4.

The compaction process PAGE 22

Do
get terminal description
entarge rectangle
Ni=N+1
store description in ELEM
oD
END

oD

In order to detect abutment of elements at the same
time when overlap is detecteds the rectangle of each
element is enlarged by an amount MARGE in all direc-~
tions (fig.4.1)., MARGE will also be used for the sep-
aration regquirementsy it is currently set te 1 Llambda.
O0f a compound instances the domain and the terminals of
the compound are retrieved from the database (ne other
elements). The rectangle corresponding with the domain
of a compound instance is not enltarged.

EPS | —

Ui . ‘

bvamsisfew

Fig.4.1 In the compactors elements are represented by
an enlarged rectangle.

4,2, Scrting the elements and detecting overlaps

In order to compose the features efficientlys the pro-
gram first generates a tist of overlaps for each rec-
tangle. Finding all pairwise intersections among rec-
tangles is called the ‘rectangle intersection problem’.
Checking each element against each other element would
give an algorithm of order n**Z, In the program COMPAC
the solution for this proklem proposed by Bentley:s
Haken and Hon L1123 is used. (lineair expected time).

4,

The compaction process PAGE 23

| l + 1

‘ | Tb 1 E

L 1lh kb

! . ! 1 h b

S e boc
{ (c I b | ¢
- j + 3
<

=1 B _

l ' I -

I l

1 2 Z 2

Fig.4.2 Illustration of the scan-line algerithnm.

In this methed a vertical scan line moves fraom left to
right over the layout. At each point in the scans all
rectangles currently intersecting the scan Lline are re-
presented as one-dimensional line segments. As shown
in fig.4.2 these "active" line segments are stored in
bins along the Y-axis. The Y-axis is divided in NEINY
bins of width WY. In the paper of Bentley is argued
that a goed choice for WY is the average width of a
rectangles so that each segment is placed in two bins
on the average. For each bin a3 chain (linked list) is
used to store the line segments which totally or partly
overlap this bin. All bin chains together give the
total set of line segments intersecting the scan Line.
This =et is called the segment set and is stored in
array 8S§.

When the scan line encountzsrs a left segments first the
bottom and top bir (IBYB and IBYT) corresponding with
this segment are determined (projection onto the
Y-axis). Second each line segment already present in
bin IBYER through IBYT is reported, and at last a po-
inter to the rectangle corresponding to the left seg-
ment is stored in the chains of bin IBYE trough IBYT,
Note that if two Lire segments are in the same bins
this does not necessarily mean that they actually over-
lag.,

When 3 right segment is encountered the line segment is
deleted from the corrasponding bin chains.

In the algerithm belows the next three arrays are used:
EL: event Llist: contains a =sorted Llist of left and

4, The compaction process PAGE 24

right segments, For each segment a record with
three fields is used:

- ELPT: pointer to next segment:

- RL: indicating left or right segment,

- ILM: number of element the segment belongs to.

85: segment set:s contains a chain for each bin IBY.
SSCIBY] points to the first link of the chain for
IBY. Each link (rececrd) has two fields:

- B5PT (linkpointer)s: and ILM.

CHECK: this array and the variable LAST are used to
report overlapping segments only onces although
thay may be resident in more than cne bin chain.
The reported elements in CHECK are organized in a
'backward’ chaint if segments 3 and 8 have been
reporteds then LAST=8, CHECKL82 contains 3s and
CHECKLZ3] contains ZERO,

The scan-line algerithm:

FOR I:=1(1)N DO CHECKCIJ:=NIL % initialize

FOR IBY:=1(1)NBINY DO SSCIBY1:=NILL % initialize bin chains
FOR J:=NBINY+1 (2) FLMAX DO SSCJ1:=J+2 % init free chain
LAST :=ZERO

ELPT:=ELPT1 %“ pointer to first segment in EL
WHILE ELPT <> NILL
Do '

% take segment S from EL

ILM:=ELCELPT+213F RL:=ELLELPT+11% ELPT:=ELLCELPTI
IBYB:i=(YB{ILM)»~-YBCI/WY % determine bottom and tecp bin of 8
IPYTi=(YT(ILM2»-YBC)>/WY % YBC = bottom of compound

IF RL = left segment

THEN
BEGIN
FOR IBY:=1BYBC1)IRYT
Do
SSPT:=5SCIBY]
WHILE SSPT{>NILL %“ report possible overlap by
Do % setting flags for resident segments
JLM:=88C55PT+11
- ESPT:=85CLS55PT1
IF CHECKCJLMI=NIL
THEN BEGIN CHECKLCJLMI1:=LASTi LAST:=JLM END
oD
%“ insert 5 in IBYs use Llink from free chain
FLN:=55LCFL1
S53CFL+13:=1ILM %4 FL points to free Link
SSCFL1:=5S[IBY] % insert in froent of bin-chain
SelIRY]:=FL
FL:=FLM » update frze link peinter
oD

“ report the flagged segments in CHECK
WHILE LASTC>ZERD
Do

4'

The compaction process

CHREPORT (LAST-ILM)

JLM:=LAST
LAST:=CHECKCJLMI
CHECKCJLMI:=NIL

m
U
WM
mj=
Ul'::‘
L=

ul
o
e

IBY:=IBYE (1) IRYT

L]
=

SSPT:=58C1IRY1]

WHILE SSCSSPT+1J<{>ILM

DO SSPTL:=5SPT;

SSCSSPTLI:=SSCSSPT]

SSCSSPTIt=FL}
0D

op

The overlaps are stored

%

in a overlap
two elements ILM and JLM overlap:

PAGE 25
check if rectangles overlap
and report overlap in OLLIST

reset flag

right segment

% search for segment 5
SSPT:=5S[CSSPT1 QD

% remove
FL:=SSPT

lLink from bBin-chain
% add link to free chain

List (OLLIST». If
then the element with

the higher number (JLM) will be stored in the overlap
List of the element with the lower number (ILM})», An
exception is made for telescopic elements: if one of
the elements is a horizecntal lines then overlap is re-
perted in the list of the horizontal Lline. Overlap of
two vertical tLines will not be reporteds in order to
alltow two vertical lines overlapping a horizontal Lline
te shift apart (fig.4.3.a’.

LsH p4 RS H

“—71 J n(—)

(— T
¥
I l LM
f
1 »
X&(TLm) *R(Jer)
(a) (b)

Fig.4.3 (a) No censtraint 1is generated between two
vertical Llines overlapping the same horizontal Lline.
{h) Allowed shift of overlapping elements.
BEesides overlaps the maximum shift of JLM relative to
the current position of ILM will be determined and
stoered in OLLIST. For examplesy the Left shift and
right shift of JLM in fig.4.3.b i5 calculated as fol-
lows:
LSH = XL{JLMY - XLCOILMD
REH = XR{ILMY - XROJLMD

4. The compaction process PAGE 26

So LSH and RSH are both positive in this case. In case
of a fixed constraints LSH and RSH are both zero. If
there is no constraints LSH and RSH will be assigned
infinity.

Tt A sorted "event list" has first to be generated before
the algorithm above can be applied. In the event list
tor segment list) all segments (left and right sides of
the rectangles) are stored. The segments are sorted
lexicographically (fig.4.4>. The sortparameters are in
lexicographical order:
) - x-value of the segment

- type of segment (right before left segment)

- y-value of the bottom end of the segment

1| |3’

Fig.4.4 Lexicographical numbering of left and right
segments of the rectangles.

For this sorting and storing of segmentss the
bin-method of Weide [15] is used., This method works as
follows.

- divide the X-axris in NBINX bins of width WX
- initialize for each bin a chain in which the segments
will be stored
- for each 2lement do:
) - determine bin numbers IPX1 and IBXZ of both left
and right segment (IBX=entierEX/WX1)
- insert the segments in the chain of bin IBX1 and
IBXZ lesxicographically
- couple all the bin chains in order to construct the
event list.

At the end of the algorithm all Lline segments are par-
titioned into bins. Each bin contains a List of seqg-
ments which have an x-value falling within the left and
right boundary of the bin. The bin width WX is smalla
te reduce the Llenght of the Llist,

For the following steps in the compaction process it is
mecessary t*hat also the =2lements (rectangles) them-

4, The compaction process PAGE 27

selves are sorted. This sorting is very simples since

the segquence in wich we Llike the elements to be sorted
is the sequence of the Left segments in the event Llist.
A possible way to gain access to the elements in this
sequence is to use an extra array of pointers to the
description of each element. However: in order to fa-
cilitate the (fregquently) access to the ealement des-
criptions in further stepssy we —choose for actually
re-organizing the lList ELEM in which the elaments have
been stored.

This re-corganizing is performed in the following way!

Co
-find a cluster of two or more elements
tarsbscyoar ks LD which have te exchange
) places,

- store the first element of this cluster tempo-
rarily at place § (3->S3,
- copy the other elements of the cluster to their
new places (b-2as c-2by ...91l-2kd)»
- copy the first element of the cluster to its new
place (8-2>1>
UNTIL totally sorted.

Note that if there is only one element in a cluster:,
this element was already at the place according to the
new sequence from the haginning.

The amcunt of work to be done is worst case as much as
copying the entire array ELEM into a temporary array,
and then copying back in the new sequence into ELEM.
The advantage of this "cluster-method" is that no extra
array is necessary.

The algorithm for the cluster method is as follows.

% NCLCJ] gives number of element that has to move to
% ELEMCJ»1...61 (NC = new contents of place J?
CLPT:=0 %pointer in ELEM to first element of cluster
WHILE CLPT < N
Do
! CLPT:=CLPT+1
IF NCCCLPTI=CLPT .
THEN e2lement with number CLPT already at right place

ELSE
? BEGIN
STOREL1...6]:=ELEMCCLPT 1...61
FP:=CLPT % free place pointer in ELEM

FPN:=NC(FP}

WHILE FPN <> CLPT

DO .
ELEMCFPy1...62=ELEMIFPN,1...8]
NCCFPJ:=FP % element now at right place
FP:=FFN % update free place pointer

4. The compaction process PAGE Z8

FPN:=NCLCFPNJ

oD .
ELEMCFPs1...63:=5TORELC1...61
END
0D
i 4.4, Partition the elements into features

Elements which overlap each other and which are not al-
lowed to shift relative to each other fas reported in
the .previous step) are put in the same feature.
Heorizental lines are not represented in the graph.

A simple extension to the present version of the com-
pactor is that the user can specify a left bound and a
right bound (vertical lines) between which compaction
will take place. Default values for LBOUND and REOUND
are the laft and right side of the cempound box. The
elements left of LBOUND or intersecting this lines will
not move during compactions and are therefore put in
the same feature.

The partitioning can be performed Linear in time with
Ny bye applying a breadth first search (BFS).

Algorithm:
- ILM=1
- while XL(ILM? <= LBOUND do
- if element is a telescope then put in TLIST
- else put element ILM into feature 1
ILM=1ILM+1
- put all other elements into feature 1 which are not
allocwed to shift relative to elements already be-
longing to feature 1 <(use informaticon from the
overlap List).
- while ILM {= N do Z N = total number of elements
- if ILM not alresady belongs to a feature then
- if element is telescopic then put in TLIST
i else
- greate new feature FTR
- put ILM in FTR
BFS(FTR) % see below
- ILM = ILM + 1

-

wheres

XLCILM) is5 the Lleft side of element ILM (The elements
has been sorted lexicegraphically on x- and
y—-value of left-boettom peinty of. section 4.3.1

TLIST is the List ¢of telescopic (horizontal) lines.

A rcansaguanc

m

of this algorithm iz that the features

The compaction process PAGE 29

are ordered in the same way as the elements. After the

execution of the aigorithm aboves the features on or
right from the right bound are merged.

With bread first search all elements belonging to FTR
are also put in FTR. This is done by searching the
overlap List of each element ILM belonging to FTR. If
an element JLM is found with a fixed constraint with
ILMs then JLM is added to FTR.

Elements belonging to a feature are stored in the fea-
ture List FL. For each feature a separate chain is
used with recerds {FLPTsILM> (FLPT = Llinkpointer, ILM
denctes the element). FLLFTR] points to the first link
of the chain of feature FTR. FNUMCJLMI qives feature
number FTR where JLM belongs to. (FNUMLJLMI is ini-
tially zerol.

BFS(FTR2
FLPT:=FTR
WHILE FLPT <> NILL
oo
~ FLPT:=FLCFLPT2
ILM:=FLCFLPT+13
OLPT:=0LLISTCILMI % get pointer to first element in
% the overlap list of ILM
WHILE OLPT <> NILL

Do
JLM:=0LLISTCOLPT+1] %get JLM overlapping with ILM
OLPT:=0LLISTCOLPTI
IF FIXEDCILMsJLMD
THEN IF FNUMCJLMI =0
THEN ADD(FTR:JLM) % add JLM to chain of FTR
ELSE IF FNUMLCJLM] = FTR
THEN JLM has been added earlier
ELSE MERGE(FTR,sFNUMCJLMI)
2D
0D

In the eoverlap list of ILM only the overlapping ele-
ments JLM with a higher number have been stored. So»
net all elements belonging to feature FTR1 can be found
with a =single call te BFS. This implies that in a
tatter phases when feature FTRZ is c¢reateds FTR1 and
FTR2 must be combined into one features if a fixed con-
straint is detected between elements of FTRY1 and FTRZ.
This is dene with the prccedure MERGE. Since MERGE is
not yet implementeds FTR1 and FTRZ stay aparts which
leads to a fiyxed constraint in the graph.

The compaction process PAGE 30

‘ 4,5, (Generate the constraint graph

In this step the separation requirements between fea-
tures are determined. These are stored as constraints
between the origins of the features. The origin of a
feature is the left-bottom point of the surrounding
rectangle. As a consequencey a constraint may get a
negative value. Single constraints are stored in a
min-constraint list (MINCLS)s double-sided constraints
are stored in a min-max-constraint list (MIMALS).

/7

Fig.4.5 Constraints of feature 4. A window is used to
reduce the number of comparisons. Each rectangle de-
notes the surrounding box of a feature.

Because windowing in combinaticn with shadowing is
useds the algorithm for determination of constraints is
egxpected to be linear. The example of fig.4.5 illus-
trates how the constraints of feature 4 are determined.
Min-constraints are generated from feature 4 to feature
719y and 10. Constraints to features 4£+8y and 11 need
not to be calculateds since these features fall outside
the window set up for feature 4,

At the moment only cone window i5 used for all the Lla-
yers together. 4n improvement would bes the applica-
tien of a separate window for each layer.

Checking feature 4 against 5 may» depending on the con-
tents of the features: generate a double constraint or
a min-constraint.

The compaction process PAGE 31

Fé ~ & 7 e
7///// Z ///1 Fs Aesuzs

/‘ LSH2

RSHZ 7//?"3 //A

(6) (<)

g

WA

DN

@) l
xe(r4) XL FS)

Fig.4.6 Three peossible situations when feature boxes
cverlap.

Az is shown in fig.4.& overlapping features can gener-—

ate a min-constraint from feature F4 to F5 €(a)s a

min-constraint from F5 to Fé& (b)) or a

min—-max-constraint (c). The constraints for these

three cases are calculated as follows:

a) LSH1 is the marimum Lleft shift of feature F3I rela-
tive te the current position of feature F4
{LSH1>=0>. The constraint between F4 and F3 is:
MINCON(F4sF5) = XL(F3) - XL(F4) - LSH1

b} REHZ is the maximum right shift of feature F3 rela-
tive to F4 (RSHZ>=0).

MINCON(FSsf4) = - XLC(F5) - XL(F4) +RSBHZ

c) In case of a double constraints the two constraints
will temporarily be named D1 and DZy since it is
not clear yet which one must be considered as a
min-constraint and which one as a maxr-constraint.
D1 = XL(F5) - XL{(F4) - LSH3
D2 = XL(F5) - XL(F4) + RSH3
After generation of the ST numbering this double
constraint is split into a min- and a
max-constraint.

If F4 becomes a Lower ST-number than F5s then:

MINCONCF4,F5) = D17 MAXCON(F4:F5) = DZ.
Qtherwises 1f F3 gets the lowest ST-numbersthen:
MINCON(FS5sF4) = - D23 MAXCON(F5+F4) = - D1.

The algorithm for determination of the —constraints of
feature 1 through NF is as follows.

FOR FTR:=1C(1NF 4 NF = number of features

oo
YWINB:=YB(FTR) % bottom and top of feature box
YWINT:=YT(FTR? %“ give bettom and top of window
FTEN:=FTR

WHILE YWINT-YWINE > RWMIN .AND. FTRN < FTR

The compaction process PAGE 32

% RWMIN is min. width of rectangtle

Do % determine constraints of FTR

FTRN:=FTRN+1

IF YBCFTRNI>YWINT .0OR. YTC(FTRNI{YWINE

THEN no interaction
LSE
EGIN 7. determine constraints of FTR with FTRN
ONSTR(FTRsFTRNsYWINBsYWINTsD1+sD2y ICASED
ASE ICASE

m
o

s
(0]

]
]
o0

1 % no constraint

22 ADMINC(FTR,FTRNsD1? Ao (al
3: ADMINCC(FTRN:FTRs-DZ? % (b
43 ADMINMAX(FTRsFTRN:sD1:D2) A (e
D

ake window smaller if possible (shadowing?
IF XL(FTRN)<XR(FTR> .OR. OVERLAP(FTRN)

IF (YB(FTRN3I<{=YWINB) THEN YWINB:=YT(FTRN}
IF CYT(FTRNJ)>=YWINT} THEN YWINT:=YB(FTRN)
ND

END i

"

The features have been ordered lexicographically on -
and vy-value of the Lleft-bottem point of the feature
box. Constraints of FTR and FTRN are only determined
for FTRN>FTR.

The application of a window enables that a feature FTRN
is skipped if it will not cause interaction.
Unfortunallys it is necessary to test each feature FTRN
if it falls outside or within the window.

The2 window is reduced by shadowings if FTRN overlaps
one of the window boundaries. ALl constraints have
been determined when the window becomes smaller than
the minimum width of 3 rectangle (RWMINs i.e. 4 lamb-
da). This shadowing can only be applied if the bot of
FTRN dees not intersect the box of FTR. In addition, a
feature FTRN can not reduce the windows if it overlaps
with a feature with a higher number. This can be de-
termined by the function OVERLAP(FTRN)s which 1is not
yet implemented,.

A conseguence is that the window stays Llonger ‘'open’
than necessary. GShadowing can possibly be improved if
constraints are determined in the seguence in which the
elements have keen crdered: rather than in the sequence
cf the features.

The

compaction process PAGE 33

4.45. Determine an ST ordering of the nodes of the graph

The 87T ordering of the nodes of the graph is based on
tha graph without the double-sided edges. The algor-
ithm used for this numbering of the nodes is as
fellows:

-~ determine for each node N the number NP(N) of prede-
cessors (incceming arrows:!
- place all nodes with no predecessers in a List of
candidates named CAND
-— ::0
while CAND not empty do
begin
~ take candidate C from CAND
- Ii=1+1
- assign ET-number: ST(I):=C
- % remove node C from the graph:
for each successcor node 8 of C do
begin NP(S) := NP(S5) -1
if NP(S}) ,E®@. 0O then add S to CAND

I

end

end

In general there witl be more than one alternative for
an ST numbering.

After each node has been assigned an ST-number by the
zlgorithm aboves the double-sided constraints are added
te the graph. Each double-sided constraint is split in
a8 min- and a max-constraint in such way that the
min-constraint points frem a Llower to a higher
ST-number,

User—-defined constraints may alse be added at this
pointy e.g. constraints for expansionsy or fixed con-
straints between pairs of elements. These options are

noct vyet implementedy but can esasily be added to the
porgram.

The compaction process PAGE 34

4.7. Compac

The critical path algorithm can be applied to resolve
the graph if the graph has only min-constraints.

FOR FTR:=1(13NF DO XCFTR1:=03
Ri=1
ILE FTR <= NF

FOR each successor FTRS of FTR

0 7% push successor to the right

XCFTRS1:=MIN(XLCFTRS51s XCFTRI+MINCON(FTRsFTRS))
FTR:=FTR+1

This algorithm is linear in the number of <constraints.
In the graph representation of the layout wsed by the
compaction algorithmy the nodes are ST-numbered. A
min-constraint MINCON(FTR1:FTR2)? is directed from a
node FTR1 with a lower 3T-number tc a node FTRZ with a
higher number. A max—-constraint MAXCONCFTRZ,FTR1) is
directed from a higher to a lower numbered node. The
lower numbered node is called predecessor: the other
successor. It will be clear that the min-max constra-
int graph contains cylcles of constraints. The cycles
will never be overconstrained if the input for the com-
pacter is a correct laycut. An cverconstrained cycle
or a cyclic constraint may occur if constraints are
added to the graph by the user. Therefore a test has
been built in to detect such a cyclic constraint.

The compaction algorithm {see next page? can be LlLooked
upon as an extension of the critical path algorithm.
Before min-constrained successors gf a node FTRC are
pushed to the rights first the max-constraints with its
predecessors are satisfied. This is done by pulling
the mat-predecessors of FTRC teo the rights if this is
required by the max-constraint. If ocne of the
mai—predecessors has been actually moved to the rights
backtracking is initiated, Until backtracking has been
completeds the place of FTRC remains fixeds as is indi-
cated with the variable XMAXCFTRC]. A node which has
iritiated a backtracking stegs is not allowed to move
further to the right., If it does has to move in order
te satisfy the min-constraintss a cyclic constraint

will be reported.

Furthers each pulled predecessor FTRPs of which all
constraints were satisfied tindicated by
PLACEDCFTRPI=TRUE): has tc be reconsidered. This 1is

indicated by resetting PLACEDLFTRPI. At the time FTRP
iz reconsidereds only the nodes which are pushed or
culled further t2 the right by this nocde have teo be re-
zonsidersed later. Sc¢y» i7¥ backtracking cccurs from node

The compaction process PAGE 35

10 to node 3, and node 3 has min-constraints to nodes

8y 105 125 171 only node B has to be considered for the
second time, Other nodes between 3 and 10 are skipped
by the algorithmy because the variable PLACED for these
nodes remains set.

After execution of the compaction algorithms XCFTRI
contains the new place of each feature. The time com-
plexity of the algorithm is exponential with the number
of constraints., Each time a neaw node is placeds back-
tracking can occur. The subseguent replacement of pre-
decessors may cause further backtracking cycless initi-
ated by those predecessers. Each cycle possibly taking
as much work as the initial placement of that predeces-
ser. Howevers since the graph is not fully connected;,
and if the number of max—-constraints is lows the ex-
pected time of the algorithm iz linear or slightly more
than linear in the number of constraints.

The compaction process

fompaction algorithm

FOR FTR:=1(1)NF Z initialize each feature FTR
il
PLACEDEFnR] =FALSE %“ true if all cons satisfied
XCFTRI: % new place after compaction
XMAXEFTR]==infinity A € infinity at backiracking
6]1]
PT=1 % pointer in array 5T
WHILE PT < NF
p]s}
FTR:=STLCPT] % STCI11 = feature with ST-number I

0D

D

IF PLACEDCFTR1
THEN PT:=PT+1
LSE
£Gl
PTC:=PT3i FTRC:=FTR % FTRC = current feature
IF XMAXCFTRCI = infinity
HEN
FOR each max predecessor FTRP of FTRC
0o % check max constraints
IF XCFTRCI-XLCFTRP1 > MAXCON(FTRCsFTRP}
THEN Z pull max pred.
BEGIN
XCFTRPI:=XLCFTRC1 - MAXCONI(FTRC+FTRP}
PLACEDCFTRPI1:=FALSE % cons of FTRP have to
% be re-checked
PT:=MIN(PTC»PTP) % PTP=ST-number of FTRP
END
op
LSE IF XCFTRCI{=XMAXLCFTRC1

THEN max cons have been already satisfied

LSE exit and report cyclic constraint

m
[43]

ro
[n]
=z

_4

PN

m

m

IF PT < PTC
THEN XMAXCFTRCI1:=XCFTRC1 %“ initiate backtracking
ELSE

BEGIN
FOR %“ each min successor FTRS of FTRC
Lo %4 check min constraints
IF XCFTRS81 > XCFTRCJ + MINCONCFTRCsFTRS?
THEN BEGIN % push min succ. of FTRC
XCFTRS1:=XCFTRC1 + MINCON(FTRCsFTRS)
PLACEDCFTRSI:=FALSE
END
0D
PLACEDCFTRCI:=TRUES XMAXCFTRCI:= infinity
PT:=PT+1
END

END

PAGE

36

The compaction process PAGE 37

4.8, Construction of the compacted compound cell

The new place of the origins of the features is stored
in array X by the compaction algorithm. Since the ori-
ginal x~poesition XL(FTR) of the origin of each feature
FTR is still knowns the actual shift of the elements of
each feature can easily be computed:

XSHIFT = X(FTR> - XL(FTR).

After each element is shifted to its new positions the
tength of the telescopic elements can be calculated.
Information from the overlap list OLLIST is used to de-
termine the left-most and the right-most element over-
lapping with the horizontal line.

If one of these elements is a vertical lLines then the
horizontal tine is laid down s¢ that full overlap oc-
curs. Otherwise the original overlap situation with
the leftmost or rightmost ealement is maintained.
Horizontal lines which are not connected to something
else are deleted.

4,9. Examplss

Ir this section some results of compaction are present-

ed.

The first example is a JK-flip—-flop which consists of
four invertersy some pass-transisters and wiring.
Double~-sided censtraints occur f.i. at the points
where vias have been placed. The inverters are com-
pounds of & lower hierarchical level (fig.4.7.a).

Figure 4.7.b shows the flip-flop with the inverters un-
packed, In fig.4.8.a the flip-flop is shown after a
single x-compaction. A subsequent y-compaction gives
the result of fig.4.8.b.

We will use this result te illustrate a drawback of the
hierarchical symbolical aspproach.

The p-d via at x=44,yy=26 in fig.4.8.b causes some waste
of area because this lLayout elament is not necessary.
This becomes clear when we loock at the expansion of the
inverter in fig.4.7.b. Another thing which causes some
waste of area is the symbolic design rule mentioned in
sectien 3.4.g9.: which <(for the time being) forbids
overtap of f.i. wmetal and diffusion. This is illus-
trated with the horizontal diffusicn line at y-value 11
and the horizontal metal line at y=7 in fig.4.8.b.

The second sxa3ample (fig.4.%.a38) shows that the compactor
also can bes used to compact 2 piece ¢of interconnection.
The result after a2 vertical and a subsequent horizental
compaction is shown in fig.4%.10.b. The separation
betveen the vertical lines at 1=51.,x=3% (at the place

The compaction process PAGE 38

of the jeg at y=72) is greater than necessary. This is
because the compactor does not use electrical connec-
tivity infermation at the moment,

laﬂrrrll]l‘rl!lﬁxlllx_‘l_r[rﬁs]lrr1‘lrﬁﬁle|1‘v||1]1|r1]lilv"lVTiI.‘rrvfﬁﬁYn[

11

i ji
i —

1o F——————

7

,

’

]
0

Kp 4@
m

- -]

.y Al
I —
- -t
1 -y
3
-1
1

r'rfﬁ"rr;ﬂ—rrfr'rrr
yl
3= -~ mmmmmm e

COMPOUND: J

AAJ_LlLlll‘LAlAlJlljllAJL‘lJlAllll'lllLAlAALlleAAJLALtllAJAlIlAI

(a)-%lllLlJ_Ll]JllLlLJAJJLLJ)‘lJ;)}ll_LjllLllllLJ;LllllilJJLJ1111L11111111t11

- 9 10 29 39 49 50 -] 79 89 90 1e@ 110 120

laL

130

11

1@

N

COMPOUND: J

()

LALAN St I S ML R R L A0 B RSO SN B LT L R L L L L I N S L L L N B B S A I) SR B

INNE T NN UEE SUEWE ANTEE FENEY TN SRT TS FEENE PN SN DTS SUE NS SR W S EU W

4

BT STENE SR STV FUE Y SNV FNT TS AWTYE SWENE FEUTE SUNTE PRV VE PUWT

SPTTITPTTT TP T T TPT T T TPTy
?

[UroN

L3 18 29 30 40 58 €0 78 ge 90 100 118 ize

Fige 4.3 Jw €liptlop

130

=7

_\
o=
S——

¢

n

y

E

QFQQ———Q

1w

12“\llll"l[lITTﬁlll’TrTrT’Tl’fr]I_!_TIrrer‘lT'll]Tllr]Tnnlir‘l‘lrl(!l‘l]
11 T T
te T % €
s i
X, I B
g
?
6
-+

YT T

YE NURTE TUVEE U EUTWE TUNTE SN TE FUNTE FEWWE SUWTY FEpyd FETEE SWWet

s
42
ot e
4 '
]
! s -
e | o
3 ' G)& -
1 ¥
) i _ !
: $ '
) t
i - o
[}
: 5 o
19~) ' [

C - - -

H

c M m m

8-

,. COMPOUND: JiX
*‘rllllll!llll.‘’_&lllll'll]llll]lJ_LL,LJ_!LJ]A‘ll]]Ill)lljllLLlllj‘AlllLllllJ.L
- 10 2e 0 40 $9 69 70 8¢ 90 199 110 12e
12 : : 0 I

i LIRS 20 [N S B e B S 0 e B
11
10

-

)]

130

1

T U NN ERWEE FUTHY TEETA NN SUETE PN TUE IEWEY SUTTE FUNTI TNV DU

'S —— e ——
) ‘ ——4
M M g
COMPQUND . JiXY
- EWE BEERN EUEWE NN S BN WE SENNE NN S UWE NWE Y NN W S RN S
‘* [1@ 20 30 40 50 69 79 80 99 100 110 129 13@

] Dﬂh'r'r'rfrrr‘r?l—rrr‘fr*r
i
- }. JE

1 4.8

40

©
<

i

c
x8E1r1]17111|1r|[l(l!*‘l‘hllllllllirfrll—!!rTlrrrl‘r1Tl[ll_rrlrﬁerrﬁlxrll‘l_Ir

174

i5

14

12

|

%
D
-

11

T

N,

3 Ll | ww W oy |

—_————h

.

—— b
[l

]

llllLlllJJJLLlljlljlllIllllll'lli‘llllIIIILLIIIAILJAA_AJIIlLllll

: COMPOUND: R
_EJ[J_LL!LI[IIIL!IIIlelJLLLLlllJIlJlJ Llll_I_L_LLIIll\lJAll[lLLLl4J lJlllLll
‘}I 4 19 24 49 64 9 94 108 124 139 154 169 184 199

ws

'r]'l

LSS NL NN B AL M A LN L ALY LA BN T L L AL ALY ML NLOOE LALLM N O Y A B L

; 7
i

Ty

w
£l

b e

')
%m

-

llJl‘llll‘lllllllLL‘l‘Illl‘ll‘IllllllllJlLlllAlllll‘JAllllllll

? g+ -]
& 4
2 F 9 1 ’
[T
COMPOUND - RiX
N TS PR TR DT PR NS PUUES VRN RS FUUE FRWES T SUCTN SR

v,

u ol w
mrrr-rrrr'r-[frrnfrﬁ—rﬁ‘rh‘frrﬁfﬁ*h
v [W orm B we |
i —

L] 19 34 49 64 79 94 199 124 132 154 189 184 199

Figq. 4.7 Compaction ~f wibeveonnecion

42

18?—T|T'TIQIITIYITITYT_"TYII[IIVITTIlll’l(‘lTj’lrl‘lIlT_TIl’l‘llllTlI"l"‘rilx B

17 -5

18 3

.

14 =

12 -

" -

p

. g § i :

®—F]

1 A]

8 B 3 J

p

d &~ h

6 _ g A

1 S - i]

p

a o

G -]

B B/ B

= h

e L E

i —§ h NN p

a) COMPOUND: R1Y 1

(LJlLJlllllJ‘lelllllJlLl l_lllllljllllilLLlJlllllLlL'llll(IlLllJ;Lle‘llALl l‘
4 4 19 34 49 64 79 94 109 124 139 164 169 184 199

‘8 TVI]I1II'l|||'r11T];111|r|llT|v—!v—r|||:II_rXIIrlrr|1l1TI.lrvr17_rv]lvlf[
17
133
14
12
11
9 —g
o
8 - -+
2%
: =il
I
5
-

| b Lo g Law)

s |
14

5

3

-

2

B—+1
3 b1 I
m r

(5 i COMPOUND - R1YX

11\‘||AAll:llIAnlnlAAAAllllLlAlAllAl;lL.jltl,{_LlljlljllllljlllJlL.1

1
H

_l:)Lllil‘llllll)\LllLllXllLllllﬂLLIL}’JlJll)lIIALLALA11111LJ111L14A4_11_14\411:
i 4 i9 34 49 64 79 94 109 124 139 154 169 184 199

Fig. 4 to

5. Extensions PAGE 43

5. EXTENSIONS

The compaction program described in this repert can be

extended with several options.

Electrical connectivity information should be extracted
from the layout in order to prevent that constra-
ints are generated between vertical line-pieces of
the same Layer which initially do not overlaps but
which are connected with each other via ancther

path.
Scme problems which will arise are:
-~ the generation of constraints will become

super—linearsy bectause shadowing will become com-
plicated or impossible.

- terminals of compounds Should provide
net-information.

- diffussion lines must be split if a transisteor
is placed on the line.

A second option is that the compactor tells the user at
which points useful jogs may be inserted. A use-
ful jog point is always a point on a vertical Lline
which is part of the critical path. In general
there will be another critical path after the user
has inserted one jog. ©Sc in most cases the user
will compact again after each jog insarticn.

A third possible extension is the use of ’affinity’ in
order to minimize the weighted length of wiring (a
metal wire has a lower weight than poly and diffu-
siond, Features which are on the critical path
have a certain ’'free float’ and may shift a Little
to the left or to the right depending on the type
and the number of wires connected at the Lleft and
the right side of the feature.

Pesides jog insertiony other types of influence ¢f the
layout designer on the compaction process may be
useful. For instance adding ccnstraints between
Layout elements in order to save or generate room
for extra logic (expansien), This can be done by
adding exira =dges in the graph. These user- de-
fined constraints may lead to constraint cycles.
The compaction algorithm can detect these cyclic
constraintss 3andy at the moments, repcrts one of
the nodes involved in the cycle. A& possible ex-
tension is that the algorithm can ’'recover’ from a
tyelic constraint evoked by the users by not fully
zatisfying the usar- defined zenstraint. This im-
pitiez that the user- defired constraints should be

ned a lower pricerity than the constraints ex-

gd frem the Layout.

&. Conclusions PAGE 44

&. CONCLUSIONS

The compaction program can compact hierarchical cells
with double- sided constraints as is shown in the exam-
pltas of section 4,2. The compounds of these examples
consist of approximately 10D layout elements. The cal-
cutation of the compacted compound is performed in ap-
proximately one second. The compacted compound can be
re-edited.

The compactor can be improved on the following points:

- improvement of shadowing and the application of a
separate window for each layer.

~ implementation of more design rules (the rules cur-
rently wused are teoo conservative)y» and the appli-
cation of a table of design rulesy to make the
program independent of changes in technology.

- elimination of the restriction on the input that each
line terminating at a perpendicular line must con-
tact by complete covering. This can be done by
inserting feor each horizental line two extra nodes
in the graphs representing left and right side of
the Lline.

- elimination of the restrictions currently used to
prevant the apparently disappearing ofs and dis-
connection batween symbolic layout elementss and
elimination of the restriction that a horizontal
Line-piece must be present at the place where two
vertical line—-pieces abut.

PAGE 45

References

L1] M.van der Woudes "ID5¢! an Interactive Design Sys-
tem for Integrated Circuits"s THE Computing Centre
Nete 11y Eindhoven University of Technologys, Oc-
tobar 1982.

[2) W.M.G. van Bokhoveny ‘"Piecewise-Linear Modelling
and Analysis"s Thesis Eindhoven University of
Techneologys 1981.

3] C.A. Delhijs “ISLEs an Interactive Symbolic Layout
Editer"s Eindhoven University of Technology: 1982

L4 A, PBorgts "Een geometrische IC-Layout Editor in
Fortran", Eindhoven University of Technology:
1982.

[3] R.C. Mostellery private documentation.

&1 S.B. Akersy J.M. Geyer and D.L. Rohertssy "IC
Mask Layout with a 5ingle Conductor Layer'":
Proceedings of the 7th. Design Automation Work-

X shopy San Franciscos pp.7-11s 1970.

L7 A. Dunlops» "SLIM- The Translation of Symbolic Lay-
out intoe Mask Data"s Proceedings of the 17th.
Design Automation Conferences pp.595-602. 1980,

£3]1 M.Y. Hsuehs “"Symbolic Layout and Compaction of In-
tegrated Circuits"y Ph.D, Thesis University of
California» Berkeleys UCB/ERL M77/80 Memo 1%79.

C91 N. Weste: "Virtual Grid Symbolic Layout"s Proceed-
ings of the 18th., Design Automation Conference:
Nashvilley pp.225-233y 1981,

[101 C. Niessens "The Role of CAD Tools in VLSI Design
Methedology"”: ESSCIRC 1981 Digest of Technical Pa-
parsy Freiburg: 22-24 sept. 1981s pp.75-86.

C112 T.G.M. van Oocyens “An Interactive Layout
Editer/Compacter"s Eindhoven University of Tech-
nologys 1982.

C121 J.L. PBentleys D. Haken and R.W. Hons "Fast Geo-
metric Algeorithms for VLSI Tasks"s VLSI New Archi-
tectural Herizonss Compcon Spring IEEEs 1280,
pp.88-92,

£123 M. van der Woude and X. Timmermans, “"Compaction
of Hierarchical Cells with Minimum and Maximum
Constraints”y Proceedings of the IEEE Internation-

al Symposium on Circuits and Systems (1SCASI,
Newport Beachs I-4 mays 1983,
243 P, Dewilde:s J.A.G. Jess: "NELZIS: a Co-operative

System for Large Integrated Circuit Design".

153 B.W. Weides "Statistical Methods in Algorithm De-~
sign and Analysis"s Ph.D., Thesigs Carnegie-Mellon
University, August (978,

	Compaction of hierarchical chip layouts based on a constraint graph method with double-sided constraints

	Contents

	Summary

	1. Introduction
	2. Methods for compaction

	3. Objectives

	4. The compaction process

	5. Extensions

	6. Conclusions

	References

