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ABSTRACT

-0- 592

The power spectrum of a code can be shaped in a

preferable form by addlng redundant lnformation. The

obtained spectrum propertles are used to lmprove the

performance of a communicatl0n system. In this Report we

consider performance criteria for dc-free codes. Maximum

entropies of binary sequences subject to a particular

spectral constraint are presented. It is shown that codes

with nearly optimum rate can have considerable differences

in de content. In order to improve the code spectrum,

sequences are introduced with a bound on the running digita

sum (RDS) and on the sum of the RDS. It is shown that,

besides a dc-free power spectrum, these sequences have a

zero second derivative at zero frequency, resulting in a

substantial decrease of dc content.

Period of work: May 1983 - April 1984.

Notebook(s): none.
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1.0 INTRODUCTION

1.1 Scope.
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In the majority of practical communication systems, data

is not transmitted in its original form, but redundant

information is added by coding.

In most cases, coding implies two steps in information

processing. The first step is widely known as source coding:

the transformation of the original message into a string of

binary digits. An important aim here is to translate the

message in the most efficient way or with an allowable

degree of distortion. The second step is called channel

coding and establishes a 'matching' of the binary stream to

the transmission channel. In this case, the transmitted data

should satisfy requirements such as a power spectrum that is

well-fitted to the transfer function of the channel and/or a

protection against transmission errors.

This report is primarily related to binary spectrum

shaping codes.

A special class of spectrum shaping codes is known as dc­

free codes, which are codes suitable for communication

channels that have a poor response in the low-frequency

range. The spectrum of a code can be made zero at other

frequencies using interleaving techniques [lJ and therefore

dc-free codes are an interesting class to study. An

introduction on dc-free codes may be the survey by Kobayashi

[ 2 ].

A binary spectrum shaping code maps sequences onto other

sequences; the mapping transfers power in the frequency

domain to a prescribed range. Because of this 'modulating'

property, the code mapping is called a modulation system.

Digital modulation in a transmission system is done in

the transmitter after the source message is encoded and

usually a protection against errors is coincided. In the

receiver, demodulation is the first action that must be
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undertaken before error correction and transformation to the

original message can take place.

1.2 Application of modulation systems.

Usually, the power spectral density function of a code is

made zero at a given frequency and small around that

frequency. The code spectrum generally has its minimum at

zero frequency and the Nyquist bandwidth Chalf of the

channel symbol rate). This implies that the coded signal

will pass through transformers and a carrier or timing wave

can be supplemented for receiver synchronization.

We require that a spectrum shaping code has:

- a favourable power spectrum.

The code spectrum must be dc-free and almost zero in a

substantial range around zero frequency.

- an acceptable information rate.

Obviously, this property is complementary with the demand

for a favourable power spectrum. The shaping is obtained

by adding redundant information resulting in a reduced

information rate. The exchange between 'bandwidth' and

information rate is an important relation which will

appear many times in this report.

Application of codes with the above properties are found

in various fields.

Some codes are referred to as line codes [3,41, and they

are often used in telephone systems, where a dc-free

spectrum is a necessity. Ternary codes are often used in

cable systems whereas in optical fibre communication only

binary mappings are applied [51.

Another class is known as run-length-limited codes [6,7].

In this case the number of consecutive zeros between two

ones lies between a minimum and a maximum value. The minimum

value ensures that transitions are sufficiently spaced, thus

reducing the intersymbol interference. The maximum value
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guarantees that enough transitions are made to allow the

extraction of a timing reference at the receiver.

In optical disc recording systems, a power spectrum with

a low dc content is less vulnerable to high-pass filtering.

High-pass filtering is necessary to avoid wander of the

decision level when dirty discs are read out. The

interference with servo signals, which are of course

relatively slowly varying signals with considerable dc

content, moreover is decreased [8].

Besides the application in optical recording, the

modulating property is also used in magnetic recording [9]

where it is difficult to read very low-frequency or dc

waveforms with sufficiently signal-to-noise ratio.

1.3 statement of the problem.

The reader may have noticed that the examples in the

preceding section describe communication systems with

channels that have a poor response in the low-frequency

range. In the following, such a channel will be called an

ac-coupled channel; a model is depicted in Fig. 1.1.

n (t)

s(t)

R

Fig. 1.1. An ac-coupled channel model.

Let us assume set> to be a stream of rectangular pulses

with amplitude ±A, and consider the case where a long string
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of ones with amplitude +A is transmitted. The capacitor C

will be charged and the decision level of the voltage

detector is raised thus increasing the chance of

misdetections.

The above example illustrates why long sequences of the

same polarity are not desirable and implicates the following

more general question: which statistical properties must be

satisfied by a transmitted sequence to provide a favourable

power spectrum and what information rate can be reached in

this case?

The report is organized as follows. Chapter 2 describes

the source model that is used to generate the channel symbol

stream. Chapter 3 shows how the power spectral density

function of a source can be calculated. Chapter 4 mentions

some performance parameters in which the dc content of a

code can be expressed. Asymptotic rates when an extra

spectral constraint is set are derived in chapter 5. Chapter

6 describes an extension of the source model with improved

spectral properties. Chapter 7 presents the conclusions.
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In this chapter we describe a binary Markov information

source which creates the code output sequence. After the

introduction of some important parameters, a formal

description of the source is given. The transition

probability matrix of the source generating a first-order

power spectrum and that with maximum entropy are derived.

2.1 Preliminary and restrictions.

The source model is used to observe the statistics of the

symbol stream that is transmitted over the channel. The

design of dc-free codes in general is not discussed.

There is only a small amount of literature about the

relation between the structure of a Markov source and the

effects of this structure on the power spectral density

function. Yasuda and Inose [10] prove that if a source model

is 'loop-suM-zero', the resulting code has an essential

dc-free power spectrum. Loop-sum-zero means that for any

closed path in the state transition diagram of the encoder,

the number of zeros equals the number of ones.

From practical applications, it is known that by

balancing the number of ones and zeros in codewords, one can

achieve a power spectrum that has real zeros at certain

frequencies [1,11]. This agrees with the demand for a

loop-sum-zero model proposed by Yasuda and Inose.

It is obvious that an important parameter of a dc-free

code, will be the running digital sum CRDS) of the code

sequence. In the sum, a '0' is weighted as -1; this can be

made plausible by noticing that a '0' is often transmitted

as the inverted waveform corresponding with a '1'. The RDS

is specified by:

RDS =~ xct)
t
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It is assumed here that the source output is a sequence of

dependent variables ••• , XCt-T), XCt), XCt+T), , where

XCt)~{-l,+l}. The period T denotes the channel symbol

duration. The dependency in the variables XCt) should yield

a promising power spectrum, at the cost of a reduced

information rate.

A second constraint is related with the composal of the

Markov source. Because the RDS is a fundamental parameter

for acquiring a favourable spectrum, sources that have one

state for each value of the RDS are considered. In practice

the number of states is finite; as a result the RDS is

discrete-valued and bounded in a finite interval.

From the preceding it may be concluded that the magnitude

of the RDS interval is another important parameter because

the bound on the RDS accomplishes the absence of dc power.

Consequently, it could be assumed that a less strong bound

increases the dc content. As a second parameter we thus take

the maximum variation of the RDS, i.e. the difference

between its maximum and minimum value. This parameter is

called the digital sum variation CDSY), which can be written

as:

DSY XCt) }

where max {.} symbolizes a function that searches the

maximum of all appearing values of the variation of the RDS.

Thus, the DSV is the number of RDS states minus one.

2.2 Source model.

As already stated, this report deals with RDS-bounded

sources with one state for each value of the RDS. The RDS

changes with each transmitted symbol. So we can define,

analogous to the code sequence XCt), a sequence of RDS
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values ••• , ZCt-T), ZCt), ZCt+T), ••• , where zct) is

uniquely related to XCt) by:

ZCt) = ZCt-T) + XCt), ZCO) = a • C2. 1 )

From the Markov property it follows that the probability

pcZCt)IZCt-T)ZCt-2T)ZCt-3T) ••• ZCO» = pczct)IZCt-T» •

If the code sequence XCt) consists of symbols from the

alphabet {+l,-lJ, then the RDS takes values from the set

{ •.• , a+2, a+1, a, a-I, a-2, ••. J. In most cases, this set

lies symmetrically around zero and consequently, a symmetric

source has a = 0 for an odd number of states and a = 1/2 for

an even number. The number of elements in the set is equal

to the number of RDS states N. We thus define a row vector z

of permitted RDS values z = Cz(1), z(2), •• , zCi), •• ,

zCN».

Furthermore, the source is defined by its transition

probability matrix Q with the elements pCjli) as the

probability of going from state i to state j.

p(112)

1

p(213)

p(312)

Fig. 2.1. RDS-bounded ffarkov source model.

Fig. 2.1 shows an N-state source; each state corresponds

with a particular value of the RDS. The model starts in a

given state i with RDS value zCi) and after time T the

actual state becomes i+1 with probability pCi+1Ii) and a '0'

is transmitted. For a probability pCi-1Ii), a '1' is

transmitted resulting in an RDS state i-I. So each period T
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a transition is made as a function of the transition

probabilities and the corresponding symbol is transmitted.

Before we mention some general formulas related to the

Markov chain, we state some properties that can be noticed

from Fig. 2.1-

- Irreducibility.

There is no other closed set of states than the set of all

states [12J.

- Periodicity.

It is impossible to return to a particular state except

after h, 2h, 3h, ••• transitions, with h = 2 in our case.

The chain is cyclic [12J and can be divided in two cyclic

classes: the odd and the even numbered states.

The adjacency matrix A of the source is the Toeplitz

matrix and has the form:

0 1 0 0 .......... 0

1 0 1 0 0 ........ 0

0 1 0 1 0 0 ...... 0

A =

0 ..•••••• 00101

o 0 0 1 0

The transition matrix Q is of the same form with the unity

symbols replaced by the transition probabilities pCjli). So

the elements of Q are defined by QCi,j) = ACi,j).pCjli). As

a result, the transition matrix Q has unit row sums.

When the transition probabilities are specified, the

unique stationary probability distribution pCi) is given by
s

the solution of:

Ps . Q = Ps

and:

N

L: pC i ) = 1 ,
s

i =1

C2 • 2 )

C2 • 3 )
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where p stands for the row vector with elements p(i). The
s s

entropy of the source is given by a sum of conditional

entropies:

H(X)

N

=2:
i =1

p(i) H(Xls=i) =
s

N

-2: p ( i )
s

p(jli) 2l og p(jli) • (2.4)

i=1 j=1

In the binary case, equation (2.4) is reduced to:

H(X)

N

=2:

i =1

p(i) h(p(i+1Ii» ,
s

( 2 . 5 )

where h(p(i+1Ii» stands for the binary entropy function

with argument p(i+1Ii). As we shall see later, the variance

of the sum (ROS) values 6 2 is of great importance, and is
z

expressed by:

N

=2:
i =1

p ( i ) ( z ( i ) ) 2 •
S

( 2 • 6 )

Example: Consider the three-state source from Fig. 2.2

for OSV = 2 and ROS values z = (+1, 0, -1). This source has

maximum entropy for p(312) = p(112) = 1/2; the stationary

probabilities are ~ = (1/4, 1/2, 1/4) and the entropy H(X) =

1/2.

p(1/2) 1

1 p(3!2)

Fig. 2.2. N=3 source.
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p ( i )
s

(k)
= lim ( p(jli)

k --+ QO

(k+l)
+ p(jli) )/2 , (2.7)

for arbitrary j. The higher order transition probability

( " I " )( k) ," s d f" d b ( " I " )( k) Q k (" ") E . (2 7)p ) 1 e ,ne y p ) 1 = ,,). quat,on •

can be used to calculate the stationary probabilities

without the need to solve (2.2) and (2.3). The probability

p(jli)(k) can be written as [14]:

(k) (k) (k)
p ( j Ii) = ps( j ) + d (j Ii) + e ( j Ii) ( 2.8)

where d(jli)(k) jumps between -p(j) and +p(j) for consecutive
s s

values of k taking into account that the period of the

source is two. The term e (j I i )(k) van i shes when k becomes

larger because the moduli of most eigenvalues of Q are less

than one.

According to the theorems of Perron-Frobenius [13], we

conclude that:

Q has two eigenvalues with modulus 1, +1 is related to

p(j) in (2.8), and -1 corresponding with d(jli)(k)
s

- all other eigenvalues of Q have a modulus smaller than one

and are real. They occur in pairs (period 2) with elements

of opposite sign and together they form the term e(jli)(k)

in equation (2.8).

Because the eigenvalues of Q are real, higher order

transition probabilities can be expressed as a summation of

geometrical series.

2.4 First-order power spectrum.

In this section we derive the transition probabilities

which generate a first-order power spectrum. The term

first-order power spectrum is explained and some results

from filter and prediction theory are used.

Upon encoding, the spectrum of a random stream of bits is

shaped into a suitable form. It is therefore plausible to

represent the encoding process by a linear time-invariant
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of Justesen [16J are used. For rational power spectra the
/I

best linear predictor X(t) can easily be derived from the

transfer function (2.9) and may be expressed as:

/I /I

X(t) = X(t-T) - (l-r)X(t-T)

Combining equation (2.12) with (2.1), yields:

/I
X(t) = -(l-r)Z(t-T) ,

(2.12)

(2.13)

which states that the best linear predictor is proportional

to the last RDS value. In other words, the predictor is

dependent on the actual state of the Markov source. The

construction of the source probabilities is therefore based

on the assumption that the predictor coincides with the

conditional expectation of the output when starting from the

actual state:

N

X(t) = E{X(t)ls=iJ = ~ p(jli)x(jli) ,

j=l

(2.14)

where x(jli) = z(j) - z(iL Equation (2.14) can be seen as a

constraint on the transition probabilities. If it is

possible to obtain a set of probabilities that satisfies

(2.14), then the spectrum is a rational function, since the
/I

predictor has the proper form. A binary source has IX(t)1 ~

1 and consequently Z(t-T) is limited. From (2.12) follows

that the outer states have z(l) = l/(l-r) and zeN) =

-l/(l-r). As a result we have a number of states N equal to

1 + 2/(1-r). Because the number of states N is discrete-

valued, the parameter r can assume only certain values:

r = (N-3)/(N-1) ,

The vector z is defined by:

z(i) = - (i-I) + l/(l-r) ,

and from (2.13) we have:

N ~ 3 •

i=1,2, .••• ,N,

(2.15)
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"X(t) = -1 + (1-r)(i-1)

5926

(2.16)

"Rewriting (2.14) leads to a second expression for X(t):

"X(t) = (+1)p(i-1Ii)+(-1)p(i+1Ii) = 2p(i-1Ii) - 1 • (2.17)

The last step is valid because the sum of p(i-1Ii) and

p(i+1Ii) is one. Combining (2.16) and (2.17) results in the

solution for the transition probabilities:

p(i-1Ii) = (i-1)(1-r)/2 = (i-1)/(N-1) , (2.18)

for i=1,2, ••.• ,N. By solving (2.2) and (2.3) the stationary

probabilities are obtained:

p (1) =
s

2-(N-1) (~-1)
1-1

(2.19)

and the entropy of the source can be expressed as:

-_ 2-(N-1) ~ (N
i

-_1
1

)H(X) ~ h«i-1)/(N-1» •

i =1

(2.20)

By taking a closer look at the calculated transition

probabilities it is concluded that they are the same as the

probabilities used in the Ehrenfest model of diffusion

mentioned by Feller [121. The chain with the derived

distribution forces the transitions towards the centre of

the source resulting in improved spectral properties.

2.5 Maxentropic case.

By assuming an RDS-bounded source, it is ensured that the

power spectrum has no dc component. This section presents

how the transition probabilities must be chosen to achieve

maximum entropy when no further constraints are set.
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In this chapter attention is payed to the calculation of

the power spectrum. In many cases, the power spectrum

consists of a discrete and a continuous part. The continuous

part is caused by a pure stochastic process, whereas the

discrete part of the spectrJm is caused by the deterministic

component of the process.

It is shown how the correlation function and the power

spectrum can be determined. For an even number of ROS

states, the deterministic component of the output sequence

is obtained and separated from the nondeterministic process.

3.1 Correlation function.

If the transition probabilities and the vector of

possible ROS values are known, the power spectrum can be

determined from the autocorrelation function RzCk) of the

sequence zct), which is defined by:

RzCt,t+k) = E { zCt)ZCt+k) } = RzCk) C3.1>

where the function E{.} stands for the expectation, and the

time shift k = k'T. The relation between the power spectrum

of the code sequence XCt) and the correlation function of

ZCt) is described in the next section. The last step in

C3.1) is valid in the ergodic case [18], where time averages

may be replaced by ensemble averages and as a result, RzCk)

may be expressed as:

Ck )
zCi) zCj) pCi) pCjli)

s

N N

=LL
i=1 j=1

N N

=LL
i=1 j=1

Ck )
zCi) zCj) pCi,j) =

= C3 .2)
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It should be noticed that the same equality e3.4) holds for

the correlation Rzek) and spectrum Szef).

First, the spectrum of the sum sequence Zet) is

calculated and then it is transformed to the spectrum of the

code sequence Xet), because it is easier to determine the

correlation function of the sum sequence.

The combination of equations e3.2) and e3.4) -indexed

with z- results in the spectrum of the sum sequence. The

transformation to the spectrum of the code sequence xet) can

easily be derived by using the relation:

e3.5)

Equation e3.5) is derived by combining e2.11) with the

z-transform of e2.1). Similarly, the correlation sequence

Rxek) can be expressed as a function of Rzek):

e3 . 6 )

Summarizing, for calculation of the power spectrum it is

necessary to calculate:

- powers of the transition matrix Q;

- the stationary probabilities pJi);

- the correlation function Rzek) from e3.2);

- the power spectrum of zet) with e3.4) and the

transformation to the code spectrum e3.5).

Example: Consider the source for N = 5, with a centro­

symmetric transition matrix. In this case all probabilities

are determined except p(312) which we shall assign the value

q = 1-p. The RDS vector z = e+2, +1, 0, -I, -2). The

characteristic equation of the matrix Q is:

e AZ - 1 )e AZ - p) = 0 ,

and we conclude that Rzek) vanishes with powers of p.

According to e3.2) the correlation function of Zet) equals:
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k
R

Z
C2k-l) = 2 p k ~ 1 ;

k
R

Z
C2k) = 2p + 1/2 J p k ~ 0

After a straightforward but tedious calculation, where

equations C3.4) and C3.6) are used, the spectrum is

expressed by:

SXCf) = 2q Cl-cos 2nfT)
C2p+l/2)C2-q) + 4p cos 2nfT

l+p2 - 2p cos 4nfT

o
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Fig. 3.1. Power spectra for maxentropic

and first-order sources.

In Fig. 3.1 various power spectral density functions are

plotted as a function of the relative frequency fT. It can

be noticed that first-order sources generate sequences with

less power in the low-frequency range than maxentropic

sources.
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3.3 Correlation function for even N.
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Special attention must be payed to the case where the

source has an even number of states. As already mentioned,

the source consists of two cyclic classes: the odd and even

numbered states. All states together have ErZ} = 0, but a

source with an even number of states has two cyclic classes

with each nonzero expectation for Z, and consequently Rz(k)

doesn't vanish for large k.

As a matter of fact, Rz(k) is an alternating function for

large k and has the following form:

C ~ 0 , (3.7)

where C is a constant and as a result, the power spectrum

has a line at fT = 1/2.

First, a general expression for the value of the constant

C is derived. Secondly, it is proved that the 'first-order'

transition probabilities from section 2.4, applied in a

source with an even number of states, doesn't generate a

line in the power spectral density function and thus C

becomes equal to zero.

We assume a symmetric source and N to be even:

p(j) = p(N-j) 1 ~ j ~ N/2 ,
s s

{ Z (j ) = (N+1-2j)/2
1 ~ j ~ N/2 ,

z(N-j) = -z (j )

It follows that:

N

ErZ(2t)} = L z(j)p(j) =s
j=2

j even

N/2 N

= L z(j)p(j) + L z(j)p(j)
s s

j even j even
j=2 N/2+1

(3.8)

( 3.9 )

(3.10)
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use the fact that ps(j) = ps(N-j). It can be verified that the

solution agrees with the first-order probability

distribution from section 2.4.

For larger Nand N even, it can be proved that a

first-order distribution forces C to be zero. let p~j) be

given by (2.19) :

( ~-1) ,
J-1

and C by (3.12). If we substitute the p~j) in the expression

for C, it can be proved that:

N/2

L
j=1

j (N.-l) __(-I) (N+I-2j)
J -1

o • (3.13)

From (20) we have the following results:

m

L j

(~)
m

(n:l)(-1) = ( -1)

j=O

n

L j+1

(~)(-1) j = 0 .
j=l

Substitution of (3.14) in (3.13) yields:

N/2 ( N-2) 2
N
/2-1 j (N-

j

1) __
(N-1)(-1) + ~ (-1) j 0 •

N/2-1 L.J
j=l

(3.14)

(3.15)

(3.16)

It can be verified that using (3.15), the second term in

(3.16) may be expressed as:

_(_I)N/2 N/2 (N-l) .
N/2

Substitution of this expression in (3.16) indeed makes

certain that C = O. However, it is reasonable to expect that

more solutions will exist that generate no lines in the

power spectral density function.
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Some performance parameters in which the dc content of a

code can be assessed are mentioned in this chapter. In our

case dc content stands for the low-frequencY power around

zero frequency.

From literature the cut-off frequency and the second

derivative are known as important parameters. We introduce a

frequency related to the low-frequency power, and a mean

error rate as other relevant parameters.

To simplify formulas in this chapter, the rotational

frequency ro is often used instead of f.

4.1 Cut-off frequency.

The most common performance parameter used in the

literature [11,16) is the cut-off frequency. This is the

frequency where the spectrum Sx(f) = af/2. An approximation

for the relative cut-off frequency ~T is derived, assuming

first-order transition probabilities. Afterwards, the

validity is shown by comparing it with the frequency where

the actual spectrum has value a:/2. Moreover, it is shown

that the approximation formula agrees very well with the

results if we use the transition probabilities from the

maxentropic case.

According to the above statements, the cut-off frequency

is derived from:

(4. 1 )

together with equation (2.10) it can be concluded that:

= (1-r)2/2 , (4.2)

where roo = 2n~T. For small values of (l-r) we may use the

approximation:
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From [16J we have the expression for the sum variance:

(4.4)

Comparison of equations (4.3) and (4.4) results in the

important relation between the cut-off frequency and the sum

variance:

(4.5)

In Table 4.1 we have compared the approximation formula

(4.5) with the actual values of ~T where SX(~) = a:/2, both

for first order and maxentropic probabilities.

N first-order maxentropic

--- -------------------------- ---------------------------

a Z approx. exact a Z approx. exactz z

3 0.50 .15915 .16667 0.5000 .15915 .16667

4 0.75 .10610 .10817 0.8028 .09913 .10065

5 1. 00 .07958 .08043 1.1667 .06821 .06879

6 1. 25 .06366 .06409 1. 5940 .04992 .05020

7 1. 50 .05305 .05330 2.0858 .03815 .03832

8 1. 75 .04547 .04563 2.6424 .03012 .03024

9 2.00 .03979 .03989 3.2639 .02438 .02448

Table 4.1. Comparison of sum variances

and cut-off frequencies (~T).

The following conclusions can be drawn from Table 4.1:

- The approximation for ~T shows a very good agreement with

the actual values of ~T (within 1% for N>5). The accuracy

of (4.5) increases with N because the assumption (4.3) is

more accurate for large N (see equation (2.15».

- The relation between ~T and a; is also useful for
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where the last step is valid if we define a second

derivative frequency as (O}o')Z = 1/S(2)(0). However, this

'cut-off' frequency is less valuable than the approximated

cut-off frequency (4.5) from the preceding section.

The second derivative at zero frequency can easily be

calculated with:

( 2 )
S x (0) = (4.9)

which is derived by double differentiation of (3.5) and

substitution of f = o. Implementation of equation (4.9) is

easier than (4.8) and less accuracy is needed.

Example: The power spectrum of the sum sequence Z(t) with

first-order probabilities can be derived by combining (3.5)

and (2.10):

(4.10)
2(1+r z - 2r cos 2nfT)

As a result, the second derivative is calculated with (4.9)

and simply becomes:

( 2 )
S X (0) =

(l+r)

(l-r)Z
=

(N-1)(N-2)

2
(4.11)

where the relation (2.15) between the parameter r and the

number of RDS states N from section 2.4 is used. Eventually,

by using (4.11), we find an expression for Sx( O}) for low

frequencies:

(N-1)(N-2)/4 ] O}Z • (4.12)

In Table 4.2 the numerical values of the second

derivatives and the corresponding frequencies (equation

(4.8» are presented.

From Table 4.2 we note that the second derivative grows

rapidly with increasing N. Furthermore, in the maxentropic

case the second derivative reaches higher values than when
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N first-order maxentropic

--- -------------------- -------------------
5(2)(0)

f~T
5(2)(0) fo'T

3 1. 00 0.1592 1. 00 0.1592

4 3.00 0.0919 3.58 0.0841

5 6.00 0.0650 8.67 0.0541

6 10.00 0.0503 17.42 0.0381

7 15.00 0.0411 31.21 0.0285

8 21.00 0.0347 51.62 0.0222

9 28.00 0.0301 80.43 0.0178

Table 4.2. Second derivatives and frequencies.

5926

using first-order probabilities. Both statements agree with

the conclusions from the preceding section.

4.3 low-frequency power.

A third criterion that possibly indicates the dc content

of a code may be the actual power present in a prescribed

low-frequency range.

The frequency ro p' where (-rop;+ro p) specifies the area that

contains a certain percentage of the total power, is a

measure that is closely related to the power in the

low-frequency range. The power can be written as:

p = ( ro)dro (4.13)

Numerical calculations show that 0.1% or less of the

power is a sensible measure. In this case the calculated

frequencies are of the same order of magnitude as the

cut-off frequencies from section 4.1. We have taken 0.01% of
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In this section a new parameter is considered providing a

favourable power spectrum when dealing with an RDS-bounded

Markov source. The foregoing parameters are all closely

related to the power spectrum of the code sequence. The mean

error rate, however, does not show this close relationship.

The mean error rate is primarily related to restrictions on

the output sequences, especially as long sequences of

consecutive zeros or ones are not desirable. If these

restrictions are taken into account, then in turn they

guarantee a power spectrum with small power in the

low-frequency range.

Before deriving an expression for the mean error rate,

the ac-coupled channel model from section 1.3 is introduced.

A channel may be the ordinary telephone line or the read-out

system of optically stored information.

Our aim is to transmit sequences over the channel with a

minimum of transmission errors. The signal set) is assumed

to be a binary sequence of rectangular pulses, each of

duration T and amplitude ±A; a typical sequence is shown in

Fig. 4.1a. The noise net) is independent of the signal set)

with a zero-mean Gaussian probability density function,

thus:

e4.15)

A third assumption concerns the ratio T/RC. In practical

applications the ratio T/RC « 1. This assumption has two

consequences. First, the capacitor C averages the noise.

Therefore the voltage det) on the inverting input of the

amplifier is almost noiseless. Secondly, the voltage det),

which is the decision level of the system, is dependent on
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For example, d(i+1Ii) means that we make the transition to

state i+1, which has a lower RDS value (in our case)

corresponding to output zero. The factor 1/2 is introduced

because samples are taken at t s = (k+1/2)T, which is normally

the case when amplitude detection is chosen at the centre of

the pulse. From (4.16) and C4.17) we conclude that the

decision level not only depends on the actual encoder state,

but also on the transition.

let us now proceed with the consequences of the base-line

wander. This phenomenon decreases the distance between the

received pulse height ret) and the decision level dCt) and

therefore increases the chance of misdetections. An example

of decreasing distance is shown in Fig. 4.1c. After a long

sequence of zeros or ones the amplitude of the received

signal is diminished considerably and therefore sequences

with sufficient transitions are desired.

From the communication point of view we want the

RC-product to be as large as possible so that a small

base-line wander is guaranteed. This also corresponds to the

spectral properties of the ac-coupled channel. Whereas the

decision level is the low-pass filtered version of the

incoming signal, the channel as a whole acts as a high-pass

filter with a cut-off frequency proportional to 1/RC. A

large RC-product results in less power loss in the

low-frequency range.

It is also possible that the noise is frequency

dependent, e.g. a channel with large noise power near dc. In

this case ac-coupling is recommendable and we have to seek

an optimum between noise influence and signal power loss. In

the latter case ac-coupling can be applied although it must

be emphasized that in general this is not possible. In

practice it is the channel that is given and by coding we

try to use the channel in the most reliable way.
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We now calculate the mean error rate. First, we define

the state oriented error rate, and secondly, we obtain the

mean error rate by averaging over all possible states.

The received signal density functions are plotted in Fig.

4.2. For the sake of clearness the Gaussian functions are

drawn on different heights to emphasize that the 'tails'

determining the error probability are of different length.

d

Fig. 4.2. Received signal density functions.

This difference is caused by the fact that the decision

level depends on the actual state and on the transition.

This situation differs from the usual one where the decision

level is fixed or shifted by a fixed amount [22J.

Let us now define the conditional error probability

PCEli,'l') which stands for the probability of detecting a

'0' when leaving state i after a '1' is transmitted. From

Fig. 4.2 and C4.l5) we immediately note that:

dCi-lli)

PCEli,'l') = f 1 Cn-A)Z
.. / exp[ - J dn •

(JVC21t) 2(Jz
C4.l8)
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Substitution of x=Cn-A)/a in C4.18) yields:

PCEli,'l') = Q ( CA-dCi-1Ii))/a ] ,

5926

C4.19)

where we have used the Q function, which is defined as:

Q Cx) =
1

.yC21t)

x
J expC-a z/2) da • C4.20)

Similarly, the probability of detecting a '1' if a '0' is

transmitted when leaving state i is given by:

PCEli,'O') = Q ( CA+dCi+1Ii))/a ] • C4.21)

Now the state oriented bit error rate BERCi) is defined by

combining C4.19) and C4.2l):

BERCi) = pCi,'O') PCEli,'O') + pCi,'l') PCEli,'l') =

C4.22)

pCi+1Ii) Q (
A+dCi+1Ii)

a
A-dCi-1Ii)

] + pCi-1Ii) Q ( ] .

This is obviously the sum of two Q functions, each weighted

with the corresponding transition probabilities. Finally,

the mean error rate E{BER} is obtained by averaging the

BERCi)'s over all possible states, so that:

E{BER} =

N

L:
i =1

BERCi) pCi)
s

C4.23)

where we have used the stationary probabilities pCi).
s

Example: Consider the 5-state source depicted in Fig.

4.3. Because of the symmetry the only parameter that can be

varied is p(312) = q.

The computation of the mean error rate E{BER} is rather

straightforward. The vector of RDS values is z = C+2, +1, 0,

-1, -2), and the DSV = 4. According to C4.22) we obtain:
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Fig. 4.3. Source with 5 states.

S926

BER(1) = Q [ A/a (1+3T/2RC)

BER(2) = (1-q) Q

q Q

A/a (1-3T/2RC)

A/a (1+ T/2RC)

+

BER(3) = Q [ A/a (1- T/2RC) ] •

From the symmetry it follows that BER(4) = BER(2) and BER(S)

= BER(1). Consequently, we use (4.23) to calculate the mean

error rate E{BER}:

E{BER} = q/2 ( Q [A/a (1+ T/2RC)] + Q [A/a (1- T/2RC)] )

+ 1/2 (1-q) ( Q [A/a (1+3T/2RC)] + Q [A/a (1-3T/2RC)] ) .

By inspecting the arguments of the function Q in the

above example it can be noticed that we have introduced two

new parameters: the ratio A/a, or the signal-to-noise ratio

(SNR) if we express it in dB's, and the symbol time-to-time

constant ratio T/RC.

The mean error rate is plotted in Fig. 4.4 for two

different sources and two values of T/RC. Both sources have

the same sum variance.

From Fig. 4.4 it can be concluded that:

- the mean error rate decreases for a larger value of the

SNR as it could be expected;

in general the mean error rate increases with a larger

number of states, because the source generates sequences
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This chapter deals with the following question: if we

demand that a certain performance criterion - besides the

bound on the RDS - must be satisfied, how do the source

probabilities have to be chosen in order to achieve the

maximum entropy?

Before the derivations start the problem is formulated

precisely. Then the maxentropic chain with a general weight

constraint is derived. The developed theory is applied to

the case of a variance and an error rate constraint. It is

shown that there is some similarity between the maximum

entropy and the rate distortion function. Finally, some

computational results are presented.

5.1 Optimization problem.

We want to maximize the entropy HeX) of the signal. Since

the relationship e2.1) between the sequences Xet) and Zet)

is one to one, it is clear that HeX) = HeZ). The problem can

thus entirely be stated in terms of the sequence Zet).

From [23] we can see that conditioning never augments the

entropy, so the sum sequence Zet) must satisfy the Markov

property and consequently, it must be generated by a Markov

source. This reasoning fits very well with our assumptions

stated earlier. Note that two consecutive values of Z can

only differ ±I because Xet) is a binary sequence.

We now will focus on the performance criterion. Let the

restriction have a certain value W, which we shall call the

average weight W. Since it is possible to let W be the

result of an average of transitions, we assign to each

transition a certain weight weili). At a later stage, we

replace the average W by one of the parameters mentioned in

the preceding chapter.

If we want a power spectrum with a low dc content, then

the transitions in the outer states must be of heavier
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weight than the transitions between the inner states,

because the former give the largest contribution to the dc

content.

The problem posed here is to maximize the entropy:

N N

H = I: p(i) I: - p(jli) In p(jli> , (5.1)
5

i = I j=1

subject to the constraints:

(5.3)

( 5 • 2 )for all

I ,p ( i) =
5

N

I: p(jli) = I ,

j=1

N

I:
i =I

p(i) p(jli) = p(j) ,
5 5

for all

N

I:
i =I

N

I: p ( i )
5

N

I: p(jli> w(jli) = w .

j , (5.4)

(5.5)

i=1 j=1

Equations (5.2), (5.3) and (5.4) are general constraints

related to the regular definition of the Markov source.

Equation (5.5) is an important constraint since it is

related to the desired spectrum.

5.2 Sources with a weight constraint.

This section presents a maxentropic Markov source that

satisfies a weight constraint. The derivation is based on

results from Justesen [24J, Berger [25J and Shannon [26J.

A well-known method to solve the problem of maximizing a

function subject to several constraints is the use of

Lagrange multipliers. We will use this approach here. First,
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we form the lagrangian function I, which contains the

constraints from the preceding section:

5926

I = H +

N

s( I:
N

Pst i) I: p ( j Ii) w( j Ii) ) +
i=l j=l

N N

I: t(j) ( I: p ( i ) p(jli) - Pst j ) ) +s
j=l i=l

N N N

I: r ( i ) ( I: p(jli)) + u I: Pst i ) ,
i=l j=l i=l

( 5.6 )

where rei), s, t(j) and u are all lagrange multipliers, and

H is given by equation (5.1).

Secondly, the stationary point of the function I is found

by solving:

dI/ dPCili) = 0 , (5.7)

dI/ dP(i)
s

= 0 . (5.8)

Differentiation of I with respect to p(jli) or equivalently,

applying (5.7) to (5.6) yields:

N N N N

I: p ( i ) I: (-I-In pCili)) + I: Pst i ) I: s w(jli) +s
i =1 j=l i =1 j=l

N N N N

I: t(j) I: Pst i ) + I: r ( i ) I: 1 = 0 ,
j=l i =1 i=l j=l

and by rewriting we obtain:

-In p(jli) + sw(jli) + t(j) + r(i)/p(i) = 1 •
s

(5.9)

The second equation in p(i) and p(jli) comes from the
s

differentiation with respect to p(i), so applying (5.8) to

(5.6):
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N N

~ ~ -p(jli) In p(jli)

i=1 j=1

N N

+ s ~ ~ p(jli) w(jli) +

i=1 j=1

N N

~ ~ t(j) p(jli)

i=1 j=1

N

L t(i>'1

i=1

= 0,

where we have used ~. t(j) ps(j) =~. t(l> ps(i) before
J I

differentiation. If we replace the number 1 by equation

(5.2) we find:

In p(jli) = s w(jli) + t(j) - t(i) + u • (5.10)

We now have two equations from which p(jli) and p(i) can be
s

solved. The transition probabilities are specified by:

p(jli) = exp(sw(jli»
v(j)

A v ( i )
(5.11>

where we have substituted v( i) = exp(t( i» and A = exp(-u)

in (5.10>'

Before continuing let us examine (5.11). The constraint

(5.2) can be expressed as:

N

~ exp(sw(j Ii» v(j) =

j=1

A veil • (5.12)

We conclude that v with elements veil represents the right

eigenvector of the matrix Qw = [ exp(s w(jli» and A the

corresponding eigenvalue. Similarly, (5.4) may be expressed

as:

N

~
i =1

p(l)

v ( i )
exp(sw(jli» =

p(j)
1.-­

v(j)
(5.13)

and thus p(i )/v(i) are the elements of the left eigenvector

with eigenvalue A. Thus, the left eigenvector Vi is the

eigenvector of the transposed matrix of Qw • Consequently,

the stationary probabilities are given by:
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ps( i) = c v ( i) v I ( i )

5926

(5.14)

where c stands for an arbitrary constant determined by

(5.3). The symbol v'(i) represents the i-th element of the

left eigenvector Vi.

On the basis of the equations (5.1) and (5.11), we can

derive an expression for the entropy as a function of the

average weight W, called H(W):

H(W) = In A - s W (nats). (5.15)

This important relation indicates how the best possible rate

may be obtained, as the maximum entropy is reached at

maximum eigenvalue.

The reader should notice that for w(jli) = 0 (for all

i,j) equations (5.11), (5.14) and (5.15) transform into the

corresponding relations (2.23), (2.24) and (2.22),

respectively. This means that without the spectral

constraint, the maxentropic chain from section 2.5 is

derived.

The optimum Markov source for an average weight

constraint can be determined as follows:

- form the weight matrix Q w = [ exp(sw(jli» J;

- calculate the maximum eigenvalue Am and its corresponding

left and right eigenvectors Vi and v;

- derive the transition probabilities, which are specified

by (5.11), and the stationary probabilities of (5.14);

- calculate the maximum entropy by using (5.15), where the

variable s is determined by W.

5.3 Analogy to rate distortion theory.

In the preceding section the maximum entropy was derived

as a function of an average weight. Because the resemblance

between the entropy function H(W) and a rate distortion
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function ReD) is strong, it is interesting to pay more

attention to it.

5926

In the rate distortion theory we are primarily interested

in the minimum information that must be conveyed to the user

in order to achieve a prescribed fidelity [25]. In our case,

the objective is to maximize the entropy satisfying a

spectral constraint.

SecondlY, the conformity between the average weight Wand

the average distortion D can be noticed. Both parameters are

set before the variational problem is solved. The distortion

D is the outcome of averaging all single letter distortions

dejli) ei.e. the distortion between source and

representation letter). Similarly, we have dealt with weight

elements wejli).

Thirdly, a rate distortion function can be determined if

the source alphabet and its probability distribution are

known. In our case, source and representation alphabet are

the same, e.g. the set of Z values, and consequently they

have the same probability distribution.

The fourth and last item concerns the parameter s. The

rate distortion function ReD) is the envelope of a set of

straight lines with slope s in eD,ReD». Similarly, the

maximum entropy function HeW) is the envelope of lines

through eW,HeW» with slope -s esee Fig. 5.1).

R

o

H

w

Fig. 5.1. Comparison of ReD) and HeW) curves.
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5/2
0 t 0 0 0
5/2 1/2

t 0 t 0 0
1/2 1/2

Q = 0 t 0 t 0
1/2 5/2

0 0 t 0 t
5/2

0 0 0 t 0

where t = exp(s). The matrix has a largest eigenvalue

equal to ~m = V(2t+t 5 ), with corresponding eigenvector:

v =

It can be verified that p(i) = (t/4 ~Z)v(i)2 and the most
s m

important transition probability p(312) may be expressed as

2/(2+t-). As a result, the entropy equals:

H =
1

2
In (2t + t 5 ) - S

For example, if GZ = 1, then t- = 2/3 and s = 1/4 In (2/3).z
Accordingly, we find H = 0.541 nats or equivalentlY, 0.781

bits.

5.5 Source with an error rate constraint.

A second application of the theory of section 5.2 is

found by using the mean error rate as the average weight. It

immediately follows from equation (4.22) that in this case

the weights are:

w(jli) = Q [ (A+d(jli))/G J. (5.18)

In spite of a quadratic weighting in section 5.4 we have a

more or less 'exponential' weighting, by taking the weights

as Q functions.

It should be noticed that the weight matrix Qw is not

symmetric in the case of a mean error rate constraint.
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Example: Let us consider the source of section 5.4. The

weight matrix Qw now is:

d
0 t 0 0 0

b c
t 0 t 0 0

a a
Qw = 0 t 0 t 0

c b
0 0 t 0 t

d
0 0 0 t 0

where t = exp(s) and the maximum eigenvalue equals:

... / b+d a+c
J.. m =, (t + 2t ).

The constants may be expressed as:

a = Q

c = Q

A/(J (1- T/2RC)

A/(J (1+ T/2RC)

b = Q

d = Q

A/(J (1-3T/2RC)

A/(J (1+3T/2RC)

The right and left eigenvector are specified by:

d ~ b+d a+c a ~ b+d a+c d
v = ( t 2t t ) II t +2t I t +2t

b ~ b+d a+c c ~ b+d a+c b
v'= ( t I 2t I t ) II t +2t I t +2t

and ps( i) = k v ( i ) v ( i ) " wher e k = 1 / ( 4 J.. mZ). Finall y I We

derive the mean error rate E{BER}:

a+c-b-d
(b+d) + 2(a+c)t

E{BER} =
a+c-b-d

2 + 4t

The entropy can be written as:

b+d a+c
H = 1/2 In (t + 2t ) - s ( E{BER} ) •

The transition probability p(312) equals:

a+c b+d a+c
p(312) = q = 2t /(t +2t )

Note that for a = c = 1/2 and b = d = 5/2 the mean error

rate constraint transforms into the variance constraint
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discussed in the preceding section; the latter is the

special symmetric case of the general, asymmetric criterion.

5.6 Results.

As described in section 5.2, it is possible to derive the

maximum entropies for various numbers of states subject to a

particular spectral constraint. We have calculated the

maximum entropy for three cases: a sum variance, a second

derivative and a mean error rate constraint. The curves are

plotted on the following pages.

The functions can be regarded as theoretical limits for

the entropy. A good code has a rate that approaches the

limit; there are even codes that lie on the bound (e.g.

biphase).

From Fig. 5.2 it can be noticed that when the number of

RDS states N is large, two completely different values of

the sum variance can be found for the same entropy. This

means that for codes with rates approaching the maximum

entropy, the dc content can differ significantly. Hence it

must be possible to design a code with a sufficiently low dc

content at the cost of only a small reduction of the maximum

entropy.

From Figs. 5.2-5.4 it can be concluded that a strong

constraint (e.g. a small variance) lowers the entropy

considerably. This results in sequences that can be

generated by a Markov source with a smaller number of RDS

states.

The black points in the maxima of the curves represent

the maximum entropy for RDS-bounded sequences only. These

values have been derived in section 2.5.

Let us now have a closer look at Fig. 5.4. Surprisingly,

the curves intersect and as a result, a higher entropy can

be reached with a smaller DSV. An explanation for this

phenomenon may be the weighting method: a heavier weight (in
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comparison with the sum variance) is assigned to the

transitions between the outer RDS states. Because the mean

error rate constraint must be met, the outer states are

seldom reached, resulting in a substantial loss of entropy.

For eKample, if we take the fourth moment as a criterion, in

spite of the variance, the same phenomenon will be observed.

Moreover, the presented channel model is based on bit-by-bit

detection, a method that detects a received symbol

independent of the preceding symbols, whereas the Markov

source generates dependent sequences.

The problem of deriving analytical expressions in case of

a second derivative constraint has not been solved. The

requirement for a prescribed sum of correlation terms (a

second derivative constraint) is a less strong claim than

the prescription of several terms of the correlation

function £271. However, the analytic solution of the

optimization of the entropy subject to the first constraint

seems to be even more complex than the solution in case of

the second constraint. In the latter case the problem has

not been solved either.
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One of the parameters mentioned in chapter 4 is the

second derivative. It is shown that for low frequencies the

power spectrum can be approximated by a parabolic

expression.

The present chapter describes a source model that

generates sequences with a zero second derivative power

spectrum. Maxentropic sources for several cases are

considered.

6.1 Additional constraint.

A power spectrum with zero second derivative at zero

frequency can be reached by imposing an extra constraint on

RDS-bounded sequences. We introduce this constraint in the

present section.

It was shown in the second chapter that a dc-free code

spectrum is accomplished by a bound on the RDS. Analogous to

this result we conjecture that a bound on the sum of the

running digital sums eSRDS) should accomplish a dc-free

spectrum of the sum sequence Zet). Consequently, the code

spectrum should have zero second derivative, resulting in a

considerable lower dc content than RDS-bounded sequences

only. This conclusion is based on equation e4.9) which

states that the second derivative for zero frequency equals

two times the dc component of the RDS spectrum.

We define the sum of the running digital sums as:

SRDS =~ zet)

t

e6.1)

In accordance with section 2.2, the SRDS may be expressed as

a sequence yet):
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vct) = VCt-T) + ZCt) VCO) = b
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C6 • 2 )

where b is the initial value of the sum-sum sequence vct).

Furthermore, to achieve a dc-free code spectrum we demand

the RDS to be bounded within the DSV. Similarly, a dc-free

sum spectrum is reached by a bound on the SRDS, which we

shall call the sum digital sum variation CSDSV):

SDSV = C6 • 3 )

It should be noticed that the process Vct) is non-Markovian

[12J, and a single bound on the SRDS would not suffice a

dc-free power spectrum of XCt).

6.2 Source model.

This section presents a new source model that includes

both DSV and SDSV constraints.

Our aim is to design a source that includes both RDS and

SRDS bounds. Instead of choosing one state for each value of

the RDS, it is now proposed to assign a state to each

allowable CRDS, SRDS) pair. As a result, we deal with a

two-dimensional random walk. The coordinates CRDS, SRDS)

define the several possible states and the RDS and SRDS

bounds CDSV and SDSV constraint) specify the borders of the

allowable region. The number of possible RDS values is

assumed to be N and the number of possible SRDS values M.

Example 1: Consider the simple case where N = 3 and M = 3

CDSV = 2 and SDSV = 2). The vectors of RDS and SRDS values

are y = z = C-l, 0, +1). The source model is sketched in

Fig. 6.1. There are nine states that satisfy the DSV and

SDSV constraints. However, state 3 and 7 are rejected since

we prefer an irreducible set of states. For this reason

state 3 and 7 are drawn with broken lines.
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Fig. 6.1. Source with DSV = SDSV = 2.

S926

The maxentropic chain has p(lIS) = p(9IS) = 1/2 with entropy

1/4. It follows by definition that Rz(O) = 1/2 and Rz (2) =
-1/4. Hence the spectrum of the code sequence X(t) is:

SX(f) = ( 1 - cos 2nfT )( 1 - cos 4nfT ) •

The practical implementation of this source may be a biphase

variant where the following mapping is proposed: 1 ~ 1001

and 0 ~ 0110.

Example 2: Consider all chains with N = 3 and M > 3 (M

odd). These sources have the following properties:

the sum variance is 1/2 because the boundary states are

reached half of the time. The sum-sum variance has the

same value as the maxentropic sum variance (with M states)

from section 4.1.

- Rz (2k+1) = 0 for all k.

- the maxentropic chain with N = 3 and variable M has

transition probabilities:
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2 cos ( - )

M+I
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Fig. 6.2. Source with ( N. 11 ) = ( 5. 11 ).

i+l-M
sin (1t )

M+I
p(M+I+i Ii) =---------. M+I ~ i ~ 2M-Ii

i-M
sin(1t-)

M+I
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whereas other transitions have probability one. The

corresponding stationary probabilities are:

5926

p(i) =
s

1

M+1

i-M
sin z (1t-- )

M+1
M+1 ~ ~ 2M ,

This result strongly resembles the probabilities from

section 2.5.

In Fig. 6.2 a larger model is given with N = 5 and M =
11. It can be noticed that the states 1, 9, 10, 11, 22, 34,

45, 46, 47 and 55 do not contribute to the entropy and the

power spectrum.

Some properties of the sources with a DSV and SDSV

constraint are listed below.

- All models have period 4. Consequently, modulation systems

with zero disparity codewords have multiple four length

(The disparity is the excess of ones over zeros).

The eigenvalues of the transition matrix Q appear in groups

of four elements. According to Perron-Frobenius [13] the

complex eigenvalue plane can be rotated over 1t/2 without

change of configuration. This means that some eigenvalues

occur in complex conjugated pairs on the imaginary axis.

This results in a fluctuating correlation function.

- Generally speaking: if M tends to infinity, the SDSV

constraint is not satisfied and the sequences are the same

as the sequences generated by an RDS-bounded Markov source.

6.3 Computational results.

This section presents some results of calculations we

have made. For maxentropic sources the entropy and the

frequency fT O.OlX from section 4.3 are given.

It is obvious that the cut-off frequency (and thus sum

variance) and the second derivative are unsuitable

performance parameters in case of a combination of DSV and
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SOSV constraints. The sum variance cannot be used because

only one dimension is coincided (ROS). As the second

derivative is zero, this parameter also cannot be applied.

The mean error rate gives less insight into the case of a

two-dimensional source and therefore the frequency fT 0.01%

is used (Table 6.1) as performance parameter.

N M entropy fT 0.01"

3 3 .2500 .04396

5 .3962 .03009

9 .4638 .02274

QC .5000 .01967

5 9 .6271 .02240

11 .6676 .02001

13 .6950 .01820

15 .7141 .01679

19 .7385 .01476

QC .7925 .00959

Table 6.1. Haxentropic (N,H) sources.

Table 6.1 shows the tendency for large M to the

maxentropic sources with a OSV constraint only.

In Fig. 6.3 the frequency fT 0.01" is plotted as a

function of the redundancy (l-H). For maxentropic

OSV-constrained sequences the exchange between low-frequency

power and redundancy (entropy) can be clearly observed. For

sequences with zero second derivative the bound has a

steeper slope, indicating that adding some extra redundancy

results in a considerable decrease of the low-frequency

power.
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Interesting is the comparison between the sources with N

= 4 and (N,M) = (5,13). Both have almost equal entropy

(.6942 and .6950, respectively) although the latter has a

significant reduction of 9c content. This is also shown in

Fig. 6.4 where the power spectrum is plotted for several

sources. The spectra of D5V-constrained sequences are

plotted with broken lines.
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Fig. 6.4. Power spectra of DSV- and SDSV-constrained

sequences in comparison with DSV-constrained sequences.
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We have discussed four performance parameters by which

the dc content of a binary spectrum shaping code can be

assessed. Besides the description of the sum variance and

the second derivative, we have introduced a 'power cut-off'

frequency that is related to a certain percentage of the

power. This frequency is certainly one of the most objective

parameters to compare the dc content of different codes

since it is closely related to the low-frequency power. We

have also introduced a mean error rate as an important

parameter. The mean error rate has a more practical meaning

and emphasizes the need for sequences with sufficient

alterations of bit polarity.

We have calculated the maximum entropies of RDS-bounded

sequences subject to an extra performance constraint. It is

shown that the dc content of codes with rates close to the

maximum entropy can differ significantly. Analytic

computation of the maximum entropy is performed in two

cases: the sum variance and the mean error rate criterion.

It is shown that the mean error rate yields an example of

the general, asymmetric case of the analytic computation of

the maximum entropy, whereas the sum variance appears to be

a symmetric weighting of the RDS states.

In order to improve the power spectrum for low

frequencies, we have introduced RDS- and SRDS-bounded

sequences. It is shown that, besides a dc-free power

spectrum, these sequences have a zero second derivative at

zero frequency, resulting in a substantial decrease of dc

content.

Eindhoven, April 1984.

Philips Research Laboratories,

Nederlandse Philips Bedrijven BV.
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