

MASTER

Een multimode antenne-richtsysteem voor de Olympus-propagatie-experimenten

van Deventer, M.O.

Award date: 1987

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER ELEKTROTECHNIEK VAKGRDEP TELECOMMUNICATIE EC

EEN MULTIMODE ANTENNE-RICHT-SYSTEEM VOOR DE OLYMPUS-PROPA-GATIE-EXPERIMENTEN

door M.O. van Deventer

Verslag van het afstudeerwerk uitgevoerd van 1 oktober 1986 tot 27 augustus 1987 Afstudeerhoogleraar: prof. ir. J. van der Plaats Begeleiders : dr. ir. M.H.A.J. Herben en ir. J. Dijk

De Faculteit der Elektrotechniek von de Technische Universiteit Eindhoven aanvaardt geen verantwoordelijkheid voor de inhoud van stage- en afstudeerverslagen. Samenvatting

In dit verslag wordt de realisatie beschreven van een experimenteel "multimode monopuls antenne-richtsysteem", werkend op 11,451 GHz, de baken-frequentie van de satelliet ECS. Er is tevens een aanzet gedaan tot de realisatie van een dergelijk richtsysteem voor de antenne, die gebruikt zal gaan worden voor de propagatie-metingen met de satelliet Olympus.

Met twee hogere modes in een ronde golfpijp worden antenne-patronen opgewekt, die oneven zijn in respectievelijk de azimuth en de elevatie-richting. Door deze twee "verschil-signalen" te normeren op het "somsignaal" (de TE11-mode in een ronde golfpijp) wordt met éen meting de richting van de satelliet bepaald. Een dergelijk richtsysteem is vrij ongevoelig voor fluctuaties in het ontvangen signaal, dit in tegenstelling tot een richtsysteem dat naar een maximum in het ontvangen vermogen zoekt.

Theoretisch is de optimale belichtings-functie voor de verschil-patronen bepaald en er zijn berekeningen uitgevoerd met belichtingsfuncties, die in de praktijk gebruikt worden.

Naar een "coaxiale-trilholte-uitkoppelaar", onderwerp van een octrooi-aanvrage door het Dr. Neher Laboratorium (PTT), is verder onderzoek verricht. De uitkoppelaar bleek onbruikbaar te zijn voor het Olympus-ontvangst-systeem, onder andere vanwege grote verliezen, grote koppeling tussen de som- en verschil-signalen en een slechte kruispolarisatie-ontkoppeling. Er is een voorstel gedaan voor een nieuwe uitkoppelaar, die werkt volgens een ander principe.

De nieuwste versie van het ontwerp van de Olympuspropagatie-ontvanger wordt beschreven.

Theoretisch is de richtnauwkeurigheid van het monopuls richt-systeem voor niet-continue regeling bepaald. Niet-continue regeling is noodzakelijk, omdat de assen van de servo-motoren van de antenne-besturing niet bestand zijn tegen de slijtage, die bij continue regeling optreedt. Er zal een richtnauwkeurigheid van 0,005 graden gehaald worden, waarmee voldaan wordt aan de richt-specificaties (een richtverlies kleiner dan 0,02 dB en een kruispolarisatie-discriminatie groter dan 55 dB). Berekend wordt, dat met een "steptrack" richtsysteem deze richtnauwkeurigheid niet bereikt kan worden. -4-

Inhoudsopgave

1.	Inleiding	9
	1.1. Het Olympusprojekt	9
	1 2 Overzicht van richtingmeetmethodes met	•
	alaktromanatioaha anlyan	10
~	Meneral	10
2.	Monopuls-richtingmeting met de som-en-ver-	
	schil-methode	15
	2.1. Theorie van de som-en-verschil-methode	15
	2.1.1. Begrippen en uitgangspunten	15
	2.1.2. Optimale apertuurverdelingen	18
	2 1 3 Berekeningen aan reflectoranten-	
		22
	0.0 Metion von de charlierediennemen von de	23
	2.2. Meting van de stralingsdiagrammen van de	
	3 m Cassegrain-antenne met het 11	
	GHz ECS-baken	31
	2.2.1. Meetopstelling	31
	2.2.2. Verwachtingen	34
	2.2.3. Besultaten	35
	2 3 Het antennesusteen voon Divmous-ont-	00
	2.5. Net enternesysteen voor orympus-ont-	20
	vangst	30
	2.3.1. Geometrië van net antennesysteem	38
	2.3.2. Verre veld berekeningen	39
З.	Multimode uitvoering van de som-en-verschil-	
	methode	43
	3.1. Principe van de multimode uitvoering	43
	3.1.1. De modes in een ronde golfpijp	
	als som- en verschilsignaal	43
	3 1 2 Fen gegroefde conische boorn als	
	boliohten	E 0
	Delichter 2.4.2. Brachterde beliebben die versene	50
	3.1.3. Berekende belichter-diagrammen	5/
	3.2. Metingen aan belichters	61
	3.2.1. Meetopstelling	61
	3.2.2. Resultaten	62
4.	Mode-uitkoppeling met coaxiale trilholtes	71
	4.1. Uitkoppeling met spleten	- 71
	4.1.1. Theorie	71
	4 1.2 Metingen	23
	4.9 Theorem was do withorneling met ecoviale	
	4.2. medile van de ditkoppeling met coaxible	25
	trinoites	/5
	4.2.1. Werking	75
	4.2.2. Dimensionering	82
	4.2.3. Opstellen van de specificaties	84
	4.3. Metingen aan de uitkoppeling met coaxia-	
	le trilholtes	88
	4.3.1. Meetopstelling	88
	4.3.2 Afregelprocedure	89
	4.0.2. Pocultaton	
	4.J.J. RESULCED	90

pagina

-5-

pagina

5.	Opbou	w van de Olympus-propagatie-ontvanger	95
	5.1.	Specificatie van de ontvanger	95
		5.1.1. De linkbudgets	95
		5.1.2. Voorgenomen metingen en mogelijke	
		specificaties	96
		5.1.3. Blokschema van de propagatie-	
		ontvanger	97
	5.2.	De ontvangerkanalen	98
		5.2.1. Opbouw van een ontvangerkanaal	98
		5 2 2 Frequentie-keuze en ruis-hereke-	
		ningen	aa
	63	De frequentiegenerator	101
	5.5.	E 2 1 Enguestic-system	101
		5.3.1. Frequencie-synchese	101
~		5.3.2. Het voorgestelde scheme	103
ο.	HICH	theuwkeurigheid bij de som-en-verschil-	
		methode	107
	6.1.	Formulering van het regelprobleem	107
		6.1.1. Mogelijke regelsystemen	107
		6.1.2. Kriterium voor de richtnauwkeu-	
		righeid bij niet-continue rege-	
		ling	108
	6.2.	Modellering van het richt-systeem	110
		6.2.1. Het meetsysteem	111
		6.2.2. De parameterschatting	113
		6.2.3. De regelaar	116
	6.3.	Berekening van de richtnauwkeurigheid	117
		6.3.1. Normeringen en richtkriterið	117
		6.3.2. Beschouwing van de richtnauwkeu-	
		righeid	119
	6.4.	Een voorbeeld: Het Olympus-richtsysteem	122
		6.4.1. De vereiste richtnauwkeurigheid	122
		6.4.2. De positie en beweging van de	
		satelliet	124
		6.4.3. Het linkbudget voor het richtsvs-	. –
		teem	126
		6 4 4 De resulterende richtnauwkeurig-	
		heid	126
	6 6	Vergelisking met geguentiel goen metho-	120
	0.5.	vergerijking met sequentior scon metho-	100
		C C 1 De siebterwykewsisterid was en	120
		b.b.i. De richthouwkeurigheid von se-	
		quential scan methodes	128
		5.5.2. Vergelijking van de richtnauwkeu-	
-	_	righeden	132
7.	Conc	lusies en aanbevelingen	135
	7.1.	Conclusies	135
	7.2.	Aanbevelingen	137
-	Liter	atuuropgave	139
+	Lijst	van symbolen en afkortingen	145

-	Appendix	Α:	Optimale apertuurverdelingen en de	
			bijbehorende stralingsdiagrammen	149
-	Appendix	в:	Berekening van de rendementen van	
			theoretische belichters voor ver-	
			schilpatronen	155
-	Appendix	С:	Het computerprogramma "Straling":	
			berekening van stralingsdiagrammen	
			van een antenne met een cirkelvor-	
			mige apertuur	159
-	Appendix	D:	Liisten van het computerprogramma	
			"Straling"	169
_	Annendix	F :	Beschouwing van de steun- en de	
		- ·	subreflector-blokkering	189
_	Annendix	F۰	Ne modes in een ronde golfniin en	105
	Appendix	•••	in een coaviale structuur plus een	
			in een cooxidie structuur plus een	100
	A	ο.	berekening met de rezr-mode	193
	Appendix	6:	Lijsten van net computerprogramma	
			van G.M.J. Coumans: stralingsdia-	
			grammen van een gegroefde conische	
			hoorn	197
-	Appendix	н:	Verschillende mode-uitkoppelaars	
			uit de literatuur	217
-	Appendix	I:	Een methode om het elektro-magne-	
			tische velden-probleem op te los-	
			sen voor een uitkoppeling met	
			spleten	223
-	Appendix	J:	Constructie-tekeningen van de ver-	
			schillende trilholtes door K.H.	
			Liu	225
-	Appendix	к:	Foto's van de belichter-meetop-	
			stelling	239
			-	

-6-

pagina

.

Voorwoord

Mijn afstudeerperiode is een leerzame periode geweest.
Nieuw voor mij was het werken in een groep aan een gezamenlijk onderwerp. Ik bedank alle mensen, die mij geholpen hebben met mijn afstudeerwerk, met name
-M.H.M. Knoben voor het beschikbaar stellen van de antenne-meetkamer van de vakgroep theoretische elektrotechniek en zijn hulp bij de metingen,
-F.G.B.M. Budé voor het opbouwen van de ontvanger bij de metingen met het ECS-baken en
-J.R. Schmidt voor zijn aanwijzingen en het beschikbaar stellen van zijn octrooi.

Ik bedank in het bijzonder K.H. Liu voor de goede samenwerking bij de vele metingen.

1. Inleiding

1.1. Het Olympusprojekt

Communicatie via satellieten gebeurt momenteel vooral met draaggolffrequenties tussen 1 en 15 GHz. Door een sterk toenemende vraag naar bandbreedte zal het gebruik van hogere draaggolffrequenties (15-30 GHz) nodig worden. Voor onderzoek naar de transmissieparameters op dergelijke hoge frequenties zal waarschijnlijk eind 1988, de satelliet Olympus gelanceerd wor-Enkele relevante transmissieparameters zijn den. de transmissie-overdracht tussen zender en ontvanger, de equivalente antenne-ruistemperatuur, de overspraak tussen orthogonale polarisatie-richtingen (kruispolarisatie) en de scintillatie (snelle amplitude- en fasefluktuaties). Deze transmissieparameters worden beinvloed door de atmosferische condities. ("hydrometeoren", gassen, temperatuur,...) [1]

De satelliet Olympus zal voor dit onderzoek o.a. drie bakensignalen uitzenden: BO = 12,501866 GHz, EIRP ≧ 10 dBW ; B1 = 19,770393 GHz, EIRP ≧ 24 dBW ; B2 = 29,655589 GHz, EIRP ≧ 24 dBW . (EIRP: Effective Isotropic Radiated Power) Deze bakens zijn afgeleid van één bron, zie figuur 1.

De bakens zullen lineair gepolariseerd zijn, de polarisatie-richting van 80 en 82 zal loodrecht op het equatoriale vlak zijn, de polarisatie-richting van 81 zal tussen loodrecht op en evenwijdig met het equatoriale vlak geschakeld worden (schakelfrequentie: 933 Hz).Het doel van de metingen aan deze bakens is het verifiëren en completeren van de propagatie-statistieken in het hogere frequentiebereik. [2], [3]

Figuur 1: De drie bakens van de satelliet Olympus.

Het werk van de vakgroep Telecommunicatie in het Olympusprojekt is momenteel in de voorbereidende fase: de opbouw van de meetopstellingen. Dit werk houdt onder andere in:

- -theorie en het opstellen van de specificaties en het blokschema van de ontvanger ;
- -ontwikkeling, opstelling en het testen van de belichter, de paraboolantenne en de bijbehorende microgolfschakelingen;
- -ontwerp, bouw en het testen van de ontvanger en de interface naar de computer ;
- -ontwikkeling en het testen van software voor opslag en verwerking van de meetgegevens en voor de sturing van het systeem ;
- -realisatie van het antenne-richtsysteem .

Dit verslag houdt zich voornamelijk bezig met het antenne-richtsysteem. Een geostationaire satelliet "hangt" vrijwel nooit stil boven de evenaar. Door de invloed van de zon en de maan en door asymmetrie in het zwaartekrachtveld van de aarde, zal de satelliet gaan bewegen (een dagelijkse schommeling en een driftgroot beweging) [4]. De ontvang-antenne heeft een oppervlak (geplande diameter: 5,5 meter) om ook een diepe fading (grote atmosferische demping) te kunnen registreren. Vanwege dit grote oppervlak heeft de antenne een smalle bundel. Voor nauwkeurige metingen van de hoofdpolarisatie- en kruispolarisatie-signalen het daarom nodig, dat de antenne de satellietis beweging volgt.

1.2. Overzicht van richtingmeetmethodes met elektromagnetische golven

De positie van een object (bijvoorbeeld een satelliet of een vliegtuig) kan gemeten worden met behulp van elektromagnetische golven, afkomstig van dat object. Die elektromagnetische golven worden door het object zelf opgewekt (zoals bij een satelliet-baken) of zij zijn afkomstig van een zender op een andere plaats en worden door het object gereflecteerd (zoals bij radarmetingen).

Er bestaan twee basisprincipes om met behulp van die elektromagnetische golven de richting van het object te bepalen [5, p.597 e.v.]: -"sequential scan" en -"monopuls".

Bij sequential scan "kijkt" de ontvangantenne in verschillende richtingen en zoekt het maximum in het ontvangen vermogen. Daarbij is er altijd meer dan één meting nodig om de richting van het object te bepalen. Een voorbeeld van sequential scan is "conical scan" [5, p.599], waarbij de kijkrichting van de ontvangantenne om het object heen draait. "Steptrack" of "programtrack", de huidige positiemeetmethode bij de vakgroep Telecommunicatie, is een ander voorbeeld van sequential scan. Bij steptrack wordt de satellietrichting bepaald met een heuvelklim-algoritme [6]. Deze methode heeft nogal wat nadelen: het zoeken onderbreekt de metingen, kost tijd en vergroot de slijtage van de servo-motoren. Verder is de methode onbruikbaar als het signaal (door atmosferische verstoring) te sterk fluctueert.

Bij monopuls worden met een microgolf-schakeling verschillende signalen, behorende bij verschillende antenne-patronen, uitgekoppeld. Door deze signalen onderling te vergelijken kan in één meting (dus zonder de antenne te bewegen) de richting van het object bepaald worden. Een dergelijk meetsysteem is vrij ongevoelig voor signaalfluctuaties, omdat deze fluctuaties in alle uitgekoppelde signalen even sterk aanwezig zijn. Ook de nadelen van onderbreking van de metingen en een te grote slijtage van de assen zijn afwezig.

De monopulssystemen zijn onder te verdelen in drie klassen [7, p.33 e.v.].

-Amplitude-vergelijking:

Bij deze methode "kijken" twee of meer antennepatronen in een iets verschillende richting en worden de ontvangen vermogens met elkaar vergeleken. Hiermee kan in principe in één meting de richting van het object bepaald worden. -Fase-vergelijking:

Bij deze methode "kijken" twee of meer antennepatronen in ongeveer dezelfde richting, maar de oorsprongen van de verschillende patronen liggen op verschillende plaatsen. De van het object afkomstige elektromagnetische golven komen op verschillende momenten aan op de verschillende oorsprongen, wat zich uit in faseverschillen. Door de ontvangen fases met elkaar te vergelijken kan dus in één meting de richting van het object bepaald worden. -Som-en-verschil-vergelijking:

Bij deze methode zijn de antenne-patronen een "sompatroon" en een of twee "verschil-patronen" (voor azimuth en elevatie). Het som-patroon heeft een maximum in de hoofdrichting en dient als amplitudeen fase-referentie. Het verschil-patroon is een oneven functie rond de hoofdrichting. Het quotiënt van het verschil-signaal en het som-signaal is alleen afhankelijk van de richting van het object ten opzichte van de hoofdrichting. In figuur 2 is een manier weergegeven om een verschil-patroon, op te wekken door de signalen van twee antennes naast elkaar van elkaar af te trekken.

In figuur 3 zijn de drie monopulsklassen samengevat.

Figuur 2: Een manier om een verschilsignaal op te wekken, dat gevoelig is in de elevatierichting.

Figuur 3: De drie monopulsklæssen:

- a) amplitude-vergelijking,
- b) fase-vergelijking en
- c) som-en-verschil-vergelijking.

Vanwege de bekende nadelen van "steptrack" en de goede resultaten, die in het Dr. Neher Laboratorium (PTT) met monopuls richtsystemen zijn behaald, is besloten in de vakgroep Telecommunicatie hieraan aandacht te besteden. Dit afstudeerwerk is een vervolg op eerder werk ([8], [9], [10] en [11]) en het doel ervan is de realisatie van een monopuls-richtsysteem in een multimode-uitvoering en het verder opbouwen van de kennis daarover. (De multimode-uitvoering maakt gebruik van de verschillende trillingswijzen, "modes", van het elektromagnetische veld in een golfpijp en valt in de klasse van de som-en-verschil-vergelijking) Het richtsysteem hangt samen met veel onderdelen van het Dlympus-project en het verslag behandelt achtereenvolgens de antenne- en belichter-diagrammen, de bijbehorende microgolftechniek, de ontvanger en de benodigde regeltechniek. Het antenne-statief en de servo-besturing worden hier niet behandeld. Monopuls-richtingmeting met de som-en-verschilmethode

In dit hoofdstuk wordt de "som-en-verschil-methode" nader beschouwd met behulp van de antenne-theorie. De verre velden van reflector-antennes worden berekend voor verschillende apertuur-verdelingen en belichterpatronen.

2.1. Theorie van de som-en-verschil-methode

2.1.1. Begrippen en uitgangspunten

Zoals de som-patronen ontstaan uit een symmetrische veldverdeling over de apertuur, zo ontstaan de verschil-patronen uit een anti-symmetrische veldverdeling over de apertuur. In figuur 4 zijn de veldverdelingen over de apertuur en de bijbehorende antennepatronen van het som-patroon en de twee verschil-patronen (gevoelig in respectievelijk de azimuth- en elevatierichting) schematisch weergegeven. In figuur 5 is het coördinaten stelsel voor de apertuur en het verre veld weergegeven.

Figuur 4: Monopuls-antennesysteem met de som-en-verschil-methode [12].

Figuur 5: Coördinatenstelsel voor de apertuur en het verre veld.

Het veld over de apertuur wordt beschreven met de carthesische coördinaten x en y of de poolcoördinaten r en ϕ , met x=r.cos(ϕ) (1a) y=r.sin(ϕ) (1b) Het verre veld wordt beschreven met de bolcoördinaten R_v , θ_v en ϕ_v .

Als kwaliteitskriterium voor het som-patroon wordt vrijwel altijd de antennewinst (eng: antenna-gain, G_{Σ}) genomen. De maximale antennewinst wordt verkregen indien de veldverdeling over de apertuur uniform is [13, p.11.15 e.v.]. Deze maximale antennewinst is

$$G_0 = \frac{4 \pi A}{\lambda^2}$$

~

met

A : de geometrische oppervlakte van de apertuur (in vierkante meter),

(2)

 $\lambda\text{=}c/f\text{:}$ de vrije ruimte golflengte van de gebruikte elektromagnetische golven (in meter),

- f : de frequentie van de gebruikte elektromagnetische golven (in Hz) en
- c : de lichtsnelheid (in meter per seconde).

Het quotiënt van de werkelijke antennewinst en de maximale antennewinst is het antenne-rendement of de winstfactor (eng: gain ratio, antenna efficiency):

$$\eta_{\Sigma} = \frac{G_{\Sigma}}{G_{0}} \cdot 100\%$$
 (3)

Een kwaliteitskriterium voor het verschil-patroon is de helling (eng: difference slope, DS) van het patroon in de voorwaartse richting [12]:

$$DS = MAX \begin{vmatrix} \frac{\partial g(\theta_{v}, \phi_{v})}{\partial \theta_{v}} \\ \theta_{v} \end{vmatrix} = 0$$
(4)

meestal uitgedrukt in "per graad" of in "per radiaal". Hierin is $g(\theta_v, \phi_v)$ een complex getal (fasor). De fase van g komt overeen met de fase van het verre veld (op een afstand groter dan twee maal de antenne-diameter in het kwadraat gedeeld door de vrije ruimte golflengte [13, p. 11.11])en het kwadraat van de amplitude van g is de antennewinstfunctie:

$$|g(\theta_{v},\phi_{v})|^{2} = G(\theta_{v},\phi_{v})$$
(5)

of in dB:

 $G_{dB}(\theta_{v},\phi_{v}) = 20.\log|g(\theta_{v},\phi_{v})| = 10.\log|G(\theta_{v},\phi_{v})| dB$ In figuur 6 wordt deze definitie aangegeven. (6)

Figuur 6: Definitie van de helling DS.

Dit kriterium is geschikt voor het satelliet-volgsysteem, omdat bij het volgen de antenne vrijwel precies op de satelliet gericht zal (moeten) staan. Het quotiënt van de werkelijke helling en de maximale helling (^{DS}₀) bij de gegeven apertuur is de hellingsratio (eng: difference slope ratio, DSR) [12]. $DSR = \frac{DS}{DS_0}$ (7)

De helling DS is evenredig met de wortel van het vermogen, uitgezonden of ontvangen op een (zeer) kleine afstand van de hoofdrichting (zie (4)). De hellingsratio DSR kan omgerekend worden naar een "hellingsrendement" op vermogensbasis:

$$\eta_{\Delta} = \left(\frac{DS}{DS_0}\right)^2 \cdot 100\%$$
 (B)

2.1.2. Optimale apertuurverdelingen

Uit de antennetheorie is bekend, dat voor het verre veld van een stralende apertuur geldt [13]: $g(\theta_{v}, \phi_{v}) = \frac{\sqrt{4\pi}}{\lambda} \iint_{A} F(x, y) \cdot \exp(j \cdot \beta \cdot \sin(\theta_{v})) \cdot \frac{\sqrt{4\pi}}{\lambda} \int_{A} F(x, y) \cdot \exp(j \cdot \beta \cdot \sin(\theta_{v})) d\lambda \qquad (9e)$

$$=\frac{\sqrt{4\pi}}{\lambda} \iint_{A} F(r,\phi) \cdot exp(j.\beta.r.sin(\theta_{v}))$$

 $\cos(\phi_v - \phi)) dA$ (9b)

Hierin is

 $\beta = 2\pi/\lambda$: het golfgetal van de vrije ruimte (in radialen per meter).

Verder is F(x,y) (in per meter) de genormeerde complexe veldverdeling over de apertuur, de fase van F komt overeen met de fase van het elektrische veld op de apertuur (ten opzichte van een geschikt gekozen referentie) en de amplitude van F is zodanig genormeerd, dat geldt:

$$|F(x,y)|^{2} = S(x,y)/P_{+}$$
 (10)

met

5(x,y): het vermogen door de apertuur in de zendsituatie, (in Watt per vierkante meter) en P₊ : het totaal uitgezonden vermogen in de zendsi-

tuatie (in Watt). Indien al het uitgezonden vermogen door de apertuur gaat (het "spillover-rendement" is in dat geval 100%) dan geldt

$$\iint_{A} |F(x,y)|^2 dA = 1$$
(11)

In appendix A wordt berekend, dat de optimale somverdeling (maximale antenne-winst) een uniforme verdeling is. Ook wordt berekend, dat de optimale verschilverdeling (maximale helling) lineair is in de richting van de gevoeligheid van het verschilpatroon en constant loodrecht daarop, waarbij het gemiddelde van de verschil-veldverdeling nul is (vanwege de nuldoorgang in de voorwaartse richting). In figuur 7 is dit geïllustreerd met een willekeurige apertuurvorm en de bijbehorende optimale apertuurverdelingen.

Figuur 7: Optimale veldverdelingen over een willekeurig gevormde apertuur, a) de apertuur, b) uniforme somverdeling, c) optimale verschilverdeling, gevoeligheid in de x-richting, d) idem in de y-richting.

De constatering, dat voor een optimaal verschilpatroon de apertuur-veld-verdeling een oneven lineaire functie over de apertuur moet zijn, werd voor het eerst in 1953 gemaakt [16]. Echter noch in dit artikel, noch in latere artikels wordt dit resultaat expliciet berekend. Voor een cirkelvormige apertuur met diameter D . –

valt eenvoudig de optimale som-veldverdeling en de bijbehorende maximale winst te berekenen:

$$F_{\Sigma 0}(x, y) = \frac{2}{D\sqrt{\pi}}$$
 (12)
en

$$G_0 = \left(\frac{\pi D}{\lambda}\right)^2$$
(13)

Voor deze apertuur zijn de optimale verschil-veldverdeling en de bijbehorende maximale helling

$$F_{\Delta O}(x, y) = \frac{B}{D^2 \sqrt{\pi}} \cdot x$$
 (14a)

of in poolcoördinaten

$$\mathbf{F}_{\Delta O} = \frac{8}{D^2 \sqrt{\pi}} \cdot \mathbf{r} \cdot \cos(\phi) \tag{14b}$$

en

$$DS_0 = \frac{1}{2} \left(\frac{\pi D}{\lambda}\right)^2 \quad \text{per radiaal} \tag{15}$$

Aangezien de bundelbreedte van de antenne evenredig is met λ/D [13, p.11.19], neemt, bij toename van de diameter D, de helling DS sterker toe dan de bundelbreedte afneemt. Voor grotere antennes is het dus eenvoudiger om aan bepaalde richtspecificaties (bijvoorbeeld: "de richtfout moet binnende -0.1 dB bundelbreedte blijven") te voldoen, dan voor kleinere antennes!

Verder valt op, dat het apertuur-oppervlak nabij het centrum van de apertuur nauwelijks bijdraagt aan DS, omdat daar $F_{\Delta}(x,y)$ ongeveer gelijk is aan nul. Indien de vorm van het apertuur-oppervlak nog vrij te kiezen is, dan moet er zo min mogelijk oppervlak bij het zwaartepunt van het apertuur-oppervlak liggen, zie figuur 8. Uit het oogpunt van richtnauwkeurigheid, uitgedrukt in graden, is een cirkelvormig oppervlak de slechtst denkbare apertuur-vorm.

Figuur 8: a) ringvormige apertuur, b) cirkelvormige apertuur. De aperturen hebben een gelijk oppervlak, toch is DS voor a) veel groter dan voor b).

Echter een grote apertuur met een groot gat in het midden heeft een smallere hoofdbundel dan een evengroot geconcentreerd antenne-oppervlak, zodat het netto-effect (uitgedrukt in bundelbreedtes) kleiner of wellicht zelfs tegengesteld is. (In [17] wordt berekend, dat het produkt van DS₀ en de -3 dB bundelbreedte voor een rechthoekige apertuur 1% kleiner (!) is dan voor een cirkelvormige apertuur.) Onder andere vanwege deze reden worden bij array-antennes de elementen zo dicht mogelijk bij elkaar geplaatst (een andere reden is het nivo van de zijlussen).

Uitgaande van de optimale apertuur-verdelingen van (12) en (14b) kunnen de verre velden berekend worden. Voor het rekengemak zijn deze meteen uitgerekend voor het algemene geval

 $F_{m}(r,\phi) = C_{m} \cdot F_{m}(r) \cdot F_{m}(\phi)$ (16a)
met

$$F_{m}(r) = r^{m}$$
 (16b)

 $F_{m}(\phi) = \cos(m, \phi)$

(16c)

$$C_{m} = \begin{cases} \left(\frac{2}{D}\right)^{m+1} \cdot \sqrt{\left(\frac{2 \cdot m + 2}{\pi}\right)} & m \neq 0 \\ \frac{2}{D\sqrt{\pi}} & m = 0 \end{cases}$$
(16d)

m=O komt overeen met een som-veld-verdeling, m=1 komt overeen met een verschil-veld-verdeling en m=2 komt overeen met een kruispolarisatie-veld-verdeling.

Met C_m wordt gezorgd, dat ${}^F_m\,(r\,,\phi)$ aan (11) voldoet. In appendix A zijn de stralingsdiagrammen berekend. Het resultaat is

$$g_{m}(\theta_{v}, \phi_{v}) = \frac{\sqrt{4\pi}}{\lambda} \cdot C_{m} \cdot \cos(m \cdot \phi_{v}) \cdot 2\pi \cdot j^{m}.$$

$$\frac{1}{2D} \int_{D} F_{m}(r) \cdot J_{m}(\beta \cdot r \cdot \sin(\theta_{v}) \cdot r dr \qquad (17)$$

$$\begin{cases} \frac{\pi D}{\lambda} \cdot \frac{2 \cdot J_1(u)}{u} & m=0 \end{cases}$$
(18a)

$$= \left\{ \frac{\pi D}{\lambda} \cdot \frac{4 \cdot J_2(u)}{u} \cdot j \cdot \cos(\phi_v) \right\} \qquad m=1 \qquad (18b)$$

$$\left\{\frac{\pi D}{\lambda}, \frac{2 \cdot \sqrt{2m+2} \cdot J_{m+1}(u)}{u}, j^{m} \cdot \cos(m \cdot \phi_{v}) \quad m \ge 1$$
 (18c)

met

$$u = \frac{1}{2} \cdot \beta \cdot D \cdot \sin(\theta_{v}) = \frac{\pi D}{\lambda} \cdot \sin(\theta_{v})$$
 (19)

In figuur 9 zijn het optimale som-stralingsdiagram en het optimale verschil-stralingsdiagram als functie van u weergegeven. Het som-patroon is rotatie-symmetrisch en het verschil-patroon heeft een ϕ -afhankelijkheid $\cos(\phi)$.

Figuur 9: Antennepatronen bij de optimale som- en verschil-veldverdeling over een cirkelvormige apertuur (respectievelijk een uniforme en een oneven lineaire verdeling), $u=\frac{\pi D}{\lambda}.\sin(\theta_v)$.

2.1.3. Reflectorantennes

Een grotere resolutie (grotere antennewinst, kleinere bundelbreedte) wordt volgens (13), (18a) en (19) verkregen door het gebruik van een groter (effectief) antenne-oppervlak. Dit kan verkregen worden door de straling van een belichter met een relatief grote bundelbreedte te laten weerkaatsen op een parabolische reflector [13, H15]. In figuur 10 wordt de geometrie van een parabolische reflector symbolisch weergegeven.

M.O. van Deventer augustus 1987

Figuur 10: Geometrie van een parabolische reflector [13, H15].

Het reflector-oppervlak wordt beschreven met [13, p.15.4]

(20)

(21)

 $x^{2} + y^{2} = 4 \cdot F \cdot z$

of in poolcoördinaten

 $\rho = F/\cos^2\left(\frac{1}{2}\theta\right)$

Hierin is

- F: de brandpuntsafstand van de parabool (in meter),
- ρ: de afstand van een punt op het reflector-oppervlak tot het brandpunt F (in meter),
- $\boldsymbol{\theta}$: de hoek met de hoofdrichting (in graden of radialen) en
- Θ : de openingshoek van de antenne (in graden of radialen), er geldt $0 \leq \theta \leq \Theta$.

Voor de veldverdeling over de opertuur $(z=z_0)$ geldt [13, H15]

$$F(r,\phi) = \frac{1}{F.\sqrt{4\pi}} \cdot \frac{1+\cos(\theta)}{2} \cdot g_{b}(\theta,\phi)$$
(22)

met

$$r=F\cdot\frac{2\cdot\sin\left(\theta\right)}{1+\cos\left(\theta\right)}$$
(23)

-25-

Hierbij is

 $G_{h}(\theta,\phi) = |g_{h}(\theta,\phi)|^{2}$

de winstfunctie van de belichter. (De term $(1+\cos(\theta))/2$ in (22) is de "vrije-ruimte-demping" [13]) In appendix C is een BASIC-programma beschreven, dat uitgaande van een belichterpatroon met (22), (23) en (17) de apertuur-veldverdeling en het verre veld berekent.

(24)

Het is instructief om bij de analyse van reflectorantennes theoretische belichters te gebruiken van de vorm [13, H15]

 $G_{\Sigma}(\theta,\phi) = \begin{cases} G_{\Sigma n} \cdot \cos^{n}(\phi) & 0 \leq \theta \leq \frac{1}{2}\pi \\ 0 & \theta \geq \frac{1}{2}\pi \end{cases}$ (25)

wearbij de winst $G_{\Sigma n} = 2. (n+1)$ bepaald is door de relatie $\pi 2\pi$ $\int \int G(\theta, \phi) . \sin(\theta) d\theta d\phi = 4\pi$ (26)

Met (22), (23), (25) en (9b) kan de antennewinst en daarmee ook de winstfactor η_{Σ} berekend worden als functie van n (n is een maat voor de bundelbreedte van de theoretische belichter) en van de openingshoek \odot . De resultaten zijn weergegeven in figuur 11.

Het blijkt, dat voor iedere belichter een maximum wordt gevonden, dat in de buurt van 80% ligt. Het maximum is een optimum van het product van apertuurrendement en spillover-rendement. Verder wordt opgemerkt, dat het maximale rendement wordt gevonden bij een randbelichting van ca. -10 dB (De randbelichting is $F(r,\phi)$, zoals gegeven in (22), aan de rand van de apertuur gedeeld door de maximale $F(r,\phi)$ op de apertuur).

Figuur 11: De afhankelijkheid van de winstfactor van de antenne-openingshoek en het belichterpatroon [13].

Een goede set theoretische belichters voor het verschil-patroon kan gevonden worden met een suggestie van Powers [21]. Powers merkt op, dat een som-patroon $F_{\Sigma}(x,y)$ tot een azimuth-verschil-patroon $F_{\Delta}(x,y)$ getransformeerd kan worden met

$$\mathbf{F}_{\Sigma}(\mathbf{x},\mathbf{y}) = \text{const.} \mathbf{F}_{\Delta}(\mathbf{x},\mathbf{y}) \cdot \mathbf{x}$$

(27)

Voor transformatie tot een elevatie-verschil-patroon moet x door y vervangen worden. Omdat het verre veld als Fourier-getransformeerde van de apertuur-veldverdeling beschouwd kan worden ((9a), (9b)), komt een vermenigvuldiging van de apertuur-veldverdeling met r overeen met een differentiatie van het verre veld naar u (vergelijk (18a) met (18b):

$$\frac{d}{du} \left(\frac{J_1(u)}{u} \right) = -\frac{J_2(u)}{u}$$
(28)

[18, p.361]).

Vanwege deze reden zijn de resultaten van het oorspronkelijke som-patroon goed vergelijkbaar met die van het verschil-patroon (qua winst, helling, bundelbreedte en zijlusnivo's). Analoog hieraan kan het som-belichter-patroon getransformeerd worden naar een verschil-belichter-patroon: $g_{\Delta}(\theta,\phi) = \text{const.} g_{\Sigma}(\theta,\phi) \cdot \sin(\theta) \cdot \cos(\phi) \qquad (29)$ Uit (25), (24) en (29) volgt $g_{\Delta}(\theta,\phi) = \begin{cases} g_{\Delta n} \cdot \cos^{\frac{1}{2}n}(\theta) \cdot \sin(\theta) \cdot \cos(\phi) & 0 \le \theta \le \frac{1}{2}\pi \\ 0 & \theta \ge \frac{1}{2}\pi \end{cases} (30)$

waarbij de constante $g_{\Delta n} = \sqrt{2 \cdot (n+1) \cdot (n+3)}$ weer bepaald is met (5) en (26). In figuur 12 zijn het som-patroon (25) en het verschil-patroon (30) van de belichter geschetst voor n=4.

Figuur 12: Theoretische som- en verschil-belichterpatronen voor n=4.

In appendix B wordt met (9a), (22), (23) en (30) voor verschillende n het hellingsrendement als functie van ⊖ berekend. De resultaten zijn weergegeven in figuur 13.

Figuur 13: De afhankelijkheid van het hellingsrendement van de antenne als functie van de antenne-openingshoek en het belichter-patroon.

Ook bij verschil-patronen kan het (hellings)rendement beschouwd worden als het produkt van apertuur-rendeen spillover-rendement (en andere rendementen, ment zoals het polarisatie-rendement). Het spillover-rendement is (in de zendsituatie) de hoeveelheid vermogen, die door de apertuur gaat gedeeld door het totale door belichter in dat verschil-patroon uitgezonden verde Het spillover-rendement is evenredig met mogen. het hellingsrendement, omdat de laatste ook een getal OP vermogensbasis is (zie (8)). Het apertuur-rendement aan in hoeverre de veldverdeling over de geeft aperovereenkomt met de optimale tuur verschil-apertuurverdeling. Het blijkt, dat voor iedere belichter een maximum wordt gevonden met een hellingsrendement van ongeveer 70%. Het was te verwachten, dat het hellingsvoor een verschil-patroon (70%) kleiner rendement is dan de winstfactor voor een som-patroon (80%), omdat het verschil-patroon het vermogen meer bid aan de geconcentreerd randen is, zodat er relotief meer spillover is. Vanwege dezelfde reden is bij gelijke n de optimale antenne-openingshoek voor het verschilpatroon groter dan die voor het som-patroon.

Het blijkt, dat de randbelichting van de apertuur voor de optimale openingshoek (voor het verschil-patroon) telkens ongeveer -5.5 dB is. De randbelichting is hier het maximum van de veldsterkte van de verschil-verdeling op de apertuur gedeeld door het maximum van de veldsterkte van de verschil-verdeling aan de rand van de apertuur. Tevens blijkt dat maximum van de veldsterkte zich telkens ongeveer midden tussen het centrum en de rand van de apertuur te bevinden.

In hoofdstuk 3 wordt bepaald, dat er bij de "multimode"-uitvoering en een lineair gepolariseerd satelliet-baken-signaal (zoals het 12,5 GHz baken van de satelliet Olympus) gerekend moet worden met een polarisatie-rendement van 50%. (Bij een circulair gepolariseerd satelliet-baken-signaal moet gerekend worden met een polarisatie-rendement van 25%.) Hierdoor wordt voor de theoretische verschil-belichter het maximale hellingsrendement ongeveer $\eta_{\Delta}=70$ %.0,5=35%

In figuur 14 wordt de geometrie van de klassieke Cassegrain-antenne weergegeven [13, H15].

Figuur 14: Geometrie van de klassieke Cassegrainantenne.

De subreflector wordt beschreven met [13, p.15.16]

$$r_{s} = (F_{s1} + F_{s2}) \cdot \frac{e^{2} - 1}{2 \cdot e \cdot (e \cdot \cos(\theta_{s}) + 1)}$$
(31)

M.O. van Deventer augustus 1987

. . . Hierin is F_{s1}: de lange brandpuntsafstand van de hyperbool-

- reflector (in meter, reëel brandpunt), F_{s2}: de korte brandpuntsafstand van de hyperbool-
- reflector (in meter, virtueel brandpunt), r : de afstand van het virtuele brandpunt tot
- een punt op het subreflector-oppervlak (in meter),
- θ_s : de hoek van een punt op het subreflector-oppervlak met de hoofdas ten opzichte van het virtuele brandpunt (in graden of radialen) en
- : de eccentriciteit van de subreflector (dimensiee loos, e>1)

Voor het vereenvoudigen van stralingsdiagram-berekeningen aan Cassegrain-antennes bestaan er twee equivalentie-concepten [20]:

- -Het virtuele-belichter-concept: hierbij worden de subreflector en de belichter vervangen door een virtuele belichter met dezelfde stralings-eigenschappen.
- -Het equivalente-parabool-concept: hierbij worden de hoofdreflector en de subreflector vervangen door een equivalente parabool-reflector.

Het equivalente-parabool-concept is het eenvoudigst uitvoerbaar. Dit concept mag alleen gebruikt worden indien de apertuur-integratie methode is toegestaan, dat wil zeggen voor kleine $\theta_{\rm v}.$ In figuur 15 is het equivalente-parabool-concept geschetst.

Figuur 15: Het equivalente-parabool-concept.

Voor de brandpuntsafstand van de equivalente parabool geldt

$$F_e = \frac{e+1}{e-1}, F = M, F$$
 (32)

Het equivalente-parabool-concept is bij alle verre veld berekeningen gebruikt.

2.2. Meting van de stralingsdiagrammen van de stralingsdiagrammen van de 3 m Cassegrain-antenne met het 11 GHz ECS-baken

2.2.1. Meetopstelling

Aangezien de satelliet Olympus bij het uitvoeren van dit afstudeerwerk nog niet gelanceerd was, zijn er verre-veld-metingen gedaan met de behulp van een baken-signaal van de satelliet ECS. Deze satelliet bevindt zich in het equatoriale vlak op 10 graden oosterlengte [23] (gezien vanaf Eindhoven: elevatie=31 graden en azimuth=174 graden rondgaand van noord via oost). De satelliet zendt een bakensignaal uit met een frequentie van 11,451082 GHz, een polarisatierichting evenwijdig aan de evenaar en een EIRP groter dan 7 dBW [23] (Gemeten bij ingebruikname: 14 dBW [24]).

De metingen zijn uitgevoerd met een 3 meter Cassegrain-antenne met [22]: D = 3,048 meter F/D = 1/3D_s = 0,3048 meter e = 1,273 $M = \frac{e+1}{e-1} = 8,32$ $F_e = M.F = 8,454$ meter.

Het antenne-systeem is geschetst in figuur 16. In figuur 17 is de meetopstelling weergegeven.

Figuur 16: Geometrie van de 3 meter Cassegrain-antenne.

Figuur 17: Meetopstelling met de 3 meter Cassegrainantenne.

belangrijk onderdeel is de "mode-uitkoppelaar". Een deze microgolfschakeling (nader beschreven in Met hoofdstuk 3 en hoofdsuk 4) worden de verschil-signalen voor de azimuth- en de elevatie-richting uitgekoppeld. Daarna volgt een andere uitkoppelaar, die onder andere het som-signaal uitkoppelt. Met een schakelaar wordt gekozen tussen het som-signaal en een verschilsignaal. De metingen zijn niet precies in de azimuthen elevatie-richting uitgevoerd, omdat de polarisatierichting van het baken, gezien vanuit Eindhoven, niet precies horizontaal is, zie figuur 18.

M.O. van Deventer augustus 1987

174° azimuth

Figuur 18: Definitie van "azimuth" en "elevatie".

2.2.2. Verwachtingen

Met het computer-programma van appendix C zijn, uitgaande van de berekende belichter-diagrammen (zie paragraaf 3.1.3.) de verre veld patronen berekend, deze zijn weergegeven in figuur 19. Het som-patroon is rotatie-symmetrisch en het verschil-patroon heeft een ϕ -afhankelijkheid cos(ϕ).

Volgens de berekening is de antennewinst $G_{\Sigma}(0,0) = 49,72$ dB en de helling (4), (5), (6) DS=628 per graad (=3,60 E4 per radiaal). Met (13), (15), (3) en (8) volgt $G_0=51.3$ dB en $DS_0=6.69$ E5 per radiaal $n_{\Sigma}=G_{\Sigma}(0,0)/G_0=71$ % (=-1,5 dB) $n_{\Delta}=(DS/DS_0)^2 = 29$ % (=-5,4 dB)

In tabel 20 zijn de rendementen verder uitgesplitst.

-34-

Figuur 19: Berekende stralingsdiagrammen voor de 3 m Cassegrain-antenne met de ECS-belichter op 11,451 GHz (lijsten: zie appendix D). a): amplitude, b): fase, Σ: som-patroon, Δ: verschil-patroon.

Tabel 20: Berekende rendementen voor de 3 meter Cassegrain-antenne met de ECS-belichter op 11,451 GHz.

	Patroon	polari- satie- rende- ment	aper- tuur- rende- ment	spill- over- rende- ment	belich- tings- rende- ment
	som	100% ×	84%)	× 85% =	71% ^G ∑=49,72 dB
	verschil	50% ×	78% ;	× 74% =	29% DS=628 per graad

2.2.3. Resultaten

In de figuren 21 en 22 zijn de gemeten stralingsdiagrammen in de "azimuth"- en de "elevatie"-richting weergegeven.

.

Figuur 21: Gemeten stralingsdiagrammen in de "azimuth"-richting.

Figuur 22: Gemeten stralingsdiagrammen in de "elevatie"-richting.

De vorm van de gemeten som-patronen (figuur 21 en 22) komt redelijk goed overeen met de berekende vorm (figuur 19), alleen de nivo's van de eerste zijlus zijn hoger dan verwacht. Het gemeten "elevatie"-verschil-patroon is asymmetrisch. Deze asymmetrie wordt veroorzaakt door de asymetrie in het elevatie-belichter-patroon (zie paragraaf 3.2.2.). Afgezien van de asymmetrie bij het "elevatie"-verschil-patroon komt de vorm van de gemeten verschil-patronen goed overeen met de berekende vorm.

De gemeten relatieve nivo's ten opzichte van de sompatronen kloppen niet met de berekende: de gemeten verschil-patronen liggen 2 & 3 dB onder het berekende verschil-patroon (vergelijk figuur 19 met de figuren 23 en 24). Dit verschil kan niet verklaard worden met verliezen in de mode-uitkoppelaar, omdat de uitkoppeling van de verschil-patronen slechts 0,3 dB slechter is dan die van het som-patroon (zie paragraaf 3.2.2.).

Drie andere hypotheses zijn beschouwd:

- -misaanpassing van de LNA (Low Noise Amplifier) op de verschil-uitkoppelaar,
- -steun-blokkering (niet meegenomen in de berekeningen, dit in tegenstelling tot de subreflector-blokkering) en

-oppervlakte-fouten in het reflector-oppervlak.

Na de afregeling van de verschil-uitkoppelaars bleken deze weinig vermogen te reflecteren (evenals de somuitkoppelaar), zodat een eventuele misaanpassing even sterk in het som-signaal als in de verschil-signalen aanwezig is. De eerste hypothese kan het verschil van 2 å 3 dB niet verklaren.

De tweede hypothese is ook niet geldig, omdet door steun-blokkering het som-patroon relatief lager uitvalt en niet de verschil-patronen. (beschouwing: zie appendix E).

derde hypothese is waarschijnlijk de juiste. Een De veelgebruikte vergelijking voor de berekening van de invloed van oppervlakte-fouten op de antenne-winst is [13, p. 15.32] $\eta_{of} = 20.\log(\exp(-4\pi\epsilon/\lambda))$ dB

In deze vergelijking is

- n_{of}: het quotiënt van de verwachtingswaarde van de antenne-winst gedeeld door de antenne-winst, die zou gelden bij afwezigheid van oppervlaktefouten,
- ε : de standaard-deviatie van het verschil tussen de hoogte van het werkelijke antenne-oppervlak (met oppervlakte-fouten) en het antenne-oppervlak bij afwezigheid van oppervlakte-fouten (in meter) en
- : de vrije ruimte golflengte (in ons geval 0,026 λ meter).
- Voor ϵ =1 mm volgt η_{of} = -4,2 dB, voor ϵ =2 mm volgt η_{of} = -8,4 dB en

M.O. van Deventer augustus 1987

(33)

voor ε =5 mm volgt η_{of} =-21,0 dB.

De oppervlakte-fouten in de 3 m schotel bleken echter niet stochastisch van aard, maar duidelijk aanwijsbaar te zijn. Namelijk op de plaatsen, waar de vier steunen door het oppervlak steken, bevinden zich "bobbels" met een hoogte van 5 mm en een oppervlak van 10x15 cm. De invloed van deze bobbels op de verschil-patronen is veel groter dan die op het som-patroon, omdat belichter-verschil-patronen een maximum hebben bij deze plaatsen, terwijl het belichter-som-patroon meer geconcentreerd is op het centrum van de apertuur.

Ter controle van de derde hypothese zijn met behulp van een "standard gain horn" de absolute waarden van de antenne-winsten gemeten. Voor het som-patroon werd een winst van 39 dB \pm 1 dB gemeten (berekende waarde: 49,72 dB), voor het azimuth-verschil-patroon werd een winst (bij θ_v =0,4 graden) van 31 dB \pm 1 dB gemeten (berekende waarde 44,09 dB). Er is dus een verschil van ongeveer 11 dB in het som-patroon en een verschil van 13 dB in het verschil-patroon. Deze verschillen door oppervlakte-fouten waren te verwachten. Dankzij de symmetrische ligging van de oppervlakte-fouten worden de vormen van de antenne-patronen niet te ernstig verstoord.

Geconcludeerd mag worden, dat de 3 meter Cassegrain antenne niet meer geschikt is voor gebruik op frequenties boven 10 GHz.

2.3. Het antennesysteen voor Olympus-ontvangst

2.3.1. Geometrie

De propagatie-metingen met de satelliet Olympus zullen uitgevoerd worden met een 5,5 meter Cassegrain-antenne met:

D = 5,500 meter F = 1,9325 meter (F/D = 0,3514)D = 0,550 meter e = 1,234

 $M = \frac{e+1}{e-1} = 9,56$ F_=M.F = 18,47 meter.

Het antenne-systeem is geschetst in figuur 23.
HOOFDSTUK 2

Figuur 23: Geometrie van de 5,5 meter Cassegrainantenne.

2.3.2. Verre veld berekeningen

Met het programma van appendix C zijn, uitgaande van de berekende stralingsdiagrammen (zie paragraaf 3.1.3.) de verre veld patronen berekend. Deze zijn weergegeven in de figuren 24 t/m 26 (lijsten: zie appendix D).

Figuur 24: Berekende stralingsdiagrammen voor de 5,5 meter Cassegrain-antenne met de Olympusbelichter op 12,501 GHz, a): amplitude, b): fase, Σ: som-patroon, Δ: verschil-patroon, X: kruispolarisatie-patroon.

Figuur 25: Berekende stralingsdiagrammen voor de 5,5 meter Cassegrain-antenne met de Olympusbelichter op 19,770 GHz, a): amplitude, b): fase, Co: hoofdpolarisatie-patroon, X: kruispolarisatie-patroon.

Figuur 26: Berekende stralingsdiagrammen voor de 5,5 meter Cassegrain-antenne met de Olympusbelichter op 29,656 GHz, a): amplitude, b): fase, Co: hoofdpolarisatie-patroon, X: kruispolarisatie-patroon.

Het getal X in de figuren geeft de afstand tussen het maximum van het belichter-hoofdpolarisatie-patroon en het maximum van het belichter-kruispolarisatie-patroon aan. De waarde van dit getal voor het complete belichter-systeem en de bijbehorende microgolf-techniek is nog niet bekend, zodat alleen relatieve waarden gegeven kunnen worden.

Evenals voor som- en verschil-patronen kan voor kruispolarisatie-patronen een belichtingsrendement gedefiniëerd worden, dat het produkt is van apertuur-rendement en spillover-rendement. Het spillover-rendement geeft aan welk deel van het vermogen van de belichter, uitgezonden als kruispolarisatie, door de apertuur Het apertuur-rendement is het quotiënt van het gaat. vermogen, uitgezonden op een kleine afstand van de hoofd-richting en dat zelfde vermogen voor een "optimale" kruispolarisatie-apertuur-verdeling (vergelijking (16) met m≖2), waarbij het vermogen door de apertuur telkens op 1 genormeerd wordt.

In tabel 27 zijn diverse rendementen en het resulterende belichtingsrendement weergegeven.

HOOFDSTUK 2

Patroon | polari- | aper- | spill- | belich-satie- | tuur- | over- | tingsrende- rende- rende- rende-

Tabel 27: Diverse rendementen voor de 5,5 meter Casse-grain-antenne met de Olympus-belichter.

	ment		ment		ment		ment	
som 12,5 GHz	100%	×	84,0%	×	88,8%	=	74,3%	G_{Σ} =55,87 dB
verschil 12.5 GHz	50%	×	78,0%	×	76,2%	=	30,9%	DS=2,52 E3
kruis 12,5 GHz	1		74,8%	×	64,8%	=	48,5%	-
hoofd 20 GHz	100%	x	84,8%	×	92,2%		78,1%	G _∑ ≖60,06 dB
kruis 20 GHz	-		74,0%	×	77,1%	-	57,1%	-
hoofd 30 GHz	100%	×	85,5%	×	93,5%	n	80,0%	^G Σ ≖63,68 dB
kruis 30 GHz	-		76,2%	×	83,4%	Ŧ	63,5%	-

3. Multimode uitvoering van de som-en-verschil-methode

3.1. Principe van de multimode uitvoering

In hoofdstuk 2 is behandeld hoe, uitgaande van de stralingsdiagrammen van de belichter de verre-veldpatronen van het totale antenne-systeem berekend kunnen worden. Bij de multimode-uitvoering van de somen-verschil-methode wordt de belichter gevoed vanuit een golfpijp, waarin verschillende modes (trillingswijzen van het elektro-magnetische veld) kunnen optreden. Een mode met de geschikte symmetrie wordt genomen als som-mode en een mode met de geschikte antisymmetrie wordt genomen als verschil-mode. Met de modeuitkoppelaar (beschreven in hoofdstuk 4) worden de som- en verschil-signalen van elkaar gescheiden, zie figuur 28.

Figuur 28: Multimode uitvoering van de som-en-verschil-methode.

3.1.1. De modes in een ronde golfpijp als som- en verschil-signaal

De velden in een golfpijp met een cirkelvormige doorsnede kunnen het eenvoudigst beschreven worden met poolcoördinaten, zie figuur 29.

In [25] wordt berekend, dat er zich twee typen golven kunnen voortplanten door een ronde golfpijp: -Transversaal Magnetische golven (afgekort TM-golven

of E-golven) en -Transversaal Elektrische golven (afgekort TE-golven

of H-golven). Bij de TE-golven is het elektrische veld in de zrichting nul (Ez=0), bij de TM-golven is het magnetische veld in z-richting nul (Hz=0). Bij iedere mode kunnen de veldcomponenten (Er, E ϕ , Ez, Hr, H ϕ , Hz) uitgeschreven worden als het produkt van een r-afhankelijkheid, een ϕ -afhankelijkheid en een z-afhankelijkheid:

const.R(r). $\Phi(\phi)$.Z(z)

De indices m>=O en n>O van de TMmn- en de TEmn-modes geven respectievelijk de ϕ -afhankelijkheid en de r-afhankelijkheid aan.

(34)

```
Voor de r-afhankelijkheid geldt

R(r) = J_m (X_m \cdot \frac{r}{a}) (35a)
```

of $R(r) = J_{m}^{+}(X_{mn}^{+}, \frac{r}{a})$ (35b)

afhankelijk van de mode en de veldcomponent. $-J_m^{(u)}$ is de Besselfunctie van u van de orde m en de eerste soort. $-J'_m^{(u)}$ is de afgeleide van $J_m^{(u)}$ naar u.

M.O. van Deventer augustus 1987

Voor de ¢-afhankelijkheid geldt $\Phi(\phi) = \frac{\sin(m, \phi)}{\cos(m, \phi)}$ (36)Voor de z-afhankelijkheid geldt $Z(z) = \exp(j.(\omega t - kz))$ (37) λ is de vrije ruimte golflengte en k is de propagatieconstante (golfgetal) van de gegeven mode. De golflengte van de golf in de golfpijp is $\lambda_{q} = 2\pi / k = \lambda / \sqrt{1 - (\lambda / \lambda_{q})^{2}}$ (38) Hierin is λ_g de zogenaamde afsnijgolflengte van de mode, als de vrije-ruimte-golflengte van een golf groter is dan de afsnijgolflengte, dan kan de golf zich niet door de golfpijp voortplanten. Voor de afsnijgolflengte geldt $\lambda_c = \frac{2\pi}{x_m r} \cdot a$ TM-modes (39a) $\lambda_c = \frac{2\pi}{x_{mn}}$.a TE-modes (39b)Hierin zijn X en X' de n-de oplossing van respectievelijk $J_{m}(X) = 0$ (40a) $J_{m}^{'}(X) = 0$ (40b)

In figuur 30 zijn de velden van de TM01-, de TM11-, de TM21-, de TE01-, de TE11- en de TE21-mode in een doorsnede van een ronde golfpijp weergegeven. Vergelijkingen voor de beschrijving van de veldcomponenten van de verschillende modes worden gegeven in appendix F. In tabel 31 zijn de modes gerangschikt naar afsnijgolflengte.

- Figuur 30: Velden van verschillende modes in een ronde golfpijp (getrokken lijnen: E-veldlijnen, stippellijnen: H-veldlijnen) [25, p.68 en p.71].
- Tabel 31: Afsnijgolflengte van verschillende modes in een ronde golfpijp. (a is de straal van de golfpijp)

Mode	x _{mn}	x mn	λ _c	
TE11		1,841	3,413	
TMO1	2,405	·	2,613	. а
TE21		3,054	2,057	. а
TEO1		3,832	1,640	. в
TM11	3,832		1,640	. в
TE31		4,201	1,496	. a
TM21	 5,136		1,223	. 8

Geschikte som- en verschil-modes worden gevonden door de velden van de verschillende modes in één polarisatie-richting (namelijk de polarisatie-richting van het satelliet-baken) te beschouwen. In figuur 32 wordt dit geschetst voor de TE11-, de TMO1-, de TE21-, de TEO1-, de TM11- en de TM21-mode, voor vertikale lineaire polarisatie. Voor de modes met m>D is dit gedaan voor twee standen van het veld, omdat het veld niet rotatie-symmetrisch is.

Figuur 32: Schets van de y-component van het E-veld bij verschillende modes in een ronde golfpijp. Uit figuur 32 valt eenvoudig af te lezen, dat de TE11mode de geschikte symmetrie heeft als som-mode en dat de TMD1-mode, de TE21-modes en de TED1-mode de ge~ schikte antisymmetrie hebben als verschilmodes. Verder valt in te zien, dat de TMD1-mode alleen gevoelig 19 in de polarisatie-richting van het baken-signaal en niet in de andere polarisatie-richting (loodrecht daarop), waardoor de TM01-mode principiëel ongeschikt is voor het volgen van een lineair gepolariseerd baken [26]. De TMO1-mode is wel geschikt voor het volgen van een elliptisch of circulair gepolariseerd baken, omdat daarbij de momentane polarisatie-richting ronddraait. Uit het faseverschil van het TMO1-verschil-signaal en het som-signaal kan dan de richting van de satelliet ten opzichte van de hoofdas bepaald worden en met de verhouding in amplitude kan de afstand in graden bepaald worden. Analoog hieraan is de TEC1-mode alleen gevoelig loodrecht op de polarisatierichting van het baken-signaal. Ook de TE21-modes zijn afzonderlijk niet geschikt voor het volgen van een lineair gepolariseerd baken-signaal.

De twee orthogonale TE21-modes zijn samen wel geschikt voor het volgen van lineair gepolariseerde bakensignalen [27]. Met een eenvoudige berekening is aan te tonen, dat de gevoeligheid van de "azimuth-gevoelige" TE21-mode even groot is als die van de "elevatiegevoelige" TE21-mode (zie appendix F).

Voor een multimode monopuls richtsysteem worden meestal de TMO1-mode (voor niet lineaire polarisatie) of de TE21-modes (voor lineaire polarisatie) als verschil-modes gebruikt. De TEO1-mode wordt weinig gebruikt vanwege de kleine afsnijgolflengte van deze mode.

In het voorafgaande werd al impliciet een nadeel van een multimode-systeem genoemd, namelijk in de zendsituatie wordt de helft van het vermogen met de verkeerde polarisatie-richting uitgezonden. Aangezien een multimode-systeem reciprook is, geldt ook voor de ontvang-situatie een polarisatie-rendement van SO%. (In alle artikelen in de literatuur-opgave over multimode-systemen wordt van die reciprociteit uitgegaan) Indien de satelliet, waarop gericht gaat worden een circulair gepolariseerd baken-signaal uitzendt, moet gerekend worden met een polarisatie-rendement van 25%, omdat er zowel bij de zender (het baken) als bij het multi-mode-systeem een polarisatie-rendement van 50% geldt. Een bekende manier om een polarisatie-rendement te vergroten is het optellen van de signalen van verschillende modes. Door optelling van de TE11-mode en de TM11-mode met de juiste verhouding in amplitude en fase kan een somsignaal met een polarisatierendement van theoretisch 100% bereikt worden [28], zie figuur 33. In figuur 34 is een combinatie van de TM01mode, de TE21-modes en de TE01-mode met een hoger polarisatie-rendement geschetst.

Figuur 33: Combinatie van de TE11- en de TM11-mode in een conische hoorn [29, H15] (getekend is de transversale component van het E-veld).

Voor het verkrijgen van verschil-signalen met een polarisatie-rendement van 100% moeten met de TM01mode, de TE21-modes en de TE01-mode ook de TM21-modes gebruikt worden [31, p.7.27]. In appendix H zijn een aantal voorbeelden (afkomstig uit de literatuur) van het combineren van verschil-modes weergegeven. In de praktijk blijkt het combineren van verschilmodes zelden gebruikt te worden, omdat het de microgolftechniek bij het antenne-systeem nog complexer maakt. Meestal, ook in dit verslag, wordt een polarisatie-rendement van 50% of 25% (impliciet) geaccepteerd als een eigenschap van een multimode-systeem.

Er is aanvankelijk gekozen voor het gebruik van de twee TE21-modes als verschil-modes, omdat het 12,5 GHz baken-signaal van de satelliet Olympus (het bakensignaal, waarop gericht gaat worden) lineair gepolariseerd is. (Later bleek, dat het gebruik van de TMO1mode als elevatie-verschil-mode en een TE21-mode als azimuth-verschil-mode bepaalde voordelen te bieden heeft boven het gebruikt van de beide TE21-modes, zie paragraaf 4.3.3.) Lineaire bakenpolarisatierichting

Figuur 34: Vergroting van het polarisatie-rendement door combinatie van modes. a) Gevoelig in de polarisatie-richting, b) gevoelig loodrecht op de polarisatie-richting [36, p.54] (getekend is de transversale component van het E-veld).

3.1.2. Een gegroefde conische hoorn als belichter.

Een open golfpijp kan als belichter gebruikt worden in een antenne-systeem met een enkele reflector [8], [32], maar in een Cassegrain-systeem is een belichter met een smallere bundel nodig. Vaak wordt hiertoe een gegroefde conische hoorn gebruikt, zie figuur 35.

Figuur 35: Doorsnede van een gegroefde conische hoorn [35].

De hoorn wordt gekarakteriseerd door de lengte R_a , de openingshoek θ_C (dit is de helft van de tophoek van de hoorn), de groefdiepte d en de groefperiodiciteit (dit is het aantal groeven per meter).

Voor de goede werking van de hoorn moet gelden, dat de groeven een capacitieve impedantie hebben [11]:

 $(2.n+1).\frac{1}{4}\lambda \leq d \leq (2.n+2).\frac{1}{4}\lambda$ (n=0, 1, 2, 3,...) (41)

De groeven zorgen voor een speciale anisotrope randvoorwaarde. De groefperiodiciteit dient groter te zijn dan vier groeven per vrije ruimte golflengte en is verder niet van invloed op de werking.

In een ideale gegroefde hoorn kunnen er twee soorten modes optreden (analoog aan de modes in een ronde golfpijp): de HEmn-modes en de EHmn-modes. Beide kunnen beschouwd worden als een gebalanceerde combinatie van een TMmn-mode en een TEmn-mode. In de HEmnmode hebben de TEmn-mode en de TEmn-mode gelijke amplitudes en een gelijke fase, in de EHmn-mode gelijke amplitudes en een tegengestelde fase [35], [29, p. 15-31]. De gebalanceerde combinaties van de TE11-mode en de TM11-mode zijn geschetst in figuur 36. Coumans [9, p.11] heeft berekend, dat voor het transversale deel van het E-veld van een HEmn-mode geldt:

$$\begin{pmatrix} E_{\theta} \\ E_{\phi} \end{pmatrix} = f_{mn}(\theta) \qquad \begin{pmatrix} -\cos(m,\phi) \\ \sin(m,\phi) \end{pmatrix}$$
 (42)

Hierin is $f_{mn}(\theta)$ een in [9] nader beschreven functie. Deze velden kunnen met een coördinaten-transformatie [36, p.101] omgezet worden in een hoofdpolarisatie- en een kruispolarisatie-component in de apertuur (Ex en Ey):

$$\begin{pmatrix} \mathbf{E}_{\mathbf{x}} \\ \mathbf{E}_{\mathbf{y}} \\ \mathbf{y} \end{pmatrix} = - \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix} \cdot \begin{pmatrix} \mathbf{E}_{\theta} \\ \mathbf{E}_{\phi} \end{pmatrix}$$
 (43)

Het hierbij gebruikte coördinaten-stelsel is weergegeven in figuur 37.

Figuur 36: a) De (gewenste) HE11-mode en b) de (ongewenste) EH11-mode als combinaties van de TE11-mode en de TM11-mode (geschetst is het transversale deel van het E-veld).

Figuur 37: Gebruikt coördinaten-stelsel voor de kruispolarisatie-berekeningen.

Invullen van (42) in (43) levert

É,		<pre>cos((m-1).φ)</pre>	
E	$= f_{mn}(\theta)$.	-sin((m-1).φ)	(44)
		l	

Uit (44) valt in te zien, dat voor m=1 (HE11-mode, som-mode) er geen kruispolarisatie is en dat de veldverdeling rotatie-symmetrisch is. Verder is voor m=0 en m=2 (verschil-mode) de ϕ -afhankelijkheid van Ex cos(ϕ) en is het polarisatie-rendement 50% (bij lineaire polarisatie van het zender-signaal). In praktische situaties kan er wel kruispolarisatie optreden, doordat de TE11-mode in de ronde golfpijp naast de gewenste HE11-mode ook de ongewenste EH11-mode in de gegroefde hoorn aanstoot (bijvoorbeeld doordat de diameter van de overgang van de gladde golfpijp naar de gegeroefde hoorn te groot is of doordat de groefperiodiciteit te klein is). Het stralingsdiagram van de EH11-mode komt overeen met het kruispolarisatie-patroon van een gegroefde hoorn [67].

Coumans heeft een computerprogramma geschreven, dat voor de HEmn-modes de stralingsdiagrammen berekent [9]. Het programma kan ook gebruikt worden voor de EHmn-modes, omdat de Ex-component van de EHmn-mode gelijk is aan die van de HEm+2,n-mode. De veldcomponenten van het elektrische veld van de HEmn-mode kunnen namelijk geschreven worden als [9] HOOFDSTUK 3

-54-

$$\begin{pmatrix} E_{x} \\ E_{y} \\ P \end{pmatrix} = f_{mn}(r) \cdot \begin{pmatrix} \sin((m-1), \phi) \\ \cos((m-1), \phi) \end{pmatrix}$$
(45)

en die van de EHmn-mode als [66]

$$\begin{pmatrix} E_{x} \\ E_{y} \end{pmatrix} = g_{mn}(r) \cdot \begin{pmatrix} \sin((m+1), \phi) \\ -\cos((m+1), \phi) \end{pmatrix}$$
(46)

waarbij volgens [31, p. 7.27] geldt

 $f_{m+1,n}(r) = g_{m-1,n}(r)$ (47)
In figuur 38 zijn ter illustratie van dit gegeven de

In figuur 38 zijn ter illustratie van dit gegeven de EH11-mode en de HE31-mode geschetst.

Figuur 38: Illustratie van de overeenkomst tussen de EH11-mode en de HE31-mode (geschetst is de transversale component van het E-veld).

Een probleem bij (gegroefde) hoorns is dat het fasecentrum meestal niet samenvalt met de apex van de hoorn en zich niet op een vaste plaats in de hoorn bevindt. Het fasecentrum is een virtueel punt in de hoorn, waar (bolvormige) elektro-magnetische golven vandaan (schijnen te) komen. De plaats van het fasecentrum variëert onder andere met de frequentie en de afstand tot de hoorn [36, p.125]. Vaak geldt dat hoe verder van de hoorn af het stralingsdiagram bepaald wordt, hoe verder het fasecentrum naar de voorkant van de hoorn schuift. Dit diffractie-verschijnsel wordt geïllustreerd in figuur 39.

Figuur 39: Illustratie van het diffractie-verschijnsel bij hoorn-antennes.

Vanwege deze reden is het nodig een gegeven stralingsdiagram van een hoorn ten opzichte van een bepaald punt (bijvoorbeeld de apex) te kunnen transformeren naar een stralingsdiagram rond een ander punt (bijvoorbeeld het fasecentrum). Een methode hiervoor wordt gegeven door Gelissen [34], zie figuur 40.

Het verband tussen de verschillende variabelen wordt gegeven met de "sinusregel":

$$\frac{\sin(\delta\theta)}{\delta \mathbf{F}} = \frac{\sin(\theta_{c})}{\mathbf{F}} = \frac{\sin(\theta_{a})}{\mathbf{F} - \delta \mathbf{F} + \delta}$$
(48)

Voor het stralingsdiagram rond C geldt

$$g_{c}(\theta_{c},\phi) = g_{a}(\theta_{a},\phi) \cdot \frac{F-\delta F+\delta}{F} \cdot \exp(j.\beta.\delta)$$
 (49)

Hierin is weer $G(\theta,\phi) = |g(\theta,\phi)|^2$ de antennewinst-functie.

Figuur 40: Transformatie van de oorsprong van een stralingsdiagram van punt A naar punt C.

Een goed inzicht in de werking van de gegroefde conische hoorn (voor het som-patroon) kan verkregen worden met de resultaten van MacA. Thomas [35]. De belangrijkste parameter in zijn verhaal is Δ/λ (definitie van Δ : zie figuur 35).

Voor kleine Δ/λ (kleiner dan 0,4) is gevonden, dat de bundelbreedte vooral door de apertuurmaat D/λ wordt bepaald en daarom frequentie-afhankelijk is. Verder beweegt het fasecentrum zich naar de apex voor toenemende Δ/λ (zie figuur 41). Deze hoorns worden smalbandige hoorns genoemd.

Figuur 41: Afstand van het fasecentrum tot de apex van een smalbandige gegroefde hoorn ten opzichte van de hoornlengte R_a [35].

Voor grote Δ/λ (groter dan 0,75) wordt de bundelbreedte vooral bepaald door de openingshoek van de hoorn θ_0 en het fasecentrum bevindt zich bij de apex van de hoorn. Deze hoorns gedragen zich vrijwel frequentieonafhankelijk (binnen de door (41) gegeven frequentiegebieden) en worden breedbandige hoorns (ook wel scalaire hoorns) genoemd.

Deze resultaten zijn geldig voor de som-mode (HE11mode) in het verre veld (op een afstand groter dan $2D^2/\lambda$ [13, p. 11.11]. Indien de subreflector zich dichter bij de hoorn bevindt, dan zal het fasecentrum dichter bij de apex liggen (zie figuur 39). Voor de verschil-mode (HE21-mode) en de kruispolarisatie-mode (EH11-mode) zal het gedrag meer in de richting van een smalbandige hoorn zijn dan voor de som-mode (HE11mode). De afsnijgolflengte van deze hogere modes is namelijk kleiner dan die van de hoofd-mode, waardoor de hogere modes "gedrag" vertonen, dat overeenkomst met dat van de hoofd-mode voor een lagere frequentie en dus voor kleinere Δ/λ .

3.1.3. Berekende belichter-diagrammen

Berekeningen zijn gedaan aan twee belichters, zie tabel 42.

Noam		ECS-be	lichter	Olympus-belichter		
Antenne-		3 mete	r Casse-	5,5 meter Casse-		
systeem		grain-	antenne	grain-antenne		
Frequenties		11,451	GHz	12,501 GHz		
•		·		19,770	GHz	
				29.656	GHz	
Openingshoek	е _о	8,0	graden	10,5	graden	
Hoornlengte	R	64,3	cm	73,3	cm	
Groefdiepte	ď	6,55	mm	18,75	mm	
Groefperio-		1 groe	f per	1 groe	f per	
diciteit		4	mm	4	ភាព	
Δ		6,3	mm	12,3	mm	
Apertuur-		·				
diameter	D	18,0	cm	26,7	cm	

Tabel 42: Maten van de gegroefde hoorns.

De parameter Δ/λ is voor deze belichters Δ/λ =0,24 (ECS-belichter, 11,451 GHz), 0,51 (Dlympus-belichter, 12,501 GHz), 0,81 (Dlympus-belichter, 19,770 GHz) en 1,21 (Dlympus-belichter, 29,656 GHz).

Het is duidelijk, dat de ECS-belichter in de catagorie smalbandige belichters valt. Het fase-centrum ligt op 51,4 cm van de apex, indien deze in het verre veld bepaald wordt (op een afstand groter dan $2D^2/\lambda=2,5$ meter), zie paragraaf 3.1.2. De afstand van het faseHOOFDSTUK 3

centrum tot de subreflector moet echter 79,4 cm <u>zijn</u> (zie paragraaf 2.2.1.), zodat het fasecentrum zich dichter bij de apex zal bevinden.

Voor de berekeningen met het programma van Coumans [9] moet de afstand van de apex tot de subreflector bekend zijn. Deze is nog onbekend, omdat de afstand van het fasecentrum tot de apex nog onbekend is. Het fasecen-trum kan op de juiste afstand van de subreflector gevonden worden door het programma van Coumans voor verschillende afstanden tussen de apex en de subreflector de belichter-diagrammen te laten berekenen en voor elk van deze belichter-diagrammen met het algoritme van Gelissen (zie figuur 40) het fasecentrum te zoeken, totdat de juiste afstand van het fasecentrum subreflector is gevonden. Deze bewerkelijke tot de procedure is niet uitgevoerd. Met metingen is bepaald, dat de afstand van het fasecentrum tot de subreflector ongeveer 34 cm is (zie paragraaf 3.2.2.) de afstand van de apex tot de subreflector wordt dan ongeveer 113 cm.

Voor de frequenties 19,770 GHz en 29,656 GHz valt de Olympus-belichter (voor het som-patroon) in de catagorie breedbandige belichters en zal het fasecentrum samenvallen met de apex van de hoorn. Aangezien de som-patronen voor deze frequenties de belangrijkste zijn voor de voorgenomen metingen (zie paragraaf 5.1.2.), zal de apex van de hoorn in het brandpunt van de 5,5 meter Cassegrain-antenne gezet moeten worden. De afstand van de apex tot de subreflector is dan 174,9 cm.

Voor de stralingsdiagrammen op 12,5 GHz en de stralingsdiagrammen van de EH11-mode zal het fase-centrum zich niet in, maar voor de apex bevinden. Dit uit zich in de fase-diagrammen met een afnemende fase voor toenemende hoek θ .

Voor de kruispolarisatie-patronen is telkens gerekend met de HE31-mode en niet met de EH11-mode. Een voorbehoud in de juistheid van deze berekeningen moet gemaakt worden, omdat niet bekend is of de fasecentra van beide modes samenvallen.

De berekende stralingsdiagrammen zijn weergegeven in de figuren 43 t/m 46 (lijsten: zie appendix G).

Figuur 43: Berekend stralingsdiagram rond het fasecentrum van de ECS-belichter voor 11,451 GHz, a): amplitude, b): fase, ∑: HE11-mode, ∆: HE21-mode.

Figuur 44: Berekend stralingsdiagram rond de apex van de Olympus-belichter voor 12,501 GHz, a): amplitude, b): fase, Σ: HE11-mode, Δ: HE21mode, X: HE31-mode (EH11-mode).

Figuur 45: Berekend stralingsdiagram rond de apex van de Olympus-belichter voor 19,770 GHz, a): amplitude, b): fase, Co: HE11-mode, X: HE31-mode (EH11-mode).

Figuur 46: Berekend stralingsdiagram rond de apex van de Olympus-belichter voor 29,656 GHz, a): amplitude, b): fase, Co: HE11-mode, X: HE31-mode (EH11-mode).

Uit het fase-diagram van de ECS-belichter kan herkend worden, dat volgens de berekeningen de afstand van de apex tot het fasecentrum kleiner dan de gemeten 34 cm is, de fase van het sompatroon neemt namelijk toe bij toenemende hoek θ . (Met vergelijking (48) valt te berekenen, dat het verschil slechts zo'n 4 cm is).

Zoals verwacht is de fase van de som-patronen van de Dlympus-belichter voor 19,770 GHz en 29,656 GHz vrij constant. Het is onduidelijk, waarom de kruispolarisatie-patronen zo vreemd verlopen voor de Olympus-belichter voor 19,770 GHz en 29,656 GHz (verwacht was een vloeiender verloop van de amplitude- en fasediagrammen).

3.2. Metingen aan belichters

3.2.1. Meetopstelling

Er is gemeten aan twee gegroefde hoorns: de ECSbelichter en de Olympus-belichter (maten: zie paragraaf 3.1.1.). De metingen aan de belichters zijn uitgevoerd in het antenne-laboratorium van de vakgroep ET (Theoretische Elektrotechniek). In figuur 47 is de gebruikte meetopstelling geschetst. Het referentiesignaal wordt gebruikt voor coherente detectie van het te meten signaal.

Figuur 47: Meetopstelling voor belichter-metingen.

Uit praktische overwegingen (impedantie-aanpassing, plaatsing van de generator, lengte van de kabels) is de gegroefde hoorn als zend-antenne gebruikt. Bij de metingen is telkens de afstand van de meetprobe tot het draaipunt gelijk gesteld aan de afstand van de subreflector tot het tweede brandpunt van het Cassegrain-systeem:

^R_m = 0,794 meter voor de ECS-belichter en ^R_m = 1,749 meter voor de Olympus-belichter.

Door de belichter op de slede naar voren en naar achteren te schuiven en telkens het fasediagram te meten, kan het fasecentrum van de hoorn gevonden worden.

Bij de metingen dienen de belichters zeer goed uitgericht te worden qua hoogte en richting. In figuur 48 is ter illustratie het effect van verkeerd uitgericht meten bij kruispolarisatie-metingen geschetst.

Figuur 48: Effect van verkeerd uitgericht meten bij kruispolarisatie-metingen.

3.2.2. Resultaten

Met de fase-metingen is bepaald, dat het fase-centrum zich bij de ECS-belichter voor de HE11-mode op 34 cm afstand van de apex bevindt en voor de HE21-mode op 46 cm afstand. In figuur 49 zijn de gemeten fase-diagrammen weergegeven (gemeten rond het fase-centrum van de HE11-mode in de "azimuth"-richting).

Figuur 49: Gemeten fase-diagrammen van de ECS-belichter op 11,451 GHz rond het fase-centrum van de HE11-mode in het E-vlak ("azimuth", want het 11,451 GHz baken-signaal van de satelliet ECS is horizontaal gepolariseerd). Σ : HE11-mode, Δ_{az} : HE21-mode.

Uit het feit, dat de fase van het som-patroon ongeveer constant is voor $-10° \le \theta \le 10°$ volgt, dat het draaipunt met het fase-centrum overeenkomt. Uit de afnemende fase van het verschil-patroon kan afgeleid worden, dat het fase-centrum van het verschil-patroon inderdaad verder van de apex ligt dan het fasecentrum van het som-patroon.

De in de "azimuth"- en "elevatie"-richting gemeten amplitude-diagrammen zijn weergegeven in figuur 50 en figuur 51.

-64-

Figuur 50: Gemeten stralingsdiagram van de ECS-belichter op 11,451 GHz rond net fase-centrum van de HE11-mode in het E-vlak ("azimuth", want het 11,451 GHz baken-signaal van de satelliet ECS is horizontaal gepolariseerd). Σ : HE11-mode, $\Delta_{\rm el}$: HE21-mode.

Het gemeten "azimuth"-verschil-patroon en de gemeten som-patronen komen goed overeen met de in paragraaf 3.1.3. berekende patronen. In het "azimuth"-verschilpatroon is een asymmetrie herkenbaar, die duidt op een "in-fase koppeling" met het som-signaal van ongeveer -25 dB (zie paragraaf 4.2.3.). Het nivo van het "azimuth"-verschil-patroon ten opzichte van het som-patroon is bij de metingen 0,2 á 0,3 dB lager dan het berekende nivo. Dit is te wijten aan uitkoppel-verliede "coaxiale-trilholte-uitkoppelaar" zen in (zie hoofdstuk 4), die voor de uitkoppeling van de verschil-signalen gebruikt is. Van de "orthomode-uitkoppelear", die voor de uitkoppeling van het som-signaal gebruikt is, is bekend, dat de verliezen kleiner dan D,2 dB zijn, zodat het uitkoppel-verlies voor het verschil-signaal hooguit 0,5 dB is.

Figuur 51: Gemeten stralingsdiagram van de ECS-belichter op 11,451 GHz rond het fase-centrum van de HE11-mode in het H-vlak ("elevatie", want het 11,451 GHz baken-signaal van de satelliet ECS is horizontaal gepolariseerd). Σ : HE11-mode, Δ_{e1} : HE21-mode.

Bij het "elevatie"-verschil-patroon is de nuldoorgang in de voorwaartse richting "volgelopen", dit duidt op een "quadratuur koppeling" met het som-signaal van ongeveer -25 dB (zie paragraaf 4.2.3.). In de meting van het elevatie-verschil-patroon zijn instabiliteiten opgetreden, waarschijnlijk veroorzaakt door het verspringen van een kabel tijdens de meting.

Bij alle metingen aan de Olympus-belichter is de apex van de hoorn als draaipunt genomen, omdat de fasecentra van de 20 GHz en 30 GHz hoofdpolarisatiepatronen samenvallen met de apex. Er zijn vanwege de beperkte meettijd geen fase-metingen uitgevoerd. Alle hoofdpolarisatie- en kruispolarisatie-patronen zijn direkt aan de belichter gemeten via geschikte overgangen van ronde naar rechthoekige golfpijp. Het 12,5 GHz verschil-signaal is uitgekoppeld met een coaxialetrilholte-uitkoppelaar. De resultaten zijn weergegeven in figuur 52 t/m 55.

Figuur 52: Gemeten stralingsdiagrammen van de Olympusbelichter op 12,501 GHz rond de apex in het H-vlak ("azimuth", want het 12,501 GHz baken-signaal van de satelliet Olympus is vertikaal gepolariseerd). Σ: HE11-mode, Δ_{az}: HE21-mode.

De vormen van het gemeten som-patroon en het gemeten verschil-patroon op 12,501 GHz komen precies overeen met de in paragraaf 3.1.3. berekende vormen. Het nivo van het verschil-patroon ten opzichte van het sompatroon is bij de meting 1,6 dB lager dan het berekende nivo. Aangezien er bij de som-uitkoppelaar geen verliezen zijn geconstateerd is het verlies van de verschil-uitkoppelaar 1,6 dB. Het gemeten verschilpatroon is vrijwel symmetrisch (binnen de meet-nauwkeurigheid). Dit en de "diepte" van de nuldoorgang in de voorwaartse richting duiden op een ontkoppeling van het verschil-signaal met het som-signaal groter dan 50 dB.

Figuur 53: Gemeten stralingsdiagrammen van de Olympusbelichter op 12,501 GHz rond de apex in het 45-graden-vlak, ∑: HE11-mode, X: EH11-mode.

De kruispolarisatie-ontkoppeling van de Olympus-belichter is op 12,501 GHz beter dan 40 dB, dit is voor een gegroefde hoorn een goede waarde. Het is moeilijk het gemeten kruispolarisatie-patroon te vergelijken met het berekende, onder andere omdat de invloed van reflecties in de meetkamer bij kruispolarisatie-metingen relatief groot is. Volgens de berekeningen moet het maximum van het kruispolarisatie-patroon optreden bij een hoek van ongeveer 5 graden. Dit komt overeen met de gemeten plaat van het maximum.

Figuur 54: Gemeten stralingsdiagrammen van de Olympusbelichter op 19,770 GHz rond de apex in het 45-graden-vlak, Co: HE11-mode, X: EH11mode.

De gemeten hoofdpolarisatie-patronen van de Olympusbelichter op 19,770 GHz en 29,656 GHz komen minder goed overeen met de berekende hoofdpolarisatie-patronen. De vormen kloptpen ongeveer, maar de gemeten patronen zijn 5% respectievelijk 10% breder dan de berekende. Ook de kruispolarisatie-ontkoppeling is voor 19,770 GHz en 29,656 GHz minder goed dan voor 12,501 GHz, in beide gevallen ongeveer 30 dB.

De afwijking bij de 19,770 GHz patronen valt te verklaren met vergelijking (41). Voor een frequentie van 19,770 GHz en een groefdiepte van 18,75 mm wordt niet voldaan aan de eis, dat de groeven een capacitieve impedantie moeten hebben (het capacitieve gebied begint pas bij 20,0 GHz).

Figuur 55: Gemeten stralingsdiagrammen van de Olympusbelichter op 29,656 GHz rond de apex in het 45-graden-vlak, Co: HE11-mode, X: EH11mode.

De afwijking bij de 29,656 GHz patronen valt te verklaren met de groefperiodiciteit. Deze is namelijk 1 groef per 4 mm en voor 29,656 GHz komt dat overeen met ongeveer 2,5 groeven per vrije ruimte golflengte, terwijl voor de goede werking de groefperiodiciteit minstens 4 groeven per vrije ruimte golflengte dient te zijn.

De geconstateerde afwijkingen in de belichter-patronen maken de belichter overigens geenszins onbruikbaar voor de propagatie-metingen, omdat deze afwijkingen relatief klein zijn.

Geconcludeerd mag worden, dat beide belichters zich redelijk goed volgens de theorie gedragen. De Olympusbelichter kan gebruikt worden in de 5,5 meter Cassegrain-antenne voor de propagatie-metingen. · · · · · · · · · · · · · · · ·

M.O. van Deventer augustus 1987

4. Mode-uitkoppeling met coaxiale trilholtes

In hoofdstuk 3 is behandeld, hoe verschillende modes in een ronde golfpijp als som- en verschil-signalen gebruikt worden. Deze moeten gescheiden worden om ze te kunnen detecteren. Dit gebeurt meestal met een aantal spleten in de wand van de golfpijp. De som- en verschil-signalen worden apart gereconstrueerd door de signalen, die met de spleten worden uitgekoppeld, op de juiste wijze te combineren. Dit combineren kan gebeuren met allerlei microgolf-componenten, zoals kruiskoppelaars, richtkoppelaars, magic-T's, samen met fasedraaiers en verzwakkers (zie appendix H). Een zeer compacte uitkoppelaar is een "coaxiale-trilholteuitkoppelaar". Voor de in dit verslag beschreven uitvoering van de coaxiale-trilholte-uitkoppelaar is octrooi aangevraagd [37] door de uitvinder ervan, ir. J.R. Schmidt (PTT, Dr. Neher Laboratorium, Leidschendam).

4.1. Uitkoppeling met spleten

4.1.1. Theorie

Voor de stroomdichtheid langs een oneindig goed geleidende wand, veroorzaakt door een "langslopende" elektro-magnetische golf, geldt als randvoorwaarde [38, p. 1.32]

(50)

(51)

 $\underline{n} \times \underline{H} = \underline{n} \times \underline{H}_{+} = \underline{J}_{S}$

Hierin is

- \underline{n} : de normaalvector op de wand,
- <u>H</u> : de magnetische veldsterkte in Ampere per meter,
- \underline{J}_{s} : de oppervlakte-stroomdichtheid in Ampere per meter en

<u>H</u>: de component van het magnetische veld langs het oppervlak.

In figuur 56 zijn de richtingen van deze vectoren aangegeven.

Er kan vermogen uitgekoppeld worden door met een smalle spleet de stroom "door te snijden". Bij de spleet geldt dan de randvoorwaarde

 $\frac{H}{H}/1 = \frac{H}{H}/2$

Hierin zijn $\frac{H}{1/1}$ en $\frac{H}{1/2}$ de componenten van het magnetische veld evenwijdig met de spleet aan beide kanten van de spleet, zie figuur 57. De spleet-uitkoppeling wordt om deze reden ook wel magnetische uitkoppeling genoemd.

Figuur 56: Definitie van de richtingen van de magnetische veldsterkte, de stroomdichtheid en de normaalvector.

Figuur 57: De component van het magnetische veld, parallel aan een smalle spleet in een wand, is continu.

Een methode, waarmee het uitkoppelingsprobleem opgelost kan worden, wordt gegeven door Stevenson [39]. Deze methode is samengevat in appendix I.

Door Watson [40] wordt opgemerkt, dat vaak voor de spleetlengte de helft van de vrije ruimte golflengte gebruikt wordt. Bij deze spleetlengte treedt er, indien de spleet relatief smal is, resonantie op in de spleet (de equivalente serie-impedantie, waarmee de spleet-uitkoppeling gekarakteriseerd kan worden is dan puur resistief) en is de "spanning" over de spleet bij benadering sinusoidaal in de lengte-richting van de spleet.

Indien de spleetlengte kleiner dan de helft van de vrije ruimte golflengte is, dan treden er reflecties op vanwege afsnij-effecten. Volgens Harvey [41] wordt deze extra spleetdemping in dB gegeven door

$$L_{lt} = (54, 6.t. A/\lambda_c) \cdot \sqrt{(1 - (\lambda_c - \lambda)^2)} dB$$
 (52)
Hierin is

t : de dikte van het materiaal, $\lambda_c = 2 \times L$: de afsnij-golflengte van de spleet en A^c : een constante tussen 1 en 3. De spleet-breedte dient kleiner dan een tiende van de spleetlengte te zijn en is verder niet van invloed. Voor grote t geldt A=1, dit komt overeen met de demping van de TEO1-mode in een rechthoekige golfpijp met lengte t en breedte L. Voor kleine t is A ongeveer gelijk aan 3 [41].

4.1.2. Metingen

Bij een meting door van der Steen [8] is een spleetuitkoppeling gebruikt met een lengte van 9,4 mm en een dikte van 3,0 mm bij een frequentie van 8,88 GHz en er werd een uitkoppelverlies van ongeveer 40 dB geconstateerd. Aangezien de vrije ruimte golflengte groter dan de afsnij-golflengte van de spleet was, is de demping door de spleet vanwege afsnij-effecten (52) al meer dan 20 dB.

Voor het verkrijgen van inzicht in spleet-uitkoppelingen is gemeten aan de opstelling van figuur 58.

Figuur 58: a) Meetopstelling, b) maten van de spleten (L=10 mm, L=12 mm of L=14 mm)

Allereerst is als referentie het vermogen in de golfals functie van de frequentie met pijp gemeten een coaxiale vermogensdetector op een golfpijp-coax-overgang. Vervolgens is met dezelfde vermogensdetector, maar met een andere golfpijp-coax-overgang (vanwege de in golfpijp-maten), het uit de verschillen spleet Voor gekoppelde vermogen gemeten. de verschillende frequenties en de verschillende spleetlengten zijn de kortsluitzuiger en de afstemschroefjes zodanig ingedat het uitgekoppelde vermogen maximaal steld, was. Aangezien $\frac{H}{H}$ bij de kortsluitzuiger nul is [25], moet de spleet zich op een oneven veelvoud van $\frac{1}{2}\lambda_{\alpha}$ van de kortsluitzuiger bevinden. De afstemschroefjes dienen voor impedantie-aanpassing van de spleet naar de uitkoppel-golfpijp. In figuur 59 is het resultaat weergegeven.

Figuur 59: Het relatief uitgekoppelde vermogen door de spleetuitkoppeling als functie van de frequentie met de spleetlengte als parameter.
Op sommige plaatsen in de grafiek blijkt het uitgekoppelde vermogen groter te zijn dan het referentie vermogen. Dit wordt waarschijnlijk veroorzaakt door de verschillen tussen de twee gebruikte coax-golfpijpovergangen. De spleet met L=10 mm (afsnijfrequentie: 15,0 GHz) heeft een slechte uitkoppeling voor frequenties onder 13,3 GHZ, terwijl de spleet met L=14 mm (afsnijfrequentie: 10,7 GHz) juist slecht uitkoppelt voor frequenties boven 12,5 GHz. In het eerste geval was de spleet dus te kort (afsnij-effecten), terwijl in het tweede geval de spleet blijkbaar te lang was.

Uit deze meting kan geconcludeerd worden, dat de helft van de vrije ruimte golflengte inderdaad een geschikte spleetlengte vormt en dat de demping van de uitkoppelaar vergelijkbaar is met die van een golfpijp-coaxovergang (demping < 1 dB).

4.2. Theorie van uitkoppeling met coaxiale trilholtes

4.2.1. Werking

In hoofdstuk 3 werd uitgelegd, dat de ϕ -afhankelijkheid van de veldcomponenten (Er, E ϕ , Ez, Hr, H ϕ en Hz) voor de TE11-mode volgens $\cos(\phi)$ of $\sin(\phi)$ verloopt (hoofd- of kruis-polarisatie), terwijl deze voor volgens de TE21-mode $\cos(2.\phi)$ of $\sin(2.\phi)$ verloopt ("azimuth" of "elevatie"). De velden aan weerszijden van de golfpijp zijn dus in tegenfase voor de som-mode en in fase voor de verschil-mode. Door aan weerszijden van de golfpijp uit te koppelen en deze signalen in fase bij elkaar op te tellen, wordt het verschil-signaal uitgekoppeld, maar het som-signaal niet, zie figuur 60.

Met spleten in de golfpijpwand kan de component van het magnetische veld evenwijdig aan de spleet uitgekoppeld worden (zie paragraaf 4.1.). Aangezien de TMO1-mode in de golfpijp aanwezig kan zijn, maar niet uitgekoppeld dient te worden, moeten de spleten in de z-richting staan. Bij TM-modes is namelijk de z-component van het magnetische veld per definitie nul, bovendien kan de TE21-mode dan wel uitgekoppeld worden.

Figuur 60: Uitkoppeling van het verschilsignaal.

In figuur 61 is de verdeling van Hz aan de rand van de golfpijp weergegeven. (de r-component van het E-veld is voor de TE-modes in een ronde golfpijp evenredig met de tijd-afgeleide van Hz, zie appendix F.) In [37] wordt de opbouw van een coaxiale-trilholte-uitkoppelaar beschreven, zie figuur 62.

Figuur 61: Verdeling van de z-component van het magnetische veld aan de wand van een ronde golfpijp.

Figuur 62: Opbouw van een coaxiale-trilholte-uitkoppelaar [37].

Deze uitkoppelaar bestaat uit een ronde golfpijp met twee of meer spleten in de z-richting. Om de golfpijp is een coaxiale trilholte aangebracht, waarvan de lengte nauwkeurig ingesteld kan worden met een deksel met fijne schroefdraad. In de buitenwand van de trilholte is een spleet in de z-richting aangebracht, waarmee het signaal vanuit de trilholte naar een rechthoekige golfpijp wordt gekoppeld. In deze rechthoekige golfpijp is een aantal (drie) schroefjes geplaatst voor de impedantie-aanpassing tussen de trilholte en de golfpijp.

Analoog aan een golfpijp kunnen er zich verschillende modes voortplanten in een coaxiale structuur. Deze modes zijn onder te verdelen in de TMmn-mode, de TEmnmodes en de TEM-mode (ook wel de TMOD-mode genoemd). De mode-index m (m=0, 1, 2,...) geeft de ϕ -afhankelijkheid aan (cos(m. ϕ) of sin(m. ϕ)) en de mode-index n (n=1, 2,...) geeft de r-afhankelijkheid aan. (Voor de TM-modes is n het aantal nuldoorgangen van Er tussen r=a en r=b, voor de TE-modes is dat n-1.) De golflengte van de mode is

$$\lambda_{g} = 2\pi/k = \lambda \cdot \frac{1}{\sqrt{(1 - (\lambda/\lambda_{c})^{2})}}$$
(53)

In appendix F worden de velden van de coaxiale modes gegeven.

1

Indien de lengte L van de coaxiale trilholte gelijk is aan $\lambda_{q}/2$ of een veelvoud daarvan, dan kan deze mode in de trilholte resoneren. Een resonerende mode wordt aangeduidt met drie indexen: m, n en p. De extra index p geeft de z-afhankelijkheid van de mode aan (sin("pz/L) of cos("pz/L)) Voor de TMmnp-modes geldt p=0, 1, 2,..., voor de TEmnp-modes geldt p=1, 2,.... De afsnij-golflengte λ_c wordt gegeven door [25]

$$\lambda_{c} = \frac{2\pi}{x_{mn}} \cdot a$$
 (54a)

$$\lambda_{c} = \frac{2\pi}{x_{mn}'} \cdot a$$
 (54b)

Hierin zijn X en X' de n-de oplossing van respectievelijk

$$J_{m}(X) \cdot N_{m}(X \cdot b/a) - J_{m}(X \cdot b/a) \cdot N_{m}(X) = 0$$
 (55a)

$$J'_{m}(X) \cdot N'_{m}(X, b/a) - J'_{m}(X, b/a) \cdot N'_{m}(X) = 0$$
(55b)

In deze vergelijkingen zijn $J_m^{(u)}$: de Bessel-functie van u van de orde men de eerste soort, $J_{m}^{+}(u)$: de afgeleide van $J_{m}^{-}(u)$ naar u N_m(u): de Bessel-functie van u van de orde men de tweede soort, (ook wel de Neumann-functie genoemd), $N_{m}^{\prime}(u)$: de afgeleide van $N_{m}^{\prime}(u)$ naar u, : de straal van de binnenwand en : de straal van de buitenwand. ð

ь

In figuur 63 is voor de verschillende modes de afsnijgolflengte als functie van de straal van de buitenwand geschetst. Voor toenemende straal van de buitenwand nadert de afsnij-golflengte voor alle modes, behalve de TMOn-modes asymptotisch naar de afsnijgolflengte van een ronde golfpijp met dezelfde straal (de TMOnmodes in een ronde golfpijp voldoen niet aan de door de binnengeleider opgelegde voorwaarde Ez(r=0)=0).

-78-

Figuur 63: Afsnijgolflengte als functie van de straal van de buitengeleider in een coaxiale structuur [25], [43].

Vanwege de spleten in de z-richting in de binnenwand van de coaxiale trilholte (= de wand van de golfpijp) kunnen in de trilholte alleen de TE-modes aangestoten worden. Aangezien de spleet in de buitenwand van de trilholte ook in de z-richting loopt, kunnen er door reflectie bij deze spleet ook geen TM-modes (of de TEM-mode) aangestoten worden. In figuur 64 wordt geschetst hoe met verschillende trilholte-modes de TE11-(som-) en de TE21- (verschil-)modes uit de golfpijp gekoppeld kunnen worden. De mode van de ronde golfpijp wordt alleen uitgekoppeld, als de mode van de trilholte "past" bij de mode van de golfpijp.

Voor de goede werking moet de lengte van de trilholte voor de gewenste mode zoveel mogelijk verschillen van de lengtes behorende bij andere modes, want bij het aanstoten van meerdere modes in de trilholte kan het gebeuren, dat zowel het som- als het verschil-signaal uitgekoppeld worden, of dat door interferentie bij de uitkoppeling uit de trilholte het gewenste signaal niet of slecht wordt uitgekoppeld. Hiertoe dienen de mode-indices van de trilholte-mode zo klein mogelijk gekozen te worden. HOOFDSTUK 4

Figuur 64: Uitkoppeling van de som-mode met a) de TE111-mode of b) de TE311-mode; uitkoppeling van de verschil-mode met c) de TE011mode of d) de TE211-mode.

Door het kiezen van p=1 (p is de mode-index, die de zafhankelijkheid van de trilholte-mode aangeeft) volgt

 $H_{z}(r,\phi,z) = H_{z}(r,\phi) \cdot \sin(\pi \cdot z/L)$ (56)

Voor de r-afhankelijkheid wordt gekozen n=1. Voor n>1 zijn de velden van de mode meer aan de wanden van de trilholte geconcentreerd, waardoor er bij een niet oneindig goed geleidende wand meer dissipatie plaats zal vinden. Ook uit dit oogpunt is n=1 een goede keuze.

Voor de uitkoppeling van de som-mode moet m {de ϕ -afhankelijkheid) oneven zijn en voor de uitkoppeling van de sommode moet m even zijn.

De keuze van m=O voor de verschil-uitkoppeling heeft als voordeel, dat de dissipatie-verliezen in de trilholte klein zullen zijn, omdat overal het E-veld evenwijdig met de wand loopt. De TEOn-modes staan bekend om hun lage dissipatie [42, p.64]. Echter uit figuur 63 en (37), (48) en (49) volgt, dat er veel modes zijn, die ongeveer dezelfde afsnijgolflengte in een coaxiale structuur hebben, waardoor de TEO11-mode

M.O. van Deventer augustus 1987

minder geschikt is voor uitkoppeling.

De keuze m=2 voor de verschil-uitkoppeling heeft als voordeel, dat er met één trilholte twee signalen simultaan uitgekoppeld kunnen worden, zie figuur 65. De tweede uitkoppelspleet ligt 135 graden van de eerste verschoven. Een andere mogelijkheid was op 45 graden, maar de constructie met 135 graden is eenvoudiger te maken en er wordt vermoed, dat er minder onderlinge beïnvloeding is, wanneer de twee uitkoppelspleten verder van elkaar vandaan liggen.

Figuur 65: Simultane uitkoppeling van de "azimuth"- en "elevatie"-verschil-signalen met 8 spleten in de golfpijp voor inkoppeling naar de trilholte.

Bij de som-uitkoppeling kunnen voor alle TEm11-modes met oneven m de hoofd- en de kruis-polarisatie-signalen simultaan uitgekoppeld worden. Echter door m zo laag mogelijk te kiezen (d.w.z. m=1) heeft een afwijking in de plaats van de uitkoppel-spleten de minste gevolgen voor de ontkoppeling tussen hoofd- en kruispolarisatie. Stel, dat bijvoorbeeld de uitkoppelspleet in de buitenwand van de trilholte 0,1 graad foutief is aangebracht. Voor de koppeling tussen de hoofd- en kruis-polarisatie-signalen geldt dan Ko=20.log(sin(0,1 graad))=-55 dB voor m=1 en Ko=20.log(sin(3 x 0,1 graad))=-46 dB voor m=3. (57)

In principe kan de kwaliteit van de uitkoppeling met de theorie van Stevenson bepaald worden [39] (zie appendix I), maar vanwege het grote aantal overgangen (van ronde golfpijp naar de inkoppelspleten, van deze spleten naar de trilholte, van de trilholte naar de uitkoppelspleet en van deze spleet naar de rechthoekige golfpijp) is deze berekening niet uitgevoerd.

HOOFDSTUK 4

Geconcludeerd mag worden, dat voor de uitkoppeling van het som-signaal en het verschil-signaal respectievelijk de TE111-mode en de TE211-mode van de trilholte het meest in aanmerking komen.

4.2.2. Dimensionering

In figuur 66 is de globale opbouw van een uitkoppelaar voor de som- en verschil-signalen weergegeven.

Figuur 66: Globale opbouw van een uitkoppelaar voor de som- en verschil-signalen [37].

De diameter van de eerste golfpijp moet zodanig gekozen worden, dat de TE21-mode zich kan voortplanten, maar de eerstvolgende mode, de TEO1-mode, niet. Met tabel 31 volgt voor de (binnen)diameter: 0,97 λ < 2a < 1,22 λ (58) Een goede keuze (midden tussen de grenzen) is 2a=1,1 λ .

De diameter van de tweede golfpijp moet zodanig gekozen worden, dat de TE11-mode zich kan voortplanten, maar de eerstvolgende mode, de TMO1-mode, niet. Met tabel 31 volgt voor de (binnen)diameter: $0,59\lambda < 2a < 0,77\lambda$ (59) Een goede keuze (midden tussen de grenzen) is $2a=0,68\lambda$.

De overgang van de eerste naar de tweede golfpijp moet zodanig geleidelijk zijn, dat er voor de TE11-mode nauwelijks reflectie optreedt. Voor de TE21-mode vormt deze overgang een kortsluiting en voor optimale uitkoppeling moet deze overgang zich op (een veelvoud van) $i\lambda$ van de spleet-uitkoppeling naar de trilholte bevinden.

Voor alle spleetlengten dient $L=\frac{1}{2}\lambda$ gekozen te worden

M.O. van Deventer augustus 1987

(zie paragraaf 4.1.).

De binnendiameter van de coaxiale trilholte wordt bepaald door de diameter van de ronde golfpijp en de wanddikte van die golfpijp. De buitendiameter moet nog gekozen worden. In figuur 67 en figuur 68 is voor respectievelijk $2a=0,68\lambda$ (som-mode) en $2a=1,1\lambda$ (verschil-mode) $\lambda_{\rm q}$ als functie van b uitgezet.

Figuur 67: Golflengte in een coaxiale structuur als functie van de straal van de buitengeleider voor 2a≖0,68λ (som-mode) [25], [43].

Uit deze figuren blijkt, dat b niet te groot gekozen moet worden, zodat de trilholte met maar één mode kan resoneren. Voor b/a zijn waarden tussen 2 en 3 gekozen, zodat er ook experimenten met uitkoppeling met de TE311-, de TE411- en de TE011-mode uitgevoerd konden worden. (Achteraf gezien bleek deze keuze fout te zijn, b/a dient kleiner te zijn, zie paragraaf 4.3.3.)

Figuur 68: Golflengte in een coaxiale structuur als functie van de straal van de buitengeleider voor $2a=1,1\lambda$ (verschil-mode) [25], [43].

4.2.3. Opstellen van de specificaties

Voor het afregelen van de coaxiale-trilholte-uitkoppelaar dient nagegaan te worden welke eisen er aan deze uitkoppelaar gesteld moeten worden. In deze paragraaf zullen een aantal specificaties besproken worden.

Een belangrijke specificatie is de bandbreedte-specificatie, omdat trilholtes in principe smalbandige componenten zijn [41, hoofdstuk 5]. De noodzakelijke bandbreedte wordt bepaald door de variatie in de bakenfrequentie, de verstemming van de trilholte door uitzetting bij verwarming en de maximaal toegestane afname van de signaal-sterkte door deze effecten.

De relatieve variatie in de bakenfrequenties over de levensduur van de satelliet Olympus (7 jaar) is maximaal 1,0 E-5 [2]. Dit komt overeen met een variatie 125 kHz in het 12,5 GHz baken. De relatieve van lineaire uitzettingscoëfficiënt van messsing (het materiaal, waarvan de trilholtes gemaakt zijn) is 2,1 E-5 per Kelvin voor 273 K < T < 373 K [44]. De trilholte kan in de open lucht hangen (maximale temperatuur-variatie: 80 K, tussen -20 graden Celsius en +60 graden Celsius), deze kan op temperatuur gehouden worden met een eenvoudige verwarming (maximale temperatuur-variatie: 10 K) of met een nauwkeurige regeling (moximale temperatuur-variatie: 0,5 K). De relatieve lineaire uitzetting is voor deze gevallen respectievelijk 1,7 E-3, 2,1 E-4 en 1,1 E-5. De verandering in resonantie-frequentie van de 12,5 GHz trilholtes wordt dan respectievelijk 21 MHz, 2,6 MHz en 140 kHz. De verstemming door temperatuur-variatie is dus in alle gevallen groter dan de variatie van de satellietfrequentie.

Door de OPEX (Olympus Propagation EXperimentors) wordt gestreefd naar een totale ontvanger-stabiliteit van 0,2 dB [62, p. 4.1]. De afname van de signaal-sterkte door de beperkte bandbreedte moet kleiner zijn dan deze waarde, bijvoorbeeld 0,05 dB. (Ook van belang is de maximale fase-draaiing, die door de beperkte bandbreedte optreedt, naar een fase-specificatie dient nog onderzoek gedaan te worden.)

Een andere belangrijke specificatie is de inkoppeling van het som-signaal bij het verschil-signaal. Dit houdt in dat een deel van het som-signaal bij het verschil-signaal opgeteld wordt, veroorzaakt door door asymmetrieën in de uitkoppeling. Deze optelling kan in-fase en quadratuur (90 graden faseverschil) zijn. De inkoppeling kan gemodelleerd worden met

 $g_{\Delta k} \begin{pmatrix} \theta_{v} \end{pmatrix} = g_{\Delta} \begin{pmatrix} \theta_{v} \end{pmatrix} + \langle Ki + jKq \rangle \cdot g_{\Sigma} \begin{pmatrix} \theta_{v} \end{pmatrix}$ (60)

Hierin is

$g_{\Sigma}(\theta_{v})$:	stralingsdiagram van het som-signaal (zie
$g_{\Delta}(\theta_{v})$:	stralingsdiagram van het verschil-signaal
g _{∆k} (θ _v):	stralingsdiagram van het verschil-signaal met
Ki	:	koppeling, de in-fase-koppeling en
Kq	:	de quadratuur-koppeling.

Het effect van de quadratuur-koppeling is het "vollopen" van de nuldoorgang van het verschilpatroon zie figuur 69. Aangezien het verschilsignaal coherent gedetecteerd wordt, heeft de quadratuur-koppeling geen direkt effect op de richtnauwkeurigheid.

Door in-fase-koppeling wordt de nuldoorgang van het verschil-patroon verplaatst, zie figuur 70.

M.O. van Deventer augustus 1987

Figuur 69: Effect van quadratuur-koppeling met 20.log(Kq)=-15 dB. a): amplitude, b): fase.

Figuur 70: Effect van in-fase-koppeling met 20.log(Ki)=-15 dB.

Het is eenvoudig in te zien, dat voor de verplaatsing van de nuldoorgang $\Delta \theta$ geldt

(61)

 $\Delta \theta = K i \cdot \frac{g \Sigma}{DS}$

Voor het 5,5 meter antenne-systeem voor Olympus-ont-vangst geldt (zie paragraaf 2.3.2.) DS=2,52 E3 per graad en $^{9}\Sigma^{=6}$,22 E2. Met deze waarden kan tabel 71 opgesteld worden.

Tabel 71: De verplaatsing van de nuldoorgang in het 12,5 GHz verschil-patroon voor het 5,5 meter antenne-systeem voor Olympus-ontvangst als functie van de in-fase koppeling Ki.

20.log(Ki)	Δθ	
-30 dB	0,0078	graad
-40 dB	0,0025	graad
-50 dB	0,00078	graad

De in-fase koppelings-specificatie is gesteld op -50 dB, omdat deze hoge waarde haalbaar blijkt te zijn [70]. Vanwege de grote samenhang tussen de in-fase en de quadratuur koppeling wordt ook de quadratuur koppelings-specificatie gesteld op -50 dB.

De koppeling van de twee orthogonale polarisaties (kruispolarisatie) door de trilholte (Ko) moet bij voorkeur kleiner zijn dan de onvermijdelijke koppeling van beide in de belichter. Dit geldt vooral voor de 20 GHz uitkoppelaar, omdat het 20 GHz baken-signaal geschakeld wordt tussen beide polarisaties [2]. De OPEX (Olympus Propagation EXperimentors) streeft naar een koppeling kleiner dan -55 dB. Hieruit volgt de eis, dat de uitkoppel-spleten met een nauwkeurigheid beter dan 0,1 graad gemaakt moeten worden:

Ko=20.log(sin(0,1 graad))=-55 dB.

Met gebruik van zogenaamde "static cancellation" [3] kan de ontkoppeling verder verbeterd worden. Het voordeel van de compactheid van de uitkoppelaar verdwijnt echter daardoor.

De eis voor de koppeling tussen de twee verschilsignalen (azimuth en elevatie) onderling kan veel minder streng gekozen worden dan de eis voor de koppeling tussen de twee orthogonale polarisaties, omdat de verschil-signalen vergelijkbaar zijn qua sterkte. Er kan bijvoorbeeld geëist worden, dat de koppeling kleiner dan -20 dB moet zijn. Het maximaal toelaatbare verlies door de trilholteuitkoppeling wordt bepaald door de marge, die er in de signaal-ruis-verhouding zit. Vaak wordt gesteld, dat deze kleiner dan 1 dB of 0,5 dB moet zijn.

- 4.3. Metingen aan de uitkoppeling met coaxiale trilholtes
- 4.3.1. Meetopstelling

Voor het afregelen van de mode-uitkoppelaars moeten de verschillende modes in de ronde golfpijp opgewekt kunnen worden. Voor de TE11-mode kan dit gedaan worden met een overgang van rechthoekige naar ronde golfpijp, maar voor de TE21-mode was er geen dergelijke modeinkoppelaar beschikbaar. De meest eenvoudige oplossing voor dit probleem was het gebruiken van een deel van de belichter als mode-opwekker, zoals deze in het antenne-systeem ook gebruikt zal worden. In figuur 72 is de meetopstelling geschetst.

Figuur 72: Meetopstelling voor de trilholte-afregeling.

Bij de metingen is de belichter als zend-antenne gebruikt, omdat het gereflecteerde vermogen ook gebruikt kan worden bij de afregeling, er zal namelijk weinig vermogen reflecteren op de resonantie-frequentie, waarop de trilholte is ingesteld. Tabel 73 geeft de maten van de trilholtes, die gebruikt zijn bij de experimenten. De constructie-tekeningen zijn weergegeven in appendix J.

M.O. van Deventer augustus 1987

naam 	freq. (GHz)	2 a' (mm)	2a (mm)	2b (mm)	b/a	Lmin (mm)	Lmax (mm)	mode:lengte L (mm)
ECS- verschil (aantal:	11,451 2)	28,0	30,0	75,0	2,50	14,0	18,0	(TE11:13,28) TE21:13,81 (TE31:14,73) TE41:16,19 TED1:16,37 (TE12:16,86)
Olympus- verschil (aantal:	12,501 2)	26,0	28,0	56,0	2,00	11,0	17,5	TE11:12,21 (TE21:12,89) TE31:14,26 (TE41:16,94)
Dlympus- som	12,501	18,0	20,0	56,0	2,80	11,0	16,0	TE11:12,26 (TE21:13,07) TE31:14,55
Dlympus- som	19,770	11,2	12,4	34,8	2,81	7,0	11,5	TE11: 7,76 (TE21: 8,29) TE31: 9,28
Olympus- som	29,656	7,2	8,0	22,0	2,75	4,0	8,0	TE11: 5,19 (TE21: 5,58) TE31: 6,36

Tabel 73: Maten van de trilholtes, tussen haakjes de niet gewenste modes.

In deze tabel is

2a': de binnen-diameter van de ronde golfpijp,

2a : de buiten-diameter van de ronde golfpijp,

2b : de binnen-diameter van de buitenwand van de trilholte en

L : de (binnen-)lengte van de trilholte, instelbaar tussen Lmin en Lmax.

De verhouding b/a is telkens vrij groot genomen, zodat er verschillende trilholte-modes voor de uitkoppeling gekozen en onderling vergeleken kunnen worden.

4.3.2. Afregelprocedure

Per trilholte zijn er vijf afregelpunten (zie figuur 72):

1): de (binnen-)lengte van de trilholte,

- de plaats van de trilholte ten opzichte van de spleten in de golfpijpwand,
- de hoek van de uitkoppelaar ten opzichte van de ronde golfpijp,
- 4): de afstand van de kortsluitzuiger tot de spleten in de golfpijpwand en
- 5): de stand van de afstemschroefjes in de rechthoekige uitkoppel-golfpijp.

-89-

plaats 2) van de trilholte ten opzichte van De de ronde golfpijp is vooraf al bekend, omdat de trilholte zich precies midden boven de spleten in de golfpijpwand moet bevinden. De stand van de trilholte 3) wordt bepaald door de golfpijp-mode en de trilholte-mode. Ook de kortsluitzuiger 4) kan vooraf al globaal ingesteld worden op $\frac{1}{2}\lambda_g$ of een veelvoud daarvan, waarbij $^{\lambda}_{\alpha}$ de golflengte ván de gewenste mode (TE11 of TE21) in de golfpijp is. De trilholte-lengte 1) kan globaal ingesteld worden op de gewenste trilholte-mode (zie tabel 73) en moet vervolgens afgeregeld worden op minimaal reflecterend vermogen en voor de verschilmode tevens op minimaal uitgezonden vermogen in de voorwaartse richting. Daarbij moet de meetprobe zich zo nauwkeurig mogelijk recht voor de belichter bevin-Vervolgens kunnen de kortsluitzuiger 4) en evenden. ook de plaats 2) en stand 3) van de trilholte tueel afgeregeld worden op maximaal uitgezonden vermogen. Uiteindelijk kunnen de afstemschroefjes 5) en de trilholte-lengte 1) nauwkeurig afgestemd worden op maximaal uitgezonden vermogen.

De bandbreedte-specificatie kan direkt geverifiëerd worden met het uitgezonden vermogen als functie van de frequentie. De specificaties van de koppeling tussen de twee orthogonale polarisaties, de koppeling van het som-signaal en het verschil-signaal en het verlies van de som-uitkoppelaar kunnen geverifiëerd worden door via een overgang van rechthoekige golfpijp naar ronde golfpijp een zuivere TE11-mode op te wekken en op verschillende plaatsen het vermogen te meten. De verschillende koppelingen kunnen ook uit de stralingsdiagrammen afgeleid worden (zie paragraaf 4.2.). Met de stralingsdiagrammen kan ook het verlies van de verschil-uitkoppelaar bepaald worden door het uitgezonden vermogen te integreren over een bol rond de zendende belichter en dit te vergelijken met het ingekoppelde vermogen.

4.3.3. Resultaten

Er zijn alleen experimenten uitgevoerd met de ECGverschil-trilholtes rond 11,451 GHz en met de Olympustrilholtes rond 12,501 GHz, omdat voor de hogere frequenties niet genoeg meet-apparatuur aanwezig was. Voor een goede afregeling moeten namelijk tegelijkertijd de transmissie, de reflectie en een referentiesignaal gemeten worden.

Het afregelen van de verschillende trilholtes op verschillende trilholte-modes bleek zeer nauwkeurig te moeten gebeueren, vooral de lengte van de trilholte en de plaats van de kortsluitzuiger waren zeer kritisch. De afstemschroefjes hoefden nauwelijks ingedraaid te worden, de winst, die met betere afstemming van deze schroefjes werd verkregen was minimaal (hooguit 0,1 dB). Met de afstemschroefjes werd wel de reflectie verder verkleind.

De uitkoppelverliezen bleken te variëren tussen 0,5 en 2 dB, er waren geen trilholte-modes, die duidelijk voor een betere of slechtere uitkoppeling zorgden. In figuur 74 is ter illustratie de gemeten reflectie en transmissie voor de Olympus-trilholte geschetst voor uitkoppeling van een TE21-mode in de ronde golfpijp met de TE011-mode in de trilholte.

Figuur 74: Transmissie en reflectie bij uitkoppeling van de TE21-mode in een ronde golfpijp met de TE011-mode in de Olympus-verschil-trilholte.

Het uitkoppelverlies van 1,5 dB werd bepaald door het maximum in het gemeten verschil-patroon ten opzichte van het maximum in het gemeten som-patroon te vergelijken met het berekende. Bandbreedtes van de uitkoppeling: -3 dB bandbreedte: 60 MHz, -0,5 dB bandbreedte: 15 MHz en -0,05 dB bandbreedte: 4 MHz. Temperatuur-stabilisatie van de trilholtes is dus zeker nodig. In één geval was de ontkoppeling van een som-signaal en een verschil-signaal beter dan 50 dB. Hierbij zijn de polarisatie-richting van de TE11-mode en de plaatsen van de spleten zeer nauwkeurig ingesteld volgens figuur 75. Door dez instelling kan er praktisch geen inkoppeling van het som-signaal naar de trilholte en vanuit de trilholte naar buiten optreden. Alle geslaagde metingen van de verschil-patronen zijn met deze instelling gedaan.

Figuur 75: Uitkoppeling van een verschil-signaal met hoge ontkoppeling met het som-signaal. a): geen uitkoppeling van het som-signaal naar de trilholte en b): geen uitkoppeling van het som-signaal van de trilholte naar buiten.

alle andere gevallen was de ontkoppeling slechter In dan 30 dB. Deze slechte koppeling wordt veroorzaakt het feit, dat de (resonantie-)lengtes van door de trilholtes voor de verschillende trilholte-som-modes (TE111-mode, TE311-mode,...) zeer weinig verschillen die van de verschillende trilholte-verschil-modes met (TE211-mode, TE411-mode, TE011-mode,...). Aangezien de bandbreedte van de trilholte niet oneindig klein is, kan naast de verschil-mode ook een (ongewenste) sommode enigszins resoneren in de trilholte. Een oplossing voor dit probleem is b/a zo klein mogelijk te kiezen bij de verschillende trilholtes (de trilholtes worden dan dun en lang), zodat de resonantie-lengtes onderling meer verschillen en ongewenste modes eventueel "afgesneden" worden.

Voor de gevallen, waar ongewenste doorkoppeling van het som-signaal naar een trilholte plaatsvond, bleek een deel van het vermogen in de trilholtes gedissi-peerd te worden. Er zijn dempingen van het "langslopende" som-signaal van 2 dB tot zelfs 10 dB gemeten. Met metingen is vastgesteld, dat het vermogen wel naar de trilholte werd gekoppeld, maar niet eruit, zodat inderdaad dissipatie de oorzaak van het verlies is. is bekend, dat trilholtes bij resonantie veel Het vermogen kunnen dissiperen [42], sommige frequentiemeters maken gebruik van dit verschijnsel. De dissipatie zou verminderd kunnen worden door materialen te gebruiken, die beter geleiden dan messing (bijvoorbeeld goud) of het dompelen van de uitkoppelaar in vloeibaar helium. Het is duidelijk, dat een dergelijke oplossing niet praktisch uitvoerbaar is.

De spleten in de golfpijpwand op 45 graden, nodig voor uitkoppeling van het elevatie-verschil-signaal, bleken de lineaire polarisatie van de TE11-mode om te zetten in elliptische polarisatie. In sommige gevallen is een kruispolarisatie-ontkoppeling slechter dan 10 dB door dit verschijnsel gemeten.

Uit wetenschappelijk oogpunt zou een nader onderzoek naar de coaxiale-trilholte-uitkoppelaar interessant zijn, maar voor het Olympus-ontvangst-systeem zijn ze onbruikbaar, te meer omdat de problemen op 12,5 GHz al onoverkomelijk lijken, terwijl er ook signalen van 20 GHz en 30 GHz, die door de 12,5 GHz uitkoppelaars niet verstoord mogen worden, door de golfpijp zullen gaan.

Aanbevolen wordt het werk aan de coaxiale-trilholteuitkoppelaars te beperken en naar andere methodes voor mode-uitkoppeling te zoeken. Voorbeelden van modeuitkoppelaars uit de literatuur zijn weergegeven in appendix H.

Een eenvoudig en geschikt principe is weergegeven in figuur 76. Een TE21-mode doet hierin dienst als azimuth-verschil-mode en de TMO1-mode doet dienst als elevatie-verschil-mode. Er zijn golfpijp-filters nodig om de hogere frequentie(s) te weren uit de uitkoppelears op 12,5 GHz en 20 GHz. Verder dient op 12,5 GHz de elektrische afstand tussen twee verschil-uitkoppelspleten via de "tee" (een veelvoud van) 360 graden te zijn voor de TMO1-uitkoppelaar en een (oneven veelvoud van) 180 graden voor de TE21-uitkoppelaar, dit om de reflectie van het 12,5 GHz hoofdpolarisatie- en het 12,5 GHz kruispolarisatie-signaal beperkt te houden. De afregeling kan gebeuren met variabele fase-draaiiers, bijvoorbeeld "knijp-secties" [42].

.

THe

Figuur 76: Suggestie voor een nieuwe mode-uitkoppelaar.

H-tee

Het ontwerp van de voorgestelde uitkoppelaar is vrijwel identiek aan de uitkoppelaar van Nakahashi e.a. [27]. Deze uitkoppelaar wordt gekarakteriseerd door een hoge som-verschil ontkoppeling (beter dan 35 dB), lage uitkoppel-verliezen (minder dan 0,45 dB), een lage "insertion loss" van de TE11-mode door de uitkoppel-secties voor de verschil-modes (0,05 dB) en een -3 dB bandbreedte van 15 MHz (geschaald naar 12,5 GHz).

Een bijkomend voordeel van de voorgestelde uitkoppelaar ten opzichte van de uitkoppelaar van Nakahashi e.a. is een grotere kruispolarisatie-ontkoppeling, omdat er geen storende spleten op 45 graden nodig zijn voor het elevatie-verschil-signaal. 5. Opbouw van de Olympus-propagatie-ontvanger

In het nabije verleden is veel werk verricht aan het ontwerp van de ontvangers voor de propagatie-experimenten met de satelliet Olympus ([3], [45],...). Voor de ontvangst van de verschil-signalen wordt in principe een zelfde ontvanger gebruikt als voor de propagatie-experimenten. Voor een algemene inleiding in de termen en principes, die in dit hoofdstuk gebruikt worden, wordt verwezen naar [13, hoofdstuk 12] en [47]. Vele van de ideeën voor het ontwerp zijn afkomstig van verschillende medewerkers en studenten van de vakgroep Telecommunicatie. In dit hoofdstuk wordt in het kort de nieuwste versie van het ontvanger-ontwerp beschreven, waarbij opgemerkt moet worden, dat deze versie waarschijnlijk niet de definitieve versie is.

5.1. Specificatie van de ontvanger

5.1.1. De linkbudgets

In tabel 77 zijn de linkbudgets voor het ontvangersysteem weergegeven. Het linkbudget voor de verschilsignalen wordt in paragraaf 6.4. behandeld.

Tabel 77: De linkbudgets bij heldere hemel (eng: clear sky) voor het 5,5 meter Olympus-ontvangersysteem.

-frequentie	12,501	GHz	19,770	GHz	29,656	GHz
-EIRP [2]	>10	dBW	>24	dBW	>24	dBW
-Free Space Loss [3]	206,2	dB	210,2	dB	213,7	dB
-atmosferische						
verliezen [45]	0,2	dB	0,5	dB	0,6	dB
-verlies door						
richtfouten	0.00	dB	0,01	dB	0,02	dB
(paragraaf 6.4.4.)		•				
-antennewinst	55,9	dB	60,1	dB	63,7	dB
(paragraaf 2.3.2.)						
-uitkoppelaar						
verliezen	0,5	dB	0,5	dB	0,5	dB
(paragraaf 4.3.3.)						
-extra verliezen door						
het schakelen van het						
20 GHz baken [45]	-		6	dB	-	
-ontvangen vermogen	-110,8	dBm	-103,1	dBm	97,1	dBm

5.1.2. Voorgenomen metingen en mogelijke specificaties

Er zijn acht amplitude- en vier fase-metingen voorgenomen voor de propagatie-experimenten op de afzonderlijke frequenties [1]. Tevens is een fase-meting tussen de frequenties 20 GHz en 30 GHz voorgenomen [46]. De multimode richting-meting vereist twee amplitude- en twee fase-metingen. (azimuth en elevatie). De voorgenomen metingen zijn samengevat in tabel 78 en tabel 79.

Tabel 78: Voorgenomen amplitude-metingen bij de Olympus-propagatie-experimenten. (de polarisatie-richtingen V en H komen overeen met een polarisatie-richting van het zendende baken loodrecht op en evenwijdig aan het equatoriale vlak, "vertikaal" en "horizontaal".)

nr.	naam	frequen- tie	polaris zenden	atie-rich ontvange	ting n
1	12,5A(TV,RV)	12,5 GHz	V	v	(ຣ໐ m)
2	12,5A(TV, RA)	12,5 GHz	V	Azimuth	(verschil)
3	12,5A(TV,RE)	12,5 GHz	V	Elevatie	(verschil)
4	12,5A(TV,BH)	12,5 GHz	V	н	
5	20A(TV,RV)	20 GHz	V	V	
6	20A(TV, RH)	20 GHz	V	н	
7	20A(TH, BH)	20 GHz	н	н	
8	20A(TH, RV)	20 GHz	н	V	
9	30A(TV,RV)	30 GHz	V	V	
10	30A(TV, RH)	30 GHz	V	н	

Tabel	79:	Voorgenomen	fase-metingen	bij	de	Olympus-
		propagatie-e	xperimenten.			

nr.	naam	frequen- tie	polarisati signaal 1	e-richting signaal 2
11	12,5F(TV,RA)	12,5 GHz	V (som)	Azimuth (verschil)
12	12,5F(TV,RE)	12,5 GHz	V (som)	Elevatie (verschil)
13	12,5F(TV,RH)	12,5 GHz	V	Н
14	20F(TV, RH)	20 GHz	V	н
15	20F(TH, RV)	20 GHz	Н	V
16	3OF(TV,RH)	30 GHz	V	н
17	20/30F(TV,RV	/TV,RV)	V (20 GHz)	V (30 GHz)

De stabiliteit van de ontvanger moet bij voorkeur beter zijn dan de stabiliteit van de bakens. De amplitude-stabiliteit van de bakens is ± 0,05 dB over een seconde en ± 0,5 dB over 24 uur. De fase-fluctuaties liggen binnen 0,1 radiaal RMS (= 6 graden RMS) [2]. Verder wordt geëist, dat de ontvanger een dynamisch bereik heeft van 40 dB. Een dynamisch bereik van 40 dB houdt in, dat signalen, die 40 dB gedempt worden (bijvoorbeeld ten gevolge van neerslag), nog ontvangen en gemeten kunnen worden [3].

5.1.3. Blokschema van de propagatie-ontvanger

In figuur 80 is een globaal blokschema van de propagatie-ontvanger weergegeven.

Figuur 80: Globaal blokschema van de propagatie-ontvanger.

De ontvanger-kanalen dienen de zwakke antenne-signalen te versterken en fase (ten opzichte van een referentie-signaal) en de amplitude nauwkeurig te bepalen. De frequentie-generator dient voor de aansturing van de mixers in de onvanger-kanalen en voor het generen van stabiele test-signalen. Deze test-signalen worden noodzakelijk geacht voor het bereiken van de stabiliteitseisen. Alle meetgegevens worden door een computer verwerkt.

Het 12,5 GHz som-signaal wordt in de ontvanger gebruikt als fase-referentie voor coherente detectie van de overige signalen. Het 12,5 GHz som-signaal is gekozen als fase-referentie, omdat een bepaalde hoeveelheid neerslag voor hogere frequenties meer demping geeft dan voor lagere frequenties [3], zodat de totale ontvanger ook bij grotere (regen-)demping "in-lock" blijft.

5.2. De ontvanger-kanalen

5.2.1. Opbouw van een ontvanger-kanaal.

In figuur 81 is het schema van een ontvanger-kanaal weergegeven.

Figuur 81: schema van een ontvanger-kanaal.

Allereerst wordt in dit schema een test-signaal opgeteld bij het antenne-signaal. De frequentie van dit test-signoal bevindt zich vlakbij de frequentie van het antenne-signaal. Het test-signaal dient zeer stabiel te zijn in amplitude en fase, zodat fluctuaties in de parameters van een ontvanger-kanaal gecompenseerd kunnen worden. Eventueel kan het signaal versterkt worden met een lage-ruis voorversterker (eng: Noise Amplifier, LNA). Met een mixer wordt het Low hoogfrequente signaal (eng: RF) Radio Frequency, teruggemengd naar de eerste middenfrequentie (eng: Intermediate Frequency, IF). Het signaal wordt op deze frequentie fors versterkt, de bandfilters dienen oversturing van de versterkers door ruis (eng: noise loading) te voorkomen en het test-signaal weer van het antenne-signaal te scheiden. Vervolgens wordt het signaal verder teruggemengd en versterkt en worden de amplitude en fase van het signaal gedetecteerd.

5.2.2. Frequentie-keuze en ruis-berekeningen

De keuze van de midden-frequenties wordt voornamelijk bepaald door de al aanwezige apparatuur en door de prijs en kwaliteit (eventueel ook de levertijd) van nieuwe apparatuur en componenten. In het verleden is in de vakgroep Telecommunicatie vaak 55 MHz als eerste midden-frequentie gebruikt en 10 MHz als tweede midden-frequentie [S1]. Gezien de grote hoeveelheid ontvanger-kanalen voor de Olympus-propagatie-ontvanger is er voor gekozen alle signalen direkt naar 10 MHz terug te mengen [45]. In de vakgroep Telecommunicatie is een grote hoeveelheid 10 MHz-propagatie-ontvangers aanwezig [48], [49].

In het schema van de vorige paragraaf moeten nog een aantal keuzes worden gedaan voor de verschillende frequenties: -wel of geen LNA , -een gewone mixer of een "image reject mixer" (IA-

mixer) en -de overige specificaties van de componenten.

Deze keuzes worden onder andere bepaald door de antenne-ruis en de systeem-ruis.

Er zullen vier mogelijke keuzes vergeleken worden:

- Geen LNA, een gewone mixer (conversie-verlies: 6 dB, "single sideband"-ruisgetal: 9 dB) en een versterker (ruisgetal: 2 dB, versterking: 60 dB).
- 2): Wel een LNA (ruisgetal: 2 dB, versterking 25 dB) en dezelfde mixer plus versterker.
- 3): Geen LNA, een IR-mixer (conversie-verlies: 6 dB, "single sideband"-ruisgetal: 6 dB) en dezelfde versterker.
- 4): Dezelfde LNA en de IR-mixer plus versterker.

Het begrip "single sideband"-ruisgetal wordt nader toegelicht door Maas [68, pp. 135-145]. Voor de gewone mixer is het "single sideband"-ruisgetal hoger als voor de IR-mixer, omdat door de gewone mixer de spiegelbeeld ruis (eng: image noise) bij de gewone ruis opgeteld wordt. Vanwege dezelfde reden moet bij de componenten, die zich voor de gewone mixer bevinden, gerekend worden met een equivalente ruistemperatuur, die twee keer zo groot is als de eigen equivalente ruis-temperatuur. Uitgedrukt in ruisgetallen:

M.O. van Deventer augustus 1987

$$F' = 1 + \frac{2T}{T_0} = 2(1 + \frac{T}{T_0}) - 1 = 2F - 1$$
(62)

Hierin is

F': het ruisgetal behorende bij de dubbele equivalente ruis temperatuur 2 x Te.

In tabel 82 is de systeem-ruis-temperatuur Ts weergegeven (deze is inclusief de antenne-ruis-temperatuur), berekend met de formule van Friis [47, paragraaf 3.7.4]:

$$F = F_{1} + \frac{F_{2}^{-1}}{g_{1}} + \frac{F_{3}^{-1}}{g_{1}g_{2}} + \dots + \frac{F_{m}^{-1}}{g_{1}g_{2} \cdots g_{m}}$$
(63)

Hierin is

F : het ruisgetal van het totale ontvanger-kanaal,

F : het ruisgetal van de m-de component in het ontvanger-kanaal en

^g_m: de versterkingsfactor van de m-de component in het ontvanger-kanaal.

Aangezien de opstelling vooral bedoeld is voor extreme situaties (grote demping door regen) wordt de antenneruis-temperatuur Ta gelijk aan de omgevingstemperatuur To genomen: Ta=To=290 K.

Tabel 82: Systeem-ruistemperaturen bij vier keuzes voor de opbouw van een onvangerkanaal.

Keuze		Systeem-ruistemperatuur Ruisgeta	1
1) 1	geen LNA, gewone mixer,	Ts=2420 K +2.Ta=3000 K F=10,1 d	B
2)	wel LNA, gewone mixer,	Ts= 460 K +2.Ta=1040 K F= 5,5 d	B
3)	geen LNA, IR-mixer,	Ts=1550 K + Ta=1840 K F= 8,0 d	B
4)	wel LNA, IR-mixer.	Ts= 230 K + Ta= 520 K F= 2,5 d	18

Uit dit voorbeeld kan geconcludeerd worden, dat een IR-mixer het best in combinatie met een LNA gebruikt kan worden. Er bestaan LNA's voor 12,5 GHz en IRmixers, geschikt voor 12,5 GHz en een eerste middenfrequentie van 10 MHz. Voor 20 GHz en 30 GHz zijn er (nog) geen IR-mixers geschikt voor een eerste middenfrequentie van 10 MHz en (nog) geen LNA's met voldoende stabiliteit voor gebruikt bij propagatie-experimenten (voor een redelijke prijs) in de handel.

5.3. De frequentie-generator

In de Olympus-propagatie-ontvanger zijn veel signalen met verschillende frequenties aanwezig. Alle mixers moeten een aanstuur-frequentie krijgen, waarmee de verschillende RF-signalen alle naar dezelfde 10 MHz midden-frequentie teruggemengd worden. Vanwege de eis, dat de ontvanger alleen "gelocked" hoeft te worden op het 12,5 GHz signaal, moeten de aanstuur-frequenties van één bron worden afgeleid (net als in de satelliet, zie figuur 1). Dit laatste geldt ook voor de frequenties van de test-signalen, die zich vlak naast de frequenties van de antenne-signalen moeten bevinden (op enkele tientallen kHz afstand). In deze paragraaf zullen een aantal methodes voor frequentie-synthese en de voorgestelde opbouw van de frequentie-generator besproken worden.

5.3.1. Frequentie-synthese

In figuur 83 zijn drie verschillende methodes voor frequentie-synthese geschetst:

-Frequentie-vermenigvuldiging:

Door een niet-lineaire component (bijvoorbeeld een diode) wordt een harmonisch signaal niet-lineair vervormd. Het spectrum van dit vervormde signaal bevat naast de grondharmonische ook een aantal hogere harmonischen, waarvan de frequentie exact een factor 2, 3, 4,... hoger is dan de frequentie van het oorspronkelijke signaal. Met een banddoorlaat-filter kan de gewenste harmonische geselecteerd worden [47, p. 288].

-Frequentie-deling:

Een teller telt de periodes van een harmonisch signaal en geeft na elke n periodes een puls af. Door deze rij pulsen door een laag-doorlaat-filter te sturen ontstaat een harmonisch signaal, waarvan de frequentie exact een factor n kleiner is dan de frequentie van het oorspronkelijke signaal. Dit principe kan gecombineerd worden met het frequentie-vermenigvuldigen door een band-doorlaat-filter in plaats van een laag-doorlaat-filter te gebruiken.

-Frequentie-optelling en -aftrekking:

Met een spannings-vermenigvuldiger (of een mixer) kunnen twee harmonische signalen met elkaar vermenigvuldigd worden. Het resulterende signaal bestaat uit twee harmonische signalen, de één met als frequentie de som van de twee oorspronkelijke frequenties, de ander met het verschil. Met filters kunnen beide signalen van elkaar gescheiden worden [47, p. 32].

Figuur 83: Verschillende methodes voor frequentiesynthese. a) Frequentie-vermenigvuldiging, b) frequentie-deling en c) frequentieoptelling en -aftrekking. De verschillende grafieken geven de signalen in het tijddomein en in het frequentie-domein weer.

Met een spannings-gestuurde oscillator (eng: Voltage Controlled Oscillator, VCO) en een terugregel-circuit kan een schoner uitgangs-signaal met meer vermogen verkregen worden. In figuur 84 zijn twee voorbeelden met een Phase Locked Loop (PLL) weergegeven.

M.D. van Deventer augustus 1987

Figuur 84: Twee voorbeelden van frequentie-synthese met een Phase Locked Loop. a) Frequentieoptelling en b) frequentie-vermenigvuldiging.

5.3.2. Het voorgestelde schema

In figuur 85 is het voorgestelde schema voor de frequentie-generator weergegeven. In het schema zijn details als de filters, de opbouw van de PLL's en de amplitude-stabilisatie voor de test-signalen weggelaten. In het schema wordt ten behoeve van de overzichtelijkheid gewerkt met drie frequenties:

 $f_{h} = 0,29074107 \text{ GHz}, \text{ de veelvouden van } f_{h}$ $43 \cdot f_{h} = 12,501866 \text{ GHz},$ $68 \cdot f_{h} = 19,770393 \text{ GHz en}$ $102 \cdot f_{h} = 29,655589 \text{ GHz}$ komen precies overeen met de satelliet-frequenties, $f_{m} = 10 \text{ MHz}; \text{ de eerste midden-frequentie en}$

¹1= 500 Hz (bijvoorbeeld): een lage frequentie, waarmee de afstand in frequentie van de antennesignalen en de test-signalen bepaald wordt.

Figuur 85: Voorgesteld schema voor de frequentiegenerator.

Dit ontwerp heeft de volgende eigenschappen: -Alle frequenties "lopen mee" met de veranderingen in de satelliet-frequenties (door Doppler-verschuiving, veroudering,..., zie [2]), omdat de frequentiegenerator spannings-gestuurd is. De generator wordt gestuurd door het signaal van de fasedetector van het 12,5 GHz hoofd-polarisatie-signaal, waardoor de generator en het 12,5 GHz hoofd-polarisatie-ontvangerkanaal samen als één grote phase locked loop werken ("Long Loop", zie [50,p. 145]). -Alle midden-frequenties zijn exact gelijk aan ^f_m (10

-Alle midden-frequenties zijn exact gelijk aan 'm (10 MHz), waardoor de bandfilters op 10 MHz zeer smalbandig gekozen kunnen worden (er bestaan zogenaamde kristal-filters met een -3 dB bandbreedte van 2 kHz op 10 MHz). Er treden ook geen fase-fouten op door verandering van de satelliet-frequenties, omdat de midden-frequent-signalen alle op dezelfde plaats in de filters blijven.

- -De verschillende test-frequenties bevinden zich door het Long-Loop-principe op een vaste plaats naast de satelliet-frequenties en de test-frequenties kunnen daardoor relatief vrij dicht bij de satelliet-frequenties gekozen worden.
- -De stabiliteit van de fase-meting tussen 20 GHz en 30 GHz (20/30F(TV,RV/TV,RV)) wordt vrijwel alleen bepaald door de stabiliteit van de frequentie-vermenigvuldigers voor de 20 GHz - en 30 GHz test-signalen.
- -Geen van de frequenties van de generator (of hogere harmonischen daarvan) komt overeen met een van de frequenties van de satelliet, zodat er geen storing door direkte instraling kan optreden. Er is niet gecontroleerd of twee signalen door instraling op een niet-lineaire component een derde signaal kunnen opwekken, dat stoort. Dat probleem is een typische EMC-probleem (eng: Electro-Magnetic Compatibility).
- -In dit schema komen vier PLL's voor, die alle rond 10 GHz werken. Dit is gedaan, omdat stabiele VCO's met frequenties rond 20 GHz en 30 GHz moeilijk te maken of te kopen zijn. Tevens wordt er zo een mogelijkheid geboden voor quantum-korting bij de aanschaf van oscillators en mixers rond deze frequentie.
- -De VCO aan het begin van de keten werkt op $(f_h + f_1)/3 \cong 100 \text{ MHz}$ en niet op $(f_h + f_1) \cong 300 \text{ MHz}$, omdat de oscillators rond 100 MHz kwalitatief de beste blijken te zijn en veel componenten (daarom) standaard in de buurt van deze frequentie gemaakt worden.

6. Richtnauwkeurigheid bij de som-en-verschil-methode

In de voorgaande hoofdstukken is besproken hoe de richting van een satelliet gemeten kan worden. Dit hoofdstuk behandelt de theorie van een regelsysteem, dat met behulp van de monopuls-positie-meting de antenne naar de satelliet richt. Als voorbeeld wordt de richtnauwkeurigheid van het Olympus-richt-systeem berekend.

6.1. Formulering van het regel-probleem

6.1.1. Mogelijke regelsystemen

In de inleiding werd al opgemerkt, dat de satellietbeweging bestaat uit een dagelijkse schommeling en een driftbeweging. Een gebruikelijk volg-systeem is een continue regeling [52], [53]. Bij een dergelijke regeling worden de gedetecteerde verschil-signalen direkt teruggekoppeld naar de servo-motoren van de antennebesturing. Aangezien de satelliet-beweging een trage beweging is, hebben dergelijke regelsystemen een grote tijdconstante. De optimalisatie van een continu regelsysteem naar vang- en volg-eigenschappen is analoog aan de optimalisatie van een phase locked loop.

Het Dlympus-richt-systeem is niet geschikt voor een continue regeling, omdat de assen van de stappenmotoren voor de antenne-besturing niet bestand zijn tegen de slijtage, die ontstaat bij continue regeling. Verder lenen stappen-motoren zich toch al beter voor niet-continue digitale regeling. Niet-continue regeling houdt in, dat er een tijd wordt gemeten, vervolgens wordt de antenne bijgestuurd (of niet als dat niet nodig blijkt) en begint de volgende meting. Ter illustratie staan in figuur 86 de richtfout als functie van de tijd weergegeven voor een continue en een niet-continue regeling.

In dit hoofdstuk zullen de berekeningen vooral voor het één-dimensionale geval uitgevoerd worden (meting en regeling slechts in één richting). De resultaten zijn eenvoudig toepasbaar op het twee-dimensionale geval (azimuth én elevatie). HODFDSTUK 6

Figuur 86: Illustratie van de richtfout bij a) continue regeling en b) niet-continue regeling.

6.1.2. Kriterium voor de richtnauwkeurigheid bij nietcontinue regeling

Voor de berekeningen zullen een aantal nieuwe variabelen en parameters ingevoerd worden, zie figuur 87: $\theta(t)$: de richtfout (in graden of in radialen), $\theta(t)$ is het verschil tussen de satelliet-richting en de antenne-richting, $\widetilde{ heta}(t t)$: schatting van heta(t t) door het meetsysteem, r : tijdstip, waarop bijgeregeld gaat worden, θ_{max}^{t} : de richtfout op tijdstip t_{r} , θ_{max} is een sto-chastische variabele, omdat bij de vorige regeling een meetfout en dus een regelfout is geen die meetfout is een stochastische maakt variabele. : de verwachtingswaarde van θ_{max} , μ σ² : de variantie van θ_{\perp} : de voriantie van _{max} : de richtnauwkeurigheid in graden of in radialen. r Er geldt [54, p. 39] $\mu \approx E \left(\theta_{max} \right)$ (64) $\sigma^{2} = E\left(\left(\theta_{\max} - \mu\right)^{2}\right)$ (65)

Voor de richtnauwkeurigheid r zal nog een kriterium gekozen moeten worden. Dit kriterium moet gelden voor de slechtst mogelijke toestand, dat is de grootste satelliet-hoeksnelheid ten opzichte van de ontvangende antenne en de grootste atmosferische demping, waarbij het richtsysteem nog moet werken. Voor continue regelsystemen wordt vaak het RMS-kriterium (eng: Root Mean Square) gebruikt als richtnauwkeurigheids-kriterium:

 $\mathbf{r} = \sqrt{\left(\mathbf{E}\left(\theta^{2}\left(\mathbf{t}\right)\right)\right)}$

$$r = \sqrt{E(\theta_{max}^{2})} = E(((\theta_{max}^{-}\mu) + \mu)^{2}) =$$

$$E((\theta_{max}^{-}\mu)^{2} + 2 \cdot \mu \cdot E(\theta_{max}^{-}\mu) + \mu^{2})$$

$$E((\theta_{max}^{-}\mu)^{2} + 0 + \mu^{2}) = \sqrt{(\sigma^{2} + \mu^{2})}$$
(67)

Dok dit kriterium is niet geschikt, omdat de kans op overschrijding bij dit kriterium nog onbepaald is als μ en σ niet afzonderlijk bekend zijn. Wel geschikt als richtnauwkeurigheids-kriterium is

 $r = \mu + 2\sigma$

(68) Aangezien de meetfout Gaussisch verdeeld verondersteld kan worden [47, p. 107], [13, hoofdstuk 12] is de kans, dat θ_{max} het richtnauwkeurigheids-kriterium overschrijdt gelijk aan [47, appendix D] $P(\theta_{max} > r) = Q(2) \cong 2\%$ (69)

De weegfactor voor σ in het richtnauwkeurigheidskriterium moet niet te groot of te klein zijn, omdat zowel μ als σ van belang zijn, lijkt (68) een goede keuze. Dit alles wordt geïllustreerd in figuur 87 en figuur 88.

-110-

Figuur 88: Kansdichtheidsfunctie van $heta_{ extsf{max}}$.

6.2. Modellering van het richtsysteem

Een blokscheme voor het richtsysteem wordt gegeven in figuur 89.

De parameter-schatter en de regelaar kunnen tijddiscreet gerealiseerd worden met een laag-doorlaatfilter, een analoog/digitaal-omzetter (eng: A/D-converter) en een computer (zie [47, p. 512]). De tijdcontinue en de tijd-discrete uitvoering zullen in dit hoofdstuk als equivalent beschouwd worden. Voor de tijd-discrete uitvoering worden de volgende variabelen en parameters ingevoerd:

M.O. van Deventer augustus 1987

t_s : de sample-tijd van de A/D-omzetter in seconde,

B = 1/2t_s: (Nyquist-)bandbreedte van het laag-doorlaat-filter voor de A/D-omzetter in Hertz, K = t_m/t_s: aantal samples gedurende de meettijd t_m en k : index van het sample (k = 1, 2,..., K).

Figuur 89: Blokschema van het richtsysteem.

6.2.1. Het meetsysteem

Het meet-systeem bestaat uit de satelliet, het (monopuls) antenne-systeem en de ontvanger. Het meetsysteem wordt gekarakteriseerd door een vijftal parameters [13], [12]:

- kTs : de konstante van Boltzmann maal de systeemruistemperatuur in Watt per Hertz,
- FSL : het "vrije ruimte verlies" (eng: Free Space Loss) tussen de satelliet en de ontvangende antenne, dimensieloos, in dB,
- EIRP: het effectief isotroop uitgezonden vermogen door de satelliet (eng: Effective Isotropic Radiated Power) in Watt (of in dBW),
- L_{atm}: het (gespecificeerde) atmosferische verlies, dimensieloos, in dB,
- DS : de helling van het verschil-signaal (eng: Difference Slope), waarmee de antenne naar de satelliet gericht gaat worden in per graad of in per radiaal (zie hoofdstuk 2, figuur 6).

De enkelzijdige ruis-dichtheid ("witte" Gaussisch verdeelde ruis) in het verschil-signaal wordt gegeven door [13, hoofdstuk 12]
(70)

(72a)

(72b)

 $G_{nn}(f) = n_s = kT_s$

Het verschil-signaal wordt met het som-signaal genormeerd tot een richtfout $\theta(t)$ in graden of in radialen. De signaal-ruis-dichtheid (C/N in Hertz) kan omgerekend worden naar een ruisdichtheid in het genormeerde verschil-signaal. Deze ruisdichtheid kan uitgedrukt worden in graden kwadraat per Hertz of in radialen kwadraat per Hertz:

 $G'_{n'n'}(f) = \eta' = kT_{s} \cdot \frac{FSL \cdot L_{atm}}{EIRP \cdot DS^{2}}$ (71)

Gedurende een meting ($0 \le t \le t$, $0 \le k \le K$) wordt de gemeten richtfout gegeven door

 $\theta(t) = \theta(t) + n'(t)$

 $\theta(k) = \theta(k) + n'(k)$

an : de variantie van de samples n(k) in graden kwa an draat of in radialen kwadraat: $<math>an = n_s \times B = n_s / 2t_m$ (73)

In de ontvanger kunnen het azimuth- en het elevatiekanaal gecombineerd worden door met behulp van een schakelaar telkens of het azimuth- of het elevatiekanaal te meten. Dit schakelen kan het best "langzaam" gedaan worden, waarbij de richtfout eerst in de azimuth-richting gemeten en bijgeregeld wordt, vervolgens in de elevatie-richting, dan weer in de azimuth richting, zie figuur 90. Deze methode heeft als gevolg, dat voor elke meting de meettijd korter is en zo de variantie in de meting groter is.

Figuur 90: a) Simultane meting en regeling in de azimuth- en de elevatie-richting, b) meting en regeling om-en-om in de azimuth- en de elevatie-richting. (getrokken lijnen: beweging van de satelliet, stippellijnen: correctie door het niet-continue richtsysteem).

6.2.2. De parameter-schatting

Uit de meetwaarden $\tilde{\theta}(t)$ of $\tilde{\theta}(k)$ moet de parameter $\theta_{\max} = \theta(t_r)$ (de positie van de satelliet aan het einde van de meting) geschat worden. Als schatting kan eenvoudig het gemiddelde van de meetwaarden worden genomen:

 $\hat{\theta}_{mid} = \frac{1}{t_m} \cdot \int_0^{t_m} \tilde{\theta}(t) dt$ $\hat{\theta}_{mid} = \frac{1}{K} \cdot \sum_{k=1}^{K} \tilde{\theta}(k)$ (74a)
(74b)

Bij deze schatting (een zogenaamde nulde orde schatting) wordt de satelliet-beweging verwaarloosd. Deze satelliet-beweging bestaat, zoals eerder gezegd, uit een dagelijkse schommeling en een drift-beweging. Indien de meettijd zo kort is, dat de satellietbeweging bij benadering eenparig is (meettijd hooguit een uur), dan komt $\theta_{\rm mid}$ overeen met de satellietpositie halverwege de meting en wordt de verwachtingswaarde van de fout (een zogenaamde eerste orde fout) in de schatting gegeven door

$$E(\theta_{max} - \theta_{mid}) = \theta_{max} - \theta_{mid} = \omega_{sat} \cdot t_{m}$$
(75)

Hierin is ω_{sat} de hoeksnelheid van de satelliet ten opzichte van de ontvang-antenne-richting, uitgedrukt in graden per seconde of in radialen per seconde. In de schatting θ_{mid} zit ook een fout, die veroorzaakt wordt door de ruis (n'(t), n'(k)). De variantie van θ_{mid} wordt gegeven door

$$E((\theta_{mid} - \hat{\theta}_{mid})^{2}) = E((\frac{1}{K}, \sum_{k=1}^{K} n'(k))^{2}) = \frac{1}{K^{2}}, \sum_{k=1}^{K} E(n'(k))^{2} = \frac{1}{K^{2}}, K, \sigma_{n'}^{2} = \frac{n'_{s}}{2Kt_{s}} = \frac{n'_{s}}{2t_{m}}$$
(76)

De berekening voor het tijd-continue geval geeft hetzelfde resultaat, omdat het equivalent is met het tijd-discrete geval (limiet voor K naar oneindig).

De satelliet-positie op $t=t_m$ kan ook geschat worden door de satelliet-beweging als eenparig te beschouwen: $\hat{\theta}(t) = \hat{\theta}_{max} - \hat{\omega}_{sat} (t_m - t)$ (22)

Met de kleinste-kwadraten-methode [14, p. 299] kan θ_{max} geschat worden. Bij deze methode moet de som van de kwadraten van het verschil tussen de gemeten $\tilde{\theta}(k)$ en de schatting $\hat{\theta}(k)$ minimaal zijn. Die som is: $K = \tilde{\beta} (\tilde{\theta}(k) - \tilde{\theta}(k))^2 =$

$$k=1$$

$$\sum_{k=1}^{K} \left(\hat{\theta} \left(k \right) - \hat{\theta}_{max} + \hat{\omega}_{sat} \cdot t_{s} \cdot \left(K - k \right) \right)^{2}$$
(78)

Het minimum wordt gevonden door de afgeleide van de som (78) naar θ en ω nul te stellen. Het resultaat is een tweetal vergelijkingen met twee onberekenden:

$$\hat{\theta}_{\max} - \frac{1}{2} (K-1)$$
 $\hat{\omega}_{sat} \cdot t_s = \frac{1}{K} \cdot \sum_{k=1}^{K} \tilde{\theta}(k)$ (79a)

...

$$\frac{1}{2}(K-1)\cdot\hat{\theta}_{max} - \frac{1}{6}(2K^{2} - 3K+1)\cdot\hat{\omega}_{sat} - t_{s} = \frac{1}{K}\cdot\sum_{k=1}^{K}(K-k)\cdot\hat{\theta}(k)$$
(79b)

Hierbij is onder andere gebruik gemaakt van de sommatie-formules

$$\sum_{k=1}^{K} 1 = K$$
(80a)
$$\sum_{k=1}^{K} k = \frac{1}{2} \cdot K \cdot (K+1)$$
(80b)

$$\sum_{k=1}^{K} k^{2} = \frac{1}{6} \cdot K \cdot (k+1) \cdot (2K+1)$$
(80c)

De oplossing van (79) is

$$\widehat{\omega}_{sat} = \frac{1}{t_s} \cdot \left(\frac{12}{K \cdot (K^2 + 1)} \cdot \sum_{k=1}^{K} k \cdot \widehat{\theta}(k) - \frac{6 \cdot (K - 1)}{K \cdot (K^2 + 1)} \cdot \sum_{k=1}^{K} \widehat{\theta}(k) \right)$$
(B1a)

en

$$\hat{\theta}_{\max} = \frac{1}{K} \cdot \sum_{k=1}^{K} \hat{\theta}(k) + \frac{1}{2} \cdot (K-1) \cdot \hat{\omega}_{sat} \cdot \hat{t}_{s} = \frac{6 \cdot (K-1)}{K^{2}+1} \cdot \frac{1}{K} \cdot \sum_{k=1}^{K} k \cdot \hat{\theta}(k) - \frac{2 \cdot (K^{2}-4)}{K^{2}+1} \cdot \frac{1}{K} \cdot \sum_{k=1}^{K} \hat{\theta}(k)$$
(B1b)

Deze formules voor het tijd-discrete geval zijn geen "mooie" formules, omdat het feit meespeelt, dat een sample aan het eind van het sample-interval wordt genomen en niet halverwege. Voor grote K kan dit effect verwaarloosd worden en geldt:

$$\hat{\theta}_{\max} = \hat{\theta}_{\min} d^{+\frac{1}{2}} \cdot \hat{\omega}_{sat} \cdot t_{m}$$

$$= \frac{1}{K} \cdot \sum_{k=1}^{K} \hat{\theta}(k) \cdot (6 \cdot \frac{k}{K} - 2)$$
(82a)

Voor het tijd-continue geval geldt dan

$$\hat{\theta}_{max} = \frac{1}{t_m} \cdot \int_{0}^{t_m} \hat{\theta}(t) \cdot (6 \cdot \frac{t}{t_m} - 2) dt$$
 (82b)

Aangezien de satelliet-beweging niet eenparig is, wordt bij deze schatting (een zogenaamde eerste orde schatting) een (tweede orde) fout gemaakt. Als de meettijd kort is (hooguit een uur) kan de satellietbeweging bij benadering als eenparig beschouwd worden en is deze fout relatief klein vergeleken met de beweging van de satelliet gedurende de meting:

$$E\left(\theta_{\max} - \theta_{\max}\right) \approx 0 \tag{83}$$

. De variantie van $heta_{max}$ wordt gegeven door

$$E((\theta_{\max} - \theta_{\max})^{2}) = E(\frac{1}{K} \cdot \sum_{k=1}^{K} n'(k) \cdot (6\frac{k}{K} - 2))^{2}$$
$$= \frac{1}{K^{2}} \cdot \sum_{k=1}^{K} (6 \cdot \frac{k}{K} - 2)^{2} \cdot E(n'(k))^{2}$$
$$= \frac{1}{K} \cdot (4 + \frac{6}{K} + \frac{6}{K^{2}}) \cdot \sigma_{n'}^{2}$$
$$\approx \frac{4\sigma_{n'}^{2}}{K} = 2 \cdot \frac{n'_{s}}{t_{m}}$$

Uit (75) en (83) blijkt, dat de nulde orde schatting een meetfout ter grootte $\frac{1}{2} \cdot \omega_{\text{Sat}} \cdot t_{\text{m}}$ introduceert, welke niet aanwezig is bij de eerste orde schatting. Echter de variantie van de eerste orde schatting is vier keer zo groot als de variantie van de nulde orde schatting (zie (76) en (84)), omdat de eerste orde schatting impliciet (zie (82)) ook een schatting van de satelliet-beweging gebruikt.

6.2.3. De regelaar

Om de slijtage aan de assen van de servo-motoren beperkt te houden wordt de antenne-richting slechts op bepaalde tijdstippen (t = 0, t_r , $2t_r$,...) bijgeregeld. Er zal gesteld worden, dat de meettijd gelijk of kleiner is dan de tijd tussen het regelen ($t_m \leq t_r$), dat wil zeggen, dat na elke regeling opnieuw een parameter-schatting gestart wordt. De satelliet-verplaatsing in het interval van bijregelen wordt gegeven door

 $\theta_{\max} - \theta_{\min} = \omega_{sat} \cdot t_r$

(85)

(84)

De satelliet-hoeksnelheid ω_{sat} wordt constant verondersteld, omdat de lengte van het regelinterval t_r hooguit een uur is.

Indien de richting van de satelliet-beweging bekend is (bijvoorbeeld uit vorige metingen), dan kan de regelaar de antenne naar "de andere kant van de satelliet" sturen, zodat door de satelliet-beweging de richtfout eerst afneemt en daarna weer toeneemt. Een dergelijke regelaar zal "dynamisch" genoemd worden. Dit in tegenstelling tot een "statische" regelaar, die de richtfout naar nul probeert terug te brengen.

6.3. Berekening van de richtnauwkeurigheid

6.3.1. Normeringen en richtkriteria

In paragraaf 6.2. zijn een aantal keuzes naar voren gekomen, die voor het richtsysteem gemaakt moeten worden:

-Het ontvanger ontwerp: moeten de verschilsignalen simultaan (t_=t_) of om-en-om (t_=lt_) gemeten worden ?,

-De parameter-schatting: wordt een nulde of eerste orde schatting gebruikt ? en

-De regelaar: wordt er "statisch" of "dynamisch" geregeld ?

In figuur 91 is de richtfout als functie van de tijd $(\theta(t))$ voor de verschillende mogelijkheden weergegeven.

Figuur 91: De richtfout als functie van de tijd voor a) statische regelaar met nulde orde schatter b) dynamische regelaar met nulde orde schatter c) statische regelaar met eerste orde schatter d) dynamische regelaar met eerste orde schatter ^tr voor simultane meting m t_=lt_ voor om-en-om meting De stippellijnen geven de 20 grenzen van de richtfout ean.

In deze figuur zijn duidelijk de effecten te zien, die volgen uit de verschillende keuzes. Bij de nulde orde parameter-schatting is telkens de statische meetfout herkenbaar. Bij de dynamische regelaar heeft de richtfout in ieder regel-interval een nuldoorgang.

HOOFDSTUK 6

In alle gevallen blijken μ en σ geschreven te kunnen worden als $\mu = \mu_p \cdot \omega_{sat} \cdot t_r = \mu_p \cdot \mu_0$

p sat r p 0 (86)

en

$$\sigma = \sigma_{p} \cdot \sqrt{\frac{n'_{s}}{\omega^{2}}} = \sigma_{p} \cdot \sigma_{0}$$
(87)

Hierin zijn ${}^{\mu}{}_{p}$ en ${}^{\sigma}{}_{p}$ dimensieloze getallen en ${}^{\mu}{}_{0}$ en ${}^{\sigma}{}_{0}$ normerings-constanten in graden of in radialen. Om een eenvoudige vergelijking van de effecten van de verschillende keuze-mogelijkheden mogelijk te maken zouden ook de richtnauwkeurigheid r (in graden) en de lengte van het regel-interval ${}^{t}{}_{r}$ (in seconden) genormeerd moeten worden. Deze twee kunnen genormeerd worden op ${}^{\eta}{}_{s}$ en ${}^{\Omega}{}_{sat}$.

is het gespecificeerde maximum van ^N_S, waarvoor de richtnauwkeurigheidseis gehaald moet worden (maximaal atmosferisch verlies, maximale systeemruis-temperatuur, enz.): ^{0<}n'_S≦¶'_S en

 Ω_{sat} is de maximale hoeksnelheid van de satelliet ten opzichte van de antenne: $-\Omega_{sat}^{\leq \omega} = \Omega_{sat}$. Uit dimensie-overwegingen volgt, dat er maar één logische mogelijkheid tot normering is:

$$t_{r} = t_{rn} \cdot \left(\frac{\P'_{s}}{\Omega_{sat}^{2}}\right)^{\frac{1}{3}} = t_{rn} \cdot t_{0}$$
(88)

 $r = r_n \cdot (\P'_s \cdot \Omega_{sat})^{\frac{1}{3}} = r_n \cdot r_0$ (89)

Hierin zijn t_{rn} en r_n dimensieloze getallen en t_0 en r_0 zijn de normerings-constanten met dezelfde dimensies als t_r en r. Het is eenvoudig in te zien, dat voor het slechtste geval binnen de specificaties ($n'_s = n''_s$ en $\omega_{sat} = \Omega_{sat}$) geldt:

$$r_{n} = \mu_{p} \cdot t_{rn} + 2 \cdot \frac{\sigma_{p}}{\sqrt{t_{rn}}}$$
(90)

en dat in alle andere gevallen \mathbf{r}_n kleiner is, omdat $\boldsymbol{\mu}_p$ en/of $\boldsymbol{\sigma}_n$ kleiner is.

Naast het door (68) gegeven richtnauwkeurigheidskriterium zijn er nog verschillende richtkriteria mogelijk: -Het snelheids-kriterium: hoe snel kan een bepaalde

richtnauwkeurigheid bereikt worden (vind een zo klein mogelijke ^t_{rn} bij een gegeven ^r_n), -Het nauwkeurigheids-kriterium: optimaliseer de richt-nauwkeurigheid (minimaliseer ^r_n naar ^t_{rn}) en

-Het slijtage-kriterium: hoelang kan het bijregelen uitgesteld worden totdat een bepaald richtkriterium

overschreden wordt (vind een zo groot mogelijke t bij een gegeven ^r_).

Door de afgeleide van ^rn naar ^trn in (90) nul te stellen, volgt voor het nauwkeurigheids-kriterium

$t_{rn} = \left(\frac{\sigma_p}{\mu_p}\right)^{\frac{2}{3}}$	(91)
$r_n = 3. (\mu_p \cdot \sigma_p^2)^{\frac{1}{3}}$	(92)

6.3.2. Beschouwing van de richtnauwkeurigheid

In figuur 92 is de genormeerde richtnauwkeurigheid r_n weergegeven als functie van de genormeerde tijd tussen het regelen t_{rn} volgens vergelijking (90) bij de verschillende keuze-mogelijkheden voor de parameterschatting en de regelaar (de beide verschil-signalen worden simultaan gemeten). De verschillende richtkriteria zijn aangegeven. In tabel 93 zijn de genormeerde richtnauwkeurigheid en het genormeerde regelinterval uitgezet voor de verschillende mogelijkheden voor de het ontvanger-systeem, de parameter-schatting, de regelaar en het richt-kriterium.

Figuur 92: De genormeerde richtfout als functie van de genormeerde tijd tussen het regelen voor

- a) een "statische" regelaar met nulde orde schatter
- b) een "dynamische" regelaar met nulde orde schatter
- c) een "statische" regelaar met eerste orde schatter
- d) een "dynamische" regelaar met eerste orde schatter
- Richtkriteria:
- A: het snelheids-kriterium,
- B: het nauwkeurigheids-kriterium en
- C: het slijtoge-kriterium.
- De keuze $r_n = 6$ voor het snelheids- en het slijtoge-kriterium is vrij willekeurig genomen.
- t_m=t_r

Tabel 93: De genormeerde richtnauwkeurigheid en het genormeerde regelinterval voor de verschillende richt-kriteria.

Richt-systeem	Richtk	riteria	
	Snelh.	Nauwk.	Slijtk.
N/D/P/R ^µ p ^σ p	trn 1	r _n t _{rn} r _n	t _{rn} r _n
1 - 0 S 1, 50 0,707 $2 W 0 S 1,250 1,000$ $3 - 1 S 1,000 1,414$ $4 W 1 S 1,000 2,000$ $5 - 0 0 0,750 0,707$ $6 W 0 0 0,625 1,000$.0,057 6 .0,117 6 .0,241 6 .0,536 6 .0,056 6 .0,114 6	5 .0,606 2,726 5 .0,862 3,232 6 .1,260 3,780 5 .1,587 4,762 6 .0,961 2,163 5 .1,368 2,565	. 3,496 6 . 4,000 6 . 4,695 6 . 4,000 6 . 7,302 6 . 8,503 6
8 W 1 D 0,500 2,000	.0,482 (6 .2,520 3,780	. 9,389 6
Ontvanger :	- W	= simultane m azimuth en el ∞ om-en-om m	eting van evatie, eting van
Parameter-schatting:	D 1	azimuth en el = nulde orde s = eerste orde s	evatie, chatting chatting
Regelaar :	S D	= statisch, = dynamisch,	
Richt-kriterium :	Snelh. Nauwk. Slidtk	<pre>= snelheids-kri = nauwkeurighei rium en = sliitage-krit</pre>	terium, ds-krite- erium.

Uit vergelijking (89), blijkt, dat de richtnauwkeurigheid evenredig is met de derde-machts-wortel van n_s^{\prime} . Dit houdt in, dat bij een afname/toename van de signaal-ruis-verhouding met 3 dB (verdubbeling/halvering van n_s^{\prime}) de richtnauwkeurigheid slechts met een factor 1,26 (de derde-machts-wortel van 2) verslechtert/verbetert. Dit heeft als gevolg, dat voor een kleine verbetering in de richtnauwkeurigheid een onevenredig grote verbetering in de signaal-ruis-verhouding nodig is.

Uit figuur 92 en tabel 93 kan geconcludeerd worden, dat voor snel of nauwkeurig regelen beter de gemiddelde waarde gebruikt kan worden voor de schatting van de satelliet-positie. Als het richten met zo min mogelijk slijtage moet gebeuren (grote tijd tussen het regelen), kan de satelliet-positie beter met een eerste orde schatting geschat worden.

Het uitsparen van een ontvanger-kanaal door het azimuth- en het elevatie-verschil-signaal om-en-om te meten blijkt in alle gevallen een verslechtering van maximaal een factor 1,26 in de richtnauwkeurigheid te geven.

Het "dynamisch" richten blijkt vooral voordelig te zijn als er nauwkeurig of met weinig slijtage gericht moet worden.

6.4. Een voorbeeld: Het Olympus-richtsysteem

6.4.1. De vereiste richtnauwkeurigheid

De richtnauwkeurigheid, die nodig is voor de propagatie-metingen met de 5,5 m Cassegrain-antenne en de satelliet Olympus wordt door twee zaken bepaald, namelijk de afname van het hoofdpolarisatie-signaal (L_r) en de afname van de kruispolarisatie-discriminatie (XPD) ten gevolge van de richtfout, zie figuur 94,

Figuur 94: Illustratie van het richtverlies ^L_r en de kruispolarisatie XPD.

In deze figuur is $g_{CO}(\theta_v, \phi_v)$ de wortel van de winstfunctie van het hoofdpolarisatie-signaal (elders in dit verslag vaak som-signaal genoemd) en $g_x(\theta_v, \phi_v)$ de wortel van de winstfunctie van het kruispolarisatiesignaal. Voor kleine θ_v kunnen $g_{CO}(\theta_v, \phi_v)$ en $g_x(\theta_v, \phi_v)$ beschreven worden met een tweede orde Taylor-benadering [61, p. 61]:

$$g_{co}(\theta_{v}, \phi_{v}) = C_{1} \cdot (1 - C_{2} \cdot \theta_{v}^{2})$$

$$g_{x}(\theta_{v}, \phi_{v}) = C_{1}C_{3} \cdot \theta_{v}^{2} \cdot \sin(2 \cdot \phi_{v})$$
(93)

-123-

Hierin zijn C1, C2 en C3 constantes, die bepaald worden door (de vorm van) de verschillende stralingsdiagrammen. Met deze benaderingen vallen L_r en XPD te schrijven als

(94)

(96)

$$L_{r} \leq -20.\log(1-C_{2}.r_{s}) dB$$
 (95)
en

 $XPD \ge 20.\log\left(\frac{1}{C_3 r_s^2}\right)$ dB

Hierin is r_s de maximaal toegestane richtfout: - $r_s \leq \theta_v \leq r_s$

Met de berekende stralingsdiagrammen van paragraaf 2.3.2. kunnen C1, C2 en C3 voor de 12,5 GHz-, de 20 GHz- en de 30 GHz-stralingsdiagrammen bepaald worden, zie tabel 95. De kruispolarisatie-ontkoppeling van de belichter en de bijbehorende microgolftechniek is op 30 dB gesteld (de werkelijke waarde is nog niet bekend, zie paragraaf 3.2.2.).

Tabel 95: Constantes voor de tweede orde Taylor-benaderingen van de verschillende stralingsdiagrammen.

Frequentie in GHz	C1 dimensiloos	C2 in per graad kwadraat	C3 in per graad kwadraat
12,5	623	15,4	17,2//1000=0,54
20	1007	38,3	33,8/√1000=1,07
30	1528	86,9	76,5/√1000=2,42 .

Door de OPEX (Olympus Propagation EXperimentors) wordt een totale ontvanger-stabiliteit van 0,2 dB aanbevolen [62, p. 4.1]. Het richtverlies dient veel kleiner te zijn dan deze waarde, omdat andere zaken (onder andere de stabiliteit van de ontvanger en de stabiliteit van de mode-uitkoppeling) ook de totale stabiliteit beïnvloeden. Er is gekozen voor een richtverlies van $L_r \leq 0,02$ dB (97)

-124-

Door de OPEX wordt verder aanbevolen de atmosferische XPD te meten vanaf 35 dB. De XPD van de ontvanger zal 20 dB beter moeten zijn om de fout in de XPD-meting te beperken tot ±1 dB. Hieruit volgt de richt-specificatie voor de kruispolarisatie-ontkoppeling [62, p. 5.4.]: XPD >= 55 dB (98)

In tabel 96 is de maximaal toegestane richtfout voor de verschillende frequenties en eisen weergegeven.

Frequentie in GHz	Eis			Maximaal toegestane richt- fout ^r s in graden
12,5	L _r	<=0,02	dB	0,012
20	L	<=0,02	d8	0,008
30	L'r	<=0,02	dB	0,005
12,5	XPD	>=55	d8	0,06
20	XPD	>=55	dB	0,04
30	XPD	>=55	dB	0,03
Minimum				0,005

Tabel 96: De maximaal toegestane richtfout, r_{c} .

Er volgt dus als eis voor de richtnauwkeurigheid r <= ^r_s = 0,005 graden (99)

Deze eis volgt uit het maximaal toegestane richtverlies op 30 GHz. Uit de specificaties voor de XPD's blijken veel minder zware richtnauwkeurigheids-eisen te volgen dan uit de specificaties voor de richtverliezen. Dit laatste blijft ook gelden als de XPD van de belichter en de bijbehorende microgolftechniek niet 30 dB, maar 15 dB zou zijn. (Alleen de aanstoting van de EH11-mode in de gegroefde hoorn is beschouwd als oorzaak van kruispolarisatie.)

6.4.2. De positie en beweging van de satelliet

De positie van de satelliet Olympus is na lancering 19 ±0,07 graden westerlengte en ±0,07 graden noorderbreedte [2]. Aangezien de dagelijkse noord-zuid schommeling van de satelliet door inclinatie maximaal ±0.07 graden is, is de maximale satelliet-hoeksnelheid (gezien vanaf het middelpunt van de aarde): 21 x 0,07 graden / 86163 seconde = 5,1 E-6 graden per seconde (86163 seconde is de lengte van een "siderische" dag [4]). Op 19 grøden westerlengte is de driftversnelling van geostationaire satellieten ongeveer 3,2 E-14 graden per seconde kwadraat westwaarts [4]. Daaruit volgt, dat de oost-west drift maximaal $\sqrt{(2 \times 0, 14^{\circ} \times 3, 2E-14^{\circ}/s^2)} = 9,5 E-8$ graden per seconde is (indien de satelliet aan de oostkant van zijn "hok" "losgelaten" wordt en met een versnelling van 3,2 E-14 graden per seconde kwadraat westwaarts drift tot de westkant van zijn "hok"). Dit is beduidend minder dan de maximale noord-zuid schommeling. Aangezien de maximale eccentriciteit van de satellietbaan niet opgegeven is, kan de maximale dagelijkse oost-west schommeling niet berekend worden. Er kan aangenomen worden, dat deze niet groter is dan de maximale noord-zuid schommeling.

Gezien vanaf Eindhoven (5,50 graden OL, 51,45 graden NB) komt de positie van de satelliet overeen met 26,78 graden elevatie en 210,23 graden azimuth, gerekend vanaf noord via oost [4], [45]. Het "hok" van 0,14 bij 0,14 graden is vanaf Eindhoven gezien vrijwel vierkant en meet ongeveer 0,15 bij 0,15 graden, zie figuur 97. De maximale satelliet-hoeksnelheid (gezien vanaf Eindhoven) is

- $\Omega_{sat} = 0,15$ graden / 0,14 graden . 5,1 E-6 graden per seconde
 - = 5,5 E-6 graden per seconde (9,7 E-8 radialen per seconde).

Figuur 97: Uitzicht vanaf Eindhoven op het "hok" met de satelliet Olympus.

6.4.3. Het linkbudget voor het richtsysteem

In tabel 98 is het linkbudget samengevat.

Tabel 98: Het richt-linkbudget

Frequentie	f	12,501866 GHz
(zie paragraaf 1.1.) EIRP	EIRP	> 10 Watt
(zie paragraat 5.1.1.) Free Space Loss (zie paragraaf 5.1.1.)	FSL	206,2 dB
Atmosferisch verlies	L atm	< 30 dB
Uitkoppel-verliezen (zie paragraaf 4.3.3.)		0,5 dB
Systeem-ruis- temperatuur	Ts	520 Kelvin
(zie paragraaf 5.2.2.) Nominale helling (zie paragraaf 2.1.2.)	DS ₀	2,60 E5 per radiaal (4,53 E3 per graad)
Hellingsrendement (zie paragraaf 2.3.2.)	η _Δ	30,9%
Genormeerde ruis- dichtheid	η' s	1,6 E-8 radialen kwadraat
(zie paragraaf 6.2.1.)		per Hertz (5,3 E-5 graden kwa- draat per Hertz)

6.4.4. De resulterende richtnauwkeurigheid

Met (88), (89) en de berekende waarden Ω_{sat} = 5,5 E-6 graden per seconde en η' = 5,3 E-5 graden kwadraat per Hertz volgt t_0 = 120 seconde en r_0 = 6,6 E-4 graad.

Indien het richtkriterium "zo nauwkeurig mogelijk" is, dan volgt voor de richtnauwkeurigheid (zie tabel 93) r = 2,163. r_0 = 0,0014 graad en voor de lengte van het regelinterval t_r = 0,961. t_0 = 115 seconde (ongeveer 2 minuten).

In paragraaf 6.4.1. werd gespecificeerd: r <= 0,005 graad Het richtsysteem heeft dus een marge, welke gebruikt kan worden voor het richten volgens het slijtagekriterium en het uitsparen van een ontvanger-kanaal door de twee verschil-signalen (azimuth en elevatie) om-en-om te meten. Het best kan de satelliet-richting dan geschat worden met een eerste orde schatting en dient de antenne-richting "dynamisch" geregeld te worden (combinatie 8 uit tabel 93).

Aanbevolen wordt 15 minuten als lengte van het regelinterval te nemen. Dat houdt in, dat 7,5 minuten in de azimuth-richting wordt gemeten, gevolgd (indien nodig) door een correctie in de azimuth-richting. Vervolgens wordt 7,5 minuten in de elevatie-richting gemeten, gevolgd (indien nodig) door een correctie in de elevatie-richting, enzovoort.

Met ${}^{t}r = 900$ seconde (15 minuten), ${}^{t}0 = 120$ seconde en ${}^{r}0 = 6,6$ E-4 graad volgt ${}^{t}rn = 900/120 = 7,5$ en daaruit ${}^{r}n = 5,2$ en $r = 5,2.{}^{r}0 = 0,0035$ graad.

De werkelijke richtnauwkeurigheid zal slechter zijn dan deze berekende 0,0035 graad, vanwege onder andere: -beperkte resolutie/stapgroote van de stappen-motoren voor de antenne-besturing (±0,0003 graad [63]),

-koppeling tussen het som-signaal en de verschilsignalen (0,0008 graad, zie paragraaf 4.2.3.),

-baancorrectie van de satelliet tijdens een meting,

- -variaties in de versterkingsfactoren van de ontvangers,
- -verstemming van de uitkoppelaars,

-(mogelijke) misaanpassing tussen de uitkoppelaars en de ontvanger-ingangen,

-oppervlaktefouten in het reflector-oppervlak en -eventuele "multiple scattering" [65].

Verwacht wordt, dat aan de richtspecificaties voldaan zal worden en dat een richtnauwkeurigheid van 0,005 graad bereikt zal worden.

- De richtnauwkeurigheid zou theoretisch verbeterd kunnen worden door:
 - -te richten volgens het nauwkeurigheidskriterium,
 - -relatief minder meettijd te gebruiken voor de azimuth richting, omdat de maximale oost-west beweging van de satelliet kleiner is dan de noord-zuid beweging,
 - -opheffen van fouten, geïntroduceerd door koppeling van een verschil-signaal met het som-signaal, met software-correctie en
 - -de schattingen van de satelliet-positie en -beweging over een langere periode dan één regel-interval te gebruiken (het programma van Philipsen [6] kan de baan van de satelliet voor een aantal dagen achtereen voorspellen).

Voor het "invangen" van de satelliet in de antennebundel kan ook het monopuls-meetsysteem gebruikt worden. Echter een precieze vergelijking von het somsignaal en de verschil-signalen lijkt niet verstandig, omdat voor grotere θ_v het quotiënt van een verschilsignaal en het som-signaal niet meer evenredig met θ, is alleen het teken van dit guotiënt is. Beter te beschouwen en hiermee de bundel met een constante snelheid (maximaal 0,01 graad per seconde [63]) naar de satelliet te sturen en te stoppen zodra "het teken omklapt". Als de sampletijd 0,1 seconde is, dan is de variantie van de richtfout direkt na het invangen (73) $\sigma^2 = \sqrt{(5,3 \text{ E-5 } \circ^2/\text{Hz} / (2 0,1 s))} = 0,016 \text{ graad}.$ Dit is nabij het lineaire gebied van de stralingsdiagrammen en de niet-continue regeling kan gestart worden. Bij het invangen moet overigens wel gelet worden op de amplitude van het som-signaal, opdat het richtsysteem niet invangt op een andere nuldoorgang van een verschil-signaal dan de nuldoorgang in de voorwaartse richting. Er kunnen geen dubbelzinnigheden optreden als de richtfout voor het invangen kleiner dan 0,35 graden is, omdat de eerste nuldoorgang van het som-patroon zich voorbij bij ⁰v = 0,35 graden bevindt (zie paragraaf 2.3.2.).

6.5. Vergelijking met sequential scan methodes

6.5.1. De richtnauwkeurigheid van de sequential scan methodes

De richtnauwkeurigheid van sequential scan methodes (waarbij de antenne gericht wordt door het maximum in het ontvangen vermogen te zoeken) is lastig theoretisch te bepalen. Dit komt doordat bij sequential scan algoritmes (zie paragraaf 1.2.) de richtnauwkeurigheid van veel zaken afhangt, zoals de toestand van de atmosfeer, de vorm van het stralingsdiagram, de richtfout op het moment dat het algoritme opgestart wordt en de methode van het zoeken ("curve-fitting", "gradient search", "step-track",... [60]). Met computersimulaties kan voor veel gevallen een verwachtingswaarde van de richtnauwkeurigheid bepaald worden [60], [64].

Het is wel mogelijk theoretisch een bovengrens voor de richtnauwkeurigheid vast te stellen door de plaats van het maximum op een monopuls-achtige wijze te bepalen. Gedurende een klein deel van de tijd wordt de bundel van de antenne zodanig gestuurd, dat de satelliet zich bevindt in een gebied van het stralingsdiagram, waar de afgeleide van $g_{\Sigma}(\theta_{V}, \phi_{V})$ (de wortel van de winstfunctie van het som-signaal) naar θ_{V} maximaal is. Deze maximale afgeleide zal CS (eng: Sum Slope, een betere afkorting was niet voorhande) genoemd worden, zie figuur 99.

Figuur 99: Illustratie van het begrip "Sum Slope".

$$CS = \max_{\substack{\theta_{\mathbf{v}} \\ \theta_{\mathbf{v}}}} \left(\frac{\partial g_{\Sigma}(\theta_{\mathbf{v}}, \phi_{\mathbf{v}})}{\partial \theta_{\mathbf{v}}} \right)$$
(100)

Voor een optmaal som-patroon (een uniforme verdeling) bij een cirkelvormige apertuur wordt CS gegeven door

and the second second

$$CS_{0} = \max_{\substack{\theta_{v} \\ \theta_{v}}} \left(\frac{\partial g_{\Sigma}(\theta_{v}, \phi_{v})}{\partial \theta_{v}} \right) = \frac{\partial u}{\partial \theta_{v}} \cdot \max_{u} \left(\frac{\partial \left(\frac{\pi D}{\lambda}, \frac{2 \cdot J_{1}(u)}{u} \right)}{\partial u} \right) \cong$$

 $(u = \frac{\pi D}{\lambda}, \sin(\theta_{u}) \cong \frac{\pi D}{\lambda}, \theta_{u}$, θ_{u} in radialen) $\approx \left(\frac{\pi D}{\lambda}\right)^{2} \cdot \max_{u} \left(\frac{2 \cdot J_{2}(u)}{u}\right) = \left(\frac{\pi D}{\lambda}\right)^{2} \cdot \frac{-2 \cdot J_{2}(u)}{u} |_{u \approx -2,30} \approx$

(101) $\approx 0,360. \left(\frac{\pi D}{\lambda}\right)^2$ per radiaal

Het is niet verbazingwekkend, dat ^{CS}O kleiner is dan DS (15), aangezien DS de grootst mogelijke helling is bij een gegeven apertuurvorm.

Eerst zal gemeten worden op de plaats, waar de afgeleide naar de azimuth-richting maximaal is (en die naar de elevatie richting nul), daarna op de plaats waar de afgeleide naar de elevatie-richting maximaal is (en die naar de azimuth-richting nul). De gemeten waarde van het somsignaal wordt (net als bij een monopuls-meting) genormæerd op de eerder gemeten maximale waarde van het som-signaal en met deze genormeerde waarde en de bekende vorm van het som-stralingsdiagram kan de plaats van het maximum bepaald worden.

Bij deze methode wordt onder andere verondersteld,

-dat de vorm van het stralingsdiagram exact bekend is, -dat bij de start van het algoritme de richtfout ongeveer nul is,

-dat er geen dubbelzinnigheden optreden doordat het maximum van de afgeleide vlak bij een nuldoorgang van het som-patroon ligt,

-dat de ontvanger in die omgeving niet "uit lock" kan vallen en

-dat het sturen van de antenne geen tijd kost. In een praktijk-situatie kan niet aan al deze veronderstellingen voldaan worden, zodat de met deze methode berekende richtnauwkeurigheid inderdaad een theoretische bovengrens is.

Evenals in paragraaf 6.2.1. kan de signaal-ruis-dichtheid C/N omgerekend worden naar een enkelzijdige ruis-dichtheid uitgedrukt in graden kwadraat per Hertz of in radialen kwadraat per Hertz:

$$G'_{n'n'}(f) = \eta'_{S\Sigma} = kT_{S} \cdot \frac{FSL \cdot L_{atm}}{EIRP \cdot CS^{2}}$$
(102)

Als schatting wordt een nulde orde schatting gebruikt (die neemt het gemiddelde van alle meetwaarden over een meetperiode), omdat de richtingmeting relatief kort moet duren (er moet behoorlijk wat tijd overblijven voor de propagatie-metingen). Met (76) kan de variantie in de schatting bepaald worden:

$$\sigma^2 = \frac{\eta'_{\rm s}\Sigma}{2.t_{\rm m}}$$
(103)

Hierin is ${}^t{}_m$ de meettijd, die nodig is voor de azimuth- of de elevatie-richting. De totale meetijd is $2{}^t{}_m$.

De regeling zal "dynamisch" verondersteld worden (zie paragraaf 6.2.3.). De maximale richtfout (exclusief ruis) wordt dan $\mu = \frac{1}{2} \cdot \omega_{sat} \cdot t_r$ (104)

Voor het uitvoeren van een zinnige hoeveelheid propagatie-metingen moet geëist worden, dat de totale meettijd voor het richten veel kleiner is dan de lengte van het regelinterval: $2.t_m = t_r \cdot x$ (105)

Hierin is x een gespecificeerd klein getal (bijvoorbeeld x = 0,01). Met (103), (104), (105), (91) en (92) wordt berekend, dat voor deze conditie de optimale richtnauwkeurigheid gegeven wordt door

$$r=2,381.(\P'_{s\Sigma}.\Omega_{sat})^{\frac{1}{3}}.x^{-\frac{1}{3}}$$
 (106)

.

en de bijbehorende optimale lengte van het regelinterval door

$$t_r = 1,587. \left(\frac{\prod_{s \Sigma}}{\Omega_{sat}^2}\right)^{\frac{1}{3}} \cdot x^{-\frac{1}{3}}$$
 (107)

M.D. van Deventer augustus 1987

-131-

HOOFDSTUK 6

6.5.2. Vergelijking van de richtnauwkeurigheden.

Voor zowel het monopuls- als het "sequential scan" richtsysteem kan een "nominale" waarde van de richtnauwkeurigheid berekend worden, met

$$DS = DS_0 = 0, 50 \cdot \left(\frac{\pi D}{\lambda}\right)^2 \quad rad^{-1}$$
$$CS = CS_0 = 0, 36 \cdot \left(\frac{\pi D}{\lambda}\right)^2 \quad rad^{-1}$$
$$T_s = T_0$$
$$L_{atm} = 0 dB$$

x = 1

De nominale waarden worden dan gegeven door ((102), (106)):

$$r_{\Sigma 0} = 2,381 \cdot \left(\frac{1}{0,36}\right)^{\frac{2}{3}} \cdot \left[kT_{0} \cdot \frac{FSL}{EIRP} \cdot \left(\frac{\lambda}{\pi D}\right)^{4} \cdot \Omega_{sat}\right]^{\frac{1}{3}} =$$

$$= 4,705 \cdot r_{00}$$
en ((71), (89)):
$$r_{\Delta 0} = 2,163 \cdot \left(\frac{1}{0,50}\right)^{\frac{2}{3}} \cdot r_{00} =$$

$$= 3,434 \cdot r_{00}$$
(108)

Hierin is

$$r_{00} = \left(kT_0 \cdot \frac{FSL}{EIRP} \cdot \left(\frac{\lambda}{\pi D} \right)^4 \cdot \Omega_{sat} \right)^{\frac{1}{3}}$$
(110)

(109)

een normeringsconstante voor de richtnauwkeurigheid. Voor het Olympus-antenne-systeem heeft deze de waarde

$$r_{00} = \left(1,38 \ 10^{-23} \ \frac{J}{K}.290 \ K.\frac{10^{20},62}{10 \ W}.\frac{1}{10} - \frac{10^{20}}{10 \$$

Voor de berekening van meer werkelijke waarden zullen de volgende zaken verondersteld worden: -het ruisgetal van de ontvanger is 2,5 dB: Ts=2,3.To, -de winstfactor van het sompatroon is $\eta_{\Sigma} = 0,74$ (zie paragraaf 2.3.2.) -de bundelverbreeding van het som-patroon (door afname van de winst) is een factor $\frac{1}{\sqrt{0,74}}=1,12$ -bij het "sequential scan" systeem wordt slechts 1% van de tijd voor richting-meting gebruikt: x = 0,01, -het hellingsrendement van het verschilpatroon is $\eta_{\Delta} = 0,31$ (zie paragraaf 2.1.3.) en -voor het monopuls-systeem is de regeling dynamisch, de parameter-schatting is een nulde orde schatting en er wordt om-en-om azimuth en elevatie gemeten: $r_n = 2,565$.

Er volgt (bij O dB atmosferische demping)

$$r_{\Sigma} = r_{\Sigma 0} \cdot (2, 3.1, 12^{2} / 0, 74)^{\frac{1}{3}} \cdot 0, 01^{-\frac{1}{3}}$$

= $r_{00} \cdot 36$ (112)

en

$$r_{\Delta} = r_{\Delta 0} \cdot (2, 3/0, 31)^{\frac{1}{3}}$$

= $r_{00} \cdot 4, 2$ (113)

Naast de in paragraaf 1.2. genoemde voordelen van monopuls-richtsystemen (geen onderbreking van de metingen, kleine gevoeligheid voor atmosferische signaal-fluctuaties en minder slijtage) kan dus tevens geconcludeerd worden, dat monopuls-systemen nauwkeuriger zijn dan sequential scan systemen.

- 7. Conclusies en aanbevelingen
- 7.1. Conclusies
- -Een optimaal verschil-patroon bij een monopuls richtsysteem (maximale helling bij de nuldoorgang in de voorwaartse richting) wordt verkregen met een veldverdeling over de apertuur, die oneven en lineair is in de richting van de gevoeligheid van het verschilpatroon. Dit is analoog aan het optimale som-patroon (maximale antenne-winst in de voorwaartse richting), dat verkregen wordt met een uniforme veldverdeling over de antenne-apertuur.
- -Bij reflector-antennes is het belichtingsrendement van het verschil-patroon meestal lager dan het belichtingsrendement van het som-patroon, omdat voor het verschil-patroon de belichtingsfunctie breder is (twee hoofdlussen in plaats van één, zoals bij het som-patroon), waardoor het spillover-rendement lager is.
- -Modes met een geschikte anti-symmetrie om dienst te doen als verschil-mode zijn de TMO1-mode, de TE21modes en de TEO1-mode in een ronde golfpijp. De TMO1mode is vooral geschikt bij het volgen van circulair gepolariseerde bakensignalen en de TE21-modes zijn vooral geschikt voor het volgen van lineair gepolariseerde bakensignalen, zoals de signalen van het ECSbaken en het Olympus-baken. De TEO1-mode wordt vanwege zijn relatief kleine afsnijgolflengte weinig gebruikt.
- -Het gebruik van een enkele mode als verschil-mode heeft als gevolg, dat het polarisatie-rendement van het verschil-patroon 50% is bij een lineair gepolariseerd baken-signaal en 25% bij een circulair gepolariseerd baken-signaal. Dit kan alleen verbeterd worden door de signalen van de TMO1-mode, de TE21-modes en de TED1-mode te combineren.
- -De coaxiale-trilholte-uitkoppelaar behoort een mode uit een ronde golfpijp te koppelen als de mode in de coaxiale trilholte om de golfpijp "past" bij de mode in de golfpijp en niet in andere gevallen. Deze uitkoppelaar is onbruikbaar voor het Olympus-ontvangst-systeem vanwege grote verliezen, grote koppeling tussen de som- en verschil-signalen, slechte kruispolarisatie-ontkoppeling, kleine bandbreedte, zeer kritische afregeling en de hoge nauwkeurigheidseisen voor de fabricage.

- Bij niet-continue regeling is de richtnauwkeurigheid (uitgedrukt in graden of in radialen) evenredig met de derde-machts-wortel van de hoeksnelheid van de satelliet gedeeld door de signaal-ruis-verhouding. Een niet-continue regeling is nodig, omdat de assen van de stappen-motoren voor de antenne-besturing niet bestand zijn tegen de slijtage, die optreedt bij continue regeling.
- -Een monopuls-richtsysteem is volgens de theorie nauwkeuriger dan een sequential scan richtsysteem. Verder treedt er bij een monopuls-richtsysteem minder slijtage op, het richten onderbreekt de metingen niet en een monopuls-richtsysteem is vrij ongevoelig voor (atmosferische) signaal-fluctuaties. Nadelen zijn de grotere complexiteit van de microgolf-schakeling en de kosten van extra apparatuur voor de meting van de verschil-signalen.
- -Door het monopuls-richtsysteem bij de 5,5 meter Cassegrain-antenne zal bij 30 dB atmosferische demping een richtnauwkeurigheid van 0,005 graden gehaald worden (multipath scattering buiten beschouwing latend). Hiermee wordt voldaan aan de zwaarste eis voor de richtnauwkeurigheid, namelijk een richtverlies kleiner dan 0,02 dB op 30 GHz.
- -De eis voor de kruispolarisatie-ontkoppeling (XPD beter dan 55 dB) stelt minder zware eisen aan het richtsysteem, bij een belichter XPD van 30 dB op 30 GHz volgt een richtnauwkeurigheidseis van 0,03 graden. Hierbij is alleen de aanstoting van de EH11-mode in de gegroefde hoorn als bron van kruispolarisatie beschouwd.

7.2. Aanbevelingen

- -Er dient een nieuwe mode-uitkoppelaar geconstrueerd te worden, onder andere, omdat met de trilholteuitkoppelaar en met sequential scan methodes niet de vereiste richtnauwkeurigheid bereikt kan worden. De nieuwe uitkoppelaar kan het best werken met een TE21mode voor het azimuth-verschil-signaal en de TM01mode voor het elevatie-verschil-signaal. De uitkoppeling kan gebeuren met rechthoekige golfpijp op de spleten in de ronde golfpijp en via golfpijp-filters en "tee's".
- -De satelliet-richting dient met een eerste orde schatting geschat te worden uit het quotiënt van de verschil-signalen en het som-signaal. Het richtsysteem dient om-en-om 7,5 minuten het azimuth- en 7,5 minuten het elevatie-verschil-signaal te meten. Na elke meting volgt (indien nodig) een richting-correctie in de gemeten richting. De regeling dient "dynamisch" te zijn, dat wil zeggen, dat na een meetperiode de antenne niet naar de satelliet gericht wordt, maar "voorbij de satelliet", zodat door de satelliet-beweging de richtfout eerst afneemt en daarna pas weer toeneemt.
- -Voor het "invangen" van de satelliet kan het best een continue regeling gebruikt worden, die alleen meet of het quotiënt van een verschil-signaal (azimuth of elevatie) en het som-signaal positief of negatief is. Het invangen stopt, zodra dit teken omslaat. De aanvankelijke richtfout dient kleiner dan 0,35 graad te zijn om dubbelzinnigheden bij het invangen te voorkomen.
- -De voorspelde richtnauwkeurigheid en de berekende stralingsdiagrammen voor het 5,5 m Cassegrain-antenne-systeem dienen met metingen geverifiëerd te worden. Verder dienen de algoritmes voor het volgen en het "invangen" van de satelliet geImplementeerd te worden op een computer.

Literatuuropgave

[1]	Dijk J.,
	"Microgolf propagatie-metingen met behuln van de
	satelliet Olympus aan de Technische Universiteit
	Eindhoven".
	interne rapportage TU-Findhoven, vakgroen Tele-
	communicatie. Findhoven oktober 1986
[2]	European Space Agency (ESA)
1	"Nivmpue licers' Guide"
	Ester Noordwijk Nederland UG-6-1 part 1
	Propagation Package issue 2 november 1983
[2]	Dudat E W M
[3]	Postuare ver een artussaatsties vere de propose-
	Untwerp van een ontvangstation voor de propaga-
	tie-experimenten van de L-sat",
	stageverslag van de IU Eindhoven, vakgroep lele-
	communicatie, juni 1982.
[4]	Arnbak J.C.,
	"Digitale Transmissiesystemen",
	collegediktaat van de TU Eindhoven, diktaatnummer
	5.640.0, maart 1985.
[5]	Berkowitz B.S.,
	"Modern Radar",
	New York: John Wiley & Sons, inc., 1965.
[6]	Philipsen A.,
	"Automatisch antenne-volgsysteem voor geo-statio-
	naire satellieten m.b.v. een IBM personal com-
	puter",
	stageverslag van de TU Eindhoven, Vakgroep Tele-
	communicatie, augustus 1985.
[7]	Rhodes D.R.,
	"Introduction to monopulse",
	New York: Mc Graw-Hill Book Company, inc., 1959.
[8]	Steen H.G.W van der,
	"Een multimode volgsysteem met antennes voor
	satellietcommunicatie".
	afstudeerverslag van de TU Eindhoven, vakgroep
	Telecommunicatie, Januari 1970.
raı	
()]	"Fen programmanakket voor de berekening van het
	veld van een gegroefde hoornantenne"
	etereverslag van de Til Findhoven – vakgroen Tele-
	communicatio meant 1986
1 103	Mouthean M 1
[10]	"Automatical actomocyalgovatore very propagatic
	Automotison ont do estallist Olympus"
	- Aperimenten met de soleiitet diympus ,
	Telecomputicatio fobruari 1082
	rerecommunicatie, teoroari 1907.

- [11] Worm S.C.J., "A multifrequency antenna system for propagation experiments", interne rapportage van de TU Eindhoven, vakgroep Telecommunicatie, verwacht: december 1987.
 - [12] Hannan P.W., "Optimum feeds for all three modes of a monopulse antenna, I: theory", IRE Transactions on Antennas and Propagation, vol ARE 0 and 5 and 2004
 - AP-9, no. 5, pp. 444-454, september 1961.
 [13] Dijk J. en E.J. Maanders, "Antennes en propagatie", collegediktaat van de TU Eindhoven, diktaatnummer 5.635.0, oktober 1984.
 - [14] "Lineaire algebra en lineaire analyse 3", tweede druk, collegediktaat van de TU Eindhoven, diktaatnummer 2.333, 1984.
 - [15] "Analyse E3", eerste druk, collegediktaat van de TU Eindhoven, diktaatnummer 2.311, 1982.
 - [16] Kirkpatrick G.M., "Aperture illumination for radar angle-of-arrival measurements", IRE Transactions on Aeronautical and Navigational Electronics, vol. AE-9, pp. 20-27, september 1953.
 - [17] Kinsey R.R., "Monopulse Difference Slope and Gain Standards", IRE Transactions on antennas and Propagation, vol AP-10, pp. 343-344, mei 1962.
 - [18] Abramowitz M. en I.A. Stegun, "Handbook of Mathematical Functions", New York: Dover Publications, inc., 1965.
 - [19] "Antennes", collegediktaat van de TU Eindhoven, diktaatnummer 5.506, november 1975.
 - [20] Hannan P.W., "Microwave antennas derived from the Cassegrain telescope", IRE Transactions on Antennas and Propagation, vol. AP-9, pp. 140-153, maart 1961.
 - [21] Powers E.J., "Utilization of the Lambda functions in the analysis and synthesis of monopulse antenna difference patterns", IRE Transactions on Antennas and Propagation, vol AP-15, no. 6, pp. 771-777, november 1967.
 - [22] "Final test data for 30 GHz 10 ft diameter Cassegrain antenna", rapportage aan de TU Eindhoven, vakgroep Telecommunicatie, 6 september 1975.

LITERATUUROPGAVE -141-

- [23] "EC6 data book, technical appendix", ESA Scientific & Technical Publications Branch, c/o Estec, Noordwijk, Nederland, ESA BR-08:appendix.
- [24] Moens C. en C. Kooter, "ECS1 in-orbit measurements programme and results", ESA Journal, vol. 8, no. 1, pp. 73-89, 1984.
- [25] Marcuvitz N., "Waveguide handbook", London: Peter Peregrinus Ltd., 1986. (First published in 1951 by the Mc Graw Book Company inc.)
- [26] Cook J.S. en R. Lowell, "The autotrack system", The Bell System Technical Journal, vol. 42, no.4, pt. 2, pp. 1283-1307, juli 1963.
- [27] Nakahashi N., Y. Kakinuma en T. Shirai, "A multimode autotrack system employing the circular TE11 and TE21 modes", Journal of the Radio Research Laboratories, vol. 14, no. 73, pp. 129-152, mei 1967.
- [28] Potter P.D., "A new horn antenna with suppressed sidelobes and equal beamwidths", Microwave Journal, vol.7, pp. 71-78, juni 1963.
- [29] Johnson R.C. en H. Jasik, "Antenna engineering handbook", tweede editie, New York: Mc Graw Hill, 1984.
- [30] Watson B.K., N.D. Dang en S. Ghosh, "A mode extraction network for BF sensing in satellite reflector antenna", IEE Conference Publication Antennas and Propagation, 2nd international conference, part 1: Antennas, University of York, UK, pp. 323-327, 13-16 april 1981.
- [31] Plaats J. van der en W. van Etten, "Coaxiale kabels en glasvezels", eerste editie, collegediktaat van de TU Eindhoven, diktaatnummer 5.634.0, november 1984.
- [32] Chu L.J., "Calculation of radiation properties of hollow pipes and horns", Journal of Applied Physics, vol. 11, pp. 603-610, september 1940.
- [33] Thomas B. MacA., "A review of the early developments of circular aperture hybrid-mode corrugated horns", IEEE Transactions on Antennas and Propagation, vol. AP-34, no. 7, pp. 930-935, juli 1986.

LITERATUUROPGAVE -142-

[24]	Coliceon P. L.W.
[ອຊ]	
	Verwachting en spreiding van de winst van
	réflectorantennes met oppervlaktefouten en com-
	puterprogramma ter bepaling van het stralingsdia-
	gram van gegroefde hoornantennes",
	stageverslag van de TU Eindhoven, vakgroep Tele-
	communicatie, juli 1985.
[35]	Thomas B. MacA.,
	"Design of corrugated conical horns",
	IEEE Transactions on Antennas and Propagation,
	vol. AP-26, no. 2, maart 1978.
[36]	Clarricoats P.J.B. en A.D. Olver,
	"Corrugated horns for microwave antennas".
	IEE Electromagnetic Wayes Series 18.
	London: Peter Peregrinus Itd 1984
[37]	Schmidt I B
[]]	"Inrichting yoon het witkennelen was beegfnequer-
	to oloktromagneticabe voldes wit ser galfaclei
	den utentit de nel Carleiden dit den golfgelei-
	der, waarbij de goitgeielder is voorzien van een
	of meer trilholten, voorzien van uitkoppelope-
	ningen",
	Octrooiaanvrage in Nederland, nr. 8502770, 10
	oktober 1985.
[38]	Scharten Th.,
	"Elektromagnetisme voor de telecommunicatie",
	collegediktaat van de TU Eindhoven, diktaatnummer
_	5.648, juni 1985.
[39]	Stevenson A.F.,
	"Theory of slots in rectangular wave-guides",
	Journal of Applied Physics, vol. 19, januari
	1948.
[40]	Watson W.H.,
	"The physical principles of waveguide transmis-
	sion and antenna systems",
	London: Oxford University Press, 1949.
[41]	Harvey A.F.,
	"Microwave Eingineering",
	London: Academic Press Ltd., 1963.
[42]	Versnel W.,
	"Microgolftechniek",
	collegediktaat van de TU Eindhoven, diktaatnummer
	5.528.1, 1985.
[43]	Dwight H.B.,
	"Table of roots for natural frequencies in
	coaxial type cavities".
	Journal of Mathematics and Physics. vol. 27. pp.
	84-89. 1948.
[44]	Jansen A.T.
[]	"Binas, informatieboek VWD-HAVO voor het onder-
	wijs in de natuurwetenschappen"
	Groningen: Wolters-Noordhof, 1977

[45]	Meulemons P.A.C.M., "System Considerations for a receiving station
	built for propagation experiments with the Olym-
	pus satellite",
	afstudeerverslag van de TU Eindhoven, vakgroep Telecommunicatio december 1095
[46]	Sarma A.D., gesprek
[40]	TU Eindhoven, vakgroep Telecommunicatie, juni
	1987.
[47]	Shanmugam K.S.,
	"Digital and analog communication systems",
	New York: John Wiley & Sons, 1979.
[48]	Ouderling J.M.G.A.,
	"Untvangersysteem voor propagatiemeting m.D.V.
	afstudeerverslag van de TIL Findhoven vakgroen
	Telecommunicatie, maart 1978.
[49]	Weersch J.M.J. van.
	"Modificatie van een phase locked loop ontvanger-
	systeem voor propagatie metingen met behulp van
	de Olympus satelliet",
	afstudeerverslag van de TU Eindhoven, vakgroep
	Telecommunicatie, oktober 1986.
[90]	Gardner F.M., "Phaselook teebrigues" tweede editie
	New York: John Wiley & Sons 1979
[51]	Vorst A.C.A. van der. gesprek.
	TU Eindhoven, vakgroep Telecommunicatie, juni
	1987.
[52]	zie [26]
[53]	zie [27]
[54]	"Waarschijnlijkheids-rekening voor E", eerste
	oruk, oollegediktaat van de TU Eindhoven, diktaatnummen
	2.341 0 1984
[55]	Brookner E.,
	"Radar Technology", vierde druk,
	Dedham, Massachusetts: Artech House inc., 1979.
[56]	Barrow W.L. en W.W. Mieher,
	"Natural oscillations of electrical cavity reso-
	nators",
	Proceedings of the IHE, vol. 28, pp. 184-191,
[67]	Choupg Y H K B Coudey en L C Bryans
[]]	"Theory and design of a Ku-band TE21-mode coup-
	ler",
	IEEE Transactions on Microwave Theory and Tech-
	niques, vol. 30, no. 11, pp. 1862-1866, november
	1982.
[58]	Reitzig R.,
	Antomatische Eigennachführung von Antennen",
	Aniogen zur Nochrichtentechnische Fachberichte - Verlag
	ten, dentrontenteenteend (benefitente, vertek

LITERATUUROPGAVE

..

- Friedr. Vieweg & Sohn GMBH.Braunschweig, Band 32, pp. 45-51, 1967.
- [59] Noda K., "Mode exitors for circular waveguide", ECL Technical Journal (Japanese), vol. 9, no. 9, pp. 1065-1075, 1960.
- [60] Richharia M., "An improved step-track algoritm for tracking of geosynchronous satellies", International Journal of Satellite Communications, vol.4, pp. 147-156, 1986.
- [61] "Analyse 1", tweede druk, Collegediktaat van de TU Eindhoven, diktaatnummer 2.298, 1983.
- [62] "Handbook of Olympus propagation data preprocessing, part 1: Theory and basic information", Working Group 2 of OPEX/ESA (Dlympus Propagation EXperimentors, European Space Agency), 1986.
- [63] Huisman/Flesch, "Antenne besturing:, opdracht 6968/098/23, Stafgroep E/E, Elektronische werkplaats, TU Eindhoven.
- [64] Richharia M., "Design considerations for an earth station steptrack system", Space Communication and Broadcasting, vol.4, no. 3, pp. 215-238, 1986.
- [65] Capsoni C., M. Mauri en A. Paraboni,
- "Effects of multiple scattering bij raindrops in a monopuls system at millimeter wavelengths", presented at the 20th General Assembly of the URSI, Washington D.C., 10-19 augustus 1981.
- [66] Dragone C., "Characteristics of a broadband microwave feed: a comparison between theory and experiment", The Bell System Technical Journal, vol. 56, no.6, pp. 869-888, 1977.
- [67] Thomas B. MacA., "Bandwidth properties of corrugated conical horns", Electronic Letters, vol. 5, no. 22, pp. 561-563, 1969.
- [68] Maas S.A.,
 "Microwave Mixers",
 Denham, Massachusetts: Artech House, inc., 1986.
- [69] "Inleiding in de numerieke methoden", collegediktaat van de TU Eindhoven, diktaatnummer 2369, 1985.
- [70] Schmidt J.R., gesprek, PTT, Dr. Neher Laboratorium, Leidschendam, 1987.

Lijst van symbolen en afkortingen 2a : diameter golfpijp (meter) of binnen-diameter coaxiale trilholte (meter), Α : apertuur-oppervlak (vierkante meter), 2ь : buiten-diameter coaxiale trilholte (meter), Co : hoofdpolarisatie (afkorting), Ы : groefdiepte (meter), D : apertuur-diameter (meter), DS : Difference Slope, helling van een verschilpatroon (per graad of per radiaal), DSO : maximum van DS bij een gegeven apertuurvorm (per graad of per radiaal), : eccentriciteit hyperbool-reflector (dimensiee loos), : elektrische veldsterkte (Volt per meter), E EIBP : Effective Isotropic Radiated Power (Watt), F : brandpuntsafstand (meter), of ruisgetal (dimensieloos), F(x,y) : genormeerde opertuur-veldverdeling (complex, per meter), Fe : equivalente parabool brandpuntsafstand (meter). FSL : Free Space Loss (dimensieloos), : versterkingsfactor (dimensieloos), g $g(\theta, \phi)$: "wortel van de antennewinst-functie" (complex, dimensieloos), G : antennewinst (dimensieloos), $G(\theta, \phi)$: ontennewinst-functie (dimensieloos), : maximum van G bij een gegeven apertuurvorm G (dimensieloos), : magnetische veldsterkte (Ampére per meter), H <u>H</u>// : magnetische veldsterkte evenwijdig aan een spleet (Ampére per meter), u van de orde m J_ (u) : Besselfunctie van en de eerste soort (dimensieloos), k : golfgetal van een golf in een golfpijp of coaxiale struktuur (per meter) of constante van Boltzmann (Joule per Kelvin) of sample-index, К : maximum van sample-index of Kelvin, : koppeling tussen hoofdpolarisatie- en Ko kruispolarisatie-signaal (dimensieloos), Ki : in-fase koppeling tussen som- en verschilsignaal (dimensieloos), Kg : quadratuur koppeling tussen som- en verschilsignaal (dimensieloos), L : spleetlengte (meter), : vermogensverlies door richtfout (dimensie-L_r 100s). : φ-afhankelijkheid (index), m

M	:	"magnification" van een Cassegrain-antenne
		(dimensieloos),
n	:	r-afhankelijkheid (index),
n(t)	:	ruis (op spanningsbasis),
n'(t)	:	genormeerde ruis (graden of radialen),
р	:	z-afhankelijkheid (index),
r	:	poolcoördinaat (meter)
	of	richtnauwkeurigheid (graden of radialen),
r ₀	:	normeringsconstante voor richtnauwkeurigheid
		(graden of radialen),
rn	:	genormeerde richtnauwkeurigheid (dimensie-
		loos),
rs	:	gespecificeerde richtnauwkeurigheid (graden
D		of radialen),
к _а	:	hoornlengte (meter),
t	:	tijd (seconde),
<u> </u>	:	normeringsconstante voor tijd (seconde),
ູ້ກ	:	meettijd (seconde),
ŗ	:	lengte van een regelinterval (secoonde),
trn	:	genormeerde lengte van een regelinterval
		(dimensieloos),
_s	:	sampletijd (seconde),
1	:	temperatuur (Kelvin),
10 -	:	omgevingstemperatuur (Kelvin),
15	:	systeemruistemperatuur (Kelvin),
u	:	genormeerde noek (dimensieloos),
X	:	Lartnesische coordinaat (meter),
^	: ~£	polationo afstand van do mavima van son
	UT	hoofdoolaricatie- on oon kruienolaricatie-
		notroppisisserie en een kruispoisisserie natroop van een belichter (dimensieloos)
XPD		kruispolarisatie-discriminatie (dimensie-
	•	loos).
v	:	Carthesische coördinaat (meter).
z	:	Carthesische coördinaat (meter),
β	:	vrije ruimte golfgetal (per meter),
Δ	:	verschil (afkorting)
	of	parameter van Thomas (meter),
η	:	(belichtings)rendement op vermogensbasis (di-
~		mensieloos),
ון s	:	systeemruisdichtheid (Watt per Hertz),
η' 5	:	genormeerde ruisdichtheid (graden kwadraat
<i>c</i> .		per Hertz of radialen kwadraat per Hertz),
¶'s	:	(gespecificeerd) maximum van de genormeerde
		ruisdichtheid (graden kwadraat per Hertz of
		radialen kwadraat per Hertz),
θ	:	bolcoördinaat (graden of radialen),
θ(t)	:	richtfout (graden of radialen),
Ð	:	gemeten richtfout (graden of radialen),
θ	:	geschatte richtfout (graden of radialen),
θo	:	(haive) hoorn-openingshoek (graden of radia-
-		leny,

Omax	: 1	richtfout voor entenne-bijsturing (greden of
nux	I	radialen).
e mid	: r	richtfout halverwege een meting (graden of
0	r	radialen),
⁰ min	: 1	richtfout na antenne-bijsturing (graden of
0	1	radialen),
v	: t	oolcoordinaat voor het verre veld (graden of
0		
0	: (naive) openingsnoek van een reflector-anten-
	I	he met cirkelvormige apertuur (graden of
•	1	radialen),
λ	: '	vrije ruimte golflengte (meter),
[^] c	: (afsnijgolflengte (meter),
λ	: ;	golflengte in een golfpijp of coaxiale
9	!	struktuur (meter),
μ	: '	verwachtingswaarde van $^{ heta}{}_{ extsf{max}}$ (graden of radia-
		len),
μ _o	: 1	normeringsconstante voor μ (graden of radia-
		len),
μ₽	: :	genormeerde waarde van $^{\mu}$ (dimensieloos),
σ	:	standaarddeviatie van $ heta_{ extsf{max}}$ (graden of radia-
		len),
σ	: 1	normeringsconstante voor σ (graden of radia-
0		len),
ອ	:	genormeerde waarde van σ (dimensieloos),
Σ	:	som (afkorting),
φ	:	poolcoördinaat (graden of radialen)
	of	bolcoördinaat (graden of radialen).
¢,	:	bolcoördinaat voor het verre veld (graden of
•	-	radialen).
Weat	:	satelliet-hoeksnelheid (graden per seconde of
Sal	-	radialen ner seconde) en
Ω		maximum van de satelliet-hoeksnelheid (graden
Sau	•	ner seconde of radialen ner secondel
		per seconde of redebien per seconde).

Appendix A: Optimale apertuurverdelingen en de bijbehorende stralingsdiagrammen

In hoofdstuk 2 werd genoemd, dat voor het som-patroon bij een uniforme veldverdeling over de antenne-apertuur de antenne-winst het grootst is. Tevens werd gesteld, dat voor het verschilpatroon de helling het grootst is, indien de veldverdeling over de antenneapertuur lineair is in de richting van de gevoeligheid van het verschilpatroon en constant loodrecht daarop, waarbij het gemiddelde van de verschil-veldverdeling nul is. In deze appendix is de berekening, die hoort bij deze twee stellingen, weergegeven.

Voor de optimale som-veldverdeling over de apertuur moet de antenne-winst in de voorwaartse richting maximaal zijn. Deze winst is

$$G_{\Sigma} = |g_{\Sigma}(0,0)|^{2} = \frac{4\pi}{\lambda^{2}} \cdot \left| \iint_{A} F_{\Sigma}(x,y) dA \right|^{2}$$
 (A-1)

Indien F(x,y) is een genormeerde veldverdeling over de apertuur. Indien al het uitgezonden vermogen door de apertuur gaat (het "spillover-rendement is in dat geval 100%), dan geldt

$$\iint_{A} |F(x,y)|^{2} dA = 1$$
 (A-2)

De winst kan geoptimaliseerd worden met de ongelijkheid van Cauchy-Schwarz [14, p. 271], die vertaald naar dit probleem luidt

$$\left| \iint_{A} f(x,y) \cdot g(x,y) dA \right|^{2} \leq \iint_{A} |f(x,y)|^{2} dA \cdot \iint_{A} |g(x,y)|^{2} dA \quad (A-3)$$

waarbij het alleen een gelijkheid is indien $f(x,y)=C.g^{*}(x,y)$ (A-4) Hierbij is C een onbepaalde constante en de * staat voor de toegevoegd complexe waarde. vul in $f(x,y)=F_{\Sigma}(x,y)$ en g(x,y)=1, dan volgt $F_{\Sigma}(x,y)=C$, dit is inderdaad een uniforme veldverdeling. Met (A-2) volgt

$$F_{\Sigma 0}(x, y) = \frac{1}{\sqrt{A}}$$
 (A-5)

Invullen in (A-1) geeft $G_0 = \frac{4\pi A}{\lambda^2}$ (A-6)

Voor een cirkelvormige apertuur is dat

$$F_{\Sigma 0}(x, y) = \frac{2}{D \cdot \sqrt{\pi}}$$
 (A-7)

en

$$G_0 = \left(\frac{\pi D}{\lambda}\right)^2$$
 (A-8)

(D is de diameter van de apertuur)

Voor de optimale verschil-veldverdeling moet de helling (DS) in een gegeven ϕ_v -richting (neem ϕ_v =0) maximaal zijn, met als nevenvoorwaarde, dat de antennewinst in de voorwaartse richting nul is. De helling kan berekend worden met

$$DS = \left| \frac{\partial g_{\Delta}(\theta_{v}, 0)}{\theta_{v}} \right|_{\theta_{v}} = 0 = \left| \frac{\sqrt{4\pi}}{\lambda} \cdot j \cdot \beta \cdot \iint_{A} F_{\Delta}(x, y) \cdot x \cdot dA \right|$$
(A-9)

De nevenvoorwaarde luidt

$$g_{\Delta}(0,0) = \frac{\sqrt{4\pi}}{\lambda} \cdot \int_{A} F_{\Delta}(x,y) dA = 0 \qquad (A-10)$$

Dit probleem kan opgelost worden met de multiplicatoren-methode van Lagrange [15, p. 18]. Bij deze methode moet bij de te optimaliseren functie een constante ($^{C}_{m}$, de multiplicator, een nog onbepaald complex getal) maal de nevenvoorwaarde opgeteld worden en deze som moet geoptimaliseerd worden. Dit optimum is een functie van de multiplicator, welke nadien bepaald wordt door het invullen van de nevenvoorwaarde. Er moet de gemaximaliseerd worden:

$$DS+C_{m}\cdot g_{\Delta}(0,0) = \frac{\beta \cdot \sqrt{4\pi}}{\lambda} \cdot \left(\left| \int_{A} \int_{A} F_{\Delta}(x,y) \cdot x \cdot dA \right| + C_{m}' \cdot \int_{A} \int_{A} F_{\Delta}(x,y) \, dA \right| \quad (A-11)$$

 $\binom{C'_m}{=} \binom{C_m}{\beta}$

Aangezien met teken van ^{C'}m de tweede term positief gemaakt kan worden, kan de tweede term binnen de modulus~strepen genomen worden:

$$DS+C_{m} \cdot g_{\Delta}(0,0) = \frac{\beta \cdot \sqrt{4\pi}}{\lambda} \cdot \left| \int_{A} f_{\Delta}(x,y) \cdot (x+C'_{m}) dA \right|$$
 (A-12)
Nu kan weer de stelling van Cauchy-Schwarz gebruikt worden (A-3), (A-4) en er volgt $F_{\Lambda\cap}(x,y)=C.(x+C'_m)$

waarbij C'_m en C respectievelijk bepaald worden door (A-10) en (A-2). Uit (A-13) valt in te zien, dat inderdaad voor het verschilpatroon de helling het grootst is, indien de veldverdeling over de antenneapertuur lineair is in de richting van de gevoeligheid van het verschilpatroon en constant loodrecht daarop.

De berekeningen van de verre veld patronen van een optimaal belichte cirkelcormige apertuur (diameter: D) voor het som- en het verschil-signaal kunnen gecombineerd worden door als veldverdeling over de apertuur te stellen

 $F_{m}(r,\phi) = f_{m} \cdot F_{m}(r) \cdot F_{m}(\phi)$ (A-14e)

$$F_{m}(r) = r^{m}$$
 (A-14b)

$$F_{m} (\phi) = \cos (m \cdot \phi)$$

$$f_{m} = \begin{cases} \left(\frac{2}{D}\right)^{m+1} \cdot \sqrt{\left(\frac{2m+2}{\pi}\right)} & m > 0 \\ \frac{2}{D \cdot \sqrt{\pi}} & m = 0 \end{cases}$$
(A-14d)

m=0 komt overeen met het sompatroon en m=1 met het verschilpatroon. Met de constante ${}^f_{\ m}$ wordt gezorgd, dat F(r, φ) aan (A-2) voldoet. Voor de verre veld patronen geldt

$$g_{m}(\theta_{v},\phi_{v}) = \frac{\sqrt{4\pi}}{\lambda} \cdot \iint_{A} F_{m}(r,\phi) \cdot \exp(j\cdot\beta\cdot r\cdot\sin(\theta_{v})\cdot\cos(\phi_{v}-\phi)dA = (A-15e)$$

$$= \frac{\sqrt{4\pi}}{\lambda} \cdot f_{m} \cdot \int_{0}^{\frac{1}{2}D} F_{m}(r) \cdot r dr.$$

$$= \frac{\sqrt{4\pi}}{\lambda} \cdot f_{m} \cdot \cos(m \cdot \phi) \cdot \exp(j \cdot \beta \cdot r \cdot \sin(\theta_{v}) \cdot \cos(\phi_{v} - \phi) d\phi) =$$

$$= \frac{\sqrt{4\pi}}{\lambda} \cdot f_{m} \cdot \cos(m \cdot \phi_{v}) \cdot \int_{0}^{\frac{1}{2}D} F_{m}(r) \cdot r dr.$$

$$= \frac{2\pi}{\lambda} \cdot \cos(m \cdot \phi) \cdot \exp(j \cdot \beta \cdot r \cdot \sin(\theta_{v}) \cdot \cos(\phi) d\phi \qquad (A-15d)$$

De integraal over ϕ kan berekend worden met de vergelijking [18, p. 360]:

$$\int_{cos(m.\phi).exp(j.z.cos(\phi)d\phi=\pi.j^{m}.J_{m}(z))} (z)$$
(A-16)

 $J_m(z)$ is hierin de Besselfunctie van z van de orde m orde en eerste soort. Ingevuld in (A-15d) levert dit

$$g_{m}(\theta_{v}, \phi_{v}) = \frac{\sqrt{4\pi}}{\lambda} \cdot f_{m} \cdot \cos(m \cdot \phi_{v}) \cdot 2\pi \cdot j^{m} \cdot \frac{1}{2}D$$

$$\cdot \int_{0}^{1} F_{m}(r) \cdot J_{m}(\beta \cdot r \cdot \sin(\theta_{v})) \cdot r dr$$
(A-17)

Deze vergelijking wordt door het programma van appendix C gebruikt voor de berekening van de stralingsdiagrammen. Invullen van (A-14b):

$$g_{m}(\theta_{v}, \phi_{v}) = \frac{\sqrt{4\pi}}{\lambda} \cdot f_{m} \cdot \cos(m \cdot \phi_{v}) \cdot 2\pi \cdot j^{m} \cdot \frac{1}{2} D_{v} \cdot \int_{0}^{\frac{1}{2}D} r^{m} \cdot J_{m}(\beta \cdot r \cdot \sin(\theta_{v}) \cdot r dr)$$
(A-18)

De integraal over r kan berekend worden met de vergelijking [18, p. 361]

$$\int z^{m+1} \cdot J_{m}(z) \cdot dz = z^{m+1} \cdot J_{m+1}(z)$$
 (A-19)

Invullen van (A-19) levert:

$$g_{m}(\theta_{v}, \phi_{v}) = \frac{\sqrt{4\pi}}{\lambda} \cdot f_{m} \cdot \cos(m \cdot \phi_{v}) \cdot 2\pi \cdot j^{m} \cdot \left(\frac{D}{2}\right)^{m+2} \cdot \frac{J_{m+1}(\frac{1}{2} \cdot \beta \cdot D \cdot \sin(\theta_{v}))}{\frac{1}{2} \cdot \beta \cdot D \cdot \sin(\theta_{v})} \quad (A-20)$$

Invullen van (A-14d) levert uiteindelijk voor de verre veld patronen:

$$\left(\frac{\pi D}{\lambda}, \frac{2 \cdot J_1(u)}{u}\right) \qquad m=0 \qquad (A-21a)$$

$$g_{m}(\theta_{v}, \phi_{v}) = \begin{cases} \frac{\pi D}{\lambda} \cdot \frac{4 \cdot J_{2}(u)}{u} \cdot j \cdot \cos(\phi_{v}) & m=1 \end{cases} \quad (A-21b)$$

$$\left(\frac{\pi D}{\lambda}, \frac{2 \cdot 2 \cdot m + 2 \cdot J_{m+1}(u)}{u}, j^{m} \cdot \cos(m \cdot \phi_{v}) \right) \quad m \ge 1 \quad (A-21c)$$

M.D. van Deventer augustus 1987

met

$$u = \frac{1}{2} \cdot \beta \cdot D \cdot \sin(\theta_v) = \frac{\pi D}{\lambda} \cdot \sin(\theta_v)$$
 (A-22)

v

Appendix B: Berekening van de rendementen van theoretische belichters voor verschilpatronen

In paragraaf 2.1.3. werd gesteld, dat

$$g_{\Delta}(\theta,\phi) = g_{n} \cdot \sin(\theta) \cdot \cos^{\frac{1}{2}n}(\theta) \cdot \cos(\phi)$$
 (B-1)

een goede keuze is voor een "theoretische" belichter. De normerings-constante g_n wordt berekend met $\pi 2\pi$ $\int \int G(\theta, \phi) \cdot \sin(\theta) d\theta d\phi = 4\pi$ 0 0 (B-2a)

$$G(\theta, \phi) = |g(\theta, \phi)|^{2}$$
(B-2b)

Berekening:

$$g_{n}^{2} \cdot \int_{0}^{\pi} \int_{0}^{2\pi} \sin^{2}(\theta) \cdot \cos^{n}(\theta) \cdot \cos^{2}(\phi) \cdot \sin(\theta) d\theta d\phi =$$

$$\pi \cdot g_{n}^{2} \cdot \int_{0}^{\pi} (\cos^{2}(\theta) - 1) \cdot \cos^{n}(\theta) d\cos(\theta) =$$

$$\pi \cdot g_{n}^{2} \cdot \int_{0}^{\pi} (\cos^{n+2}(\theta) - \cos^{n}(\theta)) d\cos(\theta) =$$

$$\pi \cdot g_{n}^{2} \cdot \int_{0}^{\pi} d\left[\frac{1}{n+3} \cdot \cos^{n+3}(\theta) - \frac{1}{n+1} \cdot \cos^{n+1}(\theta)\right] =$$

$$2\pi \cdot g_{n}^{2} \cdot \left[\frac{1}{n+1} - \frac{1}{n+3}\right] =$$

$$\frac{2\pi}{(n+1) \cdot (n+3)} \cdot g_{n}^{2} = 4\pi$$
(B-3)
Hieruit volgt
$$g_{n} = \sqrt{2 \cdot (n+1) \cdot (n+3)}$$
(B-4)
In tabel-vorm:
Tabel B-1: De normerings-constante g_{n} voor verschil-lende n
$$\frac{n}{g_{n}} \begin{vmatrix} 2 & 4 & 6 & 8 \\ \sqrt{30} & \sqrt{70} & \sqrt{126} & \sqrt{198} \end{vmatrix}$$

Met.de vergelijkingen uit paragraaf 2.1.3. kan vanuit dit belichterdiagram de veldverdeling over de apertuur berekend worden:

$$F(r,\phi) = \frac{1}{F.\sqrt{4\pi}} \cdot \frac{1+\cos(\theta)}{2} \cdot g_n \cdot \sin(\theta) \cdot \cos^{\frac{1}{2}n}(\theta) \cdot \cos(\phi) \quad (B-5)$$

met

$$r = F \cdot \frac{\sin(\theta)}{1 + \cos(\theta)}$$
 (B-6a)

ខរា

$$dr = F \cdot \frac{2}{1 + \cos(\theta)} \cdot d\theta$$
 (B-6b)

De helling DS kan berekend worden met

$$DS = \frac{\sqrt{4\pi}}{\lambda} \cdot \beta \cdot \int_{0}^{\frac{1}{2}D} \int_{0}^{2\pi} F(r,\phi) \cdot r \cdot \cos(\phi) \cdot r dr d\phi =$$

$$g_{n} \cdot \beta \cdot \frac{\Theta}{2\pi} \int_{0}^{2\pi} f(r,\phi) \cdot r \cdot \cos(\phi) \cdot r dr d\phi = \frac{1}{2} \int_{0}^{2\pi} \frac{1}{2} \int_{0}^{2\pi}$$

$$= \frac{g_n \cdot \beta}{\lambda \cdot F} \cdot \int_0^{\Theta} \int_0^{2\pi} \frac{1 + \cos(\theta)}{2} \cdot \sin(\theta) \cdot \cos^{\frac{1}{2}n}(\theta) \cdot F^3 \cdot \left(\frac{2 \cdot \sin(\theta)}{1 + \cos(\theta)}\right)^2 \cdot \cos^{\frac{1}{2}n}(\theta) \cdot F^3 \cdot \left(\frac{2 \cdot \sin(\theta)}{1 + \cos(\theta)}\right)^2$$

$$= \frac{4\pi \cdot F^{2} \cdot g_{n} \cdot \beta}{\lambda} \cdot \int_{0}^{\Theta} \frac{1}{1 + \cos(\theta)} \cdot \sin^{3}(\theta) \cdot \cos^{\frac{1}{2}n}(\theta) d\theta$$
 (B-7)

Deze vergelijking kan vereenvoudigd worden met (zie (B-6)) $\frac{F}{D} = \frac{\cos(\Theta) + 1}{4 \cdot \sin(\Theta)}$ (B-8)

$$\frac{4\pi \cdot F^2 \cdot g_n \cdot \beta}{\lambda} = 16 \cdot g_n \cdot \left(\frac{F}{D}\right)^2 \cdot \frac{1}{2} \left(\frac{\pi D}{\lambda}\right)^2 = 16 \cdot g_n \cdot \left(\frac{F}{D}\right)^2 \cdot DS_0$$
 (B-9)

Invullen in (8-7) levert voor de helling

$$DS = DS_0 \cdot g_n \cdot \frac{\cos(\Theta) + 1}{\sin(\Theta)} \cdot \int_{1}^{H} \left(\frac{1}{1 + h}\right)^2 \cdot (h^2 - 1) \cdot h^{\frac{1}{2}n} dh$$
 (B-10)

met als hulp-variabelen h=cos⊖, H=cos⊙. De integraal in h kan analytisch opgelost worden:

M.O. van Deventer augustus 1987

riek de optimale antenne-openingshoek bepaald en zijn een aantal andere interessante parameters voor dat optimum berekend. Het resultaat is in tabel 8-2 weergegeven. "Tabel-B-2: Waarden" van enige interessante parameters bij het maximale hellings-rendement voor de verschillende theoretische verschil-belichters.

-Theoretische ver-						
schil-helichter	n	=	2	4	6	8
-Optimale antenne-			<u> </u>			<u> </u>
openingshoek in						
graden	Θ	æ	69	58	51	46
-Hellingsrendement						
(N.B. op vermogens-						
basis !)	n_	=	73,1%	72,0%	71,6%	71,5%
-Plaats van het	-					
maximum in het be-						
lichter-verschil-	0					
patroon in graden	max	#	45,00	35,26	30,00	26,57
-Plaats van dat						
maximum gedeeld						
door de antenne-						
openingshoek in	Θ					
graden per graad	<u>max</u>	=	0,65	0,61	0,59	0,58
-Plaats van het	0					
maximum van de						
veldsterkte op de						
apertuur gedeeld						
door de straal van						
de apertuur in me-	max	_	0 60	0 6 0	A C A	0 60
ter per meter	 R	-	0,53	0,53	0,53	0,53
-Randbelichting ex-						
clusies net vrije						
tuesen belichter en						
reflector in d8			-3.5	-4.2	-4.5	-4.7
-Bandbelichting in-		•	0,0		-,-	~,,,
clusies het vrije						
ruimte verlies						
tussen belichter en						
reflector in dB		:	-5.6	-5.7	-5.7	-5.6
			-,-	- /	/	•

Twee waarden blijken vrijwel constant te blijven bij de verschillende belichters. Het maximum van de veldsterkte blijkt zich telkens ongeveer halverwege het centrum en de rand van de apertuur te bevinden en de randbelichting van de apertuur (inclusief het vrije ruimte verlies) blijkt telkens 5,6 & 5,7 dB onder het maximum van de veldverdeling over de apertuur te liggen. Deze gegevens kunnen als eenvoudige vuist-regels gebruikt worden bij beschouwing en ontwerp van een monopuls-meetsysteem met de som-en-verschil-methode. Appendix C: Het computerprogramma "Straling": berekening van stralingsdiagrammen van een antenne met een cirkelvormige apertuur

In hoofstuk 2 en appendix A zijn de vergelijkingen gegeven, waarmee vanuit een belichter-diagram en de geometrie van de reflectorantenne het verre veld patroon berekend kan worden. Het programma gebruikt vergelijking (A-17) voor de berekening van het stralingsdiagram. De Besselfuncties worden met een reeksontwikkeling berekend [18] en de numerieke integratie geschiedt volgens de regel van Simpson [69, p. 5.6]. Het programma is geschreven in BASIC.

Het programma vraagt achtereenvolgens

-het aantal punten, dat voor het belichterdiagram ingevoerd gaat worden,

-de frequentie,

-de brandpuntsafstand van de parabool-antenne, bij een Cassegrain-antenne dient de brandpuntsafstand van de equivalente parabool-antenne ingevuld te worden,

-de diameter van de hoofdreflector,

-de diameter van de subreflector, dit voor de berekening van de subreflector-blokkering,

-de afstand van het coördinaten-centrum van de belichter tot de eerstvolgende reflector, dit om veranderingen in de amplitude en de fase bij verplaatsing van de belichter in de berekeningen mee te kunnen nemen,

-de \$\phi-afhankelijkheid van het belichter-stralingsdiagram (cos(m.\$\phi)),

m≖O voor som-diagrammen,

m=1 voor verschil-diagrammen en

m#2 voor kruispolarisatie-diagrammen.

Vervolgens kan het belichter-stralingsdiagram ingevoerd worden.

Het programma heeft onder andere de volgende opties: -berekening van het stralings-diagram als functie van

de hoek θ_v , -berekening van punten in het stralingsdiagram als functie van de belichter-verplaatsing, de belichter kan naar voren en naar achteren geschoven worden (zie paragraaf 3.1.2.),

-berekening van het vermogen door de apertuur voor bepaling van het spillover-rendement en -berekening van het fase-rendement.

Het programma is gebruikers-vriendelijk. Hopelijk blijft er een copie van dit programma bewaard bij de vakgroep Telecommunicatie. Op de volgende pagina's is het programma weergegeven ·. · -

- - . .

-

1060 PRINT " " 1070 FRINT "Dit programma berekent het stralingsdiagram van een parabool-" 1080 PRINT "antenne, uitgaande van het stralingsdiagram van de belichter en de" 1090 PRINT "geometrie van de antenne. Er wordt een fi-afhankelijkheid veron-" 1100 PRINT "dersteld, die evenredig is met cos(m*fi), waarbij m nog ingevoerd" 1110 PRINT "moet worden. Het uiteindelijke stralingsdiagram heeft precies die-" 1120 PRINT "selfde fi-afhankelijkheid met cos(m#fi). Dit is praktisch, omdat" 1130 PRINT "door middel van harmonische analyse ieder stralingsdiagram opge-" 1140 PRINT "bouwd kan worden uit zijn fi-harmonischen." 1150 PRINT "Voor een Cassegrain-reflectorsysteem dient met het equivalente" 1160 PRINT "paraboolprincipe gewentt te worden. Zaken als Free Space Loss" 1170 PRINT "e.d. worden door het programma zelf berekend en verwerkt." 1180 PRINT "Ten behoeve van berekeningen van apertuurrendement en spilover-" 1190 PRINT "rendement berekent het programma ook het vermogen dat door de" 1200 PRINT "apertuur gaat, rekening houdend met subreflectorblokkering." 1210 PRINT "Indien er geen apertuurblokkering is en de apertuur is ideaal" 1220 FRINT "belicht, dan is dat vermogen 0 dB, in alle andere gevallen is" 1270 FRINT "het (in dB's uitgedruk) negatief." 1240 PRINT "Het programma werkt voor slechts een polarisatie." 1250 FRINT " " 1060 REM Het opstant gebeuren ******************************* 1270 GOSUB 4870: REM Dece subroutine dient eventueel eerder opgeslagen 1280 REM waarden van de disk te lezen. 1290 GGSUB SIGO: REM Dece subroutine dient alle van disk ingelezen 1200 REM gegevens op het scherm te presenteren en even-REM tueel te laten wijzigen. 1.74.0 1720 GOSUE 5080: REM Dece subroutine dient de cojuist ververste gegevens 17.70 REM terug te schrijven naar de disk. 1340 PRINT " " 1350 PRINT "Alle ingevoerde gegevens staan nu opgeslagen op disk onder" 1060 PRINT "de naam STRADATA 1370 FRINT "Alle uitvoer zal tevens op disk opgeslagen worden onder" 1780 FRINT "de naam DUTFUT - "" 1780 FRINT "de naam OUTPUT 1390 PRINT " 1400 FRINT "Wilt U alle ingevoerde waarden nog controleren (J/N) ? N"; 1410 LOCATE CSRLIN, 57: INPUT "", S\$ IF ((S\$="J") OR (S\$="j")) THEN CLEAR:60TO 1250 1420 1400 PRINT " 1440 OPEN "OUTPUT" FOR OUTPUT AS #2 L\$≃"J" 1450 1460 IF ((L\$="J") OR (L\$="j")) THEN GOSUB 6330; REM Deze subroutine dient 1470 REM de ingevoerde gegevens uit te printen. 1480 FRINT " " 1490 PRINT "Er is een optie in dit programma om de fase op de apertuur" 1500 FRINT "nul te stellen, zodat het faserendement 100% wordt. Met deze" 1510 FRINT "optie kunt U het werkelijke faserendement berekenen." 1520 PRINT "Wilt U van deze optie gebruik maken (J/N) ? N"; 1530 – LOCATE CSRLIN,46:INFUT "",F\$ 1540 PRINT " " 1550 IF (((F\$<>"J") AND (F\$<>"j")) OR ((E\$<>"J") AND (E\$<>"j"))) THEN GOTO 1570 FRINT #2, "N.B. Het faserendement is op 100% gesteld !" 1560 1570 GOSUB 3620: REM Deze subroutine dient bij gegeven belichter-stralings-REM diagram AMPVBEL, FASEVBEL de apertuurbelichtings-1580 1590 REM functie REAP, IMAP berekenen. 1600 GOSUB 3390: REM Deze subroutine dient het vermogen door de apertuur REM te berekenen 1610 1620 PRINT " " 1650 PRINT " "

```
1560 FRINT "No begint de werkelijle berekening van het stralingsdiagram"
1670 PRINT "U Frijgt telkens de gelegenheid de belichter te verschuiven en"
1690 PRINT "hoeken in te vullen, waarna de gewenste punten van het stra-"
1590 FRINT "lingsdiagram berekend worden. Nadat dit gebeurt is zult U"
1700 PRINT "opnieuw voor de volgende Feuse gesteld worden:"
1710 PRINT "
1720 FRINT "U Frijgt nu de Feuze: stralingsdiagram als functie van"
17:00 FRINT "gen hoel of antennewinst als functie van de belichter-"
1740 PRINT "verplaatsing."
1750 PRINT "
1750 PRINT "Wilt U het stralingsdiagram als functie van een hoek (J/N) ? J":
1770
      LOCATE CORLIN. 60: INFUT "", 54
      IF ((S$=""") OR (S$=""")) THEN GOTO 1820
1780
1790
      GOBUE 1910: REM Deze subroutine dient het stralingsdiagram als
1800
                   REM functie van de hoek theta te berekenen.
      GOTO 1750
1810
1820 PRINT " "
1830 FRINT "Wilt U de antennewinst als functie van de"
1840 PRINT "belichterverplaatsing (J/N) []
                                            .1" •
1850 LOCATE CSRLIN, J2: INFUT "", S$
       IF ((S$="N") OR (S$="n")) THEN GOTO 1750
1860
      GOSUB 2040: REM Dece subroutine dient de antennewinst als functie
1870
1885
                    REM de belichterverplaatsing te berekenen.
1890
      6616 1820
1910 REM Subroutine stralingsdiagram als functie van hoek ***************
1920 PRINT "
1930 FRINT "Er de mogeliikheid om de belichter te veplaatsen."
1940 PRINT "N.B. als de belichter naar ACHTEREN verschoven wordt"
1950 PRINT "houdt dat in dat het brandpunt van de (equivalente) para-"
1960 FRINT "Boolantenne relatief meer voorin de belichter komt te"
1970 PRINT "sitten."
(980) - PRINT "Hoever (in meter) wilt U de belichter naar achteren"
     FRINT "Service the ten oprichte van de GORSFRONKELIJK"
FRINT USING "ingevoerde stand " ###.#####":DELTAF:
LUCATE USRUN.D::INFUT "".S&
1920
200
10110
2020 PEINT "
2000 IF S##"" THEN 6010 2090
040
       DELTAR=VAL (S#)
2050
       GOSUB 2740: REM berekening stralingsdiagram van verschoven belichter
      GOGUR 0120: REM eventueel uitprinten verschoven belichterdiagram
TÓSÓ
2070
      GDSUB Ca20: REM berekening nieuwe apertuurbelichting
      GOSUB 3390: REM berekening vermogen door apertuur
2080
2090 BEGINHOEK=0:STAPGRODITE=.01:PUNTEN=1
2100 PRINT USING "Beginhoek.
                                oraden":BEGINHOEK:
     LOCATE CSRLIN, 15: INPUT "", S$
2110
2120
       IF S$ THEN BEGINHDEN=VAL (S$)
2130 PRINT USING "Stapgrootte =###.####
2140 LOCATE CSRLIN,15:INPUT "",5$
                                           graden";STAPGRODTTE;
       IF S$ THEN STAPGROOTTE=VAL (S$)
2150
2160 FRINT USING "Aantal punten=###
                                       ": PUNTEN:
      LOCATE CSRLIN, 15: INPUT "", S$
2170
       IF S$<>"" THEN FUNTEN=VAL (S$)
2180
2190 PRINT " "
                =BEGINHOEK*PI/180 : REM alles moet naar radialen
2200 BEGINHOEK
2210 STAPGRODITE=STAPGRODITE#PI/180: REM alles moet naar radialen
2220 FOR TELLER1= 0 TO PUNTEN-1
      THETA=BEGINHOEK+TELLER1*STAFGROOTTE
2230
2240
      GOSUE 3850: REM Deze subroutine dient bij de gegeven apertuur-
2250
                    REM belichting en theta's het stralingsdiagram te
2260
                     REM berekenen.
2270
       IF FUNTEN-TELLER1-1=0 THEN GOTO 2300
       IF PUNTEN-TELLER1-1=1 THEN PRINT "Nu nog
2280
                                                   1 punt":GBTB 2300
       PRINT USING "Nu nog ### punten"; PUNTEN-TELLER1-1
2290
2300 NEXT TELLER1
2310 PRINT "
```

...

- -

2320 RETURN 2350 REM belichterverplaatsing ****** 160 PRINT " " 2370 FRINT "Bij welke hoek wilt U de antennewinst telkens" 2380 FRINT USING "laten bepalen 7 ###.### 2390 - LOCATE CSRLIN,13:INFUT "",58 2400 - IF 3\$77" THEN THETA=VAL(5\$)*F1/180 ###.#### graden";THETA/PI*180; 2400 2410 FRIN: " " 2420 PRINT "Voor het verschuiven van de belichter kunt U een begin-" 2430 PRINT "afstand, een stapgrootte en het aantal keer verschuiven" 2440 FRINT "opgeven. Het invullen van een positief getal voor de" 2450 PRINT "belichterverschuiving houdt in, dat deze naar ACHTEREN" 2450 PRINT "verschover wordt !" 2470 PRINT "N.B. als de belichter naar ACHTEREN verschoven wordt" 2480 PRINT "houdt dat in dat het brandpunt van de (equivalente) para-" 2490 PRINT "boolantenne relatief meer voorin de belichter komt te 2500 PRINT Content 2500 PRINT Content 2510 PRINT C.M DSD0 BEGINARSTRO:STAPGROOTTE=.01; PUNTEN=1 2500 PRINT USING "beginafstand =###.##### meter";BEGINAFST; LOCA - TGELIN, 15: INFUT "", 5# IF Se off THEN REGIMAEST=VAL(5#) ~5.A.S 2550 2580 PRINT USI46 "stapprodite =####.##### meter":STAPGROOTTE; 2570 - LOCATE COALIN,15: INPUT "",5# 2580 - LF S# "" THEN STAPGROOTTE=VAL(S#) 2590 FFINE USING "aantal punten=###":FUNTEN: 26000 LOCATE CBRL10, 15: 10PUT 07.5\$ THEN PUNTEN=VAL (3*) 2810 IF SE 2620 FOR TELLER1-0 TO FUNTEN-1 2620 DELTAFABEGINAFS) + TELLERI (STAPGROOTTE 2640 GOGUE 2740: REM berekening stralingsdiagram van verschoven belichter 60808 3620: REN berekening nieuwe apertuurbelichting 1650 SOSUB 1299: REM berekening vermogen door apertuur GOSUB 1299: REM berekening punten van stralingsdiagram 2650 2670 2680 IF FUNTEN-TELLERI-1=0 THEN GOTO 2710 IF PUNTEN-TELLER1-1=1 THEN PRINT "Nu nog 2590 1 punt":60T0 2710 2704 FRINT USING "Nu mog ### punten";PUNTEN-TELLER1-1 2710 NEXT TELLERI 2720 RETURN 2740 REM Subroutine fasecentrum-verplaatsing ********************** 2750 REM Input :FFF =afstand van het coordinatencentrum van de belich-2760 BEN ter tot de eerstvolgende reflector. 2770 BEM DELTAFeverplaatsing van de belichter in meter, positief, 2780 REM indien de belichter van de paraboolschotel vandaan 2790 REM wordt verschoven. Het brandpunt van de parabool-2800 REM schotel komt dan verder voorin de belichter te zitten. 2810 REM BETA =het golfgetal (2*pi/LAMBDA). 2820 REM AANTAL=Aantal punten, waarin het belichter-stralingsdiagram 2830 REM is gegeven. 2840 REM PSIBEL(0..AANTAL-1)=de hoeken,waarin het belichter-2850 REM stralingsdiagram is gegeven. 2860 PEM AMFBEL(0..AANTAL-1)=de bijbehorende amplitude. 2870 REM FASEBEL(0...AANTAL-1)=de bijbehorende fase. 2880 REM Output:PSIVBEL(0..AANTAL-1)=de nieuwe hoeken voor de verschoven 2890 REM belichter. 2900 REM AMFVBEL(0..AANTAL-1)=de bijbehorende amplitude. 2910 REM FASEVBEL(0..AANTAL-1)=de bijbehorende fase. 2920 REM Hulpvariabele: DELTA 2930 FOR TELLER=0 TO AANTAL-1 2940 FSI=PSIBEL (TELLER) FSIV=ATN(SIN(PSI)/(COS(PSI)-(DELTAF/FFF))): REM sinusregel 2**95**0 DELTAPSI=ASN(SIN(PSIV) *DELTAF/FFF) 2960 : REM sinusreael DELTA=DELTAF*(1-COS(PSIV))-FFF*(1-COS(DELTAPSI)) 2970

```
12400
     PSIVEEL (TELLER) = PSIV
1000
      IF PS1.... THEN AMEVBEL (TELLER) ≠AMEBEL (TELLER) ¥SIN(PSI)/SIN(PSIV)
      IF PSI=0 THEN AMPVBEL (TELLER)=AMPBEL (TELLER) * (1-DELTAF/FFF)
2000
7010
      FASEVBEL (TELLER) = FASEBEL (TELLER) + BETA*DELTA
3020 NEXT TELLER
3030 PRINT " "
3040 PRINT "De verplaatsing van de belichter ";
3050 PRINT USING "near achteren = ###.##### meter";DELTAF
3060 IF ((L$\."J") AND (L$\."j")) THEN GOTO 3100
     PRINT #2," "
3076
     PRINT #2,"De verplaatsing van de belichter ";
2080
2090
      PRINT #2,USING "near achtered
                                       ####.##### meter":DELTAF
3100 RETURN
3130 FRINT "Wilt a het verschoven belichterdiagram zien ? - N";
      LOCATE CSRLIN,49:INFUT "",5%
IF ((5% ""J") AND (5%(."j")) THEN GOTO 3370
2140
0150
        FOR TELLERS O TO AANTAL-1
3160
5170
         PRINT "psi =":
          PRINT USING "###.####"; FSIVBEL (TELLER) #180/FI;
7.1.90
190
          "FRINT " graden, amplitude=";
         PRINT USING "###.####": 20#LOG (AMPVBEL (TELLER) ) /LOG (10) -NORM;
3200
         PRINT " dB. fase=":
PRINT USING "####.###";FASEVBEL(IELLER)#180/PI;
3216
220
        FFINT " graden"
NEX1 TELLER
3220
1.1
        FEINT "
1250
        JE V(L$ "J") AND VL$ "j")) THEN GOTO 3370
5260
0270
         FOR TELLERS O TO AANTAL-1
1280
            PRINT #2."psi =";
2290
            PRINT #2, USING "###.#####"; PSIVBEL (TELLER) #180/PI;
17.00
           FRINT #2," graden, amplitude=";
2220
7510
2720
3720
3720
3720
           PRINT #2,USING "###.#####";20*L0G(AMPVBEL(TELLER))/L0G(10)-NORM:
           FRINT #2," dB, fase=":
           PRINT #2,USING "#####.###";FASEVBEL(TELLER)#180/PI;
            PRINT #2."
                       graden"
0350
          NEXT TELLER
0060 F
0070 RETURN
          FRINT #2,"
3390 REM Subroutine vermogensberekening *****************************
3400 REM Input :AANTAL=aantal punten, waarin apertuurbelichting bekend is.
3410 REM
              X(0..AANTAL-1)=afstand van het punt op het apertuurvlak
3420 REM
                      tot de hoofdas.
3430 REM
               REAF(0..AANTAL-1), IMAF(0..AANTAL-1)=apertuurbelichting
3440 REM
                      in "per meter"
3450 REM
              м
                     =fi=afhankelijkheid met cos(m#fi)
3460 REM Output:INTRE =vermogen door het apertuurvlak, zodanig genor-
                      meerd, dat 10*LOG(INTRE)/LOG(10) <= 0 dB.</pre>
7470 REM
3480 FOR TELLER=0 TO AANTAL-1
     RE(TELLER)=((REAF(TELLER))^2+(IMAF(TELLER))^2)#X(TELLER)#PI/2
3490
3500
      IM(TELLER)=0
3510
      IF M=0 THEN RE(TELLER)=2#RE(TELLER)
3520 NEXT TELLER
3530 XSTART=DS/2:XSTOP=DP/2
3540 GOSUB 4520: REM De integratie-subroutine.
3550 PRINT "Het (genormeerde) vermagen door het ";
3560 PRINT USING "apertuurvlak = ###.#### dB";10#LOG(INTRE)/LOG(10)
3570 IF ((L$<>"J") AND (L$<>"j")) THEN GOTO 3600
      FRINT #2, "Het (genormeerde) vermogen door het ";
3580
      PRINT #2,USING "apertuurvlak = ###.#### dB";10#LOG(INTRE)/LOG(10)
3590
3600 RETURN
```

3630 FOR TELLER= 0 TO AANTAL

. .

2640 REM Berekening van roldat is $\lambda(...)$ bij gegeven psi: 3550 X(TELLER)=FF*(2*SIN(PSIVBEL(TELLER)))/(1+COS(PSIVBEL(TELLER))) 3560 REM Berekening reele en imaginaire deel: REAP (TELLER) = ANFYBEL (TELLER) *COS (FASEVBEL (TELLER)) 3670 7680 IMAP(TELLER) = AMPVBEL(TELLER) + SIN(FASEVBEL(TELLER)) 2690 REM Free Space Loss van belichter: 5700 REAP (TELLER) = REAP (TELLER) * (1+D0S(PSIVBEL (TELLER)))/2 IMAP (TELLER) #IMAP (TELLER) # (I+COS (PSIVBEL (TELLER))) /2 2710 3720 REM Wat normeringen en dergelijke, zodat de vermogensstroom door 3730 FEM de apentuur S(n,ti)=((reap 2+imap/2)/2)*((cos(m*fi))/2) is. REARVIELLERVEREAR(TELLER)/(FF*((2*PI)).5)) IMARVTELLERVEIMARVTELLER)/(FF*((2*PI).5)) 3740 3750 IF ((F\$ ->"J") AND (F\$ ->"j")) THEN GOTO 3800 7.750 · 776 REAP (TELLER) ===0R (REAP (TELLER) - 2+IMAP (TELLER) ^2) 1780 THAP (TELLER) =0 3790 REM Het faserendement is op 100% gesteld ' 1800 NEXT TELLER 2310 1F ((F\$C "J") AND (F\$ ("1")) THEN GOTO 3830 1820 PRINT "N.B. Het Haserendement heeft U op 100% gesteld !" 1870 RETURN 1850 REM Subroutine: berekening hoofdstralingsdiagram ******************** 3850 FOR TELLER2= 0 TO AANTAL-1 Z=BETA+X (TELLERD) +SIN (THETA) 1870 1.990 GUSUE 4410:REM Die subroutine dient de Besselfunctie van orde **38**90 FEM N voor deze Z uit te rekenen, resultaat: J RE(TELLER2)≈REAR(TELLER2)*J*X(TELLER2)*Z*RI/LAMBDA 7.900 IN (TELLERE) = INAP (TELLERE) +J +X (TELLERE) +2*FI/LAMBDA 7916 1920 IF M=0 THEN GOTO 3980 3720 FOR TELLERDE 1 TO M :REM Vermeniquuldigen met j^M 3540 HULPERE (TELLERE) 3950 PE(TELLER2) = - IM(TELLER2) IN (TELLERD) = HULF 3950 2970 NEXT TELLERS 1980 NEXT TELLERI 7990 XGTART=D5/2:XSTOP=DF/2 4000 GOSUB 4520:REM Die subroutine voert de integratie van 4010 REM DS/2 tot DF/2 wit 4020 AME=((INTRE+INTRE+INTIM+INTIM) .5) 4030 AMP=AMP*((2*PI)1.5):REM Normering, 20*LOG(AMP)/LOG(10) is REM indide antennewinst in dB. 4040 4050 FASE=0:IF INTRES O THEN FASE=ATN(INTIM/INTRE) 4060 IF ((INTRE<0) AND (INTIM>0)) THEN FASE=FASE+PI 4070 IF ((INTRESO) AND (INTIMSO)) THEN FASE=FASE-PI 4080 FASE=FASE+NULFASE*P1/180 4090 IF FASE>PI THEN FASE=FASE-2*PI 4100 IF FASEA-PI THEN FASE=FASE+2*PI 4110 PRINT "theta="; 4120 PRINT USING "###.####";THETA*180/PI; 4130 PRINT " graden, amplitude≃"; 4140 IF AMP<=0 THEN PRINT "----";:GOTO 4160 4150 FRINT USING "###.####";20#LOG(AMP)/LOG(10); 4160 FRINT " dB. fase=": 4170 IF AME =0 THEN PRINT "----";: GOTO 4190 4180 PRINT USING "#####.###"; FASE#180/PI; 4190 FRINT " graden" 4200 IF ((L\$<>"J") AND (L\$<>"j")) THEN GOTO 4300 PRINT #2,"theta="; 4210 PRINT #2, USING "###.####"; THETA\$180/FI; 4220 4230 PRINT #2," graden, amplitude="; IF AMP<=0 THEN PRINT #2, "----";:GOTD 4260 4240 FRINT #2, USING "###. #####"; 20*LOG (AMP) /LOG (10); 4250 PRINT #2," dB, fase="; 4260 4270 IF AMPK=0 THEN PRINT #2, "----";:GOT0 4290 PRINT #2, USING "#####. ###"; FASE #180/PI; 4280 FRINT #2," graden" 4290

```
1300 RETURN
4320 REM Subroutine faculteit ********************************
4330 FEAC=1
4540 IF F=0 THEN GOTO 4580
    FOR NN=1 TO P
4750
4350
      PEAC=PEAC+NN
4370
    NEXT NN
4380 REM pfac≃p
4390 RETURN
4410 REM Subroutine Besselfunctie *******************************
4420 F=M: GOSUB 4720 :REM Naar subroutine faculteit
4430 J0=1:J1=1:J2=1:K=1:XX=Z/2
4440 J2=J2#XX#XX7((H+E)#E)
4450 J1=70
                  :REM old value
4460 J0=J0+(-1) )*J2 :REM new value
4470 E=L+1
4480 IF JO J1 THEN 60TO 4440
4490 J#J04XX F/FFAC ::REM J is de Besselfunctie van Z van onde M
4500 RETURN
4500 REM Input : Array Σ(0, 1, .....)
4540 REM — Array FE(0, 1, .....)
             Array IM(0, 1, .....)
4550 REM
4550 REM
             ASTART, ASTOR
4570 REM Dutput: INTRE, INTIM
4550 REM Variabelan: x0, X1, X2, N. REO, RE1, RE2, 1MO, IM1, IM2
4590 N=0
4500 IF XOU ASTART THEN STOP
4010 IF X(1) XSTOP THEN STOP
4620 X0=X(N): X1=X(N+1)
45 10 IF X1 XSTART THEN N=N+1: GOTO 4620
4640/ REG=RE(N): RE1=RE(N+1)
4650 (MO=IN(N): IM1=IM(N+1)
455(+ 1NTRE=\2*RE1--\RE1-RE0)*(X1-XSTART)/(X1-X0))*(X1-XSTART)/2
4670 1N11M=(2*IM1-(IM1-IM0)*(X1-XSTART)/(X1-X0))*(X1-XSTART)/2
4650 N=N+1
4590 XU=X(N)
           : )1=X(N+1)
                     : X2=X(N+2)
4700 RE0=RE(N): RE1=RE(N+1): RE2=RE(N+2)
4710 IM0=IM(N): IM1=IM(N+1): IM2=IM(N+2)
4720 IF X2.XSTOP THEN GOTO 4770
     INTRE=INTRE+(RE0+4*RE1+RE2)*(X2-X0)/6
4730
4740
     INTIM=INTIM+(IM0+4*IM1+IM2)*(X2-X0)/6
4750
     N=N+2
4760
     GOTO 4690
4770 IF X1:=XSTOP THEN GOTO 4830
4780
     INTRE=INTRE+(RE1+RE0)*(X1-X0)/2
     INTIM=INTIM+(IM1+IM0)*(X1-X0)/2
4790
4800
     X0=X1 : X1=X2
    REO=RE1: RE1=RE2
4910
4820
     IMO=IM1: IM1=IM2
4830 INTRE=INTRE+(2*RE0+(RE1-RE0)*(XSTOP-X0)/(X1-X0))*(XSTOP-X0)/2
4840 INTIM=INTIM+(2*IM0+(IM1~IM0)*(XSTDP-X0)/(X1-X0))*(XSTDP-X0)/2
4850 RETURN
4880 ON ERROR GOTO 6600
4890 OPEN "STRADATA" FOR INPUT AS #1
4900 ON ERROR GOTO 0
     IF NOT (EOF (1)) THEN INPUT #1, AANTAL
4910
     FRINT "Van het belichterstralingsdiagram moeten een aantal punten"
4920
     FRINT "ingevoerd worden. Op de diskette zijn er al";AANTAL;"op-'
4930
     PRINT "geslagen."
4940
4950
     PRINT USING "Hoeveel punten wilt U invoeren ? ###";AANTAL;
```

. . .

LOCATE CSRLIN, 35: INPUT "".S* 4960 4970 4980 4990 DIM AMPBEL (AANTAL), FASEBEL (AANTAL), FSIBEL (AANTAL) 5000 DIM AMEVBEL (AANTAL), FASEVBEL (AANTAL), ESIVBEL (AANTAL) 5010 DIM X (AANTAL), RE (AANTAL), IM (AANTAL), REAF (AANTAL), IMAF (AANTAL) 5020 IF NOT(EQF(1)) THEN INPUT #1,FRED 5070 IF NOT(EDF(1)) THEN INFUT #1,FF 5040 IF NOT(EOF(1)) THEN INFUT #1,DP 1E NOT(ECE(1)) THEN INPUT #1.DS 5050 IF NOT(EOF(1)) THEN INFUT #1, FFF 5050 5070 IF NOT (EOF (1) + THEN INPUT #1.M 5086 IF NOT (EDF (1/) THEN INPUT #1, NORM 5090 IF NOT (EOF (1) + THEN INPUT #1, NULFASE 5100 TELLER=0 5110 IF NOT (EDF (1+) THEN INPUT #1, PSIBEL (TELLER) IF NOT (EOF(1)) THEN INFUT #1, AMPBEL (TELLER) 5120 IF NOT(EOF(1)) THEN INFUT #1, FASEBEL (TELLER) 5130 IF (NOT(EDF(1))GND (TELLER AANTAL)) THEN TELLER=TELLER+1:60T0 5110 5140 5150 CLOSE 5160 RETURN 5180 REM Subroutine: veranderen van de invoergegevens ********************* 5190 PRINT "Wilt U de belichtergegevens nog invoeren of veranderen ? 5200 - LOCATE CSRLIN,59:INFUT "",5% J": IF ((S#="N") OR ((S#="n")) THEN GOTO 5000 5210 5220 PRINT "Frequentie ±": SCOO PRINT USING "###.##### GHz":FRED: LOCATE CSRLIN, 58: INFUT "". 51 5040 IF S# "" THEN FRED=VAL(S#) 5050 260 PEINT "Brandpuntsafstand van de (equivalente) paraboolantenne="; 5270 FRINT USING "###.##### meter";FF; SOBO LOCATE CSRLIN, So: INPUT "", S# 9290 IT S\$ THEN FF=VAL (S\$) 5000 PRINT "Diameter van de hoofdreflector SC10 PRINT USING "###.#### meter":DF: LOCATE CORLIN, 56: INPUT "", 5\$ 5720 5070 IF St "" THEN DP=VAL (St) 5340 PRINT "Ten behoeve van de subreflector-blokkerings-berekening:" 5350 PRINT "Diameter van de subreflector =" • 5360 PRINT USING "###.#### meter":DS; LDEATE CSRLIN, 56: INFUT "", 5\$ 5370 5380 IF Sto "" THEN DS=VAL(S\$) 5390 PRINT " " 5400 PRINT "Voor de berekening van de effecten, die optreden bij ver-" 5410 PRINT "schuiving van de belichter dient de afstand van het coordi-" 5420 FRINT "natencentrum van de belichter tot de eerstkomende reflector" S430 PRINT "gegeven te worden." 5440 FRINT "Bij een Cassegrain-systeem is dit de afstand tot de subreflec-" 5450 PRINT "tor, bij een 'front-feed'~systeem is dit de brandpuntsafstand" 5460 PRINT "van de hoofdreflector." 5470 FRINT "Deze afstand =": 5480 PRINT USING "###.#### meter";FFF; 5490 LOCATE CSRLIN, 56: INPUT "", 5\$ IF St >"" THEN FFF=VAL (St) 5500 5510 FRINT " " 5520 PRINT "Voor de fi-afhankelijkheid van het belichterstralingsdiagram" 5530 PRINT "(cos(m*fi) zijn de volgende waarden gebruikelijk: 5540 PRINT "m=0 voor een hoofdsignaal," 5550 PRINT "m=1 voor een verschilsignaal en" 5560 PRINT "m=2 voor een kruispolarisatiesignaal," 5570 PRINT "maar natuurlijk zijn hogere m ook toegestaan." 5580 FRINT "De fi-afhankelijkheid is 1"1 5590 PRINT USING "cos(## *fi)";M; 5600 LOCATE CSRLIN, 60: INPUT "", 5\$ 5610 IF S\$<>"" THEN M=VAL (S\$)

```
5620 PRINT " "
3530 REM PSIBEL is de hoel vanaf de hoofdas van de belichter
5640 REN RASEBEL is de bijbehorende fase van het belichterstralingsdiagram
S550 REM ) is de bijbehorende afstand tot de hoofdas op het apertuurvlak
5660 REM ANFREL is de bijbehorende amplitude van het belichterstralingsdiagram
5670 REM PSIBEL en FASEBEL in radialen
5680 REM ( in meters
5690 REM AMPBEL dimensielads, zodat de belichterantennewinst
5700 REM
                20#LDG(AMPBEL)/LDG(10) is.
5710 PRINT " "
5720 PRINT "U Funt,door de antennewinst van de belichter in te voeren,"
5730 FRINT "de verdere invoer op deze antennewinst te normeren."
5740 PRINT "De belichterantennewinst
                                                                      =":
5750 PRINT USING "####.##### dB";NORM;
     LOCATE CERLIN, 55: INPUT "", 55
5760
5770 IF 5% '
5780 PRIMT " "
              "" THEN NORM=VAL (S$)
5790 FRINT "U Funt ter normering bi) alle tases een constante optellen:"
5800 PRINT "De nulfase
                                                                      = " :
5810 FRINT USING "####.### graden";NULFASE;
SB20 - LOCAIE CSRLIN, 56: INPUT "", S#
5930 IF S$ "" THEN NULFASE=VAL (S$)
5840 PRINT " "
5850 PRINT "Nu moeten voor toenemende psi telkens psi en de bijbehorende"
5860 PRINT "amplitude en tase van het belichterstralingsdiagram ingevoerd"
5870 PRINT "worden."
5880 FOR TELLER = 0 10 AANTAL-1
5890 - FRIN1 " "
       PRINT USING "per-
5900
                              =####.##### graden";PCTBEL(TELLER);
        LOCATE ESELIN, 11: INFUT "", S$
5910
         IF S$ ..... THEN PSIBEL (TELLER) = YAL (S$)
5020
        59.50
        LOCATE CSRLIN, 11: INFUT "", S$
5940
         IF 54 ... "" THEN AMPBEL (TELLER) =VAL (S$)
5.950
      PRINT USING "fase
                              =####.##### graden";FASEBEL(TELLER);
5960
       LOCATE CSPLIN. 11: INPUT "". S$
6,000
        IF S$ """ THEN FASEBEL (TELLER) = VAL (S$)
5950
5990
       IF AANTAL-TELLER-1=0 THEN GOTO 6020
6000
       IF AANTAL-TELLER-1=1 THEN PRINT "Nu mog
                                                   1 punt":60T0 6020
       FRINT USING "Nu nog ### punten"; AANTAL-TELLER-1
5010
6020 NEXT TELLER
     LAMEDA=.2998/FRED
6030
                                           :REM golflengte in meter
       PI=7.14159
6040
6050
      BETA=2*FI/LAMBDA
                                           :REM golfgetal in per meter
6060 RETURN
6080 REM Subroutine: invoergegeven terugschrijven naar disk **************
5090 OPEN "STRADATA" FOR OUTPUT AS #1
6100 WRITE #1, AANTAL
       WRITE #1.FRED
6110
      WRITE #1.FF
5120
       WRITE #1, DF
6130
6140
       WRITE #1,DS
6150
       WRITE #1.FFF
       WRITE #1,M
6160
       WRITE #1, NORM
6170
       WRITE #1, NULFASE
6180
6190
       FOR TELLER=0 TO AANTAL-1
         WRITE #1, PSIBEL (TELLER)
6200
         WRITE #1, AMPBEL (TELLER)
6210
         WRITE #1, FASEBEL (TELLER)
6220
         PSIBEL(TELLER) =PSIBEL(TELLER) *PI/180
AMPBEL(TELLER) =10^((AMPBEL(TELLER)+NORM)/20)
6230
6240
         FASEBEL (TELLER) =FASEBEL (TELLER) #PI/180
6250
         PSIVBEL(TELLER) =PSIBEL(TELLER) :REM Vasthouden van de oorspronkelijk
AMFVBEL(TELLER) =AMFBEL(TELLER) :REM ingevoerde informatie, tov. ver
6260
6270
```

. . .

. . .

. .

.

6280 FAGEVBEL(TELLER) #FASEBEL(TELLER):REM schuiving van het fasecentrum 6290 NEXT TELLER 6300 CLOSE AD10 RETURN 6000 REN Subroutine: invoer naar printer **************************** 6340 PRINT #2.USING "Frequentie =###.#### GHz ": FREQ 6350 PRINT #2. "Brandpuntsafstand van de (equi-" PRINT #2.USING " valente) paraboolantenne 6760 =###.#### meter";FF PRINY #2.USING "Drameter van de hoofdreflector=###.#### meter";DP 5770 6080 PRINT #2.U51NG "Diameter van de subreflector =###.#### meter";DS PRINT #2,"De afstand van het coordinaten-" 5390 PRINT #2, "centrum ven de belichter tot de" 64ú0 FRINT #2.USING "eesetvolgende reflector 6410 =###.#### meter":FFF PFINT #2.USING "De fi-afhankelijkheid 6420 =cos(###fi)";M PRINT #2. "Het belichterstralingsdiagram" 5400 PRINT #2,USING "is genormeerd op 6440 :###.#### dB":NORM FRINT #2.USING "De tase is genormeerd op FRINT #2." 6450 :####.### graden";NULFASE 54 :517 PE1NT #2, "Ingevoerd stralingsdiagram van de belichter:" 6470 6480 FOR TELLEP= 0 TO HADTAL-1 ن د ډر PRINT #2."osi =": PRINT #2.USING "####.#####";PSIBEL (TELLER) #180/PI; <u>~560</u> 5510 FRIMT #2," graden, amplitude="; PRINT #2, USING "###.#####": 20*LOG (AMPBEL (TELLER)) /LOG (10) -NORM; 6520 PRINT #2." dB. feee=": 6570 PRINT #2,USING "####.####";FASEBEL(TELLER)#180/PI; 6540 6550 - PRINT #2," graden" 6560 NEX1 FELLER PR100 #2." 8570 6580 RETURN 6600 REM Subroutine: error-trap bij afwezigheid van file STRADATA ######## 6510 OPEN "STRADATA" FOR OUTPUT AS #1 5620 CLOSE 5500 RESUME

Appendix D: Lijsten van het computerprogramma "Straling"

Freq	uen	tie		= 11	.4511 G	н::				
Br an	dpu	ntsafsta	and van d	te (equi-						
valente) paraboslantenne = 8.4537 meter										
Diam	ete	r varide	e hoofdre	eflector≕ C	.0480 me	eter		belichter	-winst: 29,1088	8 dB
Diam	ete	r van de	e subrefl	lector = ().3048 me	eter		antenne-w	inst : 49,72	dB
De a	fst	and van	het coor	dinaten-						
cent	rum	van de	belichte	er tot de						
eers	tvo	lgende r	reflector	- = 1	.,2400 me	eter				
D⇔ f	i a	fhanteli	JFheid	=cos	5(Q#f1)					
Het	bel	ichterst	ralıngso.	i)aqram						
is g	enc	nmeerd a	α ρ	:-20	7.60B2 dl	B				
De f	aşe	n≡ geno	ormeerd c	ob : -	-7.301 gr	ader	ר			
•										
inge	voe _	rd stral	ingsolad	gram van de	belicht	er:				
pei	=		graden.	amplitude≕	0.0000	dB.	tase=	0.000	graden	
051	÷	0.2000	graden.	amplitude≂	-0.0800	dH.	tase=	-0.550	graden	
051	_	1 50000	graden.	emplitude=	-0.000		tase=	-1.380	graden	
p=1		1.0000	graden.	amplitude=		08. 20	+ase=	-2.990	graden	
1000		2.5640	graden. orodon	ampii Code=	-1.0000	00. an	Tase=	-3.140	graden	
рз і Бб)	-		graden. Joradan	amplicade=		4D.	TA50-	-10 840	graden	
1-1-1-1 1-1-1-1	=		oraden.	amplitude=		ав. ЛВ	fase-	-10.840	graden	
P = 1	-	1 0000	graden.	amplitude-	-5.06.0	45.	1450-	-17 770	graden	
r = 1	=	al Salahan	Graden.	amplicude=		ав, НВ	1050-	~21 340	oraden	
n 5.1	=	5.0000	graden. oraden	amplitude=	-7 4400	аю. НВ	face=	-75 130	oraden	
D G 1		5.5000	oraden	amplitude=	-9 5700	dE dE	faces	-29 230	oraden	
051	-	a.0000	araden.	amplitude=	-9.7500	dB.	face=	-77.920	oraden	
051	2	5.5000	ocsden.	amolitude=-	10.8500	dB.	fases	-39.510	oradeo	
051	:=	0.04	urader.	amplitude=-	11.9800	dB.	fase=	-46.340	oraden	
0.91	-	7.5000	aredeo.	amplitude=-	12.9300	dB.	fase=	-54.610	oraden	
, рял		8.0000	areden.	amplitude=-	14.0200	dE.	fase=	-64.320	oraden	
per l		8.5000	Graden.	amplitude=-	15.2000	dB,	fase=	-75.270	oraden	
р.:.3	Ξ	9,0000	çraden.	amplitude=-	15.5700	dB,	fase=	-87.190	graden	
psı	=	9.5000	graden.	amplitude=-	19.0400	dF,	fase=	-99.670	graden	
p ∈ 1	÷	1010000	graden.	empl)tude=-	19.6000	dB,	fase=~	112.150	graden	
£123	×	10.5000	graden.	amplitude=-	21.1700	dB.	fase=-	124.280	graden	
₽ S I	**	11.0000	graden.	amplitude≐-	22.6600	dB,	fase=-	136.210	graden	
psi	÷	11.5000	graden,	amplitude=-	23.9400	d8.	fase=-	148.500	graden	
ps1	=	12.0000	yraden,	amplitude=-	24.9500	dB,	fase=~	161.830	graden	
psi	=	12.5000	graden.	amplitude=-	25.7900	dB.	fase=~	176.990	graden	
p51	=	12.0000	graden.	amplitude=-	26.5600	dH.	fase=-	194.740	graden	
psi	-	1.5000	graden.	amplitude=-	27.3600	dB.	+ase=-	215.190	graden	
p 5 1	-	14.0000	graden.	amplitude=-	28.0000		tase=-	237.640	graden	
p51	-	15 0000	graden,	amplitude=-	24.5000	08, 45	+ase=-	201.080	graden	
psi	-	15 5000	graden.	amplicade=-	20.4700	4D,	face	233.880	graden	
DE1	=	14 0000	graden.	amplitude=	34 3400	46. 46	face-	332 220	graden oraden	
DS1	=	16.5000	oraden.	amplitude=~	35.9200	dB.	fase=-	352.480	oraden	
nsi	=	17.0000	graden.	amplitude=-	36.9800	дв.	fase=-	372.510	oraden	
051	Ħ	17.5000	oraden.	amplitude=-	37.3700	dB.	fase=-	394.290	oraden	
psi	=	19.0000	graden.	amplitude=-	37.4700	d₽.	fase=-	419.360	oraden	
psi	=	18.5000	graden,	amplitude=-	37.5800	dB,	fase=-	448.800	oraden	
ps1	=	19.0000	graden.	amplitude=-	37.7400	dB,	fase=-	481.840	oraden	
ps1	±.	19.5000	graden,	amplitude=-	38,0800	dB,	fase=-	516.730	graden	
ps1	=	20.0000	graden.	amplitude=-	38.7700	dB,	fase=-	553.630	graden	
ps1	=	20,5000	graden,	amplitude=-	39.6600	dB,	fase=~	592.430	graden	
psi	=	21,0000	graden.	amplitude=-	40.7800	d8,	fase=-	631.250	graden	
									_	
Het	(ge	normeero	de) ∨ermo	ogen door he	et aperti	rv1	lak =	-50.1320	dB	
De v	ern	laatsing	var de	belichter o	aar arhi	terer) =	0.3400	meter	
DS1	=	0.0000	graden.	amplitude=	-2.7834	dB.	fase=	0.000	oraden	
psi	=	0.6889	graden	amplitude=	-2.8634	dB.	fase=	-0.012	oraden	
psi	=	1.3777	graden.	amplitude=	-3.1129	dB.	fase=	-0.029	graden	
psi	=	2.0665	graden,	amplitude=	-3.5320	dB,	fase=	0.050	graden	
psi	#	2,7552	graden,	amplitude=	-4.1108	dB,	fase=	0.264	graden	

in the second second

_

n = 1 = 1					
	7.4477	uraden.	amplitude= ~4.8495 dB. tases	0.662	oradon
	4 1721	an and an	soulitudes 5 7174 dE rose		graden
har .	· · · · · · · · · · · · · · · · · · ·	graden,	amplicube3.7174 dB, tase	• <u>1</u> •010	graden
pei =	- 418707	graden.	amplitude= ~6.7252 dB, fase:	2.025	graden
psi -	5.5031	graden.	amplitude= -7.8326 dB, fase	3,857	üraden
051 -	6.1958	araden.	amplitude≏ -9.0097 dH. fase	5.948	oraden
1) G 1 - 3	6 8511	oraden	Applytude==10 2044 dR face	0 545	graden
psi -	7 5 3 5 1	graden.	amp110002-10.2084 05, tase		graden
psi =	1.2701	graden,	amplitude=-11.3828 dB, tase	11.516	graden
f/51 =	8.2567	graden.	amplitude=-12.5099 dB, fase	: 14.540	graden
ព្រទ្ធរ គ	8.9429	graden.	amplitude=-10.5846 dB, fase:	17.322	oraden
nei a		oraden.	annlitude==14 AROD dR face	19 520	gr aden
	1 71.00	an ada a	the litude is (251 db. (ase		graden
hei -		urenen.	ampillude=-15.6/51 dB, tase-	20.932	graden
psi =	10.9985	graden,	amplitude≈-16.7598 dB. fase	21.554	graden
ps1 =	11.5828	graden,	amplitude=-17.9642 dB, fase	21.583	graden
051 8	12.3665	acaden.	amplitude=-19.7987 dB, fase	21.284	oraden
	17 0195	uradan	amplitudo==30 7430 dP Arcos	21 044	
P	1212472	gi aden.	amp11Cube=-20.7620 UB, 4ase-	21.004	graden
10-91 E	می اد در ام در اد . ا	graden.	amp11t0de≈-22,3154 dB, tase	21.4/9	graden
្ច÷≘រ ≃	14.4105	graden.	amplitude=+23.8785 dB, fase	22.875	graden
psi ÷	15.0946	graden.	amplitude=-25.3613 dB. fase:	25.096	araden
	15.7749	or eden.	Amplitude==76 6779 dB face	27 579	or oden
	1. 15.10	se idee	implicate 2010000 dEt (ase		gi aden
10.21 -	10.4.1.4.4	graden.	amplicude==17.6439 dB. fase:	27.639	graden
ps) =	1 - 1 - 1 - 1	qraden.	amplitude=-18.4677 dB. fase:	30.480	graden
pei -	17.8111	graden.	emplitude=-29.2292 dB, fase:	29.338	graden
©≊) =	13.4881	oraden.	amplitude=-30.0204 dB. fases	26.097	oraden
	19 1547	oraden	amplitude==70 9517 dB. face:	21 451	araden
	10.0205	grecent	empiroudee pointir up, fase		yraden
- tes	17.8.72	ųraden,	amplitude= 22.1419 dB, tase=	16,105	graden
រុមនា គ	-26.5178	yraden.	amplitude==33.6022 dB, fase	10,583	graden
per e	21.1372	graden.	amplitude=-35.2522 dB. fase:	6.020	araden
10-4.1 F	ورجو الشراق	draden.	amplitudeeria 9519 dB. fases	7 978	oraden
	57 414		raelieudze 70 6 117 eV. Case	4 7/7	greden
per -	and a second	General a	Ampoittage-16.011 db. fage	4	graden
¢≊i ≞	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	ýraden.	amplitude=~09.5704 dB, fase	5.586	graden
:51 -	27.8705	ÿr∌den,	amplitude=~09.9492 dB. tase=	5.613	graden
pei =	24.5797	araden,	amplitude=-40.0778 dB. fases	2.896	oraden
	75. 2058	oraden.	awrilitude=-40.1360 dB. fases	-3.457	oraden
	75 9717	ge e sinte	implytudo==40 2940 dB frace	-17 744	graden
, <u> </u>		y suen,	smpircude40.2040 ub, fase-	-13.200	graden
<u>, </u>		graden.	Amplitude=-40.811/ dB, tase=	~24.205	graden
() E 4 - F	27.2000	grader.	amplitude=-41.2892 dB, fase	-36.635	graden
p.:: *	27.8524	graden.	<pre>amplitude=-42.1663 dB, fase=</pre>	-50,453	graden
591 F	19.5235	Graden.	amplitude=-43.2732 dB. fase=	-63.787	oraden
•		,	,		3
Hot is					
	on or agar	ta vorni	saan door bet anartuurvlak s	-50 3609	đĐ
	enormeer	de' verni	ogen door het apertuurvlak -	-50.3609	dB
theta=	enarmeeri 9.9000	de' verm graden,	ogen door het apertuurvlak = amplitude≕ 0.0000 dB, fase=	-50.3609	dB graden
theta=	enarmeer(5.0000 0.0250	del vermo graden, graden,	agen door het apertuurvlak = amplitude== 0.0000 dB, fase= amplitude= -0.0211 dB, fase=	-50.3609 0.000 -0.012	dB graden graden
theta= theta= theta=	enaraeer(0.0000 0.0250 0.0500	de' verm graden, graden, graden,	ogen door het apertuurvlak = amplitude≅ -0.0000 dB, fase amplitude≅ -0.0211 dB, fase amplitude≅ -0.0846 dB, fase	-50.3609 0.000 -0.012 -0.048	dB graden graden graden
theta= theta= theta= theta=	enarmeer: 5.0000 0.0250 0.0500 0.0750	del Vermi graden, graden, graden, oraden,	agen door het apertuurvlak = amplitude≃ 0.0000 dB, fase= amplitude≃ -0.0211 dB, fase= amplitude≃ -0.0846 dB, fase= amplitude≅ -0.1907 dB. fase=	-50.3609 0.000 -0.012 -0.048 -0.109	dB graden graden graden oraden
theta= theta= theta= theta=	endrader(0.0000 0.0250 0.0500 0.0750 0.0750	del vermo građen, građen, građen, građen, građen,	amplitude= -0.0000 dB, fase= amplitude= -0.0211 dB, fase= amplitude= -0.0241 dB, fase= amplitude= -0.1907 dB, fase= amplitude= -0.1907 dB, fase=	-50.3609 0.000 -0.012 -0.048 -0.109	dB graden graden graden graden
theta= theta= theta= theta= theta=	enoracer: 5.0000 0.0250 0.0500 0.0750 0.1000	del vermo graden, graden, graden, graden, graden,	amplitude= 0.0000 dB, fase amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0846 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.3397 dB, fase	-50.3609 0.000 -0.012 -0.048 -0.109 -0.196	dB graden graden graden graden
theta= theta= theta= theta= theta= theta=	enoracer 5.0000 0.0250 0.0500 0.0750 0.1000 0.1250	de' vermi graden, graden, graden, graden, graden, graden,	amplitude= -0.5321 dB, fase= amplitude= -0.0211 dB, fase= amplitude= -0.0846 dB, fase= amplitude= -0.1907 dB, fase= amplitude= -0.5321 dB, fase=	-50.3609 0.000 -0.012 -0.048 -0.109 -0.196 -0.309	dB graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta=	enormeer 5.0000 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500	de` verm graden, graden, graden, graden, graden, graden, graden,	amplitude= -0.5321 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0846 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.3397 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.7687 dB, fase	-50.3609 -0.000 -0.012 -0.048 -0.109 -0.196 -0.309 -0.450	dB graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta=	enarmeer 5.0000 0.0250 0.0500 0.0750 0.1250 0.1500 0.1750	de` verm graden, graden, graden, graden, graden, graden, graden,	amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0846 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.0503 dB, fase		dB graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta=	enarmeer 5.0000 0.0250 0.0500 0.0750 0.1250 0.1250 0.1500 0.1750 0.2000	de' verm graden, graden, graden, graden, graden, graden, graden, oraden.	<pre>agen door het apertuurvlak = amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0846 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.7397 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.3779 dB, fase</pre>	50.3609 -0.000 -0.012 -0.048 -0.109 -0.196 -0.309 -0.450 -0.450 -0.621 -0.824	dB graden graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta=	enarmeer 5.0000 0.0250 0.0250 0.1000 0.1250 0.1500 0.1750 0.2000 0.2050	de' vermi graden, graden, graden, graden, graden, graden, graden, graden,	<pre>agen door het apertuurvlak = amplitude= 0.0000 dB, fase= amplitude= -0.0211 dB, fase= amplitude= -0.0846 dB, fase= amplitude= -0.1907 dB, fase= amplitude= -0.3397 dB, fase= amplitude= -0.5321 dB, fase= amplitude= -1.0503 dB, fase= amplitude= -1.0503 dB, fase= amplitude= -1.7528 dB, fase= amplitude= -</pre>	-50.3609 -0.000 -0.012 -0.048 -0.109 -0.196 -0.309 -0.450 -0.421 -0.824 -0.824 -0.421	dB graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta=	enarmeero 0.0000 0.0250 0.0250 0.0750 0.1000 0.1250 0.1750 0.2000 0.2250	graden, graden, graden, graden, graden, graden, graden, graden, graden,	amplitude= 0.0000 dB, fase amplitude= 0.0011 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0846 dB, fase amplitude= -0.1307 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.3779 dB, fase	-50.3609 -0.000 -0.012 -0.048 -0.196 -0.309 -0.450 -0.450 -0.451 -0.824 -1.062	dB graden graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta= theta=	enormeero 5.0000 0.0250 0.0750 0.1000 0.1250 0.1500 0.2000 0.2250	de' vermi graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	amplitude= 0.0000 dB, fase amplitude= 0.0011 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0846 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.3397 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.3503 dB, fase amplitude= -1.3508 dB, fase amplitude= -2.1765 dB, fase	$\begin{array}{c} -50.3609 \\ 0.000 \\ -0.012 \\ -0.048 \\ -0.109 \\ -0.196 \\ -0.450 \\ -0.450 \\ -0.450 \\ -0.621 \\ -0.824 \\ -1.062 \\ -1.337 \end{array}$	dB graden graden graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta= theta= theta=	enormeer 5.0000 0.0250 0.0750 0.1000 0.1250 0.1500 0.1750 0.2000 0.2250 0.2500 0.2750	de' vermi graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	amplitude= 0.0000 dB, fase amplitude= 0.0011 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0846 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.3397 dB, fase amplitude= -0.5321 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.3779 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.1765 dB, fase amplitude= -2.6507 dB, fase	$\begin{array}{c} -50.3609\\ 0.000\\ -0.012\\ -0.048\\ -0.109\\ -0.309\\ -0.450\\ -0.309\\ -0.450\\ -0.621\\ -0.824\\ -1.062\\ -1.337\\ -1.455\end{array}$	dB graden graden graden graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta= theta= theta=	enarmæer 0.0000 0.0250 0.0750 0.1000 0.1250 0.1750 0.2000 0.2250 0.2500 0.2750 0.2500 0.2750	graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	amplitude= 0.0000 dB, fase amplitude= 0.0011 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0846 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.3397 dB, fase amplitude= -0.5321 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.3779 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.1765 dB, fase amplitude= -2.1765 dB, fase amplitude= -3.1775 dB, fase	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dB graden graden graden graden graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta= theta=	enormeero 5.0000 0.0250 0.0750 0.1000 0.1250 0.1750 0.2000 0.2250 0.2500 0.2750 0.3050	de' vermi graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	<pre>agen door het apertuurvlak = amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0846 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.3779 dB, fase amplitude= -1.3779 dB, fase amplitude= -2.1765 dB, fase amplitude= -2.6507 dB, fase amplitude= -2.6507 dB, fase amplitude= -3.7795 dB, fase amplitude= -3.7795 dB, fase</pre>	$\begin{array}{c} -50.3609 \\ 0.000 \\ -0.012 \\ -0.048 \\ -0.109 \\ -0.196 \\ -0.309 \\ -0.450 \\ -0.621 \\ -0.824 \\ -1.062 \\ -1.337 \\ -1.455 \\ -2.021 \\ -2.441 \end{array}$	dB graden graden graden graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta=	enormeero 5.0000 0.0250 0.0250 0.1000 0.1250 0.1250 0.2050 0.2250 0.2550 0.2	de' vermi graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	<pre>agen door het apertuurvlak = amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0246 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.7397 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.1765 dB, fase amplitude= -3.1775 dB, fase amplitude= -3.7755 dB, fase amplitude= -3.7595 dB, fase amplitude= -4.3993 dB, fase</pre>	$\begin{array}{c} -50.3609\\ 0.000\\ -0.012\\ -0.048\\ -0.109\\ -0.196\\ -0.309\\ -0.450\\ -0.621\\ -0.824\\ -1.062\\ -1.337\\ -1.455\\ -2.021\\ -2.441\\ -2.927\end{array}$	dB graden graden graden graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta=	enormeer 5.0000 0.0250 0.0750 0.1000 0.1250 0.1250 0.2500 0.2250 0.2500 0.2750 0.3000 0.3250 0.3500 0.3500 0.3500 0.3500	graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	amplitude= 0.0000 dB, fase= amplitude= 0.0011 dB, fase= amplitude= -0.0211 dB, fase= amplitude= -0.0846 dB, fase= amplitude= -0.1907 dB, fase= amplitude= -0.3397 dB, fase= amplitude= -0.5321 dB, fase= amplitude= -1.0503 dB, fase= amplitude= -1.3779 dB, fase= amplitude= -1.7528 dB, fase= amplitude= -2.1765 dB, fase= amplitude= -3.1775 dB, fase= amplitude= -3.7595 dB, fase= amplitude= -4.3973 dB, fase= amplitude= -4.3973 dB, fase=	$\begin{array}{c} -50.3609\\ 0.000\\ -0.012\\ -0.048\\ -0.109\\ -0.196\\ -0.309\\ -0.450\\ -0.450\\ -0.421\\ -0.824\\ -1.062\\ -1.337\\ -1.655\\ -2.021\\ -2.441\\ -2.923\\ -7.72\end{array}$	dB graden graden graden graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta=	enormeero 5.0000 0.0250 0.0750 0.1000 0.1250 0.1750 0.2000 0.2250 0.2500 0.2750 0.3250 0.3250 0.3500 0.3750	de' vermi graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	<pre>segen door het apertuurvlak = amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0846 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.7687 dB, fase amplitude= -1.7528 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.1765 dB, fase amplitude= -2.1765 dB, fase amplitude= -3.1775 dB, fase amplitude= -3.1775 dB, fase amplitude= -3.1775 dB, fase amplitude= -3.1755 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.1005 dB, fase</pre>	$\begin{array}{c} -50.3609\\ 0.000\\ -0.012\\ -0.048\\ -0.109\\ -0.196\\ -0.309\\ -0.450\\ -0.450\\ -0.421\\ -0.824\\ -1.062\\ -1.337\\ -1.455\\ -2.021\\ -2.441\\ -2.923\\ -3.476\end{array}$	dB graden graden graden graden graden graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta=	enormeer 5.0000 0.0250 0.0750 0.1000 0.1250 0.1250 0.2000 0.2250 0.2250 0.2500 0.2500 0.3250 0.3500 0.3500 0.3750 0.4000	de' vermi graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	amplitude= 0.0000 dB, fase amplitude= 0.0011 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0246 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.1765 dB, fase amplitude= -2.1765 dB, fase amplitude= -3.1775 dB, fase amplitude= -3.7595 dB, fase amplitude= -3.7595 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.1005 dB, fase	$\begin{array}{c} -50.3609\\ 0.000\\ -0.012\\ -0.048\\ -0.109\\ -0.196\\ -0.309\\ -0.450\\ -0.621\\ -0.824\\ -1.062\\ -1.337\\ -1.655\\ -2.021\\ -2.441\\ -2.923\\ -3.476\\ -4.115 \end{array}$	dB graden graden graden graden graden graden graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta=	enormeer 5.0000 0.0250 0.0750 0.1000 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2500 0.3000 0.35000 0.35000 0.35000 0.35000 0.35000 0.35000 0.35000 0.35000 0.35000 0.35000 0.350000 0.3500000000000000000000000000000000000	de' vermi graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	amplitude= 0.0000 dB, fase= amplitude= 0.0011 dB, fase= amplitude= -0.0211 dB, fase= amplitude= -0.0846 dB, fase= amplitude= -0.1907 dB, fase= amplitude= -0.3397 dB, fase= amplitude= -0.5221 dB, fase= amplitude= -1.0503 dB, fase= amplitude= -1.7528 dB, fase= amplitude= -1.7528 dB, fase= amplitude= -2.1765 dB, fase= amplitude= -3.1775 dB, fase= amplitude= -3.7595 dB, fase= amplitude= -4.3993 dB, fase= amplitude= -5.8670 dB, fase= amplitude= -5.8670 dB, fase= amplitude= -6.7035 dB, fase= amplitude= -6.7035 dB, fase=	$\begin{array}{c} -50.3609\\ 0.000\\ -0.012\\ -0.048\\ -0.109\\ -0.196\\ -0.309\\ -0.450\\ -0.450\\ -0.450\\ -0.421\\ -0.824\\ -1.062\\ -1.337\\ -1.655\\ -2.021\\ -2.441\\ -2.923\\ -3.476\\ -4.115\\ -4.854 \end{array}$	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta=	enormeer 5.0000 0.0250 0.0750 0.1000 0.1250 0.1750 0.2250 0.2250 0.2250 0.2250 0.2250 0.2500 0.3250 0.35000 0.35000 0.35000 0.35000 0.35000 0.35000 0.35000 0.35000 0.35000 0.35000 0.350000 0.350000 0.3500000000000000000000000000000000000	de' vermi graden,	egen door het apertuurvlak = amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0346 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.7687 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.7528 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.1765 dB, fase amplitude= -2.1765 dB, fase amplitude= -3.1775 dB, fase amplitude= -3.1775 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.8670 dB, fase amplitude= -5.8670 dB, fase amplitude= -7.6157 dB, fase	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta=	enormeero 5.0000 0.0250 0.0750 0.1000 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2500 0.2250 0.3250 0.3250 0.3250 0.3250 0.3250 0.3750 0.4250 0.4250 0.4250 0.4250	de' vermi graden,	<pre>29en door het apertuurvlak = amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0246 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.7528 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.1765 dB, fase amplitude= -3.1775 dB, fase amplitude= -3.7595 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.1005 dB, fase amplitude= -6.7035 dB, fase amplitude= -6.7035 dB, fase amplitude= -6.7035 dB, fase amplitude= -7.6157 dB, fa</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden
theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta= theta=	enormeero 5.0000 0.0250 0.0750 0.1000 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2500 0.2500 0.3500 0.3500 0.3500 0.3500 0.4250 0.4500 0.4750	graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	amplitude= 0.0000 dB, fase amplitude= 0.0011 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0846 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.1765 dB, fase amplitude= -2.6507 dB, fase amplitude= -3.1775 dB, fase amplitude= -3.1775 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.8670 dB, fase amplitude= -6.7035 dB, fase amplitude= -7.6157 dB, fase amplitude= -8.6104 dB, fase	$\begin{array}{c} -50.3609\\ 0.000\\ -0.012\\ -0.048\\ -0.109\\ -0.309\\ -0.450\\ -0.450\\ -0.450\\ -0.450\\ -0.621\\ -0.824\\ -1.062\\ -1.337\\ -1.455\\ -2.021\\ -2.441\\ -2.923\\ -3.476\\ -4.115\\ -4.854\\ -5.714\\ -6.724\\ -7.026\end{array}$	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden
theta= theta=	enormeer 5.0000 0.0250 0.0750 0.1000 0.1250 0.1750 0.2250 0.2250 0.2250 0.2250 0.2250 0.3250 0.3250 0.3250 0.3250 0.3250 0.3250 0.3250 0.4000 0.4250 0.4500 0.4500	graden, graden,	<pre>segen door het apertuurvlak = amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0346 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.7528 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.1765 dB, fase amplitude= -2.1765 dB, fase amplitude= -3.1775 dB, fase amplitude= -3.1775 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.1005 dB, fase amplitude= -7.6157 dB, fase amplitude= -7.6157 dB, fase amplitude= -8.6104 dB, fase amplitude= -9.6958 dB, fase</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden
theta= theta=	enormeer 5.0000 0.0250 0.0750 0.1000 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.3000 0.3250 0.3750 0.4000 0.4250 0.4500 0.4500 0.5000 0.5000	de' vermi graden,	<pre>29en door het apertuurvlak = amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0246 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.7528 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.1765 dB, fase amplitude= -2.6507 dB, fase amplitude= -3.1775 dB, fase amplitude= -3.7595 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.1005 dB, fase amplitude= -6.7035 dB, fase amplitude= -6.7035 dB, fase amplitude= -7.6157 dB, fase amplitude= -10.8819 dB, fase amplitude=-10.8819 dB, fase</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden
theta= theta=	enormeer 5.0000 0.0250 0.0250 0.1000 0.1250 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.3250 0.3250 0.3750 0.3750 0.4000 0.4250 0.4500 0.4500 0.5250 0.5500	graden, graden,	<pre>399n door het apertuurvlak = amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0246 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.1765 dB, fase amplitude= -2.6507 dB, fase amplitude= -3.1775 dB, fase amplitude= -3.1775 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.8670 dB, fase amplitude= -7.6157 dB, fase amplitude= -8.6104 dB, fase amplitude= -8.6104 dB, fase amplitude= -10.8819 dB, fase amplitude= -12.1810 dB, fase amplitude= -12.1810 dB, fase amplitude= -12.1810 dB, fase</pre>	$\begin{array}{c} -50.3609\\ 0.000\\ -0.012\\ -0.048\\ -0.109\\ -0.309\\ -0.450\\ -0.309\\ -0.450\\ -0.621\\ -0.824\\ -1.062\\ -1.337\\ -1.655\\ -2.021\\ -2.441\\ -2.923\\ -3.476\\ -4.115\\ -4.854\\ -5.714\\ -6.724\\ -7.920\\ -9.354\\ -11.096\end{array}$	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden
theta= theta=	enormeer 5.0000 0.0250 0.0750 0.1000 0.1250 0.1750 0.2250 0.2250 0.2250 0.2250 0.2500 0.2500 0.3250 0.3250 0.3250 0.4000 0.4250 0.4250 0.4250 0.4250 0.4500 0.5250 0.5500 0.5750	graden, graden,	<pre>segen door het apertuurvlak = amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0346 dB, fase amplitude= -0.7397 dB, fase amplitude= -0.7397 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.1765 dB, fase amplitude= -2.1765 dB, fase amplitude= -3.1775 dB, fase amplitude= -3.1775 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.1005 dB, fase amplitude= -7.6157 dB, fase amplitude= -7.6157 dB, fase amplitude= -8.6104 dB, fase amplitude= -10.8819 dB, fase amplitude=-12.1810 dB, fase amplitude=-13.6081 dB,</pre>	$\begin{array}{c} -50.3609\\ 0.000\\ -0.012\\ -0.048\\ -0.109\\ -0.196\\ -0.309\\ -0.450\\ -0.450\\ -0.450\\ -0.450\\ -0.421\\ -0.824\\ -1.062\\ -1.337\\ -1.655\\ -2.021\\ -2.441\\ -2.923\\ -3.476\\ -4.115\\ -4.854\\ -5.714\\ -6.724\\ -7.920\\ -9.354\\ -11.096\\ -13.251\\ \end{array}$	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden
theta= theta=	enormeer 5.0000 0.0250 0.0750 0.1000 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.3250 0.3250 0.3250 0.3250 0.4000 0.4250 0.4250 0.4250 0.4250 0.4750 0.5250 0.5500 0.5500 0.5750	de vermi graden,	<pre>29en door het apertuurvlak = amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0246 dB, fase amplitude= -0.1907 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.5321 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.7528 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.6507 dB, fase amplitude= -2.6507 dB, fase amplitude= -3.1775 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.1005 dB, fase amplitude= -6.7035 dB, fase amplitude= -6.7035 dB, fase amplitude= -6.7035 dB, fase amplitude= -6.7035 dB, fase amplitude= -7.6157 dB, fase amplitude= -12.1810 dB, fase amplitude= -12.1810 dB, fase amplitude=-12.1810 dB, fase amplitude=-13.6081 dB, fase amplitude=-14.6081 dB, fase amplitude=-15.1816 dB,</pre>	$\begin{array}{c} -50.3609\\ 0.000\\ -0.012\\ -0.048\\ -0.109\\ -0.309\\ -0.450\\ -0.621\\ -0.824\\ -1.062\\ -1.337\\ -1.655\\ -2.021\\ -2.441\\ -2.923\\ -3.476\\ -4.115\\ -4.854\\ -5.714\\ -5.714\\ -5.714\\ -5.714\\ -5.714\\ -5.724\\ -7.920\\ -9.354\\ -11.096\\ -13.251\\ -15.974\end{array}$	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden
theta= th	enormeer 5.0000 0.0250 0.0250 0.1000 0.1250 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.3250 0.3250 0.3250 0.3250 0.4000 0.4250 0.4250 0.4250 0.5550 0.55	de vermi graden,	<pre>399n door het apertuurvlak = amplitude= 0.0000 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0211 dB, fase amplitude= -0.0397 dB, fase amplitude= -0.7397 dB, fase amplitude= -0.7687 dB, fase amplitude= -1.0503 dB, fase amplitude= -1.7528 dB, fase amplitude= -1.7528 dB, fase amplitude= -2.4507 dB, fase amplitude= -3.1775 dB, fase amplitude= -3.7795 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.1005 dB, fase amplitude= -5.8670 dB, fase amplitude= -6.7035 dB, fase amplitude= -7.6157 dB, fase amplitude= -7.6157 dB, fase amplitude= -10.8819 dB, fase amplitude= -10.8819 dB, fase amplitude=-13.6081 dB, fase amplitude=-13.6081 dB, fase amplitude=-15.1816 dB,</pre>	$\begin{array}{c} -50.3609\\ 0.000\\ -0.012\\ -0.048\\ -0.109\\ -0.309\\ -0.450\\ -0.309\\ -0.450\\ -0.621\\ -0.824\\ -1.062\\ -1.337\\ -1.455\\ -2.021\\ -2.441\\ -2.923\\ -3.476\\ -4.115\\ -4.854\\ -5.714\\ -6.724\\ -7.920\\ -9.354\\ -11.096\\ -13.251\\ -15.974\\ -5.571\\ \end{array}$	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden

. .

theta=	0.6500	graden.	amplitude=-18.8543	d8.	fase= -24.226	graden
theta=	0.5750	graden,	ampl:tude=-20.9897	dĐ,	fase= -30,767	graden
theta=	0.7000	graden.	amplitude=-23.3038	d8,	fase= -40,153	graden
theta=	0.7250	graden,	amplitude=-25.6461	d₽,	fase= -53.840	graden
theta≈	0.7500	graden.	amplitude=-27.5918	dB,	fase= -72.859	graden
theta=	0.7750	graden,	amplitude=-28.5332	dB.	fase= -95.097	graden
theta=	0.8000	graden,	amplitude=-28.3929	dÐ,	fase=-115.147	graden
theta=	0.8250	graden.	amplitude=-27.7494	dB,	fase=-130.046	graden
theta=	0.8500	graden.	amplitude=-27.0972	dP,	fase=-140.475	graden
theta=	0.8750	graden.	amplitude≈-26.6367	dE.	fase=-147.947	graden
theta=	0,9000	graden.	amplitude=-26.4179	dB,	fase=-153.599	graden
theta≖	0.9250	graden,	amplitude=-26.4421	dB,	fase=-158.161	graden
theta=	∴.9 500	graden,	amplitude=-28.7003	dÐ,	fase=-162.105	graden
theta=	0.9750	graden,	amplitude=-27.1859	dÐ,	fase=-165.767	graden
theta≕	1.0000	graden,	amplitude=-27.8977	dB,	fase≈-169.428	graden
theta≕	1.0250	graden,	amplitude=-28.8412	dB.	fase=-173.372	graden
theta=	1.0500	graden.	amplitude=-30.0277	dŀ.	fase=-177.948	graden
theta=	1.0750	graden.	amplitude=-31.4692	dB.	fase= 176.345	graden
theta=	1.1000	graden.	amplitude=-33.1650	dB,	fase= 168.732	graden
theta=	1.1250	graden.	amplitude=-35.0551	dB,	fase= 158.008	graden
theta=	1.1500	graden.	amplitude=-36.9074	dB,	fase= 142.668	graden
theta≕	1.1750	graden.	ampl:tude=-38.1882	d₽,	fase= 122.411	graden
theta=	1.2000	graden,	amplitude=-08.3785	dB.	fase= 100.875	graden
theta=	1.2250	græden.	amplitude=-37.6874	dB,	fase= 83.304	graden
theta=	1.2500	graden.	amplitude=-36.7384	dB,	fase= 71.186	graden

		_	
 -			
Frequentie	= 11.4511 GHz		
Emandpuntsafstand van e	te (equi-		
valente) paraboolanto	enne = 8.4537 meter	belichter-winst: 24,2469 dB	
Diameter van de hoofdri	eflector= 3.0480 meter	helling : $6.28.10^2 \circ^{-1}$	
De afstand van het cop	dinaten-		
centrum van de belichte	er tot de		
eerstvolgende reflecto	= 1.2400 meter		
De firafhankelijkheid	≃cos(1*fi)		
Net Delichterstralings is demormeerd op	11agram :∼25.4701 dB		
De fase is genormeerd (pp : -78.486 grader		
1			
lrigevoerd stralingsdia nsi = ù 0000 oraden	pram ∨an de belichter: amplitude=-90 0000 dB. fase	a 0.000 oraden	
psi = 0.5000 graden,	amplitude= -13.6000 dB, fase	= -0.380 graden	
psi = 1.0000 graden.	amplitude= -7.7400 dB. fase	= -1.620 graden	
psi = 1.5000 graden.	amplitude= -4.5400 dB, fase	= -3.910 graden	
$p_{S1} = 2.0000 \text{ graden},$	amplitude≃ -2.5400 dB, fase	= -7.360 graden	
$p_{S1} = 2.0000 \text{ graden},$ $q_{S1} = 5.0000 \text{ araden}.$	amplitude= -0.4900 dB, fase	= -17.220 graden	
psi ≈ 0.5000 graden.	amplitude= -0.0900 dB, fase	= -23.230 graden	
psi = 4.0000 graden.	amplitude= -0.0100 dB, fase	= -29.930 graden	
psi = 4.7500 graden.	amplitude= -0.4100 dB. fase	= -41.350 graden	
psi = 5.2000 graden. nei = 5.2500 oraden.	amplitude= -0.9800 dB, fase amplitude= -1.7400 dB. fase	= -49.640 graden = -58.090 oraden	
psi = e.2500 graden.	amplitude = -2.6600 dB, fase	= -66.560 graden	
psi a 2.7500 gnader.	amplitude= -7.6800 dB, fase	= -75.130 graden	
psi = 2.2500 graden.	amplitude= -4.7400 dB. fase	= -83.850 graden	
per a l'iller grader. Tra - Sintana	amplitude= -5.7800 dB, fase	= ~92.730 graden	
nei a 3.7500 araden.	amplitude= -7,7000 dB, fase	=-112.110 graden	
pei = 9.2000 graden.	amplitude= -8.5400 dB, fase	=-123.800 graden	
pei = 9.7500 graden.	amp):tude= -9.3400 dB. fase	=-137.190 graden	
ps: = 10.1500 graden.	amplitude=-10.2300 dB, fase	≈-152.220 graden	
ps) = 10.1200 graden.	amplitude=~11,2800 dB, fase amplitude=~12 4800 dB, fase	=-186.010 graden =-186.600 oraden	
psi = 11.7500 graden.	amplitude=-13.8000 dB, fase	=-204.780 graden	
psi = 12.2500 graden.	amplitude=-15.2600 dB. fase	≈-222.880 graden	
$p_{S1} = 12.7500 \text{ grades},$	amplitude=-16.8100 dB, fase	=-241.010 graden	
ps: = 13.2000 graden,	amplitude=~18.0000 dB, tase	=-258.900 graden =-276.030 oraden	
ps1 = 13.7500 graden, ps1 = 14.2500 graden.	amplitude=-20.6600 dB, fase	= 278.030 graden ≔~293.200 graden	
psi = 14.7500 graden,	amplitude=-21.4100 dB, fase	=-312.420 graden	
psi = 15.2500 graden.	amplitude=-21.8600 dB, fase	=-334.580 graden	
psi = 15.7500 graden,	amplitude=-22.2800 dB, fase	=-359.370 graden	
psi = 16.7500 or aden.	amplitude=-23.8100 dB. fase	=-307.120 graden =-417.590 oraden	
psi = 17.2500 graden.	amplitude=-24.8800 dB, fase	=-448.660 graden	
psi = 17.7500 graden.	amplitude=-26.3700 dB, fase	=-479.400 graden	
psi = 18.2500 graden,	amplitude=-28.1100 dB, fase	=-510.300 graden	
psi = 18.7300 graden,	amplitude=-27.7400 dB, fase	=-339.340 graden a-564.900 oraden	
psi = 17.2500 graden,	amplitude=-32.4100 dB, fase	=-590.380 graden	
Het (genormeerde) verm	ogen door het apertuurvlak	= -53.1340 dB	
De verplaatsing van de	belichter naar achteren	= 0.3400 meter	
psi = 0.0000 graden,	amplitude=-92.7836 dB, fase	= 0.000 graden	
$p_{51} = 0.6889 \text{ graden},$	amplitude=-16.3834 dB, fase	= -0.042 graden	
psi = 2.0665 araden.	amplitude= ~7.3220 dB. fase	≃ -0.870 grauen ≤ -0.870 graden	
psi = 2.7552 graden,	amplitude= -5.3208 dB, fase	= -1.956 graden	
psi = 3.4437 graden,	amplitude= -4.0493 dB, fase	= -3.428 graden	
psi = 4.1321 graden,	amplitude= -3.2674 dB, fase	= -5.067 graden	
$p_{S1} = 4.8202 graden,$	ampiitude= -2.8652 dB, tase	= -o.6YD graden	

1=1	Ξ.	5.8081	graden.	anglu teder	0.7826	48. 1	iase=	-8.747	graden	
051	z	6.5095	greden.	lead of odes in	-7.1701	dB, f	iase≃	-10.972	graden	
151	=:	7.2265	areden.	same to to deep	-7.7447	dF. (fase=	-12.502	oradeo	
1 = 1	=	7.91.4	or adere.	moult tudes -	-4.5009	dR. 4	iaca=	-13.570	oraden	
761		5 5005	an admin	contratories -	5 1160			_17 007	aradaa	
251		0.000	ige without	- Supricules -	-3.4188	UD, 1			graden	
261			gradent	amplitudes -	···········	08, 1	rase=	-13.800	graden	
281	-		yraden.	amplitude= -	-7.4375	d8, 1	fase=	-13,230	graden	
D 9-1	-	10 55 5	gradera.	amplitude= -	-8.5225	dB, f	fase≕	-12.103	graden	
ç. i	=	11.7408	graden.	emplitude= -	-9.3070	d8, 4	fase=	-10.667	graden	
2.51	4	12.0247	Joaden.	amplitude=-1	0.4713	dB. f	fase≂	-9.527	araden	
6 50	=	1 7 75.91	or arises	and it unter - 1	11 5452	AR 4	faces	-9.776	oraden	
	_	1.5 1909		aught tuda=-1		45. A		-10 099	araden	
19 a a a		1 1 1 1 1 1 1 1 1	gr an initial i	ango renderen 1		UD, T	ase-	-10.088	graden	
66)	-		jrade i.	emplitude=~4	12.9420	08, 1	hase=	-11.907	graden	
Fi≣ I	=	14.7542	graden.	_amplitude=−1	11.9850	d8, f	fase=	-14.657	graden	
ры	:	15.4549	graden.	amplitude=~1	15.1776	dB, f	fase=	-17.985	graden	
p.e.1	<u></u>	1 - 11 - 3	graden.	amplitude=-1	15.4899	dB, f	fase=	-21.083	graden	
0.51	=	10.7939	oraden.	amplitude=-1	17.9418	dB. f	fase=	-23.487	oraden	
r. = 1	=	17.4772	orader.	amolitude=-1	9 4835	dR. 4	faces	~25.312	oradeo	
P = •		10 1.07	grader.	umplitude="			(-24 202	graden	
1.2.1		18.1437	graden.	amplicude~~_	20.7047	00, 1	rase-	-20.474	graden	
53) Fei	-	18.8722	graden.	amplitude=-2	459	98, f	ase=	-25.915	graden	
psı	÷	19.5020	graden.	amplitude=-2	23.3067	dF, (fase=	-24.985	graden	
p∈i	=	20.1768	graden,	amplitude=-2	24.0471	dB, f	fase=	-25.518	graden	
psi	=	20.8507	graden.	amplitude=-1	24.4872	d8. 1	fase=	-28.410	graden	
D 5 1	÷	01.5036	araden	amplitude=	24.8971	dB.	fase=	-33.357	oraden	
 חבי	=	77.1954	oraden	amplitude=-	5466	dB 4	faces	-40 405	oraden	
µ=1 ne:	_	22.1704	graden,	amplitudes 7	14 4050			70.07J	graden	
he1 1			graden.	ampiicude=-2		08. 1	rase= ,	-50.190	graden	
psi	-		graden.	amplitude=-2	./.4648	GR ⁴ 4	tase=	-59.729	graden	
psi	=.	24.2048	graden.	amplitude=-1	18.9435	dB, f	fase≂	-68.388	graden	
psi		24.8724	graden,	_amplitude≈-I	30.6719	d8, f	fase=	~76.665	graden	
ps1	=	25.5789	graden.	amplitude=~7	32.2900	dB, f	fase=	-82.545	araden	
051	=	26.2042	oraden.	amplitude=-0	33.7579	dB. 4	fase=	-84.416	oraden	
061	=	26 8684	oraden	amplitudes-7	4 9755	45 4	face=	-85 484	oraden	
101		20.0004	gi aueni,	ampiredue		00, 1	ase-	-00,004	grauen	
lde.+	1.5.5		tel ver-	noon dear b-t	-		- I.	-57 0047	d D	
Het	uge 	enor meer o	de) vermo	ogen door het	apertu	urvla	ak =	-53.9962	dÐ	
Het theta	lige a≕	o.oooo	de) vermo graden.	ogen door het amplitude≏~-	apertu	urvla dB, f	ak ≈ fase=-	-53.9962	dB graden	
Het theta theta	(ge a≂ a=	0.0000 0.0000 0.0250	de) verm(graden, graden,	ogen door het amplitude= amplitude=-2	apertu 25.5511	dB, f	ak ≃ fase=- fase=	-53.9962 0.003	dB graden graden	
Het theta theta theta	(_]e a= a= a=	enormeero 0.0000 0.0250 0.0500	de) verm graden, graden, graden,	ogen door het amplitude≏ amplitude=-2 amplitude=-1	apertu 25.5511 19.5771	urvla dB, f dB, f dB, f	ak ≏ fase=- fase= fase=	-53.9962 0.003 0.009	dB graden graden graden	
Het theta theta theta theta	(13)6 3 = 3 = 3 = 3 = 3 =	enormeero 0.0000 0.0250 0.0500 0.0500	de) vermo graden, graden, graden, graden,	ogen door het amplitude= amplitude=-2 amplitude=-1 amplitude=-1	apertu 25.5511 19.5771 16.1331	urvla dB, f dB, f dB, f dB, f	ak = fase=- fase= fase= fase=	-53.9962 0.003 0.009 0.020	dB graden graden graden graden	
Het theta theta theta theta	(ge a= a= a= a=	enormeero 0.0000 0.0250 0.0500 0.0750 0.1000	de) verm(graden, graden, graden, graden, graden,	ogen door het amplitude= amplitude=-2 amplitude=-1 amplitude=-1 amplitude=-1	apertu 25.5511 19.5771 16.1331 13.7434	dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4	ak = fase=- fase= fase= fase= fase=	-53.9962 0.003 0.009 0.020 0.025	dB graden graden graden graden graden	
Het theta theta theta theta theta	())6 3= 3= 3= 3= 3= 3= 3= 3=	enormeerc 0.0000 0.0250 0.0500 0.0750 0.1000	de) vermo graden, graden, graden, graden, graden,	ogen door het amplitude= amplitude=-1 amplitude=-1 amplitude=-1 amplitude=-1	apertu 25.5511 19.5771 16.1331 13.7434	urvla dB, f dB, f dB, f dB, f dB, f dB, f	ak = fase= fase= fase= fase= fase=	-53.9962 0.003 0.009 0.020 0.035 0.055	dB graden graden graden graden graden	
Het theta theta theta theta theta	())6 3= 3= 3= 3= 3= 3= 3= 3= 3= 3=	enormæerc 0.0000 0.0250 0.0500 0.0750 0.1000 0.1250	de) vermo graden, graden, graden, graden, graden, graden,	Dgen door het amplitude= amplitude=-1 amplitude=-1 amplitude=-1 amplitude=-1 amplitude=-	apertu 25.5511 19.5771 16.1331 13.7434 11.9459	urvla dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4	ak ≠ fase= fase= fase= fase= fase=	-53.9962 0.003 0.009 0.020 0.035 0.055	dB graden graden graden graden graden	
Het theta theta theta theta theta theta	(enormæerc 0.0000 0.0250 0.0500 0.0750 0.1000 0.1250 0.1250	de) vermo graden, graden, graden, graden, graden, graden, graden,	bgen door het amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 16.1331 13.7434 11.9459 10.5348	urvla dB, f dB, f dB, f dB, f dB, f dB, f dB, f	ak = fase=- fase= fase= fase= fase= fase=	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080	dB graden graden graden graden graden graden graden	
Het theta theta theta theta theta theta		enormeer 0.0000 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 0.1750	de) vermu graden, graden, graden, graden, graden, graden, graden,	bgen door het amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 16.1331 13.7434 11.9459 10.5348 -9.4007	urvla dB, f dB, f dB, f dB, f dB, f dB, f dB, f dB, f	ak = fase= fase= fase= fase= fase= fase= fase= fase=	-53.9962 0.003 0.009 0.020 0.035 0.035 0.055 0.080 0.110	dB graden graden graden graden graden graden graden	
Het theta theta theta theta theta theta theta		enormeero 0.0000 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 0.1500 0.2000	de) verma graden, graden, graden, graden, graden, graden, graden, graden,	bgen door het amplitude= amplitude=-1 amplitude=-1 amplitude=-1 amplitude=1 amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 16.1331 13.7434 11.9459 10.5348 -9.4007 -8.4784	urvla dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4	ak = fase= fase= fase= fase= fase= fase= fase= fase=	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145	dB graden graden graden graden graden graden graden graden	
Het theta theta theta theta theta theta theta theta		enor meero 0.0000 0.0250 0.0500 0.1000 0.1250 0.1500 0.1500 0.2250	de) vermu graden, graden, graden, graden, graden, graden, graden, graden, graden,	Dgen door het Amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 16.1331 13.7434 11.9459 10.5348 -9.4007 -8.4784 -7.7262	urvla dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4	ak = fase= fase= fase= fase= fase= fase= fase= fase= fase=	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186	dB graden graden graden graden graden graden graden graden	
Het theta theta theta theta theta theta theta theta);;;==================================	enor meero 0.0000 0.0250 0.0500 0.1000 0.1250 0.1500 0.1750 0.2000 0.2250	de) vermu graden, graden, graden, graden, graden, graden, graden, graden, graden, graden	bgen door het amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 16.1331 13.7434 11.9459 10.5348 -9.4007 -8.4784 -7.7262 -7.1158	urvla dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4 dB, 4	ak = fase= fase= fase= fase= fase= fase= fase= fase= fase=	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233	dB graden graden graden graden graden graden graden graden graden	
Het theta theta theta theta theta theta theta theta theta theta);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	enor meero 0.0000 0.0250 0.0500 0.1000 0.1250 0.1500 0.1500 0.2000 0.2250 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.1000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2250 0.2500 00	de) vermo graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	bgen door het amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 16.1331 13.7434 11.9459 10.5348 -9.4007 -8.4784 -7.7262 -7.1158	ur v1 a dB, 4 dB, 4	ak. =- fase== fase== fase== fase== fase== fase== fase== fase==	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.297	dB graden graden graden graden graden graden graden graden	
Het theta theta theta theta theta theta theta theta theta		enor meero 0.0000 0.0250 0.0550 0.0750 0.1000 0.1500 0.1500 0.2000 0.2250 0.2500 0.2750 0.750	de) vermo graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	bgen door het amplitude= amplitude=-1 amplitude=-1 amplitude=-1 amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 16.1331 13.7434 11.9459 -9.4007 -8.4784 -7.7262 -7.1158 -6.6274	dB, 4 dB, 4 dB	ak. =- fase= fase= fase= fase= fase= fase= fase= fase= fase= fase=	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287	dB graden graden graden graden graden graden graden graden graden	
Het theta theta theta theta theta theta theta theta theta		enor meero 0.0000 0.0250 0.0500 0.1250 0.1250 0.1500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2001 0.2001 0.2001 0.2001 0.2001 0.2001 0.2001 0.2001 0.2001 0.2001 0.2001 0.1002 0.2000 00	de) vermu graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	Dgen door het Amplitude=	apertu 25.5511 19.5771 10.1331 11.9459 10.5348 10.5348 -7.7262 -7.1158 -6.6274 -6.2466	ur v1 : dB, 4 dB, 4	ak =- fase= fase= fase= fase= fase= fase= fase= fase= fase=	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349	dB graden graden graden graden graden graden graden graden graden graden	
Het theta theta theta theta theta theta theta theta theta theta);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	enor meero 0.0000 0.0250 0.0500 0.1000 0.1250 0.1500 0.1500 0.2500 0.2500 0.2500 0.2750 0.3000 0.3250	de) verma graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	bgen door het amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 16.1331 13.7434 10.5348 -9.4007 -8.4784 -7.7262 -7.1158 -6.6274 -6.2466 -5.9628	dB. 4 dB. 4	ak =- fase= fase= fase= fase= fase= fase= fase= fase= fase= fase=	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419	dB graden graden graden graden graden graden graden graden graden graden graden	
Het theta theta theta theta theta theta theta theta theta theta theta);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	enor meero 0.0000 0.0250 0.0550 0.0750 0.1250 0.1250 0.1250 0.2000 0.2250 0.2500 0.2500 0.3250 0.3500	de) vermu graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	bgen door het amplitude= amplitude=	apertu 25.5511 19.5771 10.5371 11.9459 10.5348 -9.4007 -8.4784 -7.7262 -7.1158 -6.274 -6.2466 -5.9628 -5.7683	ur vl a dB, 4	ak = - fase= fase= fase= fase= fase= fase= fase= fase= fase= fase= fase=	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497	dB graden graden graden graden graden graden graden graden graden graden graden graden	
Het theta theta theta theta theta theta theta theta theta theta theta theta		enor meer c 0.0000 0.0250 0.0500 0.1250 0.1250 0.1250 0.1500 0.2250 0.2250 0.2500 0.2500 0.2500 0.3250 0.3250 0.3750	de) vermo graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	bgen door het amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 10.1331 13.7434 11.9459 -9.4007 -8.4784 -7.7262 -7.1158 -6.6274 -6.2466 -5.9628 -5.7683 -5.7683	ur vl : dB.	ak = fase= fase= fase= fase= fase= fase= fase= fase= fase= fase= fase=	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden	
Het theta theta theta theta theta theta theta theta theta theta theta theta		enor meer c 0.0000 0.0250 0.0500 0.1250 0.1250 0.1250 0.1250 0.2250 0.2250 0.2250 0.2750 0.3250 0.3250 0.3250 0.3500 0.3500 0.4000	de) verma graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	bgen door het amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 10.1371 13.7434 -9.4007 -8.4784 -7.4784 -7.1158 -6.6274 -5.9628 -5.9628 -5.7683 -5.6571 -5.6250	ur vl : dB, 1	ak =	-53.9962 003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586 0.687	dB graden graden graden graden graden graden graden graden graden graden graden graden graden	
Het theta th	***************************************	enor meero 0.0000 0.0250 0.0500 0.1000 0.1250 0.1500 0.1500 0.2500 0.2500 0.2500 0.2500 0.2500 0.3250 0.3500 0.3500 0.4000 0.4250	de) verma graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	bgen door het amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 10.1331 11.9459 10.5348 -9.4007 -8.4784 -7.7262 -7.1158 -6.6274 -6.2466 -5.7683 -5.7683 -5.66571 -5.6651 -5.6691	urvl: dB.	ak ==- fase== fase== fase== fase== fase== fase== fase== fase== fase== fase== fase== fase== fase==	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586 0.687 0.681	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden	
Het theta	***************************************	enor meero 0.0000 0.0250 0.0750 0.1000 0.1250 0.1250 0.2000 0.2250 0.2000 0.2250 0.2500 0.3250 0.3250 0.3250 0.3250 0.4000 0.4500	de) vermu graden,	bgen door het amplitude=	apertu 25.5511 19.5771 10.1331 11.9459 10.5348 -9.4007 -8.4784 -7.7262 -7.1158 -6.2464 -5.9628 -5.6271 -5.6250 -5.6691 -5.6691 -5.6697	ur vl : dB.	ak = fase= fase= fase== fase==	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.349 0.419 0.497 0.586 0.687 0.801 0.930	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden	
Het theta		enor meer c 0.0000 0.0250 0.0500 0.1250 0.1250 0.1250 0.1500 0.2250 0.2250 0.2250 0.2250 0.2500 0.2750 0.3250 0.3250 0.3250 0.3250 0.3250 0.3250 0.3250 0.4000 0.4250 0.4500 0.500 0.45000 0.45000 0.45000 0.45000 0.45000 0.45000000000	de) vermin graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	bgen door het amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 10.1371 10.5348 	ur vl : dB.	ak ==- fase== fase== fase== fase== fase== fase== fase== fase== fase== fase== fase== fase== fase==	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.419 0.497 0.586 0.687 0.586 0.687 0.801 0.930	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden	
Het theta		enor meer c 0.0000 0.0250 0.0500 0.0750 0.1250 0.1250 0.1250 0.2000 0.2250 0.2500 0.2500 0.2750 0.3250 0.3500 0.3500 0.4250 0.4250 0.4250 0.4250	de) verma graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden, graden,	bgen door het amplitude=	apertu 25.5511 19.5771 10.1371 11.7434 10.5348 -9.4007 -8.4784 -7.7262 -7.1158 -6.6274 -6.2466 -5.7683 -5.6571 -5.6250 -5.6691 -5.6250 -5.6872 -5.7872	ULT VI 4 d BB, 4 d	ak = fase= fase= fase== fase==	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586 0.687 0.801 0.930 1.076	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden	
Het theta		enor meero 0.0000 0.0250 0.0500 0.0750 0.1250 0.1250 0.1250 0.2500 0.2500 0.2500 0.2500 0.2500 0.3250 0.3250 0.3250 0.3250 0.4250 0.4250 0.4250 0.4750 0.5000	de) vermu graden,	bgen door het amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 10.1331 11.9459 10.5348 -9.4007 -8.4784 -7.7262 -7.1158 -6.2466 -5.9628 -5.6571 -5.6571 -5.6591 -5.6691 -5.6691 -5.786 -6.2426	ur vl : dB:	ak = fase= fase= fase== fase==	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586 0.687 0.586 0.687 0.586 0.687 0.930 1.076 1.242	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden	
Het theta th		enor meer c 0.0000 0.0250 0.0500 0.1250 0.1250 0.1250 0.1250 0.2250 0.2250 0.2250 0.2500 0.2500 0.3250 0.3500 0.3750 0.4000 0.4250 0.4250 0.4500 0.5250	de) vermin graden,	bgen door het amplitude=	apertu 25.5511 19.5771 10.1331 13.7434 11.9459 10.5348 -9.4007 -8.4784 -7.7262 -7.1158 -6.2464 -5.9628 -5.6571 -5.6250 -5.6491 -5.6250 -5.6491 -5.9786 -6.2428 -6.2428 -6.5807	ALLE VI d B. d B.	ak = fase= fase= fase== fase==	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.349 0.349 0.419 0.497 0.586 0.687 0.801 0.930 1.076 1.242 1.433	dB graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden graden	
Het theta th		enor meer c 0.0000 0.0250 0.0500 0.1250 0.1250 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2750 0.3250 0.3250 0.3250 0.4000 0.4250 0.4500 0.5250 0.5500	de) vermid graden,	bgen door het amplitude=	apertu 25.5511 19.5771 10.1371 11.9459 10.5348 -9.4007 -8.4784 -7.7262 -6.2466 -5.76871 -5.6274 -5.76871 -5.6250 -5.6691 -5.7872 -5.7872 -6.2428 -6.54938 -6.5495	ULT VI = ULT VI	ak = asse = fasse =	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586 0.687 0.801 0.930 1.076 1.242 1.433 1.651	dB graden	
Het theta th	***************************************	enor meer c 0.0000 0.0250 0.0500 0.0750 0.1250 0.1250 0.1250 0.2000 0.2250 0.2250 0.2250 0.2750 0.3250 0.3500 0.4000 0.4250 0.4500 0.4250 0.4500 0.5750 0.5500 0.5750	de) verma graden,	bgen door het amplitude=	apertu 25.5511 19.5771 10.1331 11.7434 11.9459 10.5348 -9.4007 -8.4784 -7.7262 -7.1158 -5.46274 -6.2466 -5.7683 -5.66271 -5.66291 -5.6691 -5.6691 -5.68091 -5.68091 -5.68093 -6.9388 -6.2428 -6.24843	ULT VI = ULT VI =	ak ==- fasse== fasse===	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.584 0.687 0.584 0.687 0.801 0.930 1.076 1.242 1.433 1.651 1.904	dB graden	
Het theta th	999777777777777777777777777777777777777	enor meer c 0.0000 0.0250 0.0500 0.1250 0.1250 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.3250 0.3250 0.3750 0.4000 0.4250 0.4250 0.4250 0.4250 0.5500 0.5550 0.5550 0.6000	de) verma graden,	bgen door het amplitude=	apertu 25.5511 19.5771 10.5371 10.5348 -9.4007 -8.4784 -7.7262 -7.1158 -6.2464 -5.9628 -5.6571 -5.6274 -5.6259 -5.6571 -5.6259 -5.5958 -5.5958 -6.2484 -5.5958 -6.2484 -5.5958 -6.2484 -5.5958 -6.5588 -6.5588 -6.5	LUP VI d dE d dE dE dE d dE dE d dE d	ak = fasse= = fasse== fasse==	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586 0.687 0.801 0.930 1.076 1.242 1.433 1.651 1.904 2.198	dB graden	
Het theta	999777777777777777777777777777777777777	enor meer c 0.0000 0.0250 0.0500 0.1250 0.1250 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2750 0.3250 0.3250 0.3250 0.4000 0.4250 0.5250 0.5250 0.5250 0.6000 0.6250	de) vermin graden,	bgen door het amplitude=	apertu 25.5511 19.5771 10.1371 11.9459 10.5348 -9.4007 -8.4784 -7.1158 -6.6274 -6.6274 -5.76250 -5.66571 -5.66571 -5.6250 -5.6691 -5.7872 -5.7872 -6.2428 -6.2428 -6.2428 -6.2428 -6.2428 -6.2428 -6.2428 -6.2428 -6.2428 -7.4843 -8.7178	LUP VI d B. H d B. H	ak ==- fasse== fasse== fasse== fasse== fasse== fasse== fasse== fasse== fasse== fasse== fasse== fasse== fasse== fasse== fasse== fasse==	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586 0.687 0.586 0.687 0.586 0.687 0.586 0.497 0.586 0.687 0.586 0.687 0.586 0.687 0.586 0.687 0.586 0.586 0.586 0.587 0.586 0.586 0.587 0.586 0.586 0.586 0.597 0.586 0.586 0.586 0.587 0.586 0.587 0.586 0.587 0.586 0.587 0.586 0.587 0.586 0.587 0.586 0.587 0.586 0.587 0.586 0.587 0.586 0.587 0.586 0.576 0.586 0.586 0.576 0.586 0.576 0.586 0.576 0.586 0.576 0.586 0.576 0.576 0.586 0.576 0.586 0.576 0.576 0.586 0.576 0.576 0.586 0.576 0.576 0.576 0.576 0.586 0.576 0.576 0.576 0.586 0.576 0.576 0.576 0.576 0.576 0.586 0.5776 0.5776 0.5760 0.5776 0.5760 0.5760 0.57600000000000000000000000000000	dB graden	
Het thet thet thet thet thet thet thet t		enor meer c 0.0000 0.0250 0.0500 0.1250 0.1250 0.1250 0.1250 0.2500 0.2250 0.2500 0.2250 0.2500 0.2550 0.4000 0.4250 0.5500 0.5550 0	de) vermid graden,	bgen door het amplitude=	apertu 25.5511 19.5771 16.1331 13.7434 10.5348 -9.4007 -8.4784 -7.7262 -7.7262 -6.6274 -6.2466 -5.7683 -5.66571 -5.6250 -5.62691 -5.6250 -5.62691 -5.6250 -5.62691 -5.6250 -6.5807 -6.	ULTY 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ak = ak se= fasse= fasse= fasse== fasse==	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586 0.497 0.586 0.681 0.930 1.076 1.242 1.433 1.651 1.904 2.198 2.544	dB graden	
Het thet thet thet thet thet thet thet t		enor meero 0.0000 0.0250 0.0500 0.0750 0.1250 0.1250 0.1250 0.1250 0.2000 0.2500 0.2250 0.2250 0.2500 0.2500 0.3250 0.3250 0.4250 0.4250 0.4250 0.5500 0.4500 0.4500 0.4500 0.4500 0.5500 0.5500 0.5500 0.5500 0.5500 0.5500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.4500 0.5500 00	de) verma graden,	bgen door het amplitude=	apertu 25.5511 19.5771 10.1331 11.9459 10.5348 -9.4007 -8.4784 -7.7262 -7.1158 -6.2466 -5.7683 -5.6571 -5.6571 -5.6597 -7.4843 -7.4843 -9.4614 -9.4	ULT V. I d d B B.	ak = ak e= fasse= fasse= fasse== fasse==	-53.9962 0.003 0.009 0.020 0.035 0.055 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586 0.687 0.586 0.687 0.586 0.687 0.586 0.687 0.586 1.076 1.242 1.433 1.651 1.904 2.198 2.544 2.953	dB graden	
Het the take to th		enor meer c 0.0000 0.0250 0.0500 0.1250 0.1250 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2500 0.2750 0.3250 0.3250 0.3250 0.4000 0.4250 0.5250 0.5250 0.5250 0.5250 0.6250 0.5250 0.5500 0.6500 0.5500 0.6500 0.6500 0.6500 0.5500 0.6500 0	de) vermin graden,	bgen door het amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 10.1331 11.9459 10.5348 -9.4007 -8.4784 -7.7262 -7.1158 -6.2468 -5.6274 -5.6274 -5.6278 -5.6571 -5.6250 -5.6491 -5.6491 -5.9786 -6.2428 -6.2428 -6.2428 -6.2428 -6.5807 -5.67938 -7.4843 -8.0558 -8.0558 -8.0558 -9.4614 10.309-		ak = ak = fasse= = fasse== =	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586 0.687 0.801 0.930 1.076 1.242 1.433 1.651 1.904 2.198 2.544 2.953 3.443	dB graden	
Het taken to the taken to the taken to the taken	.) ************************************	enor meer c 0.0000 0.0250 0.0500 0.0750 0.1250 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2750 0.3250 0.3250 0.3250 0.4000 0.4250 0.4500 0.5250 0.5750 0.6000 0.6500 0.6500 0.6500 0.6500 0.6750 0.7000	de) vermid graden,	bgen door het amplitude=	apertu 25.5511 19.5771 10.1371 11.9459 10.5348 -9.4007 -8.4784 -7.1158 -6.2466 -5.76274 -5.76274 -5.76274 -5.76274 -5.76871 -5.66571 -5.66571 -5.66571 -5.66571 -5.7828 -6.5807 -6.24843 -6.5807 -6.24843 -6.5807 -6.24843 -6.5807 -6.24843 -6.5807 -6.24843 -6.5807 -6.24843 -6.5807 -6.24843 -6.5807 -6.24843 -6.5807 -6.24843 -6.5807 -6.24843 -6.5807 -6.24843 -6.5807 -6.24843 -6.24843 -6.24843 -6.5807 -6.24843 -6.5807 -6.24843 -6.5807 -6.24843 -6.24843 -6.5807 -6.24843 -8.0558 -8.0558 -8.4144 -0.30946 -1.2675		ak ==- fasse== fasse===	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586 0.687 0.586 0.687 0.801 0.930 1.076 1.242 1.433 1.651 1.904 2.198 2.544 2.953 3.443 4.039	dB graden	
Het taken to the set of the set o	999777777777777777777777777777777777777	enor meer c 0.0000 0.0250 0.0500 0.0750 0.1250 0.1250 0.1250 0.2000 0.2250 0.2500 0.2500 0.2500 0.2500 0.3500 0.4250 0.4250 0.4250 0.5500 0.5500 0.5500 0.5500 0.5500 0.5500 0.6250 0.6250 0.6250 0.7500 0.6250 0.7500 0.6250 0.6250 0.7500 0.6250 0.7500 0.6250 0.7500 0.6250 0.6500 0.6250 0.6500 0.6250 0.6500 0.6250 0.7500 0.6250 0.7500 0.6250 0.7500 0.6250 0.6500 0.6250 0.6250 0.6500 0.6250 0.6500 0.6250 0.6500 0.6250 0.6500 0.6250 0.6500 0.6250 0.6500 0.6250 0.6500 0.6250 0.6500 0.6250 0.6500 0.6250 0.6500 0.6250 0.6500 0.6500 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.6500 0.6500 0.6500 0.5500 0.5500 0.5500 0.5500 0.6500 0.6500 0.6500 0.5500 0.5500 0.5500 0.5500 0.5500 0.5500 0.6500 0.6500 0.5500 0.5500 0.6500 0.5500 0.5500 0.5500 0.6500 0.75000 0.75000 0.75000 0.75000 0.75000 0.750000000000	de) verma graden,	bgen door het amplitude=	apertu 25.5511 19.5771 10.1371 11.7434 10.5348 -9.4007 -8.4784 -7.7262 -7.1158 -6.6274 -6.2466 -5.7683 -5.6571 -5.6571 -5.6291 -5.4289 -6.5807 -6.2807 -6.2807 -6.5807 -6.2807 -6.5807 -5.4843 -8.0558 -8.7128 -9.4614 10.3096 11.2675 12.3489	ULT V. I I I I I I I I I I I I I I I I I I	ak see= ffaassee	-53.9962 0.003 0.009 0.020 0.035 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586 0.687 0.586 0.687 0.801 0.930 1.076 1.242 1.433 1.651 1.904 2.198 2.544 2.953 3.443 4.039 4.775	dB graden	
Het taken to the set of the set o	999777777777777777777777777777777777777	enor meer c 0.0000 0.0250 0.0500 0.1250 0.1250 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2250 0.3250 0.3250 0.3250 0.3750 0.4000 0.4250 0.5250 0.5500 0.5250 0.6000 0.6250 0.6250 0.6250 0.6250 0.6250 0.7250 0.7250	de) verma graden,	bgen door het amplitude= amplitude= amplitude=	apertu 25.5511 19.5771 10.5371 10.5348 -9.4007 -8.4784 -7.7262 -7.1158 -6.2466 -5.6571 -5.6571 -5.6591 -5.6591 -5.6591 -5.7886 -6.2428 -6.2428 -6.5807 -6.9938 -7.4843 -7.4843 -8.0558 -8.7128 -8.0558 -8.7128 -9.4614 10.2675 12.3489 13.5716		ak see= ffassee= ffassee== ffassee=== ffassee==== ffassee===== ffassee==== ffassee==== ffassee==== ffassee=== ffassee=== ffassee=== ffassee====	-53.9962 0.003 0.009 0.020 0.035 0.055 0.055 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.419 0.497 0.586 0.687 0.586 0.687 0.586 0.687 0.586 0.687 1.076 1.242 1.433 1.651 1.904 2.544 2.953 3.443 4.039 4.775 5.702	dB graden	
Het taken to the set of the set o) * * * * * * * * * * * * * * * * * * *	enor meer c 0.0000 0.0250 0.0500 0.0750 0.1250 0.1250 0.1250 0.1250 0.2250 0.2250 0.2250 0.2250 0.2250 0.2750 0.3250 0.3250 0.3250 0.3250 0.4000 0.4250 0.5250 0	de) vermin graden,	Dgen door het amplitude=	apertu 25.5511 19.5771 10.1371 11.9459 10.5348 -9.4007 -8.4784 -7.1158 -6.6274 -6.6274 -5.76250 -5.66571 -5.6250 -5.6691 -5.7872 -5.7872 -5.7872 -5.7872 -6.2484 -5.7872 -5.7887 -5.8871 -5.8877 -5.7887 -5.8877 -5.7887 -5.8877 -5.7887 -5.8877 -5.7887 -5.8877 -5.7887 -5.8877 -5.7887 -5.8877 -5.7887 -5.8877 -5.8877 -5.8877 -5.8877 -5.8877 -5.8877 -5.8877 -5.8877 -5.8877 -5.8877 -5.8877 -5.8877 -5.8877 -5.8877 -5.8877 -5.8877 -5.8776 -5.88777 -5.88777 -5.88777 -5.88777 -5.88777 -5.88777 -5.88777 -5.88777 -5.88777 -5.88777 -5.88777 -5.88777 -5.88777 -5.887777 -5.887777 -5.887777 -5.8877777 -5.8877777 -5.8877777777777777777777777777777777777		ak see= ffaassee= ff	-53.9962 0.003 0.009 0.020 0.035 0.080 0.110 0.145 0.186 0.233 0.287 0.349 0.349 0.349 0.497 0.586 0.687 0.801 0.930 1.076 1.242 1.433 1.651 1.904 2.198 2.544 2.953 3.443 4.039 4.775 5.702 6.899	dB graden	

.

thetar	0.S000	graden.	amplitude=-16.5495	dB,	tase=	8.495	graden
theta=	0.8250	graden.	amplitude=-18.3882	dÐ,	fase=	10.712	graden
theta=	0.8500	graden,	amplitude=-20.5496	dB,	fase=	13.961	graden
theta≈	0.8750	graden,	amplitude=~23.1425	dB,	fase=	19.098	graden
theta=	0.9000	graden.	amplitude=-26.3110	d8,	fase=	28.123	graden
theta≔	0.9250	graden.	ampl:tude=~30.0521	dB,	fase=	46.147	graden
theta=	0.9500	graden.	amplitude=-32.8966	dB,	fase≠	81.557	graden
theta=	0.9750	graden.	amplitude=-31:9080	dB.	fase≈	119.827	graden
theta=	1.0000	graden,	amplitude=-29.4262	dÐ,	fase=	140.445	graden
theta=	1.0250	graden,	amplitude=-27.4451	dB,	fase=	150.517	graden
theta≕	1.0500	graden.	amplitude≃-26.0847	dB,	fase=	156.048	graden
theta=	1.0750	graden,	amplitude=-25.2095	dB,	fase=	159.403	graden
theta≕	1.1000	graden.	amplitude=-24.7128	dB,	fase=	161.563	graden
theta≃	1.1250	graden.	amplitude=-24.5275	d₿.	fase=	162.985	graden
theta=	1.1500	graden.	amplitude=-24.6152	dB.	fase=	163.900	graden
theta=	1.1750	graden.	amplitude=-24.9580	dF,	fase≈	164.425	graden
theta=	1.2900	graden.	amplitude=-25.5545	dF.	fase=	164.610	graden
theta≕	1.2250	graden.	amplitude=~26.4203	d₽.	fase≈	164.450	graden
theta=	1.2500	graden.	emplitude=-27.5918	dB,	fase=	163.878	graden

.

M.O. van Deventer augustus 1987

1

.

Frequentie = 12.5019 GHz Brandpuntsafstand van de (equivalente) paraboplantenne = 18.4100 meter Diameter van de hoofdreflector= 5.5000 meter Diameter van de subreflector = 0.5500 meter belichter-winst: 27.2139 dB antenne-winst : 55.87 dB De afstand van het coordinatencentrum van de belichter tot de eerstvolgende reflector = 1.7430 meter De fi~afhankelijkheid =cos(0∦fi) Het belichterstralingsdiagram is genormeerd op :-28.6517 dB De fase is genormeerd op : -1.442 graden Ingevoerd stralingsdiagram van de belichter: psi = 0.0000 graden, amplitude= 0.0000 dB, fase= 0.000 graden psi 1.0000 graden, amplitude= -0.2600 dB, fase= 1.160 graden 2.0000 graden, amplitude= -0.9500 dB, fase= 3.950 graden = psi = 1.0000 graden, amplitude= -0.9500 dB, fase= 3.950 graden
psi = 3.0000 graden, amplitude= -1.8600 dB, fase= 7.040 graden
psi = 4.0000 graden, amplitude= -2.9600 dB, fase= 7.950 graden
psi = 5.0000 graden, amplitude= -4.4200 dB, fase= 5.710 graden
psi = 5.0000 graden, amplitude= -6.4000 dB, fase= 1.000 graden psi = 0.0000 graden, amplitude= -6.4000 dB, fase= 1.000 graden
psi = 7.0000 graden, amplitude= -8.7000 dB, fase= -4.500 graden
psi = 8.0000 graden, amplitude=-10.9600 dB, fase= -11.800 graden psi = 9.0000 graden, amplitude=-13.1700 dB, fase= -23.370 graden psi = 10.0000 graden. amplitude=-15.7400 dB, fase= -39.510 graden ps: = 11.0000 gradan, amplitude=-18.6600 dB, fase= -56.530 graden psi = 12.0000 graden, amplitude=-21.1900 dB, fase= -74.610 graden psi = 13.0000 graden, amplitude=-23.3000 dB, fase= -99.110 graden = 14.0000 graden, amplitude=-25.8900 dB, fase=-130.420 graden = 15.0000 graden, amplitude=-29.0100 dB, fase=-161.060 graden 051 0.51 Het (genormeerde) vermogen door het apertuurvlak = -56.3970 dB theta= 0.0000 graden, amplitude= -0.0000 dB, fase= 0.000 graden theta= 0.0200 graden, amplitude= -0.0536 dB, fase= 0.027 graden theta= 0.0400 graden, amplitude= -0.2150 dB, fase= 0.107 graden theta= 0.0400 graden, amplitude= -0.2150 dB, fase= 0.107 graden theta= 0.0800 graden, amplitude= -0.4855 dB, fase= 0.242 graden theta= 0.0800 graden, amplitude= -0.8680 dB, fase= 0.437 graden theta= 0.1000 graden, amplitude= -1.3661 dB, fase= 0.437 graden theta= 0.1200 graden, amplitude= -1.3661 dB, fase= 1.024 graden theta= 0.1200 graden, amplitude= -1.7325 dB, fase= 1.024 graden theta= 0.1400 graden, amplitude= -2.7325 dB, fase= 1.434 graden theta= 0.1400 graden, amplitude= -3.6172 dB, fase= 1.939 graden theta= 0.1800 graden, amplitude= -4.6518 dB, fase= 2.559 graden theta= 0.2000 graden, amplitude= -7.2422 dB, fase= 3.322 graden theta= 0.2400 graden, amplitude= -7.2422 dB, fase= 4.270 graden theta= 0.2400 graden, amplitude= -10.7261 dB, fase= 7.024 graden theta= 0.2000 graden, amplitude= -7.2422 dB, fase= 4.270 graden theta= 0.2400 graden, amplitude= -8.8516 dB, fase= 5.468 graden theta= 0.2600 graden, amplitude=-10.7261 dB, fase= 7.024 graden theta= 0.2800 graden, amplitude=-12.9342 dB, fase= 7.024 graden theta= 0.3000 graden, amplitude=-12.9342 dB, fase= 9.129 graden theta= 0.3000 graden, amplitude=-15.5863 dB, fase= 12.164 graden theta= 0.3000 graden, amplitude=-23.1625 dB, fase= 17.000 graden theta= 0.3600 graden, amplitude=-28.9219 dB, fase= 49.160 graden theta= 0.3600 graden, amplitude=-28.9219 dB, fase= 109.286 graden theta= 0.3600 graden, amplitude=-28.6869 dB, fase= 109.286 graden theta= 0.4000 graden, amplitude=-28.6869 dB, fase= 150.568 graden theta= 0.4000 graden, amplitude=-23.7164 dB, fase= 165.266 graden theta= 0.4000 graden, amplitude=-23.7164 dB, fase= 172.792 graden theta= 0.4600 graden, amplitude=-23.7164 dB, fase=-177.419 graden theta= 0.5000 graden, amplitude=-24.1501 dB, fase=-177.419 graden theta= 0.5000 graden, amplitude=-24.1501 dB, fase=-167.713 graden theta= 0.5000 graden, amplitude=-24.9882 dB, fase=-167.713 graden theta= 0.5000 graden, amplitude=-27.6869 dB, fase=-164.462 graden theta= 0.5000 graden, amplitude=-27.6869 dB, fase=-164.462 graden theta= 0.6000 graden, amplitude=-27.6869 dB, fase=-148.700 graden theta= 0.6000 graden, amplitude=-33.1646 dB, fase=-178.640 graden theta= 0.6000 graden, amplitude=-33.4426 dB, fase=-79.144 graden

.

.

theta≃	0.5800	graden.	amplitude=-33.6410	dB,	fase= -68.054	graden
theta=	0.7000	graden,	amplitude=~34.0884	dB,	fase= ~60.610	graden
theta=	0.7200	graden,	amplitude=+35.0052	JB.	fase= -56.309	graden
theta=	0.7400	graden.	amplitude=+36.5938	dB,	fase= -55.217	graden
theta=	0.7600	graden,	amplitude=-39.1409	dĐ.	fase= -58.886	graden
theta=	0.7800	graden.	amplitude=-40.0159	dB,	fase= -74.044	graden
theta=	0.9000	graden,	amplitude=-46.0603	dĿ,	fase=-120.299	graden
theta=	0.8200	graden.	amplitude=-42.3800	dB.	fase=-164,332	graden
theta=	0.8400	graden.	amplitude=-38.2963	dB,	fase=-179.374	graden
theta≖	0.8500	graden,	amplitude=-35.4835	dB,	fase= 175.170	graden
theta=	0.8800	graden,	ampl:tude=~33.5459	dB,	fase= 172.976	graden
theta=	0.9000	graden.	amp]:tude=-32.2131	dB,	fase= 172.202	graden
theta=	0.9200	graden.	amplitude=-31.3366	dB,	fase= 172.159	graden
theta≏	0.9400	graden.	amp11tude=-30.8078	dB,	fase= 172.548	graden
theta≈	0.9500	graden.	amplitude=-30.5740	dF,	fase= 173.235	graden
theta=	0.9300	graden,	amplitude=-30.5914	dB.	fase= 174.125	graden
theta≃	1.0000	graden.	amplitude=-30,8550	dE,	fase= 175.226	graden
		-				-

= 12.5019 GHz Frequentie Brandpuntsafstand van de (equivalente) paraboolantenne = 18,4100 meter Diameter van de hoofdreflector = 5.5000 meter Diameter van de subreflector = 0.5500 meter belichter-winst: 23,0855 dB helling : 2.52.10³ .-1 De afstand van het coordinatencentrum van de belichter tot de eerstvolgende reflector = 1.7430 meter De fi-afhankelijkheid =cos(1#f1) Het belichtersträlingsdiägram :-32.7801 dB is genormeerd op De fase is genormeerd on : -78.758 graden Ingevoerd stralingsdiagram van de belichter: psi = 0.0000 graden, amplitude=-90.0000 dB, fase= 0.000 graden psi = 0.5000 graden, amplitude=-12.2300 dB, fase= -0.120 graden psi = 1.5000 graden, amplitude=-3.5900 dB, fase= -0.740 graden psi = 2.5000 graden, amplitude= -0.7800 dB, fase= -0.740 graden psi = 3.5000 graden, amplitude= -0.0200 dB, fase= -0.920 graden psi = 4.5000 graden, amplitude= -0.1100 dB, fase= -0.400 graden psi = 5.5000 graden, amplitude= -0.5500 dB, fase= -2.400 graden psi = 5.5000 graden, amplitude= -1.3800 dB, fase= -2.400 graden psi = 7.5000 graden, amplitude= -2.9000 dB, fase= -19.750 graden psi = 8.5000 graden, amplitude= -4.9600 dB, fase= -31.710 graden psi = 9.5000 graden, amplitude= -7.0700 dB, fase= -44.670 graden psi = 10.5000 graden, amplitude= -8.9700 dB, fase= -61.880 graden Ingevoerd stralingsdiagram van de belichter: Het (genormeerde) vermogen door het apertuurvlak = -59.8735 dB theta= 0.0000 graden. amplitude=---.dB, fase=---.graden theta= 0.0200 graden. amplitude=-21.8444 dB, fase= 0.020 graden theta= 0.0200 graden, amplitude=-21.8444 dB, fase= theta= 0.0400 graden, amplitude=-15.9386 dB, fase= theta= 0.0600 graden, amplitude=-12.6087 dB, fase= theta= 0.0800 graden, amplitude=-10.3799 dB, fase= 0.083 graden Theta= 0.0400 graden, amplitude=15.7586 dB, fase= 0.085 graden theta= 0.0600 graden, amplitude=12.087 dB, fase= 0.087 graden theta= 0.1200 graden, amplitude=-2.0887 dB, fase= 0.784 graden theta= 0.1200 graden, amplitude= -6.8132 dB, fase= 0.784 graden theta= 0.1400 graden, amplitude= -6.8132 dB, fase= 1.086 graden theta= 0.1600 graden, amplitude= -6.2538 dB, fase= 1.086 graden theta= 0.1600 graden, amplitude= -6.2538 dB, fase= 1.447 graden theta= 0.1800 graden, amplitude= -5.7903 dB, fase= 1.447 graden theta= 0.2000 graden, amplitude= -5.7903 dB, fase= 2.380 graden theta= 0.2000 graden, amplitude= -5.8461 dB, fase= 2.972 graden theta= 0.2000 graden, amplitude= -6.4872 dB, fase= 3.666 graden theta= 0.2000 graden, amplitude= -6.4872 dB, fase= 5.449 graden theta= 0.2600 graden, amplitude= -7.0692 dB, fase= 5.449 graden theta= 0.3000 graden, amplitude= -7.8306 dB, fase= 7.970 graden theta= 0.3200 graden, amplitude= -7.8306 dB, fase= 14.853 graden theta= 0.3200 graden, amplitude=-11.3114 dB, fase= 11.818 graden theta= 0.3300 graden, amplitude=-12.9428 dB, fase= 14.547 graden theta= 0.4000 graden, amplitude=-12.9428 dB, fase= 14.547 graden theta= 0.4400 graden, amplitude=-19.8286 dB, fase= 14.547 graden theta= 0.4400 graden, amplitude=-22.9799 dB, fase= 42.573 graden theta= 0.4400 graden, amplitude=-22.9799 dB, fase= 42.573 graden theta= 0.5000 graden, amplitude=-27.8860 dB, fase= 121.771 graden theta= 0.5400 graden, amplitude=-27.8860 dB, fase= 142.149 graden theta= 0.5400 graden, amplitude=-27.8860 dB, fase= 142.149 graden theta= 0.5400 graden, amplitude=-27.8860 dB, fase= 142.149 graden theta= 0.6400 graden, amplitude=-27.8860 dB, fase= 142.149 graden theta= 0.6400 graden, amplitude=-28.6421 dB, fase= 177.106 graden theta= 0.6400 graden, amplitude=-27.8860 dB, fase= 162.788 graden theta= 0.6400 graden, amplitude=-28.5252 dB, fase= 167.787 graden theta= 0.6400 graden, amplitude=-28.5252 dB, fase=-167.787 graden theta= 0.6400 graden, amplitude=-36.5764 dB, fase=-167.734 graden theta= 0.6400 graden, amplitude=-36.57 0.189 graden 0.339 graden 0.537 graden 0.784 graden

.

•

 	•••••			•••			· ·	
	6. 7 406	araden		45	(- 7 077		
	0.7800	graden,	ampircude=-18.8037	<u>и</u> в, ыв	Tase-	-27.827	graden	
theta=	0.7800	graden.	amp11tude=-27.6566	<u>ан</u> ,	tase=	-22.493	graden	
theta=	0.8000	graden,	amplitude=-2/.1//4	dΒ,	tase=	-18,206	graden	
theta=	0.8200	graden.	amplitude=-27.1086	dB.	fase=	-14.423	graden	
theta=	0.8400	graden.	ampl:tude=-27.4188	dB,	fase=	-10.791	graden	
theta=	0.8600	grader,	amplitude=-28.1069	dB,	fase=	-7.009	graden	
theta≍	0.8800	graden,	amplitude=-29,1929	dÐ,	fase=	-2.735	graden	
theta∓	0.9000	graden,	amplitude=-30.7299	dB,	fase=	2.566	graden	
theta≖	0,9200	graden,	amplitude=-32.8026	dB,	fase=	9.879	graden	
theta=	0.9400	graden.	amplitude=-35.5160	dB,	fase=	21.389	graden	
theta=	0.9500	graden,	amplitude=-38.7432	dB,	fase≈	42.287	graden	
theta=	0.9800	graden,	amplitude=-40.8689	dB,	fase=	79.051	graden	
theta=	1.0000	graden.	amplitude=-39.6495	dB,	fase=	115.605	graden	

or in Arm

M.O. van Deventer augustus 1987

Frequentie = 12.5019 GHz Brandpuntsafstand van de lequivalente) paraboolantenne = 18.4100 meter Diameter van de hoofdreflector= 5.5000 meter Diameter van de subreflector = 0.5500 meter extra XPD: 3.4 dB De afstand van het coordinatencentrum van de belichter tot de eerstvolgende reflector = 1.7430 meter
De fi-afhankelijkheid =cos(2#fi) Het belichterstralingsdiagram is genormeerd op :-28.6517 dB De fase is denormeerd on : -37.623 graden Ingevoerd stralingsdiagram van de belichter: psi = 0.0000 graden, amplitude=-99.0000 dB, fase= 0.000 graden psi = 0.2500 graden, amplitude=-42.0900 dB, fase=-104.120 graden 0.5000 grades, amplitude=-30.1700 dB, fase=-104.250 p51 = oraden = 0.7500 graden, amplitude=-23.3300 dB, fase=-104.500
= 1.2500 graden, amplitude=-15.0000 dB, fase=-105.510 051 oraden DSI graden 1.7500 graden, amplitude= -9.8200 dB, fase=-107.340 = 051 graden 2.2500 graden, amplitude= -6.2400 dB, fase=-109.900 $0 \le 1$ = araden 2.7500 graden, amplitude= -3.7400 dB, fase=-112.930 psi = araden 3.2500 graden, amplitude= -2.0500 dB, fase=-116.240 3.7500 graden, amplitude= -0.9700 dB, fase=-119.680 051 = graden 051 = oraden . ps1 4.2500 graden, amplitude= -0.3300 dB, fase=-123.090 = graden 4.7500 graden, amplitude= -0.0400 dB, fase=-126.320 p∈ı = oraden 5.2500 graden, amplitude= -0.0100 dB, fase=-129.300 051 graden 5.7500 graden, amplitude= -0.1400 dB, fase=-132.130 051 oraden 5.2500 graden, amplitude= -0.3200 dB, fase=-135.130 ps1 = oraden = 6. 2000 graden, amplitude= -0.5200 dB, fase=-138.840 graden 051 7.2500 graden, amplitude= -0.7700 dB, fase=-143.780 051 = graden 7.7500 graden, amplitude= -1.1200 dB, fase=-150.160 051 = graden 8.2500 graden, amplitude= -1.6000 dB, fase=-157.890 D 5 1 --oraden 8.7500 graden, amplitude= -2.2600 dB, fase=-166.690 DE1 = oraden 9.2500 graden, amplitude= -3.1200 dB, fase=-176.260 9.7500 graden, amplitude= -4.1300 dB, fase=-186.060 == 031 graden D51 = graden = 10.2500 graden, amplitude= -5.2100 dB, fase=-195.660 p S L araden = 10.7500 graden, amplitude= -6.2700 dB, fase=-205.310 **P**51 oraden psi = 11.2500 graden, amplitude= -7.2300 dB, fase=-215.730 psi = 11.7500 graden, amplitude= -8.1000 dB, fase=-227.430 oraden oraden = 12.2500 graden, amplitude= -8.9600 dB, fase=-240.740 DS1 oraden psi = 12.7500 graden, amplitude= -9.9200 dB, fase=-255.920 oraden = 13.2500 graden, amplitude=-11.0300 dB. fase=-272.520 graden **D**51 = 13.7500 graden, amplitude=-12.3500 dB, fase=-289.510 051 oraden = 14.2500 graden, amplitude=-13.8200 dB, fase=-306.120 = 14.7500 graden, amplitude=-15.2100 dB, fase=-322.010 051 oraden **DS1** oraden psi = 15.2500 graden, amplitude=-16.3000 dB, fase=-337.730 graden Het (genormeerde) vermogen door het apertuurvlak = -55.3413 dB theta= 0.0000 graden, amplitude=---.dB, fase=---.theta= 0.0200 graden, amplitude=-43.2468 dB, fase= 0.015 graden graden 0.0400 graden, amplitude=-31.2963 dB, fase= 0.059 graden 0.0600 graden, amplitude=-24.4043 dB, fase= 0.133 graden theta= theta= 0.0800 graden, amplitude=-19.6196 dB, fase= 0.1000 graden, amplitude=-16.0182 dB, fase= 0.1200 graden, amplitude=-13.1888 dB, fase= 0.238 graden theta= theta= 0.376 graden theta= 0.547 graden 0.1400 graden, amplitude≖-10.9130 dB, fase= 0.1600 graden, amplitude= -9.0610 dB, fase= theta= 0.755 graden 1.002 graden theta≕ 0.1800 graden, amplitude= -7.5498 dB, fase= theta= 1.292 graden 0.2000 graden, amplitude= -6.3239 dB, fase= 0.2200 graden, amplitude= -5.3443 dB, fase= theta⊨ 1.630 oraden theta≃ 2.021 oraden 0.2400 graden, amplitude= -4.5836 dB, fase= theta= 2.472 graden 0.2600 graden, amplitude= -4.0219 dB, fase= theta= 2.993 oraden theta= 0.2800 graden, amplitude= -3.6453 dB, fase= 3.574 graden theta= 0.3000 graden, amplitude= -3.4440 dB, fase= 4.289 graden theta= 0.3200 graden, amplitude= -3.4123 dB, fase= 5.097 graden

.

-

theta=	0.3400	graden,	amplitude= -3.5470	dB,	fase≃	5.041	graden
theta=	0.3600	graden,	amplitude= -3.8480	dB,	fase=	7.152	graden
theta=	0.3800	graden,	amplitude= -4.3182	dB,	fase=	8.473	graden
theta=	0.4000	graden,	amplitude= -4.9629	dB,	fase=	10.061	graden
theta≖	0.4200	graden,	amplitude≏ -5.7905	dB.	fase=	11.998	graden
theta=	0.4400	graden,	amplitude= -6.8127	dB,	fase≃	14.402	graden
theta=	0.4500	graden,	amplitude⇔ -8.0437	dB,	fase≍	17.447	graden
theta=	0.4800	graden,	amplitude= -9.4995	dB,	fase=	21.399	graden
theta≖	0.5000	graden,	amplitude=-11.1929	dB,	fase=	26.671	graden
theta=	0.5200	graden,	amplitude=-13.1189	dE,	fase=	33.908	graden
theta=	0.5400	graden.	amplitude=-15.2183	dB,	fase=	44.053	graden
theta=	0.5600	graden,	amplitude≠-17.2982	dÐ.	fase=	58.160	graden
theta=	0,5600	graden.	amplitude=-18.9669	dB,	fase=	76.314	graden
theta=	0.6000	graden.	amplitude=-19.8471	dB,	fase=	95.949	graden
theta≃	0.6200	graden.	amplitude=-20.0350	dB,	fase=	113.113	graden
theta=	0.6400	graden,	amplitude≃-19.9957	d£,	fase≈	126.064	graden
theta=	0.6600	graden,	amplitude=-20.1099	dB,	fase≃	135.344	graden
theta=	0.6800	graden.	amplitude=-20.5793	dB,	fase=	142.027	graden
theta=	0.7000	graden.	amplitude=-21.5259	dĐ.	fase=	146.962	graden
theta=	0.7200	graden.	amplitude=-23.0854	dB.	fase=	150.702	graden
theta=	0,7400	graden.	amplitude=+25.5079	dB.	fase=	153.561	graden
theta=	0.7600	graden.	amplitude=-29.4213	dB,	fase=	155.580	graden
theta=	0.78 00	graden.	amplitude=-37.2937	dB,	fase≃	155.616	graden
theta=	0.8000	graden.	amplitude≠-44.0210	dB.	fase=	-11.083	graden
theta≂	0.8200	graden.	ampl:tude=-32.1574	dB,	fase=	-15.145	graden
theta=	0.8400	graden,	amplitude=-27.8222	dB.	fase=	-14.277	graden
theta=	0.8500	graden,	amp]:tude=-25.4571	dB,	fase=	-12.954	graden
theta=	0.8800	graden.	amp11tude=-24.1111	dB,	fase=	-11.455	graden
theta=	0.9000	graden,	amplitude=-23.4537	dB,	fase=	-9.776	graden
theta=	0.9200	graden,	amplitude=~20.3555	dB.	fase=	-7.848	graden
theta=	0.9400	graden.	amplitude=-23.7623	dB,	fase=	-5.523	graden
theta=	0.9600	graden.	amplitude=-24.7035	dB,	fase=	-2.516	graden
theta=	0.9800	graden,	amp):tude=-26.2335	dB.	fase=	1.734	graden
theta=	1.0000	graden.	amp1:tude=-28.5085	dB.	fase=	8.497	graden
		-					_

Frequentie = 19.7704 GHz Brandpuntsafstand van de leguivalente) paraboolantenne = 18.4100 meter Diameter van de hoofdreflector= 5.5000 meter belichter-winst: 25,9301 dB Diameter van de subreflector ≈ -0.5500 meter antenne-winst : 60,06 dB De afstand van het coordinatencentrum van de belichter tot de Perstvolgende reflector = 1.7430 meter De fi-afhankelijkheid =cos(0#fi) Het belichterstralingsdiagram is demormeerd on :-34.1318 dB De fase is genormeerd op : 3.589 graden Ingevoerd stralingsdiagram van de belichter: psi = 0.0000 graden, amplitude= 0.0000 dB, fase= 0.000 graden psi = 0.5000 graden, amplitude= 0.0400 dB, fase= -0.490 graden psi = 0.0000 graden, amplitude= -1.3500 dB, fase= -0.700 graden psi = 0.0000 graden, amplitude= -4.7900 dB, fase= -1.440 graden psi = 5.5000 graden, amplitude= -5.9800 dB, fase= -2.570 graden psi = 7.0000 graden, amplitude= -7.1900 dB, fase= -4.790 graden psi = 7.5000 graden, amplitude= -8.4800 dB, fase= -8.530 graden psi = 8.0000 graden, amplitude= -9.9600 dB, fase= -13.460 graden psi = 8.0000 graden, amplitude= 1.5500 dB, fase= -13.460 graden = 10.0000 graden, amplitude=-16.0900 dB, fase= -40.930 graden 051 Het (genormeerde) vermogen door het apertuurvlak = -60.4129 dB theta= 0.0000 graden, amplitude= 0.0000 dB, fase= 0.000 graden theta= 0.0200 graden, amplitude= -0.1341 dB, fase= 0.030 graden theta= 0.0200 graden, amplitude= -0.1341 dB, fase= 0.030 graden thata= 0.0400 graden, amplitude= -0.5398 dB, fase= 0.122 graden thata= 0.0400 graden, amplitude= -1.2275 dB, fase= 0.278 graden thata= 0.0800 graden, amplitude= -2.2164 dB, fase= 0.278 graden thata= 0.1000 graden, amplitude= -2.2164 dB, fase= 0.823 graden thata= 0.1000 graden, amplitude= -3.5371 dB, fase= 0.823 graden thata= 0.1200 graden, amplitude= -5.2382 dB, fase= 1.246 graden thata= 0.1400 graden, amplitude= -7.3982 dB, fase= 1.813 graden thata= 0.1600 graden, amplitude=-13.7623 dB, fase= 3.769 graden thata= 0.2000 graden, amplitude=-18.8508 dB, fase= 5.864 graden thata= 0.2200 graden, amplitude=-27.7290 dB, fase= 12.302 graden thata= 0.2400 graden, amplitude=-36.3595 dB, fase= 160.802 graden theta= 0.2200 graden, amplitude=-27.7290 dB, fase= 12.302 graden theta= 0.2400 graden, amplitude=-26.3595 dB, fase= 160.802 graden theta= 0.2600 graden, amplitude=-25.9793 dB, fase= 179.125 graden theta= 0.2800 graden, amplitude=-23.1874 dB, fase=-177.078 graden theta= 0.3000 graden, amplitude=-23.2151 dB, fase=-174.239 graden theta= 0.3200 graden, amplitude=-24.8799 dB, fase=-171.124 graden theta= 0.3400 graden, amplitude=-24.8799 dB, fase=-167.038 graden theta= 0.3800 graden, amplitude=-27.5437 dB, fase=-160.967 graden theta= 0.3800 graden, amplitude=-31.3128 dB, fase=-150.736 graden theta= 0.3600 graden, amplitude=-27.5437 dB, fase=-160.967 graden theta= 0.3800 graden, amplitude=-31.3128 dB, fase=-150.736 graden theta= 0.4000 graden, amplitude=-36.1829 dB, fase=-131.061 graden theta= 0.4200 graden, amplitude=-40.7621 dB, fase= -94.386 graden theta= 0.4400 graden, amplitude=-42.9107 dB, fase= -94.386 graden theta= 0.4600 graden, amplitude=-42.9107 dB, fase= -29.629 graden theta= 0.4800 graden, amplitude=-58.6732 dB, fase= 70.144 graden theta= 0.5000 graden, amplitude=-42.7592 dB, fase= 145.441 graden theta= 0.5200 graden, amplitude=-36.4541 dB, fase= 154.549 graden theta= 0.5400 graden, amplitude=-32.9976 dB, fase= 159.274 graden theta= 0.5600 graden, amplitude=-31.0056 dB, fase= 162.547 graden

APPENDIX D

.

theta=	0.5800	graden.	ampl:tude==30.0081	dĐ,	fase= 165.171	graden
theta=	0.8000	graden.	amplitude≈-29.8224	dB,	fase= 167.512	graden
thetas	0.s200	graden,	amplitude=-30.3479	dB.	fase= 169.836	graden
theta=	0.6400	graden,	amplitude=-31.5944	dB.	fase= 172.403	graden
theta=	0.6600	graden.	amplitude=-33.5744	dB,	fase= 175.574	graden
theta≃	0.5800	graden,	amplitude=-36.4738	dB,	fase=-179.911	graden
theta=	0.7000	graden.	amplitude=-40.3570	dB,	fase=-172.667	graden
theta=	0.7200	graden.	ampl:tude=-45.3929	dB,	fase=-159.272	araden
theta=	0.7400	graden.	ampl:tude=-50.7390	dB.	fase=-134.264	oraden
theta=	0.7600	graden.	amplitude=-53.7151	dB.	fase=-123.841	graden
theta=	0.7800	graden.	amplitude=~52.2140	dB.	fase=-157.147	graden
theta=	0.8000	uraden.	amplitude=-46,9684	dĐ.	fase=-179,489	oraden
theta=	0.8200	graden.	amplitude=-42.4555	dH.	fase= 173.633	graden
theta=	0.8400	graden,	emplitude=-38.7658	dB.	fase= 172.285	graden
theta=	0.8600	graden.	amplitude=-36.0089	dB.	fase= 171.872	oraden
theta=	0.8800	araden.	amplitude=-54.9809	dB,	fase= 172.840	graden
theta=	0,9000	draden.	amplitude=-33.7514	dB.	fase= 174.057	araden
theta=	0.9200	graden.	amplitude=~33,2300	dB.	fase= 174.228	araden
theta=	0.9400	graden.	amplitude=-35.4879	dB,	fase≈ 178.483	åraden
theta≕	0.9500	graden,	amplitude=-35.4870	dB.	fase= 179.128	araden
theta=	0.9300	graden.	ampl:tude=-41.3371	dB.	fase=-165.677	oraden
theta=	1.0000	graden.	amplitude=-46.7049	dB.	fase= -81.105	araden
				- •		-

= 19.7704 GHz Frequentie Brandpuntsatstand van de (equivalente) paraboolantenne = 18.4100 meter Diameter van de hoofdreflector= 5.5000 meter extra XPD: 5,3 dB Diameter van de subreflector = 0.5500 meter De afstand van het coordinatencentrum van de belichter tot de eerstvolgende reflector = 1.7430 meter De firafhankelijkheid =cos(2¥fi) Het belichterstralingsdiagram is genormeerd on :-34.1318 dB De fase is genormeerd op : 13.291 graden Ingevoerd stralingsdiagram van de belichter: psi = 0.0000 graden, amplitude=-99.0000 dB, fase= 0.000 graden psi = 0.5000 graden, amplitude=-31.6000 dB, fase= 126.270 graden 1.0000 graden, amplitude=-20.1900 dB. fase= 128.600 graden 651 -1.5000 graden, amplitude=-14.4100 dB, fase= 135.180 graden Q 5 1 z D51 = 2.0000 graden, amplitude=-10.7200 dB, fase= 145.100 oraden 2.5000 graden, amplitude= -7.7900 dB, fase= 156.430 051 oraden psi = 3.0000 graden, amplitude= -5.1800 dB, fase= 166.420 3.5000 graden, amplitude= -2.9500 dB, fase= 172.420 graden . 621 = araden **DSI** = 4.0000 graden, amplitude= ~1.3400 dB, fase= 175.020 oraden 4.5000 graden, amplitude= -0.4000 dB, fase= 175.590 graden ps1 = psi = 5.0000 graden, amplitude= -0.0300 dB, fase= 175.390 psi = 5.5000 graden, amplitude= -0.0300 dB, fase= 175.290 graden oraden psi = 5.0000 graden, amplitude= -0.1900 dB, fase= 174.770 graden 5.5000 graden, amplitude= -0.4800 dB, fase= 172.940 = ρs_1 oraden 7.0000 graden, amplitude= -0.9000 dB, fase= 169.120 051 = oraden 7.5000 graden, amplitude= -1.6300 dB, fase= 163.690 = **PS1** graden P£1 ■ 8.0000 graden, amplitude= -2.6300 dB, fase= 157.700 per = 9.0000 graden, amplitude= -2.6300 dB, fase= 157.700 graden per = 9.5000 graden, amplitude= -3.7200 dB, fase= 151.410 graden psr = 9.0000 araden. Amplitude= 4.7000 cF. 9.0000 graden, amplitude= -4.7800 dB, fase= 144.240 graden psi = 2.5000 graden, amplitude= -5.8400 dB, fase= 134.920 oraden psi = 10.0000 graden, amplitude= -7.0900 dB, fase= 123.500 psi = 10.5000 graden, amplitude= -8.5800 dB, fase= 111.280 oraden graden psi = 11.0000 graden, amplitude=-10.1100 dB. fase= 99.150 graden psi = 11.5000 graden, amplitude=-11.4800 dB, fase= 86.260 graden ps: = 12.0000 graden, amplitude=-12.6900 dB, fase= 70.670 ps: = 12.5000 graden, amplitude=-14.1100 dB, fase= 52.150 oraden graden psi = 13.0000 graden, amplitude=-15.8400 dB, fase= 32.900 graden = 13.5000 grader, amplitude=-17.5400 dB, fase= 14.900 051 graden 051 = 14.0000 graden, amplitude=-18.8200 dB, fase= -4.270 oraden = 14.5000 graden, amplitude=-19.8700 dB, fase= -27.200 graden = 15.0000 graden, amplitude=-21.2100 dB, fase= -54.380 graden psi 051 Het (genormeerde) vermogen door het apertuurvlak = -61.3631 dB theta= 0.0000 graden, amplitude=---- dB, fase=----.--graden 0.0200 graden, amplitude=-37.3733 dB, fase= theta= 0.021 graden theta= 0.0400 graden, amplitude=-25.5554 dB, fase= 0.086 graden theta= 0.0600 graden, amplitude=-18.8860 dB, fase= 0.195 graden theta= 0.0800 graden, amplitude=-14.4167 dB, fase= theta= 0.1000 graden, amplitude=-11.2272 dB, fase= 0.351 graden 0.557 graden theta= 0.1200 graden, amplitude= -8.9118 dB, fase= theta= 0.1400 graden, amplitude= -7.2591 dB, fase= 0.821 graden 1.148 graden 1.550 graden theta= 0.1600 graden, amplitude= -6.1489 dB, fase= theta= 0.1800 graden, amplitude= -5.5108 dB, fase= theta= 0.2000 graden, amplitude= -5.3057 dB, fase= 2.041 graden 2.641 graden 3.379 graden theta= 0.2200 graden, amplitude= -5.5177 dB, fase= theta= 0.2400 graden, amplitude= -6.1507 dB, fase= 4.300 graden 5.473 graden theta= 0.2600 graden, amplitude= -7.2307 dB, fase= theta= 0.2800 graden, amplitude= -8.8127 dB, fase= theta= 0.3000 graden, amplitude=-11.0000 dB, fase= 7.018 graden 9.166 graden theta= 0.3200 graden, amplitude=-13.9887 dB, fase= 12.422 graden theta= 0.3400 graden, amplitude=-18.1950 dB, fase= 18.214 graden theta= 0.3600 graden, amplitude=-24.6664 dB, fase= 32.719 graden

theta=	0.7800	graden,	amplitude=-32.7157	dB,	fase= 100.572	graden
theta-	0.4000	graden,	amplitude=-27.0250	dB,	fase= 162.997	graden
theta=	0.4200	graden.	amplitude=-24.2516	dB,	fase= 178.221	graden
theta≈	0.4400	graden.	amplitude=-20.5350	dE.	fase=-172.707	graden
theta=	0.4500	graden,	amplitude=-24.3108	dB,	fase=-163.143	graden
theta=	0.4800	graden,	amplitude=~26.2587	dB,	fase=-149.069	graden
theta=	0.5000	graden.	amplitude=-28.7830	dE,	fase=-124.455	graden
theta=	0.5200	graden.	amplitude=-29.7943	dÐ,	fase= -88.012	graden
theta=	9.54.0	graden.	amplitude=+28.4545	dB.	fase= -58.186	graden
theta≃	0. 5 500	graden.	amplitude=-27.0398	dB,	fase= -41.548	graden
theta≕	0.5300	graden.	amplitude=-26.5666	dB,	fase= -32.178	graden
theta=	ം ടെയാന	graden.	amplitude=-27.2117	dB.	fase= -26.269	graden
theta=	ം. കുററ	graden.	amplitude=-29.1864	dŀ,	fase= -22.151	graden
theta=	0.6400	graden,	amplitude=-33.2657	dB.	fase= -19.105	graden
theta=	0.6500	graden,	ampl)tude=-43.4181	dB,	fas e = -17.172	graden
theta≂	∵.68 00	graden.	amplitude=-41.8349	d₿.	fase= 167.082	graden
theta≕	0,7000	graden.	amplitude=-33.5541	dB.	fase= 168.888	graden
thetar	0.7200	graden,	amplitude≃-30.5965	d£.	fase= 171.201	graden
theta=	0.7400	graden.	amplitude=-29.4594	dB,	fase= 173.952	graden
theta≈	9.7600	ýraden,	amplitude=-29.7520	dB,	fase= 177.607	graden
theta=	0.7800	yraden.	amplitude=-31.0645	dB.	fase=-177.030	graden
theta=	0.8000	graden,	amplitude=~33.8630	d₽.	fase=-167.410	graden
theta=	0.8200	graden.	amplitude=+38.4351	dÐ,	fase=-142.475	graden
theta=	⊙.84 ⊖⊙	graden.	amplitude=-40.8042	dB,	fase= -89.366	graden
theta=	ି, ଟିଚ୍ଚିତ୍ର	graden.	amplitude=-36.8457	d₽,	fase= -45.247	graden
theta=	0.8800	yraden,	amplitude=~31.5738	dB.	fase= -26.063	graden
theta=	0.9000	graden.	amplitude=~32.4021	d8,	fase= -22.057	graden
theta=	0.9200	graden.	amp11tude=-32.5014	dB,	fase= -18.925	graden
theta=	0.0400	graden.	amplitude=~31.4527	dB,	fase= -14.782	graden
theta=	0.9600	graden.	amplitude≐~38.7982	d₿,	fase= 161.130	graden
theta∸	ା. ବଞ୍ଚତ	yraden.	amplitude=-53.2883	dÐ.	fase= 86.678	graden
theta=	1.0000	graden,	amplitude=~01.0105	dB,	fase= 161.713	graden

Frequentie = 29.6556 GHz Brandpuntsafstand van de (equivalente: paraboolantenne 👘 = 18.4100 meter Diameter van de hoofdreflector= 5.5000 meter Diameter van de subreflector = 0.5500 meter belichter-winst: 26,4262 dB antenne-winst : 63,68 dB De afstand van het coordinatencentrum van de belichter tot de = 1.7430 meter eerstvolgende reflector De fi-afhankelijkheid =cos(O**≵**fi) Het belichterstralingsdiagram is genormeerd op :-37.2580 dB De fase is genormeerd op : -2.558 graden Ingevoerd stralingsdiagram van de belichter: psi = 0.0000 gradem, amplitude= 0.0000 dB, fase= 0.0000 gradem 0.5000 graden, amplitude= -0.0100 dB, fase= 0.880 graden 1.0000 graden, amplitude= -0.0400 dB, fase= 2.750 graden Ŧ psi 2.750 graden psi = = 1.5000 graden, amplitude= -0.1600 dB, fase= 3.900 graden 051 2.0000 graden, amplitude= -0.4200 dB, fase= 2.5000 graden, amplitude= -0.8000 dB, fase= = 3.630 graden 6.81 051 := 2.670 graden psi 7.0000 graden. amplitude≈ -1.1800 dB, fase= 7.5000 graden. amplitude≈ -1.4500 dB, fase= -2.070 graden **P**€1 = 2.030 graden = 4. **P**51 graden, amplitude= -1.7500 dB, fase= 2.100 graden 4.0000 graden. amplitude= -2.2400 dB, fase= 5.0000 graden. amplitude= -2.9400 dB, fase= graden D\$1 -2.510 **p**51 = 3.630 graden = 5.5000 graden, amplitude≠ -3.7600 dB, fase= 4.760 graden psi 72 o.0000 graden, amplitude= -4.7700 dB, fase= 051 4.920 graden s.5000 graden, amplitude= ~6.0400 dB, fase= 4.410 graden psi = 3.490 2.0000 graden, amplitude= -7.4500 dB, fase= . 051 graden 7.5000 graden, amplitudes -8.9000 dB, fase= 0.91 1.100 graden = 8.0000 grades, amplitude=-10.6100 dB, fase= -3.050 psi oraden 8.5000 grades, amplitude=-12.4500 dB, fase= -7.870 psi graden psi = 9.0000 graden, amplitude=-14.1200 dB, fase= -14.130 graden psi = 9.5000 graden, amplitude=-16.1100 dB, fase= -23.110 graden psi = 10.0000 graden, amplitude=-18.1900 dB, fase= -32.940 graden Het (genormeerde) vermogen door het apertuurvlak = -63.9763 dB theta= 0.0000 graden, amplitude= 0.0000 dB, fase= 0.000 graden theta= 0.0100 graden, amplitude= -0.0758 dB, fase= 0.007 graden theta= 0.0200 graden, amplitude= -0.3045 dB, fase= 0.027 oraden theta= 0.0300 graden, amplitude= -0.6894 dB, fase= 0.062 graden theta= 0.0400 graden, amplitude= -1.2363 dB, fase= 0.111 graden theta= 0.0500 graden, amplitude≖ -1.9542 dB, fase= 0.175 graden theta= 0.0300 graden, amplitude= -1.7542 dB, fase= 0.175 graden theta= 0.0600 graden, amplitude= -2.8558 dB, fase= 0.256 graden theta= 0.0700 graden, amplitude= -3.9591 dB, fase= 0.356 graden theta= 0.0800 graden, amplitude= -5.2898 dB, fase= 0.478 graden theta= 0.0900 graden, amplitude= -6.8850 dB, fase= 0.625 graden theta= 0.1000 graden, amplitude= -8.8008 dB, fase= 0.805 graden theta= 0.1100 graden, amplitude=-11.1277 dB, fase= 1.031 graden theta= 0.1200 graden, amplitude=-14.0249 dB, fase= 1.328 graden theta= 0.1300 graden, amplitude=-17.8167 dB, fase= 1.764 graden 2.590 graden theta= 0.1400 graden, amplitude=-23.3572 dB, fase= theta= 0.1500 graden, amplitude=-34.9385 dB, fase= 6.406 graden theta= 0.1600 graden, amplitude=-33.3816 dB, fase= 177.837 graden theta= 0.1700 graden, amplitude=-26.0294 dB, fase=-179.518 graden theta= 0.1800 graden, amplitude=-23.2882 dB, fase=-178.656 graden theta= 0.1900 graden, amplitude=+22.1542 dB, fase=+178.042 oraden theta= 0.2000 graden, amplitude=-21.9472 dB, fase=-177.470 graden theta= 0.2100 graden, amplitude=-22.4248 dB, fase=-176.872 oraden theta= 0.2200 graden, amplitude=-23.5028 dB, fase=-176.207 graden theta= 0.2300 graden, amplitude=-25.1871 dB, fase=-175.434 graden theta= 0.2400 graden, amplitude=-27.5720 dB, fase=-174.499 oraden theta= 0.2500 graden, amplitude=-30.8980 dB, fase=-173.304 graden theta= 0.2600 graden, amplitude=-35.7875 dB, fase=-171.607 theta= 0.2700 graden, amplitude=-44.6542 dB, fase=-168.095 oraden oraden

theta= 0.2800 graden, amplitude=-53.4513 dB, fase= 2.453 graden

a second a s

theta=	0.2900	graden.	amplitude=-42.6962	dB,	fase= 11.323	graden
theta∺	0,2000	graden,	amplitude=-40.1435	dB,	fase= 16.243	graden
theta≕	0.2100	graden,	amplitude=-40.0766	dB,	fase= 23.431	graden
thetam	0.7200	graden.	amplitude=-41.7384	dB.	fase= 37.071	graden
theta≕	0.3300	graden,	amplitude=-44.2778	dB.	fase= 68.059	graden
theta≖	0.3400	graden,	amplitude=-43.3271	dB,	fase= 116.573	graden
theta=	0.3500	Graden.	amplitude≈-39.3329	dB.	fase= 144.969	graden
theta=	0.3600	uraden.	amplitude=-36.0873	dB.	fase= 157.640	oraden
theta=	0.3700	oraden.	amplitude=-33.8628	dB.	fase= 164.471	oraden
theta=	0.3800	uraden.	amplitude=-32,4092	dB.	fase= 168.902	oraden
theta=	0.3900	graden.	amplitude=-31.5623	dB,	fase= 172.212	graden
theta=	0.4000	graden,	amplitude=-31.2149	dĐ,	fase= 174.996	graden
theta≂	0.4100	araden.	amplitude=-31.3124	dÐ,	fase= 177.598	graden
theta=	0.4200	graden.	amplitude=-31.8248	dB.	fase=-179.731	oraden
theta=	0.4700	graden.	amplitude=-32.7384	dB.	fase=-176.767	graden
theta=	0.4400	araden	amplitude=-34.0511	dB.	fase=-173.248	graden
theta=	0.4500	graden.	amplitude=-35.7727	dB.	fase=-168,735	oraden
theta=	0.4500	grader.	amplitude=-37.9560	dB.	fase=-162.565	araden
theta=	9.4700	araden.	amplitude≃-40.3803	dĐ.	fase=-154.388	uraden
theta=	5,4900	oraden.	amplitude=-42,9669	dB.	fase=-143.361	oraden
theta=	6,4900	araden.	amplitude=-45.2873	dB.	fase=-131.116	oraden
theta=	5000	oraden.	amplitude=-46.8335	dB.	fase=-125.342	oraden
		9				3. 2.0 4.1

Ingeverd stralingsdiagram van de belichter: psi = 0.0000 graden, amplitude=-29.0000 dB, fase= 0.0000 graden psi = 1.0000 graden, amplitude=-29.0000 dB, fase= 47.180 graden psi = 1.0000 graden, amplitude=-19.1500 dE, fase= 22.660 graden psi = 2.0000 graden, amplitude=-14.9500 dB, fase= 22.660 graden psi = 2.0000 graden, amplitude=-10.8200 dB, fase= 12.810 graden psi = 5.000 graden, amplitude=-10.6400 dB, fase= 12.810 graden psi = 3.0000 graden, amplitude=-7.7100 dB, fase= 12.810 graden psi = 4.0000 graden, amplitude=-7.7100 dB, fase= 12.810 graden psi = 4.0000 graden, amplitude=-7.6100 dB, fase= 12.810 graden psi = 5.0000 graden, amplitude=-7.5100 dE, fase= 17.080 graden psi = 5.0000 graden, amplitude=-0.5500 dE, fase= 17.080 graden psi = 5.0000 graden, amplitude=-0.5500 dE, fase= 17.080 graden psi = 5.0000 graden, amplitude=-0.5000 dE, fase= 17.080 graden psi = 5.0000 graden, amplitude=-0.5000 dE, fase= 17.230 graden psi = 5.0000 graden, amplitude=-2.0500 dE, fase= 14.470 graden psi = 5.0000 graden, amplitude=-2.0500 dE, fase= -3.800 graden psi = 5.0000 graden, amplitude=-2.0500 dE, fase= -7.460 graden psi = 10.0000 graden, amplitude=-1.2000 dE, fase= -7.460 graden psi = 10.0000 graden, amplitude=-12.7000 dB, fase=-7.460 graden psi = 11.0000 graden, amplitude=-12.700 dB, fase=-7.460 graden psi = 11.0000 graden, amplitude=-12.7700 dB, fase=-13.400 graden psi = 11.0000 graden, amplitude=-2.0500 dB, fase=-0.050 graden psi = 11.0000 graden, amplitude=-2.0500 dB, fase=-0.050 graden psi = 11.0000 graden, amplitude=-2.7700 dB, fase=-0.048 graden psi = 11.0000 graden, amplitude=-2.670 dB, fase=-0.048 graden theta= 0.0000 graden, amplitude=-2.670 dB, fase=-0.048 graden theta= 0.0000 graden, amplitude=-2.670 dB, fase=-0.048 graden theta= 0.0000 graden, amplitude=-2.577 dB fase=-0.046 graden theta= 0.000	<pre>Frequentie = D%.655a GHz Brandpuntsafstand van de (equi- valente) paraboolantenne = 19.4100 meter Diameter van de hoofdreflector= 5.5000 meter Diameter van de subreflector = 0.5500 meter De afstand van het coordinaten- centrum van de belichter tot de eerstvolgende reflector = 1.7400 meter De finafhankelij/heid =cosv 2#fi) Het belichterstralingsdiagram is genormeerd op : 165.411 graden</pre>										
psi = 0.0000 gråden, amplitude=-29.0000 dB, fase= 0.000 gråden psi = 0.5000 gråden, amplitude=-29.0000 dB, fase= 47.180 gråden psi = 1.5000 gråden, amplitude=-19.1300 dB, fase= 41.680 gråden psi = 1.5000 gråden, amplitude=-12.9200 dB, fase= 12.870 gråden psi = 2.5000 gråden, amplitude=-12.8200 dB, fase= 12.870 gråden psi = 2.5000 gråden, amplitude=-12.8200 dB, fase= 12.810 gråden psi = 5.5000 gråden, amplitude=-7.7100 dB, fase= 12.810 gråden psi = 5.5000 gråden, amplitude=-2.6100 dB, fase= 12.810 gråden psi = 5.5000 gråden, amplitude=-7.7100 dB, fase= 12.810 gråden psi = 5.5000 gråden, amplitude=-0.5300 dB, fase= 17.080 gråden psi = 5.5000 gråden, amplitude=-0.5300 dB, fase= 19.030 gråden psi = 5.5000 gråden, amplitude=-0.5400 dB, fase= 19.030 gråden psi = 5.5000 gråden, amplitude=-0.5400 dB, fase= 19.230 gråden psi = 5.5000 gråden, amplitude=-2.0500 dB, fase= 19.230 gråden psi = 7.0000 gråden, amplitude=-2.0500 dB, fase= 17.830 gråden psi = 7.0000 gråden, amplitude=-2.0500 dB, fase= -7.830 gråden psi = 7.0000 gråden, amplitude=-2.5000 dB, fase= -7.800 gråden psi = 8.5000 gråden, amplitude=-7.5000 dB, fase= -7.800 gråden psi = 9.5000 gråden, amplitude=-1.5000 dB, fase= -7.800 gråden psi = 9.5000 gråden, amplitude=-1.5000 dB, fase= -7.400 gråden psi = 10.5000 gråden, amplitude=-1.5000 dB, fase= -7.400 gråden psi = 11.5000 gråden, amplitude=-11.6000 dB, fase=-7.400 gråden psi = 11.5000 gråden, amplitude=-12.700 dB, fase=-7.400 gråden psi = 11.5000 gråden, amplitude=-12.700 dB, fase=-7.400 gråden psi = 11.5000 gråden, amplitude=-12.700 dB, fase=-0.050 gråden psi = 12.0000 gråden, amplitude=-12.700 dB, fase=-0.050 gråden psi = 12.0000 gråden, amplitude=-12.700 dB, fase=-0.050 gråden psi = 12.0000 gråden, amplitude=-12.770 dB, fase=-0.058 gråden psi = 12.0000 gråden, amplitude=-2.5783 dB, fase=-0.048 gråden theta= 0.0000 gråden, amplitude=-2.5783 dB, fase=-0.048 gråden theta= 0.0000 gråden, amplitude=-2.5783 dB, fase=-0.078 gråden theta= 0.0000 gråden, amplitude=-2.5772 dB, fase=-0.07	Indevoerd stra	lingsdiad	gram van de belichter:								
psi = 0.5000 graden, amplitude=-19.1300 dB, fase= 47.180 graden psi = 1.5000 graden, amplitude=-19.1300 dB, fase= 47.680 graden psi = 2.0000 graden, amplitude=-11.9200 dB, fase= 22.660 graden psi = 2.0000 graden, amplitude=-12.9200 dB, fase= 14.720 graden psi = 2.0000 graden, amplitude=-7.7100 dB, fase= 12.800 graden psi = 3.0000 graden, amplitude=-4.7600 dB, fase= 12.410 graden psi = 3.0000 graden, amplitude=-0.5300 dB, fase= 14.070 graden psi = 5.0000 graden, amplitude=-0.0500 dB, fase= 19.030 graden psi = 5.0000 graden, amplitude=-1.0500 dB, fase= 19.030 graden psi = 5.0000 graden, amplitude=-2.0500 dB, fase= 19.200 graden psi = 5.000 graden, amplitude=-2.0500 dB, fase= 19.800 graden psi = 5.000 graden, amplitude=-2.0500 dB, fase= 19.700 graden psi = 5.000 graden, amplitude=-2.0500 dB, fase= 19.800 graden psi = 5.000 graden, amplitude=-2.0500 dB, fase= 19.700 graden psi 5.000 gr	psi = 0.0000	graden,	amplitude=-99.0000 dB.	fase= 0.000	oraden						
ps: = 1.0000 graden. amplitude=-19.1700 dB. fase= 41.680 graden ps: = 1.5000 graden. amplitude=-14.9700 dB. fase= 72.660 graden ps: = 2.5000 graden. amplitude=-12.9200 dB. fase= 12.800 graden ps: = 2.5000 graden. amplitude=-7.7100 dB. fase= 12.410 graden ps: = 7.5000 graden. amplitude=-2.6100 dB. fase= 12.410 graden ps: = 4.5000 graden. amplitude=-2.6100 dB. fase= 12.410 graden ps: = 4.5000 graden. amplitude=-0.5300 dB. fase= 14.070 graden ps: = 5.5000 graden. amplitude=-0.5300 dB. fase= 17.080 graden ps: = 5.5000 graden. amplitude=-0.5300 dB. fase= 17.030 graden ps: = 5.5000 graden. amplitude=-0.5400 dB. fase= 17.030 graden ps: = 5.5000 graden. amplitude=-0.5400 dB. fase= 17.030 graden ps: = 5.5000 graden. amplitude=-1.2000 dB. fase= 17.830 graden ps: = 7.5000 graden. amplitude=-1.2000 dB. fase= 17.830 graden ps: = 7.5000 graden. amplitude=-2.2000 dB. fase= 14.470 graden ps: = 7.5000 graden. amplitude=-2.2000 dB. fase= 14.470 graden ps: = 7.5000 graden. amplitude=-2.2000 dB. fase= -3.800 graden ps: = 7.5000 graden. amplitude=-2.2000 dB. fase= -3.800 graden ps: = 0.0000 graden. amplitude=-2.2000 dB. fase= -3.800 graden ps: = 0.0000 graden. amplitude=-2.75700 dB. fase= -3.700 graden ps: = 10.5000 graden. amplitude=-2.3000 dB. fase=-70.380 graden ps: = 11.5000 graden. amplitude=-12.7700 dB. fase=-73.700 graden ps: = 11.5000 graden. amplitude=-12.7700 dB. fase=-73.700 graden ps: = 12.0000 graden. amplitude=-20.3500 dB. fase=-134.440 graden ps: = 13.0000 graden. amplitude=-2.3578 dB. fase=-0.058 graden ps: = 13.0000 graden. amplitude=-2.3580 dB. fase=-134.440 graden ps: = 13.0000 graden. amplitude=-2.5780 dB. fase=-134.440 graden ps: = 13.0000 graden. amplitude=-2.5787 dB. fase=-0.058 graden ps: = 13.0000 graden. amplitude=-2.3580 dB. fase=-0.058 graden theta= 0.0000 graden. amplitude=-2.5787 dB. fase=-0.078 graden theta= 0.0000 graden. amplitude=-2.5787 dB. fase=-0.078 graden theta= 0.0000 graden. amplitude=-12.7790 dB. fase=-0.078 graden theta= 0.10000 graden, amplitude=-12.7797 dB, fase=-0.788 graden theta= 0.0	psi = 0.5000	graden.	amplitude=-29.3000 dB.	fase= 47.180	oraden						
ps: = 1.5000 graden, amplitude=-14.0200 dB, fase= 12.660 graden ps: = 2.0000 graden, amplitude=-12.9200 dB, fase= 14.720 graden ps: = 2.5000 graden, amplitude=-12.9200 dB, fase= 14.720 graden ps: = 7.5000 graden, amplitude=-4.7000 dB, fase= 12.410 graden ps: = 4.5000 graden, amplitude=-4.7000 dB, fase= 12.410 graden ps: = 4.0000 graden, amplitude=-2.6100 dB, fase= 14.070 graden ps: = 5.5000 graden, amplitude=-0.5300 dB, fase= 17.080 graden ps: = 5.5000 graden, amplitude=-0.0800 dB, fase= 17.820 graden ps: = 5.5000 graden, amplitude=-2.0500 dB, fase= 17.820 graden ps: = 7.5000 graden, amplitude=-2.0800 dB, fase= 17.820 graden ps: = 7.5000 graden, amplitude=-2.0800 dB, fase= 14.470 graden ps: = 5.5000 graden, amplitude=-2.0800 dB, fase= -37.460 graden ps: = 5.5000 graden, amplitude=-2.5800 dB, fase= -48.100 graden ps: = 5.5000 graden, amplitude=-2.5800 dB, fase= -48.400 graden ps: = 5.5000 graden, amplitude=-12.700 dB, fase= -24.900 graden ps: = 10.0000 graden, amplitude=-12.700 dB, fase= -37.460 graden ps: = 11.5000 graden, amplitude=-12.700 dB, fase= -37.400 graden ps: = 11.5000 graden, amplitude=-14.8000 dB, fase=-134.440 graden ps: = 11.5000 graden, amplitude=-14.8000 dB, fase=-134.440 graden ps: = 12.0000 graden, amplitude=-14.8000 dB, fase=-134.440 graden ps: = 12.0000 graden, amplitude=-15.580 dB, fase=-0.081 graden ps: = 12.0000 graden, amplitude=-15.580 dB, fase=-0.081 graden ps: = 12.0000 graden, amplitude=-16.5000 dB, fase=-134.440 graden theta= 0.0000 graden, amplitude=-2.5782 dB, fase= 0.048 graden theta= 0.0000 graden, amplitude=-18.8756 dB, fase= 0.048 graden theta= 0.0000 graden, amplitude=-5.4737 dB, fase= 0.078 graden theta	psi = 1.0000	uraden.	amplitude=-19.1300 dR.	fase= 41.680	oraden						
psi = 2.0000 graden, amplitude=-12.9200 dB, fase= 21.970 graden psi = 2.5000 graden, amplitude=-12.6400 dB, fase= 14.720 graden psi = 5.0000 graden, amplitude=-7.7100 dB, fase= 12.410 graden psi = 5.5000 graden, amplitude= -4.7600 dB, fase= 12.410 graden psi = 4.5000 graden, amplitude= -1.5300 dB, fase= 14.070 graden psi = 4.5000 graden, amplitude= -0.5500 dB, fase= 14.070 graden psi = 5.5000 graden, amplitude= -0.5500 dB, fase= 17.080 graden psi = 5.5000 graden, amplitude= -0.5800 dB, fase= 17.080 graden psi = 5.5000 graden, amplitude= -0.5800 dB, fase= 17.830 graden psi = 5.5000 graden, amplitude= -0.5800 dB, fase= 17.830 graden psi = 5.5000 graden, amplitude= -2.0500 dB, fase= 17.830 graden psi = 7.5000 graden, amplitude= -2.0500 dB, fase= 17.830 graden psi = 7.5000 graden, amplitude= -2.0500 dB, fase= -3.800 graden psi = 8.5000 graden, amplitude= -2.0500 dB, fase= -3.800 graden psi = 8.5000 graden, amplitude= -7.5900 dB, fase= -44.900 graden psi = 9.5000 graden, amplitude= -7.5900 dB, fase= -14.100 graden psi = 10.0000 graden, amplitude=-7.5900 dB, fase= -14.100 graden psi = 10.5000 graden, amplitude=-12.7700 dB, fase= -14.100 graden psi = 11.5000 graden, amplitude=-12.7500 dB, fase= -14.400 graden psi = 11.5000 graden, amplitude=-12.7500 dB, fase= -14.400 graden psi = 11.5000 graden, amplitude=-12.7500 dB, fase= -130.800 graden psi = 11.5000 graden, amplitude=-12.7500 dB, fase= -04.9657 dB theta= 0.0000 graden, amplitude=-10.5000 dB, fase= -10.800 graden psi = 12.0000 graden, amplitude=-10.5000 dB, fase= -134.440 graden psi = 13.0000 graden, amplitude=-10.3500 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-10.400 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-10.566 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-10.500 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-10.560 dB, fase= 0.026 graden theta= 0.1000 graden, amplitude=-10.560 dB, fase= 0.768 graden theta= 0.1000 graden, amplitude=-10.500 dB, fase= 0.026 graden theta= 0.1000 graden, amplitude=-10.500 dB, fase= 0.	psi = 1.5000	graden,	amplitude=-14.9300 dB.	fase= 32.660	oraden						
psi = 2.5000 graden, amplitude=-10.6400 dB, fase= 14.720 graden psi = 7.5000 graden, amplitude= -7.7100 dB, fase= 11.720 graden psi = 4.0000 graden, amplitude= -4.7600 dB, fase= 11.410 graden psi = 4.5000 graden, amplitude= -1.3300 dB, fase= 11.410 graden psi = 4.5000 graden, amplitude= -1.3300 dB, fase= 11.410 graden psi = 5.5000 graden, amplitude= -0.0800 dB, fase= 17.080 graden psi = 5.5000 graden, amplitude= -0.0800 dB, fase= 17.080 graden psi = 5.5000 graden, amplitude= -0.0800 dB, fase= 17.830 graden psi = 5.5000 graden, amplitude= -1.2000 dB, fase= 17.830 graden psi = 5.5000 graden, amplitude= -1.2000 dB, fase= 17.830 graden psi = 7.5000 graden, amplitude= -1.2000 dB, fase= 3.920 graden psi = 7.5000 graden, amplitude= -1.2000 dB, fase= 3.920 graden psi = 8.5000 graden, amplitude= -2.5000 dB, fase= 3.800 graden psi = 8.5000 graden, amplitude= -7.5900 dB, fase= -3.800 graden psi = 9.5000 graden, amplitude= -7.5900 dB, fase= -3.800 graden psi = 10.0000 graden, amplitude= -7.5900 dB, fase= -3.800 graden psi = 10.0000 graden, amplitude=-12.7700 dB, fase= -53.700 graden psi = 10.0000 graden, amplitude=-12.7700 dB, fase= -53.700 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase= -53.700 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase= -14.100 graden psi = 11.5000 graden, amplitude=-12.7700 dB, fase= -13.4400 graden psi = 12.0000 graden, amplitude=-12.5700 dB, fase=-13.4400 graden psi = 12.0000 graden, amplitude=-12.5700 dB, fase= -0.800 graden heta= 0.0000 graden, amplitude=-20.3500 dB, fase= 0.025 graden theta= 0.0000 graden, amplitude=-20.3500 dB, fase= 0.025 graden theta= 0.0000 graden, amplitude=-25.5785 dB, fase= 0.026 graden theta= 0.0000 graden, amplitude=-15.3807 dB, fase= 0.026 graden theta= 0.0000 graden, amplitude=-15.3807 dB, fase= 0.359 graden theta= 0.0000 graden, amplitude=-15.5785 dB, fase= 0.359 graden theta= 0.1000 graden, amplitude=-15.5785 dB, fase= 0.359 graden theta= 0.1000 graden, amplitude=-15.5795 dB, fase= 0.359 graden theta= 0.1000 graden, amplitude=-15.5795 dB, fase=	psi = 2.0000	áraden,	amplitude=-12.9200 dB.	fase= 21.870	oraden						
psi = $3,5000$ graden, amplitude= -7,7100 dB, fase= 12,800 graden psi = $3,5000$ graden, amplitude= -1,7600 dB, fase= 12,410 graden psi = $4,0000$ graden, amplitude= -1,3300 dB, fase= 11,410 graden psi = $4,5000$ graden, amplitude= -1,3300 dB, fase= 11,070 graden psi = $5,5000$ graden, amplitude= -0,5300 dB, fase= 11,070 graden psi = $5,5000$ graden, amplitude= -0,0800 dB, fase= 11,020 graden psi = $5,5000$ graden, amplitude= -0,0800 dB, fase= 11,030 graden psi = $5,5000$ graden, amplitude= -1,0800 dB, fase= 11,030 graden psi = $7,5000$ graden, amplitude= -2,0500 dB, fase= 11,030 graden psi = $7,5000$ graden, amplitude= -2,0500 dB, fase= 14,470 graden psi = $8,5000$ graden, amplitude= -2,0500 dB, fase= -3,800 graden psi = $8,5000$ graden, amplitude= -2,5000 dB, fase= -3,800 graden psi = $8,5000$ graden, amplitude= -2,5000 dB, fase= -3,800 graden psi = $8,5000$ graden, amplitude= -7,5000 dB, fase= -3,800 graden psi = $10,5000$ graden, amplitude= -7,5000 dB, fase= -3,7400 graden psi = $10,5000$ graden, amplitude=-11,0000 dB, fase= -37,460 graden psi = $11,5000$ graden, amplitude=-14,8000 dB, fase= -10,880 graden psi = $11,5000$ graden, amplitude=-12,0700 dB, fase=-13,740 graden psi = $12,5000$ graden, amplitude=-20,3500 dB, fase=-13,440 graden psi = $12,5000$ graden, amplitude=-20,3500 dB, fase=-10,880 graden theta= $0,0200$ graden, amplitude=-20,3500 dB, fase=-10,880 graden theta= $0,0200$ graden, amplitude=-20,3500 dB, fase= $0,048$ graden theta= $0,0200$ graden, amplitude=-20,3500 dB, fase= $0,048$ graden theta= $0,0200$ graden, amplitude=-12,370 dB, fase= $0,048$ graden theta= $0,1000$ graden, amplitude=-12,370 dB, fase= $0,048$ graden theta= $0,1000$ graden, amplitude=-2,497 dB, fase= $0,780$ graden theta= $0,1000$ graden, amplitude=-2,497 dB,	psi = 2.5000	graden.	amplitude=-10.6400 dB.	fase= 14.720	graden						
psi = 7.5000 graden, amplitude= -4.7600 dB, fase= 12.410 graden psi = 4.0000 graden, amplitude= -2.6100 dB, fase= 12.410 graden psi = 5.0000 graden, amplitude= -0.5300 dB, fase= 14.070 graden psi = 5.0000 graden, amplitude= -0.0800 dB, fase= 19.020 graden psi = 5.5000 graden, amplitude= -0.0800 dB, fase= 19.220 graden psi = 5.5000 graden, amplitude= -0.0800 dB, fase= 19.220 graden psi = 5.5000 graden, amplitude= -1.2000 dB, fase= 17.830 graden psi = 5.5000 graden, amplitude= -1.2000 dB, fase= 14.470 graden psi = 7.5000 graden, amplitude= -2.2000 dB, fase= 14.470 graden psi = 8.5000 graden, amplitude= -2.2000 dB, fase= 3.930 graden psi = 8.5000 graden, amplitude= -2.2000 dB, fase= -3.800 graden psi = 5.5000 graden, amplitude= -7.5900 dB, fase= -14.100 graden psi = 9.5000 graden, amplitude= -7.5900 dB, fase= -7.3000 graden psi = 10.0000 graden, amplitude= -7.5900 dB, fase= -7.400 graden psi = 10.0000 graden, amplitude=-12.7700 dB, fase= -70.380 graden psi = 11.5000 graden, amplitude=-12.7700 dB, fase= -70.380 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase=-13.460 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase=-13.460 graden psi = 12.0000 graden, amplitude=-14.8000 dB, fase=-13.460 graden psi = 12.0000 graden, amplitude=-14.8000 dB, fase=-13.440 graden psi = 12.0000 graden, amplitude=-14.5000 dB, fase=-13.440 graden psi = 12.0000 graden, amplitude=-20.3500 dB, fase=-13.440 graden psi = 12.0000 graden, amplitude=-20.3500 dB, fase=-0.005 graden theta= 0.0100 graden, amplitude=-20.3500 dB, fase=-0.021 graden theta= 0.0200 graden, amplitude=-25.783 dB, fase= 0.021 graden theta= 0.0200 graden, amplitude=-12.6755 dB, fase= 0.028 graden theta= 0.0400 graden, amplitude=-12.6755 dB, fase= 0.048 graden theta= 0.0400 graden, amplitude=-12.6755 dB, fase= 0.058 graden theta= 0.1200 graden, amplitude=-14.5218 dB, fase= 0.776 graden theta= 0.1200 graden, amplitude=-5.577 dB, fase= 0.776 graden theta= 0.1200 graden, amplitude=-5.577 dB, fase= 1.247 graden theta= 0.1200 graden, a	psi = 5.0000	graden.	amplitude= -7.7100 dB.	fase= 12.800	araden						
psi = 4,0000 graden, amplitude= -1.5300 dB, fase= 12.410 graden psi = 4.5000 graden, amplitude= -1.5300 dB, fase= 17.080 graden psi = 5.5000 graden, amplitude= -0.5300 dB, fase= 19.220 graden psi = 5.5000 graden, amplitude= -0.0800 dB, fase= 19.220 graden psi = 5.5000 graden, amplitude= -1.2000 dB, fase= 19.220 graden psi = 7.0000 graden, amplitude= -1.2000 dB, fase= 18.920 graden psi = 7.5500 graden, amplitude= -1.2000 dB, fase= 14.470 graden psi = 8.5000 graden, amplitude= -2.5500 dB, fase= 14.470 graden psi = 8.5000 graden, amplitude= -2.5000 dB, fase= -3.800 graden psi = 8.5000 graden, amplitude= -5.9800 dB, fase= -3.800 graden psi = 9.0000 graden, amplitude= -7.5900 dB, fase= -7.800 graden psi = 9.5000 graden, amplitude= -7.5900 dB, fase= -7.400 graden psi = 10.5000 graden, amplitude= -7.5900 dB, fase= -7.400 graden psi = 10.5000 graden, amplitude=-12.7700 dB, fase= -7.460 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase= -7.3800 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase= -7.3800 graden psi = 12.0000 graden, amplitude=-18.1900 dB, fase=-110.800 graden psi = 12.5000 graden, amplitude=-18.4400 dB, fase=-110.800 graden psi = 12.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden psi = 12.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden psi = 12.0000 graden, amplitude=-20.3500 dB, fase=-0.021 graden psi = 0.0200 graden, amplitude=-20.412 dB, fase= 0.021 graden theta= 0.0200 graden, amplitude=-18.875 dB, fase= 0.136 graden theta= 0.0200 graden, amplitude=-18.875 dB, fase= 0.136 graden theta= 0.0200 graden, amplitude=-18.875 dB, fase= 0.136 graden theta= 0.0200 graden, amplitude=-12.673 dB, fase= 0.071 graden theta= 0.0000 graden, amplitude=-12.673 dB, fase= 0.211 graden theta= 0.1000 graden, amplitude=-12.673 dB, fase= 0.136 graden theta= 0.1000 graden, amplitude=-12.673 dB, fase= 0.359 graden theta= 0.1000 graden, amplitude=-12.673 dB, fase= 0.443 graden theta= 0.1000 graden, amplitude=-5.274 dB, fase= 1.673 graden theta= 0.1000 graden, amplitude=-5.274 dB, fase= 1.443 grad	psi = 5.5000	graden.	amplitude= -4.7600 dB.	fase= 12.410	oraden						
psi = 4.5000 graden, amplitude= -1.300 dE, fase= 14.070 graden psi = 5.5000 graden, amplitude= -0.500 dE, fase= 17.080 graden psi = 5.5000 graden, amplitude= -0.0800 dE, fase= 19.220 graden psi = 5.5000 graden, amplitude= -0.5400 dE, fase= 19.220 graden psi = 7.5000 graden, amplitude= -1.2000 dE, fase= 17.820 graden psi = 7.5000 graden, amplitude= -1.2000 dE, fase= 14.450 graden psi = 7.5000 graden, amplitude= -2.2500 dE, fase= 17.820 graden psi = 8.5000 graden, amplitude= -2.2500 dE, fase= -3.800 graden psi = 8.5000 graden, amplitude= -5.2600 dE, fase= -3.800 graden psi = 9.5000 graden, amplitude= -7.5700 dE, fase= -14.100 graden psi = 9.5000 graden, amplitude= -9.3800 dE, fase= -14.100 graden psi = 10.5000 graden, amplitude= -9.3800 dE, fase= -7.460 graden psi = 10.5000 graden, amplitude=-12.7700 dE, fase= -70.380 graden psi = 11.5000 graden, amplitude=-12.7700 dE, fase= -70.380 graden psi = 11.5000 graden, amplitude=-12.7700 dE, fase= -70.380 graden psi = 11.5000 graden, amplitude=-12.7700 dE, fase= -88.130 graden psi = 12.5000 graden, amplitude=-12.7700 dE, fase= -14.460 graden psi = 12.0000 graden, amplitude=-12.7700 dE, fase= -134.440 graden psi = 12.0000 graden, amplitude=-20.3500 dE, fase=-134.440 graden psi = 12.0000 graden, amplitude=-20.3500 dE, fase=-134.440 graden psi = 12.0000 graden, amplitude=-21.5733 dE, fase= 0.021 graden theta= 0.0100 graden, amplitude=-12.873 dE, fase= 0.021 graden theta= 0.0400 graden, amplitude=-25.5733 dE, fase= 0.136 graden theta= 0.0400 graden, amplitude=-12.6835 dE, fase= 0.136 graden theta= 0.0400 graden, amplitude=-12.6835 dE, fase= 0.136 graden theta= 0.0400 graden, amplitude=-15.3807 dE, fase= 0.136 graden theta= 0.0400 graden, amplitude=-12.6937 dE, fase= 0.136 graden theta= 0.1000 graden, amplitude=-5.5119 dE, fase= 0.359 graden theta= 0.1200 graden, amplitude=-5.5254 dE, fase= 0.359 graden theta= 0.1200 graden, amplitude=-5.3254 dE, fase= 1.693 graden theta= 0.1300 graden, amplitude=-5.3254 dE, fase= 1.690 graden theta= 0.1400 graden, amplitude=-5.3254 dE, fase	psi = 4.0000	graden.	amplitude= -2.6100 dB,	fase= 12.410	oraden						
ps1 = 5.0000 graden, amplitude= -0.5300 dE, fase= 17.080 graden ps1 = 5.5000 graden, amplitude= -0.0800 dE, fase= 17.080 graden ps1 = 5.0000 graden, amplitude= -0.0800 dE, fase= 17.830 graden ps1 = 7.5000 graden, amplitude= -1.2000 dE, fase= 17.830 graden ps1 = 7.5000 graden, amplitude= -2.0500 dE, fase= 17.830 graden ps1 = 7.5000 graden, amplitude= -2.0500 dE, fase= 7.830 graden ps1 = 8.5000 graden, amplitude= -3.2000 dE, fase= -3.800 graden ps1 = 9.0000 graden, amplitude= -7.5900 dE, fase= -3.800 graden ps1 = 9.5000 graden, amplitude= -7.5900 dE, fase= -3.800 graden ps1 = 9.5000 graden, amplitude= -7.5900 dE, fase= -24.900 graden ps1 = 10.0000 graden, amplitude=-11.0000 dE, fase= -70.380 graden ps1 = 11.5000 graden, amplitude=-12.7700 dE, fase= -70.380 graden ps1 = 11.5000 graden, amplitude=-16.5000 dE, fase= -70.380 graden ps1 = 12.0000 graden, amplitude=-16.5000 dE, fase=-13.400 graden ps1 = 12.0000 graden, amplitude=-16.5000 dE, fase=-13.400 graden ps1 = 12.0000 graden, amplitude=-20.3500 dE, fase=-134.400 graden ps1 = 12.0000 graden, amplitude=-20.3500 dE, fase=-134.400 graden ps1 = 12.0000 graden, amplitude=-20.3500 dE, fase=-134.400 graden theta= 0.0000 graden, amplitude=-20.3500 dE, fase=-134.400 graden theta= 0.0000 graden, amplitude=-20.3500 dE, fase=-0.051 graden theta= 0.0000 graden, amplitude=-20.3500 dE, fase=-0.051 graden theta= 0.0000 graden, amplitude=-20.3500 dE, fase=-0.021 graden theta= 0.0100 graden, amplitude=-20.424 dE, fase= 0.021 graden theta= 0.0200 graden, amplitude=-2.5783 dE, fase= 0.048 graden theta= 0.0200 graden, amplitude=-2.57783 dE, fase= 0.375 graden theta= 0.0200 graden, amplitude=-2.57783 dE, fase= 0.375 graden theta= 0.1200 graden, amplitude=-2.57783 dE, fase= 0.375 graden theta= 0.1300 graden, amplitude=-2.525 dE, fase= 0.375 graden theta= 0.1000 graden, amplitude=-5.6673 dB, fase= 0.376 graden theta= 0.1300 graden, amplitude=-5.2772 dB, fase= 1.633 graden theta= 0.1400 graden, amplitude=-5.2054 dB, fase= 1.6893 graden theta= 0.1400 graden, amplitude=-5.6778 dB, fase= 1	psi = 4.5000	graden.	amplitude= -1.3300 dB.	fase= 14.070	oraden						
psi = 5.5000 graden, amplitude= -0.0000 dB, fase= 19.030 graden psi = 5.5000 graden, amplitude= -0.0000 dB, fase= 19.200 graden psi = 7.0000 graden, amplitude= -1.2000 dB, fase= 11.830 graden psi = 7.0000 graden, amplitude= -1.2000 dB, fase= 11.830 graden psi = 7.0000 graden, amplitude= -2.0500 dB, fase= 14.490 graden psi = 8.5000 graden, amplitude= -5.2000 dB, fase= 7.3000 graden psi = 9.0000 graden, amplitude= -5.900 dB, fase= -3.800 graden psi = 9.0000 graden, amplitude= -7.5900 dB, fase= -3.800 graden psi = 9.0000 graden, amplitude= -7.5900 dB, fase= -14.100 graden psi = 10.9000 graden, amplitude=-11.0000 dB, fase= -27.460 graden psi = 10.5000 graden, amplitude=-11.0000 dB, fase= -53.700 graden psi = 11.5000 graden, amplitude=-12.7700 dB, fase= -53.700 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 11.5000 graden, amplitude=-16.5000 dB, fase= -14.100 graden psi = 12.5000 graden, amplitude=-16.900 dB, fase= -14.100 graden psi = 12.5000 graden, amplitude=-16.5000 dB, fase=-164.9657 dB theta= 0.0000 graden, amplitude=-20.3500 dB, fase=-164.9657 dB theta= 0.0100 graden, amplitude=-27.5783 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-27.5783 dB, fase= 0.024 graden theta= 0.0000 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-25.573 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-25.573 dB, fase= 0.136 graden theta= 0.1000 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta= 0.1000 graden, amplitude=-25.573 dB, fase= 0.360 graden theta= 0.1000 graden, amplitude=-12.6835 dB, fase= 0.376 graden theta= 0.1000 graden, amplitude=-5.5119 dB, fase= 0.360 graden theta= 0.1200 graden, amplitude=-5.5274 dB, fase= 1.693 graden theta= 0.1200 graden, amplitude=-	psi = 5.0000	graden.	amplitude= -0.5300 dB.	fase= 17.080	graden						
psi = 0.0000 graden, amplitude= -0.0800 dB, fase= 19.220 graden psi = 0.5000 graden, amplitude= -0.500 dB, fase= 17.830 graden psi = 7.5000 graden, amplitude= -1.000 dB, fase= 17.830 graden psi = 8.5000 graden, amplitude= -2.0500 dB, fase= 9.520 graden psi = 8.5000 graden, amplitude= -3.0500 dB, fase= 9.520 graden psi = 8.5000 graden, amplitude= -5.9800 dB, fase= -3.800 graden psi = 9.5000 graden, amplitude= -5.9800 dB, fase= -14.100 graden psi = 9.5000 graden, amplitude= -10.0600 dB, fase= -70.080 graden psi = 10.5000 graden, amplitude=-12.700 dB, fase= -77.460 graden psi = 11.5000 graden, amplitude=-12.700 dB, fase= -77.460 graden psi = 11.5000 graden, amplitude=-14.700 dB, fase= -70.380 graden psi = 11.5000 graden, amplitude=-16.5000 dB, fase= -70.380 graden psi = 11.5000 graden, amplitude=-16.5000 dB, fase=-134.440 graden psi = 12.0000 graden, amplitude=-16.5000 dB, fase=-134.440 graden psi = 12.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden psi = 12.0000 graden, amplitude=-20.3500 dB, fase=-0.021 graden theta= 0.0000 graden, amplitude=-20.3500 dB, fase=-0.021 graden theta= 0.0000 graden, amplitude=-23.5783 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-18.8756 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-10.5668 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-10.5668 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-10.5668 dB, fase= 0.359 graden theta= 0.0000 graden, amplitude=-15.5178 dB, fase= 0.136 graden theta= 0.1000 graden, amplitude=-5.5119 dB, fase= 0.708 graden theta= 0.1100 graden, amplitude=-5.5119 dB, fase= 1.224 graden theta= 0.1100 graden, amplitude=-5.3254 dB, fase= 1.224 graden theta= 0.1100 graden, amplitude=-5.3274 dB, fase= 1.224 graden theta= 0.1100 graden, amplitude=-5.3772 dB, fase= 1.224 graden theta= 0.1100 graden, amplitude=-5.3772 dB, fase= 1.224 graden theta= 0.1100 graden, amplitude=-5.3772 dB, fase= 1.224 graden theta= 0.1100 graden, amplitude=-7.4710 dB, fase= 1.224 graden theta= 0.1200 graden, amplit	psi = 5.5000	graden,	amplitude= -0.0600 dB.	fase= 19.030	graden						
psi = 5.5000 graden, amplitude= -0.5400 dB, fase= 18.920 graden psi = 7.0000 graden, amplitude= -1.2000 dB, fase= 17.830 graden psi = 7.5000 graden, amplitude= -2.0500 dB, fase= 14.470 graden psi = 8.5000 graden, amplitude= -4.6200 dB, fase= 3.930 graden psi = 8.5000 graden, amplitude= -4.6200 dB, fase= -3.800 graden psi = 5.0000 graden, amplitude= -7.5900 dB, fase= -14.100 graden psi = 9.5000 graden, amplitude= -9.3800 dB, fase= -24.900 graden psi = 10.0000 graden, amplitude=-10.000 dB, fase= -70.380 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude=-16.1900 dB, fase=-110.800 graden psi = 12.0000 graden, amplitude=-20.3500 dB, fase=-110.800 graden psi = 12.0000 graden, amplitude=-20.3500 dB, fase=-10.680 graden psi = 13.0000 graden, amplitude=-20.3500 dB, fase=-10.680 graden theta= 0.0000 graden, amplitude=-20.3500 dB, fase=-0.005 graden theta= 0.0000 graden, amplitude=-20.3500 dB, fase=-0.021 graden theta= 0.0000 graden, amplitude=-20.3500 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-12.6835 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-12.6837 dB, fase= 0.359 graden theta= 0.0000 graden, amplitude=-12.6837 dB, fase= 0.359 graden theta= 0.1000 graden, amplitude=-5.5119 dB, fase= 0.359 graden theta= 0.1000 graden, amplitude=-5.5127 dB, fase= 1.224 graden theta= 0.1000 graden, amplitude=-5.5127 dB, fase= 1.224 graden theta= 0.1000 graden, amplitude=-5.5127 dB, fase= 1.224 graden theta= 0.1000 graden, amplitude=-5.6473 dB, fase= 1.224 graden theta= 0.1400 graden, amplitude=-5.2254 dB, fase= 1.224 graden theta= 0.1400 graden, amplitude=-5.772 dB, fase= 1.243 graden theta= 0.1400 graden, amplitu	psi = 6.0000	graden.	amplitude= -0.0800 dB.	fase= 19.220	graden						
psi = 7.0000 graden, amplitude= -1.2000 dB, fase= 17.830 graden psi = 7.5000 graden, amplitude= -2.0500 dB, fase= 14.490 graden psi = 8.5000 graden, amplitude= -4.5200 dB, fase= 14.490 graden psi = 8.5000 graden, amplitude= -4.5200 dB, fase= -3.800 graden psi = 9.5000 graden, amplitude= -5.9800 dB, fase= -14.100 graden psi = 9.5000 graden, amplitude= -9.3800 dB, fase= -14.100 graden psi = 10.0000 graden, amplitude= -9.3800 dB, fase= -24.900 graden psi = 10.5000 graden, amplitude=-12.7700 dB, fase= -53.700 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 12.5000 graden, amplitude=-18.1900 dB, fase= -70.380 graden psi = 12.5000 graden, amplitude=-18.1900 dB, fase=-134.440 graden psi = 12.5000 graden, amplitude=-20.3500 dB, fase=-134.440 graden psi = 13.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden psi = 13.0000 graden, amplitude=-20.3500 dB, fase=-0.021 graden theta= 0.0000 graden, amplitude=-23.5783 dB, fase= 0.005 graden theta= 0.0000 graden, amplitude=-23.5783 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-23.5783 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-15.568 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-15.568 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-16.656 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-12.6635 dB, fase= 0.576 graden theta= 0.0000 graden, amplitude=-12.6437 dB, fase= 0.576 graden theta= 0.1000 graden, amplitude=-5.5117 dB, fase= 0.768 graden theta= 0.1100 graden, amplitude= -5.5127 dB, fase= 1.224 graden theta= 0.1400 graden, amplitude= -5.5127 dB, fase= 1.224 graden theta= 0.1400 graden, amplitude= -5.2254 dB, fase= 1.224 graden theta= 0.1400 graden, amplitude= -5.4477 dB, fase= 1.224 graden theta= 0.1400 graden, amplitude= -5.4477 dB, fase= 1.248 graden theta= 0.1400 graden, amplitude= -6.9779 dB, fase= 1.249 graden theta= 0.1400 graden, amplitude= -6.779 dB, fase= 1.780 graden theta= 0.1400 graden, amplitude= -1.2025 dB, fas	psi = 6.5000	graden.	amplitude= -0.5400 dB.	fase= 18.920	graden						
psi = 7.5000 graden, amplitude= -2.0500 dB, fase= 14.490 graden psi = 8.5000 graden, amplitude= -3.2000 dB, fase= 9.520 graden psi = 8.5000 graden, amplitude= -4.5200 dB, fase= -3.800 graden psi = 9.5000 graden, amplitude= -7.5900 dB, fase= -4.900 graden psi = 9.5000 graden, amplitude= -9.3800 dB, fase= -24.900 graden psi = 10.5000 graden, amplitude=-11.0000 dB, fase= -24.900 graden psi = 11.0000 graden, amplitude=-12.7700 dB, fase= -70.380 graden psi = 11.5000 graden, amplitude=-12.7700 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude=-16.5000 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude=-16.5000 dB, fase=-70.380 graden psi = 12.0000 graden, amplitude=-18.1900 dB, fase=-110.880 graden psi = 12.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden psi = 13.0000 graden, amplitude=-2.5500 dB, fase=-134.440 graden theta= 0.0000 graden, amplitude=-2.5783 dB, fase= 0.005 graden theta= 0.0000 graden, amplitude=-2.5783 dB, fase= 0.0021 graden theta= 0.0000 graden, amplitude=-15.3807 dB, fase= 0.048 graden theta= 0.0000 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta= 0.0500 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta= 0.0500 graden, amplitude=-12.6835 dB, fase= 0.198 graden theta= 0.0500 graden, amplitude=-12.6835 dB, fase= 0.271 graden theta= 0.0600 graden, amplitude=-12.6835 dB, fase= 0.359 graden theta= 0.1000 graden, amplitude=-5.5119 dB, fase= 0.576 graden theta= 0.1000 graden, amplitude=-5.319 dB, fase= 0.576 graden theta= 0.1100 graden, amplitude=-5.3254 dB, fase= 1.030 graden theta= 0.1200 graden, amplitude=-5.3274 dB, fase= 1.224 graden theta= 0.1400 graden, amplitude=-5.3772 dB, fase= 1.693 graden theta= 0.1400 graden, amplitude=-5.379 graden theta= 0.1400 graden, amplitude=-5.379 graden theta= 0.1400 graden, amplitude=-5.3774 dB, fase= 1.433 graden theta= 0.1400 graden, amplitude=-5.3774 dB, fase= 1.693 graden theta= 0.1400 graden, amplitude=-5.3774 dB, fase= 1.693 graden theta= 0.1400 graden, ampli	psi = 7,0000	graden.	amplitude= -1.2000 dB.	fase= 17.830	graden						
psi = 6.0000 graden, amplitude= -3.2600 dB, fase= 9.520 graden psi = 8.5000 graden, amplitude= -4.6200 dB, fase= 3.930 graden psi = 9.5000 graden, amplitude= -5.9800 dB, fase= -3.800 graden psi = 9.5000 graden, amplitude= -7.5900 dB, fase= -14.100 graden psi = 10.0000 graden, amplitude=-10.000 dB, fase= -7.460 graden psi = 11.5000 graden, amplitude=-11.0000 dB, fase= -7.300 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 12.5000 graden, amplitude=-16.5000 dB, fase= -70.380 graden psi = 12.5000 graden, amplitude=-16.5000 dB, fase= -70.380 graden psi = 12.5000 graden, amplitude=-16.5000 dB, fase=-110.800 graden psi = 12.5000 graden, amplitude=-20.3500 dB, fase=-110.800 graden psi = 13.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden psi = 13.0000 graden, amplitude=-20.3500 dB, fase=-10.880 graden theta= 0.0000 graden, amplitude=-23.5783 dB, fase= 0.001 graden theta= 0.0000 graden, amplitude=-23.5783 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-15.3807 dB, fase= 0.0136 graden theta= 0.0000 graden, amplitude=-15.3807 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-15.3807 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-15.5807 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-15.5807 dB, fase= 0.136 graden theta= 0.0000 graden, amplitude=-15.6683 dB, fase= 0.271 graden theta= 0.0000 graden, amplitude=-15.519 dB, fase= 0.271 graden theta= 0.0000 graden, amplitude=-16.6352 dB, fase= 0.576 graden theta= 0.1000 graden, amplitude=-5.5119 dB, fase= 0.576 graden theta= 0.1000 graden, amplitude= -5.6673 dB, fase= 1.643 graden theta= 0.1000 graden, amplitude= -5.6673 dB, fase= 1.623 graden theta= 0.1100 graden, amplitude= -5.3254 dB, fase= 1.623 graden theta= 0.1100 graden, amplitude= -6.6352 dB, fase= 1.623 graden theta= 0.1100 graden, amplitude= -6.6372 dB, fase= 1.643 graden theta= 0.1100 graden, amplitude= -6.0798 dB, fase= 1.693 graden theta= 0.1100 graden, amplitude= -6.6372 dB, fase= 1.693 graden theta= 0.1200 graden, amplitude= -6.0798 dB, fase	psi = 7.5000	graden,	amplitude= -2.0500 dB.	fase= 14.490	graden						
psi = 8.5000 graden, amplitude= -4.5200 dB, fase= 3.930 graden psi = 9.0000 graden, amplitude= -5.9800 dB, fase= -14.100 graden psi = 0.5000 graden, amplitude= -7.5900 dB, fase= -14.100 graden psi = 10.0000 graden, amplitude=-11.0000 dB, fase= -73.460 graden psi = 11.0000 graden, amplitude=-12.700 dB, fase= -70.380 graden psi = 11.0000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 11.0000 graden, amplitude=-16.5000 dB, fase= -88.130 graden psi = 12.0000 graden, amplitude=-16.5000 dB, fase=-10.880 graden psi = 12.0000 graden, amplitude=-20.3500 dB, fase=-110.880 graden psi = 13.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden psi = 13.0000 graden, amplitude=-20.3500 dB, fase=-0.055 graden theta= 0.0000 graden, amplitude=-20.3500 dB, fase=-0.055 graden theta= 0.0000 graden, amplitude=-20.5783 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-25.5783 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-15.8077 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-15.8077 dB, fase= 0.008 graden theta= 0.0000 graden, amplitude=-10.5668 dB, fase= 0.021 graden theta= 0.0000 graden, amplitude=-10.5668 dB, fase= 0.359 graden theta= 0.0000 graden, amplitude=-10.5668 dB, fase= 0.359 graden theta= 0.0000 graden, amplitude=-10.5668 dB, fase= 0.71 graden theta= 0.1000 graden, amplitude=-10.5668 dB, fase= 0.721 graden theta= 0.1000 graden, amplitude= -5.3274 dB, fase= 0.359 graden theta= 0.1000 graden, amplitude= -5.3254 dB, fase= 0.768 graden theta= 0.1000 graden, amplitude= -5.3254 dB, fase= 1.030 graden theta= 0.1300 graden, amplitude= -5.3254 dB, fase= 1.224 graden theta= 0.1400 graden, amplitude= -5.3254 dB, fase= 1.443 graden theta= 0.1400 graden, amplitude= -6.9024 dB, fase= 1.693 graden theta= 0.1400 graden, amplitude= -6.7028 dB, fase= 1.693 graden theta= 0.1600 graden, amplitude= -6.7028 dB, fase= 1.693 graden theta= 0.1700 graden, amplitude= -6.7028 dB, fase= 1.693 graden theta= $0.$	$p_{s1} = 8.0000$	graden.	amplitude= ~3.2600 dB.	fase= 9.520	graden						
psi = 5.0000 graden, amplitude= -5.9800 dB, fase= -3.800 graden psi = 9.5000 graden, amplitude= -7.3800 dB, fase= -14.100 graden psi = 10.9000 graden, amplitude= -7.3800 dB, fase= -14.100 graden psi = 11.5000 graden, amplitude= -11.0000 dB, fase= -37.460 graden psi = 11.5000 graden, amplitude= -14.8000 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude= -14.8000 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude= -16.5000 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude= -16.5000 dB, fase= -134.440 graden psi = 12.0000 graden, amplitude= -20.3500 dB, fase= -134.440 graden psi = 13.0000 graden, amplitude= -2.3500 dB, fase= -134.440 graden theta= 0.0000 graden, amplitude= -2.580 dB, fase= -0.050 graden theta= 0.0000 graden, amplitude= -2.5820 dB, fase= -0.050 graden theta= 0.0000 graden, amplitude= -2.5820 dB, fase= -0.021 graden theta= 0.0200 graden, amplitude= -15.3783 dB, fase= -0.048 graden theta= 0.0400 graden, amplitude= -15.3807 dB, fase= -0.136 graden theta= 0.0000 graden, amplitude= -12.6835 dB, fase= -0.136 graden theta= 0.0000 graden, amplitude= -12.6352 dB, fase= -0.271 graden theta= 0.0000 graden, amplitude= -12.6352 dB, fase= -0.271 graden theta= 0.0700 graden, amplitude= -12.6352 dB, fase= -0.576 graden theta= 0.1000 graden, amplitude= -5.5119 dB, fase= -0.576 graden theta= 0.1000 graden, amplitude= -5.5273 dB, fase= -0.708 graden theta= 0.1100 graden, amplitude= -5.5273 dB, fase= -0.708 graden theta= 0.1100 graden, amplitude= -5.5273 dB, fase= -0.708 graden theta= 0.1100 graden, amplitude= -5.5273 dB, fase= -1.224 graden theta= 0.1100 graden, amplitude= -5.2797 dB, fase= -1.224 graden theta= 0.1400 graden, amplitude= -6.9077 dB, fase= -1.224 graden theta= 0.1700 graden, amplitude= -6.9077 dB, fase= -1.224 graden theta= 0.1700 graden, amplitude= -6.9077 dB, fase= -1.224 graden theta= 0.1700 graden, amplitude= -6.7978 dB, fase= -1.673 graden theta= 0.170	pei = 8.5 000	graden.	amplitude= ~4.6200 dB.	fase= 3.930	graden						
$p_{31} = 9.5000 \text{ graden, amplitude=} -7.5900 \text{ dB, fase=} -14.100 \text{ graden} \\ p_{31} = 10.0000 \text{ graden, amplitude=} -9.3800 \text{ dB, fase=} -24.900 \text{ graden} \\ p_{31} = 11.5000 \text{ graden, amplitude=} 11.0000 \text{ dB, fase=} -70.380 \text{ graden} \\ p_{31} = 11.5000 \text{ graden, amplitude=} 14.8000 \text{ dB, fase=} -70.380 \text{ graden} \\ p_{31} = 12.0000 \text{ graden, amplitude=} 14.8000 \text{ dB, fase=} -70.380 \text{ graden} \\ p_{31} = 12.5000 \text{ graden, amplitude=} 16.1900 \text{ dB, fase=} -134.440 \text{ graden} \\ p_{31} = 12.5000 \text{ graden, amplitude=} 20.3500 \text{ dB, fase=} -134.440 \text{ graden} \\ p_{31} = 12.0000 \text{ graden, amplitude=} 20.3500 \text{ dB, fase=} -134.440 \text{ graden} \\ p_{31} = 12.0000 \text{ graden, amplitude=} -20.3500 \text{ dB, fase=} -134.440 \text{ graden} \\ \text{Het} (\text{genormeerde}) \text{ vermogen door het apertuurvlak} = -64.9657 \text{ dB} \\ \text{theta=} 0.0000 \text{ graden, amplitude=} -20.3500 \text{ dB, fase=} 0.005 \text{ graden} \\ \text{theta=} 0.0200 \text{ graden, amplitude=} -25.5783 \text{ dB, fase=} 0.008 \text{ graden} \\ \text{theta=} 0.0200 \text{ graden, amplitude=} -12.5783 \text{ dB, fase=} 0.008 \text{ graden} \\ \text{theta=} 0.0500 \text{ graden, amplitude=} -18.8756 \text{ dB, fase=} 0.048 \text{ graden} \\ \text{theta=} 0.0500 \text{ graden, amplitude=} -10.5868 \text{ dB, fase=} 0.136 \text{ graden} \\ \text{theta=} 0.0500 \text{ graden, amplitude=} -10.5868 \text{ dB, fase=} 0.136 \text{ graden} \\ \text{theta=} 0.0600 \text{ graden, amplitude=} -10.5868 \text{ dB, fase=} 0.460 \text{ graden} \\ \text{theta=} 0.0800 \text{ graden, amplitude=} -10.568 \text{ dB, fase=} 0.460 \text{ graden} \\ \text{theta=} 0.0900 \text{ graden, amplitude=} -5.9437 \text{ dB, fase=} 0.460 \text{ graden} \\ \text{theta=} 0.1200 \text{ graden, amplitude=} -5.3224 \text{ dB, fase=} 1.030 \text{ graden} \\ \text{theta=} 0.1200 \text{ graden, amplitude=} -5.3224 \text{ dB, fase=} 1.673 \text{ graden} \\ \text{theta=} 0.1300 \text{ graden, amplitude=} -5.3254 \text{ dB, fase=} 1.633 \text{ graden} \\ \text{theta=} 0.1300 \text{ graden, amplitude=} -6.2025 \text{ dB, fase=} 1.643 \text{ graden} \\ \text{theta=} 0.1700 \text{ graden, amplitude=} -6.9079 \text{ dB, fase=} 1.443 \text{ graden} \\ \text{theta=} 0.1800 \text{ graden, amplitude=} -6.9079 \text{ dB, fase=} 1.673 gr$	psi = 7.0000	graden.	amplitude= -5.9800 dB.	fase= -3.800	graden						
psi = 10.0000 graden, amplitude= -9.3800 dB, fase= -24.900 graden psi = 10.5000 graden, amplitude=-11.0000 dB, fase= -37.460 graden psi = 11.5000 graden, amplitude=-12.7700 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 12.5000 graden, amplitude=-16.5000 dB, fase= -70.380 graden psi = 12.5000 graden, amplitude=-16.900 dB, fase=-110.880 graden psi = 13.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden theta= 0.0000 graden, amplitude=-20.3500 dB, fase=-0.005 graden theta= 0.0000 graden, amplitude=-20.3500 dB, fase= 0.005 graden theta= 0.0000 graden, amplitude=-20.75783 dB, fase= 0.001 graden theta= 0.0200 graden, amplitude=-30.4124 dB, fase= 0.021 graden theta= 0.0200 graden, amplitude=-20.5783 dB, fase= 0.048 graden theta= 0.0400 graden, amplitude=-18.8756 dB, fase= 0.048 graden theta= 0.0400 graden, amplitude=-18.8756 dB, fase= 0.136 graden theta= 0.0400 graden, amplitude=-10.5648 dB, fase= 0.178 graden theta= 0.0400 graden, amplitude=-10.5648 dB, fase= 0.271 graden theta= 0.0700 graden, amplitude=-7.6096 dB, fase= 0.768 graden theta= 0.1000 graden, amplitude=-5.3119 dB, fase= 0.768 graden theta= 0.1100 graden, amplitude=-5.3119 dB, fase= 1.030 graden theta= 0.1200 graden, amplitude=-5.3254 dB, fase= 1.030 graden theta= 0.1300 graden, amplitude=-5.3254 dB, fase= 1.224 graden theta= 0.1100 graden, amplitude=-5.3119 dB, fase= 1.433 graden theta= 0.1200 graden, amplitude=-5.3119 dB, fase= 1.433 graden theta= 0.1700 graden, amplitude=-5.3254 dB, fase= 1.433 graden theta= 0.1700 graden, amplitude=-6.9779 dB, fase= 1.433 graden theta= 0.1700 graden, amplitude=-6.9779 dB, fase= 1.704 graden theta= 0.1700 graden, amplitude=-6.9779 dB, fase= 1.433 graden theta= 0.1700 graden, amplitude=-6.9779 dB, fase= 1.704 graden theta= 0.1900 graden, amplitude=-6.9779 dB, fase= 1.704 graden theta= 0.1900 graden, amplitude=-13.6336 dB, fase= 3.776 graden theta= 0.2000 graden, amplitude=-11.3016 dB, fase= 3.776 graden	$p_{31} = 9.5000$	graden.	amplitude≠ ~7.5900 dB.	fase= -14.100	graden						
psi = 10.5000 graden, amplitude=-11.0000 dB, fase= -37.460 graden psi = 11.0000 graden, amplitude=-12.7700 dB, fase= -70.380 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude=-16.5000 dB, fase=-110.880 graden psi = 12.0000 graden, amplitude=-18.1900 dB, fase=-110.880 graden psi = 13.0000 graden, amplitude=-20.3500 dB, fase=-110.880 graden theta= 0.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden theta= 0.0000 graden, amplitude=-20.3500 dB, fase=-0.005 graden theta= 0.0000 graden, amplitude=-20.3500 dB, fase=-0.005 graden theta= 0.0100 graden, amplitude=-20.35783 dB, fase= 0.001 graden theta= 0.0200 graden, amplitude=-20.4124 dB, fase= 0.021 graden theta= 0.0300 graden, amplitude=-20.5783 dB, fase= 0.048 graden theta= 0.0500 graden, amplitude=-18.8756 dB, fase= 0.136 graden theta= 0.0500 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta= 0.0500 graden, amplitude=-10.5668 dB, fase= 0.359 graden theta= 0.0800 graden, amplitude=-10.5668 dB, fase= 0.359 graden theta= 0.1000 graden, amplitude=-6.0522 dB, fase= 0.460 graden theta= 0.1000 graden, amplitude=-5.5119 dB, fase= 0.708 graden theta= 0.1200 graden, amplitude=-5.5119 dB, fase= 1.030 graden theta= 0.1200 graden, amplitude=-5.3772 dB, fase= 1.030 graden theta= 0.1400 graden, amplitude=-5.3772 dB, fase= 1.224 graden theta= 0.1400 graden, amplitude=-5.3772 dB, fase= 1.231 graden theta= 0.1400 graden, amplitude=-5.3772 dB, fase= 1.030 graden theta= 0.1400 graden, amplitude=-5.3772 dB, fase= 1.030 graden theta= 0.1400 graden, amplitude=-5.3772 dB, fase= 1.673 graden theta= 0.1400 graden, amplitude=-6.9778 dB, fase= 1.673 graden theta= 0.1400 graden, amplitude=-6.9778 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude=-11.3016 dB, fase= 3.776 grad	$p_{\pm 1} = 10.0000$	graden.	amplitude= -9.3800 dB.	fase = -24.900	graden						
psi = 11.5000 graden, amplitude=-12.7700 dB, fase= -33.700 graden psi = 11.5000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude=-14.5000 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude=-18.1900 dB, fase=-10.880 graden psi = 12.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden theta= 0.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden theta= 0.0000 graden, amplitude=-20.3500 dB, fase= graden theta= 0.0000 graden, amplitude=-42.3282 dB, fase= 0.005 graden theta= 0.0000 graden, amplitude=-42.3282 dB, fase= 0.005 graden theta= 0.0000 graden, amplitude=-20.5783 dB, fase= 0.048 graden theta= 0.0300 graden, amplitude=-18.8756 dB, fase= 0.048 graden theta= 0.0500 graden, amplitude=-13.5807 dB, fase= 0.136 graden theta= 0.0500 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta= 0.0500 graden, amplitude=-10.5668 dB, fase= 0.178 graden theta= 0.0700 graden, amplitude=-10.5668 dB, fase= 0.379 graden theta= 0.0700 graden, amplitude=-10.5668 dB, fase= 0.576 graden theta= 0.1000 graden, amplitude= -5.9437 dB, fase= 0.708 graden theta= 0.1100 graden, amplitude= -5.3119 dB, fase= 0.708 graden theta= 0.1200 graden, amplitude= -5.3254 dB, fase= 1.030 graden theta= 0.1200 graden, amplitude= -5.3272 dB, fase= 1.030 graden theta= 0.1200 graden, amplitude= -5.3277 dB, fase= 1.030 graden theta= 0.1300 graden, amplitude= -6.40797 dB, fase= 1.224 graden theta= 0.1400 graden, amplitude= -6.9779 dB, fase= 1.224 graden theta= 0.1700 graden, amplitude= -6.9779 dB, fase= 1.224 graden theta= 0.1700 graden, amplitude= -6.9778 dB, fase= 1.980 graden theta= 0.1700 graden, amplitude= -6.9778 dB, fase= 1.980 graden theta= 0.1900 graden, amplitude= -6.9778 dB, fase= 1.980 graden theta= 0.1900 graden, amplitude= -1.3016 dB, fase= 3.178 graden theta= 0.2000 graden, amplitude= -13.6336 dB, fase= 3.776 graden theta= 0.2000 graden, amplitude= -14.7218 dB, fase= 3.776 graden	psi = 10.5000	graden.	amplitude=-11.0000 dB,	fase= -37.460	graden						
psi = 11.3000 graden, amplitude=-14.8000 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude=-16.5000 dB, fase= -70.380 graden psi = 12.0000 graden, amplitude=-18.1900 dB, fase= -10.880 graden psi = 13.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden Het (genormeerde) vermogen door het apertuurvlak = -64.9657 dB theta= 0.0000 graden, amplitude=-20.3500 dB, fase=	psi = 11.0000	graden.	amplitude=+12.7700 dB.	tase= -53.700	graden						
per = 12.0000 graden, amplitude=-18.0000 dB, fase=-110.880 graden psi = 12.5000 graden, amplitude=-18.1900 dB, fase=-110.880 graden psi = 13.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden Het (genormeerde) vermogen door het apertuurvlak = -64.9657 dB theta= 0.0000 graden, amplitude=-20.3500 dB, fase=	psi = 11.3000	graden.	amplitude=~14.8000 dB.	tase= -70.380	graden						
Psi = 12.0000 graden, amplitude=-18.1900 dB, fase=-110.880 graden psi = 13.0000 graden, amplitude=-20.3500 dB, fase=-134.440 graden Het (genormeerde) vermogen door het apertuurvlak = -64.9657 dB theta= 0.0000 graden, amplitude=1	pei = 12.0000	graden.	amplitude=-18.3000 dB.	tase= -88.130	graden						
Het (genormeerde) vermogen door het apertuurvlak = -64.9657 dB theta= 0.0000 graden, amplitude=-20.3000 dB, fase=-134.440 graden theta= 0.0000 graden, amplitude=-20.3282 dB, fase= 0.005 graden theta= 0.0200 graden, amplitude=-42.3282 dB, fase= 0.005 graden theta= 0.0200 graden, amplitude=-30.4124 dB, fase= 0.021 graden theta= 0.0300 graden, amplitude=-23.5783 dB, fase= 0.048 graden theta= 0.0400 graden, amplitude=-18.8756 dB, fase= 0.086 graden theta= 0.0500 graden, amplitude=-18.8756 dB, fase= 0.136 graden theta= 0.0500 graden, amplitude=-12.6835 dB, fase= 0.138 graden theta= 0.0600 graden, amplitude=-12.6835 dB, fase= 0.271 graden theta= 0.0700 graden, amplitude=-10.5668 dB, fase= 0.271 graden theta= 0.0700 graden, amplitude=-7.6096 dB, fase= 0.460 graden theta= 0.0900 graden, amplitude= -5.9437 dB, fase= 0.460 graden theta= 0.1000 graden, amplitude= -5.9437 dB, fase= 0.708 graden theta= 0.1200 graden, amplitude= -5.3119 dB, fase= 1.030 graden theta= 0.1300 graden, amplitude= -5.3254 dB, fase= 1.030 graden theta= 0.1400 graden, amplitude= -5.3254 dB, fase= 1.224 graden theta= 0.1400 graden, amplitude= -6.9779 dB, fase= 1.443 graden theta= 0.1700 graden, amplitude= -6.9779 dB, fase= 1.274 graden theta= 0.1700 graden, amplitude= -6.9779 dB, fase= 1.693 graden theta= 0.1800 graden, amplitude= -4.9078 dB, fase= 1.693 graden theta= 0.1900 graden, amplitude= -7.4710 dB, fase= 1.693 graden theta= 0.1900 graden, amplitude= -7.4710 dB, fase= 3.776 graden theta= 0.2000 graden, amplitude=-11.301 dB, fase= 3.776 graden theta= 0.2000 graden, amplitude=-11.301 dB, fase= 3.776 graden	$p_{51} = 12.0000$	graden.	amplitude=-18.1900 dB.	fase=-110.880	graden						
Het (genormeerde) vermogen door het apertuurvlak = -64.9657 dB theta= 0.0000 graden, amplitude=dB, fase=	her ~ 12.0000	graden.	amp11000@0.0000 0B,	7856124.440	graden						
theta= 0.0000 graden, amplitude= dB, fase=	Het (Jenormeer	de) verm	noen door bet apertuury	1ak = -64.9657	dB						
theta 0.0100 graden, amplitude=-42.3282 dB, fase= 0.005 graden theta 0.0200 graden, amplitude=-30.4124 dB, fase= 0.021 graden theta 0.0300 graden, amplitude=-23.5783 dB, fase= 0.048 graden theta 0.0400 graden, amplitude=-18.8756 dB, fase= 0.086 graden theta 0.0500 graden, amplitude=-18.8756 dB, fase= 0.136 graden theta 0.0500 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta 0.0600 graden, amplitude=-12.6835 dB, fase= 0.178 graden theta 0.0700 graden, amplitude=-10.5668 dB, fase= 0.271 graden theta 0.0800 graden, amplitude=-7.6096 dB, fase= 0.359 graden theta 0.0900 graden, amplitude=-7.4096 dB, fase= 0.460 graden theta 0.1000 graden, amplitude= -5.9437 dB, fase= 0.768 graden theta 0.1000 graden, amplitude= -5.9437 dB, fase= 0.708 graden theta 0.1200 graden, amplitude= -5.9437 dB, fase= 1.030 graden theta 0.1200 graden, amplitude= -5.3254 dB, fase= 1.030 graden theta 0.1300 graden, amplitude= -5.3772 dB, fase= 1.443 graden theta 0.1400 graden, amplitude= -5.6473 dB, fase= 1.443 graden theta 0.1600 graden, amplitude= -6.6979 dB, fase= 1.693 graden theta 0.1700 graden, amplitude= -6.9797 dB, fase= 1.443 graden theta 0.1700 graden, amplitude= -8.0798 dB, fase= 2.313 graden theta 0.1800 graden, amplitude= -9.4910 dB, fase= 3.178 graden theta 0.2000 graden, amplitude= -11.3016 dB, fase= 3.776 graden	theta= 0.0000	araden.	amplitude= dB.	fase=	oraden						
theta 0.0200 graden, amplitude=-30.4124 dB, fase= 0.021 graden theta 0.0200 graden, amplitude=-30.4124 dB, fase= 0.021 graden theta 0.0300 graden, amplitude=-15.5783 dB, fase= 0.048 graden theta 0.0400 graden, amplitude=-18.8756 dB, fase= 0.086 graden theta 0.0500 graden, amplitude=-15.3807 dB, fase= 0.136 graden theta 0.0600 graden, amplitude=-12.6835 dB, fase= 0.178 graden theta 0.0700 graden, amplitude=-10.5668 dB, fase= 0.271 graden theta 0.0800 graden, amplitude=-10.5668 dB, fase= 0.359 graden theta 0.0900 graden, amplitude=-7.4096 dB, fase= 0.359 graden theta 0.1000 graden, amplitude= -6.6352 dB, fase= 0.708 graden theta 0.1000 graden, amplitude= -5.9437 dB, fase= 0.708 graden theta 0.1100 graden, amplitude= -5.5119 dB, fase= 0.859 graden theta 0.1200 graden, amplitude= -5.3254 dB, fase= 1.030 graden theta 0.1400 graden, amplitude= -5.6673 dB, fase= 1.443 graden theta 0.1500 graden, amplitude= -6.2025 dB, fase= 1.443 graden theta 0.1500 graden, amplitude= -6.9779 dB, fase= 1.493 graden theta 0.1700 graden, amplitude= -6.9778 dB, fase= 2.313 graden theta 0.1900 graden, amplitude= -7.4010 dB, fase= 3.776 graden theta 0.1900 graden, amplitude= -7.4910 dB, fase= 3.776 graden theta 0.1200 graden, amplitude= -7.4910 dB, fase= 3.776 graden theta 0.1200 graden, amplitude= -6.9778 dB, fase= 3.776 graden theta 0.1200 graden, amplitude= -6.9778 dB, fase= 3.776 graden theta 0.1200 graden, amplitude= -1.3016 dB, fase= 3.776 graden theta 0.2000 graden, amplitude=-11.3016 dB, fase= 3.776 graden	theta= 0.0100	oraden.	amplitude=-42.3282 dB.	fase= 0.005	oraden						
theta= 0.0300 graden, amplitude=-23.5783 dB, fase= 0.048 graden theta= 0.0400 graden, amplitude=-18.8756 dB, fase= 0.086 graden theta= 0.0500 graden, amplitude=-15.3807 dB, fase= 0.136 graden theta= 0.0600 graden, amplitude=-12.6835 dB, fase= 0.178 graden theta= 0.0700 graden, amplitude=-12.6835 dB, fase= 0.271 graden theta= 0.0800 graden, amplitude=-10.5668 dB, fase= 0.271 graden theta= 0.0900 graden, amplitude=-1.26435 dB, fase= 0.359 graden theta= 0.0900 graden, amplitude=-4.60924 dB, fase= 0.460 graden theta= 0.1000 graden, amplitude=-5.9437 dB, fase= 0.708 graden theta= 0.1000 graden, amplitude=-5.9437 dB, fase= 0.708 graden theta= 0.1200 graden, amplitude=-5.3119 dB, fase= 1.030 graden theta= 0.1200 graden, amplitude=-5.3254 dB, fase= 1.030 graden theta= 0.1400 graden, amplitude=-5.3673 dB, fase= 1.224 graden theta= 0.1500 graden, amplitude=-6.9779 dB, fase= 1.443 graden theta= 0.1700 graden, amplitude=-6.9779 dB, fase= 1.473 graden theta= 0.1800 graden, amplitude=-6.9778 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude=-7.4010 dB, fase= 3.178 graden theta= 0.2000 graden, amplitude=-13.6336 dB, fase= 3.776 graden theta= 0.2000 graden, amplitude=-16.7218 dB, fase= 3.776 graden	theta= 0.0200	oraden.	amplitude=-30.4124 dB.	fase= 0.021	oraden						
theta= 0.0400 graden, amplitude=-18.8756 dB, fase= 0.086 graden theta= 0.0500 graden, amplitude=-15.3807 dB, fase= 0.136 graden theta= 0.0600 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta= 0.0700 graden, amplitude=-12.6835 dB, fase= 0.271 graden theta= 0.0800 graden, amplitude=-10.5668 dB, fase= 0.271 graden theta= 0.0800 graden, amplitude=-10.5668 dB, fase= 0.359 graden theta= 0.0900 graden, amplitude=-7.6096 dB, fase= 0.460 graden theta= 0.1000 graden, amplitude= -5.9437 dB, fase= 0.576 graden theta= 0.1200 graden, amplitude= -5.9437 dB, fase= 0.708 graden theta= 0.1200 graden, amplitude= -5.3119 dB, fase= 1.030 graden theta= 0.1300 graden, amplitude= -5.3254 dB, fase= 1.030 graden theta= 0.1400 graden, amplitude= -5.6673 dB, fase= 1.443 graden theta= 0.1600 graden, amplitude= -6.9779 dB, fase= 1.443 graden theta= 0.1700 graden, amplitude= -6.9779 dB, fase= 1.473 graden theta= 0.1900 graden, amplitude= -8.0798 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude= -11.3016 dB, fase= 3.178 graden theta= 0.2000 graden, amplitude=-11.3636 dB, fase= 3.776 graden	theta= 0.0300	oraden.	amplitude=-23.5783 d8.	fase= 0.048	oraden						
theta= 0.0500 graden, amplitude=-15.3807 dB, fase= 0.136 graden theta= 0.0600 graden, amplitude=-12.6835 dB, fase= 0.136 graden theta= 0.0700 graden, amplitude=-12.6835 dB, fase= 0.271 graden theta= 0.0800 graden, amplitude=-10.5668 dB, fase= 0.271 graden theta= 0.0900 graden, amplitude=-8.9024 dB, fase= 0.359 graden theta= 0.0900 graden, amplitude= -8.9024 dB, fase= 0.460 graden theta= 0.1000 graden, amplitude= -6.6352 dB, fase= 0.576 graden theta= 0.1000 graden, amplitude= -5.9437 dB, fase= 0.576 graden theta= 0.1200 graden, amplitude= -5.3119 dB, fase= 0.859 graden theta= 0.1300 graden, amplitude= -5.3254 dB, fase= 1.030 graden theta= 0.1400 graden, amplitude= -5.3772 dB, fase= 1.224 graden theta= 0.1500 graden, amplitude= -5.3772 dB, fase= 1.443 graden theta= 0.1600 graden, amplitude= -6.9779 dB, fase= 1.443 graden theta= 0.1800 graden, amplitude= -6.9779 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude= -9.4910 dB, fase= 3.178 graden theta= 0.2000 graden, amplitude=-11.3016 dB, fase= 3.776 graden theta= 0.2000 graden, amplitude=-1.6336 dB, fase= 3.776 graden	theta= 0.0400	graden.	amplitude=-18.8756 dB.	fase= 0.086	araden						
theta= 0.0600 graden, amplitude=-12.6835 dB, fase= 0.198 graden theta= 0.0700 graden, amplitude=-10.5668 dB, fase= 0.271 graden theta= 0.0800 graden, amplitude=-8.9024 dB, fase= 0.359 graden theta= 0.0900 graden, amplitude= -8.9024 dB, fase= 0.359 graden theta= 0.1000 graden, amplitude= -7.6096 dB, fase= 0.460 graden theta= 0.1100 graden, amplitude= -5.9437 dB, fase= 0.576 graden theta= 0.1200 graden, amplitude= -5.9437 dB, fase= 0.708 graden theta= 0.1200 graden, amplitude= -5.3119 dB, fase= 0.859 graden theta= 0.1300 graden, amplitude= -5.3254 dB, fase= 1.030 graden theta= 0.1400 graden, amplitude= -5.3772 dB, fase= 1.224 graden theta= 0.1500 graden, amplitude= -5.6473 dB, fase= 1.443 graden theta= 0.1600 graden, amplitude= -6.9979 dB, fase= 1.693 graden theta= 0.1800 graden, amplitude= -6.9778 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude= -9.4910 dB, fase= 2.704 graden theta= 0.2000 graden, amplitude=-11.3016 dB, fase= 3.178 graden theta= 0.2000 graden, amplitude=-16.7218 dB, fase= 3.776 graden	theta= 0.0500	graden,	amplitude=-15.3807 dB,	fase= 0.136	graden						
theta= 0.0700 graden, amplitude=-10.5668 dB, fase= 0.271 graden theta= 0.0800 graden, amplitude=-10.5668 dB, fase= 0.271 graden theta= 0.0800 graden, amplitude= -8.9024 dB, fase= 0.359 graden theta= 0.0900 graden, amplitude= -7.6096 dB, fase= 0.460 graden theta= 0.1000 graden, amplitude= -5.9437 dB, fase= 0.576 graden theta= 0.1200 graden, amplitude= -5.9437 dB, fase= 0.708 graden theta= 0.1200 graden, amplitude= -5.3254 dB, fase= 1.030 graden theta= 0.1300 graden, amplitude= -5.3772 dB, fase= 1.224 graden theta= 0.1400 graden, amplitude= -5.6473 dB, fase= 1.224 graden theta= 0.1500 graden, amplitude= -5.6473 dB, fase= 1.443 graden theta= 0.1600 graden, amplitude= -6.2025 dB, fase= 1.693 graden theta= 0.1700 graden, amplitude= -6.9797 dB, fase= 1.693 graden theta= 0.1800 graden, amplitude= -8.0798 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude= -11.3016 dB, fase= 3.178 graden theta= 0.2100 graden, amplitude= -16.7218 dB, fase= 3.776 graden	theta= 0.0600	graden,	amplitude=-12.6835 dB,	fase= 0.198	graden						
theta= 0.0800 graden, amplitude= $-8.9024 dB$, fase= 0.359 graden theta= 0.0900 graden, amplitude= $-7.6096 dB$, fase= 0.460 graden theta= 0.1000 graden, amplitude= $-6.6352 dB$, fase= 0.576 graden theta= 0.1100 graden, amplitude= $-5.9437 dB$, fase= 0.576 graden theta= 0.1200 graden, amplitude= $-5.5119 dB$, fase= 0.859 graden theta= 0.1300 graden, amplitude= $-5.3772 dB$, fase= 1.030 graden theta= 0.1400 graden, amplitude= $-5.3772 dB$, fase= 1.224 graden theta= 0.1500 graden, amplitude= $-5.6673 dB$, fase= 1.443 graden theta= 0.1700 graden, amplitude= $-6.9979 dB$, fase= 1.693 graden theta= 0.1800 graden, amplitude= $-6.9979 dB$, fase= 1.980 graden theta= 0.1900 graden, amplitude= $-9.4970 dB$, fase= 2.313 graden theta= 0.1900 graden, amplitude= $-11.3016 dB$, fase= 3.178 graden theta= 0.2100 graden, amplitude= $-13.6336 dB$, fase= 3.776 graden theta= 0.2200 graden, amplitude= $-16.7218 dB$, fase= 4.596 graden	theta= 0.0700	graden,	amplitude=-10.5668 dB,	fase= 0.271	graden						
theta= 0.0900 graden, amplitude= -7.6096 dB, fase= 0.460 graden theta= 0.1000 graden, amplitude= -6.6352 dB, fase= 0.576 graden theta= 0.1100 graden, amplitude= -5.9437 dB, fase= 0.708 graden theta= 0.1200 graden, amplitude= -5.5119 dB, fase= 0.859 graden theta= 0.1300 graden, amplitude= -5.3772 dB, fase= 1.030 graden theta= 0.1400 graden, amplitude= -5.3772 dB, fase= 1.224 graden theta= 0.1500 graden, amplitude= -5.6673 dB, fase= 1.443 graden theta= 0.1600 graden, amplitude= -6.9979 dB, fase= 1.693 graden theta= 0.1700 graden, amplitude= -6.9979 dB, fase= 1.980 graden theta= 0.1800 graden, amplitude= -8.0798 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude= -11.3016 dB, fase= 3.178 graden theta= 0.2100 graden, amplitude= -13.6336 dB, fase= 3.776 graden theta= 0.2200 graden, amplitude= -16.7218 dB, fase= 4.596 oraden	theta= 0.0800	graden,	amplitude= -8.9024 dB,	fase= 0.359	graden						
theta= 0.1000 graden, amplitude= -6.6352 dB, fase= 0.576 graden theta= 0.1100 graden, amplitude= -5.9437 dB, fase= 0.708 graden theta= 0.1200 graden, amplitude= -5.5119 dB, fase= 0.859 graden theta= 0.1300 graden, amplitude= -5.3254 dB, fase= 1.030 graden theta= 0.1400 graden, amplitude= -5.3772 dB, fase= 1.224 graden theta= 0.1500 graden, amplitude= -5.6673 dB, fase= 1.443 graden theta= 0.1500 graden, amplitude= -6.9205 dB, fase= 1.693 graden theta= 0.1700 graden, amplitude= -6.9779 dB, fase= 1.693 graden theta= 0.1800 graden, amplitude= -8.0798 dB, fase= 1.980 graden theta= 0.1900 graden, amplitude= -9.4910 dB, fase= 2.313 graden theta= 0.2000 graden, amplitude=-11.3016 dB, fase= 3.178 graden theta= 0.2100 graden, amplitude=-13.6336 dB, fase= 3.776 graden theta= 0.2200 graden, amplitude=-16.7218 dB, fase= 4.396 oraden	theta= 0.0900	graden,	amplitude= -7.6096 dB,	fase= 0.460	graden						
theta= 0.1100 graden, amplitude= -5.9437 dB, fase= 0.708 graden theta= 0.1200 graden, amplitude= -5.5119 dB, fase= 0.859 graden theta= 0.1300 graden, amplitude= -5.3254 dB, fase= 1.030 graden theta= 0.1400 graden, amplitude= -5.3772 dB, fase= 1.224 graden theta= 0.1500 graden, amplitude= -5.6673 dB, fase= 1.443 graden theta= 0.1600 graden, amplitude= -6.2025 dB, fase= 1.693 graden theta= 0.1700 graden, amplitude= -6.9779 dB, fase= 1.980 graden theta= 0.1800 graden, amplitude= -9.4910 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude= -11.3016 dB, fase= 2.704 graden theta= 0.2000 graden, amplitude= -11.3016 dB, fase= 3.776 graden theta= 0.2200 graden, amplitude= -16.7218 dB, fase= 4.596 oraden	theta= 0.1000	graden,	amplitude= -6.6352 dB,	fase= 0.576	graden						
theta= 0.1200 graden, amplitude= -5.5119 dB, fase= 0.859 graden theta= 0.1300 graden, amplitude= -5.3254 dB, fase= 1.030 graden theta= 0.1400 graden, amplitude= -5.3772 dB, fase= 1.224 graden theta= 0.1500 graden, amplitude= -5.6673 dB, fase= 1.443 graden theta= 0.1600 graden, amplitude= -6.2025 dB, fase= 1.443 graden theta= 0.1700 graden, amplitude= -6.9779 dB, fase= 1.980 graden theta= 0.1800 graden, amplitude= -8.0798 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude= -9.4910 dB, fase= 2.704 graden theta= 0.2000 graden, amplitude= -11.3016 dB, fase= 3.178 graden theta= 0.2100 graden, amplitude= -16.7218 dB, fase= 4.396 oraden	theta= 0.1100	graden,	amplitude= -5.9437 dB,	fase= 0.708	graden						
theta= 0.1300 graden, amplitude= -5.3254 dB, fase= 1.030 graden theta= 0.1400 graden, amplitude= -5.3772 dB, fase= 1.224 graden theta= 0.1500 graden, amplitude= -5.6673 dB, fase= 1.443 graden theta= 0.1500 graden, amplitude= -6.2025 dB, fase= 1.443 graden theta= 0.1700 graden, amplitude= -6.9979 dB, fase= 1.693 graden theta= 0.1800 graden, amplitude= -8.0798 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude= -9.4910 dB, fase= 2.704 graden theta= 0.2000 graden, amplitude= -11.3016 dB, fase= 3.178 graden theta= 0.2100 graden, amplitude= -16.7218 dB, fase= 4.596 graden	theta= 0.1200	graden,	amplitude= -5.5119 dB,	fase= 0.859	graden						
theta= 0.1400 graden, amplitude= -5.3772 dB, fase= 1.224 graden theta= 0.1500 graden, amplitude= -5.6673 dB, fase= 1.443 graden theta= 0.1600 graden, amplitude= -6.2025 dB, fase= 1.693 graden theta= 0.1700 graden, amplitude= -6.9797 dB, fase= 1.980 graden theta= 0.1800 graden, amplitude= -8.0798 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude= -9.4910 dB, fase= 2.704 graden theta= 0.2000 graden, amplitude= -13.6336 dB, fase= 3.178 graden theta= 0.2100 graden, amplitude= -16.7218 dB, fase= 4.596 oraden	theta= 0.1300	graden,	amplitude = -5.3254 dB,	fase= 1.030	graden						
theta= 0.1500 graden, amplitude= -5.6673 dB, fase= 1.443 graden theta= 0.1600 graden, amplitude= -6.2025 dB, fase= 1.693 graden theta= 0.1700 graden, amplitude= -6.9797 dB, fase= 1.980 graden theta= 0.1800 graden, amplitude= -8.0798 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude= -9.4910 dB, fase= 2.704 graden theta= 0.2000 graden, amplitude= -11.3016 dB, fase= 3.178 graden theta= 0.2100 graden, amplitude= -13.6336 dB, fase= 3.776 graden theta= 0.2200 graden, amplitude= -16.7218 dB, fase= 4.596 oraden	theta= 0.1400	graden,	amplitude = -5.3772 dB,	tase= 1.224	graden						
<pre>theta= 0.1000 graden, amplitude= -6.2025 dB, fase= 1.693 graden theta= 0.1700 graden, amplitude= -6.9979 dB, fase= 1.980 graden theta= 0.1800 graden, amplitude= -8.0798 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude= -9.4910 dB, fase= 2.704 graden theta= 0.2000 graden, amplitude=-11.3016 dB, fase= 3.178 graden theta= 0.2100 graden, amplitude=-13.6336 dB, fase= 3.776 graden theta= 0.2200 graden, amplitude=-16.7218 dB, fase= 4.396 oraden</pre>	theta= 0.1500	graden,	amplitude= -5.6673 dB,	tase= 1.443	graden						
<pre>theta= 0.1700 graden, amplitude= -6.9979 dB, fase= 1.980 graden theta= 0.1800 graden, amplitude= -8.0798 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude= -9.4910 dB, fase= 2.704 graden theta= 0.2000 graden, amplitude=-11.3016 dB, fase= 3.178 graden theta= 0.2100 graden, amplitude=-13.6336 dB, fase= 3.776 graden theta= 0.2200 graden, amplitude=-16.7218 dB, fase= 4.396 oraden</pre>	tneta= 0.1600	graden,	amplitude= -6.2025 dB,	tase= 1.693	gr aden						
theta= 0.1000 graden, amplitude= -8.0796 dB, fase= 2.313 graden theta= 0.1900 graden, amplitude= -9.4910 dB, fase= 2.704 graden theta= 0.2000 graden, amplitude=-11.3016 dB, fase= 3.178 graden theta= 0.2100 graden, amplitude=-13.6336 dB, fase= 3.776 graden theta= 0.2200 graden, amplitude=-16.7218 dB, fase= 4.396 graden	theta= 0.1700	graden,	ampiitude= -0.77/7 OB,	Tase= 1.980	graden						
theta= 0.2000 graden, amplitude= -7.4710 dB, fase= 2.704 graden theta= 0.2000 graden, amplitude=-11.3016 dB, fase= 3.178 graden theta= 0.2100 graden, amplitude=-13.6336 dB, fase= 3.776 graden theta= 0.2200 graden, amplitude=-16.7218 dB, fase= 4.396 graden	theta= 0.1800	graden,	amplitude= -8.0/98 dB,	TASE= 2.313	graden						
theta= 0.2000 graden, amplitude=-11.3010 dB, fase= 3.178 graden theta= 0.2100 graden, amplitude=-13.6336 dB, fase= 3.776 graden theta= 0.2200 graden, amplitude=-16.7218 dB, fase= 4.396 graden	theta- 0.1900	graden,	amplitude= -7.4710 dB,	Td58- 2./04	yraden						
theta= 0.2200 graden, amplitude=-16.7218 dB. fase= 4.396 oraden	theta= 0.2000	grauen, araden	amplitude=-11,0010 BB,	· 435- 3.1/8 faces 7.774	graden oraden						
	theta= 0.2200	graden.	amplitude=-16.7218 dB.	fase= 4.596	graden						
theta≃	0.2300	graden.	amplitude=-21.1145	dÐ,	fase= 5.936	građen					
--------	--------------------	---------	---------------------	-----	---------------	--------					
thetam	0.2400	graden.	amplitude=-28.7224	dĐ.	fase= 9.480	graden					
theta≃	0.2500	graden.	amplitude≃-42.4880	dB.	fase= 159.475	graden					
theta≓	<u>л.</u> 2600	graden,	amplitude=-27.7543	dB,	fase=-178.683	graden					
theta=	0.2700	graden,	amplitude=-23.7048	dB.	fase=-176.040	graden					
theta≖	0.2800	graden.	amplitude=-21.9309	dB.	fase=-174.353	graden					
theta=	0.2900	graden,	amplitude=-21.3157	dB.	fase=-172.734	graden					
theta≠	0.3000	graden.	amplitude=~21.5136	dB,	fase=-170.881	graden					
theta≖	0.7100	graden,	amplitude=-22.4170	dB.	fase=-168.517	graden					
theta=	0.3200	graden.	amplitude≃-24.0467	dB.	fase=-165.187	graden					
theta=	0.3300	graden.	amplitude=-26.5572	dB,	fase=-159.883	graden					
theta≈	0.3400	graden.	ampl:tude=~30.2882	dB.	fase=-149.660	graden					
theta≕	0.7500	grader.	amplitude=-35.6038	dB.	fase=-122.937	graden					
theta≕	0.7500	graden.	amplitude=-37.4543	d₿,	fase= -60.531	graden					
theta=	0.3700	graden.	amplitude=-33.4385	dB.	fase= -24.513	graden					
theta=	- 18 -9	graden,	amplitude=-00.7295	dB,	fase= -11.035	graden					
theta=	0.2900	graden.	amplitude=-29.4175	dB.	fase≈ -3.489	graden					
theta=	0 .4 .099	graden,	amplitude≃-29.1004	dB,	fase= 2.436	graden					
theta=	0.4196	graden.	amplitude=-29.6172	dB,	fase= 8.502	graden					
thesam	0.4200	graden.	ampl:tude=-30.9405	dB.	fase= 16.269	graden					
thetar	0.4700	graden.	amplitude=~03.0582	dB.	fase= 28.228	graden					
thete=	- 0. 44 00	graden.	amp11tade=-05.7500	d₽,	fase= 49.937	graden					
thetar	9.4500	graden.	amplitude=-37,2002	dÐ,	fase≃ 85.680	graden					
thetar	0.4500	grad∈n.	amplitude=-35.7331	dB.	fase= 118.963	graden					
thetar	0.4700	graden.	amplitude=~35.4798	d₽.	fase= 138.085	graden					
thetar	0.4800	graden.	amplitude=-31.8968	dB.	fase= 148.342	graden					
the a=	0.4900	graden.	ampl::tude=-31.0108	d₽,	fase= 154.749	graden					
theta=	(), <u>B</u> ayabi	graden.	amplitude=-51.0721	dB.	fase= 158.781	graden					

and the second second

Appendix E: Beschouwing van de steun- en subreflectorblokkering

De schaduwen over het reflector-oppervlak door steunen subreflector-blokkering zijn geschetst in figuur E-1. De blokkering door de steunen kan eenvoudiger gemodelleerd worden door een schaduwen-patroon volgens figuur E-2 te veronderstellen.

Figuur E-1: Schaduwen over het reflector-oppervlak door steun- en subreflector-blokkering. Gestippeld: lijnen van gelijke veldsterkte van een verschil-patroon, gevoelig in de "azimuth"-richting.

De "equivalente blokkeringshoek" α (hier ter plaatse ingevoerd) is de hoek ϕ , waarbij het "steun-blokkerings-rendement" η_{st} (ook hier ter plaatse ingevoerd) van de vereenvoudigde modellering gelijk is aan de werkelijke blokkering. η_{st} is de verhouding van de winstfactor (respectievelijk het hellingsrendement) met en de winstfactor (respectievelijk het hellingsrendement) zonder verrekening van de steunblokkering.

Figuur E-2: Vereenvoudigde modellering van de steunblokkering.

Voor een som-patroon kan gesteld worden

 $n_{st\Sigma^{\sim}G_{\Sigma^{\sim}}} \left(\int_{0}^{2\pi} F_{\Sigma}(\phi) d\phi \right)^{2}$ (E-1)

en voor een verschil-patroon

$$\eta_{st\Delta}^{-DS^{2}} \sim \left(\begin{array}{c} 2\pi \\ \int_{0}^{2\pi} F_{\Delta}(\phi) \cos(\phi) d\phi \end{array} \right)^{2}$$
 (E-2)

Voor de apertuur-veld-verdelingen kan gesteld worden $F_{\Sigma}(\phi) = \begin{cases} 1 & "buiten de schaduw" \\ 0 & "in de schaduw" \end{cases}$ (E-3) en

$$F_{\Delta}(\phi) = \begin{cases} \cos(\phi) & \text{"buiten de schaduw"} \\ 0 & \text{"in de schaduw"} \end{cases}$$
(E-4)

Invullen en integreren leidt tot

$$\eta_{st\Sigma} = \eta_{st\Delta} = 1 - \frac{4}{\pi} \cdot \alpha$$
 (E-5)

De steunblokkerings-rendementen zijn dus gelijk indien de equivalente blokkeringshoeken gelijk zijn. Aangezien voor een som-patroon de veldsterkte het sterkst is rond het centrum van de apertuur, terwijl voor een verschil-patroon de veldsterkte het sterkst is op een zekere afstand van het centrum van de apertuur, zal voor een som-patroon de equivalente blokkeringshoek groter zijn, dan voor een verschil-patroon. In het algemeen geldt dus

 $\eta_{st\Sigma} \leq \eta_{st\Delta}$

(E-6)

Een analoge redenering geldt voor subreflector-blokkering. Voor een som-patroon is in het algemeen de invloed van subreflector-blokkering groter dan bij een verschil-patroon, omdat bij een som-patroon het vermogen dichter bij het centrum van de apertuur geconcentreerd is.

.

. .

Appendix F: De modes in een ronde golfpijp en in een coaxiale structuur plus een berekening aan de TE21-mode

In figuur F-1 is het gebruikte coördinaten-stelsel voor een ronde golfpijp en voor een coaxiale structuur weergegeven.

Figuur F-1: Coördinaten-stelsel voor en maten van a) een ronde golfpijp en b) een coaxiale structuur [25].

De velden van een TMmn-mode in een ronde golfpijp worden gegeven door [25]:

$$E_{r} = -V'_{i} \sqrt{\frac{\epsilon_{m}}{\pi}} \frac{J'_{m}\left(\frac{\chi_{i}r}{a}\right)}{aJ_{m+1}(\chi_{i})} \cos m\phi,$$

$$E_{\phi} = \pm V'_{i} \sqrt{\frac{\epsilon_{m}}{\pi}} \frac{m}{\chi_{i}} \frac{J_{m}\left(\frac{\chi_{i}r}{a}\right)}{rJ_{m+1}(\chi_{i})} \sin m\phi,$$

$$E_{s} = -j\zeta \frac{\lambda\chi_{i}}{2\pi a} I'_{i} \sqrt{\frac{\epsilon_{m}}{\pi}} \frac{J_{m}\left(\frac{\chi_{i}r}{a}\right)}{aJ_{m+1}(\chi_{i})} \sin m\phi,$$

(F-1 t/m F-6)

$$H_{\tau} = \mp I_{i}' \sqrt{\frac{\epsilon_{m}}{\pi}} \frac{m}{\pi} \frac{J_{m}\left(\frac{\chi_{i}\tau}{a}\right)}{rJ_{m+1}(\chi_{i})} \frac{\sin}{\cos} m\phi,$$

$$H_{\bullet} = -I_{i}' \sqrt{\frac{\epsilon_{m}}{\pi}} \frac{J_{m}'\left(\frac{\chi_{i}\tau}{a}\right)}{aJ_{m+1}(\chi_{i})} \frac{\cos}{\sin} m\phi,$$

$$H_{s} = 0.$$

APPENDIX F

$$E_{\tau} = \pm V_{i}'' \sqrt{\frac{\epsilon_{m}}{\pi}} \frac{m}{\sqrt{\chi_{i}'' - m^{2}}} \frac{J_{m}\left(\frac{\chi_{i}'r}{a}\right)}{rJ_{m}(\chi_{i}')} \frac{\sin}{\cos} m\phi_{i}}$$

$$E_{\phi} = V_{i}'' \sqrt{\frac{\epsilon_{m}}{\pi}} \frac{\chi_{i}'}{\sqrt{\chi_{i}'' - m^{2}}} \frac{J_{m}'\left(\frac{\chi_{i}'r}{a}\right)}{aJ_{m}(\chi_{i})} \frac{\cos}{\sin} m\phi_{i}}$$

$$E_{s} = 0, \qquad (F-7 \ t/m \ F-12)$$

$$H_{\tau} = -I_{i}'' \sqrt{\frac{\epsilon_{m}}{\pi}} \frac{\chi_{i}'}{\sqrt{\chi_{i}'' - m^{2}}} \frac{J_{m}'\left(\frac{\chi_{i}'r}{a}\right)}{aJ_{m}(\chi_{i}')} \frac{\cos}{\sin} m\phi_{i}}$$

$$H_{\phi} = \pm I_{i}'' \sqrt{\frac{\epsilon_{m}}{\pi}} \frac{m}{\sqrt{\chi_{i}'' - m^{2}}} \frac{J_{m}\left(\frac{\chi_{i}'r}{a}\right)}{rJ_{m}(\chi_{i}')} \frac{\sin}{\cos} m\phi_{i}}$$

$$H_{s} = -j\eta \frac{\lambda\chi_{i}'}{2\pi a} V_{i}'' \sqrt{\frac{\epsilon_{m}}{\pi}} \frac{\chi_{i}'}{\sqrt{\chi_{i}'' - m^{2}}} \frac{J_{m}\left(\frac{\chi_{i}'r}{a}\right)}{aJ_{m}(\chi_{i}')} \frac{\cos}{\sin} m\phi_{i}}$$

De velden van de TEM-mode in een coaxiale structuur worden gegeven door [25]:

$$E_{r} = V_{00}' \frac{1}{\sqrt{2\pi \ln \frac{a}{b}}} \frac{1}{r}$$

$$H_{\bullet} = I_{00}' \frac{1}{\sqrt{2\pi \ln \frac{a}{b}}} \frac{1}{r},$$

$$E_{\bullet} = E_{r} = H_{r} = H_{r} = 0.$$
(F-13 t/m F-18)

De velden van een TMmn-mode in een coaxiale structuur worden gegeven door [25]:

$$E_{r} = -V_{i}' \frac{\chi_{i}}{b} Z_{m}' \left(\chi_{i} \frac{r}{b}\right) \frac{\cos}{\sin} m\phi,$$

$$E_{\bullet} = \pm V_{i}' \frac{m}{r} Z_{m} \left(\chi_{i} \frac{r}{b}\right) \frac{\sin}{\cos} m\phi,$$

$$E_{\bullet} = -jj' \frac{\lambda}{\lambda_{\sigma}'} I_{i}' \frac{\chi_{i}}{b} Z_{m} \left(\chi_{i} \frac{r}{b}\right) \frac{\cos}{\sin} m\phi,$$

$$H_{r} = \mp I_{i}' \frac{m}{r} Z_{m} \left(\chi_{i} \frac{r}{b}\right) \frac{\sin}{\cos} m\phi,$$

$$H_{\bullet} = -I_{i}' \frac{\chi_{i}}{b} Z_{m}' \left(\chi_{i} \frac{r}{b}\right) \frac{\cos}{\sin} m\phi,$$

$$H_{\bullet} = 0.$$
(F-19 t/m F-24)

$$E_{r} = \pm V_{i}^{\prime\prime} \frac{m}{r} Z_{m} \left(\chi_{i}^{\prime} \frac{r}{b} \right) \frac{\sin}{\cos} m\phi_{i} \\E_{\phi} = V_{i}^{\prime\prime} \frac{\chi_{i}^{\prime}}{b} Z_{m}^{\prime} \left(\chi_{i}^{\prime} \frac{r}{b} \right) \frac{\cos}{\sin} m\phi_{i} \\E_{s} = 0, \\H_{r} = -I_{i}^{\prime\prime} \frac{\chi_{i}^{\prime}}{b} Z_{m}^{\prime} \left(\chi_{i}^{\prime} \frac{r}{b} \right) \frac{\cos}{\sin} m\phi_{i} \\H_{\phi} = \pm I_{i}^{\prime\prime} \frac{m}{r} Z_{m} \left(\chi_{i}^{\prime} \frac{r}{b} \right) \frac{\sin}{\cos} m\phi_{i} \\H_{s} = -j\eta \frac{\lambda}{\lambda_{ci}^{\prime\prime}} V_{i}^{\prime\prime} \frac{\chi_{i}^{\prime}}{b} Z_{m} \left(\chi_{i}^{\prime} \frac{r}{b} \right) \frac{\cos}{\sin} m\phi_{i} \\\end{pmatrix}$$

In al deze formules komen V en I overeen met de spanning en de stroom, waarmee een mode als transmissielijn beschreven kan worden [25].

In hoofdstuk 3 werd vermeld, dat de gevoeligheid van de TE21-mode in de azimuth-richting even groot is als in de elevatie-richting. Dit ligt namelijk niet direkt voor de hand, zie figuur F-2.

Figuur F-2: De y-component van het elektrische veld van de twee orthogonale TE21-modes in een ronde golfpijp. a): gevoelig in de azimuth-richting. b): gevoelig in de elevatie-richting.

Het elektrische veld van de twee orthogonale TE21modes wordt in de golfpijp gegeven door (F-7), (F-8): $Er = f(r) \times sin(2.\phi)$ (F - 31a) $E\phi = g(r) \times cos(2.\phi)$ (F-31b) $Er = \overline{f}(r) \times \cos(2.\phi)$ (F - 32a) $E\phi = g(r) \times -\sin(2.\phi)$ (F-32b)Hierin zijn f(r) en g(r) functies van r. Vergelijkingen (F-31) en (F-32) zijn de transversale E-velden van de TE21-modes gevoelig in de azimuth- en elevatierichting. Met de coördinaten-transformatie $Ex = Er \times cos(\phi) - E\phi \times sin(\phi)$ (F - 33a) $Ey = E_r \times sin(\phi) + E\phi \times cos(\phi)$ (F-33b) en de goniometrische formules $\cos(a) \times \cos(b) = (\cos(a-b) + \cos(a+b))/2$ (F-34a) $sin(a) \times cos(b) = (sin(a-b) + sin(a+b))/2$ (F-34b) $\sin(a) \times \sin(b) = (\cos(a-b) - \cos(a+b))/2$ (F-34c)kan de y-component van het elektrische veld berekend worden: $Ey=f(r)x(cos(\phi)-cos(3,\phi))/2+g(r)x(cos(\phi)+cos(3,\phi)(F-35))$ $Ev=f(r)x(sin(\phi)-sin(3,\phi))/2+g(r)x(sin(\phi)+sin(3,\phi)(F-36))$ Uit (F-35) en (F-36) is in te zien, dat de y-component van het elektrische veld van de beide TE21-modes gelijk is, de één 90 graden gedraaid ten opzichte van de andere. Voor het magnetische veld valt een gelijke berekening uit te voeren met een gelijk resultaat. Deze eigenschop blijft geldig in de belichter en in het verre veld, zodat de twee verschil-patronen aan elkaar gelijk zijn.

APPENDIX G

-197-

Appendix G: Lijsten van het computerprogramma van G.M.J. Coumans: stralingsdiagrammen van een gegroefde conische hoorn

LYSI DATE & TIME PRINTED: WEDNESDAY, JUNE 3, 1987 C 09:16:03. 100 Mode-indices:M= 1.N= 1 200 300 Theta-nul= 8.0 graden Fred=11.5 GHz RA= 0.6430 meter 400 Lambda= 2.61984E-02 meter K= 2.39831E+02 500 R= 1.2400 meter 600 K*RA= 154.2113 K*R= 297.3903 Modecetal:NU= 16.7499 700 Fi= 0.0 graden 800 900 Aantal termen: 154 1000 1100 1200 Voor het veld in de hoofdrichting(Theta= 0.0000) geldts 1300 E-theta= 248.78 1400 Nulfase= 110.75 graden 1500 1600 1700 Het totaal uitgezonden vermogen is: PR= 1.949E-06 Watt. 1800 De winst is: G= 29.1088 dB 1900 2000 2100 hoek(in graden) modulus E-theta(in dB) fase (in. grad 2200 2300 0.00 0.00 0.00 2400 2500 0.50 -0.08 -0.35 2600 2700 1.00 -0.33 -1.38 2800 2900 1.50 -0.75 -2.99 3000 3100 2.00 -1.33 -5.14 3200 3300 2.50 -2.07 . -7.28 3400 3500 3.00 -2.94 -10,84 3600 <u>،</u> ا 3700 3.50 -3.95 -14-21 3800 3900 4.00 -5.06 4000 -----4100 4.50 -6.24 4200 4300 5.00 -7.44 4400 -29,23 4500 5.50 -8.62 4600 -4700 6.00 -9.75 4800 - - - -4900 6.50 -10.83 5000 •••••• -12.93 -14.02 5100 7.00 5200 5300 7.50 5400 -14.02 5500 8.00 -64.32 5600 -15.23 -75.22 8.50 5700 5800

APPENDIX G

and the second second

-87.19	-16.57	9.00	5900
	- • .	0 50	6000
-99.67	-18.04	9.50	6100
			6200
-112.15	-19.60	10.00	6300
		10 50	6400
-124.28	-21.1/	10.50	6500
	-22 44	11 00	4200
-136.21	-22.00	11.00	6800
-140 50	-23.94	11.50	6400
-148.50	£0./1	11.00	7000
-161 83	-24.96	12.00	7100
101100			7200
-176-99	-25.79	12.50	7300
			7400
-194.74	-26.56	13.00	7500
			7600
-215.19	-27.36	13.50	7700
			7800
-237.64	-28.30	14.00	7900
the second s			8000
-261.38	-29.50	14.50	8100
·		- F - A A	8200
-285.88	-30.97	15.00	8300
74.0.00	70 /7	15 50	8400
-310.00	-32.03	15.50	8500
770 00	-74 74	1.5 00	0000
-332.22	-34.34	18.00	8800
-753 40	_75 07	14 50	8800
-302190	-33.72	18.50	9000
-772 51	-74 00	17 00	9100
-3/2.31	50.70	17.00	9200
-394-29	-37.37	17.50	9300
07 (147)	•••••		9400
-419.36	-37.47	18.00	9500
1			9600
-448.80	-37.58	18.50	9700
and a second	.		9B00
-491.84	-37.74	19.00	¥900
			10000
-516-73	-38.08	19.50	10100
		00.00	10200
	-38.77	20.00	10300
. الما المنظمة المناكر المناكر المنطقة المناكر المناكر المناكر المناكر المناكر المناكر المناكر المناكر المناكر	70 4	20 50	10400
-572.43	-37.66	20.50	10400
	-40 70	21 00	10700
	-40./8	4 X • VV	10900
			TAOAA

LYSI HATE & TIME FRINTED: WEDNESDAY, JUNE 10. 1987 @ 13:15:44. 100 Mode-indices:M= 2.N= 1 200 300 (heta-nul= 8.0 graden Freg=11.5 GHz 400 RA= 0.6430 meter Lumbda= 2.61984E-02 meter 500 R= 1.2400 meter K= 2.39831E+02 600 N#RA= 154.2113 K*K= 297.3903 fi= 0.0 graden Modegetal:NU= 26.9836 200 800 Auntal termen: 154 900 1.000 1100 1200 Vour het veld in de hoofdrichting(Theta= 3.8125) geldt: E-theta=7/24.40 1300 1400 Fusenul≕ __1.40 graden 1500 1600 1700 Het totaal uitgezonden vermogen is: Pr= 5.755E-03 Watt. 1800 De winst is: G= 24.2469 dB 1900 2000 2100 De afgeleige (helling) van het E-theta-veld naar de hoek 2200 in de buurt van het nulpunt (genomen als gemiddelde 2300 tussen de aangegeven hoekwaarden): 2400 2500 hoek(in graden) mod(E-theta) helling(graden) 2600 2700 0.00 0.00 2800 3245.57 2900 0.05 162.28 3244.57 3000 0.10 324.51 3100 3242.53 3200 . 3300 0.15 486.63 3400 3239.47 3500 0.20 648.61 · · · · · · · 3235.32 3600 0.25 810.37 3700 ----3800 مىتىتىرى بىر يىل مىل مىل مىل مىلىدى. كان يەڭ ئىلىرىم بىر 3900 4000 hoek(in graden) modulus E-theta(in dB) fase(im grade 4100 للتقادي بمحاجد والعار والا 0.00 4200 0.01 -45.59 4300 0.05 -33.55 4400 -9,99 4500 4600 0.10 -27.53 4800 0.15 -24.01 -0.03 4900 -0.04 5000 0.20 -21.52 State: 5100 5200 0.25 -19,58 5300 -13.60 -9.34 5400 0.50 5500 -10.14 -0.55 -7.74 _5600 0.75 5700 5800 1.00

M.O. van Deventer augustus 1987

-199-

.

12000	12.75	-16-81	
11800	12,25	-15.26	
11700			STUNELOC AND MONTH
11600	11.75	-13.80	204.78
11500	11.20	-12.90	
11300	11 75	-12 49	
11200	10.75	-11-28	
11100	_	· · · · · · · · · · · · · · · · · · ·	
11000	10.25	-10.23	152.22
10900	7./0	-7-39	
10/00	U 7ª.	-0 14	
10600	9.25	-8.54	-123,80
10500		_	
10400	8.75	-7.70	-112.11
10300			
10200	8.25	-6.77	4101345
10100	/./3	-J./8	-74-13
9900			-00 77
7800	7.25	-4.74	-83,85
9700			
9600	6.75	-3.68	-28.13
9400 9500	0.2U	-2.00	-00.00
9300	2 DL	-9.44	1 A 2 A
9200	5.75	-1.74	-58,09
9100			a and a second
9000	5.25	-0.98	-49.64
8900	· • • / .a	V.74	
8800	4, 25	-0_41	-41_35
8700	4.25	0*08	-33.56
8500		A - - / ·	i i i i i i i i i i i i i i i i i i i
8400	4.00	-0.01	-29.93
8300			
8200	3.81	0.00	-27.33
8000	3.75	-0.01	-26.49
7900		A A4	
7800	3.50	-0.09	-23.23
7700			
2600	3.25	-0.24	-20,15
/500	5.00		-1/-22
7300	6 00		4.73
7200	2.75	-0.83	-14.45
7100			
2000	2.50	-1.27	-11.87
6900	لا ک ه ک	-1-02	7.49
6700	9. 9 -	-1 43	-9 40
6600	2.00	-2,54	-7.36
6500			,,,
6400	1.75	-3.43	-5.49
6300	1.04		-3.91
6200	1.50	- 4 54	7
6000	1.25	-5.94	-2.62
3700			

Mode-indices:M= 1,N= 1

 Theta-nul=10.5 graden
 Freq=12.5 GHz

 PA= 0.7198 meter
 Lambda= 2.39954E-02 meter

 R= 1.7430 meter
 K= 2.61838E+02

 K+RA= 183.4609
 K+R= 456.3845

 Fi= 0.0 graden
 Modegetal:NU= 12.6575

Aantal termen: 18?

Voor het veld in de hoofdrichting(Theta= 0.0000) geldt: E-theta= 108.39 Nulfase= -4.43 graden

Het totaal uitjezonden vermogen is: PR= 1.131E-06 Watt. De winst is: G= 27.2139 dB

hoek(in graden)	modulus E-theta(in dB)	fase(in graden t_o.v. r
v.	6.00	0.00
1.00	-U.26	1.16
2.00	-0.95	3.95
3.00	-1.86	7.04
4.00	-2.96	7.95
S.JC	-4.42	5.71
6.10	-6.40	1.00
7.JC	-8.7ú	-4.50
8.10	-10.96	-11.80
9. JU	-13.17	-23, 37
13.63	-15.74	-39.51
11.00	-18.66	-56.53
12.00	-21.19	-74.61
13.00	-23.30	-99.11
14.00	-25.89	-130.42
15.00	-29.01	-161.06 ·····
16.Du	-31.12	-191.14
17.00	-32.47	-232.51
18 .00	-34.72	-282.85
• • • • •		

APPENDIX G

.

Mode-indices:M= 2,5= 1

Theta-nul=1 _5 praden	<pre>%reg=12.5 GHz</pre>
RA= - 7193 meter	Lambda= 2.399645+02 meter
R= 1_743_ heter	K= 2.61338E+€2
K+RA= 158,200	K*P= 456.3845
Fi= J., graden	Modegetal:NU= 2).4625

Aantal tenners 188

voor het vell in de hoofdrichting(Theta= 3.6875) geldt: E+theta=2782.10 Fasenul= 2.62 graden

Fet totaal uitgezonien vermogen is: Pr= 1.927E-D3 Watt. De winst is: S= 03.0855 dB

De sinn ode (he ting) van het Emthetamvald naar de hoek in de huurt van het nulpunt (genomen als gemiddelde tussen de Hangegeven hoekwaarden):

hoek(in gradei)	mod(E-theta)	helling(graden++-1)
	0 . D:	
•	139.10	1380.90
. 2	275.70	1376.05
	412 74	1366.35
. •••		1352.02
4 6 3	547.54	1333.34
6.53	68 0_87	

hoek(in graden)	modulus E-theta(in d3)	fase(in graden)
L.[]	-44.14	0-00
i.10	-26.38	-0.01
t.20	-20.08	-0.02
2.30	-16.58	-0.05
5_40	-14.12	-0.08
0 .5 0	-12.23	-0.12
1	-6.56	-0.42
1.50	-3,59	-0.74
2.00	-1.82	-1.01
2.50	-0.78	-1.17

3.00	-0.24	-1.16
5.50	-(.)2	-0.92
Σ. 6 ⁰	4.)I)	-0.79
4.	-a.01	-C.56
4.50	-6.11	-0.40
5.5%	-0.55	-2.40
6.50	-1.38	-9.08
7.5	-2.90	-19.75
8.50	-4.96	-31.71
9.50	-7.07	-44.67
1⊴_5 0	-8.97	-61.88
11.50	-11.19	-85.09
12.50	-13.97	-110.22
13.52	-16.56	-134.73
14,5J	-18.38	-164.48
15.30	-23.47	-203.57
16.50	-23.48	-244.40
17.50	-26.02	-281.22
18.50	-27.07	-325.48+22
19.50	-28.41	-383:50
20.50	-31.37	-445.48
21.50	-34.36	-495.702
22.50	-34.15	-552.65
23.50	-34.39	-631-88
24.50	-36.77	-716.752
25.50	-40.31	-791-90

.

.

.

,

.

Mole-indices:M= 1,N= 1

Theta-nul=10.5 jraden	Freg=12.5 GHz
RA= (.7198 neter	Lambda= 2.200642-02 meter
R= 1.743(neter	K= 2,61838E+02
K#RA= 188.4609	K+R= 456.3845
Fi= ù.u graden	Modegetal:141= 23,4146

Aantal termen: 187

Voor het veld in de hoofdrichting(Theta= 7.6875) geldt: E-theta= 6.37 Fasenul= -0.53 graden

Het totaal uitjezon len vermogen is: Pr= 1.335E=38 Hatt. De winst is: G= 23.1.77 JB

De afgeleide (helling) van het E-theta-veld naar de hoef in de huurt van het nulpunt (genomen als geniddelde tussen de aangegeven hoekwaarden):

hoek(in graden)	<pre>nod(E-theta)</pre>	helling(graden**-1)
9.00	0.00	· ·
3.1 0	C.32	3.18
j .20	5.63	3.17
0.30	(95	- 3.15
r. 40	1.26	.3.1.1
(5)	1 57	3.07

hoek(in graden)	modulus E—theta(in dB) fase(in_graden)
0.01	-44.69	0-00
0.10	-26.03	-0.01
0.20	-20.03	
0.30	-16.53	-0.05
0.40	-14.07	0.10
0.50	-12.18	-0.15
1.00	-6.53	-C.50
1.50	-3.57	0.48
2.00	-1.80	-1.12
2.50	-0.76	-1.34
н. н. н. Политика По	an a	

3 . Ju	-0.23	-1.34
3.17	-[.(2	-1.12
5.00	C.00	39.]-
4.5	-(.)1	-0.75
4.50	-0.12	-0.58
5.50	-7.56	-2.52
نا5.6	-1.40	-9.15
7.50	-2.92	-19.80
8.50	-4.73	-71.78
9.51	-7.09	-44.74
10.00	-9.)Ū	-61.90
11.50	-11.21	-85.10
12.50	-13.09	-110.24
13.55	-16.59	-134.76
14.50	-18.42	-164.47
15.50	-26.51	-263.53
16.50	-23.51	-244.41
17.50	-26.06	-281.23
18,50	-27.11	-325.35
19.50	-28.45	-383.43
20.50	-31.40	-445.43
21.50	-34.40	-495.73
22.50	-34.20	-552.58
23.50	-34.44	-631.74
24.50	-36.81	-716.83
25.50	-40.34	-791.89

and the second second

- .

IYCT DATE & TIME PRINTED: FRIDAY, JULY 17, 1987 @ 13:19:52. 100 Mode indices:M= 3.N= i 200 200 Theta nul=10.5 graden Freg=12.5 GHz RA= 0.7173 meter 400 Lambda= 2.377642 02 meter K# 2.61038E402 K#R= 456.3845 500 R= 1.7430 meter ٥٥٥ K*RA= 133.4713 Fi- 0.0 graden 700 27.5997 Modegetal:NU= 300 Aantal termen: 188 200 1000 1100 1200 Voor het veld in de hoofdrichting(Thetar 4.9375) geldt: 1300 C theta=****** 1400 Fasenul= -2.22 oraden 1500 1600 1700 Het totaal uitgezonden vermogen is: Pr= 6.279E+00 Watt. 1800 De winst is: G= 21.7914 dB 1500 2000 Ne afgeleide (helling) van het E-theta-veld naar de hoek 2100 2200 in de buurt van het nulpunt (genomen als gemiddelde 2300 tussen de aangegeven hoekwaarden): . ¹⁹²⁴ ≠ j 2400 2500 mod(E theta) hoek(in graden) helling(graden**-1) 2600 2700 0.00 0.00 2800 4303.02 2900 0.25 1075.75 - ÷ 3000 3100 modulus E theta(in dB) fase(in graden) 3200 hoek(in graden) 3300 0.00 3400 0.00 0.00 3500 0.25 · 42.05 - 104.12 3600 3700 -104.25 3800 0.50 · 30.17 3700 - 104.50 0.75 . 23.33 4000 4100 - 104.512 4200 1.00 - 18.58 4300 1.25 - 105.51 4400 -15.00 4500 - 104:32 .12.15 4600 1.50 4700 -107.34 1.75 4800 · 9.82 4900 - 108.54 5000 2.00 · 7.88 5100 -109.90 5200 2.25 - 6.24 5300 5400 2.50 4.88 114.37 5500 -112.933 2.75 . 3.74 5600 5790 134-300 5800 3.00 - 2.81

3.25	2.05
3.50	1.45
3.75	0.97
4.00	00
4.25	0.33
4.50	0.14
4.75	0.04
4.54	0.00
5.00	0.00

-207-

AF	PF	้เทท	TX	G

<i>i</i> ?00			
6000	3.25	2.05	116.24
5100			
6200	3.50	· 1.45	- 117.95
6400		0.57	110 40
500	0.70	0.,,,	317.00
6ċ00	4.00	0.10	121.40
5700			
6800	4.25	0.33	123.09
7000	4.50	0.14	104 77
7100	1100	0111	124.75
7200	4.75	0.04	- 126.32
7300			
7400	4.59	0.00	-127.46
7600	5.00	0.00	177 84
7700			12/107
7800	5.25	0.01	129.30
7700			
8000	5 75	· 0.14	- 132.13
8200		0.77	175 17
8300	0120	V:52	100.10
8400	6.75	0.52	- 138.84
3500			
3700	7.25	0.77	· 143.78
BEOO	7.75	1.12	150.14
8900			
5000	8.25	1.60	- 157.89
7100	0.75	2.24	
7300	6./3	2.20	100.67
2400	9.25	- 3.12	176.26
2500			
5600	\$.75	4.13	186.06
9700	10 75	. 5. 71	100 10
2700	10.25		- 173-00.
10000	10.75	6.27	- 205.31
10100			· · · · · · · · · · · · · · · · · · ·
10200	11.25	. 7.23	- 215.73
10400	11.75	· E. 10	277 AT
10500			
10600	12,25	8.90	- 240, 74 -
10700			
10800	12.75	5.92	• 255,72
11000	13.25	- 11.03	-272.52
11100			· · · · · · · · · · · · · · · · · · ·
11200	13.75	-12.35	
11300	14.05	. 17 80	784 494
11500	19020	-10.02	- 200,12
11600	14.75	-15.21	322.01
11700			
11800	15.25	10.30	- 337, 73
12000	15.75	- 17-15	1.4
	an a	na manager ar an in 15 11 and incana	
	-		

i_ ¥15 aĭ DATE & TIME PRINTED: TUESDAY, FEBRUARY 3, 1987 @ 14:56:07. :00 Mode-indices:MT 1.NT i 200 300 Theta-nul-10.5 graden Fregri9.8 GHz RA= 0.7198 meter R= 1.7430 meter R#RA= 298.0311 400 Lambda= 1.51742E-02 meter K= 4.14070E+02 500 K*R- 721.7243 600 700 ij- 0.0 graden Modegetal:NU= 12.6575 800 900 Annual termen: 298 i.000 1100 1700 Voor het veld in de hoofdrichting(Theta= 0.0000) geldt: ... E-theta- 73.42 1300 hubfase= -76.87 graden i 100 1500 . . 1600 Het totaal uitgezonden vermogen is: PR= 1.129E-06 Watt. De winst is: G= 25.9301 4B 1700 1900 i900 2000 2100 hnek(in gragen) modulus E-theta(in dB) fase(in gra 2200 0050 0.00 0.00 0.00 2400 2500 0.50 0.04 . . . 2600 ------2700 1.00 0.14 ----2800 0.21 2900 1.50 3000 -----3100 2.00 0.17 -----3200 3300 2.50 -0.01 ------3400 3200 3.00 -0.34 3600 -0.75-----_ _ 3700 3.50 2.00 3800 -1.85 3900 4.00 4000 1100 1.50 4200 شبطة بالمحجودة بالدادين 4300 5.00 0:15 4400 1500 5.50 -3.65 120 4600 -4.79 4700 **6.00** 4800 6.50 2.87 4900 5000 -7.19 -8.48 5100 7.00 5200 5300 7.50 ميسا أنتقط متسادما الدمالية 5400 5500 8.00 •• • • -9.96- -----. 5600 2180 11.55 5700 8.50 5800 The second state of the se

			-
5000	S.00	-:C.12	-24.51
2.699 96	0.50		-31.59
8 200 11 500	0.00		-40.97
5400			
6500	:0.50	-u7.78	-51.91
606A			
5700	00_ 3 1	··· ፲ ዓ . 5 ዓ	-62.91
6800			• •
: 900	1:.50	-21,25	-74.12
2000			
2100	12.00	-22.64	-87.27
7200	50 FA	54 07	
7300	12.50	-24.07	-103.9)
2500	17.00		-155 76
7600		23.01	*******
7700	0.2.50	-27.71	-139-33
7800			
7900	11.00	-29.14	-156.85
8000			
8100	14.50	-30.20	-177-86
6300			
8300	15.00	-31.40	-203.00
8400			
8500	15.50	-33.19	-2 30. 85
8600		, ;	an a
9700	16.00	-35.07	-255-03
8800			
8900	18.50	-36.10	-278-37
9000	17.00		-700 70
9100	17.00	-30.33	-307-32
7200 9700	17 50	-37 49	
9400	17:50	57702	
5500	18:00	-39-41	
9600	10800		
9700	18.50	-41.31	A14.30
9800			the second second second

. .

. . ..

100 Mode indices:M= 3.N= i 200 300 Theta-nul-10.5 graden Fred=19.8 GHz RA= 0.7178 meter Lambda= 1.517757 02 meter 400 K= 4.13978E+02 R= 1.7430 meter K*RA= 277.7315 500 500 K*R= 721.5337 700 Fi= 0.0 oraden Modepetal:NU= 27.5997 300 200 Aantal termen: 297 1000 1100 1200 Voor het veld in de hoofdrichting(Thetar 5.1875) geldt: 1300 -theto=##### Fasenul- 3.06 graden 1400 i500 1600 Het totaal uitgezonden vermogen is: Pr= 6.236E+00 Watt. 1700 1300 De winst is: G= 23.0712 dB 1900 2000 2100 Ne afgeleide (helling) van het E theta veld naar de hoek 2200 in de buurt van het nuipunt (genomen als gemiddelde 2300 tussen de aanoegeven hoekwaarden): 2400 2500 hoek(in oraden) mod(E-theta) helling(araden**-1) 2600 2700 0.00 0.00 4201.58 2800 2900 0.25 1050.40 3000 . 3100 3200 modulus E theta(in dB) hoek(in oraden) fase(in graden) 3300 0.00 ----0.00 3400 0.00 3500 0.25 43.57 126.11 3600 3700 0.50 126.27 3800 31.60 3700 126.97 4000 0.75 - 24.78 4100 - 20.15 128.60 1.00 4200 4300 131.35 4400 1.25 - 16.89 4500 **.** . 4600 1.50 - 14.41 4700 1.75 4800 -12.42 4700 145.10 5000 2.00 --10.72 5100 5200 2.25 . 5.20 5300 -156.43-1 -7.79 5400 2.50 5500 5600 2.75 · 6.45.2. 5700 •1.5 and the second second

5700	
6000	

11800	15.00	-21,71	Dave
11600 	14.50	- 19.87	
11400 11500	14.00	- 18.82	
11300	10.00	2/.JT	
11100 11200	13,50	. (7 R Å	
11000	13.00	15.84	32.90
10700	12.04	14.11	an a
10700	12 50	. 4 . 4	
10600	12.00	- 12.69	
10500			
10400	11.50	· 11-48	B/. 24.
10200	11.00	- 10.11	and the second of the second
10100			
10000	10.50	8.58	111.28
7700	10.00	· / • UY	123.50
7700 9800	10.00	7.08	· · · · · · · · · · · · · · · · · · ·
7600	5.50	- 5.84	134.92
7500			
5400	5.00	4.78	144.24
7300	0.00	· 0=/2	101.41
\$200	8.50		181 41
5000	8.00	- 2.63	
8700			
8800	7.50	1.63	163.69
3700		0.00	107.12
8600	7.00	0.50	140 17
8400 8500	6.50	· 0.46	·····172:94 ··
3300			
8200	٥.00	0.19	174.77
8100			2/0.27
8000	5.50	0.03	175.20
7700	0.20	0.00	1/5.34
7800	5, 75,	0.00	
7600	5.19	0.00	175.35
7500			
7400	5.00	0.03	175.39
7300		V120	1/0.30
7200	4.75	0.16	175 50
7000	4.50	0.40	175.59
6700			
6800	4.25	0.79	175.49
6700			1/3.02
6600	4.00	· 1.34	175 00
6500	0.70	- 2.00	174.05
6300	-	0.01	
6200	3.50	2.95	172.42
S100			10717-
6000 G	3.25	4.00	148 84
u/v/			

APPENDIX G

- -

-

1. YOT DOTE & TOME PRINTED: ERIDOY, FEBRUARY 6, 1987 0 13:37:57. 100 Moda-indicas:M= i.N= i 700 200 Theto nuimi0.5 groden Freq-29.7 GHz RA= 0.7128 mater RA= 0.7128 mater R= 0.7430 mater K*RA= 447.0467 iambda= 1.011510-02 moter K= 6.23105F+02 100 500 500 K*R=1082.5864 Fi= 0.0 groden Modegetoj:NU-700 12.6575 300 200 Anntoi termen: 447 1000 1100 Voor het veld in de hoofdrichting(Thetom 0.0000) geldt: E-thatam - 28.82 Nulfosem 154.19 groden 17:00 i 300 1400 1500 1600 1700 Het totool uitgezonden vermogen ist PR- 1.1288-06 Wott. 1300 Da winst is: 65 - 26.4262 (B 1900 2000 7100 hock (in proden) modulus E-theta(in dB) fosc(in pro 2200 2200 0.00 0.00 0.00 2400 7500 0.50 -0.05 0.88 2300 2.75 7700 1.00 -0.04 2300 7900 3.90 5.50 -0.16 3000 3100 -0.47 3.63 2.00 7700 7700 2.67 7.50 -0.80 3400 2.07 3500 3.00 -1.18 3500 -1.45 2.03 3700 3.50 3300 2.12 1.00 -1.75 3900 1000 1100 4.50 -7.24 2.51 1200 -7.94 3.63 5.00 1:00 4400 4,76 15.00 5.50 -3.76 4500 1700 . 1.51 c...00 -4.77 . . ٠. 1300 4.45 6.50 - 6-01 1200 5000 3.45 5100 7.00 -7.45 5200 223 135 7.50 -8-97 5300 5100 - 30.65 -3.0: 5500 8.00 5300 - 12.45 8.50 5700 5800 •

5000	2.00	14.77	- 5 t . 5 T
3000	0.10	1 × 4 4	
2.300	1.50	16	-23,33
6200	50.00	18.19	- 32.94
5400			
6500	50.50	30.05	- 13. Bc
5500			
6700	i1.00	~73.97	-58,57
5300			
2500	jj .5 0	- 24.16	-24.38
2000			-
7300	17.00	- 56.04	- 90,55
7200			•
2200	j7.50	- 27.73	- 311.7
7400			· • • •
7500	13 . 00	- 79.93	-334,76
7600			·
7700	33.50	- 21,70	- 156.5
7800			
7900	34.00		- 185.0
3000			
8100	34,50	- 35, 18	- 736.7
8200			
8200	15.00	- 34, 52	-244.5
3400			
8500	15,50	- 37.76	- 280_ ć
3.500			· · · •
8700	jč.00	- 32 - 98	-372.2
8300			
8500	16.50	- 41.58	- 357.7
2000			

. .

I YOT TATE & TIME PRINTED: MONDAY, JULY 20, 1987 @ 12:54:09. 100 Mode indices:N= 3.N= 1 200 Theta nul=10.5 graden 300 Fred=29.7 GHz 400 RA= 0.7173 meter Lambda= i.011511 02 meter R= 1.7430 meter 500 K= 6.21105E402 500 K*RA= 447.0715 K*R=1032.5364 Fi= 0.0 graden 700 Modegetal:NU= 27.5997 800 200 Aantal termen: 447 1000 1100 1200 Voor het veld in de hoofdrichting(Theta= 5.6875) geldt: 1300 ⊡ theta=######## 1400 Fasenul: 0.34 graden 1500 1600 1700 Het totaal uitgezonden vermogen is: Fr- 6.221E+00 Watt. 1300 De winst is: G= 23.9038 dB 1900 2000 2100 De afgeleide (helling) van het E-theta-veld naar de hoek in de buurt van het nuipunt (genomen als gemiddelde 2200 2300 tussen de aangegeven hoekwaarden): 2400 2500 helling(graden##-1) hoek(in graden) mod(E-theta) 2300 2700 0.00 0.00 2300 \$141.02 2900 0.75 1535.26 · ... • 3000 3100 modulus E-theta(in dB) 3200 hoek(in oroden) fase(in groden)-3300 0.00 . 3400 0.00 0.00 3500 3600 0.25 41.07 48.67 3700 2800 0.50 · 29.30 47.18 3900 4000 0.75 - 22.58 44.80 4100 4200 1.00 · 19.13 41.68 4300 4400 1.25 32.56 16.63 4500 4600 1.50 - 14.93 --- 32-66-4700 -77.25 4800 1.75 -13.76 1 4700 5000 2.00 12.82 21.87 5100 5200 2.25 - 11.83 . .. 14.72 5300 2.50 5400 - 10.64 5500 5600 2.75 - 5.25 5700 .12_80 5200 3.00 · 7 - 71 and a more of the second second second

F000			
5700	3.75	4.37	10.40
5100			12102
4200	3,50	4.76	17 61
6300			12+11
3300	7.75		10 07
2400	0.,0	5.50	1/
3500	4 00		15 /4
2200	4.00	· • • • • •	12.41
3700	A 5.5	(00	
6800	** • = J	-1.00	12.78
6700			
7000	4.50	ت د ا	14.07
7100			
7200	4.75	· 0.50	15.56
7300			
7400	5.00	0.53	17.0E
7500			
7600	5.25	0.25	18.30
7700			
7800	5.50	0.04	12.03
7200			17.00
8000	5.79	0.00	10.05
2100	0.07	0.00	19.23
9200	5, 75,	0.00	10.20
2700	5.75	0.00	17.28
3300		0.00	40.00
8400	5.00	0.05	19.22
3500			
8600	6.50	0.54	16.72
3700			•
8500	7.00	1.20	17.83
8700			
5000	7.50	2.05	14.45
7100			•
2200	8.00	3.26	9.52
2300			
\$400	8.50	4.62	3.53
2500			
26.00	S-00	5.28	7.80
7700		0170	2100
\$800	S. 50	7 50	14 10
2200	,		14.10
10000	10.00	0 70	
10100	10.00	7.50	29.50
10200	10 50	. 11 .00	77 4/
10200	10.50	11.00	
10300	+1 00		
10400	11.00	- 12.//	: 53,70
10500			تعطي فيشار المشر المالي مراجع المتحد والم
10200	11.50	14.80	
10700		_	· · · · · · · · · · · · · · · · · · ·
10800	12.00	16.50	
10700			
11000	12.50	- 18.15	
11100		• •	1
11200	13.00	-20.35	134.44
11300			
		-	5. 7

134.4

M.O. van Deventer augustus 1987

Appendix H: Verschillende mode-uitkoppelaars uit de literatuur

Naast de mode-uitkoppeling met een coaxiale-trilholteuitkoppelaar zijn er vele andere methodes bekend om de verschillende modes in een (ronde) golfpijp van elkaar te scheiden. In de figuren H-1 t/m H-7 zijn er een aantal weergegeven.

Figuur H-1: Een coaxiale-trilholte-uitkoppelaar, uitkoppeling via een onderbreking in de golfpijp-wand [S6, p. 186]. Deze uitkoppelaar kan voor de uitkoppeling van in principe alle golfpijp-modes gebruikt worden.

Tracking feed system.

Layout of TE_{21} -mode coupler using two orthogonal modes.

Figuur H-2: Een mode-uitkoppelaar met richt-koppelingen [57, p. 1862]. Nadelen van deze uitkoppelaar zijn de complexiteit en de verliezen, die bij de hybrids (gebruikt voor optelling en aftrekking van de verschillende signalen) optreden.

H₀₁-Fundamentalkoppler mit Anschluß an Hornparabol

Auskopplung der H_{11}^{-1} und der E_{01}^{-1} -Welle

Figuur H-3: Uitkoppelaar voor de TE11-mode (H11), de TM01-mode (E01) en de TE01-mode (H01) [58, pp. 48-49]. . . .

Figuur H-4: Uitkoppeling van de TE11-mode en een combinatie van de TMO1-mode en een van de TE21-modes [30, pp. 326-327]. Met deze combinatie wordt het polarisatie-rendement verhoogd van 25% naar 50%. De combinatie van de twee verschil-modes wordt gebruikt voor het minder gevoelig maken van het richt-systeem voor atmosferische depolarisatie.

Figuur H-5: Uitkoppelaar voor de TE11-mode en de TMO1mode [26, p. 1303].

Figuur H-6: Uitkoppelaar voor de TE11-mode en de TE21modes [27, p. 138], met hybrids worden de signalen van beide modes gescheiden.

.

Figuur H-7: Uitkoppelaar voor de TE21-mode [27, p.140] (in [27] wordt voor ontwerp van deze uitkoppelaar verwezen naar [59]).

Appendix I: Een methode om het elektro-magnetsche velden probleem op te lossen voor een uitkoppeling met spleten

Door Stevenson wordt een methode beschreven om theoretisch het rendement van een spleetuitkoppeling te bepalen [39]. In dit verslag is de berekening van het theoretische uitkoppel-rendement van de coaxialetrilholte-uitkoppelaar niet uitgevoerd, maar de methode van Stevenson geeft wel een aardig inzicht in het probleem.

Bij deze methode wordt verondersteld, dat de spleet smal is en dat daardoor het elektrische veld in de spleet dwars over de spleet staat, parallel aan de wand. Het elektrische veld in de spleet kan dan beschreven worden door met spanning over de spleet (de integraal van de elektrische veldsterkte over de spleet).

Allereerst worden de velden aan beide kanten van de spleet berekend, uitgaande van een nog onbepaalde spanningsverdeling V(1) over de spleet. Bij een golfpijp kunnen deze velden gezien worden als de som van alle ongedempte en gedempte modes met een bepaalde verhouding in amplitude en fase, bij een spleet-uitkoppeling naar de vrije ruimte kunnen deze gezien worden als de velden van een magnetische dipool, enz.

Vervolgens wordt het (staande - of lopende) veldenpatroon, dat veroorzaakt wordt door de bron, berekend met een gesloten spleet. Dit patroon kan bijvoorbeeld de hoofd-mode in een golfpijp zijn.

Uit de randvoorwaarde bij de spleet volgt, dat het verschil tussen de parallelle component van het magnetische veld (veroorzaakt door V(1)) aan de beide kanten van de spleet gelijk moet zijn aan de parallelle component van het magnetische veld veroorzaakt door de bron. (Eenvoudig gezegd: de parallelle component van het magnetische veld stoot de magnetische "spleetdipool" aan en zorgt zo voor de uitkoppeling). Hieruit volgt een integraal-vergelijking met de randvoorwaarden V(0)=0 en V(L)=0, waarmee V(1) in principe berekend kan worden. Uit de berekening van V(1) volgt de oplossing van het velden-probleem. M.O. van Deventer augustus 1987

Appendix J: Constructie-tekeningen van de verschillende trilholtes door K.H. Liu

voor uitkoppeling Tracking modi 12.5 GHz 21/jon/87 (pas op golfpip) Tallote 2 X WG flens Slauf Sieuf 1 Dm . **. . . i** . 10 Schneefdraad Spord= 0.3 MA in according i おう I. 1. 11 \$ 56.0 mm 1 0 66 10 mm

	24	Galforia 2008	1 - Rilhol	ta l	11 in 182
	(Das m	aken met 4)			K. Liu
			· · · · · · · · · · · · · · · · · · ·		
97 45 .0					
		· · · · · · · · · · · · · · · · · · ·			
92) 1947 ISBN 920 1947 1949 1947 1947 1947 1947 1947 1947	115 mai - 1886 marco 1860 1978 187 1978 1978 1979 1979 1979 1979 1983 1986 1979 1979 1979 1979 1979 1979 1979 197				
ייש איז					
.					

-227-

-228-

-229-

8.7			21 jan /87
	Overgang 26 cm	> 18.0 mm	K. Liu
	Golfpyp onder 2	5.7°	1 · · · · · · · · · · · · · · · · · · ·
		2A . 2B)	
	ipas maken met	5 en 5 /	
			·

·

-230-

. ,

APPENDIX

٢.,

-231-

		÷
Golfpyp voor 125 GHz	Col Cross Resonator	K. Liu
T K / Com Pring		18/03/87
N N		
	; i	-
2-0 x 12.0 mm 00 0° 00° 180° e	270*	
	Klemring 4 Slewven own Klemring	
	\$ 30 0 mm	
60 0 mm		
6E-2		

-232-

. .

25° Japer van \$11.2 mm naan \$ 18.0 mm Golfpip Pas in \$18.0 mm golfpip (blz 31) K. Liu 23-3-'87 pie om \$ 11.2 mm 31-2.2 200 -7.8 mm 300-

-233-

M.O. van Deventer augustus 1987

1

25° Japen von \$72mm maar \$11.2mm Golfpyp Pas in \$11.2mm Golfpyp (bla 34) K. Liu 23/03/87 2.0 mm 250 . 4.3 mm 2.2 •• :

-236-

K. Liu 18/03/87 Galfpijp voor 30 GHz Resonator Klemring en Kortsluit zuiger n:**9.8 # 5:0** mm • 90.0°, 180.0°, 279° 0 Ronde Stoaf (schuitpos in goltpyp) 4 510 10 #7.1mm 1 1 1 Klemming : 50.0 mm ; ÷ į

Appendix K: Foto's van de belichter-meetopstelling

M.O. van Deventer augustus 1987

M.O. van Deventer augustus 1987

-242-