
 Eindhoven University of Technology

MASTER

A coprocessor for hardware multitasking support

Verschueren, A.C.

Award date:
1987

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/2984d76f-578c-426d-90d7-59275df7bfa5

Eindhoven University of Technology
Department of Electrical Engineering
Group Digital Systems (EB)

A COPROCESSOR FOR
HAf~D\j\JARE MULTITASKING

SUPPORT

Master's thesis
by A.C. Vp.rschueren

This is the final report for the graduation work done at the Eindhoven University
of Technology, department of Electrical Engineering, group Digital Systems

By:
Coach:

Time period:
Report da te:
Location:

A.C. Verschueren
prof. iT. M.P.J. Stevens

may 14, 1986 to august 27, 1987
august 7, 1987
Eindhoven University of Technology,
Room EH 10.8

The department of Electrical Engineering of the Eindhoven University of
Technology does not accept any responsibility regarding the contents of student­
project and graduation reports.

i

Abstract:

This report is the result of a brainstorm that lasted for over a year. It started with
a simple question posed by my coach, Prof. Stevens:

'Is it possible to build a multitasking operating system in hardware ?'

A question from which I now think that it can be answered with a firm 'yes, and
even more than that'.

Following a comparative study of several (real time) multitasking operating
systems, I have conceived the basic design of an integrated circuit that offers the
functions of a multitasking operating system to a computer if it is connected to
this computer's processor.

The proposed chip takes a very general approach to communication between tasks
running under the operating system. An on-chip local area network controller
makes it possible to connect these chips together, so that a task running on one host
processor can communicate with tasks running on the other processors in the
network. The specification also includes the connection of these networks by means
of bridges to other networks, so that the communication facilities stretch even
further with the same ease of operation. For a task, there are no differences
between communicating with a task running at the same processor and a task
running at another processor.

In this graduation report, I take a look at the proposed chip from two points of
view. Chapter two describes the functions that can be requested by the host
processor, and thus gives the viewpoint of the programmer who has to write
programs while making use of the chip. Chapter three gives a breakdown of these
hardware functions into cooperating functional blocks, and thus gives the chip as
it will be seen by the hardware designers (both for the surrounding logic and the
chip itself).

Chapter one provides an introduction to (real time) multitasking operating systems
and also tries to explain why the functions are proposed the way they are. The
appendices contain a comparison between several operating systems and a
comparison between the proposed functions and those provided by the iRMX 86
operating system.

Eindhoven, june 1987

Abstract

Ad Versch ueren.

ii

Table of Contents

Preface 1

1.
1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.3
1.3.1
1.3.2
1.3.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7

2.
2.1.
2.1.1
2.1.2
2.1.3
2.1.4
2.2.
2.2.1
2.3.
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.3.10
2.3.11
2.3.12
2.3.13
2.3.14

Introduction 3
Multitasking 4
Communication 7
Synchronisa tion 7
Message exchanging 9
Character oriented data transport 10
Block oriented data transport 11
Communication with external hardware 11

Multiprocessor architectures 14
'Bus-ed' processors 14
LAN interconnected processors 15
In terconnected LAN·s 15

MMTCP Implementation 17
Hardware task switching 17
MMTCP semaphores. 'channels' and regions 18
MMTCP mailboxes 18
MMTCP pipes 18
MMTCP 'file transfer· 19
MMTCP communication with external hardware 19
Functions not covered yet 20

Functional Description 22
System Initialisation and Maintenance 23
INIT SySTEM 23
CONNECT NETWORK 28
DISCONNECT NETWORK 29
NETWORK CHECKOUT 30

Bridge Handling 33
CHANGE RING ACCESS TABLE 35

Processes :: .= .= 37
INIT PROCESS 37
TERM PROCESS 39
DELAY 40
SUSPEND PROCESS 40
RESUME PROCESS 41
CHANGE-PRIORITY 41
CHANGE-USER AREA 41
YIELD = = 42
POLL 42
GET STATISTICS 43
CHANGE TIMERS 45
SET SPECIAL STATUS 46
SET-ENVIRONMENT 46
UNLINK 47

Table of Contents

2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.5
2.5.1
2.5.2
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.8
2.8.1
2.8.2
2.8.3
2.8.4
2.8.5
2.8.6
2.8.7
2.8.8
2.9
2.9.1
2.9.2
2.9.3
2.9.4
2.9.5
2.10
2.10.1
2.10.2
2.10.3
2.10.4
2.11
2.11.1
2.11.2
2.11.3
2.12
2.12.1
2.12.2
2.12.3
2.12.4
2.12.5

iii

Normal Semaphores 48
INIT SEMAPHORE 48
TERM SEMAPHORE 50
WAIT .= 50
SIGNAL 51
CHECK SEMAPHORE 52

Chauoel Semaphores 53
WAIT CHANNEL 53
SIGNAL CHANNEL 54

Mailboxes::. 55
INIT MAILBOX 56
TERM MAILBOX 57
RECEIVE MESSAGE 57
SEND MESSAGE 58
CHECK MAILBOX 59

Regioos..::: 61
INIT REGION 61
TERM REGION 61
ENTER REGION 62
EXIT REGION 63
CHECK REGION 63

Pipes = 64
INIT PIPE 65
TERM PIPE 65
CLAIM- PIPE 66
RECEIVE DATA 67
SEND DATA 68
RELEASE PIPE 68
FLUSH PIPE 69
CHECK- PIPE 69

Interrupts 71
SET INT SEMAPHORE 72
SET-ALT- INT SEMAPHORE 72
ENABLE INTERRUPT 73
DISABLE-INTERRUPT 73
TRIG INT SEMAPHORE 73

Real time clock/Power handling 75
SET RTC 75
READ RTC 75
WAIT -RTC 75
POWER OFF 76

Deletion control 77
DISABLE DELETION 77
ENABLE -DELETION 77
FORCE DELETE 78

Stream Data Transfer 79
SEND STREAM 80
RECEIVE STREAM 80
CHECK STREAM 81
AWAIT STREAM END 82
ABORT- STREAM-:: 83

Table of Contents

2.13
2.13.1
2.13.2
2.13.3
2.13.4
2.13.5
2.13.6
2.13.7
2.13.8
2.13.9
2.13.10

3.
3.1
3.1.1
3.1.2
3.1.3
3.2
3.3
3.4
3.4.1
3.4.2
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.6
3.7
3.8
3.9
3.10
3.11
3.11.1
3.11.2
3.11.3
3.12
3.12.1
3.12.2
3.12.3
3.13
3.14
3.15
3.16

4.

iv

Virtual memory/MuItiprocessor support 84
SET ALTERNATE READY QUEUE 86
SET-NORMAL READY QUEUE 86
MARK DIRTy-: ::: 86
UNMARK DIRTy 87
GET PROCLIST HEAD 87
GET-PROCLIST-TAIL 87
GET-PROCLIST-NEXT 88
GET-PROCLIST-PREV 88
BROADCAST PROCESS 89
CLAIM PROCESS 90

Functional blocks 91
On-Chip Buses 92
In ternal messaging bus 92
Internal working memory access bus 93
Multiplexing the internal buses 96

External Working Memory 98
Memory allocation and de-allocation 101
Process Searching and Task Cache 105
Process address searching 105
Task descriptor cache 107

Host processor interface 110
Host interface protocol handlers 111
Host cominand interpreter 112
Host task swi tcher 112
Host result register handler 113

Task restarter ,. 114
Interrupt scanner 115
Interrupt handler 116
Real time clock and Power Switch 117
Delays generator] 18
LAN input controller] 19
LAN input lowest layer 119
LAN input intermediate layer] 19
LAN input highest layer 120

LAN output controller 122
LAN output lowest layer]22
LAN output intermediate layer 122
LAN output highest layer 122

Stream and Bridge data handling 124
Chip test hardware 126
Thoughts for the future 128
Schematic overview 129

Conclusion]30

Table of Contents

v

Appendices

A.
A.l
A.l.l
A.I.2
A.I.3
A.l.4
A.l.5
A.I.6
A.I.7
A.I.8
A.I.9
A.I.I0
A.l.ll
A.2
A.3
A.4

B.
B.l
B.2
B.3

Some existing multitasking operating systems 132
In tel's iR 1\1X 86 133
iRMX jobs 133
iRMX tasks 134
iRMX semaphores 135
iRMX mailboxes 135
iRMX memory segments 136
iRMX regions 137
iRMX objects 138
iRMX exception handlers 138
iRMX interrupts 139
iRMX deletion control 140
iRMX user ex tensions 140

Texas Instruments Microprocessor Pascal System 142
LEX (developed in Eindhoven) 146
Bell labs' UNIX 148

iRMX Kernel, BIOS and EIOS emulation 151
iRl\tX Kernel emulation 152
iRl\tX BIOS 154
iRMX EIOS 157

Literature 158

Table of I\tl\tTCP functions 159

Index 161

Table of Contents

1

Preface

This graduation work started with an idea dreamed up by Prof. Stevens: 'If a
multitasking operating system takes too much computer time itself, shouldn't it
become time to do the multitasking in separate hardware 7'. He gave me a free
hand to come up with something that would fit the description, and so I started
delving into manuals of several existing operating systems.

While I was collecting bits and pieces from these operating systems to compile a set
of functions to be performed by the multitasking hardware, something strange
caught my eye. The multitasking was not the most important part within these
operating systems, it was just a means to synchronise tasks that were
communicating with eachother! This insight shifted the emphasis from
multitasking to communication and has helped a lot to expand the functionality of
the hardware far beyond the first ideas.

If the multitasking hardware block that controls one processor can be made to
communicate with other multitasking hardware blocks, then the tasks that run on
these processors can communicate amongst eachothers as if they were running on a
single processor. In this setup, communication, synchronisation and task switching
are all built into a single hardware block, and work in unison.

This graduation work starts a new research project at the Eindhoven University of
Technology. It is therefore largely investigative and feasibility research. For the
current (1987) integrated circuit technology, building a chip implementing these
functions might be just out of reach, but it should be possible within several years.

My graduation period was relatively long, over one year. This report is, as a result
of this, rather bulky with over 150 pages. But it could easily be much bulkier if I
had the time to put all my ideas regarding the implementation of this multitasking
hardware into writing.

During the compilation of the functional description, I have constantly kept in
mind that everything should be implemented in hardware. If I did not have the
foggiest idea of how to implement a proposed function, then I would change the
function or drop it altogether. For a complex design like this, I prefer this 'yo-yo'
design approach over a strict 'top-down' design approach because it greatly reduces
the risk of specifying functions that cannot be implemented.

As a result of this approach, I obtained a rough idea of the hardware and
algorithms that will be needed to build the 'Multiprocessor Multitasking
Coprocessor' (shorthand: 'MMTCP' - anyone out there who can think of a better
name 7). This report contains most of my ideas for the hardware implementation,
but almost none regarding the algorithms.

The algorithms must be implemented in hardware and 'software'. The line between
hardware and software is very thin here - should a state machine controlled
processor be regarded as the hardware form of the microprogram that drives a
microprogram controlled processor 7

In some cases, I propose to build the algorithms in very specialised hardware like
'content addressable memories'. It is in these cases, that the description of the
hardware provides a view of the underlying algorithms.

Preface

2

My apologies for being incomplete by not giving these algorithms. In most cases, I
was satisfied if I could imagine the algorithm to be used to solve a problem, and I
did not even bother to write it down. A large part of the algorithms are very
straightforward (but bulky), and writing them down in this stage of the design
process would have been a waste of time anyway. The more difficult algorithms
can be found in the optimisation of the task switching and the communication
protocols for the local area network. The former can only be worked out when the
performance of the rest of the system is known, and the latter depend very much
on existing standards. It is better to execute these algorithms with
microprogrammed controllers, so that they need not be fixed until the last stages of
the design process.

I would like to thank my coach, Prof. Stevens, for providing the opportunity to do
this work. Most of the time, I was left on my own to come up with new ideas,
which he then tried to talk out of my head at our next meeting. These meetings
were sometimes very fiery, but they served well to keep only the good ideas
upright and break down the bad ones.

I thank Ren~ Hoozemans for thinking with me and his help in understanding the
UNIX operating system. I thank mr. Geurts who got me to understand multitasking
operating systems at all, and pointed me in the direction of iRMX 86. I would like
to thank my colleague Lucien Duijkers for his help with the LEX operating system,
and Herman Vos, who is currently working on the local area network controller to
be placed on the MMTCP chip. Many others contributed their bits and pieces to the
project, I hope to see you all at my graduation party!

Eindhoven, july 6, 1987

Preface

Ad Verschueren.

3

1. Introduction

In this chapter I will give an overview of the basic ideas that have lead to the
current specification of the MMTCP (Multiprocessor MultiTasking CoProcessor).

I will start with describing the division of programs into several more or less
independent subprograms ('tasks', sometimes called 'processes') and focus on why
this is done. These tasks must all be running 'at the same time' and this will lead
me to the use of multitasking operating systems.

When a program is split up into several independent tasks, these tasks need to
communicate with each other in several different ways. I will describe four
methods of communication, each with their own specific use. I will also describe a
general way to get the tasks to communicate with the outside 'world'.

The next topic will be the distribution of the tasks over different processors. There
are several different ways to do this, I will describe some of them. This will lead
me to the description of local area networks (LAN's) and networks of local area
networks.

In the last part of this chapter I will map all the described topics onto the MMTCP
system hardware and software, hoping that this will give the reader the necessary
insight to understand what is going on in the other chapters of this report.

Readers with knowledge of multitasking operating systems (specifically iRMX and
UNIX) can skip most of this chapter. The last two subchapters ('Multiprocessor
architectures' and 'MMTCP Implementation') contain information that is necessary
to understand the inner workings of the MMTCP, and should at least be glanced
over.

1 - Introduction

4

l.l Multitasking

High level languages provide the programmer with means to divide his/her
program into routines that each handle part of a problem. The keywords used here
are 'information hiding' and 'algorithm hiding', meaning that the exact form in
which data is stored, and the way this data is handled may be 'invisible' to the
programmer once these routines are written.

A routine may be directed into doing something specific by glVlDg it parameters
when the routine is 'called'. The effect after calling the routine may be that
changes have occurred within (invisible) data structures and/or that result values
are returned to the calling routine. A big program written in a high level language
consists of a main routine that calls other routines, which in turn call other
routines, etcetera. The lowest level routines do the actual work and can be seen as
the leaves on a routine 'tree'.

In some programs, the structure of the problem to be solved is such that several
operations can be going on at the same time. This is especially true when when it is
known that a certain set of data values will be needed in the near future ('read
ahead' on a disk drive) or when processed data values may be stored or output
while a new set is being processed (printer 'spooling'). Sometimes it is easier to
visualise the data processing as a series of transformations on the data, where each
of the transformations is handled by a different program in a chain of programs
running concurrently.

Computer systems that control 'real world' processes (for instance in a chemical
plant) are often faced with very contradictory demands. They have to keep up
with the external changes (work in 'real time', as it is called) and they should be
able to control several external processes at the same time. Although the second
problem can be solved by using a separate computer for each external process, this
would present big problems when several of the processes are interacting with
eachother. In that case, the computers should be able to communicate with
eachother to exchange information about the state 'their' process is in.

Until recently, using several computers with an interconnection network has been
more expensive than using one computer with the 'interconnections' in software
(especially if it should work reliable). So, despite the fact that using several
computers would be a more elegant solution, a single central computer is used. This
central computer runs a control program that simulates the running of several
programs at the same time and offers facilities for these programs to
'communicate' with each other. Such a control program is called a 'real time
multitasking executive', and in most cases it can be bought from the manufacturer
of the computer hardware.

Computer systems are also used to run several programs for different human users
at the same time (in some situations, several programs for a single user). Depending
on the situation, these programs may be using completely different sets of data, or
they may be working on a common set of data (like an inventory control system
with several steams of goods flowing into or out of a warehouse). Depending on
the system setup, these programs may be sharing several pieces of hardware, while
they may use other pieces of hardware for themselves.

Until recently, almost everything was shared (except for the keyboards and video
displays), but nowadays, the users are each given an 'intelligent workstation' (a

1.1 - Introduction: Multitasking

5

small computer) to work with. These workstations run most of the user programs
and communicate with eachother using some form of (local area) network. Coupled
to this network are the more expensive pieces of equipment like fast printers, large
background stores and dedicated fast computers to run programs that are too big
for the workstations. These pieces of equipment are still shared amongst the users.

The control programs used for these computer systems do not differ too much from
the real time multitasking executives introduced above. The demand for 'real time'
handling is relaxed or completely gone, but now the emphasis has shifted to the
protection of the users from eachother and the protection of the system as a whole
from the users' mistakes. The same primitives used to let tasks run concurrently are
now used to run complete programs 'at the same time', and the signalling between
tasks is used to be able to share resources and data sets in a more or less invisible
way (the programs simply request the control program the use of shared resources,
and normally do not communicate with other programs themselves).

The hardware of most processors is incapable of running several programs/tasks at
the same time, so the multitasking executives must switch the processor between
those tasks that want to make use of it (like a normal resource). This is done by
letting a program run for a while, then saving the 'volatile environment' of the
program (those registers that will be changed when another program is run) and
loading the volatile environment of the program that must be made running. The
switching of the processor between different programs is appropriately called 'task
switching', and may occur a lot within a real time multitasking system.,

The multitasking executive decides which task should be made running after a task
switch. Two main algorithms are used to make this decision:

Event/Task priority driven processor assignment. When this algorithm is used, all
tasks are given a certain 'priority', indicating the importance of the task. If
there are several tasks that want to use the processor, then the task with the
highest priority is allowed to run. A task stops running when it has to wait
for another task or for something to happen in the external 'world'
(generally called an 'event'), giving way to tasks with a lower priority.

Time slicing/'Round robin' processor assignment. Here, a task is given a specific
amount of time to run, after which a task switch is forced and the next
waiting task is restarted. All waiting tasks are allowed to run one at a time,
in a circular fashion (hence 'round robin'). The amount of time given to
each task depends upon the amount of computer time a task needs, and how
fast a task should complete it's job.

Both algorithms have their advantages and disadvantages. In most multitasking
executives, both algorithms are used, sometimes in strange combinations. UNIX, for
instance, implements time slicing by lowering the priority of a running task at a
steady rate, while at the same time increasing the priority of tasks that are ready
to run (priority based time slicing n. Some very strict real time multitasking
executives do not implement time slicing themselves, but offer this as an option
that can be implemented in higher operating system 'layers'.

Event/task priority driven processor assignment is used where tasks should be able
to respond very quickly to external 'events'. The programmer can specify which
event he/she considers most important by assigning high priorities to tasks that

1.1 - Introduction: Multitasking

6

must handle such important events. This way, handling an unimportant event can
be postponed to handle more important events.

Time slicing is used when the tasks are all of more or less equal importance. It is
also the only way to run tasks that may run for a long time without having to wait
for external events (calculation intensive tasks, for instance).

If a task falls into an endless loop then the users of the other tasks in time sliced
system only see a decrease of the system performance. If this happens to a high
priority task in a priority driven system, then the system will crash! This is the
reason that event/priority driven systems are only used for those parts of a system
that work reliably and cannot be (directly) influenced by users. Real time
operating system applications generally fall into this category (sometimes there are
no human users at all in such a system !). The control programs in multiuser
environments also fall into this category, although these may provide certain event
driven functions to the user programs under their own strict supervision.

A multitasking operating system keeps track of it's tasks in data structures known
as 'task descriptors'. A task descriptor has fields to hold the current priority (if
used), the 'state' of the task (running, ready to run, waiting for an event, etcetera)
and (a reference to) the volatile environment. Note that these are only the very
basic contents of a task descriptor, and that they sometimes need several hundreds
of bytes! The task descriptors of tasks that are ready to run are normally placed
in a linked list called the 'ready-to-run' list. In a priority based system, this list is
sorted on priority, so that the task at the head of the list has the highest priority,
and is the prime candidate to be made running at the next task switch.

I have already used the word 'event' several times in this subchapter. An 'event'
occurs when a task communicates with another task or when an external process
changes it's state. In the next subchapter, I will describe these different forms of
communication and the 'events' generated by them.

1.1 - Introduction: Multitasking

7

1.2 Communication

Communication is the main chore of multitasking systems. Tasks communicate with
eachother or with the outside 'world' (with sensors, actuators or humans sitting
behind a terminal), and this communication should be handled in a consistent way
by the multitasking operating system.

The following four subchapters handle an equal number of different forms of
communication, the fifth subchapter describes how external (hardware generated)
events 'communicate' with tasks running in a multitasking system.

1.2.1 Synchronisation

The simplest form of communication is synchronisation. Although there is no
exchange of messages of any kind, the mere fact that tasks can wait for eachother
or external events is already a form of communication. For the moment, I will
forget that external events are handled by the multitasking system as
synchronisation events, as these will be described in the subchapter 'communication
with external hardware' below.

Synchronisation always needs two parties to communicate. The task that wants to
wait for the synchronisation to take place calls an operating system function
specifying the operating system which synchronisation event it wants to wait for.
The operating system places the requesting task 'on hold', searches for a task that
is ready-to-run and makes this task running (otherwise the processor would be
doing nothing).

The waiting task is made ready to run again when another task is running and
decides to 'signal' the synchronisation event. To do this, the signalling task calls
another operating system function, also specifying which synchronisation event is
signalled. The operating system will make the waiting task ready to run again, and
check it's priority. If the priority is higher than the signalling task's priority, then
an immediate task switch is done, otherwise the signalled task will have to wait
until there are no other tasks with a higher priority that are ready to run.

Such a synchronisation event is handled by the multitasking operating system in
the form of what is generally called a 'semaphore'. The 'semaphore' is simply a
name for the data structure that is used to keep track of the number of tasks
waiting (in most cases a linked list of task descriptors) and the number of signals
given (an up/down counter).

Numerous variations on this theme are in use. I will describe a few of them:

'No memory' semaphores. A semaphore is said to have no memory when signals sent
to it have no effect if there are no tasks waiting. Normally, the signals sent
are 'remembered' so that a task that does a wait request later will be
restarted immedia tel y.

'Non-counting' semaphores. A semaphore is said to be non-counting when sending
more than one signal has no effect if there are no tasks waiting. Such a
semaphore can only 'remember' a single signal being given in the absence of
waiting tasks.

1.2 - Introduction: Communication

8

'Queue-less' semaphores. A semaphore is said to have no queue when all waItIng
tasks will be made ready to run as soon as a single signal has been given.
Normally, only one (or possibly a limited number) of tasks will be made
ready to run upon the reception of a signal.

'Unit-ised' semaphores. Semaphores of this type do not count the number of 'signal'
calls in their counter, but rather the number of abstract 'units' that is
specified in each 'signal' and 'wait' function call. This makes it possible to
let a task wait until a specified number of 'signal' calls have been done. It
also enables a single 'signal' call make a specified number of waiting tasks
ready to run.

If a waiting queue is used for the waiting tasks, then this queue can be ordered in
several different ways, each with their own uses (tasks at the head of the waiting
queue are the first to be made ready to run). The two main queue forms are:

FIFO (First In First Out) waiting queues. Here the tasks await the 'signal' calls in
the order in which they called 'wait' themselves, This means that the longest
waiting task will be 'served' (made ready to run again) first.

Priority based waiting queues. Tasks are placed in the waiting queue in the order
of their priority (FIFO order is used for equal priority tasks). This means
that the task with the highest priority will be served first.

For very specialised functions, other exoteric waiting queue orders can be used.
Some of them are available within the MMTCP, and will be described in
subchapter 2.4: 'functional description: normal semaphores'.

Semaphores can be used to restrict access of tasks to specific pieces of hardware,
software and/or data. This is known as 'resource locking', and a simple example is
the restriction that only a single task at a time may use the system printer.

This is implemented by initialising the semaphore with a single unit, sometimes
called the 'access token'. A task requesting access to the resource must first obtain
this access token with a normal 'wait' call to the multitasking operating system. If
the token was available at the time of call, then the task can immediately continue,
otherwise it must wait until the token is returned to the semaphore by another
task. Only a task that has obtained the token may use the resource, and when the
resource is no longer needed, the token should be returned to the semaphore by a
simple 'signal' call. The operating system will then give the token to the task at the
head of the semaphore waiting queue (if any).

Problems arise when a task enters an endless loop, is involved in a deadlock
situation or is removed from the system while in possession of one or more access
tokens, If this is not detected by the operating system, then the token will never be
returned to the semaphore, and the resource becomes unavailable (a printer may
'disappear' from the system).

To protect the system from these errors, a special kind of semaphore has been
introduced which we will call a 'region', A task that is in possession of an access
token from a region semaphore cannot be removed from the system (at least not in
the usual way), and is protected in some other ways too (see subchapter 2.7:
'functional description: regions').

1.2 - Introduction: Communication

9

1.2.2 Message exchanging

Sometimes, mere synchronisation of tasks is not enough for communication, and
more information is needed by the waiting tasks (for instance: 'who restarted me ?'
or 'where can I find my data ?'). In this case, short messages are exchanged
between the tasks, and these are buffered in what is generally known as a
'mailbox'.

A task requesting a message from a mailbox calls an operating system function
specifying which mailbox to use. If a message was available in the (FIFO
organised) message buffer, then this message is given to the task immediately,
otherwise the task must wait until one is written to the mailbox by another task.
More than one task may be waiting for messages, these tasks are logically placed in
a linked list like the one used for semaphores.

A task that wants to write a message to the mailbox does so by calling another
function in the multitasking operating system. If there was a task waiting for a
message, then this message is immediately given to this task, and the waiting task
is made ready to run (removed from the head of the waiting list). If there were no
tasks waiting, then the message is written to the FIFO message buffer that is part
of the mailbox data structure.

There are two main forms of mailboxes, differing in the size of the message buffer
FIFO. In the so called 'infinite' mailboxes, the message buffer is essentially
unlimited in length, and a task can always write messages. In the so called 'fixed
length' mailboxes, the message buffer has a limited number of 'slots' to hold
messages, and a task will be placed in a waiting list if it requested to write in the
mailbox while there were no slots available anymore.

Note that the actual order in which the messages enter the mailbox is not specified,
nor is it possible to direct a message in a mailbox to a specific waiter (separate
mailboxes will be needed to do that). This stems from the fact that in mailboxes
the synchronisation of tasks is still the main issue, not the actual data that is
transferred.

Most real time multitasking systems provide mailboxes directly as part of the inner
layers of the operating system. In multiuser operating systems like UNIX,
mailboxes are absent in these layers. If mailboxes are necessary, they can be build
with a software simulated FIFO buffer and some semaphores to synchronise the
reading and writing tasks.

Normally, messages may be written to a mailbox by different tasks, so that streams
of messages coming from separate tasks will be mixed in the mailbox buffer. Also,
several tasks may be waiting for the messages. Which message is given to a waiting
task depends on the order in which the tasks requested the messages, the order in
which the messages were written, and the organisation of the waiting list(s) for the
tasks. The mixing and distribution of the messages can be seen as a more or less
stochastic process that is very difficult to control.

We will see later that even a mailbox with a single writer and a single reader can
change the order of the messages, so a mailbox should never be used if this order is
important. The means of communication described in the next subchapter will

1.2 - Introduction: Communication

10

make sure that messages sent in a specific order will arrive in the same order, and
will not be mixed with messages from other sources.

1.2.3 Character oriented data transport

Characters can be used to transport information between tasks, but are most
important in the communication with human users. After all, we cannot interpret
nor enter direct binary information (even a memory dump is presented to us as
pages full of hexadecimal characters). Data is stored on disks and tape in the form
of characters, because this makes it easier to inspect and change this information
'by hand' if something goes wrong in the system.

The transport of character data to and from a device (a keyboard, for instance) is
always handled by a task within the system. There is always some kind of program
that reads the keyboard data from a serial or parallel port, does some preliminary
transformations (like the 'caps lock' function) and then sends the data to another
task within the system for handling. So, in essence, character data transport within
the system is always between two tasks,~ directly between an internal task
and an input/output device. How an input/output task communicates with external
devices is described below in subchapter 1.2.5: 'communication with external
hardware'.

With character data transport, the data itself has become more important than the
synchronisation of the tasks involved. True, the sending and receiving tasks will be
synchronised with eachother, but this is only necessary to keep them running at the
same pace. In most systems, a FIFO oriented data buffer is inserted between the
sender and receiver, making it possible to cope with temporary delays in the
generation or 'consumption' of characters.

Most multitasking operating systems provide character data transport, but normally
never in the lowest operating system software layer. In most systems, character
data transport between tasks is implemented as a special form of input/output.
UNIX calls ita 'pipe', which is also the name I will use in this report. Character
transport to and from input/output devices is done by special tasks in the
operating system, and the requests from internal tasks to do input/output actions
are handled by higher layers of the operating system software.

Data written to a pipe should appear at the other end in exactly the same order
(after all, what might happen if an escape sequence has the <ESC> character at the
end ?). Also, a pipe should be used by only a single writer and a single reader at a
time, otherwise the FIFO will turn into a GIGO (stands for 'Garbage In Garbage
Out').

Keeping the data in the correct order is not such a problem, especially if the
buffer is a simple software simulated FIFO between two tasks running at the same
processor (this changes when the two tasks run at different processors !). The main
difference between the operating systems lies in the way they restrict access to a
pipe to a single reader and a single writer at a time.

UNIX does this by ha ving the operating system place the pipe between two tasks at
the time these tasks are created. The tasks do not even know that they
communicate via the pipe, and no other task can interfere (only the operating
system has knowledge about the existence of the pipe !).

1.2 - Introduction: Communication

11

iRMX86, on the other hand, treats pipes as a special form of files (and calls them
'stream files'), and gives them exactly the same possibilities as normal files. This
means that it is possible to have several tasks share read and write access rights to
a single pipe (although this is not recommended).

1.2.4 Block oriented data transport

The pipes described in the previous subchapter are used when data has to be
transported between tasks at a more or less random rate. Normally, it is not known
in advance how much data is going to be transported, and the pace of the transport
itself depends upon the internal data handling rates of the participating tasks.

Within multiuser oriented operating systems, another form of data transport is used
for what is generally known as 'file transfer'. In this case, all the data to be
transported is already available at the start of the transport, so that the total
amount of data is known in advance. The data transfer is initiated by tasks (in
most cases within the operating system), but the actual transfer itself need not be
synchronised to any task. It is only when the transfer is done that requesting tasks
are notified (normally, they are allowed to continue running while the transfer is
in progress).

In a single processor system or a system of closely coupled processors (processors
connected to a common bus or backplane), file transfer is done with block moves
between memory areas and DMA (Direct Memory Access) hardware to speed the
transferring to and from input/output controllers. Hardware assistance is needed
because the number of data bytes in the 'file' may be very large (up to several
megabytes) and using the processors to do the transfer byte by byte would place a
too heavy workload on the system.

In a loosely coupled system where the processors (or clusters of closely coupled
processors) are interconnected via some form of communication link, it becomes
necessary to do file transfers using these communication links. In a modern local
area network, for instance, there are 'workstation' computers (without background
storage) and 'file servers' (computers with large amounts of background storage).
These computers need to communicate with eachother to be able to use the file
server's background storage on each of the workstations.

1.2.5 Communication with external hardware

All computer systems need to do input and output actions to communicate with the
outside 'world'. Most input/output actions contain two mayor phases
synchronisation and data transfer. In some cases, no data is actually transferred
and such an action might be regarded as a special form of semaphore
synchronisa tion.

The synchronisation phase is relatively simple. A simple binary digit suffices to
tell the processor when the external process is ready to do an input/output transfer.
In today's computer systems, three ways are used to handle these signals from the
external processes:

1.2 - Introduction: Communication

12

I) 'Polling'. The processor regularly reads input ports that reflect the state of
the signal lines, and starts a transfer when it finds one of these lines active.

This method is used when the signals arrive at a low speed and/or the
processor has nothing else to do (very small systems with only a few tasks to
perform, where hardware costs should be kept as low as possible).

2) Interrupt. The signal lines are connected to specialised hardware that has
the capability to force the processor into the execution of a routine that
performs the input/output transfer. After this routine is finished, the
processor is allowed to continue it's normal operations, as if nothing had
happened.

This takes a little more hardware compared to the polling method, but is
capable of handling up to several thousands of input/output transfers each
second. Most microprocessors provide this hardware, either on the processor
chip itself or on specialised support chips that can be connected to the
processor.

3) Direct Memory Access. The signal lines are connected to specialised
hardware that can force the processor to relinquish the system buses, and
performs the input/output transfer directly between the system memory and
a data port. When the transfer is done, the processor is allowed to use the
buses again and only very little time is needed for each transfer (a single
bus cycle suffices most of the time).

DMA is used when the data needs to be transferred as very high speeds (up
to a megabyte per second), but needs more hardware. It is very difficult to
do any transformations on the data because these should then all be handled
outside the processor. Sometimes special 'I/O processors' are used to relieve
the host processor of the burden to initialise and monitor the input and
output hardware (and also to handle the actual DMA data transfer), but this
is an even more costly solution.

DMA itself is not enough for the data transfer. Because the processor is not
involved in the actual transfer, synchronisation of the transfer to running
tasks should be done with one of the two methods mentioned above. In most
cases, the DMA hardware or the input/output controller will use an
interrupt line to signal the processor that a block of data has been
transferred.

Some of the more complex input/output controllers use DMA to communicate with
the processor via (chains of) command and result blocks in shared memory. These
devices deserve the name 'coprocessor', because they can work more or less
independently from the host processor. The synchronisation of such a device and
the host is done by using 'interrupts' in both directions - a 'real' interrupt from the
coprocessor to the host (indicating a result block should be handled) and a host­
generated 'attention' line going to the coprocessor (indicating that a command
block has been placed in memory and that this command should be executed). This
method of communication is also used in multiprocessor systems where the
processors are 'bus-ed' (a situation described in the next subchapter).

Within a multitasking environment, the ideal situation would be to have normal
tasks communicating with the input/output devices. Most multitasking operating

1.2 - Introduction: Communication

13

systems provide means to do this by translating externally applied interrupt signals
into the sending of a signal to a semaphore. If there was a task waiting at that
serna phore, and this task has a higher priori ty than the task tha t was running at
that time, then the interrupt routine will force a task switch to the waiting task.
The interrupted task will be switched back to in the future, and experiences
nothing except for a delay in execution.

Unfortunately, task switching sometimes takes much more time when compared to
the original implementation with a simple interrupt routine (a task switch always
saves and reloads the complete volatile environment, while some interrupt routines
change only a few registers, and do not need to save these registers for the next
invocation). In these cases, the old interrupt routines must be used because
otherwise the processor will drown in the task switches (having no time left to
process the data). This means that we are faced with two problems:

1) The interrupt routine is running asynchronously from the operating system,
so it can interrupt tasks and operating system routines at any moment. If
the routine were to send signals to a semaphore, then the operating system
call that executes this request should be protected from interrupts because it
contains critical sections (removing a task descriptor block from one linked
list and inserting it in another).

2) Even if it were possible to send this signal, then it still cannot be effective,
because no task switch can be executed. A task switch can only be done if
the complete volatile environment is saved, and that is just what is skipped
here to save time. Note that task switching within an interrupt routine is no
problem if this interrupt routine has saved the complete volatile
environment, or is capable of doing this when it has become known that a
task switch must be done.

One way to solve this problem is by having the interrupt routine set a flag to
request the sending of the signal. A special routine or task in the multitasking
operating system is then set up to periodically check these flags and convert them
into real semaphore signals. The periodicity is achieved by using the 'ticks' from a
hardware clock interrupt to restart this routine or task at a steady rate (the clock
interrupt routine is given the capability to switch tasks). The iRMX86 real time
operating system manages to do without such a periodic task, but places heavy
restrictions on the interrupt routine and forces it's associated task to use special
operating system calls and a special kind of semaphore (which is not very flexible).

1.2 - Introduction: Communication

14

1.3 Multiprocessor architectures

With the advent of microprocessors, increasing the system throughput by boosting
the speed of the processor has become more expensive than building a system
comprised of several processors. In a multitasking environment, the tasks can now
be distributed across several processors, so that we come a bit nearer to the ideal
situation of running all tasks at the same time (one task per processor).

It is now also possible to differentiate the processors so that each of them excels in
a specific form of computation. A processor can be equipped with floating point
hardware to speed floating point calculations, array processors can be used to
multiply arrays of numbers in a few microseconds and so on.

If the processors have a way to communicate with eachother, then parts of
programs that may benefit from using this expensive hardware can be run on these
extended processors. The programs run faster, and the expensive hardware can be
shared so that it is used more cost effective.

Two forms of interprocessor communication will be described in the next
subchapters.

I will not speak of the means of communication within array processors (like the
Inmos 'Transputer'), because these communication channels are used for a special
purpose and array processors are not likely to be used as general purpose processors
in the near future. These processor systems obtain their speed from mapping the
system hardware (read: communication channels) as much as possible onto the data
flow between the computations in the problem at hand, which is not very flexible.

1.3.1 'Bus-ed' processors

I speak of bus-ed processors if their system buses are connected in such a way that
they have access to a common area of working memory. This area of memory can
then be used to exchange messages with eachother, thus forming a communication
channel.

Synchronisation between the tasks is achieved by letting one processor generate an
interrupt at another processor, which can then be handled in ways that have
already been described above. This way of synchronisation is also needed to inform
a task that data has been placed in (or is read from) the common memory area.

This way of communication can be made very fast, especially if the processors are
allowed to write and read eachothers' memories directly. The only problem is that
the distance between the processors is severely limited because it is very expensive
to extend a high speed system bus over longer distances (and do this reliably).

The main difference between bus-ed processor systems and LAN interconnected
systems (described below), is that in bus-ed processor systems the data transfers are
done directly between the processors and data structures in memory. With LAN
interconnected processors, the transfers are done with specialised input/output
devices, and data must be transferred between the working memories and these
devices to constitute the communication channel.

1.3 - Introduction: Multiprocessor architectures

15

1.3.2 LAN interconnected processors

When a Local Area Network is used to interconnect processors (or clusters of bus­
ed processors), data is transferred between the processors using a network of
interconnections controlled by specialised input/output controllers. I will use the
term LAN very loosely here, because this definition encompasses also systems
interconnected by simple RS-232 asynchronous connections as well as IEEE 488 and
ESDI buses.

Data is transferred in 'packets' that contain control, address and data fields. The
control fields are used to tell the receiver what the packet contains, and also
contains information that controls and safeguards the data flow. The address
field(s) are used to direct a packet of data to the correct receiver, and the data
field contains the actual data.

Depending on the LAN structure, a packet may pass several processor systems
before arriving at the destination, and packets sent from one source to a single
destination may take different routes in the network. This last possibility may
present huge problems if the packages do not contain control information to keep
them in the correct order (sequence numbering), because they then can reach the
receiver in a different order than the order in which they were originally
transmi tted.

Because the data transfer is handled in hardware (at least the most basic parts of
it), synchronising it to the tasks is not such a big problem. The hardware can
generate an interrupt when a packet has been received and transferred into
working memory, so that the processor can inspect the packet and act upon it's
contents (by restarting a task, for instance). Depending upon the amount of
'intelligence' present in the LAN controllers, the processor is more or less involved
in the data transfers. In some cases, the processor must handle each byte received
with an interrupt routine, at the other extreme, the LAN controller is capable of
handling multiple buffers, checks the addresses (rejecting those packets not
intended for the system) and also handles the lowest levels of the link management
and error recovery procedures.

I will now narrow my definition of a LAN again to networks that are connected
by a bus or ring, use packets by default (no byte asynchronous protocols) and have
controllers that are more or less of the 'intelligent' kind described above.

1.3.3 Interconnected LAN's

Within a LAN, the protocols and transmission media are used by all the
participating parties. The distance that can be spanned by a full size modern LAN
varies but the maximum is usually several kilometers.

If two tasks need to communicate with eachother while they are running in
systems that are connected to different LAN's, then a way must be found to
transfer packets from the sending system's LAN to the receiving system's LAN.

If both LAN's have a computer system in common that can communicate with both
of them, then this computer system can be set up to transfer packets back and
forth between both LAN's. If there is no such system, then a computer system in
one of the LAN's should be equipped with hardware to communicate with a similar

1.3 - Introduction: Multiprocessor architectures

16

system in the other LAN. This hardware can take several forms, from shared
memories to dedicated (satellite) data links or other LAN's.

The computer systems involved in the data transfer between LAN's are called
'bridges' or 'gateways', depending on whether or not they connect LAN's of the
same type. In this report, the term 'bridge' will be used, because I do not think this
distinction is very important. The MMTCP implements these connections by passing
packets between the MMTCP LAN and the host memory, which would normally be
called a gateway!

The basic function of a 'bridge' is to detect packets that are sent via the LAN that
are intended for another LAN, check whether such a packet can be forwarded to
it's destination with the means available to the bridge, and send the packet on it's
way to the other LAN if so. It is possible to have several bridges connected to a
single LAN, all with different other LAN's they can reach. It is also possible to
have several parallel connections between two LAN's, which will make the system
much more reliable (if one connection fails, the others can handle the packet
traffic).

The detection of packets intended for other LAN's and the checking whether they
can be forwarded should both be done in the LAN controller hardware, because
otherwise all packets should be received and given to the host processor for
checking in software.

The standard solution to this problem is to send all packets directly to the bridge,
using a special 'bridge address'. The actual address of the receiver is then placed in
the data portion of the packet, to be used by the bridge processor to choose the
correct transmission path for the packet. In some cases, the complete path the
message has to take must be specified within the original packet, which implies
that the sender of a packet must have (up to date !) knowledge about the complete
packet transmission system that is used to transfer the packet to it's destination.

Both the use of a special bridge address and the specification of the complete path
in the packet make the system rather inflexible. According to the ISO-OSI
standards, the complete path specification is not necessary, but the different LAN
specifications are 'fuzzy' about where every address is placed within the packet
structure. On one hand, the main address is subdivided into a LAN number and a
number indicating which controller within the indicated LAN is addressed, on the
other hand, a special address is used for the local bridge (which is supposed to
handle these packets).

In my opinion, the best solution for the MMTCP would be to use the 'LAN and
controller' address and have the bridges deciding which packets they can handle
(based upon the LAN number). This would be easy to implement in hardware,
keeps the packet length short and concentrates the necessary system knowledge
within the bridges (where it belongs). My colleague Herman Vos is investigating all
these possibilities, and has not come up yet with a definite solution.

1.3 - Introduction: Multiprocessor architectures

17

1.4 MMTCP Implementation

The MMTCP is intended to be the hardware form of a multitasking operating
system, coupled with a LAN controller to exchange messages between MMTCP's.
These messages will make it possible to let tasks communicate as if they were
running at the same processor while they may be located in computer systems that
are on the opposite side of the globe. The MMTCP will also be equipped with a
local working memory, used to store the data structures that form the task
descriptors, semaphores, mailboxes and so on. This working memory is also used to
buffer LAN data packets and is inaccessible to the host processor (the memory is
connected to the MMTCP via a special interface).

An MMTCP can be instructed to act as a 'bridge' for data packets that are not
intended for the local network of MMTCP's. A list of accessible LAN numbers can
be set up within the working memory of the MMTCP, and any packet intended for
such an accessible LAN will then be transferred to the local host's memory (using
DMA). The host will then be instructed to forward this packet to the correct
remote LAN. At the receiving end, a bridge host uses DMA to transfer a received
packet into a holding buffer in the working memory of it's MMTCP, after which
this packet will be handled as if it were sent by a local MMTCP (and can be sent
over the local LAN if necessary).

1.4.1 Hardware task switching

The (real time) multitasking operating system functions that are normally called as
a software procedure are executed within the MMTCP hardware. The original
function call is replaced by the following steps executed by the host processor:

1) Write the function number to a command register within the MMTCP.

2) Write the parameters to parameter registers, parameter values not written
will be given default values by the MMTCP's command interpreters.

3) Save the volatile environment and write a pointer to this environment to a
special register within the MMTCP.

4) Wait until the MMTCP indicates that a new environment pointer can be
read, then read this pointer, load the indicated volatile environment and
restart the associated task.

5) Read results from result registers within the MMTCP (not all results need be
read), then indicate that this has been done by writing a special 'end of
command' register. These results are meant for the task that was just
restarted (which need not be the task that executed steps 1, 2 and 3).

The MMTCP can force a task switch by sending an interrupt signal to the host
processor. The interrupt routine should execute steps 3 and 4 as indicated above.
Note that in this case, it will be very likely that the task switch will restart a task
that 'called an operating function', so that actually steps 3, 4 and 5 will be
executed. A task switch back to the interrupted task will then consist of steps 1, 2,
3 and 4, because no results will be read. The easiest way to implement all this is to
write the interrupt routine in such a way that it can be called as a normal
subroutine while executing a system 'call'.

1.4 - Introduction: MMTCP Implementation

18

1.4.2 MMTCP semaphores, 'channels' and regions

The semaphores implemented by the MMTCP are 'unit-ised', and can operate in all
the modes described above. They also have the capability to restart tasks that
request the lowest number of units or those that request 'just the right amount' of
units (can be used for optimisation purposes). The functions to wait for- or signal a
semaphore can be used for semaphores that are located in other MMTCP's, as long
as there is a connection between the remote MMTCP and the MMTCP of the host
processor where the task is running (either directly via the on-chip LAN
controllers or using bridges). As far as the running tasks is concerned, there is no
difference between 'local' and 'remote' semaphores, only the addresses and response
times differ.

To make it easier to port UNIX to the MMTCP, the 'channel' semaphores used in
UNIX are available under certain restrictions (these 'channel' semaphores are of
the queue-less no-memory type, and are addressed with 32 bit numbers defined by
the tasks that use them). The most important restriction is that they can only be
used by tasks that run on the same host processor.

Region semaphores are available within the MMTCP, complete with the necessary
protection against task deletion. Within the MMTCP, the call that is used to end
deadlock situations ('UNLINK') will also take care that all access tokens that the
task possesses are automatically returned to their specific region semaphores. Note
that the detection of a task being in an endless loop or a deadlock situation is not
done by the MMTCP and must be implemented by the user (possibly in the form of
a 'monitor' task). The MMTCP provides functions to check for deadlock situations,
but has no direct means to detect an endless loop in a task program.

1.4.3 MMTCP mailboxes

Both types of mailboxes (infinite and fixed size) are available within the MMTCP,
the type of the mailbox and the organisation of the waiting list(s) can be specified
when the mailbox is created. Mailboxes can be used by local and remote tasks
alike, just as with semaphores.

1.4.4 MMTCP pi pes

Pipes are implemented within the MMTCP at the lowest level of the operating
system (in this case, the chip hardware). The tasks themselves can initiate the use
of pipes to transfer data, but a pipe is always 'owned' by the reading task (it
cannot be given to another task for reading). At the writing end of the pipe, a
kind of 'region' mechanism takes care that only a single task can write into the
pipe at the same time (this task is called the 'current writer'). Again, pipes can be
written by local and remote tasks alike.

Pipes do not offer hardware assistance in the transfer of data bytes between the
host and the MMTCP, and so are not suited to transfer large blocks of data. This is
done on purpose because setting up DMA hardware to transfer a packet of a few
data bytes takes more time than doing the transfer with software running on the

1.4 - Introduction: MMTCP Implementation

19

host (direct memory access is impossible when pipe data is transferred into or out
of the host processor's registers !).

1.4.5 MMTCP 'file transfer'

To be able to transfer large blocks of data efficiently using the MMTCP network,
the MMTCP's should be equipped with hardware that connects to DMA controllers
in the host system, making it possible to do 'end-to-end' DMA transfers of data
blocks. Because the number of available DMA channels is limited (hardware !), a
task in the operating system should arbitrate between tasks requesting data block
transfers, and allocate the available DMA channels to them. This task should also
monitor the data transfer, and signal the requesting tasks when the transfer is
done.

For the MMTCP, data block transfer is something that is done 'in the background'.
The packets used to transfer the data block are given a very low priority and must
always wait if there is more urgent data to transport (sending units to a semaphore
should not have to wait if a file of several megabytes is being transferred !).

I have chosen the term 'stream data' for the transfer of these data blocks. I do not
use the term 'file transfer' because this type of data transfer is not always used for
complete data files (it can be used anytime when a 'reasonably' large amount of
data must be transported). I also do not use the term 'block transfer' because these
blocks might be confused with the data packets used by the MMTCP's to transport
the stream of data bytes.

The term 'stream data' is particularly well suited for the MMTCP implementation
of 'file' transfer, because the data bytes to be transported flow like an
uninterrupted stream from the sending host's memory to the receiving host's
memory. The MMTCP's will buffer the data packets at each end of the link, take
care of all transmission protocols and make sure that bytes are sent to the
receiving host's memory in exactly the same order as they were fetched at the
other end.

1.4.6 MMTCP communication with external hardware

The MMTCP has interrupt inputs that are scanned by on-chip hardware. If one of
these inputs becomes active, this activity is internally translated to the sending of
a unit to a predefined (but normal) semaphore. Optionally, the unit may be
reverted to another semaphore if the first one had already accumulated a specified
number of signals (interrupt 'overflow' to a so-called 'alternate interrupt
semaphore', which is a normal semaphore too). The semaphore to receive the unit
need not be located in the MMTCP that received the interrupt signal, so it is easy
to have a signal at a specific MMTCP restart a task several kilometers away on a
remote computer (as long as this computer has an MMTCP with a direct network
connection to the first one). The MMTCP's will handle this conversion and sending
of packets (if necessary) without any host processor intervention.

The communication between a high speed interrupt routine and tasks within the
multitasking environment is made very simple by the MMTCP. A special register
within the MMTCP is always ready to be written with the line number of an
external interrupt input. As soon as this is done by an interrupt routine, units are

1.4 - Introduction: MMTCP Implementation

20

sent to semaphores as if an external interrupt input had gone active, possibly with
a forced task switch request as result. By making this forced task switch request
the lowest priority interrupt input on the host processor, we can make sure that the
high speed interrupt routine finishes as usual (restoring changed registers just
before enabling the lower level interrupts and returning to the interrupted task),
following which the forced task switch interrupt routine is called. There are no
restrictions placed upon the high speed interrupt routine, and the semaphore to be
signalled may again be located within a remote MMTCP.

1.4.7 Functions not covered yet

Lots of functions provided by the MMTCP have not been described in the previous
subchapters, simply because there was no space. I will now provide a short (and
still incomplete) description of these missing functions.

Suspension of tasks. Tasks may be suspended (placed in a kind of 'extra deep
sleeping state') by other tasks. During suspension, a task can change state to
ready to run, but it will never be made running while in this state.

Delays and Real time clock. A task ma y be put in to a sleep sta te for a specified
number of clock 'ticks', where the number of clock ticks per second can be
specified when the MMTCP is started. Alternatively, a task may be put
asleep until a specific time and date, for which an on-chip real time clock is
used (which can also be read to obtain the current time and date).

Virtual memory/Process transfer support. The MMTCP provides functions that
support 'sched uler' tasks running on the host processors. These sched ulers
can remove 'silent' tasks from the host memory and use the space freed to
load 'active' tasks. Tasks may be transferred back and forth between the
host memory and background storage, which is used to form a virtual
memory system. Alternatively, tasks may be transferred from 'busy'
processors to 'less busy' processors connected to the local MMTCP LAN to
get a more even distribution of the workload in the system.

State timers. For each of the states 'running', 'suspended' and 'not running nor
suspended' a timer is kept for all the tasks. These timers can be used to
optimise system performance in systems with virtual memory and/or process
transfer.

Deletion protection. Nearly all system entities may be protected against deletion by
the normal delete function 'calls'.

Task permissions. A 16 bits 'permission mask' word is present in each task
descriptor, containing bits that enable or disable a task to do certain
operations. If a task creates a 'child' task, then the child task can never
have permissions the parent does not have itself.

Error handling/System startup. Errors related to a function 'call' are reported in
one of the result registers. Errors not related to any function call are
reported by writing a message to a special mailbox, to be read by one of the
tasks in the operating system. A similar mailbox is available to exchange
initial messages following system startup (both these mailboxes have fixed

1.4 - Introduction: MMTCP Implementation

21

identification numbers, while all other entItIes are given an identification
number when they are created within the MMTCP).

User-defined status. A 16 bits status word belonging to the running task is always
readable (and can be changed), a variable sized area within each task
descriptor can be read and changed by some of the tasks within the
operating system. The contents of the status word and the size and contents
of the task descriptor area are completely user defined. Two words in the
task descriptor area can be used for the virtual memory and process transfer
support functions.

Status information. Tasks can obtain status information for all the system entities,
including the tasks themselves.

LAN maintenance. Functions are available to connect and disconnect a MMTCP
and it's LAN, to determine the location of a LAN failure and to check out
which stations are present within the local LAN.

. ...~$:~. "~~~:":":".....~.~;.....~.~:,~:~'olo:..':1"",,,,~.,..~~~.$;'
"'''~ r :

1.4 - Introduction: MI\1TCP Implementation

22

2. Functional Description

This chapter contains preliminary ideas for the functions to be provided by the
multitasking coprocessor chip.

In the following subchapters, the calls to control the multitasking coprocessor are
given. Due to the preliminary nature of this report, no bit patterns or even
numbers of bytes can be given for the data to be written into- Or read from the
coprocessor. I do have some ideas, though:

•

•

The environment pointers have to be at least 48 bits long (a segment +
offset specification for an 80386 takes that amount of bits). To be
prepared for the future, I propose to use 64 bit environment pointers.

All entities in the system (processes, semaphores etcetera) will be known
under a logical 'name', which is a simple binary number. These 'names' will
be provided by the coprocessor when the entity is created. The only
exception to this rule are the so-called 'channel' semaphores (as used in
UNIX), where the host processor provides a 32 bit number indicating the
'channel'.

The coprocessor has defaulting hardware build into its parameter registers. This
defaulting hardware is used (amongst other things) to provide short addresses for
local entities (if they are not processes, pipes, DMA channels or interrupt line
numbers). Normally, an entity is addressed with a three part address:

Ring Number: an identification number for the ring to which the MMTCP
containing the entity is connected.

Ring Address: an identification number to specify which MMTCP on the specified
ring contains the entity.

Local Address: the location of the entity within the working memory of the
specified MMTCP.

The defaulting hardware will provide the ring number of the local ring if the host
did not write the corresponding parameter register. Likewise, the ring address is
filled with 'this MMTCP' if it is not written by the host (it is considered an error
to write the ring number and omit the ring address !). Note that this feature is only
provided to be used by tasks that are locked into a specific MMTCP, because tasks
that can be moved between coprocessors (within a ring) always have to provide at
least the ring and local addresses of the entities they want to use (except for the
pipes, the entities do not follow the tasks around when they are moved !).

For each of the coprocessor functions, the necessary parameters (with their default
values) and the results will be given.

2 - Functional Description

23

2.1. System Initialisation and Maintenance

This subchapter contains the function calls needed to initialise the coprocessor and
the interconnecting Local Area Network communication links. Also, functions
needed for LAN (re-)configuration and checkout are given.

The multitasking coprocessor has a built-in real time clock. Keeping this clock
running during power down requires building it in CMOS technology (to keep the
power consumption low during battery backup). Building this part in CMOS makes
it possible to build other important registers in CMOS too, so that they only have
to be initialised once, after the system is first powered up. The following call will
do this:

2.1.1 INIT SYSTEM

INIT SYSTEM initialises important system parameters after power-up. This
function call can only be called once after the multitasking coprocessor has
been reset (unless the previous call resulted in an error). Because of the
large number of parameters, some parameters may have to be packed
together in a single word, while they are shown separately here.

Parameters for INIT SYSTEM

START OF LOCAL MEMORY (no default) is the lowest address the
coprocessor may use inthe local memory.

END OF LOCAL MEMORY (no default) is the highest address the
coprocessor is allowed to use in the local memory.

TYPE OF LOCAL MEMORY (no default) gives the type of memory used
for the local memory, and controls such things as address multiplexing,
refreshing enable/disable, refreshing intervals etcetera.

INTERR UPT CONFIGURATION (default: no scanning done - 12 or 20
interrupt inputs depending on host bus width) controls the number of
coprocessor interrupt inputs, and the way they are scanned (all interrupt
inputs are disabled after power up).

CHANNEL HASH TABLE SIZE (default: 0) sets the size of the hash
table for the channel semaphores. If the size is set zero, then the channel
semaphores are disabled. The user has the option to choose between 0, 32, 64
or 128 entries (preliminary!).

USER_AREA_SIZE (default: 2 words) sets the size of the user-defined
data area for each process. The lower bound for this variable is 2 words. An
upper bound is not defined yet (possibly somewhere between 16 and 32
words).

CLOCK TICK SPEED (no default) controls the number of clock ticks per
second. Boundsare not defined yet, but a possible upper bound could be
1000 ticks/second, a lower bound depends on the hardware used. The clock
ticks are derived from the crystal that controls the real time clock, so that it
is possible to use a system wide clock speed divider constant while running

2.1 - Functional Description: System Init. & Maintenance

24

the multitasking coprocessor hardware at different clock speeds. Assuming
the real time clock crystal runs at 32 KHz (watch crystal), a 16 bit
programmable divider gives a lowest tick frequency of around 0.5 Hz,
which should be low enough. Note that timeouts and delays generated for
the Local Area Network controllers should be independent of the clock tick
speed specified for the user processes.

DEF MAILBOX MODE (no default) sets the default MAILBOX MODE to
be used in the INIT MAILBOX call (FIXED for a fixed number of
mailbox 'slots' or INFINITE for an 'infinite' number of slots).

DEF FIXED PART SIZE (no default) sets the default
FIXED PART SIZEto be used in the INIT MAILBOX call. This sets the
numberof mailbox slots if the MAILBOX MODE is set FIXED, it sets the
number of mailbox slots accessible- at high speed when the
MAILBOX_MODE is set to INFINITE.

DEF SLOT SIZE (no default) sets the default SLOT SIZE to be used in
the INIT_MAILBOX call (2, 4 or 8 bytes). -

SYSTEM MAILBOXES (no default) sets the sizes for the 'system errors'
and 'system interconnection' mailboxes (both are described in the section on
mailboxes). This parameter also sets the mode for the 'system
interconnection' mailbox, and controls whether or not this last one is
created. All process waiting lists for these mailboxes are organised as
FIFO's.

DEF PIPE LENGTH (no default) sets the default pipe buffer length to be
usedin the INIT PIPE call. For the lower and upper bounds see the
description of the INIT_PIPE call.

COPROCESSOR ID (no default) is the logical number of this coprocessor
on the local interconnecting ring. It is used for addressing messages sent
between the coprocessors. If this parameter has the value normally used as
'all stations address', then it is assumed that no interconnecting ring is
available (stand alone operation), and the parameters
PROCESS TRANSFER ENABLE, STREAM CONFIGURATION and
STREAM INIT TIMEOUT will be ignored. Instand alone operation, all
function calls that normally would generate traffic on the local ring become
illegal. Note that the coprocessor is initially disconnected from the network,
so that CONNECT NETWORK will have to be called. Also note that it is
impossible to change the ring address once it is assigned, because the ring
address is part of the addresses for most of the multitasking system entities
located in a MMTCP.

PROCESS TRANSFER ENABLE (default: FALSE) controls whether or not
this coprocessor will participate in the transferring of processes in a
multiprocessor system. If this flag is set FALSE, then the BROADCAST and
CLAIM commands become illegal, and process blocks broadcasted by other
coprocessors are not stored in the private memory (saves a lot of memory).
This parameter is ignored for stand alone operation.

2.1 - Functional Description: System Ioit. & Maintenance

•

25

This flag can be set FALSE for fixed function processors in the
multiprocessor system, like storage-, (remote) terminal cluster- or
remote input/output controllers. Note that 'locking' processes into a
coprocessor can also be done for each process individually (with the
LOCAL_LOCK flag for the INIT_PROCESS function call).

STREAM CONFIGURATION (default: D.Q stream data handling possible)
sets the number of DMA channels used to transfer stream data into or out
of the coprocessor. This parameter also specifies the maximum number of
data bytes in a stream data packet to be sent or received, and - if needed ­
the number of buffers to be used for stream data transfer. Depending on
the buffering algorithm used, it may be possible to fix the number of data
buffers ('twice the number of DMA channels', for instance). This parameter
is ignored for stand alone operation.

STREAM INIT TIMEOUT (no default) sets the number of clock ticks that
will be the default timeout period for a stream control process waiting for a
stream initialisation packet. This timeout period cannot be infinite (would
be denoted by specifying zero clock ticks). This parameter is ignored for
stand alone operation.

LOCAL RING NUMBER (no default) is the ring number of the ring this
multitasking coprocessor is connected to. All the coprocessors on a ring
should have this parameter set to the same value (the token ring standard
contains a protocol to do this automatically - Literature 2). The range of
valid val ues is 1..16382 (0 is shorthand for 'this ring', 16383 is the 'all ri ngs'
address). This parameter must be given if the coprocessor is connected to a
MMTCP LAN network, a host processor with main LAN interconnection
capabilities, or both.

BRIDGE ADDRESS START (default: 0) is the lowest remote ring number
that maybe addressed by this coprocessor's host. The range of valid values
is 0.. 16382 . If the value 0 is given, then it is assumed that this multitasking
coprocessor is connected to a host without main LAN interconnection
facilities.

BRIDGE ADDRESS END (default: 16382) is the highest remote ring
number that may be addressed by this coprocessor's host. The range of valid
values is BRIDGE ADDRESS START up to and including 16382. This
parameter is ignoredif BRIDGE_ADDRESS_START is O.

FIXED BRIDGE (default: FALSE) indicates whether or not the range of
ring addresses given above is a fixed range. If this parameter is FALSE,
then an 'accessible remote ring numbers' table is build. If this parameter is
TRUE, then it is assumed that all the remote ring numbers in the given
range are accessible and no such table is build (the
CHANGE BRIDGE TABLE function call becomes illegal). This parameter
is ignored'Tf BRIDGE_ADDRESS_START is O.

Results returned by INIT_SYSTEM

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.1 - Functional Description: System Init. & Maintenance

26

Directly after initialising the system, 'root' processes should be created in each
coprocessor by calling INIT PROCESS. This will automatically make these
processes the first running process in each coprocessor. The 'ghost' processes
running after system reset have all their permission flags set TRUE, so that these
can be set TRUE for the root processes too (the list of permission flags is given in
the description of the INIT_PROCESS function call).

If BRIDGE ADDRESS START is 0, then it is assumed that the local host
processor has no main LAN interconnection facilities, and the
CHANGE BRIDGE TABLE function call becomes illegal (no table is stored in
the working memory)."

If BRIDGE ADDRESS START is non-zero, then it is assumed that the local host
processor has one or mme main LAN interconnection facilities, and can act as a
bridge for connection to remote MMTCP rings. In this case, the following events
occur:

•

•

•

If FIXED BRIDGE is FALSE, then an 'accessible remote ring numbers'
table is build in the working memory (initialised empty • no remote rings
accessible). The length of this table depends upon the difference between
BRIDGE ADDRESS START and BRIDGE ADDRESS END.- -
Two of the DMA channels are assigned to read from- and write into the
host memory respectively. These channels will be used to transfer data
packets between the multitasking coprocessor and the host processor's
memory. The read channel is used to fetch packets received via the main
LAN, the write channel is used to store packets intended to be sent using
the main LAN. The channel numbers for the stream data transfer are offset
by two (and the maximum number of stream data channels is decreased by
the same amount).

Two special purpose 'mailboxes' are initialised in the multitasking
coprocessor's working memory. These mailboxes have fixed and known
'addresses' and have a slot size of 2 (two) bytes. The use of these mailboxes
is explained in subchapter 2.2: 'Functional description: Bridge handling'.
Note that these mailboxes only appear to be normal mailboxes, while the
message queueing algorithm might differ from a plain FIFO (it will
probably be based on the priority of the messages).

To keep the ring operational during fault conditions, rerouting should be possible.
This may require multiple serial input and output ports for the ring controller to
choose from when rerouting the data stream around the faulty ring segment(s)
and/or coprocessor(s). This can be done with the SERIAL PORTS parameter for
the CONNECT NETWORK function call. -

Ring checking £in. be performed automatically by the master coprocessor. It can
also be done with special commands to be issued by processes running on the host
processor. I will propose some function calls below.

2.1 - Functional Description: System Init. & Maintenance

27

To be able to optImIse the use of the Local Area Network. the different packet
types should have different priorities. In general. I propose the following priority
scheme to be used for the packet transmission:

Highest priority:

Lowest priority:

(1)
(2)
(3)
(4)
(5)
(6)
(7)

error management
semaphores
mailboxes. regions
general management
pipes
process transfer
stream data

Within these priority levels. there are sublevels. Normally. messages restarting a
process should have a higher priority than messages that are involved in stopping a
process. Also. messages containing an acknowledge for the reception of a data
packet of any type should have a very high priority because in most cases the
sender of the original message is waiting for such an acknowledge. In the token
ring protocol. early acknowledging is possible by setting a bit in the frame closing
flag. to indicate the packet has been received without errors (unfortunately it is
not possible to store response data in the closing flag).

Because the connection link is to be used by many stations. there should be a
priority scheme for arbitration between these stations. I would urge to use some
kind of rotating priority scheme. so that there is no station capable of blocking all
the other stations. For the IBM token ring. this can be done by disallowing a
sending station to send more than one packet in a row (it should release a free
token after it has removed it's packet from the token ring). If the sender expects
an acknowledge packet. then the free token released onto the token ring should
have such a priority that it can only be used for such a packet. If the receiver
cannot reply immediately. then the free token will return to the sending station,
which then can release a free token with the 'requested priority' found in the
received token (allowing normal messages to be sent again). The token ring protocol
has a build-in feature to control this sending of tokens with requested priorities (a
kind of 'stack' mechanism is used) - Literature 2.

Errors detected by the ring controller are formatted into a message and written to
the 'system errors mailbox" described in the section on mailboxes. This mailbox can
be read by a special error control process running on the host processor. This
process can then decide which actions should be taken to correct the error and can
work with the user processes error detection layer in the operating system (and
possibly the user processes themselves). The system errors mailbox will also be used
to receive the error messages generated by the coprocessor's hardware interrupt
input scanner (see the section on interrupts).

I propose to use the following function calls for LAN maintenance and checkout
(VERY preliminary. and will most probably be changed !):

2.1 - Functional Description: System Inlt. & Maintenance

28

2.1.2 CONNECT_NETWORK

CONNECT NETWORK connects the local multitasking coprocessor to the
Local Area-Network interconnection ring. This function is normally called
only once following system startup with the INIT SYSTEM function call.
This function call is allowed only if the multitasking coprocessor is D.Q!

operating in stand alone mode, and can only be called by a process which
has the 'System_Task' permission bit set TRUE.

This function can also be called to change the active network connection
ports (on the fly), to route the data stream around a faulty segment and/or
coprocessor. Note that this part of the function call depends upon the
precise hardware configuration for the low level LAN input and output
con trollers.

Parameters for CONNECT NETWORK:

MASTER COPROCESSOR (default: FALSE) controls whether or not this
coprocessor is the initial master on the local interconnecting ring (only one
of them can be master, and this one is responsible for monitoring and
safeguarding the message flow). If this flag is set FALSE, then the
coprocessor will automatically assume the role of 'standby' ring master, as
specified for the token ring network. If none of the interconnected
processors has the MASTER COPROCESSOR flag set, then one of them
will become ring master automatically after a specified timeout period (no
free token circulating the ring). The low level ring protocol responsible for
this is described in literature I & 2.

ERROR RETRY COUNT (default as specified for the token ring
standard-:-if this function is called for the first time, otherwise the previous
setting) is used to let the Local Area Network controllers decide whether a
transmission error is a 'hard' one (cable broken) or a 'soft' one (electrical
interference or congestion). This parameter specifies the number of times a
packet transmission may be attempted following error detection before it is
considered a 'hard' error.

TRANSMISSION TIMEOUT PERIOD (default as specified for the token
ring standard, if-this function is called for the first time, otherwise the
previous setting) sets a limit for the waiting time between the instant a
packet is set up for transmission and the time when the transmission really
starts. This has to be done because an overloaded ring can severely increase
the time the coprocessors may have to wait before they can send a message,
which may pose problems with processes waiting for these messages being
sent or received. If the given timeout period is exceeded, a special
ERROR CODE will be given to a waiting process, or an error message will
be written in the system errors mailbox.

CONGESTION WAITING TIME (default as specified for the token ring
standard, if this function iscalled for the first time, otherwise the previous
setting) is the waiting time inserted by the LAN output controller when the
receiver of a packet has signalled that it can no longer keep up with the
incoming data stream. For the token ring protocol, this signalling is done by
setting the 'address recognised' bit in the closing flag, while the 'message
copied' bit is not set.

2.1 - Fullctional Description: System Init. & Maintenance

29

SERIAL PORTS (default: main ports for both input and output) controls
the serial input and output ports that will be used for the Local Area
Network connection.

Results returned by CONNECT_NETWORK:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.1.3 DISCONNECT NETWORK

DISCONNECT NETWORK disconnects the local multitasking coprocessor
from the Local Area Network interconnection ring. This function is
normally only called if there is something seriously wrong with the
interconnection network, to isolate the coprocessor from the external
malfunctions. This function call is allowed only if the multitasking
coprocessor is !lQ! operating in stand alone mode, and can only be called by
a process which has the 'System_Task' permission bit set TRUE.

Following this function call, the local coprocessor will be logically
disconnected from the Local Area Network. If the parameter
SOFTWARE DISCONNECT is set FALSE, then the coprocessor will make
no attempt to signal the disconnect to the other coprocessors, which means
that any remote error recovery will have to be done by error recovery
software running on the remote host processors.
SOFTWARE_DISCONNECT can be set FALSE for two purposes:

•

•

An unrecoverable interconnection failure has been detected, so that
there is no chance at all of getting a message through. In this case, it
makes no sense to send a 'cleanup' message, as it will be lost anyway.

The local multitasking coprocessor will be re-connected to the
network within a reasonable time period, in which case it may be
better to leave the remote processes waiting until this has happened.
This may, however, cause problems because timeout periods may
expire for these waiting processes.

This function call may be issued several times in a row, which will
normally be done only to try getting 'cleanup' messages through to the other
coprocessors on the network.

Parameters for DISCONNECT_NETWORK:

SOFTWARE DISCONNECT (default: TRUE) controls whether or not the
multitaskingcoprocessor will try to send a 'cleanup' message to the other
coprocessors on the local network. This message will automatically restart all
remote processes waiting for an entity which is contained in the coprocessor
for which this function is called. These processes will get an
ERROR CODE telling them that the entity they waited for no longer
exists. The 'cleanup' message will also abort all process and stream data
transfers into or out of this coprocessor. In case of process transfer, this
means that the process remains in the 'source' coprocessor (a process transfer

2.1 - Functional Description: System Init. & Maintenance

30

is done by first copying the process data structure to the new location, after
which the original data structure is deleted). A stream will be placed in the
ABORT READ or ABORT WRITE states.

Results returned by DISCONNECT_NETWORK:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.1.4 NETWORK CHECKOUT

NETWORK CHECKOUT is a general function call to invoke special
protocols onthe interconnection network for error detection and network
management. This function may only be called by a process which has the
'System Task' permission bit set TRUE. These functions are described in
the literature for the IBM token ring protocol (Literature 1 & 2). The two
main functions are:

•

•

Sending 'beacon' messages to the other coprocessors to aid in finding
ring hardware errors. The reception of beacon messages will be
reported in the system error mailboxes in the other coprocessors.
Beaconing may be done while the coprocessor is disconnected from
the network.

Finding out which processors are on the ring by sending address
resolution packets around the ring. The responses will be stored in a
mailbox, specified by the RESPONSE MAILBOX parameter for this
function call. -

All subfunctions return immediately to the calling process.

Parameters for NETWORK_CHECKOUT:

SUBFUNCTION (default: GET TRAFFIC_STATISTICS) specifies the
subfunction to execute:

GET_ TRAFFIC_STATISTICS does not perform any special functions, and
can be used if a process only needs to read the traffic statistics
counters.

RESET_TRAFFIC_STATISTICS does not perform any special function,
except that it will reset the traffic statistics counters that will always
be returned in response to this function call (must be done
periodically to prevent them from overflowing). Note that the
counters are reset~ they have been copied to the result holding
area or registers.

START BEACONING starts the sending of beacon packets immediately.
During beaconing, the normal transmission of packets is impossible!

END BEACONING ends the transmission of beacon packets after finishing
the current beacon packet. Normal transmission becomes possible
again (if the network is connected).

2.1 - Functional Des('ription: System Init. & Maintenance

31

CHECK_ADDRESSES initiates the sending of address resolution packets
around the ring. The coprocessor has to be connected to the network
if this function is to be used. This function will normally only be
used by the ring master.
The protocol can be sketched as follows:

•

•

•

A special packet is transmitted with the address of the source
processor and an 'all receivers' destination address.

The first coprocessor downstream will set the 'address recognised' bit
and prepare to send a similar packet when a free token arrives.
Other downstream coprocessors will detect the 'address recognised'
bit is already set, and do not react to such a packet. Handling this
part of the protocol will be done fully automatically by the
coprocessors (no host intervention). Coprocessors which are
disconnected from the ring will not react at all to these messages!

The initiating coprocessor will receive all the address resolution
packets, and store the source addresses it finds in them in the
mailbox indicated by the RESPONSE MAILBOX parameter. This
way, the response mailbox will be filled-with the addresses of all the
connected coprocessors, in the order in which they are connected to
the ring network.

• The initiating coprocessor knows it has obtained all the addresses
when a packet is received from the first upstream processor with the
'address recognised' bit stilI reset. This will be indicated by storing
the local coprocessor's ring address in the RESPONSE_MAILBOX.

RESPONSE MAILBOX (no default - this parameter is necessary only for
the CHECK- ADDRESSES subfunction) is the mailbox to receive the ring
addresses ofthe coprocessors presen t on the interconnection ring (see the
description for the CHECK ADDRESSES subfunction described above).
This mailbox should be largeenough to contain all the addresses that are
expected to be received, (slot width is not important, as the addresses are
only 8 bits long - they will always fit). If the mailbox overflows for one
reason or another, then addresses will not be written into it (the best way to
prevent this is to use an 'infinite' mailbox).

Results returned by NETWORK_CHECKOUT:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

RING MASTER is a flag indicating whether or not this coprocessor is the
currentring master. This result parameter is a 'snapshot' of the status of the
LAN controllers during the interpretation of the command, and may
therefore not represent the actual status at the time the requesting process
starts interpreting this status (this also holds for the other result
parameters).

2.1 - Functional Description: System Init. & Maintenance

32

PACKETS SENT is a (16 bits) counter that counts the number of packets
sent by this coprocessor without errors occurring. The counter will lock at
65535.

PACKETS RECEIVED: ditto, but counts the number of packets received
without errors.

SEND CONGESTION: ditto, but counts the number of times a packet was
sent that could not be handled at the receiving end (the sending of this
packet will be tried again after a specified waiting time).

RECEIVE_CONGESTION: ditto, but counts the number of times a received
packet could not be handled.

SEND TIMEOUTS: ditto, but counts the number of times the sending of a
packethas been aborted because of heavy bus traffic caused a timeout.

IMMEDIATE ERRORS: ditto, but counts the number of times a packet was
received containing an error, while the 'error detected' flag was not yet set
(meaning that this coprocessor was the first to detect the error).

REMOTE ERRORS: ditto, but counts the number of times a packet was
received with the 'error detected' flag set (meaning the packet contains an
error, and that this error has already been detected by another coprocessor).

ABORTS: ditto, but counts the number of times an 'abort' flag has been
received (which is always sent before a master generates a new token on the
ring). This also includes the abort flags generated by ~ coprocessor (if
this one is the RING MASTER). Note that aborting a stream does not
generate an abort flag (any packets in transit for this stream will be
finished).

TOKENS GENERATED: ditto, but counts the number of times a free
token hasbeen forced on the ring by this coprocessor (which therefore must
be the RING_MASTER).

2.1 - Functional Description: System Init. & Maintenance

33

2.2. Bridge Handling

Normally, an MMTCP addresses an entity located in the local system with the ring
address of the MMTCP containing the entity and the location of this entity in the
working memory of that MMTCP (some entities are addressed by a logical rather
than by a hardware address, but this is only done to request the MMTCP's to
search for the hardware address).

If the communication has to cross MMTCP ring boundaries, then the addressing
range has to be expanded to include the logical ring number of the receiving
MMTCP. In principle, this is not such a difficult operation - simply add some
command registers to hold the ring address (with as default the local ring address).
Deciding where to send the messages now goes as follows:

IF (ring number) .. (local ring)
THEN

IF (ring address) = (this coprocessor)
THEN

{ Handle locally. }
ELSE

{ Transmit information packet to other coprocessor on
the local ring for direct handling. }

ELSE
IF (this coprocessor connected to a bridge host) AND

(the ring number can be reached by this bridge)
THEN

{ Transfer the information packet to the local host
memory and request sending it on the main LAN. }

ELSE
{ Transmit information packet on the local ring to be

handled by other bridge coprocessor. }

The last transmission poses some problems. If there are several bridge processors
connected to the MMTCP LAN, each capable of transmitting messages to other
bridge processors, we are facing several possibilities:

•

•

Suppose that they are not connected to the same main LAN, and so there is
the possibility that the ring numbers that they can reach do not overlap in
some instances (for instance: bridge 'A' can only reach rings I, 2 and 7,
while bridge 'B' can only exchange messages with rings 3, 4 and 8).

Suppose that some of the bridge processors are connected to the same LAN,
so that they can exchange messages with the same rings. In this case, we are
free to choose which of these bridges we are going to use.

In case there is a choice, it might be better to divide the local network into
portions that each use a different bridge to reach the same remote ring (in an
effort to divide the workload across several bridge hosts).

If there is only a single bridge processor present on the local MMTCP ring, then all
the messages intended for other rings mY.ll be handled by this bridge host.

The exact routing of the messages across the main LAN network(s) has to be done
by the host processor controlling a bridge.

2.2 - Functional Description: Bridge Handling

34

MMTCP's should be capable of redirecting messages to the correct bridge MMTCP
automatically. This is done by storing a table in the working memory of MMTCP's
connected to a bridge host. This table contains the remote ring numbers that can
be reached by that bridge host. This way, an MMTCP only has to send the message
out on the ring, where it will be handled automatically by the bridge MMTCP
capa ble of sending the message to the indica ted remote ring.

If there are more MMTCP's capable of handling such a message, then the first
upstream MMTCP will capture and handle it. There are two ways to divide the
workload between the bridge processors. The first one is by physically moving
bridge host MMTCP's around the MMTCP LAN ring (which might pose some
problems). The second one is by disabling and enabling the handling of messages
intended for specific rings periodically, so that a more or less statistical division of
the workload is reached (we must make sure, though, that always at least one
coprocessor can handle the outgoing traffic !).

The maintenance of the translation tables will be part of the network management
software running on the host processors. This is done with the function call
described below.

Only the MMTCP's connected to a bridge host need a table, and this table can be a
bitmap of 2 kilobytes length (the bridge MMTCP only needs to know whether or
not it can handle a message directed to a specified ring number). This bitmap will
make checking so easy that it can be done while a packet is received from the
MMTCP LAN, making it possible to set the 'address recognised' and 'message
copied' bits in the trailing flag. Note that this checking has to be done by the
intermediate level LAN input controller on the MMTCP chip, which will require
extra hardware in that functional block (no, this is !lQ.1 a mixup of functions
because this functional block was already responsible for deciding which packets
were to be transferred to the high level LAN input controller and which packets
should be ignored).

Informing the bridge host that a message has to be read from the coprocessor and
transmitted over the main LAN can be done by sending a message containing the
number of data bytes to read to a special mailbox (generating a normal task
switch). The task restarted in this way can initialise the host's DMA controller for
reading, and start the actual DMA transfer. If the host's DMA and LAN controllers
are capable of 'chaining' data blocks, then this can be done easily using this
protocol (suited for the 82586 Ethernet controller and 82285 advanced DMA
controller, for instance).

Informing the MMTCP that a message has arrived and is ready to be transported
into the MMTCP's working memory can be done in a similar way. A second special
mailbox can be used to receive messages containing the number of bytes to be read
from the packet that was received by the main LAN controller and must be read
by the MMTCP. Using a mailbox will make it possible to overlap the LAN
receiving and MMTCP writing tasks again by using the same chaining technique.

Both special mailboxes introduced above can only be accessed by tasks running on
the bridge host. These tasks should have the 'System Task' permission bit set
TRUE. Making changes in the 'accessible ring numbers' table should also be
permitted only to system tasks running on the connected bridge host.

2.2 - Functional Description: Bridge Handling

35

The following function call can be used to inspect and update the 'accessible ring
numbers' table:

CHANGE RING ACCESS TABLE is used to update and read the
accessible ring numbers table in the working memory of a multitasking
coprocessor connected to a bridge host. This function call can only be issued
to the local coprocessor by a task executing with the 'System_Task'
permission bi t set TRUE.

Note that the local ring number (set by the LOCAL RING NUMBER
parameter for the INIT SYSTEM function call) is a special case. If this
number is in the rangeof ring numbers contained in the table, then the
'accessible' setting of this ring number in the table is completely ignored
(the table in not even consulted if a packet is received on the MMTCP LAN
with this ring number as destination).

Parameters for CHANGE RING ACCESS TABLE:- - -
SUBFUNCTION (default: CHECK IF PRESENT) can be one of the
following: - -

CHECK_IF_PRESENT checks if at least one of the ring numbers in the
range LOW NUMBER..HIGH NUMBER can be accessed, and
returns the result of this check Tn the CHECK_RESULT status flag.

CHECK_IF_ABSENT checks if any of the ring numbers in the range
LOW NUMBER..HIGH NUMBER is inaccessible, and returns the
resultof this check in the CHECK_RESULT status flag.

MAKE_ACCESSIBLE makes the ring numbers in the range
LOW NUMBER..HIGH NUMBER accessible. This will make this
bridge coprocessor respond to messages with a remote ring number in
the given range.

MAKE_INACCESSIBLE makes the ring numbers in the range
LOW NUMBER..HIGH NUMBER inaccessible. This bridge
coprocessor will stop responding to messages sent over the MMTCP
LAN network with a remote ring number in the given range.

LOW NUMBER (default: BRIDGE ADDRESS START, as given for
INIT-SYSTEM) indicates the start ofthe range ofremote ring numbers for
whichthe SUBFUNCTION is to be used. This parameter should be in the
range BRIDGE ADDRESS START .. BRIDGE ADDRESS END as given
for INIT SYSTEM - --

HIGH NUMBER (default: BRIDGE ADDRESS END, as given for
INIT SYSTEM) indicates the end of the range of remote ring numbers for
whichthe SUBFUNCTION is to be used. This parameter should be in the
range LOW NUMBER BRIDGE ADDRESS END as given for
INIT_SYSTEM. and never be numerically below LOW_NUMBER.

2.2 - Functional Description: Bridge Handling

36

Results returned by CHANGE_RING_ACCESS_TABLE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

CHECK RESULT is a status flag (TRUE or FALSE), which is returned if
the SUBFUNCTION was either CHECK IF PRESENT or
CHECK IF ABSENT. - -- -

2.2 - Functional Description: Bridge Handling

37

2.3. Processes

Processes are the operational entities in the multitasking system. They execute the
programs and interact with eachother and the outside world. Processes can be
moved between MMTCP's connected to the same token ring network (!1Q1 between
networks).

The identification numbers for processes differ from the other entities. The ring
address has become useless, because the identification number should remain the
same while the process can move between different MMTCP's on the same ring.
Therefore, the identification number consists of a ring number (default: 'this
ring'), a dummy ring address (actually the ring address of the MMTCP where the
process was created) and a 16 bits identification number (that has nothing to do
with addresses within the MMTCP working memory).

A process that is locked within an MMTCP (either because of stand alone operation
or the LOCAL LOCK flag being set TRUE) gn be addressed by other processes
in the same MMTCP with only the 16 bits identification number, but if the
addressed process is not locked, it is regarded an error to do so.

2.3.1 INIT_PROCESS

INIT PROCESS initialises a process, and, if SUSPENSION DEPTH is 0,
placesthis process in the ready to run Queue. If SUSPENSION_DEPTH is
non-zero, then the new process wi11 be 'ready-suspended', and can be placed
in a waiting state by the creating process before releasing the suspension.
This makes it possible to create a process that wi11 wait for an event, handle
the event when it occurs, and immediately afterwards terminates itself (one
way to implement 'callouts' in UNIX).

Parameters for INIT PROCESS:

ENVIRONMENT (no default) is the pointer to the initial environment for
the new process.

PRIORITY (default: MAX PRIO given below, 0 for the first process
created) is the initial priority for the new process. PRIORITY cannot be set
outside the MAX PRIO..MIN PRIO range given by the next two
parameters. 0 (zero) is the highestpriority.

MAX_PRIO (default: MAX_PRIO of creating process, 0 for the first
process created) is the maximum priority the new process may ever be set to.
MAX PRIO cannot be set above (numerically below) the MAX PRIO of
the creating process. -

MIN PRIO (default: MIN PRIO of creating process, 65535 for the first
process created) is the minimum priority the new process may ever be set to.
MIN PRIO cannot be set below (numerically above) the MIN PRIO of the
creating process, and should always be equal to or lower than(numerically
above) the MAX_PRIO parameter given above.

LOCAL LOCK (default: FALSE) disables the BROADCAST function call
for the new process. To be able to set this flag TRUE, the creating process

2.3 - Functional Description: Processes

38

should have the 'Local Lock Enable' permIssIon bit set TRUE. Locked
tasks will never be found by the scheduler list search function calls if the
FIND_LOCKED_TASKS bit is not set TRUE.

PERMISSIONS MASK (default: all permissions of the calling process) is the
mask used to reset permission bits for the new process. These permission bits
are packed in a 16 bits word, and are all set TRUE for the process created
when the system is started up (they are also set TRUE for the 'process' that
created this first process). If a permission bit in this mask is FALSE, then
the corresponding permission bit for the new process is set FALSE too
(logical AND action on the PERMISSIONS MASK and the
PERMISSIONS STATUS for the calling task). There is no way whatsoever
to set a permission bit TRUE for a task once it is set FALSE, and a task
with a permission bit set FALSE cannot create a task with this bit TRUE
(if a task tries to do this, it is regarded an error and no child task will be
created). The following permission bits are incorporated in the mask
(preliminary!):

System_Task should be TRUE for a task that wants to use some of the
special function calls available like UNLINK or FORCE DELETE,
or requests access to the 'system errors' and 'system interconnection'
mailboxes.

Scheduler should be TRUE for a task that wants to search the schedulers
tasks list, manipulate the 'Dirty' or 'Alt Ready Queue' flags, or
wants to use the BROADCAST and CLAIMfunction calls.

Stream_Control should be TRUE for a task that wants to use the function
calls related to stream data handling.

Chan_Sem_Use should be TRUE for a task that wants to make use of
channel semaphores (if they are enabled at all).

Offspring_Generation should be TRUE for a task that wants to create a
'child' task with the INIT PROCESS function call.

Create_Enable should be TRUE for a task that wants to create anything
(including a 'child' task).

Non Owned_Delete should be TRUE for a task that wants to delete a
multitasking operating system 'entity' it did not create itself (like a
semaphore, mailbox, 'child' task, etcetera).

Stop_Other_Tasks should be TRUE for a task that wants to call a function
tha t stops a task (like WAIT), while specifying another task to be
stopped, where this other task is not it's own offspring.

Non C_W_Flush should be TRUE for a task that wants to flush a pipe it
is not the owner, nor the 'current writer' for.

Global Operations should be TRUE for a task that wants to use a function
call accessing a non-local operating system 'entity' (except for pipes).

2.3 - Functional Description: Processes

39

Local_Lock_Enable should be TRUE for a task that wants to create a
'child' task with the LOCAL_LOCK flag set TRUE.

SPECIAL STATUS (default: 0) is the initial value for the 'special status'
word, which is always readable in a special coprocessor register while a
process is running. This field can be changed by SET SPECIAL STATUS,
and is completely user-defined. --

SUSPENSION DEPTH (default: 0 • not suspended) is the initial suspension
depth for the process. If this parameter is set non-zero, then the new process
is not placed in the ready to run queue immediately after the
INIT PROCESS call ends, and the new process can be placed in some other
state (and/or waiting list).

TIME SLICE (default: 0 • no maximum running time) is the maximum
number of clock 'ticks' a process can run without being placed in the ready
queue behind all other process with the same priority. This is a 'hard' time
slicing algorithm. If the time slice timer times out and there are no other
processes with the same priority, then an internal flag is set indicating that
a process with the same priority may preempt the running process
(otherwise it would be placed in the ready to run queue).

Results returned by INIT_PROCESS:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

PROCESS is the identification number to be used in the future when
referencing to the new process.

2.3.2 TERM PROCESS

TERM_PROCESS terminates a process if the process is not running within
a region and the 'deletion holdoff' counter (controlled by
DISABLE DELETION and ENABLE DELETION) is zero. If the process is
'current writer' for one or more pipeS:- then a RELEASE PIPE call is done
for all these pipes. If the process is the reading process for one or more
pipes, then these pipes will be deleted too, regardless of the state of the
deletion holdoff counters for these pipes (it makes no sense to have a pipe
that 'ends in mid-air').

Parameters for TERM_PROCESS:

PROCESS (default: running process) is the process to terminate.

Results returned by TERM_PROCESS:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is. This error code is only returned if the
terminated process was not the calling process!

2.3 - Functional Description: Processes

40

2.3.3 DELAY

DELAY lets a process wait for a specified number of clock ticks (the
process is removed from the ready to run list during that time).

Parameters for DELAY:

PROCESS (default: running process) is the process to be delayed. If not the
running process is specified, then this process should be in the 'ready to run'
state (in any ready queue). The process may currently be suspended!

TIMEOUT (default: I clock tick) is the number of clock ticks the process is
delayed. The actual delay may vary between (n-I) and n times the clock tick
period, if n is the number given here. If the process does not have enough
priority to preempt the process running when the delay times out, it will
have to wait longer to become the running process again. 0 clock ticks is not
allowed.

Results returned by DELAY:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.3.4 SUSPEND PROCESS

SUSPEND PROCESS increases the 'suspension depth' counter for the given
process and makes it impossible for the process to be placed on any ready
queue (removes the process from a ready queue if it is already there - note
that the actual process state does not change). Suspending a process is
impossible if the process is currently running in a region. There is a
maximum suspension depth (probably 255), which limits the number of
SUSPEND_PROCESS calls in a row.

There are 2 ready queues, the normal ready queue and the alternate ready
'queue'. These are described in the section on virtual memory support.

Parameters for SUSPEND PROCESS:

PROCESS (default: running process) is the process to suspend.

Results returned by SUSPEND_PROCESS:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is. A self-suspend normally returns the 'no error'
code.

SUSPENSION DEPTH is the new state for the 'suspension depth' counter
of the suspended process. This result will always be 0 if the calling task
suspended itself !

2.3 - Functional Description: Processes

41

2.3.5 RESUME PROCESS

RESUME PROCESS decreases the 'suspension depth' counter for the given
process, ifthis counter was not already O. If the counter reached zero by
this call, then the process is no longer suspended, and can be placed in any
ready queue (and will be placed there if the process is not waiting for an
event to happen).

Parameters for RESUME PROCESS:

PROCESS (no default) is the process to resume. The running process cannot
be specified !

Results returned by RESUME_PROCESS:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

SUSPENSION DEPTH is the new state for the 'suspension depth' counter
of the 'resumed' process.

2.3.6 CHANGE PRIORITY

CHANGE_PRIORITY sets or reads the priority for the specified process.

Parameters for CHANGE PRIORITY:

PROCESS (default: running process) is the process from which the priority
is asked.

PRIORITY (default: current priority for the specified process) is the new
priority to be given to the specified process. If the default is kept, then the
priority is not changed.

Results returned by CHANGE_PRIORITY:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

PRIORITY is the (new) priority of the specified process. This will never
return the temporary priority given to the process by the POLL function.

2.3.7 CHANGE_USER AREA

CHANGE USER AREA changes the user-defined data space for the
specified -process.- The size of this data space is set by the
USER AREA SIZE parameter for the INIT SYSTEM function, and it
contains at least user defined - 'PROCESS SIZE' and
'USER PROCESS STATE' entries. The user-defined data space is
initialised to 'all zeroes' by the INIT_PROCESS function.

2.3 - Functional Description: Processes

42

Parameters for CHANGE USER AREA:

PROCESS (default: running process) is the process from which the data area
is to be changed.

USER AREA DATA (default: current data in the user area) gives the
data to be written into the user area. Data is written on a word-default
base, that is, if a word is not written, it keeps the original contents.

Results returned by CHANGE_USER_AREA:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

USER AREA DATA are the contents of the user area for the indicated
process(after the changes are made).

2.3.8 YIELD

YIELD places the first process in the ready queue with a priority equal or
below the specified priority behind all other process in the ready queue
with the same priority. For this function, the running process is considered
to be on the top of the ready queue. This function can be used for user­
defined time slicing.

Parameters for YIELD:

PRIORITY (default: priority of the running process) is the maximum
priority for the process to swap places in the ready queue.

Results returned by YIELD:

ERROR CODE is set to 'no error', because this function cannot generate
an errorcondition.

2.3.9 POLL

POLL assigns a new priority to the indicated process which is lower than
the current priority of the process. This priority cannot be lower
(numerically higher) than the MIN PRIO parameter given in the
INIT PROCESS call which created thisprocess. The normal priority of the
process is re-instated when the process is made running again, or when the
specified timeout time has elapsed. This function can be used by processes
which have to wait for an external event which does not generate an
interrupt, if processing this external event has a relatively low priority.

Parameters for POLL:

PROCESS (default: running process) is the process to receive a temporary
lowered priority.

2.3 - Functional Description: Processes

43

POLL PRIORITY (default: MIN PRIO given by INIT_PROCESS) is the
temporary priority for the specified process.

TIMEOUT (default: 0 == infinity) is the maximum number of clock ticks this
lowered priority will exist.

Results returned by POLL:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

TIME ELAPSED gives the number of clock ticks this lowered priority
existed(65535 == 65535 or more).

2.3.10 GET_STATISTICS

GET_STATISTICS gives an overall indication of the state of a process. It
can be used together with CHANGE USER AREA and
CHANGE TIMERS by the scheduler process(es) to make decisions whether
or not toswap processes out or in, and can also be used for system
optimalisation and resource profiling.

Parameters for GET_STATISTICS:

PROCESS (default: running process) is the process for which the statistics
are requested.

Results returned by GET_STATISTICS:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

PROCESS STATE is a collection of flags, indicating the overall process
state (preliminary!):

Wait_For indicates what the process is waiting for (if anything). These are
the possibilities:

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Nothing (process is not waiting)
Normal Semaphore
Channel Semaphore
Region
Mailbox Reading
Mailbox Writing (non-infinite mailbox only)
Pipe Reading
Pipe Writing
Pipe Claiming
Real Time Clock Match
Stream Initialisation
Stream Ending
Poll State Ending
Scheduler Process Search
LAN Reply (acknowledgement or status packet)

2.3 - Functional Description: Processes

44

Delay_Running indicates whether or not a delay or timeout is running. If a
process called DELAY, then this flag is TRUE, with 'Wait For' set
to 'Nothing'.

Remote_Wait indicates the process is waiting for a remote entity.

BroadCast_TX indicates the process has been broadcasted to the other
MMTCP's on the local token ring to request it to be transferred away
from this coprocessor.

BroadCast RX indicates the process has been received by the local
coprocessor following a BROADCAST function call in one of the
other coprocessors on the local token ring.

Local_Lock indicates this process is not to be moved between coprocessors.
The setting of this flag is specified when a process is created with
INIT PROCESS.

AIt_Ready_ Queue indicates this process cannot be placed in the normal
ready to run queue (in most cases this flag is set because the process
has been swapped out to background storage in a virtual memory
system).

Dirty indicates this process is being used by (one of) the scheduler processes.
This also means this process has limited capabilities to change state
(cannot be made running, for instance).

PERMISSIONS STATUS gives the collection of permission bits that control
which functions this task may call. These bits are packed in a 16 bits word,
and are controlled by the PERMISSION MASK in the INIT PROCESS
function call. -

QUEUE gives the identification number of the entity the process is waltmg
for (if any). This can be a (channel) semaphore, mailbox, region etcetera.

ENVIRONMENT is the pointer to the environment of the process. If the
environments are saved dynamically (on the stack, for instance), then this
value is meaningless for the running process.

CURRENT COPROCESSOR gives the number of the coprocessor where the
process is currently running (can be used in a system with a central
scheduling algorithm, or to check for errors).

PRIORITY is the current priority for the process. If the process has called
POLL, then PRIORITY indicates the normal priority, not the priority given
with POLL.

SUSPENSION DEPTH is the current contents of the suspension depth
counter for the process. If non-zero, then the process is suspended, even if
the flags in the PROCESS_STATE indicate the process is not waiting for
an event.

2.3 - Functional Description: Processes

45

REGIONS_ENTERED gives the number of regions the process is currently
running in.

CURRENT WRITER STATUS gives the number of pipes for which the
process is the 'currentwriter'.

READER STATUS gives the number of pipes from which the process is
reading (these are logically 'owned' by the process).

DELETION HOLDOFF gives the current contents for the 'deletion holdoff'
counter forthis process. If non-zero, the process can only be deleted by
FORCE DELETE.

SPECIAL_STATUS is the special status word for the given process.

TIME REMAINING gives the number of clock ticks the process has to wait
until the timeout condition occurs (if a timeout is running).

2.3.11 CHANGE TIMERS

CHANGE TIMERS sets and/or reads the three process timers (one each for
the running, waiting and suspended states). These three timers are 32 bits
wide, increment once for each clock tick, are initialised to 0 by
INIT_PROCESS and lock before overflow.

The times returned in the result registers are the times AFTER they have
been changed by the parameters in this call.

Normally, this call will return immediately to the calling process with the
results. If a process with higher priority preempts the calling process while
this call is processed, then the results will reflect the state of these timers as
they were at the entry of this call (the actual preemption will be done after
the result has been written to the process block in memory).

Parameters for CHANGE TIMERS:

PROCESS (default: running process) is the process for which the timer
values are to be set and/or read.

CPU_TIME (default: current value) is the new value for the (cumulative)
running time timer.

SUSPENDED TIME (default: current value) is the new value for the
(cumulative) suspended state time timer.

WAITING TIME (default: current value) is the new value for the
(cumulative) waiting state time timer.

Results returned by CHANGE_TIMERS:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.3 - Functional Description: Processes

46

CPU_TIME gives the (cumulative) number of clock ticks the process has
run on the processor.

SUSPENDED TIME gives the (cumulative) number of clock ticks the
process has been in suspension.

WAITING TIME gives the (cumulative) number of clock ticks the process
has been waiting in any kind of queue (including the ready queue !). This
timer is also running if the process is waiting for a reply from the LAN.

2.3.12 SET SPECIAL STATUS

SET SPECIAL STATUS sets a new value for the special status word for
the specified process. The special status word is always readable in a special
coprocessor register while a process is running.

Parameters for SET_SPECIAL_STATUS:

PROCESS (default: running process) is the process which is to receive the
new special status word.

SPECIAL STATUS (default: 0) is the new special status word for the
specified process.

Results returned by SET_SPECIAL_STATUS:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.3.13 SET ENVIRONMENT

SET ENVIRONMENT changes the environment pointer stored in the
process descriptor block of the specified process. This call should be used if
the environment of the given process has been moved in memory (because
the process has been swapped out or because the process has been moved
between processors).

Parameters for SET ENVIRONMENT:

PROCESS (no default) is the process to receive the new environment
pointer. This cannot be the running process.

ENVIRONMENT POINTER is the new environment pointer for the given
process.

Results returned by SET_ENVIRONMENT:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.3 - Functional Description: Processes

47

2.3.14 UNLINK

UNLINK forces a process to the ready state (out of any event waltmg
queue, with suspension depth 0), and is primarily used to end deadlock
situations. The task calling this function should have the 'System Task'
permission bit set TRUE. -

If the target process has entered regions, then an EXIT REGION call is
executed for all these regions. If the target process is 'current writer' for
one or more pipes, then a RELEASE PIPE call is done for these pipes. A
special ERROR CODE is returned to the UNLINK-ed process. If a target
process is already in the ready state, not suspended, not in a region and not
a 'current writer' for a pipe at the time of the UNLINK call, then this
process experiences nothing, but a special ERROR CODE is returned to the
caller of UNLINK.

Parameters for UNLINK:

PROCESS (no default) is the process to make ready. This should not be the
running process.

Results returned by UNLINK:

ERROR_CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is. This word contains bits indicating whether Or
not the process was released from a waiting queue and/or un-suspended.

PIPES RELEASED gives the number of pipes released by the target
process.

REGIONS EXITED gives the number of regions exited by the target
process.

2.3 - Functional Description: Processes

48

2.4 Normal Semaphores

The semaphores are used to synchronise processes running in the multitasking
environment. The synchronisation is achieved by having processes request a
number of abstract 'units' from a semaphore, which will stop them from continuing
their work if these units are not available at that time. Other processes can send
units to semaphores, which will restart processes waiting there. To make the
multitasking coprocessor's semaphores as versatile as possible, they can be set to
operate in several different 'modes'. Also, the number of units requested and sent
can be specified for each call (some multitasking operating systems only allow
sending or receiving one unit at a time). By using semaphore modes like
'BEST_FIT', the semaphores themselves can be used for optimisation purposes.

It is possible to send units to a semaphore resident in another multitasking
coprocessor, if the local and remote MMTCP's are connected by a LAN and/or
bridges. It is also possible to wait for units at a non-local semaphore. The
multitasking coprocessors will automatically and transparently exchange messages
to initiate and end the waiting of the process. This makes it possible to build a
multiprocessor multitasking system where tasks operating on different host
processors synchronise to eachother using semaphores, just like they would if they
were running on a single host processor.

2.4.1 INIT SEMAPHORE

INIT SEMAPHORE creates and initialises a semaphore. This function can
onl y be called by a task which has the 'Crea te Enable' permission bit set. If
the MODE parameter is NO QUEUE FIFO or NO QUEUE PRIO, then
the semaphore has no queue and all processes waitingare released as soon as
there are enough units in the semaphore's units counter to satisfy the
request for the first waiter. With proper use of the condition settings for
SIGNAL, the semaphore can be made non-accumulating or even without
memory. The units counter is 16 bits wide.

Parameters for INIT SEMAPHORE:

INITIAL UNITS (default: 0) gives an initial number of units to the
semaphore's units counter.

MAX UNITS (default: 65535) sets the maximum number of units that can
ever be accumulated in the semaphore's units counter.

MAX WAITERS (default: 65535) sets the maximum number of waiting
processes allowed in the semaphore's waiting queue.

GLOBAL (default: TRUE) indicates whether or not the semaphore has to be
made globally accessible throughout the (multiprocessor) system.

MODE (default: FIFO) sets the queueing mode for the semaphore's waiting
list. This mode can be:

FIFO: processes wait in first-come first-served order.

2.4 - Functional Description: Normal Semaphores

49

PRIO: processes wait in priority order, new processes are placed behind
other processes with equal or higher priority.

NO_QUEUE_FIFO: processes are placed in the queue in first-come first­
served order, and are all released at the same time as soon as the
request for the process at the head of the queue can be satisfied.

NO_QUEUE_PRIO: processes are placed in the queue in priority order (as
for PRIO), and are all released at the same time as soon as the
request for the process at the head of the queue can be satisfied.

FIRST_FIT: processes requesting few units are placed in front of other
processes in the queue (with processes which have the same number
of requested units in order of decreasing priority). If units are sent,
then they are given to the process placed at the front of the queue.
This means that processes which request few units are favoured over
processes that request more units.

BEST_FIT: the processes are placed in the queue ordered on decreasing
amount of requested units (with processes which have the same
number of requested units placed in order of decreasing priority). If
units are sent, then the queue is searched for the first process that
requests a number of units less than or equal to the number of units
accumulated in the units counter. This process is restarted, and, if
there are units left, searching is continued to find another process to
consume (part of) the remaining units. This means that processes
which request 'just enough' units are favoured over all other
processes. If, for instance, there are processes with requests for 7, 4, 3
and 2 units waiting (no units in the semaphore's counter), then
sending 5 units will release the process requesting 4 units, leaving I
unit in the semaphore's counter. Sending another 10 units will release
the processes requesting 7 and 3 units, leaving the counter with 1
unit.

Note that a semaphore with a BEST FIT queueing mode may be somewhat
slower in response for a SIGNAL function call (described below), because
the list of waiting processes has to be searched in this case (all the other
queueing modes always release the processes from the head of the waiting
list).

Results returned by IN IT_SEMAPHORE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

SEMAPHORE is the identification number to be used in the future when
referencing to the new semaphore.

2.4 - Functional Description: Normal Semaphores

50

2A2 TERM SEMAPHORE

TERM SEMAPHORE deletes a semaphore if the 'deletion holdoff' counter
is O. This function can only be called by a task which has created the
semaphore itself, or by a task which has the 'Non Owned Delete'
permission bit set. All waiters are released and receive a-special
ERROR_CODE to indicate the semaphore no longer exists.

Parameters for TERM_SEMAPHORE:

SEMAPHORE (no default) indicates which semaphore is to be deleted.

MAX UNITS (default: 65535) gives the maximum number of units allowed
in thesemaphore's units counter to enable the deletion.

MAX WAITERS (default: 65535) gives the maximum number of waiters
allowed to be in the semaphore's waiting queue to enable the deletion.

Results returned by TERM_SEMAPHORE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2A.3 WAIT

WAIT is called by a process to 'receive' units from a semaphore's units
counter. The general idea is to place the process in the semaphore's waiting
queue, and release the process as soon as it is placed at the head of the
waiting queue and there are enough units in the units counter to satisfy the
request (or if the first process in the queue is released and the MODE is
NO QUEUE FIFO or NO QUEUE PRIOlo The BEST FIT algorithm
described above works differently. -

Parameters for WAIT:

SEMAPHORE (no default) is the semaphore to use.

PROCESS (default: running process) is the process to wait at the semaphore.
This process should be in the ready to run state (the running process always
is), and not in a region if the default is not used. If the running process is
not specified here, then the specified process will not receive an
ERROR CODE resulting from this call, but will receive the
ERROR-CODE it was already set to receive (if any). The
Stop Other Tasks permission bit should be set if the specified process is
not adirectchild of the calling task, nor the calling task itself.

NR OF UNITS (default:]) is the number of units requested from the
semaphore. A WAIT call which requests 0 (zero) units is allowed, and the
request can then always be satisfied (process released as soon as it reaches
the head of the ready queue, the process is always released if the
semaphore's queueing mode is FIRST FIT).

2.4 - Functional Description: Normal Semaphores

51

MlN UNITS (default: 0) gives the minimum number of units to be in the
semaphore's units counter to enable the WAIT function.

MAX UNITS (default: 65535) gives the maximum number of units in the
semaphore's units counter to enable the WAIT function.

MIN WAITERS (default: 0) gives the minimum number of waiting
processes in the semaphore's waiting queue to enable the WAIT function.

MAX_WAITERS (default: 65535) gives the maximum number of waiting
processes in the semaphore's waiting queue to enable the WAIT function.

TIMEOUT (default: 0 • infinite) gives the maximum number of clock ticks
the process wiJ) wait in the semaphore's waiting queue.

Results returned by WAIT:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

CURRENT_WAITERS gives the number of waiting processes in the
semaphore's waiting queue, at the time this process was released from the
waiting queue (or the number of waiters at the time of exit from the WAIT
call, if the function was not enabled).

CURRENT UNITS gives the contents of the semaphore's units counter, at
the time thiSprocess was released from the waiting queue (or the number of
units at the time of exit from the WAIT call, if the function was not
enabled).

TIME ELAPSED gives the number of clock ticks the process was placed in
the waiting queue. This is a 16 bit value, which blocks before overflow.
TIME_ELAPSED is only returned if the running process caned WAIT.

2.4.4 SIGNAL

SIGNAL sends a specified number of units to a semaphore's units counter.
This function returns an error if adding the number of units to the units
counter would increase the number of units in the counter above it's
maximum set by INIT SEMAPHORE. Note that the units are first added to
the counter, and then dispatched to the waiting processes!

Parameters for SIGNAL:

SEMAPHORE (no default) is the semaphore to receive the units.

NR_OF_UNITS (default: I) is the number of units to send to the
semaphore.

• If NR OF UNITS is set 0 (zero), then this function can does a
'force release' for the first waiter in the semaphore's waiting Jist
(units counter unchanged). In this case, the first waiter wiJ) receive a
special ERROR CODE (if this process placed itself in the waiting

2.4 - Functional Description: Normal Semaphores

52

Queue). If the MODE is set NO QUEUE FIFO or
NO_QUEUE_PRIO then all waiters are released. -

MIN UNITS (default: 0) gives the minimum number of units to be in the
semaphore's units counter to enable the SIGNAL function.

MAX UNITS (default: 65535) gives the maximum number of units in the
semaphore's units counter to enable the SIGNAL function.

MIN WAITERS (default: 0) gives the minimum number of waiting
processes in the semaphore's waiting Queue to enable the SIGNAL function.

MAX WAITERS (default: 65535) gives the maximum number of waiting
processes in the semaphore's waiting Queue to enable the SIGNAL function.

Results returned by SIGNAL:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

CURRENT UNITS gives the number of units in the semaphore's units
counter after the NR OF UNITS were added, but before there were
waiters released. --

CURRENT WAITERS gives the current number of waiters in the
semaphore's-waiting Queue ('current' = at the time the SIGNAL call was
issued).

2.4.5 CHECK SEMAPHORE

CHECK SEMAPHORE returns the number of units and waiters for a
specifiedsemaphore, and can also be used as a check for the existence of
the semaphore.

Parameters for CHECK SEMAPHORE:

SEMAPHORE (no default) is the semaphore to check.

Results returned by CHECK_SEMAPHORE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

CURRENT UNITS is the state of the semaphore's units counter at the time
of the CHECK SEMAPHORE call.

CURRENT WAITERS is the number of waiters in the semaphore's waiting
Queue at thetime of the CHECK_SEMAPHORE call.

2.4 - Functional Description: Normal Semaphores

53

2.5 Channel Semaphores

Channel semaphores have to be enabled by the INIT SYSTEM function, before the
following functions can be used. Also, the calling process should have the
'Chan_Sem_Use' permission bit set.

Channel semaphores are all non-counting without memory.

The CHANNEL is a user-defined 32 bit number.

Channel semaphores are always local, and their sole purpose is to make it more
easier to emulate UNIX on the coprocessor (they are much less versatile than the
normal semaphores).

Processes waiting for a channel semaphore are put into the ready to run state
immediately when they are transferred to another coprocessor (they lose their
'connection' to the channel semaphore), and receive a special ERROR CODE to
indicate this has happened. -

2.5.1 WAIT CHANNEL

WAIT CHANNEL places a process in a channel's waitmg Queue, until a
SIGNAL_CHANNEL function is executed for the specified channel.

Parameters for WAIT CHANNEL:

CHANNEL (no default) is the channel to wait on.

PROCESS (default: running process) is the process to wait at the channel
semaphore. This process should be in the ready to run state (the running
process always is), and not in a region if it is not the running process. If the
running process is not specified here, then the specified process will not
receive an ERROR CODE resulting from this call, but will receive the
ERROR CODE it was already set to receive (if any). The
Stop_Other_Tasks permission bit should be set if the specified process is
not a direct child of the calling task, nor the calling task itself.

TIMEOUT (default: 0 = infinite) gives the maximum number of clock ticks
the process will wait in the channel semaphore's waiting Queue.

Results returned by WAIT_CHANNEL:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

TIME_ELAPSED gives the number of clock ticks the process was placed in
the waiting Queue. This is a 16 bit value, which blocks before overflow.
TIME ELAPSED is only returned if the running process called
WAIT-CHANNEL.

2.5 - Functional Description: Channel Semaphores

54

2.5.2 SIGNAL CHANNEL

SIGNAL CHANNEL releases all processes waiting in a channel semaphore's
waiting Queue. Does nothing if there are no processes waiting (non­
counting/no memory!). Due to implementation restrictions, this call may be
somewhat slower in response than the SIGNAL call used for normal
semaphores (a list of waiting processes will have to be searched).

Parameters for SIGNAL CHANNEL:

CHANNEL (no default) is the channel to receive the signal.

Results returned by SIGNAL_CHANNEL:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

NR OF PROCESSES STARTED gives the number of processes that were
released hom the waiting queue by this function call.

2.S - Functional Description: Channel Semaphores

55

2.6 Mailboxes

All mailbox messages consist of a user-defined J6, 32 or 64 bit number. Mailboxes
come in two forms:

•

•

The so-called 'infinite' mailboxes, where the number of messages that can be
stored is only bounded by the MAX MESSAGES entry in the
INIT MAILBOX call (and the available coprocessor memory, of course).
For 'Infinite' mailboxes, the FIXED PART SIZE parameter in the
INIT MAILBOX function call is an optimalisa tion problem. If
FIXED PART SIZE is made too large, then coprocessor memory will be
wasted,if it is-made too small, then time will be wasted in the dynamic
allocation and de-allocation of coprocessor memory to hold the 'overflow'
mailbox messages (lowering the coprocessor's performance).

The so-called 'fixed' mailboxes, where the number of mailbox messages that
can be stored is given by the FIXED PART SIZE parameter in the
INIT MAILBOX function call. A 'fixed'"mailboxhas two waiting queues,
one for the readers (if the mailbox is empty) and one for the writers (if the
mailbox is full). For a 'fixed' mailbox, the number of messages is considered
to be the number of messages actually in the mailbox plus the number of
waiting processes in the mailbox writers' waiting queue. This total is always
checked against the MAX MESSAGES parameter given with the
INIT_MAILBOX function calI-:-

There can be a maximum of four special purpose mailboxes in each multitasking
coprocessor:

•

•

The first is the 'system errors mailbox', which is always created following
the INIT SYSTEM function call. This mailbox has 8 byte (64 bit) messages,
and is a 'fixed' mailbox with a user specified number of slots (given by the
SYSTEM MAILBOXES parameter for the INIT SYSTEM function call).
The system errors mailbox has a fixed identification number (the ring
address of the local coprocessor concatenated with a fixed - dummy ­
'memory address'), and can only be accessed by tasks which have the
'System_Task' permission bit set. It is possible to read from - and write into
all the system error mailboxes in an interconnected system, although it
would be wise to restrict access to reading only from the local system errors
mailbox. This mailbox will receive error messages generated automatically
by the internal functional blocks in the multitasking coprocessor (if the
mailbox is full, then error messages will be lost !).

The second special purpose mailbox is the 'system interconnection mailbox',
where the message size is 8 bytes and the number of slots is user definable,
as is the type of the mailbox (FIXED or INFINITE). It also has a known
and fixed identification number (different from the system errors mailbox),
and can only be accessed by tasks with the 'System Task' permission bit set.
Creating this mailbox is optional, the specifications for it are given by the
SYSTEM MAILBOXES parameter for the INIT SYSTEM function call.
This mailbox is meant to exchange initial messagesbetween system processes
running on different multitasking coprocessors (mainly for system startup
and management).

2.6 - Functional Description: Mailboxes

•

2.6.1

56

The third and fourth mailboxes are used to exchange messages with
processes that control the receiving and transmitting of packets for the
'bridge' functions. These mailboxes have a slot size of 2 bytes and are only
created in a MMTCP when the host processor has bridge capabilities. These
mailboxes are described in subchapter 2.2: 'Functional Description: Bridge
Handling'. Both mailboxes have fixed and known identification numbers
and can only be read by local processes that have the 'System Task'
permission bit set TRUE. -

INIT MAILBOX

INIT MAILBOX creates and initialises a mailbox (empty). This function
can only be called by a task which has the 'Create_Enable' permission bit
set.

Parameters for INIT MAILBOX:

MAILBOX MODE (default given in the INIT SYSTEM function call)
gives the type of mailbox:

•
•

INFINITE for an 'infinite' mailbox.

FIXED for a 'fixed-size' mailbox.

FIXED PART SIZE (default given in the INIT SYSTEM function call
parameter DEF-FIXED PART SIZE) gives the number of slots allocated
for the mailbox-messageS," as described above. The minimum value for this
parameter is I, the maximum value is not yet defined (may depend on the
SLOT_SIZE parameter).

SLOT SIZE (default given in the INIT SYSTEM function call parameter
DEF SLOT SIZE) gives the size of theslots for this mailbox (2, 4 or 8
byteS)." -

GLOBAL (default: TRUE) indicates whether or not the mailbox has to be
made globally known throughout the (multiprocessor) system.

READ QUEUE MODE (default: FIFO) gives the queueing algorithm used
for the-mailbox readers' waiting queue:

•
•

FIFO for a first-come first-served queueing algorithm.

PRIO for a priority based queueing algorithm, where new waiters
are placed in the queue following all waiters with higher or equal
priority.

WRITE QUEUE MODE (default: FIFO) gives the queueing algorithm for
the mailbox writers' queue, with the same possibilities as the mailbox
readers' queue (FIFO or PRIO). This parameter is ignored if
MAILBOX MODE is set to INFINITE.

2.6 - Functional Description: Mailboxes

MAX MESSAGES (default: 65535) gives the number of messages the
mailbox may ever store (or the actual number of messages~ the number
of waiters in the writers' waiting queue for a FIXED mailbox). This value
should not be below the FIXED PART SIZE value.

MAX READERS (default: 65535) sets the maximum number of processes
that are allowed to wait for messages in the mailbox readers waiting queue.

Results returned by INIT_MAILBOX:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

MAILBOX is the identification number to be used in the future when
referencing to the new mailbox.

2.6.2 TERM MAILBOX

TERM MAILBOX deletes a mailbox if the 'deletion holdoff' counter is O.
This function can only be called by a task which has created the mailbox
itself, or by a task which has the 'Non Owned Delete' permission bit set.
All waiters are released and receive a special ERROR CODE to indicate
the mailbox no longer exists. -

Parameters for TERM_MAILBOX:

MAILBOX (no default) indicates which mailbox is to be deleted.

MAX_MESSAGES (default: 65535) gives the maximum number of messages
(or the actual number of messages plus the number of waiters in the writers'
waiting queue) allowed to enable the deletion.

MAX_WAITERS (default: 65535) gives the maximum number of waiters
allowed to be in the mailbox readers' waiting queue to enable the deletion.

Results returned by TERM_MAILBOX:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.6.3 RECEIVE MESSAGE

RECEIVE MESSAGE is called by a process to receive a message from a
mailbox. iT messages are available, then the message at the head of the
message queue is given directly to the calling process, and this message is
removed from the mailbox. If there are no messages available, then the
process is placed in the mailbox readers' queue. The process is released as
soon as it reaches the head of this waiting queue and there is a message sent
to the mailbox.

2.6 - Functional Description: Mailboxes

58

Parameters for RECEIVE MESSAGE:

MAILBOX (no default) is the mailbox to receive the message from.

MIN MESSAGES (default: 0) gives the minimum number of messages to be
stored in the mailbox to enable the RECEIVE MESSAGE function.

MAX MESSAGES (default: 65535) gives the maximum number of messages
allowed in the mailbox to enable the RECEIVE MESSAGE function.

MIN READERS (default: 0) gives the minimum number of waiting
processes in the mailbox readers' waiting queue to enable the
RECEIVE MESSAGE function.

MAX READERS (default: 65535) gives the maximum number of waiting
processes in the mailbox readers' waiting queue to enable the
RECEIVE MESSAGE function.

TIMEOUT (default: 0 = infinite) gives the maximum number of clock ticks
the process will wait in the mailbox readers' waiting queue.

Results returned by RECEIVE_MESSAGE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

MESSAGE is the message received from the mailbox. This result is invalid
if an error occurred.

CURRENT READERS gives the number of waiting processes in the
mailbox readers' waiting queue, at the time this process was released from
the waiting queue (or the number of waiters at the time of exit from the
RECEIVE_MESSAGE call, if the function was not enabled).

CURRENT MESSAGES gives the number of messages in the mailbox (or
the actual Dumber l21..Yi the number of waiters in the writers' waiting
queue), at the time this process was released from the waiting queue (or the
number of messages at the time of exit from the RECEIVE MESSAGE call,
if the function was not enabled). -

TIME ELAPSED gives the number of clock ticks the process was placed in
the readers' waiting queue. This is a 16 bit value, which blocks before
overflow.

2.6.4 SEND MESSAGE

SEND MESSAGE sends a message to the indicated mailbox. If a fixed-size
mailbOX is used, and this mailbox is full, then the process is placed in the
mailbox writers' waiting queue. The process is released if it is at the head
of this queue and a message is read from the mailbox.

2.6 - Functional Description: Mailboxes

59

Parameters for SEND MESSAGE:

MAILBOX (no default) is the mailbox to send the message to.

MESSAGE (default: 0) is the message to be placed in the mailbox.

MIN MESSAGES (default: 0) gives the minimum number of messages to be
stored in the mailbox to enable the SEND_MESSAGE function.

MAX MESSAGES (default: 65535) gives the maximum number of messages
allowed in the mailbox to enable the SEND_MESSAGE function.

MIN_READERS (default: 0) gives the minimum number of waiting
processes in the mailbox readers' waiting queue to enable the
SEND_MESSAGE function.

MAX READERS (default: 65535) gives the maximum number of waiting
processes in the mailbox readers' waiting queue to enable the
SEND_MESSAGE function.

TIMEOUT (default: 0 = infinite) gives the maximum number of clock ticks
the process will wait in the mailbox writers' waiting queue (this parameter
is ignored for infinite mailboxes).

Results returned by SEND_MESSAGE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

CURRENT READERS gives the number of waiting processes in the
mailbox readers' waiting queue, at the time of the SEND_MESSAGE call.

CURRENT MESSAGES gives the number of messages in the mailbox (or
the actual Dumber plus the number of waiters in the writers' waiting
queue), at the time of the SEND_MESSAGE call.

TIME ELAPSED gives the number of clock ticks the process was placed in
the writers' waiting queue (0 if it was never placed there). This is a 16 bit
value, which blocks before overflow.

2.6.5 CHECK MAILBOX

CHECK MAILBOX returns the number of messages in a mailbox (or the
actual number of messages ~ the number of waiters in the writers'
waiting queue) and the number of waiters in the readers' waiting queue.
This function can also be used to check for the existence of the mailbox.

Parameters for CHECK MAILBOX:

MAILBOX (no default) is the mailbox to check.

2.6 - Functional Description: Mailboxes

60

Results returned by CHECK_MAILBOX:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

CURRENT MESSAGES is the number of messages in the mailbox (or the
actual number of messages ~ the number of waiting processes in the
mailbox writers' waiting queue) at the time of the CHECK_MAILBOX call.

CURRENT READERS is the number of waiters in the mailbox readers'
waiting queue at the time of the CHECK_MAILBOX call.

2.6 - Functional Description: Mailboxes

61

2.7 Regions

Regions are a special kind of semaphores. Processes running in a region cannot be
deleted, suspended or placed in a waiting queue by another process. Time slicing is
disabled for a process executing in a region. Regions should be used with great
care, as deadlock can easily occur (UNLINK will then have to be called). Regions
can be used by one process at a time. If another process wants to make use of a
region, it is placed in the region's requesters waiting queue. The user of a region is
always counted as one waiter to facilitate more flexible conditional
ENTER_REGION calls.

2.7.1 INIT REGION

INIT REGION creates and initialises a region. This function can only be
calledby a task which has the 'Create_Enable' permission bit set.

Parameters for INIT REGION:

MAX WAITERS (default: 65535) gives the maximum number of waiters
(~ the user) for the new region. MAX_WAITERS cannot be 0 !

GLOBAL (default: TRUE) indicates whether or not the region has to be
made globally known throughout the (multiprocessor) system.

MODE (default: FIFO) gives the queueing algorithm used for the region's
requesters waiting queue:

•
•

FIFO: processes wait in first-come first-served order.

PRIO: processes wait in priority order, new processes are placed
behind other processes with equal or higher priority.

Results returned by INIT_REGION:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

REGION is the identification number to be used in the future when
referencing to the new region.

2.7.2 TERM REGION

TERM REGION deletes a region if the 'deletion holdoff' counter is O. This
function can only be called by a task which has created the region itself, or
by a task which has the 'Non Owned Delete' permission bit set. All
waiters are released and receive a specialERROR CODE to indicate the
region no longer exists. The current region user (if any) does not experience
anything (a 'hidden' EXIT REGION function is executed), but will get the
special ERROR_CODE if the EXIT_REGION function is called.

2.7 - Functional Description: Regions

62

Parameters for TERM REGION:

REGION (no default) indicates which region is to be deleted.

MAX WAITERS (default: 0) gives the maximum number of waiters (plus
the current user) allowed for the region to enable the deletion. If the
default is kept, then the region can only be deleted if the region is not in
use.

Results returned by TERM_REGION:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.7.3 ENTER REGION

ENTER REGION is called by a process that wants to use a region. A
process cannot request to enter a region it has already entered (trying to do
this will return a special ERROR CODE). If the region is in use, then the
number of waiters is checked against the MAX WAITERS parameters in
this call and the INIT REGION call, and, if the number of waiters is equal
to one Or both of them, then the function is not executed (returning a
special ERROR CODE). Otherwise, the process is placed in the region
requesters waiting queue, and released as soon as the process is at the head
of the queue and the user calls EXIT REGION. If this call is successful,
then the process' 'regions entered' counter is incremented by 1.

Parameters for ENTER REGION:

REGION (no default) is the region to use.

MAX_WAITERS (default: 65535) gives the maximum number of waiting
processes in the region requesters' waiting queue (plus the region user)
allowed to enable the ENTER REGION function. If MAX WAITERS is
set to 0, then the region is only entered if immediately available.

TIMEOUT (default: 0 = infinite) gives the maximum number of clock ticks
the process will wait in the region requesters waiting queue.

Results returned by ENTER_REGION:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

CURRENT WAITERS gives the number of waiting processes in the region's
waiting queue (~ 1, if the region is in use), at the time this process
became the region user (or the number of waiters at the time of exit from
the WAIT call, if the function was not enabled).

TIME ELAPSED gives the number of clock ticks the process was placed in
the waiting queue. This is a 16 bit value, which blocks before overflow.

2.7 - Functional Description: Regions

63

2.7.4 EXIT REGION

EXIT REGION makes a process exit the specified region, and gives the
regionto the next waiter in the region's requesters waiting Queue (if there
are any). If this call is successful, then the 'regions entered' counter for the
process is decremented by 1.

Parameters for EXIT REGION:

REGION (default: last region entered - LIFO stack !) is the region to exit.

Results returned by EXIT_REGION:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

CURRENT WAITERS gives the number of waiting processes in the region's
waiting Queue (~ I, if the region is in use), at the time of exit from this
call.

2.7.5 CHECK REGION

CHECK REGION returns the number of waiters (~ I, if the region is in
use) andthe task which currently uses the region (if any). This call can also
be used to check for the existence of the region.

Parameters for CHECK REGION:

REGION (no default) is the region to check.

Results returned by CHECK_REGION:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

CURRENT WAITERS gives the number of waiting processes in the region's
waiting Queue (~ I, if the region is in use), at the time of exit from this
call.

CURRENT_USER gives the task which currently uses the region (if any).

2.7 - Functional Description: Regions

64

2.8 Pipes

Pipes are used to transfer (byte oriented) data between processes. Each pipe can
have only one reader (which is always the process that initialised the pipe), but a
single process may be reading from several pipes.

There can be several processes that want to write into a pipe, but only one of them
can really be the 'current writer' (this is to prevent garbage to be sent into the pipe
by simultaneous writes). Processes wanting to write to the pipe should first obtain
access by calling CLAIM PIPE. If the pipe is in use, then the process can
optionally be placed in a waiting queue. When a process has finished writing, it
can 'pass the pipe' to the next process by calling RELEASE_PIPE.

A single process may be writing into several pipes, and combinations of writing
into- and reading from different pipes are also allowed. A process may write into a
pipe it is also reading from, but care should be taken to prevent deadlock in this
case (which is probably used for testing only).

In a multiprocessor system, these pipes are the data transfer medium of choice,
because they work completely transparent (a process does not need to know where
the data is coming from or going to). Also, read and write synchronising is fully
automatic (the protocol can be completely handled by the coprocessor, task
switching synchronises readers and writers). If a process is moved between
processors, the data is automatically redirected to the new coprocessor, without the
writing processes knowing this.

The UNLINK call does a RELEASE PIPE for all pipes where the target process
was the current writer. Deleting a process does the same, and also deletes all pipes
the process was reading from.

Data is sent and received in 'packages' which all have a maximum length, the
'maximum data block length', which probably will be around 32 bytes. This length
depends on hardware considerations (number of parameter and result registers
needed) and on the protocol used on the interconnecting link between the
coprocessors (where a maximum packet length restriction may be in effect).

To allow more flexible conditional calls, the 'current writer' is counted as one pipe
requester.

Pipes are addressed differently from other system entities. On the reading side, a
pipe has only a logical number, to be used by the RECEIVE DATA call. This
same number can also be used by the reading task for the TERM_PIPE call.

On the writing end, two identifiers are used. For the CLAIM PIPE call, the pipe
to claim is identified by the task that owns and reads the pipe, concatenated with
the short identifier used for the pipe by the reading process. CLAIM PIPE returns
a short identification number, to be used for the SEND DATA call. This same
number can also be used by the current writer for the RELEASE_PIPE call.

FLUSH PIPE and CHECK PIPE need the same identification number needed by
the CLAIM PIPE call. This number must also be given for RELEASE PIPE if
this call is-used by a process which is not the current writer and-for the
TERM_PIPE call if this call is not used by the readerlowner task.

2.8 - Functional Description: Pipes

65

The number of pipes a task is reading from and the number of pipes a task is the
current writer for may be restricted by implementation in the MMTCP. We should
reckon with a maximum of 32 pipes for both directions (which should be more
than enough).

The following calls are available for pipes:

2.8.1 INIT PIPE

INIT_PIPE initialises a pipe for reading by the calling process.

Parameters for INIT_PIPE:

PIPE LENGTH (default given by the DEF PIPE LENGTH parameter in
the INIT SYSTEM call) is the maximum number of bytes the pipe buffer
can hold:-There is a minimum of at least twice the maximum data block
length, and a maximum which has not been determined yet (maybe several
kilobytes).

GLOBAL (default: TRUE) indicates whether or not the pipe has to be made
globally accessible throughout the (multiprocessor) system.

REQUEST QUEUE MODE (default: FIFO) gives the queueing algorithm
for processes requesting to write into the pipe. This can be FIFO (first
come, first served) or PRIO (priority based, as usual). Note that a low
priority process can be writing into the pipe while a high priority process is
requesting to use the same pipe, writing into a pipe is not automatically
denied to allow a higher priority process access to the pipe.

MAX_REQUESTERS (default: 65535) gives the maximum number of
waiting processes in the pipe requesters queue. Because the 'current writer'
is counted as a requester, this parameter cannot be O. If this value is set to
1, then the pipe can only be claimed successfully if it is not in use at the
time of the CLAIM PIPE call.

Results returned by INIT_PIPE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

READ PIPE ID is an identification number to be used by the pipe
readerjownerfor RECEIVE DATA and TERM PIPE calls. This number is
also a part of the full pipe identification numberto be used by other tasks.

2.8.2 TERM PIPE

TERM PIPE is used to delete a pipe. This function can only be called by a
task which has created the pipe itself, or by a task which has the
'Non Owned Delete' permission bit set. The 'deletion holdoff' counter for
the pipe should be O. All waiters are released and receive a special
ERROR CODE to indicate the pipe no longer exists. The current contents
of the pipe buffer is lost. This function is called for each pipe a process is

2.8 - Functional Description: Pipes

66

reading from, if this process is deleted (in this case, the deletion holdoff
counter for the pipe is ignored - the process takes precedence).

Parameters for TERM PIPE:

PIPE (no default) indicates the pipe to delete. Note that there are two
possibilities to specify the pipe, as described above. The reader/owner need
only specify it's short identification number for the pipe
(READ PIPE ID), all other tasks must add the task identification number
of the reader /owner task.

MAX_REQUESTERS (default: 65535) gives the maximum number of
requesters (PLUS the 'current writer') allowed for the pipe to enable the
deletion. If 0 is given, then the pipe can only be deleted if noone is writing
into it.

MAX CONTENTS (default: 65535) gives the maximum number of bytes
allowed in the pipe buffer to enable the deletion. Note that this does not
include the number of bytes in a data package waiting to be written into
the buffer.

Results returned by TERM_PIPE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.8.3 CLAIM PIPE

CLAIM PIPE is called by a process that wants to write to a pipe. If the
pipe is in use, then the process is optionally placed in a waiting queue, as a
'pipe claimer'. Each time RELEASE PIPE is called for a pipe, the process
at the head of the waiting list becomes the 'current writer' and is released
from the list.

Parameters for CLAIM PIPE:

PIPE (no default) is the pipe to claim. This parameter consists of the task
identification of the pipe reader/owner concatenated with the short
identification number (READ PIPE ID) used by the reader/owner task to
access the pipe. --

MAX_REQUESTERS (default: 65535) gives the maximum number of
requesters (PLUS the 'current writer') allowed to enable the call. If this
parameter is set to 0, then the pipe is only claimed if it is available
immediately.

TIMEOUT (default: 0 "" indefinite) gives the maximum number of clock
ticks the process is willing to wait until the claim succeeds. This timeout
runs while the process is placed in the requester's waiting queue for the
pipe, and does NOT take into account the time needed to send requesting
and acknowledging messages back and forth between coprocessors residing
on the communication link.

2.8 - Functional Description: Pipes

67

Results returned by CLAIM_PIPE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

WRITE PIPE ID is a short logical number to be used by the writing task
to write1nto- and release the pipe.

TIME ELAPSED gives the number of clock ticks that passed between the
moment this call was given and the instance when the process was placed
back in the 'ready to run' state. This is a 16 bit number, which blocks
before overflow.

2.8.4 RECEIVE DATA

RECEIVE DATA is called to receive a data block from the specified pipe.
This caIl can only be executed by the process which initialised the pipe with
INIT PIPE. If there are not enough data bytes in the pipe buffer to satisfy
the request then the calling process is placed in a waiting state.

Parameters for RECEIVE DATA:

READ PIPE ID (no default) is the pipe to receive the data from. This
parameter can only be the short identification number used by the
reader lowner task (which must be the task that called this function).

MIN_LENGTH (default: I) gives the minimum number of data bytes to be
received. If there are less data bytes available than specified with this
parameter, then the calling process is placed in a waiting state until there
are at least this specified number of bytes available in the buffer.

MAX LENGTH (default: maximum data block length) gives the maximum
number of data bytes the calling process is willing to receive from the pipe
buffer. This call will never return more data bytes than specified by this
parameter. This parameter should be at least I, never below MIN_LENGTH,
and never more than the maximum data block length.

TIMEOUT (default: °= indefinite) gives the maximum number of clock
ticks the calling process is willing to wait until there are enough bytes in
the buffer to satisfy the request.

Results returned by RECEIVE_DATA:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

BYTES RECEIVED gives the actual number of bytes received. If this value
is 0, then it indicates that there were no bytes available at the time of the
call (this is only possible if the MIN LENGTH parameter was set to 0, or if
an error occurred). -

DATA_BLOCK contains the data bytes retrieved from the pipe buffer.

2.8 - Functional Description: Pipes

68

TIME ELAPSED gives the number of clock ticks the calling process was
placedin a waiting state waiting for bytes to arrive. This is a 16 bit
number, which blocks before overflow.

2.8.5 SEND DATA

SEND DATA is used to send data to a specified pipe. If the pipe is filled
to sucha level that the data block sent by this call cannot be stored in the
pipe buffer, then the calling process is placed in a waiting state until the
reading process has read enough bytes from the buffer to store the complete
data block in the buffer. Note that the calling process must be the 'current
writer' for the specified pipe (should have called CLAIM PIPE
successfully). -

Parameters for SEND DATA:

WRITE PIPE ID (no default) is the pipe to send the data to. This
parameter is the short identification number returned by the CLAIM PIPE
function call.

DATA BLOCK LENGTH (no default) gives the number of data bytes to
be sentto the pipe with this call. The minimum value for this parameter is
I, the maximum value is the maximum data block length.

DAT A_BLOCK (no default) is the data block to be sent to the specified
pipe.

TIMEOUT (default: 0 = indefinite) gives the maximum number of clock
ticks the process is willing to wait until the data block is placed in the pipe.
This time does NOT include the time the coprocessor needs to send the data
package out on the communication link to the other coprocessors, if the data
is sent to a pipe residing in another coprocessor.

Results returned by SEND_DATA:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

TIME ELAPSED gives the number of clock ticks that passed between the
issuing of the call and the moment that the data was stored in the pipe
buffer (in the case of a remote buffer, the moment that the local
coprocessor received notification from the other side that this was done).
This is a 16 bit number, which blocks before overflow.

2.8.6 RELEASE PIPE

RELEASE PIPE is called to release the pipe and allow the process at the
head of requester's queue to become the new 'current writer' for the pipe.
Note that this call can be executed by any process in the system. This call it
is executed for all pipes a process is current writer for if this process is
deleted or is the target process for an UNLINK call.

2.8 - Functional Description: Pipes

69

Parameters for RELEASE PIPE:

PIPE (default: last pipe requested - LIFO algorithm) is the pipe to be
released. The current writer need only specify it's WRITE_PIPE_ID
number to identify the pipe to release, all other tasks should give the task
identifier for the reader /owner task concatenated with the
READ_PIPE_ID number used by that task to access the pipe.

Results returned by RELEASE_PIPE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.8.7 FLUSH PIPE

FLUSH PIPE is called to remove all data from the specified pipe's buffer.
If therewas a data block waiting to be written to the buffer, it will be
written immediately after this call has done it's work. This call should be
regarded as a diagnostic/corrective tool, not as a standard call that is used
regularly. This call can be executed only by processes that are either the
owner of the pipe, the current writer for the pipe or have the
'Non_ C_ W_ Flush' permission bit set TRUE.

Parameters for FLUSH PIPE:

PIPE (no default) is the pipe to have it's buffer cleared. The full pipe
identification number should be used for this parameter (reader/owner task
identifier concatenated with the corresponding READ_PIPE_ID number).

Results returned by FLUSH_PIPE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.8.8 CHECK PIPE

CHECK PIPE is used to retrieve the current status of a specified pipe. It
can alsobe used to check for the actual existence of a pipe.

Parameters for CHECK PIPE:

PIPE (no default) gives the pipe to be checked. The full pipe identification
number should be used for this parameter (reader/owner task identifier
concatenated with the corresponding READ_PIPE_ID number).

Results returned by CHECK_PIPE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.8 - Functional Description: Pipes

70

CURRENT CONTENTS gives the number of bytes in the pipe buffer when
this CHECK_PIPE call was received by the coprocessor which controls the
pipe.

WAIT~NG CONTENTS gives the number of bytes in a data block which
has been sent, but is not yet stored in the pipe buffer (if this value is 0,
then there is no such data block). This status parameter is checked at the
same time as the CURRENT_CONTENTS parameter.

PIPE READER is the identification code for the reading process for the
specified pipe.

CURRENT REQUESTERS gives the current number of waltmg processes
in the requesters queue, PLUS] if the pipe has a 'current writer' process.

CURRENT WRITER gives the identification code for the process which
has write access to the specified pipe. This result is only valid if
CURRENT REQUESTERS is at least I.

2.8 - Functional Description: Pipes

71

2.9 Interrupts

Interrupts come in two different types:

1) 'Direct coupled' interrupts are connected directly to the host processor's
interrupt structure. These interrupt inputs are meant for very time critical
tasks and processor hardware related functions. The interrupt routines
started by these interrupts need only save and restore those parts of the
processor environment which they change, as no direct task switching can
be done. The TRIG INT SEMAPHORE function can be used by these
routines to send a single unit to a specified semaphore (using the same
method as used for the indirect coupled interrupts described below), all
other coprocessor functions are not available.

2) 'In.direct coupled' interrupts are connected to the multitasking coprocessor's
interrupt inputs. These interrupts send a unit to one of two internal
semaphores. The normal interrupt semaphore receives the unit if there are
not more than a specified maximum number of units accumulated in the
semaphore's units counter, or if there is no 'alternate' interrupt semaphore
specified. The 'alternate' interrupt semaphore receives the unit if the
associated normal interrupt semaphore has received the maximum number
of units (this can be used to start error recovery processes). The priority of
an interrupt input is simply the priority of the process waiting at the
interrupt semaphores. If an indirect coupled interrupt releases a process
with sufficient priority to preempt the running process, then the 'force task
switching' interrupt output to the host processor is activated.

NOTES:

Interrupts are ignored if they would increment the units counter of the specified
normal or alternate interrupt semaphores above the MAX UNITS parameter given
with the INIT_SEMAPHORE function call that created these semaphores.

A normal or alternate interrupt semaphore should 1l.Q1 be deleted (the existence of a
semaphore is only checked during the SET_INT_SEMAPHORE and
SET_ALT_INT_SEMAPHORE calls). Units generated by an interrupt which are
sent to non-existent semaphores will be lost. It may be an idea to prevent deletion
of an (alternate-) interrupt semaphore by calling DISABLE_DELETION.

It is possible to designate non-local semaphores to be the normal or alternate
interrupt semaphores, as long as these semaphores are located within MMTCP's
connected to the local token ring. In this case, the MMTCP will automatically send
a message to the remote MMTCP to increment the remote semaphore's units
counter. Sending this message will introduce an extra delay, which should be
reckoned with!

If errors are encountered by the coprocessor while processing an interrupt, it has
no way to inform the user software what happened. Partly for this reason, the
alternate semaphores were introduced, but these do not provide much help if they
encounter errors themselves. For this reason, errors will be formatted into messages
and written into the 'system errors' mailbox described in subchapter 2.6:
'Functional Description: Mailboxes'.

2.9 - Functional Description: Interrupts

72

These functions can only be used to change the }Q£al coprocessor's interrupt input
assignments.

SET INT SEMAPHORE assigns a normal semaphore to a specified
interrupt input (LINE NUMBER). This function can only be called by a
task which has the 'System_Task' permission flag set TR UE.

Parameters for SET_INT_SEMAPHORE:

LINE NUMBER (no default) is the interrupt input to which the semaphore
is to be connected.

SEMAPHORE (default: NONE) is the semaphore to be connected to the
interrupt input. If the default is kept. then the interrupt input is left
without a normal semaphore to send units to.

MAX UNITS (default: 0) is the maximum number of units allowed in the
semaphore's counter to send the unit to the normal interrupt semaphore ­
this maximum has no effect if there is no alternate interrupt semaphore
specified.

Results returned by SET_INT SEMAPHORE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and. if so. which error it is.

2.9.2 SET ALTINT SEMAPHORE

SET ALT INT SEMAPHORE assigns an alternate semaphore to the
specified interrupt input. This function can only be called by a task which
has the 'System_Task' permission flag set TRUE.

Parameters for SET ALTINT SEMAPHORE:

LINE_NUMBER (no default) is the interrupt input to which the alternate
semaphore is to be connected.

SEMAPHORE (default: NONE) is the alternate semaphore to be connected
to the interrupt input. If the default is kept. then the interrupt input is left
without an alternate semaphore to send units to.

Results returned by SET_ALT_INT_SEMAPHORE:

ERROR CODE is a (16 bit) word indicating whether an error occurred.
and, if so. which error it is.

2.9 - Functional Description: Iuterrupts

73

2.9.3 ENABLE_INTERRUPT

ENABLE INTERRUPT enables the specified interrupt input and
optionally specifies the active input level and/or edge triggering. This
function can only be called by a task which has the 'System_Task'
permission flag set TRUE. Note that an interrupt line need not be enabled
for the TRIG INT SEMAPHORE function call.

Parameters for ENABLE INTERRUPT:

LINE_NUMBER (no default) is the interrupt input to be enabled.

TRIGGER MODE (default: old setting, setting after INIT SYSTEM is
level triggered, active high) gives the hardware trigger mode for the
specified line number. If this parameter is given and edge triggering is
specified with it, then the edge detect flipflop for the specified input line is
reset automatically (to prevent false interrupts). The following trigger
modes are possible:

1)
2)
3)
4)

Level triggered,
Level triggered,
Edge triggered,
Edge triggered,

active level high (default).
active level low.
active edge low -> high.
active edge high -> low.

Results returned by ENABLE_INTERRUPT:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.9.4 DISABLE_INTERRUPT

DISABLE INTERRUPT disables the specified interrupt input. This
function can only be called by a task which has the 'System_Task'
permission flag set TRUE.

Parameters for DISABLE INTERRUPT:

LINE NUMBER (no default) is the interrupt input to be disabled.

Results returned by DISABLE_INTERRUPT:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.9.5 TRIG INT SEMAPHORE- -
TRIG INT SEMAPHORE sends a single unit to one of two specified
semaphores,using the same protocols as used by the hardware interrupt
inputs on the MMTCP. This command can always be issued, and is issued by
writing to a special register in the coprocessor's interface register structure.
No result is returned to the task executing this function.

2.9 - Functional Description: Interrupts

74

This function call is handled internally as if one of the external interrupt
lines was made active. This means that TRIG INT SEMAPHORE has the
same possibilities as the normal hardware interrupts, and uses exactly the
same protocols as described above. Any unused interrupt input line can be
used for the handling of this function, and need not even be enabled to do
so. Keeping the interrupt line disabled prevents spurious interrupts caused
by input noise, and may also shorten the cycle time for the interrupt
scanner.

Parameters for TRIG INT SEMAPHORE:

LINE_NUMBER (no default) is the number of the external interrupt line
input that is to be (software) triggered, so that the normal MMTCP
hardware interrupt processing can take place. If the LINE NUMBER is out
of range or other errors occur, then an error message is written to the
system errors mailbox.

Results returned by TRIG_INT SEMAPHORE:

NONE

2.9 - Functional Description: Interrupts

75

2.10 Real time clock/Power handling

Assuming a real time clock with date and time can be integrated on the
coprocessor chip (together with some logic to control a 'power on' output), the
following functions can be added:

2.10.1 SET RTC

SET RTC sets the date and time in the real time clock counters. This
function can only be called by a task which has the 'System_Task'
permission flag set TRDE.

Parameters for SET RTC:

DATE (no default) is the new time to load in the real time clock counters.

TIME (no default) is the new date to load in the real time clock counters.

Results returned by SET_ RTC:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.10.2 READ RTC

READ RTC obtains the current date and time from the real time clock
counters.

Parameters for READ RTC:

NONE

Results returned by READ_RTC:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

DATE, which is the date at the time of the call.

TIME, which is the time at the time of the call.

2.10.3 WAIT RTC

WAIT RTC places the specified process in a waiting Queue until the real
time clock counters match the given date and time (making it possible to
schedule events years before they happen). If the power is turned off at
that time, then the 'power on' output will be activated by the MMTCP.

2.10 - Functional Description: R.T.C./Power Handling

76

Parameters for WAIT RTC:

PROCESS (default: running process) is the process to wait for the real time
clock match. This process should be in the ready to run state (the running
process always is), and not in a region if it is not the running process. The
Stop Other Tasks permission bit should be set if the specified process is
not adirectchild of the calling process, nor the calling process itself. If the
running process is not specified here, then the specified process will not
receive an ERROR CODE resulting from this call, but will receive the
ERROR CODE it ;as already set to receive (if any - otherwise this call
will behave as a very long normal hardware interrupt).

DATE (default: current date) is the date on which the specified process will
be released from the waiting queue.

TIME (no default) is the time on which the specified process will be
released from the waiting queue.

Results returned by WAIT_RTC:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.10.4 POWER OFF

POWER_OFF can be used to de-activate the 'power on' output pin from the
coprocessor. The coprocessor goes 'asleep' to preserve power, and power can
be re-instated by a real time clock timer match or external hardware (using
a bidirectional 'power on' pin or one of the interrupt inputs). This function
can only be called by a task which has the 'System_Task' permission flag
set TRUE.

Parameters for POWER OFF:

NONE

Results returned by POWER_OFF:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is. This error code is returned after the power is
turned on again, and indicates why the power is turned on. If this was due
to a timer match, then the host processor can find the environment pointer
for the process to start in the normal environment pointer registers.

2.10 - Functional Description: R.T.C./Power Handling

77

2.11 Deletion control

All processes, (normal) semaphores, mailboxes, regions and pipes have 'deletion
holdoff' counters. If these counters are non-zero, then the entities they belong to
cannot be deleted by the normal delete functions. In the following function calls,
'ID' is thc identification for anyone of such entities (contains the type of entity
and the identification number).

2.1 1.1 DISABLE DELETION

DISABLE DELETION increments the 'deletion holdoff' counter for the
specified entity. An error occurs if the countcr would wrap around as a
result of this action. This function can only be called by a task which has
created the entity itself (including child tasks), by a task ill itself, or by a
task which has the 'System_Task' permission bit set.

Parameters for DISABLE DELETION:

ID (no default) is the entity to have it's 'deletion holdoff' counter
incremented.

Results returned by DISABLE_DELETION:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.11.2 ENABLE DELETION

ENABLE DELETION decrements the 'deletion holdoff' counter for the
specified entity. An error occurs if the counter would wrap around as a
result of this action. This function can only be called by a task which has
created the entity itself (including child tasks), by a task ill itself, or by a
task which has the 'System_Task' permission bit set.

Parameters for ENABLE DELETION:

ID (no default) is the entity to have it's 'deletion holdoff' counter
decremented.

Results returned by ENABLE_DELETION:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.11 - Functional Description: Deletion Control

78

2.11.3 FORCE DELETE

FORCE DELETE deletes an entity if the 'deletion hold off' counter's value
is equalor below the given maximum. Processes executing in a region
cannot be deleted by this call (they have to be 'UNLINK'-ed first). This
function can only be called by a task which has created the entity itself
(including child tasks), by a task for itself, or by a task which has the
'System_Task' permission bit set.

Parameters for FORCE DELETE:

1D (no default) is the entity to delete.

MAX LEVEL (default: I) is the maximum count allowed in the 'deletion
hold off' counter of the entity to enable the deletion.

Results returned by FORCE_DELETE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.11 - Functional Description: Deletion Control

79

2.12 Stream Data Transfer

To be able to use the MMTCP controlled token ring networks to transfer large
blocks of data, some kind of special hardware/software interface will have to be
provided. For this purpose, I have introduced the concept of 'stream data' transfer
in subchapter 1.4.5: 'MMTCP 'file transfer'.

Stream data transfer can cross ring boundaries, making transparent use of bridges
and interconnecting networks (the stream control tasks need not be aware of this).
If possible, we will make use of standard high level protocols, so that it will be
possible to exchange stream data between an MMTCP and a non-MMTCP LAN
controller.

Stream data transfer can be used to move process texts and data areas between host
processors in case of a process transfer. In this case, the request originates from the
scheduler process(es), which are part of the local operating system.

Because data stream handling involves hardware located in the host processor
system (standard DMA controller chips), special tasks should be used to control and
monitor the transfers. These tasks have to arbitrate between the stream data
transfer requests of other tasks, initialise the DMA controller chip(s), set up and
monitor the actual transfer of the data, and report the results back to the
requesting tasks. These tasks (which I call a 'stream control tasks') have to use the
function calls described below, and should have the 'Stream Control' permission
flag set TRUE.

Note that stream data should be enabled by the INIT SYSTEM function call,
otherwise all functions in this subchapter become illegal. -

Stream data transfer goes through several phases:

Initialisation. The stream control tasks at both ends should inform eachother about
the number of data bytes to transfer and the identification number they are
going to use for that particular data stream (the 'stream token'). Then they
can call SEND STREAM and RECEIVE STREAM The MMTCP will then
place these tasks in a waiting state while a connection is build and
initialisation packets are exchanged. The tasks are made ready to run again
as soon as the transfer is started or an error is detected.

Data transfer. The actual data transfer is done without any involvement of the
stream control tasks. At the sending end of the data link, the MMTCP reads
data from it's host memory with a standard DMA interface, divides the data
stream into data packets, and handles all the protocols attached to the
transmission. At the other end of the link, the receiving MMTCP re­
assembles the data packets into a continuous data stream and uses DMA to
store the data bytes in the receiving host's memory.

Progress monitoring and result handling. The stream control tasks can call
CHECK STREAM to monitor the progress of the data transfer.
Alternatively, they can call AWAIT STREAM END to place themselves in
a waiting state until the data has-been transferred or a fatal error has
occurred. The result of the data transfer can be reported back to the
requesting tasks in the most suitable form, either synchronously (using
mailboxes) or asynchronously (setting status flags).

2.12 - Functional Description: Stream Data Transfer

80

The following function calls are used for stream data management:

2.12.1 SEND STREAM

SEND_STREAM opens a data stream for sending.

Parameters for SEND STREAM

CHANNEL (no default) gives the number of the DMA channel to use. The
range for this parameter is determined by the number of hardware DMA
channels available to the coprocessor in the local host processor system (this
number is set by the STREAM CONFIGURATION parameter for the
INIT SYSTEM function call). If the channel is already in use at the time
this command is given, then an error will result.

DESTINATION (no default) gives the identification number of the
coprocessor (or other LAN controller) the data stream should be sent to.

STREAM TOKEN (default: 0) is a number identifying this particular data
stream if-there are more data streams going from this MMTCP to the
destina tion. The default stream token can be used if there are no parallel
data streams between this coprocessor and the destination.

STREAM LENGTH (no default for the low word, default for the high
word = of1s the (32 bits) count of data bytes that comprise the total length
of the data stream. A value of zero for STREAM LENGTH is not allowed.
Using 32 bits gives a maximum STREAM_LENGTH of 4 gigabytes!

TIMEOUT (default given by the STREAM INIT TIMEOUT parameter for
the INIT SYSTEM function call) gives the number of clock ticks the
stream control task is willing to wait until the stream data transfer link is
set up. The waiting period cannot be infinite.

Results returned by SEND_STREAM

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.12.2 RECEIVE STREAM

RECEIVE_STREAM opens a data stream for receiving.

Parameters for RECEIVE STREAM

CHANNEL (no default) gives the number of the DMA channel to use. The
range for this parameter is determined by the number of hardware DMA
channels available to the coprocessor in the local host processor system (this
number is set by the STREAM CONFIGURATION parameter for the
INIT SYSTEM function call). If the channel is already in use at the time
this command is given, then an error will result.

2.12 - Functional Description: Stream Data Transfer

81

SOURCE (no default) gives the identification number of the coprocessor (or
other LAN controller) the data stream should be received from.

STREAM TOKEN (default: 0) is a number identifying this particular data
stream if there are more data streams received by this MMTCP coming from
the specified source. The default stream token can be used if there are no
parallel data streams between this coprocessor and the source.

STREAM LENGTH (no default for the low word, default for the high
word = of1s the (32 bits) count of data bytes that comprise the total length
of the data stream. A value of zero for STREAM LENGTH is not allowed.

TIMEOUT (default given by the STREAM INIT TIMEOUT parameter for
the INIT SYSTEM function call) gives "the number of clock ticks the
stream control task is willing to wait until the stream data transfer link is
set up. The waiting period cannot be infinite.

Results returned by RECEIVE_STREAM

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.12.3 CHECK STREAM

CHECK STREAM can be used to provide status information regarding the
data streams sent or received by the local MMTCP. Note that the results
returned by this function call are valid for the time this call was given, and
that the status of a stream may have changed since then (if a higher
priority task has interrupted the calling task).

Parameters for CHECK STREAM:

CHANNEL gives the DMA channel number for which the status is checked.
The range for this parameter is determined by the number of hardware
DMA channels available to the coprocessor in the local host processor system
(this number is set by the STREAM CONFIGURATION parameter for the
INIT_SYSTEM function call). -

Results returned by CHECK_STREAM:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is. The only error indicated here is 'channel
number out of range'.

STATUS is a code indicating the current status of the data stream:

IDLE:

INIT_READ:

INIT_ WRITE:

not in use at this moment.

waiting for stream initialisation at the reading end of
the data link.

waiting for stream initialisation at the sending end of
the data link.

2.12 - Functional Description: Stream Data Transfer

82

TRANSFER READ: transfer in progress, this is the receiving end of the
data link.

TRANSFER WRITE: transfer in progress, this is the sending end of the
data link.

END WRITE:

ERROR WRITE:

data stream received without error,
AWAIT STREAM END has not been called.

data stream sent without error,
AWAIT STREAM END has not been called.

data stream reception aborted due to fatal error,
AWAIT STREAM END has not been called.

data stream sending aborted due to fatal error,
AWAIT STREAM END has not been called.

ABORTED READ:

ABORTED WRITE:

data stream
ABORT STREAM,
not been called.

data stream
ABORT STREAM,
not becn ca lied.

reception aborted
AWAIT STREAM END

sending aborted
AWAIT STREAM END

with
has

with
has

If the status is any of the 'end', 'error' or 'aborted' states, then the stream
status will automatically be changed into 'idle' following this call.

STREAM LENGTH gives the total number of data bytes originally
requestedto be transferred. This result should be ignored if STATUS is
IDLE.

BYTES TO GO gives the number of data bytes still left to be transferred
at the time-this function was called. This result should be ignored if
STATUS is IDLE.

STREAM TOKEN gives the token for the data stream used by the
requestedchannel. This result should be ignored if STATUS is IDLE.

LINK PARTNER gives the identification number for the MMTCP (or
other LAN controller) that is handling the 'other end' of the data stream.
This result should be ignored if STATUS is IDLE.

2.12.4 AWAIT STREAM END

AWAIT STREAM END lets the stream control task wait until the stream
transfer-is finisheCf. This function call is disallowed if the status of the
channel is IDLE (see above). There can only be one process waiting for the
end of a data stream (there is no queueing mechanism). A timeout cannot be
given here, automatic timeouts will be generated by the MMTCP hardware
stream protocol handlers in case of transmission errors.

2.12 - Functional Description: Stream Data Transfer

83

Parameters for AWAIT STREAM END:

CHANNEL gives the channel for which the end of the data stream is
awaited. The range for this parameter is determined by the number of
hardware DMA channels available to the coprocessor in the local host
processor system (this number is set by the STREAM CONFIGURAnON
parameter for the INIT_SYSTEM function call). -

Results returned by AWAIT_STREAM_END:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

BYTES TRANSFERRED gives the actual number of data bytes transferred
in the data stream. Normally, this will equal the number of data bytes
requested by the STREAM LENGTH parameters in both the
SEND_STREAM and RECEIVE_STREAM function calls.

2.12.5 ABORT STREAM

ABORT STREAM is used to abort a data stream in case of 'emergency'
(whatever the user defines with this word). This function call should be
used with great care, and is not intended to be used as part of the normal
operations. Any stream data packets in transit will be finished (no hardware
packet abort done).

Parameters for ABORT STREAM

CHANNEL gives the DMA channel number for which the data stream is
aborted. The range for this parameter is determined by the number of
hardware DMA channels available to the coprocessor in the local host
processor system (this number is set by the STREAM CONFIGURATION
parameter for the INIT_SYSTEM function call). -

Results returned by ABORT_STREAM

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.12 - Functional Description: Stream Data Transfer

84

2.13 Virtual memory/Multiprocessor support

'Support' should be written in capitals, as the MMTCP makes no attempt to do the
virtual memory or multiprocessor management itself. It is assumed that one or more
~scheduler' processes are running in the host processor's kernel. These scheduler
processes decide which processes to swap out of memory and which processes to
swap in from the background storage. They also decide when to transfer processes
from one processor to another processor in a multiprocessor multitasking system.

To help these scheduling processes to make their decisions, the following constructs
are provided:

•

•

•

•

All processes stored in the memory of a single coprocessor are stored in a
linked list. This list is sorted on decreasing priority and - in each group of
equal-priority processes - on increasing (user-defined) ·size'. The schedulers
can traverse this linked list (in both directions) with several functions
described below. All processes have a 'dirty' flag, which is set when a
process is being manipulated by a scheduler. If the dirty flag is set, then the
process cannot be made running.

All processes have a 'use alternate ready queue' flag. This is not a real
queue, but is only used to signal that the process is not executable (swapped
out, or in the process of swapping out or in). The scheduler waiting for
processes to swap into memory can wait at a pseudo-semaphore for processes
that are made ready while they have this flag set.

All processes have 'sent-broadcasted' and 'received-broadcasted' flags. These
are used in a multiprocessor system, to indicate a process is available to be
moved between processors. A scheduler deciding that the local processor gets
overloaded can instruct the MMTCP to 'broadcast' a task descriptor to the
other MMTCP's on the local ring. The task descriptor is locally marked
'sent-broadcasted', while it is stored in the process queues of all other
MMTCP's with the 'received-broadcasted' flag set. A scheduler deciding to
load the broadcasted process in the local memory can 'claim' the process. If
this claim is honoured, then the task descriptor is removed from all other
MMTCP process lists, and all MMTCP data structures belonging to the task
are transferred to the new location (including all pipes owned by the task ­
this is done automatically). The process text and data areas should be
transferred too, after which the process can be made running on the new
host processor.

Sever~l entries in the task descriptor can be used to control the searching
conducted by the coprocessor in the process list. These entries are
collectively named 'STEERING FLAGS' in the functions described below.
The following entries can be specified:

RETURN_IF_NOT_FOUND (default: FALSE) makes the function
return immediately if no process is found.

TIMEOUT (default: 0 = infinite) gives the number of clock ticks the
scheduler is willing to wait until a process in the process list gets the
required set of parameters.

2.13 - Functional Description: V.M./Multiprocessor Support

85

STOP AT DIRTY PROCESS (default: TRUE) stops the search if a
process is found that is marked 'dirty' (otherwise this process is
skipped).

FIND_LOCKED_TASKS (default: FALSE) must be set TRUE to be
able to find processes with the LOCAL_LOCK status bit set TRUE.

MIN_PRIORITY (default: 0) is the minimum allowed process
priority.

MAX_PRIORITY (default: 65535) is the maximum allowed priority.

MIN SIZE (default: 0) is the minimum allowed used-defined process
'size'. This value is stored in the user data area of the task
descriptors (see 2.3.7: 'CHANGE_USER_AREA').

MAX_SIZE (default: 65535) is the maximum allowed user-defined
process 'size'.

MIN_STATE (default: 0) is the minImum allowed user-defined
process 'state', stored in the user data area of the task descriptors (see
2.3.7: 'CHANGE USER AREA'). This is !lQ.1 the 'special status'
word. --

MAX_STATE (default: 65535) is the maximum allowed user-defined
process 'state'.

MIN WAITING TIME (default: 0) is the minimum allowed number
of clock ticks the process has to wait until a timeout occurs (if any is
set, otherwise this entry is ignored).

MAX_WAITING_TIME (default: 65535) is the maximum allowed
number of clock ticks the process has to wait until a timeout occurs
(if any is set, otherwise this entry is ignored).

Some bit flags, all default to FALSE:

NORMAL_READY_QUEUE_ONLY
ALTERNATE READY QUEUE ONLY
MUST_BE_SUSPENDED -
SHOULD_NOT_BE_SUSPENDED
LOCAL_PROCESSES_ONLY
BROADCASTED_PROCESSES_ONLY
READY_PROCESSES_ONLY
NON_READY_PROCESSES_ONLY

The following functions are provided for virtual memory and multiprocessor
support (a process calling these functions must have the 'Scheduler' permission flag
set TRUE):

2.13 - Functional Description: V.M.jMultiprocessor Support

86

2.13.1 SET_ALTERNATE_READY_QUEUE

SET ALTERNATE READY QUEUE sets the 'use alternate ready queue'
flagfor the specified process. The process is removed from the normal
ready queue if it was located there. Error occurs if the process had the 'use
alternate ready queue' flag already set.

Parameters for SET_ALTERNATE_READY_QUEUE:

PROCESS (no default) is the process to be transferred to the alternate ready
queue. This cannot be the running process.

Results returned by SET_ALTERNATE_READY_QUEUE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.13.2 SET_NORMAL_READY_QUEUE

SET NORMAL READY QUEUE resets the 'use alternate ready queue'
flagfor the specified process. The process is inserted in the normal ready
queue if the process state indicates that the process is ready to run. Error
occurs if the process had the 'use alternate ready queue' flag already reset.

Parameters for SET_NORMAL_READY_QUEUE:

PROCESS (no default) is the process to be transferred to the normal ready
queue. This cannot be the running process.

Results returned by SET_NORMAL_READY_QUEUE:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.13.3 MARK DIRTY

MARK DIRTY marks a process 'dirty'. Error occurs if the process was
already marked 'dirty'.

Parameters for MARK DIRTY:

PROCESS (no default) is the process to mark. This cannot be the running
process.

Results returned by MARK_DIRTY:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.13 - Functional Description: V.M.jMultiprocessor Support

87

2.13.4 UNMARK DIRTY

UNMARK DIRTY clears the 'dirty' flag for the specified process. Error
occurs if the process was not marked 'dirty'.

Parameters for UNMARK DIRTY:

PROCESS (no default) is the process to un-mark. This cannot be the running
process.

Results returned by UNMARK_DIRTY:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

2.13.5 GET_PROCLIST_HEAD

GET PROCLIST HEAD searches the process list, starting from the head
(with- the highest priority) towards the end, controlled by the
'STEERING FLAGS' described above. If a process is found,
MARK_DIRTY is called automatically for this process (indivisible action).
If no process is found during the first search, and
RETURN IF NOT FOUND is FALSE, then all processes changing state
are checked while waiting.

Parameters for GET PROCLIST HEAD:

STEERING_FLAGS, as described above.

Results returned by GET_PROCLIST_HEAD:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

PROCESS is the process found, if any.

TIME ELAPSED gives the number of clock ticks the scheduler process was
placed in the waiting state waiting for a process fitting the
STEERING_FLAGS. This is a 16 bit value, which blocks before overflow.

2.13.6 GET PROCLIST TAIL

GET PROCLIST TAIL searches the process list, starting from the tail
(with the lowest priority) towards the start, controlled by the
'STEERING FLAGS' described above. If a process is found,
MARK DIRTY is called automatically for this process (indivisible action).
If no process is found during the search, and RETURN_IF_NOT_FOUND
is FALSE, then all processes changing state are checked while waiting.

Parameters for GET_PROCLIST_TAIL:

STEERING_FLAGS, as described above.

2.13 - Functional Description: V.M.jMultiprocessor Support

88

Results returned by GET_PROCLIST_TAIL:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

PROCESS is the process found, if any.

TIME ELAPSED gives the number of clock ticks the scheduler process was
placed- in the waiting state waiting for a process fitting the
STEERING_FLAGS. This is a 16 bit value, which blocks before overflow.

2.13.7 GET PROCLIST NEXT

GET PROCLIST NEXT searches the process list, starting from the given
process towards the end, controlled by the 'STEERING FLAGS' described
above. If UNMARK IT is set TRUE, then UNMARK DIRTY is called for
the given process. If a process is found, MARK DIRTY is called
automatically for this process (indivisible action). If no process is found
during the first search, and RETURN IF NOT FOUND is FALSE, then
all processes changing state are checked-while-waiting - including the
processes stored in front of the given process.

Parameters for GET PROCLIST NEXT:

PROCESS (no default) is the process to start the search from (this process
itself is not included in the first search).

UNMARK IT (default: TRUE) controls whether or not the given PROCESS
is to be UNMARK-ed.

STEERING_FLAGS, as described above.

Results returned by GET_PROCLIST_NEXT:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

PROCESS is the process found, if any.

TIME ELAPSED gives the number of clock ticks the scheduler process was
placed- in the waiting state waiting for a process fitting the
STEERING FLAGS. This is a 16 bit value, which blocks before overflow.

2.13.8 GET PROCLIST PREY

GET PROCLIST PREY searches the process list, starting from the given
process towards the start, controlled by the 'STEERING FLAGS' described
above. If UNMARK IT is set TRUE, then UNMARK DIRTY is called for
the given process. If a process is found, MARK DIRTY is called
automatically for this process. If no process is found during the first search,
and RETURN IF NOT FOUND is FALSE, then all processes changing

2.13 - Functional Description: V.M.jMultiprocessor Support

89

state are checked while waiting - including the processes stored following
the given process.

Parameters for GET PROCLIST PREY:

PROCESS (no default) is the process to start the search from (this process
itself is not included in the first search).

UNMARK IT (default: TRUE) controls whether or not the given PROCESS
is to be UNMARK-ed.

STEERING_FLAGS, as described above.

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

PROCESS is the process found, if any.

TIME_ELAPSED gives the number of clock ticks the scheduler process was
placed in the waiting state waiting for a process fitting the
STEERING_FLAGS. This is a 16 bit value, which blocks before overflow.

2.13.9 BROADCAST PROCESS

BROADCAST PROCESS is called by a scheduler process if it wants to 'get
rid of' (to say it bluntly) a process. The process to broadcast should be
marked dirty. The coprocessor will try to send the task descriptor to the
other coprocessors connected to the local token ring. If this succeeds, then
the process is marked 'sent-broadcasted' for the local coprocessor, and
'received-broadcasted' for the other coprocessors. Because inter-coprocessor
bus usage may delay the broadcasting, a timeout may be specified.

Parameters for BROADCAST_PROCESS:

PROCESS (no default) is the process to broadcast.

TIMEOUT (default: 0 = infinite) is the number of clock ticks allowed
before the actual broadcast starts.

Results returned by BROADCAST_PROCESS:

ERROR CODE is a (16 bit) word indicating whether an error occurred,
and, if so, which error it is.

TIME ELAPSED gives the number of clock ticks the scheduler process was
placedin the waiting state waiting for the sending of the broadcast message.
This is a 16 bit value, which blocks before overflow.

2.13 - Functional Description: V.M.jMultiprocessor Support

90

2.13.10 CLAIM PROCESS

CLAIM PROCESS is called by a scheduler process if it wants to 'get hold
of' a process. The process to claim should be marked 'received-broadcasted'
or 'sent-broadcasted' (the latter case is a 're-claim' !). The coprocessor will
try to send a 'claiming process' message to the other coprocessors connected
to the local token ring. If this succeeds, then the process is removed from
the process queues in the other coprocessors, and the 'xx-broadcasted' flags
are reset in the local process queue. Because inter-coprocessor bus usage may
delay the claiming, a timeout may be specified. If more than one
coprocessor tries to claim the same process, then the inter-coprocessor bus
hardware will resolve the request on a (preferably) round-robin priority
basis.

Parameters for CLAIM PROCESS:

PROCESS (no default) is the process to claim.

TIMEOUT (default: 0 = infinite) is the number of clock ticks allowed
before the actual 'claiming process' message sending starts.

Results returned by CLAIM_PROCESS:

ERROR CODE is a (I6 bit) word indicating whether an error occurred,
and, if so, which error it is.

TIME ELAPSED gives the number of clock ticks the scheduler process was
placedin the waiting state waiting for the sending of the 'claiming process'
message. This is a 16 bit value, which blocks before overflow.

2.13 - Functional Description: V.M.jMultiprocessor Support

91

3. Functional blocks

If we take a look at the MMTCP from the outside, we can sec the following
hard ware interfaces:

=Delay
R.T.C.
Power

•
?

Host

l.F

1..- ..,

Data

Interrupl oul

Address

1--------------------------------------,
: MMTCP :
I I
I I
I I

""'C"o-n't-r-o,!--1 1"----,
Int

inputs

,
: Token
I .
: ring
I

LAN

Clrlr

I
I
I

I Il ~

Local

Working
Memory

In this chapter, I will try to identify the functions to be performed by the MMTCP
and describe ways to implement them in hardware, filling in the big question mark
in the middle as far as possible.

Processing time can be saved by executing functions in parallel. To do this, they
should be build into separate hardware blocks, which are therefore appropriately
called 'functional blocks'.

The functional blocks will be tied together with high speed on-chip data buses.
Although these buses are not real functional blocks themselves, they are important
enough to be described in the next subchapter.

3 - Functional Blocks

92

3.1 On-Chip Buses

In this subchapter I will try to give some ideas for the on-chip buses present on the
MMTCP chip. The chip will contain three buses:

1) An internal messaging bus for sending messages between the functional
blocks.

2) An internal working memory access bus to enable the functional blocks to
read and write in the (off-chip) working memory.

3) An internal host interface bus to connect the host interface logic to the
host-addressable registers present in several functional blocks.

The first two buses are completely controlled by the functional blocks themselves.
The internal host interface bus is nothing more than an on-chip version of the
external host interface bus, and is controlled by the host processor. This last bus is
therefore not very interesting, and will not be described here.

In the following discussion, the functional block initiating a transfer will be
referred to as the bus master, the functional block which is addressed will be
referred to as the bus slave.

The messaging and working memory interface buses serve two different purposes,
and are therefore equipped with specialised hardware to optimise their use. Both
buses, however, are to be used by different functional blocks, and therefore need
some form of bus arbitration. For the internal messaging bus, there can be several
bus masters connecting to different slaves. For the memory access bus, there is only
a single slave - the working memory interface functional block. These two buses
will be described separately in the two subchapters below.

3.1.1 Internal messaging bus

The internal messaging bus is used to exchange messages between the functional
blocks presen t on the MMTCP chip. Almost all blocks are connected to this bus,
most of them have the capability to take control of the bus to initiate a message
transfer. The addressed slave registers can be viewed as simple input/output ports.

Most message transfers will be in the direction master to slave (the bus master does
a bus 'write'). This makes it possible to use these write actions as handshake signals
with the data being written as specification for the cause of the handshake. In
some cases, the actual data is of no concern - the write action itself is sufficient as
a signal. To do this, the slave register should be equipped with a 'written' flag,
which is set when the register has been written by a master. This flag can be used
inside the slave functional block to change the flow of a sta te machine or
microprogrammed controller (or even to cause a microprogram 'interrupt'). In
principle, read actions can also be used for handshake signals, but I don't think
this will happen often.

This bus will be used for internal messaging only (there is no direct connection to
the outside world). The speed of this bus is therefore not dependent on external
hardware, and can be optimised for internal use (preferably top speed, of course ­
one transfer per clock cycle). The width of this bus is open for discussion, but

3.1 - Functional Blocks: On-Chip Buses

93

because most of the MMTCP hardware is centered around handling 16 bit
quantities, the most logical choice seems to be a full 16 bits bus width. The number
of slave registers connected to the bus determines the number of address bits
needed, and will probably lie somewhere in the range of 32..64 registers (this is
only a guess !). We should reckon with 5 to 7 address bits for the internal
messaging bus. Extra bits can be used for easier block decoding of the addresses - 4
bits for the functional block and 3 bits for the specific register in this functional
block, for instance.

The messaging bus should be equipped with some kind of 'bus locking' mechanism
to be able to do protected 'test and set' operations on hardware semaphore registers.
A straightforward implementation uses a flag emanating from the bus master
during a bus access cycle indicating that it wishes to keep the bus until the next
transfer from the same bus master.

The hardware for this internal bus is relatively simple, both on the master side and
on the slave side of the bus. The master initiates a transfer by setting the wanted
slave register address, the transfer direction and the bus lock request flag in a
special register, and sets a 'bus request' flip-flop. The outputs of these bus request
flip-flops are connected to some form of arbitration logic, to make sure that only a
single master can access the bus at the same time. During the next clock cycle, the
arbitration logic generates an 'acknowledge' pulse for the bus master that is
granted access to the bus. This acknowledge pulse resets the request flip-flop, gates
the address and flag register from the corresponding bus master on an internal
con trol bus, and ini tia tes the bus transfer to take place at the next clock pulse.

The arbitration logic should contain the hardware to lock the bus following a
request from a bus master. This can be implemented as a simple flip-flop, clocked
at the same edge as the actual data transfer. If one of these flip-flops is set, it
indicates that the corresponding bus master has locked the bus for it's own use,
and only the requests from this bus master will be honoured until after this master
has executed a bus cycle with the 'lock request' flag reset.

3.1.2 Internal working memory access bus

The working memory access bus serves to connect the internal functional blocks
with the external working memory via the working memory interface functional
block to be described below.

Because the working memory is slower than the internal functional blocks, several
MMTCP clock cycles are needed to complete an access cycle. This, together with
the fact that the external memory interface has a multiplexed address/data bus
makes it possible to multiplex the internal address and data buses (which saves a
lot of interconnections with a data width of 16 bits and 21 address bits).

The interface from the functional blocks can be almost the same as for the
internal messaging bus. The functional block requesting access places the wanted
address with some control bits in a register, sets up the data to write for a write
action, and requests the transfer by setting a request flip-flop.

An arbiter in the memory interface functional block decides which functional
block may execute the next bus cycle, then reads the address and control register
via the internal bus. This address is transferred to the external bus and latched

3.1 - Functional Blocks: On-Chip Buses

94

there (possibly in two halves), after which the data register is read in case of a
write cycle (again, using the same multiplexed internal bus). In case this was a
write cycle, the access is completed as far as the requesting functional block is
concerned, and this block can immediately request another bus cycle. If the
functional block requested a read access, the memory interface functional block
reads the data from the memory, and writes the data read to a read data holding
register in the requesting functional block, completing the transfer.

The actual interface to the external memory chips is described in the subchapter
on the working memory interface functional block. Several additional functions
can be build into the memory interface functional block, to be controlled by the
internal memory access bus. These serve to make it easier for the other functional
blocks to interface with the external memory:

I) Table indexing. Most of the working memory is addressed as a memory
block number (16 bits) and an offset within this block (5 bits). For more
information regrading this addressing method (and why it is used), see
subchapter 3.3: 'Functional Blocks: Memory allocation and de-allocation'.
This method works fine for that part of the memory that is used for the
storage of dynamic variables, but not for the variable length tables.

To read from such a table, one would like to simply add an index offset to
the start of the table (the start of the tables are fixed after the
INIT SYSTEM call is executed by the host processor). Because many
functional blocks use these tables, it would be wasteful (both in chip space
and time needed) to have them all calculate the precise address for table
access themselves, as this can be integrated into the memory access
functional block.

The idea is to store the start locations of the tables in a register array inside
the memory interface functional block, together with the index adder
needed to form the actual address. Now a functional block need only supply
the wanted table number together with the wanted indexing offset. The
longest table will be well under 64 kilowords, so the actual adder need not
be 16 bits wide. The remaining address bits can simply be incremented for
an overflow from this adder.

2) Byte access. The working memory is organised in 16 bit words, which poses
no problems in case the accesses are done a word at a time. In some
instances, bytes must be read or written because using words for some of
the values simply uses to much memory. This is no problem for reading, as
simply the whole word can be read, and the half that is not needed can be
ignored.

Writing poses some problems, because we only want to change that part of
the word that contains the target byte, while the other half should remain
intact. This necessitates using a read/modify/write ('RMW') cycle
mechanism, which can be build into the memory interface functional block.
Using such a mechanism makes it possible to optimise memory timing for a
RMW cycle, instead of using a normal read cycle back to back with a
normal write cycle.

The byte shifting for reading and wTltmg can also be done in the memory
interface functional block, so that bytes are always written and read over

3.1 - Functional Blocks: On-Chip Buses

95

the lower half of the in ternal memory access bus, irrespective of their
position in the memory word.

3) Address incrementing. A special control bit can be used to request
addressing the logically 'next' word in the working memory. The
incremented address should be written back to the address registers in the
requesting functional block, using an extra data transfer cycle on the
internal buses. The wayan address is incremented depends upon the access
cycle type:

•

•

For table access cycles, the table index offset should be incremented,
which is a very simple operation.

For non-table access cycles, we run into some trouble. As long as the
end of a memory block is not reached, we can simply increment the
five bits block offset. But when the end of a memory block is
reached, we will have to do an extra read cycle to obtain the block
number of the next block in the chain, and reset the block offset to
the first usable word in the memory block. This extra read cycle can
be generated by the memory interface block itself, without using
transfer cycles on the internal buses. The end of a chain will be
indicated by an invalid block number being returned, the functional
block requesting the access cycle should take care of this.

I propose the following control bits to be used for the working memory access bus:

Table_Access (T_A): this control line is TRUE when a functional block wants to
use the table access mechanism described above.

Lock Bus (L B): this control line is TRUE when a functional block wants to
- 'lock' the working memory access bus for it's private use (preventing other

functional blocks to access the working memory). The bus is un-locked when
the same functional block has completed a memory access cycle with this bit
reset.

Inc Address (I A): this control line is TRUE when a functional block requests the
- memory interface to increment the address that is used in the present cycle.

The incremented address will be written back to the address registers within
the functional block requesting the memory access cycle.

Write_Cycle (W_C): this control line is TRUE when a functional block wants to
write into the working memory, FALSE when it wants to read from the
working memory.

Byte Cycle (B C): this control line is TRUE when a functional block wants to
- read or write a single byte instead of a whole word.

High Byte (H B): this control line is only checked if Byte Cycle is TRUE, and it
- indicates that the byte to read or write is located in the upper half of the

addressed word. It is possible to share this control line with the
Table_Access control line, as will be illustrated below.

Because the number of tables is lower than 9, two bits in the 'offsef bus can be
used to encode the access type for table accessing. If we number the offset bits

3.1 - Functional Blocks: On-Chip Buses

96

from 0 to 4 (0 being the least significant bit), then the table number can be
encoded in bits 0..2, bit 3 will become the 'Table Byte Cycle' bit and bit 4 (the
most significant bit) will become the 'Table_High Byte'bit.

Doing so makes it possible to encode a table access with 'High byte' TRUE and
'Byte_Cycle' FALSE, saving the expense of a separate 'Table_Access' line.

The following table gives a list of the possible access cycles and how they are
specified (the 'Lock Bus' and 'Inc Address' control bits have no influence on the
type of the access cycle): -

w C B C H B <-offset-> <--address--> Access Cycle:
T A 4 3 2 •• 0 15 •. ? ? . 0

0 0 0 [offset] [block nr.] normal word read
1 0 0 [offset] [block nr.] normal word write
0 1 0 [offset] [block nr.] normal low byte read
1 1 0 [offset] [block nr.] normal low byte write
0 1 1 [offset] [block nr.] normal high byte read
1 1 1 [offset] [block nr.] normal high byte write
0 0 1 ? 0 [TN] ????? [TI] table word read
1 0 1 ? 0 [TN] ????? [TI] table word write
0 0 1 0 1 [TN] ????? [TI] table low byte read
1 0 1 0 1 [TN] ????? [TI] table low byte write
0 0 1 1 1 [TN] ????? [TI] table high byte read
1 0 1 1 1 [TN] ????? [TI] table high byte write

[TN] is the Table Number, [TI] is the table indexing offset.

Note that the data bus is time multiplexed with the 16 bits address bus, and that
byte data is always transferred over bits 0..7 of this bus (the least significant bits).

3.1.3 Multiplexing the internal buses

In the previous paragraphs, both internal buses (the messaging bus and the memory
access bus) have been depicted as being separate entities. This may, however, use
up a lot of chip space, because both buses use approximately 25 bus lines. To save
chip space in both the bus transceivers and the chip fIoorplan space needed for the
bus traces, it might be an idea to use a single set of bus traces for both buses.

In principle, this should not pose too much problems, because the buses can be
mapped easily onto eachother. Both buses have a 16 bit datapath (multiplexed with
a 16 bit address for the memory access bus) and both buses have read/write and
lock control bits. The memory interface bus has a 5 bits offset bus and three bits
to control byte access, table access and address incrementing - these bits taken
together may constitute an eight bits message register address for the messaging
bus.

With some simple extensions to the bus arbiter for the messaging bus, it is possible
to suppress message transfers while a transfer for the memory access bus is done
(either an address or a data transfer). Even when the memory access bus is used at
it's full data bandwidth. there will be clock cycles left to transfer messages over

3.1 - Functional Blocks: On-Chip Buses

97

the same hardware bus lines (a memory cycle may take well over 4 clock cycles,
while only 2 or 3 are used for the internal transfers).

Note that the bus lock mechanisms should be separate for the messaging bus and
the memory access bus. This should be done because the buses must be regarded as
logically separate entities, in spite the fact that they share the same data path in
hardware.

Also note that multiplexing the memory access bus with the messaging bus should
be regarded as the stealing of message transfer cycles from the messaging bus. At
this moment, it is impossible to decide whether this can be done without degrading
the system performance too much - we will simply have to wait until we have
enough data available to calculate a rough estimate of the bus bandwidth needed
by the messaging bus. If the performance degrades too much, then we are forced to
go back to separate data paths for both buses.

3.1 - Functional Blocks: On-Chip Buses

98

3.2 External Working Memory

The external working memory is implemented off-chip, as it's name suggests.
Therefore we will need a memory interface to control this functional block. This
interface will be the direct connection between the on-board busses and the off­
board standard memory chip(s). Besides the basic memory interface functions,
additional functions like table addressing and byte access cycles can be built into
this functional block. These functions have been described in subchapter 3.1.2:
'Internal working memory access bus',

To comply with the internal bus and register widths, the external bus width should
be 16 bits. This may also be an absolute necessity to get a high enough bus
bandwidth.

To be able to build a m1DlmUm component count system, it might be an idea to
ha ve some memory implemented on-board. A memory size of 2 K Words should be
enough to build (very) small multitasking systems, like a simple terminal or a
sensor/actuator controller. A memory like this will require extra chip space, so we
have to weigh the advantages against the disadvantages before implementing it.

A second idea might be the implementation of a cache memory in the memory
interface. The speed gain normally achieved with a cache memory will not be
gained when used with the multitasking coprocessor. The reason for this is the
following:

The coprocessor will try to optimise it's use of the external memory because several
internal blocks have to make use of it. To prevent the external memory from
becoming the performance 'bottleneck', all operational blocks will try to keep data
read from the memory in internal registers. All data writes will be postponed until
the time when it is known in advance that no additional changes have to be made
in the data word. Doing so, an 'intelligent' cache memory is formed, which will
work better than any other cache memory that can be implemented.

To be able to use low-cost dynamic memory chips, the memory interface should
have the possibility to multiplex the desired address, and generate correctly timed
RAS (Row Access Strobe) and CAS (Column Access Strobe) signals. Although this
address multiplexing already cuts the necessary number of address lines in half, it
will be necessary to multiplex these address lines with the data bus to save package
pins, This can be done if the column address is latched externally at the right
moment (the latch signal will have to be provided by the memory interface). The
number of address lines to be multiplexed should be adjustable, because the
different sized dynamic memory chips have different numbers of address pins:

16K x N:
64K x N:
256K x N:
1M x N:

RAS = AO..A6,
RAS = AO..A7,
RAS = AO..A8,
RAS = AO..A9,

CAS = A7..AI3
CAS = A9..AI5
CAS = A9..AI7
CAS = AI0..AI9

(7 address pins)
(8 address pins)
(9 address pins)
(10 address pins)

If dynamic memory chips are used, then the remaining address lines can be
brought out to be latched and decoded for bank selection of multiple memory
banks. If the maximum memory size is set to 2048 K Words (65536 pages of 32
words), then the following number of address lines has to brought out to be
latched:

3.2 - Functional Blocks: External Working Memory

16K x N:
64K x N:
256K x N:
1M x N:

AI4..A20
A16..A20
AI8..A20
A20

99

(7 lines, 128 banks)
(5 lines, 32 banks)
(3 lines, 8 banks)
(1 line, 2 banks)

Dynamic memory chips have to be 'refreshed' to retain their data values. This is
also a function to be handled by the memory interface. The time distance between
refresh cycles and the number of bits in the refresh counter should be adjustable.

The interface to the dynamic memory chips will consist of the following signals:

16 address/data pins, RAS, CAS, write enable, latch enable.

It should be possible to connect static memory chips too. In it's simplest form, the
whole address will be latched off the data input/output pins in a single cycle,
providing a 64 K Word address space with 16 address bits.

The interface to the static memory chips will consist of the following signals:

16 address/da ta pins, read, wri te, la tch enable.

This interface uses only 19 pins (the dynamic memory interface used 20 pins),
which means that one pin can be used as an extra address line, providing 128
KWords of memory.

It is possible, of course, to latch the addresses for the static chips in two halves too
(which must be done to be able to address to complete memory space). In this case,
the RAS line can be inverted to act as the latch signal for the first address word,
and the CAS line becomes the read strobe (memory refreshing can be turned off).

Note that some manufacturers produce 'byte-wide' dynamic RAM chips. These
chips have no multiplexed address bus, but have to be refreshed to retain their
memory contents. Together with the possibility to connect static RAM chips with
address multiplexing, we can only reach one conclusion: memory refreshing and
address multiplexing should be regarded completely separate options, and should
not be coupled.

To provide some error protection, on board parity checking can be provided.
Because reading and writing is always done on a word basis, only one parity bit
has to be provided, using one bidirectional pin. If external error detection and/or
correction circuits are used, then this pin can be used as an input to signal
(uncorrectable) errors. In case an external error correction circuit is used, memory
'scrubbing' will be one of the functions to be provided by the memory interface
(memory scrubbing is the periodic readout of all the available memory to correct
all correctable errors before they turn into uncorrectable errors).

Upon detecting an error, then the memory interface will send a message containing
the error location to one of the other functional blocks (probably the memory
allocation and de-allocation functional block). This functional block will then
decide what actions are to be taken. The functional block requesting the memory
transfer cycle has to be signalled too (maybe put into some kind of hardware
'sleep' state).

3.2 - Functional Blocks: External Working Memory

100

All these options can be set when the system is initialised, before the memory is
actually used (TYPE OF LOCAL MEMORY parameter in the INIT SYSTEM
function call). This means that all options can be made software selectable, and no
strapping pins are necessary. Following startup, the memory has to be initialised
and checked by one of the functional blocks (again, the most logical choice would
be the memory allocation and de-allocation block, but this is not an absolute
necessity).

I
.. I

.;' \ I
I· ,

. .I

3.2 - Functional Blocks: External Working Memory

101

3.3 Memory allocation and de-allocation

The memory use is by no means a static one. Semaphores are created and deleted at
will by the running processes. Blocks to store overflow messages for an 'infinite'
mailbox have to be created when needed, and deleted after their contents have
been copied into the main mailbox buffer block.

This allocation and de-allocation of memory blocks can be done by a central
memory management functional block. Having only one functional block to handle
this will make a more compact system possible (no duplication of functions), and
also makes it possible to arbitrate between the requests from the other functional
blocks. The memory management block will also be the place where the
START OF LOCAL MEMORY and END OF LOCAL MEMORY parameters
from theINIT_SYSTEM function call are writtento. -

The memory management functional block can also be used during the
initialisation of the external memory, following the specification of the memory
interface options. The block will then have to initialise the memory to a known
state, and can also check for errors. During initialisation, the data structure needed
to do the allocation and de-allocation should be build, and blocks containing errors
can be excluded from this structure. Space should be reserved for the fixed
memory structures:

•
•
•
•
•

the interrupt semaphores table
the hashing table used by the process address search functional block
the hashing table for the channel semaphores
buffers for the stream input/output handlers (if special buffers are used for
this purpose)
the accessible ring numbers table for a 'bridge' multitasking coprocessor

If memory errors are detected by the memory interface functional block, then the
memory management functional block will receive a signal and the address of the
error. If the error was detected during memory 'scrubbing', then the memory
manager may consider removing the block from the available blocks list, so that
the block will not be used again (if it was not already in use). In any case, a
message will have to be written to the system errors mailbox (described in
subchapter 2.6: 'Functional description: Mailboxes'). A special user-defined process
running on the host processor can read these error messages and decide what to do
with them.

The algorithm used for the dynamic memory management can be fairly simple (and
it should be, because it has to be done in hardware). The problem is, that the block
lengths that are needed by the functional blocks vary a lot (several words for a
semaphore to kilobytes for a long pipe), so that some kind of segmented memory
would be helpful.

The problem with segmenting is that it normally leads to memory 'trashing'
(leaving small unused 'holes'), which have to be closed by a process which is called
'garbage collecting'. When this is done, all the segments are moved upward in
memory until all the small holes are removed, and collected together in a big empty
space at the end of the memory. Unfortunately, this moving of segments will pose
big problems in our system, because an entity is identified by its location in the
memory of the multitasking coprocessor where it resides (this will make it much
easier to address an entity, and automatically leads to protection from multiple

3.3 - Functional Blocks: Memory (De-) Allocation.

102

used addresses). This drawback could be overcome by using translation tables, but
this will use up extra memory and (precious) processing time.

A paged memory system will do much better, especially if we organise it in such a
way that it does not use (space consuming) tables. I propose a system of linked
chains of memory blocks, which uses relatively little space, provides certain
protections, is easy to handle in software and can be supported by dedicated
hardware.

As already indicated in the subchapter describing the internal memory access bus,
the memory is divided into blocks of 32 words (64 bytes) each. The first word in
each block can be used as a pointer to another block (to chain blocks together). If
the first word is 0, this automatically means 'end of chain' (Pascal 'NIL' pointer).
Use one byte in the block (preferably the third byte) to indicate the current 'use'
of that block. If a block is free or contains a memory error, this should also be
indicated here.

Each of the entity types has it's own 'use' code. If an entity needs more than one
memory block, then the first block in the chain should have a slightly different
'use' code from the rest of the blocks (as already stated, the last block will have
the link pointer set 0). Having special 'use' codes for the first block of an entity's
chain helps in the address checking, as each entity is addressed by it's first block.

When the system is initialised, all the memory blocks are checked, and the blocks
that have no errors in them are linked together in a huge chain of free blocks.
When an entity is created, the number of blocks needed are simply taken from the
head of the chain, the 'use' bytes are updated and the 'link' word of the last block
is set O. When an entity is deleted, the blocks in it's chain are given the 'use' code
'free' and the chain is linked to the end of the free blocks chain, making these
blocks available for re-use.

Using such a memory structure seems elaborate and time consuming, but it can
easily be prevented from becoming so. The first block of each entity should
contain the most important data for that entity, so that this data can be addressed
directly without searching in the chain. All the forward and backward pointers for
the chains an entity is placed in should be in the first block, so that searching
these chains can be done as fast as possible. Also, the main status word(s) for an
entity should be located here. Less important data can be stored in the second
block of an entity's chain (needs only one intermediate word fetch to address this
block). The task descriptor cache described in the next subchapter provides an
alternative way to prevent most of the searching in the linked lists for a task
descriptor.

Entities which have buffers (mailboxes and pipes) do not suffer too much
performance degradation from this memory system. These cyclic buffers are always
written and read in the forward direction (following the chain of blocks), which
can easily be done by having a 'current block' pointer together with an 'offset
pointer' within the current block. The current block pointer only needs to be
updated when the offset pointer has reached the end of it's block. When the end of
the chain is reached, the current block pointer can be reset to the first block in the
entity's chain that is used as a buffer. Following a chain of blocks while reading
or writing in these buffers can be implemented in the local working memory
interface functional block, as described in the subchapter on the internal memory
interface access bus.

3.3 - Functional Blocks: Memory (De-) Allocation.

103

Hardware can be used to speed the allocation of memory (de-allocation can always
be done in the 'background', as this is not very time critical). An on-chip FIFO­
type memory can be used to store pointers to the first few blocks in the free blocks
chain (at least enough empty blocks to satisfy most requests at once - all requests if
possible).

If a functional block requests the allocation of memory, it can send the number of
blocks requested to the memory (de-) allocation handler, together with the intended
'use' code for the memory. The allocation handler then indexes in the FIFO to
retrieve the pointer to the last block in the chain to be allocated, and writes the
'NIL' link pointer in that block. The first block is written the 'use' code (with the
'first block' indication set), and the pointer to the first block is written back to the
requesting functional block. After this is done, the newly allocated blocks are
removed from the FIFO and the FIFO is filled up again by reading forward in the
free blocks chain.

This last action can be done in the background, as this is not a very high priority
task. It has a higher priority, though, than the updating of the 'use' bytes in the
newly allocated blocks (which was not done yet).

De-allocation of memory can be done by writing the pointer to the first block of a
chain to be deallocated to the memory management functional block. This pointer
is then written to the chain pointer in the originally last block of the free blocks
chain. Changing the 'use' bytes to 'free' is a low priority task that can be done in
the background.

A problem with multitasking operating systems is that tasks are sometimes not
informed about the deletion of an entity. Such a task may try to use the entity
identification later, while this identification is in use by another entity, which
may be used for a totally different purpose. This is not a problem if the entity
type differs from the original entity type, as this error will be detected by most of
the operating systems (in our case, the type must match the 'use' byte). But if the
type of the old entity is the same as that of the new one, serious trouble may
result, even system crashes.

There is no way to make certain that this will never happen. We can only try to
hold off this problem as long as possible by re-using pointers only when there are
no 'fresh' pointers available any more (hoping that tasks that want to make use of
outdated pointers will have been deleted by that time). The first step towards this
goal is by using the chain of free blocks as a time delay 'device'. Linking deleted
chains to the end of the free blocks chain will make certain that blocks fetched
from the head of this chain are deleted as far back in time as possible.

More elaborate techniques are possible too, like trying to allocate new entities with
as first block a memory block that has never been the first block of an entity
before. But this will fail after a while too, because somewhere in time, all blocks
will have been the first block of an entity once, and then even this system breaks
down.

Eventually,~ system will break down when the memory is constantly used to a
high percentage of the available memory (the time delay in the free blocks chain
will then be short). We will simply have to live with the possibility that this might
happen.

3.3 - Functional Blocks: Memory (De-) Allocation.

104

The only way to avoid it is to add extra software to the shell surrounding the
kernel, so that user processes can only use entities from which the operating system
knows that they are valid. The operating system shell will need some form of
entity administration to do this, which may make the system a bit slower.

.~~E~~f~~j~;~:::·:~
;-/;:;;,

........

3.3 - Functional Blocks: Memory (De-) Allocation.

105

3.4 Process Searching and Task Cache

This functional block serves two purposes:

1) Provide hardware to speed up searching for processes by logical process
number (to be able to decide whether or not a process descriptor is located
in the local working memory, and, if so, where it is located).

2) Provide a cache memory for the task descriptors of the most 'active' tasks.
This can save a large number of memory accesses and also provides
hardware 'assistance' for the scheduler list search functions.

Both functions benefit from this combination, and will be described separately in
the next two subchapters.

3.4.1 Process address searching

In a multiprocessor multitasking system, the possibility exists that processes are
moved between host processors (to get a more even distribution of the workload in
the system).

The problem here is, that a process gets an identification number when it is
created, and that this number has to remain the same throughout the lifespan of
this process. For 'static' entities like semaphores, the identification number
assignment is easy - the number of the coprocessor where the entity is stored and
the address in the working memory are concatenated into the entity's identification
number.

For a 'dynamic' entity like a process block, this assignment poses large problems. A
process migh t be crea ted in coprocessor 'A', moved to coprocessor 'B', and later
moved back to 'A', If the memory space originally occupied in the memory of
coprocessor 'A' is in use when the process has to be moved back, then the process
will have to be stored at another location, breaking the direct 'link' between the
identification number and the address.

Another problem is that there may never be several processes with exactly the same
identification number in a single multiprocessor system.

To cope with these problems, I propose the following algorithm to be used when
assigning an identification number to a new process:

1: Generate a number by concatenating the identification number of the
creating coprocessor with a value stored in a counter in one of the on-board
registers, then increment the counter (wrap around).

2: Check if there is a process in the local memory with the same identification
number. If there is such a process, then repeat again from step 1.

3: Send a da ta package to all the coprocessors in the local system, asking them
to search for a process with the newly generated identification number,
then wait a short while to give them time to search for the process and
respond. If one of the other coprocessors has found a process with the same
identification number, then repeat again starting from step 1.

3.4 - Functional Blocks: Process Searching and Task Cache

106

4: If we end up here, then we can be sure that the generated identification
number is not used for another process in the system. The process
administration block can be stored in the local working memory, and the
process can be assigned the new identification number.

NOTE: in systems where there is a single MMTCP creating (most of-) the tasks, the
possibility exists that ill the available task identification numbers will be in use at
once. Although the chances are slim that this actually happens, the algorithm
should be able to detect this problem and return the error code 'no process ID
available'.

Using this algorithm, there is no correspondence between the process identification
number and the address in memory where it is stored. So, if a message is addressed
to a process (or one of the pipes the process is reading from - the pipes are
dynamic entities too n, then the coprocessors have to search for the process. This
searching has to be done very fast, to be able to respond to the message in time.

To prevent this searching from becoming a performance bottleneck, it has to be
avoided as much as possible. A trick which can be used with the pipes, for
instance, can be to search only if a process tries to claim the pipe. A message can
be sent back containing the address of the coprocessor where the pipe actually
resides - all data sent to the pipe can then be sent directly to the correct
coprocessor.

This block contains two hardware functions, and a combination of hardware and
(microcoded) 'software' to execute the search in the working memory if the
internal hardware has not found the process.

The first hardware function is a cache memory which directly translates the
process identification number into a memory address. In this case a cache memory
will be a very powerful tool to speed the searching, because it will always hold the
most 'active' processes. If the cache memory 'hits', then no searching has to be done
at all.

The second hardware block is a hashing 'machine'. Each process identification
number is hashed into a shorter number (with a limited range - 0..63 for instance),
and each of these shorter numbers correspond to a bit in an internal 'hash table'. If
there is at least one process stored in the local memory where the identification
number hashes into value 'x', then bit 'x' in the internal hashing table will be set.
So, if bit 'x' in the hashing table is not set, then there is no need to search for a
process with an identification number that hashes into value 'x'. This will prevent
a lot of unnecessary searching.

The searching itself can be speeded up by using the number produced by the
hashing machine as an index into a table in the local working memory. Each table
entry points to the first process in the local memory that has an identification
number that hashed into the corresponding hash code. Processes with the same hash
'value' are stored in memory as a linked list. The end of such a linked list is
identified by storing an invalid pointer in the task descriptor block at the tail of
the list. This same invalid pointer can be used in the table to identify those table
entries that have no corresponding processes (these entries have the bit in the
internal table reset).

3.4 - Functional Blocks: Process Searching and Task Cache

107

The communication between this functional block and the other functional blocks
can be performed using the internal messaging bus, as introduced before. An
address search is initiated by writing the full identification number to an internal
register in the address search block, the result is reported back as an address
directly pointing in the internal memory (an invalid address can be used to denote
'process not found').

3.4.2 Task descriptor cache

In principle, the cache memory described above need only contain the logical
process number and the memory location where the corresponding task descriptor is
stored (a 16 bit binary number).

Unfortunately, a task descriptor does not fit into a single memory block (of 64
bytes), and therefore has to be stored in memory as a linked list of memory blocks
(probably 3 to 5 blocks will have to be used). When accessing the last memory block
of a task descriptor, a functional block will always have to traverse this linked
list, which takes memory access cycles and time. This can be avoided by expanding
the task descriptor cache entries with direct pointers to the memory blocks
allocated to the task descriptors.

The task descriptor cache should now be equipped with 'match' circuitry for the
memory pointers for the task descriptors. This will make it possible to search the
cache in two ways, by logical process number and by memory location. The first
search function will be used if the address is unknown (process address searching ­
see previous subchapter), the second search function can be used if the memory
address is known (all task pointers in the working memory will point to the actual
memory location of a task descriptor's first block).

A functional block can now obtain the location of a memory block in the task
descriptor's chain of memory blocks by writing the address of the first block to the
match circuitry in the cache memory. If the cache memory 'hits', then !lQ. memory
accesses need be done at all, and the requested memory pointer can be read
immediately. If the cache memory fails, then one 'line' in the cache memory will
have to be loaded with the data of the requested task descriptor (by traversing the
chain of blocks once), during which the requested pointer can be given to the
functional block that asked for it.

The functions used by the host for virtual memory handling and process transfer
can benefit from this cache memory too. The functions that search the 'scheduler
list' actually work in two phases:

1) Following the function call, the linked list of all processes is searched in the
requested direction for a process that meets the search criteria at that time.

2) If this search fails (and RETURN IF NOT FOUND is set FALSE), then
ill process status changes are monitored until there is a process that~
meet the search criteria.

This last part of the process 'search' may pose some problems. Without hardware
assistance, all the important parameters of a task descriptor should be read and
checked against the search criteria when one of them has been changed. This

3.4 - Functional Blocks: Process Searching and Task Cache

108

would mean a great number of memory accesses with only a small possibility of
success.

An 'active' process is a process that is undergoing state changes at a relatively
rapid pace (at least, that is one way to describe it). Such an 'active' process will be
present in the task descriptor cache memory most of the time (an 'inactive' process
will be loaded there upon becoming active), so it might be an idea to keep the
parameters that need checking in the task descriptor cache memory, and do the
search criteria checking on-chip.

Keeping these parameters on-chip in the task descriptor cache also makes it
possible to do the actual parameter changes in the cache memory. This will prevent
a lot of unnecessary memory access cycles, because a task descriptor is loaded into
the cache memory when a task has become active (reading the task descriptor
once).

A task is removed from the cache when it has become so 'quiet' that other tasks
can be considered 'more active' and need to be loaded in the cache memory
(replacing the 'inactive' tasks). This way, we get a kind of 'working set' of active
tasks in the cache memory. When a task is removed from the task descriptor cache,
parameters that have been changed must be written back to the corresponding
memory locations !

When a parameter of a task descriptor must be changed in the cache, the complete
task descriptor is read (a 'line' in the cache memory), the new parameter value is
inserted, and the result is written back. Just before writing the values back, they
can be checked (in parallel !) against the search criteria set by the scheduler list
search functions.

To do this, these search criteria should be kept in on-Chip registers located near the
task descriptor cache. This poses the problem that there cannot be an unlimited
number of searches going on at the same time, so we will have to place a
restriction here. In my opinion, two complete sets of search criteria should be
enough. One set can be used by memory management tasks searching for processes
that can be swapped out of the host memory, while the other set can be used to
search for processes that can be swapped in.

There are two ways to handle the error that a new search is requested, while the
maximum allowed number is already being done:

1) Disallow the new request (regard the request as a serious system error).

2) Stop one of the old searches, using the principle that a new search should
take precedence over one that has not produced results in the past. In this
case, a search initially specified in the same direction as the new one should
be broken off first. If the searches currently done have the same initial
direction, then the oldest one should be stopped.

Because of the large amount of parameters that must be checked for the scheduler
list search functions, some tradeoffs may be necessary in the actual
implementation.

Parameters like the user-defined size and state can only be changed by special
function calls, so it is possible to have these calls check these parameters against

3.4 - Functional Blocks: Process Searching and Task Cache

109

the given limits and set some TRUE/FALSE flags in the cache memory (saving a
lot of space). Unfortunately, this makes it necessary to store a set of flags for each
of the possible search criteria sets that can be used. It will also be necessary to
recalculate these flags for all the entries in the cache when a new set of search
criteria is loaded in the on-chip registers. All in all, using flags instead of the
actual values saves space in the cache RAM lines, but takes more processing time
and memory access cycles, and also makes the associated algorithms more difficult
to implement.

A problem might be that the memory manager functions searching for tasks that
can be swapped out generally are specifying search criteria that match 'quiet'
tasks. This means that these tasks have a high probability of not being loaded in
the task descriptor cache memory. A similar problem exists with the
MIN WAITING TIME and MAX WAITING TIME parameters. How these can
be solVed is unknown a t this time.

..:,:,~.':,,;;~""J..

. ,' . ;~·'~!"·""·"::':;~:;'·:;;:~fS~~~ii}:if;±),;:::~·~~}:t::~~ ;':"

3.4 - Functional Blocks: Process Searching and Task Cache

110

3.5 Host processor interface

The host processor interface is designed around the interface register set. These
registers can be addressed directly by the host processor, and some of them will
have hardware added to perform special functions.

The interface hardware should be able to connect to different types of host
processors. The bus width should be selectable between 8 or 16 bits (strapping
option). The Intel family processors have separate read and write strobes (active
low). The Motorola family processors have a read/write select line and a single
data strobe (active high). A strapping option will have to be used to select between
both processor families. To be able to work with a multiplexed address/data bus,
address latches should be provided for the host interface register select address
lines. The chip select and byte enable lines should be latched too. The following
tables give the different options:

Bus width:
b.w.pin 1:
b.w.pin 2:

Processor:
p.pin l:
p.pin 2:

I 8 bits
I address AO
I (?)

I Intel
I RD/
I WR/

I 16 bits
I Lo Byte Enable/ (DO..D7)
I Hi_Byte Enable/ (D8..DI5)

I Motorola
I Data_Strobe
I RD-WR/

The total host interface consists of these four pins, 16 data lines, a number of
address lines (5 or 6, starting with address Al !), a chip select line (CS/), an address
latch enable line (ALE) and an interrupt output line (DMA control lines are
described in subchapter 3.13: 'Stream/Bridge data handling'). The active polarity of
the interrupt output line can be programmed during initialisation of the chip. If
address latching is not needed, then the ALE line can be tied high. For an 8 bit
bus, the byte-to-word conversion can be done off-chip (connect the two bus halves
together) or on-chip with a bus multiplexer. The first solution increases the host
bus capacitance, the second uses some extra chip space (but leaves 8 pins free! ­
these can be used as extra interrupt inputs).

Several of the registers generate 'attention' signals to other functional blocks when
written or read. These attention signals can be seen as internal interrupts.

The parameter registers will have 'defaulting' hardware added to them. This
defaulting hardware consists of a default - shadow - register for each of the
parameter registers and a flipflop to remember whether the register has been
written into or not. When a command is written into the command register, all
these flipflops are set into the state 'not written', Each write into a parameter
register will set the corresponding flipflop into the state 'written'. If a functional
block reads a parameter register, then the state of the corresponding flipflop
determines whether the real parameter register or the default register will be
placed on the internal buses.

Most of the default values are fixed, so that the corresponding default registers
can actually be ROM. Only few of the default values can be specified during
system initialisation, so these registers have to be RAM.

By making the 'connections' between the parameter registers and the default
registers depending on the contents of the command register, the parameter

3.5 - Functional Blocks: Host Processor Interface.

111

registers can be used as a linear array of registers (which is easier for the host
processor as well as the internal functional blocks - it also eases the layout). This
can be done by using a PLA to select the default register, with as inputs the
contents of the command register and the (internally generated) parameter register
address. With a PLA, it becomes possible to use a single ROM default constant for
several of the interface registers.

To speed processing, 'double buffering' of the result registers may be needed. This
makes it possible to have the results at hand for the process at the head of the
ready to run list, in case the running process calls a function that will remove it
from the running state. A task switch can then be done very quickly. Of course
this can only be done if the coprocessor has enough time to 'prefetch' these result
registers.

Most of the host interface registers are connected to a functional block that
interprets and executes the host processor commands. If a functional block is used
that does the actual host task switching, then the environment pointer registers, the
special status word register and possibly the result registers can be connected to
this block. The register used for the TRIG INT SEMAPHORE command can be
connected to the interrupt handling block tobe described later, because giving this
command can be seen as the occurrence of an external interrupt.

3.5.1 Host interface protocol handlers

The host interface protocol can be split into three phases:

1: Receiving and interpreting the given command.
2: Executing the task switch.
3: Reporting the results of the command execution.

It might be an idea to have three separate functional blocks executing these phases.
This is possible because reporting the results of a command does not necessarily
follow the first two phases directly (the calling task may be put asleep by the
given command). Task switching does not have to be initiated by giving a
command, so it might be easier to have a separate block doing this (like a
hardware 'subroutine'). Reporting the results can be done concurrently with the
other tasks, for instance when another task is placed on the head of the ready to
run list.

Restarting a task can be initiated by several sources. In all these cases, the same
'program' flow is followed, so it would be an idea to have a separate functional
block to do the restarting of tasks (this block will be described later as 'task
restarter'). The 'trigger' to restart a task can come from the following functional
blocks:

1: Host command interpreter.
2: Interrupt handler.
3: Real time clock.
4: Delays generator.
S: LAN input controller.
6: LAN output controller.

I will now describe in more detail the host interface protocol functional blocks.

3.5 - Functional Blocks: Host Processor Interface.

112

3.5.2 Host command interpreter

This functional block waits for the host to write a command (is the receiver of the
'command register written' attention signal), interprets the command and makes the
decisions regarding 'what to do with it'.

If a command is given that immediately returns a result, then the result is given
directly to the result register handler. Otherwise the results will have to be written
to a result holding area in the task descriptor block in the working memory (to be
fetched later by the result register handler). In this case the results can be changed
by the task restarter, before they are fetched by the result register handler.

If a command triggers the restarting of another process, then the command
interpreter signals this to the task restarter. All commands that send units, messages
etcetera to other processes fall in this group. If they do no restart a process in the
local coprocessor with a higher priority, then the calling task can immediately
continue.

If a command makes it necessary to send a message to another coprocessor, then
the command interpreter should signal this to the LAN output controller. To make
concurrent processing and sending of messages possible, the message to send is
placed in the working memory, and the address of this message block is written to
the LAN output controller. Within the LAN output controller, a register structure
can be used to store addresses of multiple messages to be sent (so that the LAN
output controller can choose which message to send - based upon some kind of
priority algorithm). If an action is to be taken upon the successful transmission of
the message block, then this action will have to be coded inside this block (the
LAN output controller will have to undertake this action).

The command interpreter will be one of the more difficult functional blocks to
build, because it has so much tasks to perform (including range checking for
parameters). It may be necessary to implement it as a microcoded machine.

3.5.3 Host task switcher

The host task switcher is one of the more 'simpler' functional blocks. In principle
it has to do not much more than:

1: Wait for the host processor to write into the 'store environment pointer'
interface register. This waiting can be done by using an internal trigger
signal generated by the host interface registers functional block. The data
will then be available in the mentioned interface register.

2: Store the given pointer in the process administration block for the running
process.

3: Wait until a new environment pointer is available to be given to the host
processor.

4: Store this pointer in the 'new environment pointer' interface register.
5: Signal the host processor to read the new environment pointer.
6: Wait until the host has read the new pointer.

3.5 - Functional Blocks: Host Processor Interface.

113

But this block can do more. It can, for instance, monitor the internal register that
holds the address of the administration block for the running task, and request a
forced task switch if this register is changed (maybe after inserting a short time
delay, to prevent too fast task switching). This means that the 'force task
switching' interrupt output pin will be connected to this functional block. This
block can work in close cooperation with the host result register handler functional
block, to be described next.

3.5.4 Host result register handler

The host result register handler is responsible for the loading of the result registers
before a task is restarted. To make quicker task switches possible, this block may
try to predict the next task to be restarted and load the results belonging to this
task in a set of 'shadow' result registers. In most cases, the best 'bet' will be the
task that is waiting at the head of the ready to run list.

This block can also be used to monitor the head of the ready to run list, and
automatically request a task switch (using the task switcher), when the process
placed there has a higher priority than the currently running process. This will
make it unnecessary to have separate 'attention' lines running into this functional
block to request the starting of a new process.

For some of the simpler host commands (those which directly return a result), the
result register handler immediately receives the results from the host command
interpreter (using the internal messaging bus), and places them in the correct result
registers.

The complexity of this block is unclear at the moment. It may be possible to build
it as a relatively complex state machine, but it can also be implemented as a rather
simple microprogrammed system. Most of the work it has to do involves the
transferring of data, and the only operation it has to do is a simple compare for
equality between two numbers (this last operation can even be done completely
hardwired).

3.5 - Functional Blocks: Host Processor Interface.

114

3.6 Task res tarter

The task restarter is responsible for all actions that may release a task from a
waiting list. Amongst others, these actions are:

Sending of units to a semaphore.
Signalling a channel.
Sending messages to a mailbox.
Reading messages from a mailbox (fixed size mailboxes).
Making an exit from a region.
Sending data to a pipe.
Releasing a pipe.
Delay or timeout ending.
Real Time Clock match.

The task restarter will have to differentiate between two possibilities. The first is
when a local task has to be restarted (no problem). The second is when a task must
be restarted which resides in another coprocessor (but was waiting here for an
event). In the latter case, a message will have to be sent to the other coprocessor
(either via the LAN or via a port back to the host processor if it is a packet
intended for another multitasking coprocessor ring network and the local host has
'bridge' capabilities).

If the packet is to be sent using the local coprocessor LAN ring, then the on-chip
LAN controllers must be given instructions to send the message, wait for an
acknowledgement, and destroy the memory block that was used to hold information
regarding the non-local waiting process - the memory block itself can be the
message sent back.

If the packet is to be sent via the host's main LAN, then the package must be
written to the host memory using a DMA channel, and the host processor must be
informed that this has been done (which also acts as a command to send the
packet).

The task restarter will have some really complicated algorithms to perform, and
therefore may have to be build as a microprogrammed machine. To save chip space,
it might be an idea to build this microprogrammed machine as a pipelined machine
with interleaved program execution. This will make lots of duplications
unnecessary (only one ALU, only one PC incrementer, only...). The other task in the
pipeline can then be the host command interpreter, for instance.

3.6 - Functional Blocks: Task Restarter.

115

3.7 Interrupt scanner

The interrupt scanner is the hardware interface for the real world to trigger
external events. It consists of hardware to scan several interrupt lines, convert
these lines into an internal line number, and trigger the sending of a unit to a
semaphore. The actual sending of the unit to the semaphore (and the decision
making as to which semaphore should be used) is all done in the interrupt handler
functional block, to be described next.

To expand the number of input lines to be scanned, external multiplexers can be
used, to be controlled by several output lines. To control these multiplexers, some
of the direct interrupt input lines must be sacrificed. The following combinations
can give an idea of what I mean:

Fully parallel:
12 interrupt inputs, no scanning done (default after chip reset).

Quadruple multiplexing:
4 groups of 10 interrupt inputs, scanned by 2 scan select lines (40 interrupt
inputs in total).

Hextuple multiplexing:
16 groups of 8 interrupt inputs, scanned by 4 scan select lines (128 interrupt
inputs in total).

Interrupt lines which are not used can be left unconnected. If none of the lines in
a scanned group is connected, then this group does not have to be scanned (this
shortens the cycle time for the scanner). It is the responsibility of the running
processes not to enable an unconnected interrupt input.

If an 8 bit host processor interface bus is to be used, then the remammg 8 data
lines can be used as extra interrupt inputs (assuming the 16 bits to 8 bits bus
multiplexer is build on-chip). If these lines are used as extra scan input lines, then
the maximum number of interrupt inputs can be increased to 16· 16 = 256
interrupt inputs.

The configuration for the input lines and the external multiplexers can be given
when the system is initialised. The INTERRUPT CONFIGURATION parameter
for INIT SYSTEM is dedicated to this purpose (this parameter will be written to a
register in this functional block).

To prevent unnecessary work to be done by the interrupt handler functional block,
the masking of interrupt lines done with the ENABLE INTERRUPT and
DISABLE INTERRUPT function calls can be done in hardware by this block.
This blockwill also be used to select the active polarity of the interrupt lines and
select between edge or level triggering for an interrupt. Both options are given as
parameters for the ENABLE INTERRUPT function call. This can be done because
INIT_SYSTEM disables all interrupt inputs.

3.7 - Functional Blocks: Interrupt Scanner.

116

3.8 Interrupt handler

This functional block receives commands to send units to semaphores from the
interrupt scanner or from the host processor using the TRIG INT SEMAPHORE
function call.

Both commands are given in the same format - an index (scan line) number into a
table of interrupt semaphores.

The translation of a scan line number to the corresponding interrupt semaphores
will have to be done using a table in the working memory. Also, a table will be
needed to hold the maximum number of units allowed in the normal interrupt
semaphore before sending the unit to the alternate interrupt semaphore (the 'units
ceiling' for this normal semaphore). The table length will be adjusted to the actual
number of semaphores specified with INTERRUPT_CONFIGURATION.

The actions taken by the interrupt handler on receiving an interrupt line number
can roughly be sketched as follows:

1: Read from the translation table the identification numbers for the normal
and alternate semaphores together with the 'units ceiling' setting for the
normal interrupt semaphore.

2: If none of the semaphores is specified, then send a message to the system
errors mailbox (using the task restarter and the internal messaging bus).

3: If no alternate semaphore is specified, then send a single unit to the
specified semaphore, using the task restarter. If this leads to an error, then
send an error message to the system errors mailbox.

4: If only an alternate interrupt semaphore is specified, then send a single unit
to this semaphore, using the task restarter. If this leads to an error, then
send a message to the system errors mailbox.

5: If both semaphores are specified, then first try to send a single unit to the
standard interrupt semaphore, with the 'units ceiling' value as the
MAX UNITS parameter, using the task restarter. If this leads to error, then
try sending a single unit to the specified alternate interrupt semaphore (also
by using the task restarter). If this last action leads to an error, then send
an error message to the system errors mailbox.

This functional block is of intermediate complexity, probably too complex to be
realised as a state machine. A small microprogrammed system may be needed.

3.8 - Functional Blocks: Interrupt Handler.

117

3.9 Real time clock and Power Switch

The real time clock functional block consists of a crystal controlled oscillator
(running at a lower speed than the system clock to preserve power in the power
down mode), real time clock counters and a comparator to compare the counters to
a preset time and date. Some simple hardware should be added to enable the
automatic power-on of the system on a real time clock match. An attention message
is sent to the task restarter, to signal that a scheduled task can be restarted.

The real time clock counters can be set and read from the host processor function
handler functional block (only the local real time clock can be read and/or set).
The time/date compare registers can be set from different sources:

•

•

The host command interpreter, when a task has has been placed in the real
time clock waiting queue with a match time more close to the current time
than a task that was already waiting, or when the currently waiting task is
removed from the real time clock waiting list (with UNLINK).

The task restarter, when a real time clock match has occurred and the
match time for the next task in the real time clock waiting list has to be
placed in the compare registers.

Because only local tasks can be waiting for the local real time clock, some special
work has to be done if a task is moved between coprocessors while waiting for a
real time clock match. Which of the functional blocks has to perform these
functions is as yet unclear. Because the inserting of a task in the real time clock
waiting list as a far from simple operation (the list should be kept in time order),
it has to be done by one of the more 'powerful' functional blocks. For this to be
possible, the LAN input controller must be able to give commands to this
functional block in a 'preformatted' way (by using some special message registers).

3.9 - Functional Blocks: Real Time Clock and Power Switch.

118

3.10 Delays generator

The delays generator works almost exactly like the real time clock controller. The
number of clock ticks per second is set by the CLOCK TICK SPEED parameter
for the INIT SYSTEM function call. --

The other functional blocks maintain a linked list of processes waiting for some
kind of timeout. This list is kept sorted on increasing time distance between the
current time and the time when the process has to be restarted again. Each of the
waiting process control blocks has a field containing the number of clock ticks
between the time this process is restarted and the next process in the list is
restarted (this number can be zero if the next process has to be restarted at the
same time).

Inserting and deleting of processes in this list can be done by the host command
interpreter (either following a command from the local host, or after reception of a
command block from a remote host, as described for the real time clock functional
block).

To restart a task, the delays generator writes a message to the task restarter. The
task restarter has to remove the waiting processes from the delay list that have to
be restarted at this time, and write the number of clock ticks for the next process
to be restarted to the delays generator. If, while processing the current restarts,
there have passed so much clock ticks that the next process has to be restarted
immediately, then the task restarter should immediately continue with this process
(a similar algori thm will have to be build in the real time clock functional block
too).

The delays generator can be used to generate the timeouts for the LAN
input/output controllers. This will simplify the LAN controllers hardware, and also
makes it more easier to generate precise delays (if necessary).

The delays generator also contains a free-running 32 bit counter, incremented once
for each delay tick. This counter can be read by the other functional blocks to
update the three state timers for the tasks (one each for the running, waiting and
suspended states). Each time a task control block is inspected or changed, the
timers are updated using a 'last update time' field in the control block. This is
done as follows:

1: Subtract the 'last update time' field from the current value of the free­
running time counter.

2: Add the difference to the state timer that was 'running' since the last
update.

3: Store the current value of the free-running time counter in the 'last update
time' field.

3.10 - Functional Blocks: Delays Generator.

119

3.11 LAN input controller

The Local Area Network input controller handles the data stream coming from the
other coprocessors in the local interconnection network. For this functional block
and the LAN output controller, we currently assume that the interconnection link
is in the form of a token ring network.

The LAN input controller is build in several 'layers', each layer handling
progressively more complicated data structures.

3.11.1 LAN input lowest layer

The lowest layer handles the incoming bit stream, extracts clock and
synchronisation information from it, deserialises the data into bytes, and presents a
data stream consisting of bytes to the next layer (together with some signal lines,
like 'sync detected'). Also, checksum calculation will have to be done here, with
error reporting to the next layer. This layer is relatively simple, and has to be able
to cope with high bit rates (on the order of 4 megabits/second). It will therefore be
necessary to build this part as a (very simple) state machine or by using random
logic.

For the IBM token ring, the lowest layer has to cooperate with the lowest layer of
the output controller to change the data stream 'on the fly' (there is only a one bit
time delay between the reception of a bit and the time it has to be transmitted
again). This is necessary to change a free token into a busy token before
transmission can start, and also to request a so-called priority token to be sent.
Also, if an error is detected, then the 'error detected' bit in the closing flag will
have to be detected and (if not yet set) set to the TRUE state. Another 'on the fly'
opera tion is the setting of the 'message copied' bit as an acknowledge to the
sending party (when the message was addressed to this station and there were no
errors detected).

The 'message copied' bit is a special case when the message contained a process
address resolution request. In this case, the higher levels of the LAN input
controller have to use the process address search functional block to see if the
searched process is currently in the local coprocessor. If this can be done fast
enough, then the 'message copied' bit can be set immediately to indicate that the
process is found (acting as an early acknowledge). If the searched process is found,
then a message has to be sent to the requesting coprocessor containing the complete
address of the process block - this message will act as an acknowledge to the
address resolution request too.

3.11.2 LAN input intermediate layer

The next higher layer of the LAN input controller has to receive the messages and
store them in a temporary buffer in the local working memory. This layer can
ignore all messages not addressed to the local coprocessor, with three exceptions:

1: Messages with an 'all stations' address, like the address resolution request
messages.

3.11 - Functional Blocks: LAN Input Controller.

120

2: Messages sent by the local LAN output controller. These messages have to be
'purged', while the LAN output controller has to be notified that this has
been done (so that a new free token can be sent, possibly with a priority
token as requested by another transmitter on the ring). Important data from
such a message will have to be extracted, while the rest of the message can
be ignored. All this important data is located in the message header and
trailer bytes, and consists of the priority token request field and the 'error
detected', 'message received' and 'message copied' flag bits. Handling this
data is done by the LAN output controller.

3: Messages to be taken from the ring by a bridge, if the local MMTCP has
bridge capabilities. In this case, the ring number should be checked and the
packet should be taken off the ring if the host connected to this MMTCP
can take care of the transport to the indicated remote network.

If a message is ignored or received with an error, then the temporary message
buffer can be used again for the next message. Otherwise the LAN input controller
will have to request extra memory space from the memory management functional
block. If a message is received with an error while the 'error detected' bit was not
set in the closing flag, then an internal error counter can be incremented (and an
error message sent to the system error messages mailbox - maybe some 'filtering'
will be necessary to prevent line noise from overflowing the system with error
messages).

When an error free message has been received and stored into memory, the address
of this message is sent to the highest layer in the LAN input controller functional
block. These addresses can be stored in a small hardware FIFO, so that temporary
delays in the handling of the messages can be bridged by queueing the new
messages. If the FIFO is full, then the 'message copied' bit cannot be set, to
indicate the sending coprocessor that the local coprocessor's input handlers are
overflowing. If the message had an 'all stations' address, then it is necessary to set
the 'error detected' flag, to request sending the message again. The FIFO buffer
can be equipped with extra hardware to sort the packets on priority, so that
packets with a high priority are handled before lower priority packets, even if
they were received later.

3.11.3 LAN input highest layer

The highest layer in the LAN input controller functional block examines the
received messages (removes their addresses from the 'FIFO' queue), and determines
what to do with them. There are several possibilities:

I: The message contains units for a semaphore, data bytes for a pipe or
mailbox, requested status data for a remote entity or things like that. In this
case, the message is reformatted and sent to the task restarter. The task
restarter is instructed to send the results (or resulting errors) from the
restart action to a remote process, and the received data block can be
destroyed (given back to the memory management functional block).

2: The message contains a status request for one of the local entities. In this
case, the reply is placed in a memory block and sent back to the requesting
coprocessor. The received data block can be destroyed.

3.11 - Functional Blocks: LAN Input Controller.

3: The message contains a request from a remote process to wait at a local
semaphore, mailbox, region etcetera (it is not possible for a remote process
to wait for data coming from a pipe !). In this case, the request is placed in
memory as a 'placeholder' block for the remote process, and the placeholder
block is linked into the chain of waiting processes for the requested entity.
The placeholder block can be recognised by the command processor and the
task restarter, so that they automatically send their results to the remote
coprocessor. If the command processor finds no errors while placing the
placeholder block in the waiting list, then an acknowledge message is sent
back to the remote hostprocessor indicating that the process is placed in the
wai ting list.

4: The message is a special message used while transferring a process between
two coprocessors. In this case, the message may contain a part of a process
control block, a pipe control block (including the pipe buffer), a waiting
pipe data block, or a part of the pipe requester's waiting list. In all these
cases, the received data packets require special handling like relinking of
linked lists. The most logical place to do this processing is the highest level
of the LAN input controller, which will therefore have to be build as a
microprogrammed machine.

5: An acknowledging message is received for a message sent by the local LAN
output controller. The contents of this message have to be analysed and
acted upon. In some cases this means that the output buffer for the message
originally sent can be released back into the memory pool. In other cases, a
task can be restarted too.

6: The message contains data for a data stream. These messages are described
in subchapter 2.12: 'Functional description: Stream data transfer'.

The highest layer of the LAN input controller will have to be build as a
microprogrammed machine.

3.11 - Functional Blocks: LAN Input Controller.

122

3.12 LAN output controller

The Local Area Network output controller generates the data stream going the
other coprocessors in the local interconnection network. As already stated for the
LAN input controller, we currently assume that the interconnection link is in the
form of a token ring network (as proposed by IBM, Literature 1 and 2).

The LAN output controller will be build in layers, just like the LAN input
controller.

3.12.1 LAN output lowest layer

The lowest layer works in close cooperation with the lowest layer of the LAN
input controller. This is necessary to change bits in the message leader and trailer
bytes, and to start sending messages at the correct time. Also, the clock needed to
send the data may be generated in the lowest layer of the LAN input controller
(with a digital or analog YCO). While data is being transmitted, this layer has to
handle the serialising of the data bytes obtained from the higher levels, and also
has to calculate and append the checksum at the end of the transmission. This
layer should be able to generate leader and trailer bytes, and format empty tokens
from them (to be sent around the token ring).

3.12.2 LAN output intermediate layer

The next higher layer of the LAN output controller is working just like the same
level layer in the LAN input controller, but now in the opposite direction. This
layer gets the addresses of blocks to be sent, and tries to send them out on the
token ring. The addresses of the blocks can be stored in a hardware FIFO, so that
some flexibility and buffering is possible. This FIFO buffer can sort messages on
priority like the buffer used between the high and intermediate levels of the LAN
input controller.

3.12.3 LAN output highest layer

This highest layer finds most of it's work in protocol and error control. The data
to be sent is already stored in a memory block, together with instructions on what
to do when the block has been sent. This layer uses timeouts to determine whether
the interconnection link is used to heavily or not, and uses these timeouts together
with the data extracted from a returned data block to determine what to do (a task
may have to be restarted and/or a memory block may have to be returned to the
free memory pool).

Another task that can be done by the highest layer might be the transferring of all
the process data when a process is transferred to another coprocessor. This task
consists of analising the data structure, doing some reformatting, sending all the
related data blocks to the receiving coprocessor and finally removing the data
structure from the local memory. This releases the host command interpreter from
a lot of work, so that this important functional block is available much faster after
a "transfer process" message is received (following a successful CLAIM PROCESS
call in another coprocessor).

3.12 - Functional Blocks: LAN Output Controller.

123

The highest layer in the LAN output controller also plays an important role in the
transfer of stream data. This will be explained in more detail in the section on
stream data handling.

Timeout errors, if they occur frequently, will have to be reported in the system
errors mailbox.

The highest layer of the LAN output controller may have to be build as a
microprogrammed machine. To save chip space, it might be an idea to build this
machine as an pipelined system, where a second process is interleaved with the
LAN output controller. The most logical choice would be to make this the highest
layer of the LAN input controller.

The LAN controllers, both input and output, should be able to act as (secondary)
ring monitors, as described for the IBM token ring protocol. This means, amongst
other things, that they should be able to detect the loss of a token, or the presence
of a circulating free token. They should have the possibility to force a new free
token on the ring, generate and receive 'beacon' frames, and to enter and exit the
ring monitor state. Note that the ring monitor must insert an elastic buffer store in
the bit stream, and the hardware to do so should be available on every coprocessor
chip. If possible, hardware should be available on-chip to direct the data stream
via several inputs and outputs (so that 'backup' rings can be formed).

3.12 - Functional Blocks: LAN Output Controller.

124

3.13 Stream and Bridge data handling

Stream data is used to transfer large blocks of data using the LAN that
interconnects the multitasking coprocessors.

Bridge data consists of data packets which are to be sent to- or are received from
an external LAN controller, connected to the host of a MMTCP.

Both these forms of data transfer involve a larger than normal number of data
bytes (with 'normal' I mean the number of parameter or result bytes transferred
for a standard function call). To let the host processor handle these data transfers
may therefore be too slow, especially in the case of stream data, where the total
number of data bytes may run in the millions.

In both the stream and bridge data streams, the data should be transferred into or
out of the host memory as a linear array of data bytes, which makes it possible to
use a simple Direct Memory Access (DMA) protocol.

DMA can be done by letting the multitasking coprocessor take over the system bus,
but this necessitates making the multitasking coprocessor's host interface
compatible with the various forms of bus acquisition and control protocols used by
different processor families. This is obviously not the way to do it, because it may
mean that we have to build several different multitasking coprocessor chips, each
with a different host bus interface.

The other road to DMA is by using simple DMA 'request' and 'acknowledge' lines,
to be connected to the host bus. The coprocessor simply requests data transfers with
the 'request' lines, and the host system replies by returning (one of) the
'acknowledge' lines active while reading from- or writing to the coprocessor. In
case multiple channels have to be supported, the interface should contain lines to
indicate which DMA channel should be used for the current DMA cycle. Because
this interface is inactive after reset, the exact hardware configuration of the
interface can be made software selectable (no strapping pins needed).

This involves extra hardware on the side of the host interface (in the form of
standard DMA controller chips), and therefore falls a bit outside the normal
operation of the multitasking system hardware. This is because these DMA
controllers have to be controlled by the host processor, and in most cases support
only a limited number of data streams at the same time (simply the number of
DMA 'channels' available).

For the stream data handling, there have to be processes running on the host
processor that assign DMA channels to the requested data streams, initialise these
DMA channels, and provide overall data transfer progress monitoring. In most
operating systems, these 'stream control' processes will be part of • or at least very
;trongly depend on - the memory management processes that control the use of
'ackground memory and the process transfers.

Jr the bridge data handling, host processes should be introduced to set up and
ntrol two DMA channels to transfer data between the MMTCP and the host
mory. One channel is permanently assigned for reading from the coprocessor the
a packets intended to be sent using the external LAN. The other channel is
manently assigned for writing packets received from the external LAN to the
·ocessor. These bridge data DMA channels share the DMA hardware on the

3.13 - Functional Blocks: Stream/Bridge data handling.

125

coprocessor chip with the DMA channels for stream data. If a MMTCP is set up for
connection to a LAN-equipped host processor, then two DMA channels are 'stolen'
from the stream data handling (meaning that that particular MMTCP has two
stream data DMA channels less than other MMTCP's).

The commands to establish a data stream are interpreted by the host command
interpreter. The data streams themselves are sent and received by the LAN input
and output controllers. Because these blocks contain most of the intelligence needed
for these data stream transfers, only relatively simple hardware is needed to
transfer the data back and forth between the local working memory and the host
memory. This hardware can be seen as the on-chip counterpart of the DMA
controller chips that control the actual reading and writing in the host memory.

In it's simplest form, the on-chip hardware consists of only a few loadable
counters, a register to select the channel to use, a mode control register and a
simple state machine controller. One counter is used to point to the local working
memory word to be read or written, a second counter is used to count the number
of data bytes to be transferred (this counter should have enough capacity to
transfer a single data packet's length of data). Hardware should be provided to
control the word-to-byte and byte-to-word conversions, if this is needed by the
external hardware (the host bus interface contains the needed multiplexers and
demultiplexers - they only need to be controlled in the correct way).

. ,

,,
f

I

\

\

\

\

I,
\

\

':
I
i

,
f

I

I

J

_...... ",-,.. ",,--,".- -~ ~-.-.."" ,

~. ~~~;.~:.

3.13 - Functional Blocks: Stream/Bridge data handling.

126

3.14 Chip test hardware

Even a VLSI chip of this size should be completely testable. This is only possible if
it can be partitioned into blocks of manageable size that can be exercised
separately.

The internal buses playa mayor role in the testing of the MMTCP chip. Via these
buses, all functional blocks are connected together, and, if we use registers to
exchange handshake signals via these buses, then these buses are also the only
connections between the functional blocks. This makes it possible to use the
internal buses to isolate the functional blocks from eachother and test them one at
a time. Excitation signals can be fed into functional blocks by reading and/or
writing via the internal buses, the response can be checked by monitoring the
message flow following an excitation.

In principle, only the internal messaging bus need be equipped with hardware to
force messages on the bus and monitor the responses, because most of the activities
on the memory interface bus can be observed by looking at the pins connected to
the external working memory. However, to check whether the external memory
interface is working correctly, it should be possible to exercise the memory
interface functional block with all bus cycles possible. This can be done by
requesting them directly from the host interface (using special registers in the chip
test functional block).

Generating excitation messages on the messaging bus is simple enough, this can be
done with some special host accessible test registers to hold the register address and
control bits, together with some registers to hold the data written or read.

Monitoring the message flow may pose some more problems, as this message flow
can be very fast. This problem can be overcome by building some simple 'locking'
hardware in the bus arbiter, which can prevent the bus from carrying messages
until the external test hardware has read the results from the previous test.

Another problem is that we must prevent functional blocks that are not the subject
of the current test sequence from responding to messages generated by the
functional block under test. This can be done with an extra 'address enable' line on
the internal messaging bus. During normal operation, this line can be active,
enabling the slave registers for reading or writing. During monitoring, this line can
be set inactive, so that the slave registers do not respond at all to any messages
(only special 'monitor' registers inside the test hardware functional block will be
written and/or read).

Most functional blocks contain 'buried' registers to hold parameters during the
execution of the MMTCP algorithms. These registers range from simple parameter
registers (in the data path of a functional block) to state registers and
microprogram counters and -stacks (in the control part of the functional blocks).
The data path registers may be made accessible by adding some extra hardware to
the interfaces between the main chip buses and the functional block's internal
datapaths, but this is only possible if the functional block is not too complicated
(having multiple internal buses, for instance). Especially for the registers in the
control parts of the functional blocks, we will have to add extra hardware to be
able to access them from the messaging bus (reading and writing, of course !). It
might be wiser to connect these registers into a scan path, and connect the scan
paths of the functional blocks to a specialised 'scan path bus' of some form, which

3.14 - Functional blocks: Chip test hardware.

127

can be connected to some control and shift registers In the test hardware
functional block.

Some of the functional blocks contain of specialised memory to speed up the
algorithms. Connecting the memory cells together to form a scan path might take
too much extra hardware (and, in some cases, might not be possible at all). When
these memory structures are large enough, it might be worth wile to add special
hardware at the periphery of these memories for a direct connection to the internal
messaging bus. If the actual contents of these memories are not important for a
functional test, it is also possible to include self test hardware (for a simple 'go ­
no go' test). Alternatively, we can try to force a functional block to fill it's
internal memory by reading from one of the internal buses, after which we can
monitor it's responses to excitations we send to the functional block via the
messaging bus.

To prevent accidental or malicious use of the test hardware, I propose a special
package pin to be used to enable the testing modes. If this pin is not in the active
state, at least all the writes in the test registers should be disabled (in most cases,
reading poses no problems).

3.14 - Functional blocks: Chip test hardware.

128

3.15 Thoughts for the future

The decomposition of the multitasking coprocessor described in this chapter is
meant as a starting point for the actual realisation process, and is by no means
definiti ve.

Some of the blocks may be split up into smaller blocks, other blocks may be
combined into larger ones. It is even viable that completely new blocks will be
introduced.

Combining functional blocks in such a way that they share a lot of hardware is
possible for microprogrammed machines. As already indicated in this chapter, it is
possible to run several microprograms in a 'pipelined' fashion. This will make them
use common hardware while they remain logically independent (they will run
slower, of course !).

The actual implementation of the host task switcher and host result register
handler is a bit fuzzy at the moment. It is very well possible that these blocks can
be combined into a bigger functional block. To figure out what to do with them
involves rigorously defining how they interact, and translating this interaction into
hardware resources like registers and status flags.

The 'task restarter' takes over processing from the host command interpreter and
other internal blocks if a function is to be performed that may restart a task. In
the previous pages, the stopping of tasks is assumed to be done in the host
command interpreter, but it is also possible to build a separate functional block to
do this (or even incorporate these functions in the 'task restarter' functional block
as low priority functions). In any case, removing this function from the host
command interpreter will make it easier for the LAN input controller to handle
packets received from remote coprocessors containing commands to stop a task in
the local coprocessor.

Addressing of entities in a system of coprocessors interconnected by coprocessor
LAN's, with bridge processors connecting these local LAN's together, may pose
some problems. Addresses generated by host processes and addresses in packets
received from the local interconnection ring always have to be checked (the
'accessible ring addresses' table may have to be consulted if the local host has
bridge capabilities). It might be easier to build a specialised functional block to do
this. This new block will then relieve several other blocks from this address
checking, and might do it faster by using specialised hardware instead of (slow)
microprograms.

3.15 - Functional Blocks: Thoughts for the future

129

3.16 Schematic overview

The following diagram gives a more detailed view of the functional blocks and
their interconnections described in this chapter:

~ Delays, ------L-

Interrupt Timeouts, ~
"-Inputs RTC -;;;-

"- 1/ & Power Ctrl "-
Interrupt Power Ctrl I/O

f--

Scanner/
Memory (De-)Encoder f-- '--

Allocation

I I
~ Handler

TRIG
Interrupt f--

INT
L- Task Reslarler

Handler ----------------
SEM f--

Task Stopper,-
CIl
(j)
CIl
::l

Stream Data/
en

Process. '- I-
tllJ

'---

Bridge Data .:: Search &"On
DMA Controller I- ro - Task CacheCIl TokenCIl

(j)

I
:::E

~
Ring

CIl "0 DMA Controls LAN \1/::l .::
CIl III ro) Input::l

CIl Interrupt Outputen (j)
CIlCJ (j)

h <1l ResuIt/Env. ()
0 I- () LAN LANh·Cii (j) Registers & <:
~ -' Input lnput(j) h Task Switcher I--

>,
I--

-'

~ L Interm. Lowx -'
CLJ CIl

LAN0 f-- Level f-- LevelCIl :r: :::E(j) lnput (MAC)h - Command/ - I-- (Phys)
:.J <1l ro High Level(s)~ '--

Param Regs - c I I Ic h & h . .(j) (j)ro -' Command -'u .:: r- -
If) - Interpreter E LAN LAN

Output Output
f--

L lnterm. Low
Test Regs & LAN f-- Level '-- Level~ -
Internal Bus Output

f-- (MAC) (Phys.)
~r- Access Switch L- High Level(s)

• .
Token
Ring \1/

LAN
Host Bus (De-)Mux Local Working Output
and Buffer Memory Interface

I Host Interface Bus Local Memory

~

3.16 - Functional Blocks: Schematic Overview.

130

4. Conclusion

In the previous chapters of this report, I have presented my ideas for a hardware
solution to the problems of multitasking and communication. Chapter one presented
the background for the chosen solutions (the 'why'). Chapter two contained a set of
functions that should be the starting point for the design of the hardware (the
'what'). Chapter three gave a breakdown of these functions into cooperating
hardware blocks (the 'how').

Chapters two and three are by no means definitive. In the time to corne, choices
have to be made as to which functions will actually be incorporated in the MMTCP
design.

Following this, the data structures and algorithms must be designed and tested,
forming the design 'layer' just below the specification. These algorithms and data
structures will be influenced heavily by the MMTCP interfaces to the outside
world, especially the local area network connecting to other MMTCP's. Once the
algorithms are known, we will have to take a second look at the functional blocks
we are going to use to execute these algorithms.

The algorithms must be divided into steps that can be executed concurrently by the
functional blocks. Once it is known what the functional blocks have to do, we have
to specify the communication protocols to be used between them.

Once tce internal communication protocols are known, we can start with the
hardware design of the separate functional blocks. If we did our work right up to
this point, we should not run into serious trouble with the actual hardware design.
The hardware interface between the functional blocks consist of several buses,
which have already been described in this report (on purpose in somewhat more
detail than the other functional blocks).

In this report, I have not described the local area network protocols in much detail.
I have simply assumed the network is there, and can be used to exchange messages
between MMTCP's (without errors, keeping the messages in the correct order if
necessary). My colleague Herman Vos is working his way through some very thick
draft standards from ISO and ECMA, and has obtained the specifications for a
group of integrated circuits Texas Instruments has designed to build a token ring
LAN controller (the LAN type we want to use).

From his preliminary work, I have learned that the addressing and packet
forwarding methods I had envisioned do not conform to these standards. This is
possibly due to the fact that I look at these methods from the hardware point of
view - the simpler the better. When packets have to be transferred by bridges and
gateways, the problems even get worse, because the draft standards for doing this
are very fuzzy (to say the least), and seem to be much more complicated than what
I thought would be needed.

The chances that our MMTCP shares a token ring with other controllers may be
very slim. Even if this situation occurs, then probably the only way the MMTCP's
communicate with the other controllers will be by stream data transfer (if they
communicate at all). It may be enough to make the communication between
MMTCP's transparent to the other controllers, so that the MMTCP's have a logically
separate network sharing the physical token ring hardware with other controllers.
The problems get bigger again when packets must be transferred to other networks

4 - Conclusion

131

across standard bridges and gateways - these problems must be solved if want to
keep this possibility.

Another point for discussion is the placement of the LAN controller on the same
chip as the rest of the multitasking coprocessor. Using a normal LAN controller
connected to the host processor is possible (would work like a permanent gateway
connection), but will place a very heavy workload on the host processor because
the host will then have to handle a large stream of very small packets. Connecting
a standard LAN controller directly to the coprocessor chip takes a lot of pins, is
inflexible and maybe not even possible because most LAN controllers assume a host
memory to be present and have a DMA bus master interface. Designing a special
LAN controller to be connected to the multitasking coprOcessor can be done, but
again uses extra pins and necessitates the development of special interface
protocols and hardware.

We keep getting back to the solution where the LAN controller is placed on the
same chip as the multitasking coprocessor. In that case, the LAN controller can
make use of the functions provided by the other functional blocks like working
memory management and error handling. This integration also makes it possible to
build a low component count system, a feature that system designers like a lot.

During this graduation period, I have worked on the construction of a 'solid' set of
functions, always keeping in mind there had to be ways to implement them in
hardware. This hardware directed thinking has resulted in the set of cooperating
functional blocks described in chapter three. I think dividing the MMTCP into
functional blocks is the only way to get working silicon in a reasonable amount of
time (my estimate for the amount of devices needed runs in the hundreds of
thousands).

This project needs a lot of work before a working version of an MMTCP can be
shown to the public. I hope I can continue working on it because I do not like to
leave work undone. Negotiations with Prof. Stevens have already started in that
direction. I again wish to thank everybody who helped me during this period, I
hope I am not too much in debt.

Eindhoven, july 8, 1987

4 - Conclusion

Ad Verschueren.

132

A. Some existing multitasking operating systems

To design a usable multitasking coprocessor, one must make sure that this chip will
be easy to integrate in existing multitasking operating systems. The coprocessor
should provide the functions of these operating systems where possible directly, if
that is not possible then with simple software additions, or not at all if the
functions are too much specialised. We should weigh the cost of implementing a
function in hardware against the benefits we get from doing so.

This appendix compares several multitasking operating systems, which each have
their own peculiarities (pointed out in each subchapter). The four multitasking
operating systems described in this appendix are:

1) Intel's iRMX 86
2) Texas Instruments' Microprocessor Pascal System
3) LEX (a multitasking kernel developed in Eindhoven)
4) Bell Labs' UNIX

Because iRMX 86 is so powerful, I will use it to compare the other systems to. As
we will see, the additions that have to be made are minor, and in most cases
concentrate on semaphore usage and hardware interrupt interfacing (which was to
be expected anyway). The set of functions provided by the MMTCP is based upon
those provided by iRMX 86, because our original idea was to emulate iRMX with
the MMTCP. Appendix B provides a direct comparison between the MMTCP and
iRMX 86 (including higher operating system software layers within iRMX 86).

The MMTCP started out as the hardware form of iRMX 86, stripped from all
memory management functions. The three other operating systems described in this
appendix contained features that we have added to the original design to enhance
it's functional capabilities. Pipes were added at that time to get a more general
approach to communication between tasks.

Later, when the decision was made to include a local area network controller, new
functions were included to control the controller as well as the network itself.
Stream data handling was proposed to provide a means to transport large blocks of
data between MMTCP's and make a more efficient use of the network (by doing
stream transfers in the background).

A - Some existing multitasking operating systems

133

A.l Intel's iRMX 86

This multitasking operating system is specifically written for the 8086 family
microprocessors (there exist functionally compatible versions for other
microprocessor families from Intel). It is a comprehensive system providing
functions which are not commonly found in multitasking operating systems, but
make life easier for the programmers. This system does not support virtual
memory, but otherwise provides more functions than UNIX!

In iRMX, all parts of the system (henceforth called 'objects') are known under a 16
bit (unsigned) number, called a 'token'.

Priorities range 0..255 (unsigned byte), with priority 0 being the highest (all
interrupts disabled). Processes with priorities in the range 0..128 all automatically
run with certain interrupt levels disabled (the maximum configuration provides for
56 hardware interrupt sources, not counting the clock interrupt).

iRMX 86 can be bought in the form of a so called 'OSF' (Operating System
Firmware) chip, to be attached to the host microprocessor. This OSF chip contains
a 16 kilobyte read only memory, interrupt controller and several timer/counters
(from which one is used for a real time clock). The iRMX code itself is placed in
the read only memory, together with some standard peripheral chip drivers (serial
i/o and floppy disk). According to Intel, it should be possible to get a computer
system up and running using an OSF chip and only a few lines of user written
sofi.ware. This chip is not a multitasking coprocessor, as it uses the main processor
to execute the iRMX operating system programs.

iRMX can be regarded a 'toolbox' for multitasking operating system writers.
Functions not needed can be left out when the system is configured, new functions
can be added when the need arises (this can even be done dynamically during
execu tion !).

The following paragraphs each focus on one of the objects the iRMX operating
system handles.

A.l.l iRMX jobs

A job is a working environment for all other iRMX objects, and basically consists
of a pool of memory and an optional 'object directory' to store symbolic names for
objects contained in the job. Each job contains at least one 'task' (executable
program). A 'parameter object' can be given to a job during creation, which is
simply a token for some kind of object in the system. Tasks running in the job can
retrieve this parameter object and use it for a user defined purpose.

The jobs are organised like a tree, with a root job (initialised at power on) and
child jobs. The root job initially gets all available memory (with a maximum of
almost 1 megabyte), and divides this up amongst it's children. Children in need for
more memory can 'borrow' memory from their parent.

A.I - Intel's iRMX 86

134

The following operating system functions are provided for iRMX jobs:

CREATE_JOB creates a job with an initial task. Limits must be given for
maximum size of the object directory, maximum number of objects and
tasks, maximum priority for contained tasks and maximum and minimum
memory pool sizes. An optional parameter object token can be specified.

DELETE JOB deletes a job (may be postponed by DISABLE DELETION, see
A}.IO). The job must be childless and may not contain 'extension objects'
(user specified data types).

OFFSPRING returns tokens for child jobs.

A.l.2 iRMX tasks

Tasks are the active objects within iRMX, they contain executable object code,
data and stack spaces. Tasks themselves are part of a job, a single job can have
more than one task running in it. Each task has it's own priority (may be different
from other tasks in the same job), and can be in one of several states:

running:
ready:
asleep:

suspended:
asleep/suspended:

Task has processor.
Task can be made running.
Task waiting for event to happen, like
triggering a semaphore, sending data to a
mailbox, elapsing of a time interval, an external
interrupt, etcetera.
Task stopped, either by itself or another task.
Task waiting for event and stopped (by another
task).

The following operating system functions are provided for iRMX tasks:

CREATE_TASK creates a task, returning a token for it. The following parameters
must be given: initial priority, start address, data space address, stack space
address, stack length and a flag indicating that the task will use a
numerical coprocessor (iRMX will then save and restore the state of this
coprocessor during task switching).

DELETE TASK deletes a task (may be postponed by DISABLE_DELETION, see
below).

SUSPEND_ TASK increases the 'suspension depth' (a counter counting the
SUSPEND TASK and RESUME TASK calls, initially 0), and suspends
(halts) thetask if it was not already suspended.

RESUME TASK decreases the 'suspension depth' and changes the task state from
suspended into ready or from asleep/suspended into asleep if the counter
reached O.

SLEEP waits for a specified period of time (puts the task in the sleep state).

G ET TASK TOKENS returns tokens for: calling task, calling task's job, calling
task's job's parameter object and the root job.

A.I - Intel's iRMX 86

135

GET_PRIORITY returns the priority of the calling task.

SET_PRIORITY sets the priority of the calling task, priority cannot be set above
the maximum priority specified for the job.

A.l.3 iRMX semaphores

Semaphores are the means to exchange abstract 'units' between tasks in the system.
iRMX semaphores are counting semaphores with one waiting queue, which can be
set to operate strictly FIFO or in priority order. It is possible to send or request
more than one unit at a time from the semaphore. The units counter is a 16 bits
counter, allowing the accumulation of 65535 units (the actual maximum is software
setable).

The following operating system functions are provided for iRMX semaphores:

CREATE_SEMAPHORE creates a semaphore, returning a token for it. The task
queue mode (FIFO or priority based), initial and maximum number of units
must be given.

DELETE_SEMAPHORE deletes a semaphore (may be postponed by
DISABLE DELETION, see A. 1.1 0). All waiters are released (wake up out of
their sleepstate).

SEND_UNITS adds the specified number of units to a semaphore. If this would
increase the number of units above the maximum, then an 'exception'
(iRMX terminology for an error) occurs. Waiting tasks in the semaphore
queue are released if their requests for units can now be satisfied. This is a
'V' operation.

RECEIVE_UNITS places the requesting task in the semaphore queue according to
the queue mode. If the task is placed at the head of the queue, and there
are enough units available, then the task is released from the head of the
waiting queue and the units counter is decremented by the requested
number of units (the 'P' operation). Otherwise, if the task does not want to
wait, it is removed immediately from the waiting queue and a flag is set to
indicate the failure. If the task is willing to wait, it is placed in the sleep
state and is awakened again when the request is satisfied or until a
specified time period is elapsed (this last function is optional and always
removes the task from the waiting queue).

A.1.4 iRMX mailboxes

Mailboxes are the means to exchange 'messages' (consisting of tokens) between the
tasks in the system. Mailboxes have two queues: one for tasks waiting for messages
(FIFO or priority based), one for the messages themselves (always FIFO). The
message queue consists of two parts, a 'high performance' queue, for which there is
always space reserved at creation time and an 'overflow' queue, for which memory
segments are created when needed (a time consuming task). The size of the high
performance queue is adjustable. Most of the mechanics of a semaphore apply to a

A.l - Intel's iRMX 86

136

mailbox, like optionally putting tasks asleep if there are no messages available,
putting an optional maximum to this sleeping period, etcetera.

Each message may contain one or two tokens: the first is the message token itself,
which can be of any type. The optional second token is the so-called 'response'
token, which should be a semaphore or mailbox. If it is given, it indicates that the
sender will wait at the specified semaphore or mailbox until the receiver sends
unit(s) or a message to the indicated place. This establishes a handshaking protocol
between the sending and receiving processes.

The following operating system functions are provided for iRMX mailboxes:

CREATE_MAILBOX creates a mailbox, returning a token for it. The task Queue
mode (FIFO or priority based) and the size of the high performance Queue
must be given (4..60 messages, in blocks of 4 messages).

DELETE_MAILBOX deletes a mailbox (may be postponed by
DISABLE DELETION, see A.l.l 0), releasing all waiters and discarding all
messages in the message Queue.

SEND_MESSAGE places a message in the message Queue if there are no waiters in
the mailbox task Queue, otherwise gives the message to the task at the head
of the mailbox task Queue, removes this task from the head of the Queue,
and releases this task from it's sleeping state.

RECEIVE_MESSAGE gets a message from the mailbox message Queue if there is at
least one stored there. Otherwise, if the task is not willing to wait for
messages to arrive, returns with a flag indicating the failure. If the task is
willing to wait, places the task in the mailbox task Queue (entering the sleep
state). Optionally, a maximum waiting period in the task Queue can be
specified, which, if elapsed, will be indicated with a flag.

A. 1.5 iRMX memory segments

The memory in the iRMX operating system is divided in 16 byte 'paragraphs', of
which there are 65536, giving a total of 1 megabyte memory (this is the way the
8086 family of processors organises memory). iRMX segment tokens always indicate
the starting paragraph number of the segment, so that it is easy for the processor
to access the segment. For each segment, iRMX maintains the starting address, the
length in bytes and the job owning the segment. Memory is allocated and
deallocated dynamically, but no garbage collection is done! If a job does not have
enough memory available, iRMX tries to borrow memory from the parent job,
enlarging this job's memory pool at the expense of the memory pool of the parent
job (this borrowing of memory can 'chain' all the way back to the root job).

A job initially gets its 'minimum pool size' memory allocated (more if that is not
enough to contain the initial task). If more memory is needed, memory is borrowed
in blocks with a user defined size (optimisation problem !), so that the borrowed
memory size is always round up to an integer multiple of this block size (which is
set during system configuration). If memory is released and the job has more
memory than it's minimum pool size, the process is repeated in the other direction
(possibly returning memory to the root job). Trying to increase a job's pool size
above the 'maximum pool size' parameter will always give an error. No memory

A.I - Intel's iRMX 86

137

borrowing will occur if the minimum and maximum pool size attributes are the
same.

The following operating system functions are provided for iRMX memory
segments:

CREATE_SEGMENT creates a memory segment, returning a token for it. The size
must be given in bytes and is always rounded up to a multiple of 16 bytes.

DELETE_SEGMENT deletes a memory segment (may be postponed by
DISABLE_DELETION, see A.I.IO).

GET_SIZE returns the size of a memory segment in bytes.

SET_POOL_MIN changes the 'minimum pool size' attribute of the containing job
(optimisation problem !).

GET POOL_ATTRIB returns a pool's mInImUm, maximum and initial pool sizes,
the currently allocated and available number of paragraphs.

A.l.6 iRMX regions

Regions are protected pieces of code. A task executing in a region cannot be
suspended, deleted or preempted. Errors occurring in a region are handled at region
exit. A region is in essence a semaphore with initially one unit. Regions should be
used with great care, as tasks getting stuck in a region easily lead to a system
crash.

Regions are only logically connected to code pieces. It is possible to use a region to
protect different code pieces in separate tasks and/or jobs. Regions are user
enforced, if a user program makes the mistake to execute code belonging to a
region without using the system region calls ACCEPT CONTROL or
RECEIVE CONTROL, then the region is rendered worthless. -

The following operating system functions are provided for iRMX regions:

CREATE_REGION creates a region, returning a token for it. The waiting tasks
queue mode (FIFO or priority based) must be given.

DELETE_REGION deletes a region, releasing all waiters (may be postponed by
DISABLE_DELETION, see A.I.IO).

ACCEPT_CONTROL lets the requesting task enter a region, but only if it is
immediately available.

RECEIVE CONTROL lets the requesting task enter a region if it is available,
otherwise waits for it to become available. No maximum time limit can be
specified!

SEND_CONTROL is called by a task to exit a region, and give the region to the
next waiter in the waiting queue.

A.I - Intel's iRMX 86

138

A.I.7 iRMX objects

All objects in an iRMX system are designated by a token. There are lots of
instances where a task needs access to an object, but does not know the token for
that object. For this reason, an object can be given a user defined symbolic 'name'
(a block of 12 bytes, which may contain any pattern). This name can then be stored
in one or more of the object directories belonging to jobs, where it can be found
by other tasks.

The following operating system functions are provided for iRMX objects:

CATALOG_OBJECT stores the name of an object plus the corresponding token in
the specified object directory. If a task was waiting for the object to be
catalogued, this task is released from it's sleeping state, giving it the wanted
token.

UNCATALOG_ OBJECT removes a token and name pair from the specified object
directory.

LOOKUP_OBJECT searches a specified object directory for a given symbolic
name, returning the object's token if found. Optionally, the calling task is
put into the sleep state if the name is not yet present in the object directory
(a maximum waiting period can be specified).

GET_TYPE returns the object type code for a given token. The object type code is
a 16 bit unsigned number, with codes in the range 0..32767 reserved for
Intel. Codes in the range 32768..65535 are reserved for user defined
extension types (see A.l.ll).

A.I.8 iRMX exception handlers

Exception handlers are called automatically by the iRMX operating system if an
error is encountered during the execution of a command. Errors are divided in two
groups: 'program errors' which are mainly parameter errors (unknown token, value
out of range, etcetera), and 'environmental errors' which are mainly caused by
'over-asking' the system (out of pool memory being the most common error). For
each of the two groups, the user can decide to leave the error handling to the
exception handler or the calling task itself (which then has to check the exception
code returned by all the system calls).

The following operating system functions are provided for iRMX exception
handlers:

SET EXCEPTION HANDLER sets the exception handler start address and
exception modoe (which error groups to handle) for the calling task.

GET EXCEPTION HANDLER gets the current exception handler start address
- and exception mode for the calling task. Usually used to temporarily switch

exception handlers and/or exception mode.

A.I - Intel's iRMX 86

139

SIGNAL_EXCEPTION is used by an operating system extension routine (see
A.l.ll) to signal an error back to the offending task or the exception
handler for that task. An error code word, the number of the parameter
which caused the error, the status word for the floating point coprocessor
(if used) and a new value to be loaded in the user stack pointer must be
supplied. By selecting the correct value for the stack pointer,
SIGNAL EXCEPTION can return to either the exception handler or to the
user routine that caused the exception.

RQ_ERROR is a library routine (not a standard iRMX call) used to process error
codes.

A.1.9 iRMX interrupts

Interrupts are used to handle real time events. Hardware invoked interrupt routines
can start an interrupt handler task, which in most cases is necessary because most
of the iRMX calls are not available to the hardware interrupt routines.

High performance interrupt handling can be achieved by letting the interrupt
routine and the interrupt handler tasks communicate via buffers that hold a user
specified amount of data. The interrupt routine then only needs to invoke the
interrupt handler task if it has finished handling a buffer, thereby reducing the
number of task switches considerably.

The following operating system functions are provided for iRMX interrupt
routines and tasks:

SET INTERRUPT assigns an interrupt routine to a specified hardware interrupt
level. The start address of the interrupt routine, the data segment address
for the interrupt routine and a flag indicating whether the calling task will
be the interrupt handler task must all be given.

RESET_INTERRUPT cancels the assignment of an interrupt routine to a hardware
interrupt level and deletes the interrupt handler task (may be postponed by
DISABLE_DELETION, see A. l.l 0).

ENTER_INTERRUPT is called by the interrupt routine to retrieve the data
segment to use (specified by SET_INTERRUPT).

EXIT_INTERRUPT is called by the interrupt routine to send a hardware 'End Of
Interrupt' signal and resume execution of the interrupted task.

SIGNAL_INTERRUPT is called by the interrupt routine to send a hardware 'End
Of Interrupt' signal, awake the interrupt handler task (by sending a unit to
an internal interrupt semaphore) and resume execution of either the
interrupted task or the interrupt handler task, whichever has the highest
priority (in almost all cases this will be the interrupt handler task).

WAIT_INTERRUPT is called by the interrupt handler task to wait at the interrupt
semaphore for the interrupt routine to
(counting semaphore, so there may
SIGNAL_INTERRUPT calls).

A.I - Intel's iRMX 86

call SIGNAL INTERRUPT
be an accumulation of

140

ENABLE enables a specified hardware interrupt level if it has a routine attached
to it.

DISABLE disables a specified hardware interrupt level.

GET_LEVEL returns the highest interrupt level which is currently being serviced.

A.l.l 0 iRMX deletion control

All objects in iRMX have a so-called 'deletion depth' counter (unsigned byte),
which must be zero to enable the normal deletion of the objects. If a task tries to
delete an object with a non-zero deletion depth, then the task is placed in a sleep
state until the deletion depth is made zero by another task, after which the object
is deleted and the task is awakened again.

The following operating system functions are provided for iRMX deletion control:

DISABLE_DELETION increases the deletion depth of an object, making it
impossible to delete the object.

ENABLE_DELETION decreases the deletion depth of an object. If the deletion
depth reaches zero, the object can be deleted by the normal delete calls.

FORCE_DELETE deletes the designated object if the deletion depth is zero or one
(one DISABLE DELETION call more than there were
ENABLE_DELETION calls).

A.l.l1 iRMX user extensions

There are two types of user extensions possible in the iRMX operating system. New
operating system calls can be added to the system by placing the start address for
the handler routine in the processor hardware interrupt table, the other extensions
concern the addition of new object types by combining existing object types in so­
called 'composites'.

The following operating system function is provided to add new operating system
calls to the iRMX system:

SET_ OS_EXTENSION places a pointer to a routine in a specified slot of the
processor hardware interrupt table. Slots 224..255 are reserved for this
purpose. A 'null' pointer may be set to decouple a routine from the interrupt
table.

Composite object types are managed by so-called 'type managers' (which are
normally set by SET OS EXTENSION). Each composite object type has it's own
user defined type code (inthe range 32678..65535), a number which must be used to
create composites of that type and an optional 'deletion mailbox', which is used to
send deleted composite objects to.

In most cases, one of the tasks in the type manager is responsible for the objects
sent to the deletion mailbox and has to do some processing for each 'deleted' object
before actually deleting it. If the composite object is a disk file info block, for

A.l - Intel's iRMX 86

141

instance, this processing might be the writing of updated data and directory sectors
to disk after closing a file. If no deletion mailbox is specified, deleting is done
without informing the type manager.

A job containing extension objects cannot be deleted, because this would also
delete the corresponding type manager which must be present in this job.
Preferably, the system should first be 'flushed' from any existing composite
objects, after which the extension, the type manager task(s) and the job can be
deleted.

The following operating system functions are provided for iRMX type managers:

CREATE_EXTENSION creates a new object type, returning a token for it. The
type code and the optional deletion mailbox must be specified. Nothing is
said about the actual contents of the new object type!

DELETE_EXTENSION deletes an object type (may be postponed by
DISABLE DELETION, see A.UO). If a deletion mailbox was specified, all
existing objects of that type will automatically be sent to the given mailbox
(which means that they will be 'taken away' from the processes using them,
which may give a host of error messages around the system).

CREATE_COMPOSITE creates a composite object, returning a token for it. The
object type code and a list of tokens comprising the composite object must
be given. This list may be partially empty. the tokens may be of any valid
type (including other composite object types !).

DELETE_COMPOSITE deletes a composite object, sending it to the deletion
mailbox if one is specified for the extension type. If this function is called
by the type manager, then the composite is deleted without sending it to the
deletion mailbox.

INSPECT_ COMPOSITE returns a pointer to the token list for the given composite
object.

ALTER_COMPOSITE replaces specified tokens in a composite object's token list
with other tokens.

A.I - Intel's iRMX 86

142

A.2 Texas Instruments' Microprocessor Pascal System

This multitasking operating system is specifically written for the TMS 9900 series
microprocessors from Texas Instruments. The system is designed around an
extended version of the Pascal language, where almost all parts of the system are
written in Pascal.

Microprocessor Pascal (which I will call 'MP' from here on) does not use the
'monitor' system to achieve multitasking, but rather uses an approach that looks
much like the iRMX jobs/tasks approach, the standard Pascal layers Program ­
Procedure have been extended to System - Program - Process - Procedure, where
processes and procedures may be nested at will. Memory management is done by
extending the Pascal 'heap' management, where heaps may be nested, and memory
may be allocated in blocks of arbitrary size.

MP is designed to be written and debugged on a host computer, after which it is
transferred to the target system, which will probably be much smaller. In fact, the
9900 chip is the one chip implementation of a minicomputer designated with the
type number 990. The 9900 is a 16 bit microprocessor with an addressing range of
only 64 kilobytes (small addressing ranges are not uncommon in minicomputers, a
normal PDP-II only has 128 kilobytes to work with !). The register set is placed in
memory, which aids in ultra fast task switching by simply reloading an on-chip
pointer to the current register set (this is also the only thing which is really fast
with this processor, input and output is done serially through a bit-oriented so­
called 'communications register unit' or CRU).

All data spaces are located in the Pascal heap, including semaphores, stacks,
programs etcetera. Addressing of data is for the most part done during compilation
of the software by the MP compiler (no object directories needed - but rather
inflex ible).

Priorities range 0..32767, with 0 being the highest priority, which is reserved for
the bootstrap/reset process. Priority 32767 is reserved for the idle process, which is
started when the processor has nothing else to do. Priorities in the range 1..15 are
connected to the hardware interrupts, processes executing at these priorities are so­
called 'device processes', The scheduler places device processes before other device
processes with the same priority in the ready queue, while the normal processes are
placed following all other ready processes with the same priority (which is the
strategy employed by all other multitasking systems described here). The reason for
this strange strategy lies in the fact that the hardware/software combination allows
the enabling of an interrupt level before the interrupt process at that level has
finished executing. With some external hardware (an Intel 8259, for instance) a
single interrupt level can be divided into separate levels. This is made possible
with this 'strange' LIFO scheduling algorithm.

Standard MP does not support mailboxes, regions, object catalogues, deletion
control and operating system extensions. Semaphores are counting (maximum count
32767), but with only one unit at a time. A semaphore queue always uses the FIFO
algorithm (cannot be priority based).

Timed waits and delays are not amongst the standard functions, but can be
included in the system during configuration, Timed waits (TWAIT call) only
operate if the process is at the head of a semaphore waiting queue.

A.2 - TI Microprocessor Pascal System

143

Each interrupt can trigger one of two semaphores. An interrupt triggers the normal
interrupt semaphore only if there is someone waiting at that semaphore, otherwise
a so-called 'alternate' interrupt semaphore is triggered. This idea to use two
semaphores for each interrupt is used in an extended form within the MMTCP
because it provides a more flexible way to catch 'overflow' interrupts.

Separate interrupt routines and interrupt handler tasks are not supported (not
needed anyway, as the hardware performs a task switch automatically in response
to an interrupt - very fast indeed). It is possible, however, to connect a user written
(assembly language) interrupt routine to a hardware interrupt. This assembly
language handler can call MP routines, but this is not specifically supported (you
have to know exactly what you are doing, otherwise the system will crash).

From the process related MP procedures only the following is a bit unusual, and is
not directly available in iRMX:

SWAP is used to implement time slicing. It is normally called periodically by a
device process (in most cases the real time clock). It works by searching the
ready processes list for the first non-device process, removing this process
from the list, and re-inserting it just before the first process with a lower
priority.

The following MP procedures related to semaphores are available:

SIGNAL is a completely standard 'V' operation, sending one unit to the semaphore
counter.

WAIT is a completely standard 'P' operation, halting the calling process until the
semaphore has at least one unit accumulated.

INITSEMAPHORE initialises a semaphore, giving it an initial counter value. This
call returns a valid variable of the type 'SEMAPHORE', to be used by all
other semaphore related calls.

CHKSEMAPHORE is a boolean function returning the value TRUE if the
specified semaphore is a valid (read: initialised) semaphore.

TERMSEMAPHORE deletes a semaphore, making it's space available for another
INITSEMAPHORE call (the maximum number of semaphores is fixed
during compilation).

SEMAVALUE is an integer function returning the current counter value of the
specified semaphore. If positive, this equals the number of accumulated
'units" if negative, it gives the number of waiting processes. Care should be
taken by using this function, because it is very well possible that another
process is made running between this call and the testing of the returned
value - this process can change the semaphore state!

SEMASTATE is a function returning a value of the type 'SEMAPHORESTATE',
which is (AWAITED, ZERO, SIGNALED). It functions the same way as
SEMAVALUE, and should be used with the same care.

WAITSIGNAL does a WAIT on a specified semaphore, and after that, immediately
does a SIGNAL on a second specified semaphore, in one indivisible step.

A.2 - TI Microprocessor Pascal System

144

CSIGNAL sends a SIGNAL to the specified semaphore, but only if the semaphore
has waiters. A boolean 'VAR' variable indicates if there were any waiters.

CWAIT does a WAIT on the specified semaphore, but only if this semaphore has
units accumulated (it will always return immediately). A boolean 'VAR'
variable indicates if there were units accumulated.

The following MP procedures related to interrupt handling are available:

EXTERNALEVENT assigns a primary semaphore to a specified hardware interrupt
level.

NOEXTERNALEVENT detaches the primary semaphore from a specified hardware
interrupt level.

ALTEXTERNALEVENT assigns an alternate semaphore to a specified hardware
interrupt level.

NOALTEXTERNALEVENT detaches the alternate semaphore from a specified
hardware interrupt level.

ASSEMBLYEVENT connects a register set (16 16-bit words at an arbitrary memory
location) and assembly language interrupt handler to a specified hardware
interrupt level.

NOASSEMBLYEVENT disconnects an assembly language interrupt handler from
the specified hardware interrupt level. MP will handle the interrupt again.

INTLEVEL returns the level of the interrupt currently in service (1..15). It returns
-1 if there is no interrupt in service.

MASK disables all hardware interrupts (except level zero, which is the system boot
interrupt).

UNMASK enables all hardware interrupts with higher priority than the calling
process.

SETMASK enables all hardware interrupts with higher priority than specified in
one of the call's variables. A second 'VAR' variable receives the interrupt
mask level as it was before this call.

The following MP procedures become available when the real time clock services
are included in the system during configuration:

CLKINT is not a call, it is a separate program. It must be started during system
initialisation with as parameters the number of milliseconds between clock
interrupts, the number of milliseconds between 'SWAP' calls and the
Communications Register Unit address of the real time clock hardware.

DELAY will put the calling process 'asleep' for a specified number of milliseconds.

A.2 - TI Microprocessor Pascal System

145

TWAIT performs a timed WAIT on a specified semaphore. It does not work if there
is already someone else waiting at the semaphore. A 'VAR' variable
indicates whether the specified semaphore received a SIGNAL within the
given waiting time, or whether this time (specified in milliseconds) expired
without a SIGNAL being given.

Texas Instruments' Microprocessor Pascal was developed with a single
microprocessor in mind. It has never been used on another processor type, but is
nonetheless interesting to include in this comparison because it contains functions
not available in the iRMX operating system.

The most noticeable additions are the 'SWAP' function to implement time slicing,
the 'WAITSIGNAL' call to do an indivisible WAIT and SIGNAL on two semaphores
and the conditional CWAIT and CSIGNAL functions. The idea to have alternate
interrupt semaphores is interesting too (and is used in the MMTCP).

A.2 - TI Microprocessor Pascal System

146

A.3 LEX (developed in Eindhoven)

LEX stands for 'Local EXecutive', and is a small multi-tasking operating system
used to drive the slave i/o processors in a multiprocessor UNIX implementation,
developed by our group in cooperation with a group at the Nijmegen University
(Netherlands).

LEX is written in 80186 assembly language and C. It handles processes (priorities
0..32767), semaphores (counting, max. count 32767), memory segments (dynamic
allocation and de-allocation), mailboxes and interrupt handlers. Only the last two
will be described here.

Mailboxes in LEX contain a fixed number of slots, which is specified at compile
time. Each slot can hold a single 32 bit message. The following LEX calls are
available for mailboxes:

Rmail clears a mailbox, releases processes waItmg to read from the mailbox and
releases processes waiting to write into the mailbox (if a mailbox is full,
processes requesting to write can be put asleep until space becomes
available).

Vmail sends a message to a mailbox. A 'mode' parameter determines the action
taken when the mailbox is full:

•

•

The process can be put asleep in the mailbox's writers waiting queue
until space becomes available.

A status flag can be used to indicate the failure (returning
immediately to the caller).

Pmail is called to receive a message from a mailbox. A 'mode' parameter
determines the action taken when the mailbox is empty:

•

•

The process can be put asleep in the mailbox's readers waiting queue
until it is at the head of this queue and there is a message written to
the mailbox.

A status flag can be used to indicate the failure (returning
immediately to the caller).

In the present configuration, LEX can have a maximum of 8 hardware interrupts
with corresponding interrupt handler routines. Interrupts can be coupled to
interrupt handler routines in two ways:

•

•

'Direct', which means that the environment of the interrupted process is not
saved and no task switch is possible. The interrupted process is always
restarted when the interrupt handler ends its processing.

'Indirect', where the environment of the interrupted process is saved and
task switching is possible. The interrupt handler may call any of the
semaphore or mailbox handling procedures.

A.3 - LEX

147

Being a relatively simple system (only a few kilobytes of object code), LEX has not
much functions to add to those iRMX and MP offer. The only new idea is the
mailbox writers waiting queue, which may have it's advantages above the scheme
of the 'infinite' mailbox that iRMX offers (a process going haywire cannot flood
the system with meaningless messages). LEX has a 'proceed' call that does almost
exactly the same as the 'SWAP' call in MP, and can be used for time slicing.

A.3 - LEX

148

A.4 Bell labs' UNIX

UNIX is a multiuser/multitasking operating system, in that order. It is certainly
not meant as a real time multitasking operating system, and for that reason, it does
not provide much of the functions available in iRMX. If functions are available,
they are implemented in a (sometimes radically) different way. Because UNIX and
it's relatives are used in an increasing number of computer systems, the MMTCP
should be capable of providing the basic multitasking functions used within these
operating systems.

The UNIX operating system uses a virtual memory scheme to store the data and
code segments of it's users (by the way, UNIX calls a code segment 'text'). The
code needed to play this game of swapping data in from- and out to disk at the
most profitable times clobbers the UNIX kernel programs in such a way that they
become very hard to read (being written in C, with hardly any comments at all
does not help either).

The multitasking calls are not available to the users of the UNIX system, they are
only available to the system programs themselves. This is done to protect the
system from misuse, because the implementation of semaphores makes it easy to
crash the system (for instance by blocking the scheduler I).

Semaphores (UNIX calls them 'channels') have no memory nor a real waiting Queue
in the UNIX system. Waiters for a channel are all transferred from the waiting
'Queue' to the ready Queue at the first 'wakeup' call for that channel. The ex­
waiters are placed in the ready Queue ordered according to a temporary priority,
given to them when they were put asleep. A channel with no waiters ignores all
'wakeup' calls.

Because all waiters are made ready at the same time, they all have to check
whether the condition they waited for really has been set. If waiters had been
waiting for the release of a resource, then the first ex-waiter to reach the running
state will occupy the resource, blocking the the other ex-waiters (which will have
to put themselves asleep again).

A channel is identified by a user provided number (in most cases the virtual
memory address for a related variable). This is in contrast to the other operating
systems, where the operating system provides a 'token' or identifier of some kind
to be used when accessing the semaphore after creation. This is also where the
security problem lies - UNIX will not stop you if you send 'wakeup' signals to all
the available channels.

Being a virtual memory based operating system, UNIX has to do a lot more process
accounting than the other operating systems described in this chapter. Making a
process ready is not so simple either, as the process data and text segments may be
swapped out during the waiting period. The process accounting functions amount
to keeping track of the time the process has actually been using the processor, the
time the process has been resident in memory since swapping in and the time
passed since the process has been swapped out to disk. If a process has children,
then these times for the children are also accumulated in the parent's process block.

Large UNIX installa tions do process 'profiling' (keeping track of the resources the
process uses) to influence the time slicing and virtual memory algorithms.

A.4 - Bell labs' UNIX

149

The process priority consists of two parts: a so called 'nice' variable and the actual
priority itself. The 'nice' priority can be changed by the user, but only a so-called
'superuser' can increase his/hers 'nice' priority. The real priority is initialised
directly from the 'nice' setting, but during processor usage is decreased gradually
each second by the clock interrupt handler, leading to an intelligent 'soft'
timeslicing algorithm for the user processes. System processes have a 'nice' priority
above a certain level, which prevents the clock interrupt to change their real
priority. Priorities in UNIX are signed bytes, with the most negative value (-128)
being the highest priority.

The virtual memory handler is a separate process inside the UNIX kernel, called
'sched' for scheduler. The scheduler is an endless loop, which starts by waiting for
a process that can be swapped in. If there is enough memory available to store the
process, the data and (if needed) text segments are loaded and the process is stored
in the so-called 'runqueue' of processes that are runnable.

If there is not enough memory, then the scheduler checks the process list for
processes that are waiting at a channel while having a low priority. If these are
found, they are swapped out until there is enough memory space to swap the new
process in. If there are no such processes, the scheduler starts swapping processes
out that have been in memory longer than a preset time interval (but this only if
the process wanting to be swapped in has been out on the swap disk longer than
another preset time interval). If none of these two methods free enough memory to
swap the new process in, it simply has to wait (the scheduler then goes asleep for
one second before it starts checking again).

The scheduling algorithm is probably the most changed part in the UNIX kernel.
Each system integrator thinks he/she can write a better one, resulting in
completely different schedulers (the one I described runs on the UNIX system on
which LEX also resides). Fortunately, the scheduler is a separate kernel process,
which only uses process data and data gathered by other processes (the real time
clock, for instance) and uses the standard system calls 'sleep' and 'wakeup'.

The UNIX kernel has it's own way to handle time delays. The UNIX kernel
maintains a so-called 'callout' table which contains an indicator for the time delay
wanted, a procedure to call when the delay time has expired, and a pointer to an
argument to give to the procedure. The process that uses a callout is not put asleep
(as the 'SLEEP' call in iRMX does), but rather commands the operating system to
call a specified procedure when the delay time has expired.

The 'SLEEP' call can be simulated by letting the routine that is run in response to
the callout execute a 'wakeup' for a channel the target process has put itself asleep
on.

Simulating the callout with a 'SLEEP' is possible by creating a separate process
containing only the wanted procedure and putting this process asleep for the
specified time, after which the process wakes up, executes the procedure and
(optionally) kills itself.

Process descriptors and callouts are stored in arrays of fixed size. This has the
disadvantage that there exist upper limits to the number of processes and callouts,
and that a lot of space is wasted if these arrays are not filled completely.

A.4 - Bell labs' UNIX

150

'Pipes' are used by the UNIX operating system to transfer data between processes
that run concurrently. The processes do not know they are communicating via
pipes, because the operating system kernel has initialised the pipes together with
the processes themselves (rather inflexible). Pipes are buffered on disk and are
normally used to create 'strings' of processes that handle data in separate steps,
transferring data from one process to the next in the string (in one direction only).

The pipes provided by the MMTCP can be used for this purpose and then offer the
possibility to transfer data between processes running on different processors. They
also can be created and deleted at will by the running processes, like the 'stream
files' described in the next appendix.

A.4 - Bell labs' UNIX

151

B. iRMX Kernel, BIOS and EIOS emulation

This appendix takes a look at the possibilities and difficulties with emulating the
iRMX·86 kernel, BIOS (Basic I/O System) and EIOS (Extended I/O System) when
using the multitasking coprocessor.

The MMTCP is based for a large part upon the functions provided by iRMX, and
was intended to emulate iRMX in the first place. Because of this, it is necessary to
check whether the current specifications for the MMTCP make this emulation
impossible (in which case we will have to do our homework again).

B - iRMX Kernel, BIOS and EIOS emulation

152

B.l iRMX Kernel emulation

To emulate the iRMX kernel, 'job' management is needed. jobs are a way to
partition memory in the iRMX system. jobs are organised in a tree-like fashion,
with a root job (initialised upon system powerup), parents and children.

Each job has as one of its parts a 'pool' of memory to work with. When a job is
created, it is given a minimum and maximum amount of memory that it may have.
This pool actually only consists of size limits, it is not the real memory space.
Memory is allocated in segments, which are allocated and de-allocated dynamically.

Initially, a job gets the minimum possible amount of memory allocated. If this
memory is exhausted, the job can borrow memory from its parent job (and this one
can borrow memory too, to satisfy this request, all the way up to the root job). If
memory is deallocated, it is given back to the parent job until the minimum
allocation is reached again (the parent returns memory to its parent too, etcetera).
The minimum amount of memory borrowed and returned can be specified when
the system is set up. This memory management can be done by a procedure in the
kernel which can use a coprocessor supplied region semaphore to provide the
necessary mutual exclusion.

Each job has an 'object directory', which is used to store symbolic names for the
objects in the system. Tasks running in a job can add, delete and search for entries
in this object directory. This can be done by kernel procedures which can use a
region semaphore to provide the necessary mutual exclusion (one region per object
directory). When searching an object directory, iRMX allows a task to wait until
the wanted object is placed in the directory. This can be achieved by using a
semaphore associated with each object directory, at which processes can wait which
do not find the object they waited for. This (no memory, no queue) semaphore can
be triggered when a new entry is placed in the object directory, causing the
waiting processes to search again (other schemes can be used too, of course).

Tasks (processes) running in a job can be emulated directly. All process related
iRMX calls are reproduced in the MMTCP, the same goes for the semaphores,
mailboxes and regions. The jobs themselves are not emulated by the MMTCP
because they are related to memory management, which is on purpose not included
within the MMTCP (there are too much different algorithms used to do this, and
all of them claim to be the 'best'). Therefore, jobs must be handled by user written
software (using MMTCP provided basic functions, of course).

Deletion control is reproduced almost completely by the coprocessor. The only
thing failing is the following: If a process in iRMX tries to delete an object with a
non-zero deletion holdoff counter, then this process is placed in a waiting queue
until the deletion depth is made zero, or until the object is deleted with
FORCE DELETE. This behaviour is not directly supported by the coprocessor, but
it can besimulated by introducing a non-counting, no-memory semaphore for each
object. A process trying to delete the object while the deletion depth is non-zero is
placed in the waiting queue of this semaphore, to be released when an
ENABLE DELETION call decreases the the deletion holdoff counter to zero, or
until a FORCE_DELETE call deletes the object.

Exceptional condition (error) management should be done by the host software
kernel. The coprocessor only returns an exception (or error) code to the calling

B.1 - iRMX Kernel emulation

153

process, errors should be intercepted in the kernel software, and should start the
correct exception handlers.

Interrupt management is different from that within iRMX, because the interrupts
are handled differently in the coprocessor hardware. Directly coupled interrupts
can use the TRIG INT SEMAPHORE call to simulate the SIGNAL INTERRUPT
call. The indirectly coupled interrupts can be used to start processes which
substitute for the iRMX interrupt tasks. It may be better, however, to change the
interrupt philosophy to better suit the hardware interrupt handling done by the
coprocessor.

Operating system extensions are used in the iRMX kernel to introduce new
functions in the operating system. These 'extensions' are really a specification of
how these functions should be added to the system, and how they should be called
by the user software.

Type managers are processes which are used to introduce new data types into the
iRMX operating system (like the 'user', 'device connection' and 'file connection'
data types used by the iRMX BIOS, described below). These functions can make
new instances of the new data type entities, change and delete them. For the
deletion process, the 'tokens' for the entities to be deleted are optionally sent to a
'deletion mailbox', for which a normal coprocessor-provided mailbox can be used.

B.t - iRMX Kernel emulation

154

B.2 iRMX BIOS

The iRMX BIOS (Basic Input/Output System) mainly consists of so-called
'asynchronous' function calls. This means that a command given to the BIOS runs
concurrently with the calling process. Using the BIOS is done in several phases:

•

•

The calling task does a normal procedure call to the BIOS procedures. This
starts the first part of the processing, which is called 'sequential', because it
is not done concurrently with the calling process. The following two
parameters are always present:

l) A pointer to a memory location which is to receive the condition
code for the sequential part of the BIOS call (this is standard
procedure for all iRMX function calls).

2) A mailbox which is going to receive the outcome of the
'asynchronous' part of the bios call. This outcome can be in two
forms, the first being a 'token' for a so-called 'result segment', which
contains a detailed description of the outcome of the call, the second
being a token for a device or file connection, described later.

During the sequential part of the function call, the given parameters are
checked for inconsistencies, and any errors in them are reported in the
memory location described under 1). If no errors are found, a command
'package' is made and given to the process which will execute the function
(probably using a mailbox).

The process which executes the asynchronous part of the call starts to work
as soon as it receives a message in its command mailbox, and uses the data
stored in the command package. When it has finished, it has two options. It
can place a token for a device or file connection into the response mailbox
(if it was the meaning that such a token should be returned, and that no
error was detected). The other option is to create a memory (result-)
segment, using memory in the caller's job memory pool, and place the result
there.

A task can have a maximum of 255 asynchronous BIOS calls standing out at the
same time. A result segment should be deleted when it has been read. To speed
things up a lot, the WAIT 10 function can be used following the calls A SEEK,
A READ and A WRITE(the most commonly used calls). This function lets the
task wait at the response mailbox, until a response is placed there. The result
segment is returned immediately to the BIOS for re-use, so that it need not be
deleted (this saves a lot of overhead). WAIT 10 is a normal RECEIVE MESSAGE
call, with some extra work done by the driving software. -

It is perfectly possible that a process executing the asynchronous parts of a BIOS
function call may change the order of execution of the commands, to get a better
performance (ordering disk read and write commands in the cylinder order, so that
the head needs not move in a completely random way across the disk surface, for
instance). It is therefore possible that results arrive in the response mailboxes in a
different order than in which the commands were given.

B.2 - iRMX BIOS

155

The iRMX BIOS has three file types:

•

•

•

Named files are the files stored on the random access background memory
(disk, bubbles). They are stored in a tree-like structure, not unlike UNIX,
with a root directory and subdirectories. Named files can be shared and
have access control. Owner, group and world 'users' are recognised and can
be given different access rights to the files (a subdirectory is a file too !).

Pbysical files occupy a complete device. The device is seen by the operating
system as one gigantic stream of bytes, without subdivisions. These files can
be used to control terminals, tape drives, printers, and are also used to read
and write foreign disk formats (and during the formatting process of a
normal iRMX disk too). No access and/or sharing control is possible, it will
have to be done by the user programs (or the Extended Input/Output
System, the EIOS). Note that sharing itself is possible!

Stream files are used between processes and are normally used to send byte
oriented data from one process to another process. They can be implemented
by using pipes in the coprocessor, as long as they are used by only a single
reader. iRMX allows multiple readers and writers for a single stream file,
although the BIOS manual does not state what will happen in that case.

A 'device connection' is an object which represents a device in the system. It is
created with A PHYSICAL ATTACH DEVICE, which returns a token for the
newly attached device.- The connection is broken by calling
A PHYSICAL DETACH DEVICE. Only one device connection is allowed per
physical device~The stream files are all stored on the virtual device 'stream' (for
consistency reasons only, there is no real device involved !).

A 'file connection' can be obtained with a call to one of the following functions:
A ATTACH FILE, A CREATE FILE or A CREATE DIRECTORY. For these
three functions, a file-or device connection and a 'path'should be given. If the
path is empty, and a file connection is given, then a second connection to the given
file is obtained, which can be used for shared access to the file. If the path
contains a '''' sign, it is used to denote the 'parent' directory of the file C..' in
UNIX and MS-DOS). During this call, the access rights of the caller are computed
and stored in the file connection data structure (at least, that is what I think that
is done). The file connection can be broken with A DELETE CONNECTION.
Files and (empty) directories can be deleted with A_DELETE_FILE.

Having obtained a file connection, the file can be opened by using the A OPEN
call. Using this call, the wanted type of access (read, write or read-and-write) and
the allowed sharing possibilities (none, readers-only, writers-only or full sharing)
must be given. As for sharing, no record lockout or even file lockout is
implemented by the BIOS, this is left up to the users. The A CLOSE call closes the
file for access, but the connection remains intact (A_OPENcan be called again).

While a file is open, the calls A READ (for reading), A WRITE (for writing),
A SEEK (to move the read-writeindex) and A TRUNCATE (to 'chop off' the
end of the file) can be used to read and manipulate the file.

A UPDATE can be used to force the writing of the file buffers to the device.
During system installation, the user can specify that this has to be done once every
XX seconds, and/or that it has to be done XX seconds after the last access to the

B.2 - iRMX BIOS

156

device. This can easily be simulated by using a separate process which is timed
with the DELAY function provided by the MMTCP.

Making this system suited for a multiprocessor environment is not very difficult, if
the processes remain relatively static (do not move between the processors). Block
input and output (from and to disk drives, for instance) can be handled by using
DMA between the host processors, DMA can also be used to transfer command and
result blocks between the host processors, byte input and output can be handled by
the pipes implemented in the coprocessors. The coprocessors automatically can
handle system global semaphores, mailboxes and regions. By giving each processor
its own memory (job) manager with a separate root job, memory management can
be done independently for each host processor.

B.2 - iRMX BIOS

157

B.3 iRMX EIOS

The EIOS (Extended Input/Output System) builds upon the Kernel and the BIOS
and adds the following features:

•
•

•

•

Buffering of input and output ('read-ahead' and 'write-behind').

Synchronous instead of asynchronous operation (each task awaits completion
of each I/O command). This does not give a serious speed penalty because
the I/O is buffered.

Cataloguing of file connections under logical names with the same syntax as
device names.

'la-jobs' which are a special type of job, with the possibility to use the
EIOS, and which automatically notify the parent la-job if a task inside the
la-job terminates (a message segment's token is sent to a mailbox specified
by the parent la-job during creation of the 'child' la-job, the message
segment contains the reason why the task terminated).

The main reason for having an EIOS is the simplicity of the synchronous operation
(most programmers are more used to 'normal' operating systems, which in most
cases work this way), and the 'best effort' buffering of I/O. In some cases the
'read-ahead' and 'write-behind' buffering algorithms are not the most efficient,
and better algorithms can be implemented by using the BIOS calls directly,
bypassing the EIOS. Mixed use of EIOS and BIOS calls is allowed, but certain rules
are to be obeyed when doing so.

There will be no problems when emulating an iRMX system containing the EIOS
with an MMTCP, because the EIOS adds no new basic functions to the complete
system. The EIOS only extends the functions already there, using the special
extension primitives provided by the Kernel. The EIOS can be seen as one of the
many possible implementations of a multiuser operating system built upon the
iRMX Kernel and BIOS. Intel speaks of the EIOS as an example for a 'do-it­
yourself' multiuser operating system.

B.3 - iRMX EIOS

158

Literature

I) Andrews, Don W. and Schultz, Gary D.:
'A Token Ring Architecture for Local Area Networks: an Update'
IBM Corporation, Communications Products Division, Research Triangle
Park, North Carolina, USA.
Proceedings of the COMPCON Fall 82 Conference,
Pages 615-624.

2) ECMA 89 - Token ring standard description.

The following manuals have been used for appendix A:

In tel Corporation:
iRMX Programmers Reference Manual, Part
(for release 6)
Order number: 146195-00 I
Intel Corporation,
3065 Bowers Aven ue,
Santa Clara, California 95051

Texas Instruments:
9900 Microprocessor Pascal Executive User's Manual
(Microprocessor Series)
No order number or address known.

Data for the LEX and UNIX subchapters has been found in the program listings
with the kind help from my fellow students Lucien Duijkers and Ren~ Hoozemans.

Literature

159

Table of MMTCP functions (sorted alphabetically):

ABORT STREAM 83
AWAIT-STREAM END 82
BROADCAST PROCESS 89
CHANGE PRIORITy 41
CHANGE-RING ACCESS TABLE 35
CHAN GE-TIMERS :: 45
CHANGE-USER AREA 41
CHECK MAILBOX 59
CHECK-PIPE 69
CHECK-REGION 63
CHECK-SEMAPHORE 52
CHECK-STREAM 81
CLAIM PIPE 66
CLAIM-PROCESS 90
CONNECT NETWORK 28
DELAy :: 40
DISABLE DELETION 77
DISABLE-INTERRUPT 73
DISCONNECT NETWORK 29
ENABLE DELETION 77
ENABLE-INTERRUPT 73
ENTER REGION 62
EXIT REGION 63
FLUSH PIPE 69
FORCE-DELETE 78
GET PROCLIST HEAD 87
GET-PROCLIST-NEXT 88
GET-PROCLIST-PREV 88
GET-PROCLIST-TAIL 87
GET-STATISTICS 43
INIT-MAILBOX 56
INIT-PIPE 65
INIT-PROCESS 37
INIT-REGION 61
INIT-SEMAPHORE 48
INIT-SySTEM 23
MARK DIRTy 86
NETWORK CHECKOUT 30
POLL ::: 42
POWER OFF 76
READ RTC 75
RECEIVE DATA 67
RECEIVE- MESSAGE 57
RECEIVE-STREAM 80
RELEASE-PIPE 68
RESUME PROCESS 41
SEND DAT A 68
SEND-MESSAGE 58
SEND-STREAM 80
SET ALTINT SEMAPHORE 72
SET-ALTERNATE READY QUEUE ~ 86
SET-ENVIRONMENT :: 46

Table of MMTCP functions

160

SET INT SEMAPHORE 72
SET-NORMAL READY QUEUE 86
SET-RTC = = 75
SET-SPECIAL STATUS 46
SIGNAL = 51
SIGNAL CHANNEL 54
SUSPEND PROCESS 40
TERM MAILBOX 57
TERM-PIPE 65
TERM-PROCESS 39
TERM-REGION 61
TERM-SEMAPHORE 50
TRIG INT SEMAPHORE 73
UNLINK = 47
UNMARK DIRTY 87
WAIT = 50
WAIT CHANNEL 53
WAIT-RTC 75
YIELD 42

Table of MMTCP functions

161

Index (chapters 1, 2 and 3):

A.
Access token 8
Accessible ring numbers table 34

maintenance 35
Addressing of entities 22
Algorithm hiding 4
Alternate ready queue flag 84

B.
Best-fit unit distribution semaphores 49
Block data transport, in trod uction 11

see stream data
Bridges 33

accessible ring numbers table 34
con trol tasks 124
DMA hardware 124
enabling 25
initialisation 26
in terfacemailboxes 34, 56
introduction 16

Broadcast flags 84
Bus master (internal bus) 92
Bus sla ve (internal bus) 92
Bus-ed mul tiprocessor systems 14

c.
Channel semaphores 53

configuration setting 23
signal operation 54
task transfer 53
use enabling 38
wait operation 53

Character da ta transport, in trod uction 10
Clock tick speed setting 23
Communica tion

block data, introduction 11
characters, introduction 10
ex ternal hard ware, in trod uction 11
message exchanging, introduction 9
synchronisa tion, in trod uction 7

Concurren t routines 4
Coprocessor based input/output controllers 12
Coprocessor, multiprocessor multitasking-, see MMTCP

D.
Deadlock stopping 47
Default hardware 110
Delay call for tasks 40
Delay genera tor 118
Dela y wai ting list 118
Deletion control, see en ti ties
Direct memory access, see DMA

Index

162

Dirty flag 84
resetting 87
setting 86

DMA
external controllers 124
in trod uction 12
on-chip hardware 124

E.
Entities

addressing 22
crea tion ena bling 38
deletion control 38, 77
deletion disabling 77
deletion ena bling 77
forced deletion 78
re-using problem 103

Environment pointer registers 112
Events, introduction 5
External hardware communication, introduction 11
External working memory 98

F.
FIFO queue semaphores 48
FIFO waiting queues 8
File transfer

introduction II
see stream data

First-fit unit distribution semaphores 49
Force release for semaphores 51

G.
Gateway, see bridge

H.
Host interface 110

address la tching 110
bus width 110
bus width conversion 110
command interpreter 112
data strobes 110
default hardware 110
environment pointer registers 112
in ternal bus 92
interrupt output 110
interrupt output generation 113
protocol handlers III
register a tten tion signals 110
result holding area 112
result register buffering 111
result register handler 113
task switcher 112

Index

163

I.
Information hiding 4
Initial tasks 26
Internal bus multiplexing 96
Internal buses, testing 126
Internal host interface bus 92
Internal messaging bus 92
Internal working memory access bus 93
Interrupts 71

alternate semaphores 71
alternate semaphores setting 72
configura tion setting 23, 115
direct coupled 71
disabling 73
enabling 73
error handling 71
external inputs 115
forced task switch output 17, 110
hardware handler 116
indirect coupled 71
introduction 12
lookup tables 116
masking hardware 115
MMTCP output 17
normal semaphores 71
normal semaphores setting 72
scanning hardware 115
semaphore interaction 12
semaphores 71
semaphores (alternate-), introduction 19
software triggering 73
trigger mode 73, 115

L.
LAN

address assignment 24
address checking 31
address searching 119
checking 30
connection setup 28
disconnect 29
error detected flag 119
error handling 27,120
input controller hardware 119
input packet FIFO 120
introd uction 15
main tenance 30
message copied flag 119
monitoring hardware 123
multiprocessor systems 15
networks of-, introd uction 15·
number assignment 25
operating without a- 24

Index

164

LAN (continued)
ou tpu t con troller hardware 122
ou tpu t packet FIFO 122
packets, introduction 15
port setup 28
station priorities 27
task transfer 121
timeou t error handling 123
timeouts 118
traffic statistics 30

Local Area Network, see LAN

M.
Mailboxes 55

checking 59
default settings 24
fixed length 9, 55
infinite 9, 55
ini tialisa tion 56
in trod uction 9
message buffer 9
message reception 57
message size 55
message transmission 58
special purpose 55
system errors 55, 101, 123
system interconnection 55
termination 57

Message exchanging, introd uction 9
Messages - LAN, see packets
MMTCP

address checking hardware 128
buses 92
buses, multiplexing 96
delay generator hardware 118
DMA hardware 124
external interfaces 91
host interface, see host interface
initialisation 23
in ternal buses 92
in ternal host in ter face bus 92
interrupt handler 116
interrupt inputs 115
interrupt scanner 115
LAN input controller 119
LAN output controller 122
messaging bus 92
on-chip working memory 98
real time clock hard ware 117
task address search cache 106
task address search hashing tables 106
task descriptor cache 107
task restarter 114
task stopper 128

Index

165

MMTCP (continued)
tasks list searching hardware 107
test hard ware 126
testing, protection from mis-use 127
timeout generator hardware 118
working memory access bus 93
working memory allocation and de-allocation 101
working memory cache 98
working memory interface 98
working memory management functional block 101
working memory on-chip 98
working memory organisation 102

Multiprocessor multitasking coprocessor, see MMTCP
Multiprocessor multitasking, introduction 14
Mul tiprocessor support 84
Mul tiprocessor systems, Bus interconnected 14
Multitasking executive

multiuser 5
real time- 4

Multitasking, multiprocessor-, introduction 14
Multiuser computer systems 4

N.
Networks of LAN's, introduction 15
No memory semaphores 7
No-queue semaphores 49
Non-counting semaphores 7

o.
Operating without a LAN 24

P.
P operation

channel semaphores 53
normal semaphores 50

Packets
introduction 15
priorities 27
routing 33

Permissions 38
Pipes 64

addressing 64
checking 69
claiming 66
current writer 64
data reception 67
data transmission 68
fl ushing 69
flushing control 38
ini tialisa tion 65
introduction 10
length default setting 24
releasing 68
termination 65

Index

166

Polling con trol 42
Polling, in trod uction 12
Power control 75

hardware 117
switChing off 76
switching on 75

Priorities
in trod uction 5
LAN stations 27
packets 27

Priority based waiting Queues 8
Priority Queue semaphores 49
Process, see task

Q.
Queue-less semaphores 8
Queues

FIFO based 8
priority based 8

R.
Ready to run Queue

introduction 6
al terna te- 84
set alternate 86
set norma I. 86

Real time clock 75
hardware 117
reading 75
setting 75
task transfer 117
waiting 75

Real time computer systems 4
Regions 61

checking 63
enter operation 62
exit operation 63
initialisa tion 61
introduction 8
termina tion 61

Resource locking, in troduction 8
Resul t registers 113
Ring, token-, see LAN
Root tasks 26

s.
Sched uler task assign men t 38
Sched ulers 84

alternate ready Queue flag 84
dirty flag 84
steering flags 84
tasks list 84
tasks list, get head ; 87
tasks list, get nex t 88

Index

167

Schedulers (continued)
tasks list, get previous 88
tasks list, get tail 87
tasks list, searching hardware 107
transfer (broadcast) flags 84

Semaphores 48
channel-, see channel semaphores
checking 52
force release signal call 51
ini tialisa tion 48
interrupt (alternate-), introduction 19
interrupt interaction 12
introduction 7
signal operation 51
task Queue modes 48
termina tion 50
wait operation 50

Special status
changing 46
ini tialisa tion 39

Stand alone opera tion 24
Steering flags 84
Stream data 79

abort operation 83
checking 81
con tro1 task assign men t 38
con trol tasks 79, 124
DMA hardware 124
enabling 25
reception 80
sta tus codes 81
terminology 19
timeou t setting 25
transmission 80
waiting for the end of- 82

Subrou tines 4
Synchronisation, introduction 7
System errors mailbox 27,55, 101, 123
System initialisation 23
System in terconnection mailbox 55
System mailboxes setup 24
System task assignment 38

T.
Task descriptors

cache memory 107
introduction 6

Task switching
hardware 112
hardware-, introduction 17
interrupt output 17
introduction 5

Index

168

Tasks
address search cache 106
address search hashing table 106
address searching 105
alternate ready queue flag 84
crea tion 37
deadlock stopping 47
delay genera tor I 18
delaying 40
dirty flag 84
environment pointer setting 37, 46
identification number assignment 105
identification numbers 37
initial- 26
initialisation 37
locking 37, 39
offspring generation enabling 38
permissions 38
permissions status 44
priority controI. 37, 41, 42
processor checking 44
restarting hardware I 14
restarting triggers I I I
special status word initialisation 39
special status word setting 46
state timers 45, 118
sta tistics 43
stopping control 38
suspension 39, 40, 4 I
suspension, introduction 20
termina tion 39
time slice setting 39
transfer, broadcast 89
transfer, claim 90
transfer, flags 44, 84
transfer, general enable 24
transfer, hardware handling 122
transfer, individual disabling 37
transfer, LAN packets 121
transfer, real time clock handling I 17
user area changing 41
user defined size 85
user defined state 85

Testing of the MMTCP chip 126
Testing, protection from mis-use 127
Time slicing

introduction 5
setting 39
user defined 42

Timeout genera tor I 18
Timeout waiting list 118
Timers, task state 45
Token ring, see LAN
Trigger interrupt semaphore opera tion 73

Index

169

u.
Uni t-ised semaphores 8
User area

changing 41
size setting 23

v.
V operation

channel semaphores 54
normal semaphores 51

Virtual memory support 84
Vola tile environment, in trod uction 5

w.
Working memory

access bus 93
address incrementing 95
allocation and de-allocation 101
byte access 94
cache 98
deleted entities problem 103
dynamic RAM 98
dynamic RAM refreshing 99
error detection 99
error handling 99, 101
fixed data structures 10 I
hardware interface 98
initialisation 101
on-chip 98
orga nisa tion 102
paging 102
segmenting 101
size setting 23
sta tic RAM 99
table indexing 94
type setting 23

Workstations, networks of- 4

Index

	Voorblad

	Abstract

	Table of contents

	Preface�
	1. Introductions

	2. Functional description

	3. Functional blocks

	4. Conclusion

